

BIRMINGHAM—MUMBAI

Go for DevOps
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained
in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate
use of capitals. However, Packt Publishing cannot guarantee the accuracy of
this information.

Group Product Manager: Rahul Nair

Publishing Product Manager: Preet Ahuja

Senior Editor: Shazeen Iqbal

Content Development Editor: Romy Dias

Technical Editor: Shruthi Shetty

Copy Editor: Safis Editing

Project Coordinator: Ashwin Kharwa

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Production Designer: Joshua Misquitta

Marketing Coordinator: Sanjana Gupta

First published: June 2022

Production reference: 1010622

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-889-6

www.packt.com

http://www.packt.com/

Monika, you are the North Star I guide my ship with and I love you
with all my heart. I couldn't have done this without your support and
guidance.

– John Doak

To Deya, Will, Thor, and Tron, without whom my days would be as
muted and monotone as this page.

– David Justice

Contributors

About the authors
John Doak is the principal manager of Layer 1 Reliability Engineering at
Microsoft. John led the development of the Azure Data Explorer and
Microsoft Authentication Library Go SDKs. Previously, he was a Staff Site
Reliability Engineer at Google. As part of network engineering, he created
many of their first network automation systems. John led the migration of
that group from Python to Go, developing Go training classes that have
been taught around the world. He was a pivotal figure in transforming the
network team to a network/systems group that integrated with SRE. Prior to
that, he worked for Lucasfilm in video games and film. You can find his
musings on Go/SRE topics and his Go classes on the web.

I'd like to thank Raleigh Mann who was my manager at both Lucasfilm
and Google during most of my time there. His advice and steadfastness
when standing beside me are why I still call him Boss today. Stephen
Stuart, who gave me my initial foray into management, which I'm not
sure I should thank or curse him for. Thanks to Less Lincoln, the man,
the myth, the legend. I’ve worked with Less for four years, he’s as
much a mystery box as when I first met him (and I think he likes it that
way). Of course, I would never have gotten here without the love and
support of my parents, I love you both. Thanks to Sarah Murphy, who
was an early contributor to the book. And thanks to David Justice.
Without his hard work and enthusiasm, I would not have been able to
do this.

David Justice is the principal software engineer lead for the Azure K8s
infrastructure and Steel Thread teams, which maintain a variety of CNCF
and Bytecode Alliance projects. He is a maintainer of the Cluster API
Provider Azure and a contributor to the Cluster API. Prior to that, David
was the technical assistant to the Azure CTO, where he was responsible for
Azure cross-group technical strategy and architecture. Early on at
Microsoft, he was a program manager leading Azure SDKs and CLIs,
where he transitioned all Azure services to describe them using OpenAPI
specifications in GitHub and established automations to generate Azure
reference docs, SDKs, and CLIs. Prior to working at Microsoft, David was
the CTO of a mobile CI/CD SaaS called CISimple.

Thank you to my lovely, supportive wife, Deya, for encouraging me to
pursue time-consuming activities such as writing a book, educational
pursuits, start-ups, and her favorite, golf. Deya and Will, you will
never know how much your love, hugs, and support powered me
through late nights and droughts of creativity. This book would not be
possible without the brilliance, reliability, and counter-perspectives of
my coauthor, John, for whom the word example means a 30k-line
robust application. Thank you to the whole Packt team and all the
reviewers, but especially Romy Dias who edited my work into
something more closely resembling English prose. Finally, thank you
Dad and Papa for always believing in me.

About the reviewers
Trieu Pham is a software engineer with various technical ideas. His current
focus and specialty are on API development, microservices, DevOps, and
Golang. He has a bachelor's degree in mathematics and computer science, a
master's degree in computer engineering, and a PhD in engineering.

Lukasz Sudol is a senior director of engineering at GumGum. He began
working in the e-commerce industry by developing backend systems.
During the past decade, his work has focused on developing high-
availability application architectures for AdTech. He enjoys helping people
to develop and working with interesting technologies.

I would like to thank my family, my fiancée Marcelina, and my friends
who understand the time and commitment it takes to research and test
engineering tools that are constantly changing. And to the reader, I
hope my contribution will help you get through the book more easily.

Table of Contents

Preface

Section 1: Getting Up and Running with
Go

Chapter 1: Go Language Basics

Technical requirements
Using the Go Playground
Utilizing Go packages
Declaring a package
Importing a package
Using a package
Package name conflicts
Packages must be used
A Go Hello World
Using Go's variable types
Go's types
Declaring variables
Variable scopes and shadowing
Function/statement variable must be used
Looping in Go
C style
Removing the init statement
Remove the post statement too and you have a
while loop
Creating an infinite loop

Using conditionals
if statements
else
Learning about functions
Returning multiple values and named results
Variadic arguments
Anonymous functions
Defining public and private
Using arrays and slices
Arrays
Slices
Extracting all values
Understanding maps
Declaring a map
Accessing values
Adding new values
Extracting all values
Understanding Go pointers
Memory addresses
Function arguments are copies
Pointers to the rescue
Getting to know about structs

Declaring a struct
Declaring a custom type
Custom struct types
Adding methods to a type
Changing a field's value
Changing a field's value in a method
Constructors
Comprehending Go interfaces
Defining an interface type
Important things about interfaces
The blank interface – Go's universal value
Type assertion
Summary

Chapter 2: Go Language Essentials

Handling errors in Go
Creating an error
Using an error
Creating named errors
Custom errors
Wrapping errors
Utilizing Go constants
Declaring a constant
Enumeration via constants
Printing enumerators
Using defer, panic, and recover
defer
panic
recover
Utilizing goroutines for concurrency
Starting a goroutine
Synchronization
WaitGroups
Channels
Sending/receiving

select statements
Channels as an event signal
Mutexes
RWMutex
Understanding Go's Context type
Using a Context to signal a timeout
Honoring a context when receiving
Context in the standard library
Context to pass values
Best practices
Utilizing Go's testing framework
Creating a basic test fi le
Creating a simple test
Table Driven Tests (TDT)
Creating fakes with interfaces
Third-party testing packages
Generics – the new kid on the block
Type parameters
Using type constraints
We could do better with constraints
Current built-in constraints
Type constraints with methods

Adding type parameters to struct types
Specifying the type when calling a generic
function
Gotchas to watch for
When to use generics
Summary

Chapter 3: Setting Up Your Environment

Technical requirements
Installing Go on your machine
macOS installation using the package installer
macOS installation via Homebrew
Windows installation using MSI
Linux
Other platforms
A note on Go compiler version compatibility
Building code locally
Creating a module directory and go.mod file
Updating a module when adding dependencies
Adding a hello world
Running our first program
Summary

Chapter 4: Filesystem Interactions

All I /O in Go are files
I/O interfaces
Reading and writing to files
Reading local fi les
Writing local fi les
Reading remote files
Streaming file content
Stdin/Stdout/Stderr are just fi les
Reading data out of a stream
Writing data into a stream
OS-agnostic pathing
What OS/platform am I running?
Using filepath
Relative and absolute pathing
OS-agnostic fi lesystems
io.fs fi lesystems
embed
Walking our filesystem
The io/fs future
Summary

Chapter 5: Using Common Data Formats

Technical requirements
CSV files
Basic value separation using the strings
package
Using the encoding/csv package
Using excelize when dealing with Excel
Popular encoding formats
The Go field tags
JSON
YAML encoding
Summary

Chapter 6: Interacting with Remote Data
Sources

Technical requirements
Accessing SQL databases
Connecting to a Postgres database
Querying a Postgres database
Null values
Writing data to Postgres
Transactions
Postgres-specific types
Other options
Storage abstractions
Case study – data migration of an orchestration
system – Google
Developing REST services and clients
REST for RPCs
Developing gRPC services and clients
Protocol buffers
Stating the prerequisites
Generating your packages
Writing a gRPC client

Writing a gRPC server
Creating a server binary
Creating a client binary
Company-standard RPC clients and servers
Summary

Chapter 7: Writing Command-Line
Tooling

Technical requirements
Implementing application I/O
The flag package
Custom flags
Basic flag error handling
Shorthand flags
Accessing non-flag arguments
Retrieving input from STDIN
Using Cobra for advanced CLI applications
Code organization
The optional Cobra generator
The command package
Handling OS signals
Capturing an OS signal
Using Context to cancel
Summary

Chapter 8: Automating Command-Line
Tasks

Technical requirements
Using os/exec to automate local changes
Determining the availability of essential tools
Using SSH in Go to automate remote changes
Connecting to another system
Designing safe, concurrent change automations
Components of a change
Writing a concurrent job
Case study – Network rollouts
Writing a system agent
Designing a system agent
Implementing Install
Implementing SystemPerf
Summary

Section 2: Instrumenting, Observing, and
Responding

Chapter 9: Observability with
OpenTelemetry

Technical requirements
An introduction to OpenTelemetry
Reference architecture for OpenTelemetry
OpenTelemetry components
Logging with context
Our first log statement
Structured and leveled logs with Zap
Ingesting, transforming, and exporting logs
using OpenTelemetry
Instrumenting for distributed tracing
The life cycle of a distributed trace
Correlating traces and logs
Adding log entries to spans
Instrumenting for metrics
The life cycle of a metric
Client/server metrics with OpenTelemetry
Alerting on metrics abnormalities
Adding and configuring Alertmanager
Summary

Chapter 10: Automating Workflows with
GitHub Actions

Technical requirements
Understanding the basics of GitHub Actions
Exploring the components of a GitHub Action
How to build and trigger your first GitHub
Action
Building a continuous integration workflow
Introducing the tweeter command-line tool
Goals of the tweeter continuous integration
workflow
Continuous integration workflow for tweeter
Building a release workflow
GitHub releases
Release automation for tweeter
Creating a custom GitHub Action using Go
Basics of custom actions
Goals for the tweeter custom GitHub Action
Creating the tweeter action
Publishing a custom Go GitHub Action
The basics of publishing actions

Goals for publishing the tweeter custom action
Managing action semantic versioning
Publishing the tweeter action to the GitHub
Marketplace
Summary

Chapter 11: Using ChatOps to Increase
Efficiency

Technical requirements
Environment architecture
Using an Ops service
Building a basic chatbot
Creating event handlers
Case Study – Regexes versus Lexer and Parser
Creating our Slack application
Running the applications
Summary

Section 3: Cloud ready Go

Chapter 12: Creating Immutable
Infrastructure Using Packer

Technical requirements
Building an Amazon Machine Image
Setting up an AWS source
Defining a build block and adding some
provisioners
Executing a Packer build
Validating images with Goss
Creating a spec file
Adding a Packer provisioner
Customizing Packer with plugins
Writing your own plugin
Releasing a plugin
Using our plugin in a build
Debugging a Packer plugin
Summary

Chapter 13: Infrastructure as Code with
Terraform

Technical requirements
An introduction to IaC
Understanding the basics of Terraform
Initializing and applying infrastructure specs
using Terraform
Understanding the basics of Terraform
providers
Defining and provisioning cloud resources
Building a pet store Terraform provider
Resources for building custom providers
The pet store provider
Publishing custom providers
Summary

Chapter 14: Deploying and Building
Applications in Kubernetes

Technical requirements
Interacting with the Kubernetes API
Creating a KinD cluster
Using kubectl to interact with the API
Deploying a load-balanced HTTP application
using Go
It all starts with main
Creating a ClientSet
Creating a namespace
Deploying the application into the namespace
Creating the NGINX deployment
Waiting for ready replicas to match desired
replicas
Creating a Service to load-balance
Creating an ingress to expose our application
on a local host port
Streaming pod logs for the NGINX application
Extending Kubernetes with custom resources
and operators
Custom Resource Definitions

Controllers
Standing on the shoulders of giants
Building a pet store operator
Initializing the new operator
Summary

Chapter 15: Programming the Cloud

Technical requirements
What is the cloud?
Learning the basics of the Azure APIs
A background on cloud APIs and SDKs
Microsoft Azure identity, RBAC, and resource
hierarchy
Creating an Azure account and accessing the
API
Building infrastructure using Azure Resource
Manager
Azure SDK for Go
Setting up your local environment
Building an Azure virtual machine
Using provisioned Azure infrastructure
Building an Azure Storage account
Summary

Chapter 16: Designing for Chaos

Technical requirements
Using overload prevention mechanisms
Case study – AWS client requests overwhelm
the network
Using circuit breakers
Using backoff implementations
Combining circuit breakers with backoff
Using rate limiters to prevent runaway
workflows
Case study – Google satellite disk erase
Channel-based rate limiter
Token-bucket rate limiter
Building workflows that are repeatable and
never lost
Building idempotent workflows
Using three-way handshakes to prevent
workflow loss
Using policies to restrict tools
Defining a gRPC workflow service
Creating a policy engine
Writing a policy

Cautions on policy engines
Building systems with an emergency stop
Understanding emergency stops
Building an emergency-stop package
Using the emergency-stop package
Case study – Google's network backbone
emergency stop
Summary

Other Books You May Enjoy

Preface
When you get older it seems to me that most people reflect on their lives.
How they got where they are, where they succeeded, and where they failed.
I can say in all honesty that I've failed in my career. I know it is abnormal to
start a book with an admission of failure, but I figure why start the book off
with lies about succeeding beyond my wildest dreams?

My aspirations align more with Jimmy Buffet than Warren Buffet. Keeping
my interest in anything for more than a few years is a challenge and my
idea of a hard day's work is sipping a piña colada on a Hawaiian beach.
Alas, I have failed in my ambitions. The closest to that dream I've gotten is
working for a boss who always wore Hawaiian shirts and I don't think that
counts.

This whole "expertise" in automation came out of my need to do as little
work as possible. When I was a desktop support technician, I needed ways
to build a lot of machines in a few hours instead of manually installing
Windows and applications. I wanted to spend my days in the office playing
video games, reading books, or walking around and talking to people.
When I was a network engineer, I wanted people to stop paging me when I
was comfortably sleeping in the switch closets around campus. So I wrote
tools that allowed others to switch VLAN ports or clear security parameters
from a network port without calling me. Why manually balance BGP traffic
every week when I could write a program that used SFLOW data to do it?

It was going so well until I got ambitious and went to Google. I wrote a few
tools to help make the job easier for myself, such as figuring out whether

on-call pages were really caused by ongoing scheduled work or programs to
provision all load balancers in a data center. Back in those days, Google had
plenty of massage chairs and other amenities I'd rather have been taking
advantage of instead of migrating links on a data center router while on the
phone with an overworked hardware ops technician in Atlanta and typing
into an IRC channel on why my network drains were still in place.

But then people started wanting to use my tools. My friend Adel would ask
whether I could make something to program facility routers or validate that
Force10 routers were set up right. And he was such a nice person, you just
couldn't say no. Or Kirk would come over and ask how we could automate
edge router turnups because his team was getting overworked. Instead of
making my job easier, I ended up working more hours to make other
people's jobs easier!

Hopefully my failures can help you in your success (my father used to say
that no one is completely useless; they can always be used as a bad
example).

This book is filled with many of the methodologies I've used in my career
and lessons on what I believe to be the best language for DevOps at this
time, Go.

David (my coauthor who will introduce himself in a moment) and I come
from two different extremes of the DevOps world. I come from a school of
thought where almost no commercial or standard open source software is
used. All DevOps tools are developed internally and are form-fitted to work
in a specific environment. David comes from the school where you use as
much open source software such as Kubernetes, GitHub, Docker,

Terraform, and so on... as you can. This allows you to leverage a collection
of available and popular tools that may not be exactly what you want, but
come with support networks and lots of options. It is easier to hire
engineers who already know how to work on industry-standard tools than
those who work with custom toolsets. In this book, you will find a mix of
these ideas and methodologies that encompass both schools of thought. It is
our belief that a mixture of readymade and custom tools will give you the
biggest bang for your buck.

Our sincere hope is that this book will offer you not only a guide in using
Go for your DevOps needs but also the ability to write your own tools or
modify existing ones to leverage the power of Go to scale your operational
needs at any company. And if nothing else, both David and I will be giving
our proceeds away to Doctors Without Borders, so if you bought this book
and nothing else comes of it, you will be helping a good cause.

But maybe you will one day be sitting on the beach, collecting your
paycheck while your automations take care of the day-to-day. I'll keep
working on that goal, so if you get there first, have a drink for me.

With that said, I'd like to introduce my esteemed coauthor, David Justice.

As John mentioned, we come from different origins, but find ourselves
approaching similar problem spaces. My background is in software
development and software engineering spanning everything from mobile
application development, web development, and database optimization to
machine learning and distributed systems. My focus has never really been
DevOps. I'm what you might call an accidental practitioner of DevOps. My
DevOps skills have come from the necessity to provide ever-increasing

business value, which required me to automate all of the things that were
not related to delivering new features and defect resolutions. My secondary
motivation for developing DevOps skills is my desire to consistently deploy
code and sleep through the night. There is no motivation quite like running
a start-up and being the only person around to service a high-severity issue
at 3 a.m. to encourage you to build resilient systems and automations.

The motivations I described here should provide the basis for why I tend to
choose solutions that are quickly applied and have considerable support in
the open source community. If I can find an open source solution with great
documentation that can do the vast majority of what I need pretty well, then
I can glue and tape the rest together as needed (if you get down deep
enough, at the bottom of nearly every solution is some dirty Bash script).
For me or my teams to invest a great deal of time and effort into building
bespoke tooling, I would need to have a considerable return on investment.
Furthermore, when I think of bespoke tooling, I also consider the cost of
ongoing maintenance and education of new team members. It's simple to
point new team members to a project such as Terraform and ask them to
learn it. There's great documentation and endless blog posts detailing every
imaginable scenario. There's also a good chance the new team member
already knows Terraform because they were using it at a previous job. This
reasoning drives me to require a significant burden of proof to approve a
project to build bespoke tooling. For these reasons, I've spent quite a bit of
time using open source DevOps tooling, and I've made it my business to be
as good at extending that tooling as I can be.

In this book, you will find a variety of bespoke tools for accomplishing
tasks using only Go and the standard library. However, you will also find

several examples of how to use existing open source tools to accomplish
tasks that would otherwise take a vast amount of custom code to achieve. I
believe our different approaches add to the value of the content and provide
you with the tools needed for understanding the trade-offs involved in
inventing your own solutions or extending existing solutions to solve
common DevOps tasks.

As John left off, I too hope that this book will help you reach a Zen-like
state of automation mastery so that you can follow in John's steps and live
more like Jimmy Buffet than Warren Buffet.

Who this book is for
This book is for anyone who would like to use Go to develop their own
DevOps tooling or to integrate custom features with DevOps tools such as
Kubernetes, GitHub Actions, HashiCorp Packer, and Terraform. You should
have experience with some type of programming language, but not
necessarily Go.

What this book covers
Chapter 1, Go Language Basics, introduces the basics of the Go language.

Chapter 2, Go Language Essentials, covers essential features of the Go
language.

Chapter 3, Setting Up Your Environment, explains setting up the Go
environment.

Chapter 4, Filesystem Interactions, explores using Go to interact with the
local filesystem.

Chapter 5, Using Common Data Formats, looks at using Go to read and
write common file formats.

Chapter 6, Interacting with Remote Data Sources, explores using Go to
interact with gRPC and REST services.

Chapter 7, Writing Command-Line Tools, shows how to write command-
line tools in Go.

Chapter 8, Automating Command-Line Tasks, addresses leveraging Go's
exec and SSH packages to automate work.

Chapter 9, Observability with OpenTelemetry, looks at using
OpenTelemetry with Go for better instrumentation and alerting.

Chapter 10, Automating Workflows with GitHub Actions, shows how to use
GitHub for continuous integration, release automation, and custom actions
using Go.

Chapter 11, Using ChatOps to Increase Efficiency, covers how to write
ChatOps services using Go to provide operational insights and manage
incidents effectively.

Chapter 12, Creating Immutable Infrastructure Using Packer, explains
customizing HashiCorp's Packer to automate virtual machine image
creation on AWS.

Chapter 13, Infrastructure as Code with Terraform, shows how to define
your own custom Terraform provider.

Chapter 14, Deploying and Building Applications in Kubernetes, looks at
how to program and extend the Kubernetes APIs.

Chapter 15, Programming the Cloud, explains using Go to provision and
interact with cloud resources.

Chapter 16, Designing for Chaos, discusses using rate limiters, centralized
workflow engines, and policies to reduce blast radiuses.

To get the most out of this book
You will need to have some programming experience, but not necessarily
with Go. A basic understanding of command-line tools for any of the
supported operating systems will be required. It will also be helpful to have
some DevOps experience.

If you are using the digital version of this book, we advise you to type
the code yourself or access the code from the book's GitHub repository
(a link is available in the next section). Doing so will help you avoid any
potential errors related to the copying and pasting of code.

This book heavily relies on Docker and Docker Compose to allow you to
set up cluster configurations that work natively on Linux. It is possible to
use Windows for this book using Windows Subsystem for Linux (WSL),
but the authors have not tested this. Additionally, many of the exercises
may be done on other operating systems that are POSIX GNU compliant.
The Chapter 12, Creating Immutable Infrastructure Using Packer, requires
an AWS account running Linux virtual machines and the Chapter 13,
Infrastructure as Code with Terraform, and Chapter 15, Programming the
Cloud, require an Azure account.

Download the example code fi les
You can download the example code files for this book from GitHub at
https://github.com/PacktPublishing/Go-for-DevOps. If there's an update to
the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos
available at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and
diagrams used in this book. You can download it here: https://static.packt-

https://github.com/PacktPublishing/Go-for-DevOps
https://github.com/PacktPublishing/
file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/_ColorImages.pdf

cdn.com/downloads/9781801818896_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input,
and Twitter handles. Here is an example: "Set up a directory called packer
in your user's home directory."

A block of code is set as follows:

packer {

required_plugins {

amazon = {

version = ">= 0.0.1"

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

source "amazon-ebs" "ubuntu" {

access_key = "your key"

secret_key = "your secret"

ami_name = "ubuntu-amd64"

instance_type = "t2.micro"

Any command-line input or output is written as follows:

sudo yum install -y yum-utils sudo yum-config-manager --add-repo

https://rpm.releases.hashicorp.com/AmazonLinux/hashicorp.repo sudo

yum -y install packer

file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/_ColorImages.pdf

Bold: Indicates a new term, an important word, or words that you see
onscreen. For instance, words in menus or dialog boxes appear in bold.
Here is an example: "You will need to go to Settings | Secrets in your
GitHub repository. Click the provided button, New Repository Secret."

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
email us at customercare@packtpub.com and mention the book title in the
subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on
the internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com/

Share your thoughts
Once you've read Go for DevOps, we'd love to hear your thoughts! Please
click here to go straight to the Amazon review page for this book and share
your feedback.

Your review is important to us and the tech community and will help us
make sure we're delivering excellent quality content.

https://packt.link/r/1801818894

Section 1: Getting Up and Running with
Go
Go is a type-safe concurrent language that is easy to develop with while
being extremely performant. In this section, we will start by learning the
basics of the Go language such as types, variable creation, functions, and
other basic language constructs. We will continue teaching essential topics
that include concurrency, the context package, testing, and other necessary
skills. You will learn how to set up a Go environment for your operating
system, interact with the local filesystem, use common data formats, and
communicate with remote data sources using methods such as REST and
gRPC. Finally, we will dive into automation by writing command-line tools
with popular packages that issue commands to local and remote resources.

The following chapters will be covered in this section:

Chapter 1, Go Language Basics

Chapter 2, Go Language Essentials

Chapter 3, Setting Up Your Environment

Chapter 4, Filesystem Interactions

Chapter 5, Using Common Data Formats

Chapter 6, Interacting with Remote Data Sources

Chapter 7, Writing Command-Line Tooling

Chapter 8, Automating Command-Line Tasks

Chapter 1: Go Language Basics
DevOps is a concept that has been floating around since the early 2000s. It
is a popularization of an operations discipline that relies on programming
skills with development psychology popularized by Agile.

Site reliability engineering (SRE) is now considered a subdiscipline of
DevOps, though it is likely the precursor to DevOps and relies more heavily
on software skills and Service - Level Obligation (SLO)/Service - Level
Agreement (SLA) modeling.

During my early time at Google, like many of today's DevOps shops, we
used Python heavily. I think C++ was too painful for many SREs, and we
had Python celebrities in Guido van Rossum and Alex Martelli.

But, as time wore on, many of the groups working in Python started having
scaling issues. This included everything from Python running out of
memory (requiring us to hack in our own malloc) to the Global Interpreter
Lock (GIL) preventing us from true multithreading. At scale, we found that
the lack of static types was giving us an abundance of errors that should
have been caught at compile time. This mirrored what production services
had seen years before.

But, Python came with more than compile-time and service-scaling issues.
Simply moving to a new version of Python in the fleet might cause a
service to stop working. The Python version run on Google machines would
often get upgraded and expose bugs in your code that the previous version
did not. Unlike a compiled binary, you could not just roll back to an old
version.

Several of us in different organizations were looking to solve these types of
problems without having to use C++. For my personal journey, I heard
about Go from my colleagues in our Sydney office (Hey, Ross!). It was the
pre-1.0 days, but they said it was already showing a lot of promise. I can't
say I was even remotely convinced that what we needed was another
language.

About 6 months later, however, I had bought Go hook, line, and sinker. It
had everything we needed without everything we didn't. Now, it was still
pre-1.0 days, so there was a certain amount of churn back then that was
unpleasant (such as finding that Russ Cox had changed the time package
over the weekend, so I had to rewrite a bunch of code). But, the benefits
after writing my first service were undeniable.

I spent the next 4 years moving my department from a complete Python
shop to almost a complete Go shop. I started teaching classes in Go across
the world, targeted at operations engineers, rewriting core libraries for Go,
and evangelizing to what was probably an annoying amount. Just because
Go was invented at Google, it didn't mean that the engineers wanted to
throw away their Python code and learn something new; there was more
than a little resistance.

Now, Go has become the de facto language for cloud orchestration and
software in the larger world (from Kubernetes to Docker). Go comes with
all the tools you need to make huge strides in the reliability of your tooling
and ability to scale.

Because many of these cloud services are written in Go, their parts are
available to you by accessing their packages for your own tooling needs.

This can make writing tooling for the cloud an easier experience.

For the next two chapters, I will be sharing my 10+ years' experience of
teaching Go to engineers around the world to give you the basics and
essentials of the Go language. Much of what you will read here is based on
my free Go basics video training course, https://www.golangbasics.com.
This course will differ slightly from that one in that it is more condensed.
As you work your way through the book, we will continue to extend your
knowledge of the Go language's standard library and third-party packages.

This chapter will cover the following main topics:

Using the Go Playground

Utilizing Go packages

Using Go's variable types

Looping in Go

Using conditionals

Learning about functions

Defining public and private

Using arrays and slices

Getting to know about structs

Understanding Go pointers

Comprehending Go interfaces

Now, let's get the basics down and get you on your way!

https://www.golangbasics.com/

Technical requirements
The only technical requirement for this chapter is a modern web browser
for using the Go Playground.

Using the Go Playground
The Go Playground, which you can find at https://play.golang.org/, is an
online code editor and compiler that allows you to run Go code without
installing Go on your machine. This is the perfect tool for our introductory
chapters, allowing you to save your work online without the initial fuss of
installing the Go tooling, or finding a code editor, for example.

There are four important parts of the Go Playground:

The code editing pane

The console window

The Run button

The Share button

The code editing pane, which is the yellow portion of the page, allows you
to type in the Go code for your program. When you hit the Run button, the
code will be compiled and then run with the output sent to the console,
which is the white portion of the page below the code editor.

The following screen shows a glimpse of what the Go Playground does:

https://play.golang.org/

Figure 1.1 – Go Playground code editor

Clicking the Share button will store an immutable copy of the code and
will change the URL from play.golang.org into a shareable link, such as
play.golang.org/p/HmnNoBf0p1z. This link is a unique URL that you can
bookmark and share with others. The code in this link cannot be changed,
but if you hit the Share button again, it will create a new link with any
changes.

Later chapters, starting with Chapter 4, Filesystem Interaction, will require
installing the Go tooling for your platform.

This section taught you about the Go Playground and how to use it to write,
view, share, and run your Go code. The Playground will be used extensively
throughout the book to share runnable code examples.

Now, let's jump into writing Go code, starting with how Go defines
packages.

Util izing Go packages
Go provides reusable blocks of code that can be imported into other code
using packages. Packages in Go are synonymous with libraries or modules
in other languages. Packages are the building blocks of Go programs that
divide the content into understandable parts.

This section will cover how to declare and import a package. We will
discuss how to deal with package name conflicts, explore rules around
packages, and we will write our first main package.

Declaring a package

Go divides programs into packages, sometimes called modules or libraries
in other languages. Packages live on a path, and the path is made to look
like a path to a directory on a Unix-like filesystem.

All Go files in a directory must belong to the same package. The package is
most commonly named the same as the directory it lives in.

Declaring a package happens at the top of the file, and should only be
preceded by a comment. Declaring a package is as simple as the following:

// Package main is the entrance point for our binary.

// The double slashes provides a comment until the end of the line.

/*

This is a comment that lasts until the closing star slash.

*/

package main

package main is special. All other package names declare a package that
must be imported into another package to be used. package main will
declare func main(), which is the starting point for a binary to run.

All Go files in a directory must have the same package header (compiler-
enforced). These files, for most practical purposes, act as if they are
concatenated together.

Let's say you have a directory structure as follows:

mypackage/

 file1.go

 file2.go

Then, file1.go and file2.go should have the following:

package mypackage

When mypackage is imported by another package, it will include everything
declared in all files in the mypackage directory.

Importing a package

There are two general types of packages:

The standard library (stdlib) packages

All other packages

Standard library packages stand out because they don't list some repository
information in their path, such as the following:

"fmt"

"encoding/json"

"archive/zip"

All other packages generally have repository information preceding them,
as follows:

"github.com/johnsiilver/golib/lru"

"github.com/kylelemons/godebug/pretty"

NOTE
A complete listing of stdlib packages can be found at the following link:

https://golang.org/pkg/.

To import packages, we use the import keyword. So, let's import the
standard library fmt package and the mypackage package, which lives at
github.com/devopsforgo/mypackage:

package main

import (

 "fmt"

 "github.com/devopsforgo/mypackage"

)

https://golang.org/pkg/

It is important to note that the filenames are not part of the package path,
but simply the directory path.

Using a package

Once you've imported a package, you can start accessing functions, types,
or variables declared in the package by prefacing what you want to access
with the name of the package and a period.

For example, the fmt package has a function called Println() that can be
used to print a line to stdout. If we want to use it, it is as simple as the
following:

fmt.Println("Hello!")

Package name conflicts

Let's say you have two packages named mypackage. They both have the
same name, so our program won't be able to tell which one we are referring
to. You can rename a package import into whatever name you want:

import(

 "github.com/devopsforgo/mypackage"

 jpackage "github.com/johnsiilver/mypackage"

)

jpackage declares that in this package, we will refer to
github.com/johnsiilver/mypackage as jpackage.

This ability allows us to use two similarly named packages as follows:

mypackage.Print()

jpackage.Send()

Now, we will look at an important rule around packages that improves
compile-time and binary size.

Packages must be used

Let's introduce you to the following rule: If you import a package, you must
use it.

One of the things that the Go authors noticed about many of the other
programming languages being used at Google was that they often had
unused imports.

This was leading to compile times that were longer than needed and, in
some cases, binary sizes that were much bigger than required. Python files
were packaged in a proprietary format to ship around production, and some
of these unused imports were adding hundreds of megabytes to the files.

To prevent these types of problems, Go will not compile a program that
imports a package but doesn't use it, as shown here:

package main

import (

 "fmt"

 "sync"

)

func main() {

 fmt.Println("Hello, playground")

}

The preceding code outputs the following:

./prog.go:5:2: imported and not used: "sync"

In certain rare circumstances, you may need to do a side effects import, in
which just loading the package causes something to happen, but you don't
use the package. This should always be done in package main and requires
prepending with an underscore (_):

package main

import (

 "fmt"

 _ "sync" //Just an example

)

func main() {

 fmt.Println("Hello, playground")

}

Next, we will declare a main package and discuss the basics of writing a Go
program that imports a package.

A Go Hello World

Let's write a simple hello world program that is similar to the default
program in the Go Playground. This example will demonstrate the
following:

Declaring a package

Importing the fmt package from the standard library, which can print to
our screen

Declaring the main() function of a program

Declaring a string variable using the := operator

Printing the variable to the screen

Let's see what this looks like:

1 package main

2

3 import "fmt"

4

5 func main() {

6 hello := "Hello World!" fmt.Println(hello)

7

8 }

In our first line, we declared the name of our package using the package
keyword. The entrance point for any Go binary is a package named main
that has a function called main().

In our third line, we import the fmt package. fmt has functions for doing
string formatting and writing to various outputs.

On our fifth line, we declare a function called main that takes no arguments
and returns no values. main() is special, as when a binary is run, it starts by
running the main() function.

Go uses {} to show where a function starts and where a function ends
(similar to C).

The sixth line declares a variable named hello using the := operator. This
operator indicates that we wish to create a new variable and assign it a
value in a single line. This is the most common, but not the only, way to
declare a variable.

As Go is typed, so := will assign the type based on the value. In this case, it
will be a string, but if the value was an integer (such as 3), it would be the
int type, and if a floating-point (such as 2.4), it would be the float64 type.
If we wanted to declare a specific type, such as int8 or float32, we would
need some modifications (which we will talk about later).

On the seventh line, we call a function that is in the fmt package called
Println. Println() will print the contents of the hello variable to stdout
followed by a new line character (\n).

You will notice that the way to use a function declared in another package is
to use the package name (without quotes) + a period + the name of the
function. In this case, fmt.Println().

In this section, you have learned how to declare a package, import a
package, what the function of the main package is, and how to write a basic
Go program with a variable declaration. In the next section, we will go into
some depth on declaring and using variables.

Using Go's variable types

Modern programming languages are built with primitives called types.
When you hear that a variable is a string or integer, you are talking about
the variable's type.

With today's programming languages, there are two common type systems
used:

Dynamic types (also called duck typing)

Static types

Go is a statically typed language. For many of you who might be coming
from languages such as Python, Perl, and PHP, then those languages are
dynamically typed.

In a dynamically typed language, you can create a variable and store
anything in it. In those languages, the type simply indicates what is stored
in the variable. Here is an example in Python:

v = "hello"

v = 8

v = 2.5

In this case, v can store anything, and the type held by v is unknown
without using some runtime checks (runtime meaning that it can't be
checked at compile time).

In a statically typed language, the type of the variable is set when it is
created. That type cannot change. In this type of language, the type is both
what is stored in the variable and what can be stored in the variable. Here is
a Go example:

v := "hello" // also can do: var v string = "hello"

The v value cannot be set to any other type than a string.

It might seem like Python is superior because it can store anything in its
variable. But in practice, this lack of being specific means that Python must
wait until a program is running before it can find out there is a problem
(what we call a runtime error). It is better to find the problem when the
software is compiled than when it is deployed.

Let's take a look at a function to add two numbers together as an example.

Here is the Python version:

def add(a, b):

 return a+b

Here is the Go version:

func add(a int, b int) int {

 return a + b

}

In the Python version, we can see that a and b will be added together. But,
what types are a and b? What is the result type? What happens if I pass an
integer and a float or an integer and a string?

In some cases, two types cannot be added together in Python, which will
cause a runtime exception, and you can never be sure of what the result type
will be.

NOTE
Python has added type hints to the language to help avoid these problems. But, practical
experience has taught us with JavaScript/Dart/TypeScript/Closure that while it can help,
optional type support means that a lot of problems fall through the cracks.

Our Go version defines the exact types for our arguments and our result.
You cannot pass an integer and a float or an integer and a string. You will
only ever receive an integer as a return. This allows our compiler to find
any errors with variable types when the program is compiled. In Python,
this error could show up at any time, from the instant it ran to 6 months
later when a certain code path was executed.

NOTE
A few years ago, there was a study done on the Rosetta Code repository for some of the
top languages in use to see how they fared in processing time, memory use, and runtime
failures. For runtime failures, Go had the least failures, with Python towards the bottom of
the ranking. Static typing would have certainly played into that.

The study can be found here: https://arxiv.org/pdf/1409.0252.pdf.

Go's types

Go has a rich type system that not only specifies that a type might be an
integer but also the size of the integer. This allows a Go programmer to
reduce the size of a variable both in memory and when encoding for
network transport.

The following table shows the most common types used in Go:

https://arxiv.org/pdf/1409.0252.pdf

Table 1.1 – Common types used in Go and their descriptions

We will be keeping our discussion mostly to the preceding types; however,
the following table is the full list of types that can be used:

Table 1.2 – Full list of types that you can use in Go

Go doesn't just provide these types; you can also create new types based on
these basic types. These custom types become their own type and can have
methods attached to them.

Declaring a custom type is done with the type keyword and will be
discussed during the section on the struct type. For now, we are going to
move on to the basics of declaring variables.

Now that we've talked about our variable types, let's have a look at how we
can create them.

Declaring variables

As in most languages, declaring a variable allocates storage that will hold
some type of data. In Go, that data is typed so that only that type can be
stored in the allocated storage. As Go has multiple ways to declare a
variable, the next parts will talk about the different ways this can be done.
The long way to declare a variable
The most specific way to declare a variable is using the var keyword. You
can use var to declare a variable both at the package level (meaning not
inside a function) and within a function. Let's look at some examples of
ways to declare variables using var:

var i int64

This declares an i variable that can hold an int64 type. No value is
assigned, so the value is assigned the zero value of an integer, which is 0:

var i int = 3

This declares an i variable that can hold an int type. The value 3 is
assigned to i.

Note that the int and int64 types are distinct. You cannot use an int type as
an int64 type, and vice versa. However, you can do type conversions to
allow interchanging these types. This is discussed later:

var (

 i int

 word = "hello"

)

Using (), we group together a set of declarations. i can hold an int type
and has the integer zero value, 0. word doesn't declare the type, but it is
inferred by the string value on the right side of the equal (=) operator.
The shorter way
In the previous example, we used the var keyword to create a variable and
the = operator to assign values. If we do not have an = operator, the
compiler assigns the zero value for the type (more on this later).

The important concept is as follows:

var created the variable but did not make an assignment.

= assigned a value to the variable.

Within a function (not at the package level), we can do a create and assign
by using the := operator. This both creates a new variable and assigns a
value to it:

i := 1 // i is the int type

word := "hello" // word is the string type

f := 3.2 // f is the float64 type

The important thing to remember when using := is that it means create and
assign. If the variable already exists, you cannot use :=, but must use =,
which just does an assignment.

Variable scopes and shadowing

A scope is the part of the program in which a variable can be seen. In Go,
we have the following variable scopes:

Package scoped: Can be seen by the entire package and is declared
outside a function

Function scoped: Can be seen within {} which defines the function

Statement scoped: Can be seen within {} of a statement in a function
(for loop, if/else)

In the following program, the word variable is declared at the package level.
It can be used by any function defined in the package:

package main

import "fmt"

var word = "hello"

func main() {

fmt.Println(word)

}

In the following program, the word variable is defined inside the main()
function and can only be used inside {} which defines main. Outside, it is

undefined:

package main

import "fmt"

func main() {

var word string = "hello"

fmt.Println(word)

}

Finally, in this program, i is statement scoped. It can be used on the line
starting our for loop and inside {} of the loop, but it doesn't exist outside
the loop:

package main

import "fmt"

func main() {

for i := 0; i < 10; i++ {

fmt.Println(i)

}

}

The best way to think of this is that if your variable is declared on a line that
has {or within a set of {}, it can only be seen within those {}.
Cannot redeclare a variable in the same scope
The rule for this, You cannot declare two variables with the same name
within the same scope.

This means that no two variables within the same scope can have the same
name:

func main() {

 var word = "hello"

 var word = "world"

 fmt.Println(word)

}

This program is invalid and will generate a compile error. Once you have
declared the word variable, you cannot recreate it within the same scope.
You can change the value to a new value, but you cannot create a second
variable with the same name.

To assign word a new value, simply remove var from the line. var says
create variable where we want to only do an assignment:

func main() {

 var word = "hello"

 word = "world"

 fmt.Println(word)

}

Next, we will look at what happens when you declare two variables with
the same name in the same scope, but within separate code blocks.
Variable shadowing
Variable shadowing occurs when a variable that is within your variable
scope, but not in your local scope, is redeclared. This causes the local scope
to lose access to the outer scoped variable:

package main

import "fmt"

var word = "hello"

func main() {

var word = "world"

fmt.Println("inside main(): ", word)

printOutter()

}

func printOutter() {

fmt.Println("the package level 'word' var: ", word)

}

As you can see, word is declared at the package level. But inside main, we
define a new word variable, which overshadows the package level variable.
When we refer to word now, we are using the one defined inside main().

printOutter() is called, but it doesn't have a locally shadowed word
variable (one declared between its {}), so it used the one at the package
level.

Here's the output of this program:

inside main(): world

the package level 'word' var: hello

This is one of the more common bugs for Go developers.
Zero values
In some older languages, a variable declaration without an assignment has
an unknown value. This is because the program creates a place in memory
to store the value but doesn't put anything in it. So, the bits representing the
value are set to whatever happened to be in that memory space before you
created the variable.

This has led to many unfortunate bugs. So, in Go, declaring a variable
without an assignment automatically assigns a value called the zero value.
Here is a list of the zero values for Go types:

Table 1.3 – Zero values for Go types

Now that we understand what zero values are, let's see how Go prevents
unused variables in our code.

Function/statement variable must be
used

The rule here is that if you create a variable within a function or statement,
it must be used. This is much for the same reason as package imports;
declaring a variable that isn't used is almost always a mistake.

This can be relaxed in much the same way as an import, using _, but is far
less common. This assigns the value stored in someVar to nothing:

_ = someVar

This assigns the value returned by someFunc() to nothing:

_ = someFunc()

The most common use for this is when a function returns multiple values,
but you only need one:

needed, _ := someFunc()

Here, we create and assign to the needed variable, but the second value isn't
something we use, so we drop it.

This section has provided the knowledge of Go's basic types, the different
ways to declare a variable, the rules around variable scopes and shadows,
and Go's zero values.

Looping in Go

Most languages have a few different types of loop statements: for, while,
and do while.

Go differs in that there is a single loop type, for, that can implement the
functionality of all the loop types in other languages.

In this section, we will discuss the for loop and its many uses.

C style

The most basic form of a loop is similar to C syntax:

for i := 0; i < 10; i++ {

 fmt.Println(i)

}

This declares an i variable that is an integer scoped to live only for this loop
statement. i := 0; is the loop initialization statement; it only happens once
before the loop starts. i < 10; is the conditional statement; it happens at the
start of each loop and must evaluate to true or the loop ends.

i++ is the post statement; it occurs at the end of every loop. i++ says to
increment the i variable by 1. Go also has common statements, such as i +=
1 and i--.

Removing the init statement

We don't need to have an init statement, as shown in this example:

var i int

for ;i < 10;i++ {

 fmt.Println(i)

}

fmt.Println("i's final value: ", i)

In this, we declared i outside the loop. This means that i will be accessible
outside the loop once the loop is finished, unlike our previous example.

Remove the post statement too and you
have a while loop

Many languages have a while loop that simply evaluates whether a
statement is true or not. We can do the same by eliminating our init and
post statements:

var i int

for i < 10 {

 i++

}

b := true

for b { // This will loop forever

 fmt.Println("hello")

}

You might be asking, how do we make a loop that runs forever? The for
loop has you covered.

Creating an infinite loop

Sometimes you want a loop to run forever or until some internal condition
inside the loop occurs. Creating an infinite loop is as simple as removing all
statements:

for {

 fmt.Println("Hello World")

}

This is usually useful for things such as servers that need to process some
incoming stream forever.
Loop control
With loops, you occasionally need to control the execution of the loop from
within the loop. This could be because you want to exit the loop or stop the
execution of this iteration of the loop and start from the top.

Here's an example of a loop where we call a function called doSomething()
that returns an error if the loop should end. What doSomething()does is not
important for this example:

for {

 if err := doSomething(); err != nil {

 break

 }

 fmt.Println("keep going")

}

The break function here will break out of the loop. break is also used to
break out of other statements, such as select or switch, so it's important to
know that break breaks out of the first statement it is nested inside of.

If we want to stop the loop on a condition and continue with the next loop,
we can use the continue statement:

for i := 0; i < 10; i++ {

 if i % 2 == 0 { // Only 0 for even numbers

 continue

 }

 fmt.Println("Odd number: ", i)

}

This loop will print out the odd numbers from zero to nine. i % 2 means i
modulus 2. Modulus divides the first number by the second number and
returns the remainder.
Loop braces
Here is the introduction of this rule: A for loop’s open brace must be on the
same line as the for keyword.

With many languages, there are arguments about where to put the braces for
loops/conditionals. With Go, the authors decided to pre-empt those
arguments with compiler checks. In Go, you can do the following:

for {

 fmt.Println("hello world")

}

However, the following is incorrect as the opening brace of the for loop is
on its own line:

for

{

 fmt.Println("hello world")

}

In this section we learned to use for loops as C style loops, as while loops.

Using conditionals
Go supports two types of conditionals, as follows:

if/else blocks

switch blocks

The standard if statement is similar to other languages with the addition of
an optional init statement borrowed from the standard C-style for loop
syntax.

switch statements provide a sometimes-cleaner alternative to if. So, let's
jump into the if conditional.

i f statements

if statements start with a familiar format that is recognizable in most
languages:

if [expression that evaluates to boolean] {

 ...

}

Here's a simple example:

if x > 2 {

 fmt.Println("x is greater than 2")

}

The statements within {} in if will execute if x has a value greater than 2.

Unlike most languages, Go has the ability to execute a statement within the
if scope before the evaluation is made:

if [init statement];[statement that evaluates to boolean] {

 ...

}

Here is a simple example that is similar to the init statement in a for loop:

if err := someFunction(); err != nil {

 fmt.Println(err)

}

Here, we initialize a variable called err. It has a scope of the if block. If the
err variable does not equal the nil value (a special value that indicates
certain types are not set – more on this later), it will print the error.

else

If you need to execute something when the condition of an if statement is
not met, you can use the else keyword:

if condition {

 function1()

}else {

 function2()

}

In this example, if the if condition is true, function1 will be executed.
Otherwise, function2 occurs.

It should be noted that most uses of else can generally be eliminated for
cleaner code. If your if condition results in returning from a function using
the return keyword, you can eliminate else.

An example is as follows:

if v, err := someFunc(); err != nil {

 return err

}else{

 fmt.Println(v)

 return nil

}

This can be simplified to the following:

v, err := someFunc()

if err != nil {

 return err

}

fmt.Println(v)

return nil

Sometimes, you want to only execute code if the if condition is not met and
another condition is. Let's look at that next.
else if
An if block can also contain else if, providing multiple levels of
execution. The first if or else if that is matched in order is executed.

Note that often Go developers choose the switch statement as a cleaner
version of this type of conditional.

An example is as follows:

if x > 0 {

 fmt.Println("x is greater than 0")

} else if x < 0 {

 fmt.Println("x is less than 0")

} else{

 fmt.Println("x is equal to 0")

}

Now that we have seen the basics of this conditional, we need to talk about
brace style.
if /else braces
It's time to introduce this rule: Opening braces for if/else must be on the
line with the associated keyword. If there is another statement in the chain,
it must start on the same line as the previous close brace.

With many languages, there are arguments about where to put the braces for
loops/conditionals.

With Go, the authors decided to pre-empt those arguments with compiler
checks. In Go, you can't do the following:

if x > 0

{ // This must go up on the previous line

 fmt.Println("hello")

}

else { // This line must start on the previous line

 fmt.Println("world")

}

So, with the arguments on bracing style in Go settled, let's look at an
alternative to if/else, the switch statement.
The switch statement
switch statements are more elegant if/else blocks that are very flexible in
their use. They can be used for doing exact matching and multiple true/false
evaluations.

Exact match switch

The following is an exact match switch:

switch [value] {

case [match]:

 [statement]

case [match], [match]:

 [statement]

default:

 [statement]

}

[value] is matched against each case statement. If it matches, the case
statement executes. Unlike some languages, once a match occurs, no other
case is considered. If no match occurs, the default statement executes. The
default statement is optional.

This has a nicer syntax than if/else for handling cases where your value
can be several values:

switch x {

case 3:

 fmt.Println("x is 3")

case 4, 5: // executes if x is 4 or 5

 fmt.Println("x is 4 or 5")

default:

 fmt.Println("x is unknown")

}

switch can also have an init statement, similar to if:

switch x := someFunc(); x {

case 3:

 fmt.Println("x is 3")

}

True/false evaluation switch

We can also eliminate [match] so that each case statement isn't an exact
match, but a true/false evaluation (as with if statements):

switch {

case x > 0:

 fmt.Println("x is greater than 0")

case x < 0:

 fmt.Println("x is less than 0")

default:

 fmt.Println("x must be 0")

}

At the end of this section, you should be able to use Go's conditional
statements to branch code execution in your program based on some criteria
and handle cases where no statement was matched. As conditionals are one
of the standard building blocks of software, we will use these in many of
the remaining sections.

Learning about functions
Functions in Go are what you'd expect from a modern programming
language. There are only a few things that make Go functions different:

Multiple return values are supported

Variadic arguments

Named return values

The basic function signature is as follows:

func functionName([varName] [varType], ...) ([return value],

[return value], ...){

}

Let's make a basic function that adds two numbers together and returns the
result:

func add(x int, y int) int {

 return x + y

}

As you can see, this takes in two integers, x and y, adds them together, and
returns the result (which is an integer). Let's show how we can call this
function and print its output:

result := add(2, 2)

fmt.Println(result)

We can simplify this function signature by declaring both x and y types with
a single int keyword:

func add(x, y int) int {

 return x + y

}

This is equivalent to the previous one.

Returning multiple values and named
results

In Go, we can return multiple values. For example, consider a function
that divides two integers and returns two variables, the result and the
remainder, as follows:

func divide(num, div int) (res, rem int) {

result = num / div

remainder = num % div

return res, rem

}

This code demonstrates a few new features in our function:

Argument num is the number to be divided

Argument div is the number to divide by

Return value res is the result of the division

Return value rem is the remainder of the division

First is named returns (res and rem). These variables are automatically
created and ready for use inside the function.

Notice I use = and not := when doing assignments to those variables. This is
because the variable already exists, and we want to assign a value (=). :=
means create and assign. You can only create a new variable that doesn't
exist. You will also notice that now the return type is in parenthesis. You
will need to use parenthesis if you use more than one return value or named
returns (or in this case, both).

Calling this function is just as simple as calling add() before, as shown
here:

result, remainder := divide(3, 2)

fmt.Printf("Result: %d, Remainder %d", result, remainder)

Strickly speaking, you don't have to use return to return the values.
However, doing so will prevent some ugly bugs that you will eventually
encounter.

Next, we will look at how we can have a variable number of arguments as
function input that allows us to create functions such as fmt.Println(),
which you have been using in this chapter.

Variadic arguments

A variadic argument is when you want to provide 0 to infinite arguments.
A good example would be calculating a sum of integers. Without variadic

arguments, you might use a slice (a growable array type, which we will talk
about later), as follows:

func sum(numbers []int) int {

 sum := 0

 for _, n := range numbers {

 sum += n

 }

 return sum

}

While this is fine, using it is cumbersome:

args := []int{1,2,3,4,5}

fmt.Println(sum(args))

We can accomplish this same thing by using the variadic (...) notation:

func sum(numbers ...int) int {

 // Same code

}

numbers is still []int, but has a different calling convention that is more
elegant:

fmt.Println(sum(1,2,3,4,5))

NOTE
You can use variadic arguments with other arguments, but it must be the last argument in
the function.

Anonymous functions

Go has a concept of anonymous functions, which means a function
without a name (also called a function closure).

This can be useful to take advantage of special statements that honor
function boundaries, such as defer, or in goroutines. We will show how to
take advantage of these for goroutines later, but for now let's show how to
execute an anonymous function. This is a contrived example that is only
useful in teaching the concept:

func main() {

 result := func(word1, word2 string) string {

 return word1 + " " + word2

 }("hello", "world")

 fmt.Println(result)

}

This code does the following:

Defines a single-use function (func(word1, word2 string) string)

Executes the function with the hello and world arguments

Assigns the string return value to the result variable

Prints result

Now that we have arrived at the end of this section, we have learned about
how Go functions are declared, the use of multiple return values, variadic
arguments for simplified function calling, and anonymous functions.
Multiple return values will be important in future chapters where we deal
with errors, and anonymous functions are key components of our future
defer statements and for use with concurrency.

In the next section, we will explore public and private types.

Defining public and private
Many modern languages provide a set of options when declaring
constants/variables/functions/methods that detail when a method can be
called.

Go simplifies these visibility choices down to two types:

Public (exported)

Private (not exported)

Public types are types that can be referred to outside of the package.
Private types can only be referred to inside the package. To be public, the
constant/variable/function/method must simply start with an uppercase
letter. If it starts with a lowercase letter, it is private.

There is a third type of visibility that we don't cover here: internally
exported. This occurs when a type is public but in a package, located
within a directory called internal/. Those packages can only be used by
packages within a parent directory. You can read about this here:
https://golang.org/doc/go1.4#internalpackages.

Let's declare a package and create some public and private methods:

package say

import "fmt"

func PrintHello() {

fmt.Println("Hello")

https://golang.org/doc/go1.4#internalpackages

}

func printWorld() {

fmt.Println("World")

}

func PrintHelloWorld() {

PrintHello()

printWorld()

}

We have three function calls, two public (PrintHello() and
PrintHelloWorld()) and one private (printWorld()). Now, let's create
package main, import the say package, and call our functions:

package main

import "github.com/repo/examples/say"

func main() {

say.PrintHello()

say.PrintHelloWorld()

}

Now, let's compile and run it:

$ go run main.go

Hello

Hello

World

These work because PrintHello() and PrintHelloWorld() are both
exported (public) functions. PrintHelloWorld() calls the private
printWorld(), but that is legal because they are in the same package.

If we try to add say.printWorld() to func main() and run it, we will get the
following:

./main.go:8:2: cannot refer to unexported name say.printWorld

Public and private apply to variables declared outside functions/methods
and type declarations.

By the end of this short and sweet section, you've acquired the knowledge
of Go's public and private types. This will be useful in code where you do
not want to expose types in your public API. Next, we will look at arrays
and slices.

Using arrays and slices
Languages require more than the basic types to hold data. The array type is
one of the core building blocks in lower-level languages, providing the base
sequential data type. For most day-to-day use, Go's slice type provides a
flexible array that can grow as data needs grow and can be sliced into
sections in order to share views of the data.

In this section, we will talk about arrays as the building blocks of slices, the
difference between the two, and how to utilize them in your code.

Arrays

The base sequential type in Go is the array (important to know, but rarely
used). Arrays are statically sized (if you create one that holds 10 int types,
it will always hold exactly 10 int types).

Go provides an array type designated by putting [size] before the type you
wish to create an array of. For example, var x [5]int or x := [5]int{}
creates an array holding five integers, indexed from 0 to 4.

An assignment into an array is as easy as choosing the index. x[0] = 3
assigns 3 to index 0. Retrieving that value is as simple as referring to the
index; fmt.Println(x[0] + 2) will output 5.

Arrays, unlike slices, are not pointer wrapper types. Passing an array as a
function argument passes a copy:

func changeValueAtZeroIndex(array [2]int) {

 array[0] = 3

 fmt.Println("inside: ", array[0]) // Will print 3

}

func main() {

 x := [2]int{}

 changeValueAtZeroIndex(x)

 fmt.Println(x) // Will print 0

}

Arrays present the following two problems in Go:

Arrays are typed by size – [2]int is distinct from [3]int. You cannot
use [3]int where [2]int is required.

Arrays are a set size. If you need more room, you must make a new
array.

While it is important to know what arrays are, the most common sequential
type used in Go is the slice.

Slices

The easiest way to understand a slice is to see it as a type that is built on top
of arrays. A slice is a view into an array. Changing what you can see in your
slice's view changes the underlying array's value. The most basic use of
slices acts like arrays, with two exceptions:

A slice is not statically sized.

A slice can grow to accommodate new values.

A slice tracks its array, and when it needs more room, it will create a new
array that can accommodate the new values and copies the values from the
current array into the new array. This happens invisibly to the user.

Creating a slice can be done similarly to an array, var x = []int or x :=
[]int{} . This creates a slice of integers with a length of 0 (which has no
room to store values). You can retrieve the size of the slice using len(x).

We can create a slice with initial values easily: x := []int{8,4,5,6}. Now,
we have len(x) == 4, indexed from 0 to 3.

Similar to arrays, we can change a value at an index by simply referencing
the index. x[2] = 12 will change the preceding slice to []int{8,4,12,6}.

Unlike arrays, we can add a new value to the slice using the append
command. x = append(x, 2) will cause the underlying x array references to
be copied to a new array and assigns the new view of the array back to x.
The new value is []int{8,4,12,6,2}. You may append multiple values by
just putting more comma-delimited values in append (that is, x = append(x,
2, 3, 4, 5)).

Remember that slices are simply views into a trackable array. We can create
new limited views of the array. y := x[1:3] creates a view (y) of the array,
yielding []int{4, 12} (1 is inclusive and 3 is exclusive in [1:3]). Changing
the value at y[0] will change x[1]. Appending a single value to y via y =
append(y, 10)will change x[3], yielding []int{8,4,12,10,2}.

This kind of use isn't common (and is confusing), but the important part is
to understand that slices are simply views into an array.

While slices are a pointer-wrapped type (values in a slice passed to a
function that are changed will change in the caller as well), a slice's view
will not change.

func doAppend(sl []int) {

 sl = append(sl, 100)

 fmt.Println("inside: ", sl) // inside: [1 2 3 100]

}

func main() {

 x := []int{1, 2, 3}

 doAppend(x)

 fmt.Println("outside: ", x) // outside: [1 2 3]

}

In this example, the sl and x variables both use the same underlying array
(which has changed in both), but the view for x does not get updated in
doAppend(). To update x to see the addition to the slice would require
passing a pointer to the slice (pointers are covered in a future chapter) or
returning the new slice as seen here:

func doAppend(sl []int) []int {

 return append(sl, 100)

}

func main() {

 x := []int{1, 2, 3}

 x = doAppend(x)

 fmt.Println("outside: ", x) // outside: [1 2 3 100]

}

Now that you see how to create and add to a slice, let's look at how to
extract the values.

Extracting all values

To extract values from a slice, we can use the older C-type for loop or the
more common for...range syntax.

The older C style is as follows:

for i := 0; i < len(someSlice); i++{

 fmt.Printf("slice entry %d: %s\n", i, someSlice[i])

}

The more common approach in Go uses range:

for index, val := range someSlice {

 fmt.Printf("slice entry %d: %s\n", index, val)

}

With range, we often want to use only the value, but not the index. In Go,
you must use variables that are declared in a function, or the compiler will
complain with the following:

index declared but not used

To only extract the values, we can use _, (which tells the compiler not to
store the output), as follows:

for _, val := range someSlice {

 fmt.Printf("slice entry: %s\n", val)

}

On very rare occasions, you may want to only print out indexes and not
values. This is uncommon because it will simply count from zero to the
number of items. However, this can be achieved by simply removing val
from the for statement: for index := range someSlice.

In this section, you have discovered what arrays are, how to create them,
and how they relate to slices. In addition, you've acquired the skills to create
slices, add data to slices, and extract data from slices. Let's move on to
learning about maps next.

Understanding maps

Maps are a collection of key-value pairs that a user can use to store some
data and retrieve it with a key. In some languages, these are called
dictionaries (Python) or hashes (Perl). In contrast to an array/slice, finding
an entry in a map requires a single lookup versus iterating over the entire
slice comparing values. With a large set of items, this can give you
significant time savings.

Declaring a map

There are several ways to declare a map. Let's first look at using make:

var counters = make(map[string]int, 10)

The example just shared creates a map with string keys and stores data that
is an int type. 10 signifies that we want to pre-size for 10 entries. The map
can grow beyond 10 entries and the 10 can be omitted.

Another way of declaring a map is by using a composite literal:

modelToMake := map[string]string{

 "prius": "toyota",

 "chevelle": "chevy",

}

This creates a map with string keys and stores the string data. We also
pre-populate the entry with two key-value entries. You can omit the entries
to have an empty map.

Accessing values

You can retrieve a value as follows:

carMake := modelToMake["chevelle"]

fmt.Println(carMake) // Prints "chevy"

This assigns the chevy value to carMake.

But what happens if the key isn't in the map? In that case, we will receive
the zero value of the data type:

carMake := modelToMake["outback"]

fmt.Println(carMake)

The preceding code will print an empty string, which is the zero value of
the string type that is used as values in our map.

We can also detect if the value is in the map:

if carMake, ok := modelToMake["outback"]; ok {

 fmt.Printf("car model \"outback\" has make %q", carMake)

}else{

 fmt.Printf("car model \"outback\" has an unknown make")

}

Here we assign two values. The first (carMake) is the data stored in the key
(or zero value if not set), and the second (ok) is a Boolean that indicates if
the key was found.

Adding new values

Adding a new key-value pair or updating a key's value, is done the same
way:

modelToMake["outback"] = "subaru"

counters["pageHits"] = 10

Now that we can change a key-value pair, let's look at extracting values
from a map.

Extracting all values

To extract values from a map, we can use the for...range syntax that we
used for slices. There are a few key differences with maps:

Instead of an index, you will get the map's key.

Maps have a non-deterministic order.

Non-deterministic order means that iterating over the data will return the
same data but not in the same order.

Let's print out all the values in our carMake map:

for key, val := range modelToMake {

 fmt.Printf("car model %q has make %q\n", key, val)

}

This will yield the following, but maybe not in the same order:

car model "prius" has make "toyota"

car model "chevelle" has make "chevy"

car model "outback" has make "subaru"

NOTE
Similar to a slice, if you don't need the key, you may use _ instead. If you simply want the

keys, you can omit the value val variable, such as for key := range modelToMake.

In this section, you have learned about the map type, how to declare them,
add values to them, and finally how to extract values from them. Let's dive
into learning about pointers.

Understanding Go pointers
Pointers are another essential tool for programming languages for efficient
memory use. Some readers may have not encountered pointers in their

current language, instead having used its cousin, the reference type. In
Python, for example, the dict, list, and object types are reference types.

In this section, we will cover what pointers are, how to declare them, and
how to use them.

Memory addresses

In an earlier chapter, we talked about variables for storing data of some
type. For example, if we want to create a variable called x that stores an int
type with a value of 23, we can write var x int = 23.

Under the hood, the memory allocator allocates us space to store the value.
The space is referenced by a unique memory address that looks like
0xc000122020. This is similar to how a home address is used; it is the
reference to where the data lives.

We can see the memory address where a variable is stored by prepending &
to a variable name:

fmt.Println(&x)

This would print 0xc000122020, the memory address of where x is stored.

This leads to an important concept: functions always make a copy of the
arguments passed.

Function arguments are copies

When we call a function and pass a variable as a function argument, inside
the function you get a copy of that variable. This is important because when

you change the variable, you are only affecting the copy inside the function.

func changeValue(word string) {

 word += "world"

}

In this code, word is a copy of the value that was passed. word will stop
existing at the end of this function call.

func main() {

 say := "hello"

 changeValue(say)

 fmt.Println(say)

}

This prints "hello". Passing the string and changing it in the function
doesn't work, because inside the function we are working with a copy.
Think of every function call as making a copy of the variable with a copy
machine. Editing the copy that came out of the copy machine does not
affect the original.

Pointers to the rescue

Pointers in Go are types that store the address of a value, not the value. So,
instead of storing 23, it would store 0xc000122020, which is where in
memory 23 is stored.

A pointer type can be declared by prepending the type name with *. If we
want to create an intPtr variable that stores a pointer to int, we can do the
following:

var intPtr *int

You cannot store int in intPtr; you can only store the address of int. To
get the address of an existing int, you can use the & symbol on a variable
representing int.

Let's assign intPtr the address of our x variable from previously:

intPtr = &x

intPtr now stores 0xc000122020.

Now for the big question, how is this useful? This lets us refer to a value in
memory and change that value. We do that through what is called
dereferencing the pointer. This is done with the * operator on the variable.

We can view or change the value held at x by dereferencing the pointer. The
following is an example:

fmt.Println(x) // Will print 23

fmt.Println(*intPtr) // Will print 23, the value at x

*intPtr = 80 // Changes the value at x to 80

fmt.Println(x) // Will print 80

This also works across functions. Let's alter changeValue() to work with
pointers:

func changeValue(word *string) {

 // Add "world" to the string pointed to by 'word'

 *word += "world"

}

func main() {

 say := "hello"

 changeValue(&say) // Pass a pointer

 fmt.Println(say) // Prints "helloworld"

}

Note that operators such as * are called overloaded operators. Their
meaning depends on the context in which they are used. When declaring a
variable, * indicates a pointer type, var intPtr *int. When used on a
variable, * means dereference, fmt.Println(*intPtr). When used between
two numbers, it means multiply, y := 10 * 2. It takes time to remember
what a symbol means when used in certain contexts.

But, didn't you say every argument is a copy?!

I did indeed. When you pass a pointer to a function, a copy of the pointer is
made, but the copy still holds the same memory address. Therefore, it still
refers to the same piece of memory. It is a lot like making a copy of a
treasure map on the copy machine; the copy still points to the place in the
world where you will find the treasure. Some of you are probably thinking,
But maps and slices can have their values changed, what gives?

They are a special type called a pointer-wrapped type. A pointer-wrapped
type hides internal pointers.
Don't go crazy with pointers
While in our examples we used pointers for basic types, typically pointers
are used on long-lived objects or for storage of large data that is expensive
to copy. Go's memory model uses the stack/heap model. Stack memory is
created for exclusive use by a function/method call. Allocation on the stack
is significantly faster than on the heap.

Heap allocation occurs in Go when a reference or pointer cannot be
determined to live exclusively within a function's call stack. This is
determined by the compiler doing escape analysis.

Generally, it is much cheaper to pass copies into a function via an argument
and another copy in the return value than it is to use a pointer. Finally, be
careful with the number of pointers. Unlike C, it is uncommon in Go to see
pointers to pointers, such as **someType, and, in over 10 years of coding Go,
I have only once seen a single use for ***someType that was valid. Unlike in
the movie Inception, there is no reason to go deeper.

To sum up this section, you have gained an understanding of pointers, how
to declare them, how to use them in your code, and where you should
probably use them. You will use them on long-lived objects or types
holding large amounts of data where copies are expensive. Next, let's
explore structs.

Getting to know about structs
Structs represent a collection of variables. In the real world, we work with
data all the time that would be well represented by a struct. For example,
any form that is filled out in a job application or a vaccine card is a
collection of variables (for example, last name, first name, and government
ID number) that each has types (for example, string, int, and float64) and
are grouped together. That grouping would be a struct in Go.

Declaring a struct

There are two methods for declaring a struct. The first way is uncommon
except in tests, as it doesn't allow us to reuse the struct's definition to create
more variables. But, as we will see it later in tests, we will cover it here:

var record = struct{

 Name string

 Age int

}{

 Name: "John Doak",

 Age: 100, // Yeah, not publishing the real one

}

Here, we created a struct that contains two fields:

Name (string)

Age (int)

We then created an instance of that struct that has those values set. To
access those fields, we can use the dot . operator:

fmt.Printf("%s is %d years old\n", record.Name, record.Age)

This prints "John Doak is 100 years old".

Declaring single-use structs, as we have here, is rarely done. Structs
become more useful when they are used to create custom types in Go that
are reusable. Let's have a look at how we can do that next.

Declaring a custom type

So far, we have created a single-use struct, which generally is not useful.
Before we talk about the more common way to do this, let's talk about
creating custom types.

Up until this point, we've seen the basic and pointer-wrapped types that are
defined by the language: string, bool, map, and slice, for example. We can
create our own types based on these basic types using the type keyword.
Let's create a new type called CarModel that is based on the string type:

type CarModel string

CarModel is now its own type, just like string. While CarModel is based on a
string type, it is a distinct type. You cannot use CarModel in place of a
string or vice versa.

Creating a variable of CarModel can be done similar to a string type:

var myCar CarModel = "Chevelle"

Or, by using type conversion, as shown here:

myCar = CarModel("Chevelle")

Because CarModel is based on string, we can convert CarModel back to
string with type conversion:

myCarAsString := string(myCar)

We can create new types based on any other type, including maps, slices,
and functions. This can be useful for naming purposes or adding custom
methods to a type (we will talk about this in a moment).

Custom struct types

The most common way to declare a struct is using the type keyword. Let's
create that record again, but this time let's make it reusable by declaring a
type:

type Record struct{

 Name string

 Age int

}

func main() {

 david := Record{Name: "David Justice", Age: 28}

 sarah := Record{Name: "Sarah Murphy", Age: 28}

 fmt.Printf("%+v\n", david)

 fmt.Printf("%+v\n", sarah)

}

By using type, we have made a new type called Record that we can use
again and again to create variables holding Name and Age.

NOTE
Similar to how you may define two variables with the same type on a single line, you may
do the same within a struct type, such as First, Last string.

Adding methods to a type

A method is similar to a function, but instead of being independent, it is
bound to a type. For example, we have been using the fmt.Println()
function. That function is independent of any variable that has been
declared.

A method is a function that is attached to a variable. It can only be used on
a variable of a type. Let's create a method that returns a string
representation of the Record type we created earlier:

type Record struct{

 Name string

 Age int

}

// String returns a csv representing our record.

func (r Record) String() string {

 return fmt.Sprintf("%s,%d", r.Name, r.Age)

}

Notice func (r Record), which attaches the function as a method onto the
Record struct. You can access the fields of Record within this method by
using r.<field>, such as r.Name or r.Age.

This method cannot be used outside of a Record object. Here's an example
of using it:

john := Record{Name: "John Doak", Age: 100}

fmt.Println(john.String())

Let's look at how we change a field's value.

Changing a field's value

Struct values can be changed by using the variable attribute followed by =
and the new value. Here is an example:

myRecord.Name = "Peter Griffin"

fmt.Println(myRecord.Name) // Prints: Peter Griffin

It is important to remember that a struct is not a reference type. If you pass
a variable representing a struct to a function and change a field in the
function, it will not change on the outside. Here is an example:

func changeName(r Record) {

 r.Name = "Peter"

 fmt.Println("inside changeName: ", r.Name)

}

func main() {

 rec := Record{Name: "John"}

 changeName(rec)

 fmt.Println("main: ", rec.Name)

}

This will output the following:

Inside changeName: Peter

Main: John

As we learned in the section on pointers, this is because the variable is
copied, and we are changing the copy. For struct types that need to have
fields that change, we normally pass in a pointer. Let's try this again, using
pointers:

func changeName(r *Record) {

r.Name = "Peter"

fmt.Println("inside changeName: ", r.Name)

}

func main() {

// Create a pointer to a Record

rec := &Record{Name: "John"}

changeName(rec)

fmt.Println("main: ", rec.Name)

}

Inside changeName: Peter

Main: Peter

This will output the following:

Inside changeName: Peter

Main: Peter

Note that . is a magic operator that works on struct or *struct.

When I declared the rec variable, I did not set the age. Non-set fields are set
to the zero value of the type. In the case of Age, which is int, this would be
0.

Changing a field's value in a method

In the same way that a function cannot alter a non-pointer struct, neither can
a method. If we had a method called IncrAge() that increased the age on the
record by one, this would not do what you wanted:

func (r Record) IncrAge() {

 r.Age++

}

The preceding code passes a copy of Record, adds one to the copy's Age, and
returns.

To actually increment the age, simple make Record a pointer, as follows:

func (r *Record) IncrAge() {

 r.Age++

}

This will work as expected.

TIP
Here is a basic rule that will keep you out of trouble, especially when you are new to the
language. If the struct type should be a pointer, then make all methods pointer methods.

If it shouldn't be, then make them all non-pointers. Don't mix and match.

Constructors

In many languages, constructors are specially-declared methods or syntax
that are used to initialize fields in an object and sometimes run internal
methods as setup. Go doesn't provide any specialized code for that, instead,
we use a constructor pattern using simple functions.

Constructors are commonly either called New() or New[Type]() when
declaring a public constructor. Use New() if there are no other types in the
package (and most likely won't be in the future).

If we wanted to create a constructor that made our Record from the previous
section, it might look like the following:

func NewRecord(name string, age int) (*Record, error) {

 if name == "" {

 return nil, fmt.Errorf("name cannot be the empty string")

 }

 if age <= 0 {

 return nil, fmt.Errorf("age cannot be <= 0")

 }

 return &Record{Name: name, Age: age}, nil

}

This constructor takes in a name and age argument and returns a pointer to
Record with those fields set. If we pass bad values for those fields, it instead
returns the pointer's zero value (nil) and an error. Using this looks like the
following:

 rec, err := NewRecord("John Doak", 100)

 if err != nil {

 return err

 }

Don't worry about the error, as we will discuss it in the course of the book's
journey.

By now, you have learned how to use struct, Go's base object type. This
included creating a struct, creating custom structs, adding methods,
changing field values, and creating constructor functions. Now, let's look at
using Go interfaces to abstract types.

Comprehending Go interfaces
Go provides a type called an interface that stores any value that declares a
set of methods. The implementing value must have declared this set of
methods to implement the interface. The value may also have other
methods besides the set declared in the interface type.

If you are new to interfaces, understand that they can be a little confusing.
Therefore, we will take it one step at a time.

Defining an interface type

Interfaces are most commonly defined using the type keyword that we
discussed in the earlier section on structs. The following defines an
interface that returns a string representing the data:

type Stringer interface {

 String() string

}

NOTE
Stringer is a real type defined in the standard library's fmt package. Types that

implement Stringer will have their String() method called when passed to print

functions in the fmt package. Don't let the similar names confuse you; Stringer is the

interface type's name, and it defines a method called String() (which is uppercase to

distinguish it from the string type, which is lowercase). That method returns a string

type that should provide some human-readable representation of your data.

Now, we have a new type called Stringer. Any variable that has the
String() string method can be stored in a variable of type Stringer. The
following is an example:

type Person struct {

 First, Last string

}

func (p Person) String() string {

 return fmt.Sprintf("%s,%s", p.Last, p.First)

}

Person represents a record of a person, first and last name. We define
String() string on it, so Person implements Stringer:

type StrList []string

func (s StrList) String() string {

 return strings.Join(s, ",")

}

StrList is a slice of strings. It also implements Stringer. The
strings.Join() function used here takes a slice of strings and creates a
single string with each entry from the slice separated by a comma:

// PrintStringer prints the value of a Stringer to stdout.

func PrintStringer(s Stringer) {

 fmt.Println(s.String())

}

PrintStringer() allows us to print the output of Stringer.String() of any
type that implements Stringer. Both the types we created above implement
Stringer.

Let's see this in action:

func main() {

 john := Person{First: "John", Last: "Doak"}

 var nameList Stringer = StrList{"David", "Sarah"}

 PrintStringer(john) // Prints: Doak,John

 PrintStringer(nameList) // Prints: David,Sarah

}

Without interfaces, we would have to write a separate Print[Type] function
for every type we wanted to print. Interfaces allow us to pass values that
can do common operations defined by their methods.

Important things about interfaces

The first thing to note about interfaces is that values must implement every
method defined in the interface. Your value can have methods not defined
for the interface, but it doesn't work the other way.

Another common issue new Go developers encounter is that once the type
is stored in an interface, you cannot access its fields, or any methods not
defined on the interface.

The blank interface – Go's universal
value

Let's define a blank interface variable: var i interface{}. i is an interface
with no defined methods. So, what can you store in that?

That's right, you can store anything.

interface{} is Go's universal value container that can be used to pass any
value to a function and then figure out what it is and what to do with it later.
Let's put some things in i:

i = 3

i = "hello world"

i = 3.4

i = Person{First: "John"}

This is all legal because each of those values has types that define all the
methods that the interface defined (which were no methods). This allows us
to pass around values in a universal container. This is actually how
fmt.Printf() and fmt.Println() work. Here are their definitions from the
fmt package:

func Println(a ...interface{}) (n int, err error)

func Printf(format string, a ...interface{}) (n int, err error)

However, as the interface did not define any methods, i is not useful in this
form. So, this is great for passing around values, but not using them.

NOTE ABOUT INTERFACE{} IN 1.18:
Go 1.18 has introduced an alias for the blank interface{}, called any. The Go standard

library now uses any in place of interface{}. However, all packages prior to 1.18 will still

use interface{}. Both are equivalent and can be used interchangeably.

Type assertion

Interfaces can have their values asserted to either another interface type or
to their original type. This is different than type conversion, where you
change the type from one to another. In this case, we are saying it already is
this type.

Type assertion allows us to change an interface{} value into a value that
we can do something with.

There are two common ways to do this. The first uses the if syntax, as
follows:

if v, ok := i.(string); ok {

 fmt.Println(v)

}

i.(string) is asserting that i is a string value. If it is not, ok == false. If
ok == true, then v will be the string value.

The more common way is with a switch statement and another use of the
type keyword:

switch v := i.(type) {

case int:

 fmt.Printf("i was %d\n", i)

case string:

 fmt.Printf("i was %s\n", i)

case float:

 fmt.Printf("i was %v\n", i)

case Person, *Person:

 fmt.Printf("i was %v\n", i)

default:

 // %T will print i's underlying type out

 fmt.Printf("i was an unsupported type %T\n", i)

}

Our default statement prints out the underlying type of i if it did not match
any of the other cases. %T is used to print the type information.

In this section, we learned about Go's interface type, how it can be used to
provide type abstraction, and converting an interface into its concrete type
for use.

Summary
In this chapter, you have learned the basics of the Go language. This
includes variable types, functions, loops, methods, pointers, and interfaces.
The skills acquired in this chapter provide the basic foundation needed to
explore more advanced features of the Go language in our next chapter.

Next, we will be looking at essential capabilities of the Go language, such
as handling errors, using concurrency, and Go's testing framework.

Chapter 2: Go Language Essentials
In the previous chapter, we covered the basics of the Go language. While
some of the syntax is new in relation to other languages, most of the
concepts in that chapter are familiar to programmers coming from other
languages.

This isn't to say that the way Go uses those concepts doesn't lead to code
that is easier to read and reason about—it's just that most of it doesn't stand
out from other languages.

In this chapter, we will be discussing the essential parts of Go that make it
stand out from other languages, from Go's more pragmatic error handling to
its core concurrency concept, the goroutine, and the newest feature of the
Go language, generics.

Here are the main topics that will be covered:

Handling errors in Go

Utilizing Go constants

Using defer, panic, and recover

Utilizing goroutines for concurrency

Understanding Go's Context type

Utilizing Go's testing framework

Generics—the new kid on the block

Now, let's get the essentials down and get you on your way!

Handling errors in Go
Many of you will come from languages that handle errors using exceptions.
Go took a different approach, treating errors like our other data types. This
prevents common problems that exception-based models have, such as
exceptions escaping up the stack.

Go has a built-in error type called error. error is based on the interface
type, with the following definition:

type error interface {

 Error() string

}

Now, let's look at how we can create an error.

Creating an error

The most common way to create errors is using either the errors package's
New() method or the fmt package's Errorf() method. Use errors.New()
when you don't need to do variable substitution and fmt.Errorf() when you
do. You can see both methods in the following code snippet:

err := errors.New("this is an error")

err := fmt.Errorf("user %s had an error: %s", user, msg)

In both the preceding examples, err will be of type error.

Using an error

The most common way to use an error is as the last return value on a
function or method call. The caller can then test if the returned error is nil,
indicating there is no error.

Let's say we want a function that divides a number, and we want to detect if
the divisor is zero. In that case, we want to return an error because a
computer cannot divide a number by zero. This is how it might look:

func Divide(num int, div int) (int, error) {

if div == 0 {

// We return the zero value of int (0) and an error.

return 0, errors.New("cannot divide by 0")

}

return num / div, nil

}

func main() {

divideBy := []int{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

for _, div := range divideBy {

res, err := Divide(100, div)

if err != nil {

fmt.Printf("100 by %d error: %s\n", div, err)

continue

}

fmt.Printf("100 divided by %d = %d\n", div, res)

}

}

The preceding example uses Go's multiple return ability to return two
values: the result and the error.

In our main package, we can now divide our numbers and check the
returned error type to see if it is not nil. If it is, we know we had an error
and should ignore the return value. If not, we know the operation completed
successfully.

Creating named errors

Sometimes, you want to create errors that indicate a specific type of error—
say, a network error versus an incorrect argument. This can be done by
creating specific types of errors using the var keyword and errors.New() or
fmt.Errorf(), as illustrated in the following code snippet:

var (

 ErrNetwork = errors.New("network error")

 ErrInput = errors.New("input error")

)

We can use the errors package's Is() function to detect the error type and
retry on ErrNetwork and not on other errors, as follows:

// The loop is for retrying if we have an ErrNetwork.

for {

 err := someFunc("data")

 if err == nil {

 // Success so exit the loop

 break

 }

 if errors.Is(err, ErrNetwork) {

 log.Println("recoverable network error")

 time.Sleep(1 * time.Second)

 continue

 }

 log.Println("unrecoverable error")

 break // exit loop, as retrying is useless

}

someFunc() is not defined here. You can view a full example here:

https://play.golang.org/p/iPwwwmIBcAG

Custom errors

Because the error type is simply an interface, you can implement your own
custom errors. Here is a more in-depth network error that we could use:

const (

 UnknownCode = 0

 UnreachableCode = 1

 AuthFailureCode = 2

)

type ErrNetwork struct {

 Code int

 Msg string

}

https://play.golang.org/p/iPwwwmIBcAG

func (e ErrNetwork) Error() string {

 return fmt.Sprintf("network error(%d): %s", e.Code, e.msg)

}

We can now return a custom network error for something such as an
authentication failure, as follows:

return ErrNetwork{

 Code: AuthFailureCode,

 Msg: "user unrecognized",

}

When we receive an error from a call, we can detect if it was a network
error using the errors.As() function, as follows:

var netErr ErrNetwork

if errors.As(err, &netErr) {

 if netErr.Code == AuthFailureCode {

 log.Println("unrecoverable auth failure: ", err)

 break

 }

 log.Println("recoverable error: %s", netErr)

}

log.Println("unrecoverable error: %s", err)

break

You can also view this here: https://play.golang.org/p/gZ5AK8-o4zA.

The preceding code detects if the network error is unrecoverable, such as an
authentication failure. Any other network error is recoverable. If it is not a
network error, it is unrecoverable.

https://play.golang.org/p/gZ5AK8-o4zA

Wrapping errors

Many times, there is an error chain where we want to wrap an error
received by a lower-level package with information from an upper layer
package. For example, you might be making a REpresentational State
Transfer (REST) call that sends some data and you receive an error from
the net/http package. In that case, you might want to put information about
which REST call you were making with the underlying error.

We can wrap errors so that not only can we include more specific
information, but we can also keep the underlying error for extraction later.

We do this using fmt.Errorf() with %w for variable substitution of our error
type. Let's say we want to call someFunc() from another function called
restCall() and add more information, as illustrated in the following code
snippet:

func restCall(data) error {

 if err := someFunc(data); err != nil {

 return fmt.Errorf("restCall(%s) had an error: %w", data,

err)

 }

 return nil

}

Someone using restCall() can detect and extract an ErrNetwork using
errors.As(), just as we did before. The following code snippet provides an
illustration of this:

for {

 if err := restCall(data); err != nil {

 var netErr ErrNetwork

 if errors.As(err, &netErr) {

 log.Println("network error: ", err)

 time.Sleep(1 * time.Second)

 continue

 }

 log.Println("unrecoverable: ", err)

 }

}

The preceding code extracts the ErrNetwork from the wrapped error it was
contained in. This will work no matter how many layers of wrapping the
error was contained in.

In this section, you have learned how Go handles errors and about Go's
error type and how to create basic errors, how to create custom errors, how
to detect specific error types, and how to wrap/unwrap errors. As good
error handling is the basis of reliable software, this knowledge will be
useful in every Go program you write.

Util izing Go constants
Constants provide values that are set at compile time and cannot change.
This is in contrast to variables, which store values that can be set at runtime
and can be altered. This provides types that cannot accidentally be changed
by a user and are allocated for use in the software on startup, providing
some speed advantages and safety over variable declarations.

Constants can be used to store the following:

Booleans

Runes

Integer types (int, int8, uint16, and so on)

Floating-point types (float32/float64)

Complex data types

Strings

In this section, we will discuss how to declare constants and common use
in your code.

Declaring a constant

Constants are declared using the const keyword, as illustrated in the
following code snippet:

const str = "hello world"

const num = 3

const num64 int64 = 3

Constants are different from variable types in that they come in two flavors,
as follows:

Untyped constants

Typed constants

This is going to seem a little weird because constants store a typed value.
But if you don't declare the exact type (as in the third example, num64,
where we declared it to be an int64 type), the constant can be used for any

type that has the same base type or family of types (such as integers). This
is called an untyped constant.

For example, num can be used to set the value of an int8, int16, int32,
int64, uint8, uint16, uint32, or uint64 type. So, the following will work:

func add(x, y int8) int8 {

 return x + y

}

func main() {

 fmt.Println(add(num, num)) // Print: 6

}

While we didn't discuss it earlier, that is what happens when we wrote code
such as add (3, 3)—3 is actually an untyped constant. If the signature of
add changed to add(x, y int64), add(3, 3) works because of this property of
an untyped constant.

This extends to any type based on that basic type. Have a look at the
following example:

type specialStr string

func printSpecial(str specialStr)

 fmt.Println(string(str))

}

func main() {

 const constHelloWorld = "hello world"

 var varHelloWorld = "hello world"

 printSpecial(varHelloWorld) // Won't compile

 printSpecial(constHelloWorld) // Will compile

 printSpecial("hello world") // Will compile

}

From the preceding code, you will receive the following output:

./prog.go:18:14: cannot use varHelloWorld (type string) as type

specialStr in argument to printSpecial

This is because varHelloWorld is a string type and not a specialStr type.
But the unique properties of an untyped constant allow for constHelloWorld
to satisfy any type based on string.

Enumeration via constants

Many languages provide an enumerated type that gives a readable name to
some value that cannot be changed. This is most commonly done for integer
constants, though you can do this for any type of constant.

For integer constants specifically, there is a special iota keyword that can
be used to generate constants. It increments the value by 1 for each constant
defined in the grouping, as illustrated in the following code snippet:

const (

 a = iota // 0

 b = iota // 1

 d = iota // 2

)

This can also be shortened to have only the first value use iota, and the
following values would also automatically be set. The value can also be set

to a formula in which iota uses a multiplier or other mathematical
operation. Here is an example of both those concepts:

const (

 a = iota *2 // 0

 b // 2

 d // 4

)

Enumeration with iota is great, as long as the values will never be stored
on disk or sent to another process that is local or remote. The value of
constants is controlled by the order of the constants in the code. Here, look
what happens if we insert c into our first example:

const (

 a = iota // 0

 b // 1

 c // 2

 d // 3

)

Notice that d now has the value of 3? This would cause serious errors if the
code needed to read back values that were written to disk and needed to be
read back in. In cases where these values could be used by another process,
it is best practice to statically define enumeration values.

Enumerators in Go can be hard to interpret when printed. Maybe you are
using them for error codes and would prefer to have the constant's name
printed when printing the value to logs or standard output (stdout). Let's
have a look at how we can get better output.

Printing enumerators

Enumerators are much easier to use when displaying a value as the
enumerated name instead of the value. This can be done easily when the
constant is a string such as const toyota = "toyota", but for other more
efficient enumerator types such as integers, printing the value simply
outputs a number.

Go has the concept of code generation built into the tooling. This is a more
far-reaching subject than we will cover here (read about it here:
https://blog.golang.org/generate).

However, we will borrow from the linked document to show how this can
be used to set up an enumerator to a string value for printing automatically,
as follows:

//go:generate stringer -type=Pill

type Pill int

const (

 Placebo Pill = iota

 Aspirin

 Ibuprofen

 Paracetamol

 Acetaminophen = Paracetamol

)

NOTE
This requires the Go stringer binary to be installed.

https://blog.golang.org/generate

//go:generate stringer -type=Pill is a special syntax that indicates that
when the go generate command is run for this package, it should call the
stringer tool and pass it the -type=Pill flag, which indicates to read our
package code and generate a method that reverses the constants based on
type Pill to a string. This will be placed in a file called pill_string.go.

Before running the command, fmt.Println(Aspirin) would print 1; after, it
would print Aspirin.

In this section, you have learned how constants can provide non-changeable
values for use in your code, how you can create enumerators with them, and
finally, how you can generate textual printed output for enumerators for
better logging. In the next section, we will explore how to use defer, panic,
and recover methods.

Using defer, panic, and recover
Modern programming languages have a need to provide some method of
running routines when a section of code ends. This is useful when you need
to guarantee a file closure or unlock a mutex. In addition, there are times
when a program needs to stop execution and exit. This can be caused by
loss of access to a critical resource, a security issue, or another need.

We also require the ability to recover from a premature program exit caused
by a package that contains code we do not control. This section will cover
each of the abilities in Go and their interrelations.

defer

The defer keyword allows you to execute a function when the function that
contains defer exits. If there are multiple defer statements, they execute
last to first.

This can be useful for debugging, unlocking mutexes, decrementing
counters, and so on. Here's an example:

func printStuff() (value string) {

 defer fmt.Println("exiting")

 defer func() {

 value = "we returned this"

 }()

 fmt.Println("I am printing stuff")

 return ""

}

func main() {

 v := printStuff()

 fmt.Println(v)

}

This outputs the following:

I am printing stuff

exiting

we returned this

You can also see it at the following link:

https://play.golang.org/p/DaoP9M79E_J

https://play.golang.org/p/DaoP9M79E_J

If you run this example, you will notice that our defer statements execute
after the rest of printStuff() has run. We use a deferred anonymous
function to set our named return value before exiting. You will see defer
used frequently in future chapters.

panic

The panic keyword is used to cause the execution of the program to stop
and exit while displaying some text and a stack trace.

Using panic is as simple as calling the following:

panic("ran into some bug")

panic is intended to be used when a program cannot or should not continue
to execute. This might be because there is a security issue, or on startup,
you cannot connect to a required data source.

In most circumstances, a user should return an error and not panic.

As a general rule, only use panic in the main package.

recover

There are rare circumstances in which a program might panic due to an
unforeseen bug or a package that unnecessarily panics. After more than 10
years of programming in Go, I can count on my fingers the number of times
I have needed to recover from a panic.

Remote Procedure Call (RPC) frameworks such as Google RPC (gRPC)
(https://grpc.io/docs/what-is-grpc/) use recover to prevent a server crash

https://grpc.io/docs/what-is-grpc/

when an RPC call panics and then signals the caller of the issue.

If, like the RPC framework, you need to catch a panic that is occurring or
protect against potential panics, you can use the recover keyword with the
defer keyword. Here is an example of this:

func someFunc() {

 defer func() {

 if r := recover(); r != nil {

 log.Printf("called recover, panic was: %q", r)

 }

 }()

 panic("oh no!!!")

}

You can also see this here: https://play.golang.org/p/J8RfjOe1dMh.

This has similarities to other languages' exception types, but you should not
confuse the two. Go does not intend for you to use panic/defer/recover in
that way—it will simply cause you problems in the future.

Now that you have completed this section, you have learned how to defer
the execution of a function, cause a panic within the main package, how to
recover from a misbehaving package, and when these should be used. Let's
hop onto the next topic relevant to this chapter: goroutines.

Util izing goroutines for concurrency
In the modern era of computers, concurrency is the name of the game. In
the years before 2005 or so, computers used Moore's law to double the

https://play.golang.org/p/J8RfjOe1dMh

speed of a single central processing unit (CPU) every 18 months. Multiple
CPU consumer systems were rare and there was one core per CPU in the
system. Software that utilized multiple cores efficiently was rare.

Over time, it became more expensive to increase single-core speed and
multi-core CPUs have become the norm. Each core on a CPU supports a
number of hardware threads and operating systems (OSs) provide OS
threads that are mapped to hardware threads that are then shared between
processes.

Languages can utilize these OS threads to run functions in their language
concurrently instead of serially as we have been doing in all of our code so
far.

Starting an OS thread is an expensive operation and to fully utilize the
thread's time requires paying a lot of attention to what you are doing.

Go takes this to another level than most languages with goroutines. Go has
built a runtime scheduler that maps these goroutines onto OS threads and
switches which routine is running on which thread to optimize CPU
utilization.

This produces concurrency that is easy and cheap to use, requiring less
mental burden on the developer.

Starting a goroutine

Go gets its name from the go keyword that is used to spawn a goroutine. By
applying go before a function call, you can cause that function to execute

concurrently with the rest of the code. Here is an example that causes 10
goroutines to be created, with each printing out a number:

for i := 0; i < 10; i++ {

 go fmt.Println(x) // This happens concurrently

}

fmt.Println("hello")

// This is used to prevent the program from exiting

// before our goroutines above run. We will talk about

// this later in the chapter.

select{}

The output will look similar to, but not necessarily in the same order as,
what is shown next. ... indicates more numbers follow, but have been
omitted for brevity:

Hello

2

0

5

3

...

fatal error: all goroutines are asleep - deadlock!

You can see the preceding example here:

https://play.golang.org/p/RBD3yuBA3Gd

NOTE

https://play.golang.org/p/RBD3yuBA3Gd

You will also notice that this panics with an error after running. This is because the program
will have no running goroutines, which means the program is effectively dead. It is killed by
Go's deadlock detector. We will handle this more gracefully in the next chapter.

Running this will print out the numbers in random order. Why random?
Once you are running concurrently, you cannot be sure when a scheduled
function will execute. At any given moment, there will be between 0 and 10
goroutines executing fmt.Println(x), and another one executing
fmt.Println("hello"). That's right—the main() function is its own
goroutine.

Once the for loop ends, fmt.Println("hello") will execute. hello might be
printed out before any of the numbers, somewhere in the middle, or after all
the numbers. This is because they are all executing at the same time like
horses on a racetrack. We know all the horses will reach the end, but we
don't know which one will be first.

Synchronization

When doing concurrent programming, there is a simple rule: You can
read a variable concurrently without synchronization, but a single writer
requires synchronization.

These are the most common methods of synchronization in Go:

The channel data type to exchange data between goroutines

Mutex and RWMutex from the sync package to lock data access

WaitGroup from the sync package to track access

These can be used to prevent multiple goroutines from reading and writing
to variables at the same time. It is undefined what happens if you try to read
and write to the same variable from multiple goroutines simultaneously (in
other words, that is a bad idea).

Reading and writing to the same variable concurrently is called a data race.
Go has a data race detector not covered in this book to uncover these types
of problems. You can read about it here:
https://golang.org/doc/articles/race_detector.

WaitGroups

A WaitGroup is a synchronization counter that only has positive values
starting at 0. It is most often used to indicate when some set of tasks is
finished before executing code that relies on those tasks.

A WaitGroup has a few methods, as outlined here:

.Add(int): Used to add some number to the WaitGroup

.Done(): Subtract 1 from the WaitGroup

.Wait(): Block until WaitGroup is 0

In our previous section on goroutines, we had an example that panicked
after running. This was due to having all goroutines stopped. We used a
select statement (covered in this chapter) to block forever to prevent the
program from exiting before the goroutines could run, but we can use a
WaitGroup to wait for our goroutines to end and exit gracefully.

Let's do it again, as follows:

https://golang.org/doc/articles/race_detector

func main() {

 wg := sync.WaitGroup{}

 for i := 0; i < 10; i++ {

 wg.Add(1)

 go func(n int) {

 defer wg.Done()

 fmt.Println(n)

 }(i)

 }

 wg.Wait()

 fmt.Println("All work done")

}

You can also see this here: https://play.golang.org/p/cwA3kC-d3F6.

This example uses a WaitGroup to track the number of goroutines that are
outstanding. We add 1 to wg before we launch our goroutine (do not add it
inside the goroutine). When the goroutine exits, the defer statement is
called, which subtracts 1 from the counter.

IMPORTANT NOTE
A WaitGroup can only have positive values. If you call .Done() when the WaitGroup is

at 0, it will cause a panic. Because of the way they are used, the creators knew that any
attempt to reach a negative value would be a critical bug that needs to be caught early.

wg.Wait() waits for all the goroutines to finish, and calling defer
wg.Done()causes our counter to decrement until it reaches 0. At that point,
Wait() stops blocking and the program exits the main() function.

IMPORTANT NOTE

https://play.golang.org/p/cwA3kC-d3F6

If passing a WaitGroup in a function or method call, you need to use a wg :=

&sync.WaitGroup{} pointer. Otherwise, each function is operating on a copy, not the

same value. If used in a struct, either the struct or the field holding the WaitGroup must be

a pointer.

Channels

Channels provide a synchronization primitive in which data is inserted into
a channel by a goroutine and removed by another goroutine. A channel can
be buffered, meaning it can hold a certain amount of data before blocking,
or unbuffered, where a sender and receiver must both be present for the data
to transfer between goroutines.

A common analogy for a channel is a pipe in which water flows. Water is
inserted into a pipe and flows out the far side. The amount of water that can
be held in the pipe is the buffer. Here, you can see a representation of
goroutine communication using a channel:

Figure 2.1 – Goroutine communication using a channel

Channels are used to pass data from one goroutine to another, where the
goroutine that passed the data stops using it. This allows you to pass control
from one goroutine to another, giving access to a single goroutine at a time.
This provides synchronization.

Channels are typed, so only data of that type can go into the channel.
Because channels are a pointer-scoped type such as map and slice, we use
make() to create them, as follows:

ch := make(chan string, 1)

The preceding statement creates a channel called ch that holds a string type
with a buffer of 1. Leaving ", 1" off will make it an unbuffered channel.

Sending/receiving

Sending to a channel is done with the <- syntax. To send a string type to
the preceding channel, we could do the following: ch <- "word". This
attempts to put the "word" string into the ch channel. If the channel has an
available buffer, we continue execution in this goroutine. If the buffer is
full, this blocks until either buffer becomes available or—in the case of
unbuffered channels—a goroutine tries to pull from the channel.

Receiving is similar using the same syntax but on the opposite side of the
channel. The goroutine trying to pull from the channel would do this: str
:= <-ch. This assigns the next value on the channel to the str variable.

More commonly when receiving variables, the for range syntax is used.
This allows us to pull all values out of a channel. An example using our
preceding channel might look like this:

for val := range ch { // Acts like a <-ch

 fmt.Println(val)

}

Channels can be closed so that no more data will be sent to them. This is
done with the close keyword. To close the preceding channel, we could do
close(ch). This should always be done by the sender. Closing a channel

will cause a for range loop to exit once all values on the channel have been
removed.

Let's use a channel to send words from one goroutine to another, as follows:

func main() {

 ch := make(chan string, 1)

 go func() {

 for _, word := range []string{"hello", "world"} {

 ch <- word

 close(ch)

 }

 }()

 for word := range ch {

 fmt.Println(word)

 }

}

You can also see the preceding example here:

https://go.dev/play/p/9km80Jz6f26

IMPORTANT NOTE
After a channel is closed, sending a value on a channel will cause a panic.

Receiving from a closed channel will return the zero value of the type the channel holds.

A channel can be nil. Sending or receiving from a nil channel can block forever. It is a

common bug for developers to forget to initialize channels in a struct.

select statements

https://go.dev/play/p/9km80Jz6f26

A select statement is similar to a switch statement but is geared toward
listening to multiple channels. This allows us to receive and act on multiple
inputs at the same time.

The following example will listen to several channels and execute a case
statement whenever it receives a value on one of them. In the example
cases, we spin off a goroutine to do something with the value so that we can
continue the execution of our loop for the next value. If no value is present
on the channel, this blocks until one is. If values are on more than one
channel, select uses a pseudo-random method to select which case to
execute:

for {

 select {

 case v := <-inCh1:

 go fmt.Println("received(inCh1): ", v)

 case v := <-inCh2:

 go fmt.Println("received(inCh2): ", v)

 }

}

With a select statement, we sometimes only want to check if a value is on
a channel, but if it is not, then we want to move on. In those cases, we can
use a default statement. default executes if no other case statement can
execute (versus the previous behavior of waiting for channel data
indefinitely). You can see an example of this in the following code snippet:

select {

case s := <-ch:

 fmt.Printf("had a string(%s) on the channel\n", s)

default:

 fmt.Println("channel was empty")

}

select has one more use we saw before but it wasn't explained. select{}
has no case statements and no default statement; therefore, it blocks forever.
This is often used by servers that want to run forever to prevent the main()
function from exiting, which stops the execution of the program.

Channels as an event signal

One common use of channels is to use them to send a signal to another
goroutine. Often, this is an indication to exit a loop or some other
execution.

In the select example from before where we used the for loop, the loop
will continue forever, but we can use a channel to signal that we want to
exit, as follows:

func printWords(in1, in2 chan string, exit chan struct{}, wg

*sync.WaitGroup) {

 defer wg.Done()

 for {

 select{

 case <-exit:

 fmt.Println("exiting")

 return

 case str := <-in1:

 fmt.Println("in1: ", str)

 case str := <-in2:

 fmt.Println("in2: ", str)

 }

 }

}

printWords() reads input off of three channels. If the input is on in1 or in2,
it prints the channel name and what string was sent on the channel. If it is
the exit channel, it prints that it is exiting and returns. When returning, wg
will have .Done() called on it, which will decrement the it by 1:

func main() {

 in1 := make(chan string)

 in2 := make(chan string)

 wg := &sync.WaitGroup{}

 exit := make(chan struct{})

 wg.Add(1)

 go printWords(in1, in2, exit, wg)

 in1 <- "hello"

 in2 <- "world"

 close(exit)

 wg.Wait()

}

Here we create all the channels required for printWords() and spin
printWords off in a goroutine. We then send input on our input channels and

once that is completed, we close the exit channel to signal there is no
further input to printWords. The wg.Wait() call prevents main() from
exiting until printWords has exited.

The output looks like this:

in1: hello

in2: world

exiting

You can also see the preceding example at the following link:

https://play.golang.org/p/go7Klf5JNQn

exit is used in this example to signal to printWords() that we want to exit
the for loop. This is made possible because receiving on a closed channel
returns the zero value of the type that the channel holds. We use a blank
struct{} instance because it doesn't cost memory. We do not store the
returned value in a variable because it is the signal that the channel closed
that is important.

Mutexes

A mutex is a synchronization primitive (also known as a lock) that can
only be locked by one owner at a time. If another would-be owner attempts
to lock a mutex while it is locked by another owner, the code blocks until
the mutex is unlocked and the new owner can take possession. Go provides
a mutex type in the sync package called Mutex.

This is used to protect a variable or set of variables from being accessed by
multiple goroutines. Remember—if one goroutine tries to write to a value at

https://play.golang.org/p/go7Klf5JNQn

the same time another wants to read or write to that value, the variable must
be protected by a synchronization primitive.

In the following example, we will spin off 10 goroutines to add a number to
a sum value. The sum value must be protected as we are reading and writing
from multiple goroutines:

type sum struct {

 mu sync.Mutex

 sum int

}

func (s *sum) get() int {

 s.mu.Lock()

 defer s.mu.Unlock()

 return s.sum

}

func (s *sum) add(n int) {

 s.mu.Lock()

 defer s.mu.Unlock()

 s.sum += n

}

func main() {

 mySum := &sum{}

 wg := sync.WaitGroup{}

 for i := 0; i < 100; i++ {

 wg.Add(1)

 go func(x int) {

 defer wg.Done()

 mySum.add(x)

 }(i)

 }

 wg.Wait()

 fmt.Println("final sum: ", mySum.get())

}

You can also see this example at the following link:

https://play.golang.org/p/mXUk8PCzBI7

This code uses a Mutex named mu that is part of the sum struct to control
access to the get() and add() methods. As each is locked, only one of those
may execute at a time. We use the defer statement to unlock the Mutex
when the function exits. This protects us from forgetting to unlock the
Mutex when a function gets long.

RWMutex

Along with sync.Mutex is sync.RWMutex. This distinguishes itself by
providing a read and write lock. Any number of mu.RLock() read locks may
be held at a time, but a single mu.Lock() write lock waits for all existing
read locks to complete (new Rlock() attempts block) and then provides the
writer with exclusive access.

This proves to be faster when there are lots of concurrent readers and
writing happens infrequently. However, the standard Mutex is faster in the
generalized case because its implementation is less complicated.

https://play.golang.org/p/mXUk8PCzBI7

In this section, you have gained basic skills in using goroutines for
concurrent operations, learned what synchronization is and when you must
use it, and learned about Go's various methods for synchronization and
signaling. Let's dive into understanding another type, known as context.

Understanding Go's Context type
Go provides a package called context that is useful for two purposes, as
outlined here:

Canceling a chain of function calls after some event (such as a timeout)

Passing information through a chain of function calls (such as user
information)

A Context object is usually created in either main() or at the point of
ingestion of some request (such as an RPC or HyperText Transfer
Protocol (HTTP) request). A basic Context object is created from our
background Context object, as follows:

import "context"

func main() {

 ctx := context.Background()

}

The context package and the Context type is an advanced subject, but I
want to introduce it here as you will see it used throughout the Go
ecosystem.

Using a Context to signal a timeout

Context is often used to communicate a timer state or to terminate a wait
condition—for example, when your program is waiting for a network
response.

Let's say we want to call a function to get some data, but we don't want to
wait longer than 5 seconds for the call to complete. We can signal this via a
Context, as follows:

ctx, cancel := context.WithTimeout(context.Background(), 5 *

time.Second)

data, err := GatherData(ctx, args)

cancel()

if err != nil {

 return err

}

context.WithTimeout() creates a new Context that will automatically be
canceled after 5 seconds and a function that will cancel the Context
(context.CancelFunc) when called.

Every Context is said to be derived from another Context. Here, we derive
our ctx object from context.Background(). context.Background() is our
parent Context. New context objects can be derived from ctx forming a
chain, and those new Context objects can have different timeouts.

Canceling a Context either directly via cancel() or with a timeout or
deadline causes that Context and its children to also be canceled.

The preceding code does the following:

Creates a Context that is canceled after 5 seconds.

Calls GatherData() and passes the Context.

Once the call is complete, we cancel the Context if not already canceled.

Now, we need to set up GatherData() to honor our Context cancellation.

Honoring a context when receiving

If we are executing the GatherData() function, we need to honor this
context. There are a few ways to do that with a basic call to ctx.Err(), as
follows:

func GatherData(ctx context.Context, args Args) ([]file, error) {

 if ctx.Err() != nil {

 return nil, err

 }

 localCtx, localCancel := context.WithTimeout(ctx, 2 *

time.Second)

 local, err := getFilesLocal(localCtx, args.local)

 localCancel()

 if err != nil {

 return nil, err

 }

 remoteCtx, remoteCancel := context.WithTimeout(ctx, 3 *

time.Second)

 remote, err := getFilesRemote(remoteCtx, args.remote)

 remoteCancel()

 if err != nil {

 return nil, err

 }

 return append(local, remote), nil

}

GatherData() looks at ctx.Err() and checks the value to see if it returns an
error. If so, we know the Context has been canceled and simply return.

In this example, we derive two new Context objects that share the parent of
ctx. If ctx is canceled, localCtx and remoteCtx are canceled. Canceling
localCtx or remoteCtx has no effect on ctx. In most circumstances, passing
ctx instead of deriving new Context objects is done, but we wanted to show
how you derive new Context objects.

Context also supports a .Done() method in case you need to check for
cancellation inside a select statement. .Done() returns a channel that, if
closed, indicates cancellation. Using it is simple, as we can see here:

select {

case <-ctx.Done():

 return ctx.Err()

case data := <-ch:

 return date, nil

}

Now that we have shown you how you should add Context to your
functions, let's talk about how this works in the standard library and why it
is not the same as the examples we have shown.

Context in the standard library

The context package was added in Go 1.7, well after the introduction of
Go's standard library. Unfortunately, this meant that it had to be hacked into
the standard library packages in order to avoid breaking Go's version 1.0-
compatibility promise.

This is the one thing added to Go that has added some real ugliness.
Previously, we showed you how when using Context it should be the first
argument of a function called ctx. However, the standard library cannot do
this.

A common pattern you will see when using Context in the standard library
will be to add it via a method. Here is an example of using Context for
http.Client to fetch www.golang.org and print it to the screen:

client := &http.Client{}

req, err := http.NewRequest("GET", "http://www.golang.org", nil)

if err != nil {

 fmt.Println("error: ", err)

 return

}

ctx, cancel := context.WithTimeout(context.Background(), 3 *

time.Second)

// Attach it to our request.

req = req.WithContext(ctx)

// Get our resp.

resp, err := client.Do(req)

cancel()

if err != nil {

 fmt.Println("error: ", err)

 return

}

// Print the page to stdout

io.Copy(os.Stdout, resp.Body)

In this code we do the following:

Create an HTTP client

Create a *http.Request (req) to get the page at www.golang.org

Create Context (ctx) and CancelFunc (cancel) where the Context is
cancelled after 3 seconds

Attach ctx to req to prevent *http.Request from taking longer than 3
seconds

Uses cancel() to cancel the Context's internal goroutine that is tracking
the timeout once the client.Do() call has completed

So far, we have talked about how to use Context for cancellation. Now let's
talk about another use of Context—passing values through a call chain.

Context to pass values

A Context's other main use is to pass a value through a call chain. You
should only use a Context to pass values that are useful on a per-call basis,
not as generalized storage.

These are the two best uses for passing values on a Context:

http://www.golang.org/

Security information about a user making a call.

Telemetry information such as the data types used with OpenTelemetry.

In the case of security information, you are informing the system who the
user is, probably with OpenID Connect (OIDC) information. This allows
the call stack to make authorization checks.

For telemetry, this allows a service to record information related to this
specific call to track function execution times, database latency, input, and
errors. This can be dialed up or down to debug service issues. We discuss
telemetry in future chapters.

Passing a value to a Context requires a little care. Values stored in a context
are key-value pairs, and to prevent overwriting of keys between multiple
packages, we need to create our own custom key type that can only be
implemented by our package. In this way, keys from different packages will
have different types. The code to achieve this is shown in the following
snippet:

type key int

const claimsKey key = 0

func NewContext(ctx context.Context, claims Claims)

context.Context {

 return context.WithValue(ctx, claimsKey, claims)

}

func ClaimsFromContext(ctx context.Context) (Claims, bool)

{

 // ctx.Value returns nil if ctx has no value for the key;

 // the Claims type assertion returns ok=false for nil.

 claims, ok := ctx.Value(userIPKey).(Claims)

 return claims, ok

}

This code does the following:

Defines a type called key that is private, which prevents other packages
from implementing it

Defines a claimsKey constant of type key. This is used as the key for a
value that holds an OIDC IDToken claim

NewContext() provides a function that attaches a Claim to our Context

ClaimsFromContext() provides a function that extracts Claims from a
Context and indicates if Claims were found

The preceding code might exist in a security package for Open
Authorization (OAuth)/OIDC (a widely used authentication system).
Claims would represent user data we have validated. NewContext() would
allow us to add this information to a context in some middleware, and
ClaimsFromContext() would allow us to extract it anywhere in the call chain
that was required.

Best practices

I recommend that all public functions and methods have an initial argument
of ctx context.Context. This allows you to add future-proofing to your

public functions/methods/interfaces if you need to add capabilities that
Context provides at a later date, even if you aren't using it now.

IMPORTANT NOTE
Future-proofing methods/functions/interfaces is a practice of adding arguments and return
values that are not used at the moment in order to prevent breaking them (and users) at
some future date—for example, adding a returned error for a constructor that cannot

currently return an error, but might in the future.

Maybe you won't need to handle cancellations (execution is too fast or can't
be canceled), but something such as adding telemetry might come in handy
later.

In this section, you learned about Go's Context object and how it is used to
signal cancellation and to pass values through the call stack. You will see
this used in many of the third-party packages you will use in your code. The
final topic of this chapter will be about Go's testing package. Let's dive
right into it.

Util izing Go's testing framework
Testing is one of the most important and least loved parts of any language.
Testing provides a developer with the knowledge that something works as
expected. I cannot count the times that writing unit tests has proven that a
function or method did not work the way I expected. This saved countless
hours of debugging.

To this end, tests need to have the following attributes:

Easy to write

Fast to execute

Simple to refactor

Effortless to understand

To satisfy these needs, Go tackles tests by doing the following:

Breaking tests into their own files

Providing a simple testing package

Using a testing methodology called table-driven tests (TDTs)

In this section, we will cover how to write basic tests, Go's standard TDT
methodology, creating fakes with interfaces, and—finally—some third-
party packages that I used and others that are popular, but I don't necessarily
recommend.

Creating a basic test fi le

Go tests are contained in package files with a _test.go suffix. These files
have the same package name, and you can include as many test files as
needed. The usual rule is to write a test file per package file you want to test
so that there is a 1:1 association for clarity.

Each test in a test file is a function whose name is prefixed with Test and
has a single argument, t *testing.T, with no returns. This is how it looks:

func TestFuncName(t *testing.T) {

}

t is passed by the go test command and provides the necessary utilities for
our tests. The primary methods used are listed here:

t.Error()

t.Errorf()

t.Fatalf()

t.Log()

t.Logf()

When a test is executed, if the test ends without
panic/Error/Errorf/Fatal/Fatalf called, the test is considered passed. If
any of these are called, then the test fails. With Error/Errorf, the test
continues executing and accumulates these error messages for the test. With
Fatal/Fatalf, the test fails immediately.

Log()/Logf() calls are informative and are only displayed on failure or
when other flags are passed for a test.

Creating a simple test

Borrowing from golang.org tutorials (https://golang.org/doc/tutorial/add-a-
test), let's create a simple test for a function called Greeter() that takes a
name as an argument and returns "Hello [name]". The code is illustrated in
the following snippet:

package greetings

import (

"testing"

)

func TestGreet(t *testing.T) {

https://golang.org/doc/tutorial/add-a-test

 name := "Bob"

 want := "Hello Bob"

 got, err := Greet(name)

 if got != want || err != nil {

 t.Fatalf("TestGreet(%s): got %q/%v, want %q/nil", name,

got, err, want)

 }

}

You can also see this example here:
https://play.golang.org/p/vjAhW0hfwHq.

To run the test, we need to simply run go test inside the package directory.
If the test is successful, we should see the following:

=== RUN TestGreet

--- PASS: TestGreet (0.00s)

PASS

To show what a failure looks like, I changed want to be Hello Sarah while
leaving the name Bob, as illustrated here:

=== RUN TestGreet

 prog.go:21: TestGreet(Bob): got "Hello Bob"/<nil>, want "Hello

Sarah"/nil

--- FAIL: TestGreet (0.00s)

FAIL

It is important to include enough information to debug your test. I like to
include the following:

The name of the test

https://play.golang.org/p/vjAhW0hfwHq

If table-driven, the description of the table row executed

What I received (called got)

What I wanted (called want)

Now, let's talk about Go's preferred style of testing—TDTs.

Table Driven Tests (TDT)

For very simple tests, the preceding methodology works fine, but often, you
need to test a function for multiple types of success and failure, such as in
the following scenarios:

What if they send a bad argument?

What if the network has a problem and returns an error?

What if the data isn't on disk?

Writing a test per condition creates a lot of churns in a test file that is harder
to read and understand. TDTs to the rescue! A TDT uses the non-named
struct concept we talked about in Chapter 1, Go Language Basics. This is
the one place where it is common to see them.

The concept is to create a list of structs where each struct entry represents a
set of test conditions and results that we want to see. We execute each struct
entry one at a time to test the function.

Let's convert our preceding test to a TDT. In this case, there are only two
expected ways for our Greet() function to react, as outlined here:

We pass an empty string for name, which results in an error

Anything else results in "Hello" and the name

Let's write a TDT that handles both these cases, as follows:

func TestGreet(t *testing.T) {

 tests := []struct{

 desc string // What we are testing

 name string // The name we will pass

 want string // What we expect to be returned

 expectErr bool // Do we expect an error

 }{

 {

 desc: "Error: name is an empty string",

 expectErr: true,

 // name and want are "", the zero value for string

 },

 {

 desc: "Success",

 name: "John",

 want: "Hello John",

 // expectErr is set to the zero value, false

 },

 }

 // Executes each test.

 for _, test := range tests {

 got, err := Greet(test.name)

 switch {

 // We did not get an error, but expected one

 case err == nil && test.expectErr:

 t.Errorf("TestGreet(%s): got err == nil, want err !=

nil", test.desc)

 continue

 // We got an error but did not expect one

 case err != nil && !test.expectErr:

 t.Errorf("TestGreet(%s): got err == %s, want err ==

nil", test.desc, err)

 continue

 // We got an error we expected, so just go to the next

test

 case err != nil:

 continue

 }

 // We did not get the result we expected

 if got != test.want {

 t.Errorf("TestGreet(%s): got result %q, want %q",

test.desc, got, test.want)

 }

 }

}

This example can also be found at the following link:
https://play.golang.org/p/vYWW-GiyT-M.

https://play.golang.org/p/vYWW-GiyT-M

As you can see, TDT tests are longer but have clearly defined test
parameters and clear error output.

Unlike the previous example, this tests that our error condition occurs when
name == "". Using a TDT is overkill for something so simple but becomes a
powerful tool in the toolbox when writing tests against more complicated
functions in Go.

Creating fakes with interfaces

Tests should generally be hermetic, meaning that tests should not use
resources that are not located locally on a machine.

If we are testing a client to a REST service, it should not actually call out to
the REST service. There are integration tests that should test the basic
connectivity to a test version of a service, but those should be small and rare
tests that we are not going to cover here.

To test the behaviors of remote resources, we create what are called fakes
using interfaces. Let's write a client that talks to a service via a network
client to get a user record. We don't want to test the logic of the server (the
kind of logic we tested previously), but instead, want to test what happens if
the REST client has an error or we get back the wrong record from the
service.

First, let's say we use a Fetch client in a client package that looks like this:

type Fetch struct{

 // Some internals, like an http.Client

}

func (f *Fetch) Record(name string) (Record, error){

 // Some code to talk to the server

}

We use Fetch in a function called Greeter() to get information we might
use to change our responses to the person, as follows:

func Greeter(name string, fetch *client.Fetch) (string, error) {

 rec, err := fetch.Record(name)

 if err != nil {

 return "", err

 }

 if rec.Name != name {

 return "", fmt.Errorf("server returned record for %s, not

%s", rec.Name, name)

 }

 if rec.Age < 18 {

 return "Greetings young one", nil

 }

 return fmt.Sprintf("Greetings %s", name), nil

}

This is hard to test hermetically because Fetch is a concrete type that talks
to a service. However, we can change this to an interface that Fetch
implements and then use a fake. Firstly, let's add the interface and change
the Greeter argument, as follows:

type recorder interface {

 Record(name string) (Record, error)

}

func Greeter(name string, fetch recorder) (string, error) {

Now, we can pass a *client.Fetch instance or we can pass anything else
that implements recorder. Let's create a fake that implements recorder that
we can cause to return results useful for testing, as follows:

type fakeRecorder struct {

 data Record

 err bool

}

func (f fakeRecorder) Record(name string) (Record, error) {

 if f.err {

 return "", errors.New("error")

 }

 return f.data, nil

}

Now, let's integrate this into a TDT, like this:

func TestGreeter(t *testing.T) {

 tests := []struct{

 desc string

 name string

 recorder recorder

 want string

 expectErr bool

 }{

 {

 desc: "Error: recorder had some server error",

 name: "John",

 recorder: fakeRecorder{err: true},

 expectErr: true,

 },

 {

 desc: "Error: server returned wrong name",

 name: "John",

 recorder: fakeRecorder{

 Record: Record{Name: "Bob", Age: 20},

 },

 expectErr: true,

 },

 {

 desc: "Success",

 name: "John",

 recorder: fakeRecorder{

 Record: Record{Name: "John", Age: 20},

 },

 want: "Greetings John",

 },

 }

 for _, test := range tests {

 got, err := Greeter(test.name)

 switch {

 case err == nil && test.expectErr:

 t.Errorf("TestGreet(%s): got err == nil, want err !=

nil", test.desc)

 continue

 case err != nil && !test.expectErr:

 t.Errorf("TestGreet(%s): got err == %s, want err ==

nil", test.desc, err)

 continue

 case err != nil:

 continue

 }

 if got != test.want {

 t.Errorf("TestGreet(%s): got result %q, want %q",

test.desc, got, want)

 }

 }

}

This example can be found here: https://play.golang.org/p/fjj2WrbGlKY.

We now are simply faking the response that would come from our real
client, Fetch. In code using Greeter(), they can simply pass the real client
and in our tests, we pass our fakeRecorder instance. This allows us to
control our environment to test that our function handles each type of
response in the way we expect. This test is missing a test that checks the
result when a Record instance is returned where the Age value is set to < 18.
We leave this as an exercise for you.

https://play.golang.org/p/fjj2WrbGlKY

Third-party testing packages

When I'm writing tests, there is really only one tool I reach
for:https://pkg.go.dev/github.com/kylelemons/godebug/pretty?
utm_source=godoc.

pretty allows me to easily test if two complicated structs/maps/slices are
equivalent. Using it in a test is simple, as illustrated here:

if diff := pretty.Compare(want, got); diff != "" {

 t.Errorf("TestSomeFunc(%s): -want/+got:\n%s", diff)

}

This outputs a readable format showing what is missing (prepended with -)
and what was received (prepended with +). For more control over what is
compared, the package offers a Config type that can be customized.

This code doesn't get updated often because it just works, but Kyle does
answer bug requests, so the project is still alive.

Many in the Go community use the github.com/stretchr/testify set of
packages, specifically the assert and mock packages.

I list them here because they are popular in the Go community; however, I
would give the following warnings:

Using asserts in Go for many years was considered bad practice

Mocking frameworks in Go often have terrible corner cases

The original authors of Go thought that using asserts was a bad practice for
the language and unneeded. The current Go team has relaxed this stance.
Mocking frameworks in Go tend to rely heavily on interface{} and have

https://pkg.go.dev/github.com/kylelemons/godebug/pretty?utm_source=godoc

some sharp corner cases. I find using mocks results in testing behavior that
is not important (call order or which calls were executed) versus testing that
a given input causes an expected output. This is less burdensome and fragile
to code changes.

The original mocking framework (https://github.com/golang/mock) was
considered unsafe at Google and its use was restricted.

To sum this section up, we have learned about Go's testing package, how
to use that package to write tests, the TDT methodology, and my (John
Doak's) thoughts on third-party testing packages.

Now that you have an understanding of how to do testing, we are going to
look at a major addition to Go that was added in version 1.18—generics.

Generics – the new kid on the block
Generics are a new feature in Go 1.18 that looks to have vast ramifications
for Go's future. Generics provide a way to represent multiple types with a
new feature called a type parameter to allow functions to operate on
multiple types.

This differs from the standard interface{} where these types of operations
always happen at runtime and where you must convert interface{} to the
concrete type to do work.

Generics are a new feature, so we are only going to give a very general
overview. The Go community and Go authors at this time do not have a set
of best practices that have been rigorously tested. This comes with

https://github.com/golang/mock

experience in using a feature, and we are only at the early stages of generics
at this time, with more features around generics coming in the future.

Type parameters

Type parameters can be added to functions or struct types to support a
generic type. However, a key gotcha is that they cannot be used on
methods! This is the most requested feature; however, it poses certain
challenges to the language that the language authors are not sure how to
deal with (or if they can be dealt with).

Type parameters are defined after the function name within brackets. Let's
look at a basic one here:

func sortInts[I int8 |int16 |int32 |int64](slice []I) {

This creates a function that can sort any of our signed integer types. I is the
type parameter and it is limited to the types listed in the bracket. The | pipe
character acts as an or statement saying I can be an int8 or an int16 type,
and so on.

Once I is defined, we can use it as a type in our arguments. Our function
will operate on a slice type of I. It should be noted that all values in I must
be the same type; it cannot be a mix of say int8 and int64 values.

Let's look at how that might work with a simple bubble-sort
implementation, as follows:

func sortInts[I int8 |int16 |int32 |int64](slice []I) {

 sorted := false

 for !sorted {

 sorted = true

 for i := range slice[:len(slice)-1] {

 if slice[i] > slice[i+1] {

 sorted = false

 slice[i], slice[i+1] = slice[i+1], slice[i]

 }

 }

 }

}

You can see this example here: https://go.dev/play/p/jly7i9hz0YT.

We now have a function that can be used to sort any type of signed integer.
If we were to do this without generics, it would require an argument of
interface{} that would need to be type switched on the slice type. Then,
we would need to write functions to handle each type. You can see an
example of what that would look like here:
https://go.dev/play/p/lqVUk9GQFPX.

The other option would be to use runtime reflection using the reflect
package, which is slow and unwieldy. reflect is an advanced package that
has lots of gotchas and should be avoided unless absolutely necessary. Here
is an example of this method: https://go.dev/play/p/3euBYL9dcsU.

As you can see, the generic version is much simpler to implement and can
significantly reduce your code base.

Let's have a look at how we could make this slightly easier to read using
type constraints.

https://go.dev/play/p/jly7i9hz0YT
https://go.dev/play/p/lqVUk9GQFPX
https://go.dev/play/p/3euBYL9dcsU

Using type constraints

In our last example, int8 |int16 |int32 |int64 was our type constraint. It
limited the types that we could use for our I value type parameter, but
typing that all the time is burdensome, so we can also define named type
constraints.

This is where the addition of generics is likely to create some confusion.
Type constraints are made using the interface type. Here's an example of a
type constraint containing what we had previously:

type SignedInt interface {

 int8 |int16 |int32 |int64

}

We can now use that in our previous code, as follows:

func sortInts[I SignedInt](slice []I) {

This reduces the amount of boilerplate we need. It is important to note that
SignedInt is a type constraint and not a type. I is a defined type parameter
that acts as a type. I've often found myself writing code like this:

func sortInts[I SignedInt](slice[]SignedInt) {

However, that syntax is incorrect. SignedInt here is simply the definition of
a constraint, not a type to be used. I is the type to be used in the generic
function.

Another gotcha is that SignedInt can only be used on the exact basic types
defined here. You might create your own type, like this:

type myInt8 int8

If you do so, you cannot use this as a SignedInt type constraint. But not to
worry—if we want this to work on any type based on signed integers, we
can change this to the following:

type SignedInt interface {

 ~int8 |~int16 |~int32 |~int64

}

~ signals that we want to allow any type based on this type.

Now, let's look at how we can write our sort function to handle more than
just signed integers.

We could do better with constraints

What we are doing here can be applied to more than just signed integers.
We could make changes to which types we support, and our function would
work exactly the same on a larger set of slice types.

The only thing that a type must have for our function to work is that the
type must be able to use > on two variables that share the same type. That is
what allows the if slice[i] > slice[i+1] statement to work.

The current Go version, as of this writing, does not define a few basic type
constraints that are planned for a future release. This future package, which
will likely be called constraints, is being developed here:
https://pkg.go.dev/golang.org/x/exp/constraints.

It includes a type constraint that looks like this:

type Ordered interface {

 ~int | ~int8 | ~int16 | ~int32 | ~int64 |

https://pkg.go.dev/golang.org/x/exp/constraints

 ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |

 ~float32 | ~float64 |

 ~string

}

We will borrow that here and change our function signature, as follows:

func sortSlice[O constraints.Ordered](slice[]O) {

Now, our function can sort any type of slice that can be compared using >
<. See it at work here: https://go.dev/play/p/PwrXXLk5rOT.

Current built-in constraints

Go has two constraints that are currently built in, as follows:

comparable

any

comparable contains all types that support == or != operators. This is
particularly useful when writing generics that use map types. The key to a
map type is always the comparable type.

any is an alias for interface{}. The Go team has changed all references to
interface{} in the Go standard library to any. You may use them
interchangeably, and any as a type constraint allows any type.

Here is an example of a function that extracts all keys from a map type using
these constraints:

func ExtractMapKeys[K comparable, V any](m map[K]V) []K {

 var keys = make([]K, 0, len(m))

https://go.dev/play/p/PwrXXLk5rOT

 for k := range m {

 keys = append(keys, k)

 }

 return keys

}

Here it is running in the playground, so give it a try:
https://go.dev/play/p/h8aKwoTaOLj.

Let's look at what happens if we do type constraining and we constrain a
type such as a standard interface by requiring a method.

Type constraints with methods

A type constraint can act like a standard interface in that it can require
methods to be attached to the type. Here is an example:

type StringPrinter interface {

 ~string

 Print()

}

This type constraint can only be satisfied by a type based on string and that
has the Print() method defined.

A key requirement here is that we use ~string and not string. A standard
string type can never have the Print() method, and therefore this type
constraint could never be satisfied.

Here is a simple use of this constraint:

func PrintStrings[S StringPrinter](slice []S) {

https://go.dev/play/p/h8aKwoTaOLj

 for _, s := range slice {

 s.Print()

 }

}

Now, let's take a look at why you might want to add type parameters to
struct types.

Adding type parameters to struct types

Earlier, we wrote a generic function for sorting slices called SortSlice(),
but that has some limitations in that it can only handle slices that are based
on types that meet the constraints in constraints.Ordered. Oftentimes, we
might want to handle slices that might contain types based on struct—say,
for example, this type:

type Record struct {

 First, Last string

}

Our SortSlice() function could not handle a []Record, so we need to do
something different to handle these types of cases.

For this example, we want to use Go's built-in sort.Sort() function. This is
a highly optimized sort that uses multiple sorting algorithms, depending on
slice size.

To use it, you need a type that implements the sort.Interface type. That
interface type is defined as follows:

type Interface interface {

 Len() int

 Less(i, j int) bool

 Swap(i, j int)

}

Before Go generics, you would have needed to implement an adapter type
to implement these for every type you wanted to sort. For example, here is
an adapter to sort []int:

type intAdapter struct {

 sl []int

}

func (in intAdapter) Len() int {

 return len(in.sl)

}

func (in intAdapter) Swap(i, j int) {

 in.sl[i], in.sl[j] = in.sl[j], in.sl[i]

}

func (in intAdapter) Less(i, j int) bool {

 return in.sl[i] < in.sl[j]

}

And you could use it like so:

ints := []int{5, 3, 7, 1}

sort.Sort(intAdapter{ints})

You can see that running here: https://go.dev/play/p/Yl6Al9ylEhd.

https://go.dev/play/p/Yl6Al9ylEhd

You would then need to do this for every other signed type or other types
you wanted to sort. Imagine doing this for all int8, int16, int32, and int64
signed integer types. You would also need to do that for every other type
you want to sort.

So, what we want to do is use generics to give us a single adapter type that
can be used for a slice with any element type.

Let's use a type parameter on a struct to allow us to create a generic adapter
so that we can adapt any slice to the sort.Interface type, as follows:

type sortableSlice[T any] struct {

 slice []T

 less func(T, T) bool

}

func (s sortableSlice[T]) Len() int {

 return len(s.slice)

}

func (s sortableSlice[T]) Swap(i, j int) {

 s.slice[i], s.slice[j] = s.slice[j], s.slice[i]

}

func (s sortableSlice[T]) Less(i, j int) bool {

 return s.less(s.slice[i], s.slice[j])

}

This is very similar to intAdapter from before, with two distinctions, as
follows:

The slice elements are a T type parameter that can be any value

We added a less field, which is a function that does the comparison
when Less() is called

Let's create a function that can implement func(T, T) bool for our Record
type. This compares the full name with the last name being considered first.
The code is illustrated in the following snippet:

func recordLess(a, b Record) bool {

 aCmp := a.Last + a.First

 bCmp := b.Last + b.First

 return aCmp < bCmp

}

Finally, we can use sortableSlice to write a generic sort function that uses
the existing sort.Sort() function to sort any slice that we can do
comparisons on. Here's the code we need to execute:

func SortSlice[T any](slice []T, less func(T, T) bool) {

 sort.Sort(sortableSlice[T]{slice: slice, less: less})

}

Here is this in action: https://go.dev/play/p/6Gd7DLgVQ_y.

You will notice that when we create our sortableSlice instance, we have
[T] in the syntax. This is used to tell Go what type T will be, which in this
case is the generic T type passed in SortSlice. If you try to remove [T], you
will get the following message:

cannot use generic type sortableSlice[T any] without instantiation

We will talk about this in our next section.

https://go.dev/play/p/6Gd7DLgVQ_y

Of course, if you want to do a generic sort without using the sort.Sort()
function,

this can be done with less complication. Here is a generic version of the
quicksort algorithm that uses generics: https://go.dev/play/p/gvPl9jHtAS4.

Now, we will look at calling a generic function when Go cannot infer a type
for the generic function to use.

Specifying the type when call ing a
generic function

So far, all the generic cases up until the sortableSlice function have
allowed the Go compiler to infer which type would be used and therefore
how to deal with invoking the function.

But Go cannot always infer which type it needs to use. We can see in our
last section where we told sortableSlice it would be using the T generic
type we defined.

Let's create a function that can be used with SortSlice() to do our less
comparison whenever the types are of type constraints.Ordered. The code
is illustrated in the following snippet:

func orderedCmp[O constraints.Ordered](a O, b O) bool {

 return a < b

}

With this, we can call SortSlice() and pass in any slice of types contained
in constraints.Ordered and our new orderedCmp generic function to sort a
slice.

https://go.dev/play/p/gvPl9jHtAS4

Let's give it a try, as follows:

strings := []string{"hello", "I", "must", "be", "going"}

SortSlice(strings, orderedCmp)

Uh oh—Go can't seem to get that to work, as we receive the following
message:

cannot use generic function orderedCmp without instantiation

This is because we are passing the function and not invoking the function.
Go's inference only currently happens by looking at the call types it
receives. It doesn't infer inside SortSlice() where orderedCmp() will be
called and passed a string type. So, to use it, we need to tell it which type it
will be working on when it is called.

In contrast, SortSlice() doesn't require this because it is being invoked
directly and can infer that T will be a string type from looking at the passed
argument, strings.

By using [string], we can give orderedCmp a little more information for
this to work, as follows:

SortSlice(strings, orderedCmp[string])

Now that it knows that we will be comparing string types, it is ready to
rock and roll, as you can see here: https://go.dev/play/p/kd6sylV17Jz.

If we wanted to be very verbose, we could do the following:

SortSlice[string](strings, orderedCmp[string])

Now, let's take a look at some common gotchas you might run into when
trying to use generics.

https://go.dev/play/p/kd6sylV17Jz

Gotchas to watch for

When you are playing with generics, there are a lot of gotchas where the
error messages are not yet clear. So, let's talk about some of them so that
you can avoid the mistakes that I've made.

First up, impossible type constraints. See if you can spot the problem in the
following code:

type Values interface {

 int8 | int16 | int32 |int64

 string | []byte

}

func Print[V Values](v V) {

 fmt.Println(v)

}

func main() {

 Print[string]("hello")

}

If you were to run this, you would get the following:

cannot implement Values (empty type set)

This is because Values is incorrectly defined. I forgot to put | after int64.
Without that, the constraint says the value must be int8 or int16 or int32 or
int64 AND a string or []byte type. That is an impossible type, which
means nothing can implement it. You can see this here:
https://go.dev/play/p/Nxsz4HKxdc4.

https://go.dev/play/p/Nxsz4HKxdc4

The next gotcha is instantiation when returning struct types that implement
type parameters. Here's an example of this:

type ValueType interface {

 string | bool | int

}

type Value[T ValueType] struct {

 val T

}

func New[T ValueType](v T) Value {

 return Value[T]{val: v}

}

func (v Value[T]) Value() T {

 return v.val

}

An attempt to compile this code will give you the following message:

cannot use generic type Value[T ValueType] without instantiation

It was not clear to me what the problem was here for a while. It turns out
that I needed to add the type parameter on the return value as well. Here is
the change:

func New[T ValueType](v T) Value[T] {

With this change, everything works fine. Try the broken version
(https://go.dev/play/p/EGTr2zd7qZW) and fix it with the aforementioned
change to familiarize yourself.

https://go.dev/play/p/EGTr2zd7qZW

I expect that we will see better error messages and better detection in our
development tools in the near future.

Now that we have covered the basics of generics, let's talk about when you
should consider using generics.

When to use generics

The only guideline at this time is taken from the creator of Go's generics
feature, Ian Taylor, as presented here:

"If you find yourself writing the exact same code multiple times where the
only difference between the copies is that the code uses different types,
consider whether you can use a type parameter."

I have found this translates to the following:

If your function needs a switch statement on the generic type, you should
probably be using standard interfaces instead of generics.

To close out on generics, I would leave you with the thought that this is a
new language feature, and the jury is still out on the best ways for this to be
used. The best advice I can give is to be reserved in your use of this feature.

Summary
In this chapter, you have learned the essential parts of the Go language.
This has included handling errors, using Go concurrency, taking advantage
of Go's testing framework, and an introduction to Go's newest feature,

generics. The skills acquired in this chapter are essential for all future
chapters.

You should now possess the ability to read Go code contained in the rest of
the book. In addition, this chapter has given you the necessary skills to
write your own Go code. We will use these skills to manipulate files in the
filesystem, execute commands on remote machines, and build RPC services
that can do a myriad of tasks. You will build chatbots in order to do chat-
based operations (ChatOps) and write software to extend Kubernetes. The
learnings here are truly foundational.

Next, we will look at how to setup your Go environment to compile code
locally on your machine. Let’s get started!

Chapter 3: Setting Up Your Environment
In this chapter, we are going to talk about setting up your Go environment
for use in our future chapters and for developing your own Go software in
the future.

We're going to cover the following main topics:

Installing Go on your machine

Building code locally

Before we begin, let's have a brief walk-through of the technical
requirements you need to be aware of before reading on.

Technical requirements
The only technical requirements for this chapter are as follows:

A computer with an OS supported by the Go tools

An internet connection and web browser to download the Go tools

Install ing Go on your machine
The Go compiler and toolset can be found at https://golang.org/dl/. Here,
you will find releases for the macOS, Windows, and Linux platforms for a
multitude of computing platforms.

The most common platform is the AMD64 architecture, which should be
used for any x86 system. For macOS, it is important to note that if you are

https://golang.org/dl/

using a machine with a non-Intel-based CPU, such as an Apple M1, you
will want to use the arm64 builds.

In the next sections, we will describe methods of installing Go for the major
OSs. You should skip to the OS you plan to install on.

macOS installation using the package
installer

The easiest way to install the Go tooling for macOS is to use a .pkg
installer. The download page offers .tar.gz builds and .pkg. With the
tarballs, you must unpack the files in a location and add that location to
your path. It also means you will have to manually handle upgrades. You
should only do this if you have advanced needs.

The .pkg file makes installation and upgrading simple. Simply double-click
the .pkg file and follow the onscreen prompts to install. This may require
entering in your credentials at a prompt.

Once installation is finished, open the
Applications/Utilities/terminal.app terminal and type go version,
which should yield something similar to the following:

$ go version

go version go1.17.5 linux/amd64

Note that the version output will depend on the version of Go that you
have downloaded and the platform you are running on.

macOS installation via Homebrew

Many developers on macOS prefer to use the popular Homebrew
(https://brew.sh) to install Go. If you are a Homebrew user, there is a simple
two-step process for installing Go, as explained in the following sections.
Installing Xcode
Go has some reliance on Apple's Xcode, and it needs to be installed in order
to work correctly. To see whether you have Xcode installed, type the
following:

$ xcode-select -p

This should output something like this:

$ /Library/Developer/CommandLineTools

If it gives an error, you need to install Xcode by following this link on the
App Store: https://itunes.apple.com/us/app/xcode/id497799835?
mt=12&ign-mpt=uo%3D2.

Once installed, you can install the separate command-line tools with the
following:

$ xcode-select --install

Now, let's look at the next step.
Homebrew update and Go installation
Update Homebrew and install the latest Go tools with the following:

$ brew update

$ brew install golang

You can verify the Go version with $ go version.

Next, we will look at installation on Windows.

https://brew.sh/
https://itunes.apple.com/us/app/xcode/id497799835?mt=12&ign-mpt=uo%3D2

Windows installation using MSI

Windows installation is similar to other Windows application installations
using a Microsoft Installer (MSI) file. Simply download the MSI file and
follow the onscreen instructions. By default, this will install the Go tooling
at Program Files or Program Files (x86).

To verify that Go was installed correctly, click the Start menu, type cmd into
the search box, and the Command Prompt shell should appear. Type go
version, and it should display the installed version of Go.

Next, we will look at installation on Linux.

Linux

Linux package management could be the subject of its own series of books
and, as Linus points out, it is one of the reasons why Linux as a desktop
system has failed so spectacularly.

If you are using Linux for development, chances are you have some
knowledge on how to install packages for your distribution. As we can't
cover all possible methods of installation on Linux, we are going to cover
installation using apt, Snap, and via tarball.
Linux installation via APT on Ubuntu
APT is a package installation manager used in various distributions.
Installing Go via APT is pretty straightforward.

Update and upgrade APT to the latest version, as follows:

$ sudo apt update

$ sudo apt upgrade

Install the Go package as follows:

sudo apt install golang-go

Now, type go version into the terminal, and it should display the installed
version of Go.
Linux installation via Snap on Ubuntu
Snap is a universal package manager meant to make the installation of a
package easy across multiple distributions or versions by including all the
necessary files in the package.

If you have Snap installed, you can simply use snap info go to locate a
version of Go to install:

Figure 3.1 – Screenshot showing the snap info go command output

You can choose to install the latest stable version of Go by typing the
following:

sudo snap install go

Now, type go version into the terminal, and it should display the installed
version of Go.

Note that you may receive a warning about the Go package being built on a
revision of Snap with classic confinement. In that case, to install using
Snap, you may need to append –-classic as follows:

sudo snap install go --classic

Linux installation via tarball
In order to do this, you need to download the package for Linux and your
platform. Our example will use go1.16.5.linux-amd64.tar.gz. You will
notice that the name gives the Go version (1.16.5), the OS (Linux), and the
architecture (AMD64). You will need to download the current version of Go
and your architecture into a directory.

The rest of these instructions will use the terminal.

We want to install our version into /usr/local/go and remove any previous
installation. This can be achieved with the following:

rm -rf /usr/local/go && tar -C /usr/local -xzf go1.16.5.linux-

amd64.tar.gz

Now, let's add our directory to our PATH so that we can find our Go tools.
This can be accomplished with the following:

export PATH=$PATH:/usr/local/go/bin

With most shells, this change will not happen immediately. The easiest way
to cause PATH to update is simply to open a new shell. You may also use the
source command to reload your shell's profile if you know the
name/location of your shell's profile – source $HOME/.profile, for example.

To test if your PATH was updated correctly, type go version, which should
yield the following:

$ go version

go version go1.16.5 linux/amd64

What about installing Go on other platforms?

Other platforms

Go can certainly be installed on other platforms, such as FreeBSD, but
those are not covered here. See the Go installation documentation for these
other platforms.

A note on Go compiler version
compatibil ity

The Go project is governed by the Go compatibility promise:
https://golang.org/doc/go1compat. The gist is that Go will be backward
compatible unless there is a major semantic version number change (1.x.x
to 2.x.x). While you might hear people talk about Go 2.0, the authors have
been very clear that they have no plans to leave version 1.

This means software written for Go 1.0.0 works in the latest Go 1.17.5
version. This has been a major win for the Go community in stability. This
book will be using Go 1.17.5 for its revision.

By the end of this section, you should have installed the Go tooling and
tested that the tooling is working for your OS of choice. In the next section,
we will discuss how to build code on your machine.

Building code locally
The current Go ecosystem (Go 1.13 onward) and toolchain allow you to
write Go code from any location in the filesystem. Most users choose to set
up a local Git repository for their package(s) and develop within that
directory.

https://golang.org/doc/go1compat

This is accomplished using Go modules that the Go team describes as "a
collection of Go packages stored in a file tree with a go.mod file at its root."
A Go module most often represents a GitHub repository, such as
github.com/user/repository.

Most Go developers will use the command line to move around the
filesystem environment and for interacting with the Go toolchain. In this
section, we will concentrate on using Unix commands for accessing the
filesystem and using Go compiler tools. The Go compiler commands will
be the same between each OS, but filesystem commands may not be, and
the file paths may also differ, such as Windows using \ instead of / as path
separators.

Creating a module directory and go.mod
file

The directory can be anywhere on the filesystem you have access. godev/ is
a good directory name to use, and putting it in your home directory, which
is OS-dependent, is a logical place to make it easy to find.

Within that directory, I will create a new directory for my package. For this
example, I will create a directory called hello/ that will represent my Go
module:

$ cd ~

$ mkdir -p ~/godev/hello

$ cd ~/godev/hello

To create our module, we simply need to create a go.mod file that contains
our module name. Module names are typically the Git path, such as
github.com/johnsiilver/fs.

If you have a GitHub repository that you wish to store this example in, you
can substitute it in our command:

$ go mod init example.com/hello

go: creating new go.mod: module example.com/hello

This go.mod file will contain a few key sections worth noting:

module example.com/hello

go 1.17

The first line defines our module, which is the path to the root of the Git
repository. The second defines the minimum version of Go that can be used
to compile this module. Depending on what features you use, your module
may be compatible with previous versions of Go, and you can modify this
to have a lower version number.

While this example will not have any third-party packages, it is worth
noting that most go.mod files will have a require section that lists packages
and their versions that your module imports.

Updating a module when adding
dependencies

When adding a third-party package, your go.mod file will need to be
modified to contain the dependency information. This would be a tedious
task, but Go has you covered with the go mod tidy command.

Running go mod tidy will look at all your package imports and add them to
your go.mod file automatically. Remember to run this after adding any
external dependencies.

Adding a hello world

To learn how to compile and run Go code, we are going to create a hello
world application. In Go, all Go source files end with the .go extension.

Create a file in the directory called hello.go using your favorite text editor
and insert the following code:

package main

import "fmt"

func main() {

 fmt.Println("Hello World")

}

Next, let's run our first program.

Running our first program

Once you have that file saved, let's try compiling and running that code:

$ go run hello.go

Hello World

$

This compiled our source file and ran it as a binary. You may only use go
run for a package called main.

If we want to create a binary for this OS and architecture , we can simply
run the following:

$ go build hello.go # Builds a program called hello

$./hello # Executes the hello binary

Hello World

There is now a binary called hello that can be run on any OS/architecture
of the same type. If our package was not called main, this would compile the
package and emit any errors encountered, but it would not create a binary.

Summary
You have now created your first Go module, initialized your first go.mod
file, created a Go program, run the Go program with go run, and built a Go
executable for your OS. This chapter has left you with the necessary skills
to create a basic Go module and the basic knowledge of the Go command-
line tool required to both run a Go package and build a Go program. These
are used every day in the life of a Go developer.

In the next chapter, we're going to cover the basics of the Go language,
including how packages work, testing, and many more essentials.

Chapter 4: Filesystem Interactions
A fundamental part of any developer's life is interacting with files. They
represent data that must be processed and configured for our systems,
cached items can be served, and many other uses.

One of Go's strongest features is its abstraction of file interfaces, which
allows a common set of tools to interact with streams of data from disks and
networks. These interfaces set a common standard that all major packages
use to export their data streams. Moving from one to another just becomes
an exercise in accessing the filesystem with the necessary credentials.

Packages related to specific data formats, such as CSV, JSON, YAML,
TOML, and XML, build on these common file interfaces. These packages
use the interfaces defined by the standard library to read these types of files
from disk or HTTP streams.

Because Go is multiplatform, you may want to write software that can work
on different OSs. Go provides packages that allow you to detect the OS and
its packages to handle differences in OS pathing.

In this chapter, we are going to cover the following topics:

All I/O in Go are files

Reading and writing to files

Streaming file content

OS-agnostic pathing

OS-agnostic filesystems

After completing this chapter, you should have a set of skills for interacting
with data that's stored in a wide variety of mediums, which will be useful in
your everyday life as a DevOps engineer.

All I/O in Go are fi les
Go provides an input-output (I/O) system based on files. This should
come as no surprise since Go is the brainchild of two prominent engineers,
Rob Pike and Ken Thompson, who, while at Bell Labs, designed the UNIX
and Plan 9 operating systems – both of which treat (almost) everything as a
file.

Go provides the io package, which contains interfaces to interact with I/O
primitives such as disk files, remote files, and network services.

I/O interfaces

The basic block of I/O is byte, an 8-bit value. I/O uses streams of bytes to
allow you to read and write. With some I/Os, you can only read from
beginning to end as you process the stream (such as network I/O). Some
I/Os, such as disks, allow you to seek something in the file.

Some common operations that we perform when we interact with a byte
stream include reading, writing, seeking a location in a byte stream, and
closing a stream when we have finished our work.

Go provides the following interfaces for these basic operations:

// Read from an I/O stream.

type Reader interface {

 Read(p []byte) (n int, err error)

}

// Write to an I/O stream.

type Writer interface {

 Write(p []byte) (n int, err error)

}

// Seek to a certain spot in the I/O stream.

type Seeker interface {

 Seek(offset int64, whence int) (int64, error)

}

// Close the I/O stream.

type Closer interface {

 Close() error

}

The io package also contains composite interfaces such as ReadWriter and
ReadWriteCloser. These interfaces are common in packages that allow you
to interact with files or networks. These interfaces allow you to use
common tooling that uses these interfaces, regardless of what is underneath
(such as a local filesystem, remote filesystem, or an HTTP connection).

In this section, we have learned that Go file interaction is based on the
[]byte type and introduced the basic interfaces for I/O. Next, we will learn
about reading and writing files using methods that utilize these interfaces.

Reading and writing to fi les

The most common scenario in DevOps tooling is the need to manipulate
files: reading, writing, reformatting, or analyzing the data in those files.
These files could be in many formats – JSON, YAML, XML, CSV, and
others that are probably familiar to you. They are used to configure both
local services and to interact with your cloud network provider.

In this section, we will cover the basics of reading and writing entire files.

Reading local fi les

Let's start by reading a configuration file on a local disk by using the
os.Readfile() function:

data, err := os.ReadFile("path/to/file")

The ReadFile() method reads the location from its function parameter and
returns that file's content. That return value is then stored in the data
variable. An error is returned if the file cannot be read. For a refresher on
errors, see the Handling errors in Go section in Chapter 2, Go Language
Essentials.

ReadFile() is a helper function that calls os.Open() and retrieves an
io.Reader. The io.ReadAll() function is used to read the entire content of
io.Reader.

data is of the []byte type, so if you would like to use it as a string, you can
simply convert it into one by using s := string(data). This is called type
conversion, where we convert from one type into another. In Go, you can
only convert certain types from one into another. The full list of conversion
rules can be found at https://golang.org/ref/spec#Conversions.strings can be

https://golang.org/ref/spec#Conversions.strings

converted back into bytes with b := []byte(s). Most other types require a
package called strconv to be converted into strings
(https://pkg.go.dev/strconv).

If the data that's represented in the file is of a common format such as JSON
or YAML, then we can retrieve and write that data efficiently.

Writing local fi les

The most common way to write to local disk is by using os.Writefile().
This writes a complete file to disk. WriteFile will create the file if
necessary and truncate the file if it exists:

if err := os.WriteFile(“path/to/fi”, data, 0644); err != nil {

 return err

}

The preceding code writes data to path/to/fi with Unix-like permissions,
0644. If you have not seen Unix-like permissions before, a quick internet
search will help you with these.

If your data is stored in a string, you can simply convert it into[]byte by
doing[]byte(data). WriteFile() is a wrapper around os.OpenFile() that
handles file flags and modes for you while closing the file after the write is
complete.

Reading remote fi les

The way the remote file is read is going to be implementation-dependent.
However, these concepts will still be built on the io interfaces we discussed

https://pkg.go.dev/strconv

earlier.

For example, let's say that we want to connect to a text file that is stored on
an HTTP server, to collect common text-formatted information such as
application metrics. We can connect to that server and retrieve the file in a
way that's very similar to what was shown in the preceding example:

client := &http.Client{}

req, err := http.NewRequest("GET",

"http://myserver.mydomain/myfile", nil)

if err != nil {

 return err

}

req = req.WithContext(ctx)

resp, err := client.Do(req)

cancel()

if err != nil {

 return err

}

// resp contains an io.ReadCloser that we can read as a file.

// Let's use io.ReadAll() to read the entire content to data.

data, err := io.ReadAll(resp.Body)

As you can see, the setup to get our io.ReadCloser depends on our I/O
target, but what it returns is just an interface from the io package that we
can use with any function that supports those interfaces.

Because it uses io interfaces, we can do slick things such as stream the
content directly to a local file instead of copying the entire file into memory

and writing it to disk. This is faster and more memory efficient as each
chunk that is read is then immediately written to disk.

Let's use os.OpenFile() to open a file for writing and stream the content
from the web server into the file:

flags := os.O_CREATE|os.O_WRONLY|os.O_TRUNC

f, err := os.OpenFile("path/to/file", flags, 0644)

if err != nil {

 return err

}

defer f.Close()

if err := io.Copy(f, resp.Body); err != nil {

 return err

}

OpenFile() is the more complex method of opening a file when you need to
either write to a file or be more specific with how you interact with it. You
should use os.Open() when you just want to read from a local file. Our flags
here are the standard Unix-like bitmasks that do the following:

Create the file if it doesn't exist: os.O_CREATE.

Write to a file: os.O_WRONLY.

If the file exists, truncate it versus append to it: os.O_TRUNC.

A list of flags can be found here: https://pkg.go.dev/os#pkg-constants.

io.Copy() reads from io.Reader and writes to io.Writer until Reader is
empty. This copies the file from the HTTP server to the local disk.

https://pkg.go.dev/os#pkg-constants

In this section, you learned how to read an entire file using os.ReadFile(),
how to type convert a []byte into a string, and how to write an entire file
to disk using os.WriteFile(). We also learned about the differences
between os.Open() and os.OpenFile() and showed you how to use utility
functions such as io.Copy() and io.ReadAll(). Finally, we learned how
HTTP clients expose their data streams as io interfaces that can be read
using these same tools.

Next, we will look at interacting with these file interfaces as streams instead
of reading and writing entire files.

Streaming fi le content
In the previous sections, we learned how to read and write in large blocks
using os.ReadFile() and os.WriteFile().

This works well when the files are small, which is usually the case when
you're doing DevOps automation. However, sometimes, the files we want to
read are very large – in most cases, you wouldn't want to read a 2 GiB file
into memory. In those cases, we want to stream the contents of the file in
manageable chunks that we can operate on while keeping memory usage
low.

The most basic version of this was shown in the previous section. There, we
used two streams to copy a file: io.ReadCloser from the HTTP client and
io.WriteCloser for writing to local disk. We used the io.Copy() function to
copy from the network file to the disk file.

Go's io interfaces also allow us to stream files to copy content, search for
content, manipulate input to output, and more.

Stdin/Stdout/Stderr are just fi les

Throughout this book, you will see us writing to the console using
fmt.Println() or fmt.Printf(), two functions from the fmt package. Those
functions are reading and writing to files that represent the terminal.

Those functions use an io.Writer called os.Stdout. When we use the same
functions in the log package, we are usually writing to os.Stderr.

You can use the same interfaces we've been using to read/write to other files
to also read/write to these files. When we want to copy a file and output its
content to the terminal, we can do the following:

f, err := os.Open("path/to/file")

if err != nil {

 return err

}

if err := io.Copy(os.Stdout, f); err != nil {

 return err

}

While we won't go into the details, os.Stdin is simply an io.Reader. You
can read from it using the io and bufio packages.

Reading data out of a stream

What if we wanted to read a stream that represented user records and return
them on a channel?

Let's say the records are simple <user>:<id> text and each record was
delimited by the new line character (\n). These records might be stored on
an HTTP server or a local disk. This doesn't matter to us because it is
simply a stream behind an interface. Let's assume that we receive this as an
io.Reader.

First, we will define a User struct:

type User struct{

 Name string

 ID int

}

Next, let’s define a function that can split a line we receive:

func getUser(s string) (User, error) {

 sp := strings.Split(s, ":")

 if len(sp) != 2 {

 return User{}, fmt.Errorf("record(%s) was not in the

correct format", s)

 }

 id, err := strconv.Atoi(sp[1])

 if err != nil {

 return User{}, fmt.Errorf("record(%s) had non-numeric

ID", s)

 }

 return User{Name: strings.TrimSpace(sp[0]), ID: id}, nil

}

getUser() takes a string and returns a User. We use the strings package's
Split() function to split the string into a []string while using : as the
divider.

Split() should return two values; if not, then we return an error.

Since we are splitting a string, our user ID is stored as a string. But we
want to use the integer value in our User record. Here, we can use the
strconv package's Atoi() method to convert the string version of the
number into an integer. If it is not an integer, then the entry is bad, and we
return an error.

Now, let's create a function that reads in the stream and writes the User
records to a channel:

func decodeUsers(ctx context.Context, r io.Reader) chan User {

 ch := make(chan User, 1)

 go func() {

 defer close(ch)

 scanner := bufio.NewScanner(r)

 for scanner.Scan() {

 if ctx.Err() != nil {

 ch <- User{err: ctx.Err()}

 return

 }

 u, err := getUser(scanner.Text())

 if err != nil {

 u.err = err

 ch <- u

 return

 }

 ch <- u

 }

 }()

 return ch

}

Here, we are using the bufio package's Scanner type. Scanner allows us to
take an io.Reader and scan it until we find a delimiter. By default, this is \n,
though you can change this using the .Split() method. Scan() will return
true until we reach the end of the Reader's output. Note that io.Reader
returns an error, io.EOF, when it reaches the end of the stream.

After each Scan() call, the scanner stores the bytes read, which you can
retrieve as a string using .Text(). The content in .Text() changes each
time .Scan() is called. Also, note that we check our Context object and stop
its execution if it's canceled.

We pass the content of that string to our previously defined getUser(). If
we receive an error, we return it in the User record to inform the caller of
the error. Otherwise, we return our User record with all the information.

Now, let's invoke this against a file:

f, err := os.Open("path/to/file/with/users")

if err != nil {

 return err

}

defer f.Close()

for user := range decodeUsers(ctx, f) {

 if user.err != nil {

 fmt.Println("Error: ", user.err)

 return err

 }

 fmt.Println(user)

}

Here, we open our file on disk and pass it to decodeUsers(). We receive a
User record from the output channel and we print the user to the screen
concurrently while reading the file stream.

Instead of using os.Open(), we could have opened the file via http.Client
and passed it to decodeUsers(). The complete code can be found here:
https://play.golang.org/p/OxehTsHT6Qj.

Writing data into a stream

Writing to a stream is even simpler – we just convert our User into a string
and write it to an io.Writer. This looks as follows:

func writeUser(ctx context.Context, w io.Writer, u User) error {

 if ctx.Err() != nil {

 return ctx.Err()

 }

 if _, err := w.Write([]byte(user.String())); err != nil {

 return err

 }

https://play.golang.org/p/OxehTsHT6Qj

 return nil

}

Here, we have taken in an io.Writer that represents the place to write to
and a User record that we want to write into that output. We can use this to
write to a file on disk:

f, err := os.OpenFile("file", flags, 0644); err != nil{

 return err

}

defer f.Close()

for i, u := range users {

 // Write a carriage return before the next entry, except

 // the first entry.

 if i != 0 {

 if err := w.Write([]byte("\n")); err != nil {

 return err

 }

 }

 if err := writeUser(ctx, w, u); err != nil {

 return err

 }

}

Here, we opened a file on our local disk. When our containing function (not
shown) returns, the file will be closed. Then, we wrote the User records
stored in variable users ([]Users) one at a time to the file. Finally, we wrote
a carriage return, ("\n"), before every record except the first one.

You can see this in action here: https://play.golang.org/p/bxuFyPT5nSk. We
have provided a streaming version of this using channels that you can find
here: https://play.golang.org/p/njuE1n7dyOM.

In the next section, we'll learn how to use the path/filepath package to
write software that works on multiple OSs that use different path delimiters.

OS-agnostic pathing
One of Go's greatest strengths lies in its multiplatform support. A developer
can develop on a Linux workstation and run the same Go program,
recompiled into native code, on a Windows server.

One of the areas of difficulty when developing software that runs on
multiple OSs is accessing files. Path formats are slightly different for each
operating system. The most obvious example is the different file separators
for OSs: \ on Windows and / on Unix-like systems. Less obvious would be
how to escape special characters on a particular OS, which can differ even
between Unix-based OSs.

The path/filepath package provides access to functions that will allow you
to handle pathing for the native OS. This should not be confused with the
root path package, which looks similar but handles a more general URL-
style pathing.

What OS/platform am I running?

While we will discuss how to gain file access and perform pathing using
agnostic functions, it is still important to understand what OS you are

https://play.golang.org/p/bxuFyPT5nSk
https://play.golang.org/p/njuE1n7dyOM

running on. You may use different locations for files based on the OS you
are running.

Using the runtime package, you can detect the OS and platform you are
running on:

fmt.Println(runtime.GOOS) // linux, darwin, ...

fmt.Println(runtime.GOARCH) // amd64, arm64, ...

This gives you the running OS. We can print out the current list of OS types
and hardware architecture that's supported by Go with go tool dist list.

Using fi lepath

With filepath, you can be ignorant of the pathing rules for the OS you are
running on when manipulating a path. Paths are divided into the following
areas:

The directories in the path

The file in the path

A file path's final directory or file is called the base. The path your binary is
running in is called the working directory.
Joining a file path
Let's say we want to access a configuration file, config.json, that is stored
in the config/ directory, which is in the same directory as our binary. Let's
use os and path/filepath to read that file in a way that works on all OSs:

wd, err := os.Getwd()

if err != nil {

 return err

}

content, err := os.ReadFile(filepath.Join(wd, "config",

"config.json"))

In this example, the first thing we do is get the working directory. This
allows us to make calls relative to where our binary is running.

filepath.Join() allows us to join the components of our path into a single
path. This fills in the OS-specific directory separators for you and uses the
native pathing rules. On a Unix-like system, this might be
/home/jdoak/bin/config/config.json, while on Windows, this might be
C:\Documents and Settings\jdoak\go\bin\config\config.json.
Splitting a file path
In some circumstances, it is important to split filepaths along their path
separators in different ways. filepath provides the following:

Base(): Returns the last element of the path

Ext(): Returns the file extension, if it has one

Split(): Returns the split directory and file

We can use these to get various parts of a path. This can be useful when we
wish to copy a file into another directory while retaining the file's name.

Let's copy a file from its location to our OS's TMPDIR:

fileName := filepath.Base(fp)

if fileName == "." {

 // Path is empty

 return nil

}

newPath := filepath.Join(os.TempDir(), fileName)

r, err := os.Open(fp)

if err != nil {

 return err

}

defer r.Close()

w, err := os.OpenFile(newPath, O_WRONLY | O_CREATE, 0644)

if err != nil {

 return err

}

defer w.Close()

// Copies the file to the temporary file.

_, err := io.Copy(w, r)

return err

Now, it's time to look at the different pathing options you can use to
reference files and how the filepath package can help.

Relative and absolute pathing

There are two types of pathing when it comes to accessing a filesystem:

Absolute pathing: Pathing from the root directory to the file

Relative pathing: Pathing from your current location in the filesystem

During development, it is often handy to convert a relative path into an
absolute path and vice versa.

filepath provides a few functions to help with this:

Abs(): Returns the absolute path. If it's not an absolute path, return the
working directory, as well as the path.

Rel(): Returns the relative path of a path to a base.

We will leave it as an exercise for you to experiment with using these.

In this section, we learned how to use the path/filepath and runtime
packages to handle file pathing for different OSs. We introduced
runtime.GOOS to help you detect the OS your user is using and os.Getwd()
to determine where in the filesystem your program is. os.TempDir() was
introduced to locate your OS's location for temporary files. Finally, we
learned about the functions in path/filepath that allow you to combine and
split file paths agnostically to you but with an output specific to the OS.

Next, we will look at Go's new io/fs package, which was introduced in
version 1.16. It introduces new interfaces to abstract filesystems in the same
way io does for files.

OS-agnostic fi lesystems
One of the newest and more exciting developments in the latest Go releases
is the new io/fs and embed packages, which were introduced in Go 1.16.

While we have shown agnostic access to our local filesystem via the os
package, as well as agnostic file pathing manipulation through filepath, we

haven't seen an agnostic way of accessing an entire filesystem.

In the cloud era, files are just as likely to be in filesystems that exist in
remote data centers such as Microsoft Azure's Blob Storage, Google
Cloud's Filestore, or Amazon AWS's EFS as they are on local disk.

Each of these filesystems comes with a client for accessing the files in Go,
but they are specific to that network service. We can't treat each of these in
the same way as I treat my local filesystem. io/fs is meant to provide a
foundation to help solve this problem.

Another problem is that many files must be packaged with that binary, often
in a container definition. Those files do not change during the lifetime of
the program. It would be easier to include them in the binary and access
them with a filesystem interface. A simple web application that needs
image, HTML, and CSS files is a good example of this use case. The new
embed package aims to fix this issue.

io.fs fi lesystems

Our new io/fs filesystem exports interfaces that can be implemented by
filesystem providers. The root interface, FS, has the simplest definition:

type FS interface {

 Open(name string) (File, error)

}

This lets you open any file, where File is defined as follows:

type File interface {

 Stat() (FileInfo, error)

 Read([]byte) (int, error)

 Close() error

}

This provides the simplest of filesystems. You can open a file at a path and
either get information about the file or read it. As filesystems tend to differ
in functionality, this is the only shared functionality between all the given
filesystems.

A filesystem can have other capabilities, all of which are defined as
supersets of FS (such as ReadDirFS and StatFS) to allow for file walking and
to provide directory information. There is a noticeable lack of writability
for FS objects. You must provide your own since the Go authors haven't
defined one as part of the standard library.

embed

The embed package allows you to embed files directly into the binary using
a //go:embed directive.

embed can embed files in three ways, as follows:

As bytes

As a string

Into an embed.FS (which implements fs.FS)

The first two are done by putting a directive over the specific variable type:

import _ "embed"

//go:embed hello.txt

var s string

//go:embed world.txt

var b []byte

//go:embed hello.txt represents a Go directive instructing the compiler to
take a file called hello.txt and store it in variables.

_ on the import line instructs the compiler to ignore the fact that we don't
directly use embed. This is called an anonymous import, where we need a
package to be loaded but don't use its functionality directly. Without _, we
would receive a compile error for not using the imported package.

The final method of using embed.FS is useful when you wish to embed
several files in the filesystem:

// The lines beginning with //go: are not comments, but compiler

directives

//go:embed image/*

//go:embed index.html

var content embed.FS

We now have an fs.FS that's storing all the files in our image directory and
our index.html file. These files no longer need to be included in a container
filesystem when we ship our binary.

Walking our fi lesystem

The io/fs package offers a filesystem-agnostic method of walking a
filesystem if the filesystem supports that capability. In the previous

example, we had a directory in our embedded filesystem holding image
files. We can print out any .jpg files using a directory walker:

err := fs.WalkDir(

 content,

 ".",

 func(path string, d fs.DirEntry, err error) error {

 if err != nil {

 return err

 }

 if !d.IsDir() && filepath.Ext(path) == ".jpg" {

 fmt.Println("jpeg file: ", path)

 }

 return nil

 },

)

The preceding function walks the directory structure of our embedded
filesystem (content) from the root (".") and calls the function that was
defined, passing it the path of the file, its directory entry, and an error, if
there was one.

In our function, we simply print the path of the file if the file is not a
directory and has the.jpg extension.

But what about packages that are using io/fs to access other types of
filesystems?

The io/fs future

At the time of writing, the major user of io/fs is embed. However, we are
starting to see third-party packages implementing this interface.

absfs provides an io.FS hook for their boltfs/memfs/os filesystem
packages (https://github.com/absfs). Several of these packages have
wrappers around the popular afero filesystem package
(https://github.com/spf13/afero). Azure has a non-official package that
supports Blob storage (https://github.com/element-of-surprise/azfs).

There are also packages for accessing Redis, GroupCache, memfs, local
filesystems, and tooling support at https://github.com/gopherfs/fs.

NOTE
github.com/element-of-surprise and https://github.com/gopherfs are owned by the

author.

In this section, you learned about Go's io/fs package and how it is
becoming a standard for interacting with filesystems. You also learned how
to use the embed package to embed files into a binary and access them via
the io/fs interfaces.
We've only scratched the surface
I highly encourage you to read the standard library's GoDoc pages to
become familiar with its capabilities. The following are the GoDocs that
were covered in this chapter. Here, you can find many useful utilities for
dealing with files:

File interfaces and basic I/O functions: https://pkg.go.dev/io

Buffered I/O package: https://pkg.go.dev/bufio

https://github.com/absfs
https://github.com/spf13/afero
https://github.com/element-of-surprise/azfs
https://github.com/gopherfs/fs
https://github.com/gopherfs
file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/B17626_04.xhtml
https://pkg.go.dev/bufio

Converting to/from strings into other types: https://pkg.go.dev/strconv

Package for manipulating strings: https://pkg.go.dev/strings

Package for manipulating bytes: https://pkg.go.dev/bytes

Package for OS interaction: https://pkg.go.dev/os

Package for forward slash paths, like URLs: https://pkg.go.dev/path

Package for file paths: https://pkg.go.dev/path/filepath

Filesystem interfaces: https://pkg.go.dev/io/fs

Embedded filesystem: https://pkg.go.dev/embed

In this section, we learned how to use io interfaces to stream data in and out
of files, as well as about the os package's Stdin/Stdout/Stderr
implementations for reading and writing to a program's input/output. We
also learned how to read data by delimiter using the bufio package and how
to split string content up using the strings package.

Summary
This chapter has provided you with a foundation for working with file I/O
in the Go language. You learned about the io package and its file
abstractions and how to read and write files to disk. Then, you learned how
to stream file content so that you can work with the network and be more
efficient with memory. After that, you learned about the path/filepath
package, which can help you deal with multiple OSs. Finally, you learned
about Go's filesystem-agnostic interfaces for interacting with any
filesystem, starting with the new embed filesystem.

file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/B17626_04.xhtml
file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/B17626_04.xhtml
file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/B17626_04.xhtml
https://pkg.go.dev/os
https://pkg.go.dev/path
https://pkg.go.dev/path/filepath
file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/B17626_04.xhtml
file:///C:/Users/hima/AppData/Local/Temp/calibre_h3qahqlt/adarbpbt_pdf_out/OEBPS/B17626_04.xhtml

In the next chapter, you will learn how to interact with common data types
and storage using popular Go packages. There, you will need to rely on the
file and filesystem packages from this chapter to interact with data types.

Interacting with data and storage systems is critical to DevOps work. It
allows us to read and change software configurations, store data and make it
searchable, ask systems to do work on our behalf, and generate reporting.

So, let's dive in!

Chapter 5: Using Common Data Formats
One of the key skills that a DevOps engineer requires is the ability to
manipulate data across a variety of storage mediums.

In the last chapter, we interacted with the local filesystem to read and
stream files. That is foundational for the skills we will be learning in this
chapter.

This chapter will focus on how to manipulate common data formats that
engineers commonly use. These formats are used to configure services,
structure log data, and to export metrics, among the many other uses.

In this chapter, you will learn how to use comma-separated values (CSV)
files to read and store data and encode/decode the popular JSON and
YAML formats. You will discover how Go uses struct field tags to store
metadata about fields. Also, you will learn how to stream these formats
efficiently when working with large amounts of data.

Unlocking these skills will allow you to engage with services by
manipulating configuration files, searching through records that might
include logs or metrics, and outputting data into Excel for reporting
purposes.

In this chapter, we will cover the following topics:

CSV files

Popular encoding formats

In the next section, we will dive into the process of utilizing data in one of
the oldest formats, CSV.

Let's get started!

Technical requirements
The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/5

CSV files
CSV is one of the most common data sources that a DevOps engineer can
encounter.

This simple format has long been a mainstay in the corporate world as one
of the easiest ways to export data out of a system for manipulation and back
into a data store.

Many critical systems at large cloud providers, such as Google's GCP and
Microsoft's Azure, have critical data sources and systems based on the CSV
format. We have seen systems such as network modeling and critical data
reporting stored in CSV.

Data scientists love CSV for its easy searching and streaming capabilities.
The added quality of being able to quickly visualize the data in software has
only added to its appeal.

And, like many other formats, it is human-readable, which allows the data
to be manipulated by hand.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/5

In this section, we are going to focus on importing and exporting CSV data
using the following:

The strings package and the bytes package

The encoding/csv package

Additionally, we are going to look at importing and exporting data to the
popular Excel spreadsheet format using excelize, which is a popular
package for Microsoft Excel.

Now, let's discuss how we can use simple string/byte manipulation
packages to read/write CSV files.

Basic value separation using the strings
package

Go provides several packages that you will find useful in the manipulation
of the string and []byte types:

strings

bytes

These packages offer similar functionality such as the following:

Functions to split data such as strings.Split()

Functions to merge data with separators such as strings.Join()

Buffer types that implement the io package's interfaces, such as
bytes.Buffer and strings.Builder

When dealing with CSV files, a developer either streams the data or reads
the whole file.

Many developers prefer to read an entire file into memory and convert it
from a []byte type into a string type. Strings are easier for developers to
understand the join and split rules.

However, this causes a copy to be created during conversion, which can be
inefficient because you have to double the amount of memory used and
dedicate some CPU to doing the copy. When that is a problem, developers
reach for the bytes and bufio packages. These are slightly more difficult to
use, but they prevent any unnecessary conversion cost.

Let's look at how we can read an entire file and covert the entries into a
structured record.
Conversion after reading the whole file
When doing basic CSV manipulation, sometimes, it is easier to simply split
data using a carriage return and then split the line based on a comma or
other separator. Let's say we have a CSV file representing first and last
names and break that CSV file into records:

type record []string

func (r record) validate() error {

 if len(r) != 2 {

 return errors.New("data format is incorrect")

 }

 return nil

}

func (r record) first() string {

 return r[0]

}

func (r record) last() string {

 return r[1]

}

func readRecs() ([]record, error) {

 b, err := os.ReadFile("data.csv")

 if err != nil {

 return nil, err

 }

 content := string(b)

 lines := strings.Split(content, "\n") // Split by line

 var records []record

 for i, line := range lines {

 // Skip empty lines

 if strings.Trimspace(line) == "" {

 continue

 }

 var rec record = strings.Split(line, ",")

 if err := rec.validate(); err != nil {

 return nil, fmt.Errorf("entry at line %d was

invalid: %w", i, err)

 }

 records = append(records, rec)

 }

 return records, nil

}

The preceding code does the following:

1. It defines a record type based on a slice of strings, []string.

2. We can check whether a record type was valid by calling its validate()
method.

3. The record's first name can be retrieved using first().

4. The record's last name can be retrieved using last().

5. It defines a readRecs() function to read a file, called data.csv.

6. It reads the entire file into memory and converts it into a string called
content.

7. content is split by the new line character, \n, with each entry
representing a line.

8. It loops through the lines, splitting each line with a comma, ,.

9. It assigns each return from Split, which is a []string type to a record
type.

10. It compiles all records to a slice of records, []record.

You can view this code in action at
https://play.golang.org/p/CVgQZzScO8Z.
Converting line by line
If the file is large and we want to be efficient, we can use the bufio and
bytes packages:

func readRecs() ([]record, error) {

https://play.golang.org/p/CVgQZzScO8Z

 file, err := os.Open("data.csv")

 if err != nil {

 return nil, err

 }

 defer file.Close()

 scanner := bufio.NewScanner(fakeFile)

 var records []record

 lineNum := 0

 for scanner.Scan() {

 line := scanner.Text()

 if strings.TrimSpace(line) == "" {

 continue

 }

 var rec record = strings.Split(line, ",")

 if err := rec.validate(); err != nil {

 return nil, fmt.Errorf("entry at line %d was invalid:

%w", lineNum, err)

 }

 records = append(records, rec)

 lineNum++

 }

return records, scanner.Err()

}

This differs from the previous code in that the following occurs:

We read each line, one by one, using bufio.Scanner instead of the entire
file.

scanner.Scan() reads the next set of content until it sees \n.

That content can be retrieved using scanner.Text().

You can view this code in action at https://play.golang.org/p/2JPaNTchaKV.

With this version, we are still doing a []byte conversion on each line into a
string type. If you are interested in a version that does not do this, please
refer to https://play.golang.org/p/RwsTHzM2dPC.
Writing records
Writing records to CSV is fairly simple using the methods that we played
with earlier. If after reading our records, we wanted to sort them and write
them back to a file, we could accomplish this with the following code:

func writeRecs(recs []record) error {

 file, err := os.OpenFile("data-sorted.csv",

os.O_CREATE|os.O_TRUNC|os.O_WRONLY, 0644)

 if err != nil {

 return err

 }

 defer file.Close()

 // Sort by last name

 sort.Slice(

 recs,

 func(i, j int) bool {

 return recs[i].last() < recs[j].last()

https://play.golang.org/p/2JPaNTchaKV
https://play.golang.org/p/RwsTHzM2dPC

 },

)

 for _, rec := range recs {

 _, err := file.Write(rec.csv())

 if err != nil {

 return err

 }

 }

 return nil

}

We can also modify the record type to have this new method:

// csv outputs the data in CSV format.

func (r record) csv() []byte {

 b := bytes.Buffer{}

 for _, field := range r {

 b.WriteString(field + ",")

 }

 b.WriteString("\n")

 return b.Bytes()

}

You can see this running at https://play.golang.org/p/qBCDAsOSgS6.

The writeRecs() function does the following:

It opens data-sorted.csv for writing.

It sorts the records using sort.Slice() from the sort package.

https://play.golang.org/p/qBCDAsOSgS6

It loops over the records and writes out the CSV file, as generated by
the new csv() method.

The csv() method does the following:

It creates a bytes.Buffer interface, which acts similar to an in-memory
file.

It loops through each field in the record and writes the field value
followed by a comma.

It writes a carriage return after the content on the CSV line.

It returns the buffer as a []bytes type that now represents a single line.

Using the encoding/csv package

To handle CSV encodings that conform to the RFC 4180 standard,
https://www.rfc-editor.org/rfc/rfc4180.html, the standard library provides
the encoding/csv package.

Developers should opt to use this package for CSV handling when the CSV
conforms to this specification.

This package provides two types for handling CSVs:

Reader for reading in CSVs

Writer for writing CSVs

In this section, we will tackle the same problem as before, but we will
utilize the Reader and Writer types.
Reading line by line

https://www.rfc-editor.org/rfc/rfc4180.html

In the same way as before, we want to read each CSV entry from the file
one at a time and process it to a record type:

func readRecs() ([]record, error) {

 file, err := os.Open("data.csv")

 if err != nil {

 return nil, err

 }

 defer file.Close()

 reader := csv.NewReader(file)

 reader.FieldsPerRecord = 2

 reader.TrimLeadingSpace = true

 var recs []record

 for {

 data, err := reader.Read()

 if err != nil {

 if err == io.EOF{

 break

 }

 return nil, err

 }

 rec := record(data)

 recs = append(recs, rec)

 }

 return recs, nil

}

You can view this code in action at https://go.dev/play/p/Sf6A1AbbQAq.

This function utilizes our reader to perform the following:

Pass the file to our NewReader()constructor.

Set the reader to require two fields per record.

Remove any leading space in a line.

Read each record and store it in a []record slice.

The Reader type has other fields that can change how data is read in. For
more information, please refer to https://pkg.go.dev/encoding/csv.

In addition, Reader provides a ReadAll()method that reads all of the records
in a single call.
Writing line by line
The companion of the CSV Reader type , Writer, makes it simple to write to
a file. Let's replace the writing part of our previous writeRecs()function:

w := csv.NewWriter(file)

defer w.Flush()

for _, rec := range recs {

 if err := w.Write(rec); err != nil {

 return err

 }

}

return nil

Here is the runnable code: https://play.golang.org/p/7-dLDzI4b3M

The preceding code does the following:

https://go.dev/play/p/Sf6A1AbbQAq
https://pkg.go.dev/encoding/csv
https://play.golang.org/p/7-dLDzI4b3M

It spawns a new Writer type that writes to our file.

It flushes our content to the file on function exit.

It writes each record out as a CSV file, one per line.

Using excelize when dealing with Excel

Microsoft's Excel has been a popular tool for visualizing data since the
1980s. While the power of the program has grown, its simplicity has helped
to make spreadsheets a common tool in most businesses.

While Excel is not CSV, it can import and export data in CSV. For basic
usage, you can use the encoding/csv package detailed earlier in this chapter.

However, if your organization uses Excel, it can be more helpful to use its
native format to write the data and supply visual representations of the data.
excelize is a third-party Go package that can help you do that.

The package can be found at https://github.com/qax-os/excelize/tree/v2.
Additionally, the official documentation can be found at
https://xuri.me/excelize/.

There is also an online version of Excel that is part of Microsoft's Office
365. You can manipulate spreadsheets directly there; however, I find it
easier to manipulate the spreadsheet offline and then import it.

If you are interested in the REST API, you can read about it at
https://docs.microsoft.com/en-us/sharepoint/dev/general-
development/excel-services-rest-api.
Creating a .xlsx file and adding some data

https://github.com/qax-os/excelize/tree/v2
https://xuri.me/excelize/
https://docs.microsoft.com/en-us/sharepoint/dev/general-development/excel-services-rest-api

Excel has a few characteristics that are helpful to understand:

An Excel file has the .xlsx extension.

Each .xlsx file contains sheets.

Each sheet includes a set of rows and columns.

A .xlsx file has a default sheet, called Sheet1.

The intersection of a row and column is called a cell.

Columns start with the letter A.

Rows start with the number 1.

We are going to add some data that represents server data for a fictional
fleet of devices. This includes the name of the server, the hardware
generation, when it was acquired, and the CPU vendor:

func main() {

 const sheet = "Sheet1"

 xlsx := excelize.NewFile()

 xlsx.SetCellValue(sheet, "A1", "Server Name")

 xlsx.SetCellValue(sheet, "B1", "Generation")

 xlsx.SetCellValue(sheet, "C1", "Acquisition Date")

 xlsx.SetCellValue(sheet, "D1", "CPU Vendor")

 xlsx.SetCellValue(sheet, "A2", "svlaa01")

 xlsx.SetCellValue(sheet, "B2", 12)

 xlsx.SetCellValue(sheet, "C2", mustParse("10/27/2021"))

 xlsx.SetCellValue(sheet, "D2", "Intel")

 xlsx.SetCellValue(sheet, "A3", "svlac14")

 xlsx.SetCellValue(sheet, "B3", 13)

 xlsx.SetCellValue(sheet, "C3", mustParse("12/13/2021"))

 xlsx.SetCellValue(sheet, "D3", "AMD")

 if err := xlsx.SaveAs("./Book1.xlsx"); err != nil {

 panic(err)

 }

}

The preceding code does the following:

It creates an Excel spreadsheet.

It adds column labels.

It adds two servers, slvaa01 and slvac14.

It saves the Excel file.

There is a mustParse()function (used, but not defined above) that converts a
string representing a date into time.Time. In Go, when you see must
proceeding a function name, by convention if the function encounters an
error, it will panic.

You can find the runnable code in the repository at
https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/5/excel/simple/excel.go.

This example is the simplest way to add data to a sheet. However, it is not
very scalable. Let's create one that is:

type serverSheet struct {

 mu sync.Mutex

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/5/excel/simple/excel.go

 sheetName string

 xlsx *excelize.File

 nextRow int

}

func newServerSheet() (*serverSheet, error) {

 s := &serverSheet{

 sheetName: "Sheet1",

 xlsx: excelize.NewFile(),

 nextRow: 2,

 }

 s.xlsx.SetCellValue(s.sheetName, "A1", "Server Name")

 s.xlsx.SetCellValue(s.sheetName, "B1", "Generation")

 s.xlsx.SetCellValue(s.sheetName, "C1", "Acquisition")

 s.xlsx.SetCellValue(s.sheetName, "D1", "CPU Vendor")

 return s, nil

}

The preceding code does the following:

It creates a serverSheet type for managing our Excel sheet.

It has a constructor that adds our column labels.

Now we need something to add the data:

func (s *serverSheet) add(name string, gen int, acquisition

time.Time, vendor CPUVendor) error {

 s.mu.Lock()

 defer s.mu.Unlock()

 if name == "" {

 return errors.New("name cannot be blank")

 }

 if gen < 1 || gen > 13 {

 return errors.New("gen was not in range")

 }

 if acquisition.IsZero() {

 return errors.New("acquisition must be set")

 }

 if !validCPUVendors[vendor] {

 return errors.New("vendor is not valid)

 }

 s.xlsx.SetCellValue(s.sheetName, "A" +

strconv.Itoa(s.nextRow), name)

 s.xlsx.SetCellValue(s.sheetName, "B" + strconv.Itoa(s.nextRow),

gen)

 s.xlsx.SetCellValue(s.sheetName, "C" + strconv.Itoa(s.nextRow),

acquisition)

 s.xlsx.SetCellValue(s.sheetName, "D" + strconv.Itoa(s.nextRow),

vendor)

 s.nextRow++

 return nil

}

This code does the following:

It uses a lock to prevent multiple calls.

It performs very basic data validation checks.

It adds a row and then increments our internal nextRow counter.

Now we have a more scalable way to add data to our sheet. Next, let's
discuss how to summarize data.
Data summarization
There are two ways to summarize data that is added:

Tracking summaries in our object

Excel pivot tables

For our example, I am going to use the first method. This method comes
with several advantages:

It is easier to implement.

It performs faster calculations.

It removes complex calculations from the spreadsheet.

However, it comes with a distinctive disadvantage:

Data changes do not affect the summary.

To track our data summary, let's add a struct type:

type summaries struct {

 cpuVendor cpuVendorSum

}

type cpuVendorSum struct {

 unknown, intel, amd int

}

Let's modify the add() method that we wrote earlier to summarize our table:

 ...

 s.xlsx.SetCellValue(s.sheetName, "D" +

strconv.Itoa(s.nextRow), vendor)

 switch vendor {

 case Intel:

 s.sum.cpuVendor.intel++

 case AMD:

 s.sum.cpuVendor.amd++

 default:

 s.sum.cpuVndor.unknown++

 }

 s.nextRow++

 return nil

}

func (s *serverSheet) writeSummaries() {

 s.xlsx.SetCellValue(s.sheetName, "F1", "Vendor Summary")

 s.xlsx.SetCellValue(s.sheetName, "F2", "Vendor")

 s.xlsx.SetCellValue(s.sheetName, "G2", "Total")

 s.xlsx.SetCellValue(s.sheetName, "F3", Intel)

 s.xlsx.SetCellValue(s.sheetName, "G3",

s.summaries.cpuVendor.intel)

 s.xlsx.SetCellValue(s.sheetName, "F4", AMD)

 s.xlsx.SetCellValue(s.sheetName, "G4",

s.summaries.cpuVendor.amd)

}

The preceding code does the following:

It looks at our vendor and adds to our summary counters.

It adds a method to write our summaries to the sheet.

Next, let's discuss how we can add visualizations using this data.
Adding visualizations
One of the reasons for using Excel over CSV for output is to add
visualization elements. This allows you to quickly generate reports that
users can look at that are more appealing than CSV and less intensive to
write than web pages.

Adding a chart is done via the AddChart()method. AddChart()takes in a
string representing JSON that indicates how to build the chart. In our
example, you will see a package, called chart, that extracts private types
from excelize used to represent the charts and makes them public types. In
this way, we can use a typed data structure instead of JSON that has been
converted into that structure. This also allows for the easier discovery of
values that you might wish to set:

func (s *serverSheet) createCPUChart() error {

 c := chart.New()

 c.Type = "pie3D"

 c.Dimension = chart.FormatChartDimension{640, 480}

 c.Title = chart.FormatChartTitle{Name: "Server CPU Vendor

Breakdown"}

 c.Format = chart.FormatPicture{

 FPrintsWithSheet: true,

 NoChangeAspect: false,

 FLocksWithSheet: false,

 OffsetX: 15,

 OffsetY: 10,

 XScale: 1.0,

 YScale: 1.0,

 }

 c.Legend = chart.FormatChartLegend{

 Position: "bottom",

 ShowLegendKey: true,

 }

 c.Plotarea.ShowBubbleSize = true

 c.Plotarea.ShowCatName = true

 c.Plotarea.ShowLeaderLines = false

 c.Plotarea.ShowPercent = true

 c.Plotarea.ShowSerName = true

 c.ShowBlanksAs = "zero"

 c.Series = append(

 c.Series,

 chart.FormatChartSeries{

 Name: `%s!F1`,

 Categories: fmt.Sprintf(`%s!F3:F4`,

s.sheetName),

 Values: fmt.Sprintf(`%s!G3:G4`,

s.sheetName),

 },

)

 b, err := json.Marshal(c)

 if err != nil {

 return err

 }

 if err := s.xlsx.AddChart(s.sheetName, "I1", string(b)); err

!= nil {

 return err

 }

 return nil

}

This code does the following:

It creates a new 3D pie chart type.

It sets the dimensions, title, and legend.

It applies the chart values and categories.

It marshals the chart's instructions to JSON.

It calls AddChart to insert the chart into the sheet.

You can find the runnable code in the following repository:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/5/excel/visualization

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/5/excel/visualization

So, we have covered the base minimum of using Excel for outputting
reports. There are many other options, including inserting pictures, pivot
tables, and advanced formatting directives. And while we wouldn't
recommend Excel for data input into a system or a data storage format, it
can be a useful data output system for summaries and viewing data.

Popular encoding formats
CSV is one of the more basic human-readable encodings that DevOps
engineers will encounter, but it is by no means the only one. Within the last
two decades, several new formats have emerged that are used to transfer
information or provide configuration to applications.

JavaScript Object Notation (JSON) is a data serialization format that was
designed to convert JavaScript objects into a textual representation so that
they could be saved or transferred. This notation, due to its simplicity and
clarity, has been adopted by almost every language to transfer data.

Yet Another Markup Language (YAML) is another data serialization
format that is often used to store configuration information for a service.
YAML is the primary configuration language in Kubernetes clusters.

In this section, we will look at the ways to marshal and unmarshal data from
Go types into these formats and back into the Go type.

The Go field tags

Go has a feature called field tags that allow a developer to add string tags to
struct fields. This allows a Go program to inspect the extra metadata

regarding a field before performing an operation. Tags are key/value pairs:

type Record struct {

 Last string `json:"last_name"`

}

In the preceding code snippet, you can see a struct type with a field called
Last that has a field tag. The field tag is an inline raw string. Raw strings
are denoted by backticks. This will produce a tag with a key of "json" and a
value of "last_name".

Go packages can use the reflect package to read these tags. These tags
allow a package to change the behavior of an operation based on the tag
data. In this example, it tells our JSON encoder package to use last_name
instead of Last when writing data to JSON and the reverse when reading
data.

This feature is key for packages that handle data marshaling.

JSON

Over the past decade, the JSON format has become the de facto format for
data encoding to disk and for communicating via RPC to services. No
language in the cloud space can be successful without supporting JSON.

A developer might encounter JSON as an application configuration
language, but it is poorly suited for this task due to the following reasons:

The lack of multiline strings

The inability to have comments

The pickiness regarding its punctuation (that is, good for machines, and
bad for humans)

For the interchange of data, JSON can be quite useful with only a few
downsides, such as the following:

Schemaless

Non-binary format

Lack of byte array support

A schema is a definition of a message's content that lives outside code.

Schemaless means there is no strict definition of what a message contains.
This means that, for every language that is supported, we must create
definitions for our messages in that language. Formats such as protocol
buffers have entered into this space to provide a schema that can be used to
generate code for any language.

JSON is also a human-readable format. These types of formats are not as
efficient as binary formats in terms of size and speed. This generally
matters when trying to scale large services. However, many prefer human-
readable formats due to their ability to be easily debugged.

JSON's lack of support for byte arrays is also a failing. JSON can still
transfer raw bytes, but it requires encoding and decoding the bytes using
base64 encoding and storing them in JSON's string type. This requires an
extra level of encoding that should be unnecessary. There are several
supersets of JSON that are not widely supported (such as Binary JSON, or
BSON for short) that contain a byte array type.

JSON is delivered to a user in one of several ways:

As a single message that can contain sub-messages

As an array of JSON messages

As a stream of JSON messages

JSON's origins started as a format for simply encoding a JavaScript object
for transfer. However, as its uses have grown, the need for sending large
messages or streams of messages became a use case.

Single, large messages can be hard to decode. Generally, JSON decoders
are written to read the entire message into memory and validate the
message's content.

To simplify large sets of messages or streaming content, you might
encounter a message with brackets,[], surrounding a set of messages or
individual messages separated with carriage returns. These are not valid
JSON as intended, but have become de facto standards for handling large
sets of data as small, individual messages that make up part of a whole
stream.

Because JSON is a standard part of the cloud ecosystem, Go has built-in
language support in the standard library's encoding/json package. In the
upcoming sections, we will detail the most common ways to use the JSON
package.
Marshaling and unmarshaling to maps
Because JSON is schemaless, it is possible to have messages of different
types in a stream or in files. This is usually undesirable, and it is better to
have a top-level message that holds these types of messages.

When you need to handle multiple message types or do discovery on a
message, Go allows you to decode messages into map[string]interface{},
where the string key represents the field name and interface{} represents
the value.

Let's examine an example of unmarshaling a file into a map:

b, err := os.ReadFile("data.json")

if err != nil {

 return "",

 err

}

data := map[string]interface{}{}

if err := json.Unmarshal(b, &data); err != nil {

 return "", err

}

v, ok := data["user"]

if !ok {

 return "", errors.New("json does not contain key 'user'")

}

switch user := v.(type) {

case string:

 return user, nil

}

return "", fmt.Errorf("key 'user' is not a string, was %T", v)

The preceding example does the following:

It reads the content of the data.json file into variable b.

It creates a map, called data, to store our JSON content.

It unmarshals the raw bytes representing the JSON into data.

It looks up the user key in data.

If user does not exist, we return an error.

If it does exist, we type assert to determine what the value type is.

If the value is a string, we return the content.

If the value is not a string, we return an error.

Using the map, we can explore the values in the data to discover a message
type, type assert the interface{} value to a concrete type, and then use the
concrete value. Remember that type assertion converts an interface
variable into another interface variable or a concrete type such as string
or int64.

Using a map is the hardest method of data decoding for JSON. It is only
recommended in cases where the JSON is unpredictable, and there is no
control of the data provider. It is usually better to have whatever is
providing the data change its behavior than decoding in this way.

Marshalling a map into JSON is simple:

if err := json.Marshal(data); err != nil {

 return err

}

json.Marshal will read our map and output valid JSON for the contents.
[]byte fields are automatically base64 encoded into JSON's string type.

Marshaling and unmarshaling to structs
The preferred method of JSON decoding is doing so in a Go struct type
that represents the data. Here is an example of how to create a user record
struct, which we will use to decode a JSON stream:

type Record struct {

 Name string `json:"user_name"`

 User string `json:"user"`

 ID int

 Age int `json:"-"`

}

func main() {

 rec := Record{

 Name: "John Doak",

 User: "jdoak",

 ID: 23,

 }

 b, err := json.Marshal(rec)

 if err != nil {

 panic(err)

 }

 fmt.Printf("%s\n", b)

}

The preceding code outputs {"user_name":"John
Doak","user":"jdoak","ID":23}. You can find the runnable code at
https://play.golang.org/p/LzoUpOeEN9y.

https://play.golang.org/p/LzoUpOeEN9y

This code does the following:

It defines a Record type.

It uses field tags to tell JSON what the output field mapping should be.

It uses a field tag of - on Age so that it will not be marshaled.

It creates a Record type called rec.

It marshals rec to JSON.

It prints the JSON.

Notice that the Name field was translated to user_name and User to user. The
ID field was unchanged in the output because we did not use a field tag. Age
was not output because we used a field tag of -.

Fields that are private because they start with a lowercase letter cannot be
exported. This is because the JSON marshaler is in a different package and
cannot see the private type in this package.

You can read about the field tags that JSON supports in the encoding/json
GoDoc, located under Marshal()
(https://pkg.go.dev/encoding/json#Marshal).

The JSON package also includes MarshalIndent(), which can be used to
output more readable JSON with line separators between the fields and
indentions.

Decoding data into a struct type, such as Record earlier, can be done as
follows:

rec := Record{}

if err := json.Unmarshal(b, &rec); err != nil {

https://pkg.go.dev/encoding/json#Marshal

 return err

}

This transforms text that represents the JSON into a Record type stored in
the rec variable. You can find the runnable code at
https://play.golang.org/p/DD8TrKgTUwE.
Marshaling and unmarshaling large messages
Sometimes, we might receive a stream of JSON messages or a file that
contains a list of JSON messages.

Go provides json.Decoder to handle a series of messages. Here is an
example borrowed from the GoDoc, where each message is separated by a
carriage return:

const jsonStream = `

 {"Name": "Ed", "Text": "Knock knock."}

 {"Name": "Sam", "Text": "Who's there?"}

`

type Message struct {

 Name, Text string

}

reader := strings.NewReader(jsonStream)

dec := json.NewDecoder(reader)

msgs := make(chan Message, 1)

errs := make(chan error, 1)

// Parse the messages concurrently with printing the message.

go func() {

 defer close(msgs)

https://play.golang.org/p/DD8TrKgTUwE

 defer close(errs)

 for {

 var m Message

 if err := dec.Decode(&m); err == io.EOF {

 break

 } else if err != nil {

 errs <- err

 return

 }

 msgs <- m

 }

}()

// This will print the messages as we decode them.

for m := range msgs {

 fmt.Printf("%+v\n", m)

}

if err := <-errs; err != nil {

 fmt.Println("stream error: ", err)

}

You can view this running code at https://play.golang.org/p/kqmSvfdK4EG.

This example does the following:

It defines a Message struct.

It wraps the jsonStream raw output in an io.Reader via
strings.NewReader().

https://play.golang.org/p/kqmSvfdK4EG

It starts a goroutine that decodes the messages as they are read and puts
them on a channel.

It reads all messages that are sent until the output channel is closed.

It prints out any errors that are encountered.

Sometimes, this format of streaming will have brackets,[], around the
messages and use commas as separators between the entries.

In this case, we can utilize another feature of the decoder, dec.Token(), to
remove them safely:

const jsonStream = `[

 {"Name": "Ed", "Text": "Knock knock."},

 {"Name": "Sam", "Text": "Who's there?"}

]`

dec := json.NewDecoder(reader)

_, err := dec.Token() // Reads [

if err != nil {

 return fmt.Errorf(`outer [is missing`))

}

for dec.More() {

 var m Message

 // decode an array value (Message)

 err := dec.Decode(&m)

 if err != nil {

 return err

 }

 fmt.Printf("%+v\n", m)

}

_, err = dec.Token() // Reads]

if err != nil {

 return fmt.Errorf(`final] is missing`)

}

You can view this running code at https://play.golang.org/p/_PrUVUy4zRv.

This code works in the same way, except it removes the outer brackets and
requires a comma-delimited list instead.

Encoding data in a stream is very similar to decoding. We can write JSON
messages into io.Writer to output to a stream. Here's an example:

func encodeMsgs(in chan Message, output io.Writer) chan error {

 errs := make(chan error, 1)

 go func() {

 defer close(errs)

 enc := json.NewEncoder(output)

 for msg := range in {

 if err := enc.Encode(msg); err != nil {

 errs <- err

 return

 }

 }

 }()

 return errs

}

https://play.golang.org/p/_PrUVUy4zRv

You can see this code running at https://play.golang.org/p/ELICEC4lcax.

This code does the following:

It reads from a channel of Message.

It writes to an io.Writer.

It returns a channel that signals when the encoder is done processing.

If an error is returned, it means that the encoder had a problem.

This outputs the JSON as separated values without brackets.
JSON final thoughts
The encoding/json package has support for other methods of decoding that
are not covered here. You can mix map[string]interace{} into your struct
types and vice versa, or you can decode each field and value individually.

However, the best use cases are those that are straightforward struct types
as a single value or stream of values.

This is why encoding/json is my first choice when encoding or decoding
JSON values. It is not the fastest method, but it is the most flexible.

There are other third-party libraries that can increase your throughput while
sacrificing some flexibility. Here is just a small list of packages that you
might want to consider:

https://github.com/francoispqt/gojay

https://github.com/goccy/go-json

https://pkg.go.dev/github.com/json-iterator/go

https://pkg.go.dev/github.com/valyala/fastjson

https://play.golang.org/p/ELICEC4lcax
https://github.com/francoispqt/gojay
https://github.com/goccy/go-json
https://pkg.go.dev/github.com/json-iterator/go
https://pkg.go.dev/github.com/valyala/fastjson

YAML encoding

YAML (yet another markup language/YAML Ain't Markup Language) is a
language that is commonly used to write configurations.

YAML is the default language of services such as Kubernetes to hold
configurations, and as a DevOps engineer, you are likely to come across it
in a variety of applications.

YAML has a few advantages over JSON for use in configurations:

Support for comments

More flexible for humans, such as unquoted strings and quoted strings

Multiline strings

Anchors and references to avoid repetition of the same text data

YAML is often cited as having the following flaws:

It is schemaless.

The standard is large and some features are confusing.

Large files can have indention errors that go unnoticed.

Implementations in some languages can accidentally execute code
embedded in YAML. This can lead to a few security patches in software
projects.

Go does not have support in the standard library, but it has a third-party
library that has become the de facto package for YAML serialization, called
go-yaml (https://github.com/go-yaml/yaml).

Next, let's discuss how we can read these YAML files to read our
configurations.
Marshaling and unmarshaling to maps
YAML, like JSON, is schemaless and suffers from the same drawbacks.
However, unlike JSON, YAML is intended to represent a configuration, so
we don't have the same need to stream content.

For YAML, the general use case would entail encoding/decoding to a
struct type instead of a map. However, if you have a need for message
discovery, YAML can handle a map decode in the same way that we can
handle it for JSON.

Let's look at an example of unmarshaling a file into a map:

data := map[string]interface{}{}

if err := yaml.Unmarshal(yamlContent, &data); err != nil {

 return "", err

}

v, ok := data["user"]

if !ok {

 return "", errors.New("'user' key not found")

}

The preceding example does the following:

It creates a map called data to store our YAML content.

It unmarshals the raw bytes representing the YAML into data.

It looks up the user key in data.

If user does not exist, we return an error.

For a more complete example, please refer to
https://play.golang.org/p/wkHkmu47e6V.

Marshalling a map into YAML is simple:

if err := yaml.Marshal(data); err != nil {

 return err

}

Here, yaml.Marshal()will read our map and output valid YAML for the
contents.
Marshaling and unmarshaling to structs
The struct serialization is the preferred way to handle YAML. As YAML is
a configuration language, programs must know what fields are available
ahead of time to set program parameters.

YAML serialization works in a similar way to JSON serialization, and you
will find that similarity across most data serialization packages:

type Config struct {

 Jobs []Job

}

type Job struct {

 Name string

 Interval time.Duration

 Cmd string

}

func main() {

 c := Config{

https://play.golang.org/p/wkHkmu47e6V

 Jobs: []Job{

 {

 Name: "Clear tmp",

 Interval: 24 * time.Hour,

 Cmd: "rm -rf " + os.TempDir(),

 },

 },

 }

 b, err := yaml.Marshal(c)

 if err != nil {

 panic(err)

 }

 fmt.Printf("%s\n", b)

}

You can see this running code at https://play.golang.org/p/SvJHLKBsdUP.

This outputs the following:

jobs:

- name: Clear tmp dir

 interval: 24h0m0s

 cmd: rm -rf /tmp

The preceding code does the following:

It creates a top-level configuration called Config.

It creates a list of sub-messages called Job.

It marshals an example into the text representation.

https://play.golang.org/p/SvJHLKBsdUP

Unmarshaling is just as easy:

 data := []byte(`

jobs:

 - name: Clear tmp

 interval: 24h0m0s

 whatever: is not in the Job type

 cmd: rm -rf /tmp

`)

 c := Config{}

 if err := yaml.Unmarshal(data, &c); err != nil {

 panic(err)

 }

 for _, job := range c.Jobs {

 fmt.Println("Name: ", job.Name)

 fmt.Println("Interval: ", job.Interval)

 }

The preceding code does the following:

It takes a YAML config that is represented by data.

It converts it into the Config type.

It prints out contained Job information.

It ignores the whatever field.

This code will ignore the unknown whatever field. However, in many cases,
you do not want to ignore a field that could potentially be misspelled. In
those cases, we can use UnmarshalStrict().

That would cause this code to fail with the following message:

line 5: field whaterver not found in type main.Job

When using UnmarshalStrict(), you must add new field support to your
programs and deploy them before adding them to your configs, or you will
cause old binaries to fail.
YAML final thoughts
The github.com/go-yaml/yaml package has support for other methods of
serialization that we are not going to cover here. One that is used most often
is decoding into a yaml.Node object in order to preserve comments, then
changing the content and writing the configuration back out. However, this
is relatively uncommon.

In this section, you have learned how to use JSON and YAML to read and
write data in their respective data formats. In the next section, we will look
at how to interact with SQL data sources that are used to commonly store
data.

Summary
This also ends our chapter on using common data formats. We have covered
how to read and write with CSV files and Excel reports. Additionally, we
have learned how to encode and decode data in JSON and YAML formats.
This chapter has shown how we can decode data in streams while
reinforcing ways to concurrently read and use data with goroutines.

Your newly acquired skills for JSON will be immediately useful in our next
chapter. In that chapter, we will look at how to connect to SQL databases
and interact with RPC services. As REST RPC services and databases such
as Postgres can use JSON, this skill will come in handy.

So, let's jump in!

Chapter 6: Interacting with Remote Data
Sources
In the last chapter, we talked about dealing with common data formats and
showed how we can read and write data in those formats. But in that
chapter, we were simply dealing with data that was accessible through a
filesystem.

While the filesystem may actually have files that exist on remote devices
through services such as the Network File System (NFS) or the Server
Message Block (SMB), other remote data sources exist.

In this chapter, we will look at some common ways to send and receive data
in remote data sources. This will focus on accessing data on remote systems
using the Structured Query Language (SQL), REpresentational State
Transfer (REST), and Google Remote Procedure Call (gRPC). You will
learn how to access common SQL data stores, with a focus on PostgreSQL.
We will also explore how Remote Procedure Call (RPC) services are
created and queried using REST- and gRPC-style RPC methodologies.

With the skills you gain here, you will be able to connect and query data in
a SQL database, add new entries to the database, request a remote action
from a service, and gather information from a remote service.

We will cover the following topics in this chapter:

Accessing SQL databases

Developing REST services and clients

Developing gRPC services and clients

In the next section, we will dive into utilizing data in one of the oldest
formats, Comma-Separated Values (CSV).

Let's get started!

Technical requirements
The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/6/grpc

Accessing SQL databases
DevOps engineers commonly have a need to access data stored in database
systems. SQL is a standard for communicating with database systems that a
DevOps engineer will encounter in their day-to-day lives.

Go provides a standard library for interacting with SQL-based systems
called database/sql. The interfaces provided by that package, with the
addition of a database driver, allow a user to work with several different
SQL databases.

In this section, we will look at how we can access a Postgres database to
perform basic SQL operations using Go.

IMPORTANT NOTE
Examples in this section will require you to set up a Postgres database. This is beyond the
scope of this book. This will not be a guide to SQL. Some basic SQL knowledge is required.

You can find information regarding how to install Postgres for your OS at
https://www.postgresql.org/download/. If you prefer to run Postgres in a

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/6/grpc
https://www.postgresql.org/download/

local Docker container, you can find that information at
https://hub.docker.com/_/postgres.

Connecting to a Postgres database

To connect to a Postgres database will require using a database driver for
Postgres. The currently recommended third-party package is
github.com/jackc/pgx. This package implements a SQL driver for
database/sql and provides its own methods/types for Postgres-specific
features.

The choice to use database/sql or Postgres-specific types will depend on
whether you need to ensure compatibility between different databases.
Using database/sql allows you to write functions that work on any SQL
database, while using Postgres-specific features removes compatibility and
makes migration to another database more difficult. We will discuss how to
perform our examples using both methods.

Here is how to connect using a standard SQL package without extra
Postgres features:

/*

dbURL might look like:

"postgres://username:password@localhost:5432/database_name"

*/

conn, err := sql.Open("pgx", dbURL)

if err != nil {

 return fmt.Errorf("connect to db error: %s\n", err)

https://hub.docker.com/_/postgres

}

defer conn.Close()

ctx, cancel := context.WithTimeout(

 context.Background(),

 2 * time.Second

)

if err := conn.PingContext(ctx); err != nil {

 return err

}

cancel()

Here, we open a connection to Postgres using the pgx driver that will be
registered when you import the following package:

_ "github.com/jackc/pgx/v4/stdlib"

This is an anonymous import, meaning we are not using stdlib directly.
This is done when we want a side effect, such as when registering a driver
with the database/sql package.

The Open() call doesn't test our connection. You will see
conn.PingContext() to test that we will be able to make calls to the
database.

When you want to use pgx-specific types for Postgres, the setup is slightly
different, starting with a different package import:

"github.com/jackc/pgx/v4/pgxpool"

To create that connection, type the following:

conn, err := pgxpool.Connect(ctx, dbURL)

if err != nil {

 return fmt.Errorf("connect to db error: %s\n", err)

}

defer conn.Close(ctx)

This uses a connection pool to connect to the database for performance. You
will notice that we don't have a PingContext() call, as the native connection
tests the connection as part of Connect().

Now that you know how to connect to Postgres, let's look at how we can
make queries.

Querying a Postgres database

Let's consider making a call to your SQL database to fetch some
information about a user that is held in a table.

Using the standard library, type the following:

type UserRec struct {

 User string

 DisplayName string

 ID int

}

func GetUser(ctx context.Context, conn *sql.DB, id int) (UserRec,

error) {

 const query = `SELECT "User","DisplayName" FROM users WHERE

"ID" = $1`

 u := UserRec{ID: id}

 err := conn.QueryRowContext(ctx, query, id).Scan(&u)

 return u, err

}

This example does the following:

Creates UserRec to store SQL data for a user

Creates a query statement called query

Queries our database for a user with the requested ID

Returns UserRec and an error if we had one

We can increase the efficiency of this example by using a prepared
statement in an object instead of just a function:

type Storage struct {

 conn *sql.DB

 getUserStmt *sql.Stmt

}

func NewStorage(ctx context.Context, conn *sql.DB) *Storage

{

 return &Storage{

 getUserStmt: conn.PrepareContext(

 ctx,

 `SELECT "User","DisplayName" FROM users WHERE "ID" =

$1`,

)

 }

}

func (s *Storage) GetUser(ctx context.Context, id int) (UserRec,

error) {

 u := UserRec{ID: id}

 err := s.getUserStmt.QueryRow(id).Scan(&u)

 return u, err

}

This example does the following:

Creates a reusable object

Stores *sql.Stmt, which increases the efficiency when doing repeated
queries

Defines a NewStorage constructor that creates our object

Because of the generic nature of using the standard library, in these
examples, any implementation of *sql.DB could be used. Switching
Postgres for MariaDB would work as long as MariaDB had the same table
names and format.

If we use the Postgres-specific library, the same code is written like so:

err = conn.QueryRow(ctx, query).Scan(&u)

return u, err

This implementation looks and works in a similar way to the standard
library. But the conn object here is a different, non-interface pgxpool.Conn
type and not sql.Conn. And while the functionality looks similar, the
pgxpool.Conn object supports queries with Postgres-specific types and
syntax, such as jsonb, that sql.Conn does not.

There is no need to use a prepared statement for non-transactions when
using Postgres-specific calls. The call information is automatically cached.

The preceding example was simplistic in that we were pulling a specific
entry. What if we wanted to also have a method to retrieve all users with
IDs between two numbers? We could define this using the standard library:

/*

stmt contains `SELECT "User","DisplayName","ID" FROM users

WHERE "ID" >= $1 AND "ID" < $2`

*/

func (s *Storage) UsersBetween(ctx context.Context, start, end int)

([]UserRec, error) {

 recs := []UserRec{}

 rows, err := s.usersBetweenStmt(ctx, start, end)

 defer rows.Close()

 for rows.Next() {

 rec := UserRec{}

 if err := rows.Scan(&rec); err != nil {

 return nil, err

 }

 recs = append(recs, rec)

 }

 return recs, nil

}

The Postgres-specific syntax is the same; it just switches
s.usersBetweenStmt() for conn.QueryRow().

Null values

SQL has a concept of null values for basic types such as Booleans, strings,
and int32. Go doesn't have the convention; instead, it provides zero values
for those types.

When SQL allows a column to have a null value, the standard library
provides special null types in database/sql:

sql.NullBool

sql.NullByte

sql.NullFloat64

sql.NullInt16

sql.NullInt32

sql.NullInt64

sql.NullString

sql.NullTime

When you design your schema, it is better to use zero values instead of null
values. But sometimes, you need to tell the difference between a value
being set and the zero value. In those cases, you can use these special types
in place of the standard type.

For example, if our UserRec could have a null DisplayName, we can change
the string type to sql.NullString:

type UserRec struct {

 User string

 DisplayName sql.NullString

 ID int

}

You can see an example of how the server sets these values depending on
the value that the column holds for DisplayName here:
https://go.dev/play/p/KOkYdhcjhdf.

Writing data to Postgres

Writing data into a database is simple but requires some consideration of
the syntax. The two major operations that a user wants when writing data
are as follows:

Updating an existing entry

Inserting a new entry

In standard SQL, you cannot do an update entry if it exists; insert if not. As
this is a common operation, each database offers some way to do this with
its own special syntax. When using the standard library, you must choose
between doing an update or an insert. If you do not know whether the entry
exists, you will need to use a transaction, which we will detail in a bit.

Doing an update or insert is simply using a different SQL syntax and the
ExecContext() call:

func (s *Storage) AddUser(ctx context.Context, u UserRec) error {

 _, err := s.addUserStmt.ExecContext(

 ctx,

 u.User,

https://go.dev/play/p/KOkYdhcjhdf

 u.DisplayName,

 u.ID,

)

 return err

}

func (s *Storage) UpdateDisplayName(ctx context.Context, id int,

name string) error {

 _, err := s.updateDisplayName.ExecContext(

 ctx,

 name,

 id,

)

 return err

}

In this example, we have added two methods:

AddUser() adds a new user into the system.

UpdateDisplayName() updates the display name of a user with a specific
ID.

Both use the sql.Stmt type, which would be a field in the object, similar
to getUserStmt.

The major difference when implementing using the Postgres-native package
is the method name that is called and the lack of a prepared statement.
Implementing AddUser() would look like the following:

func (s *Storage) AddUser(ctx context.Context, u UserRec) error {

 const stmt = `INSERT INTO users (User,DisplayName,ID)

 VALUES ($1, $2, $3)`

 _, err := s.conn.Exec(

 ctx,

 stmt,

 u.User,

 u.DisplayName,

 u.ID,

)

 return err

}

Sometimes, it is not enough to just do a read or a write to the database.
Sometimes, we need to do multiple actions atomically and treat them as a
single action. So, in the next section, we will talk about how to do this with
transactions.

Transactions

Transactions provide a sequence of SQL operations that are executed on the
server as one piece of work. This is commonly used to provide some type of
atomic operation where a read and a write are required or to extract data on
a read before doing a write.

Transactions are easy to create in Go. Let's create an AddOrUpdateUser()
call that will look to see whether a user exists before adding or updating our
data:

func (s *Storage) AddOrUpdateUser(ctx context.Context, u UserRec)

(err error) {

 const (

 getStmt = `SELECT "ID" FROM users WHERE "User" = $1`

 insertStmt = `INSERT INTO users (User,DisplayName,ID)

 VALUES ($1, $2, $3)`

 updateStmt = `UPDATE "users" SET "User" = $1,

 "DisplayName" = $2 WHERE "ID" = 3`

)

 tx, err := s.conn.BeginTx(ctx, &sql.TxOptions{Isolation:

sql.LevelSerializable})

 if err != nil {

 return err

 }

 defer func() {

 if err != nil {

 tx.Rollback()

 return

 }

 err = tx.Commit()

 }()

 _, err := tx.QueryRowContext(ctx, getStmt, u.User)

 if err != nil {

 if err == sql.ErrNoRows {

 _, err = tx.ExecContext(ctx, insertStmt, u.User,

u.DisplayName, u.ID)

 if err != nil {

 return err

 }

 }

 return err

 }

 _, err = tx.ExecContext(ctx, updateStmt, u.User,

u.DisplayName, u.ID))

 return err

}

This code does the following:

Creates a transaction with an isolation level of LevelSerializable

Uses a defer statement to determine whether we had an error:

If we did, we roll back the entire transaction.

If not, we attempt to commit the transaction.

Queries to find whether the user exists:

It determines this by checking the error type.

If the error is sql.ErrNoRows, we did not find the user.

If the error is anything else, it was a system error.

Executes an insert statement if we didn't find the user

Executes an update statement if we did find the user

The keys to a transaction are the following:

conn.BeginTx, which starts the transaction

tx.Commit(), which commits our changes

tx.Rollback(), which reverts our changes

A defer statement is an excellent way to handle either Commit() or
Rollback() once the transaction has been created. It ensures that when the
function ends, either one or the other is executed.

The isolation level is important for a transaction as it affects the
performance and reliability of your system. Go provides multiple levels of
isolation; however, not all database systems will support all levels of
isolation.

You can read more about isolation levels here:
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Isolation_levels
.

Postgres-specific types

So far in our examples, we have shown you how to use both the standard
library and Postgres-specific objects to interact with Postgres. But we
haven't really shown a compelling reason to use Postgres objects.

Postgres objects shine when you need to use types or capabilities that aren't
a part of the SQL standard. Let's rewrite our transaction example, but
instead of storing data across standard columns, let's have our Postgres
database only have two columns:

https://en.wikipedia.org/wiki/Isolation_(database_systems)#Isolation_levels

An ID of the int type

Data of the jsonb type

jsonb is not part of the SQL standard and cannot be implemented with the
standard SQL library. jsonb can greatly simplify your life, as it allows you
to store JSON data while querying using JSON fields:

func (s *Storage) AddOrUpdateUser(ctx context.Context, u UserRec)

(err error) {

 const (

 getStmt = `SELECT "ID" FROM "users" WHERE "ID" = $1`

 updateStmt = `UPDATE "users" SET "Data" = $1 WHERE "ID" =

$2`

 addStmt = `INSERT INTO "users" (ID,Data) VALUES ($1, $2)`

)

 tx, err := conn.BeginTx(

 ctx ,

 pgx.TxOptions{

 IsoLevel: pgx.Serializable,

 AccessMode: pgx.ReadWrite,

 DeferableMode: pgx.NotDeferrable,

 },

)

 defer func() {

 if err != nil {

 tx.Rollback()

 return

 }

 err = tx.Commit()

 }()

 _, err := tx.QueryRow(ctx, getUserStmt, u.ID)

 if err != nil {

 if err == sql.ErrNoRows {

 _, err = tx.ExecContext(ctx, insertStmt, u.ID, u)

 if err != nil {

 return err

 }

 }

 return err

 }

 _, err = tx.Exec(ctx, updateStmt, u.ID, u)

 return err

}

This example is different in a few ways:

It has additional AccessMode and DeferableMode parameters.

We can pass our object, UserRec, as our Data jsonb column.

The access and deferable modes add extra constraints that are not available
directly with the standard library.

Using jsonb is a boon. Now, we can do searches on our tables with WHERE
clauses that can filter on the jsonb field values.

You will also notice that pgx is smart enough to know our column type and
automatically convert our UserRec into JSON.

If you'd like to know more about Postgres value types, you can visit
https://www.postgresql.org/docs/9.5/datatype.html.

If you'd like to know more about jsonb and functions to access its values,
visit https://www.postgresql.org/docs/9.5/functions-json.html.

Other options

Besides the standard library and database-specific packages are Object-
Relational Mappings (ORMs). ORMs are a popular model for managing
data between your services and data storage.

Go's most popular ORM is called GORM, which can be found here:
https://gorm.io/index.html.

Another popular framework that also includes support for REST and web
services is Beego, which you can find here: https://github.com/beego/beego.

Storage abstractions

Many developers are tempted to use storage systems directly in their code,
passing around a connection to a database. This is not optimal in that it can
cause problems when you need to do the following:

Add caching layers before storage access.

Migrate to a new storage system for your service.

https://www.postgresql.org/docs/9.5/datatype.html
https://www.postgresql.org/docs/9.5/functions-json.html
https://gorm.io/index.html
https://github.com/beego/beego

Abstracting storage behind an internal Application Programming
Interface (API) of interfaces will allow you to change storage layers later
by simply implementing the interfaces with the new backend. You can then
plug in the new backend at any time.

A simple example of this might be adding an interface for getting user data:

type UserStorage interface {

 User(ctx context.Context, id string) (UserRec, error)

 AddUser(ctx context.Context, u UserRec) error

 UpdateDisplayName(ctx context.Context, id string, name string)

error

}

This interface allows you to implement your storage backend using
Postgres, local files, SQLite, Azure Cosmos DB, in-memory data structures,
or any other storage medium.

This has the benefit of allowing migration from one storage medium to
another by plugging in a new implementation. As a side benefit, you can
decouple tests from using a database. Instead, most tests can use an in-
memory data structure. This allows you to test your functionality without
bringing up and tearing down infrastructure, which would be necessary with
a real database.

Adding a cache layer becomes a simple exercise of writing a UserStorage
implementation that calls the cache on reads and when not found calls your
data store implementation. You can replace the original and everything
keeps working.

Note that everything described here for abstraction behind an interface
applies to access to service data. A SQL API should only be used for your
application to store and read data. Other services should use a stable RPC
interface. This provides the same type of abstraction, allowing you to move
data backends without migrating users.

Case study – data migration of an
orchestration system – Google

One of the systems I was involved with during my tenure at Google was an
orchestration system for automating network changes. The system received
automation instructions and executed them against various targets. These
operations might involve pushing files via Secure File Transfer Protocol
(SFTP), interacting with network routers, updating authoritative data stores,
or running state verifications.

With operations, it is critical that data representing the state of a workflow
is always up to date. This includes not only the currently running workflows
but also the states of previous workflows, which are used to create new
workflows.

To ease our operational burden, we wanted to move the storage system for
workflows from Bigtable to Spanner. Bigtable required a more complicated
setup to handle failover to a backup cell when problems occurred, while
Spanner was designed to handle this as part of the system design. This
removed the need for us to intervene when cells had problems.

The storage layer was hidden behind a storage interface. Storage was
initialized in our main() and passed around to other modules that required

it. This meant that we could replace the storage layer with a new
implementation.

We implemented a new storage interface that wrote data to both Bigtable
and Spanner while reading from them both, using the latest data stamp and
updating the records if needed.

This allowed us to operate using both data stores while our historical data
was being transferred. Once synchronization was complete, we moved our
binaries to a version that only had a Spanner implementation. Our migration
was complete with no service downtime while thousands of critical
operations were running.

So far in this chapter, we have learned about how to use database/sql to
access generic data stores and Postgres specifically. We learned how to read
and write to Postgres and implement transactions. The benefits of using
database/sql versus a database-specific library such as pgx were discussed.
And finally, we showed how hiding your implementations behind interface
abstractions can allow you to change storage backends more easily and test
code relying on storage hermetically.

Next, we will look into accessing RPC services using REST or gRPC.

Developing REST services and clients
Before the web and distributed systems that now permeate the cloud space,
standards for communicating between systems were not in widespread use.
This communication is often called an RPC. This simply means that a
program on one machine has a method to call a function running on a
different machine and receive any output.

Monolithic applications were the norm and servers tended to either be silo'd
per application and vertically scaled or were run as jobs on larger, more
specialized hardware from companies such as IBM, Sun, SGI, or Cray.
When systems did need to communicate with each other, they tended to use
their own custom wire formats, such as what you would see with Microsoft
SQL Server.

With the web defining the internet of the 2000s, large monolithic systems
could not provide the compute power behind services such as Google
Search or Facebook at any reasonable cost point. To power these services,
companies needed to treat large collections of standard PCs as a single
system. Where a single system could communicate between processes using
Unix sockets or shared memory calls, companies needed common and
secure ways to communicate between processes running on different
machines.

As HTTP became the de facto standard for communication between
systems, RPC mechanisms of today use some form of HTTP for data
transport. This allows the RPC to transit systems more easily, such as load
balancers, and easily utilize security standards, such as Transport Layer
Security (TLS). It also means that as the HTTP transport is upgraded, these
RPC frameworks can leverage the hard work of hundreds if not thousands
of engineers.

In this section, we are going to talk about one of the most popular RPC
mechanisms, REST. REST uses HTTP calls and whatever messaging
format you want, although the majority of cases use JSON for messaging.

REST for RPCs

Writing REST clients in Go is fairly simple. Chances are that if you have
been developing applications in the last 10 years, you have either used a
REST client or written one. Cloud APIs for services such as Google Cloud
Platform's Cloud Spanner, Microsoft's Azure Data Explorer, or Amazon
DynamoDB use REST to communicate with the services via their client
libraries.

REST clients can do the following:

Use GET, POST, PATCH, or any other type of HTTP method.

Support any serialization format (although this is normally JSON).

Allow for data streaming.

Support query variables.

Support multiple versions of an API using URL standards.

REST in Go also has the luxury of not requiring any framework to
implement on the server side. Everything that is required lives in the
standard library.
Writing a REST client
Let's write a simple REST client that accesses a server and receives a Quote
of the Day (QOTD). To do this, the server has the following endpoint using
POST – /v1/qotd.

First, let's define the message we need to send to the server:

type getReq struct {

 Author string `json:"author"`

}

type getResp struct {

 Quote string `json:"quote"`

 Error *Error `json:"error"`

}

Let's talk about what each of these does:

getReq details the arguments to the server's /v1/qotd function call.

getResp is what we expect as a return from the server's function call.

We are using field tags to allow conversion from lowercase keys into our
public variables that are capitalized. For the encoding/json package to see
these values for serialization, they must be public. Private fields will not be
serializable:

type Error struct {

 Code ErrCode

 Msg string

}

func (e *Error) Error() string {

 return fmt.Errorf("(code %v): %s", e.Code, e.Msg)

}

This defines a custom error type. This way, we can store error codes to
return to the user. This code is defined next to our response object, but it
isn't used until much later in the code we are defining.

Let's now define a QOTD client and a constructor that does some basic
checks on the address and creates an HTTP client to allow us to send data to

the server:

type QOTD struct {

 addr string

 client *http.Client

}

func New(addr string) (*QOTD, error) {

 if _, _, err := net.SplitHostPort(addr); err != nil {

 return nil, err

 }

 return &QOTD{addr: addr, client: &http.Client{}}

}

The next step is to make a generic function for making REST calls. Because
REST is so open-ended, it is hard to make one that can handle any type of
REST call. A best practice to use when writing REST servers is to only
support the POST method; never use query variables and simple URLs.
However, in practice, you will deal with a wide variety of REST call types
if you don't control the service:

func (q *QOTD) restCall(ctx context.Context, endpoint string, req,

resp interface{}) error {

 if _, ok := ctx.Deadline(); !ok {

 var cancel context.CancelFunc

 ctx, cancel = context.WithDeadline(ctx, 2 * time.Second)

 defer cancel()

 }

 b, err := json.Marshal(req)

 if err != nil {

 return err

 }

 hReq, err := http.NewRequestWithContext(

 ctx,

 http.POST,

 endpoint,

 bytes.NewBuffer(b),

)

 if err != nil {

 return err

 }

 resp, err := q.client.Do(hReq)

 if err != nil {

 return err

 }

 b, err := io.ReadAll(resp.Body)

 if err != nil {

 return err

 }

 return json.Unmarshal(b, resp)

}

This code does the following:

Checks our context for a deadline:

If it has one, it is honored

If not, a default one is set

cancel() is called after the call is done

Marshals a request into JSON.

Creates a new *http.Request that does the following:

Uses the POST method

Talks to an endpoint

Has io.Reader storing the JSON request

Uses the client to send a request and get a response.

Retrieves the response from the body of http.Response.

Unmarshals JSON into the response object.

You will notice that req and resp are both interface{}. This allows us to
use this routine with any struct that will represent a JSON request or
response.

Now, we will use that in a method that gets a QOTD by an author:

func (q *QOTD) Get(ctx context.Context, author string) (string,

error) {

 const endpoint = `/v1/qotd`

 resp := getResp{}

 err := q.restCall(ctx, path.Join(q.addr, endpoint),

getReq{Author: author}), &resp)

 switch {

 case err != nil:

 return "", err

 case resp.Error != nil:

 return "", resp.Error

 }

 return resp.Quote, nil

}

This code does the following:

Defines an endpoint for our get function on the server.

Calls our restCall() method, which does the following:

Uses path.Join() to unite our server address and URL
endpoint.

Creates a getReq object as the req argument of restCall().

Reads the response into our resp response object.

If *http.Client returns an error, we return that error.

If resp.Error is set, we return it.

Returns the response's quote.

To see this running now, you can go here:
https://play.golang.org/p/Th0PxpglnXw.

We have shown how to make a base REST client here using HTTP POST
calls and JSON. However, we have only scratched the surface of making a
REST client. You may need to add authentication to the header in the form
of a JSON Web Token (JWT). This used HTTP and not HTTPS, so there

https://play.golang.org/p/Th0PxpglnXw

was no transport security. We did not try to use compression such as Deflate
or Gzip.

While using http.Client is easy to do, you may want a more intelligent
wrapper that handles many of these features for you. One that is worth
looking at would be resty, which can be found here: https://github.com/go-
resty/resty.
Writing a REST service
Now that we have a client written, let's write a REST service endpoint that
can receive the request and send the user the output:

type server struct {

 serv *http.Server

 quotes map[string][]string

}

This code does the following:

Creates the server struct, which will act as our server

Uses *http.Server to server HTTP content

Has quotes, which stores authors as keys and values that are a slice of
quotes

Now, we need a constructor:

func newServer(port int) (*server, error) {

 s := &server{

 serv: &http.Server{

 Addr: ":" + strconv.Itoa(port),

https://github.com/go-resty/resty

 },

 quotes: map[string][]string{

 // Add quotes here

 },

 }

 mux := http.NewServeMux()

 mux.HandleFunc(`/qotd/v1/get`, s.qotdGet)

 // The muxer implements http.Handler

 // and we assign it for our server’s URL handling.

 s.serv.Handler = mux

 return s, nil

}

func (s *server) start() error {

 return s.serv.ListenAndServe()

}

This code does the following:

Creates a newServer constructor:

This has an argument of port, which is the port to run the
server on.

Creates a server instance:

Makes an instance of *http.Server running at :[port]

Populates our quotes map

Adds *http.ServeMux to map URLs to methods.

NOTE
We will create the qotdGet method in a moment.

Creates a method called start() that will start our HTTP server.

*http.ServeMux implements the http.Handler interface that is used by
*http.Server. ServeMux uses pattern matching to determine which method
is called for which URL. You can read about pattern-matching syntax here:
https://pkg.go.dev/net/http#ServeMux.

Now, let's create the method to answer our REST endpoint:

func (s *server) qotdGet(w http.ResponseWriter, r *http.Request) {

 req := getReq{}

 if err := req.fromReader(r.Body); err != nil {

 http.Error(w, err.Error(), http.StatusBadRequest)

 return

 }

 var quotes []string

 if req.Author == "" {

 // Map access is random, this will randomly choose

a // set of quotes from an author.

 for _, quotes = range s.quotes {

 break

 }

 } else {

 var ok bool

https://pkg.go.dev/net/http#ServeMux

 quotes, ok = s.quotes[req.Author]

 if !ok {

 b, err := json.Marshal(

 getResp{

 Error: &Error{

 Code: UnknownAuthor,

 Msg: fmt.Sprintf("Author %q was not

found", req.Author),

 },

 },

)

 if err != nil {

 http.Error(w, err.Error(),

http.StatusBadRequest)

 return

 }

 w.Write(b)

 return

 }

 }

 i := rand.Intn(len(quotes))

 b, err := json.Marshal(getResp{Quote: quotes[i]})

 if err != nil {

 http.Error(w, err.Error(), http.StatusBadRequest)

 return

 }

 w.Write(b)

 return

This code does the following:

Implements the http.Handler interface.

Reads the HTTP request body and marshals it to our getReq:

This uses HTTP error codes with http.Error() if the request
was bad

If the request did not contain an "author," randomly chooses an author's
quotes.

Otherwise, finds the author and retrieves their quotes:

If that author did not exist, responds with getResp containing
an error

Randomly chooses a quote and returns it to the client.

Now, we have a REST endpoint that can answer our client's RPCs. You can
see this code running here: https://play.golang.org/p/Th0PxpglnXw.

This just scratches the surface of building a REST service. You can build
authentication and compression on top of this, performance tracing, and so
on

To help with bootstrapping features and removing some boilerplate, here
are a few third-party packages that might be helpful:

Gin: https://github.com/gin-gonic/gin:

https://play.golang.org/p/Th0PxpglnXw
https://github.com/gin-gonic/gin

A REST example: https://golang.org/doc/tutorial/web-service-
gin

Revel: https://revel.github.io

Now that we have talked about using REST for RPCs, let's take a look at
the faster alternative that is being adopted by large companies everywhere,
gRPC.

Developing gRPC services and clients
gRPC provides an entire framework for RPCs based on HTTP and utilizing
Google's protocol buffer format, a binary format that can convert into JSON
but provides both a schema and, in many cases, a 10x performance
improvement over JSON.

There are other formats in this space, such as Apache's Thrift, Cap'n Proto,
and Google's FlatBuffers. However, these are not as popular and well
supported, or satisfy a particular niche, while also being hard to use.

gRPC, like REST, is a client/server framework for making RPC calls.
Where gRPC differs is that it prefers a binary message format called
protocol buffers (proto for short).

This format has a schema stored in a .proto file that is used to generate the
client, server, and messages in a native library for the language of your
choice using a compiler. When a proto message is marshaled for transport
on the wire, the binary representation will be the same for all languages.

Let's talk more about protocol buffers, gRPC's message format of choice.

https://golang.org/doc/tutorial/web-service-gin
https://revel.github.io/

Protocol buffers

Protocol buffers define RPC messages and services in one location and can
generate a library for every language with the proto compiler. Protocol
buffers have the following advantages:

They write once and generate for every language.

Messages can be converted to JSON as well as binary.

gRPC can use a reverse proxy to provide REST endpoints, which is
great for web apps.

Binary protocol buffers are smaller and can encode/decode at 10x the
rate of JSON.

However, protocol buffers do have some negatives:

You must regenerate the messages on any change to the .proto file to
get the changes.

Google's standard proto compiler is painful and confusing to use.

JavaScript does not have native support for gRPC, even though it
supports protocol buffers.

Tooling can help with some of the negatives, and we will be using the new
Buf tools, https://buf.build, to help with proto generation.

Let's take a look at what a protocol buffer .proto file looks like for a QOTD
service:

syntax = "proto3";

package qotd;

https://buf.build/

option go_package = "github.com/[repo]/proto/qotd";

message GetReq {

 string author = 1;

}

message GetResp {

 string author = 1;

 string quote = 2;

}

service QOTD {

 rpc GetQOTD(GetReq) returns (GetResp) {};

}

The syntax keyword defines which version of the proto language we are
using. The most common version is proto3, the third iteration of the
language. All three have the same wire format but have different feature
sets and generate different language packages.

package defines the proto package name, which allows this protocol buffer
to be imported by another package. We have put [repo] as a placeholder to
represent the GitHub repository.

go_package defines the package name specifically when generating Go files.
While this is marked as option, it is not optional when compiling for Go.

message defines a new message type, which in Go is generated as struct.
Entries inside message detail the fields. string author = 1 creates a field in
struct GetReq called Author of the string type. 1 is the field position in the
proto. You cannot have repeated field numbers in a message, a field number

should never change, and a field should not be removed (although it can be
deprecated).

service defines a gRPC service with one RPC endpoint, GetQOTD. This call
receives GetReq and returns GetResp.

Now that we have defined this protocol buffer file, we can use a proto
compiler to generate packages for languages we are interested in. This will
include all of our messages and the code needed to use the gRPC client and
server.

Let's look at generating the Go packages from the protocol buffer file.

Stating the prerequisites

To use protocol buffers in this tutorial, you will need to install the
following:

The protocol buffer compiler: https://grpc.io/docs/protoc-installation/

The Go plugins for the compiler:
https://grpc.io/docs/languages/go/quickstart/

The Buf tooling: https://docs.buf.build/installation

With these installed, you will be able to generate code for C++ and Go.
Other languages require additional plugins.

Generating your packages

https://grpc.io/docs/protoc-installation/
https://grpc.io/docs/languages/go/quickstart/
https://docs.buf.build/installation

The first file we need to create is the buf.yaml file. We can generate the
buf.yaml file inside the proto directory by entering it and issuing the
following command:

buf config init

This should generate a file that has the following content:

version: v1

lint:

 use:

 - DEFAULT

breaking:

 use:

 - FILE

Next, we need a file that tells us what output to generate. Create a file called
buf.gen.yaml and give it the following contents:

version: v1

plugins:

 - name: go

 out: ./

 opt:

 - paths=source_relative

 - name: go-grpc

 out: ./

 opt:

 - paths=source_relative

This indicates that we should generate our go and go-grpc files in the same
directory as our .proto file.

Now, we should test that our proto will build. We can do this by issuing the
following command:

buf build

If there is no output, then our proto file should compile. Otherwise, we will
get a list of errors that we need to fix.

Finally, let's generate our proto files:

buf generate

If you named the proto file qotd.proto, this should generate the following:

qotd.pb.go, which will contain all your messages

qotd_grpc.pb.go, which will contain all the gRPC stubs

Now that we have our proto package, let's build a client.

Writing a gRPC client

In the root folder of your repository, let's create two directories:

client/, which will hold our client code

internal/server/, which will hold our server code

Now, let's create a client/client.go file with the following:

package client

import (

 "context"

 "time"

 "google.golang.org/grpc"

 pb "[repo]/grpc/proto"

)

type Client struct {

 client pb.QOTDClient

 conn *grpc.ClientConn

}

func New(addr string) (*Client, error) {

 conn, err := grpc.Dial(addr, grpc.WithInsecure())

 if err != nil {

 return nil, err

 }

 return &Client{

 client: pb.NewQOTDClient(conn),

 conn: conn,

 }, nil

}

func (c *Client) QOTD(ctx context.Context, wantAuthor string)

(author, quote string, err error) {

 if _, ok := ctx.Deadline(); !ok {

 var cancel context.CancelFunc

 ctx, cancel = context.WithTimeout(ctx, 2 *

time.Second)

 defer cancel()

 }

 resp, err := c.client.GetQOTD(ctx, &pb.GetReq{Author:

wantAuthor})

 if err != nil {

 return "", "", err

 }

 return resp.Author, resp.Quote, nil

}

This is a simple wrapper around the generated client with our connection to
the server established in our New() constructor:

grpc.Dial() connects to the server's address:

grpc.WithInsecure() allows us to not use TLS. (In real
services, you need to use TLS!)

pb.NewQOTDClient() takes a gRPC connection and returns our generated
client.

QOTD() uses the client to make a call defined in our GetQOTD() proto:

This defines a timeout if one was not defined. The server
receives this timeout.

This uses the generated client to call the server.

Creating a wrapper to use as a client isn't strictly required. Many developers
prefer to have the user directly interact with the service using the generated
client.

In our opinion, this is fine for simple clients. More complicated clients
generally should ease the burden by either moving logic to the server or

having custom client wrappers that are more language-friendly.

Now that we have defined a client, let's create our server package.

Writing a gRPC server

Let's create a server file at internal/server/server.go.

Now, let's add the following content:

package server

import (

 "context"

 "fmt"

 "math/rand"

 "net"

 "sync"

 "google.golang.org/grpc"

 "google.golang.org/grpc/codes"

 "google.golang.org/grpc/status"

 pb "[repo]/grpc/proto"

)

type API struct {

 pb.UnimplementedQOTDServer

 addr string

 quotes map[string][]string

 mu sync.Mutex

 grpcServer *grpc.Server

}

func New(addr string) (*API, error) {

 var opts []grpc.ServerOption

 a := &API{

 addr: addr,

 quotes: map[string][]string{

 // Insert your quote mappings here

 },

 grpcServer: grpc.NewServer(opts...),

 }

 a.grpcServer.RegisterService(&pb.QOTD_ServiceDesc, a)

 return a, nil

}

This code does the following:

Defines our API server:

pb.UnimplementedQOTDServer is a generated interface that
contains all the methods that our server must implement. This
is required.

addr is the address our server will run on.

quotes contains quotes the server is storing.

Defines a New() constructor:

This creates an instance of our API server.

This registers the instance with our grpcServer.

Now, let's add methods to start and stop our API server:

func (a *API) Start() error {

 a.mu.Lock()

 defer a.mu.Unlock()

 lis, err := net.Listen("tcp", a.addr)

 if err != nil {

 return err

 }

 return a.grpcServer.Serve(lis)

}

func (a *API) Stop() {

 a.mu.Lock()

 defer a.mu.Unlock()

 a.grpcServer.Stop()

}

This code does the following:

Defines Start() to start our server, which does the following:

Uses Mutex to prevent stops and starts concurrently

Creates a TCP listener on the address passed in New()

Starts the gRPC server using our listener

Defines Stop() to stop our server, which does the following:

Uses Mutex to prevent stops and starts concurrently

Tells the gRPC server to stop gracefully

Now, let's implement the GetQOTD() method:

func (a *API) GetQOTD(ctx context.Context, req *pb.GetReq)

(*pb.GetResp, error) {

 var (

 author string

 quotes []string

)

 if req.Author == "" {

 for author, quotes = range s.quotes {

 break

 }

 } else {

 author = req.Author

 var ok bool

 quotes, ok = s.quotes[req.Author]

 if !ok {

 return nil, status.Error(

 codes.NotFound,

 fmt.Sprintf("author %q not found", req.author),

)

 }

 }

 return &pb.GetResp{

 Author: author,

 Quote: quotes[rand.Intn(len(quotes))],

 }, nil

}

This code does the following:

Defines the GetQOTD() method that the client will call

Includes similar logic to our REST server

Uses gRPC's error type defined in the google.golang.org/grpc/status
package to return gRPC error codes

Now that we have our client and server packages, let's create a server binary
to run our service.

Creating a server binary

Create a file called qotd.go that will hold our server's main() function:

package main

import (

 "flag"

 "log"

 "github.com/[repo]/internal/server"

 pb "[repo]/proto"

)

var addr = flag.String("addr", "127.0.0.1:80", "The address to run

on.")

func main() {

 flag.Parse()

 s, err := server.New(*addr)

 if err != nil {

 panic(err)

 }

 done := make(chan error, 1)

 log.Println("Starting server at: ", *addr)

 go func() {

 defer close(done)

 done <-s.Start()

 }()

 err <- done

 log.Println("Server exited with error: ", err)

}

This code does the following:

Creates a flag, addr, that the caller passes to set the address that the
server runs on.

Creates an instance of our server.

Writes that we are starting the server.

Starts the server.

If the server exists, the error is printed to the screen:

This might be something saying the port is already in use.

You can run this binary by using this command:

go run qotd.go --addr="127.0.0.1:2562"

If you do not pass the --addr flag, this will default to 127.0.0.1:80.

You should see the following on your screen:

Starting server at: 127.0.0.1:2562

Now, let's create a binary that uses the client to fetch a QOTD.

Creating a client binary

Create a file called client/bin/qotd.go. Then, add the following:

package main

import (

 "context"

 "flag"

 "fmt"

 "github.com/devopsforgo/book/book/code/1/4/grpc/client"

)

var (

 addr = flag.String("addr", "127.0.0.1:80", "The address

of the server.")

 author = flag.String("author", "", "The author whose quote

to get")

)

func main() {

 flag.Parse()

 c, err := client.New(*addr)

 if err != nil {

 panic(err)

 }

 a, q, err := c.QOTD(context.Background(), *author)

 if err != nil {

 panic(err)

 }

 fmt.Println("Author: ", a)

 fmt.Printf("Quote of the Day: %q\n", q)

}

This code does the following:

Sets up a flag for the address of the server

Sets up a flag for the author of the quote you want

Creates a new instance of client.QOTD

Calls the server using the QOTD()client method

Prints the results or an error to the terminal

You can run this binary by using this command:

go run qotd.go --addr="127.0.0.1:2562"

This will contact the server running at this address. If you are running the
server at a different address, you will need to change this to match.

If you do not pass the --author flag, this randomly chooses an author.

You should see the following on your screen:

Author: [some author]

Quote: [some quote]

Now we've seen how to use gRPC to make a simple client and server
application. But this is just the beginning of the features available to you in
gRPC.
We are just scratching the surface
gRPC is a key piece of infrastructure for cloud technology such as
Kubernetes. It was built after years of experience with Stubby, Google's
internal predecessor. We have only scratched the surface of what gRPC can
do. Here are some additional features:

Running a gRPC gateway to export REST endpoints

Providing interceptors that can deal with security and other needs

Providing streaming data

TLS support

Metadata and trailers for extra information

Client-side server load balancing

Here are just a few of the big companies that have made the switch:

Square

Netflix

IBM

CoreOS

Docker

CockroachDB

Cisco

Juniper Networks

Spotify

Zalando

Dropbox

Let's talk a little about how best to provide REST or gRPC services inside
your company.

Company-standard RPC clients and
servers

One of the keys to Google's tech stack success has been a consolidation
around technologies. While there is certainly a lot of duplication in
technology, Google standardizes on certain software and infrastructure
components. Inside Google, it is rare to see a client/server not using Stubby
(Google's internal gRPC).

The libraries that engineers use for RPC are written to work the same in
every language. In recent years, there have been pushes by Site Reliability
Engineering (SRE) organizations to have wrappers around Stubby that

offer a breadth of features and best practices to prevent every team from
reinventing the wheel. This includes features such as the following:

Authentication

Compression handling

Distributed service rate limiting

Retries with backoff (or circuit breaking)

This removes a lot of threats to infrastructure by having clients retrying
without any backoffs, removing the cost of teams figuring out a security
model, and allowing fixes to these items to be done by experts. Changes to
these libraries benefit everyone and lower the cost of discovering already-
made services.

As a DevOps engineer or SRE who likely carries a pager, pushing for
standardization in your RPC layer can provide innumerable benefits, such
as not being paged!

While choice is often seen as a good thing, having limited choices can
allow development teams and operators to continue to focus on their
product and not infrastructure, which is key in having robust products.

If you decide on providing a REST framework, here are a few
recommended practices:

Only use POST.

Do not use query variables.

Use JSON only.

Have all arguments inside your request.

This will greatly reduce the needed code within your framework.

In this section, we learned what RPC services are and how to write clients
using two popular methods, REST and gRPC. You also learned how REST
has a looser set of guidelines while gRPC prefers schema types and
generates the components required to use the system.

Summary
This ends our chapter on interacting with remote data sources. We looked at
how to connect to SQL databases with examples using Postgres. We looked
at what RPCs are and talked about the two most popular types of RPC
services, REST and gRPC. Finally, we have written servers and clients for
both frameworks.

This chapter has given you the ability to connect to the most popular
databases and cloud services to get and retrieve data. Now you can write
your own RPC services to develop cloud applications.

In the next chapter, we will utilize this knowledge to build tooling that
controls jobs on remote machines.

So, without further ado, let's jump into how to write command-line tools.

Chapter 7: Writing Command-Line
Tooling
Visit any DevOps engineer and you will find their screens filled with
terminals executing Command-Line Interface (CLI) applications.

As a DevOps engineer, we don't want to only use applications that others
have made for us; we want to be able to write our own CLI applications.
These applications might communicate to various systems via REST or
gRPC, as we discussed in our previous chapter. Or you might want to
execute various applications and run their output through custom
processing. An application might even set up a development environment
and kick off a test cycle for a new release.

Whatever your use case, you will need to use some common packages to
help you manage the application's input and output processing.

In this chapter, you will learn how to use the flag and os packages to write
simple CLI applications. For more complex applications, you will learn
how to use the Cobra package. These skills, combined with the skills gained
from our previous chapter, will let you build a wide gamut of applications
for your needs or those of your customers.

We will cover the following main topics in this chapter:

Implementing application I/O

Using Cobra for advanced CLI applications

Handling OS signals

In this first section, we will jump into how to use the standard library's flag
package to build basic command-line programs. Let's get started!

Technical requirements
The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/7

Implementing application I/O
CLI applications require a way to understand how you want them to
execute. This might include what files to read, what servers to contact, and
what credentials to use.

There are a couple of ways to start an application with the parameters it
requires:

Using the flag package to define command-line flags

Using os.Args to read arguments that are not defined

The flag package will help you when you have a command-line argument
that has a strict definition. This might be an argument that defines the
endpoint for a needed service. The program might want to have a default
value for production , but allow an override when doing testing. This is
perfect for a flag.

An example might be a program that queries our Quote of the Day
(QOTD) server that we created earlier. We might want to have it

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/7

automatically use our production endpoint unless we specify it to use
another address. This might look like this:

qotd

This simply contacts our production server and gets our quote. The --
endpoint flag, which defaulted to our production address, will use another
address below:

qotd --endpoint="127.0.0.1:3850"

Sometimes, application arguments will suffice. Take an application that
reformats JSON data for human readability. We might want to just read
from STDIN if no files are provided. In this case, just reading the values from
the command line will suffice, using the os package. This will give us
executions that look like this:

reformat file1.json file2.json

Here, we are reading in file1.json and file2.json and outputting the
reformatted text.

Here, we receive the output from the wget call and read that via STDIN to
our reformat binary . This is similar to how cat and grep work. When our
arguments are empty, they simply read from STDIN:

wget "http://some.server.com" | reformat

And sometimes, we may want a mix of flags and arguments. The flag
package can help with that as well.

So, let's jump into using the flag package.

The flag package

To help take in command-line arguments, Go has the standard library flag
package. With flag, you can set up default values for your flags, provide
descriptions for flags, and allow users to override defaults at the command
line.

Flags with the flag package are simply proceeded by --, similar to --
endpoint. Values can simply be a contiguous string following the endpoint
or a quoted string. While you can use a single - instead of --, there are
some corner cases when dealing with Boolean flags. I would recommend
using -- in all cases.

You can find the flag package documentation here: https://pkg.go.dev/flag.

Let's show a flag in action:

var endpoint = flag.String(

 "endpoint",

 "myserver.aws.com",

 "The server this app will contact",

)

This code does the following:

Defines an endpoint variable that stores the flag

Uses a String flag

Defines the flag as endpoint

Sets the flag's default value as myserver.aws.com

Sets the flag's description

https://pkg.go.dev/flag

If we don't pass --endpoint, the code will use the default value. To have our
program read the value, we simply do the following:

func main() {

 flag.Parse()

 fmt.Println("server endpoint is: ", *endpoint)

}

IMPORTANT NOTE
flag.String() returns *string, hence *endpoint above.

flag.Parse() is crucial to making your flags available in your application.
This should only be called inside your main() package.

PRO TIP
A best practice in Go is to never define flags outside your main package. Simply pass the

values as function arguments or in object constructors.

flag also defines a few other flag functions other than String():

Bool() for capturing bool

Int() for capturing int

Int64() for capturing int64

Uint() for capturing uint

Uint64() for capturing uint64

Float64() for capturing float64

Duration() for capturing time.Duration, such as 3m10s

Now that we have seen the basic types, let's talk about custom flag types.

Custom flags

Sometimes, we want to take values and put them in types that aren't defined
in the flag package.

To use a custom flag, you must define a type that implements the
flag.Value interface, defined as the following:

type Value interface {

 String() string

 Set(string) error

}

Next, we are going to borrow an example from Godoc that shows a custom
value called URLValue, which handles flags that represent URLs, and store it
in our standard *url.URL type:

type URLValue struct {

 URL *url.URL

}

func (v URLValue) String() string {

 if v.URL != nil {

 return v.URL.String()

 }

 return ""

}

func (v URLValue) Set(s string) error {

 if u, err := url.Parse(s); err != nil {

 return err

 } else {

 *v.URL = *u

 }

 return nil

}

var u = &url.URL{}

func init() {

 flag.Var(&URLValue{u}, "url", "URL to parse")

}

func main() {

 flag.Parse()

 if reflect.ValueOf(*u).IsZero() {

 panic("did not pass an URL")

 }

 fmt.Printf(`{scheme: %q, host: %q, path: %q}`,

 u.Scheme, u.Host, u.Path)

}

This code does the following:

Defines a flag.Value type called URLValue

Creates a flag called -url that reads in a valid URL

Uses the URLValue wrapper to store the URL in a *url.URL variable

Uses the reflect package to determine whether struct is empty

By defining a Set() method on a type, as we did previously, you can read in
any custom value.

Now that we have our flag types down, let's look at some basic error
handling.

Basic flag error handling

When we enter flags that are not compatible or have a bad value, often we
want the program to print out the bad flag and the flag values.

This can be accomplished with the PrintDefaults() option. Here's an
example:

var (

 useProd = flag.Bool("prod", true, "Use a production endpoint")

 useDev = flag.Bool("dev", false, "Use a development endpoint")

 help = flag.Bool("help", false, "Display help text")

)

func main() {

 flag.Parse()

 if *help {

 flag.PrintDefaults()

 return

 }

 switch {

 case *useProd && *useDev:

 log.Println("Error: --prod and --dev cannot both be set")

 flag.PrintDefaults()

 os.Exit(1)

 case !(*useProd || *useDev):

 log.Println("Error: either --prod or --dev must be set")

 flag.PrintDefaults()

 os.Exit(1)

 }

}

This code does the following:

Defines a --help flag that just prints our defaults if set

Defines two other flags, --prod and --dev

If --prod and --dev are set, prints out an error message and the default
flag values

If neither are set, puts out an error message and the defaults

Here is an example of the output:

Error: --prod and --dev cannot both be set

 -dev

 Use a development endpoint (default false)

 -prod

 Use a production endpoint (default true)

This code illustrates how we can have flags with valid default values, but if
the values are changed to cause an error, we can detect and handle the error.
And in the spirit of good command-line tools, we provide --help to allow
users to discover the flags they can use.

Shorthand flags

In the previous example, we had a --help flag. But often, you may want to
offer a shorthand such as -h for the user to use. These need to have the same
default values and both need to set the same variable, so they cannot have
two separate values.

We can use the flag.[Type]Var() calls to help us accomplish this:

var (

 useProd = flag.Bool("prod", true,

 "Use a production endpoint")

 useDev = flag.Bool("dev", false,

 "Use a development endpoint")

 help = new(bool)

)

func init() {

 flag.BoolVar(help, "help", false, "Display help text")

 flag.BoolVar(help, "h", false,

 "Display help text (shorthand)")

}

Here, we store the results of --help and --h in our help variable. We use
init() to do the setup, as BoolVar() does not return a variable; therefore, it
cannot be used in a var() statement.

Now that we know how a shorthand flag works, let's have a look at non-flag
arguments.

Accessing non-flag arguments

Arguments in Go are read in a few ways. You can read the raw arguments
using os.Args, which will also include all the flags. This is great when no
flags are used.

When using flags, flag.Args() can be used to retrieve only the non-flag
arguments. If we want to send a list of authors to a development server and
retrieve QOTDs for each author, the command might look like this:

qotd --dev "abraham lincoln" "martin king" "mark twain"

In this list, we use a --dev flag to indicate that we want to use the
development server. Following our flag, we have a list of arguments. Let's
retrieve those:

func main() {

 flag.Parse()

 authors := flag.Args

 if len(authors) == 0 {

 log.Println("did not pass any authors")

 os.Exit(1)

 }

 ...

In this code, we do the following:

Retrieve the non-flag arguments using flag.Args().

Test that we received at least one author or exit with an error.

We have seen how to retrieve input that comes as arguments or flags. This
can be used to define how to contact a server or what files to open. Let's
look at receiving input from a stream.

Retrieving input from STDIN

Most applications that are written today in the DevOps community tend to
revolve around flags and arguments, as seen previously. One of the less
common methods of input that DevOps people use daily is piping input into
a program.

Tools such as cat, xargs, sed, awk, and grep allow you to pipe the output of
one tool into the input of the next to accomplish a task. A simple example
might be just looking for lines in a file we retrieved from the web that
contains the word error:

wget http://server/log | grep -i "error" > only_errors.txt

Programs such as cat read input from STDIN when no file has been
specified. Let's duplicate that here for a program that looks for the word
error on any input line and prints it out:

var errRE = regexp.MustCompile(`(?i)error`)

func main() {

 var s *bufio.Scanner

 switch len(os.Args) {

 case 1:

 log.Println("No file specified, using STDIN")

 s = bufio.NewScanner(os.Stdin)

 case 2:

 f, err := os.Open(os.Args[1])

 if err != nil {

 log.Println(err)

 os.Exit(1)

 }

 s = bufio.NewScanner(f)

 default:

 log.Println("too many arguments provided")

 os.Exit(1)

 }

 for s.Scan() {

 line := s.Bytes()

 if errRE.Match(line) {

 fmt.Printf("%s\n", line)

 }

 }

 if err := s.Err(); err != nil {

 log.Println("Error: ", err)

 os.Exit(1)

 }

}

This code does the following:

Compiles a regex using the regexp package to look for a line containing
error – the match is case-insensitive.

Uses os.Args() to read our argument list. We use this instead of
flag.Args(), as we haven't defined any flags.

Uses os.Stdin if we have a single argument (the program name), which
is an io.Reader that we wrap in a bufio.Scanner.

Opens the file if we have a file argument and wraps the io.Reader in a
bufio.Scanner object.

Returns an error if we have more arguments.

Reads input line by line and prints to os.Stdout every line containing
the word error.

Checks whether we had an input error – io.EOF is not considered an
error and won't trip the if statement.

You can find this code in the repository
https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/7/filter_errors/main.go.

Using this code compiled as filter_errors, we can use this to scan wget
input (or any piped input) for lines containing the word error and then use
grep to filter for a particular error code such as 401 (unauthorized):

wget http://server/log | filter_errors | grep 401

Or we can search a log file in the same way:

filter_errors log.txt | grep 401

This is a simplistic example that can easily be achieved with existing tools,
but this gives a demonstration of how to build similar tooling.

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/7/filter_errors/main.go

In this section, we have looked at how to read different input from the
command line in the form of flags and arguments. We looked at shorthand
flags that share state with long-form flags. You saw how to create custom
types to use as flags. And finally, we looked at how to successfully use
STDIN to read input that is sent via a pipe.

Next, we will look at how to use Cobra, a third-party package, to create
more sophisticated command-line applications.

Using Cobra for advanced CLI
applications
Cobra is a set of packages that allows a developer to create more complex
CLI applications. This becomes more useful than just the standard flag
package when the complexity of an application causes a list of flags to
become numerous.

In this section, we will talk about how to use Cobra to create structured CLI
applications that are friendly to developers to add features and allow users
to understand what is available in an application.

A few features that Cobra provides are as follows:

Nested subcommands

Command suggestions

Aliases for commands so that you can make changes without breaking
users

Generation of help text from flags and commands

Generation of autocompletion for various shells

Man page creation

This section will borrow heavily from the Cobra documentation, which you
can find here: https://github.com/spf13/cobra/blob/master/user_guide.md.

Code organization

To make effective use of Cobra and make it easy for developers to
understand where to add and change commands, Cobra suggests the
following structure:

appName/

 cmd/

 add.go

 your.go

 commands.go

 here.go

 main.go

This structure has your main main.go executable at the top-level directory
and all of your commands under cmd/.

The main file for a Cobra application is primarily used to simply initialize
Cobra and let it perform command executions. The file will look like this:

package main

import (

 "{pathToYourApp}/cmd"

https://github.com/spf13/cobra/blob/master/user_guide.md

)

func main() {

 cmd.Execute()

}

Next, we will look at using the Cobra generator application to generate
boilerplate code.

The optional Cobra generator

Cobra provides an application that can generate boilerplate code for our
application. To get started with the generator, we will create a configuration
file for our application in our root directory called ~/.cobra.yaml:

author: John Doak myemail@somedomain.com

year: 2021

license: MIT

This will handle printing our MIT license. You can use any of these values
for the following built-in licenses:

GPLv2

GPLv3

LGPL

AGPL

2-Clause BSD

3-Clause BSD

If you need a license not found here, instructions on how to provide a
custom license can be found here: https://github.com/spf13/cobra-
cli/blob/main/README.md#configuring-the-cobra-generator.

By default, Cobra will use this configuration file from your home directory.
If you need a different license, put the configuration in your repository and
use cobra --config="config/location.yaml to use the alternate
configuration file.

To download Cobra and build with the Cobra generator, type the following
on your command line:

go get github.com/spf13/cobra/cobra

go install github.com/spf13/cobra/cobra

Now, to initialize the application, make sure that you are in the new
application's root directory and do the following:

cobra init --pkg-name [repo path]

IMPORTANT NOTE
[repo path] will be something such as github.com/spf13/newApp.

Let's create a few commands for our application:

cobra add serve

cobra add config

cobra add create -p 'configCmd'

This will deliver us the following:

app/

 cmd/

 serve.go

https://github.com/spf13/cobra-cli/blob/main/README.md#configuring-the-cobra-generator

 config.go

 create.go

 main.go

IMPORTANT NOTE
You are required to use camelCase for command names. Not doing this will cause you to
encounter errors.

The -p option for create is used to make it a subcommand of config. The
string that follows is the parent's name plus Cmd. All other add calls have -p
set to rootCmd.

After you go build the application, we can run it like so:

app

app serve

app config

app config create

app help serve

With the boilerplate now in place, we will only need to configure the
commands to execute.

The command package

In the cmd package that has been generated, you will find a file for each
command that can be executed. We will need to modify each file to give the
correct help text, use flags, and execute the command.

We will look at a generated cmd/get.go file for an application created with
the following commands:

cobra init --pkg-name [repo path]

cobra add get

This application will talk to the QOTD server that we created in Chapter 6,
Interacting with Remote Data Sources.

The generated cmd/get.go file will look similar to this:

var getCmd = &cobra.Command{

 Use: "get",

 Short: "A brief description of your command",

 Long: `A longer description that spans multiple lines and

likely contains examples and usage of using your command.`,

 Run: func(cmd *cobra.Command, args []string) {

 fmt.Println("get called")

 },

}

func init() {

 rootCmd.AddCommand(getCmd)

}

This code does the following:

Creates a variable called serveCmd:

Variable name is based on the command name plus Cmd.

Use is the argument name for the command line.

Short is the brief description.

Long is a longer description with examples.

Run is the entry point for the code you want to execute.

Defines init(), which does the following:

Adds this command to the rootCmd object.

Let's use this to write our QOTD CLI:

 ...

 Run: func(cmd *cobra.Command, args []string) {

 const devAddr = "127.0.0.1:3450"

 fs := cmd.Flags()

 addr := mustString(fs, "addr")

 if mustBool(fs, "dev") {

 addr = devAddr

 }

 c, err := client.New(addr)

 if err != nil {

 fmt.Println("error: ", err)

 os.Exit(1)

 }

 a, q, err := c.QOTD(cmd.Context(), mustString(fs,

"author"))

 if err != nil {

 fmt.Println("error: ", err)

 os.Exit(1)

 }

 switch {

 case mustBool(fs, "json"):

 b, err := json.Marshal(

 struct{

 Author string

 Quote string

 }{a, q},

)

 if err != nil {

 panic(err)

 }

 fmt.Printf("%s\n", b)

 default:

 fmt.Println("Author: ", a)

 fmt.Println("Quote: ", q)

 }

 },

}

This code does the following:

Sets up an addr variable to hold our server address:

If --dev is passed, it sets addr to devAddr.

Otherwise, it uses the --addr flag's value.

--addr defaults to 127.0.0.1:80.

Creates a new client for our QOTD server

Calls the QOTD server:

Uses Context passed to *cobra.Command

Uses the --author flag value, which defaults to an empty string

Uses a --json flag to determine whether the output should be in JSON:

If JSON, it outputs an inline-defined struct as JSON.

Otherwise, it just pretty prints it to the screen.

IMPORTANT NOTE
You will see the mustBool() and mustString() functions. These simply

return the value from the flag name that is passed. If the flag isn't defined, it
panics. This removes a lot of ugly code for something that must always work
for the CLI application to be valid. These functions are in the repository
version.

The flags that you see are not from the standard library flag package.

Instead, this package uses flag types from https://github.com/spf13/pflag.
This package has more built-in types and methods than the standard flag

package.

Now, we need to define the flags that we are using in our Run function:

func init() {

 rootCmd.AddCommand(getCmd)

 getCmd.Flags().BoolP("dev", "d", false,

 "Uses the dev server instead of prod")

 getCmd.Flags().String("addr", "127.0.0.1:80",

 "Set the QOTD server to use,

https://github.com/spf13/pflag

 defaults to production")

 getCmd.Flags().StringP("author", "a", "",

 "Specify the author to

 get a quote for")

 getCmd.Flags().Bool("json", false,

 "Output is in JSON format")

}

This code does the following:

Adds a flag called --dev that can be shortened to -d and defaults to
false

Adds a flag called --addr that defaults to "127.0.0.1:80"

Adds a flag called --author that can be shortened to -a

Adds a flag called --json that defaults to false

IMPORTANT NOTE
Methods followed by P, such as BoolP(), define shortened flags as well as the long

flag names.

The flags we defined are only available when the get command is invoked.
If we create subcommands on get, these will only be available on get with
no sub-commands defined.

To add flags that work on all subcommands, use .PersistentFlags()
instead of .Flags().

The code for this client can be found in the repository here:
https://github.com/PacktPublishing/Go-for-

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/7/cobra/app/

DevOps/tree/rev0/chapter/7/cobra/app/.

Now, we can run our app and call this command. In these examples, you
will need to run the QOTD server from the gRPC chapter, like so:

$ go run qotd.go --addr=127.0.0.1:3560

$ go run main.go get --addr=127.0.0.1:3560 --author="Eleanor

Roosevelt" –json

This runs our application using the server at the 127.0.0.1:3560 address
and requests a quote from Eleanor Roosevelt, with output in JSON format:

{"Author":"Eleanor Roosevelt","Quote":"The future belongs to

those who believe in the beauty of their dreams"}

This next example gets a random quote from the server at address
127.0.0.1:3560:

$ go run main.go get --addr=127.0.0.1:3560

Author: Mark Twain

Quote: Golf is a good walk spoiled

In this section, we have learned what the Cobra package is, how to use the
Cobra generator tool to bootstrap a CLI application, and finally, how to
build commands for your application using this package.

Next, we are going to look at handling signals to do cleanup before exiting
your applications.

Handling OS signals
When writing CLI applications, there are occasions when a developer wants
to handle OS signals. The most common example is a user trying to exit a

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/7/cobra/app/

program, usually through a keyboard shortcut.

In these cases, you may want to do some file cleanup before exiting or
cancel a call you made to a remote system.

In this section, we will talk about how you can capture and respond to these
events to make your applications more robust.

Capturing an OS signal

Go deals with two types of OS signals:

Synchronous

Asynchronous

Synchronous signals generally revolve around program errors. Go treats
these as runtime panics, and therefore, interception of these can be handled
with a defer statement.

There are different asynchronous signals, depending on the platform, but for
a Go programmer, the most relevant are as follows:

SIGHUP: The connected terminal disconnected.

SIGTERM: Please quit and do cleanup (generated from a program).

SIGINT: The same as SIGTERM (sent from the terminal).

SIGQUIT: The same as SIGTERM plus a core dump (sent from the
terminal).

SIGKILL: The program must quit; this signal cannot be captured.

In situations where these arise, it can be useful to intercept these signals so
that you can cancel ongoing operations and do a cleanup before exiting. It
should be noted that SIGKILL cannot be intercepted, and SIGHUP is simply an
indication that a process has lost its terminal, not necessarily that it was
canceled. This could be because it was moved to the background or another
similar event.

To capture a signal, we can use the os/signal package. This package allows
a program to receive notifications of a signal from an OS and respond. Here
is a simple example:

signals := make(chan os.Signal, 1)

signal.Notify(

 signals,

 syscall.SIGINT,

 syscall.SIGTERM,

 syscall.SIGQUIT,

)

go func() {

 switch <-signals {

 case syscall.SIGINT, syscall.SIGTERM:

 cleanup()

 os.Exit(1)

 case syscall.SIGQUIT:

 cleanup()

 panic("SIGQUIT called")

 }

}()

This code does the following:

Creates a channel, signals, on which to receive signals

Subscribes to signals of the SIGINT, SIGTERM, and SIGQUIT types

Uses a goroutine to handle incoming signals, which does the following:

Calls the cleanup() function to handle program cleanup

Exits with the 1 code on SIGINT and SIGTERM

Panics, which gives a basic core dump on SIGQUIT

Signal-handling code should be done in your main package. The cleanup()
function should contain function calls that handle outstanding items, such as
remote call cancellations and file cleanup.

IMPORTANT NOTE
You can control the amount of data and generation method of a core dump using an
environmental variable, GOTRACEBACK. You can read about it here:

https://pkg.go.dev/runtime#hdr-Environment_Variables.

Using Context to cancel

The key method in Go to cause operations to stop processing is to use the
context cancellation feature of Go's context.Context object. This object
was discussed in Chapter 2, Go Language Essentials, if you need a
refresher.

https://pkg.go.dev/runtime#hdr-Environment_Variables

By simply creating a Context object with cancellation in main() and passing
it to all function calls, we can effectively cancel all ongoing work. This can
be handy when we want to stop processing and do cleanup because a user
hits Ctrl + C.

We are going to show an advanced signal handling method on a program
that does the following:

Creates a new temporary file every 1 second for 30 seconds

Cleans up files if the program is canceled

Let's start by creating a function to handle our signals:

func handleSignal(cancel context.CancelFunc) chan os.Signal {

 out := make(chan os.Signal, 1)

 notify := make(chan os.Signal, 10)

 signal.Notify(

 notify,

 syscall.SIGINT,

 syscall.SIGTERM,

 syscall.SIGQUIT,

)

 go func() {

 defer close(out)

 for {

 sig := <-notify

 switch sig {

 case syscall.SIGINT, syscall.SIGTERM,

syscall.SIGQUIT:

 cancel()

 out <- sig

 return

 default:

 log.Println("unhandled signal: ",

sig)

 }

 }

 }()

 return out

}

This code does the following:

Creates a new function called handleSignal()

Has an argument called cancel, which is used to signal a function chain
to stop processing

Creates an out channel that we use to return with the signal received

Creates a notify channel to receive signal notifications

Creates a goroutine to receive signals:

If the signal is for exiting, call cancel().

Return the signal that told us to exit.

If it is some other signal, just log it.

Now, let's create a function that creates our files:

func createFiles(ctx context.Context, tmpFiles string) error {

 for i := 0; i < 30; i++ {

 if err := ctx.Err(); err != nil {

 return ctx.Err()

 }

 _, err := os.Create(filepath.Join(tmpFiles,

strconv.Itoa(i)))

 if err != nil {

 return err

 }

 fmt.Println("Created file: ", i)

 time.Sleep(1 * time.Second)

 }

 return nil

}

This code does the following:

Loops 30 times, which does the following:

Checks whether our ctx is canceled

If so, returns the error

Otherwise, creates a file in tmpFiles

Sleeps for 1 second between file creations

This code will create files in tmpFiles named from 0 to 29 unless there is a
problem writing the file or Context is canceled.

Now, we need some code to clean up the files if we receive a quit signal. If
we don't, the files are left alone:

func cleanup(tmpFiles string) {

 if err := os.RemoveAll(tmpFiles); err != nil {

 fmt.Println("problem doing file cleanup: ", err)

 return

 }

 fmt.Println("cleanup done")

}

This code does the following:

Uses os.RemoveAll() to remove the files:

Also removes the temporary directory

Notifies the user that cleanup was done

Let's tie it all together with our main():

func main() {

 tmpFiles, err := os.MkdirTemp("", "myApp_*")

 if err != nil {

 log.Println("error creating temp file directory: ",

err)

 os.Exit(1)

 }

 fmt.Println("temp files located at: ", tmpFiles)

 ctx, cancel := context.WithCancel(context.Background())

 recvSig := handleSignal(cancel)

 if err := createFiles(ctx, tmpFiles); err != nil {

 cleanup(tmpFiles)

 select {

 case sig := <-recvSig:

 if sig == syscall.SIGQUIT {

 panic("SIGQUIT called")

 }

 default:

 // Prevents waiting on a

 // signal if none exists.

 }

 log.Println("error: ", err)

 os.Exit(1)

 }

 fmt.Println("Done")

}

This code does the following:

Creates a temporary file directory

Creates a root Context object, ctx:

ctx can be canceled with cancel().

Calls our handleSignal() to handle any signal to quit

Executes our createFiles() function:

If we have an error, we call cleanup().

After cleanup, we see whether we received a signal as opposed
to just an error.

If it is a signal and it is SIGQUIT, we call panic(). This is
because SIGQUIT should core-dump by definition.

If it was just an error, print the error and return an error code.

The full code for this can be found in the repository here:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/7/signals.

IMPORTANT NOTE
The code must be built with go build and run as a binary. It cannot be run with go run,

as the go binary that forks our program will intercept the signal before our program can.

Multiple types of core dumps can be created in Go, controlled by an environmental variable.
This is controlled by GOTRACEBACK. You can read about it here:

https://pkg.go.dev/runtime#hdr-Environment_Variables.

Cancellation with Cobra
When Cobra was initially created, the context package did not exist. In
2020, the program was patched to allow the passing of a Context object into
cobra.Command. But unfortunately, the Cobra generator was not updated to
generate the necessary boilerplate.

To add signal handling as we did previously, we simply need to make a
couple of modifications – first, to the main.go file:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/7/signals
https://pkg.go.dev/runtime#hdr-Environment_Variables

func main() {

ctx, cancel := context.WithCancel(context.Background())

var sigCh chan os.Signal

go func() {

handleSignal(ctx, cancel)

}()

cmd.Execute(ctx)

cancel()

if sig := <-sigCh; sig == syscall.SIGQUIT {

panic("SIGQUIT")

}

}

We will also need to modify handleSignal(). You can see those changes
here: https://go.dev/play/p/F4SdN-xC-V_L

Finally, you must change the cmd/root.go file like so:

func Execute(ctx context.Context) {

 cobra.CheckErr(rootCmd.ExecuteContext(ctx))

}

We now have signal handling. When writing our Run function, we can use
cmd.Context() to retrieve the Context object and look for cancelation.
Case study – a lack of cancellation leads to a
death spiral
One of the early Google systems to help automate the network was a system
called Chipmunk. Chipmunk contained authoritative data on the network
and would generate router configurations from that data.

https://go.dev/play/p/F4SdN-xC-V_L

Like most software, Chipmunk started off working fast and saving a lot of
time. As the network continued its yearly tenfold growth, the limits of its
design and language choice began to show.

Chipmunk was built on Django and Python and was not designed for
horizontal scaling. As the system became busy, configuration requests
would start to take 30 minutes or longer. Timers for these requests would
have limits of no more than 30 minutes.

The design had a fatal flaw when generation approached these limits – if a
request was canceled, the cancellation was not signaled to the running
configuration generator.

This meant that if generation took 25 minutes but was canceled 1 minute in,
the generator would spend the next 24 minutes working, with no one to
receive the work.

When a call reached the time limit, the callers would time out and retry. But
the generator was still working on the previous call. This would lead to a
cascade failure, as multiple compute-heavy calculations were running, some
of which no longer had a receiver. This would push the new call over the
time limit, as the Python Global Interpreter Lock (GIL
https://wiki.python.org/moin/GlobalInterpreterLock) prevents true multi-
threading and each call was doubling CPU usage.

One of the keys to dealing with this type of failure scenario is being able to
cancel jobs that are no longer needed. This is why it is so important to pipe
a context.Context object throughout a function call chain and look for
cancellation at logical points. This can greatly reduce the load on a system

https://wiki.python.org/moin/GlobalInterpreterLock

that reaches a threshold and reduce the damage of Distributed Denial of
Service (DDoS) attacks.

This section has looked at how a program can intercept OS signals and
respond to those signals. It has provided an example of using Context to
handle canceling executions that can be used in any application. We have
discussed how we can integrate that into programs generated with the Cobra
generator.

Summary
This chapter has given you the skills to write basic and advanced command-
line applications. We discussed how you can use the flag package and os
package to receive signals from the user in the form of flags and arguments.
We also discussed how to read data from os.Stdin, which allows you to
string multiple executables into a chain for processing.

We have discussed more advanced applications, namely the Cobra package
and its accompanying generator binary, to build advanced command-line
tooling with help text, shortcuts, and sub-commands.

Finally, we have talked about dealing with signals and providing cleanup on
cancellation from these signals. This included a case study on why
cancellation can be critical.

The skills you have learned here will be critical in writing tooling in the
future, from interacting with local files to interacting with services.

In the next chapter, we will talk about how to automate interactions with the
command line on your local device or remote devices.

Chapter 8: Automating Command-Line
Tasks
Most jobs start out as some type of manual operation that an engineer
performs. Over time, these should become documented procedures that
have the best practice for doing some operation, and finally, that job should
become the work of software that takes those best practices and runs them
with the efficiency that only a machine can provide.

One of the core missions of a development-operations (DevOps) engineer
is automating these tasks. This can be from the mundane, such as running a
few commands, to changing the configuration on thousands of machines.

Automating systems often requires manipulating a system via its command
line and calling other tools native to the operating system (OS). This can
include using RPM Package Manager (RPM)/Debian Package (dpkg)
for installing packages, grabbing stats for a system using common utilities,
or configuring network routers.

A DevOps engineer may want to do this locally to automate a series of
steps normally done manually (such as automating Kubernetes's kubectl
tool) or remotely execute commands on hundreds of machines at the same
time. This chapter will cover how these can be accomplished using Go.

In this chapter, you will learn how to execute command-line tools on the
local machine to accomplish automation goals. To access a remote machine,
we will learn about how to use Secure Shell (SSH) and Expect packages.
But knowing how to call executables on machines is just one part of the

skillset. We will also talk about the anatomy of a change and how to do
concurrent changes safely.

We will cover the following topics in this chapter:

Using os/exec to automate local changes

Using SSH in Go to automate remote changes

Designing safe, concurrent change automations

Writing a system agent

Technical requirements
This chapter requires that you have the latest Go tooling installed and
access to a Linux system for running any service binaries we create. All
tooling in this chapter will be geared toward controlling a Linux system, as
this is the most popular cloud computing platform.

For the remote machine access requirements, the remote Linux system will
need to be running SSH to allow for remote connectivity.

To use the system agent in the final part of this chapter, you will also need
to use a Linux distribution that has systemd installed. Most modern
distributions use systemd.

Code written in this chapter can be found here:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/8

Using os/exec to automate local changes

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/8

Automating the execution of tools that are local to the machine can provide
a series of benefits to end users. The first of these is that it can reduce the
toil that your team experiences. One of the primary goals for DevOps and
Site Reliability Engineers (SRE) is to remove repetitive, manual
processes. That time can be put to better use by reading a good book (such
as this one), organizing a sock drawer, or working on the next problem. The
second benefit is to remove manual mistakes from a process. It is easy to
type the wrong thing or copy and paste something incorrectly. And finally,
it is the core underpinning of operating at scale. Automating locally can be
combined with other techniques detailed in the book to make changes at a
large scale.

The automation life cycle generally comes in three stages, moving from
manually doing work to automation, as follows:

1. The first stage revolves around the manual execution of commands by
an experienced engineer. While this is not automation itself, this starts a
cycle that ends with some type of automation.

2. The second stage usually revolves around writing those stages down in
order to document the procedure, to allow more than one person to
share the workload. This might be a method of procedure (MOP)
document, though more commonly, it is a bunch of notes that you spend
an hour looking for. We highly recommend a central place to store these
such as a wiki or markdown in a git repository.

3. The third stage is usually a script to make the task repeatable.

Once a company gets larger, these stages are usually condensed into
developing a service to handle the task in a fully automated way when a

need for it is identified.

A good example of this might be deploying pods on a Kubernetes cluster or
adding a new pod configuration to your Kubernetes config. These are
driven by calling command-line applications such as kubectl and git.
These types of jobs start manually; eventually, they are documented and
finally automated in some way. At some point, this might move into a
continuous integration/continuous deployment (CI/CD) system that
handles this for you.

The key to automating tooling locally is the os/exec package. This package
allows for the execution of other tools and control of their
STDIN/STDOUT/STDERR streams.

Let's take a closer look.

Determining the availabil ity of essential
tools

When writing an application that calls other applications on a system, it is
critical to determine if the tools needed are available on the system before
you start executing commands. Nothing is worse than being partway
through a procedure to find that a critical tool is missing.

The exec package provides the LookPath() function to help determine if a
binary exists. If only the name of the binary is provided, the PATH
environmental variable is consulted and those paths will be searched for the
binary. If a / is in the name, only that path will be consulted.

Let's say we are writing a tool that needs both kubectl and git to be
installed in order to work. We can test if those tools are available in our
PATH variable by executing the following code:

const (

 kubectl = "kubectl"

 git = "git"

)

_, err := exec.LookPath(kubectl)

if err != nil {

 return fmt.Errorf("cannot find kubectl in our PATH")

}

_, err := exec.LookPath(git)

if err != nil {

 return fmt.Errorf("cannot find git in our PATH")

}

This code does the following:

Defines constants for our binary names

Uses LookPath() to determine if these binaries exist in our PATH
variable

In this code, we simply return an error if we do not find the tool. There are
other options, such as attempting to install these tools with the local
package manager. Depending on the makeup of our fleet, we might want to
test which version is deployed and only proceed if we are at a compatible
version.

Let's look at using the exec.CommandContext type to call binaries.
Executing binaries with the exec package
The exec package allows us to execute a binary using the exec.Cmd type. To
create one of these, we can use the exec.CommandContext() constructor. This
takes in the name of the binary to execute and the arguments to the binary,
as illustrated in the following code snippet:

cmd := exec.CommandContext(ctx, kubectl, "apply", "-f", config)

This creates a command that will run the kubectl tool's apply function and
tell it to apply the configuration at the path stored in the config variable.

Does this command seem to have a familiar syntax? It should! kubectl is
written using Cobra from our last chapter!

We could execute this command using several different methods on cmd, as
follows:

.CombinedOutput(): Runs the command and returns the combined
output of STDOUT/STDERR.

.Output(): Runs the command and returns the output of STDOUT.

.Run(): Runs the program and waits for it to exit. It returns an error on
any issues.

.Start(): Runs the command but doesn't block. Used when you want to
interact with the command as it runs.

.CombinedOuput() and .Output() are the most common ways to start a
program. The output that a user sees in the terminal can often be both from

STDOUT and STDERR. Choosing which one of these to use depends on how
you want to respond to the program's output.

.Run() is used when you only need to know the exit status and do not
require any of the output.

There are two main reasons to use .Start(), as outlined here:

There is a need to respond on STDIN to output on STDOUT.

The program execution takes a while, and you want to output its content
to your screen, instead of waiting for the program to complete.

If you need to respond on STDIN to a program's output, using Google's
goexpect package (https://github.com/google/goexpect) or Netflix's go-
expect package (https://github.com/Netflix/go-expect) is probably a better
choice. These packages continue the proud tradition of porting the abilities
of the Tool Command Language (TCL) Expect extension
(https://en.wikipedia.org/wiki/Expect) to other languages.

Let's write a simple program that tests our ability to log in to hosts on a
subnet. We will use the ping utility and the ssh client programs to test
connectivity. We will be relying on your host to recognize your SSH key
(we are not using password authentication here, as that is more
complicated). Finally, we will use uname on the remote machine to
determine the OS. The code is illustrated in the following snippet:

func hostAlive(ctx context.Context, host net.IP) bool {

 cmd := exec.CommandContext(ctx, ping, "-c", "1", "-t", "2",

host.String())

 if err := cmd.Run(); err != nil {

https://github.com/google/goexpect
https://github.com/Netflix/go-expect
https://en.wikipedia.org/wiki/Expect

 return false

 }

 return true

}

NOTE
uname is a program found on Unix-like systems that will display information about the

current OS and the hardware it runs on. Only Linux and Darwin machines are likely to have
uname. As SSH is just a connection protocol, we may just get an error. Also, a given Linux

distribution might not have uname installed. There can be subtle differences between

versions of common utilities on similar platforms. Linux ping and OS X ping utilities share

some flags, but also have different flags. Windows often has completely different utilities for
accomplishing the same tasks. If you are trying to support all platforms with a tool that uses
exec, you will need either build constraints (https://pkg.go.dev/cmd/go#hdr-

Build_constraints) or to use the runtime package to run different utilities on different

platforms.

This code does the following:

Creates a *Cmd that pings a host

-c 1 sends a single Internet Control Message Protocol
(ICMP) packet.

-t 2 causes a timeout after 2 seconds.

Runs the command

If there is an error, the ping was unsuccessful.

Otherwise, the host responded to the ping.

https://pkg.go.dev/cmd/go#hdr-Build_constraints

Let's now use the ssh utility to send a command to be run on the remote
machine, as follows:

func runUname(ctx context.Context, host net.IP, user string)

(string, error) {

 if _, ok := ctx.Deadline(); !ok {

 var cancel context.CancelFunc

 ctx, cancel = context.WithTimeout(ctx,

5*time.Second)

 defer cancel()

 }

 login := fmt.Sprintf("%s@%s", user, host)

 cmd := exec.CommandContext(

 ctx,

 ssh,

 "-o StrictHostKeyChecking=no",

 "-o BatchMode=yes",

 login,

 "uname -a",

)

 out, err := cmd.CombinedOutput()

 if err != nil {

 return "", err

 }

 return string(out), nil

}

This code does the following:

Sets a timeout of 5 seconds, if ctx has none

Creates a user@host login line

Creates a *CMD that issues the command: ssh user@host "uname -a"

The StrictHostKeyChecking option automatically adds host
keys.

The BatchMode option prevents asking for passwords.

Runs the command and captures the output from STDOUT

If successful, it runs uname -a and returns the output.

The host must have the user's SSH key for this to work.

Password authentication requires either the sshpass
utility or an Expect package.

We need a type to store the data we gather. Let's create that, as follows:

type record struct{

 Host net.IP

 Reachable bool

 LoginSSH bool

 Uname string

}

Now, we need some code to take a channel containing Internet Protocol
(IP) addresses that need to be scanned. We want to do this in parallel, so we

will be using goroutines, as illustrated in the following code snippet:

func scanPrefixes(ipCh chan net.IP) chan record {

 ch := make(chan record, 1)

 go func() {

 defer close(ch)

 limit := make(chan struct{}, 100)

 wg := sync.WaitGroup{}

 for ip := range ipCh {

 limit <- struct{}{}

 wg.Add(1)

 go func(ip net.IP) {

 defer func() { <-limit }()

 defer wg.Done()

 ctx, cancel :=

context.WithTimeout(context.Background(), 3*time.Second))

 defer cancel()

 rec := record{Host: ip}

 if hostAlive(ctx, ip) {

 rec.Reachable = true

 }

 ch <- rec

 }(ip)

 }

 wg.Wait()

 }()

 return ch

}

This code does the following:

Takes in a channel of net.IP

Creates a channel to put records on

Spins off a goroutine to do all the scanning

Defers closure of our output channel

Loops through all IPs on the incoming channel

Uses the limit channel to limit 100 pings concurrently

Spins a goroutine for each ping

Decrements the limiter when we finish

Makes a timeout of 2 seconds for our ping

Calls our hostAlive() function

Outputs the result on our ch output channel

Waits for all pings to finish with WaitGroup

Returns the channel

We now have a function that will asynchronously ping hosts in parallel and
put the result on a channel.

Our ssh function has a similar function signature to scanPrefixes, as we
can see here:

func unamePrefixes(user string, recs chan record) chan record

For brevity, we are not going to include the code here, but you can see it in
the repository linked at the end of the exercise.

These are the big differences between scanPrefixes() and
unamePrefixes():

We receive a channel of record, the output of scanPrefixes().

If rec.Reachable is false, we simply put rec on the output channel
without adding OS information to the fields.

Otherwise, we call runUname() instead of hostAlive().

Now, let's set up our main() function, as follows:

func main() {

 _, err := exec.LookPath(ping)

 if err != nil {

 log.Fatal("cannot find ping in our PATH")

 }

 _, err := exec.LookPath(ssh)

 if err != nil {

 log.Fatal("cannot find ssh in our PATH")

 }

 if len(os.Args) != 2 {

 log.Fatal("error: only one argument allowed, the network

CIDR to scan")

 }

 ipCh, err := hosts(os.Args[1])

 if err != nil {

 log.Fatalf("error: CIDR address did not parse: %s",

err)

 }

 u, err := user.Current()

 if err != nil {

 log.Fatal(err)

 }

This code does the following:

Checks that our binaries exist in the path

Checks we have the correct number of arguments, which is 1

We check that len(os.Args) == 2 because the first argument is
the binary name.

Retrieves a channel of IPs in the network passed in the argument

The implementation of the hosts() function is not detailed
here, but you will find it in the repository.

Gets the current user's login name

Now, we need to scan our prefixes and concurrently process the results by
doing a login and retrieving the uname output, as follows:

 scanResults := scanPrefixes(ipCh)

 unameResults := unamePrefixes(u.Username, scanResults)

 for rec := range unameResults {

 b, _ := json.Marshal(rec)

 fmt.Printf("%s\n", b)

 }

}

This code does the following:

Sends scanPrefixes() a channel of IPs

Receives the results on scanResults

Sends the channel of results to unamePrefixes()

Prints the JavaScript Object Notation (JSON) results to STDOUT

The key to this code is the channel read in the for range loops in
scanPrefixes() and unamePrefixes(). When all IPs have been sent, ipCh
will be closed. That will stop our for range loop in scanPrefixes(), which
will cause its output channel to close. That causes unamePrefixes to see the
closure and close its output channel. This will in turn close our for rec :=
range unameResults loop and stop printing.

Using this chaining concurrency model, we will be scanning up to 100 IPs
while SSHing into a maximum of 100 hosts and printing the results to the
screen, all at the same time.

We have stored the output of uname -a in our record variable but in an
unparsed format. We could use a lexer/parser or regular expression (regex)
to parse that into a struct. If you need to use the output of an executed
binary, we recommend finding tools that can output in a structured format
such as JSON instead of parsing it yourself.

You can see this code at the following link:

https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/8/scanner
Notes on using the exec package
There are some things you should look out for when using exec. One of the
big ones is if the binary being invoked takes control of the terminal. ssh
does this, for example, to get a password from the user. We suppressed this
in our example, but when this happens, it bypasses the normal STDOUT
you are reading.

This happens when someone uses terminal mode. In those cases, you will
want to use goexpect or go-expect if you must deal with it. Generally, this
is something where you want to find alternatives. However, some software
and various routing equipment will implement menu-driven systems and
use terminal modes that cannot be avoided.

In this section, we have talked about automating the command line with the
exec package. You now have the skills to check for binaries on the system
and execute those binaries. You can check the error condition and retrieve
the output.

In the next section, we will talk about the basics of SSH in Go. While in
this section, we showed how you could use the ssh binary, in the next, we
will talk about using the ssh package to use SSH without the SSH library.
This is faster and also provides benefits over calling the binary.

NOTE
In general, always use a package instead of a binary when available. This keeps system
dependencies low and makes code more portable.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/8/scanner

Using SSH in Go to automate remote
changes
SSH is simply a network protocol that can be used to secure communication
between two hosts.

While most people think that the ssh binary allows you to connect from a
terminal on one host to a terminal on another host, that is only one use. SSH
can be used to secure connections for services such as Google Remote
Procedure Call (gRPC) or to tunnel graphical interfaces such as the X
Window System (X11).

In this section, we will talk about how you can use the SSH package
(https://pkg.go.dev/golang.org/x/crypto/ssh) for creating clients and servers.

Connecting to another system

The most basic use of SSH is to connect to another system and either send a
single command or invoke a shell and issue commands. SSH is simply a
transport mechanism, so there are many other uses of SSH such as
connection tunneling or wrapping remote procedure calls (RPCs). We will
not cover those here, as they are outside the use cases for general DevOps
work.

As with most connection technologies, the hardest part of connecting to
systems with an SSH client is resolving authentication. The most common
forms of SSH authentication are outlined here:

Username/password: Username/password is the most popular
implementation. It's the default and therefore the one that people tend to

https://pkg.go.dev/golang.org/x/crypto/ssh

use. With network equipment, sometimes this is the only way. With this
method, the password database may be on the local system, or the
system may pass the password hash to another system to validate.

Public key authentication: Public key authentication is where a user
creates a public/private key on their machine with an optional
passphrase. The server has the public key installed for a user and your
SSH client is set up to use the private key.

Challenge-response authentication: There are varying types of
challenge-response authentication for SSH. This is commonly used to
allow two-factor authentication (2FA) through devices such as
Yubikeys.

We will concentrate on using the first two methods and will assume that the
remote end will be using OpenSSH. While installations should move to
using 2FA, that setup is beyond what we can cover here.

We will be using Go's excellent SSH package:
http://golang.org/x/crypto/ssh.

The first thing that will be required is to set up our authentication method.
The initial method I will show here is username/password, as follows:

auth := ssh.Password("password")

That was simple enough.

NOTE
If you are writing a command-line application, it is not safe to retrieve a password using
flags or arguments. You also do not want to echo a password to the screen. The password
needs to come from a file only the current user has access to or by controlling the terminal.

http://golang.org/x/crypto/ssh

The SSH package has a terminal package (http://golang.org/x/crypto/ssh/terminal) that can
help:

fmt.Printf("SSH Passsword: ")

password, err := terminal.ReadPassword(int(os.Stdin.Fd()))

For the public key, it is only slightly more complicated, as illustrated here:

func publicKey(privateKeyFile string) (ssh.AuthMethod, error) {

 k, err := os.ReadFile(privateKeyFile)

 if err != nil {

 return nil, err

 }

 signer, err := ssh.ParsePrivateKey(k)

 if err != nil {

 return nil, err

 }

 return ssh.PublicKeys(signer), nil

}

This code does the following:

Reads our private key file

Parses our private key

Returns a public key authorization implementation of ssh.AuthMethod

We can now authorize by simply providing our private key to our program.
Many times your key is not stored locally but in a cloud service, such as
Microsoft Azure's Key Vault. In that case, you simply need to change
os.ReadFile() to use the cloud service.

http://golang.org/x/crypto/ssh/terminal

Now that we have our authorization sorted out, let's create an SSH config,
as follows:

config := &ssh.ClientConfig {

 User: user,

 Auth: []ssh.AuthMethod{auth},

 HostKeyCallback: ssh.InsecureIgnoreHostKey(),

 Timeout: 5 * time.Second,

}

This code does the following:

Creates a new *ssh.ClientConfig config

Uses the username is stored in the user variable

Supplies one AuthMethod, but you can use multiple
AuthMethod(s)

Ignores the host key

Sets a dial timeout of 5 seconds

IMPORTANT NOTE
Ignoring a host key with ssh.InsecureIgnoreHostKey() is not secure.

This can lead to a typo where you are sending information to a system
outside your control. That system could be masquerading as one of your
systems in the hope of getting you to type something in the terminal, such as
a password. When working in a production environment, it is critical not to
ignore the host key and store a valid list of host keys that can be checked.

Let's make a connection to a host, as follows:

conn, err := ssh.Dial("tcp", host, config)

if err != nil {

 fmt.Println("Error: could not dial host: ", err)

 os.Exit(1)

}

defer conn.Close()

Now that we have established an SSH connection, let's build a function to
run a simple command, as follows:

func combinedOutput(conn *ssh.Client, cmd string) (string, error) {

 sess, err := conn.NewSession()

 if err != nil {

 return "", err

 }

 defer sess.Close()

 b, err := sess.Output(cmd)

 if err != nil {

 return "", err

 }

 return string(b), nil

}

This code does the following:

Creates an SSH session

One session per command is required

Runs the command in the session and returns the output

This gets the STDOUT and STDERR in a single output

This code will let you issue commands against systems that are using
OpenSSH or similar SSH implementations. It is best practice to hold the
conn object open until you have issued all of the commands for a device.

You can see this code here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/8/ssh/client/remotecmd/remotecmd.go

This is great for cases when you can simply issue a command to the far end
and let it run. But what if the program requires some level of interaction?
When interfacing with routing platforms over SSH, you often require more
interaction.

When that need arises, Expect libraries are there to help. So, let's have a
look at one of the more popular ones, up next.
Using Expect for complicated interactions
expect packages provide the ability to deal with output from a command,
such as the following: would you like to continue[y/n].

The most popular package for using expect comes from Google. You can
find it here: https://github.com/google/goexpect.

Here's an example of an expect script to install the original TCL expect
tools on an Ubuntu host using the Advanced Packaging Tool (APT)
package manager. Note that this is not the best way to do this, but simply
gives an uncomplicated example.

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/8/ssh/client/remotecmd/remotecmd.go
https://github.com/google/goexpect

Let's start by configuring our expect client to use the SSH client, as
follows:

config := &ssh.ClientConfig {

 User: user,

 Auth: []ssh.AuthMethod{auth},

 HostKeyCallback: ssh.InsecureIgnoreHostKey(),

}

conn, err := ssh.Dial("tcp", host, config)

if err != nil {

 return err

}

e, _, err := expect.SpawnSSH(conn, 5 * time.Second)

if err != nil {

 return err

}

defer e.Close()

This code does the following:

Sets up an *ssh.ClientConfig config

Uses it to make a connection

Passes that connection to an expect client

Now we have an expect client logged in via SSH, let's make sure we have a
prompt, as follows:

var (

 promptRE = regexp.MustCompile(`\$ `)

 aptCont = regexp.MustCompile(`Do you want to continue\? \[Y/n\]

`)

 aptAtNewest = regexp.MustCompile(`is already the newest`)

)

_, _, err = e.Expect(promptRE, 10*time.Second)

if err != nil {

 return fmt.Errorf("did not get shell prompt")

}

This code does the following:

Compiles a $ regex to expect our prompt

Calls Expect() to wait for the prompt for up to 10 seconds

Now, let's send our command to install expect via the apt-get tool. We will
be using sudo to issue this command with root privileges. The code is
illustrated in the following snippet:

if err := e.Send("sudo apt-get install expect\n"); err != nil {

 return fmt.Errorf("error on send command: %s", err)

}

apt-get will either prompt us if it is OK to install or tell us it is already
installed. Let's handle those two cases, as follows:

f _, _, ecase, err := e.ExpectSwitchCase(

 []expect.Caser{

 &expect.Case{

 R: aptCont,

 T: expect.OK(),

 },

 &expect.Case{

 R: aptAtNewest,

 T: expect.OK(),

 },

 },

 10*time.Second,

)

if err != nil {

 return fmt.Errorf("apt-get install did not send what we

expected")

}

This code does the following:

Waits for either of these to be displayed:

Do you want to continue\? [Y/n]

is already the newest

If neither happens, it gives an error

ecase will contain the case type detailing which condition occurred

If we get the continue prompt, we need to send Y to the terminal by
executing the following code:

switch ecase{

case 0:

 if err := e.Send("Y\n"); err != nil {

 return err

 }

}

Finally, we need to just make sure we received the prompt again by
executing the following code:

_, _, err = e.Expect(promptRE, 10*time.Second)

if err != nil {

 return fmt.Errorf("did not get shell prompt")

}

return nil

You can see this code with a debug mode here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/8/ssh/client/expect/expect.go

This section has shown how you can spawn an SSH session in pure Go, use
it to send commands, and then retrieve the output. Finally, we looked at
how you can interact with an application using goexpect.

Now, we will show how you can use this knowledge to write tooling that
runs commands on multiple systems.

Designing safe, concurrent change
automations
So far, we have shown how to execute commands locally or remotely.

In the modern day, we often need to run sets of commands across multiple
systems to achieve some end state. Depending on your scale, you may want

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/8/ssh/client/expect/expect.go

to run a system such as Ansible or Jenkins to attempt to automate these
processes.

For some work, it is simpler to use Go directly to execute changes across a
set of systems. This allows the DevOps group to simply understand the Go
language and a small bit of code versus understanding the complexities of a
workflow system such as Ansible, which requires its own skillset, system
updates, and so on.

In this section, we are going to talk about the components of changing a set
of systems, a framework for achieving this, and an example application to
apply a set of changes.

Components of a change

When writing a system that makes a change, there are several types of
actions that must be dealt with. In broad terms, I define these as the
following:

Global preconditions: Global preconditions are a set of conditions that
need to be true to move forward. When doing network automation, this
would be things such as the packet loss on the network being under a
certain threshold. For devices, this might be that your services are in a
green state before proceeding. No one wants to push changes during a
problem.

Local preconditions: Local preconditions are the state of the individual
work unit (say, a server) that needs to be in a certain state to proceed.

Actions: Actions are operations that will mutate the state of a work unit.

Action validations: Checks that are done to validate an action was
successful.

Local postconditions: Local postconditions are checks that the work
unit is both in the configuration state you want and meets some state.
This might be that it is still reachable, possibly serving traffic or not
serving traffic, whatever the end state should be.

Global postconditions: Global postconditions are the state of
conditions after execution, usually similar to global preconditions.

Not every set of changes on multiple systems requires all these, but they
will at least need a subset of them.

Let's take a look at doing a rollout of jobs on a set of virtual machines
(VMs) in a single data center. For small shops that have a limited number of
machines, a setup such as this can be sufficient when you aren't large
enough to use something such as Kubernetes but can't fit in the limitations
of services such as Azure Functions or Amazon's Elastic Container
Service (ECS). Or, it could be that you are running on your own machines
and not in a cloud provider.

Writing a concurrent job

Let's tackle the actions we want to perform. We want to do the following:

Remove our job from a load balancer

Kill the job on the VM or server

Copy our new software to the server

Start our service

Check the service is reachable

Add the job back to the load balancer

In essence, this is what Kubernetes does for large-scale installations of
microservices. We will be talking about this in an upcoming chapter. But at
a small scale, it is seldom the best choice to take on the complexity of
running a Kubernetes cluster, even when the infrastructure is managed by a
cloud provider.

Let's define the overall structure of the code that executes our actions, as
follows:

type stateFn func(ctx context.Context) (stateFn, error)

type actions struct {

 ... // Some set of attributes

}

func (s *actions) run(ctx context.Context) (err error) {

 fn := s.rmBackend

 if s.failedState != nil {

 fn = s.failedState

 }

 s.started = true

 for {

 if ctx.Err() != nil {

 s.err = ctx.Err()

 return ctx.Err()

 }

 fn, err = fn(ctx)

 if err != nil {

 s.failedState = fn

 s.err = err

 return err

 }

 if fn == nil {

 return nil

 }

 }

}

func (a *actions) rmBackend(ctx context.Context) (stateFn, error)

{...}

func (a *actions) jobKill(ctx context.Context) (stateFn, error)

{...}

func (a *actions) cp(ctx context.Context) (stateFn, error) {...}

func (a *actions) jobStart(ctx context.Context) (stateFn, error)

{...}

func (a *actions) reachable(ctx context.Context) (stateFn, error)

{...}

func (a *actions) addBackend(ctx context.Context) (stateFn, error)

{...}

NOTE
Much of this is just a skeleton—we will implement these methods in a moment.

This code does the following:

Defines a stateFn type

If it returns an error, stop processing.

If it doesn't and returns a non-nil stateFn type, execute it.

If it returns a nil stateFn type and no error, we are done.

Defines an actions type

This is a state machine for actions on a server

Calling run() does the following:

Executes one stateFn type at a time until an error or
stateFn == nil

rmBackend(), jobKill(), cp(), and the rest are stateFn types
we will define.

.failedState is there to allow retrying a failed state when
using .run() more than once.

What we have is a simple state machine that will execute actions. This
moves us through all the states that are required to do this type of action on
a system.

Let's look at what a few of these stateFn types would look like when
implemented, as follows:

func (a *actions) rmBackend(ctx context.Context) (stateFn, error) {

 err := a.lb.RemoveBackend(ctx, a.config.Pattern, a.backend)

 if err != nil {

 return nil, fmt.Errorf("problem removing backend from pool:

%w", err)

 }

 return a.jobKill, nil

}

This code does the following:

Calls a client to our network load balancer to remove our server
endpoint

If successful, sends back jobKill as the next state to execute

If not successful, returns our error

s.lb.RemoveBackend() in the cloud might talk to a REST service that
informs it to remove our service endpoint. Or, in your own data center, it
might be a network load balancer that you log in to via an SSH client and
issue commands.

Once this completes, it tells run() to execute jobKill(). Let's explore what
that would look like, as follows:

func (a *actions) jobKill(ctx context.Context) (stateFn, error) {

 pids, err := a.findPIDs(ctx)

 if err != nil {

 return nil, fmt.Errorf("problem finding existing PIDs: %w",

err)

 }

 if len(pids) == 0 {

 return a.cp, nil

 }

 if err := a.killPIDs(ctx, pids, 15); err != nil {

 return nil, fmt.Errorf("failed to kill existing PIDs: %w",

err)

 }

 if err := a.waitForDeath(ctx, pids, 30*time.Second); err != nil

{

 if err := a.killPIDs(ctx, pids, 9); err != nil {

 return nil, fmt.Errorf("failed to kill existing PIDs:

%w", err)

 }

 if err := a.waitForDeath(ctx, pids, 10*time.Second); err !=

nil {

 return nil, fmt.Errorf("failed to kill existing PIDs

after -9: %w", err)

 }

 return a.cp, nil

 }

 return a.cp, nil

}

This code does the following:

Executes findPIDs()

This logs on to a machine via SSH and runs the pidof binary

Executes killPIDs()

This uses SSH to execute kill against our process

Uses signal 15 or TERM as a soft kill

Executes waitForDeath()

This uses SSH to wait for the process identifiers (PIDs) to exit

Waits up to 30 seconds

If successful, we return our next state, cp

If not, execute killPIDs()with signal 9 or KILL and execute
waitForDeath() again

If it fails, it returns an error

If successful, we return our next state, cp

This code is simply killing our jobs on the server before we copy our new
binary and start it.

The rest of the code will be in our repository (link provided further on in
this section). For now, assume we have written out the rest of these actions
for our state machine.

We now need something to run all our actions. We will create a workflow
struct with this basic structure:

type workflow struct {

 config *config

 lb *client.Client

 failures int32

 endState endState

 actions []*actions

}

This code does the following:

Has *config that will detail the settings for our rollout

Creates a connection to our load balancer

Tracks the number of failures we have had

Outputs the final end state, which is an enumerator in the file

Creates a list of all our actions

There are two phases to a typical rollout, as follows:

Canary: The canary stage is where you test a few samples to make sure
the rollout is working. You want to do this one sample at a time and
wait some amount of time before continuing to the next canary. This
allows administrators to have some time to stop potential problems that
the rollout hasn't detected.

General: The general rollout occurs after the canary stage. This usually
sets some amount of concurrency and a maximum number of failures.
Depending on the size of your environment, failures may be common
due to an ever-changing environment. This may mean you tolerate a
certain number of failures and continue to retry those failures until you
have success, but if the failures reach some maximum level, you stop.

NOTE
Depending on the environment, you can have more sophisticated staging, but for
smaller environments, this usually suffices. When doing concurrent rollouts, failures
can exceed your maximum failure setting by large amounts, depending on the setting.
If we have a maximum of failures and our concurrency is set to 5, it is possible to have

between 5 and 9 failures happen. Keep this in mind when you deal with concurrent
rollouts.

The main method on the workflow that handles the rollouts is called run().
Its job is to run our pre-checks, then run our canaries, and finally run the
main jobs at some concurrency level. We should exit if we have too many
problems. Let's have a look, as follows:

func (w *workflow) run(ctx context.Context) error {

 preCtx, cancel := context.WithTimeout(ctx, 30*time.Second)

 if err := w.checkLBState(preCtx); err != nil {

 w.endState = esPreconditionFailure

 return fmt.Errorf("checkLBState precondition fail: %s",

err)

 }

 cancel()

This part of the code does the following:

Runs our checkLBState() precondition code

If it fails, records an esPreconditionFailure end state

NOTE
You may notice a cancel() function that is created when we create a Context object

with a timeout. This can be used to cancel our Context object at any time. It is best

practice to cancel a Context object that has a timeout immediately after use to exit a

Go routine that is running in the background, counting down to the timeout.

This is run before we make any changes to the system. We don't want to
make changes when things are already unhealthy.

Next, we need to run our canaries, as follows:

for i := 0; i < len(w.actions) &&

int32(i) < w.config.CanaryNum; i++ {

 color.Green("Running canary on: %s", w.actions[i].endpoint)

 ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)

 err := w.actions[i].run(ctx)

 cancel()

 if err != nil {

 w.endState = esCanaryFailure

 return fmt.Errorf("canary failure on endpoint(%s): %w\n",

w.actions[i].endpoint, err)

 }

 color.Yellow("Sleeping after canary for 1 minutes")

 time.Sleep(1 * time.Minute)

}

This code does the following:

Runs some defined number of canaries

Runs them one at a time

Sleeps for 1 minute in between

These settings would be configurable in the config file that will be defined.
The sleep time could be made configurable to what makes sense for the
service, to allow you to respond in case of problems that aren't detected in
the workflow. You could even define a sleep time between all canaries and
general rollout.

Now, we need to roll out at some concurrency level while checking for
some maximum number of failures. Let's check that out, as follows:

limit := make(chan struct{}, w.config.Concurrency)

wg := sync.WaitGroup{}

for i := w.config.CanaryNum; int(i) < len(w.actions); i++ {

 i := i

 limit <- struct{}{}

 if atomic.LoadInt32(&w.failures) > w.config.MaxFailures {

 break

 }

 wg.Add(1)

 go func() {

 defer func(){<-limit}()

 defer wg.Done()

 ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)

 color.Green("Upgrading endpoint: %s",

w.actions[i]. endpoint)

 err := w.actions[i].run(ctx)

 cancel()

 if err != nil {

 color.Red("Endpoint(%s) had upgrade error: %s",

w.actions[i].endpoint, err)

 atomic.AddInt32(&w.failures, 1)

 }

 }()

}

wg.Wait()

This code does the following:

Spins off goroutines running our actions.

Concurrency is limited by our limit channel.

Failures are limited by our .failures attribute check.

This is the first time we have shown the atomic package. atomic is a sub-
package of sync that allows us to do thread-safe operations on numbers
without using sync.Mutex. This is great for counters as it is orders of
magnitude (OOM) faster than sync.Mutex for this particular type of
operation.

We have now shown the basics of .run() for our workflow struct. You can
find the complete code for this rollout application at
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/8/rollout.

The code for the application simply needs your SSH key, a file describing
the rollout, and the binary to roll out to the server. That file would look like
this:

{

 "Concurrency": 2,

 "CanaryNum": 1,

 "MaxFailures": 2,

 "Src": "/home/[user]/rollout/webserver",

 "Dst": "/home/[user]/webserver",

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/8/rollout

 "LB": "10.0.0.4:8081",

 "Pattern": "/",

 "Backends": [

 "10.0.0.5",

 "10.0.0.6",

 "10.0.0.7",

 "10.0.0.8",

 "10.0.0.9"

],

 "BackendUser": "azureuser",

 "BinaryPort": 8082

}

This describes everything the application needs to do a simple rollout.

Of course, we can make this application more general, have it record its
running state and final states to storage, add flags to ignore beginning states
so that we can do a rollback, put this behind a gRPC service, and so on…

In fewer than 1,000 lines of code, we have a simple alternative to systems
such as Kubernetes when they aren't available or your scale doesn't justify
them.

NOTE
This doesn't address the need for binary restarts if your program crashes, such as restarts
achieved through software such as systemd. In those cases, it may be better to create an

agent that runs on the device and provides RPCs to control local services, such as
systemd.

Case study – Network rollouts

The principles laid out here have been the essence of rollouts of network
device configuration on Google's B2 backbone for a decade.

Prior to this, we simply had scripts that took hand-crafted configuration or
generated configurations and applied them to the network while an operator
watched the progress and dealt with issues that might arise.

At scale, this became an issue. SRE service teams had been moving away
from similar models as their complexity tended to grow faster than the
networks.

Network engineering moved toward a more formalized system to centralize
the execution of work on the backbone, giving us a single place to monitor
and a central place to stop rollouts in case of emergencies.

In addition, there was a need to formalize any set of rollouts so that they
were always executed the same way with the same automated checks,
instead of relying on humans to do the right things.

The orchestration system I led the design and implementation on is simply a
more complex and pluggable version of what is presented here. Teams built
their actions into the system, and that system executed those actions based
on arguments sent to perform some set of jobs.

At the time of my departure from Google, using this methodology had led
to zero outages from automation (which is not the same as having zero
rollout failures). My understanding is that as I am writing this, your cat
videos are still in safe hands on this system.

In this section, we have learned about the components of change and what
that might look like using Go, and we have written an example rollout
application that uses these principles.

Next, we will talk about writing a system agent that can be deployed on
systems to allow everything from system monitoring to controlling a local
rollout.

Writing a system agent
So far, when we have automated operations on a device, we have either
done it from an application that executes locally or through a command we
run remotely with SSH.

But if we look toward managing a small fleet of machines, it can be more
practical to write a service that runs on the device that we connect to via
RPCs. Using knowledge of the gRPC services we discussed in previous
chapters, we can combine these concepts to allow control of our machines
in a more uniform way.

Here are a few things we can use system agents for:

Installing and running services

Gathering machine running stats

Gathering machine inventory information

Some of these are the kinds of things Kubernetes does with its system
agents. Others, such as inventory information, can be vital in running a
healthy fleet of machines, often overlooked in smaller settings. Even in a

Kubernetes environment, there may be advantages to running your own
agent for certain tasks.

A system agent can provide several advantages. If we define one
application programming interface (API) using gRPC, we can have
multiple OSs with different agents implementing the same RPCs, allowing
us to control our fleet in the same uniform way, regardless of the OS. And
because Go will pretty much run on anything, you can write different agents
using the same language.

Designing a system agent

For our example system agent, we are going to target Linux specifically, but
we will make our API generic to allow implementation for other OSs to use
the same API. Let's talk about a few things we might be interested in. We
could consider the following:

Installing/removing binaries using systemd

Exporting both system and installed binary performance data

Allowing the pulling of application logs

Containerizing our application

For those of you not familiar with systemd, it is a Linux daemon that runs
software services in the background. Taking advantage of systemd allows us
to have automatic restarts of failed applications and automatic log rotation
with journald.

Containerization, for those not familiar with the concept, executes an
application within its own self-contained space with access to only the parts
of the OS you want. This is a similar concept to what is called sandboxing.
Containerization has been made popular by software such as Docker and
has led to container formats that look like VMs with entire OS images
within a container. However, these container formats and tooling are not
required to containerize an application on Linux.

As we are going to use systemd to control our process execution, we will
use the Service directives of systemd to provide containerization. These
details can be seen in our repository in the file
https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/8/agent/internal/service/unit_file.go

For exporting stats, we will use the expvar Go standard library package.
This package allows us to publish stats on a HTTP page. expvar stats are a
JSON object with string keys that map to values representing our stats or
information. There are built-in stats automatically provided, along with
ones we will define.

This allows you to quickly gather stat data using a collector or by simply
querying it with a web browser or command-line tool such as wget.

An example expvar page that is output might return the following:

{

 "cmdline": ["/tmp/go-build7781/c0021/exe/main"],

 "cpu": "8",

 "goroutines": "16",

}

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/8/agent/internal/service/unit_file.go

For the book portion of our example, we are going to concentrate on
installing and removing binaries and exporting system performance data to
show how we can use our RPC service for interactive calls and HTTP for
read-only information. The version in our repository will implement more
features than we can cover in the book.

Now that we've talked about what we want the system agent to do, let's
design our proto for our service, as follows:

syntax = "proto3";

package system.agent;

option go_package = "github.com/[repo]/proto/agent";

message InstallReq {

 string name = 1;

 bytes package = 2;

 string binary = 3;

 repeated string args = 4;

}

message InstallResp {}

message CPUPerfs {

 int32 resolutionSecs = 1;

 int64 unix_time_nano = 2;

 repeated CPUPerf cpu = 3;

}

message CPUPerf {

 string id = 1;

 int32 user = 2;

 int32 system = 3;

 int32 idle = 4;

 int32 io_wait = 5;

 int32 irq = 6;

}

message MemPerf {

 int32 resolutionSecs = 1;

 int64 unix_time_nano = 2;

 int32 total = 3;

 int32 free = 4;

 int32 avail = 5;

}

service Agent {

 rpc Install(InstallReq) returns (InstallResp) {};

}

We now have a general framework for our RPCs, so let's look at
implementing a method for our Install RPC.

Implementing Install

Implementing installations on Linux will require a multi-step process. First,
we are going to install the package under sa/packages/[InstallReq.Name]
in the agent's user home directory. InstallReq.Name will need to be a single
name, containing only letters and numbers. If that name already exists, we
will turn down the existing job and install this in its place.

InstallReq.Package on Linux will be a ZIP file that will be unpacked in
that directory.

InstallReq.Binary is the name of the binary in the root directory to
execute. InstallReq.Args is a list of arguments to pass to the binary.

We will be using a third-party package to access systemd. You can find the
package here: https://github.com/coreos/go-systemd/tree/main/dbus.

Let's look at the implementation here:

func (a *Agent) Install(ctx context.Context, req

*pb.InstallReq) (*pb.InstallResp, error) {

 if err := req.Validate(); err != nil {

 return nil, status.Error(codes.InvalidArgument,

err.Error())

 }

 a.lock(req.Name)

 defer a.unlock(req.Name, false)

 loc, err := a.unpack(req.Name, req.Package)

 if err != nil {

 return nil, err

 }

 if err := a.migrate(req, loc); err != nil {

 return nil, err

 }

 if err := a.startProgram(ctx, req.Name); err != nil {

 return nil, err

https://github.com/coreos/go-systemd/tree/main/dbus

 }

 return &pb.InstallResp{}, nil

}

This code does the following:

Validates our incoming request to ensure it is valid

Implementation is in the repository code

Takes a lock for this specific install name

This prevents multiple installs with the same name at the same
time

Implementation is in the repository code

Unpacks our ZIP file into a temporary directory

Returns the location of the temporary directory

Validates that our req.Binary binary exists

Implementation is in the repository code

Migrates our temporary directory to our req.Name location

If a systemd unit already exists, it is turned down

Creates a systemd unit file under
/home/[user]/.config/systemd/user/

If the final path already exists, deletes it

Moves the temporary directory to the final location

Implementation is in the repository code

Starts our binary

Makes sure it is up and running for 30 seconds

This is a simple example of the setup for our gRPC service to set up and run
a service with systemd. We are skipping various implementation details, but
you can find them inside the repository listed toward the end of the chapter.

Now that we have Install done, let's work on implementing SystemPerf.

Implementing SystemPerf

To gather our system information, we will be using the goprocinfo package,
which you can find here:
https://github.com/c9s/goprocinfo/tree/master/linux.

We want this to update us about every 10 seconds, so we will implement
our gathering in a loop where all callers read from the same data.

Let's start by collecting our central processing unit (CPU) data for our
system, as follows:

func (a *Agent) collectCPU(resolution int) error {

 stat, err := linuxproc.ReadStat("/proc/stat")

 if err != nil {

 return err

 }

 v := &pb.CPUPerfs{

https://github.com/c9s/goprocinfo/tree/master/linux

 ResolutionSecs: resolution,

 UnixTimeNano: time.Now().UnixNano(),

 }

 for _, p := range stat.CPUStats {

 c := &pb.CPUPerf{

 Id: p.Id,

 User: int32(p.User),

 System: int32(p.System),

 Idle: int32(p.Idle),

 IoWait: int32(p.IOWait),

 Irq: int32(p.IRQ),

 }

 v.Cpu = append(v.Cpu, c)

 }

 a.cpuData.Store(v)

 return nil

}

This code does the following:

Reads our CPU state data

Writes it to a protocol buffer

Stores the data in .cpuData

.cpuData will be of the atomic.Value type. This type is useful when you
wish to synchronize an entire value, not mutate the value. Every time we
update a.cpuData, we put a new value into it. If you store a struct, map, or

slice in an atomic.Value, you cannot change a key/field—you MUST make
a new copy with all keys/indexes/fields and store it, instead of changing a
single key/field.

This is much faster for reading than using a mutex when values are small,
which is perfect when storing a small set of counters.

The collectMem memory collector is similar to collectCPU and is detailed in
the repository code.

Let's have a look at the loop that will be started in our New() constructor for
gathering perf data, as follows:

func (a *Agent) perfLoop() error {

 const resolutionSecs = 10

 if err := a.collectCPU(resolutionSecs); err != nil {

 return err

 }

 expvar.Publish(

 "system-cpu",

 expvar.Func(

 func() interface{} {

 return a.cpuData.Load().(*pb.CPUPerfs)

 },

),

)

 go func() {

 for {

 time.Sleep(resolutionSecs * time.Second)

 if err := a.collectCPU(resolutionSecs); err != nil {

 log.Println(err)

 }

 }

 }()

 return nil

}

This code does the following:

Collects our initial CPU stats

Publishes an expvar.Var type for system-cpu

Our variable type is func() interface{}, which implements
expvar.Func

This simply reads our atomic.Value set by our collectCPU()
function

A read occurs when someone queries our web page at
/debug/vars

Refreshes our collections every 10 seconds

expvar defines other simpler types such as String, Float, Map, and so on.
However, I prefer using protocol buffers over Map for grouping content in a
single, sharable message type that can be used in any language. Because a
proto is JSON-serializable, it can be used as the return value for an
expvar.Func with a little help from the protojson package. In the repository,
that helper code is in agent/proto/extra.go.

This code only shares the latest data collection. It is important to not
directly read from stat files on each call, as your system can be easily
overloaded.

When you go to the /debug/vars web endpoint, you can now see the
following:

"system-cpu":

{"resolutionSecs":10,"unixTimeNano":"1635015190106788056","cpu":

[{"id":"cpu0","user":13637,"system":10706,"idle":17557545,"ioWait":

6663},

{"id":"cpu1","user":12881,"system":22465,"idle":17539705,"ioWait":2

997}]},

"system-mem": {"resolutionSecs":10,"unixTimeNano":"163501519010 
6904757","total":8152984,"free":6594776,"avail":7576540}

There will be other stats there that are for the system agent itself, which can
be useful in debugging the agent. These are automatically exported by
expvar. By using a collector that connects and reads these stats, it is
possible to see trends for these stats over time.

We now have an agent that is getting perf data every 10 seconds, giving us a
functioning system agent. It is worth noting that we have shied away from
talking about authentication, authorization, and accounting (AAA) when
talking about RPC systems. gRPC has support for Transport Layer
Security (TLS) to both secure the transport and allow for mutual TLS. You
can also implement a user/password, Open Authorization (OAuth), or any
other AAA system you are interested in.

Web services can implement their own security for things such as expvar.
expvar publishes its stats on /debug/vars, and it is a good idea not to expose

these to the outside world. Either prevent the export on all load balancers or
implement some type of security on the endpoint.

You can find the complete code for our system agent here:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/8/agent.

In our completed code, we have decided to implement our system agent
over SSH. This allows us to use an authorization system we already have
with strong transport security. In addition, the gRPC service is exporting
services over a private Unix domain socket, so local services that are not
root cannot access the service.

You will also find code that containerizes the applications we install via
systemd directives. This provides native isolation to help protect the system.

In this section, we have learned the possible uses of a system agent, a basic
design guide to building one, and finally walked through the
implementation of a basic agent on Linux. We also discussed how our
gRPC interface is designed to be generic, to allow for the implementation of
the agent for other OSs.

As part of building the agent, we have given a brief introduction to
exporting variables with expvar. In the next chapter, we will talk about the
big brother of expvar—the Prometheus package.

Summary
This chapter has been an introduction to automating the command line. We
have seen how to use the exec package to execute commands locally on a

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/8/agent

device. This can be useful when needing to string together a set of already
made tools. We have shown how you can use the ssh package to run
commands on remote systems or interact with complicated programs using
ssh and goexpect packages. We tied this together with our Go knowledge
from previous chapters to implement a basic workflow application that
upgraded binaries on multiple systems concurrently and safely. Finally, in
this chapter, we have learned how we can create a system agent that runs on
a device to allow us to gather vital data and export it. We also have refined
our ability to install programs by using the agent to control systemd on
Linux devices.

This chapter has now given you new skills that will allow you to control
local command-line applications, execute remote applications on any
number of machines, and deal with interactive applications. You have also
gained a basic understanding of building a workflow application,
developing RPC services that can control a local machine, and how to
export stats using Go's expvar package.

In our next chapter, we will be talking about how we can observe running
software to detect issues before they become a problem and diagnose issues
when an incident occurs.

Section 2: Instrumenting, Observing, and
Responding
The nightmare of any DevOps engineer is the 3A.M. wake-up call that says
the systems their paycheck relies on aren't working. To combat these types
of problems, it is critical to have information at hand that gives you and
your team insights that can be used to quickly diagnose and remediate the
problem. Even better, can we avoid the situation altogether with
automation?

This chapter will introduce the concepts of using OpenTelemetry to enable
observability across distributed applications and reduce dependency on log
analysis. We will continue the journey by demonstrating how application
release workflows can be automated with Go and GitHub Actions,
removing the need for human interactions that can lead to downtime.
Finally, we will explore using ChatOps with Slack to enable insights across
teams and remove toil from engineers tasked with deployments.

The following chapters will be covered in this section:

Chapter 9, Observability with OpenTelemetry

Chapter 10, Automating Workflows with GitHub Actions

Chapter 11, Using ChatOps to Increase Efficiency

Chapter 9: Observability with
OpenTelemetry
In the early hours of the morning as you are sleeping in bed, your phone
starts to ring. It's not the normal ring that you've set for friends and family
but the red-alert ring you set for emergencies. As you are startled awake by
the noise, you begin to come to your senses. You think of the recent release
of your company's application. A sense of dread fills you as you pick up the
call to be greeted by the automated voice on the other end, informing you
that you've been requested to join a priority video conference with a team
debugging a live site problem with the new release. You get out of bed
quickly and join the call.

Once you are on the call, you are greeted by the on-call triage team. The
triage team informs you that the application is experiencing a service outage
affecting one of your largest customers, which represents a substantial
portion of your company's revenue. This outage has been escalated by the
customer to the highest levels of your company. Even your CEO is aware of
the outage. The triage team is unable to determine the cause of the
downtime and has called you in to help mitigate the issue and determine the
root cause of the outage.

You go to work to determine the root cause. You open your administrative
dashboard for the application but find no information about the application.
There are no logs, no traces, and no metrics. The application is not emitting
telemetry to help you to debug the outage. You are effectively blind to the
runtime behavior of the application and what is causing the outage. A

feeling of overwhelming terror fills you as you fear this could be the end of
your company if you are unable to determine what is causing the outage.

Right about then is when I wake up. What I've just described is a
reoccurring nightmare I have about waking up to an outage and not having
the information I need to determine the runtime state of my application.

Without being able to introspect the runtime state of your application, you
are effectively blind to what may be causing abnormal behaviors in the
application. You are unable to diagnose and quickly mitigate issues. It is a
profoundly helpless and terrifying position to be in during an outage.

Observability is the ability to measure the internal state of an application by
measuring outputs from that application and infrastructure. We will focus
on three outputs from an application: logs, traces, and metrics. In this
chapter, you will learn how to instrument, generate, collect, and export
telemetry data so that you will never find yourself in a situation where you
do not have insight into the runtime behavior of your application. We will
use OpenTelemetry SDKs to instrument a Go client and server so that the
application will emit telemetry to the OpenTelemetry Collector service. The
OpenTelemetry Collector service will transform and export that telemetry
data to backend systems to enable visualization, analysis, and alerting.

We will cover the following topics in this chapter:

An introduction to OpenTelemetry

Logging with context

Instrumenting for distributed tracing

Instrumenting for metrics

Alerting on metrics abnormalities

Technical requirements
This chapter will require Docker and Docker Compose.

Let's get started by learning about OpenTelemetry, its components, and how
OpenTelemetry can enable a vendor-agnostic approach to observability. The
code used in this chapter is derived from https://github.com/open-
telemetry/opentelemetry-collector-contrib/tree/main/examples/demo with
some changes made to provide additional clarity.

The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/9

An introduction to OpenTelemetry
OpenTelemetry began as a project to merge the OpenTracing and
OpenCensus projects to create a single project to achieve their shared
mission of high-quality telemetry for all. OpenTelemetry is a vendor-
agnostic set of specifications, APIs, SDKs, and tooling designed for the
creation and management of telemetry data. OpenTelemetry empowers
projects to collect, transform, and export telemetry data such as logs, traces,
and metrics to the backend systems of choice.

OpenTelemetry features the following:

Instrumentation libraries for the most popular programming languages
with both automatic and manual instrumentation

A single collector binary that can be deployed in a variety of ways

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/examples/demo
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/9

Pipelines for collecting, transforming, and exporting telemetry data

A set of open standards to protect against vendor lock-in

In this section, we will learn about the OpenTelemetry stack and the
components we can use to make our complex systems observable.

Reference architecture for
OpenTelemetry

Next, let's take a look at a conceptual reference architecture diagram for
OpenTelemetry (OTel):

Figure 9.1 – OpenTelemetry reference architecture

The preceding reference architecture diagram shows two applications
instrumented with the OTel libraries running on hosts, with the OTel
Collector deployed as an agent on the hosts. The OTel Collector agents are
collecting traces and metrics from the applications as well as logs from the
host. The OTel Collector on the left host is exporting telemetry to Backend
1 and Backend 2. On the right side, the OTel Collector agent is receiving
telemetry from the OTel instrumented application, collecting telemetry from
the host, and then forwarding the telemetry to an OTel Collector running as
a service. The OTel Collector running as a service is exporting telemetry to
Backend 1 and Backend 2. This reference architecture illustrates how the
OTel Collector can be deployed as both an agent on a host and a service for
collecting, transforming, and exporting telemetry data.

The wire protocol the telemetry is being transmitted on is intentionally
missing from the reference architecture diagram, since the OTel Collector is
capable of accepting multiple telemetry input formats. For existing
applications, accepting existing formats such as Prometheus, Jaeger, and
Fluent Bit can make it easier to migrate to OpenTelemetry. For new
applications, the OpenTelemetry wire protocol is preferred and simplifies
collector configuration for ingesting telemetry data.

OpenTelemetry components

OpenTelemetry is composed of several components that form the telemetry
stack.
OpenTelemetry specification

The OpenTelemetry specification describes the expectations and
requirements for cross-language implementations using the following
terms:

API: Defines the data types and operations for generating and
correlating tracing, metrics, and logging.

SDK: Defines the implementation of the API in a specific languages.
This includes configuration, processing, and exporting.

Data: Defines the OpenTelemetry Line Protocol (OTLP), a vendor-
agnostic protocol for communicating telemetry.

For more information about the specification, see
https://opentelemetry.io/docs/reference/specification/.
OpenTelemetry Collector
The OTel Collector is a vendor-agnostic proxy that can receive telemetry
data in multiple formats, transform and process it, and export it in multiple
formats to be consumed by multiple backends (such as Jaeger, Prometheus,
other open source backends, and many proprietary backends). The OTel
Collector is composed of the following:

Receivers: Push- or pull-based processors for collecting data

Processors: Responsible for transforming and filtering data

Exporters: Push- or pull-based processors for exporting data

Each of the preceding components is enabled through pipelines described in
YAML configurations. To learn more about data collection, see
https://opentelemetry.io/docs/concepts/data-collection/.

https://opentelemetry.io/docs/reference/specification/
https://opentelemetry.io/docs/concepts/data-collection/

Language SDKs and automatic instrumentation
Each supported language in OpenTelemetry offers an SDK that enables
application developers to instrument their applications to emit telemetry
data. The SDKs also offer some common components that aid in
instrumenting applications. For example, in the Go SDK, there are wrappers
for HTTP handlers that will provide instrumentation out of the box.
Additionally, some language implementations also offer automatic
instrumentation that can take advantage of language-specific features to
collect telemetry data, without the need of manually instrumenting
application code.

For more information about instrumenting applications, see
https://opentelemetry.io/docs/concepts/instrumenting-library/.
The correlation of telemetry
The correlation of telemetry is a killer feature for any telemetry stack. The
correlation of telemetry data enables us to determine what events are related
to each other across application boundaries and is the key to building
insights into complex systems. For example, imagine we have a system
composed of multiple interdependent micro-services. Each of these services
could be running on multiple different hosts and possibly authored using
different languages. We need to be able to correlate a given HTTP request
and all subsequent requests across our multiple services. This is what
correlation in OpenTelemetry enables. We can rely on OpenTelemetry to
establish a correlation ID across these disparate services and provide a
holistic view of events taking place within a complex system:

https://opentelemetry.io/docs/concepts/instrumenting-library/

Figure 9.2 – Correlated telemetry

In this section, we have introduced the main concepts in the OpenTelemetry
stack. In the next sections, we will learn more about logging, tracing, and
metrics and how we can use OpenTelemetry to create an observable system.

Logging with context
Logging is probably the most familiar form of telemetry. You probably
started logging in the first program you ever authored when you printed
Hello World! to STDOUT. Logging is the most natural first step in providing
some data about the internal state of an application to an observer. Think
about how many times you have added a print statement to your application
to determine the value of a variable. You were logging.

Printing simple log statements such as Hello World! can be helpful for
beginners, but it does not provide the critical data we require to operate
complex systems. Logs can be powerful sources of telemetry data when
they are enriched with data to provide context for the events they are
describing. For example, if our log statements include a correlation ID in
the log entry, we can use that data to associate the log entry with other
observability data.

Application or system logs often consist of timestamped text records. These
records come in a variety of structures, ranging from completely
unstructured text to highly structured schemas with attached metadata. Logs
are output in a variety of ways – single files, rotated files, or even to STDOUT.
We need to be able to gather logs from multiple sources, transform and

extract log data in a consumable format, and then export that transformed
data for consumption/indexing.

In this section, we will discuss how to improve our logging, moving from
plain text to structured log formats, and how to consume and export various
log formats using OpenTelemetry. We will learn using Go, but the concepts
presented are applicable to any language.

Our first log statement

Let's start by using the standard Go log and write Hello World!:

package main

import "log"

func main() {

 log.Println("Hello World!")

}

// Outputs: 2009/11/10 23:00:00 Hello World!

The preceding Println statement outputs 2009/11/10 23:00:00 Hello
World! when run in https://go.dev/play/p/XH5JstbL7Ul. Observe the plain
text structure of the output and think about what you would need to do to
parse the text to extract a structured output. It would be a relatively simple
regular expression to parse, but with the addition of new data, the parse
structure would change, breaking the parser. Additionally, there is very little
context regarding the event or the context in which this event occurred.

The Go standard library logger has several other functions available, but we
will not dive deeply into them here. If you are interested in learning more, I

https://go.dev/play/p/XH5JstbL7Ul

suggest you read https://pkg.go.dev/log. For the rest of this section, we will
focus on structured and leveled loggers as well as the API described by
https://github.com/go-logr/logr.

Structured and leveled logs with Zap

Structured loggers have several benefits over text loggers. Structured logs
have a defined schema of keys and values that can be more easily parsed
than plain text. You can take advantage of the keys and values to embed
rich information such as a correlation ID or other useful contextual
information. Additionally, you can filter out keys that might not be
applicable given the log context.

V-levels are an easy way to control the amount of information in a log. For
example, an application may output extremely verbose debug logs at the -1
log level but only critical errors at a log level of 4.

There has been a movement in the Go community to standardize the
structured and leveled log interface via https://github.com/go-logr/logr.
There are many libraries that implement the API described in the logr
project. For our purposes, we'll focus on a single structured logging library,
Zap, which also has a logr API implementation (https://github.com/go-
logr/zapr).

Let's take a look at the key functions in the Zap logger interface:

// Debug will log a Debug level event

func (log *Logger) Debug(msg string, fields ...Field)

// Info will log an Info level event

https://pkg.go.dev/log
https://github.com/go-logr/logr
https://github.com/go-logr/logr
https://github.com/go-logr/zapr

func (log *Logger) Info(msg string, fields ...Field)

// Error will log an Error level event

func (log *Logger) Error(msg string, fields ...Field)

// With will return a logger that will log the keys and values

specified for future log events

func (log *Logger) With(fields ...Field) *Logger

// Named will return a logger with a given name

func (log *Logger) Named(s string) *Logger

The preceding interface provides an easy-to-use strongly typed set of
logging primitives. Let's see an example of structured logging with Zap:

package main

import (

 "time"

 "go.uber.org/zap"

)

func main() {

 logger, _ := zap.NewProduction()

 defer logger.Sync()

 logger = logger.Named("my-app")

 logger.Info

 ("failed to fetch URL",

 zap.String("url", "https://github.com"),

 zap.Int("attempt", 3),

 zap.Duration("backoff", time.Second),

)

}

// Outputs: {"level":"info","ts":1257894000,"logger":"my

// app","caller":"sandbox4253963123/prog.go:15",

// "msg":"failed to fetch URL",

// "url":"https://github.com","attempt":3,"backoff":1}

The JSON structured output of the logger provides helpful, easy-to-parse,
and contextual information through strongly typed keys and values. In the
tracing section of this chapter, we will use these additional keys and values
to embed correlation IDs to link our distributed traces with our logs. If
you'd like to give it a go, see https://go.dev/play/p/EVQPjTdAwX_U.

We will not dive deeply into where to output logs (such as a filesystem,
STDOUT, and STDERR) but instead assume that the application logs we wish to
ingest will have a file representation.

Now that we are producing structured logs in our application, we can shift
gears to ingesting, transforming, and exporting logs using OpenTelemetry.

Ingesting, transforming, and exporting
logs using OpenTelemetry

In this example of using OpenTelemetry for ingesting, transforming, and
exporting logs, we will use docker-compose to set up an environment that
will simulate a Kubernetes host, with logs stored under
/var/logs/pods/*/*/*.log. The OTel Collector will act as an agent running
on the host. The logs will be ingested from the files in the log path, routed
to appropriate operators in the filelog receiver, parsed per their particular

https://go.dev/play/p/EVQPjTdAwX_U

format, have parsed attributes standardized, and then exported to STDOUT
through the logging exporter.

For this demo we will using the code at:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/9/logging. Now let’s take a quick look at the
layout of the demo directory:

.

├── README.md

├── docker-compose.yml

├── otel-collector-config.yml

└── varlogpods

 ├── containerd_logs

0_000011112222333344445555666677778888

 │ └── logs

 │ └── 0.log

 ├── crio_logs-0_111122223333444455556666777788889999

 │ └── logs

 │ └── 0.log

 ├── docker_logs-0_222233334444555566667777888899990000

 │ └── logs

 │ └── 0.log

 └── otel_otel_888877776666555544443333222211110000

 └── otel-collector

 └── 0.log

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/9/logging

The docker-compose.yml file contains the service definition where we will
run the OTel Collector and mount the collector configuration and log files
directory, varlogpods, to simulate the collector running on a Kubernetes
host. Let's take a look at docker-compose.yml:

version: "3"

services:

 opentelemetry-collector-contrib:

 image: otelcontribcol

 command: ["--config=/etc/otel-collector-config.yml"]

 volumes:

 - ./otel-collector-config.yml:/etc/otel-collector-config.yml

 - ./varlogpods:/var/log/pods

To run this demo, move to the chapter source code, cd into the logging
directory, and run docker-compose up.
OTel Collector configuration
The OTel Collector configuration file contains the directives for how the
agent is to ingest, process, and export the logs. Let's dive into the
configuration and break it down:

receivers:

 filelog:

 include:

 - /var/log/pods/*/*/*.log

 exclude:

 # Exclude logs from all containers named otel-collector

 - /var/log/pods/*/otel-collector/*.log

 start_at: beginning

 include_file_path: true

 include_file_name: false

The receivers section contains a single filelog receiver that specifies the
directories to include and exclude. The filelog receiver will start from the
beginning of each log file and include the file path for metadata extraction
in the operators. Next, let's continue to the operators:

 operators:

 # Find out which format is used by kubernetes

 - type: router

 id: get-format

 routes:

 - output: parser-docker

 expr: '$$body matches "^\\{"'

 - output: parser-crio

 expr: '$$body matches "^[^ Z]+ "'

 - output: parser-containerd

 expr: '$$body matches "^[^ Z]+Z"'

The filelog operators define a series of steps for processing the log files.
The initial step is a router operation that will determine, based on the body
of the log file, which parser will handle the log body entry specified in the
output of the operator. Each parser operator will extract the timestamp from
each record, according to the particular format of the log entry. Let's now
continue to the parsers to see how the parser will extract information from
each log entry once routed:

 # Parse CRI-O format

 - type: regex_parser

 id: parser-crio

 regex: '^(?P<time>[^ Z]+) (?P<stream>stdout|stderr) (?

P<logtag>[^]*) (?P<log>.*)$'

 output: extract_metadata_from_filepath

 timestamp:

 parse_from: time

 layout_type: gotime

 layout: '2006-01-02T15:04:05.000000000-07:00'

 # Parse CRI-Containerd format

 - type: regex_parser

 id: parser-containerd

 regex: '^(?P<time>[^ ^Z]+Z) (?P<stream>stdout|stderr) (?

P<logtag>[^]*) (?P<log>.*)$'

 output: extract_metadata_from_filepath

 timestamp:

 parse_from: time

 layout: '%Y-%m-%dT%H:%M:%S.%LZ'

 # Parse Docker format

 - type: json_parser

 id: parser-docker

 output: extract_metadata_from_filepath

 timestamp:

 parse_from: time

 layout: '%Y-%m-%dT%H:%M:%S.%LZ'

 # Extract metadata from file path

 - type: regex_parser

 id: extract_metadata_from_filepath

 regex: '^.*\/(?P<namespace>[^_]+)_(?P<pod_name>[^_]+)_(?

P<uid>[a-f0-9\-]{36})\/(?P<container_name>[^\._]+)\/(?

P<restart_count>\d+)\.log$'

 parse_from: $$attributes["file.path"]

 # Move out attributes to Attributes

 - type: metadata

 attributes:

 stream: 'EXPR($.stream)'

 k8s.container.name: 'EXPR($.container_name)'

 k8s.namespace.name: 'EXPR($.namespace)'

 k8s.pod.name: 'EXPR($.pod_name)'

 k8s.container.restart_count: 'EXPR($.restart_count)'

 k8s.pod.uid: 'EXPR($.uid)'

 # Clean up log body

 - type: restructure

 id: clean-up-log-body

 ops:

 - move:

 from: log

 to: $

For example, the parser-crio operator will perform a regular expression on
each log entry, parsing a time variable from the entry and specifying the
time format for the extracted string. Contrast parser-crio with the parser-

docker operator, which uses a JSON structured log format that has a JSON
key of time in each log entry. The parser-docker operator only provides the
key for the JSON entry and the layout of the string. No regex is needed with
the structured log. Each of the parsers outputs to the
extract_metadata_from_filepath, which extracts attributes from the file
path using a regular expression. Following the parsing and extraction of file
path information, the metadata operation executes adding attributes
gathered from the parsing steps to enrich the context for future querying.
Finally, the restructure operation moves the log key extracted from each
parsed log entry to the Body attribute for the extracted structure.

Let's take a look at the CRI-O log format:

2021-02-16T08:59:31.252009327+00:00 stdout F example: 11 Tue Feb 16

08:59:31 UTC 2021

Now, let's look at the Docker log format:

{"log":"example: 12 Tue Feb 16 09:15:12 UTC

2021\n","stream":"stdout","time":"2021-02-16T09:15:12.50286486Z"}

When running the example, you should see output like the following:

opentelemetry-collector-contrib_1 | LogRecord #19

opentelemetry-collector-contrib_1 | Timestamp: 2021-02-16

09:15:17.511829776 +0000 UTC

opentelemetry-collector-contrib_1 | Severity:

opentelemetry-collector-contrib_1 | ShortName:

opentelemetry-collector-contrib_1 | Body: example: 17 Tue Feb 16

09:15:17 UTC 2021

opentelemetry-collector-contrib_1 |

opentelemetry-collector-contrib_1 | Attributes:

opentelemetry-collector-contrib_1 | -> k8s.container.name:

STRING(logs)

opentelemetry-collector-contrib_1 | ->

k8s.container.restart_count: STRING(0)

opentelemetry-collector-contrib_1 | -> k8s.namespace.name:

STRING(docker)

opentelemetry-collector-contrib_1 | -> k8s.pod.name:

STRING(logs-0)

opentelemetry-collector-contrib_1 | -> k8s.pod.uid:

STRING(222233334444555566667777888899990000)

opentelemetry-collector-contrib_1 | -> stream: STRING(stdout)

opentelemetry-collector-contrib_1 | Trace ID:

opentelemetry-collector-contrib_1 | Span ID:

opentelemetry-collector-contrib_1 | Flags: 0

As you can see from the preceding output, the OTel Collector has extracted
the timestamp, body, and specified attributes from the metadata operator,
building a normalized structure for the exported logging data, and exported
the normalized structure to STDOUT.

We have accomplished our goal of ingesting, transforming, and extracting
log telemetry, but you should also be asking yourself how we can build a
stronger correlation with this telemetry. As of now, the only correlations we
have are time, pod, and container. We would have a difficult time
determining the HTTP request or other specific information that led to this
log entry. Note that Trace ID and Span ID are empty in the preceding
output. In the next section, we will discuss tracing and see how we can
build a stronger correlation between the logs and requests processed in our
applications.

Instrumenting for distributed tracing
Traces track the progression of a single activity in an application. For
example, an activity can be a user making a request in your application. If a
trace only tracks the progression of that activity in a single process or a
single component of a system composed of many components, its value is
limited. However, if a trace can be propagated across multiple components
in a system, it becomes much more useful. Traces that can propagate across
components in a system are called distributed traces. Distributed tracing
and correlation of activities is a powerful tool for determining causality
within a complex system.

A trace is composed of spans that represent units of work within an
application. Each trace and span can be uniquely identified, and each span
contains a context consisting of Request, Error, and Duration metrics. A
trace contains a tree of spans with a single root span. For example, imagine
a user clicking on the checkout button on your company's commerce site.
The root span would encompass the entire request/response cycle as
perceived by the user clicking on the checkout button. There would likely
be many child spans for that single root span, such as a query for product
data, charging a credit card, and updating a database. Perhaps there would
also be an error associated with one of the underlying spans within that root
span. Each span has metadata associated with it, such as a name, start and
end timestamps, events, and status. By creating a tree of spans with this
metadata, we are able to deeply inspect the state of complex applications.

In this section, we will learn to instrument Go applications with
OpenTelemetry to emit distributed tracing telemetry, which we will inspect

using Jaeger, an open source tool for visualizing and querying distributed
traces.

The life cycle of a distributed trace

Before we get into the code, let's first discuss how distributed tracing
works. Let's imagine we have two services, A and B. Service A serves web
pages and makes requests for data from service B. When service A receives
a request for a page, the service starts a root span. Service A then requests
some data from service B to fulfill the request. Service A encodes the trace
and span context in request headers to service B. When service B receives
the request, service B extracts the trace and span information from the
request headers and creates a child span from the request. If service B
received no trace/span headers, it will create a new root span. Service B
continues processing the request, creating new child spans along the way as
it requests data from a database. After service B has collected the requested
information, it responds to service A and sends its spans to the trace
aggregator. Service A then receives the response from service B, and
service A responds to the user with the page. At the end of the activity,
service A marks the root span as complete and sends its spans to the trace
aggregator. The trace aggregator builds a tree with the shared correlation of
the spans from both service A and service B, and we have a distributed
trace.

For more details of the OpenTelemetry tracing specification, see
https://opentelemetry.io/docs/reference/specification/overview/#tracing-
signal.

https://opentelemetry.io/docs/reference/specification/overview/#tracing-signal

Client/server-distributed tracing with
OpenTelemetry
In this example, we will deploy and examine a client/server application that
is instrumented with OpenTelemetry for distributed tracing, and view the
distributed traces using Jaeger. The client application sends periodic
requests to the server that will populate the traces in Jaeger. The
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/9/tracing directory contains the following:

.

├── readme.md

├── client

│ ├── Dockerfile

│ ├── go.mod

│ ├── go.sum

│ └── main.go

├── docker-compose.yaml

├── otel-collector-config.yaml

└── server

 ├── Dockerfile

 ├── go.mod

 ├── go.sum

 └── main.go

To run this demo, move to the chapter source code, cd into the tracing
directory, run docker-compose up -d, and open http://localhost:16686 to
view the Jaeger-distributed traces.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/9/tracing

Let's explore the docker-compose.yaml file first to see each of the services
we are deploying:

version: "2"

services:

 # Jaeger

 jaeger-all-in-one:

 image: jaegertracing/all-in-one:latest

 ports:

 - "16686:16686"

 - "14268"

 - "14250"

 # Collector

 otel-collector:

 image: ${OTELCOL_IMG}

 command: ["--config=/etc/otel-collector-config.yaml",

"${OTELCOL_ARGS}"]

 volumes:

 - ./otel-collector-config.yaml:/etc/otel-collector-

config.yaml

 ports:

 - "13133:13133" # health_check extension

 depends_on:

 - jaeger-all-in-one

 demo-client:

 build:

 dockerfile: Dockerfile

 context: ./client

 environment:

 - OTEL_EXPORTER_OTLP_ENDPOINT=otel-collector:4317

 - DEMO_SERVER_ENDPOINT=http://demo-server:7080/hello

 depends_on:

 - demo-server

 demo-server:

 build:

 dockerfile: Dockerfile

 context: ./server

 environment:

 - OTEL_EXPORTER_OTLP_ENDPOINT=otel-collector:4317

 ports:

 - "7080"

 depends_on:

 - otel-collector

The preceding docker-compose.yaml file deploys a Jaeger all-in-one
instance, an OTel Collector, a client Go application, and a server Go
application. These components are a slight derivation from the
OpenTelemetry demo: https://github.com/open-telemetry/opentelemetry-
collector-contrib/tree/main/examples/demo.

Next, let's take a look at the OTel Collector configuration to get a better
understanding of its deployment model and configured behaviors:

receivers:

 otlp:

https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/examples/demo

 protocols:

 grpc:

exporters:

 jaeger:

 endpoint: jaeger-all-in-one:14250

 tls:

 insecure: true

processors:

 batch:

service:

 pipelines:

 traces:

 receivers: [otlp]

 processors: [batch]

 exporters: [jaeger]

The preceding OTel Collector configuration specifies that the collector will
listen for OpenTelemetry Line Protocol (OTLP) over gRPC. It will batch
the spans and export them to a Jaeger service running on port 14250.

Next, let's break down the significant parts of the client main.go:

func main() {

 shutdown := initTraceProvider()

 defer shutdown()

 continuouslySendRequests()

}

func main() initializes the tracing provider, which returns a shutdown
function that is deferred until func main() exits. The main() func then calls
continuouslySendRequests to send a continuous, periodic stream of
requests to the server application. Next, let's look at the initTraceProvider
function:

func initTraceProvider() func() {

ctx := context.Background()

cancel = context.CancelFunc

timeout := 1 * time.Second

endPointEnv := "OTEL_EXPORTER_OTLP_ ENDPOINT"

otelAgentAddr, ok := os.LookupEnv(endPointEnv)

if !ok {

otelAgentAddr = "0.0.0.0:4317"

}

closeTraces := initTracer(ctx, otelAgentAddr)

return func() {

ctx, cancel = context.WithTimeout(ctx, time.Second)

defer cancel()

// pushes any last exports to the receiver

closeTraces(doneCtx)

}

}

initTraceProvider() looks up the OTLP trace endpoint from an
environment variable or defaults to 0.0.0.0:4317. After setting up the trace
endpoint address, the code calls initTracer to initialize the tracer, returning

a function named closeTraces, which will be used to shut down the tracer.
Finally, the initTraceProvider() returns a function that can be used to
flush and close the tracer. Next, let's look at what is happening in
initTracer():

func initTracer(ctx context.Context, otelAgentAddr string)

func(context.Context) {

 traceClient := otlptracegrpc.NewClient(

 otlptracegrpc.WithInsecure(),

 otlptracegrpc.WithEndpoint(otelAgentAddr),

 otlptracegrpc.WithDialOption(grpc.WithBlock()))

 traceExp, err := otlptrace.New(ctx, traceClient)

 handleErr(err, "Failed to create the collector trace

exporter")

 res, err := resource.New(

 ctx,

 resource.WithFromEnv(),

 resource.WithProcess(),

 resource.WithTelemetrySDK(),

 resource.WithHost(),

 resource.WithAttributes(

 semconv.ServiceNameKey.String("demo-client"),

),

)

 handleErr(err, "failed to create resource")

 bsp := sdktrace.NewBatchSpanProcessor(traceExp)

 tracerProvider := sdktrace.NewTracerProvider(

 sdktrace.WithSampler(sdktrace.AlwaysSample()),

 sdktrace.WithResource(res),

 sdktrace.WithSpanProcessor(bsp),

)

 // set global propagator to tracecontext (the default is no-

op).

 otel.SetTextMapPropagator(propagation.TraceContext{})

 otel.SetTracerProvider(tracerProvider)

 return func(doneCtx context.Context) {

 if err := traceExp.Shutdown(doneCtx); err != nil {

 otel.Handle(err)

 }

 }

}

initTracer() builds a trace client that connects to the OTLP endpoint over
gRPC. The trace client is then used to build a trace exporter, which is used
to batch process and export spans. The batch span processor is then used to
create a trace provider, configured to trace all spans, and is identified with
the "demo-client" resource. Trace providers can be configured to sample
stochastically or with custom sampling strategies. The trace provider is then
added to the global OTel context. Finally, a function is returned that will
shut down and flush the trace exporter.

Now that we have explored how to set up a tracer, let's move on to sending
and tracing requests in the continuouslySendRequests func:

func continuouslySendRequests() {

 tracer := otel.Tracer("demo-client-tracer")

 for {

 ctx, span := tracer.Start(context.Background(),

"ExecuteRequest")

 makeRequest(ctx)

 span.End()

 time.Sleep(time.Duration(1) * time.Second)

 }

}

As the name suggests, the continuouslySendRequests func creates a named
tracer from the global OTel context, which we initialized earlier in the
chapter. The otel.Tracer interface only has one function, Start(ctx
context.Context, spanName string, opts ...SpanStartOption)

(context.Context, Span), which is used to start a new span if one does not
already exist in the context.Context values bag. The for loop in main will
continue infinitely creating a new span, making a request to the server,
doing a bit of work, and finally, sleeping for 1 second:

func makeRequest(ctx context.Context) {

 demoServerAddr, ok := os.LookupEnv("DEMO_SERVER_ENDPOINT")

 if !ok {

 demoServerAddr = "http://0.0.0.0:7080/hello"

 }

 // Trace an HTTP client by wrapping the transport

 client := http.Client{

 Transport: otelhttp.NewTransport(http.DefaultTransport),

 }

 // Make sure we pass the context to the request to avoid

broken traces.

 req, err := http.NewRequestWithContext(ctx, "GET",

demoServerAddr, nil)

 if err != nil {

 handleErr(err, "failed to http request")

 }

 // All requests made with this client will create spans.

 res, err := client.Do(req)

 if err != nil {

 panic(err)

 }

 res.Body.Close()

}

makeRequest() should look pretty familiar to those of you who have used
the Go http library. There is one significant difference from non-OTel
instrumented HTTP requests: the transport for the client has been wrapped
with otelhttp.NewTransport(). The otelhttp transport uses
request.Context() in the Roundtrip implementation to extract the existing
span from the context, and then the otelhttp.Transport adds the span
information to the HTTP headers to enable the propagation of span data to
the server application.

Now that we have covered the client, let's see the server main.go. The code
for this section can be found here: https://github.com/PacktPublishing/Go-
for-DevOps/blob/rev0/chapter/9/tracing/server/main.go:

func main() {

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/9/tracing/server/main.go

 shutdown := initTraceProvider()

 defer shutdown()

 handler := handleRequestWithRandomSleep()

 wrappedHandler := otelhttp.NewHandler(handler, "/hello")

 http.Handle("/hello", wrappedHandler)

 http.ListenAndServe(":7080", nil)

}

func main.go calls initTraceProvider and shutdown in a similar manner to
the client main.go. After initializing the trace provider, the server main.go
code creates an HTTP server, handling requests to "/hello" on port 7080.
The significant bit is wrappedHandler := otelhttp.NewHandler(handler,
"/hello"). wrappedHandler() extracts the span context from the HTTP
headers and populates the request context.Context with a span derived
from the client span. Within handleRequestWithRandomSleep(), the code
uses the propagated span context to continue the distributed trace. Let's
explore handleRequestWithRandomSleep():

func handleRequestWithRandomSleep() http.HandlerFunc {

 commonLabels := []attribute.KeyValue{

 attribute.String("server-attribute", "foo"),

 }

 return func(w http.ResponseWriter, req *http.Request) {

 // random sleep to simulate latency

 var sleep int64

 switch modulus := time.Now().Unix() % 5; modulus {

 case 0:

 sleep = rng.Int63n(2000)

 case 1:

 sleep = rng.Int63n(15)

 case 2:

 sleep = rng.Int63n(917)

 case 3:

 sleep = rng.Int63n(87)

 case 4:

 sleep = rng.Int63n(1173)

 }

 time.Sleep(time.Duration(sleep) * time.Millisecond)

 ctx := req.Context()

 span := trace.SpanFromContext(ctx)

 span.SetAttributes(commonLabels...)

 w.Write([]byte("Hello World"))

 }

}

In handleRequestWithRandomSleep(), the request is handled, introducing a
random sleep to simulate latency. trace.SpanFromContext(ctx) uses the
span populated by wrappedHandler to then set attributes on the distributed
span.

The viewable result in Jaeger at http://localhost:16686 is the following:

Figure 9.3 – The Jaeger client/server-distributed trace

In the preceding screenshot, you can see the distributed trace between the
client and the server, including each span that was created in the
request/response cycle. This is a simple example, but you can imagine how
this simple example can be extrapolated into a more complex system to
provide insight into the difficult-to-debug scenarios. The trace provides the
information needed to gain insight into errors as well as more subtle
performance issues.

Correlating traces and logs

In the Logging with context section, we discussed the correlation of log
entries with activities. Without correlation to a given trace and span, you
would not be able to determine which log events originated from a specific
activity. Remember, log entries do not contain the trace and span data that
enables us to build correlated trace views, as we see in Jaeger. However, we
can extend our log entries to include this data and enable robust correlation
with a specific activity:

func WithCorrelation(span trace.Span, log *zap.Logger) *zap.Logger

{

 return log.With(

 zap.String("span_id",

convertTraceID(span.SpanContext().SpanID().String())),

 zap.String("trace_id",

convertTraceID(span.SpanContext().TraceID().String())),

)

}

func convertTraceID(id string) string {

 if len(id) < 16 {

 return ""

 }

 if len(id) > 16 {

 id = id[16:]

 }

 intValue, err := strconv.ParseUint(id, 16, 64)

 if err != nil {

 return ""

 }

 return strconv.FormatUint(intValue, 10)

}

In the preceding code, we use the zap structured logger to add the span and
trace IDs to the logger, so each log entry written by a logger enhanced with
WithCorrelation() will contain a strong correlation to a given activity.

Adding log entries to spans

Correlating logs with traces is effective for building correlations of logs
with activities, but you can take it a step further. You can add your log
events directly to the spans, instead of or in combination with correlating
logs:

func SuccessfullyFinishedRequestEvent(span trace.Span, opts

...trace.EventOption) {

 opts = append(opts,

trace.WithAttributes(attribute.String("someKey", "someValue")))

 span.AddEvent("successfully finished request operation",

opts...)

}

SuccessfullyFinishedRequestEvent() will decorate the span with an event
entry that shows as a log entry in Jaeger. If we were to call this function in
the client's main.go after we complete the request, a log event would be
added to the client request span:

Figure 9.4 – The Jaeger client/server-distributed trace with the log entry

As you can see, the log entry is embedded within the span visualized in
Jaeger. Adding log entries to spans adds even more context to your
distributed traces, making it easier to understand what is happening with
your application.

In the next section, we will instrument this example with metrics to provide
an aggregated view of the application using Prometheus.

Instrumenting for metrics
Metrics are measurements at a given moment of a particular aspect of an
application during runtime. An individual capture is called a metric event
and consists of a timestamp, a measurement, and associated metadata.
Metric events are used to provide an aggregated view of the behavior of an
application at runtime. For example, a metric event can be a counter
incremented by 1 when a request is handled by a service. The individual
event is not especially useful. However, when aggregated into a sum of
requests over a period of time, you can see how many requests are made to
a service over that period of time.

The OpenTelemetry API does not allow for custom aggregations but does
provide some common aggregations, such as sum, count, last value, and
histograms, which are supported by backend visualization and analysis
software such as Prometheus.

To give you a better idea of when metrics are useful, here are some example
scenarios:

Providing the aggregate total number of bits read or written in a process

Providing CPU or memory utilization

Providing the number of requests over a period of time

Providing the number of errors over a period of time

Providing the duration of requests to form a statistical distribution of the
request processing time

OpenTelemetry offers three types of metrics:

counter: To count a value over time, such as the number of requests

measure: To sum or otherwise aggregate a value over a period of time,
such as how many bytes are read per minute

observer: To periodically capture a value, such as memory utilization
every minute

In this section, we will learn to instrument Go applications with
OpenTelemetry to emit metrics telemetry, which we will inspect using
Prometheus, an open source tool for visualizing and analyzing metrics.

The life cycle of a metric

Before we get into the code, let's first discuss how metrics are defined and
used. Before you can record or observe a metric, it must be defined. For
example, a histogram of request latency would be defined as follows:

meter := global.Meter("demo-client-meter")

requestLatency := metric.Must(meter).NewFloat64Histogram(

"demo_client/request_latency",

metric.WithDescription(

"The latency of requests processed"

),

)

requestCount := metric.Must(meter).NewInt64Counter(

"demo_client/request_counts",

metric.WithDescription("The number of requests processed"),

)

The preceding code fetches a global meter named demo-client-meter and
then registers a new histogram instrument named
demo_client/reqeust_latency and demo_client/request_counts, a counter
instrument, both of which have a description of what is being collected. It's
important to provide descriptive names and descriptions for your metrics, as
it can become confusing later when analyzing your data.

Once the instrument has been defined, it can be used to record
measurements, as follows:

meter.RecordBatch(

 ctx,

 commonLabels,

 requestLatency.Measurement(latencyMs),

 requestCount.Measurement(1),

)

The preceding code uses the global meter we defined previously to record
two measurements, the request latency and an increment for the number of
requests. Note that ctx was included, which will contain correlation
information to correlate the activity to the measurement.

After events have been recorded, they will be exported based on the
configuration of MeterProvider, which which we will explore next.

Client/server metrics with OpenTelemetry

We will extend the same client/server application described in the
Instrumenting for distributed tracing section. Code for this section can be
found here: https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/9/metrics. The directory has the following layout:

.

├── readme.md

├── client

│ ├── Dockerfile

│ ├── go.mod

│ ├── go.sum

│ └── main.go

├── .env

├── docker-compose.yaml

├── otel-collector-config.yaml

├── prometheus.yaml

└── server

 ├── Dockerfile

 ├── go.mod

 ├── go.sum

 └── main.go

The only addition to the preceding is the prometheus.yaml file, which
contains the following:

scrape_configs:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/9/metrics

 - job_name: 'otel-collector'

 scrape_interval: 10s

 static_configs:

 - targets: ['otel-collector:8889']

 - targets: ['otel-collector:8888']

The preceding configuration informs Prometheus of the endpoint to scrape
to gather metrics data from the OTel Collector. Let's next look at the
updates needed to add Prometheus to the docker-compose.yaml file:

version: "2"

services:

 # omitted Jaeger config

 # Collector

 otel-collector:

 image: ${OTELCOL_IMG}

 command: ["--config=/etc/otel-collector-config.yaml",

"${OTELCOL_ARGS}"]

 volumes:

 - ./otel-collector-config.yaml:/etc/otel-collector-

config.yaml

 ports:

 - "8888:8888" # Prometheus metrics exposed by the collector

 - "8889:8889" # Prometheus exporter metrics

 - "4317" # OTLP gRPC receiver

 depends_on:

 - jaeger-all-in-one

 # omitted demo-client and demo-server

 prometheus:

 container_name: prometheus

 image: prom/prometheus:latest

 volumes:

 - ./prometheus.yaml:/etc/prometheus/prometheus.yml

 ports:

 - "9090:9090"

As you can see from the preceding, we have added some additional ports
for Prometheus to scrape on the OTel Collector, and the Prometheus service
with prometheus.yaml mounted in the container. Next, let's take a look at
the updated OTel Collector configuration:

receivers:

 otlp:

 protocols:

 grpc:

exporters:

 prometheus:

 endpoint: "0.0.0.0:8889"

 const_labels:

 label1: value1

 logging:

 # omitted jaeger exporter

processors:

 batch:

service:

 pipelines:

 # omitted tracing pipeline

 metrics:

 receivers: [otlp]

 processors: [batch]

 exporters: [logging, prometheus]

The preceding configuration has omitted the Jaeger config used in the
Instrumenting for distributed tracing section for brevity. The additions are
the exporter for Prometheus as well as the metrics pipeline. The Prometheus
exporter will expose port 8889 so that Prometheus can scrape metrics data
collected by the OTel Collector.

Next, let's break down the significant parts of the client main.go:

func main() {

 shutdown := initTraceAndMetricsProvider()

 defer shutdown()

 continuouslySendRequests()

}

The only difference between the tracing version we explored earlier in the
chapter is that instead of calling initTraceProvider, the code now calls
initTraceAndMetricsProvdier to initialize both the trace and metrics
providers. Next, let's explore initTraceAndMetricsProvider():

func initTraceAndMetricsProvider() func() {

ctx := context.Background()

var cancel context.CancelFunc

timeout := 1 * time.Second

endpoint := "OTEL_EXPORTER_OTLP_ ENDPOINT"

otelAgentAddr, ok := os.LookupEnv(endpoint)

if !ok {

otelAgentAddr = "0.0.0.0:4317"

}

closeMetrics := initMetrics(ctx, otelAgentAddr)

closeTraces := initTracer(ctx, otelAgentAddr)

return func() {

ctx, cancel = context.WithTimeout(ctx, timeout)

defer cancel()

closeTraces(doneCtx)

closeMetrics(doneCtx)

}

}

The code in initTraceAndMetricsProvider establishes the OTel agent
address and goes on to initialize the metrics and tracing providers. Finally, a
function to close and flush both metrics and traces is returned. Next, let's
explore initMetrics():

func initMetrics(ctx context.Context, otelAgentAddr string)

func(context.Context) {

 metricClient := otlpmetricgrpc.NewClient(

 otlpmetricgrpc.WithInsecure(),

 otlpmetricgrpc.WithEndpoint(otelAgentAddr))

 metricExp, err := otlpmetric.New(ctx, metricClient)

 handleErr(err, "Failed to create the collector metric

exporter")

 pusher := controller.New(

 processor.NewFactory(

 simple.NewWithHistogramDistribution(),

 metricExp,

),

 controller.WithExporter(metricExp),

 controller.WithCollectPeriod(2*time.Second),

)

 global.SetMeterProvider(pusher)

 err = pusher.Start(ctx)

 handleErr(err, "Failed to start metric pusher")

 return func(doneCtx context.Context) {

 // pushes any last exports to the receiver

 if err := pusher.Stop(doneCtx); err != nil {

 otel.Handle(err)

 }

 }

}

In initMetrics(), we create a new metricClient to transmit metrics from
the client to the OTel Collector in the OTLP format. After setting up the
metricClient, we then create pusher to manage the export of the metrics to
the OTel Collector, register pusher as the global MeterProvider, and start
pusher to export metrics to the OTel Collector. Finally, we create a closure
to shut down pusher. Now, let's move on to explore
continuouslySendRequests() from client's main.go:

func continuouslySendRequests() {

 var (

 meter = global.Meter("demo-client-meter")

 instruments = NewClientInstruments(meter)

 commonLabels = []attribute.KeyValue{

 attribute.String("method", "repl"),

 attribute.String("client", "cli"),

 }

 rng = rand.New(rand.NewSource(time.Now().UnixNano()))

)

 for {

 startTime := time.Now()

 ctx, span := tracer.Start(context.Background(),

"ExecuteRequest")

 makeRequest(ctx)

 span.End()

 latencyMs := float64(time.Since(startTime)) / 1e6

 nr := int(rng.Int31n(7))

 for i := 0; i < nr; i++ {

 randLineLength := rng.Int63n(999)

 meter.RecordBatch(

 ctx,

 commonLabels,

 instruments.LineCounts.Measurement(1),

 instruments.LineLengths.Measurement(

 randLineLength

),

)

 fmt.Printf("#%d: LineLength: %dBy\n", i,

randLineLength)

 }

 meter.RecordBatch(

 ctx,

 commonLabels,

 instruments.RequestLatency.Measurement(

 latencyMs

),

 instruments.RequestCount.Measurement(1),

)

 fmt.Printf("Latency: %.3fms\n", latencyMs)

 time.Sleep(time.Duration(1) * time.Second)

 }

}

We first create a metrics meter with the name demo-client-meter, metric
instruments to be used to measure metrics in this function, and a set of
common labels to be added to the metrics collected. These labels enable
scoped querying of metrics. After initializing the random number generator
for artificial latency, the client enters the for loop, stores the start time of
the request, makes a request to the server, and stores the duration of
makeRequest as the latency in milliseconds. Following the execution of
makeRequest, the client executes a random number of iterations between 0
and 7 to generate a random line length, recording a batch of metric events

during each iteration, and measuring the count of executions and the
random line length. Finally, the client records a batch of metric events,
measuring the latency of makeRequest and a count for one request.

So, how did we define the instruments used in the preceding code? Let's
explore NewClientInstruments and learn how to define counter and
histogram instruments:

func NewClientInstruments(meter metric.Meter)

ClientInstruments {

 return ClientInstruments{

 RequestLatency: metric.Must(meter).

 NewFloat64Histogram(

 "demo_client/request_latency",

 metric.WithDescription("The latency of requests

processed"),

),

 RequestCount: metric.Must(meter).

 NewInt64Counter(

 "demo_client/request_counts",

 metric.WithDescription("The number of requests

processed"),

),

 LineLengths: metric.Must(meter).

 NewInt64Histogram(

 "demo_client/line_lengths",

 metric.WithDescription("The lengths of the

various lines in"),

),

 LineCounts: metric.Must(meter).

 NewInt64Counter(

 "demo_client/line_counts",

 metric.WithDescription("The counts of the lines

in"),

),

 }

}

NewClientInstruments() takes a meter and returns a struct of instruments
used by the client. An instrument is used to record and aggregate
measurements. This func sets up the two Int64Counter and Int64Histogram
instruments. Each instrument is defined with a well-described name for
easier analysis in the backend metric system. The Int64Counter instrument
will monotonically increase and Int64Histogram will record int64 the
values and pre-aggregate values before pushing to the metrics backend.

Now that we have covered the client, let's look at the server's main.go:

func main() {

 shutdown := initProvider()

 defer shutdown()

 // create a handler wrapped in OpenTelemetry instrumentation

 handler := handleRequestWithRandomSleep()

 wrappedHandler := otelhttp.NewHandler(handler, "/hello")

 http.Handle("/hello", wrappedHandler)

 http.ListenAndServe(":7080", nil)

}

The server's main.go calls initProvider() and shutdown() in a similar
manner to the client's main.go. The interesting metric measures happen
within handleRequestWithRandomSleep(). Next, let's export
handleRequestWithRandomSleep():

func handleRequestWithRandomSleep() http.HandlerFunc {

 var (

 meter = global.Meter("demo-server-meter")

 instruments = NewServerInstruments(meter)

 commonLabels = []attribute.KeyValue{

 attribute.String("server-attribute", "foo"),

 }

)

 return func(w http.ResponseWriter, req *http.Request) {

 var sleep int64

 switch modulus := time.Now().Unix() % 5; modulus {

 case 0:

 sleep = rng.Int63n(2000)

 case 1:

 sleep = rng.Int63n(15)

 case 2:

 sleep = rng.Int63n(917)

 case 3:

 sleep = rng.Int63n(87)

 case 4:

 sleep = rng.Int63n(1173)

 }

 time.Sleep(time.Duration(sleep) * time.Millisecond)

 ctx := req.Context()

 meter.RecordBatch(

 ctx,

 commonLabels,

 instruments.RequestCount.Measurement(1),

)

 span := trace.SpanFromContext(ctx)

 span.SetAttributes(commonLabels...)

 w.Write([]byte("Hello World"))

 }

}

In the preceding code, handleRequestWithRandomSleep() creates a named
meter from the global OTel context, initializes the server instruments in a
similar way to the client example, and defines a slice of custom attributes.
Finally, the function returns a handler function, which introduces a random
sleep and records the request count.

The result is viewable in Prometheus at http://localhost:9090/graph?
g0.expr=rate(demo_server_request_counts%5B2m%5D)&g0.tab=0&g0.stacke

d=0&g0.show_exemplars=0&g0.range_input=1h:

Figure 9.5 – The Prometheus server request rate

In the preceding screenshot, you can see the average requests per second for
the server application in Prometheus. At the bottom of the screenshot, you
will see the common labels and other associated metadata that was added in
the server main.go. Prometheus provides a powerful query language to
analyze and alert on metrics. Take some time and explore what you can do
in the Prometheus UI. If you'd like to learn more about Prometheus, see
https://prometheus.io/docs/introduction/overview/.

In this section, we learned how to instrument a Go application, export
metrics to the OTel Collector, configure Prometheus to scrape metrics from
the OTel Collector, and start to analyze metrics telemetry in Prometheus.
With these newly gained skills, you will be able to understand more about
the runtime characteristics of your applications.

Next up, let’s look at how you can add alerting when your metrics are
showing abnormalities that could indicate a problem.

Alerting on metrics abnormalities
Metrics provide time-series measurements of the behavior of our
applications and infrastructure, but they provide no notification when those
measurements deviate from the expected behavior of our applications. To
be able to react to abnormal behaviors in our applications, we need to
establish rules about what is normal behavior in our applications and how
we can be notified when our applications deviate from that behavior.

https://prometheus.io/docs/introduction/overview/

Alerting on metrics enables us to define behavioral norms and specify how
we should be notified when our applications exhibit abnormal behavior. For
example, if we expect HTTP responses from our application to respond in
under 100 milliseconds and we observe a time span of 5 minutes when our
application is responding in greater than 100 milliseconds, we would want
to be notified of the deviation from the expected behavior.

In this section, we will learn how to extend our current configuration of
services to include an Alertmanager
(https://prometheus.io/docs/alerting/latest/alertmanager/) service to provide
alerts when observed behavior deviates from expected norms. We'll learn
how to define alerting rules and specify where to send those notifications
when our application experiences abnormal behaviors.

The code for this section is here: https://github.com/PacktPublishing/Go-
for-DevOps/tree/rev0/chapter/9/alerting.

Adding and configuring Alertmanager

We will start by adding the Alertmanager service to the docker-
compose.yaml file. Let's look at the updates needed to add Prometheus to the
docker-compose.yaml file:

version: "2"

services:

 # omitted previous configurations

 prometheus:

 container_name: prometheus

 image: prom/prometheus:latest

https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/9/alerting

 volumes:

 - ./prometheus.yaml:/etc/prometheus/prometheus.yml

 - ./rules:/etc/prometheus/rules

 ports:

 - "9090:9090"

 alertmanager:

 container_name: alertmanager

 image: prom/alertmanager:latest

 restart: unless-stopped

 ports:

 - "9093:9093"

 volumes:

 - ./alertmanager.yml:/config/alertmanager.yaml

 - alertmanager-data:/data

 command: --config.file=/config/alertmanager.yaml --

log.level=debug

volumes:

 alertmanager-data:

As you can see from the preceding, we have added a rules folder to the
prometheus service, a new service called alertmanager, and a volume to
store the alertmanager data called alertmanager-data. We will discuss the
Prometheus ./rules volume mount and contents later in this section, but for
now, know that it contains our alerting rules for Prometheus. The new
alertmanager service exposes an HTTP endpoint at http://localhost:9093
and mounts an alertmanager.yml configuration as well as a data directory.

Next, let's explore the contents of the alertmanager.yml file to see how
Alertmanager is configured:

route:

 receiver: default

 group_by: [alertname]

 routes:

 - match:

 exported_job: demo-server

 receiver: demo-server

receivers:

 - name: default

 pagerduty_configs:

 - service_key: "**Primary-Integration-Key**"

 - name: demo-server

 pagerduty_configs:

 - service_key: "**Server-Team-Integration-Key**"

Alertmanager configuration consists mainly of routes and receivers. A route
describes where to send an alert based on it either being default or by some
criteria. For example, we have a default route and a specialized route in the
preceeding Alertmanager configuration. The default route will send alerts to
the default receiver if they do not match exported_job attribute with the
value "demo-server". If alerts match the exported_job attribute with value
"demo-server", they are routed to the demo-server receiver, described in the
receivers section.

In this example of Alertmanager receivers, we are using PagerDuty
(https://www.pagerduty.com), but there are many other receivers that can be
configured. For example, you can configure receivers for Slack, Teams,
Webhooks, and so on. Note that the service_key values for each of the
receivers requires a PagerDuty integration key, which can be set up by
following the docs for integrating Prometheus with PagerDuty
(https://www.pagerduty.com/docs/guides/prometheus-integration-guide/). If
you wish to use another receiver such as email, feel free to mutate the
receivers with email by following the Prometheus guide for email
configuration
(https://prometheus.io/docs/alerting/latest/configuration/#email_config).

Next, we will look at the changes that we need to make to the Prometheus
configuration in ./prometheus.yaml to make Prometheus aware of the
Alertmanager service and the rules for sending alerts to the Alertmanager
service:

scrape_configs:

 - job_name: 'otel-collector'

 scrape_interval: 10s

 static_configs:

 - targets: ['otel-collector:8889']

 - targets: ['otel-collector:8888']

alerting:

 alertmanagers:

 - scheme: http

 static_configs:

 - targets: ['alertmanager:9093']

https://www.pagerduty.com/
https://www.pagerduty.com/docs/guides/prometheus-integration-guide/
https://prometheus.io/docs/alerting/latest/configuration/#email_config

rule_files:

 - /etc/prometheus/rules/*

In the preceding ./prometheus.yaml, we see the original scrape_config and
two new keys, alerting and rule_files. The alerting key describes the
alertmanager services to send alerts and the connection details for
connecting to those services. The rules_files key describes the glob rules
for selecting files containing alerting rules. These rules can be set up in the
Prometheus UI, but it is good practice to define these rules declaratively in
code so that they are clear and visible to the rest of your team as source
code.

Next, let's look at the rules file and see how we describe rules for alerting
in ./rules/demo-server.yml:

groups:

 - name: demo-server

 rules:

 - alert: HighRequestLatency

 expr: |

 histogram_quantile(0.5,

rate(http_server_duration_bucket{exported_job="demo-server"}[5m]))

> 200000

 labels:

 severity: page

 annotations:

 summary: High request latency

Rules in rule_files are categorized into groups. In the preceding example,
we can see a single group named demo-server specifying a single rule

named HighRequestLatency. The rule specifies an expression, which is a
Prometheus query. The preceding query triggers when the mean request
latency is exceeding 200,000 microseconds, or 0.2 seconds. The alert is
triggered with a severity label of page and an annotation summary of High
request latency.

Now, let's run the following to start the services:

$ docker-compose up -d

After the services start, we should see the following in Prometheus at
http://localhost:9090/alerts:

Figure 9.6 – The Prometheus alert for HighRequestLatency

The preceding screenshot shows the alert rules registered in Prometheus. As
you can see, the HighRequestLatency alert is registered with the command
we configured in the ./rules/demo-server file.

After roughly 5 minutes of running the service, you should see the
following:

Figure 9.7 – The Prometheus alert for HighRequestLatency triggered

In the preceding screenshot, you can see the triggered alert for
HighRequestLatency. This is Prometheus triggering the alert for the mean
request latency rising above 0.2 seconds. This will then trigger an alert that
is sent to the Alertmanager which delegates to the appropriate receiver. The
receiver will then send the alert on to the service configured to notify
PagerDuty or, perhaps, another receiver you have configured. You have

now established a flow for alerting yourself or others on your team that
your application has entered into an aberrant state of behavior.

In this section, you learned to configure Prometheus alerting rules, deploy
Alertmanager, and configure Alertmanager to send alerts to the notification
service of your choice. With this knowledge, you should be able to establish
rules for defining the normative behavior of your applications and alert you
or your team when an application is behaving outside of those bounds.

Alerting is a key component of reacting to aberrant behaviors in
applications. With proper metrics in place, you are now empowered to
proactively respond when your applications are not meeting expectations,
rather than responding to customer complaints.

Summary
In this chapter, we explored the basics of OpenTelemetry, how to instrument
your applications and infrastructure, and how to export that telemetry into
backend visualization and analysis tools such as Jaeger and Prometheus. We
also extended the benefits of metrics by integrating alerting rules to
proactively notify us when an application is operating outside of expected
behavioral parameters. With the application of what you have learned, you
will never be caught blind during a support call. You will have the data to
diagnose and resolve issues in your complex system. Better yet, you will
know about these problems before issues are raised by your customers.

We also established some relatively simple metrics, traces, and alerts. With
this knowledge, you will be able to implement your own traces, metrics,

and alerts to empower you and your team to react quickly and efficiently to
failures in production.

In the next chapter, we will discuss how to automate workflows with
GitHub Actions. We will learn about the basics of GitHub actions and build
upon that to create our own Go-based GitHub actions to empower you to
author any automation allowable by a Turing-complete language.

Chapter 10: Automating Workflows with
GitHub Actions
Have you ever been part of a project that required the completion of
routine, monotonous tasks? Have you ever sat down to release software and
read over the project wiki page, only to find 15 manual steps that you
needed to cut, paste, and pray? What did it feel like when it was your turn
to complete those tasks?

Tasks such as these are referred to as toil – slow and difficult. This kind of
work reduces our teams' development velocity and, just as critically, grinds
away the morale of the DevOps or Site-Reliability Engineering (SRE)
team over time. Toilsome tasks are manual, and by their nature, manual
tasks are error-prone. If we don't try to replace these tasks with appropriate
automation, more will accumulate, worsening the situation.

As a DevOps engineer, you are the anti-entropy force driving automation
and reducing toilsome work. In this chapter, we will learn how to use
GitHub Actions to automate workflows to reduce toil and increase project
velocity.

GitHub Actions provides a powerful platform for creating customizable
automation workflows and is free for any open source project. GitHub
Actions pairs a robust, customizable workflow engine with an equally
powerful event model to trigger automation. The patterns and practices used
in this chapter will leverage GitHub Actions but are transferable to many
other developer workflow automation tools such as Jenkins and GitLab CI.
The choice to use GitHub Actions is driven by the ubiquitous access for

open source developers and the access to a wide community of contributed
actions that amplify productivity.

In this chapter, you will start off by learning the basics of GitHub Actions.
You will use these skills to build a continuous integration workflow to
validate a pull request. Then, you will extend the workflow to add release
automation to publish GitHub releases. Finally, you will build your own
custom GitHub Action using Go and publish it to GitHub Marketplace.

We will cover the following topics in this chapter:

Understanding the basics of GitHub Actions

Building a continuous integration workflow

Building a release workflow

Creating a custom GitHub Action using Go

Publishing a custom Go GitHub Action

Technical requirements
In this chapter, you need to have Docker, Git, and the Go tools installed on
your machine. The code for this chapter is located at
https://github.com/PacktPublishing/B18275-09-Automating-Workflows-
with-GitHub-Actions-Code-Files.

The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/10

Let's get started building our first GitHub Action.

https://github.com/PacktPublishing/B18275-09-Automating-Workflows-with-GitHub-Actions-Code-Files
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/10

Understanding the basics of GitHub
Actions
GitHub Actions are event-driven automation tasks that live within a GitHub
repository. An event like a pull request can trigger a set of tasks to be
executed. An example is a pull request triggering a set of tasks to clone the
Git repository and execute go test to run Go tests.

GitHub Actions is extremely flexible, enabling developers to author a wide
variety of automations, even some that you might not normally associate
with a traditional continuous integration/release pipeline. Actions are also
composable, enabling groups of tasks to be packaged together as a
published action and used in workflows together with other actions.

In this section, you will learn about the components of a GitHub Action:
workflows, events, context and expressions, jobs, steps, and actions. After
you have been introduced to these components, we'll build and trigger our
first GitHub Action.

Exploring the components of a GitHub
Action

Understanding the components of a GitHub Action, their relationships, and
how they interact is the key to understanding how to compose your own
automation. Let's get started with exploring the components of an action.
Workflows
A workflow is an automation file written in YAML that lives in a GitHub
repository in the ./github/workflows/ folder. A workflow consists of one

or more jobs and can be scheduled or triggered by an event. A workflow is
the highest-level component of a GitHub Action.

Workflow syntax

Workflows require a developer to specify the events that will trigger
automation via the on key and the jobs that automation will execute when it
is triggered by the jobs key. Often, a name is also specified by the name
keyword. Otherwise, the workflow will take the short name of the file that
contains the workflow YAML. For example, the workflow defined in
./github/workflows/foo.yaml will have the default name of foo.

An example of a workflow structure

The following is an example of a named workflow with the minimum set of
keys defined. However, this is not a valid workflow, as we have not yet
defined any events to trigger the workflow, nor any jobs to be executed
once triggered:

name: my-workflow # (optional) The name of your workflow;

 # defaults to the file name.

on: # Events that will trigger the workflow

jobs: # Jobs to run when the event is triggered

Next, let's discuss how to trigger workflows.
Events
An event is a trigger that causes a workflow to start executing. Events come
in a variety of flavors: webhook events, scheduled events, and manually
dispatched events.

Webhook events can originate from an activity within the repository.
Examples of triggering activities are pushing a commit, creating a pull
request, or creating a new issue. Events raised from repository interactions
are the most common triggers for workflows. Webhook events can also be
created through external systems and relayed to GitHub through the
repository dispatch Webhook.

Scheduled events are similar to cron jobs. These events trigger workflows
on a defined schedule. Schedule events are a way to automate repetitive
tasks, such as performing issue maintenance on older issues in GitHub or
running a nightly reporting job.

Manual dispatch events are not triggered through repository activities but
rather manually. For example, a project may have a Twitter account
associated with it, and project maintainers may want to be able to send a
tweet about a new feature but do not want to share the Twitter
authentication secrets. An ad hoc event would enable automation to send
out the tweet on behalf of the project.

Event syntax

Events require a developer to specify the type of events for the on: key in
the workflow. Event types generally have child key-value pairs that define
their behavior.

A single event example

A single event can be specified to trigger automation:

the workflow will be triggered when a commit

is pushed to any branch

on: push

on: push

A multiple events example

Multiple events can be specified to trigger automation:

the workflow will execute when a commit is pushed

to any branch or pull request is opened

on: [push, pull_request]

A scheduled event example

Scheduled event schedules are specified using Portable Operating System
Interface (POSIX) cron syntax:

on:

 scheduled:

 - cron: '0,1,*,*,*' # run every day at 01:00:00

A manual event example

Manual events are triggered through user interaction and can include input
fields:

a manually triggered event with a

single "message" user input field

on:

 workflow_dispatch:

 inputs:

 message:

 description: 'message you want to tweet'

 required: true

Context and expressions
GitHub Actions exposes a rich set of context variables, expressions,
functions, and conditionals to provide expressiveness in your workflows.
This will not be an exhaustive study of all of these items, but we will
highlight the most critical items.

Context variables

Context variables provide a way to access information about workflow
runs, environment, steps, secrets, and so on. The most common context
variables are github, env, secrets, and matrix. These variables are treated
as maps and can be indexed using variable names and property names. For
example, env['foo'] resolves to the value of the foo environment key.

The github context variable provides information about the workflow run
and contains information such as the ref that the workflow is executing on.
This is useful if you would like to use that information to inject a version
into an application at build time. You can access this information by
indexing the github variable with github['ref'] or github.ref.

The env context variable contains environment variables specified for the
workflow run. The values can be accessed by using the index syntax.

The secrets context variable contains the secrets available for the workflow
run. These values can also be accessed by the index syntax. Note that these
values will be redacted in the logs, so the secret values will not be exposed.

The matrix context variable contains information about the matrix
parameters you configure for the current job. For example, if you want to
run a build on multiple operating systems with multiple versions of Go, the
matrix variable allows you to specify the list of each one, which can be used
to execute a set of concurrent job executions using each combination of
operating system and Go version. We will go into more detail about this
when we talk about jobs.

Expressions

The syntax used for an expression is ${{ expression }}. Expressions
consist of variables, literals, operators, and functions. Let's examine the
following example:

jobs:

 job_with_secrets:

 if: contains(github.event.pull_request.labels.*.name, 'safe to

test')

The preceding job will only execute if the pull request is labeled with safe
to test. The if conditional will evaluate the
github.event.pull_request.labels.*.name context variable and verify that
one of the labels on the pull request is named safe to test. This is useful if
you want to ensure that a workflow only executes after a repository
maintainer has had an opportunity to verify that the pull request is safe.

Expressions can also be used as input. Let's examine the following
example:

env:

 GIT_SHA: ${{ github.sha }}

The snippet of YAML shows how to set an environment variable called
GIT_SHA to the value of the github.sha context variable. The GIT_SHA
environment variable will now be available to all actions running within the
job. Using context variables for input is useful for customizing the
execution of scripts or actions executed in a workflow.
Jobs
A job is a collection of steps that run on an individual compute instance, or
runner. You can think of a runner as a virtual machine for running your job.
Jobs, by default, execute concurrently, so if a workflow defines multiple
jobs, they will execute concurrently if enough runners are available. Jobs
have the concept of dependency where a job can be dependent on another
job, which will ensure the jobs execute sequentially rather than
concurrently.

Job syntax

Jobs require a developer to specify an ID of the job, the type of runner the
job will execute on using the runs-on: key, and a sequence of steps the job
will execute using the steps: key. The runs-on: key is particularly
interesting to us, as it is useful for executing a job on different operating
system (OS) platforms such as multiple versions of Ubuntu, macOS, and
Windows.

With the runs-on: key, a job is able to run on a specified platform, but that
does not allow us to make a matrix of jobs to run on multiple platforms
concurrently. To enable a job to execute in a matrix of configurations, one

must use the strategy: key and expressions. By configuring the strategy,
we can build a matrix of jobs executing the same job configuration. You
will find an example of this configuration in the following example.

There are many other options to customize the execution of the job and the
environment that the job executes within, but we will not dive deeply into
them.

Executing jobs on multiple platforms

This example shows two jobs named job_one and job_two. Here, job_one is
a matrix job that will run six concurrent templated jobs on the latest
versions of Ubuntu, macOS, and Windows, which will each echo 1.17 and
1.16. Running on Ubuntu 18.04, job_two will run concurrently with job_one
and echo "hello world!":

jobs:

 job_one:

 strategy:

 matrix:

 os: [ubuntu-latest, macos-latest, windows-latest]

 go_version: [1.17, 1.16]

 runs_on: ${{ matrix.os }}

 steps:

 - run: echo "${{ matrix.go_version }}"

 job_two:

 runs_on: ubuntu-18.04

 steps:

 - run: echo "hello world!"

Steps
Steps are tasks that run in the context of a job and execute in the context of
the job's associated runner. Steps can consist of a shell command or an
action. Since steps execute in the same runner, they can share data between
each of the steps. For example, if you create a file on the filesystem of the
runner in a previous step, subsequent steps will be able to access that file.
You can think of a step running within its own process and that any changes
to environment variables will not carry over to the next step.

Steps syntax

Steps require a developer to specify an action with the uses: key or specify
the shell commands to run with the run: key. Optional input allows you to
customize the environment variables using the env: key and the working
directory using the working-directory: key, and also to change the name
that appears in the GitHub user interface for the step by using the name key.
There are a wide variety of other options to customize the execution of
steps, but we will not go into great depth about these.

Step for installing Go using an action

This example shows a step with no name that uses the v2 version of
actions/setup-go to install version 1.17.0 or higher of Go. This action can
be found at https://github.com/actions/setup-go. This is a great example of a
publicly available action that you can use to add functionality to your
automation. You can find actions for nearly any task at
https://github.com/marketplace?type=actions. In a later section, we'll

https://github.com/actions/setup-go
https://github.com/marketplace?type=actions

discuss how to build your own action and publish it to the GitHub
Marketplace:

steps:

 - uses: actions/setup-go@v2

 with:

 go-version: '^1.17.0'

A step with a multiple line command

In this example, we've extended the previous one and added a Run go mod
download and test step that runs the go tool, which was installed by
actions/setup-go@v2. The run command uses | in the first line to indicate
the start of a multiline string in YAML:

steps:

 - uses: actions/setup-go@v2

 with:

 go-version: '^1.17.0'

 - name: Run go mod download and test

 run: |

 go mod download

 go test

Actions
An action is a reusable combination of a set of steps formed into a single
command, which can also have input and output. For example, the
actions/setup-go action is used to execute a series of steps to install a

version of Go on a runner. The Go toolchain can then be used within
subsequent steps within the same job.

GitHub Actions is aptly named, as actions are the superpower of GitHub
Actions. Actions are often published publicly and enable developers to
leverage existing recipes to build complex automation quickly. Actions are
similar to open source Go libraries, which enable developers to build Go
applications quicker. As we build our own actions, you will quickly see the
power of this feature.

If you are interested in seeing the source code for actions/setup-go, visit
https://github.com/actions/setup-go. Later in this chapter, we will build our
own Go action and publish it to the GitHub Marketplace.

How to build and trigger your first GitHub
Action

Now that we have a general understanding of what the components of an
action are, let's build one and explore how the components are structured
and interact.
Creating and cloning a GitHub repository
If this is your first time creating and cloning a repository, you may find the
following links useful:

https://docs.github.com/en/get-started/quickstart/create-a-repo

https://docs.github.com/en/github/creating-cloning-and-archiving-
repositories/cloning-a-repository-from-github/cloning-a-repository

https://github.com/actions/setup-go
https://docs.github.com/en/get-started/quickstart/create-a-repo
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository-from-github/cloning-a-repository

When creating the repository, I normally add README.md, .gitignore, and an
Massachusetts Institute of Technology (MIT) license file. Once you have
created and cloned your repository, you should have a local directory for
your project, as shown in the following:

$ tree . -a -I '\.git'

.

├── .gitignore

├── LICENSE

└── README.md

Creating your first workflow
Remember that workflows live in the .github/workflows directory. The first
step is to create that directory. The next step is to create the workflow file
within the .github/workflows directory:

mkdir -p .github/workflows

touch .github/workflows/first.yaml

Open .github/workflows/first.yaml in your favorite editor and add the
following workflow YAML:

name: first-workflow

on: push

jobs:

 echo:

 runs-on: ubuntu-latest

 steps:

 - name: echo step

 run: echo 'hello world!'

The preceding workflow is named first-workflow. It will execute a single
job called echo on the latest version of Ubuntu and execute a single step that
will echo hello world! using the system's default shell. You can also
specify the shell you would like with the shell: key.

Save .github/workflows/first.yaml. Commit and push the workflow to
GitHub:

git add .

git commit -am 'my first action'

git push origin main

Normally, you'd create a branch first and then open a pull request before
committing and pushing directly to the main branch, but for your first
workflow, this will be the quickest way to see your results.

After you push your commit, you should be able to open your GitHub
repository in your browser and click on the Actions tab. You should be
greeted with a view of your first workflow having successfully executed. It
should look like the following:

Figure 10.1 – The All workflows view

Note the list of workflows on the left and that there is one workflow named
first-workflow. We can see that the first run of the workflow was for our
commit with the my first action message.

If you click on the workflow run for my first action, you should see the
following:

Figure 10.2 – The workflow job view

Note the Jobs list on the left with the echo job marked with a green check,
signifying the successful execution of the job. On the right, you can see the
details of the execution.

You can click on the echo job to see output from it and the steps that were
executed:

Figure 10.3 – The echo job output view

Note the job setup, which provides details about the runner and the
environment the job executed within. Also, note the echo step single step
executed a echo 'Hello World!' single shell command and echoed the

"Hello World!" string to the console log. Finally, the job completed
successfully due to echo step returning a 0 error code upon completion.

In this section, you have learned the basics of GitHub Actions and created
your first simple automation. You now have the tools needed to start
building more complex automation that will eliminate the toilsome tasks we
discussed earlier in the chapter. In the upcoming sections, you will learn
how to use these skills to build continuous integration and release
workflows and, later, your own custom action written in Go.

Building a continuous integration
workflow
In this section, we will use GitHub Actions to execute continuous
integration automation when a pull request is opened or when code is
pushed to a repository. If you are unfamiliar with continuous integration, it
is the practice of automating the integration of code changes from multiple
contributors into a code repository. Continuous integration automation tasks
include cloning the repository at a specific commit, linting, building, and
testing code, and evaluating changes to test coverage. The goal of
continuous integration automation is to provide a guard against code
changes that will lower the quality of a project or violate the rules codified
in automation.

In this section, you will learn how to create a continuous integration
workflow. In your continuous integration workflow, you will learn to
execute jobs across multiple operating systems concurrently. You will
install build tools onto the job executors, which you will use to build the

software project. You will clone the source code for the project using an
action. Finally, you will enforce passing tests and code quality by running a
code linter and executing unit tests.

Introducing the tweeter command-line
tool

You cannot have a continuous integration workflow without a software
project to run the workflow upon. We will be using a simple Go command-
line tool called tweeter. The source code for the project can be found at
https://github.com/PacktPublishing/B18275-08-Automating-Workflows-
with-GitHub-Actions-Code-Files.

Tweeter is a simple Go command-line tool that will send tweets to Twitter.
The source code consists of two packages, main and tweeter. The tweeter
package contains Go tests that will be executed by our continuous
integration workflow.
Cloning and testing tweeter
Create a new repository from the template at
https://github.com/PacktPublishing/B18275-08-Automating-Workflows-
with-GitHub-Actions-Code-Files by clicking the Use this template button
in the repository. This will create a copy of the repository in your account.
Run the following commands to clone and test tweeter (replace {your-
account} with your account name):

git clone https://github.com/{your-account}/B18275-08-Automating-

Workflows-with-GitHub-Actions-Code-Files

cd B18275-08-Automating-Workflows-with-GitHub-Actions-Code-Files

https://github.com/PacktPublishing/B18275-08-Automating-Workflows-with-GitHub-Actions-Code-Files
https://github.com/PacktPublishing/B18275-08-Automating-Workflows-with-GitHub-Actions-Code-Files

go test ./...

Executing tweeter with the -h argument will provide usage documentation:

$ go run . -h

Usage of /tmp/go-build3731631588/b001/exe/github-actions:

 --accessToken string twitter access token

 --accessTokenSecret string twitter access token secret

 --apiKey string twitter api key

 --apiKeySecret string twitter api key secret

 --dryRun if true or if env var

DRY_RUN=true, then a tweet will not be sent

 --message string message you'd like to send to

twitter

 --version output the version of tweeter

pflag: help requested

exit status 2

Twitter usage is not required
If you are not inclined to use social media, tweeter also allows users to
simulate sending a tweet. When --dryRun is specified, the message value
will be output to STDOUT, rather than being sent to Twitter as a tweet.

Next, we will build a continuous integration workflow to test tweeter.

Goals of the tweeter continuous
integration workflow

Before building a continuous integration workflow, you should consider
what you want to accomplish with the workflow. For the tweeter workflow,

our goals are the following:

Trigger on pushes to main and tags formatted as a semantic version – for
example, v1.2.3 must build and validate.

Pull requests against the main branch must build and validate.

Tweeter must build and validate on Ubuntu, macOS, and Windows
concurrently.

Tweeter must build and validate using Go 1.16 and 1.17 concurrently.

Tweeter source code must pass a code-linting quality check.

Continuous integration workflow for
tweeter

With our goals for the tweeter continuous integration workflow specified,
we can construct a workflow to achieve those goals. The following is a
continuous integration workflow that achieves each goal:

name: tweeter-automation

on:

 push:

 tags:

 - 'v[0-9]+.[0-9]+.*'

 branches:

 - main

 pull_request:

 branches:

 - main

jobs:

 test:

 strategy:

 matrix:

 go-version: [1.16.x, 1.17.x]

 os: [ubuntu-latest, macos-latest, windows-latest]

 runs-on: ${{ matrix.os }}

 steps:

 - name: install go

 uses: actions/setup-go@v2

 with:

 go-version: ${{ matrix.go-version }}

 - uses: actions/checkout@v2

 - name: lint with golangci-lint

 uses: golangci/golangci-lint-action@v2

 - name: run go test

 run: go test ./...

The preceding workflow is a lot to absorb initially. However, if we break
down the workflow, the behavior will become clear.
Triggering the workflow
The first two goals for the tweeter continuous integration workflow are as
follows:

Pushes to main and tags matching v[0-9]+.[0-9]+.* must build and
validate.

Pull requests against the main branch must build and validate.

These goals are accomplished by specifying the following event triggers:

on:

 push:

 tags:

 - 'v[0-9]+.[0-9]+.*'

 branches:

 - main

 pull_request:

 branches:

 - main

The push: trigger will execute the workflow if a tag is pushed matching
v[0-9]+.[0-9]+.* – for example, v1.2.3 would match the pattern. The
push: trigger will also execute the workflow if a commit is pushed to main.
The pull_request trigger will execute the workflow on any changes to a
pull request targeting the main branch.

Note that using the pull_request trigger will allow us to update the
workflow and see the changes to the workflow each time the changes are
pushed in a pull request. This is the desired behavior when developing a
workflow, but it does open automation to malicious actors. For example, a
malicious actor can open a new pull request, mutating the workflow to
exfiltrate secrets exposed in it. There are multiple mitigations to prevent
this, which can be applied independently or together, depending on the
security preferences of a given project:

Only allow maintainers to trigger workflows.

Use the pull_request_target event to trigger, which will use workflows
defined in the base of the pull request without regard to workflow
changes in the pull request.

Add a label guard for executing a workflow so that it will only execute
if a maintainer adds the label to the pull request. For example, a pull
request can be reviewed by a maintainer, and then if the user and code
changes are safe, the maintainer will apply a safe-to-test label,
allowing the job to proceed.

Next, we'll extend automation to include multiple platforms and Go
versions.
Entering the matrix
The next two goals for the tweeter continuous integration workflow are as
follows:

Tweeter must build and validate on Ubuntu, macOS, and Windows
concurrently.

Tweeter must build and validate using Go 1.16 and 1.17 concurrently.

These goals are accomplished by specifying the following matrix
configuration:

jobs:

 test:

 strategy:

 matrix:

 go-version: [1.16.x, 1.17.x]

 os: [ubuntu-latest, macos-latest, windows-latest]

 runs-on: ${{ matrix.os }}

 steps:

 - name: install go

 uses: actions/setup-go@v2

 with:

 go-version: ${{ matrix.go-version }}

The test job specifies a matrix strategy with two dimensions, go-version
and os. There are two Go versions and three OSs specified. This variable
combinations will create six concurrent jobs, [(ubuntu-latest, 1.16.x),
(ubuntu-latest, 1.17.x), (macos-latest, 1.16.x), (macos-latest,
1.17.x), (windows-latest, 1.16.x), and (windows-latest, 1.17.x)]. The
values of the matrix will be substituted in runs-on: and go-version: to
execute a concurrent job, satisfying the goals of running on each
combination of platform and Go version:

Figure 10.4 – A pull request showing matrix builds

In the preceding figure, you can see each matrix job executing concurrently.
Note that each job specifies the name of the job, test, and the matrix
variables for the job.
Building, testing, and linting
There is an overlap of build, testing, and linting in the last three goals:

Tweeter must build and validate on Ubuntu, macOS, and Windows
concurrently.

Tweeter must build and validate using Go 1.16 and 1.17 concurrently.

The Tweeter source code must pass a code-linting quality check.

The following steps will satisfy these requirements:

 steps:

 - name: install go

 uses: actions/setup-go@v2

 with:

 go-version: ${{ matrix.go-version }}

 - uses: actions/checkout@v2

 - name: lint with golangci-lint

 uses: golangci/golangci-lint-action@v2

 - name: run go test

 run: go test ./...

In the preceding steps, the following occurs:

1. Go is installed with the actions/setup-go@v2 action using the matrix-
specified Go version. This action is available to all GitHub users and is
published through the GitHub Marketplace. There are numerous actions
available in the Marketplace that can simplify workflow authoring.

2. The source code for the current ref is cloned with the
actions/checkout@v2 action in the current working directory. Note that
the action is not named. For commonly used actions, it is idiomatic to
not provide a name.

3. Linting is run with the golangci/golangci-lint-action@v2, which
installs and executes the golangci-lint tool on the source of the
repository, satisfying the goal of ensuring that the code passes a lint

quality check. This particular action includes several sub-linters that run
a rigorous check of common Go performance and stylistic errors.

4. The code is functionally validated by running an ad hoc go test ./...
script, which tests the packages recursively in the repository. Note that
in a previous step, the Go tools have been installed and are available for
use in subsequent steps.

With the preceding steps, we have satisfied the goals of our continuous
integration workflow. With the preceding workflow, we executed a matrix
of concurrent jobs, installed build tools, cloned source code, linted, and
tested the change set. In this example, we learned to build a continuous
integration workflow for a Go project, but any language and set of tools can
be used to create a continuous integration workflow.

In the next section, we will build a release workflow that will automate the
process of building and releasing new versions of the tweeter project.

Building a release workflow
In this section, we will take the manual, toilsome process of publishing a
new release and transform it into GitHub workflow automation, triggered
by pushing a tag to the repository. This automation will result in a GitHub
release containing build notes and release artifacts for a tagged, semantic
version of the tweeter command-line tool. Automating manual processes
such as releases reduces the possibility of manual errors and increases the
productivity of project maintainers.

In this section, you will learn how to create a release automation workflow.
You will learn how to trigger automation to run after the successful
completion of dependent automation. You will learn how to build binaries
targeting multiple platforms. Finally, you will automate the creation of a
GitHub release, including automatically generated release notes.

GitHub releases

GitHub releases are deployable software iterations for a repository that are
based on Git tags. A release declares to the world that a new version of the
software is available. A release is composed of a title, an optional
description, and an optional set of artifacts. The title provides a name for
the release. The description is used to provide insight into what is contained
in the release – for example, what new features or pull requests were
included in the release, and which GitHub contributors contributed to the
release. The description is formatted in GitHub Markdown. Release
artifacts are files associated with the release that users can download – for
example, a command-line application might publish compiled binaries
ready for download and use.
Git tags
A Git tag is a named pointer to a specific reference in the Git repository and
are often formatted as semantic versions, such as v1.2.3. Semantic
versioning is a convention for naming tags that provides some insight into
the significance of a new release. A semantic version tag is formatted as
Major.Minor.Patch. The following behavior is expressed by incrementing
the individual field:

Major: Increment when incompatible API changes occur, such as
breaking changes.

Minor: Increment when functionality is added in a backward-compatible
manner, such as new features.

Patch: Increment when making backward-compatible bug fixes.

Release automation for tweeter

In the Continuous integration workflow for tweeter section, we created a CI
automation for the tweeter command-line tool. We will build upon the CI
automation and add release automation for tweeter.
Goals for automation
In our release automation, we are going to accomplish the following goals:

Trigger automation when the repository is tagged with a semantic
version

Run unit tests and validation prior to creating the release

Inject the semantic version of the release into the tweeter application

Build cross-platform versions of the tweeter application

Generate release notes from the pull requests in the release

Tag the contributors in the release

Create a GitHub release containing the following:

A title containing the semantic version of the release

A description containing the generated release notes

Artifacts consisting of the cross-platform binaries

Next, we will create release automation to satisfy these requirements.
Creating the release automation
With our goals for the tweeter release automation specified, we are ready to
extend the existing continuous integration workflow that we built in the
previous section and add a release job to achieve those goals. The release
job is longer than the continuous integration workflow, so we'll approach it
one piece at a time.

Triggering the automation

The first goal for the tweeter release workflow is triggering the automation
when the repository is tagged with a semantic version:

name: tweeter-automation

on:

 push:

 tags:

 - 'v[0-9]+.[0-9]+.*'

 branches:

 - main

 pull_request:

 branches:

 - main

The preceding snippet of YAML is unchanged from the continuous
integration workflow. It will trigger the workflow with any tag matching the

semantic version in the form of v1.2.3. However, the workflow will also
trigger on pull requests and pushes. We want the continuous integration
workflow to execute on pull requests and pushes, but we do not want to
execute a release each time. We will need to restrict execution of the release
job to only when executing on a tag push.

Restricting release execution

The first and second goal for the tweeter release workflow is as follows:

Triggering the automation when the repository is tagged with a semantic
version

Running unit tests and validation prior to creating the release

Let's make sure the release job only executes when the repository is tagged:

jobs:

 test:

 # continuous integration job omitted for brevity

 release:

 needs: test

 if: startsWith(github.ref, 'refs/tags/v')

 runs-on: ubuntu-latest

 steps:

The preceding job definition completes the first goal of only running the
release when a tag starting with v is pushed by specifying an if statement to
verify that the github.ref context variable starts with refs/tags/v. The
second goal of ensuring the test job executes successfully before

attempting to execute the release job is achieved by specifying needs:
test. If needs: test was not specified on the release job, both jobs will
execute concurrently, which can cause a release to be created without
passing validation.

Workspace and environmental setup

To achieve the rest of the automation goals, we will need to set up the
workspace:

Previous config of the release job omitted for brevity

steps:

 - uses: actions/checkout@v2

 - name: Set RELEASE_VERSION ENV var

 run: echo "RELEASE_VERSION=${GITHUB_REF:10}" >> $GITHUB_ENV

 - name: install go

 uses: actions/setup-go@v2

 with:

 go-version: 1.17.x

The preceding code does the following:

Checks out the source at the Git ref associated with the tag

Creates a RELEASE_VERSION environment variable with the tag, such as
v1.2.3

Installs Go 1.17 tools

Building cross-platform binaries and version injection

The third and fourth goals of the tweeter release flow are as follows:

Inject the semantic version of the release into the tweeter application.

Build cross-platform versions of the tweeter application.

Let's get started by injecting the semantic version of the release into the
compiled binary:

steps:

 # Previous steps of the release job omitted for brevity

 - name: install gox

 run: go install github.com/mitchellh/gox@v1.0.1

 - name: build cross-platform binaries

 env:

 PLATFORMS: darwin/amd64 darwin/arm64 windows/amd64

linux/amd64 linux/arm64

 VERSION_INJECT: github.com/devopsforgo/github-

actions/pkg/tweeter.Version

 OUTPUT_PATH_FORMAT: ./bin/${{ env.RELEASE_VERSION

}}/{{.OS}}/{{.Arch}}/tweeter

 run: |

 gox -osarch="${PLATFORMS}" -ldflags "-X

${VERSION_INJECT}=${RELEASE_VERSION}" -output

"${OUTPUT_PATH_FORMAT}"

The preceding steps do the following:

1. Install the gox command-line tool for simplifying Go cross-compilation.

2. Build cross-platform binaries for each specified platform/architecture
while injecting the RELEASE_VERSION environment variable into a Go
ldflag. The ldflag -X replaces the default value of the Version variable
in the github.com/devopsforgo/github-actions/pkg/tweeter package
with the semantic version tag of the build. The output of gox is
structured by OUTPUT_PATH_FORMAT – for example, the output directory
looks like the following:

$ tree ./bin/

./bin/

└── v1.0.0

 ├── darwin

 │ ├── amd64

 │ │ └── tweeter

 │ └── arm64

 │ └── tweeter

 └── linux

 └── amd64

 └── tweeter

One of the most compelling reasons to use Golang for building applications
is the relative ease of building cross-platform, statically linked binaries.
With a couple of steps, we can build versions of tweeter for Linux,
Windows, macOS targeting AMD64 and ARM64, as well as many other
platforms and architectures. These small, statically linked binaries are
simple to distribute and execute across platforms and architectures.

With the preceding steps, the release job has compiled the semantic version
of the release into the platform and architecture-specific, statically linked
binaries. In the next step, we will use the semantic version to generate
release notes.

Generating release notes

We have the following goals associated with generating release notes:

Generate release notes from the pull requests in the release.

Tag the contributors in the release.

Create a GitHub release containing the following:

A description containing the generated release notes

Here's some great news! With a bit of configuration and tagging, release
note generation is automatically handled by GitHub. We'll start by adding a
new file to the repository, ./.github/release.yml, with the following
content:

changelog:

 exclude:

 labels:

 - ignore-for-release

 categories:

 - title: Breaking Changes

 labels:

 - breaking-change

 - title: New Features

 labels:

 - enhancement

 - title: Bug Fixes

 labels:

 - bug-fix

 - title: Other Changes

 labels:

 - "*"

The preceding release configuration will tell GitHub to filter and categorize
pull requests based on the applied labels. For example, pull requests labeled
with ignore-for-release will be excluded from the release notes, but a pull
request labeled with enhancement will be grouped under the New Features
header in the release notes:

steps:

 # Previous steps of the release job omitted for brevity

 - name: generate release notes

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

 run: |

 gh api -X POST 'repos/{owner}/{repo}/releases/generate-notes'

\

 -F commitish=${{ env.RELEASE_VERSION }} \

 -F tag_name=${{ env.RELEASE_VERSION }} \

 > tmp-release-notes.json

The preceding step generates release notes. The step executes an API call to
the GitHub API to generate the release notes for the given tag. The
command captures the JSON body of the response in a tmp-release-
notes.json filename. Note that gh requires a GitHub token to interact with
the GitHub APIs. The GitHub secret is passed into the GITHUB_TOKEN
environment variable and is used by gh to authenticate.

The following is an example of JSON returned from the generate-notes
API call:

{

 "name": "name of the release",

 "body": "markdown body containing the release notes"

}

We will use tmp-release-notes.json to create the release in the next step.

Creating the GitHub release

The final goal of creating the release automation is as follows:

A title containing the semantic version of the release

A description containing the generated release notes

Artifacts consisting of the cross-platform binaries

Let's get started creating our release automation:

steps:

 # Previous steps of the release job omitted for brevity

 - name: gzip the bins

 env:

 DARWIN_BASE: ./bin/${{ env.RELEASE_VERSION }}/darwin

 WIN_BASE: ./bin/${{ env.RELEASE_VERSION }}/windows

 LINUX_BASE: ./bin/${{ env.RELEASE_VERSION }}/linux

 run: |

 tar -czvf "${DARWIN_BASE}/amd64/tweeter_darwin_amd64.tar.gz"

-C "${DARWIN_BASE}/amd64" tweeter

 tar -czvf "${DARWIN_BASE}/arm64/tweeter_darwin_arm64.tar.gz"

-C "${DARWIN_BASE}/arm64" tweeter

 tar -czvf "${WIN_BASE}/amd64/tweeter_windows_amd64.tar.gz" -C

"${WIN_BASE}/amd64" tweeter.exe

 tar -czvf "${LINUX_BASE}/amd64/tweeter_linux_amd64.tar.gz" -C

"${LINUX_BASE}/amd64" tweeter

 tar -czvf "${LINUX_BASE}/arm64/tweeter_linux_arm64.tar.gz" -C

"${LINUX_BASE}/arm64" tweeter

 - name: create release

 env:

 OUT_BASE: ./bin/${{ env.RELEASE_VERSION }}

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

 run: |

 jq -r .body tmp-release-notes.json > tmp-release-notes.md

 gh release create ${{ env.RELEASE_VERSION }} \

 -t "$(jq -r .name tmp-release-notes.json)" \

 -F tmp-release-notes.md \

"${OUT_BASE}/darwin/amd64/tweeter_darwin_amd64.tar.gz#tweeter_osx_a

md64" \

"${OUT_BASE}/darwin/arm64/tweeter_darwin_arm64.tar.gz#tweeter_osx_a

rm64" \

"${OUT_BASE}/windows/amd64/tweeter_windows_amd64.tar.gz#tweeter_win

dows_amd64" \

"${OUT_BASE}/linux/amd64/tweeter_linux_amd64.tar.gz#tweeter_linux_a

md64" \

"${OUT_BASE}/linux/arm64/tweeter_linux_arm64.tar.gz#tweeter_linux_a

rm64"

The preceding steps do the following:

Execute tar and gzip on the binaries. With Go 1.17, tweeter bins are
roughly 6.5 MB. After gzip, each artifact is less than 4 MB.

Create a GitHub release using the gh command-line tool, which is
available on all GitHub job executors. gh requires a GitHub token to
interact with the GitHub APIs. The GitHub secret is passed into the
GITHUB_TOKEN environment variable and is used by gh to authenticate. gh
release create creates a release and uploads each of the files specified
after the arguments. Each file uploaded becomes an artifact on the
release. Note # after each artifact file path. The text after # is the name
that the artifact will display, as in the GitHub UI. We also specify the
title and the release notes using the captured tmp-release-notes.json
and jq to parse and select the JSON content.

At this point, we have a created release targeting multiple platforms and
architectures, satisfying all our goals for automation. Let's kick off a release
and see the results.
Creating a release of tweeter

Now that we have built a release job that will automate the releases of
tweeter, we can now tag the repository and release a version of the
application. To start the release automation, we are going to create and push
the v0.0.1 tag to the repository by executing the following:

git tag v0.0.1

git push origin v0.0.1

After the tag is pushed, you should be able to go to the Actions tab on your
GitHub repository and see the tag workflow executing. If you navigate to
the workflow, you should see something like the following:

Figure 10.5 – The workflow job view showing dependent test and release jobs

As you can see in the preceding figure, the tests have been executed and,
subsequently, the release job has been too. If you navigate to the release
job, you should see something like the following:

Figure 10.6 – The release job output view

As you can see in the preceding figure, the release job has successfully
executed each of the steps and the release was created. If you go to the
landing page of the repository, you should see that a new release has been

created. If you click on that release, you should see something like the
following:

Figure 10.7 – The release view, containing assets, the release note, and the semantic
version title

In the preceding figure, you can see that the release named v0.0.1 has been
autogenerated with categorized release notes that link to the pull requests,
the contributor, and artifacts for each platform/architecture combination.

With the preceding steps, we have satisfied the goals of our release
automation job. We triggered the release job after the tests executed to
ensure a release will always pass our validations before being published.
We built statically linked binaries for each of the specified
platform/architecture combinations using gox. We leveraged GitHub release
notes autogeneration to create beautifully formatted release notes. And
finally, we created a release with the generated notes and artifacts from the
build.

In this example, we learned to build a release automation job for a Go
project, but any language and set of tools can be used in a similar manner to
create release automation for any language.

We have no more manual toil to release the tweeter project. All that needs
to be done is to push a tag to the repository. Our use of open source actions
has enhanced our ability to author these automations. In the next section,
we will learn to create our own packaged action that will allow others to use
an action we author.

Creating a custom GitHub Action using
Go

In this section, we will extend upon our work by turning the tweeter
command line into a GitHub Action. This will allow anyone on GitHub
building automation to use tweeter to tweet from their own pipeline.
Furthermore, we'll use our tweeter action to tweet when we release new
versions of tweeter by extending the release job to use our new action.

In this section, you will learn the basics of authoring GitHub Actions. You
will create a custom GitHub Action using Go. You will then optimize the
start up time of your custom action by creating a container image.

Basics of custom actions

Custom actions are individual tasks that wrap a collection of related tasks.
Custom actions can be executed as individual tasks in workflows and can
be shared with the GitHub community.
Types of actions
There are three types of actions: container, JavaScript, and composite
actions. Container-based actions use a Dockerfile or a container image
reference as the entry point, the starting point of execution for the action,
and are useful if you want to author an action in anything but JavaScript or
existing actions. Container-based actions offer flexibility in customizing the
execution environment of an action, but it comes at the cost of start up time.
If a container-based action depends on a large container image or a slow-
building Dockerfile, then the action start up time will be adversely affected.
JavaScript actions can run directly on the runner machine and are the native
expression of an action. JavaScript actions start up quickly and can leverage
the GitHub Actions Toolkit, a set of JavaScript packages to make creating

actions easier. Composite actions are a collection of steps within a wrapper
action. They enable an author to combine a set of disparate steps into a
higher-order behavior.
Action metadata
To define an action, you must create an action.yaml file in a GitHub
repository. If the action is to be shared publicly, the action.yaml file should
be created in the root of the repository. If the action is not to be shared
publicly, it is recommended to create the action.yaml file in
./.github/{name-of-action}/action.yaml where {name-of-action} should
be substituted with the name of the action. For example, if the tweeter
action was only to be used internally, the path of the action metadata would
be ./.github/tweeter/action.yaml:

name: Name of the Action

author: @author

description: Description of your action

branding:

 icon: message-circle

 color: blue

inputs:

 sample:

 description: sample description

 required: true

outputs:

 sampleOutput:

 description: some sample output

runs:

 using: docker

 image: Dockerfile

 args:

 - --sample

 - "${{ inputs.sample }}"

The preceding action.yaml defines the following:

The name of the action that will be shown in the GitHub UI

The author of the action

The description of the action

Branding that will be used for the action in the GitHub UI

Input the action will accept

Output the action will return

The runs section, which describes how the action will be executed

In this example, we are using a Dockerfile, which will build a container
from the Dockerfile and execute the container entry point with the specified
arguments. Note how the inputs.sample context variable is used to map
input to command-line arguments.

The preceding action can be executed with the following step:

jobs:

 sample-job:

 runs-on: ubuntu-latest

 steps:

 - name: Sample action step

 id: sample

 uses: devopsforgo/sample-action@v1

 with:

 sample: 'Hello from the sample!'

 # Use the output from the `sample` step

 - name: Get the sample message

 run: echo "The message is ${{

 steps.sample.outputs.sampleOutput }}"

The preceding sample execution does the following:

Executes a step using the sample action with the assumption that the
action is tagged with v1 in the devopsforgo/sample-action repository,
with action.yaml at the root of that repository, and specifies the
required input variable sample.

Echoes the sampleOutput variable.

Next, we will discuss how to tag action releases.
Action release management
In all of our examples of using actions in our workflows, the uses: value
for the action has always included the version of the action. For example, in
the preceding sample, we used devopsforgo/sample-action@v1 to specify
that we wanted to use the action at the Git tag of v1. By specifying that
version, we are telling the workflow to use the action at the Git reference
pointed to by that tag. By convention, the v1 tag of an action can point to
any Git reference that is tagged in the semantic version range of v1.x.x.

That means that the v1 tag is a floating tag and not static, and will advance
as new releases in the v1.x.x range are released. Recall from the description
of semantic versions earlier in this chapter that increments of the major
version indicate breaking changes. The author of the action is making a
promise to users that anything tagged with v1 will not include breaking
changes.

The conventions used for versioning actions can cause friction when an
action is included in the same repository as another versioned software
project. It is advised to consider the implications of action versioning, and
consider creating a repository dedicated to an action rather than creating it
within a repository containing other versioned projects.

Goals for the tweeter custom GitHub
Action

In our custom GitHub Action for tweeter, we are going to accomplish the
following:

Build a Dockerfile for building and running the tweeter command-line
tool.

Create an action metadata file for the custom action.

Extend the continuous integration job to test the action.

Create an image release workflow for publishing the tweeter container
image.

Optimize the tweeter custom action by using the published container
image.

Next, we will create a custom Go action using a Dockerfile.

Creating the tweeter action

With our goals for the tweeter custom action specified, we are ready to
create the Dockerfile required to run tweeter, define the metadata for the
action to map input and output from the tweeter command-line tool, extend
our continuous integration job to test the action, and finally, optimize the
start time for the action by using a pre-built container image in the custom
action. We will break down each step and create our custom Go action.
Defining a Dockerfile
The first goal for the tweeter custom GitHub Action is building a
Dockerfile for building and running the tweeter command-line tool.

Let's get started by building a Dockerfile in the root of the tweeter
repository that we will use to build a container image:

FROM golang:1.17 as builder

WORKDIR /workspace

Copy the Go Modules manifests

COPY go.mod go.mod

COPY go.sum go.sum

Cache deps before building and copying source

so that we don't need to re-download as much

and so that source changes don't invalidate

our downloaded layer

RUN go mod download

Copy the sources

COPY ./ ./

RUN CGO_ENABLED=0 GOOS=linux GOARCH=amd64 \

 go build -a -ldflags '-extldflags "-static"' \

 -o tweeter .

Copy the action into a thin image

FROM gcr.io/distroless/static:latest

WORKDIR /

COPY --from=builder /workspace/tweeter .

ENTRYPOINT ["/tweeter"]

The preceding Dockerfile does the following:

1. Uses the golang:1.17 image as an intermediate builder container, which
contains the Go build tools needed to compile the tweeter command-
line tool. Using the builder pattern creates an intermediate container,
containing build tools and source code that will not be needed in the end
product. It allows us a scratch area to build a statically linked Go
application that can be added to a slimmed-down container at the end of
the build process. This enables the final container to only contain the Go
application and nothing more.

2. The build then copies in go.mod and go.sum, and then downloads the Go
dependencies for the tweeter application.

3. The source for the tweeter application is copied into the builder
container and then compiled as a statically linked binary.

4. The production image is created from the
gcr.io/distroless/static:latest base image, and the tweeter

application is copied from the intermediate builder container.

5. Finally, the default entry point is set to the tweeter binary, which will
enable us to run the container and directly execute the tweeter
application.

To build and then execute the preceding Dockerfile, you can run the
following:

$ docker build . -t tweeter

output from the docker build

$ docker run tweeter -h

pflag: help requested

Usage of /tweeter:

 --accessToken string twitter access token

 # More help text removed for brevity.

The preceding script does the following:

Builds the Dockerfile and tags it with the name tweeter

Runs the tagged tweeter container image, passing the tweeter
application the -h argument, causing the tweeter application to print the
help text

Now that we have a working Dockerfile, we can use that to define a custom
container action defined in action.yaml.
Creating action metadata
The second goal for the tweeter custom GitHub Action is creating an action
metadata file for the custom action.

Now that we have defined the Dockerfile, we can author a Docker action
with the following action metadata in an action.yaml file in the root of the
repository:

name: Tweeter Action

author: DevOps for Go

description: Action to send a tweet via a GitHub Action.

inputs:

 message:

 description: 'message you want to tweet'

 required: true

 apiKey:

 description: 'api key for Twitter api'

 required: true

 apiKeySecret:

 description: 'api key secret for Twitter api'

 required: true

 accessToken:

 description: 'access token for Twitter api'

 required: true

 accessTokenSecret:

 description: 'access token secret for Twitter api'

 required: true

outputs:

 errorMessage:

 description: 'if something went wrong, the error message'

 sentMessage:

 description: 'the message sent to Twitter'

runs:

 using: docker

 image: Dockerfile

 args:

 - --message

 - "${{ inputs.message }}"

 - --apiKey

 - ${{ inputs.apiKey }}

 - --apiKeySecret

 - ${{ inputs.apiKeySecret }}

 - --accessToken

 - ${{ inputs.accessToken }}

 - --accessTokenSecret

 - ${{ inputs.accessTokenSecret }}

The preceding action metadata does the following:

Defines the action name, author, and description metadata

Defines the expected input to the action

Defines the output variable for the action

Executes the Dockerfile, mapping the input of the action to the args of
the tweeter application

How the input variables map to the tweeter args command line is apparent
due to the mapping of the input to the arguments, but it is not clear how the

output variables are mapped. The output variables are mapped by specially
encoding the variables in STDOUT in the Go application:

func printOutput(key, message string) {

 fmt.Printf("::set-output name=%s::%s\n", key, message)

}

The preceding function prints to STDOUT the key and the message for an
output variable. To return the sentMessage output variable, the Go
application calls printOutput("sendMessage", message). The action
runtime will read STDOUT, recognize the encoding, and then populate the
context variable for steps.{action.id}.outputs.sentMessage.

With our action metadata defined, we are now ready to test our action by
extending the tweeter continuous integration workflow to execute the action
in the local repository.
Testing the action
The third goal of the tweeter custom GitHub Action is to extend the
continuous integration job to test the action.

With the action.yaml file authored, we can add a workflow job to test the
action:

test-action:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: test the tweeter action in DRY_RUN

 id: tweeterAction

 env:

 DRY_RUN: true

 uses: ./

 with:

 message: hello world!

 accessToken: fake

 accessTokenSecret: fake

 apiKey: fake

 apiKeySecret: fake

 - run: echo ${{ steps.tweeterAction.outputs.sentMessage

}} from dry run test

The preceding test-action job does the following:

Checks out the code to the local workspace

Executes the local action, specifying all required input and setting the
DRY_RUN environment variable to true so that the action will not try to
send the message to Twitter

Runs an echo command, fetching the echoed output from the action

Let's see what happens when we trigger this workflow:

Figure 10.8 – The workflow run with the new test-action job

In the preceding screenshot, you can see that the test-action job is now
part of the tweeter automation that will validate the action. Note the runtime
of 54 seconds for executing the job. It seems like a long time to call a
command-line application:

Figure 10.9 – The test-action job output

In the preceding screenshot, you can see that the test for the tweeter action
took 49 seconds out of the total job runtime of 54 seconds. That is the vast
majority of the time it took to execute the job. Most of that time was spent
compiling tweeter and building the docker image prior to executing the
action. In the next part, we'll optimize the action execution time by
referencing a pre-built version of the tweeter container image.

Creating a container image release workflow
The fourth goal of the tweeter custom GitHub Action is creating an image
release workflow for publishing the tweeter container image.

As we saw in the previous section, the amount of time to build the
Dockerfile was significant. There is little reason to do that for every
execution of an action, which can be avoided by publishing the container
image to a container registry and then using the registry image in place of
the Dockerfile:

name: release image

on:

 # push events for tags matching image-v for version

(image-v1.0, etc)

 push:

 tags:

 - 'image-v*'

permissions:

 contents: read

 packages: write

jobs:

 image:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - name: set env

 # refs/tags/image-v1.0.0 substring starting at 1.0.0

 run: echo "RELEASE_VERSION=${GITHUB_REF:17}" >> $GITHUB_ENV

 - name: setup buildx

 uses: docker/setup-buildx-action@v1

 - name: login to GitHub container registry

 uses: docker/login-action@v1

 with:

 registry: ghcr.io

 username: ${{ github.repository_owner }}

 password: ${{ secrets.GITHUB_TOKEN }}

 - name: build and push

 uses: docker/build-push-action@v2

 with:

 push: true

 tags: |

 ghcr.io/devopsforgo/tweeter:${{ env.RELEASE_VERSION }}

 ghcr.io/devopsforgo/tweeter:latest

The preceding workflow definition does the following:

Triggers only when tags starting with image-v are pushed

Requests permissions to write to the ghcr.io image repository and read
the Git repository

Contains a single container image build and steps to publish the image.

Checks out the repository

Builds the RELEASE_VERSION environment variable based on the tag
format

Sets up buildx for building the container image

Logs in to ghcr.io, the GitHub container registry

Builds and pushes the container image tagged with both the release
version and the latest version

With the preceding workflow in place, we can tag the repository with the
following commands and have the container image published to the GitHub
container registry for use in the tweeter action:

git tag image-v1.0.0

git push origin image-v1.0.0

Let's see the result of our image release workflow:

Figure 10.10 – The workflow job view for the image-release job

The preceding screenshot shows the release image workflow that was
triggered by pushing the image-v1.0.0 tag. The following screenshot details
the results of each step of the release image workflow:

Figure 10.11 – The image release job output

The result of the preceding workflow is that we now have a container image
pushed to ghcr.io/devopsforgo/tweeter, tagged with v1.0.0 and latest.
We can now update the action metadata to use the tagged image version.
Optimizing the custom Go action

The final goal of this section is optimizing the tweeter custom action by
using the published container image.

Now that we have the image published to ghcr.io, we can replace the
Dockerfile with the reference to the published image:

omitted the previous portion of the action.yaml

runs:

 using: docker

 image: docker://ghcr.io/devopsforgo/tweeter:1.0.0

omitted the subsequent portion of the action.yaml

The preceding portion of the action.yaml file illustrates replacing the
Dockerfile with the published tweeter container image. Now that the
Dockerfile has been replaced, let's run the workflow and see the
performance optimization in action:

Figure 10.12 – The workflow view showing the speed increase of the test-action job

The preceding screenshot illustrates the gains from using a pre-built
container image. Recall, when using a Dockerfile, that the workflow
execution was 54 seconds. Now, using the tweeter container image from the

registry, the workflow executes in 11 seconds. This is a significant
optimization and should be used when possible.

In this section, we learned to build custom actions using Go, which enables
a DevOps engineer to build complex actions and package them in easily
accessible units of automation. We also learned how to test and optimize
these actions locally, ensuring that when custom actions are published, they
function as intended.

In the next section, we will build upon the ability to author custom actions
and publish an action to the entire GitHub community. By publishing an
action to the GitHub marketplace, an action can become a key tool for other
DevOps engineers authoring automation.

Publishing a custom Go GitHub Action
The superpower of GitHub Actions is the community and the actions that
the community publishes to the GitHub Marketplace. Think about how
much more work we would have had to do in the previous sections if we
didn't have community actions available for use. Our workflows would
have had to start from first principles, involving authoring long, tedious
scripts to complete tasks that we were able to express in a handful of
YAML instead.

Open source software is not only about having access to free software but
also about giving back to the community. We are going to learn how to give
back to the GitHub Actions community through publishing an action to
GitHub Marketplace. This will enable the entire user community of GitHub
to benefit from it.

In this section, you will learn how to publish a custom action to the GitHub
Marketplace. You will learn the basics of publishing actions. After covering
the basics, you will learn how to automate versioning for a published
action. You will learn how to use the tweeter action to tweet an
announcement of new releases to tweeter. Finally, you will learn how to
publish your action to the GitHub Marketplace so that it can be used by the
rest of the GitHub community across the world.

The basics of publishing actions

Publishing an action to the GitHub Marketplace adds some requirements
and best practices that, for a local action, as we built in the previous section,
do not apply. For example, the readme for the repository will be the landing
page for the action in the marketplace, so you'd want to provide a
description and usage guidance for the repository readme.

The following are the requirements for publishing an action to the GitHub
Marketplace:

The action must be in a public GitHub repository.

In the root of the repository must be a single action named action.yaml
or action.yml.

The name of the action in action.yaml must be unique to the
marketplace. The name may not overlap with any GitHub features or
products, or any other names that GitHub reserves.

A public action should follow v1 and v1.2.3 semantic version guidance
so that users of the action can specify a full semantic version, or simply

v1 to denote the latest in the v1 major semantic version series.

Goals for publishing the tweeter custom
action

The following are goals for publishing the tweeter custom action:

Set up a release-triggered workflow that will handle semantic version
management.

Publish the tweeter action to the GitHub Marketplace.

Managing action semantic versioning

The first and second goals of publishing the tweeter custom action to the
marketplace are as follows:

Set up a release-triggered workflow that will handle semantic version
management.

Use the action to tweet an announcement of the new release of the
action.

We are going to build a workflow to update the major version tag – for
example, v1 – to point to the latest release in the v1.x.x series of semantic
versions. The workflow will also be responsible for creating new major
version tags as new major semantic versions are released:

name: Release new tweeter version

on:

 release:

 types: [released]

 workflow_dispatch:

 inputs:

 TAG_NAME:

 description: 'Tag name that the major tag will point to'

 required: true

permissions:

 contents: write

env:

 TAG_NAME: ${{ github.event.inputs.TAG_NAME ||

github.event.release.tag_name }}

jobs:

 update_tag:

 name: Update the major tag to include the ${{ env.TAG_NAME }}

changes

 runs-on: ubuntu-latest

 steps:

 - name: Update the ${{ env.TAG_NAME }} tag

 uses: actions/publish-action@v0.1.0

 with:

 source-tag: ${{ env.TAG_NAME }}

 - uses: actions/checkout@v2

 - name: Tweet about the release

 uses: ./

 with:

 message: Hey folks, we just released the ${{ env.TAG_NAME

}} for the tweeter GitHub Action!!

 accessToken: ${{ secrets.ACCESS_TOKEN }}

 accessTokenSecret: ${{ secrets.ACCESS_TOKEN_SECRET }}

 apiKey: ${{ secrets.API_KEY }}

 apiKeySecret: ${{ secrets.API_KEY_SECRET }}

The preceding workflow does the following:

Triggers on a release being published or on a manual UI submission.
This means that a project maintainer can trigger the workflow via the
GitHub UI if ad hoc execution was required.

Declares that the workflow requires rights to write to the repository.
This is used to write tags.

Declares the TAG_NAME environment variable, which is either the ad hoc
job input or the tag of the release.

The update_tag takes the tag in v1.2.3 format and updates the tag's
major semantic version tag to the latest version within that major
semantic version. For example, if the new release tag is v1.2.3, then the
v1 tag will point to the same Git ref as v1.2.3.

Clones the source code using actions/checkout@v2.

Tweets about the new release using Twitter developer credentials
embedded in GitHub repository secrets. To set up Twitter developer
credentials, see https://developer.twitter.com/en/portal/dashboard and
set up an account and application. After you gather the secrets, you can
add them to the repository secrets under the Settings tab, as shown in
the following screenshot:

https://developer.twitter.com/en/portal/dashboard

Figure 10.13 – Repository secrets

With the preceding workflow, when we apply a tag – for example, v1.2.3 –
the repository will also be tagged at the same Git ref with v1. After the tags
are set, the tweeter action will execute, announcing the release to the world.

Recall from the previous section that when we tag the tweeter repository
with a semantic version, the release workflow will trigger, causing a new
release to be created. This workflow will then trigger the action version
update release workflow, which will tag the action with the major version
and announce through Twitter that the action release is available.

All that is left to do is to release the action to the GitHub Marketplace. This
only needs to be done the first time the action is released.

Publishing the tweeter action to the
GitHub Marketplace

The final goal of publishing the tweeter custom action is to publish the
tweeter action to the GitHub Marketplace. The first publication of your
GitHub Action is a manual process and can be accomplished by following
the guide here: https://docs.github.com/en/actions/creating-
actions/publishing-actions-in-github-marketplace. After taking this first set
of manual steps, they will not need to be repeated for future releases.

Summary
GitHub Actions is a powerful system for project maintainers to automate
toilsome processes, enabling greater developer satisfaction and increased

https://docs.github.com/en/actions/creating-actions/publishing-actions-in-github-marketplace

project velocity. We targeted Go in this chapter as the language of choice
for GitHub Actions due to its type safety, low memory overhead, and speed.
We believe that it is the best choice for writing GitHub Actions. However,
many of the skills taught here are transferable to other languages. Each of
the patterns, continuous integration, release pipelines, semantic versioning,
and action creation can be applied to any project that you come into contact
with.

The key to the chapter is to understand the impact of community
contributions in the GitHub Marketplace. By using, building, and
contributing to the marketplace, an engineer can make their automation
more composable and empower community members to solve more
complex problems through the contributions of the community.

We learned the basics of GitHub Actions with a focus on its features, which
enable us to be functional quickly. With these basic skills, we were able to
build a continuous integration automation workflow to clone, build, lint,
and test the tweeter project. We extended the continuous integration
automation to create a release pipeline trigger from Git tags. The release
pipeline transformed manual tasks such as authoring release notes and made
them an automated part of the release workflow. Finally, we created and
published a custom Go GitHub Action that can be used by the entire
community.

I hope that at the end of this chapter you feel confident in your ability to
create automation to eliminate toilsome tasks that burdened your team's day.
Remember that if you can automate a task that happens once a week and
takes an hour, you are saving a full week of work from one of your team

members! That is time that is likely better spent adding value to your
business.

In the next chapter, we are going to learn about ChatOps. You will learn
how to use chat applications such as Slack to trigger automation and alerts
when events occur, providing you and your team an interactive robotic
DevOps partner.

Chapter 11: Using ChatOps to Increase
Efficiency
As DevOps engineers, we often work as part of a team of engineers that
help manage a network, service infrastructure, and public-facing services.
This means there are a lot of moving parts and communication that needs to
occur, especially in an emergency.

ChatOps provides teams with a central interface to tooling to ask questions
about current states and to interact with other DevOps tools while recording
those interactions for posterity. This can improve feedback loops and real-
time communication between teams and help manage incidents effectively.

One of our colleagues, Sarah Murphy, has a saying – Don't talk to the bus
driver. As a release engineer for Facebook in the early days, she was
responsible for releasing Facebook across their data centers. This was a
high-stress and detail-oriented job that required her complete attention.
Many of the engineers wanted to know if their feature or patch was being
included in the current release and, of course, asked the release engineer.

As any engineer who does high-impact rollouts will tell you, you need to
focus. Having hundreds of engineers ping you about the status of their
particular patch is not ideal. This is where ChatOps comes into play.
Instrumenting ChatOps can allow a central place where questions about
rollout status and what revision is in a release can stave off those hundreds
of questions. It certainly did for Sarah.

In this chapter, we will dive into how to build a ChatOps bot for Slack. We
will show how we can use that bot to ask the status of a service. We will

show how we can use a bot to get deployment information. And finally, we
will show how we can use the bot to deploy our software.

We will cover the following topics in this chapter:

Environment architecture

Using an Ops service

Building a basic chatbot

Creating event handlers

Creating our Slack application

Technical requirements
The following are the prerequisites for this chapter:

A Slack user account: Create a Slack user if you do not have one by
following the instructions here: https://slack.com/get-
started#/createnew.

A Slack workspace to experiment: Instructions for creating a Slack
workspace can be found here:
https://slack.com/help/articles/206845317-Create-a-Slack-workspace.

Creation of a Slack application.

It is highly suggested that you use a workspace you control instead of using
a corporate one. That process requires approval by admins for your
corporate Slack.

https://slack.com/get-started#/createnew
https://slack.com/help/articles/206845317-Create-a-Slack-workspace

You will also need to create a Slack application, but this is covered in a later
section.

The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11

Environment architecture
Our example ChatOps program will need to interact with several services to
provide information to users.

To enable this, we have built a more robust version of the Petstore
application that we built in our previous chapters. This version does the
following:

Implements create, read, update and delete (CRUD).

Is gRPC based.

Has deeper Open Telemetry tracing that flows through RPC calls and
records events.

Deeper metrics that can be used to inform Prometheus alarms.

Replaces logging with tracing events.

All errors are automatically added to traces.

Traces can be turned on by a client.

Traces are sampled by default but can be changed via an RPC.

You can find this new Petstore here:
https://github.com/PacktPublishing/Go-for-

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11/petstore

DevOps/tree/rev0/chapter/11/petstore. There is a README file that details the
architecture if you want to dive into the details, but you do not need to for
this chapter.

Our new Petstore is more capable and will allow us to show some of the
power ChatOps can provide by combining our other lessons from this
chapter.

The following is what our service architecture would look like:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11/petstore

Figure 11.1 – ChatOps and Petstore architecture

ATTRIBUTION
Poodle dog vector created by gstudioimagen - www.freepik.com

Gophers by Egon Elbe: github.com/egonelbre/gophers

http://www.freepik.com/
http://github.com/egonelbre/gophers

There are two services we will concentrate on creating here:

Ops service: The Ops service does the real work, such as talking to
Jaeger, Prometheus, running jobs, or anything else that is needed. This
allows us to have multiple ChatOps services running in parallel (which
might be needed if your company migrates from Slack to Microsoft
Teams, for example).

This architecture has the benefit of allowing other teams to write tools using
these functions in any language they choose.

ChatOps service: The ChatOps service acts as the glue between Slack
and the Ops service. It interprets messages sent to the Slack bot, which
are forwarded to our ChatOps service, and makes requests to the Ops
service. It uses the open source slack-go package, which can be found
at https://github.com/slack-go/slack.

Let's jump into the basic details of the Ops service.

Using an Ops service
We are not going to go into complete detail about this service, as we have
covered how gRPC works in previous chapters. As this service just makes
gRPC or REST calls to other services, let's talk about the calls that need to
be implemented.

The protocol buffer service definition is as follows:

service Ops {

 rpc ListTraces(ListTracesReq) returns (ListTracesResp) {};

 rpc ShowTrace(ShowTraceReq) returns (ShowTraceResp) {};

https://github.com/slack-go/slack

 rpc ChangeSampling(ChangeSamplingReq) returns

(ChangeSamplingResp) {};

 rpc DeployedVersion(DeployedVersionReq) returns

(DeployedVersionResp) {};

 rpc Alerts(AlertsReq) returns (AlertsResp) {};

}

For our example service, these RPCs are targeted at a single deployed
instance, but in a production environment, this would work on multiple
entities that exist on a site.

This allows users to get some information quickly, such as the following:

See the traces we have in a certain time period, and the ability to filter
by tags (such as error).

Retrieve basic trace data and the Jaeger URL of a trace given a trace ID.

Change the sampling type and rate for traces in the service.

Tell us what version has been deployed according to Prometheus.

Display any alerts that Prometheus shows are firing.

You can read the code on how this is implemented here:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/11/ops.

We include a README file that goes over the basic architecture, but it is your
standard gRPC service that makes calls using gRPC to the Petstore
service/Jaeger and REST calls to Prometheus.

Now, let's jump into something new, writing the basic Slack bot.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11/ops

Building a basic chatbot
Go has a few clients that can interact with popular chat services such as
Slack, either as a general Slack client or as a ChatOps-focused bot.

We have found that it is best to have an architecture that separates the bot
from the operations that you want to perform. This allows other tooling in
other languages to access the capabilities.

By keeping the chatbot separate, you can focus on a single type of chat
service and use all its features, instead of only features shared by each chat
service client.

For this reason, we will use the slack-go package to interact with Slack.

Our bot will be basic, simply listening to when someone mentions our bot
in a message. This is called an AppMention event. Slack supports other
events and has events specifically for commands that you can install. In our
case, we just want to answer whenever we are mentioned, but slack-go has
many other capabilities we will not explore.

Let's create a package called bot and add some imports:

package bot

import (

 "log"

 "context"

 "regexp"

 "encoding/json"

 "github.com/slack-go/slack"

 "github.com/slack-go/slack/slackevents"

 "github.com/slack-go/slack/socketmode"

)

Details on our third-party package are as follows:

slack is what is used to build a basic client.

slackevents details the various events we can receive.

socketmode provides a method of connecting to Slack from a bot that is
behind a firewall.

Let's create a type that can handle an event we receive:

type HandleFunc func(ctx context.Context, m Message)

type register struct{

 r *regexp.Regexp

 h HandleFunc

}

HandleFunc receives a message that can be used to write to channels and get
information about the message that was received.

We have also defined a register type that is used to register a HandleFunc
with a regular expression (regex). The regex will be used to determine
whether the message should be handled by that specific HandleFunc.

Let's define the Message type:

type Message struct {

 User *slack.User

 AppMention *slackevents.AppMentionEvent

 Text string

}

This contains information about the Slack user who sent the message,
information about the AppMention event, and the cleaned-up text that the
user sent (removes the @User text and leading/trailing spaces).

Now, let's define our Bot type and its constructor:

type Bot struct {

 api *slack.Client

 client *socketmode.Client

 ctx context.Context

 cancel context.CancelFunc

 defaultHandler HandleFunc

 reg []register

}

func New(api *slack.Client, client *socketmode.Client) (*Bot,

error) {

 b := &Bot{

 api: api,

 client: client,

 ctx: ctx,

 cancel: cancel,

 }

 return b, nil

}

This code contains our clients that will be used to interact with Slack, a
context for canceling our bot's goroutines, defaultHandler for handling the

case where no regex matches happen, and a list of registrations that we
check on any message receipt.

We now need some methods to start and stop our bot:

func (b *Bot) Start() {

 b.ctx, b.cancel = context.WithCancel(context.Background())

 go b.loop()

 b.client.RunContext(b.ctx)

}

func (b *Bot) Stop() {

 b.cancel()

 b.ctx = nil

 b.cancel = nil

}

This simply starts our event loop and calls RunContext to listen to our event
stream. We cancel our bot using the supplied context.Bot. Start() blocks
until Stop() is called.

Our next method will allow us to register our regexes and their handlers:

func (b *Bot) Register(r *regexp.Regexp, h HandleFunc) {

 if h == nil {

 panic("HandleFunc cannot be nil")

 }

 if r == nil {

 if b.defaultHandle != nil {

 panic("cannot add two default handles")

 }

 b.defaultHandle = h

 return

 }

 b.reg = append(b.reg, register{r, h})

}

In this code, if we don't supply a regex, then HandleFunc is used as the
default handler when no regexes match. You can only have one default
handler. When the bot checks a message, it matches regexes in the order
they are added; the first match wins.

Now, let's look at our event loop:

func (b *Bot) loop() {

 for {

 select {

 case <-b.ctx.Done():

 return

 case evt := <-b.client.Events:

 switch evt.Type {

 case socketmode.EventTypeConnectionError:

 log.Println("connection failed. Retrying

later...")

 case socketmode.EventTypeEventsAPI:

 data, ok := evt.Data.

(slackevents.EventsAPIEvent)

 if !ok {

 log.Println("bug: got type(%v) which

should be a slackevents.EventsAPIEvent, was %T", evt.Data)

 continue

 }

 b.client.Ack(*evt.Request)

 go b.appMentioned(data)

 }

 }

 }

}

Here, we pull events off the socketmode client. We switch on the type of
event. For our purposes, we are only interested in two types of events:

Error connecting to the WebSocket

An EventTypeEventsAPI event

An EventTypeEventsAPI type is an interface that we turn into its concrete
type, slackevents.EventsAPIEvent. We acknowledge receipt of the event
and send the event to be handled by a method called appMentioned().

There are other events you might be interested in. You can find a list of the
official events supported by Slack here: https://api.slack.com/events.

The Go package event support may be slightly different and can be found
here: https://pkg.go.dev/github.com/slack-go/slack/slackevents#pkg-
constants.

Now, let's build appMentioned():

https://api.slack.com/events
https://pkg.go.dev/github.com/slack-go/slack/slackevents#pkg-constants

func (b *Bot) appMentioned(ctx context.Context, data

slackevents.EventsAPIEvent) {

 switch data.Type {

 case slackevents.CallbackEvent:

 callback := data.Data.

(*slackevents.EventsAPICallbackEvent)

 switch ev := data.InnerEvent.Data.(type) {

 case *slackevents.AppMentionEvent:

 msg, err := b.makeMsg(ev)

 if err != nil {

 log.Println(err)

 return

 }

 for _, reg := range b.reg {

 if reg.r.MatchString(m.Text){

 reg.h(ctx, b.api, b.client, m)

 return

 }

 }

 if b.defaultHandler != nil {

 b.defaultHandler(ctx, m)

 }

 }

 default:

 b.client.Debugf("unsupported Events API event received")

 }

Slack events are events wrapped inside events, so it takes a little decoding
to get to the information you need. This code looks at the event data type
and uses that information to know what type to decode.

For appMentioned(), this should always be slackevents.CallbackEvent,
which decodes its .Data field into a *slackevents.EventsAPICallbackEvent
type.

That has .InnerEvent, which can decode into a few other event types. We
are only interested if it decodes to *slackevents.AppMentionEvent.

If it does, we call another internal method called makeMsg() that returns the
message type we defined earlier. We are going to skip the makeMsg()
implementation, as it has some deep JSON data conversions that, due to the
nature of JSON, are a little convoluted and uninteresting. You can just lift it
from the linked code.

We then loop through our regexes looking for a match. If we find one, we
call HandleFunc on that message and stop processing. If we don't find a
match, we call defaultHandler, if it exists.

Now, we have a bot that can listen for when it is mentioned in a message
and dispatch the message to a handler. Let's tie that into making some calls
to our Ops service.

Creating event handlers
The HandleFunc type we defined in the last sections handles the core of our
functionality. This is also where we decide on how we want to turn a bunch
of text into a command to run.

There are a few ways to interpret raw text:

Regexes via the regexp package

String manipulation via the strings package

Designing or using a lexer and parser

Regexes and string manipulation are the fastest ways for an application of
this type where we have single lines of text.

Lexers and parsers are great when you need to deal with complex inputs or
multi-line text and cannot afford mistakes. This is the method that
compilers use to read your textual code into instructions that eventually lead
to a compiled binary. Rob Pike has a great talk on writing one in Go that
you can view here: https://www.youtube.com/watch?v=HxaD_trXwRE.
The downside is that they are tedious to build and hard to train new people
on. If you need to watch that video a few times to get the concept, you are
not alone.

Case Study – Regexes versus Lexer and
Parser

One of the biggest jobs for network automation is getting information out of
different devices made by different vendors. Some vendors provide
information via the Simple Network Management Protocol (SNMP), but
for many types of information or debugging, you have to go to the CLI to
get information.

https://www.youtube.com/watch?v=HxaD_trXwRE

On newer platforms, this can come in the form of JSON or XML. Many
platforms don't have structured output, and sometimes, the XML is so badly
formed that it is easier to use unstructured data.

At Google, we started with writing tools that used regexes. Regexes were
buried in every individual tool, which lead to multiple implementations of
data wrangling for the same data. This was a huge waste of effort and
introduced different bugs to different tools.

Router output can be complex, so eventually, a special regex engine was
made to deal with these complex multi-line regexes and a central repository
was created where command output regexes could be found.

Unfortunately, we were trying to use a tool that wasn't suited for the job.
That package was so complex that it required its own debugger for
development. More importantly, it would fail silently, inputting zero values
in fields when a vendor would change the output slightly on new OS
releases. This caused a few not-so-minor issues in production.

We eventually moved to a lexer and parser that would always detect when
the output was not as expected. We didn't want it to be quite as complex as
a full lexer and parser, so we wrote a package that allowed very limited
regex usage and validation of many of the data fields.

There is a certain amount of love/hate for that package when you have to
interpret new data with it. The great thing is it doesn't fail silently on
changes, it is lightning fast, requires minimal effort to update, and uses
minimal memory.

But it does take a while to get your brain around the concepts and it takes a
lot longer to write the matches. There is a public version I recreated after I

left Google called the Half-Pike that you can find here:
https://github.com/johnsiilver/halfpike.

For our first handler, we want to return a list of traces to the user. The main
command is list traces followed by optional arguments. For options, we
want the following:

operation=<operation name>

start=<mm/dd/yyyy-hh:mm>

end=<mm/dd/yyyy-hh:mm, now>

limit=<number of items>

tags=<[tag1,tag2]>

These options allow us to limit what traces we see. Maybe we only want to
see traces for some certain period and only want the ones we tagged with
error. This allows us to do filtered diagnostics.

A quick example of using this command would be as follows:

list traces operation=AddPets() limit=25

All of our handlers will be talking to the Ops service via gRPC. We will
create a type that can hold all the HandlFunc types we define and the clients
they will need to access our Ops service and Slack:

type Ops struct {

 OpsClient *client.Ops

 API *slack.Client

 SMClient *socketmode.Client

}

https://github.com/johnsiilver/halfpike

func (o Ops) write(m bot.Message, s string, i ...interface{}) error

{

 _, _, err := o.API.PostMessage(

 m.AppMention.Channel,

 slack.MsgOptionText(fmt.Sprintf(s, i...), false),

)

 return err

}

This defines our basic type that will hold a single client to our Ops service.
We will attach methods that implement the HandleFunc type. It also defines
a write() method for writing text back to the user in Slack.

Now, we need to define a package level variable for the regex we need to
tease apart our options. We define it at the package level so that we only
need to compile it once:

var listTracesRE = regexp.MustCompile(`(\S+)=(?:(\S+))`)

type opt struct {

 key string

 val string

}

You can see how our regex matches a key/value pair separated by =. The
opt type is meant to hold our option key and value once we tease it apart
with the regex.

Now for the handler that lists the traces we specify with our filters:

func (o Ops) ListTraces(ctx context.Context, m bot.Message) {

sp := strings.Split(m.Text, "list traces")

if len(sp) != 2 {

o.write(m, "The 'list traces' command is malformed")

return

}

t := strings.TrimSpace(sp[1])

kvOpts := []opt{}

matches := listTracesRE.FindAllStringSubmatch(t, -1)

for _, match := range matches {

kvOpts = append(

kvOpts,

opt{

strings.TrimSpace(match[1]),

strings.TrimSpace(match[2]),

},

)

}

ListTraces implements the HandleFunc type we created earlier. We split the
list traces text from Message.Text that the user sent and remove any excess
space at the beginning or end using strings.TrimSpace(). We then use our
regex to create all our options.

Now, we need to process those options so we can send them to the Ops
server:

options := []client.CallOption{}

for _, opt := range kvOpts {

switch opt.key {

case "operation":

options = append(

options,

client.WithOperation(opt.val),

)

case "start":

t, err := time.Parse(

`01/02/2006-15:04:05`, opt.val,

)

if err != nil {

o.write(m, "The start option must be in the form `01/02/2006-

15:04:05` for UTC")

return

}

options = append(options, client.WithStart(t))

case "end":

if opt.val == "now" {

continue

}

t, err := time.Parse(

`01/02/2006-15:04:05`, opt.val,

)

if err != nil {

o.write(m, "The end option must be in the form `01/02/2006-

15:04:05` for UTC")

return

}

options = append(options, client.WithEnd(t))

case "limit":

i, err := strconv.Atoi(opt.val)

if err != nil {

o.write(m, "The limit option must be an integer")

return

}

if i > 100 {

o.write(m, "Cannot request more than 100 traces")

return

}

options = append(options, client.WithLimit(int32(i)))

case "tags":

tags, err := convertList(opt.val)

if err != nil {

o.write(m, "tags: must enclosed in [], like tags=[tag,tag2]")

return

}

options = append(options, client.WithLabels(tags))

default:

o.write(m, "don't understand an option type(%s)", opt.key)

return

}

}

This code loops through the options we teased from the command and
appends call options for sending to the Ops service. If there are any errors,
we write to Slack to let them know there was a problem.

Finally, let's make our gRPC call to the Ops service:

traces, err := o.OpsClient.ListTraces(ctx, options...)

if err != nil {

o.write(m, "Ops server had an error: %s", err)

return

}

b := strings.Builder{}

b.WriteString("Here are the traces you requested:\n")

table := tablewriter.NewWriter(&b)

table.SetHeader([]string{"Start Time(UTC)", "Trace ID"})

for _, item := range traces {

table.Append(

[]string{

item.Start.Format("01/02/2006 04:05"),

"http://127.0.0.1:16686/trace/" + item.ID,

},

)

}

table.Render()

o.write(m, b.String())

}

This code uses our Ops service client to get a list of traces with the options
that we passed. We use an ASCII table writing package
(github.com/olekukonko/tablewriter) to write out our traces table.

But how do users know what commands they can send? This is handled by
providing a help handler for the bot. We will create a map that will hold our
various help messages and another variable that will hold a list of all
commands in alphabetical order:

var help = map[string]string{

 "list traces": `

list traces <opt1=val1 op2=val2>

Ex: list traces operation=AddPets() limit=5

...

`,

}

var cmdList string

func init() {

 cmds := []string{}

 for k := range help {

 cmds = append(cmds, k)

 }

 sort.Strings(cmds)

 b := strings.Builder{}

 for _, cmd := range cmds {

 b.WriteString(cmd + "\n")

 }

http://github.com/olekukonko/tablewriter

 b.WriteString("You can get more help by saying `help <cmd>`

with a command from above.\n")

 cmdList = b.String()

}

Our help text is indexed in our help map. init() sets up a complete list of
commands in cmdList during program initialization.

Now, let's use those commands in a handler that provides help text if a user
passed help to our bot:

func (o Ops) Help(ctx context.Context, m bot.Message) {

 sp := strings.Split(m.Text, "help")

 if len(sp) < 2 {

 o.write(m, "%s,\nYou have to give me a command you want

help with", m.User.Name)

 return

 }

 cmd := strings.TrimSpace(strings.Join(sp[1:], ""))

 if cmd == "" {

 o.write(m, "Here are all the commands that I can help you

with:\n%s", cmdList)

 return

 }

 if v, ok := help[cmd]; ok {

 o.write(m, "I can help you with that:\n%s", v)

 return

 }

 o.write(m, "%s,\nI don't know what %q is to give you help",

m.User.Name, cmd)

}

This code receives as input the command they want help with and outputs
the help text if it exists. If they don't pass a command, it simply prints the
list of commands we support.

If we don't have a handler to handle a particular command (maybe they
misspelled the command), we need a handler as the last resort:

func (o Ops) lastResort(ctx context.Context, m bot.Message) {

 o.write(m, "%s,\nI don't have anything that handles what you

sent. Try the 'help' command", m.User.Name)

}

This simply informs the user that we don't know what they want, as it is not
something we support.

We have a minimum set of handlers, but we still need to have a way to
register it with the bot:

func (o Ops) Register(b *bot.Bot) {

 b.Register(regexp.MustCompile(`^\s*help`), o.Help)

 b.Register(regexp.MustCompile(`^\s*list traces`),

o.ListTraces)

 b.Register(nil, o.lastResort)

}

This takes in a bot and registers our three handlers with regexes that will are
used to determine which handler to use.

Now, it's time for our main() function:

func main() {

 ... // Other setup like slack client init

 b, err := bot.New(api, client)

 if err != nil {

 panic(err)

 }

 h := handlers.Ops{

 OpsClient: opsClient,

 API: api,

 SMClient: smClient,

 }

 h.Register(b)

 b.Start()

}

This creates our Ops object and registers any HandleFunc types we created
with our bot. You can find the full code for the ChatOps bot here:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/11/chatbot/.

Now that we've seen the foundation of writing our bot, let’s setup our Slack
application and run our example code.

Creating our Slack application
For the bot to interact with Slack, we need to set up a Slack application:

1. Navigate to https://api.slack.com/apps on your browser.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11/chatbot/
https://api.slack.com/apps

Here, you will need to click on the following button:

Figure 11.2 – Create New App button

You will then be presented with the following dialog box:

Figure 11.3 – Create an app options

2. Choose the From an app manifest option. This will present the
following:

Figure 11.4 – Choosing a workspace

3. Choose the workspace you created at the beginning of this section and
then press Create App. Click the Next button.

4. Copy the text from the file present at
https://github.com/PacktPublishing/Go-for-

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11/chatbot/slack.manifest

DevOps/tree/rev0/chapter/11/chatbot/slack.manifest and paste it onto
the screen that is shown as follows as YAML:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/11/chatbot/slack.manifest

Figure 11.5 – App manifest configuration

5. The text you see in the preceding figure should be replaced with the text
from the file. Click the Next button.

You will be presented with a summary of the bots permissions, shown as
follows:

Figure 11.6 – Bot creation summary

6. Click the Create button.

7. This will move you to a page that is called Basic Information. Scroll
down the page until you get to App-Level Tokens, as can be seen in the
following figure:

Figure 11.7 – App-level token list

8. Click the Generate Token and Scopes button. This will lead you to the
following dialog box:

Figure 11.8 – App token creation

9. Set the token name to petstore-bot.

10. Provide these scopes in the Scope field – connections:write and
authorizations:read. Now, click Generate.

11. On the next screen, you will receive an app-level token. You will need
to hit the Copy button and put the token somewhere for the time being.

Figure 11.9 – App token information

In a production environment, you want to put this in some type of secure
key store, such as Azure Key Vault or AWS Key Management Service. You
will need to put it in a file called the .env file that you should never check
into a repository. We will cover making this file in the Running the
applications section.

NOTE
The key here is for a bot that was deleted right after this screenshot.

12. Click the Done button.

13. In the left menu pane, choose OAuth and Permissions. On the screen
that looks like the following, click Install to Workspace:

Figure 11.10 – Install tokens in your workspace

14. There is a dialog box that asks for a channel to post as an app. Choose
any channel you like and hit Allow.

You are now back to OAuth and Permissions, but you will see your bot's
auth token listed. Hit the Copy button and store this where you stored the
app token from earlier.

Running the applications

Here, we are going to use Docker Compose to turn up our Open Telemetry
services, Jaeger, Prometheus, and our Petstore application. Once those are
running we will use Go to compile and run our ChatOps service that
implements the chatbot connected to Slack:

1. In the Go-for-DevOps repository
(https://github.com/PacktPublishing/Go-for-DevOps/), go to the
chapter/11 directory.

2. Turn up the Docker containers:

docker-compose up -d

3. Once the environment is running, change to the chapter/11/chatops
directory.

4. You will need to create a .env file in this directory that contains the
following:

AUTH_TOKEN=xoxb-[the rest of the token]

APP_TOKEN=xapp-[the rest of the token]

These were generated when we set up the Slack app.

5. Run the ChatOps server with the following command:

go run chatbot.go

https://github.com/PacktPublishing/Go-for-DevOps/

6. You should be able to see the following message printed to standard
output:

Bot started

In the background, there is a demonstration client that is adding pets to the
pet store and doing searches for pets (some searches will cause errors). The
service is set to Float sampling, so not every call will generate a trace.

In another terminal, you can interact with the pet store by using the CLI
application. This will let you add your own pets, delete pets, and search for
pets with a filter. That client can be found here:
chapter/11/petstore/client/cli/petstore. You can find instructions on its
use by running the following:

go run go run petstore.go --help

Traces can be observed at http://127.0.0.1:16686/search.

Prometheus metrics can be queried at http://127.0.0.1:9090/graph.

To interact with our ChatOps bot, you need to open Slack and add the bot to
a channel. You can do this simply by doing a @PetStore mention in a
channel. Slack will ask if you would like to add the bot to the channel.

Once that happens, you can try out various operations. Start by asking the
bot for help, as follows:

Figure 11.11 – Basic help command output

Let's ask for some help on how we can list some traces:

Figure 11.12 – Help output for the list traces command

How about we ask the system to give us five recent traces:

Figure 11.13 – Output from a command to list the last five traces

We can also ask about a particular trace:

Figure 11.14 – Output showing a specific trace's data

NOTE
You cannot directly paste a trace ID copied from list traces. This is because those are
hyperlinks; you need to remove the rich text from an ID if you want to directly paste it for

show trace.

There are more options for you to play with in the bot. Give them a try.

This ChatOps application is just the tip of the iceberg. You can make the
ChatOps application more powerful than the one we have here. You can
have it display graphs, grab profile information from a pprof dump from the
service and give you a link to view it, have it deploy new versions of your
application, or roll a version back. Push files to the service by simply
dragging them into the Slack window (such as a configuration change).
Important events such as alerts can be broadcast to people who are on call
by having the Ops service send messages to the ChatOps service, and the
use of ChatOps increases observability of what your service is doing and
what operations are being done against the service.

And as a side effect, unlike tools that must be run on a laptop or desktop,
Slack and many other chat applications have mobile versions, so you can
interact or do emergency operations with your cell phone with no extra cost
in development.

Summary
In Chapter 9, Observability with OpenTelemetry, we explored how using
Open Telemetry can provide observability into your application and the
applications it depends on. We discussed how to set up telemetry for your
application using the two most popular backends: Jaeger and Prometheus,
which are both written in Go. In Chapter 10, Automating Workflows with
GitHub Actions, we showed how you can use GitHub actions to automate
your code deployments and how to add custom actions using Go. Finally, in

this chapter, we looked at the architecture for interacting with a service. We
built an interaction layer using Slack to do operations such as filtering
traces, getting the currently deployed version, and showing alerts.

In the next set of chapters, we will talk about how to use Go, and tools
written in Go, to ease the burden of working in the cloud. This will cover
building standard images that can be deployed to VMs or other node
infrastructure. We will show how you can extend Kubernetes, the most
popular container orchestration system on the market today. Finally, we will
guide you on how you can design DevOps workflows and systems to
protect yourself from the chaos that is inherent in running operations
against infrastructure.

Section 3: Cloud ready Go
This section is a discussion of the practice of release engineering, using
common tools for creating service builds ready for deployment and leading
tools for deploying distributed applications.

Unless you have been living under a rock, you might have noticed that the
vast majority of new system deployments have moved out of corporate data
centers and into cloud providers such as Amazon Web Services (AWS),
Azure, and Google Cloud. The process of moving existing in-house
applications is well underway, from the finance industry to
telecommunication providers. DevOps engineers need to be well versed in
building managed distributed platforms that enable their companies to
operate in cloud, multi-cloud, and hybrid-cloud environments.

In this section, we will show you how to automate the process of creating
system images using Packer on the AWS platform, use Go with Terraform
to create your own custom Terraform provider, program the Kubernetes API
to extend its capabilities for your needs, provision resources using Azure's
cloud SDK, and design resilient DevOps software that can avoid the
mistakes that large cloud providers have already made.

The following chapters will be covered in this section:

Chapter 12, Creating Immutable Infrastructure Using Packer

Chapter 13, Infrastructure as Code with Terraform

Chapter 14, Deploying and Building Applications in Kubernetes

Chapter 15, Programming the Cloud

Chapter 16, Designing for Chaos

Chapter 12: Creating Immutable
Infrastructure Using Packer
Managing compute infrastructure, even in the era of the cloud, is still a
challenge. With the innovations in containerization, virtual machines
(VMs), and serverless computing, developers might believe that compute
infrastructure is a solved problem.

Nothing could be farther from the truth. For cloud providers or others
running their own data centers, bare metal machines (the machine's OS not
running in virtualization) must be managed. This has become more
complicated in the era of cloud computing. Not only does your provider
need to manage their OS rollouts and patches, but so do cloud customers
who want to run fleets of VMs and containers. Container orchestration
systems such as Kubernetes must still provide container images that contain
an OS image.

In the cloud, just like a physical data center, it is important to force OS
compliance for all containers and VMs. Allowing anyone to run whatever
OS they want is the gateway to a security breach. To provide a secure
platform for developers, you must provide a minimal OS standardized
across all deployments.

Standardization of an OS across a fleet comes with nothing but upsides and
very few downsides. Standardizing on an OS image is easiest when your
company is small. Large companies, including cloud providers that have not
done this in the early days, have suffered through massive projects to
standardize OS images at later stages.

In this section, we are going to talk about how we can use Packer, a
software package written in Go by HashiCorp, to manage the creation and
patching of VM and container images. HashiCorp is the leader in the trend
of Infrastructure as Code (IaC) that is moving through the industry.

Packer lets us use YAML and Go to provide a consistent way to build
images across a multitude of platforms. Be it in VM images, Docker
images, or bare metal images, Packer can create consistent environments
for your workloads to run on.

As we write Packer configuration files and use the Packer binary, you will
begin to see how Packer was written. Many of the interactions Packer
defines were written using libraries such as os/exec that we have talked
about earlier. Maybe you will be writing the next Packer that will sweep
through the DevOps community!

We will cover the following topics in this chapter:

Building an Amazon Machine Image

Validating images with Goss

Customizing Packer with plugins

Technical requirements
The prerequisites for this chapter are as follows:

An AWS account

An AWS Linux VM running on the AMD64 platform

An AWS user account with administrator access and access to its secret

Installation of Packer on the AWS Linux VM

Installation of Goss on the AWS Linux VM

Access to the book's GitHub repository

To do the exercises in this chapter requires an AWS account. This will use
compute time and storage on AWS, which will cost money, though you may
be able to use an AWS Free Tier account (https://aws.amazon.com/free/).
None of the authors at the time of writing are currently affiliated with
Amazon. There is no financial incentive for us. If anything, it costs us
money to develop this chapter on AWS.

When running Packer, we recommend running on Linux, both for cloud
images and Docker images. Windows is a special niche for cloud
computing and Microsoft provides its own sets of tools for handling
Windows images. We don't recommend using a Mac for running these, as
the move to Apple silicon and the interaction with multiple tools with
varying support can lead to a long debug time. While macOS is POSIX-
compliant, it still isn't Linux, the main target of these tools.

Getting an AWS account set up with a Linux VM and setting up user
accounts is beyond what we can cover in the book. See the AWS
documentation for help with that. For this exercise, please choose either an
Amazon Linux or Ubuntu distribution.

User setup is done using AWS IAM tools, and the user name can be
whatever you choose. You will also need to obtain an access key and secret
for this user. Do not store these in a repository or any place that is publicly

https://aws.amazon.com/free/

accessible, as they are equivalent to username/password. The user will need
to do the following:

Belong to a group with AdministratorAccess permissions set.

Attach the existing policy, AmazonSSMAutomationRole.

We recommend a personal account for this exercise, as this access is quite
extensive. You can also set up a specific set of permissions or use another
method that isn't as permissible. Instructions on those methods can be found
here: https://www.packer.io/docs/builders/amazon.

Once you have logged into your VM, you need to install Packer. This is
going to depend on what Linux version you have.

The following is for Amazon Linux:

sudo yum install -y yum-utils

sudo yum-config-manager --add-repo

https://rpm.releases.hashicorp.com/AmazonLinux/hashicorp.repo

sudo yum -y install packer

The following is for Ubuntu:

curl -fsSL https://apt.releases.hashicorp.com/gpg | sudo apt-key

add -

sudo apt-add-repository "deb [arch=amd64]

https://apt.releases.hashicorp.com $(lsb_release -cs) main"

sudo apt-get update && sudo apt-get install packer

For other Linux versions, see the following:

https://learn.hashicorp.com/tutorials/packer/get-started-install-cli.

To test Packer is installed, run the following:

https://www.packer.io/docs/builders/amazon
https://learn.hashicorp.com/tutorials/packer/get-started-install-cli

packer version

This should output the version of Packer you have.

Once Packer is installed, issue the following commands:

mkdir packer

cd packer

touch amazon.pkr.hcl

mkdir files

cd files

ssh-keygen -t rsa -N "" -C "agent.pem" -f agent

mv agent ~/.ssh/agent.pem

wget https://raw.githubusercontent.com/PacktPublishing/Go-for-

DevOps/rev0/chapter/8/agent/bin/linux_amd64/agent

wget https://raw.githubusercontent.com/PacktPublishing/Go-for-

DevOps/rev0/chapter/12/agent.service

cd ..

These commands do the following:

Set up a directory called packer in your user's home directory

Create an amazon.pkr.hcl file to store our Packer configuration

Create a packer/files directory

Generate an SSH key pair for a user, agent, which we will add to the
image

Move the agent.pem private key into our .ssh directory

Copy our system agent from the Git repository

Copy a systemd service configuration for the system agent from the Git
repository

Now that we have the prerequisites out of the way, let's have a look at
building custom Ubuntu images for AWS.

The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/12

Building an Amazon Machine Image
Packer supports a wide variety of plugins that are used by the program to
target a specific image format. For our example, we are going to target the
Amazon Machine Image (AMI) format.

There are other build targets for Docker, Azure, Google Cloud, and others.
You may find a list of other build targets here:
https://www.packer.io/docs/builders/.

For images that are used in cloud environments, Packer plugins generally
take an existing image that lives on the cloud provider and lets you
repackage and upload the image to the service.

And, if you need to build multiple images for multiple cloud providers,
containers, Packer can do simultaneous builds.

For Amazon, there are currently four methods for building an AMI:

Amazon Elastic Block Store (EBS) launches a source AMI, provisions
it, and then repackages it.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/12
https://www.packer.io/docs/builders/

Amazon instance virtual server, which launches an instance VM,
rebundles it, and then uploads it to S3 (an Amazon object storage
service).

The two other methods are for advanced use cases. As this is an
introduction to Packer using AWS, we are going to avoid these. However,
you can read about all these methods here:
https://www.packer.io/docs/builders/amazon.

There are two configuration file formats used by Packer:

JavaScript Object Notation (JSON)

HashiCorp Configuration Language 2 (HCL 2)

As JSON is deprecated, we will be using HCL2. This format was created by
HashiCorp and you can find their Go parser here:
https://github.com/hashicorp/hcl2. The parser can be useful if you wish to
write your own tools around Packer or want to support your own
configurations in HCL2.

Now, let's create a Packer configuration file that we can use to access the
Amazon plugin.

Open the file called amazon.pkr.hcl in the packer/ directory we created.

Add the following:

packer {

 required_plugins {

 amazon = {

 version = ">= 0.0.1"

https://www.packer.io/docs/builders/amazon
https://github.com/hashicorp/hcl2

 source = "github.com/hashicorp/amazon"

 }

 }

}

This tells Packer the following:

We require the amazon plugin.

The version of the plugin we want, which is the latest plugin that must
be newer than version 0.0.1.

The source location in which to retrieve the plugin.

As we are using a cloud provider, we need to set up the AWS source
information.

Setting up an AWS source

We are going to use the Amazon EBS build method, as this is the easiest
method to deploy on AWS. Add the following to the file:

source "amazon-ebs" "ubuntu" {

 access_key = "your key"

 secret_key = "your secret"

 ami_name = "ubuntu-amd64"

 instance_type = "t2.micro"

 region = "us-east-2"

 source_ami_filter {

 filters = {

 name = "ubuntu/images/*ubuntu-xenial-16.04-

amd64-server-*"

 root-device-type = "ebs"

 virtualization-type = "hvm"

 }

 most_recent = true

 owners = ["099720109477"]

 }

 ssh_username = "ubuntu"

}

There is some key information here, so we are going to take it one step at a
time:

source "amazon-ebs" "ubuntu" {

This sets up the source for our base image. As we are using the amazon
plugin, the source will have fields related to that plugin. You can find a
complete list of fields here:
https://www.packer.io/docs/builders/amazon/ebs.

This line names our source as having two parts, amazon-ebs and ubuntu.
When we refer to this source in our build stanza, it will be referred to as
source.amazon-ebs.ubuntu.

Now, we have a few field values:

access_key is the IAM user key to use.

secret_key is the IAM user's secret to use.

ami_name is the name of the resulting AMI in the AWS console.

https://www.packer.io/docs/builders/amazon/ebs

instance_type is the AWS instance type to use to build the AMI.

region is the AWS region for the build instance to spawn in.

source_ami_filter filters the AMI image to find the image to apply.

filters contain a way to filter our base AMI image.

name gives the name of the AMI image. This can be any matching name
returned by this API:
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_Descr
ibeImages.html.

root-device-type specifies we are using ebs as our source.

virtualization-type indicates which of two AMI virtualization
technologies to use, hvm or pv. Due to enhancements to hvm, is it now the
choice to use.

most_recent indicates to use the most recent image found.

owners must list an ID of an owner of the base image AMI we are using.
"099720109477" is a reference to Canonical, the maker of Ubuntu.

ssh_username is the user name to SSH into the image with. ubuntu is the
default user.

As alternates to the authentication method here, you can use IAM roles,
shared credentials, or other methods. However, each of the others is too
complicated for this book to cover. See the link in the Technical
requirements section if you wish to use another method.

secret_key needs to be secured like any password. In production, you will
want to use IAM roles to avoid using secret_key or fetch this from a secure

https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeImages.html

password service (AWS Secrets Manager, Azure Key Vault, or GCP Secret
Manager) and use the environmental variable method to allow Packer to use
the key.

Next, we need to define a build block to allow us to change the image from
the base to one customized for us.

Defining a build block and adding some
provisioners

Packer defines a build block that references the source we defined in the
previous section and makes the changes we want to that image.

To do this, Packer uses provisioner configurations inside build.
Provisioners let you make changes to an image by using the shell, Ansible,
Chef, Puppet, files, or other methods.

A full list of provisioners can be found here:

https://www.packer.io/docs/provisioners.

For long-term maintenance of your running infrastructure, Chef or Puppet
have been the choice for many installations. This allows you to update the
fleet without having to wait for an instance to be rebooted with the latest
image.

By integrating it with Packer, you can make sure to apply the latest patches
to your image during the build process.

While this is certainly helpful, we cannot explore these during this chapter.
Setting up Chef or Puppet is simply beyond what we can do here. But for

https://www.packer.io/docs/provisioners

long-term maintenance, it is worth exploring these provisioners.

For our example, we are going to do the following:

Install the Go 1.17.5 environment.

Add a user, agent, to the system.

Copy SSH keys to the system for that user.

Add our system agent from a previous chapter.

Set systemd to run the agent from the agent user.

Let's start by using the shell provisioner to install Go's 1.17.5 version using
wget.

Let's add the following:

build {

 name = "goBook"

 sources = [

 "source.amazon-ebs.ubuntu"

]

 provisioner "shell" {

 inline = [

 "cd ~",

 "mkdir tmp",

 "cd tmp",

 "wget https://golang.org/dl/go1.17.5.linux-amd64.tar.gz",

 "sudo tar -C /usr/local -xzf go1.17.5.linux-amd64.tar.gz",

 "echo 'export PATH=$PATH:/usr/local/go/bin' >> ~/.profile",

 ". ~/.profile",

 "go version",

 "cd ~/",

 "rm -rf tmp/*",

 "rmdir tmp",

]

 }

}

Our build block contains the following:

name, which names this block.

sources, which is a list of source blocks to include. This includes the
source we just defined.

provisioner "shell" says we are going to use the shell provisioner,
which logs in via the shell to do work. You may have multiple
provisioner blocks of this type or of other types.

inline sets up commands to be run, one after another, in a shell script.
This set of shell commands downloads Go version 1.17.5, installs it,
tests it, and removes the install files.

It should be noted that you could also use file provisioner, which we will
show later, to take a local copy of the file instead of retrieving it with wget.
But, we wanted to show how you can also just use standard Linux tools to
pull from a trusted repository.

Next, we will add another provision inside the build that adds a user to the
system:

// Setup user "agent" with SSH key file

provisioner "shell" {

 inline = [

 "sudo adduser --disabled-password --gecos '' agent",

]

}

provisioner "file" {

 source = "./files/agent.pub"

 destination = "/tmp/agent.pub"

}

provisioner "shell" {

 inline = [

 "sudo mkdir /home/agent/.ssh",

 "sudo mv /tmp/agent.pub /home/agent/.ssh/authorized_keys",

 "sudo chown agent:agent /home/agent/.ssh",

 "sudo chown agent:agent /home/agent/.ssh/authorized_keys",

 "sudo chmod 400 .ssh/authorized_keys",

]

}

The preceding code block is structured as follows:

The first shell block: Adds a user, agent, with a disabled password.

The second file block: Copies a local file, ./files/agent.pub, to /tmp,
as we can't copy directly to a user other than ubuntu using file
provisioner.

The third shell block:

Makes our new user's .ssh directory.

Moves the agent.pub file out of /tmp to .ssh/authorized_keys.

Modifies all directories and files to have the right owners and
permissions.

Now, let's add provisioners that install our system agent and sets up systemd
to manage it. The following section uses the shell provisioner to install
dbus, which is used to communicate with systemd. We set an environmental
variable that prevents some pesky Debian interactive questions when we
install using apt-get:

// Setup agent binary running with systemd file.

provisioner "shell" { // This installs dbus-launch

 environment_vars = [

 "DEBIAN_FRONTEND=noninteractive",

]

 inline = [

 "sudo apt-get install -y dbus",

 "sudo apt-get install -y dbus-x11",

]

}

This uses the file provisioner to copy the agent we want to run from our
source files onto the image at the /tmp/agent location:

provisioner "file" {

 source = "./files/agent"

 destination = "/tmp/agent"

}

The following section creates a directory in the user agent's home directory
called bin and moves the agent we copied over in the previous section into
it. The rest is some necessary permissions and ownership changes:

provisioner "shell" {

 inline = [

 "sudo mkdir /home/agent/bin",

 "sudo chown agent:agent /home/agent/bin",

 "sudo chmod ug+rwx /home/agent/bin",

 "sudo mv /tmp/agent /home/agent/bin/agent",

 "sudo chown agent:agent /home/agent/bin/agent",

 "sudo chmod 0770 /home/agent/bin/agent",

]

}

This copies over the systemd file from our source directory to our image:

provisioner "file" {

 source = "./files/agent.service"

 destination = "/tmp/agent.service"

}

This last section moves the agent.service file to its final location, tells
systemd to enable the service described in agent.service, and validates that
it is active. The sleep parameter is used to simply allow the daemon to start
before it is checked:

provisioner "shell" {

 inline = [

 "sudo mv /tmp/agent.service /etc/systemd/system/agent.service",

 "sudo systemctl enable agent.service",

 "sudo systemctl daemon-reload",

 "sudo systemctl start agent.service",

 "sleep 10",

 "sudo systemctl is-enabled agent.service",

 "sudo systemctl is-active agent.service",

]

}

Finally, let's add the Goss tool, which we will be using in the next section:

provisioner "shell" {

 inline = [

 "cd ~",

 "sudo curl -L https://github.com/aelsabbahy/goss/

releases/latest/download/goss-linux-amd64 -o /usr/local/bin/ goss",

 "sudo chmod +rx /usr/local/bin/goss",

 "goss -v",

]

}

This downloads the latest Goss tool, sets it to be executable, and tests that it
works.

Now, let's look at how we could execute a Packer build to create an image.

Executing a Packer build

There are four stages to doing a Packer build:

Initializing Packer to download the plugins

Validating the build

Formatting the Packer configuration file

Building the image

The first thing to do is initialize our plugins. To do this, simply type the
following:

packer init .

NOTE
If you see a message such as Error: Unsupported block type, it is likely you put the

provisioner blocks outside the build block.

Once the plugins are installed, we need to validate our build:

packer validate .

This should yield The configuration is valid. If it doesn't, you will need
to edit the file to fix the errors.

At this time, let's format the Packer template files. This is a concept I'm sure
HashiCorp borrowed from Go's go fmt command and works in the same
way. Let's give it a try with the following:

packer fmt .

Finally, it's time to do our build:

packer build .

There will be quite a bit of output here. But if everything is successful, you
will see something like the following:

Build 'goBook.amazon-ebs.ubuntu' finished after 5 minutes 11

seconds.

==> Wait completed after 5 minutes 11 seconds

==> Builds finished. The artifacts of successful builds are:

--> goBook.amazon-ebs.ubuntu: AMIs were created:

us-east-2: ami-0f481c1107e74d987

NOTE
If you see errors about permissions, this will be related to your user account setup. See the
necessary permissions listed in the earlier part of the chapter.

You now have an AMI image available on AWS. You can launch AWS
VMs that use this image and they will be running our system agent. Feel
free to launch a VM set to your new AMI and play with the agent. You can
access the agent from your Linux device using ssh agent@[host], where
[host] is the IP or DNS entry of the host on AWS.

Now that we can use Packer to package our images, let's look at Goss for
validating our image.

Validating images with Goss
Goss is a tool for checking server configurations using a spec file written in
YAML. This way you can test that the server is working as expected. This
can be from testing access to the server over SSH using expected keys to
validating that various processes are running.

Not only can Goss test your server for compliance, but it can be integrated
with Packer. That way, we can test that our server is running as expected
during the provisioning step and before deployment.

Let's have a look at making a Goss spec file.

Creating a spec fi le

A spec file is a set of instructions that tells Goss what to test for.

There are a couple of ways to make a spec file for Goss. The spec file is
used by Goss to understand what it needs to test.

While you could write it by hand, the most efficient way is to use one of
two Goss commands:

goss add

goss autoadd

The most efficient way to use Goss is to launch a machine with your custom
AMI, log in using the ubuntu user, and use autoadd to generate the YAML
file.

Once logged onto your AMI instance, let's run the following:

goss -g process.yaml autoadd sshd

This will generate a process.yaml file with the following content:

service:

 sshd:

 enabled: true

 running: true

user:

 sshd:

 exists: true

 uid: 110

 gid: 65534

 groups:

 - nogroup

 home: /var/run/sshd

 shell: /usr/sbin/nologin

process:

 sshd:

 running: true

This states that we expect the following:

A system service called sshd should be enabled and running via
systemd.

The service should be running with user sshd:

With user ID 110.

With group ID 65534.

Belonging to no other groups.

The user's home directory should be /var/run/sshd.

The user should have no login shell.

A process called sshd should be running.

Let's add the agent service we deployed:

goss -g process.yaml autoadd agent

This will add similar lines inside the YAML file.

Now, let's validate the agent location:

goss -g files.yaml autoadd /home/agent/bin/agent

This will add a section such as the following:

file:

 /home/agent/bin/agent:

 exists: true

 mode: "0700"

 size: 14429561

 owner: agent

 group: agent

 filetype: file

 contains: []

This states the following:

The /home/agent/bin/agent file must exist.

Must be in mode 0700.

Must have a size of 14429561 bytes.

Must be owned by agent:agent.

Is a file, versus a directory or symlink.

Let's add another, but being more specific, using goss add:

goss -g files.yaml add file /home/agent/.ssh/authorized_keys

Instead of making a guess at what an argument is as autoadd does, we had
to specify it was a file. This renders us the same entry as autoadd would.
For this file, let's validate the contents of the authorized_keys file. To do

this, we will use a SHA256 hash. First, we can get the hash by running the
following:

sha256sum /home/agent/.ssh/authorized_keys

This will return the hash of the file. In the file entry for authorized_keys in
our YAML file, add the following:

sha256: theFileHashJustGenerated

Unfortunately, Goss does not have a way to simply add entire directories of
files or automatically add SHA256 to the entry. An example of that might be
to validate that all of Go's 1.17.5 files were present as expected on our
image.

You might be tempted to do something like the following:

find /usr/local/go -print0 | xargs -0 -I{} goss -g golang.yaml add

file {}

However, this is quite slow because goss reads in the YAML file on each
run. You might be tempted to try to use xargs -P 0 to speed things up, but
it will cause other problems.

If you have a need to include lots of files and SHA256 hashes, you will
need to write a custom script/program to handle this. Fortunately, we have
Go, so it's easy to write something that can do this. And, because Goss is
written in Go, we can reuse the data structures from the program. You can
see an example of a tool to do this here:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/12/goss/allfiles.

You simply can run it against a directory structure (after compiling it) like
so:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/12/goss/allfiles

allfiles /usr/local/go > goinstall_files.yaml

This would output a goinstall_files.yaml file that provides a Goss
configuration to check these files and their SHA256 hashes.

Remember when we installed dbus? Let's validate that our dbus packages
are installed:

goss -g dbus.yaml add package dbus

goss -g dbus.yaml add package dbus-x11

This now makes sure that our dbus and dbus-x11 packages are installed. The
-g dbus.yaml file writes this to another file called dbus.yaml instead of the
default goss.yaml.

We now need to create our goss.yaml file that references the other files we
created. We could have run goss without the -g option, but this keeps things
a little more organized. Let's create our root file:

goss add goss process.yaml

goss add goss files.yaml

goss add goss dbus.yaml

This creates a goss.yaml file that references all our other files.

Let's use it to validate everything:

goss validate

This will output text similar to the following:

..........................

Total Duration: 0.031s

Count: 26, Failed: 0, Skipped: 0

Note, yes, it did run in less than a second!

Adding a Packer provisioner

It's great that we can verify what we already had, but what we really want is
to validate every image build. To do this, we can use a custom Packer
provisioner that Yale University developed.

To do that, we need to get the YAML files off the image and onto our build
machine.

From the build machine, issue the following commands (replacing things in
[]):

cd /home/[user]/packer/files

mkdir goss

cd goss

scp ubuntu@[ip of AMI machine]:/home/ubuntu/*.yaml ./

You need to replace [user] with the username on the build machine and [ip
of AMI machine] with the IP address or DNS entry for the AMI machine
you launched. You may also need to supply a -i [location of pem file]
after scp.

As the Goss provisioner is not built in, we need to download the release
from Yale's GitHub repository and install it:

mkdir ~/tmp

cd ~/tmp

wget https://github.com/YaleUniversity/packer-provisioner-

goss/releases/download/v3.1.2/packer-provisioner-goss-v3.1.2-linux-

amd64.tar.gz

sudo tar -xzf packer-provisioner-goss-v3.1.2-linux-amd64.tar.gz

cp sudo packer-provisioner-goss /usr/bin/packer-provisioner-goss

rm -rf ~/tmp

With the provisioner installed, we can add the configuration to the
amazon.pkr.hcl file:

// Setup Goss for validating an image.

provisioner "file" {

 source = "./files/goss/*"

 destination = "/home/ubuntu/"

}

provisioner "goss" {

 retry_timeout = "30s"

 tests = [

 "files/goss/goss.yaml",

 "files/goss/files.yaml",

 "files/goss/dbus.yaml",

 "files/goss/process.yaml",

]

}

You can find other provisioner settings for Goss at
https://github.com/YaleUniversity/packer-provisioner-goss.

Let's reformat our Packer file:

packer fmt .

We cannot build the packer image yet, because it would have the same
name as the image we already have uploaded to AWS. We have two
choices: remove the AMI image we built earlier from AWS or change the
name held in our Packer file to the following:

https://github.com/YaleUniversity/packer-provisioner-goss

ami_name = "ubuntu-amd64"

Either choice is fine.

Now, let's build our AMI image:

packer build .

When you run it this time, you should see something similar to the
following in the output:

==> goBook.amazon-ebs.ubuntu: Running goss tests...

==> goBook.amazon-ebs.ubuntu: Running GOSS render command: cd

/tmp/goss && /tmp/goss-0.3.9-linux-amd64 render > /tmp/goss-

spec.yaml

==> goBook.amazon-ebs.ubuntu: Goss render ran successfully

==> goBook.amazon-ebs.ubuntu: Running GOSS render debug command: cd

/tmp/goss && /tmp/goss-0.3.9-linux-amd64 render -d >

/tmp/debug-goss-spec.yaml

==> goBook.amazon-ebs.ubuntu: Goss render debug ran successfully

==> goBook.amazon-ebs.ubuntu: Running GOSS validate command: cd

/tmp/goss && /tmp/goss-0.3.9-linux-amd64 validate --retry-

timeout 30s --sleep 1s

 goBook.amazon-ebs.ubuntu:

 goBook.amazon-ebs.ubuntu:

 goBook.amazon-ebs.ubuntu: Total Duration: 0.029s

 goBook.amazon-ebs.ubuntu: Count: 26, Failed: 0, Skipped: 0

==> goBook.amazon-ebs.ubuntu: Goss validate ran successfully

This indicates that the Goss tests ran successfully. If Goss fails, a debug
output will be downloaded to the local directory.

You can find the final version of the Packer file here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/12/packer/amazon.final.pkr.hcl.

You have now seen how to use the Goss tool to build validations for your
images and integrate them into Packer. There are more features to explore
and you can read about them here: https://github.com/aelsabbahy/goss.

Now that we have used Goss as a provisioner, what about writing our own?

Customizing Packer with plugins
The built-in provisioners that we used are pretty powerful. By providing
shell access and file uploads, it is possible to do almost everything inside a
Packer provisioner.

For large builds, this can be quite tedious. And, if the case is something
common, you might want to simply have your own Go application do the
work for you.

Packer allows for building plugins that can be used as the following:

A Packer builder

A Packer provisioner

A Packer post-processor

Builders are used when you need to interact with the system that will use
your image: Docker, AWS, GCP, Azure, or others. As this isn't a common
use outside cloud providers or companies such as VMware adding support,
we will not cover this.

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/12/packer/amazon.final.pkr.hcl
https://github.com/aelsabbahy/goss

Post-processors are normally used to push an image to upload the artifacts
generated earlier. As this isn't common, we will not cover this.

Provisioners are the most common, as they are part of the build process to
output an image.

Packer has two ways of writing these plugins:

Single-plugins

Multi-plugins

Single plugins are an older style of writing plugins. The Goss provisioner is
written in the older style, which is why we installed it manually.

With the newer style, packer init can be used to download the plugin. In
addition, a plugin can register multiple builders, provisioners, or post-
processors in a single plugin. This is the recommended way of writing a
plugin.

Unfortunately, the official documentation for multi-plugins and doing
releases that support packer init is incomplete at the time of this writing.
Following the directions will not yield a plugin that can be released using
their suggested process.

The instructions included here will fill in the gaps to allow building a multi-
plugin that users can install using packer init.

Let's get into how we can write a custom plugin.

Writing your own plugin

Provisioners are powerful extensions to the Packer application. They allow
us to customize the application to do whatever we need.

We have already seen how a provisioner can execute Goss to validate our
builds. This allowed us to make sure future builds follow a specification for
the image.

To write a custom provisioner, we must implement the following interface:

type Provisioner interface {

 ConfigSpec() hcldec.ObjectSpec

 Prepare(...interface{}) error

 Provision(context.Context, Ui, Communicator,

 map[string] interface{}) error

}

The preceding code is described as follows:

ConfigSpec() returns an object that represents your provisioner's HCL2
spec. This will be used by Packer to translate a user's config to a
structured object in Go.

Prepare() prepares your plugin to run and receives a slice of
interface{} that represents the configuration. Generally, the
configuration is passed as a single map[string]interface{}. Prepare()
should do preparation operations such as pulling information from
sources or validating the configuration, things that should cause a
failure before even attempting to run. This should have no side effects,
that is, it should not change any state by creating files, instantiating
VMs, or any other changes to the system.

Provision() does the bulk of the work. It receives a Ui object that is
used to communicate to the user and Communicator that is used to
communicate with the running machine. There is a provided map that
holds values set by the builder. However, relying on values there can tie
you to a builder type.

For our example provisioner, we are going to pack the Go environment and
install it on the machine. While Linux distributions will often package the
Go environment, they are often several releases behind. Earlier, we were
able to do this by using file and shell (which can honestly do almost
anything), but if you are an application provider and you want to make
something repeatable for other Packer users across multiple platforms, a
custom provisioner is the way to go.
Adding our provisioner configuration
To allow the user to configure our plugin, we need to define a
configuration. Here is the config option we want to support: Version
(string)[optional], the specific version to download defaults to latest.

We will define this in a subpackage: internal/config/config.go.

In that file, we will add the following:

package config

//go:generate packer-sdc mapstructure-to-hcl2 -type Provisioner

// Provisioner is our provisioner configuration.

type Provisioner struct {

Version string

}

// Default inputs default values.

func (p *Provisioner) Defaults() {

if p.Version == "" {

p.Version = "latest"

}

}

Unfortunately, we now need to be able to read this from an
hcldec.ObjectSpec file. This is complicated, so HashiCorp has created a
code generator to do this for us. To use this, you must install their packer-
sdc tool:

go install github.com/hashicorp/packer-plugin-sdk/cmd/packer-

sdc@latest

To generate the file, we can execute the following from inside
internal/config:

go generate ./

This will output a config.hcl2spec.go file that has the code we require.
This uses the //go:generate line defined in the file.
Defining the plugin's configuration
specification
At the root of our plugin location, let's create a file called goenv.go.

So, let's start by defining the configuration the user will input:

package main

import (

 ...

 "[repo location]/packer/goenv/internal/config"

 "github.com/hashicorp/packer-plugin-sdk/packer"

 "github.com/hashicorp/packer-plugin-sdk/plugin"

 "github.com/hashicorp/packer-plugin-sdk/version"

 packerConfig "github.com/hashicorp/packer-plugin-sdk/

template/config"

 ...

)

This imports the following:

The config package we just defined

Three packages required to build our plugin:

packer

plugin

version

A packerConfig package for dealing with HCL2 configs

NOTE
The ... is a stand-in for standard library packages and a few others for brevity. You

can see them all in the repository version.

Now, we need to define our provisioner:

// Provisioner implements packer.Provisioner.

type Provisioner struct{

 packer.Provisioner // Embed the interface.

 conf *config.Provisioner

 content []byte

 fileName string

}

This is going to hold our configuration, some file content, and the Go
tarball filename. We will implement our Provisioner interface on this
struct.

Now, it's time to add the required methods.
Defining the ConfigSpec() function
ConfigSpec() is defined for internal use by Packer. We simply need to
provide the spec so that Packer can read in the configuration.

Let's use config.hcl2spec.go we generated a second ago to implement
ConfigSpec():

func (p *Provisioner) ConfigSpec() hcldec.ObjectSpec {

 return new(config.FlatProvisioner).HCL2Spec()

}

This returns ObjectSpec that handles reading in our HCL2 config.

Now that we have that out of the way, we need to prepare our plugin to be
used.
Defining Prepare()
Remember that Prepare() simply needs to interpret the intermediate
representation of the HCL2 config and validate the entries. It should not
change the state of anything.

Here's what that would look like:

func (p *Provisioner) Prepare(raws ...interface{}) error {

 c := config.Provisioner{}

 if err := packerConfig.Decode(&c, nil, raws...); err != nil {

 return err

 }

 c.Defaults()

 p.conf = &c

 return nil

}

This code does the following:

Creates our empty config

Decodes the raw config entries into our internal representation

Puts defaults into our config if values weren't set

Validates our config

We could also use this time to connect to services or any other preparation
items that are needed. The main thing is not to change any state.

With all the preparation out of the way, it's time for the big finale.
Defining Provision()
Provision() is where all the magic happens. Let's divide this into some
logical sections:

Fetch our version

Push a tarball to the image

Unpack the tarball

Test our Go tools installation

The following code wraps other methods that execute the logical sections in
the same order:

func (p *Provisioner) Provision(ctx context.Context, u packer. Ui,

c packer.Communicator, m map[string]interface{}) error {

 u.Message("Begin Go environment install")

 if err := p.fetch(ctx, u, c); err != nil {

 u.Error(fmt.Sprintf("Error: %s", err))

 return err

 }

 if err := p.push(ctx, u, c); err != nil {

 u.Error(fmt.Sprintf("Error: %s", err))

 return err

 }

 if err := p.unpack(ctx, u, c); err != nil {

 u.Error(fmt.Sprintf("Error: %s", err))

 return err

 }

 if err := p.test(ctx, u, c); err != nil {

 u.Error(fmt.Sprintf("Error: %s", err))

 return err

 }

 u.Message("Go environment install finished")

 return nil

}

This code calls all our stages (which we will define momentarily) and
outputs some messages to the UI. The Ui interface is defined as follows:

type Ui interface {

 Ask(string) (string, error)

 Say(string)

 Message(string)

 Error(string)

 Machine(string, ...string)

 getter.ProgressTracker

}

Unfortunately, the UI is not well documented in the code or in the
documentation. Here is a breakdown:

You can use Ask() to ask a question of the user and get a response. As a
general rule, you should avoid this, as it removes automation. Better to
make them put it in the configuration.

Say() and Message() both print a string to the screen.

Error() outputs an error message.

Machine() simply outputs a statement into the log generated on the
machine using fmt.Printf() that is prepended by machine readable:.

getter.ProgressTracker() is used by Communicator to track download
progress. You don't need to worry about it.

Now that we have covered the UI, let's cover Communicator:

type Communicator interface {

 Start(context.Context, *RemoteCmd) error

 Upload(string, io.Reader, *os.FileInfo) error

 UploadDir(dst string, src string, exclude []string) error

 Download(string, io.Writer) error

 DownloadDir(src string, dst string, exclude []string) error

}

Methods in the preceding code block are described as follows:

Start() runs a command on the image. You pass *RemoteCmd, which is
similar to the Cmd type we used from os/exec in previous chapters.

Upload() uploads a file to the machine image.

UploadDir() uploads a local directory recursively to the machine image.

Download() downloads a file from the machine image. This allows you
to capture debugs logs, for example.

DownloadDir() downloads a directory recursively from the machine to a
local destination. You can exclude files.

You can see the full interface comments here:
https://pkg.go.dev/github.com/hashicorp/packer-plugin-sdk/packer?
utm_source=godoc#Communicator.

Let's look at building our first helper, p.fetch(). The following code
determines what URL to use to download the Go tools. Our tool is targeted
at Linux, but we support installing versions for multiple platforms. We use
Go's runtime package to determine the architecture (386, ARM, or AMD
64) we are currently running on to determine which package to download.
The users can specify a particular version or latest. In the case of latest,

https://pkg.go.dev/github.com/hashicorp/packer-plugin-sdk/packer?utm_source=godoc#Communicator

we query a URL provided by Google that returns the latest version of Go.
We then use that to construct the URL for download:

func (p *Provisioner) fetch(ctx context.Context, u Ui,

c Communicator) error {

 const (

 goURL = `https://golang.org/dl/go%s.linux-%s.tar.gz`

 name = `go%s.linux-%s.tar.gz`

)

 platform := runtime.GOARCH

 if p.conf.Version == "latest" {

 u.Message("Determining latest Go version")

 resp, err := http.Get("https://golang.org/VERSION?

m=text")

 if err != nil {

 u.Error("http get problem: " + err.Error())

 return fmt.Errorf("problem asking Google for

latest Go version: %s", err)

 }

 ver, err := io.ReadAll(resp.Body)

 if err != nil {

 u.Error("io read problem: " + err.Error())

 return fmt.Errorf("problem reading latest Go

version: %s", err)

 }

 p.conf.Version = strings.TrimPrefix(string(ver), "go")

 u.Message("Latest Go version: " + p.conf.Version)

 } else {

 u.Message("Go version to use is: " + p.conf.Version)

 }

This code makes the HTTP request for the Go tarball and then stores that in
.content:

 url := fmt.Sprintf(goURL, p.conf.Version, platform)

 u.Message("Downloading Go version: " + url)

 resp, err := http.Get(url)

 if err != nil {

 return fmt.Errorf("problem reaching golang.org for

version(%s): %s)", p.conf.Version, err)

 }

 defer resp.Body.Close()

 p.content, err = io.ReadAll(resp.Body)

 if err != nil {

 return fmt.Errorf("problem downloading file: %s", err)

 }

 p.fileName = fmt.Sprintf(name, p.conf.Version, platform)

 u.Message("Downloading complete")

 return nil

}

Now that we have fetched our Go tarball content, let's push it to the
machine:

func (p *Provisioner) push(ctx context.Context, u Ui,

c Communicator) error {

 u.Message("Pushing Go tarball")

 fs := simple.New()

 fs.WriteFile("/tarball", p.content, 0700)

 fi, _ := fs.Stat("/tarball")

 err := c.Upload(

 "/tmp/"+p.fileName,

 bytes.NewReader(p.content),

 &fi,

)

 if err != nil {

 return err

 }

 u.Message("Go tarball delivered to: /tmp/" + p.fileName)

 return nil

}

The preceding code uploads our content to the image. Upload() requires
that we provide *os.FileInfo, but we don't have one because our file does
not exist on disk. So, we use a trick where we write the content to a file in
an in-memory filesystem and then retrieve *os.FileInfo. This prevents us
from writing unnecessary files to disk.

NOTE
One of the odd things about Communicator.Upload() is that it takes a pointer to an

interface (*os.FileInfo). This is almost always a mistake by an author. Don't do

this in your code.

The next thing needed is to unpack this on the image:

func (p *Provisioner) unpack(ctx context.Context, u Ui,

c Communicator) error {

 const cmd = `sudo tar -C /usr/local -xzf /tmp/%s`

 u.Message("Unpacking Go tarball to /usr/local")

 b := bytes.Buffer{}

 rc := &packer.RemoteCmd{

 Command: fmt.Sprintf(cmd, p.fileName),

 Stdout: &b,

 Stderr: &b,

 }

 if err := c.Start(rc); err != nil {

 return fmt.Errorf("problem unpacking tarball(%s):\n%s",

err, b.String())

 }

 u.Message("Unpacked Go tarball")

 return nil

}

This code does the following:

Defines a command that unwraps our tarball and installs to /usr/local

Wraps that command in *packerRemoteCmd and captures STDOUT and
STDERR

Runs the command with Communicator: If it fails, returns the error and
STDOUT/STDERR for debug

The last step for Provisioner is to test that it installed:

func (p *Provisioner) test(ctx context.Context, u Ui,

c Communicator) error {

 u.Message("Testing Go install")

 b := bytes.Buffer{}

 rc := &packer.RemoteCmd{

 Command: `/usr/local/go/bin/go version`,

 Stdout: &b,

 Stderr: &b,

 }

 if err := c.Start(rc); err != nil {

 return fmt.Errorf("problem testing Go install(%s):\n%s",

err, b.String())

 }

 u.Message("Go installed successfully")

 return nil

}

This code does the following:

Runs /usr/local/go/bin/go version to get the output

If it fails, returns the error and STDOUT/STDERR for debug

Now, the final part of the plugin to write is main():

const (

 ver = "0.0.1"

 release = "dev"

)

var pv *version.PluginVersion

func init() {

 pv = version.InitializePluginVersion(ver, release)

}

func main() {

 set := plugin.NewSet()

 set.SetVersion(pv)

 set.RegisterProvisioner("goenv", &Provisioner{})

 err := set.Run()

 if err != nil {

 fmt.Fprintln(os.Stderr, err.Error())

 os.Exit(1)

 }

}

This code does the following:

Defines our release version as "0.0.1".

Defines the release as a "dev" version, but you can use anything here.
The production version should use "".

Initializes pv, which holds the plugin version information. This is done
in init() simply because the package comments indicate it should be
done this way instead of in main() to cause a panic at the earliest time if
a problem exists.

Makes a new Packer plugin.Set:

Sets the version information. If not set, all GitHub releases will
fail.

Registers our provisioner with the "goenv" plugin name:

Can be used to register other provisioners

Can be used to register a builder,
set.RegisterBuilder(), and a post processor,
set.RegisterPostProcessor()

Runs Set we created and exits on any error.

We can register with a regular name, which would get appended to the
name of the plugin. If using plugin.DEFAULT_NAME, our provisioner can be
referred to simply by the plugin's name.

So, if our plugin is named packer-plugin-goenv, our plugin can be referred
to as goenv. If we use something other than plugin.DEFAULT_NAME, such as
example, our plugin would be referred to as goenv-example.

We now have a plugin, but to make it useful we must allow people to
initialize it. Let's look at how we can release our plugins using GitHub.

TESTING PLUGINS
In this exercise, we don't go into testing Packer plugins. As of the time of publishing, there is
no documentation on testing. However, Packer's GoDoc page has public types that can
mock various types in Packer to help test your plugin.

This includes mocking the Provisioner, Ui, and Communicator types to allow you to

test. You can find these here: https://pkg.go.dev/github.com/hashicorp/packer-plugin-
sdk/packer.

https://pkg.go.dev/github.com/hashicorp/packer-plugin-sdk/packer

Releasing a plugin

Packer has strict release requirements for allowing the packer binary to find
and use a plugin. To have the plugin downloadable, the following
requirements must be met:

Must be released on GitHub; no other source is allowed.

Have a repository named packer-plugin-*, where * is the name of your
plugin.

Only use dashes not underscores.

Must have a plugin release that includes certain assets we will describe.

The official release document can be found here:
https://www.packer.io/docs/plugins/creation#creating-a-github-release.

HashiCorp also has a 30-minute video showing how to publish release
documents to Packer's website here:
https://www.hashicorp.com/resources/publishing-packer-plugins-to-the-
masses.

The first step for generating a release is to create a GNU Privacy Guard
(GPG) key to sign releases. The GitHub instructions can be found here (but
see notes directly underneath first):
https://docs.github.com/en/authentication/managing-commit-signature-
verification/generating-a-new-gpg-key.

Before you follow that document, remember these things while following
the instructions:

Make sure you add the public key to your GitHub profile.

https://www.packer.io/docs/plugins/creation#creating-a-github-release
https://www.hashicorp.com/resources/publishing-packer-plugins-to-the-masses
https://docs.github.com/en/authentication/managing-commit-signature-verification/generating-a-new-gpg-key

Do not use $ or any other symbol in your passphrase, as it will cause
issues.

Once that is completed, you need to add the private key to your repository
so that the GitHub actions we define will be able to sign the releases. You
will need to go to your GitHub repository's Settings | Secrets. Click the
provided New Repository Secret button.

Choose the name GPG_PRIVATE_KEY.

In the value section, you will need to paste in your GPG private key that
you can export with:

gpg --armor --export-secret-keys [key ID or email]

[key ID or email] is the identity you gave for the key, typically your email
address.

Now, we need to add the passphrase for your GPG key. You can add this as
a secret with the name GPG_PASSPHRASE. The value should be the passphrase
for the GPG key.

Once that is completed, you will need to download the GoReleaser
scaffolding HashiCorp provides. You can do that with the following:

curl -L -o ".goreleaser.yml" \

https://raw.githubusercontent.com/hashicorp/packer-plugin-

scaffolding/main/.goreleaser.yml

Now, we need the GitHub Actions workflow provided by HashiCorp set up
in your repository. This can be done with the following:

mkdir -p .github/workflows &&

curl -L -o ".github/workflows/release.yml" \

https://raw.githubusercontent.com/hashicorp/packer-plugin-

scaffolding/main/.github/workflows/release.yml

Finally, we need to download GNUmakefile, which is used by the
scaffolding. Let's grab it:

curl -L -o "GNUmakefile" \

https://raw.githubusercontent.com/hashicorp/packer-plugin-

scaffolding/main/GNUmakefile

Our plugin only works for Linux systems. The .goreleaser.yml file defines
releases for multiple platforms. You can restrict this by modifying the
builds section of .goreleaser.yml to be more restrictive. You can see an
example of that here: https://github.com/johnsiilver/packer-plugin-
goenv/blob/main/.goreleaser.yml.

With your code buildable and these files included, you need to commit
these files to your repository.

The next step will be to create a release. This needs to be tagged with a
semantic version, similar to what you set the ver variable to in your plugin's
main file. The slight difference is that while it will be strictly numbers and
dots in ver string, it is prepended with v when tagging on GitHub. So ver
= "0.0.1 will be a GitHub release with v0.0.1. The GitHub documentation
on releases can be found here:
https://docs.github.com/en/repositories/releasing-projects-on-
github/managing-releases-in-a-repository.

Once you have created a release, you can view the actions being run by
viewing the Actions tab. This will show the results and detail any problems
encountered by the actions.

https://github.com/johnsiilver/packer-plugin-goenv/blob/main/.goreleaser.yml
https://docs.github.com/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository

Using our plugin in a build

To use our plugin in the build, we need to modify the HCL2 configuration.
First, we need to modify packer.required_plugins to require our plugin:

packer {

 required_plugins {

 amazon = {

 version = ">= 0.0.1"

 source = "github.com/hashicorp/amazon"

 }

 installGo = {

 version = ">= 0.0.1"

 source = "github.com/johnsiilver/goenv"

 }

 }

}

This does a few things:

Creates a new variable, installGo, that gives access to all plugins
defined in our multi-plugin. There is only one: goenv.

Sets the version to use to be greater or equal to version 0.0.1.

Gives the source of the plugin. You will notice that the path is missing
packer-plugin-. As that is standard for every plugin, they remove the
need to type it.

NOTE

You will see that the source is different than our location for the code. This is because
we wanted to have a copy of the code in our normal location, but Packer requires a
plugin to have its own repository. The code is located at both locations. You may view
this copy of the code at: https://github.com/johnsiilver/packer-plugin-goenv.

Now, we need to remove the shell section under build.provisioner that
installs Go. Replace it with the following:

provisioner "goenv-goenv" {

 version = "1.17.5"

}

Finally, you will need to update the AMI name to something new to store
this under.

As an alternative, you may also download the modified HCL2 file here:
https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/12/packer/amazon.goenv.pkr.hcl.

In the terminal, format the file and download our plugin with the following:

packer fmt .

packer init .

This should cause our plugin to download with output text similar to this:

Installed plugin github.com/johnsiilver/goenv v0.0.1 in "/home/ec2-

user/.config/packer/plugins/github.com/johnsiilver/goenv/packer-

plugin-goenv_v0.0.1_x5.0_linux_amd64"

We can finally build our image with the following:

packer build .

If successful, you should see the following in the Packer output:

goBook.amazon-ebs.ubuntu: Begin Go environment install

https://github.com/johnsiilver/packer-plugin-goenv
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/12/packer/amazon.goenv.pkr.hcl

goBook.amazon-ebs.ubuntu: Go version to use is: 1.17.5

goBook.amazon-ebs.ubuntu: Downloading Go version:

https://golang.org/dl/go1.17.5.linux-amd64.tar.gz

goBook.amazon-ebs.ubuntu: Downloading complete

goBook.amazon-ebs.ubuntu: Pushing Go tarball

goBook.amazon-ebs.ubuntu: Go tarball delivered to:

/tmp/go1.17.5.linux-amd64.tar.gz

goBook.amazon-ebs.ubuntu: Unpacking Go tarball to /usr/local

goBook.amazon-ebs.ubuntu: Unpacked Go tarball

goBook.amazon-ebs.ubuntu: Testing Go install

goBook.amazon-ebs.ubuntu: Go installed successfully

goBook.amazon-ebs.ubuntu: Go environment install finished

This plugin has been pre-tested. Let's have a look at what you can do if the
plugin fails.

Debugging a Packer plugin

When packer build . fails, you may or may not receive relevant
information in the UI output. This will depend on whether the problem was
a panic or an error.

Panics return an Unexpected EOF message because the plugin crashed and
the Packer application only knows that it didn't receive an RPC message on
the Unix socket.

We can get Packer to help us out by providing this option when we run:

packer build -debug

This will output a crash.log file if the build crashes. It also uses press
enter between each step before continuing and allows only a single packer
build to run at a time.

You may see other files show up, as some plugins (such as Goss) detect the
debug option and output debug configuration files and logs.

You may also want to turn on logging for any log messages you or other
plugins write. This can be done by setting a few environmental variables:

PACKER_LOG=1 PACKER_LOG_PATH="./packerlog.txt" packer build .

This takes care of most debugging needs. However, sometimes the debug
information required is part of the system logs and not the plugin itself. In
those cases, you may want to use the communicator's Download() or
DownloadDir() methods to retrieve files when you detect an error.

For more debugging information, the official debugging documentation is
here: https://www.packer.io/docs/debugging.

In this section, we have detailed the building of a Packer multi-plugin,
shown how to set up the plugin in GitHub to be used with packer init, and
updated our Packer configuration to use the plugin. In addition, we have
discussed the basics of debugging Packer plugins.

Summary
This chapter has taught you the basics of using Packer to build a machine
image, using Amazon AWS as the target. We have covered the most
important plugins Packer offers to customize an AMI. We then built a
custom image that installed multiple packages with the apt tool,

https://www.packer.io/docs/debugging

downloaded and installed other tools, set up directories and users, and
finally, set up a system agent to run with systemd.

We have covered how to use the Goss tool to validate your images and how
to integrate Goss into Packer using a plugin developed at Yale.

Finally, we have shown you how to create your own plugins to extend the
capabilities of Packer.

Now, it is time to talk about IaC and how another of HashiCorp's tools has
taken the DevOps world by storm. Let's talk about Terraform.

Chapter 13: Infrastructure as Code with
Terraform
Infrastructure as Code (IaC) is the practice of provisioning computing
infrastructure using machine-readable, declarative specifications or
imperative code, rather than using an interactive configuration tool. IaC
became increasingly popular with the rise of cloud computing.
Infrastructure administrators who were previously maintaining long-lived
infrastructure found themselves needing to scale in both agility and capacity
as companies adopted cloud infrastructure.

Remember that at this time, software teams and infrastructure teams were
unlikely to work closely together until a software project needed to be
deployed. IaC created a bridge between infrastructure administrators and
software developers by establishing a shared set of documents that
described the desired infrastructure for the software project. The IaC
specifications or code often live within or alongside the project. By
establishing this shared context between software developers and
infrastructure administrators, these two teams were able to work together
earlier in the software development life cycle and establish a shared vision
for infrastructure.

In this chapter, we'll start off by learning about how Terraform approaches
IaC and the basics of its usage. After we have a handle on how Terraform
works, we'll discuss Terraform providers and see how the vast ecosystem of
providers can empower us to describe and provision a wide variety of
resources, not just compute infrastructure such as virtual machines. Finally,

we'll learn how to extend Terraform by building our own pet store
Terraform provider.

We will cover the following topics in this chapter:

An introduction to IaC

Understanding the basics of Terraform

Understanding the basics of Terraform providers

Building a pet store Terraform provider

Technical requirements
In this chapter, you will need to have the following:

Docker

Git

Go

The Terraform CLI:
https://learn.hashicorp.com/tutorials/terraform/install-cli

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-
cli

The code for this chapter: https://github.com/PacktPublishing/Go-for-
DevOps/tree/main/chapter/13/petstore-provider

Let's get started by learning some Terraform basics.

The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-

https://learn.hashicorp.com/tutorials/terraform/install-cli
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://github.com/PacktPublishing/Go-for-DevOps/tree/main/chapter/13/petstore-provider
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/13/petstore-provider

DevOps/tree/rev0/chapter/13/petstore-provider

An introduction to IaC
IaC had a significant impact beyond bringing infrastructure and software
development teams together; the practice also made it much easier and safer
to deploy infrastructure for projects. By defining the infrastructure and
storing the specifications in a software project, the infrastructure code could
be tested in the same way that the software project was tested. As with
testing code, consistently testing infrastructure code reduces bugs, surfaces
inefficiencies, and increases confidence in the infrastructure deployment
process.

We take it for granted today, but in many organizations, working with
infrastructure administrators to build a cluster for a non-trivial application
could take weeks. Taking that same experience, condensing it into a handful
of files, and then being able to deploy a cluster in minutes was a game
changer.

There are many IaC tools available. Each has its own flavor for how the
tool approaches the problem of describing and provisioning infrastructure.
Though they are all a bit different, each tool can be categorized using a
couple of facets, by how the code is specified by the author, and by how it
deals with changes to code. The foremost category is how the infrastructure
code is specified. Specifically, the code is a declarative specification
describing the desired state (what to provision), or the code is a set of
imperative steps described in a programming language (how to provision).
The second category is how the tool applies the infrastructure, push or pull.

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/13/petstore-provider

Pull IaC tools watch for changes to code in a centralized repository. Push
IaC tools apply their changes to the destination system.

IaC is a critical practice in bridging the gap between writing, delivering,
and operating software. It is one of the key areas where development
overlaps with operations. Mastering the practice will better enable your
team to deliver software faster with greater agility and reliability.

Understanding the basics of Terraform
Terraform (https://www.terraform.io/) is an open source IaC tool written in
Go and created by HashiCorp that provides a consistent command-line
experience for managing a wide variety of resources. With Terraform,
infrastructure engineers define the desired state of a set of hierarchical
resources using declarative Terraform configuration files or with imperative
code (https://www.terraform.io/cdktf), which results in Terraform
configurations files. These configuration files are the code in IaC. They can
be used to manage the full life cycle of creating, mutating, and destroying
resources, plan and predict changes to resources, provide a graph of
dependencies in complex resource topologies, and store the last observed
state of a system.

Terraform is simple to get started and has a fairly linear learning curve.
There are many features of Terraform we will not cover in this chapter that
will be useful as you deepen your adoption of the tool. The goal of this
chapter is not to become an expert with Terraform but rather to show you
how to get started and be effective quickly.

https://www.terraform.io/
https://www.terraform.io/cdktf

In this section, you will learn the basics of how Terraform operates, and
how to use the Terraform CLI. We'll start off with a simple example and
discuss what happens at execution time. By the end of the section, you
should feel comfortable defining resources, initializing, and applying using
the Terraform CLI.

Initializing and applying infrastructure
specs using Terraform

In the first part of this section, we will discuss resources rather than
infrastructure components. Discussing resources and components is rather
abstract. Let's use a concrete example to explain the normal flow of actions
with Terraform.

For our first example, we will use a directory structured like the following:

.

├── main.tf

In the preceding block, we have a directory with a single main.tf file. In
that file, we will add the following content:

resource "local_file" "foo" {

 content = "foo!"

 filename = "${path.module}/foo.txt"

}

In the preceding Terraform main.tf configuration file, we define a
local_file resource named foo with the foo! content located at

${path.module}/foo.txt. ${path.module} is the filesystem path of the
module, in this case, ./foo.txt.

We can simply run the following to initialize Terraform in the directory and
apply the desired state:

$ terraform init && terraform apply

The preceding terraform init command will check the validity of main.tf,
pull down the providers needed, and initialize the local state of the project.
After the init command is executed, the apply command will be executed.
We'll break these down into two parts, init and then apply. The init
command should output the following:

$ terraform init && terraform apply

Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/local...

- Installing hashicorp/local v2.2.2...

- Installed hashicorp/local v2.2.2 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the

provider

selections it made preceding. Include this file in your version

control repository

so that Terraform can guarantee to make the same selections by

default when

you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform

plan" to see

any changes that are required for your infrastructure. All

Terraform commands

should now work.

If you ever set or change modules or backend configuration for

Terraform,

rerun this command to reinitialize your working directory. If you

forget, other

commands will detect it and remind you to do so if necessary.

As you can see from the preceding output, Terraform installed the
hashicorp/local provider at a specific version. Terraform then saved the
version to a local lock file, .terraform.lock.hcl, to ensure that the same
version is used in the future, establishing the information needed to have a
reproducible build. Finally, Terraform provides instructions for using
terraform plan to see what Terraform will do to reach the desired state
described in main.tf.

After initialization, running terraform apply will trigger Terraform to
determine the current desired state and compare it to the known state of the
resources in main.tf. terraform apply presents the operator with a plan of
the operations that will be executed. Upon operator approval of the plan,
Terraform executes the plan and stores the updated state of the resources.
Let's see the output from terraform apply:

Terraform used the selected providers to generate the following

execution plan. Resource actions are indicated with the following

symbols:

 + create

Terraform will perform the following actions:

 # local_file.foo will be created

 + resource "local_file" "foo" {

 + content = "foo!"

 + directory_permission = "0777"

 + file_permission = "0777"

 + filename = "./foo.txt"

 + id = (known after apply)

 }

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described preceding.

 Only 'yes' will be accepted to approve.

 Enter a value: yes

local_file.foo: Creating...

local_file.foo: Creation complete after 0s

[id=4bf3e335199107182c6f7638efaad377acc7f452]

Apply complete! Resources: 1 added, 0 changed, 0 destroyed.

After confirming the plan by entering yes, Terraform has applied the
desired state and created the resource, a local file. The directory should look
like the following:

.

├── .terraform

│ └── providers

│ └── registry.terraform.io

│ └── hashicorp

│ └── local

│ └── 2.2.2

│ └── darwin_arm64

│ └── terraform-provider-local_v2.2.2_x5

├── .terraform.lock.hcl

├── foo.txt

├── main.tf

└── terraform.tfstate

In the preceding directory structure, we can see the local provider that
Terraform used to provision the file, the Terraform lock file, the foo.txt
file, and a terraform.tfstate file. Let's explore foo.txt and the
terraform.tfstate files:

$ cat foo.txt

foo!

As we described in main.tf, Terraform has created foo.txt with the foo!
content. Next, let's look at terraform.tfstate:

$ cat terraform.tfstate

{

 "version": 4,

 "terraform_version": "1.1.7",

 "serial": 1,

 "lineage": "384e96a1-5878-ed22-5368-9795a3231a00",

 "outputs": {},

 "resources": [

 {

 "mode": "managed",

 "type": "local_file",

 "name": "foo",

 "provider":

"provider[\"registry.terraform.io/hashicorp/local\"]",

 "instances": [

 {

 "schema_version": 0,

 "attributes": {

 "content": "foo!",

 "content_base64": null,

 "directory_permission": "0777",

 "file_permission": "0777",

 "filename": "./foo.txt",

 "id": "4bf3e335199107182c6f7638efaad377acc7f452",

 "sensitive_content": null,

 "source": null

 },

 "sensitive_attributes": [],

 "private": "bnVsbA=="

 }

]

 }

]

}

The terraform.tfstate file is a bit more interesting than foo.txt. The
tfstate file is where Terraform stores its last known state for the resources
applied in the plan. This enables Terraform to inspect the differences with
the last known state and build a plan for updating the resource if the desired
state changes in the future.

Next, let's change the desired state in main.tf and see what happens when
we apply the configuration again. Let's update main.tf to the following:

resource "local_file" "foo" {

 content = "foo changed!"

 filename = "${path.module}/foo.txt"

 file_permissions = "0644"

}

Note that we've changed the content of foo.txt and added file permissions
to the resource. Now, let's apply the desired state and see what happens:

$ terraform apply -auto-approve

local_file.foo: Refreshing state...

[id=4bf3e335199107182c6f7638efaad377acc7f452]

Terraform used the selected providers to generate the following

execution plan. Resource actions are indicated with the following

symbols:

-/+ destroy and then create replacement

Terraform will perform the following actions:

 # local_file.foo must be replaced

-/+ resource "local_file" "foo" {

 ~ content = "foo!" -> "foo changed!" # forces

replacement

 ~ file_permission = "0777" -> "0644" # forces

replacement

 ~ id =

"4bf3e335199107182c6f7638efaad377acc7f452" -> (known after apply)

 # (2 unchanged attributes hidden)

 }

Plan: 1 to add, 0 to change, 1 to destroy.

local_file.foo: Destroying...

[id=4bf3e335199107182c6f7638efaad377acc7f452]

local_file.foo: Destruction complete after 0s

local_file.foo: Creating...

local_file.foo: Creation complete after 0s

[id=5d6b2d23a15b5391d798c9c6a6b69f9a57c41aa5]

Apply complete! Resources: 1 added, 0 changed, 1 destroyed.

Terraform was able to determine the attributes of the resource that have
changed and create a plan for reaching the desired state. As the plan output
states with 1 to add, 0 to change, 1 to destroy, the local foo.txt file will be
deleted and then recreated, since a change to the file permissions forces the
replacement of the file. This example illustrates that a single attribute
change can, but does not always, cause the deletion and recreation of a
resource. Note that we added the -auto-approve flag to the apply command.
As the name implies, this will not prompt approval of the plan before it is
applied. You may want to use caution when using that flag, as it's good
practice to check the plan to ensure that the actions you expect are the
actions described in the plan.

Let's see the new contents of foo.txt:

$ cat foo.txt

foo changed!

As you can see, the content of foo.txt has been updated to reflect the
desired state. Now, let's examine the directory:

.

├── foo.txt

├── main.tf

├── terraform.tfstate

└── terraform.tfstate.backup

Note that a new file was created, terraform.tfstate.backup. This is a copy
of the previous tfstate file in case the new tfstate file is corrupted or lost.

By default, the tfstate files are stored locally. When working individually,
this is perfectly fine; however, when working with a team, it would become
difficult to share the most recent state with others. This is where remote
state (https://www.terraform.io/language/state/remote) becomes extremely
useful. We will not cover this feature here, but you should be aware of it.

Finally, we will destroy the resource we have created:

$ terraform destroy

local_file.foo: Refreshing state...

[id=5d6b2d23a15b5391d798c9c6a6b69f9a57c41aa5]

Terraform used the selected providers to generate the following

execution plan. Resource actions are indicated with the following

symbols:

 - destroy

Terraform will perform the following actions:

 # local_file.foo will be destroyed

 - resource "local_file" "foo" {

https://www.terraform.io/language/state/remote

 - content = "foo changed!" -> null

 - directory_permission = "0777" -> null

 - file_permission = "0644" -> null

 - filename = "./foo.txt" -> null

 - id =

"5d6b2d23a15b5391d798c9c6a6b69f9a57c41aa5" -> null

 }

Plan: 0 to add, 0 to change, 1 to destroy.

Do you really want to destroy all resources?

 Terraform will destroy all your managed infrastructure, as shown

above.

 There is no undo. Only 'yes' will be accepted to confirm.

 Enter a value: yes

local_file.foo: Destroying...

[id=5d6b2d23a15b5391d798c9c6a6b69f9a57c41aa5]

local_file.foo: Destruction complete after 0s

Destroy complete! Resources: 1 destroyed.

Running terraform destroy will clean up all of the resources described in
the desired state. If you examine your directory, you will see that the
foo.txt file has been deleted.

Congratulations! You have covered the absolute basics of Terraform. We
have learned at a high level how Terraform operates and how to use the
Terraform CLI. We created a simple local file resource, mutated it, and
destroyed it. In the next section, we'll discuss Terraform providers and
explore the world that opens up when we take advantage of the vast
ecosystem of them.

Understanding the basics of Terraform
providers
At its heart, Terraform is a platform for reconciling an expressed desired
state with an external system. The way Terraform interacts with external
APIs is through plugins called providers. A provider is responsible for
describing the schema for its exposed resources, and implementing Create,
Read, Update, and Delete (CRUD) interactions with external APIs.
Providers enable Terraform to express nearly any external API's resources
as Terraform resources.

Through its thousands of community and verified providers, Terraform is
able to manage resources including databases such as Redis, Cassandra, and
MongoDB, cloud infrastructure for all major cloud service providers,
communication and messaging services such as Discord and SendGrid, and
a vast number of other providers. If you are interested, you can explore a
listing of them in the Terraform Registry (https://registry.terraform.io/). You
can simply write, plan, and apply your way to your desired infrastructure.

In this section, we will build on our experience of using a local provider and
extend what we learned to use a provider that interacts with an external
API. We will define the desired state for a set of cloud resources and
provision them.

Defining and provisioning cloud
resources

Imagine that we want to deploy infrastructure to our cloud service provider.
In this case, we're going to use Microsoft Azure via the hashicorp/azurerm

https://registry.terraform.io/

provider. In an empty directory, let's start by authoring a simple main.tf file
like the following:

Configure the Azure provider

terraform {

 required_providers {

 azurerm = {

 source = "hashicorp/azurerm"

 version = "~> 3.0"

 }

 }

}

provider "azurerm" {

 features {}

}

resource "azurerm_resource_group" "mygroup" {

 name = "mygroup"

 location = "southcentralus"

}

The preceding Terraform configuration file requires the hashicorp/azurerm
provider and defines a resource group named mygroup in the southcentralus
region (a resource group is an Azure concept that groups infrastructure
resources together).

To run the rest of the examples in this section, you will need an Azure
account. If you do not have an Azure account, you can sign up for a free
account with $200 of Azure credits: https://azure.microsoft.com/en-us/free/.

https://azure.microsoft.com/en-us/free/

Once you have an account, log in with the Azure CLI:

$ az login

The preceding command will log you into your Azure account and set the
default context to your primary Azure subscription. To see what
subscription is active, run the following:

$ az account show

{

 "environmentName": "AzureCloud",

 "isDefault": true,

 "managedByTenants": [],

 "name": "mysubscription",

 "state": "Enabled",

 "tenantId": "888bf....db93",

 "user": {

 ...

 }

}

The preceding command output shows the name of the subscription and
other details about the current context of the Azure CLI. The azurerm
provider will use the authentication context of the Azure CLI to interact
with the Azure APIs.

Now that we have an authenticated Azure session on the Azure CLI, let's
use init and apply to create our desired state. Within the directory
containing the main.tf file, run the following:

$ terraform init && terraform apply

terraform init will initialize the directory, pulling down the latest azurerm
provider. By specifying the ~> 3.0 version constraint, Terraform is directed
to install the latest version of the provider in the 3.0.x series. You should
see something like the following output from init:

Initializing the backend...

Initializing provider plugins...

- Finding hashicorp/azurerm versions matching "~> 3.0"...

- Installing hashicorp/azurerm v3.0.2...

- Installed hashicorp/azurerm v3.0.2 (signed by HashiCorp)

Terraform has created a lock file .terraform.lock.hcl to record the

provider

selections it made above. Include this file in your version control

repository

so that Terraform can guarantee to make the same selections by

default when

you run "terraform init" in the future.

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform

plan" to see

any changes that are required for your infrastructure. All

Terraform commands

should now work.

If you ever set or change modules or backend configuration for

Terraform,

rerun this command to reinitialize your working directory. If you

forget, other

commands will detect it and remind you to do so if necessary.

This output should look familiar from the Initializing and applying
infrastructure specs using Terraform section. After initialization, you will
again be greeted with the plan for creating the desired resources. Once the
plan is approved, the desired resources are created. The output should look
like the following:

Terraform used the selected providers to generate the following

execution plan. Resource actions are indicated with the following

symbols:

 + create

Terraform will perform the following actions:

 # azurerm_resource_group.rg will be created

 + resource "azurerm_resource_group" "mygroup" {

 + id = (known after apply)

 + location = "southcentralus"

 + name = "mygroup"

 }

Plan: 1 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

 Terraform will perform the actions described above.

 Only 'yes' will be accepted to approve.

 Enter a value: yes

azurerm_resource_group.mygroup: Creating...

azurerm_resource_group.mygroup: Creation complete after 2s

[id=/subscriptions/8ec-...-24a/resourceGroups/mygroup]

As you can see from the preceding output, the resource group is created.

NOTE

If you are using a free Azure account, you may not have regional capacity in the
southcentralus location. You may need to use a different region such as centralus or

northeurope. To find out more information on what region would be best for you, view the

Azure geography guidance here: https://azure.microsoft.com/en-us/global-
infrastructure/geographies/#geographies.

Opening the Azure portal and navigating to the Resource groups view, you
should see the following:

https://azure.microsoft.com/en-us/global-infrastructure/geographies/#geographies

Figure 13.1 – The created resource group in Azure

In the preceding screenshot, we can see our newly created Azure resource
group, mygroup.

Let's see what new files have been added to our local directory after running
init and apply:

.

├── .terraform

│ └── providers

│ └── registry.terraform.io

│ └── hashicorp

│ └── azurerm

│ └── 3.0.2

│ └── darwin_arm64

│ └── terraform-provider-

azurerm_v3.0.2_x5

├── .terraform.lock.hcl

├── main.tf

└── terraform.tfstate

Similar to the previous section, we can see the Terraform lock and state
files. However, in the providers directory, we now see that the azurerm
provider was installed.

Let's add some more resources and apply them. You can find a listing of all
of the supported resources in the Azure provider documentation
(https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs). We'll
update the main.tf file to contain the following resources:

resource "azurerm_resource_group" "mygroup" {

 name = "mygroup"

 location = "southcentralus"

https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs

}

resource "azurerm_service_plan" "myplan" {

 name = "myplan"

 resource_group_name = azurerm_resource_group.mygroup.name

 location = azurerm_resource_group.mygroup.location

 os_type = "Linux"

 sku_name = "S1"

}

resource "random_integer" "ri" {

 min = 10000

 max = 99999

}

resource "azurerm_linux_web_app" "myapp" {

 name = "myapp-${random_integer.ri.result}"

 resource_group_name = azurerm_resource_group.mygroup.name

 location = azurerm_service_plan.myplan.location

 service_plan_id = azurerm_service_plan.myplan.id

 site_config {

 application_stack {

 docker_image = "nginxdemos/hello"

 docker_image_tag = "latest"

 }

 }

}

output "host_name" {

 value = azurerm_linux_web_app.myapp.default_hostname

}

The resources added to the preceding main.tf file include two Azure
resources, an App Service plan, a Linux web app, and one random_integer
resource. The Azure App Service plan defines a regional deployment of
compute infrastructure for running a Linux-based web application. The
Azure Linux web app is associated with the Azure App Service plan and is
configured to run a hello world NGINX demo container image. The
random_integer resource is needed to provide some random input for the
Fully Qualified Domain Name (FQDN) for the Linux web app.

Note the use of variables. For example, we use
azurerm_resource_group.mygroup.name to provide the value for
resource_group_name in the azure_service_plan resource. Variable usage
helps to minimize the number of string literals in the configuration files.
This is helpful when making a change because you can make it in one
place, rather than each occurrence of the string.

Also, note the use of an output variable, host_name. This instructs Terraform
to output the host_name key with the value of
azurerm_linux_web_app.myapp.default_hostname after the completion of
terraform apply. We'll use this output to make it easier to open the website
after it is provisioned.

Let's run terraform apply again and see what happens:

$ terraform apply

│

│ Error: Inconsistent dependency lock file

│

│ The following dependency selections recorded in the lock file are

inconsistent with the current configuration:

│ - provider registry.terraform.io/hashicorp/random: required by

this configuration but no version is selected

│

│ To update the locked dependency selections to match a changed

configuration, run:

│ terraform init -upgrade

│

Oh no! terraform apply responds with an error, informing us that we have
a new provider added to the configuration that we didn't have last time. Run
terraform init -upgrade, and the random module will be added:

$ terraform init -upgrade

Initializing the backend...

Initializing provider plugins...

- Finding latest version of hashicorp/random...

- Finding hashicorp/azurerm versions matching "~> 3.0"...

- Installing hashicorp/random v3.1.2...

- Installed hashicorp/random v3.1.2 (signed by HashiCorp)

- Using previously-installed hashicorp/azurerm v3.0.2

You should see some output like the preceding that shows Terraform
installing the latest version of the hashicorp/random provider. Let's see what
our directory looks like now that we've added the provider:

.

├── .terraform

│ └── providers

│ └── registry.terraform.io

│ └── hashicorp

│ ├── azurerm

│ │ └── 3.0.2

│ │ └── darwin_arm64

│ │ └── terraform-provider-

azurerm_v3.0.2_x5

│ └── random

│ └── 3.1.2

│ └── darwin_arm64

│ └── terraform-provider-random_v3.1.2_x5

As you can see, the random provider is now installed. We should be ready to
use apply again:

$ terraform apply -auto-approve

azurerm_resource_group.mygroup: Refreshing state...

...

Plan: 3 to add, 0 to change, 0 to destroy.

Changes to Outputs:

 + host_name = (known after apply)

random_integer.ri: Creating...

random_integer.ri: Creation complete after 0s [id=18515]

azurerm_service_plan.myplan: Creating...

azurerm_service_plan.myplan: Still creating... [10s elapsed]

azurerm_service_plan.myplan: Creation complete after 12s

[id=/subscriptions/8ec-...-24a/resourceGroups/mygroup/providers/Mic

rosoft.Web/serverfarms/myplan]

azurerm_linux_web_app.myapp: Creating...

azurerm_linux_web_app.myapp: Still creating... [10s elapsed]

azurerm_linux_web_app.myapp: Still creating... [20s elapsed]

azurerm_linux_web_app.myapp: Creation complete after 28s

[id=/subscriptions/8ec-...-24a/resourceGroups/mygroup/providers/Mic

rosoft.Web/sites/myapp-18515]

Apply complete! Resources: 3 added, 0 changed, 0 destroyed.

Outputs:

host_name = "myapp-18515.azurewebsites.net"

We've omitted some of the output of terraform apply. The things to note
here are that we are creating each of the resources we described in main.tf,
they have provisioned successfully, and host_name contains a Universal
Resource Identifier (URI) for accessing the newly deployed web
application.

Take the host_name URI and open it in a browser. You should see the
following:

Figure 13.2 – NGINX running in Azure App Service

If you go back to the Azure portal, you will also see the resources created
within your resource group.

I hope you will take some time to experiment by defining and applying
other resources. Once you get the hang of using providers and some basic
syntax, Terraform is a joy to work with. When you are done with your
resources, just run terraform destroy, and they will be deleted.

In this section, we learned some basics about using providers to manipulate
cloud resources. We only need to use a couple of providers, but as discussed

in the opening of the section, there are thousands of providers out there. It's
very likely that you will be able to find a provider to solve your problem.
However, there may be APIs and resources you would like to manage with
Terraform without an existing provider. In the next section, we will build a
Terraform provider for a fictional pet store.

Building a pet store Terraform provider
Even though the Terraform provider registry (https://registry.terraform.io/)
has almost every provider you can think of, there is a chance that a provider
you need does not yet exist. Perhaps you want to use Terraform to interact
with resources of a proprietary API internal to your company. If you want
to manage resources that don't yet exist in the Terraform provider
ecosystem, you will need to write a provider for that API. The good news is
that writing a Terraform provider is relatively simple. The thoughtful folks
at HashiCorp provide great documentation, SDKs, and tools to make
building a provider a breeze.

In the previous sections, we learned the basics of Terraform and how to use
providers to interact with resources in both local and external systems. We
were able to build cloud resources to deploy a Linux web application
running in a container.

In this section, we will build upon the previous sections and learn how to
build our own provider. The Terraform provider we are building in this
section will expose pet resources and will interact with a local docker-
compose-hosted pet store service to simulate an external API.

https://registry.terraform.io/

You will learn how to define custom resources with a strong schema and
validations, create data sources, and implement CRUD interactions for our
pet resources. Finally, we'll discuss publishing a module for the world to
use via the Terraform provider registry.

Resources for building custom providers

HashiCorp provides an extensive set of tutorials for building custom
providers (https://learn.hashicorp.com/collections/terraform/providers). I
highly recommend reviewing the content if you intend on building your
own custom provider.

The code for this section is located in
https://github.com/PacktPublishing/Go-for-
DevOps/tree/main/chapter/13/petstore-provider. We will not cover all of the
code, but we will dive into the most interesting parts. I've done my best to
keep to only the most simple implementation; however, simple is not
always elegant.

Additionally, our pet store custom provider uses the Terraform plugin SDK
v2 (https://www.terraform.io/plugin/sdkv2/sdkv2-intro) rather than the new
(at the time of writing) Terraform plugin framework. I chose this path as the
majority of existing providers use the SDK v2, and the Terraform plugin
framework (https://www.terraform.io/plugin/framework) has not reached
stability yet. If you are interested in weighing the benefits, read the Which
SDK Should I Use? article from HashiCorp
(https://www.terraform.io/plugin/which-sdk).

https://learn.hashicorp.com/collections/terraform/providers
https://github.com/PacktPublishing/Go-for-DevOps/tree/main/chapter/13/petstore-provider
https://www.terraform.io/plugin/sdkv2/sdkv2-intro
https://www.terraform.io/plugin/framework
https://www.terraform.io/plugin/which-sdk

Now that we have established a foundation of content and learning, let's
proceed to the code.

The pet store provider

Our pet store Terraform provider is just another Go application. Most of the
interactions between Terraform and the provider are handled at the
Terraform SDK level, and very little gets in the way of the provider
developer. Let's start off by taking a look at the directory structure of the
provider:

.

├── Makefile

├── docker-compose.yml

├── examples

│ └── main.tf

├── go.mod

├── go.sum

├── internal

│ ├── client # contains the grpc pet store API client

│ │ └── ...

│ ├── data_source_pet.go

│ ├── provider.go

│ ├── resource_pets.go

│ └── schema.go

└── main.go

As I said, it's a standard Go application with an entry point in main.go. Let's
start at the top and work our way down the files. The first on the list is the
Makefile:

HOSTNAME=example.com

NAMESPACE=gofordevops

NAME=petstore

BINARY=terraform-provider-${NAME}

VERSION=0.1.0

GOARCH := $(shell go env GOARCH)

GOOS := $(shell go env GOOS)

default: install

build:

 go build -o ${BINARY}

install: build

 mkdir -p

~/.terraform.d/plugins/${HOSTNAME}/${NAMESPACE}/${NAME}/${VERSION}/

${GOOS}_${GOARCH}

 mv ${BINARY}

~/.terraform.d/plugins/${HOSTNAME}/${NAMESPACE}/${NAME}/${VERSION}/

${GOOS}_${GOARCH}

test:

 go test ./... -v

testacc:

 TF_ACC=1 go test ./... -v $(TESTARGS) -timeout 120m

The preceding Makefile offers some helpful build tasks and environmental
configuration. For example, make or make install will build the provider

for the current architecture and place it in the ~/.terraform.d/plugins
directory tree, which will enable us to use the provider locally without
publishing it to the registry.

Next, we have the docker-compose.yml file. Let's take a look:

version: '3.7'

services:

 petstore:

 build:

 context: ../../10/petstore/.

 command:

 - /go/bin/petstore

 - --localDebug

 ports:

 - "6742:6742"

The docker-compose.yml file runs the pet store service from Chapter 10,
Automating Workflows with GitHub Actions, and exposes the gRPC service
on port 6742. The pet store service stores pets in an in-memory store, so to
wipe out the pets currently stored, just restart the service. We'll talk more
about starting and stopping the service later in the section.

Next up, we have examples/main.tf. Let's see what an example of defining
our pet resources will look like:

terraform {

 required_providers {

 petstore = {

 version = "0.1.0"

 source = "example.com/gofordevops/petstore"

 }

 }

}

...

resource "petstore_pet" "thor" {

 name = "Thor"

 type = "dog"

 birthday = "2021-04-01T00:00:00Z"

}

resource "petstore_pet" "tron" {

 name = "Tron"

 type = "cat"

 birthday = "2020-06-25T00:00:00Z"

}

data "petstore_pet" "all" {

 depends_on = [petstore_pet.thor, petstore_pet.tron]

}

In the preceding main.tf file, we can see the provider registered and
configured to use the local pet store service. We can also see the definition
for two petstore_pet resources, Thor and Tron. After the resources, we
define a petstore_pet data source. We will walk through bits of this file in
more detail later in the section.

The main reason I'd like you to see main.tf before we get into the code is
that it will give you an idea of the interface we want to achieve in the

provider implementation. I believe seeing the usage of the provider will
help you to better understand the provider implementation.

The rest of the source code is all in Go, so rather than going from top to
bottom, I'm going to move to the entry point in main.go and dive into the
actual implementation:

package main

import (

 "github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"

 "github.com/hashicorp/terraform-plugin-sdk/v2/plugin"

 petstore "github.com/PacktPublishing/Go-for-

DevOps/chapter/13/petstore-provider/internal"

)

func main() {

 plugin.Serve(&plugin.ServeOpts{

 ProviderFunc: func() *schema.Provider {

 return petstore.Provider()

 },

 })

}

Well, main.go is simple enough. All we are doing in main is starting a plugin
server via the Terraform plugin SDK v2 and providing it with an
implementation of our pet store provider. Let's next look at the
petstore.Provider implementation in internal/provider.go:

// Provider is the entry point for defining the Terraform provider,

and will create a new Pet Store provider.

func Provider() *schema.Provider {

 return &schema.Provider{

 Schema: map[string]*schema.Schema{

 "host": {

 Type: schema.TypeString,

 Optional: true,

 DefaultFunc:

schema.EnvDefaultFunc("PETSTORE_HOST", nil),

 },

 },

 ResourcesMap: map[string]*schema.Resource{

 "petstore_pet": resourcePet(),

 },

 DataSourcesMap: map[string]*schema.Resource{

 "petstore_pet": dataSourcePet(),

 },

 ConfigureContextFunc: configure,

 }

}

There are only two funcs in provider.go. The Provider func creates an
*schema.Provider that describes the schema for configuring the provider,
the resources of the provider, the data sources of the provider, and the
configure func for initializing the provider. The resource map for the
provider contains resources by a string name and their schemas. The
schemas for each of the structures describe the domain-specific language to

Terraform for interacting with their fields and resource hierarchies. We will
examine the schemas for these structures in more detail soon.

Next, let's look at the configure func in provider.go:

// configure builds a new Pet Store client the provider will use to

interact with the Pet Store service

func configure(_ context.Context, data *schema.ResourceData)

(interface{}, diag.Diagnostics) {

 // Warning or errors can be collected in a slice type

 var diags diag.Diagnostics

 host, ok := data.Get("host").(string)

 if !ok {

 return nil, diag.Errorf("the host (127.0.0.1:443) must be

provided explicitly or via env var PETSTORE_HOST")

 }

 c, err := client.New(host)

 if err != nil {

 return nil, append(diags, diag.Diagnostic{

 Severity: diag.Error,

 Summary: "Unable to create Pet Store client",

 Detail: "Unable to connect to the Pet Store

service",

 })

 }

 return c, diags

}

The configure func is responsible for handling provider configuration. Note
how the host data described in the preceding Provider schema is available
via the data argument. This is a common pattern you will see throughout
the provider. We use the host configuration data to construct the client for
the pet store service. If we are unable to construct a pet store client, we
append a diag.Diagnostic structure to the slice of diag.Diagnostics. These
diagnostic structures inform Terraform of an event of varying severity
occurring in the provider. In this case, it is an error if we are unable to build
the client, which should be communicated back to the user. If all goes well,
we return the client instance and an empty slice of diag.Diagnostics.

Next, let's examine the pet store data source.
Implementing the pet store data source
The pet store data source is a bit simpler than the resource implementation,
given that a data source is intended as a way for Terraform to pull in data
from an external API and is read-only in this case. The pet store data source
is defined in internal/data_source_pet.go.

There are three functions of primary interest in the pet store data source. We
will approach them one at a time. Let's start with the dataSourcePet func:

func dataSourcePet() *schema.Resource {

 return &schema.Resource{

 ReadContext: dataSourcePetRead,

 Schema: getPetDataSchema(),

 }

}

The preceding function creates the *schema.Resource data source by
providing a schema for the data being provided via getPetDataSchema.
ReadContext expects a function that is responsible for translating the input
schema, querying the external API, and returning data to Terraform that
matches the structure defined in the schema.

The definition of getPetDataSchema is located in internal/schema.go, and it
is helpful to review it prior to examining the code in dataSourcePetRead.
We will break down the function into two parts, the input and the computed
output:

func getPetDataSchema() map[string]*schema.Schema {

 return map[string]*schema.Schema{

 "pet_id": {

 Type: schema.TypeString,

 Optional: true,

 },

 "name": {

 Type: schema.TypeString,

 Optional: true,

 ValidateDiagFunc: validateName(),

 },

 "type": {

 Type: schema.TypeString,

 Optional: true,

 ValidateDiagFunc: validateType(),

 },

 "birthday": {

 Type: schema.TypeString,

 Optional: true,

 ValidateDiagFunc: validateBirthday(),

 },

The preceding schema describes the data structure for the pet store pet data
source. Each of the top-level keys is marked as optional and will be used to
filter the data source. For example, the name key specifies that it is optional,
is of type string, and should be validated with the validateName func. We
will examine validations in more detail later in the section.

The following is the schema for the output of the data source:

 "pets": {

 Type: schema.TypeList,

 Computed: true,

 Elem: &schema.Resource{

 Schema: map[string]*schema.Schema{

 "id": {

 Type: schema.TypeString,

 Computed: true,

 },

 "name": {

 Type: schema.TypeString,

 Computed: true,

 },

 "type": {

 Type: schema.TypeString,

 Computed: true,

 },

 "birthday": {

 Type: schema.TypeString,

 Computed: true,

 },

 },

 },

 },

 }

}

The pets key contains all the Computed values, which means each of the
values is read-only. These represent the list result of the query.

Now that we have a better understanding of the data schema we are
working with, let's continue with the implementation of dataSourcePetRead:

// dataSourcePetRead finds pets in the pet store given an ID

func dataSourcePetRead(ctx context.Context, data

*schema.ResourceData, meta interface{}) diag.Diagnostics {

 psClient, err := clientFromMeta(meta)

 if err != nil {

 return diag.FromErr(err)

 }

 pets, err := findPetsInStore(ctx, psClient, findPetsRequest{

 Name: data.Get("name").(string),

 Birthday: data.Get("birthday").(string),

 Type: PetType(data.Get("type").(string)),

 ID: data.Get("pet_id").(string),

 })

 if err != nil {

 return diag.FromErr(err)

 }

 // always run

 data.SetId(strconv.FormatInt(time.Now().Unix(), 10))

 if err := data.Set("pets", flattenPets(pets)); err != nil {

 return diag.FromErr(err)

 }

 return nil

}

In dataSourcePetRead, we instantiate a client for the pet store service,
populate the filter criteria from the data schema supplied, and then set the
pets key in the data argument with the pets returned from the pet store
service in the key value format specified by the schema. The flattenPets
function is responsible for transforming the protobuf structures we receive
from the pet store service into the format expected by the schema. If you are
interested in the implementation, it is not terribly elegant, but it is simple.

I purposely didn't mention the data.SetId function. We are setting the value
of that to a value that will cause the data to be fetched from the pet store
service each time. Terraform identifies that data has changed if the ID for

that data has changed. This ensures that the ID changes each time the
function is executed.

In the configure func, we created the pet store client, so how did we gain
access to that client in the data source? We can find the answer to that in the
clientFromMeta func:

// clientFromMeta casts meta into a Pet Store client or returns an

error

func clientFromMeta(meta interface{}) (*client.Client, error) {

 psClient, ok := meta.(*client.Client)

 if !ok {

 return nil, errors.New("meta does not contain a Pet Store

client")

 }

 return psClient, nil

}

The clientFromMeta func takes the meta interface{} argument passed into
the ReadContext func and casts it as the pet store client. The meta variable
contains the variable returned in the configure func. This is not as intuitive
as we would like, but it is effective.

With the code described previously and some helpers from
internal/data_source_pet.go, we have implemented a filtered data source
to the pet store API that we can use in Terraform configuration files.

Next, let's take a look at how we handle CRUD interactions for pet
resources.
Implementing the Pet resource

The implementation for the Pet resource follows many of the same patterns
as the pet store data source, but with the pet resources, we also need to
implement create, update, and delete interactions in addition to read. Unless
otherwise stated, the code we cover for the pet resource implementation is
in internal/resource_pet.go.

Let's start by examining the resourcePet func, which is the func called
when we created the provider schema:

func resourcePet() *schema.Resource {

 return &schema.Resource{

 CreateContext: resourcePetCreate,

 ReadContext: resourcePetRead,

 UpdateContext: resourcePetUpdate,

 DeleteContext: resourcePetDelete,

 Schema: getPetResourceSchema(),

 Importer: &schema.ResourceImporter{

 StateContext: schema.ImportStatePassthroughContext,

 },

 }

}

Just like the pet store data source, the pet resource defines handlers for each
CRUD operation as well as a schema. Before we get into the CRUD
operations, let's first look at the schema, which is in internal/schema.go:

func getPetResourceSchema() map[string]*schema.Schema {

 return map[string]*schema.Schema{

 "id": {

 Type: schema.TypeString,

 Optional: true,

 Computed: true,

 },

 "name": {

 Type: schema.TypeString,

 Required: true,

 ValidateDiagFunc: validateName(),

 },

 "type": {

 Type: schema.TypeString,

 Required: true,

 ValidateDiagFunc: validateType(),

 },

 "birthday": {

 Type: schema.TypeString,

 Required: true,

 ValidateDiagFunc: validateBirthday(),

 },

 }

}

The schema defined here is simpler than the data source schema, since we
are not defining query filters. Note that the id key is computed, but all the
others are not. The id value is generated by the pet store service and is not
to be specified by the user.

Since these values are specified by the user as a string, validation becomes
more significant. For a better user experience, we want to provide feedback
to a user when a value is invalid. Let's take a look at how we validate the
type field with the validateType func:

func validateType() schema.SchemaValidateDiagFunc {

 return validateDiagFunc(validation.StringInSlice([]string{

 string(DogPetType),

 string(CatPetType),

 string(ReptilePetType),

 string(BirdPetType),

 }, true))

}

The validateType func returns a validation constructed with each valid
value of the enumeration. This prevents a user from entering a string value
for a pet type that is not supported in the pet store. The rest of the
validations take a similar approach to validating the range of input values.

Now that we have explored the schema, we are prepared to explore the
CRUD operations. Let's start with the read operation:

// resourcePetRead finds a pet in the pet store by ID and populate

the resource data

func resourcePetRead(ctx context.Context, data

*schema.ResourceData, meta interface{}) diag.Diagnostics {

 psClient, err := clientFromMeta(meta)

 if err != nil {

 return diag.FromErr(err)

 }

 pets, err := findPetsInStore(ctx, psClient,

findPetsRequest{ID: data.Id()})

 if err != nil {

 return diag.FromErr(err)

 }

 if len(pets) == 0 {

 return nil

 }

 return setDataFromPet(pets[0], data)

}

The resourcePetRead func fetches the pet store client from the meta
argument and then finds the pet by ID in the store. If the pet is found, the
data argument is updated with data from the pet.

That's simple enough. Next, let's look at create:

// resourcePetCreate creates a pet in the pet store

func resourcePetCreate(ctx context.Context, data

*schema.ResourceData, meta interface{}) diag.Diagnostics {

 psClient, err := clientFromMeta(meta)

 if err != nil {

 return diag.FromErr(err)

 }

 pet := &client.Pet{Pet: &pb.Pet{}}

 diags := fillPetFromData(pet, data)

 ids, err := psClient.AddPets(ctx, []*pb.Pet{pet.Pet})

 if err != nil {

 return append(diags, diag.FromErr(err)...)

 }

 data.SetId(ids[0])

 return diags

}

The resourcePetCreate func follows a similar pattern. The difference is that
the pet is constructed from fields in the data argument, and then the pet
store API is called to add the pet to the store. In the end, the ID for the new
pet is set.

Next, let's look at update:

// resourcePetUpdate updates a pet in the pet store by ID

func resourcePetUpdate(ctx context.Context, data

*schema.ResourceData, meta interface{}) diag.Diagnostics {

 psClient, err := clientFromMeta(meta)

 if err != nil {

 return diag.FromErr(err)

 }

 pets, err := findPetsInStore(ctx, psClient,

findPetsRequest{ID: data.Id()})

 if err != nil {

 return diag.FromErr(err)

 }

 if len(pets) == 0 {

 return diag.Diagnostics{

 {

 Severity: diag.Error,

 Summary: "no pet was found",

 Detail: "no pet was found when trying to

update the pet by ID",

 },

 }

 }

 pet := pets[0]

 diags := fillPetFromData(pet, data)

 if diags.HasError() {

 return diags

 }

 if err := psClient.UpdatePets(ctx, []*pb.Pet{pet.Pet}); err !=

nil {

 return append(diags, diag.FromErr(err)...)

 }

 return diags

}

The resourcePetUpdate func combines parts of read and create. Initially, we
need to check to see whether the pet is in the store and fetch the pet data. If
we don't find the pet, we return an error. If we do find the pet, we update the
fields of the pet and call UpdatePets on the pet store client.

The delete operation is relatively trivial, so I will not dive into it here. If
you want, you can take a look at resourcePetDelete to see for yourself.

At this point, we have now implemented the pet resource and are ready to
see our Terraform provider in action.

Running the pet store provider
Now that we have a fully implemented pet store provider, the fun part is
running it. From the root of the pet store provider, run the following
commands. Be sure to have Docker running:

$ docker-compose up -d

$ make

$ cd examples

$ terraform init && terraform apply

The preceding commands will start the pet store service using docker-
compose, build and install the provider, move it into the example directory,
and finally, use init and apply to create our desired state containing our
pets.

When init executes, you should see something like the following:

Initializing the backend...

Initializing provider plugins...

- Finding example.com/gofordevops/petstore versions matching

"0.1.0"...

- Installing example.com/gofordevops/petstore v0.1.0...

- Installed example.com/gofordevops/petstore v0.1.0

(unauthenticated)

Yay! The provider is installed and Terraform is ready to apply our
resources.

After Terraform has applied the resources, you should see the following
output:

Apply complete! Resources: 2 added, 0 changed, 0 destroyed.

Outputs:

all_pets = {

 "birthday" = tostring(null)

 "id" = "1648955761"

 "name" = tostring(null)

 "pet_id" = tostring(null)

 "pets" = tolist([

 {

 "birthday" = "2020-06-25T00:00:00Z"

 "id" = "495b1c94-6f67-46f2-9d4d-e84cc182d523"

 "name" = "Tron"

 "type" = "cat"

 },

 {

 "birthday" = "2021-04-01T00:00:00Z"

 "id" = "36e65cb2-18ea-4aec-a410-7bad64d7b00d"

 "name" = "Thor"

 "type" = "dog"

 },

])

 "type" = tostring(null)

}

thor = {

 "36e65cb2-18ea-4aec-a410-7bad64d7b00d" = {

 "birthday" = "2021-04-01T00:00:00Z"

 "id" = "36e65cb2-18ea-4aec-a410-7bad64d7b00d"

 "name" = "Thor"

 "type" = "dog"

 }

}

We can see from the preceding output that both of our resources, Tron and
Thor, have been added, and our data source when queried with no filters
returned each of the pets. Lastly, we can see the thor output was returned,
containing the data for Thor.

Let's review examples/main.tf again and see where the thor output came
from:

variable "pet_name" {

 type = string

 default = "Thor"

}

data "petstore_pet" "all" {

 depends_on = [petstore_pet.thor, petstore_pet.tron]

}

Only returns Thor by name

output "thor" {

 value = {

 for pet in data.petstore_pet.all.pets :

 pet.id => pet

 if pet.name == var.pet_name

 }

}

In the preceding main.tf file, we defined a pet_name variable with the value
of Thor. We then queried the pet store data source, providing no filters but
depending on the completion of both of the resources in the file. Lastly, we
output a key of thor, with the value being a query that matches only when
pet.name equals var.pet_name. This filtered the data source for only pets
named Thor.

You can now use any of the Terraform skills you've learned thus far to
manipulate pet store resources. There really wasn't all that much code to
implement.

Publishing custom providers

Anyone can publish a provider to the Terraform Registry by logging into it
using a GitHub account. Again, HashiCorp has excellent documentation on
how to publish a provider. We will not walk through the process in this
book, as the documentation for Release and Publish a Provider to the
Terraform Registry
(https://learn.hashicorp.com/tutorials/terraform/provider-release-publish) is
likely sufficient if you have reached this far in your journey building your
own Terraform provider.

Summary
In this chapter, we learned about the history of IaC and the advantages of
leveraging the practice to bring software development and operations
together by setting a shared context for expressing and continuously testing

https://learn.hashicorp.com/tutorials/terraform/provider-release-publish

infrastructure. We learned where Terraform lies in the ecosystem of IaC
tooling and how to use it to describe desired infrastructure states, mutate
existing infrastructure, deploy a cloud infrastructure, and finally, create our
own resources for automating external APIs. You should now be prepared
with the tools needed to improve your own software projects.

In the next chapter, we will learn how to use Go to deploy applications to
Kubernetes and build upon that knowledge to understand how to extend it
with Go. We'll enable our Kubernetes users to reconcile pets as custom
Kubernetes resources.

Chapter 14: Deploying and Building
Applications in Kubernetes
It's difficult to overstate the impact Kubernetes has had on the world of
DevOps. Over the years since it was open sourced by Google in 2014,
Kubernetes has experienced a meteoric rise in popularity. In that period,
Kubernetes has become the preeminent solution for orchestrating cloud-
native container workloads, differentiating itself from a field of
orchestrators such as Apache Mesos and Docker Swarm. By providing a
common API over heterogeneous environments, Kubernetes has become
the common tool for deploying applications across cloud and hybrid
environments.

So, what is Kubernetes? According to its documentation, "Kubernetes is a
portable, extensible, open source platform for managing containerized
workloads and services, that facilitates both declarative configuration and
automation" (https://kubernetes.io/docs/concepts/overview/what-is-
kubernetes/). That is a lot to unpack. I'll sum up that statement a little
differently. Kubernetes is a set of APIs and abstractions that makes running
containerize applications easier. It provides services such as service
discovery, load balancing, storage abstraction and orchestration, automated
rollouts and rollbacks, self-healing, and secret, certificate, and configuration
management. Furthermore, if Kubernetes doesn't offer a specific bit of
functionality you need directly, there is likely a solution available in the
vibrant open source ecosystem built around the core of Kubernetes. The
Kubernetes ecosystem is a vast set of tools for you to achieve your
operational objectives without needing to reinvent the wheel.

https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

All of the aforementioned functionality is exposed through the Kubernetes
API and is infinitely programmable.

This chapter will not be a deep dive into all aspects of Kubernetes. To
properly explore Kubernetes in depth would require multiple books. The
good news is there are many great books on the topic:
https://www.packtpub.com/catalogsearch/result?q=kubernetes. Also, the
fantastic community-driven documentation
(https://kubernetes.io/docs/home/) for Kubernetes is an invaluable resource
for getting a deeper understanding of it.

The goal of this chapter is to provide a starting point for your journey in
programming Kubernetes using Go. We will start by creating a simple Go
program to deploy a Kubernetes resource to a local Kubernetes cluster to
run a load-balanced HTTP service. We will then learn how to extend the
Kubernetes API with custom resources to show how Kubernetes can be
used to orchestrate and manage any external resource. We will build custom
pet resources that will be stored in our pet store service running within the
cluster to illustrate the concept of managing external resources. By the end
of this chapter, you will be equipped with the knowledge to work
effectively with the Kubernetes API and understand some of the core design
principles of Kubernetes.

We will cover the following topics in this chapter:

Interacting with the Kubernetes API

Deploying a load-balanced HTTP application using Go

Extending Kubernetes with custom resources and operators

https://www.packtpub.com/catalogsearch/result?q=kubernetes
https://kubernetes.io/docs/home/

Building a pet store operator

Technical requirements
This chapter will require the following tools:

Docker: https://docs.docker.com/get-docker/

KinD: https://kind.sigs.k8s.io/#installation-and-usage

operator-sdk: https://sdk.operatorframework.io/docs/installation/

Tilt.dev: https://docs.tilt.dev/install.html

ctlptl: https://github.com/tilt-dev/ctlptl#how-do-i-install-it

The code files for this chapter can be downloaded from
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/14

Interacting with the Kubernetes API
In the introduction, we talked about the Kubernetes API as if it is just one
thing, although in a sense it can be thought of in that way. However, the
Kubernetes API we have been talking about is an aggregation of multiple
APIs served by the core of Kubernetes, the control plane API server. The
API server exposes an HTTP API that exposes the aggregated API and
allows for the query and manipulation of API objects such as Pods,
Deployments, Services, and Namespaces.

In this section, we will learn how to use KinD to create a local cluster. We
will use the local cluster to manipulate a namespace resource using kubectl.
We will examine the basic structure of a Kubernetes resource and see how

https://docs.docker.com/get-docker/
https://kind.sigs.k8s.io/#installation-and-usage
https://sdk.operatorframework.io/docs/installation/
https://docs.tilt.dev/install.html
https://github.com/tilt-dev/ctlptl#how-do-i-install-it
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/14

we can address individual resources by their Group, Version, Kind, Name,
and usually, Namespace. Lastly, we'll discuss authentication and the
kubeconfig file. This section will prepare us for interacting with the
Kubernetes API at a lower level using Go.

Creating a KinD cluster

Prior to getting started interacting with the Kubernetes API, let's build a
local Kubernetes cluster using KinD. This is a tool that enables us to create
a Kubernetes cluster locally using Docker rather than running as services on
the host. To create the cluster, run the following:

$ kind create cluster

The preceding command will create a cluster named kind. It will build a
Kubernetes control plane and set the current context of kubectl to point to
the newly created cluster.

You can list the clusters created by kind by running the following:

$ kind get clusters

kind

You can see from the output of get clusters that there is a new cluster
named kind created.

Using kubectl to interact with the API

Kubernetes offers a command-line tool for interacting with the API,
kubectl. There are some nice developer experience features in kubectl, but
its main use is to perform Create, Read, Update, Delete (CRUD)

operations targeting the API server. For example, let's look at two ways to
create a namespace using kubectl:

$ kubectl create namespace petstore

The preceding command creates a namespace named petstore:

$ cat <<EOF | kubectl create -f -

apiVersion: v1

kind: Namespace

metadata:

 name: petstore

EOF

The preceding command creates the same namespace with an inline YAML
document. Next, let's use kubectl to fetch the namespace as YAML:

$ kubectl get namespace petstore -o yaml

apiVersion: v1

kind: Namespace

metadata:

 creationTimestamp: "2022-03-06T15:55:09Z"

 labels:

 kubernetes.io/metadata.name: petstore

 name: petstore

 resourceVersion: "2162"

 uid: cddb2eb8-9c46-4089-9c99-e31259dfcd1c

spec:

 finalizers:

 - kubernetes

status:

 phase: Active

The preceding command fetched the petstore namespace and output the
entire resource in the .yaml format. Pay special attention to the top-level
keys, apiVersion, kind, metadata, spec, and status. The values and
structures in these keys will be common to all resources in Kubernetes.
The Group Version Kind (GVK) namespace name
In the Kubernetes API, you can identify any resource by the combination of
its group, kind, version, name, and usually, namespace. I say usually
namespace since not all resources belong to a namespace. A namespace is
an example of a resource that exists outside a namespace (as well as other
low-level resources such as Nodes and PersistentVolumes). However, most
other resources such as Pods, Services, and Deployments exist within a
namespace. For the namespace example from the previous section, the
group is omitted, since it is in the Kubernetes core API and is assumed by
the API server. Effectively, the identifier for the petstore namespace is
apiVersion: v1, kind: Namespace, and metadata.name: petstore.

Internalize the idea of a group, version, kind, namespace, and name. It will
be critical to understand how to interact with the Kubernetes API.
The spec and status sections
Each resource in Kubernetes has a spec and a status section. The spec
section of the resource is a structure that describes the desired state of the
resource. It is Kubernetes' job to reconcile the state of the system to achieve
that desired state. In some cases, spec will describe the desired state of an
external system. For example, spec can be a description of a load balancer,
including the desired external IP. The reconciler for that resource would be

responsible for creating a network interface and setting up routing to ensure
that the IP routes to that specific network interface.

The status section of the resource is a structure that describes the current
state of the resource. It is intended to be mutated by Kubernetes, not the
user. For example, status for a Deployment includes the number of ready
replicas of a given Deployment. spec for the Deployment will contain the
desired number of replicas. It is Kubernetes' job to drive toward that desired
state and update the status with the current state of the resource.

We will learn more about spec and status as we progress in this chapter.
Authentication
So far, we have just assumed access to the Kubernetes cluster, but that was
actually handled for us by kind and its ability to set the default context for
kubectl. The default context for kubectl is stored in your home directory.
You can see what was set by running the following command:

$ cat ~/.kube/config

apiVersion: v1

clusters:

- cluster:

 certificate-authority-data:

 server: https://127.0.0.1:55451

 name: kind-kind

contexts:

- context:

 cluster: kind-kind

 user: kind-kind

 name: kind-kind

current-context: kind-kind

kind: Config

preferences: {}

users:

- name: kind-kind

 user:

 client-certificate-data:

 client-key-data:

In the preceding output, I've omitted the certificate data to provide a more
concise view of the config. It contains all the information we need to create
a secure connection to the local cluster instance. Note the address of the
service and the names of the cluster and the user.

By running the following command, we can get the kubeconfig for the kind
cluster:

$ kind get kubeconfig --name kind > .tmp-kubeconfig

If you cat the contents of the file, you will see a very similar structure in
~/.kube/config. The kubeconfig file is a convenient way to encapsulate the
information needed to authenticate to the API server and is used with many
of the tools in the Kubernetes ecosystem. For example, you can override the
context of kubectl to use a different kubeconfig with the following
command:

$ KUBECONFIG=./.tmp-kubeconfig kubectl get namespaces

The preceding command will list all the namespaces in the kind cluster, but
it will use the local kubeconfig file we just created.

There are a variety of tools for managing whichever cluster you are using.
One great example is kubectx (https://ahmet.im/blog/kubectx/) from Ahmet
Alp Balkan, which can be used to work fluently with multiple clusters. As I
mentioned previously, the vibrant open source ecosystem provides a wide
variety of tools to make your experience using Kubernetes delightful.

Finally, let's clean up the petstore namespace and delete our kind cluster:

$ kubectl delete namespace petstore

$ kind delete cluster --name kind

In this section, we learned the basics of interacting with the Kubernetes API
and the basic structure of Kubernetes resources. We are able to create a
local Kubernetes experience, and we are ready to approach building an
application to interact with Kubernetes using Go.

In the next section, we are going to leverage what we have learned about
the Kubernetes API and use that to build a Go application to deploy a load-
balanced HTTP application.

Deploying a load-balanced HTTP
application using Go
Now that we understand a bit more about the Kubernetes API and the
resources exposed by the API, we can move away from kubectl toward
using Go.

In this section, we will use Go to do many of the same things we did in the
previous section using kubectl. We will authenticate using our default
context and create a namespace. However, we will not stop there. We will

https://ahmet.im/blog/kubectx/

deploy a load-balanced HTTP application to our cluster and watch the logs
stream to STDOUT as we make requests to the service.

The code for this section can be found at
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/14/workloads. The demo we are about to walk
through can be executed with the following commands:

$ kind create cluster --name workloads --config kind-config.yaml

$ kubectl apply -f

https://raw.githubusercontent.com/kubernetes/ingress-

nginx/main/deploy/static/provider/kind/deploy.yaml

$ kubectl wait --namespace ingress-nginx \

 --for=condition=ready pod \

 --selector=app.kubernetes.io/component=controller \

 --timeout=90s

$ go run .

The preceding command will create a KinD cluster named workloads and
use a config file that will enable host network ingress for the cluster. We
will use ingress to expose the service running in the cluster on
localhost:port. The command then deploys the NGINX ingress controller
and waits for it to be ready. Finally, we run our Go program to deploy our
application. After the service has been deployed and is running, open a
browser at http://localhost:8080/hello. You should see the following
when you browse there:

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/14/workloads

Figure 14.1 – The deployed NGINX hello world

You should see the request logs stream to STDOUT. They should look like
the following:

10.244.0.7 - - [07/Mar/2022:02:34:59 +0000] "GET /hello HTTP/1.1"

200 7252 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7)

AppleWebKit/605.1.15 (KHTML, like Gecko) Version/15.3

Safari/605.1.15" "172.22.0.1"

If you refresh the page, you should see the server name change, indicating
that the requests are load balancing across the two pod replicas in the
deployment. Press Ctrl + C to terminate the Go program.

To tear down the cluster, run the following command:

$ kind delete cluster --name workloads

The preceding command will delete the kind cluster named workloads.
Next, let's explore this Go application to understand what just happened.

It all starts with main

Let's dive right into the code and see what is happening in this Go program:

func main() {

 ctx, cancel := context.WithCancel(context.Background())

 defer cancel()

 clientSet := getClientSet()

 nsFoo := createNamespace(ctx, clientSet, "foo")

 defer func() {

 deleteNamespace(ctx, clientSet, nsFoo)

 }()

 deployNginx(ctx, clientSet, nsFoo, "hello-world")

 fmt.Printf("You can now see your running service:

http://localhost:8080/hello\n\n")

 listenToPodLogs(ctx, clientSet, nsFoo, "hello-world")

 // wait for ctrl-c to exit the program

 waitForExitSignal()

}

In the preceding code, we establish a context derived from the background
context. This is largely ineffectual in this scenario but would be a powerful
tool in the future if you needed to cancel a request that is taking too long.
Next, we create clientSet, which is a strongly typed client for interacting
with the Kubernetes API. We then use clientSet in createNamespace,
deployNginx, and listenToPodLogs. Finally, we wait for a signal to
terminate the program. That's it!

Next, let's delve into each function, starting with getClientSet.

Creating a ClientSet

Let's take a look at getClientSet:

func getClientSet() *kubernetes.Clientset {

var kubeconfig *string

if home := homedir.HomeDir(); home != "" {

kubeconfig = flag.String(

"kubeconfig",

filepath.Join(home, ".kube", "config"),

"(optional) absolute path to the kubeconfig file",

)

} else {

kubeconfig = flag.String(

"kubeconfig",

"",

"absolute path to the kubeconfig file",

)

}

flag.Parse()

// use the current context in kubeconfig

config, err := clientcmd.BuildConfigFromFlags(

"",

*kubeconfig,

)

panicIfError(err)

// create the clientSet

cs, err := kubernetes.NewForConfig(config)

panicIfError(err)

return cs

}

In the preceding code, you can see that we build flag bindings to either use
the existing ~/.kube/config context or accept a kubeconfig file via an
absolute file path. We then build a config using this flag or default. The
config is then used to create *kubernetes.ClientSet. As we learned in the
kubectl section, kubeconfig contains all the information we need to connect

and authenticate to the server. We now have a client ready to interact with
the Kubernetes cluster.

Next, let's see the ClientSet in action.

Creating a namespace

Now that we have a ClientSet, we can use it to create the resource we need
to deploy our load-balanced HTTP application. Let's take a look at
createNamespace:

func createNamespace(

ctx context.Context,

clientSet *kubernetes.Clientset,

name string,

) *corev1.Namespace {

fmt.Printf("Creating namespace %q.\n\n", name)

ns := &corev1.Namespace{

ObjectMeta: metav1.ObjectMeta{

Name: name,

},

}

ns, err := clientSet.CoreV1().

Namespaces().

Create(ctx, ns, metav1.CreateOptions{})

panicIfError(err)

return ns

}

In the preceding code, we build a corev1.Namespace structure, supplying the
name in the ObjectMeta field. If you recall from our YAML example that
created a namespace using kubectl, this field maps to metadata.name. The
Go structures of the Kubernetes resource map closely to their YAML
representations. Finally, we use clientSet to create the namespace via the
Kubernetes API server and return the namespace. The
metav1.CreateOptions contains some options for changing the behavior of
the create operation, but we will not explore this structure in this book.

We have now created the namespace where we will deploy our application.
Let's see how we will deploy the application.

Deploying the application into the
namespace

Now that we have clientSet and namespace created, we are ready to
deploy the resources that will represent our application. Let's have a look at
the deployNginx func:

func deployNginx(

ctx context.Context,

clientSet *kubernetes.Clientset,

ns *corev1.Namespace,

name string,

) {

deployment := createNginxDeployment(

ctx,

clientSet,

ns,

name,

)

waitForReadyReplicas(ctx, clientSet, deployment)

createNginxService(ctx, clientSet, ns, name)

createNginxIngress(ctx, clientSet, ns, name)

}

In the preceding code, we create the NGINX deployment resource and wait
for the replicas of the deployment to be ready. After the deployment is
ready, the code creates the service resource to load-balance across the pods
in the deployment. Finally, we create the ingress resource to expose the
service on a local host port.

Next, let's review each of these functions to understand what they are doing.

Creating the NGINX deployment

The first function in deploying our application is createNginxDeployment:

func createNginxDeployment(

ctx context.Context,

clientSet *kubernetes.Clientset,

ns *corev1.Namespace,

name string,

) *appv1.Deployment {

var (

matchLabel = map[string]string{"app": "nginx"}

objMeta = metav1.ObjectMeta{

Name: name,

Namespace: ns.Name,

Labels: matchLabel,

}

 [...]

)

deployment := &appv1.Deployment{

ObjectMeta: objMeta,

Spec: appv1.DeploymentSpec{

Replicas: to.Int32Ptr(2),

Selector: &metav1.LabelSelector{

MatchLabels: matchLabel,

},

Template: template,

},

}

deployment, err := clientSet.

AppsV1().

Deployments(ns.Name).

Create(ctx, deployment, metav1.CreateOptions{})

panicIfError(err)

return deployment

}

The preceding code initializes matchLabel with a key/value pair that will be
used to connect the Deployment with the Service. We also initialize
ObjectMeta for the Deployment resource using the namespace and
matchLabel. Next, we build a Deployment structure containing a spec with
two desired replicas, a LabelSelector using the matchLabel we built earlier,
and a pod template that will run a single container with the
nginxdemos/hello:latest image exposing port 80 on the container. Finally,
we create the deployment specifying the namespace and the Deployment
structure we've built.

Now that we have created our Deployment, let's see how we wait for the
pods in the Deployment to become ready.

Waiting for ready replicas to match
desired replicas

When a Deployment is created, pods for each replica need to be created and
start running before they will be able to service requests. There is nothing
about Kubernetes or the API requests we are authoring that requires us to
wait for these pods. This is here just to provide some user feedback and
illustrate a use for the status portion of the resource. Let's take a look at how
we wait for the Deployment state to match the desired state:

func waitForReadyReplicas(

ctx context.Context,

clientSet *kubernetes.Clientset,

deployment *appv1.Deployment,

) {

fmt.Printf("Waiting for ready replicas in: %q\n", deployment.Name)

for {

expectedReplicas := *deployment.Spec.Replicas

readyReplicas := getReadyReplicasForDeployment(

ctx,

clientSet,

deployment,

)

if readyReplicas == expectedReplicas {

fmt.Printf("replicas are ready!\n\n")

return

}

fmt.Printf("replicas are not ready yet. %d/%d\n",

readyReplicas, expectedReplicas)

time.Sleep(1 * time.Second)

}

}

func getReadyReplicasForDeployment(

ctx context.Context,

clientSet *kubernetes.Clientset,

deployment *appv1.Deployment,

) int32 {

dep, err := clientSet.

AppsV1().

Deployments(deployment.Namespace).

Get(ctx, deployment.Name, metav1.GetOptions{})

panicIfError(err)

return dep.Status.ReadyReplicas

}

In the preceding code, we loop to check for the desired number of replicas
to match the number of ready replicas and return if they do. If they do not
match, then we sleep for a second and try again. This code is not very
resilient, but it illustrates the goal-seeking nature of Kubernetes operations.

Now that we have a running deployment, we can build the Service to load-
balance across the pods in the deployment.

Creating a Service to load-balance

The two pod replicas in the deployment are now running the NGINX demo
on port 80, but each has its own interface. We can address traffic to each
one individually, but it would be more convenient to address a single
address and load-balance the requests. Let's create a Service resource to do
that:

func createNginxService(

ctx context.Context,

clientSet *kubernetes.Clientset,

ns *corev1.Namespace,

name string,

) {

var (

matchLabel = map[string]string{"app": "nginx"}

objMeta = metav1.ObjectMeta{

Name: name,

Namespace: ns.Name,

Labels: matchLabel,

}

)

service := &corev1.Service{

ObjectMeta: objMeta,

Spec: corev1.ServiceSpec{

Selector: matchLabel,

Ports: []corev1.ServicePort{

{

Port: 80,

Protocol: corev1.ProtocolTCP,

Name: "http",

},

},

},

}

service, err := clientSet.

CoreV1().

Services(ns.Name).

Create(ctx, service, metav1.CreateOptions{})

panicIfError(err)

}

In the preceding code, we initialize the same matchLabel and ObjectMeta as
we did in the deployment. However, instead of creating a Deployment
resource, we create a Service resource structure, specifying the Selector to
match on and the port to expose over Transmission Control Protocol
(TCP). The Selector label is the key to ensuring that the correct pods are in
the backend pool for the load balancer. Finally, we create the Service as we
have with the other Kubernetes resources.

We only have one step left. We need to expose our service via an ingress so
that we can send traffic into the cluster via a port on the local machine.

Creating an ingress to expose our
application on a local host port

At this point, we are unable to reach our service via localhost:port. We
can forward traffic into the cluster via kubectl, but I'll leave that for you to
explore. We are going to create an ingress and open a port on our local host
network. Let's see how we create the ingress resource:

func createNginxIngress(

ctx context.Context,

clientSet *kubernetes.Clientset,

ns *corev1.Namespace,

name string,

) {

var (

prefix = netv1.PathTypePrefix

objMeta = metav1.ObjectMeta{

Name: name,

Namespace: ns.Name,

}

ingressPath = netv1.HTTPIngressPath{

PathType: &prefix,

Path: "/hello",

Backend: netv1.IngressBackend{

Service: &netv1.IngressServiceBackend{

Name: name,

Port: netv1.ServiceBackendPort{

Name: "http",

},

},

},

}

ingress := &netv1.Ingress{

ObjectMeta: objMeta,

Spec: netv1.IngressSpec{

Rules: rules,

},

}

ingress, err := clientSet.

NetworkingV1().

Ingresses(ns.Name).

Create(ctx, ingress, metav1.CreateOptions{})

panicIfError(err)

}

In the preceding code, we initialize a prefix, the same objMeta as
previously, and ingressPath, which will map the path prefix of /hello to
the service name and port name we created. Yes, Kubernetes does the magic
of tying the networking together for us! Next, we build the Ingress structure
as we saw with the previous structures and create the ingress using
clientSet. With this last bit, we deploy our entire application stack using
Go and the Kubernetes API.

Next, let's return to main.go and look at how we can use Kubernetes to
stream the logs of the pods to show the incoming HTTP requests while the
program is running.

Streaming pod logs for the NGINX
application

The Kubernetes API exposes a bunch of great features for running
workloads. One of the most basic and useful is the ability to access logs for
running pods. Let's see how we can stream logs from multiple running pods
to STDOUT:

func listenToPodLogs(

ctx context.Context,

clientSet *kubernetes.Clientset,

ns *corev1.Namespace,

containerName string,

) {

// list all the pods in namespace foo

podList := listPods(ctx, clientSet, ns)

for _, pod := range podList.Items {

podName := pod.Name

go func() {

opts := &corev1.PodLogOptions{

Container: containerName,

Follow: true,

}

podLogs, err := clientSet.

CoreV1().

Pods(ns.Name).

GetLogs(podName, opts).

Stream(ctx)

panicIfError(err)

_, _ = os.Stdout.ReadFrom(podLogs)

}()

}

}

func listPods(

ctx context.Context,

clientSet *kubernetes.Clientset,

ns *corev1.Namespace,

) *corev1.PodList {

podList, err := clientSet.

CoreV1().

Pods(ns.Name).

List(ctx, metav1.ListOptions{})

panicIfError(err)

/* omitted some logging for brevity */

return podList

}

In the preceding code, listenToPodLogs lists the pods in the given
namespace and then starts go func for each one. In go func, we use the
Kubernetes API to request a stream of podLogs, which returns
io.ReadCloser to deliver logs from the pod as they are created. We then tell
STDOUT to read from that pipe, and the logs land in our STDOUT.

If you thought that getting logs from your running workloads was going to
be a lot tougher than this, I don't think you would be alone. Kubernetes is
quite complex, but the concept that everything is exposed as an API makes
the platform incredibly flexible and programmable.

We have explored every function except waitForExitSignal, which is
relatively trivial and doesn't add anything to the Kubernetes story told here.
If you'd like to take a look at it, refer to the source repository.

Having explored this example of using the Kubernetes API to
programmatically deploy an application using Go, I hope you will take
away from the experience a feeling of empowerment to go and learn, build,
and feel relatively comfortable interacting with the Kubernetes API. There
is so much more to the Kubernetes API, and it's ever-growing. In fact, in the

next section, we are going to start talking about how we can extend the
Kubernetes API with our own custom resources.

Extending Kubernetes with custom
resources and operators
In the previous sections, we've learned that the Kubernetes API is not just a
single API but also an aggregation of APIs backed by cooperative services
called operators and controllers. Operators are extensions to Kubernetes
that make use of custom resources to manage systems and applications via
controllers. Controllers are components of operators that execute control
loops for a kind of resource. A control loop for a custom resource is an
iterative process that observes a desired state of the resource and works,
possibly over several loops, to drive the state of a system to that desired
state.

Those previous sentences are rather abstract. I like to sum it up differently.
Kubernetes is a platform for automation. An automation is a series of steps
and decision trees that drives to reach an end goal. I like to think of
operators in a similar way. I think of writing operators as taking a runbook,
the human steps for completing an operational activity, and making the
computer execute the automation. Operators and controllers are like
crystallizing operational knowledge into code to be run in Kubernetes.

Custom resources can represent anything. They can be things related to
Kubernetes resources, or they can be something completely external to
Kubernetes. For an example of a custom resource related to cluster
workloads, in Chapter 9, Observability with OpenTelemetry, we discussed

the OTel collector and deployed it via its container image in docker-
compose, but we could have used the Kubernetes operator for OTel to do the
same thing in a Kubernetes cluster. The OTel operator exposes a custom
resource, like the following:

apiVersion: opentelemetry.io/v1alpha1

kind: OpenTelemetryCollector

metadata:

 name: simplest

spec:

 config: |

 receivers:

 otlp:

 protocols:

 grpc:

 http:

 processors:

 exporters:

 logging:

 service:

 pipelines:

 traces:

 receivers: [otlp]

 processors: []

 exporters: [logging]

In the preceding code block, we see a custom resource describing the OTel
collector from https://github.com/open-telemetry/opentelemetry-operator.
This custom resource describes in a domain-specific language how the
OpenTelemetry operator should configure and run an OpenTelemetry
collector. However, a custom resource can as easily be a custom Pet
resource that represents a pet in a pet store, as we will see in the next
section.

Do you remember how to identify the group, version, kind, namespace, and
name for the preceding resource? The answer is group: opentelemetry.io,
version: v1alpha1, kind: OpenTelemetryCollector, namespace: default,
and name: simplest.

In this section, I want to impress upon you that if someone were to strip
away pods, nodes, storage, networks, and much of the rest of the
Kubernetes container workload scheduling and all that was left was the
Kubernetes API server, it would still be an incredibly useful piece of
software. In this section, we are going to cover a bit of background about
operators, custom resource definitions (CRDs), controllers, and powerful
features of the Kubernetes API server. We will not be able to cover all of it
in depth, but this survey will help to implement our first operator and
hopefully encourage you to learn more about extending the Kubernetes
API.

Custom Resource Definitions

CRDs are resources that can be applied to a Kubernetes cluster to create a
new RESTful resource path for a custom resource. Let's take a look at the

https://github.com/open-telemetry/opentelemetry-operator

example of a CronJob from the Kubernetes docs:
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-
resources/custom-resource-definitions/#create-a-customresourcedefinition.

apiVersion: apiextensions.k8s.io/v1

kind: CustomResourceDefinition

metadata:

 # name must be in the form: <plural>.<group>

 name: crontabs.stable.example.com

spec:

 # group name to use for REST API: /apis/<group>/<version>

 group: stable.example.com

 # list of versions supported by this CustomResourceDefinition

 versions:

 - name: v1

 # Each version can be enabled/disabled by Served flag.

 served: true

 # only one version must be marked as the storage version.

 storage: true

 schema:

 openAPIV3Schema:

 type: object

 properties:

 spec:

 type: object

 properties:

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#create-a-customresourcedefinition

 cronSpec:

 type: string

 image:

 type: string

 replicas:

 type: integer

 # either Namespaced or Cluster

 scope: Namespaced

 names:

 plural: crontabs

 singular: crontab

 kind: CronTab

 shortNames:

 - ct

As you can see from the preceding YAML, a CRD is specified as any other
resource in Kubernetes. The CRD resource has group, version, kind, and
name, but within the spec, you can see metadata describing a new resource
type with a strongly typed schema, using OpenAPI V3 to describe the
schema. Also, note that the spec contains the group, version, and kind of the
custom resource. As implied by the YAML structure, there can be multiple
versions of the custom resource served at any given time, but only one
version can be marked as the storage version.

In the next section, we'll discuss how Kubernetes is able to store only one
version but serve multiple versions.
Custom resource versioning and conversion

As mentioned in the previous section, Kubernetes will store only one
version of a resource. A new version of a resource is usually introduced
when there is a change to the schema of that resource – for example, a new
field was added or some other mutation of the schema. In this case,
Kubernetes would need some way to translate between resource versions.
The Kubernetes approach to this is to use conversion Webhooks. That
means that you can register a Webhook to convert from the storage version
of a resource to the requested version. This forms a hub and spoke model
for versioning where the hub is the storage version and the spokes are the
other supported versions. You can see an example of this in the Kubernetes
docs here: https://kubernetes.io/docs/tasks/extend-kubernetes/custom-
resources/custom-resource-definition-versioning/#configure-
customresourcedefinition-to-use-conversion-webhooks.

Take that in for a moment. This is a powerful feature for any API platform
to offer. Having a standardized way of translating one API version to
another allows for a more graceful adoption of components in a
microservice environment.
Structured schema, validation, and defaulting
As we saw in the previous example of the CronJob CRD spec, we are able
to use OpenAPI to describe a strongly typed schema for resources. This is
highly beneficial for generating API clients for programming languages that
may need to interact with the API. Furthermore, we have the ability to
describe a variety of validations to ensure different aspects of structure and
values for resources. For example, we are able to describe what fields are
required, valid ranges of values, valid patterns of strings, and many other

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definition-versioning/#configure-customresourcedefinition-to-use-conversion-webhooks

aspects of the structures and values. Additionally, we can provide default
values for fields and specify them in the schema.

Beyond just the schema, the API server exposes validating and mutating
Webhooks that can fill the void where the schema fails – for example, if
you want to validate or mutate a resource based on some logic that is
beyond the scope of schema. These Webhooks can be employed to make
the developer experience when using your customer resources much better
than accepting a possibly invalid resource, or defaulting some difficult-to-
calculate value so that the user doesn't need to provide it.

Controllers

The heart of reconciliation is a controller, which executes a control loop for
a specific resource kind. The controller watches a resource kind in the
Kubernetes API and observes that there has been a change. The controller
receives the new version of the resource, observes the desired state,
observes the state of the system it controls, and attempts to make progress
toward changing the state of the system into the desired state expressed in
the resource. A controller does not act on the difference between the version
of a resource but rather on the current desired state. I've noticed there is an
initial drive for people who are new to controller development to try to
think about acting only on things that have changed between two resource
versions, but that is not recommended.

Usually, a controller has the ability to reconcile many resources
concurrently but will never reconcile the same resource concurrently. This
simplifies the model for reconciliation quite a bit.

Furthermore, most controllers will run with only one leader at a time. For
example, if there are two instances of your operator running, only one will
be a leader at a time. The other will be idle, waiting to become the leader if
the other process crashes.

Standing on the shoulders of giants

I'm sure this sounds quite complex, and it truly is. However, we can
thankfully rely on some projects that have paved the way to make building
operators, controllers, and CRDs so much easier. There is a vibrant,
growing ecosystem for Kubernetes operators.

The projects that most come to mind and which we will depend on in the
next section are controller-runtime (https://github.com/kubernetes-
sigs/controller-runtime), kubebuilder (https://github.com/kubernetes-
sigs/kubebuilder), and operator-sdk (https://github.com/operator-
framework/operator-sdk). controller-runtime provides a set of Go libraries
that makes it easier to build controllers and is used in both kubebuilder and
operator-sdk. kubebuilder is a framework for building Kubernetes APIs
and offers a set of tools that makes it easy to generate API structure,
controllers, and related manifests for Kubernetes APIs. operator-sdk is a
component in the Operator Framework (https://github.com/operator-
framework), which extends from kubebuilder and attempts to solve life
cycle, publication, and other higher-level problems faced by operator
developers.

If you are interested in a highly ambitious project that extends the
Kubernetes API to create declarative cluster infrastructure and enables

https://github.com/kubernetes-sigs/controller-runtime
https://github.com/kubernetes-sigs/kubebuilder
https://github.com/operator-framework/operator-sdk
https://github.com/operator-framework

Kubernetes to build new Kubernetes clusters, I encourage you to check out
the Cluster API (https://github.com/kubernetes-sigs/cluster-api).

I hope this section has left you in awe of how powerful the Kubernetes API
is and spurred you on to want to learn more. I believe we have covered
enough of the basics of extending the Kubernetes API that we can approach
building our own reconciler without too much trouble. In the upcoming
section, we will use operator-sdk to build a Pet resource and operator to
reconcile pets in a pet store service.

Building a pet store operator
In this section, we will build on the background information we learned in
the previous section about CRDs, operators, and controllers to implement
our own operator. This operator will have only one CRD, Pet, and only one
controller to reconcile those Pet resources. The desired state of Pet will be
reconciled to our pet store service, which we used in previous chapters.

As we discussed in the previous section, this will be an example of using
Kubernetes control loops to reconcile the state of a resource that has no
dependency on other resources within Kubernetes. Remember, you can
model anything in CRDs and use Kubernetes as a tool for building robust
APIs for any type of resource.

In this section, you will learn to build an operator from scratch. You will
define a new CRD and controller. You will examine the build tools and the
different code generation tools used to eliminate the majority of boilerplate
code. You will deploy your controller and the pet store service to a local
kind cluster and learn how to use Tilt.dev for faster inner-loop

https://github.com/kubernetes-sigs/cluster-api

development cycles. The code for this repository is located at
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/14/petstore-operator.

Initializing the new operator

In this section, we will initialize the new operator using the operator-sdk
command-line tool. This will be used to scaffold out a project structure for
our operator:

$ operator-sdk init --domain example.com --repo github.com/Go-for-

DevOps/chapter/14/petstore-operator

Writing kustomize manifests for you to edit...

Writing scaffold for you to edit...

Get controller runtime:

$ go get sigs.k8s.io/controller-runtime@v0.11.0

Update dependencies:

$ go mod tidy

Next: define a resource with:

$ operator-sdk create api

By executing the preceding command, operator-sdk will scaffold a new
operator project using an example domain, which will form the suffix of the
group name for our future CRDs. The –repo flag is based on the repo for the
book's code, but you would want that to reflect the repo path for your
project or omit it and allow it to default. Let's see what is in the repo after
scaffolding:

$ ls -al

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/14/petstore-operator

total 368

-rw------- 1 david staff 776 Feb 27 10:15 Dockerfile

-rw------- 1 david staff 9884 Feb 27 10:16 Makefile

-rw------- 1 david staff 261 Feb 27 10:16 PROJECT

drwx------ 8 david staff 256 Feb 27 10:16 config/

-rw------- 1 david staff 3258 Feb 27 10:16 go.mod

-rw-r--r-- 1 david staff 94793 Feb 27 10:16 go.sum

drwx------ 3 david staff 96 Feb 27 10:15 hack/

-rw------- 1 david staff 2791 Feb 27 10:15 main.go

The preceding listing shows the top-level structure of the project. The
Dockerfile contains commands to build the controller image. The Makefile
contains a variety of helpful tasks; however, we will not use it much in this
walk-through. The PROJECT file contains metadata about the operator. The
config directory contains the manifests needed to describe and deploy the
operator and CRDs to Kubernetes. The hack directory contains a boilerplate
license header that will be added to generated files and is a good place to
put helpful development or build scripts. The rest of the files are just
regular Go application code.

Now that we have a general idea of what was scaffolded for us, we can
move on to generating our Pet resources and controller:

$ operator-sdk create api --group petstore --version v1alpha1 --

kind Pet --resource --controller

Writing kustomize manifests for you to edit...

Writing scaffold for you to edit...

api/v1alpha1/pet_types.go

controllers/pet_controller.go

Update dependencies:

$ go mod tidy

Running make:

$ make generate

go: creating new go.mod: module tmp

... lots of go mod output ...

Next: implement your new API and generate the manifests (e.g.

CRDs,CRs) with:

$ make manifests

By executing the preceding commands, I've instructed operator-sdk to
create a new API in the petstore group with the v1alpha1 version of the Pet
kind and generate both the CRD and the controller for the type. Note that
the command created api/v1alpha1/pet_types.go and
controllers/pet_controller.go, and then ran make generate and make
manifests. Shortly, we will see that code comments in both of the Go files
cause make generate and make manifests to generate CRD manifests as
well as Kubernetes' Role-Based Authorization Controls (RBAC) for the
controller. The RBAC entries for the operator will give rights to the
controller to perform CRUD operations on the newly generated resource.
The CRD manifest will contain the schema for our newly created resource.

Next, let's take a quick look at the files that have changed:

$ git status

M PROJECT

A api/v1alpha1/groupversion_info.go

A api/v1alpha1/pet_types.go

A api/v1alpha1/zz_generated.deepcopy.go

A config/crd/bases/petstore.example.com_pets.yaml

A config/crd/kustomization.yaml

A config/crd/kustomizeconfig.yaml

A config/crd/patches/cainjection_in_pets.yaml

A config/crd/patches/webhook_in_pets.yaml

A config/rbac/pet_editor_role.yaml

A config/rbac/pet_viewer_role.yaml

A config/samples/kustomization.yaml

A config/samples/petstore_v1alpha1_pet.yaml

A controllers/pet_controller.go

A controllers/suite_test.go

M go.mod

M main.go

As we can see, there are quite a few changes to files. I will not go into depth
on each of the changes. The most notable is the generation of
config/crd/bases/petstore.example.com_pets.yaml, which contains the
CRD for our Pet resource. In operator projects, it is common to describe the
resources in the API in the api/ directory, the Kubernetes manifests under
config/, and the controllers under controllers/.

Next, let's see what has been generated in api/v1alpha1/pet_types.go:

// EDIT THIS FILE! THIS IS SCAFFOLDING FOR YOU TO OWN!

// NOTE: json tags are required. Any new fields you add must have

json tags for the fields to be serialized.

// PetSpec defines the desired state of Pet

type PetSpec struct {

 // INSERT ADDITIONAL SPEC FIELDS - desired state of cluster

 // Important: Run "make" to regenerate code after modifying

this file

 // Foo is an example field of Pet. Edit pet_types.go to

remove/update

 Foo string `json:"foo,omitempty"`

}

// PetStatus defines the observed state of Pet

type PetStatus struct {

 // INSERT ADDITIONAL STATUS FIELD - define observed state of

cluster

 // Important: Run "make" to regenerate code after modifying

this file

}

The preceding code shows a snippet from the pet_types.go file. The create
api command has generated a Pet resource with spec and status. The
PetSpec contains one field named Foo, which will serialize with the key foo
and is optional to provide when creating or updating the resource. status
contains nothing.

Note the comments in the file. They instruct us that this is the place to add
new fields to the type and to run make after we do to ensure that the CRD
manifests are updated in the config/ directory.

Now, let's look at the rest of the file:

//+kubebuilder:object:root=true

//+kubebuilder:subresource:status

// Pet is the Schema for the pets API

type Pet struct {

 metav1.TypeMeta `json:",inline"`

 metav1.ObjectMeta `json:"metadata,omitempty"`

 Spec PetSpec `json:"spec,omitempty"`

 Status PetStatus `json:"status,omitempty"`

}

//+kubebuilder:object:root=true

// PetList contains a list of Pet

type PetList struct {

 metav1.TypeMeta `json:",inline"`

 metav1.ListMeta `json:"metadata,omitempty"`

 Items []Pet `json:"items"`

}

func init() {

 SchemeBuilder.Register(&Pet{}, &PetList{})

}

Here, we can see the definition of Pet and PetList, which both get
registered in the following schema builder. Note the //+kubebuilder build
comments. These build comments instruct kubebuilder on how to generate
the CRD manifests.

Note that Pet has the spec and status defined with the json tags that we
have seen in the other Kubernetes resources we have worked with. Pet also
includes both TypeMeta, which informs Kubernetes of the group version
kind information, and ObjectMeta, which contains the name, namespace,
and other metadata about the resource.

With these structures, we already have a fully functional custom resource.
However, the resource doesn't represent the fields we want to represent our
pet resource and will need to be updated to better represent our pet
structure.

Next, let's look at what was generated for PetReconciler in
controllers/pet_controller.go, the controller that will run the control
loop for reconciling pets:

type PetReconciler struct {

 client.Client

 Scheme *runtime.Scheme

}

//+kubebuilder:rbac:groups=petstore.example.com,resources=pets,verb

s=get;list;watch;create;update;patch;delete

//+kubebuilder:rbac:groups=petstore.example.com,resources=pets/stat

us,verbs=get;update;patch

//+kubebuilder:rbac:groups=petstore.example.com,resources=pets/fina

lizers,verbs=update

func (r *PetReconciler) Reconcile(ctx context.Context, req

ctrl.Request) (ctrl.Result, error) {

 _ = log.FromContext(ctx)

 return ctrl.Result{}, nil

}

func (r *PetReconciler) SetupWithManager(mgr ctrl.Manager) error {

 return ctrl.NewControllerManagedBy(mgr).

 For(&petstorev1alpha1.Pet{}).

 Complete(r)

}

In the preceding code, we can see a PetReconciler type that embeds a
client.Client, which is a generic Kubernetes API client, and
*runtime.Scheme, which contains the known types and the schemas
registered. If we continue downward, we can see a collection of
//+kubebuilder:rbac build comments that instruct the code generator to
create RBAC rights for the controller to be able to manipulate the Pet
resource. Next, we can see the Reconcile func, which will be called each
time a resource has been changed and needs to be reconciled with the pet
store. Finally, we can see the SetupWithManager function, which is called
from main.go to start the controller and inform it and the manager what kind
of resource the controller will reconcile.

We have covered the impactful changes from the scaffolding process. We
can proceed to implement our Pet resource to reflect the domain model we
have in the pet store. The pet entity in our pet store has three mutable,
required properties, Name, Type, and Birthday, and one read-only property,
ID. We need to add these to our Pet resource to expose them to the API:

// PetType is the type of the pet. For example, a dog.

// +kubebuilder:validation:Enum=dog;cat;bird;reptile

type PetType string

const (

 DogPetType PetType = "dog"

 CatPetType PetType = "cat"

 BirdPetType PetType = "bird"

 ReptilePetType PetType = "reptile"

)

// PetSpec defines the desired state of Pet

type PetSpec struct {

 // Name is the name of the pet

 Name string `json:"name"`

 // Type is the type of pet Type PetType `json:"type"`

 // Birthday is the date the pet was born

 Birthday metav1.Time `json:"birthday"`

}

// PetStatus defines the observed state of Pet

type PetStatus struct {

 // ID is the unique ID for the pet

 ID string `json:"id,omitempty"`

}

The preceding are the code changes I've made to Pet to reflect the domain
model of the pet store service. Note // +kubebuilder:validation:Enum
preceding the PetType type. That indicates to the CRD manifest generator
that the schema should add validation to ensure only those strings can be
supplied for the Type field of PetSpec. Also, note that each of the fields in
spec does not have the omitempty JSON tag. That will inform the CRD
manifest generator that those fields are required.

The status of Pet has only an ID field, which is allowed to be empty. This
will store the unique identifier returned from the pet store service.

Now that we have defined our Pet, let's reconcile pet with the pet store in
the controller loop:

// Reconcile moves the current state of the pet to be the desired

state described in the pet.spec.

func (r *PetReconciler) Reconcile(ctx context.Context, req

ctrl.Request) (result ctrl.Result, errResult error) {

 logger := log.FromContext(ctx)

 pet := &petstorev1.Pet{}

 if err := r.Get(ctx, req.NamespacedName, pet); err != nil {

 if apierrors.IsNotFound(err) {

 logger.Info("object was not found")

 return reconcile.Result{}, nil

 }

 logger.Error(err, "failed to fetch pet from API server")

 // this will cause this pet resource to be requeued

 return ctrl.Result{}, err

 }

 helper, err := patch.NewHelper(pet, r.Client)

 if err != nil {

 return ctrl.Result{}, errors.Wrap(err, "failed to create

patch helper")

 }

 defer func() {

 // patch the resource

 if err := helper.Patch(ctx, pet); err != nil {

 errResult = err

 }

 }()

 if pet.DeletionTimestamp.IsZero() {

 // the pet is not marked for delete

 return r.ReconcileNormal(ctx, pet)

 }

 // pet has been marked for delete

 return r.ReconcileDelete(ctx, pet)

}

The preceding code has been added to reconcile the pet resource. When we
receive a change from the API server, we are not given much information.
We are only provided with NamespacedName of the pet. NamespacedName
contains both the namespace and the name of the pet that has changed.
Remember that PetReconciler has a client.Client embedded on it. It
provides us with access to the Kubernetes API server. We use the Get
method to request the pet we need to reconcile. If the pet is not found, we
return an empty reconcile result and a nil error. This informs the controller
to wait for another change to occur. If there is an error making the request,
we return an empty reconcile result and an error. If the error is not nil, the
reconciler will try again and back off exponentially.

If we are able to fetch the pet, we then create a patch helper, which will
allow us to track changes to the Pet resource during the reconciliation loop
and patch the resource change back to the Kubernetes API server at the end
of the reconcile loop. The defer ensures that we patch at the end of the
Reconcile func.

If the pet has no deletion timestamp set, then we know that Kubernetes has
not marked the resource for deletion, so we call ReconcileNormal, where we

will attempt to persist the desired state to the pet store. Otherwise, we call
ReconcileDelete to delete the pet from the pet store.

Let's next look at ReconcileNormal and understand what we do when we
have a state change to a non-deleted pet resource:

func (r *PetReconciler) ReconcileNormal(ctx context.Context, pet

*petstorev1.Pet) (ctrl.Result, error) {

 controllerutil.AddFinalizer(pet, PetFinalizer)

 psc, err := getPetstoreClient()

 if err != nil {

 return ctrl.Result{}, errors.Wrap(err, "unable to

construct petstore client")

 }

 psPet, err := findPetInStore(ctx, psc, pet)

 if err != nil {

 return ctrl.Result{}, errors.Wrap(err, "failed trying to

find pet in pet store")

 }

 if psPet == nil {

 // no pet was found, create a pet in the store

 err := createPetInStore(ctx, pet, psc)

 return ctrl.Result{}, err

 }

 // pet was found, update the pet in the store

 if err := updatePetInStore(ctx, psc, pet, psPet.Pet); err !=

nil {

 return ctrl.Result{}, err

 }

 return ctrl.Result{}, nil

}

In ReconcileNormal, we always make sure that PetFinalizer has been
added to the resource. Finalizers are the way that Kubernetes knows when it
can garbage-collect a resource. If a resource still has a finalizer on it, then
Kubernetes will not delete the resource. Finalizers are useful in controllers
when a resource has some external resource that needs to be cleaned up
prior to deletion. In this case, we need to remove Pet from the pet store
prior to the Kubernetes Pet resource being deleted. If we didn't, we may
have pets in the pet store that don't ever get deleted.

After we set the finalizer, we build a pet store client. We won't go into more
detail here, but suffice it to say that it builds a gRPC client for the pet store
service. With the pet store client, we query for the pet in the store. If we
can't find the pet, then we create one in the store; otherwise, we update the
pet in the store to reflect the desired state specified in the Kubernetes Pet
resource.

Let's take a quick look at the createPetInStore func:

func createPetInStore(ctx context.Context, pet *petstorev1.Pet, psc

*psclient.Client) error {

 pbPet := &pb.Pet{

 Name: pet.Spec.Name,

 Type: petTypeToProtoPetType(pet.Spec.Type),

 Birthday: timeToPbDate(pet.Spec.Birthday),

 }

 ids, err := psc.AddPets(ctx, []*pb.Pet{pbPet})

 if err != nil {

 return errors.Wrap(err, "failed to create new pet")

 }

 pet.Status.ID = ids[0]

 return nil

}

When we create the pet in the pet store, we call AddPets on the gRPC client
with the Kubernetes Pet resource desired state and record ID in the
Kubernetes Pet resource status.

Let's move on to the updatePetInStore func:

func updatePetInStore(ctx context.Context, psc *psclient.Client,

pet *petstorev1.Pet, pbPet *pb.Pet) error {

 pbPet.Name = pet.Spec.Name

 pbPet.Type = petTypeToProtoPetType(pet.Spec.Type)

 pbPet.Birthday = timeToPbDate(pet.Spec.Birthday)

 if err := psc.UpdatePets(ctx, []*pb.Pet{pbPet}); err != nil {

 return errors.Wrap(err, "failed to update the pet in the

store")

 }

 return nil

}

When we update the pet in store, we use the fetched store pet and update
the fields with the desired state from the Kubernetes Pet resource.

If at any point in the flow we run into an error, we bubble up the error to
Reconcile, where it will trigger a re-queue of the reconciliation loop,
backing off exponentially. The actions in ReconcileNormal are idempotent.
They can run repeatedly to achieve the same state and in the face of errors
will retry. Reconciliation loops can be pretty resilient to failures.

That's about it for ReconcileNormal. Let's look at what happens in
ReconcileDelete:

// ReconcileDelete deletes the pet from the petstore and removes

the finalizer.

func (r *PetReconciler) ReconcileDelete(ctx context.Context, pet

*petstorev1.Pet) (ctrl.Result, error) {

 psc, err := getPetstoreClient()

 if err != nil {

 return ctrl.Result{}, errors.Wrap(err, "unable to

construct petstore client")

 }

 if pet.Status.ID != "" {

 if err := psc.DeletePets(ctx, []string{pet.Status.ID});

err != nil {

 return ctrl.Result{}, errors.Wrap(err, "failed to

delete pet")

 }

 }

 // remove finalizer, so K8s can garbage collect the resource.

 controllerutil.RemoveFinalizer(pet, PetFinalizer)

 return ctrl.Result{}, nil

}

In ReconcileDelete in the preceding code block, we get a pet store client to
interact with the pet store. If pet.Status.ID is not empty, we attempt to
delete the pet from the pet store. If that operation is successful, we will
remove the finalizer, informing Kubernetes that it can then delete the
resource.

You have extended Kubernetes and created your first CRD and controller!
Let's give it a run.

To start the project and see your Kubernetes operator in action, run the
following:

$ ctlptl create cluster kind --name kind-petstore --

registry=ctlptl-registry

$ tilt up

The preceding commands will create a kind cluster and a local Open
Container Initiative (OCI) image registry, enabling you to publish images
locally rather than to an external registry. Tilt will start at the command line.
Press the spacebar to open the web view of Tilt.dev. Once you do, you
should see something like the following:

Figure 14.2 – Tilt's All Resources web view

Wait for each of the services on the left panel to turn green. Once they are,
it means that the pet store operator and Service have deployed successfully.
If you click on one of the Services listed on the left, it will show you the log
output for that component. petstore-operator-controller-manager is your
Kubernetes controller. Next, we are going to apply some pets to our
Kubernetes cluster and see what happens.

Let's first look at the pet samples we are going to apply. The samples are in
config/samples/petstore_v1alpha1_pet.yaml:

apiVersion: petstore.example.com/v1alpha1

kind: Pet

metadata:

 name: pet-sample1

spec:

 name: Thor

 type: dog

 birthday: 2021-04-01T00:00:00Z

apiVersion: petstore.example.com/v1alpha1

kind: Pet

metadata:

 name: pet-sample2

spec:

 name: Tron

 type: cat

 birthday: 2020-06-25T00:00:00Z

We have two pets, Thor and Tron. We can apply them with the following
command:

$ kubectl apply -f config/samples/petstore_v1alpha1_pet.yaml

That should have replied that they were created, and you should then be
able to fetch them by running the following command:

$ kubectl get pets

NAME AGE

pet-sample1 2m17s

pet-sample2 2m17s

We can see that we have two pets defined. Let's make sure they have IDs.
Run the following command:

$ kubectl get pets -o yaml

apiVersion: petstore.example.com/v1alpha1

kind: Pet

metadata:

 finalizers:

 - pet.petstore.example.com

 name: pet-sample2

 namespace: default

spec:

 birthday: "2020-06-25T00:00:00Z"

 name: Tron

 type: cat

status:

 id: 23743da5-34fe-46f6-bed8-1f5bdbaabbe6

I've omitted some noisy content from the preceding code, but this is roughly
what you should see. Tron has an ID generated from the pet store service; it
was applied to the Kubernetes Pet resource status.

Now, let's test our reconciliation loop by changing the name of Thor to
Thorbert:

$ kubectl edit pets pet-sample1

This will open your default editor. You can go and change the value of Thor
to Thorbert to cause a new reconcile loop.

You should see something similar to this output in your browser, with Tilt
in the pet store operator logs:

[manager] 1.6466368389433222e+09 INFO controller.pet

finding pets in store {"reconciler group":

"petstore.example.com", "reconciler kind": "Pet", "name": "pet-

sample1", "namespace": "default", "pet": "Thorbert", "id":

"cef9499f-6214-4227-b217-265fd8f196e6"}

As you can see from the preceding code, Thor is now changed to Thorbert.

Finally, let's delete these pets by running the following command:

$ kubectl delete pets --all

pet.petstore.example.com "pet-sample1" deleted

pet.petstore.example.com "pet-sample2" deleted

After deleting the resources, you should be able to check back in Tilt and
see the log output reflecting that the delete operations succeeded.

In this section, you learned to build an operator from scratch, extended the
Kubernetes API with a custom resource that reconciled state to an external
Service, and used some really useful tools along the way.

Summary
In this chapter, we learned how to use Go to deploy and manipulate
resources in Kubernetes. We built upon that knowledge to extend
Kubernetes with our custom Pet resources and learned how to continuously
reconcile the desired state of our pets with the state of the pet store. We
learned that we can extend Kubernetes to represent any external resources
and that it provides a robust platform to describe nearly any domain.

You should be able to take what you learned in this chapter and apply it to
automate interactions with Kubernetes resources and extend Kubernetes to
natively expose your own resources through the Kubernetes API. I bet you
can think of some services and resources at your company that you would
like to be able to manage by simply applying some YAML to your
Kubernetes cluster. You are now empowered with the knowledge to solve
those problems.

In the next chapter, we will learn about using Go to program the cloud.
We'll learn how to mutate cloud resources using Go client libraries to
interact with cloud service provider APIs, and how to use those cloud
services and infrastructure after we've provisioned them.

Chapter 15: Programming the Cloud
You've probably heard the saying the cloud is just someone else's computer.
While it is somewhat true, it is also wildly off target. Cloud service
providers offer virtual machines running in their data centers that you can
use in exchange for money, so in that way, you are using someone else's
computer. However, it misses the bigger picture of what a cloud service
provider is. A cloud service provider is a collection of hundreds of
application-hosting, data, compliance, and computing infrastructure
services that run in hundreds of data centers across the globe and are
exposed through a fully programmable API.

In this chapter, we will learn how to interact with a cloud API using
Microsoft Azure. We'll start by learning a bit about the nature of the APIs,
including how they are described and where to find additional
documentation about them. We'll learn the fundamentals of identity,
authentication, and authorization. We'll then apply what we have learned in
a set of examples using the Azure SDK for Go to build cloud infrastructure
and utilize other cloud services.

By the end of the chapter, you will be equipped with the knowledge to work
effectively with Microsoft Azure and will have gained the transferable skills
to work with other cloud service providers.

We will cover the following topics in this chapter:

What is the cloud?

Learning the basics of the Azure APIs

Building infrastructure using Azure Resource Manager

Using provisioned Azure infrastructure

Technical requirements
This chapter will require the following tools:

Go

The Azure CLI: https://docs.microsoft.com/en-us/cli/azure/install-azure-
cli

Code files downloaded from GitHub:
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/15

What is the cloud?
The scale of capital investment in the Amazon, Microsoft, and Google
cloud physical computing infrastructure is monumental. Imagine the
investment needed to build 200+ physical data centers with multiple
redundant power and cooling systems, featuring state-of-the-art physical
security. These centers are resilient in the face of a natural disaster. Even
then, you are just scratching the surface.

These data centers require one of the largest interconnected networks on the
planet to link them together. All of that infrastructure won't function
without vast amounts of power and cooling, preferably from sustainable
sources. For example, Azure has been carbon-neutral since 2012 and is
committed to being carbon-negative by 2030. When people talk about

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/15

hyper-scale cloud, they are talking about the planet-scale operations of
these cloud service providers.

Ever wonder what it would be like to visit one of these data centers? For
example, to access an Azure data center, there are multiple levels of
security you must go through. You must first request access to the data
center and provide a valid business justification. If access is granted, when
you arrive at the data center's permitter access point, you'd notice the
panoply of cameras, tall steel fences, and concrete surrounding the
perimeter. You'd verify your identity and pass to the building entrance. At
the building entrance, you'd be greeted by security officers who will once
again verify who you are using two-factor authentication with biometrics.
Upon passing biometric scanning, they'd guide you to the specific section of
the data center where you have been approved to operate. As you proceed
to the data center floor, you'd pass in and out through a full-body metal
detection screening to ensure that you don't leave with anything you
shouldn't. Security at these data centers is taken very seriously.

Still think this sounds like someone else's computer?

The physical infrastructure of cloud service providers is awe-inspiring.
However, we should change our focus from the scale of cloud service
provider operations to how cloud services are exposed to developers. As we
mentioned initially, cloud service providers expose the functions of the
cloud through APIs, which developers can use to manage infrastructure and
applications running on the cloud. We can use these APIs to build
applications that can leverage hyper-scale cloud infrastructure to become
planet-scale.

Learning the basics of the Azure APIs
Now that we know the path to programming the cloud is through APIs, let's
learn a bit more about them. It's important to establish some background on
how a large system of APIs comes together to form a consistent
programmatic interface. We will also learn where you can find code and
documentation when you run into challenges.

In this section, we are going to discuss how the major clouds define APIs
and produce Software Development Kits (SDKs) for programming against
the cloud APIs. We will learn where to find these SDKs, and where to find
documentation about the APIs and SDKs.

We will also learn about identity, Role-Based Access Control (RBAC),
and resource hierarchy in Microsoft Azure. Finally, we'll create and log in
to a free Azure account, which we will use in the subsequent sections to
program the cloud.

A background on cloud APIs and SDKs

As we discussed in the previous section, cloud service providers expose
APIs for management of and access to hundreds of services, spread across a
vast number of regions. These APIs are commonly implemented using
Representational State Transfer (REST) or Google Remote Procedure
Call (gRPC). Within each cloud service provider, there is likely an equal
number of engineering teams building these APIs. It is imperative to
provide a consistent representation of resources in these APIs so that, when
viewed as a whole, each service provides similar behavior. Each cloud
service provider takes its own approach to this problem. For example, at

Microsoft Azure, the rule for defining REST APIs is codified by the
Microsoft Azure REST API Guidelines (https://github.com/microsoft/api-
guidelines/blob/vNext/azure/Guidelines.md). These rules provide guidance
to service teams.

Developers don't usually use cloud APIs directly via HTTP but rather
through the use of SDKs. These are collections of libraries that provide
access to the APIs for a given language.

For example, Azure (https://github.com/Azure/azure-sdk-for-go), AWS
(https://github.com/aws/aws-sdk-go), and Google
(https://github.com/googleapis/google-api-go-client) all have Go SDKs for
their clouds and many other languages. These SDKs do their best to
eliminate the boilerplate code needed for programmatically accessing
clouds' APIs, simplifying what the developer needs to write to program
against them. Besides the documentation published by cloud providers,
always remember that GoDocs are your friend. For example, the GoDocs
for the Azure Blob storage service (https://github.com/Azure/azure-kusto-
go) provide useful information for using the SDK.

These SDKs, for the most part, are generated based on machine-readable
API specifications. When you have hundreds of services and multiple
languages, it will not scale well to have an enormous number of humans
writing SDKs by hand. Each cloud solves this problem in its own way.

For example, Microsoft Azure generates almost all of the Azure API
reference documentation (https://docs.microsoft.com/en-us/rest/api/azure/)
and SDKs using OpenAPI specifications in the Azure REST API Specs
repository (https://github.com/Azure/azure-rest-api-specs). The entire

https://github.com/microsoft/api-guidelines/blob/vNext/azure/Guidelines.md
https://github.com/Azure/azure-sdk-for-go
https://github.com/googleapis/google-api-go-client
https://github.com/Azure/azure-kusto-go
https://docs.microsoft.com/en-us/rest/api/azure/
https://github.com/Azure/azure-rest-api-specs

process for producing documentation and generating SDKs is hosted on
GitHub and powered by open source tools such as the AutoRest code
generator (https://github.com/Azure/autorest).

FUN NOTE
One of this book's authors, David Justice, established this process at Azure and had the
first commit to the Azure REST API Specs repository (https://github.com/Azure/azure-rest-
api-specs/commit/8c42e6392618a878d5286b8735b99bbde693c0a2).

Microsoft Azure identity, RBAC, and
resource hierarchy

To prepare us for interacting with the Azure API, we need to understand
some basics – identity, RBAC, and resource hierarchy. Identity establishes
the user, or principal, interacting with the API. RBAC defines what the
identity can do within the API. The resource hierarchy describes the
relationship between the resources in the Azure cloud. RBAC roles and
rights describe what a principal can do with a given resource or resource
hierarchy. For example, a user can be assigned the contributor rights to an
Azure subscription and be able to mutate resources within that subscription.

Identities in Azure live in Azure Active Directory (AAD). This is an
enterprise identity and access management service. It provides single sign-
on, multifactor authentication, and conditional access, among other
features. Identities in AAD reside within one or more tenants. Tenants
contain multiple identities. Identities can be user identities, which represent
humans and have interactive authentication flows, or they can be service

https://github.com/Azure/autorest
https://github.com/Azure/azure-rest-api-specs/commit/8c42e6392618a878d5286b8735b99bbde693c0a2

principals, which represent non-human identities such as applications that
do not have interactive authentication flows.

The root of resources in Azure is an Azure subscription. A subscription is a
logical container that contains Azure resource groups. Each resource such
as a virtual machine, storage account or virtual network, resides within a
resource group. A resource group is a logical entity that associates multiple
Azure resources so that you can manage them as a single entity.

Identities are granted RBAC roles and rights to interact with Azure
subscriptions and resources alike. You can think of AAD and Azure as
separate systems that are bound together by RBAC rights and roles. We will
not dive deeply into each RBAC role or right, but you can find more
information about them in the Azure built-in roles documentation
(https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-
roles).

Now that we have some basic understanding of the cloud we will be
working in, let's get started.

Creating an Azure account and accessing
the API

To run the rest of the examples in this chapter, you will need an Azure
account. If you do not have an Azure account, you can sign up for a free
account with $200 of Azure credits (https://azure.microsoft.com/en-
us/free/).

Once you have an account, log in with the Azure CLI:

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://azure.microsoft.com/en-us/free/

$ az login

This command will log you into your Azure account and set the default
context for your primary Azure subscription. By default, when you create
an Azure account, your identity will be granted the owner role in the
subscription. The owner role grants full access to manage all resources,
including the ability to assign roles in Azure RBAC. To see what
subscription is active, run the following command:

$ az account show

{

 "environmentName": "AzureCloud",

 "isDefault": true,

 "managedByTenants": [],

 "name": "mysubscription",

 "state": "Enabled",

 "tenantId": "888bf....db93",

 "user": {

 ...

 }

}

The preceding command output shows the name of the subscription and
other details about the current context of the Azure CLI. In the following
command, we will use the az CLI to directly interact with the Azure API:

az rest --method get --uri "/subscriptions?api-version=2019-03-01"

The preceding command will list the subscriptions your identity has access
to via RBAC rights. Note that as part of the Azure REST API guidelines, all

Azure APIs must be used with an api-version query parameter. This is
enforced to ensure that API consumers can always rely on the stability of
the request and response format for a specified api-version. The APIs are
updated often, and without specifying the api-version query parameter of a
given API, a consumer would possibly be subject to breaking changes in the
API.

Next, let's run the same request using the debug flag:

az rest --method get --uri "/subscriptions?api-version=2019-03-01"

--debug

Executing any command with the Azure CLI using --debug will output the
HTTP request details, showing output containing something similar to the
following:

Request URL: 'https://management.azure.com/subscriptions?

apiversion=2019-03-01'

Request method: 'GET'

Request headers:

 'User-Agent': 'python/3.10.2 (macOS-12.3.1-arm64-arm-64bit)

AZURECLI/2.34.1 (HOMEBREW)'

 urllib3.connectionpool: Starting new HTTPS connection (1):

management.azure.com:443

urllib3.connectionpool: https://management.azure.com:443 "GET

/subscriptions?api-version=2019-03-01 HTTP/1.1" 200 6079

Response status: 200

Response headers:

 'Content-Type': 'application/json; charset=utf-8'

 'x-ms-ratelimit-remaining-tenant-reads': '11999'

 'x-ms-request-id': 'aebed1f6-75f9-48c2-ae0b-1dd18ae5ec46'

 'x-ms-correlation-request-id': 'aebed1f6-75f9-48c2-ae0b-

 'Date': 'Sat, 09 Apr 2022 22:52:32 GMT'

 'Content-Length': '6079'

This output is incredibly useful for seeing what was sent to the Azure API
in HTTP. Also, note that the URI, https://management.azure.com/...,
corresponds to Azure Resource Manager (ARM). ARM is a composite
service composed of resource provider services for each resource in Azure
and is responsible for mutating resources in it.

In this section, we learned about how the major clouds define APIs and
produce SDKs for the APIs. We also learned specifically about Azure
identities, RBAC, and resource hierarchies. This information may be
specific to Azure, but all major clouds follow the same pattern. Once you
learn how one of the clouds approaches Identity and Access Management
(IAM), it's roughly transferable to other clouds. Lastly, we signed into an
Azure account for use in subsequent sections and learned how to directly
access the Azure REST API through the Azure CLI.

In the next section, we will use the Azure SDK for Go to mutate cloud
infrastructure. Let's get started on programming the Azure cloud with Go.

Building infrastructure using Azure
Resource Manager
Cloud APIs are bifurcated into two categories, the management plane and
the data plane. The management plane is an API that controls the creation,

deletion, and mutation of infrastructure. The data plane is an API exposed
by provisioned infrastructure.

For example, the management plane would be used to create a SQL
database. The data plane for the SQL database resource would be the SQL
protocol for manipulating data and structure within the database.

The management plane is serviced by the cloud resource API, and the data
plane is serviced by the API exposed by the provisioned service.

In this section, we will learn how to use the Azure SDK for Go to provision
infrastructure in Azure. We will learn how to create and destroy resource
groups, virtual networks, subnets, public IPs, virtual machines, and
databases. The goal of this section is to build awareness of the Azure Go
SDK and how to interact with ARM.

Azure SDK for Go

As we discussed in the previous section, cloud SDKs simplify the
interaction between a given language and a cloud provider's API. In the
case of Azure, we will be using the Azure SDK for Go
(https://github.com/Azure/azure-sdk-for-go/) to interact with the Azure
APIs. Specifically, we'll use the latest edition of the SDK
(https://github.com/Azure/azure-sdk-for-go#management-new-releases),
which has been redesigned to follow the Azure design guidelines for Go
(https://azure.github.io/azure-sdk/golang_introduction.html). For the latest
information about packages and docs, be sure to check out the Azure SDK
Releases page (https://azure.github.io/azure-
sdk/releases/latest/mgmt/go.html).

https://github.com/Azure/azure-sdk-for-go/
https://github.com/Azure/azure-sdk-for-go#management-new-releases
https://azure.github.io/azure-sdk/golang_introduction.html
https://azure.github.io/azure-sdk/releases/latest/mgmt/go.html

The code for this section is located in the GitHub code folder for this
chapter https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/15.

Setting up your local environment

To run the code for this section, you will need to set up a Secure Shell
(SSH) key and an.env file. Run the following commands from the
./chapter/15 directory of the repository:

$ mkdir .ssh

$ ssh-keygen -t rsa -b 4096 -f ./.ssh/id_rsa -q -N ""

$ chmod 600 ./.ssh/id_rsa*

This command will create a .ssh directory in ./chapter/15, generate an
SSH key pair within that directory, and ensure that proper permissions are
set on the key pair.

NOTE
The preceding command creates an SSH key that does not have a passphrase. We are
only using this key pair as an example. You should provide a strong passphrase for real-
world usage.

Next, let's set up a local .env file that we will use to store environmental
variables used in the examples:

echo -e "AZURE_SUBSCRIPTION_ID=$(az account show --query 'id' -o

tsv)\nSSH_PUBLIC_KEY_PATH=./.ssh/id_rsa.pub" >> .env

Now, this command will create an.env file that contains two environment
variables, AZURE_SUBSCRIPTION_ID and SSH_PUBLIC_KEY_PATH. We derive the

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/15

value for the Azure subscription ID from the Azure CLI's current active
subscription.

Now that we have set up our local environment, let's build an Azure virtual
machine that will run a cloud-init provisioning script and provide access
using SSH via a public IP.

Building an Azure virtual machine

Let's get started by running the example, and then we'll delve into the code
for building the infrastructure. To run the example, run the following
command:

$ go run ./cmd/compute/main.go

Staring to build Azure resources...

Building an Azure Resource Group named "fragrant-violet"...

Building an Azure Network Security Group named "fragrant-violet-

nsg"...

Building an Azure Virtual Network named "fragrant-violet-vnet"...

Building an Azure Virtual Machine named "fragrant-violet-vm"...

Fetching the first Network Interface named "fragrant-violet-nic-

6d8bb6ea" connected to the VM...

Fetching the Public IP Address named "fragrant-violet-pip-6d8bb6ea"

connected to the VM...

Connect with: `ssh -i ./.ssh/id_rsa devops@20.225.222.128`

Press enter to delete the infrastructure.

After running go run ./cmd/compute/main.go, you should see something
similar to what is shown in the previous command block. As you can see

from the output, the program built several bits of infrastructure, including
an Azure resource group, network security group, virtual network, and
virtual machine. We'll discuss every piece of infrastructure in more detail
soon.

As the output states, you can also use SSH to access the virtual machine as
described in the output. We'll use this to explore the provisioned state of the
virtual machine to confirm that the cloud-init provisioning script ran as
expected.

If you visit the Azure portal, you should see the following:

Figure 15.1 – The Azure portal virtual machine infrastructure

In the preceding screenshot, you can see the resource group as well as all of
the infrastructure created. Next, let's look at the code that provisioned this
infrastructure.
Provisioning Azure infrastructure using Go
In these examples, you will see how to build Azure API clients, probe for
credentials for accessing APIs, and mutate infrastructure. Many of these
examples use abbreviated error-handling behavior to keep the code as
concise as possible for illustrative purposes. panic is not your friend. Please
wrap and bubble your errors as appropriate.

Let's start with the entry point of go run ./cmd/compute/main.go and learn
how to use Go to provision cloud infrastructure:

func main() {

_ = godotenv.Load()

ctx := context.Background()

subscriptionID := helpers.MustGetenv(

"AZURE_SUBSCRIPTION_ID",

)

sshPubKeyPath := helpers.MustGetenv("SSH_PUBLIC_KEY_PATH")

factory := mgmt.NewVirtualMachineFactory(

subscriptionID,

sshPubKeyPath,

)

fmt.Println("Staring to build Azure resources...")

stack := factory.CreateVirtualMachineStack(

ctx,

"southcentralus",

)

admin := stack.VirtualMachine.Properties.OSProfile.AdminUsername

ipAddress := stack.PublicIP.Properties.IPAddress

sshIdentityPath := strings.TrimRight(sshPubKeyPath, ".pub")

fmt.Printf(

"Connect with: `ssh -i %s %s@%s`\n\n",

sshIdentityPath, *admin, *ipAddress,

)

fmt.Println("Press enter to delete the infrastructure.")

reader := bufio.NewReader(os.Stdin)

_, _ = reader.ReadString('\n')

factory.DestroyVirtualMachineStack(context.Background(), stack)

}

In the preceding code, we load environment variables in the local .env file
using godotenv.Load(). In main, we create a new VirtualMachineFactory to
manage the creation and deletion of Azure infrastructure. Once the
infrastructure is created in factory.CreateVirtualMachineStack, we print
the SSH connection details and prompt for user confirmation to delete the
infrastructure stack.

Next, let's dive into the VM factory and see what is included in the VM
stack:

type VirtualMachineFactory struct {

 subscriptionID string

 sshPubKeyPath string

 cred azcore.TokenCredential

 groupsClient *armresources.ResourceGroupsClient

 vmClient *armcompute.VirtualMachinesClient

 vnetClient *armnetwork.VirtualNetworksClient

 subnetClient *armnetwork.SubnetsClient

 nicClient *armnetwork.InterfacesClient

 nsgClient *armnetwork.SecurityGroupsClient

 pipClient *armnetwork.PublicIPAddressesClient

}

This code defines the structure of VirtualMachineFactory, which is
responsible for the creation of and access to the Azure SDK API clients. We
instantiate those clients using the NewVirtualMachineFactory func, as shown
here:

func NewVirtualMachineFactory(subscriptionID, sshPubKeyPath string)

*VirtualMachineFactory {

 cred :=

HandleErrWithResult(azidentity.NewDefaultAzureCredential(nil))

 return &VirtualMachineFactory{

 cred: cred,

 subscriptionID: subscriptionID,

 sshPubKeyPath: sshPubKeyPath,

 groupsClient: BuildClient(subscriptionID, cred,

armresources.NewResourceGroupsClient),

 vmClient: BuildClient(subscriptionID, cred,

armcompute.NewVirtualMachinesClient),

 vnetClient: BuildClient(subscriptionID, cred,

armnetwork.NewVirtualNetworksClient),

 subnetClient: BuildClient(subscriptionID, cred,

armnetwork.NewSubnetsClient),

 nsgClient: BuildClient(subscriptionID, cred,

armnetwork.NewSecurityGroupsClient),

 nicClient: BuildClient(subscriptionID, cred,

armnetwork.NewInterfacesClient),

 pipClient: BuildClient(subscriptionID, cred,

armnetwork.NewPublicIPAddressesClient),

 }

}

This code builds a new default Azure identity credential. This credential is
used to authenticate the client to the Azure APIs. By default, this credential
will probe multiple sources for an identity to use. The default credential will
probe for environment variables first, then it will attempt to use an Azure
managed identity (https://docs.microsoft.com/en-us/azure/active-
directory/managed-identities-azure-resources/overview), and finally, it will
fall back to using the Azure CLI's user identity. For this example, we are
relying on the Azure CLI identity to interact with the Azure APIs. This is
convenient for development but should not be used for a deployed
application or script. Non-interactive authentication requires either an
Azure service principal (https://docs.microsoft.com/en-us/azure/active-
directory/develop/app-objects-and-service-principals) or an Azure managed
identity.

The VM factory builds each of the Azure API clients using subscriptionID,
the credential, and the New* function for each of the clients. BuildClient()
builds each client.

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals

Now that we know how credentials and the API clients are instantiated, let's
dive into the creation of infrastructure in CreateVirtualMachineStack:

func (vmf *VirtualMachineFactory) CreateVirtualMachineStack(ctx

context.Context, location string) *VirtualMachineStack {

 stack := &VirtualMachineStack{

 Location: location,

 name: haiku.Haikunate(),

 sshKeyPath:

HandleErrWithResult(homedir.Expand(vmf.sshPubKeyPath)),

 }

 stack.ResourceGroup = vmf.createResourceGroup(ctx, stack.name,

stack.Location)

 stack.SecurityGroup = vmf.createSecurityGroup(ctx, stack.name,

stack.Location)

 stack.VirtualNetwork = vmf.createVirtualNetwork(ctx, stack)

 stack.VirtualMachine = vmf.createVirtualMachine(ctx, stack)

 stack.NetworkInterface = vmf.getFirstNetworkInterface(ctx,

stack)

 stack.PublicIP = vmf.getPublicIPAddress(ctx, stack)

 return stack

}

In the preceding code, we created the idea of a stack – a collection of
related infrastructure. We created a new stack with a given location, a
human-readable name, and the contents of the SSH public key path.
Subsequently, we created each of the Azure resources needed to create a
VM with public SSH access.

Let's explore each of the create and get funcs in
CreateVirtualMachineStack:

func (vmf *VirtualMachineFactory) createResourceGroup(ctx

context.Context, name, location string) armresources.ResourceGroup

{

 param := armresources.ResourceGroup{

 Location: to.Ptr(location),

 }

 fmt.Printf("Building an Azure Resource Group named %q...\n",

name)

 res, err := vmf.groupsClient.CreateOrUpdate(ctx, name, param,

nil)

 HandleErr(err)

 return res.ResourceGroup

}

In the preceding code, createResourceGroup calls CreateOrUpdate on
groupsClient to create an Azure resource group in the specified location.
An Azure resource group is a logical container for Azure resources. We will
use the resource group as a container for the rest of our resources.

Next, let's dive into the network security group creation function,
createSecurityGroup:

func (vmf *VirtualMachineFactory) createSecurityGroup(ctx

context.Context, name, location string) armnetwork.SecurityGroup {

 param := armnetwork.SecurityGroup{

 Location: to.Ptr(location),

 Name: to.Ptr(name + "-nsg"),

 Properties: &armnetwork.SecurityGroupPropertiesFormat{

 SecurityRules: []*armnetwork.SecurityRule{

 {

 Name: to.Ptr("ssh"),

 Properties:

&armnetwork.SecurityRulePropertiesFormat{

 Access: to.Ptr(armn

etwork.SecurityRuleAccessAllow),

 Direction: to.Ptr(armn

etwork.SecurityRuleDirectionInbound),

 Protocol: to.Ptr(armn

etwork.SecurityRuleProtocolAsterisk),

 Description: to.Ptr("all

ow ssh on 22"),

 DestinationAddressPrefix:

to.Ptr("*"),

 DestinationPortRange: to.Ptr("22"

),

 Priority: to.Ptr(int3

2(101)),

 SourcePortRange: to.Ptr("*")

,

 SourceAddressPrefix: to.Ptr("*")

,

 },

 },

 },

 },

 }

 fmt.Printf("Building an Azure Network Security Group named

%q...\n", *param.Name)

 poller, err := vmf.nsgClient.BeginCreateOrUpdate(ctx, name,

*param.Name, param, nil)

 HandleErr(err)

 res := HandleErrPoller(ctx, poller)

 return res.SecurityGroup

}

In the preceding code, we built an Azure network security group, which
contains a single security rule to allow network traffic on port 22, enabling
SSH access for the VM. Note that rather than calling CreateOrUpdate, we
call BeginCreateOrUpdate, which issues PUT or PATCH to the Azure API and
starts a long-running operation.

A long-running operation in Azure is one that – once the initial mutation is
accepted –executes until it reaches a terminal state. For example, when
creating a network security group, the API receives the initial mutation and
then starts to build the infrastructure. After the infrastructure is ready, the
API will indicate it is completed through the operation state or the
provisioning state. poller takes care of following the long-running
operation to completion. In HandleErrPoller, we follow the polling to
completion and return the final state of the resource.

Next, let's explore the creation of the virtual network via
createVirtualNetwork:

func (vmf *VirtualMachineFactory) createVirtualNetwork(ctx

context.Context, vmStack *VirtualMachineStack)

armnetwork.VirtualNetwork {

 param := armnetwork.VirtualNetwork{

 Location: to.Ptr(vmStack.Location),

 Name: to.Ptr(vmStack.name + "-vnet"),

 Properties: &armnetwork.VirtualNetworkPropertiesFormat{

 AddressSpace: &armnetwork.AddressSpace{

 AddressPrefixes:

[]*string{to.Ptr("10.0.0.0/16")},

 },

 Subnets: []*armnetwork.Subnet{

 {

 Name: to.Ptr("subnet1"),

 Properties:

&armnetwork.SubnetPropertiesFormat{

 AddressPrefix: to.Ptr("10.0.0.

0/24"),

 NetworkSecurityGroup:

&vmStack.SecurityGroup,

 },

 },

 },

 },

 }

 fmt.Printf("Building an Azure Virtual Network named %q...\n",

*param.Name)

 poller, err := vmf.vnetClient.BeginCreateOrUpdate(ctx,

vmStack.name, *param.Name, param, nil)

 HandleErr(err)

 res := HandleErrPoller(ctx, poller)

 return res.VirtualNetwork

}

In the previous code block, we built an Azure virtual network for our VM.
The virtual network is set up with a 10.0.0.0/16 Classless Inter-Domain
Routing (CIDR) and a single subnet with a 10.0.0.0/24 CIDR. The subnet
references the network security group we built in the previous code block,
which causes the rules in the network security group to be enforced on the
subnet.

Now that we have built the networking for our VM, let's build it via
createVirtualMachine:

func (vmf *VirtualMachineFactory) createVirtualMachine(ctx

context.Context, vmStack *VirtualMachineStack)

armcompute.VirtualMachine {

 param := linuxVM(vmStack)

 fmt.Printf("Building an Azure Virtual Machine named %q...\n",

*param.Name)

 poller, err := vmf.vmClient.BeginCreateOrUpdate(ctx,

vmStack.name, *param.Name, param, nil)

 HandleErr(err)

 res := HandleErrPoller(ctx, poller)

 return res.VirtualMachine

}

There is not much to show for createVirtualMachine(). As you can see, the
same pattern of resource creation through a long-running API invocation is

applied in this code. The interesting bits are in linuxVM():

func linuxVM(vmStack *VirtualMachineStack)

armcompute.VirtualMachine {

 return armcompute.VirtualMachine{

 Location: to.Ptr(vmStack.Location),

 Name: to.Ptr(vmStack.name + "-vm"),

 Properties: &armcompute.VirtualMachineProperties{

 HardwareProfile: &armcompute.HardwareProfile{

 VMSize:

to.Ptr(armcompute.VirtualMachineSizeTypesStandardD2SV3),

 },

 StorageProfile: &armcompute.StorageProfile{

 ImageReference: &armcompute.ImageReference{

 Publisher: to.Ptr("Canonical"),

 Offer: to.Ptr("UbuntuServer"),

 SKU: to.Ptr("18.04-LTS"),

 Version: to.Ptr("latest"),

 },

 },

 NetworkProfile: networkProfile(vmStack),

 OSProfile: linuxOSProfile(vmStack),

 },

 }

}

In linuxVM, we specify the location, name, and properties of the VM. In the
properties, we specify the type of hardware we'd like to provision. In this
case, we are provisioning a Standard D3v2 (you can read more about it at
https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series)
hardware Stock-Keeping Unit (SKU).

We also specify our StorageProfile, which is used to specify the OS as
well as the data disks we'd like attached to the VM. In this case, we specify
that we'd like to run the latest version of Ubuntu 18.04. Both
NetworkProfile and OSProfile are a little too complex to include in this
function, so let's explore them individually in the following code block:

func networkProfile(vmStack *VirtualMachineStack)

*armcompute.NetworkProfile {

 firstSubnet := vmStack.VirtualNetwork.Properties.Subnets[0]

 return &armcompute.NetworkProfile{

 NetworkAPIVersion:

to.Ptr(armcompute.NetworkAPIVersionTwoThousandTwenty1101),

 NetworkInterfaceConfigurations:

[]*armcompute.VirtualMachineNetworkInterfaceConfiguration{

 {

 Name: to.Ptr(vmStack.name + "-nic"),

 Properties:

&armcompute.VirtualMachineNetworkInterfaceConfigurationProperties{

 IPConfigurations:

[]*armcompute.VirtualMachineNetworkInterfaceIPConfiguration{

 {

 Name: to.Ptr(vmStack.name + "-

nic-conf"),

https://docs.microsoft.com/en-us/azure/virtual-machines/dv3-dsv3-series

 Properties:

&armcompute.VirtualMachineNetworkInterfaceIPConfigurationProperties

{

 Primary: to.Ptr(true),

 Subnet:

&armcompute.SubResource{

 ID: firstSubnet.ID,

 },

 PublicIPAddress

Configuration: &armcompute.VirtualMachinePublicIPAddress

Configuration{

 Name:

to.Ptr(vmStack.name + "-pip"),

 Properties:

&armcompute.VirtualMachinePublicIPAddressConfiguration Properties{

 PublicIPAllocatio

nMethod: to.Ptr(armcompute.PublicIPAllocation MethodStatic),

 PublicIPAddressVe

rsion: to.Ptr(armcompute.IPVersionsIPv4),

 },

 },

 },

 },

 },

 Primary: to.Ptr(true),

 },

 },

 },

 }

}

In networkProfile(), we create NetworkProfile, which specifies that the
VM should have a single network interface using IPv4 and be exposed via a
public IP. The network interface should be allocated on the subnet that we
created in createVirtualNetwork().

Next, let's explore the OSProfile configuration via linuxOSProfile() in the
following code block:

func linuxOSProfile(vmStack *VirtualMachineStack)

*armcompute.OSProfile {

 sshKeyData :=

HandleErrWithResult(ioutil.ReadFile(vmStack.sshKeyPath))

 cloudInitContent :=

HandleErrWithResult(ioutil.ReadFile("./cloud-init/init.yml"))

 b64EncodedInitScript :=

base64.StdEncoding.EncodeToString(cloudInitContent)

 return &armcompute.OSProfile{

 AdminUsername: to.Ptr("devops"),

 ComputerName: to.Ptr(vmStack.name),

 CustomData: to.Ptr(b64EncodedInitScript),

 LinuxConfiguration: &armcompute.LinuxConfiguration{

 DisablePasswordAuthentication: to.Ptr(true),

 SSH: &armcompute.SSHConfiguration{

 PublicKeys: []*armcompute.SSHPublicKey{

 {

 Path: to.Ptr("/home/devops/.ssh/au

thorized_keys"),

 KeyData: to.Ptr(string(sshKeyData)),

 },

 },

 },

 },

 }

}

In linuxOSProfile, we create an OSProfile, which includes details such as
the admin username, computer name, and SSH configuration. Take note of
the CustomData field used for specifying the Base64-encoded cloud-init
YAML, which is used to run the initial configuration of the VM.

Let's explore what we are doing in the cloud-init YAML:

#cloud-config

package_upgrade: true

packages:

 - nginx

 - golang

runcmd:

 - echo "hello world"

Once the VM is created, the following cloud-init instructions are
executed:

1. First, the packages on the Ubuntu machine are upgraded.

2. Next, the nginx and golang packages are installed via the Advanced
Package Tool (APT).

3. Finally, runcmd echos "hello world".

cloud-init is super-useful for bootstrapping VMs. If you have not used it
previously, I highly recommend exploring it further
(https://cloudinit.readthedocs.io/en/latest/).

We can verify cloud-init executed by accessing the VM using SSH and
executing commands similar to the following. Remember, your IP address
will be different than what is shown here:

$ ssh -i ./.ssh/id_rsa devops@20.225.222.128

devops@fragrant-violet:~$ which go

/usr/bin/go

devops@fragrant-violet:~$ which nginx

/usr/sbin/nginx

cat /var/log/cloud-init-output.log

As you can see, nginx and go have been installed. You should also see the
APT mutations and hello world in /var/log/cloud-init-output.log on the
provisioned VM.

You have provisioned and created an Azure VM and related infrastructure!
Now, let's destroy the entire stack of infrastructure. You should be able to
press Enter in the shell where you are running go run
./cmd/compute/main.go.

Let's see what happened when we called
factory.DestroyVirtualMachineStack:

https://cloudinit.readthedocs.io/en/latest/

func (vmf *VirtualMachineFactory) DestroyVirtualMachineStack(ctx

context.Context, vmStack *VirtualMachineStack) {

 _, err := vmf.groupsClient.BeginDelete(ctx, vmStack.name, nil)

 HandleErr(err)

}

In DestroyVirtualMachineStack, we simply call BeginDelete() on the
group's client, specifying the resource group name. However, unlike other
examples, we do not wait for the poller to complete. We send the DELETE
HTTP request to Azure. We do not wait for the infrastructure to be
completely deleted; instead, we trust that the acceptance of delete means
that it will eventually reach the deleted terminal state.

We have now built and cleaned up a stack of infrastructure using the Azure
SDK for Go. We have learned how to create resource groups, virtual
networks, subnets, public IPs, and VMs, and how a pattern can be extended
to any resource in Azure. Additionally, these skills are applicable to each of
the major clouds, not just Azure. AWS and GCP both have similar concepts
and API access patterns.

In the next section, we'll build an Azure Storage account and learn a bit
about using the data plane of a cloud service by uploading files and then
providing constrained access to download those files.

Using provisioned Azure infrastructure
In the previous section, we built a stack of computing and networking
infrastructure to illustrate how to manipulate cloud infrastructure. In this
section, we will pair a provisioning infrastructure with the Azure control

plane and use the infrastructure through the provisioned service's data
plane.

In this section, we are going to build a cloud storage infrastructure. We will
use Azure Storage to store files and provide constrained access to those
files via shared access signatures (https://docs.microsoft.com/en-
us/azure/storage/common/storage-sas-overview). We will learn how to use
ARM to fetch account keys and use those keys to provide constrained
access to storage resources.

Building an Azure Storage account

Let's get started by running the example, and then we'll delve into the code
for building the infrastructure and using the provisioned storage account. To
execute the example, run the following:

$ go run ./cmd/storage/main.go

Staring to build Azure resources...

Building an Azure Resource Group named "falling-rain"...

Building an Azure Storage Account named "fallingrain"...

Fetching the Azure Storage Account shared key...

Creating a new container "jd-imgs" in the Storage Account...

Reading all files ./blobs...

Uploading file "img1.jpeg" to container jd-imgs...

Uploading file "img2.jpeg" to container jd-imgs...

Uploading file "img3.jpeg" to container jd-imgs...

Uploading file "img4.jpeg" to container jd-imgs...

Generating readonly links to blobs that expire in 2 hours...

https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

https://fallingrain.blob.core.windows.net/jd-imgs/img1.jpeg?

se=2022-04-

20T21%3A50%3A25Z&sig=MrwCXziwLLQeepLZjrW93IeEkTLxJ%2BEX16rmGa2w548%

3D&sp=r&sr=b&st=2022-04-20T19%3A50%3A25Z&sv=2019-12-12

...

Press enter to delete the infrastructure.

As you can see from the previous output, the example creates a resource
group and a storage account, fetches an account key, and then uploads all of
the images in ./blobs to the cloud. Finally, the example prints out URIs for
each of the images using shared access signatures. If you click on one of
those URIs, you should be able to download the image we uploaded to the
storage account.

What happens when you try to download img1.jpeg without the query
string – for example, using the
https://fallingrain.blob.core.windows.net/jd-imgs/img1.jpeg link?
You should get an access denied message.

Let's see how we can use Azure Storage to upload files and constrain
access.
Provisioning Azure Storage using Go
In this example, we are going to provision an Azure resource group and an
Azure Storage account. We are using abbreviated error-handling behavior to
keep the code as concise as possible for illustrative purposes. As I said in
the previous section, panic is not your friend. Please wrap and bubble your
errors as appropriate.

Let's start with the entry point of Go run ./cmd/storage/main.go, and learn
how to use Go to provision the storage account:

func init() {

 _ = godotenv.Load()

}

func main() {

 subscriptionID := MustGetenv("AZURE_SUBSCRIPTION_ID")

 factory := mgmt.NewStorageFactory(subscriptionID)

 fmt.Println("Staring to build Azure resources...")

 stack := factory.CreateStorageStack(

 context.Background(),

 "southcentralus”,

)

 uploadBlobs(stack)

 printSASUris(stack)

 fmt.Println("Press enter to delete the infrastructure.")

 reader := bufio.NewReader(os.Stdin)

 _, _ = reader.ReadString('\n')

 factory.DestroyStorageStack(context.Background(), stack)

}

Similar to the VM infrastructure example in the previous section, we create
StorageFactory using NewStorageFactory() and then use it to create and
destroy the storage stack. In the middle, we call uploadBlobs() to upload
the image files and printSASUris() to generate and print shared access
signatures for each of the uploaded files.

Let's start by taking a look at how we provision the storage infrastructure:

type StorageFactory struct {

 subscriptionID string

 cred azcore.TokenCredential

 groupsClient *armresources.ResourceGroupsClient

 storageClient *armstorage.AccountsClient

}

func NewStorageFactory(subscriptionID string) *StorageFactory {

 cred := HandleErrWithResult(

 azidentity. NewDefaultAzureCredential(nil),

)

 return &StorageFactory{

 cred: cred,

 subscriptionID: subscriptionID,

 groupsClient: BuildClient(subscriptionID, cred,

armresources.NewResourceGroupsClient),

 storageClient: BuildClient(subscriptionID, cred,

armstorage.NewAccountsClient),

 }

}

The storage factory looks similar to VirtualMachineFactory from the
previous section. However, the storage factory only uses the resource group
and storage clients.

Next, let's explore CreateStorageStack() to see how we create the Azure
Storage account:

func (sf *StorageFactory) CreateStorageStack(ctx context.Context,

location string) *StorageStack {

 stack := &StorageStack{

 name: haiku.Haikunate(),

 }

 stack.ResourceGroup = sf.createResourceGroup(ctx, stack.name,

location)

 stack.Account = sf.createStorageAccount(ctx, stack.name,

location)

 stack.AccountKey = sf.getPrimaryAccountKey(ctx, stack)

 return stack

}

In the preceding code, we create a human-readable name for the stack,
which we will use to name the resource group and the storage account. We
then populate the stack fields with created resources.

I will not cover createResourceGroup(), as it was covered in the previous
section. However, createStorageAccount() and getPrimaryAccountKey()
are interesting. Let's explore what they do:

// createStorageAccount creates an Azure Storage Account

func (sf *StorageFactory) createStorageAccount(ctx context.Context,

name, location string) armstorage.Account {

 param := armstorage.AccountCreateParameters{

 Location: to.Ptr(location),

 Kind: to.Ptr(armstorage.KindBlockBlobStorage),

 SKU: &armstorage.SKU{

 Name: to.Ptr(armstorage.SKUNamePremiumLRS),

 Tier: to.Ptr(armstorage.SKUTierPremium),

 },

 }

 accountName := strings.Replace(name, "-", "", -1)

 fmt.Printf("Building an Azure Storage Account named %q...\n",

accountName)

 poller, err := sf.storageClient.BeginCreate(ctx, name,

accountName, param, nil)

 HandleErr(err)

 res := HandleErrPoller(ctx, poller)

 return res.Account

}

In the preceding code, createStorageAccount() creates a new block blob,
with premium tier performance, and a locally redundant Azure Storage
account. Block blobs (https://docs.microsoft.com/en-
us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-
page-blobs#about-block-blobs) are optimized for uploading large amounts
of data and, as the name implies, are broken into blocks of arbitrary size.
Locally redundant storage (https://docs.microsoft.com/en-
us/azure/storage/common/storage-redundancy#locally-redundant-storage)
means that each block is replicated 3 times within the same data center and
is guaranteed to provide 99.999999999% (11 nines!) durability over a given
year. Finally, the premium tier (https://docs.microsoft.com/en-
us/azure/storage/blobs/scalability-targets-premium-block-blobs) of Azure
Storage indicates that the storage account will be optimized for applications
that consistently require low latency and high transaction throughput for
block blob mutations.

Beyond the configuration of the storage account, provisioning is handled in
a similar way to the rest of the resources we have provisioned thus far.

https://docs.microsoft.com/en-us/rest/api/storageservices/understanding-block-blobs--append-blobs--and-page-blobs#about-block-blobs
https://docs.microsoft.com/en-us/azure/storage/common/storage-redundancy#locally-redundant-storage
https://docs.microsoft.com/en-us/azure/storage/blobs/scalability-targets-premium-block-blobs

To generate shared access signatures for uploaded blobs, we need to acquire
a storage account key that is provisioned when the storage account is
created. Let's see how we can request the storage account keys:

func (sf *StorageFactory) getPrimaryAccountKey(ctx context.Context,

stack *StorageStack) *armstorage.AccountKey {

 fmt.Printf("Fetching the Azure Storage Account shared

key...\n")

 res, err := sf.storageClient.ListKeys(ctx, stack.name,

*stack.Account.Name, nil)

 HandleErr(err)

 return res.Keys[0]

}

In this code, we fetch the account keys by calling ListKeys on the storage
client. We return the first account key returned.

Now that we have provisioned the storage infrastructure and fetched the
storage account key, we are ready to use the storage service to upload files
and provide constrained access to the files.
Using Azure Storage
Let's upload the files in ./blobs to our storage account with the
uploadBlobs func:

func uploadBlobs(stack *mgmt.StorageStack) {

 serviceClient := stack.ServiceClient()

 containerClient, err := serviceClient.NewContainerClient("jd-

imgs")

 HandleErr(err)

 fmt.Printf("Creating a new container \"jd-imgs\" in the

Storage Account...\n")

 _, err = containerClient.Create(context.Background(), nil)

 HandleErr(err)

 fmt.Printf("Reading all files ./blobs...\n")

 files, err := ioutil.ReadDir("./blobs")

 HandleErr(err)

 for _, file := range files {

 fmt.Printf("Uploading file %q to container jd-imgs...\n",

file.Name())

 blobClient :=

HandleErrWithResult(containerClient.NewBlockBlobClient(file.Name())

)

 osFile :=

HandleErrWithResult(os.Open(path.Join("./blobs", file.Name())))

 _ =

HandleErrWithResult(blobClient.UploadFile(context.Background(),

osFile, azblob.UploadOption{}))

 }

}

In the preceding code, we create a service client to interact with the storage
service client. With serviceClient, we can define a new storage container
called jd-imgs. You can think of a storage container as an entity similar to a
directory. After specifying the container, we call create to request the
storage service to create the container. Once we have a container, we then
iterate over each image in the ./blobs directory and upload them using the
block blob client.

Until this point, we have been using the Azure CLI identity as our
credential for interacting with Azure services. However, when we
instantiated serviceClient, we instead began using the Azure Storage
account keys to interact with our storage account. Let's take a look at
ServiceClient():

func (ss *StorageStack) ServiceClient() *azblob.ServiceClient {

 cred :=

HandleErrWithResult(azblob.NewSharedKeyCredential(*ss.Account.Name,

*ss.AccountKey.Value))

 blobURI := *ss.Account.Properties.PrimaryEndpoints.Blob

 client, err := azblob.NewServiceClientWithSharedKey(blobURI,

cred, nil)

 HandleErr(err)

 return client

}

In the preceding code, we create a new credential using the storage account
name and the value of the account key. We construct ServiceClient, using
the blob endpoint for the storage account and the newly constructed shared
key credential. The shared key credential will be used for all clients that
derive from the service client.

Now that we have uploaded the files as block blobs, let's see how we can
create signed URIs to provide constrained access:

func printSASUris(stack *mgmt.StorageStack) {

 serviceClient := stack.ServiceClient()

 containerClient, err := serviceClient.NewContainerClient("jd-

imgs")

 HandleErr(err)

 fmt.Printf("\nGenerating readonly links to blobs that expire

in 2 hours...\n")

 files := HandleErrWithResult(ioutil.ReadDir("./blobs"))

 for _, file := range files {

 blobClient :=

HandleErrWithResult(containerClient.NewBlockBlobClient(file.Name())

)

 permissions := azblob.BlobSASPermissions{

 Read: true,

 }

 now := time.Now().UTC()

 sasQuery :=

HandleErrWithResult(blobClient.GetSASToken(permissions, now,

now.Add(2*time.Hour)))

 fmt.Println(blobClient.URL() + "?" + sasQuery.Encode())

 }

}

We construct ServiceClient and establish a container client in the
preceding code block. Then, we iterate over every file within the local
./blobs directory and create a blob client.

The blob client has a helpful method called GetSASToken, which generates a
shared access token given blob access permissions and a validity time span.
In our case, we are granting read access that starts immediately and expires
in 2 hours. To create a complete URI to access the blob, we need to
combine the blob URL and the query string generated by the shared access

token. We do that with blobClient.URL(), "?", and sasQuery.Encode().
Now, anyone with the signed URI will have access to read the file.

In this final section, we built and used cloud storage infrastructure to store
files and provide constrained access to those files by using shared access
signatures. We learned how to fetch account keys and use them to provide
constrained access to storage resources. Using these skills, you can combine
permissions and other constraints to tailor access to your needs. Providing
constrained access in this way is a powerful tool. For example, you can
create a write-only URI to a blob not yet created, pass the URI to a client,
and then have them upload a file without having access to any other files in
the storage account.

Summary
Azure Storage is only one service out of hundreds that you can use to build
applications in the cloud. Each cloud service provider has analogous storage
services that operate in a similar way. The examples shown in this chapter
are specific to Microsoft Azure, but they can be easily emulated for other
clouds.

The Azure Storage example is useful for illustrating the separation between
the management plane and the data plane of the cloud. If you look closely,
you can observe a significant similarity in Create, Read, Update, and
Delete (CRUD) resource operations using ARM in contrast to interacting
with the Azure Storage service, container, and blob clients. Resource
management is uniform within a cloud. The data plane for databases,

storage services, and content delivery networks is rarely uniform and often
exposed through purpose-built APIs.

In this chapter, we learned that the cloud is not just someone else's
computer. The cloud is a planet-scale web of high-security data centers
filled with computing, networking, and storage hardware. We also learned
the fundamentals of identity, authentication, and authorization, with
specifics drawn from Microsoft Azure. We briefly covered Azure RBAC
and its relationship with AAD identities. Finally, we learned how to
provision and use cloud resources using Microsoft Azure.

You should be able to take what you learned here and apply it to
provisioning and using cloud services to achieve your goals. These skills
were focused on Microsoft Azure, but the skills learned here are easily
transferred to the AWS or Google clouds.

In the next chapter, we're going to explore what happens when software
operates in less-than-perfect conditions. We will learn to design for chaos.

Chapter 16: Designing for Chaos
Writing software that works in perfect conditions is easy. It would be nice if
you never had to worry about network latency, service timeouts, storage
outages, misbehaving applications, users sending bad arguments, security
issues, or any of the real-life scenarios we find ourselves in.

In my experience, things tend to fail in the following three ways:

Immediately

Gradually

Spectacularly

Immediately is usually the result of a change to application code that
causes a service to die on startup or when receiving traffic to an endpoint.
Most development test environments or canary rollouts catch these before
any real problems occur in production. This type is generally trivial to fix
and prevent.

Gradually is usually the result of some type of memory leak,
thread/goroutine leak, or ignoring design limitations. These problems build
up over time and begin causing problems that result in services crashing or
growth in latency at unacceptable levels. Many times, these are easy fixes
caught during canary rollouts once the problem is recognized. In the case of
design issues, fixes can require months of intense work to resolve. Some
rare versions of this have what I call a cliff failure: gradual growth hits a
limitation that cannot be overcome by throwing more resources at the
problem. That type of problem belongs to our next category.

That category is spectacularly. This is when you find a problem in
production that is causing mass failures when a few moments ago
everything was working fine. Cellphones everywhere start pinging alerts,
dashboards go red, dogs and cats start living together— mass hysteria! This
could be the rollout of a bugged service that overwhelms your network, the
death of a caching service you depend on, or a type of query that crashes
your service. These outages cause mass panic, test your ability to
communicate across teams efficiently, and are the ones that show up in
news articles.

This chapter will focus on designing infrastructure tooling to survive chaos.
The most spectacular failures of major cloud companies have often been the
results of infrastructure tooling, from Google Site Reliability Engineering
(Google SRE) erasing all the disks at their cluster satellites to Amazon
Web Services (AWS) overwhelming their network with infrastructure tool
remote procedure calls (RPCs).

In this chapter, we will look at safe ways for first responders (FRs) to stop
automation, how to write idempotent workflow tools, packages for
incremental backoffs of failed RPCs, providing pacing limiters for rollouts,
and much more.

To do this, we will be introducing concepts and packages that will be built
into a generic workflow system that you can use to further your education.
The system will be able to take requests to do some type of work, will
validate the parameters are correct, validate the request against a set of
policies, and then execute that work.

In this model, clients (which can be command-line interface (CLI)
applications or services) detail work to be done via a protocol buffer and
send it to the server. The workflow system does all the actual work.

We are going to cover the following main topics in this chapter:

Using overload prevention mechanisms

Using rate limiters to prevent runaway workflows

Building workflows that are repeatable and never lost

Using policies to restrict tools

Building systems with an emergency stop

Technical requirements
This chapter has the same requirements as previous chapters, only adding
the need to access the following GitHub repository:
https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/16/workflow.

With that said, let's jump into our first chapter on using overload prevention
mechanisms to keep our network and services healthy when problems
occur.

Using overload prevention mechanisms
When you have a small set of services, misbehaving applications generally
cause small problems. This is because there is usually an overabundance of
network capacity to absorb badly behaving applications within a data

https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/16/workflow

center, and with a small set of services, it is usually intuitive to figure out
what would cause the issue.

When you have a large number of applications running, your network and
your machines are usually oversubscribed. Oversubscribed means that
your network and systems cannot handle all your applications running at
100%. Oversubscription is common in networks or clusters to control costs.
This works because, at any given time, most applications ebb and flow with
network traffic, central processing unit (CPU), and memory.

An application that suddenly experiences some type of bug can go into
retry loops that quickly overwhelm a service. In addition, if some
catastrophic event occurs that takes a service offline, trying to bring the
application back online can cause the service to go down as it is
overwhelmed by requests that are queuing on all clients.

Worse is what can happen to the network. If the network becomes
overwhelmed or when cloud devices have their queries per second (QPS)
exceeded, other applications can have their traffic adversely affected. This
can mask the true cause of your problems.

There are several ways of preventing these types of problems, with the two
most common being the following:

Circuit breakers

Backoff implementations

Each of these prevention mechanisms has the same idea: when failures
occur, prevent retries from overwhelming the service.

Infrastructure services are often an overlooked use case for these prevention
mechanisms. Many times, we concentrate on our public services, but
infrastructure services are just as important. If that service is critical and
becomes overwhelmed, it can be difficult to restore it without manually
touching other services to reduce load.

Let's have a look at one of the more popular methods: the circuit breaker.

Case study – AWS client requests
overwhelm the network

AWS had an outage that affected AWS customers across the world when a
misbehaving application began sending too much traffic across a network
boundary between their customer network and their core network where
AWS critical services live. This was restricted to their us-east-1 region, but
the effects were felt by their customers in multiple locations.

The problem was twofold, comprising the following factors:

A misbehaving application sending too many requests.

Their clients didn't back off on failure.

It is the second issue that caused the long failure. AWS had been doing the
right thing in having a standard client for RPCs that invoked incrementing
backoffs when requests failed. However, for some reason, the client library
did not perform as expected in this case.

This means that instead of the load reducing itself as the endpoints became
overwhelmed, they went into some type of infinite loop that kept increasing

the load on the affected systems and overwhelmed their network cross-
connects. This overwhelming of cross-connects disabled their monitoring
and prevented them from seeing the problem. The result was they had to try
reducing their network load by scaling back application traffic while trying
to not affect the customer services that were still working—a feat I would
not envy.

This case points to how important it is to prevent application retries when
failures occur. To read more on this from Amazon, see the following web
page: https://aws.amazon.com/message/12721/.

Using circuit breakers

Circuit breakers work by wrapping RPC calls within a client that will
automatically fail any attempt once a threshold is reached. All calls then
simply return a failure without actually making any attempt for some
amount of time.

Circuit breakers have three modes, as follows:

Closed

Open

Half-open

A circuit breaker is in a closed state when everything is working. This is the
normal state.

A circuit breaker is in an open state after some amount of failures trip the
breaker. When in this state, all requests are automatically failed without

https://aws.amazon.com/message/12721/

trying to send the message. This period lasts for some amount of time. It is
suggested that this time be some set period and some randomness to prevent
spontaneous synchronization.

A circuit breaker moves into a half-open state after some time in the open
state. Once in the half-open state, some number of requests that are
requested are actually tried. If some threshold of success is passed, the
circuit breaker moves back into the closed state. If not, the circuit breaker
moves into the open state again.

You can find several different circuit-breaker implementations for Go, but
one of the most popular was developed at Sony, called gobreaker
(https://github.com/sony/gobreaker).

Let's look at how we might use it to limit retries for HTTP queries, as
follows:

type HTTP struct {

 client *http.Client

 cb *gobreaker.CircuitBreaker

}

func New(client *http.Client) *HTTP {

 return &HTTP{

 client: client,

 cb: gobreaker.NewCircuitBreaker(

 gobreaker.Settings{

 MaxRequests: 1,

 Interval: 30 * time.Second,

 Timeout: 10 * time.Second,

https://github.com/sony/gobreaker

 ReadyToTrip: func(c gobreaker.Counts) bool {

 return c.ConsecutiveFailures > 5

 },

 },

),

 }

}

func (h *HTTP) Get(req *http.Request) (*http.Response, error) {

 if _, ok := req.Context().Deadline(); !ok {

 return nil, fmt.Errorf("all requests must have a Context

deadline set")

 }

 r, err := h.cb.Execute(

 func() (interface{}, error) {

 resp, err := h.client.Do(req)

 if resp.StatusCode != 200 {

 return nil, fmt.Errorf("non-200 response code")

 }

 return resp, err

 },

)

 if err != nil {

 return nil, err

 }

 return r.(*http.Response), nil

}

The preceding code defines the following:

An HTTP type that holds both of these:

An http.Client for making HTTP requests

A circuit breaker for HTTP requests

A New() constructor for our HTTP type. It creates a circuit breaker with
settings that enforces the following:

Allows one request at a time when in the half-open state

Has a 30-second period where we are half-open after being in a
closed state

Has a closed state that lasts 10 seconds

Enters the closed state if we have five consecutive failures

A Get() method on HTTP that does the following:

Checks that *http.Request has a timeout define

Calls the circuit breaker on our client.Do() method

Converts the returned interface{} to the underlying
*http.Response

This code gives us a robust HTTP client wrapped with a circuit breaker. A
better version of this might pass in the settings to the constructor, but I
wanted it to be packed neatly for the example.

If you'd like to see a demo of the circuit breaker in action, you can see it
here:

https://go.dev/play/p/qpG_l3OE-bu

Using backoff implementations

A backoff implementation wraps RPCs with a client that will retry with a
pause between attempts. These pauses get longer and longer until they
reach some maximum value.

Backoff implementations can have a wide range of methods for calculating
the time period. We will concentrate on exponential backoff in this chapter.

Exponential backoff simply adds delays to each attempt that increases
exponentially as failures mount. As with circuit breakers, there are many
packages offering backoff implementations. For this example, we will use
https://pkg.go.dev/github.com/cenk/backoff, which is an implementation of
Google's HTTP backoff library for Java.

This backoff implementation offers many important features that Google
has found useful over years of studying service failures. One of the most
important features in the library is adding random values to sleep times
between retries. This prevents multiple clients from syncing their retry
attempts.

Other important features include the ability to honor context cancellations
and supply maximum retry attempts.

Let's look at how we might use it to limit retries for HTTP queries, as
follows:

type HTTP struct {

 client *http.Client

https://go.dev/play/p/qpG_l3OE-bu
https://pkg.go.dev/github.com/cenk/backoff

}

func New(client *http.Client) *HTTP {

 return &HTTP{

 client: client,

 }

}

func (h *HTTP) Get(req *http.Request) (*http.Response, error) {

 if _, ok := req.Context().Deadline(); !ok {

 return nil, fmt.Errorf("all requests must have a Context

deadline set")

 }

 var resp *http.Response

 op := func() error {

 var err error

 resp, err = h.client.Do(req)

 if err != nil {

 return err

 }

 if resp.StatusCode != 200 {

 return fmt.Errorf("non-200 response code")

 }

 return nil

 }

 err := backoff.Retry(

 op,

 backoff.WithContext(

 backoff.NewExponentialBackOff(),

 req.Context(),

),

)

 if err != nil {

 return nil, err

 }

 return resp, nil

}

The preceding code defines the following:

An HTTP type that holds both of these:

An http.Client for making HTTP requests

An exponential backoff for HTTP requests

A New() constructor for our HTTP type

A Get() method on HTTP

It also does the following:

Creates a func() error that attempts our request called op

Runs op with retries and exponential delays

Creates an exponential backoff with default values

Wraps that backoff in BackOffContext to honor our context
deadline

For a list of the default values for ExponentialBackoff, see the following
web page:

https://pkg.go.dev/github.com/cenkalti/backoff?
utm_source=godoc#ExponentialBackOff

If you'd like to see a demo of this backoff in action, you can see it here:

https://go.dev/play/p/30tetefu9t0

Combining circuit breakers with backoff

When choosing a prevention implementation, another option is to combine
a circuit breaker with backoff for a more robust implementation.

A backoff implementation can be set to have a maximum time in which
retries are occurring. Wrapping that inside a circuit breaker to make any set
of failed attempts to trigger our circuit breaker not only potentially reduces
our load by slowing our requests, but we can also stop these attempts with
our circuit breaker.

If you would like to see an implementation combining both, you can go to
the following web page:

https://go.dev/play/p/gERsR7fvDck

In this section, we have discussed the need to have mechanisms to prevent
overwhelming your network and services. We have discussed an AWS
outage that was partially due to the failure of such mechanisms. You were
introduced to the circuit-breaker and backoff mechanisms to prevent these

https://pkg.go.dev/github.com/cenkalti/backoff?utm_source=godoc#ExponentialBackOff
https://go.dev/play/p/30tetefu9t0
https://go.dev/play/p/gERsR7fvDck

types of failures. Finally, we have shown two popular packages for
implementing these mechanisms with examples.

In our workflow engine, we will be implementing these prevention
mechanisms for our Google RPC (gRPC) client to prevent issues talking to
our server. You can see that here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/client/client.go

In our next section, we will be looking at preventing workflows from
executing too fast using rate limiters. It is important to enforce both pacing
for workflows' actions and to prevent too many workflows of a type from
executing at the same time.

Using rate limiters to prevent runaway
workflows
DevOps engineers can be responsible for a service that is made up of
dozens of microservices. These microservices can then number in the
dozens to the tens of thousands of instances running in data centers around
the globe. Once a service consists of more than a couple of instances, some
form of rate control needs to exist to prevent bad rollouts or configuration
changes from causing mass destruction.

Some type of a rate limiter for work with forced pause intervals is critical
to prevent runaway infrastructure changes.

Rate limiting is easy to implement, but the scope of the rate limiter is going
to depend on what your workflows are doing. For services, you may only

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/client/client.go

want one type of change to happen at a time or only affect some number of
instances at a time.

The first type of rate limiting would prevent multiple instances of a
workflow type from running at a time; for example, you might only want
one satellite disk erasure to occur at a time.

The second is to limit the number of devices, services, and so on that can be
affected concurrently; for example, you might only want to allow two
routers in a region to be taken out for a firmware upgrade.

For rate limiters to be effective, having a single system that executes actions
for a set of services can greatly streamline these efforts. This allows
centralized enforcement of policies such as rate limiting.

Let's look at the simplest implementation of a rate limiter in Go using
channels.

Case study – Google satell ite disk erase

In the early days, Google did not own all the data center space it does today
—we were in a lot of rented space with a large number of machines. In
some places, however, this was prohibitively expensive. To speed up
connectivity in these places, we would rent small spaces that could have
cache machines, terminate HTTP connections and backhaul the traffic to a
data center. We called these satellites.

Google has an automated process for the decommissioning of machines.
One part of this is called disk erase, whereby the machines have their disks
wiped.

The software was written to grab a list of machines for a satellite and filter
out other machines. Unfortunately, if you run it twice on a satellite, the
filter is not applied, and your list of machines is all machines in every
satellite.

Disk erase was very efficient, putting all machines in all satellites in disk
erase at once before anything could be done.

For a more detailed breakdown, you can read
https://sre.google/workbook/postmortem-culture/, where several Site
Reliability Engineers (SREs) have provided more detail in the context of
postmortems.

We can look at the filtering part of the code and discuss bad design, but
there will always be badly written tools with bad inputs. Even if you
currently have a good culture for code reviews, things slip by. During times
of hypergrowth with new engineers, these types of problems can rear their
ugly heads.

Some tools that are known to be dangerous in the hands of a small group of
experienced engineers can be used quite safely, but new engineers without
experience or ones lacking proper fear can quickly devastate your
infrastructure.

In this case and many other cases, centralized execution with rate limiting
and other mandatory safety mechanisms allow new people to write tools
that may be dangerous but limited in their blast radius.

Channel-based rate limiter

https://sre.google/workbook/postmortem-culture/

A channel-based rate limiter is useful when a single program is handling
the automation. In that case, you can make a limiter that is based on the size
of a channel. Let's make a limiter that allows only a fixed number of items
to be worked on at a time, as follows:

limit := make(chan struct{}, 3)

We now have something that can limit the number of items that can be
worked on.

Let's define a simple type that represents some action to be executed, as
follows:

type Job interface {

 Validate(job *pb.Job) error

 Run(ctx context.Context, job *pb.Job) error

}

This defines a Job that can do the following:

Validate a pb.Job definition passed to us

Run the job with that definition

Here is a very simplistic example of executing a set of jobs contained in
something called a block, which is just a holder of a slice of jobs:

go

wg := sync.WaitGroup{}

for _, block := range work.Blocks {

 limit := make(chan struct{}, req.Limit)

 for _, job := range block.Jobs {

 job := job

 limit <- struct{}{}

 wg.Add()

 go func() {

 defer wg.Done()

 defer func() {

 <-limit

 }()

 job()

 }()

 }

}

wg.Wait()

In the preceding code snippet, the following happens:

We loop through a slice of Block inside the work.Blocks variable.

We loop through a slice of Jobs in the block.Jobs variable.

If we already have req.limit items running, limit <- struct{}{} will
block.

It executes our job concurrently.

When our goroutine ends, we remove an item from our workLimit
queue.

We wait for all goroutines to end.

This code prevents more than req.limit items from happening at a time. If
this were a server, you could make limit a variable shared by all users and

prevent more than three items of work from occurring for all work that was
happening in your system. Alternatively, you could have different limiters
for different classes of work.

A note about that job := job part. This is creating a shadowed variable of
job. This prevents the job variable from being changed inside our goroutine
when the loop and the goroutine are running in parallel by making a copy of
the variable in the same scope as the goroutine. This is a common
concurrency bug for new Go developers, sometimes called the for loop
gotcha. Here is a playground you can use to work through why this is
necessary: https://go.dev/play/p/O9DcUIKuGBv.

We have completed the following example in the playground that you can
play around with to explore these concepts:

https://go.dev/play/p/aYoCTEFvRBI

You can see a channel-based rate limiter in action in the workflow service
inside runJobs() here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/service/executor/executor.
go

Token-bucket rate l imiter

Token buckets are normally used to provide burstable traffic management
for services. There are several types of token buckets, the most popular
being the standard token bucket and the leaky token bucket.

https://go.dev/play/p/O9DcUIKuGBv
https://go.dev/play/p/aYoCTEFvRBI
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/service/executor/executor.go

These are not normally deployed for an infrastructure tool, as clients tend to
be internal and more predictable than external-facing services, but a useful
type of a token bucket can be used to provide pacing. A standard token
bucket simply holds some fixed set of tokens, and those tokens are refilled
at some interval.

Here's a sample one:

type bucket struct {

 tokens chan struct{}

}

func newbucket(size, incr int, interval time.Duration) (*bucket,

error) {

 b := bucket{tokens: make(chan struct{}, size)}

 go func() {

 for _ = range time.Tick(interval) {

 for i := 0; i < incr; i++ {

 select{

 case <-b.tokens:

 continue

 default:

 }

 break

 }

 }

 }()

 return &b, nil

}

func (b *bucket) token(ctx context.Context) error {

 select {

 case <-ctx.Done():

 return ctx.Err()

 case b.tokens <-struct{}{}:

 }

 return nil

}

This preceding code snippet does the following:

Defines a bucket type that holds our tokens

Has newBucket(), which creates a new bucket instance with the
following attributes:

size, which is the total amount of tokens that can be stored

incr, which is how many tokens are added at a time

interval, which is how often to add to the bucket

It also does the following:

Starts a goroutine that will fill the bucket at intervals

Will only fill to the max size value

Defines token(), which retrieves a token:

If no tokens are available, we wait for one.

If a Context is canceled, we return an error.

This is a fairly robust implementation of a standard token bucket. You may
be able to achieve a faster implementation using the atomic package, but it
will be more complex to do so.

An implementation with input checking and the ability to stop a goroutine
created with newBucket() can be found here:

https://go.dev/play/p/6Dihz2lUH-P

If we want, we could use a token bucket to only allow execution at some
rate we define. This can be used inside a job to limit how fast an individual
action can happen or to only allow so many instances of a workflow to
happen within some time period. We will use it in our next section to limit
when a particular workflow is allowed to happen.

Our generic workflow system has a token bucket package here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/token/token.go

In this section, we looked at how rate limiters can be used to prevent
runaway workflows. We talked about Google's satellite disk erase as a case
study on this type of event. We showed how channel-based rate limiters can
be implemented to control concurrent operations. We talked about how a
token bucket could be used to rate-limit a number of executions within a
certain time period.

This section is also laying the foundation of how executing actions, defined
as a job, will work in the workflow system example we are building.

Now that we have some ideas on how we can rate-limit actions, let's look at
how we can develop repeatable workflows that cannot be lost by a client.

https://go.dev/play/p/6Dihz2lUH-P
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/token/token.go

Building workflows that are repeatable
and never lost
As DevOps engineers, we write tooling all the time. In small shops, many
times, these are sets of scripts. In large shops, these are complicated
systems.

As you may have gleaned from the introduction, I believe that tool
execution should always occur in a centralized service, regardless of scale.
A basic service is easy to write, and you can expand and replace it as new
needs arise.

But to make a workflow service work, two key concepts must be true of the
workflows you create, as follows:

They must be repeatable.

They cannot be lost.

The first concept is that running a workflow more than once on the same
infrastructure should produce the same result. We called this idempotency,
borrowing the computer science term.

The second is that a workflow cannot be lost. If a tool creates a workflow to
be executed by a system and the tool dies, the tool must be able to know
that the workflow is running and resume watching it.

Building idempotent workflows

Idempotency is a concept that if you make a call with the same parameters
multiple times, you receive the same result. This is an important concept for

writing certain types of software.

In infrastructure, we modify this definition slightly: an idempotent action is
one that, if repeated with the same parameters and without changes to the
infrastructure outside of this call, will return the same result.

Idempotency is key to making workflows that can be recovered when your
workflow system goes down. Simple workflow systems can just repeat the
entire workflow. More complicated systems can restart from where they left
off.

Many times, developers don't think deeply about idempotency. For
example, let's look at a simple operation to copy some content to a file.
Here is a naive implementation:

func CopyToFile(content []byte, p string) error {

 return io.WriteFile(p, content)

}

The preceding code contains the following:

A content argument that represents content for a file

A p argument, which is the path to the file

It also does the following:

Writes content to file at p

This initially appears to be idempotent. If our workflow was killed after
CopyToFile() was called but before io.WriteFile() was called, we could
repeat this operation, and it initially looks as though if we called this twice,
we would still get the same result.

But what if the file didn't exist and we created it but did not have
permissions to edit an existing file? If our program died before recording
the result of io.WriteFile() but after the change has occurred, a repeat of
this action would report an error, and because the infrastructure did not
change, the action is not idempotent.

Let's modify this to make it idempotent, as follows:

func CopyToFile(content []byte, p string) error {

 if _, ok := os.Stat(p); ok {

 f, err := os.Open(p)

 if err != nil {

 return err

 }

 h0 := sha256.New()

 io.Copy(h0, f)

 h1 := sha256.New()

 h1.Write(content)

 if h0.Sum(nil) == h1.Sum(nil) {

 return nil

 }

 }

 return io.WriteFile(p, content)

}

This code checks if the file exists and then does the following:

If it exists and it already has the content, it doesn't do anything.

If it doesn't, it writes the content.

This uses the standard library's sha256 package to calculate checksum
hashes to validate if the content is the same.

The key to providing idempotency is often simply checking if the work is
already done.

This leads us to a concept called three-way handshakes. This concept can be
used in actions to provide idempotency when you need to talk to other
systems via RPC. We will discuss how to use this concept in terms of
executing workflows, but this can also be used in idempotent actions that
talk to other services.

Using three-way handshakes to prevent
workflow loss

When we write an application that talks to a workflow service, it is
important that the application never loses track of workflows that are
running on our service.

The three-way handshake is a name I borrowed from Transmission
Control Protocol (TCP). TCP has a handshake that establishes a socket
between two machines. It consists of the following:

SYNchonize (SYN), a request to open a connection

ACKnowledge (ACK), an acknowledgment of the request

SYN-ACK, an acknowledgment of the ACK

When a client sends a request to execute a workflow, we never want the
workflow service to execute a workflow that the client doesn't know exists
due to a crash of the client.

This can happen because the client program crashes or the machine the
client is running on fails. If we sent a workflow and the service began
executing after a single RPC, the client could crash after sending the RPC
but before receiving an identifier (ID) for the workflow.

This would lead to a scenario where when the client was restarted, it did not
know the workflow service was already running the workflow, and it might
send another workflow that did the same thing.

To avoid that, instead of a single RPC to execute a workflow, a workflow
should have a three-way handshake to do the following:

Send the workflow to the service

Receive the workflow ID

Send a request to execute the workflow with its ID to the service

This allows the client to record the ID of the workflow before it executes. If
the client crashes before recording the ID, the service simply has a non-
running workflow record. If the client dies after the service begins
execution, when the client restarts, it can check the status of the workflow.
If it is running, it can simply monitor it. If it isn't running, it can request it to
execute again.

For our workflow service, let's create a service definition that supports our
three-way handshake using gRPC, as follows:

service Workflow {

 rpc Submit(WorkReq) returns (WorkResp) {};

 rpc Exec(ExecReq) returns (ExecResp) {};

 rpc Status(StatusReq) returns (StatusResp) {};

}

This defines a service with the following calls:

Submit submits a WorkReq message that describes the work to be done.

Exec executes a WorkReq previously sent to the server with Submit.

Status retrieves the status of a WorkReq.

The content of the messages for these service calls will be discussed in
detail in the next section, but the key to this is that on Submit(), WorkResp
will return an ID, but the workflow will not execute. When Exec() is called,
we will send the ID we received from our Submit() call, and our Status()
call allows us to check the status of any workflow.

We now have the basic definition of a workflow service that includes a
three-way handshake to prevent any loss of workflows by our clients.

In this section, we have covered the basics of repeatable workflows that
cannot be lost by our clients. We covered idempotency and how this leads
to repeatable workflows. We have also shown how a three-way handshake
allows us to prevent a running workflow from becoming lost.

We have also defined service calls that we will use in the workflow system
we are building.

Now, we want to look at how tools can understand the scope of work
(SOW) being executed to provide protection against runaway tooling. To

do this, let's explore building a policy engine.

Using policies to restrict tools
Rate limiting is great for preventing a bad tool run from wiping out a
service when all items of work are equal. But not all items of work are
equal, as some machine services are more important and fragile than others
(such as your service's database systems). Also, machines or services may
need to be put into logical groupings that can only happen in some limited
amount. These could be broken up by sites, geographical areas, and so on.

This logic is generally specific to some set of work items. This bundling,
which we will call a SOW, can be quite complex.

To safely do work, you must understand your scope. This might be how you
can safely update database schemas for a particular service or how many
route reflectors in a network region can be modified at a time.

To implement safety around a SOW, we will introduce the idea of policies.
Policies will be used to check a set of work that is entering into the system
for compliance. If it is not compliant, it will be rejected.

As an example, we will look at handling disk erasures similar to Google's
disk erase case study. Here are some protections we will add:

Only allow a single satellite disk erasure to happen every hour

Rate-limit so that we can only erase five machines at a time

Must pause for 1 minute after each five-machine erasure

To be able to make a policy engine, we must have a common way to define
what kind of work will be executed, in what order, and with what
concurrency.

We also want the tool engineers to only define the work to be done and
submit it to a separate service that executes it. This allows for the
centralization of control.

Let's define the service that could do that in gRPC.

Defining a gRPC workflow service

In the previous section, we talked about a service definition that defines our
three-way handshake. Let's look at the arguments to those calls to see what
our clients will send the workflow service, as follows:

message WorkReq {

 string name = 1;

 string desc = 2;

 repeated Block blocks = 3;

}

message WorkResp {

 string id = 1;

}

message Block {

 string desc = 1;

 int32 rate_limit = 2;

 repeated Job jobs = 3;

}

message Job {

 string name = 1;

 map<string, string> args = 2;

}

These messages are used to define the work that a client wants the server to
execute and contain the following attributes:

WorkReq message contains the name of the work and all Block messages
that make up a workflow.

The Block message describes a body of work in the workflow; each
Block executes one at a time and has the following attributes:

Has a set of Job messages that describe the work to be done

At what concurrency to execute the work described by the Job
messages

The Job message describes the server's Job type on the server
to call and with which arguments.

The WorkResp message returns the ID that refers to this WorkReq:

Uses UUIDv1 IDs that encapsulate time into the ID so we know
when it was submitted to the system

Uses that time mechanic to prevent execution if the Exec() RPC
is not called in by some expiration time

Exec messages provide the ID you want to execute, as illustrated here:

message ExecReq {

 string id = 1;

}

message ExecResp {}

There are more messages and enums to allow for a Status call. You can find
the complete protocol buffer definition here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/proto/diskerase.proto

Now that we have messages to describe the work to be done, let's look at
creating a policy engine.

Creating a policy engine

A policy checks our work to make sure some parameter is allowed. In our
case, these parameters are inside a pb.WorkReq instance. We want policies to
be generic so that they can be reused against multiple types of work
described by a pb.WorkReq. Once defined, we will have a policy.json file
that defines which policies are applied against a specifically named
pb.WorkReq.

To make this work, each policy will need to receive the settings for the
policy that should be applied to a specific workflow. Let's define two
interfaces that describe a policy and its settings, as follows:

type Settings interface{

 Validate() error

}

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/proto/diskerase.proto

type Policy interface {

 Run(ctx context.Context, name string, req *pb.WorkReq,

settings Settings) error

}

Settings will always be implemented as some struct. Its Validate() method
will be used to validate that the fields for that struct are set to valid values.

Policy runs our implementation against a pb.WorkReq with the settings
provided.

Each WorkReq that is submitted will have a list of policies to apply. This is
defined as follows:

type PolicyArgs struct {

 Name string

 Settings Settings

}

Name is the name of the policy to invoke. Settings are the settings for that
invocation.

The configuration file will detail a set of PolicyArgs arguments to run. Each
policy will need to be registered in the system. We are going to skip the
registration method for policies, but this is where the policies are registered:

var policies = map[string]registration{}

type registration struct {

 Policy Policy

 Settings Settings

}

When a pb.WorkReq enters the system, we want to invoke those policies
concurrently against that pb.WorkReq. Let's have a look at how that would
work here:

func Run(ctx context.Context, req *pb.WorkReq, args ...PolicyArgs)

error {

 if len(args) == 0 {

 return nil

 }

 var cancel context.CancelFunc

 ctx, cancel = context.WithCancel(ctx)

 defer cancel()

 // Make a deep clone so that no policy is able to make

changes.

 creq := proto.Clone(req).(*pb.WorkReq)

 runners := make([]func() error, 0, len(args))

 for _, arg := range args {

 r, ok := policies[arg.Name]

 if !ok {

 return fmt.Errorf("policy(%s) does not exist",

arg.Name)

 }

 runners = append(

 runners,

 func() error {

 return r.Policy.Run(ctx, arg.Name, creq,

arg.Settings)

 },

)

 }

 wg := sync.WaitGroup{}

 ch := make(chan error, 1)

 wg.Add(len(runners))

 for _, r := range runners {

 r := r

 go func() {

 defer wg.Done()

 if err := r(); err != nil {

 select {

 case ch <- err:

 cancel()

 default:

 }

 return

 }

 }()

 }

 wg.Wait()

 select {

 case err := <-ch:

 return err

 default:

 }

 if !proto.Equal(req, creq) {

 return fmt.Errorf("a policy tried to modify a request:

this is not allowed as it is a security violation")

 }

 return nil

}

This preceding code defines the following:

If the configuration for a pb.WorkReq has no policies, return.

Create a Context object so that we can cancel policies being run on an
error.

Clone our pb.WorkReq so that it cannot be changed by a Policy.

Make sure each Policy that is named actually exists.

Run all our policies with the settings that we were given.

If there is an error in any of them, record it and cancel all running
policies.

Make sure the copy of pb.WorkReq is the same as what was submitted.

We now have the main parts of a policy engine. The full engine can be
found here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/policy/policy.go

The Reader type that is used to read our policy.json file where we define
policies is detailed here:

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/policy/policy.go

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/policy/config/config.go

Let's look at writing a policy to be used by our engine.

Writing a policy

One of the most basic policies that you can define against a workflow is to
limit which job types are allowed in that workflow.

This prevents some new type of work from being introduced into a
workflow where no one has thought about policies that need to be applied
to that Job.

For our first Policy implementation, let's write one that checks our
pb.WorkReq to allow only Job types we have defined in our policy
configuration. If we receive an unexpected Job, we reject the pb.WorkReq.

Let's define the settings for our Policy, as follows:

type Settings struct {

 AllowedJobs []string

}

func (s Settings) Validate() error {

 for _, n := range s.AllowedJobs {

 _, err := jobs.GetJob(n)

 if err != nil {

 return fmt.Errorf("allowed job(%s) is not defined in

the proto")

 }

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/policy/config/config.go

 }

 return nil

}

func (s Settings) allowed(name string) bool {

 for _, jn := range s.AllowedJobs {

 if jn == name {

 return true

 }

 }

 return false

}

This preceding code contains the following:

Our specific Settings that implement policy.Settings

AllowedJobs, which are the names of the jobs we allow

A Validate() method that validates the listed Jobs exist

An allowed() method that checks a given name against what we allow

It also uses our jobs package to do these checks

With these settings, a user can define a policy for any workflow in our
configuration file that defines which Job types are allowed.

Let's define a type that implements the Policy interface as follows:

type Policy struct{}

func New() (Policy, error) {

 return Policy{}, nil

}

func (p Policy) Run(ctx context.Context, name string, req

*pb.WorkReq, settings policy.Settings) error {

 const errMsg = "policy(%s): block(%d)/job(%d) is a type(%s)

that is not allowed"

 s, ok := settings.(Settings)

 if !ok {

 return fmt.Errorf("settings were not valid")

 }

 for blockNum, block := range req.Blocks {

 for jobNum, job := range block.Jobs {

 if ctx.Err() != nil {

 return ctx.Err()

 }

 if !s.allowed(job.Name) {

 return fmt.Errorf(errMsg, blockNum, jobNum,

job.name)

 }

 }

 }

 return nil

}

This preceding code does the following:

Defines our policy, which implements the policy.Policy interface

Defines a New() constructor

Implements the policy.Policy.Run() method

Validates the policy.Settings value passed are the Settings for this
Policy

Loops through all our req.Blocks and gets our Job instances

Checks each Job has an allowed name

We now have a policy we can apply to restrict Job types in a pb.WorkReq.
This is how we could apply that in our configuration file to a workflow that
does satellite disk erasures:

{

 "Name": "SatelliteDiskErase",

 "Policies": [

 {

 "Name": "restrictJobTypes",

 "Settings": {

 "AllowedJobs": [

 "validateDecom",

 "diskErase",

 "sleep",

 "getTokenFromBucket"

]

 }

 }

]

}

This policy has the following attributes:

Is applied only to workflows called "SatelliteDiskErase"

Has a single policy applied, "restrictJobTypes", which we defined

Allows only Job types called one of the following:

"validateDecom"

"diskErase"

"sleep"

"getTokenFromBucket"

You can see the full Policy implementation here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/policy/register/restrictjobt
ypes/restrictjobtypes.go

You can find other policies we have defined in directories here:

https://github.com/PacktPublishing/Go-for-
DevOps/tree/rev0/chapter/16/workflow/internal/policy/register

You can see the policy configuration currently defined here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/policy/config/config.go

Cautions on policy engines

Before we move on, I would like to provide a word of caution.

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/policy/register/restrictjobtypes/restrictjobtypes.go
https://github.com/PacktPublishing/Go-for-DevOps/tree/rev0/chapter/16/workflow/internal/policy/register
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/policy/config/config.go

Simplicity is the key to sustainable software. I define sustainable software
as having the following attributes:

Easy to debug

Users can understand how to use it in a few hours at most

Policy engines can be amazingly effective in preventing major problems,
acting as a secondary check on sanity to some set of actions. As with
security, it should provide substantial benefits while only introducing a
small burden.

Policy engines are easy to overdevelop, with the lofty goal of 100%
protection while introducing a large amount of complexity and burden.
Often, I will see policy engines that are not tightly coupled to a single
workflow system. Instead, engineers will design a generic system that tries
to deal with multiple tooling systems.

If your policy statements start to look like a programming language (if
statements, loops, functions), you are moving toward complexity. As policy
engines become generic, they become complex to deal with. If you need
policy enforcement in multiple places, this is another warning sign.

Not all workflows can achieve safety with generic policies. When you have
a complex workflow, feel free to design a policy that does deep checks for a
single workflow. Keep your if statements, loops, and functions in your
code, not your configuration.

I've seen engineers write lots of overcomplicated safety systems. Focus on
providing guard rails that are easy to write and update while covering 80%
of cases, not 100% of cases. With the division between software that creates

a set of actions to run and a service that validates those actions against
policies, you are unlikely to have a disk-erase type of event in the future,
and importantly, you will be able to maintain velocity.

In this section, we have discussed what an SOW would be. To allow our
workflow service to understand an SOW, to enforce it, we have designed a
policy engine and created our first policy that can be applied to workflows
submitted to our system.

Even with policies, something is going to go wrong. This could simply be a
confluence of events that makes a normally safe operation unsafe. To be
able to respond quickly to these types of events, let's look at introducing
emergency-stop capabilities.

Building systems with an emergency stop
Systems are going to run amok. This is a simple truth that you need to come
to terms with early in infrastructure tooling development.

When you are a small company, there is usually a very small group of
people who understand the systems well and watch over any changes to
handle problems. If those people are good, they can quickly respond to a
problem. Usually, these people are the developers of the software.

As companies start to grow, jobs begin to become more specialized. The
larger the company, the more specialized the jobs. As that happens, the first
responders to major issues don't have the access or knowledge to deal with
these problems.

This can create a critical gap between recognition of a major problem and
stopping the problem from getting worse.

This is where the ability to allow first responders to stop changes comes
into play. We call this an emergency-stop ability.

Understanding emergency stops

There are multiple ways to build an emergency-stop system, but the basics
are the same. The software will check some data store that contains the
name of the workflow you are executing and what the emergency-stop state
is.

The most simplistic version of an emergency-stop system has two modes, as
follows:

Go

Stop

The software that does any type of work would need to reference the system
at intervals. If it cannot find itself listed or the system indicates it is in a
Stop state, the software terminates, or if it is an execution system, it
terminates that workflow.

More complicated versions of this might contain site information so that all
tooling running at a site is stopped, or it might include other states such as
Pause. These are more complicated to implement, so we will stick to this
more simplistic form here.

Let's look at what an implementation of this might look like.

Building an emergency-stop package

The first thing we need to do is define what the data format will look like.
For this exercise, we will make it JavaScript Object Notation (JSON) that
will be stored on disk. The disk might be a distributed filesystem or a lock
file in etcd. And while I'm using JSON here, this could be a single table in a
database or a protocol buffer.

Let's define the status our workflows can have, as follows:

// Status indicates the emergency stop status.

type Status string

const (

 Unknown Status = ""

 Go Status = "go"

 Stop Status = "stop"

)

This defines a few statuses, as follows:

Unknown, which means that the status was not set

Go, which indicates the workflow can be executed

Stop, which indicates the workflow should stop

It is key to know that any status that is not Go is considered Stop.

Now, let's define an emergency stop entry that can be converted to and from
JSON, as follows:

type Info struct {

 // Name is the workflow name.

 Name string

 // Status is the emergency stop status.

 Status Status

}

This has the following fields:

Name, which is a unique name for a workflow

Status, which details the emergency-stop status for this workflow

Another key to an emergency-stop package is that every workflow must
have an entry. If a check is made for an entry that is not named, it is treated
as being set to Stop.

Now, we need to validate an entry. Here's how to go about this:

func (i Info) validate() error {

 i.Name = strings.TrimSpace(i.Name)

 if i.Name == "" {

 return fmt.Errorf(“es.json: rule with empty name”)

 }

 switch i.Status {

 case Go, Stop:

 default:

 return fmt.Errorf("es.json: rule(%s) has invalid

Status(%s), ignored", i.Name, i.Status)

 }

 return nil

}

The preceding code does the following:

Removes any spaces around a workflow name.

If the Name value is empty, it is an error.

If the Status value is not Go or Stop, it is an error.

We treat these errors as simply being that the rule doesn't exist. If a rule
doesn't exist, then a workflow is considered in a Stop state.

We now need something that reads this emergency-stop file at intervals or
receives notifications on changes. If a service cannot reach the datastore
holding our emergency-stop information after some small amount of time, it
should report a Stop state.

Let's make a Reader type that accesses our emergency-stop data, as follows:

var Data *Reader

func init() {

 r, err := newReader()

 if err != nil {

 panic(fmt.Sprintf("es error: %s", err))

 }

 Data = r

}

type Reader struct {

 entries atomic.Value // map[string]Info

 mu sync.Mutex

 subscribers map[string][]chan Status

}

func newReader() (*Reader, error) {...}

func (r *Reader) Subscribe(name string) (chan Status, Cancel){...}

func (r *Reader) Status(name string) Status {...}

The preceding code does the following:

Provides a Data variable that is the single access point for our Reader
type

Provides an init() function that accesses our emergency-stop data on
program start

Provides a Reader type that allows us to read our emergency-stop states

Provides a Subscribe() function that returns status changes for a
workflow and a Cancel() function that is called when you no longer
want to subscribe

Provides a Status() function that returns the status once

Provides newReader, which is our Reader constructor

The full code is not provided here but can be located at the following link:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/es/es.go

We only allow emergency-stop information to be accessed through Data,
which is acting as a singleton. This prevents multiple instances from polling
for the same data. I prefer having the singleton accessed through a variable
to make it clear that a single instance exists.

We now have a package that can tell us our emergency-stop states. Let's
look at how we can use this to cancel something.

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/es/es.go

Using the emergency-stop package

Now that we have a package that can read our emergency-stop data, let's
show how we can use it, as follows:

type Job interface{

 Run(ctx context.Context)

}

type Work struct {

 name string

 jobs []Job

}

func (w *work) Exec(ctx context.Context) error{

 esCh, cancelES := es.Data.Subscribe(w.name)

 defer cancelES() // Stop subscribing

 if <-esCh != es.Go { // The initial state

 return fmt.Errorf("es in Stop state")

 }

 var cancel context.CancelFunc

 ctx, cancel = context.WithCancel(ctx)

 defer cancel()

 // If we get an emergency stop, cancel our context.

 // If the context gets cancelled, then just exit.

 go func() {

 select {

 case <-ctx.Done():

 return

 case <-esCh:

 cancel()

 }

 }()

 for _, job := range w.jobs {

 if err := job(ctx); err != nil {

 return err

 }

 }

 return nil

}

This preceding code does the following:

Creates a Job that executes some action we want to perform.

Creates a Work type that executes some set of Jobs.

Defines Exec(), which executes all Jobs.

Subscribes to emergency stop with a given workflow name.

If we don't start in the Go state, it returns an error.

Executes a goroutine that calls cancel() if we receive a Stop Status
type.

Executes the Job instances held in work .jobs.

This is a simple example that uses a context.Context object to stop any Job
that is executing when cancel() is called on our context.Context object. If

we receive a state change with an emergency stop (which is always Stop),
we call cancel().

A more complete example of using the es package can be found in these
two files:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/service/service.go

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/service/executor/execu
tor.go

An example es.json file that stores emergency-stop data can be found here:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/configs/es.json

You can see this integrated into our workflow system as part of our
Work.Run() method at the following link:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/internal/service/executor/executor.
go

Case study – Google's network backbone
emergency stop

During an early postmortem for a network tooling problem, it was
identified that on-call engineers responding to some major event needed a
way to stop automations. At the time, we had a lot of small tools that could

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/service/service.go
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/service/executor/executor.go
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/configs/es.json
https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/internal/service/executor/executor.go

be executing against the network at any given time. An on-call engineer,
recognizing a problem, had no good way of stopping other engineers from
executing work or stopping a runaway program.

The first emergency-stop package was created from this postmortem and
integrated into existing tooling. This worked by taking the tool's subscriber
name and matching it against the regular expressions (regexes) contained
in an emergency-stop file. This check would occur anytime the file changed
or at the start of the execution of the tool.

This was used to stop several automations that were causing problems from
growing out of control. However, the implementation was flawed for an
organization growing at our rate.

First, it required that every tool developer integrate the emergency-stop
package. As more teams outside the initial core team developed tools, they
wouldn't know this was a requirement. This led to rogue tooling. And as
Google developed its own network gear, tooling development spanned
departments that didn't coordinate in many respects. This meant that many
tools never had an emergency stop integrated or it was done in a separate
system.

Even when an emergency stop was integrated into a tool, it was sometimes
a flawed implementation that didn't work. Every integration relied on an
engineer doing the right thing.

Finally, an emergency stop had an assumption of a Go state. So, if there was
no rule listed that matched your subscriber ID, it was assumed it was in a Go
state. This meant that many times, you had to just stop everything or had to

dig through code to figure out a subscriber ID so that you could re-enable
everything but the problem tool.

To solve these problems in our backbone, we centralized executions of our
backbone work into a central system. This provided us with a single, well-
tested emergency-stop implementation, and after a long audit, we switched
the emergency-stop package to stop anything that didn't match a rule.

This provided our first responders the ability to stop backbone automation
and tools during any major problem. If we found a problem tool, we could
allow everything else to run except that tool until proper fixes were made.

In this section, you have learned what an emergency-stop system is, why it
is important, how to implement a basic one, and finally, how to integrate an
emergency-stop package into tooling.

Summary
This chapter has provided a basic understanding of how to write tooling that
provides safety in the face of chaos. We have shown you how circuit
breakers or exponential backoff can save your network and services from
overload when unexpected problems occur. We have shown how rate-
limiting automation can prevent runaway workflows before responders can
react. You have learned about how tool scoping via a centralized policy
engine can provide a second layer of safety without overburdening your
developers. We have learned the importance of idempotent workflows to
allow workflow recovery. And finally, we have conveyed how an
emergency-stop system can be utilized by first responders by quickly limit
damage to automation systems while investigating a problem.

At this time, if you haven't played with the workflow system that we have
been developing, you should explore the code and play with the examples.
The README.md file will help you get started. You can find this at the
following link:

https://github.com/PacktPublishing/Go-for-
DevOps/blob/rev0/chapter/16/workflow/README.md

https://github.com/PacktPublishing/Go-for-DevOps/blob/rev0/chapter/16/workflow/README.md

Packt.com

Subscribe to our online digital library for full access to over 7,000 books
and videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit
our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks
and Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version

http://packt.com/

at packt.com and as a print book customer, you are entitled to a discount on
the eBook copy. Get in touch with us at customercare@packtpub.com for
more details.

At www.packt.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

http://packt.com/
http://www.packt.com/

Learning DevOps - Second Edition

Mikael Krief

ISBN: 9781801818964

https://www.packtpub.com/product/cloud_and_networking/9781801818964

Understand the basics of infrastructure as code patterns and practices

Get an overview of Git command and Git flow

Install and write Packer, Terraform, and Ansible code for provisioning
and configuring cloud infrastructure based on Azure examples

Use Vagrant to create a local development environment

Containerize applications with Docker and Kubernetes

Apply DevSecOps for testing compliance and securing DevOps
infrastructure

Build DevOps CI/CD pipelines with Jenkins, Azure Pipelines, and
GitLab CI

Explore blue-green deployment and DevOps practices for open sources
projects

The DevOps Career Handbook

John Knight, Nate Swenson

ISBN: 9781803230948

https://www.packtpub.com/product/cloud_and_networking/9781803230948

Understand various roles and career paths for DevOps practitioners

Discover proven techniques to stand out in the application process

Prepare for the many stages of your interview, from the phone screen to
taking the technical challenge and then the onsite interview

Network effectively to help your career move in the right direction

Tailor your resume to specific DevOps roles

Discover how to negotiate after you've been extended an offer

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general
application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Share your thoughts
Now you've finished Go for DevOps, we'd love to hear your thoughts! If
you purchased the book from Amazon, please click here to go straight to
the Amazon review page for this book and share your feedback or leave a
review on the site that you purchased it from.

Your review is important to us and the tech community and will help us
make sure we're delivering excellent quality content.

http://authors.packtpub.com/
https://packt.link/r/1801818894

	Go for DevOps
	Contributors
	About the authors
	About the reviewers
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used
	Get in touch
	Share your thoughts

	Section 1: Getting Up and Running with Go
	Chapter 1: Go Language Basics
	Technical requirements
	Using the Go Playground
	Utilizing Go packages
	Declaring a package
	Importing a package
	Using a package
	Package name conflicts
	Packages must be used
	A Go Hello World

	Using Go's variable types
	Go's types
	Declaring variables
	Variable scopes and shadowing
	Function/statement variable must be used

	Looping in Go
	C style
	Removing the init statement
	Remove the post statement too and you have a while loop
	Creating an infinite loop

	Using conditionals
	if statements
	else

	Learning about functions
	Returning multiple values and named results
	Variadic arguments
	Anonymous functions

	Defining public and private
	Using arrays and slices
	Arrays
	Slices
	Extracting all values
	Understanding maps
	Declaring a map
	Accessing values
	Adding new values
	Extracting all values

	Understanding Go pointers
	Memory addresses
	Function arguments are copies
	Pointers to the rescue

	Getting to know about structs
	Declaring a struct
	Declaring a custom type
	Custom struct types
	Adding methods to a type
	Changing a field's value
	Changing a field's value in a method
	Constructors

	Comprehending Go interfaces
	Defining an interface type
	Important things about interfaces
	The blank interface – Go's universal value
	Type assertion

	Summary

	Chapter 2: Go Language Essentials
	Handling errors in Go
	Creating an error
	Using an error
	Creating named errors
	Custom errors
	Wrapping errors

	Utilizing Go constants
	Declaring a constant
	Enumeration via constants
	Printing enumerators

	Using defer, panic, and recover
	defer
	panic
	recover

	Utilizing goroutines for concurrency
	Starting a goroutine
	Synchronization
	WaitGroups
	Channels
	Sending/receiving
	select statements
	Channels as an event signal
	Mutexes
	RWMutex

	Understanding Go's Context type
	Using a Context to signal a timeout
	Honoring a context when receiving
	Context in the standard library
	Context to pass values
	Best practices

	Utilizing Go's testing framework
	Creating a basic test file
	Creating a simple test
	Table Driven Tests (TDT)
	Creating fakes with interfaces
	Third-party testing packages

	Generics – the new kid on the block
	Type parameters
	Using type constraints
	We could do better with constraints
	Current built-in constraints
	Type constraints with methods
	Adding type parameters to struct types
	Specifying the type when calling a generic function
	Gotchas to watch for
	When to use generics

	Summary

	Chapter 3: Setting Up Your Environment
	Technical requirements
	Installing Go on your machine
	macOS installation using the package installer
	macOS installation via Homebrew
	Windows installation using MSI
	Linux
	Other platforms
	A note on Go compiler version compatibility

	Building code locally
	Creating a module directory and go.mod file
	Updating a module when adding dependencies
	Adding a hello world
	Running our first program

	Summary

	Chapter 4: Filesystem Interactions
	All I/O in Go are files
	I/O interfaces

	Reading and writing to files
	Reading local files
	Writing local files
	Reading remote files

	Streaming file content
	Stdin/Stdout/Stderr are just files
	Reading data out of a stream
	Writing data into a stream

	OS-agnostic pathing
	What OS/platform am I running?
	Using filepath
	Relative and absolute pathing

	OS-agnostic filesystems
	io.fs filesystems
	embed
	Walking our filesystem
	The io/fs future

	Summary

	Chapter 5: Using Common Data Formats
	Technical requirements
	CSV files
	Basic value separation using the strings package
	Using the encoding/csv package
	Using excelize when dealing with Excel

	Popular encoding formats
	The Go field tags
	JSON
	YAML encoding

	Summary

	Chapter 6: Interacting with Remote Data Sources
	Technical requirements
	Accessing SQL databases
	Connecting to a Postgres database
	Querying a Postgres database
	Null values
	Writing data to Postgres
	Transactions
	Postgres-specific types
	Other options
	Storage abstractions
	Case study – data migration of an orchestration system – Google

	Developing REST services and clients
	REST for RPCs

	Developing gRPC services and clients
	Protocol buffers
	Stating the prerequisites
	Generating your packages
	Writing a gRPC client
	Writing a gRPC server
	Creating a server binary
	Creating a client binary
	Company-standard RPC clients and servers

	Summary

	Chapter 7: Writing Command-Line Tooling
	Technical requirements
	Implementing application I/O
	The flag package
	Custom flags
	Basic flag error handling
	Shorthand flags
	Accessing non-flag arguments
	Retrieving input from STDIN

	Using Cobra for advanced CLI applications
	Code organization
	The optional Cobra generator
	The command package

	Handling OS signals
	Capturing an OS signal
	Using Context to cancel

	Summary

	Chapter 8: Automating Command-Line Tasks
	Technical requirements
	Using os/exec to automate local changes
	Determining the availability of essential tools

	Using SSH in Go to automate remote changes
	Connecting to another system

	Designing safe, concurrent change automations
	Components of a change
	Writing a concurrent job
	Case study – Network rollouts

	Writing a system agent
	Designing a system agent
	Implementing Install
	Implementing SystemPerf

	Summary

	Section 2: Instrumenting, Observing, and Responding
	Chapter 9: Observability with OpenTelemetry
	Technical requirements
	An introduction to OpenTelemetry
	Reference architecture for OpenTelemetry
	OpenTelemetry components

	Logging with context
	Our first log statement
	Structured and leveled logs with Zap
	Ingesting, transforming, and exporting logs using OpenTelemetry

	Instrumenting for distributed tracing
	The life cycle of a distributed trace
	Correlating traces and logs
	Adding log entries to spans

	Instrumenting for metrics
	The life cycle of a metric
	Client/server metrics with OpenTelemetry

	Alerting on metrics abnormalities
	Adding and configuring Alertmanager

	Summary

	Chapter 10: Automating Workflows with GitHub Actions
	Technical requirements
	Understanding the basics of GitHub Actions
	Exploring the components of a GitHub Action
	How to build and trigger your first GitHub Action

	Building a continuous integration workflow
	Introducing the tweeter command-line tool
	Goals of the tweeter continuous integration workflow
	Continuous integration workflow for tweeter

	Building a release workflow
	GitHub releases
	Release automation for tweeter

	Creating a custom GitHub Action using Go
	Basics of custom actions
	Goals for the tweeter custom GitHub Action
	Creating the tweeter action

	Publishing a custom Go GitHub Action
	The basics of publishing actions
	Goals for publishing the tweeter custom action
	Managing action semantic versioning
	Publishing the tweeter action to the GitHub Marketplace

	Summary

	Chapter 11: Using ChatOps to Increase Efficiency
	Technical requirements
	Environment architecture
	Using an Ops service
	Building a basic chatbot
	Creating event handlers
	Case Study – Regexes versus Lexer and Parser

	Creating our Slack application
	Running the applications

	Summary

	Section 3: Cloud ready Go
	Chapter 12: Creating Immutable Infrastructure Using Packer
	Technical requirements
	Building an Amazon Machine Image
	Setting up an AWS source
	Defining a build block and adding some provisioners
	Executing a Packer build

	Validating images with Goss
	Creating a spec file
	Adding a Packer provisioner

	Customizing Packer with plugins
	Writing your own plugin
	Releasing a plugin
	Using our plugin in a build
	Debugging a Packer plugin

	Summary

	Chapter 13: Infrastructure as Code with Terraform
	Technical requirements
	An introduction to IaC
	Understanding the basics of Terraform
	Initializing and applying infrastructure specs using Terraform

	Understanding the basics of Terraform providers
	Defining and provisioning cloud resources

	Building a pet store Terraform provider
	Resources for building custom providers
	The pet store provider
	Publishing custom providers

	Summary

	Chapter 14: Deploying and Building Applications in Kubernetes
	Technical requirements
	Interacting with the Kubernetes API
	Creating a KinD cluster
	Using kubectl to interact with the API

	Deploying a load-balanced HTTP application using Go
	It all starts with main
	Creating a ClientSet
	Creating a namespace
	Deploying the application into the namespace
	Creating the NGINX deployment
	Waiting for ready replicas to match desired replicas
	Creating a Service to load-balance
	Creating an ingress to expose our application on a local host port
	Streaming pod logs for the NGINX application

	Extending Kubernetes with custom resources and operators
	Custom Resource Definitions
	Controllers
	Standing on the shoulders of giants

	Building a pet store operator
	Initializing the new operator

	Summary

	Chapter 15: Programming the Cloud
	Technical requirements
	What is the cloud?
	Learning the basics of the Azure APIs
	A background on cloud APIs and SDKs
	Microsoft Azure identity, RBAC, and resource hierarchy
	Creating an Azure account and accessing the API

	Building infrastructure using Azure Resource Manager
	Azure SDK for Go
	Setting up your local environment
	Building an Azure virtual machine

	Using provisioned Azure infrastructure
	Building an Azure Storage account

	Summary

	Chapter 16: Designing for Chaos
	Technical requirements
	Using overload prevention mechanisms
	Case study – AWS client requests overwhelm the network
	Using circuit breakers
	Using backoff implementations
	Combining circuit breakers with backoff

	Using rate limiters to prevent runaway workflows
	Case study – Google satellite disk erase
	Channel-based rate limiter
	Token-bucket rate limiter

	Building workflows that are repeatable and never lost
	Building idempotent workflows
	Using three-way handshakes to prevent workflow loss

	Using policies to restrict tools
	Defining a gRPC workflow service
	Creating a policy engine
	Writing a policy
	Cautions on policy engines

	Building systems with an emergency stop
	Understanding emergency stops
	Building an emergency-stop package
	Using the emergency-stop package
	Case study – Google's network backbone emergency stop

	Summary
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share your thoughts

