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CHAPTER 00

Introduction

Master fundamentals by building your own DB

What to learn?

Complex systems like databases are built on a few simple principles.

1. Atomicity & durability. A DB is more than files!

• Persist data with fsync.
• Crash recovery.

2. KV store based on B-tree.

• Disk-based data structures.
• Space management with a free list.

3. Relational DB on top of KV.

• How tables and indexes are mapped to low-level B-trees.
• SQL-like query language; parser & interpreter.

4. Concurrency control for transactions.

Code a database in 3000 LoC, incrementally

It’s amazing that an interesting and broad topic can be captured in 3000 LoC. You may have
experience with larger projects, but not all experience is equal.

LoC Step

366 B+tree data structure.
601 Append-only KV.
731 Practical KV with a free list.

1107 Tables on KV.
1294 Range queries.
1438 Secondary indexes.
1461 Transactional interfaces.
1702 Concurrency control.
2795 SQL-like query language.
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Learn by doing: principles instead of jargon

Database literature is full of confusing, overloaded jargon with no consistent meaning. It’s
easy to get lost when reading about it. On the other hand, Feymann once said, “what I
can’t build, I don’t understand”. Can you build a database by reading about databases? Test
your understanding!

While there is a lot to learn, not all knowledge is equally important, it takes only a few
principles to build a DB, so anyone can try.

Topic 1: durability and atomicity

More than a data format

Smartphones use SQLite (a file-based DB) heavily. Why store data in SQLite instead of
some other format, say JSON? Because you risk data loss if it crashes during an update.
The file can end up half-written, truncated, or even missing.

There are techniques to fix this, and they lead to databases.

Durability and atomicity with `fsync`

Atomicity means that data is either updated or not, not in between. Durability means that
data is guaranteed to exist after a certain point. They are not separate concerns, because we
must achieved both.

The first thing to learn is the fsync syscall. A filewrite doesn’t reach disk synchronously, there
are multiple levels of buffering (OS page cache and on-device RAM). fsync flushes pending
data and waits until it’s done. This makes writes durable, but what about atomicity?

Topic 2: indexing data structures

Control latency and cost with indexes

A DB turns a query into a result without the user knowing how. But the result is not
the only concern, latency and cost (memory, IO, computation) are also relevant, hence the
distinction between analytical (OLAP) and transactional (OLTP).

• OLAP can involve large amounts of data, with aggregation or join operations. Indexing
can be limited or non-existent.

• OLTP touches small amounts of data using indexes. Low latency & cost.

The word “transactional” is not about DB transactions, it’s just a funny jargon.
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In-memory data structures vs. on-disk data structures

There are extra challenges when putting an indexing data structure on disk. (See my book
“Build Your Own Redis” for a much easier in-memory DB).

One of the problems is updating disk data in-place, because you have to deal with corrupted
states after a crash. Disks are not just slower RAM.

The R in RAM stands for “random”, which is another problem for disk-based data because
random access is much slower than sequential access, even on SSDs. So data structures like
binary trees are not viable while B-trees and LSM-trees are OK. Concurrent access to data
structures is also a topic.

Topic 3: Relational DB on KV
Two layers of DB interfaces

SQL is almost a synonym for database. But SQL is just a user interface, it’s not fundamental
to a DB. What’s important is the functionalities underneath.

Another much simpler interface is key-value (KV). You can get, set, and delete a single
key, and most importantly, list a range of keys in sorted order. KV is simpler than SQL
because it’s one layer lower. Relational DBs are built on top of KV-like interfaces called
storage engines.

Query languages: parsers and interpreters

The last step is easy, despite the larger LoC. Both the parser and the interpreter are coded
with nothing but recursion! The lesson can be applied to almost any computer language, or
creating your own programming language or DSL (See my book “From Source Code To
Machine Code” for more challenges).

Build Your Own X book series
X includes Redis, web server and compiler. Read the web version on the website.

https://build-your-own.org
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CHAPTER 01

From Files To Databases

Let’s start with files, and examine the challenges we face.

1.1 Updating files in-place

Let’s say you need to save some data to disk; this is a typical way to do it:

func SaveData1(path string, data []byte) error {

fp, err := os.OpenFile(path, os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0664)

if err != nil {

return err

}

defer fp.Close()

_, err = fp.Write(data)

if err != nil {

return err

}

return fp.Sync() // fsync

}

This code creates the file if it does not exist, or truncates the existing one before writing the
content. And most importantly, the data is not persistent unless you call fsync (fp.Sync() in
Go).

It has some serious limitations:

1. It updates the content as a whole; only usable for tiny data. This is why you don’t
use Excel as a database.

2. If you need to update the old file, you must read and modify it in memory, then
overwrite the old file. What if the app crashes while overwriting the old file?

3. If the app needs concurrent access to the data, how do you prevent readers from getting
mixed data and writers from conflicting operations? That’s why most databases are
client-server, you need a server to coordinate concurrent clients. (Concurrency is
more complicated without a server, see SQLite).

4
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1.2 Atomic renaming

Replacing data atomically by renaming files

Many problems are solved by not updating data in-place. You can write a new file and delete
the old file.

Not touching the old file data means:

1. If the update is interrupted, you can recover from the old file since it remains intact.
2. Concurrent readers won’t get half written data.

The problem is how readers will find the new file. A common pattern is to rename the new
file to the old file path.

func SaveData2(path string, data []byte) error {

tmp := fmt.Sprintf("%s.tmp.%d", path, randomInt())

fp, err := os.OpenFile(tmp, os.O_WRONLY|os.O_CREATE|os.O_EXCL, 0664)

if err != nil {

return err

}

defer func() {

fp.Close()

if err != nil {

os.Remove(tmp)

}

}()

_, err = fp.Write(data)

if err != nil {

return err

}

err = fp.Sync() // fsync

if err != nil {

return err

}

return os.Rename(tmp, path)

}

Renaming a file to an existing one replaces it atomically; deleting the old file is not needed
(and not correct).

Pay attention to the meaning of the jargon, whenever you see “X is atomic”, you should
ask “X is atomic with respect to what?” In this case:
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• Rename is atomic w.r.t. concurrent readers; a reader opens either the old or the new
file.

• Rename is NOT atomic w.r.t. power loss; it’s not even durable. You need an extra
fsync on the parent directory, which is discussed later.

Why dœs renaming work?

Filesystems keep a mapping from file names to file data, so replacing a file by renaming
simply points the file name to the new data without touching the old data. That’s why
atomic renaming is possible in filesystems. And the operation cost is constant regardless of
the data size.

On Linux, the replaced old file may still exist if it’s still being opened by a reader; it’s just
not accessible from a file name. Readers can safely work on whatever version of the data it
got, while writer won’t be blocked by readers. However, there must be a way to prevent
concurrent writers. The level of concurrency is multi-reader-single-writer, which is what
we will implement.

1.3 Append-only logs

Safe incremental updates with logs

One way to do incremental updates is to just append the updates to a file. This is called a
“log” because it’s append-only. It’s safer than in-place updates because no data is overwritten;
you can always recover the old data after a crash.

The reader must consider all log entries when using the log. For example, here is a log-based
KV with 4 entries:

0 1 2 3

| set a=1 | set b=2 | set a=3 | del b |

The final state is a=3.

Logs are an essential component of many databases. However, a log is only a description of
each update, which means:

• It’s not an indexing data structure; readers must read all entries.
• It has no way to reclaim space from deleted data.

So logs alone are not enough to build a DB, they must be combined with other indexing
data structures.
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Atomic log updates with checksums

While a log won’t corrupt old data, you still have to deal with the last entry if it gets
corrupted after a crash. Many possibilities:

1. The last append simply does not happen; the log is still good.
2. The last entry is half written.
3. The size of the log is increased but the last entry is not there.

The way to deal with these cases is to add a checksum to each log entry. If the checksum
is wrong, the update did not happen, making log updates atomic (w.r.t. both readers and
durability).

This scenario is about incomplete writes (torn writes in DB jargon) that occur before a
successful fsync. Checksums can also detect other forms of corruption after fsync, but that’s
not something a DB can recover from.

1.4 `fsync` gotchas
After renaming files or creating new files, you must call fsync on the parent directory. A
directory is a mapping from file names to files, and like file data, it’s not durable unless you
use fsync. See this example[1] of fsync on the directory.

Another issue with fsync is error handling. If fsync fails, the DB update fails, but what if
you read the file afterwards? You may get the new data even if fsync failed (because of the
OS page cache)! This behavior is filesystem dependent[2].

1.5 Summary of database challenges
What we have learned:

1. Problems with in-place updates.

• Avoid in-place updates by renaming files.
• Avoid in-place updates using logs.

2. Append-only logs.

• Incremental updates.
• Not a full solution; no indexing and space reuse.

3. fsync usage.

What remains a question:

[1]https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_pillai.pdf#page=31
[2]https://www.usenix.org/conference/atc20/presentation/rebello
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1. Indexing data structures and how to update them.
2. Reuse space from append-only files.
3. Combining a log with an indexing data structure.
4. Concurrency.
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CHAPTER 02

Indexing Data Structures

2.1 Types of queries
Most SQL queries can be broken down into 3 types:

1. Scan the whole data set. (No index is used).
2. Point query: Query the index by a specific key.
3. Range query: Query the index by a range. (The index is sorted).

There are ways to make scanning fast, such as column-based storage. But a scan is 𝑂 (𝑁)
no matter how fast it is; our focus is on queries that can be served in 𝑂 (log𝑁) using data
structures.

A range query consists of 2 phases:

1. Seek: find the starting key.
2. Iterate: find the previous/next key in sorted order.

A point query is just seek without iterate; a sorting data structure is all we need.

2.2 Hashtables
Hashtables are viable if you only consider point queries (get, set, del), so we will not bother
with them because of the lack of ordering.

However, coding a hashtable, even an in-memory one, is still a valuable exercise. It’s far
easier than the B-tree we’ll code later, though some challenges remain:

• How to grow a hashtable? Keys must be moved to a larger hashtable when the load
factor is too high. Moving everything at once is prohibitively 𝑂 (𝑁). Rehashing must
be done progressively, even for in-memory apps like Redis.

• Other things mentioned before: in-place updates, space reuse, and etc.

2.3 Sorted arrays
Ruling out hashtables, let’s start with the simplest sorting data structure: the sorted array.
You can binary search on it in 𝑂 (log𝑁). For variable-length data such as strings (KV), use
an array of pointers (offsets) to do binary searches.

Updating a sorted array is 𝑂 (𝑁), either in-place or not. So it’s not practical, but it can be
extended to other updatable data structures.
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One way to reduce the update cost is to split the array into several smaller non-overlapping
arrays — nested sorted arrays. This extension leads to B+tree (multi-level n-ary tree), with
the additional challenge of maintaining these small arrays (tree nodes).

Another form of “updatable array” is the log-structured merge tree (LSM-tree). Updates
are first buffered in a smaller array (or other sorting data structures), then merged into the
main array when it becomes too large. The update cost is amortized by propagating smaller
arrays into larger arrays.

2.4 B-tree

A B-tree is a balanced n-ary tree, comparable to balanced binary trees. Each node stores
variable number of keys (and branches) up to 𝑛 and 𝑛 > 2.

Reducing random access with shorter trees

A disk can only perform a limited number of IOs per second (IOPS), which is the limiting
factor for tree lookups. Each level of the tree is a disk read in a lookup, and n-ary trees are
shorter than binary trees for the same number of keys (log𝑛 𝑁 vs. log2 𝑁), thus n-ary trees
are used for fewer disk reads per lookup.

How is the 𝑛 chosen? There is a trade-off:

• Larger 𝑛 means fewer disk reads per lookup (better latency and throughput).
• Larger 𝑛 means larger nodes, which are slower to update (discussed later).

IO in the unit of pages

While you can read any number of bytes at any offset from a file, disks do not work that
way. The basic unit of disk IO is not bytes, but sectors, which are 512-byte contiguous
blocks on old HDDs.

However, disk sectors are not an application’s concern because regular file IOs do not
interact directly with the disk. The OS caches/buffers disk reads/writes in the page cache,
which consists of 4K-byte memory blocks called pages.

In any way, there is a minimum unit of IO. DBs can also define their own unit of IO (also
called a page), which can be larger than an OS page.

The minimum IO unit implies that tree nodes should be allocated in multiples of the unit;
a half used unit is half wasted IO. Another reason against small 𝑛!
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The B+tree variant

In the context of databases, B-tree means a variant of B-tree called B+tree. In a B+tree,
internal nodes do not store values, values exist only in leaf nodes. This leads to shorter tree
because internal nodes have more space for branches.

B+tree as an in-memory data structure also makes sense because the minimum IO unit
between RAM and CPU caches is 64 bytes (cache line). The performance benefit is not as
great as on disk because not much can fit in 64 bytes.

Data structure space overhead

Another reason why binary trees are impractical is the number of pointers; each key has at
least 1 incoming pointer from the parent node, whereas in a B+tree, multiple keys in a leaf
node share 1 incoming pointer.

Keys in a leaf node can also be packed in a compact format or compressed to further reduce
the space.

2.5 Log-structured storage

Update by merge: amortize cost

Themost common example of log-structured storage is log-structuremerge tree (LSM-tree).
Its main idea is neither log nor tree; it’s “merge” instead!

Let’s start with 2 files: a small file holding the recent updates, and a large file holding the rest
of the data. Updates go to the small file first, but it cannot grow forever; it will be merged
into the large file when it reaches a threshold.

writes => | new updates | => | accumulated data |

file 1 file 2

Merging 2 sorted files results in a newer, larger file that replaces the old large file and shrinks
the small file.

Merging is 𝑂 (𝑁), but can be done concurrently with readers and writers.

Reduce write amplification with multiple levels

Buffering updates is better than rewriting the whole dataset every time. What if we extend
this scheme to multiple levels?
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|level 1|

||

\/

|------level 2------|

||

\/

|-----------------level 3-----------------|

In the 2-level scheme, the large file is rewritten every time the small file reaches a threshold,
the excess disk write is called write amplification, and it gets worse as the large file gets larger.
If we use more levels, we can keep the 2nd level small by merging it into the 3rd level,
similar to how we keep the 1st level small.

Intuitively, levels grow exponentially, and the power of two growth (merging similarly
sized levels) results in the least write amplification. But there is a trade-off between write
amplification and the number of levels (query performance).

LSM-tree indexes

Each level contains indexing data structures, which could simply be a sorted array, since
levels are never updated (except for the 1st level). But binary search is not much better than
binary tree in terms of random access, so a sensible choice is to use B-tree inside a level,
that’s the “tree” part of LSM-tree. Anyway, data structures are much simpler because of
the lack of updates.

To better understand the idea of “merge”, you can try to apply it to hashtables, a.k.a.
log-structured hashtables.

LSM-tree queries

Keys can be in any levels, so to query an LSM-tree, the results from each level are combined
(n-way merge for range queries).

For point queries, Bloom filters can be used as an optimization to reduce the number of
searched levels.

Since levels are never updated, there can be old versions of keys in older levels, and deleted
keys are marked with a special flag in newer levels (called tombstones). Thus, newer levels
have priority in queries.

The merge process naturally reclaims space from old or deleted keys. Thus, it’s also called
compaction.
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Real-world LSM-tree: SSTable, MemTable and log

These are jargons about LSM-tree implementation details. You don’t need to know them
to build one from principles, but they do solve some real problems.

Levels are split into multiple non-overlapping files called SSTables, rather than one large
file, so that merging can be done gradually. This reduces the free space requirement when
merging large levels, and the merging process is spread out over time.

The 1st level is updated directly, a log becomes a viable choice because the 1st level is
bounded in size. This is the “log” part of the LSM-tree, an example of combining a log
with other indexing data structures.

But even if the log is small, a proper indexing data structure is still needed. The log data
is duplicated in an in-memory index called MemTable, which can be a B-tree, skiplist, or
whatever. It’s a small, bounded amount of in-memory data, and has the added benefit of
accelerating the read-the-recent-updates scenario.

2.6 Summary of indexing data structures
There are 2 options: B+tree and LSM-tree.

LSM-tree solves many of the challenges from the last chapter, such as how to update disk-
based data structures and resue space. While these challenges remain for B+tree, which
will be explored later.
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CHAPTER 03

B-Tree & Crash Recovery

3.1 B-tree as a balanced n-ary tree
Height-balanced tree

Many practical binary trees, such as the AVL tree[1] or the RB tree, are called height-balanced
trees, meaning that the height of the tree (from root to leaves) is limited to 𝑂 (log𝑁), so a
lookup is 𝑂 (log𝑁).

A B-tree is also height-balanced; the height is the same for all leaf nodes.

Generalizing binary trees

n-ary trees can be generalized from binary trees (and vice versa). An example is the 2-3-4
tree, which is a B-tree where each node can have either 2, 3, or 4 children. The 2-3-4 tree
is equivalent to the RB tree. However, we won’t go into the details because they are not
necessary for understanding B-trees.

Visualizing a 2-level B+tree of a sorted sequence [1, 2, 3, 4, 6, 9, 11, 12].

[1, 4, 9]

/ | \

v v v

[1, 2, 3] [4, 6] [9, 11, 12]

In a B+tree, only leaf nodes contain value, keys are duplicated in internal nodes to indicate
the key range of the subtree. In this example, node [1, 4, 9] indicates that its 3 subtrees are
within intervals [1, 4), [4, 9), and [9, +∞). However, only 2 keys are needed for 3 intervals,
so the first key (1) can be omitted and the 3 intervals become (-∞, 4), [4, 9), and (9, +∞).

3.2 B-tree as nest arrays
Two-level nested arrays

Without knowing the details of the RB tree or the 2-3-4 tree, the B-tree can be understood
from sorted arrays.

The problem with sorted arrays is the 𝑂 (𝑁) update. If we split the array into 𝑚 smaller
non-overlapping ones, the update becomes 𝑂 (𝑁/𝑚). But we have to find out which small
array to update/query first. So we need another sorted array of references to smaller arrays,
that’s the internal nodes in a B+tree.

[1]https://build-your-own.org/redis/10_avltree
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[[1,2,3], [4,6], [9,11,12]]

The lookup cost is still 𝑂 (log𝑁) with 2 binary searches. If we choose 𝑚 as √𝑁, update
become 𝑂 (√𝑁), that’s as good as 2-level sorted arrays can be.

Multiple levels of nested arrays

𝑂 (√𝑁) is unacceptable for databases, but if we add more levels by splitting arrays even more,
the cost is further reduced.

Let’s say we keep splitting levels until all arrays are no larger than a constant 𝑠, we end upwith
log (𝑁/𝑠) levels, and the lookup cost is 𝑂 (log (𝑁/𝑠) + log (𝑠)), which is still 𝑂 (log𝑁).

For insertion and deletion, after finding the leaf node, updating the leaf node is constant
𝑂 (𝑠) most of the time. The remaining problem is to maintain the invariants that nodes are
not larger than 𝑠 and are not empty.

3.3 Maintaining a B+tree

3 invariants to preserve when updating a B+tree:

1. Same height for all leaf nodes.
2. Node size is bounded by a constant.
3. Node is not empty.

Growing a B-tree by splitting nodes

The 2nd invariant is violated by inserting into a leaf node, which is restored by splitting the
node into smaller ones.

parent parent

/ | \ => / | | \

L1 L2 L6 L1 L3 L4 L6

* * *

After splitting a leaf node, its parent node gets a new branch, which may also exceed the
size limit, so it may need to be split as well. Node splitting can propagate to the root node,
increasing the height by 1.

new_root

/ \

root N1 N2

/ | \ => / | | \

L1 L2 L6 L1 L3 L4 L6

This preserves the 1st invariant, since all leaves gain height by 1 simultaneously.
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Shrinking a B-tree by merging nodes

Deleting may result in empty nodes. The 3rd invariant is restored by merging empty nodes
into a sibling node. Merging is the opposite of splitting. It can also propagate to the root
node, so the tree height can decrease.

When coding a B-tree, merging can be done earlier to reduce wasted space: you can merge
a non-empty node when its size reaches a lower bound.

3.4 B-Tree on disk

You can already code an in-memory B-tree using these principles. But B-tree on disk
requires extra considerations.

Block-based allocation

One missing detail is how to limit node size. For in-memory B+tree, you can limit the
maximum number of keys in a node, the node size in bytes is not a concern, because you
can allocate as many bytes as needed.

For disk-based data structures, there are no malloc/free or garbage collectors to rely on;
space allocation and reuse is entirely up to us.

Space reuse can be done with a free list if all allocations are of the same size, which we’ll
implement later. For now, all B-tree nodes are the same size.

Copy-on-write B-tree for safe updates

We’ve seen 3 crash-resistant ways to update disk data: renaming files, logs, LSM-trees. The
lesson is not to destroy any old data during an update. This idea can be applied to trees:
make a copy of the node and modify the copy instead.

Insertion or deletion starts at a leaf node; after making a copy with the modification, its
parent node must be updated to point to the new node, which is also done on its copy. The
copying propagates to the root node, resulting in a new tree root.

• The original tree remains intact and is accessible from the old root.
• The new root, with the updated copies all the way to the leaf, shares all other nodes

with the original tree.

d d D*

/ \ / \ / \

b e ==> b e + B* e

/ \ / \ / \

a c a c a C*

original updated
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This is a visualization of updating the leaf c. The copied nodes are in uppercase (D, B, C),
while the shared subtrees are in lowercase (a, e).

This is called a copy-on-write data structure. It’s also described as immutable, append-only (not
literally), or persistent (not related to durability). Be aware that database jargon does not
have consistent meanings.

2 more problems remain for the copy-on-write B-tree:

1. How to find the tree root, as it changes after each update? The crash safety problem
is reduced to a single pointer update, which we’ll solve later.

2. How to reuse nodes from old versions? That’s the job of a free list.

Copy-on-write B-tree advantages

One advantage of keeping old versions around is that we got snapshot isolation for free. A
transaction starts with a version of the tree, and won’t see changes from other versions.

And crash recovery is effortless; just use the last old version.

Another one is that it fits the multi-reader-single-writer concurrency model, and readers
do not block the writer. We’ll explore these later.

Alternative: In-place update with double-write

While crash recovery is obvious in copy-on-write data structures, they can be undesirable
due to the high write amplification. Each update copies the whole path (𝑂 (log𝑁)), while
most in-place updates touch only 1 leaf node.

It’s possible to do in-place updates with crash recovery without copy-on-write:

1. Save a copy of the entire updated nodes somewhere. This is like copy-on-write, but
without copying the parent node.

2. fsync the saved copies. (Can respond to the client at this point.)
3. Actually update the data structure in-place.
4. fsync the updates.

After a crash, the data structure may be half updated, but we don’t really know. What we
do is blindly apply the saved copies, so that the data structure ends with the updated state,
regardless of the current state.
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| a=1 b=2 |

|| 1. Save a copy of the entire updated nodes.

\/

| a=1 b=2 | + | a=2 b=4 |

data updated copy

|| 2. fsync the saved copies.

\/

| a=1 b=2 | + | a=2 b=4 |

data updated copy (fsync'ed)

|| 3. Update the data structure in-place. But we crashed here!

\/

| ??????? | + | a=2 b=4 |

data (bad) updated copy (good)

|| Recovery: apply the saved copy.

\/

| a=2 b=4 | + | a=2 b=4 |

data (new) useless now

The saved updated copies are called double-write[2] in MySQL jargon. But what if the
double-write is corrupted? It’s handled the same way as logs: checksum.

• If the checksum detects a bad double-write, ignore it. It’s before the 1st fsync, so the
main data is in a good and old state.

• If the double-write is good, applying it will always yield good main data.

Some DBs actually store the double-writes in logs, called physical logging[3]. There are 2
kinds of logging: logical and physical. Logical logging describes high-level operations such as
inserting a key, such operations can only be applied to the DB when it’s in a good state, so
only physical logging (low-level disk page updates) is useful for recovery.

The crash recovery principle

Let’s compare double-write with copy-on-write:

• Double-write makes updates idempotent; the DB can retry the update by applying
the saved copies since they are full nodes.

• Copy-on-write atomically switches everything to the new version.

They are based on different ideas:

• Double-write ensures enough information to produce the new version.
• Copy-on-write ensures that the old version is preserved.

What if we save the original nodes instead of the updated nodes with double-write? That’s
the 3rd way to recover from corruption, and it recovers to the old version like copy-on-
write. We can combine the 3 ways into 1 idea: there is enough information for either the
old state or the new state at any point.

[2]https://www.percona.com/blog/innodb-double-write/
[3]https://wiki.postgresql.org/wiki/Full_page_writes
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Also, some copying is always required, so larger tree nodes are slower to update.

We’ll use copy-on-write because it’s simpler, but you can deviate here.

3.5 What we learned
B+tree principles:

• n-ary tree, node size is limited by a constant.
• Same height for all leaves.
• Split and merge for insertion and deletion.

Disk-based data structures:

• Copy-on-write data structures.
• Crash recovery with double-write.

We can start coding now. 3 steps to create a persistent KV based on B+tree:

1. Code the B+tree data structure.
2. Move the B+tree to disk.
3. Add a free list.
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CHAPTER 04

B+Tree Node and Insertion

4.1 Design B+tree nodes

What we will do

The first big step is just the B+tree data structures, other DB concerns will be covered in
later chapters. We’ll do it from the bottom up.

1. Design a node format that contains all the necessary bits.
2. Manipulate nodes in a copy-on-write fashion (insert and delete keys).
3. Split and merge nodes.
4. Tree insertion and deletion.

The node format

All B+tree nodes are the same size for later use of the free list. Although we won’t deal
with disk data at this point, a concrete node format is needed because it decides the node
size in bytes and when to split a node.

A node includes:

1. A fixed-size header, which contains:

• The type of node (leaf or internal).
• The number of keys.

2. A list of pointers to child nodes for internal nodes.
3. A list of KV pairs.
4. A list of offsets to KVs, which can be used to binary search KVs.

| type | nkeys | pointers | offsets | key-values | unused |

| 2B | 2B | nkeys * 8B | nkeys * 2B | ... | |

This is the format of each KV pair. Lengths followed by data.

| klen | vlen | key | val |

| 2B | 2B | ... | ... |

20



2024-06-11 04. B+Tree Node and Insertion

Simplifications and limits

Our goal is to learn the basics, not to create a real DB. So some simplifications are made.

The same format is used for both leaf nodes and internal nodes. This wastes some space:
leaf nodes don’t need pointers and internal nodes don’t need values.

An internal node of 𝑛 branches contains 𝑛 keys, each key is duplicated from the minimum
key of the corresponding subtree. However, only 𝑛 − 1 keys are needed for 𝑛 branches, as
you’ll see in other B-tree introductions. The extra key makes the visualization easier.

We’ll set the node size to 4K, which is the typical OS page size. However, keys and values
can be arbitrarily large, exceeding a single node. There should be a way to store large
KVs outside of nodes, or to make the node size variable. This problem is solvable, but not
fundamental. So we’ll skip it by limiting the KV size so that they always fit inside a node.

const HEADER = 4

const BTREE_PAGE_SIZE = 4096

const BTREE_MAX_KEY_SIZE = 1000

const BTREE_MAX_VAL_SIZE = 3000

func init() {

node1max := HEADER + 8 + 2 + 4 + BTREE_MAX_KEY_SIZE + BTREE_MAX_VAL_SIZE

assert(node1max <= BTREE_PAGE_SIZE) // maximum KV

}

The key size limit also ensures that an internal node can always host 2 keys.

In-memory data types

In our code, a node is just a chunk of bytes interpreted by this format. Moving data from
memory to disk is simpler without a serialization step.

type BNode []byte // can be dumped to the disk

Decouple data structure from IO

Space allocation/deallocation is required for both in-memory and on-disk data structures.
We can abstract this away with callbacks, which is a boundary between the data structure
and the rest of the DB.
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type BTree struct {

// pointer (a nonzero page number)

root uint64

// callbacks for managing on-disk pages

get func(uint64) []byte // dereference a pointer

new func([]byte) uint64 // allocate a new page

del func(uint64) // deallocate a page

}

For an on-disk B+tree, the database file is an array of pages (nodes) referenced by page
numbers (pointers). We’ll implement these callbacks as follows:

• get reads a page from disk.
• new allocates and writes a new page (copy-on-write).
• del deallocates a page.

We can use fake callbacks (mocks) to test the data structure in memory without the rest of
the DB.

4.2 Decode the node format
Since the node type is just a chunk of bytes, we’ll define some helper functions to access
it.

| type | nkeys | pointers | offsets | key-values | unused |

| 2B | 2B | nkeys * 8B | nkeys * 2B | ... | |

| klen | vlen | key | val |

| 2B | 2B | ... | ... |

Header

const (

BNODE_NODE = 1 // internal nodes without values

BNODE_LEAF = 2 // leaf nodes with values

)

func (node BNode) btype() uint16 {

return binary.LittleEndian.Uint16(node[0:2])

}

func (node BNode) nkeys() uint16 {

return binary.LittleEndian.Uint16(node[2:4])

}
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func (node BNode) setHeader(btype uint16, nkeys uint16) {

binary.LittleEndian.PutUint16(node[0:2], btype)

binary.LittleEndian.PutUint16(node[2:4], nkeys)

}

Child pointers

// pointers

func (node BNode) getPtr(idx uint16) uint64 {

assert(idx < node.nkeys())

pos := HEADER + 8*idx

return binary.LittleEndian.Uint64(node[pos:])

}

func (node BNode) setPtr(idx uint16, val uint64)

KV offsets and pairs

The format packs everything back to back. Finding the nth KV can be done by reading
each KV pair one by one. To make it easier, we have included an offset list to locate the
nth KV in 𝑂 (1). This also allows binary searches within a node.

Each offset is the end of the KV pair relative to the start of the 1st KV. The start offset of the
1st KV is just 0, so we use the end offset instead, which is the start offset of the next KV.

// offset list

func offsetPos(node BNode, idx uint16) uint16 {

assert(1 <= idx && idx <= node.nkeys())

return HEADER + 8*node.nkeys() + 2*(idx-1)

}

func (node BNode) getOffset(idx uint16) uint16 {

if idx == 0 {

return 0

}

return binary.LittleEndian.Uint16(node[offsetPos(node, idx):])

}

func (node BNode) setOffset(idx uint16, offset uint16)

kvPos returns the position of the nth KV pair relative to the whole node.
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// key-values

func (node BNode) kvPos(idx uint16) uint16 {

assert(idx <= node.nkeys())

return HEADER + 8*node.nkeys() + 2*node.nkeys() + node.getOffset(idx)

}

func (node BNode) getKey(idx uint16) []byte {

assert(idx < node.nkeys())

pos := node.kvPos(idx)

klen := binary.LittleEndian.Uint16(node[pos:])

return node[pos+4:][:klen]

}

func (node BNode) getVal(idx uint16) []byte

It also conveniently returns the node size (used space) with an off-by-one lookup.

// node size in bytes

func (node BNode) nbytes() uint16 {

return node.kvPos(node.nkeys())

}

KV lookups within a node

The “seek” operation is used for both range and point queries. So they are fundamentally
the same.

// returns the first kid node whose range intersects the key. (kid[i] <= key)

// TODO: binary search

func nodeLookupLE(node BNode, key []byte) uint16 {

nkeys := node.nkeys()

found := uint16(0)

// the first key is a copy from the parent node,

// thus it's always less than or equal to the key.

for i := uint16(1); i < nkeys; i++ {

cmp := bytes.Compare(node.getKey(i), key)

if cmp <= 0 {

found = i

}

if cmp >= 0 {

break

}
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}

return found

}

The function is called nodeLookupLE because it uses the Less-than-or-Equal operator. For
point queries, we should use the equal operator instead, which is a step we can add later.

4.2 Update B+tree nodes
Insert into leaf nodes

Let’s consider inserting a key into a leaf node. The 1st step is to use nodeLookupLE to get
the insert position. Then copy everything to a new node with the extra key. That’s
copy-on-write.

// add a new key to a leaf node

func leafInsert(

new BNode, old BNode, idx uint16,

key []byte, val []byte,

) {

new.setHeader(BNODE_LEAF, old.nkeys()+1) // setup the header

nodeAppendRange(new, old, 0, 0, idx)

nodeAppendKV(new, idx, 0, key, val)

nodeAppendRange(new, old, idx+1, idx, old.nkeys()-idx)

}

Node copying functions

nodeAppendRange copies a range of KVs and nodeAppendKV copies a KV pair. This must be done
in order because these functions rely on the previous offset.

// copy a KV into the position

func nodeAppendKV(new BNode, idx uint16, ptr uint64, key []byte, val []byte) {

// ptrs

new.setPtr(idx, ptr)

// KVs

pos := new.kvPos(idx)

binary.LittleEndian.PutUint16(new[pos+0:], uint16(len(key)))

binary.LittleEndian.PutUint16(new[pos+2:], uint16(len(val)))

copy(new[pos+4:], key)
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copy(new[pos+4+uint16(len(key)):], val)

// the offset of the next key

new.setOffset(idx+1, new.getOffset(idx)+4+uint16((len(key)+len(val))))

}

// copy multiple KVs into the position from the old node

func nodeAppendRange(

new BNode, old BNode,

dstNew uint16, srcOld uint16, n uint16,

)

Update internal nodes

For internal nodes, the link to the child node is always updated with the copy-on-write
scheme, which can become multiple links if the child node is split.

// replace a link with one or multiple links

func nodeReplaceKidN(

tree *BTree, new BNode, old BNode, idx uint16,

kids ...BNode,

) {

inc := uint16(len(kids))

new.setHeader(BNODE_NODE, old.nkeys()+inc-1)

nodeAppendRange(new, old, 0, 0, idx)

for i, node := range kids {

nodeAppendKV(new, idx+uint16(i), tree.new(node), node.getKey(0), nil)

// ^position ^pointer ^key ^val

}

nodeAppendRange(new, old, idx+inc, idx+1, old.nkeys()-(idx+1))

}

Note that the tree.new callback is used to allocate the child nodes.

4.3 Split B+tree nodes

Due to the size limits we imposed, a node can host at least 1 KV pair. In the worst case, an
oversized node will be split into 3 nodes, with a large KV in the middle. So we may have to
split it 2 times.
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// split a oversized node into 2 so that the 2nd node always fits on a page

func nodeSplit2(left BNode, right BNode, old BNode) {

// code omitted...

}

// split a node if it's too big. the results are 1~3 nodes.

func nodeSplit3(old BNode) (uint16, [3]BNode) {

if old.nbytes() <= BTREE_PAGE_SIZE {

old = old[:BTREE_PAGE_SIZE]

return 1, [3]BNode{old} // not split

}

left := BNode(make([]byte, 2*BTREE_PAGE_SIZE)) // might be split later

right := BNode(make([]byte, BTREE_PAGE_SIZE))

nodeSplit2(left, right, old)

if left.nbytes() <= BTREE_PAGE_SIZE {

left = left[:BTREE_PAGE_SIZE]

return 2, [3]BNode{left, right} // 2 nodes

}

leftleft := BNode(make([]byte, BTREE_PAGE_SIZE))

middle := BNode(make([]byte, BTREE_PAGE_SIZE))

nodeSplit2(leftleft, middle, left)

assert(leftleft.nbytes() <= BTREE_PAGE_SIZE)

return 3, [3]BNode{leftleft, middle, right} // 3 nodes

}

Note that the returned nodes are allocated from memory; they are just temporary data until
nodeReplaceKidN actually allocates them.

4.4 B+tree insertion

We’ve implemented 3 node operations:

• leafInsert updates a leaf node.
• nodeReplaceKidN updates an internal node.
• nodeSplit3 splits an oversized node.

Let’s put them together for a full B+tree insertion, which starts with key lookups in the
root node until it reaches a leaf.

// insert a KV into a node, the result might be split.

// the caller is responsible for deallocating the input node

// and splitting and allocating result nodes.
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func treeInsert(tree *BTree, node BNode, key []byte, val []byte) BNode {

// the result node.

// it's allowed to be bigger than 1 page and will be split if so

new := BNode{data: make([]byte, 2*BTREE_PAGE_SIZE)}

// where to insert the key?

idx := nodeLookupLE(node, key)

// act depending on the node type

switch node.btype() {

case BNODE_LEAF:

// leaf, node.getKey(idx) <= key

if bytes.Equal(key, node.getKey(idx)) {

// found the key, update it.

leafUpdate(new, node, idx, key, val)

} else {

// insert it after the position.

leafInsert(new, node, idx+1, key, val)

}

case BNODE_NODE:

// internal node, insert it to a kid node.

nodeInsert(tree, new, node, idx, key, val)

default:

panic("bad node!")

}

return new

}

leafUpdate is similar to leafInsert; it updates an existing key instead of inserting a duplicate
key.

// part of the treeInsert(): KV insertion to an internal node

func nodeInsert(

tree *BTree, new BNode, node BNode, idx uint16,

key []byte, val []byte,

) {

kptr := node.getPtr(idx)

// recursive insertion to the kid node

knode := treeInsert(tree, tree.get(kptr), key, val)

// split the result

nsplit, split := nodeSplit3(knode)

// deallocate the kid node

tree.del(kptr)

// update the kid links
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nodeReplaceKidN(tree, new, node, idx, split[:nsplit]...)

}

Internal nodes are handled recursively, each call returns an updated node, and the caller will
split it if it’s oversized and handle the allocation/deallocation.

4.5 What’s next?
The work is almost done. We just need to add these in the next chapter:

1. Node merging and tree deletion.
2. A high-level interface.
3. Fake node callbacks for tests.
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CHAPTER 05

B+Tree Deletion and Testing

5.1 High-level interfaces
We’ll add the interfaces to use the B+tree as a KV.

// insert a new key or update an existing key

func (tree *BTree) Insert(key []byte, val []byte)

// delete a key and returns whether the key was there

func (tree *BTree) Delete(key []byte) bool

Most of the details are introduced with the tree insertion, so there’s not much more to learn
from the deletion. Skip this chapter if you know the principle.

Keep the root node

There is some extra work in maintaining the root node for tree insertions.

• Create the root node if the tree is empty.
• Add a new root if the root node is split.

func (tree *BTree) Insert(key []byte, val []byte) {

if tree.root == 0 {

// create the first node

root := BNode(make([]byte, BTREE_PAGE_SIZE))

root.setHeader(BNODE_LEAF, 2)

// a dummy key, this makes the tree cover the whole key space.

// thus a lookup can always find a containing node.

nodeAppendKV(root, 0, 0, nil, nil)

nodeAppendKV(root, 1, 0, key, val)

tree.root = tree.new(root)

return

}

node := treeInsert(tree, tree.get(tree.root), key, val)

nsplit, split := nodeSplit3(node)

tree.del(tree.root)

if nsplit > 1 {

// the root was split, add a new level.

root := BNode(make([]byte, BTREE_PAGE_SIZE))

root.setHeader(BNODE_NODE, nsplit)
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for i, knode := range split[:nsplit] {

ptr, key := tree.new(knode), knode.getKey(0)

nodeAppendKV(root, uint16(i), ptr, key, nil)

}

tree.root = tree.new(root)

} else {

tree.root = tree.new(split[0])

}

}

Sentinel value

There is a trick when creating the first root: we inserted an empty key. This is called a
sentinel value, it’s used to remove an edge case.

If you examine the lookup function nodeLookupLE, you’ll see that it won’t work if the key is
out of the node range. This is fixed by inserting an empty key into the tree, which is the
lowest possible key by sort order, so that nodeLookupLE will always find a position.

5.2 Merge nodes

Node update functions

We’ll need some new functions for the tree deletion.

// remove a key from a leaf node

func leafDelete(new BNode, old BNode, idx uint16)

// merge 2 nodes into 1

func nodeMerge(new BNode, left BNode, right BNode)

// replace 2 adjacent links with 1

func nodeReplace2Kid(

new BNode, old BNode, idx uint16, ptr uint64, key []byte,

)

Merge conditions

Deleting may result in empty nodes, which can be merged with a sibling if it has one.
shouldMerge returns which sibling (left or right) to merge with.

Report an Error | Ask a Question @ build-your-own.org 31

https://forms.gle/UKo4bncUnuMGBrTM7
https://build-your-own.org


2024-06-11 05. B+Tree Deletion and Testing

// should the updated kid be merged with a sibling?

func shouldMerge(

tree *BTree, node BNode,

idx uint16, updated BNode,

) (int, BNode) {

if updated.nbytes() > BTREE_PAGE_SIZE/4 {

return 0, BNode{}

}

if idx > 0 {

sibling := BNode(tree.get(node.getPtr(idx - 1)))

merged := sibling.nbytes() + updated.nbytes() - HEADER

if merged <= BTREE_PAGE_SIZE {

return -1, sibling // left

}

}

if idx+1 < node.nkeys() {

sibling := BNode(tree.get(node.getPtr(idx + 1)))

merged := sibling.nbytes() + updated.nbytes() - HEADER

if merged <= BTREE_PAGE_SIZE {

return +1, sibling // right

}

}

return 0, BNode{}

}

Deleted keys mean unused space within nodes. In the worst case, a mostly empty tree can
still retain a large number of nodes. We can improve this by triggering merges earlier —
using 1/4 of a page as a threshold instead of the empty node, which is a soft limit on the
minimum node size.

5.3 B+tree deletion
This is similar to insertion, just replace splitting with merging.

// delete a key from the tree

func treeDelete(tree *BTree, node BNode, key []byte) BNode

// delete a key from an internal node; part of the treeDelete()

func nodeDelete(tree *BTree, node BNode, idx uint16, key []byte) BNode {

// recurse into the kid

kptr := node.getPtr(idx)
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updated := treeDelete(tree, tree.get(kptr), key)

if len(updated) == 0 {

return BNode{} // not found

}

tree.del(kptr)

new := BNode(make([]byte, BTREE_PAGE_SIZE))

// check for merging

mergeDir, sibling := shouldMerge(tree, node, idx, updated)

switch {

case mergeDir < 0: // left

merged := BNode(make([]byte, BTREE_PAGE_SIZE))

nodeMerge(merged, sibling, updated)

tree.del(node.getPtr(idx - 1))

nodeReplace2Kid(new, node, idx-1, tree.new(merged), merged.getKey(0))

case mergeDir > 0: // right

merged := BNode(make([]byte, BTREE_PAGE_SIZE))

nodeMerge(merged, updated, sibling)

tree.del(node.getPtr(idx + 1))

nodeReplace2Kid(new, node, idx, tree.new(merged), merged.getKey(0))

case mergeDir == 0 && updated.nkeys() == 0:

assert(node.nkeys() == 1 && idx == 0) // 1 empty child but no sibling

new.setHeader(BNODE_NODE, 0) // the parent becomes empty too

case mergeDir == 0 && updated.nkeys() > 0: // no merge

nodeReplaceKidN(tree, new, node, idx, updated)

}

return new

}

Even if a node becomes empty, it may not be merged if it has no siblings. In this case, the
empty node is propagated to its parent and merged later.

5.4 Test the B+tree
The data structure only interacts with the rest of the DB via the 3 page management
callbacks. To test the B+tree, we can simulate pages in memory.

type C struct {

tree BTree

ref map[string]string // the reference data

pages map[uint64]BNode // in-memory pages

}
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func newC() *C {

pages := map[uint64]BNode{}

return &C{

tree: BTree{

get: func(ptr uint64) []byte {

node, ok := pages[ptr]

assert(ok)

return node

},

new: func(node []byte) uint64 {

assert(BNode(node).nbytes() <= BTREE_PAGE_SIZE)

ptr := uint64(uintptr(unsafe.Pointer(&node[0])))

assert(pages[ptr] == nil)

pages[ptr] = node

return ptr

},

del: func(ptr uint64) {

assert(pages[ptr] != nil)

delete(pages, ptr)

},

},

ref: map[string]string{},

pages: pages,

}

}

C.pages is a map of allocated pages. It’s used to validate pointers and read pages. The pointers
are actually in-memory pointers, and the B+tree code doesn’t care.

To test the B+tree, we first need to update it under various scenarios and then verify the
result. The verification is generic, there are 2 things to verify:

1. The structure is valid.

• Keys are sorted.
• Node sizes are within limits.

2. The data matches a reference. We used a map to capture each update.

func (c *C) add(key string, val string) {

c.tree.Insert([]byte(key), []byte(val))

c.ref[key] = val // reference data

}

The test cases are left as an exercise. The next thing is B+tree on disk.
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CHAPTER 06

Append-Only KV Store

6.1 What we will do
We’ll create a KV store with a copy-on-write B+tree backed by a file.

type KV struct {

Path string // file name

// internals

fd int

tree BTree

// more ...

}

func (db *KV) Open() error

func (db *KV) Get(key []byte) ([]byte, bool) {

return db.tree.Get(key)

}

func (db *KV) Set(key []byte, val []byte) error {

db.tree.Insert(key, val)

return updateFile(db)

}

func (db *KV) Del(key []byte) (bool, error) {

deleted := db.tree.Delete(key)

return deleted, updateFile(db)

}

The scope of this chapter is durability + atomicity:

• The file is append-only; space reuse is left to the next chapter.
• We will ignore concurrency and assume sequential access within 1 process.

We’ll implement the 3 B+tree callbacks that deal with disk pages:

type BTree struct {

root uint64

get func(uint64) []byte // read a page

new func([]byte) uint64 // append a page

del func(uint64) // ignored in this chapter

}
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6.2 Two-phase update
Atomicity + durability

As discussed in chapter 03, for a copy-on-write tree, the root pointer is updated atomically.
Then fsync is used to request and confirm durability.

The atomicity of the root pointer itself is insufficient; to make the whole tree atomic, new
nodes must be persisted before the root pointer. And the write order is not the order in
which the data is persisted, due to factors like caching. So another fsync is used to ensure
the order.

func updateFile(db *KV) error {

// 1. Write new nodes.

if err := writePages(db); err != nil {

return err

}

// 2. `fsync` to enforce the order between 1 and 3.

if err := syscall.Fsync(db.fd); err != nil {

return err

}

// 3. Update the root pointer atomically.

if err := updateRoot(db); err != nil {

return err

}

// 4. `fsync` to make everything persistent.

return syscall.Fsync(db.fd)

}

Alternative: durability with a log

The alternative double-write scheme also has 2 fsync’ed phases:

1. Write the updated pages with checksum.
2. fsync to make the update persistent (for crash recovery).
3. Update the data in-place (apply the double-writes).
4. fsync for the order between 3 and 1 (reuse or delete the double-writes).

A difference with copy-on-write is the order of the phases: the data is persistent after the
1st fsync; the DB can return success and do the rest in the background.

The double-write is comparable to a log, which also needs only 1 fsync for an update. And
it can be an actual log to buffer multiple updates, which improves performance. This is
another example of logs in DBs, besides the LSM-tree.
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We won’t use a log as copy-on-write doesn’t need it. But a log still offers the benefits
discussed above; it’s one of the reasons logs are ubiquitous in databases.

Concurrency of in-memory data

Atomicity for in-memory data (w.r.t. concurrency) can be achieved with a mutex (lock) or
some atomic CPU instructions. There is a similar problem: memory reads/writes may not
appear in order due to factors like out-of-order execution.

For an in-memory copy-on-write tree, new nodes must be made visible to concurrent
readers before the root pointer is updated. This is called a memory barrier and is analogous to
fsync, although fsync is more than enforcing order.

Synchronization primitives such as mutexes, or any OS syscalls, will enforce memory
ordering in a portable way, so you don’t have to mess with CPU-specific atomics or barriers
(which are inadequate for concurrency anyway).

6.3 Database on a file

The file layout

Our DB is a single file divided into “pages”. Each page is a B+tree node, except for the 1st
page; the 1st page contains the pointer to the latest root node and other auxiliary data, we
call this the meta page.

| the_meta_page | pages... | root_node | pages... | (end_of_file)

| root_ptr | page_used | ^ ^

| | | |

+----------|----------------------+ |

| |

+---------------------------------------+

New nodes are simply appended like a log, but we cannot use the file size to count the
number of pages, because after a power loss the file size (metadata) may become inconsistent
with the file data. This is filesystem dependent, we can avoid this by storing the number of
pages in the meta page.

`fsync` on directory

As mentioned in chapter 01, fsync must be used on the parent directory after a rename. This
is also true when creating new files, because there are 2 things to be made persistent: the
file data, and the directory that references the file.

We’ll preemptively fsync after potentially creating a new file with O_CREATE. To fsync a
directory, open the directory in O_RDONLY mode.
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func createFileSync(file string) (int, error) {

// obtain the directory fd

flags := os.O_RDONLY | syscall.O_DIRECTORY

dirfd, err := syscall.Open(path.Dir(file), flags, 0o644)

if err != nil {

return -1, fmt.Errorf("open directory: %w", err)

}

defer syscall.Close(dirfd)

// open or create the file

flags = os.O_RDWR | os.O_CREATE

fd, err := syscall.Openat(dirfd, path.Base(file), flags, 0o644)

if err != nil {

return -1, fmt.Errorf("open file: %w", err)

}

// fsync the directory

if err = syscall.Fsync(dirfd); err != nil {

_ = syscall.Close(fd) // may leave an empty file

return -1, fmt.Errorf("fsync directory: %w", err)

}

return fd, nil

}

The directory fd can be used by openat to open the target file, which guarantees that the
file is from the same directory we opened before, in case the directory path is replaced in
between (race condition). Although this is not our concern as we don’t expect multi-process
operations.

`mmap`, page cache and IO

mmap is a way to read/write a file as if it’s an in-memory buffer. Disk IO is implicit and
automatic with mmap.

func Mmap(fd int, offset int64, length int, ...) (data []byte, err error)

To understand mmap, let’s review some operating system basics. An OS page is the minimum
unit for mapping between virtual address and physical address. However, the virtual address
space of a process is not fully backed by physical memory all the time; part of the process
memory can be swapped to disk, and when the process tries to access it:

1. The CPU triggers a page fault, which hands control to the OS.
2. The OS then …

1. Reads the swapped data into physical memory.
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2. Remaps the virtual address to it.
3. Hands control back to the process.

3. The process resumes with the virtual address mapped to real RAM.

mmap works in a similar way, the process gets an address range from mmap and when it touches
a page in it, it page faults and the OS reads the data into a cache and remaps the page to the
cache. That’s the automatic IO in a read-only scenario.

The CPU also takes note (called a dirty bit) when the process modifies a page so the OS
can write the page back to disk later. fsync is used to request and wait for the IO. This is
writing data via mmap, it is not very different from write on Linux because write goes to the
same page cache.

You don’t have to mmap, but it’s important to understand the basics.

6.4 Manage disk pages

We’ll use mmap to implement these pagemanagement callbacks. because it’s just convenient.

func (db *KV) Open() error {

db.tree.get = db.pageRead // read a page

db.tree.new = db.pageAppend // apppend a page

db.tree.del = func(uint64) {}

// ...

}

Invoke `mmap`

A file-backed mmap can be either read-only, read-write, or copy-on-write. To create a
read-only mmap, use the PROT_READ and MAP_SHARED flags.

syscall.Mmap(fd, offset, size, syscall.PROT_READ, syscall.MAP_SHARED)

The mapped range can be larger than the current file size, which is a fact that we can exploit
because the file will grow.
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`mmap` a growing file

mremap remaps a mapping to a larger range, it’s like realloc. That’s one way to deal with the
growing file. However, the address may change, which can hinder concurrent readers in
later chapters. Our solution is to add new mappings to cover the expanded file.

type KV struct {

// ...

mmap struct {

total int // mmap size, can be larger than the file size

chunks [][]byte // multiple mmaps, can be non-continuous

}

}

// `BTree.get`, read a page.

func (db *KV) pageRead(ptr uint64) []byte {

start := uint64(0)

for _, chunk := range db.mmap.chunks {

end := start + uint64(len(chunk))/BTREE_PAGE_SIZE

if ptr < end {

offset := BTREE_PAGE_SIZE * (ptr - start)

return chunk[offset : offset+BTREE_PAGE_SIZE]

}

start = end

}

panic("bad ptr")

}

Adding a new mapping each time the file is expanded results in lots of mappings, which
is bad for performance because the OS has to keep track of them. This is avoided with
exponential growth, since mmap can go beyond the file size.

func extendMmap(db *KV, size int) error {

if size <= db.mmap.total {

return nil // enough range

}

alloc := max(db.mmap.total, 64<<20) // double the current address space

for db.mmap.total + alloc < size {

alloc *= 2 // still not enough?

}

chunk, err := syscall.Mmap(

db.fd, int64(db.mmap.total), alloc,

syscall.PROT_READ, syscall.MAP_SHARED, // read-only
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)

if err != nil {

return fmt.Errorf("mmap: %w", err)

}

db.mmap.total += alloc

db.mmap.chunks = append(db.mmap.chunks, chunk)

return nil

}

You may wonder why not just create a very large mapping (say, 1TB) and forget about the
growing file, since an unrealized virtual address costs nothing. This is OK for a toy DB in
64-bit systems.

Capture page updates

The BTree.new callback collects new pages from B+tree updates, and allocates the page
number from the end of DB.

type KV struct {

// ...

page struct {

flushed uint64 // database size in number of pages

temp [][]byte // newly allocated pages

}

}

func (db *KV) pageAppend(node []byte) uint64 {

ptr := db.page.flushed + uint64(len(db.page.temp)) // just append

db.page.temp = append(db.page.temp, node)

return ptr

}

Which are written (appended) to the file after B+tree updates.

func writePages(db *KV) error {

// extend the mmap if needed

size := (int(db.page.flushed) + len(db.page.temp)) * BTREE_PAGE_SIZE

if err := extendMmap(db, size); err != nil {

return err

}

// write data pages to the file

offset := int64(db.page.flushed * BTREE_PAGE_SIZE)
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if _, err := unix.Pwritev(db.fd, db.page.temp, offset); err != nil {

return err

}

// discard in-memory data

db.page.flushed += uint64(len(db.page.temp))

db.page.temp = db.page.temp[:0]

return nil

}

pwritev is variant of write with an offset and multiple input buffers. We have to control
the offset because we also need to write the meta page later. Multiple input buffers are
combined by the kernel.

6.5 The meta page
Read the meta page

We’ll also add some magic bytes to the meta page to identify the file type.

const DB_SIG = "BuildYourOwnDB06" // not compatible between chapters

// | sig | root_ptr | page_used |

// | 16B | 8B | 8B |

func saveMeta(db *KV) []byte {

var data [32]byte

copy(data[:16], []byte(DB_SIG))

binary.LittleEndian.PutUint64(data[16:], db.tree.root)

binary.LittleEndian.PutUint64(data[24:], db.page.flushed)

return data[:]

}

func loadMeta(db *KV, data []byte)

The meta page is reserved if the file is empty.

func readRoot(db *KV, fileSize int64) error {

if fileSize == 0 { // empty file

db.page.flushed = 1 // the meta page is initialized on the 1st write

return nil

}

// read the page
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data := db.mmap.chunks[0]

loadMeta(db, data)

// verify the page

// ...

return nil

}

Update the meta page

Writing a small amount of page-aligned data to a real disk, modifying only a single sector,
is likely power-loss-atomic at the hardware level. Some real databases[1] depend on this.
That’s how we update the meta page too.

// 3. Update the meta page. it must be atomic.

func updateRoot(db *KV) error {

if _, err := syscall.Pwrite(db.fd, saveMeta(db), 0); err != nil {

return fmt.Errorf("write meta page: %w", err)

}

return nil

}

However, atomicity means different things at different levels, as you’ve seen with rename.
write is not atomic w.r.t. concurrent readers at the system call level[2]. This is likely how
the page cache works.

We’ll consider read/write atomicity when we add concurrent transations, but we have
already seen a solution: In an LSM-tree, the 1st level is the only thing that is updated, and
it’s duplicated as a MemTable, which moves the concurrency problem to memory. We can
keep an in-memory copy of the meta page and synchronize it with a mutex, thus avoiding
concurrent disk reads/writes.

Even if the hardware is not atomic w.r.t. power loss. Atomicity is achievable with log +
checksum. We could switch between 2 checksumed meta pages for each update, to ensure
that one of them is good after a power loss. This is called double buffering, which is a rotating
log with 2 entries.

[1]https://www.postgresql.org/message-id/flat/17064-bb0d7904ef72add3%40postgresql.org
[2]https://stackoverflow.com/questions/35595685/
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6.6 Error handling
Scenarios after IO errors

The bare minimum of error handling is to propagate errors with if err != nil. Next,
consider the possibility of using the DB after an IO error (fsync or write).

• Read after a failed update?

– The reasonable choice is to behave as if nothing happened.

• Update it again after a failure?

– If the error persists, it’s expected to fail again.
– If the error is temporary, can we recover from the previous error?

• Restart the DB after the problem is resolved?

– This is just crash recovery; discussed in chapter 03.

Revert to the previous version

There is a survey[3] on the handling of fsync failures. From which we can learn that the
topic is filesystem dependent. If we read after an fsync failure, some filesystems return
the failed data as the page cache doesn’t match the disk. So reading back failed writes is
problematic.

But since we’re copy-on-write, this is not a problem; we can revert to the old tree root to
avoid the problematic data. The tree root is stored in the meta page, but we never read the
meta page from disk after opening a DB, so we’ll just revert the in-memory root pointer.

func (db *KV) Set(key []byte, val []byte) error {

meta := saveMeta(db) // save the in-memory state (tree root)

db.tree.Insert(key, val)

return updateOrRevert(db, meta)

}

func updateOrRevert(db *KV, meta []byte) error {

// 2-phase update

err := updateFile(db)

// revert on error

if err != nil {

// the in-memory states can be reverted immediately to allow reads

loadMeta(db, meta)

// discard temporaries

[3]https://www.usenix.org/system/files/atc20-rebello.pdf
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db.page.temp = db.page.temp[:0]

}

return err

}

So after a write failure, it’s still possible to use the DB in read-only mode. Reads can also
fail, but we’re using mmap, on a read error the process is just killed by SIGBUS. That’s one of
the drawbacks of mmap.

Recover from temporary write errors

Some write errors are temporary, such as “no space left”. If an update fails and then the
next succeeds, the end state is still good. The problem is the intermediate state: between
the 2 updates, the content of the meta page on disk is unknown!

If fsync fails on the meta page, the meta page on disk can be either the new or the old
version, while the in-memory tree root is the old version. So the 2nd successful update will
overwrite the data pages of the newer version, which can be left in a corrupted intermediate
state if crashed.

The solution is to rewrite the last known meta page on recovery.

type KV struct {

// ...

failed bool // Did the last update fail?

}

func updateOrRevert(db *KV, meta []byte) error {

// ensure the on-disk meta page matches the in-memory one after an error

if db.failed {

// write and fsync the previous meta page

// ...

db.failed = false

}

err := updateFile(db)

if err != nil {

// the on-disk meta page is in an unknown state;

// mark it to be rewritten on later recovery.

db.failed = true

// ...

}

return err

}
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We rely on filesystems to report errors correctly, but there is evidence[4] that they don’t. So
can the system as a whole handle errors is still doubtful.

6.7 Summary of the append-only KV store
• File layout for a copy-on-write B+tree.
• Durability and atomicity with fsync.
• Error handling.

B+tree on disk is a major step. We just have to add a free list to make it practical.

[4]https://danluu.com/filesystem-errors/
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CHAPTER 07

Free List: Recyle & Reuse

The last step of the KV store is to reuse deleted pages, which is also a problem for in-memory
data structures.

7.1 Memory management techniques

What we will do

Memory (space) management can be either manual or automatic. A garbage collector is
automatic, it detects unused objects without any help from the programmer. The next
problem is how to deal with (reuse) unused objects.

We don’t need a GC, because in a tree data structure, detecting unused nodes is trivial, as
we have already done with the BTree.del callback. What we’ll do is reimplement those
callbacks.

List of unused objects

One of the reasons that disk space is managed in pages of the same size is that they become
interchangeable after they are deleted; the DB can reuse any of them when it needs a page.
This is simpler than generic memory management routines such as malloc, which deal with
arbitrary sizes.

We need to store a list of unused pages, called a free list or object pool. For in-memory data,
this can simply be an array of pointers, or a linked list embedded in objects.

Embedded linked list

The simplest scheme is to use an embedded (intrusive) linked list. The list pointer sits inside
the object itself; it borrows space from the object, so no extra space is needed for the data
structure.

head

↓

[ next | space... ] (unused object 1)

↓

[ next | space... ] (unused object 2)

↓

...

However, this conflicts with copy-on-write, as it overwrites during an update.
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External list

The other scheme is to store pointers to unused pages in an external data structure. The
external data structure itself takes up space, which is a problem we’ll solve.

Let’s say our free list is just a log of unused page numbers; adding items is just appending.
The problem is how to remove items so that it doesn’t grow infinitely.

7.2 Linked list on disk

Free list requirements

Let’s image the free list as a sequence of items, like a log. In a copy-on-write tree, each
update requires new nodes and deletes old nodes, so the free list is both added to and
removed from per update. If items are removed from the end, then the added items overwrite
old data, requiring extra crash recovery mechanisms discussed in chapter 03.

If items are removed from the beginning, how do you reclaim the space from the removed
items? We’re back to the original problem.

To solve the problem, the free list should also be page-based, so that it can manage itself. A
page-based list is just a linked list, except that a page can hold multiple items, like a B+tree
node. This is also called an unrolled linked list.

In summary:

• Our free list is a standalone data structure: a linked list of pages.

– It will try to get a page from itself when it grows a new node.
– Removed list nodes are added to itself for reuse.

• Each page can contain multiple items (page numbers).

– Pages are updated in-place, but it’s still append-only within a page.

• Items are appended to the tail node and consumed from the head.

– It’s easier to make the tail node append-only this way.

Free list disk layout

Each node starts with a pointer to the next node. Items are appended next to it.

Report an Error | Ask a Question @ build-your-own.org 48

https://forms.gle/UKo4bncUnuMGBrTM7
https://build-your-own.org


2024-06-11 07. Free List: Recyle & Reuse

// node format:

// | next | pointers | unused |

// | 8B | n*8B | ... |

type LNode []byte

const FREE_LIST_HEADER = 8

const FREE_LIST_CAP = (BTREE_PAGE_SIZE - FREE_LIST_HEADER) / 8

// getters & setters

func (node LNode) getNext() uint64

func (node LNode) setNext(next uint64)

func (node LNode) getPtr(idx int) uint64

func (node LNode) setPtr(idx int, ptr uint64)

We also store pointers to both the head node and the tail node in the meta page. The
pointer to the tail node is needed for O(1) insertion.

first_item

↓

head_page -> [ next | xxxxx ]

↓

[ next | xxxxxxxx ]

↓

tail_page -> [ NULL | xxxx ]

↑

last_item

Update free list nodes

Without the free list, the meta page is the only page that is updated in-place, which is how
copy-on-write made crash recovery easy. Now there are 2 more in-place page updates in
list nodes: the next pointer and the appended items.

Although list nodes are updated in-place, no data is overwritten within a page. So if an
update is interrupted, the meta page still points to the same data; no extra crash recovery is
needed. And unlike the meta page, atomicity is not required.

Following this analysis, the embedded list can also work iff the next pointer is reserved
in the B+tree node. Here you can deviate from the book. Although this doubles write
amplification.
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7.3 Free list implementation

Free list interface

type KV struct {

Path string

// internals

fd int

tree BTree

free FreeList // added

// ...

}

FreeList is the extra data structure in KV.

type FreeList struct {

// callbacks for managing on-disk pages

get func(uint64) []byte // read a page

new func([]byte) uint64 // append a new page

set func(uint64) []byte // update an existing page

// persisted data in the meta page

headPage uint64 // pointer to the list head node

headSeq uint64 // monotonic sequence number to index into the list head

tailPage uint64

tailSeq uint64

// in-memory states

maxSeq uint64 // saved `tailSeq` to prevent consuming newly added items

}

// get 1 item from the list head. return 0 on failure.

func (fl *FreeList) PopHead() uint64

// add 1 item to the tail

func (fl *FreeList) PushTail(ptr uint64)

Like BTree, page management is isolated via 3 callbacks:

• get reads a page; same as before,
• new appends a page; previously used for BTree.
• set returns a writable buffer to capture in-place updates.
• del is not there because the free list manages free pages itself.
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func (db *KV) Open() error {

// ...

// B+tree callbacks

db.tree.get = db.pageRead // read a page

db.tree.new = db.pageAlloc // (new) reuse from the free list or append

db.tree.del = db.free.PushTail // (new) freed pages go to the free list

// free list callbacks

db.free.get = db.pageRead // read a page

db.free.new = db.pageAppend // append a page

db.free.set = db.pageWrite // (new) in-place updates

// ...

}

Free list data structure

Since a node contains a variable number of items up to FREE_LIST_CAP, we need to know
where the 1st item is in the head node (headSeq), and where the items end in the tail node
(tailSeq).

type FreeList struct {

// ...

// persisted data in the meta page

headPage uint64 // pointer to the list head node

headSeq uint64 // monotonic sequence number to index into the list head

tailPage uint64

tailSeq uint64

// in-memory states

maxSeq uint64 // saved `tailSeq` to prevent consuming newly added items

}

headSeq, tailSeq are indexes into the head and tail nodes, except that they are monotonically
increasing. So the wrapped-around index is:

func seq2idx(seq uint64) int {

return int(seq % FREE_LIST_CAP)

}

We make them monotonically increasing so that they become a unique identifier of the
list position; to prevent the list head from overrunning the list tail, simply compare the 2
sequence numbers.
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During an update, the list is both added to and removed from, and when we remove from
the head, we cannot remove what we just added to the tail. So we need to …

1. At the beginning of the update, save the original tailSeq to maxSeq.
2. During the update, headSeq cannot overrun maxSeq.
3. At the beginning of the next update, maxSeq is advanced to tailSeq.
4. …

// make the newly added items available for consumption

func (fl *FreeList) SetMaxSeq() {

fl.maxSeq = fl.tailSeq

}

Consuming from the free list

Removing an item from the head node is simply advancing headSeq. And when the head
node becomes empty, move to the next node.

// remove 1 item from the head node, and remove the head node if empty.

func flPop(fl *FreeList) (ptr uint64, head uint64) {

if fl.headSeq == fl.maxSeq {

return 0, 0 // cannot advance

}

node := LNode(fl.get(fl.headPage))

ptr = node.getPtr(seq2idx(fl.headSeq)) // item

fl.headSeq++

// move to the next one if the head node is empty

if seq2idx(fl.headSeq) == 0 {

head, fl.headPage = fl.headPage, node.getNext()

assert(fl.headPage != 0)

}

return

}

The free list self-manages; the removed head node is fed back to itself.

// get 1 item from the list head. return 0 on failure.

func (fl *FreeList) PopHead() uint64 {

ptr, head := flPop(fl)

if head != 0 { // the empty head node is recycled

fl.PushTail(head)
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}

return ptr

}

What if the last node is removed? A linked list with 0 nodes implies nasty special cases. In
practice, it’s easier to design the linked list to have at least 1 node than to deal with special
cases. That’s why we assert(fl.headPage != 0).

Pushing into the free list

Appending an item to the tail node is simply advancing tailSeq. And when the tail node is
full, we immediately add a new empty tail node to ensure that there is at least 1 node in
case the previous tail node is removed as a head node.

func (fl *FreeList) PushTail(ptr uint64) {

// add it to the tail node

LNode(fl.set(fl.tailPage)).setPtr(seq2idx(fl.tailSeq), ptr)

fl.tailSeq++

// add a new tail node if it's full (the list is never empty)

if seq2idx(fl.tailSeq) == 0 {

// try to reuse from the list head

next, head := flPop(fl) // may remove the head node

if next == 0 {

// or allocate a new node by appending

next = fl.new(make([]byte, BTREE_PAGE_SIZE))

}

// link to the new tail node

LNode(fl.set(fl.tailPage)).setNext(next)

fl.tailPage = next

// also add the head node if it's removed

if head != 0 {

LNode(fl.set(fl.tailPage)).setPtr(0, head)

fl.tailSeq++

}

}

}

Again, the free list is self-managing: it will try to get a node from itself for the new tail node
before resorting to appending.

Report an Error | Ask a Question @ build-your-own.org 53

https://forms.gle/UKo4bncUnuMGBrTM7
https://build-your-own.org


2024-06-11 07. Free List: Recyle & Reuse

7.4 KV with a free list
Page management

Now that pages can be reused, reused pages are overwritten in-place, so a map is used to
capture pending updates.

type KV struct {

// ...

page struct {

flushed uint64 // database size in number of pages

nappend uint64 // number of pages to be appended

updates map[uint64][]byte // pending updates, including appended pages

}

}

BTree.new is now KV.pageAlloc, it uses the free list before resorting to appending.

// `BTree.new`, allocate a new page.

func (db *KV) pageAlloc(node []byte) uint64 {

if ptr := db.free.PopHead(); ptr != 0 { // try the free list

db.page.updates[ptr] = node

return ptr

}

return db.pageAppend(node) // append

}

KV.pageWrite returns a writable page copy to capture in-place updates.

// `FreeList.set`, update an existing page.

func (db *KV) pageWrite(ptr uint64) []byte {

if node, ok := db.page.updates[ptr]; ok {

return node // pending update

}

node := make([]byte, BTREE_PAGE_SIZE)

copy(node, db.pageReadFile(ptr)) // initialized from the file

db.page.updates[ptr] = node

return node

}

Another change is that we may read a page again after it has been updated, so KV.pageRead

should consult the pending updates map first.
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// `BTree.get`, read a page.

func (db *KV) pageRead(ptr uint64) []byte {

if node, ok := db.page.updates[ptr]; ok {

return node // pending update

}

return db.pageReadFile(ptr)

}

func (db *KV) pageReadFile(ptr uint64) []byte {

// same as `KV.pageRead` in the last chapter ...

}

Update the meta page

The meta page now includes free list pointers (head and tail) that are updated atomically
along with the tree root.

| sig | root_ptr | page_used | head_page | head_seq | tail_page | tail_seq |

| 16B | 8B | 8B | 8B | 8B | 8B | 8B |

Remember that the free list always contains at least 1 node, we’ll assign an empty node to it
when initializing an empty DB.

func readRoot(db *KV, fileSize int64) error {

if fileSize == 0 { // empty file

// reserve 2 pages: the meta page and a free list node

db.page.flushed = 2

// add an initial node to the free list so it's never empty

db.free.headPage = 1 // the 2nd page

db.free.tailPage = 1

return nil // the meta page will be written in the 1st update

}

// ...

}

Since headSeq is blocked by maxSeq, maxSeq is updated to tailSeq between updates to allow
reuse of pages from the last version.

func updateFile(db *KV) error {

// ...

// prepare the free list for the next update

db.free.SetMaxSeq()
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return nil

}

We still assume sequential access in this chapter. When we add concurrency later, headSeq
will be blocked by the oldest reader instead.

7.5 Conclusion of the KV store
What we have done:

• File layout for a copy-on-write B+tree.
• Durability and atomicity with fsync.
• Managing disk pages with a free list.

That’s enough for a KV store with get, set, del. But there is more in part II:

• Relational DB on KV store.
• Concurrent transactions.
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CHAPTER 08

Tables on KV

8.1 Encode rows as KVs

Indexed queries: point and range

In a relational DB, data is modeled as 2D tables consisting of rows and columns. Users speak
their intent in SQL and the DB magically delivers results. What’s less magic is that while a
DB can execute arbitrary queries, not all queries are practical (efficient & scalable) in OLTP
workloads, and OLTP always requires users to control how queries are executed via proper
schema and index design.

How an indexed query is executed boils down to 2 operations:

1. Point query: Find a row by a given key.
2. Range query: Find rows by a range; iterate the result in sorted order.

That’s why B+trees and LSM-trees are considered, while hashtables are not.

The primary key as the “key”

Let’s consider point queries first. To find a row, there must be a way to uniquely identify
the row, that’s the primary key, which is a subset of the columns.

create table t1 (

k1 string,

k2 int,

v1 string,

v2 string,

primary key (k1, k2)

);

Intuitively, primary key columns go in the “key” and the rest go in the “value”.

key value

t1 k1, k2 v1, v2

Some DBs allow tables without a primary key, what they do is add a hidden, auto-generated
primary key.
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The secondary indexes as separate tables

Besides the primary key, a table can be indexed in more than 1 way. This is solved by an
extra indirection: the secondary indexes.

create table t1 (

k1 string,

k2 int,

v1 string,

v2 string,

primary key (k1, k2),

index idx1 (v1),

index idx2 (v2, v1)

);

Logically, each index is like a separate table:

create table idx1 (

-- indexed key (v1)

v1 string,

-- primary key (k1, k2)

k1 string,

k2 int

);

create table idx2 (

-- indexed key (v2, v1)

v2 string,

v1 string,

-- primary key (k1, k2)

k1 string,

k2 int

);

Which adds an extra key to find the unique row identifier (primary key).

key value

t1 k1, k2 v1, v2
idx1 v1 k1, k2
idx2 v2, v1 k1, k2

The primary key is also an index, but with the unique constraint.
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Alternative: auto-generated row ID

Some DBs use an auto-generated ID as the “true” primary key, as opposed to the user-
selected primary key. In this case, there is no distinction between primary and secondaries;
the user primary key is also an indirection.

key value

t1 ID k1, k2, v1, v2
primary key k1, k2 ID
idx1 v1 ID
idx2 v2, v1 ID

The advantage is that the auto-generated ID can be a small, fixed-width integer, while the
user primary key can be arbitrarily long. This means that …

• For ID keys, internal nodes can store more keys (shorter tree).
• Secondary indexes are smaller as they don’t duplicate the user primary key.

8.2 Databases schemas

The table prefix

A DB can contain multiple tables and indexes. We’ll prepend an auto-generated prefix to
the keys so that they can share a single B+tree. This is less work than keeping multiple
trees.

key value

table1 prefix1 + columns… columns…
table2 prefix2 + columns… columns…
index1 prefix3 + columns… columns…

The prefix is a 32-bit auto-incrementing integer, you can also use the table name instead,
with the drawback that it can be arbitrarily long.

Data types

One advantage of relational DB over KV is that they support more data types. To reflect
this aspect, we’ll support 2 data types: string and integer.
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const (

TYPE_BYTES = 1 // string (of arbitrary bytes)

TYPE_INT64 = 2 // integer; 64-bit signed

)

// table cell

type Value struct {

Type uint32 // tagged union

I64 int64

Str []byte

}

The cell Value is a tagged union of a particular type.

Records

A Record represents a list of column names and values.

// table row

type Record struct {

Cols []string

Vals []Value

}

func (rec *Record) AddStr(col string, val []byte) *Record {

rec.Cols = append(rec.Cols, col)

rec.Vals = append(rec.Vals, Value{Type: TYPE_BYTES, Str: val})

return rec

}

func (rec *Record) AddInt64(col string, val int64) *Record

func (rec *Record) Get(col string) *Value

Schemas

We’ll only consider the primary key in this chapter, leaving indexes for later.

type TableDef struct {

// user defined

Name string

Types []uint32 // column types

Cols []string // column names
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PKeys int // the first `PKeys` columns are the primary key

// auto-assigned B-tree key prefixes for different tables

Prefix uint32

}

Internal tables

Where to store table schemas? Since we’re coding a DB, we know how to store stuff; we’ll
store them in a predefined internal table.

var TDEF_TABLE = &TableDef{

Prefix: 2,

Name: "@table",

Types: []uint32{TYPE_BYTES, TYPE_BYTES},

Cols: []string{"name", "def"},

PKeys: 1,

}

The def column is JSON serialized TableDef. This is like:

create table `@table` (

`name` string, -- table name

`def` string, -- schema

primary key (`name`)

);

We’ll also need to keep some extra information, such as an auto-incrementing counter for
generating table prefixes. Let’s define another internal table for this.

var TDEF_META = &TableDef{

Prefix: 1,

Name: "@meta",

Types: []uint32{TYPE_BYTES, TYPE_BYTES},

Cols: []string{"key", "val"},

PKeys: 1,

}
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8.3 Get, update, insert, delete, create
Point query and update interfaces

Interfaces for reading and writing a single row:

func (db *DB) Get(table string, rec *Record) (bool, error)

func (db *DB) Insert(table string, rec Record) (bool, error)

func (db *DB) Update(table string, rec Record) (bool, error)

func (db *DB) Upsert(table string, rec Record) (bool, error)

func (db *DB) Delete(table string, rec Record) (bool, error)

DB is a wrapper of KV:

type DB struct {

Path string

kv KV

}

Query by primary key

The rec argument is the input primary key. It’s also the output row.

// get a single row by the primary key

func dbGet(db *DB, tdef *TableDef, rec *Record) (bool, error) {

// 1. reorder the input columns according to the schema

values, err := checkRecord(tdef, *rec, tdef.PKeys)

if err != nil {

return false, err

}

// 2. encode the primary key

key := encodeKey(nil, tdef.Prefix, values[:tdef.PKeys])

// 3. query the KV store

val, ok := db.kv.Get(key)

if !ok {

return false, nil

}

// 4. decode the value into columns

for i := tdef.PKeys; i < len(tdef.Cols); i++ {

values[i].Type = tdef.Types[i]

}
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decodeValues(val, values[tdef.PKeys:])

rec.Cols = tdef.Cols

rec.Vals = values

return true, nil

}

The code to handle the columns is just mandane, we’ll skip it.

// reorder a record and check for missing columns.

// n == tdef.PKeys: record is exactly a primary key

// n == len(tdef.Cols): record contains all columns

func checkRecord(tdef *TableDef, rec Record, n int) ([]Value, error)

The next step is encoding and decoding, which can be any serialization scheme.

// encode columns for the "key" of the KV

func encodeKey(out []byte, prefix uint32, vals []Value) []byte

// decode columns from the "value" of the KV

func decodeValues(in []byte, out []Value)

Read the schema

User-facing interfaces refer to tables by name, so we must get its schema first.

// get a single row by the primary key

func (db *DB) Get(table string, rec *Record) (bool, error) {

tdef := getTableDef(db, table)

if tdef == nil {

return false, fmt.Errorf("table not found: %s", table)

}

return dbGet(db, tdef, rec)

}

Which is just a query to the internal table @table of JSON-encoded TableDefs.
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func getTableDef(db *DB, name string) *TableDef {

rec := (&Record{}).AddStr("name", []byte(name))

ok, err := dbGet(db, TDEF_TABLE, rec)

assert(err == nil)

if !ok {

return nil

}

tdef := &TableDef{}

err = json.Unmarshal(rec.Get("def").Str, tdef)

assert(err == nil)

return tdef

}

We can cache table schemas in memory to reduce the number of queries, since no sane
application needs a huge number of tables.

Insert or update a row

There are 3 SQL update statements that differ in how they treat an existing row:

• INSERT only adds new rows (identified by the primary key).
• UPDATE only modifies existing rows.
• UPSERT adds new rows or modifies existing rows.

(Note: UPSERT is PostgreSQL specific. In MySQL it’s ON DUPLICATED KEY UPDATE. In SQLite
it’s INSERT OR REPLACE).

This is implemented by extending BTree.Insert with a mode flag.

// update modes

const (

MODE_UPSERT = 0 // insert or replace

MODE_UPDATE_ONLY = 1 // update existing keys

MODE_INSERT_ONLY = 2 // only add new keys

)

type UpdateReq struct {

tree *BTree

// out

Added bool // added a new key

// in

Key []byte

Val []byte
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Mode int

}

func (tree *BTree) Update(req *UpdateReq)

The update function here only deals with a complete row. Partial updates (read-modify-
write) are implemented at a higher level (query language).

func dbUpdate(db *DB, tdef *TableDef, rec Record, mode int) (bool, error) {

values, err := checkRecord(tdef, rec, len(tdef.Cols))

if err != nil {

return false, err

}

key := encodeKey(nil, tdef.Prefix, values[:tdef.PKeys])

val := encodeValues(nil, values[tdef.PKeys:])

return db.kv.Update(key, val, mode)

}

Create a table

The process of creating a table is rather boring:

1. Read @table to check for duplicate names.
2. Read the table prefix counter from @meta.
3. Increase and update the table prefix counter in @meta.
4. Insert the schema to @table.

func (db *DB) TableNew(tdef *TableDef) error

This process involves updating 2 keys, so we’re losing atomicity here. This will be fixed
later when we add transactions.

8.4 Conclusion of tables on KV
Tables on KV is not fundamentally different, it’s just extra steps of data serialization and
keeping schemas. However, the work is not done yet. The next steps are:

• Range queries.
• Secondary indexes.

Report an Error | Ask a Question @ build-your-own.org 65

https://forms.gle/UKo4bncUnuMGBrTM7
https://build-your-own.org


CHAPTER 09

Range Queries

9.1 B+tree iterator
The iterator interface

The basic operations are seek and iterate for a range query. A B+tree position is represented
by the stateful iterator BIter.

// find the closest position that is less or equal to the input key

func (tree *BTree) SeekLE(key []byte) *BIter

// get the current KV pair

func (iter *BIter) Deref() ([]byte, []byte)

// precondition of the Deref()

func (iter *BIter) Valid() bool

// moving backward and forward

func (iter *BIter) Prev()

func (iter *BIter) Next()

For example, the query for a <= key looks like this:

for iter := tree.SeekLE(key); iter.Valid(); iter.Prev() {

k, v := iter.Deref()

// ...

}

Navigate a tree

The position of the current key is needed to find its sibling key inside a node. And if the
sibling key is in the sibling node, we need to backtrack to the parent node. Since we don’t
use parent pointers, we need the entire path from root to leaf.

type BIter struct {

tree *BTree

path []BNode // from root to leaf

pos []uint16 // indexes into nodes

}
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Moving the iterator is like carrying when incrementing a number digit by digit.

func (iter *BIter) Next() {

iterNext(iter, len(iter.path)-1)

}

func iterNext(iter *BIter, level int) {

if iter.pos[level]+1 < iter.path[level].nkeys() {

iter.pos[level]++ // move within this node

} else if level > 0 {

iterNext(iter, level-1) // move to a sibling node

} else {

iter.pos[len(iter.pos)-1]++ // past the last key

return

}

if level+1 < len(iter.pos) { // update the child node

node := iter.path[level]

kid := BNode(iter.tree.get(node.getPtr(iter.pos[level])))

iter.path[level+1] = kid

iter.pos[level+1] = 0

}

}

Seek to a key

Seeking to a key is like a point query, with the path recorded.

// find the closest position that is less or equal to the input key

func (tree *BTree) SeekLE(key []byte) *BIter {

iter := &BIter{tree: tree}

for ptr := tree.root; ptr != 0; {

node := tree.get(ptr)

idx := nodeLookupLE(node, key)

iter.path = append(iter.path, node)

iter.pos = append(iter.pos, idx)

ptr = node.getPtr(idx)

}

return iter

}

nodeLookupLE is for less-than-and-equal, you’ll also need other operators.
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const (

CMP_GE = +3 // >=

CMP_GT = +2 // >

CMP_LT = -2 // <

CMP_LE = -3 // <=

)

func (tree *BTree) Seek(key []byte, cmp int) *BIter

9.2 Order-preserving encoding

Sort arbitrary data as byte strings

Our B+tree deals with string keys of arbitrary bytes. But a column can be of other types,
such as numbers, and keys can be multiple columns. To support range queries, serialized
keys must be compared w.r.t. their data type.

The obvious way is to replace bytes.Compare with a callback that decodes and compares keys
according to the table schema.

Another way is to choose a special serialization format so that the resulting bytes reflect the
sort order. This is the shortcut we’ll take.

Numbers

Let’s start with a simple problem: how to encode unsigned integers so that they can be
compared by bytes.Compare? bytes.Compare works byte by byte until a difference is met. So
the 1st byte is most significant in a comparison, if we put the most significant (higher) bits
of an integer first, they can be compared byte-wise. That’s just big-endian integers.

0x0000000000000001 -> 00 00 00 00 00 00 00 01

0x0000000000000002 -> 00 00 00 00 00 00 00 02

...

0x00000000000000ff -> 00 00 00 00 00 00 00 ff

0x0000000000000100 -> 00 00 00 00 00 00 01 00

Next, we’ll consider signed integers, which are represented by two’s complement[1]. In two’s
complement representation, the upper half of unsigned values is simply offset to negative
values. To ensure the correct order, the positive half is swapped with the negative half,
which is just flipping the most significant bit.

[1]https://en.wikipedia.org/wiki/Signed_number_representations#Two's_complement
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var buf [8]byte

u := uint64(v.I64) + (1 << 63) // flip the sign bit

binary.BigEndian.PutUint64(buf[:], u) // big endian

Some examples:

int64 Encoded bytes

MinInt64 00 00 00 00 00 00 00 00

-2 7f ff ff ff ff ff ff fe

-1 7f ff ff ff ff ff ff ff

0 80 00 00 00 00 00 00 00

1 80 00 00 00 00 00 00 01

MaxInt64 ff ff ff ff ff ff ff ff

So the general ideas are:

• Arranging bits so that more significant bits come first (big-endian).
• Remapping bits to unsigned integers in the correct order.

Exercise for the reader: Apply this to floats (sign + magnitude + exponent).

Strings

The key can be multiple columns. But bytes.Compare only works with a single string column,
because it needs the length. We cannot simply concatenate string columns, because this
creates ambiguity. E.g., ("a", "bc") vs. ("ab", "c").

There are 2 ways to encode strings with lengths, one way is to prepend the length, this
requires decoding. Another way is to put a delimiter at the end, such as a null byte. The
previous example is encoded as "a\x00bc\x00" and "ab\x00c\x00".

The problem with delimiters is that the input cannot contain the delimiter, this is solved by
escaping the delimiter. We’ll use byte 0x01 as the escaping byte, and the escaping byte itself
must be escaped. So we’ll need 2 transformations:

00 -> 01 01

01 -> 01 02

Note that the escape sequences still preserve the sort order.
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Tuples

A multi-column comparison (tuple) is done column by column until a difference is met.
This is like a string comparison, except that each item is a typed value instead of a byte. We
can simply concatenate the encoded bytes of each column as long as there is no ambiguity.

9.3 Range query
Scanner is a wrapper of the B+tree iterator. It decodes KVs into rows.

// within the range or not?

func (sc *Scanner) Valid() bool

// move the underlying B-tree iterator

func (sc *Scanner) Next()

// fetch the current row

func (sc *Scanner) Deref(rec *Record)

func (db *DB) Scan(table string, req *Scanner) error

The input is an interval of the primary key.

type Scanner struct {

// the range, from Key1 to Key2

Cmp1 int // CMP_??

Cmp2 int

Key1 Record

Key2 Record

// ...

}

For open-ended intervals, simply set Key2 to the maximum/minimum value.

9.4 What we learned
• B+tree iterators.
• Order-preserving encoding.

The next step is to add secondary indexes, which are just extra tables.
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CHAPTER 10

Secondary Indexes

10.1 Secondary indexes as extra keys
Table schema

As mentioned in chapter 08, secondary indexes are just extra KV pairs containing the
primary key. Each index is distinguished by a key prefix in the B+tree.

type TableDef struct {

// user defined

Name string

Types []uint32 // column types

Cols []string // column names

Indexes [][]string // the first index is the primary key

// auto-assigned B-tree key prefixes for different tables and indexes

Prefixes []uint32

}

The first index is used as the primary key as it’s also an index.

KV structures

For a secondary index, we could put the primary key in B+tree value, which is used to find
the full row. However, unlike the primary key, secondary indexes don’t have the unique
constraint, so there can be duplicate B+tree keys.

Instead of modifying our B+tree to support duplicates, we can also add the primary key to
the B+tree key to make it unique and leave the value empty.

create table t1 (

k1 string,

k2 int,

v1 string,

v2 string,

primary key (k1, k2),

index idx1 (v1),

index idx2 (v2, k2)

);
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key value

t1 prefix1, k1, k2 v1, v2
idx1 prefix2, v1, k1, k2 (empty)
idx2 prefix3, v2, k2, k1 (empty)

10.2 Using secondary indexes
Select an index by matching columns

To do a range query, we must select an index that matches the query keys, which is stored
in the Scanner type so that Scanner.Deref() can use it.

type Scanner struct {

// the range, from Key1 to Key2

Cmp1 int // CMP_??

Cmp2 int

Key1 Record

Key2 Record

// internal

db *DB

tdef *TableDef

index int // which index?

iter *BIter // the underlying B-tree iterator

keyEnd []byte // the encoded Key2

}

An index can be multiple columns. For example, index (𝑎, 𝑏) can serve the query (𝑎, 𝑏) >
(1, 2). It can also serve the query 𝑎 > 1, because this is the same as (𝑎, 𝑏) > (1, +∞). The
index selection is just matching the columns.

func dbScan(db *DB, tdef *TableDef, req *Scanner) error {

// ...

isCovered := func(index []string) bool {

key := req.Key1.Cols

return len(index) >= len(key) && slices.Equal(index[:len(key)], key)

}

req.index = slices.IndexFunc(tdef.Indexes, isCovered)

// ...

}
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Encode missing columns as infinity

In the last example, the query 𝑎 > 1 with the index (𝑎, 𝑏) uses only 1 of the columns, so we
need to encode the rest as infinity.

Input query Using the index

𝑎 > 1 (𝑎, 𝑏) > (1, +∞)
𝑎 ≤ 1 (𝑎, 𝑏) < (1, +∞)
𝑎 ≥ 1 (𝑎, 𝑏) > (1, −∞)
𝑎 < 1 (𝑎, 𝑏) < (1, −∞)

This can be done by modifying our order-preserving encoding. First, we’ll choose "\xff"

as +∞ and "" as -∞. As no columns are encoded as empty strings, we can just ignore the
missing columns in the -∞ cases. In the +∞ cases, we’ll prepend a tag to each encoded
column so that they don’t start with "\xff".

// order-preserving encoding

func encodeValues(out []byte, vals []Value) []byte {

for _, v := range vals {

out = append(out, byte(v.Type)) // *added*: doesn't start with 0xff

switch v.Type {

case TYPE_INT64:

var buf [8]byte

u := uint64(v.I64) + (1 << 63) // flip the sign bit

binary.BigEndian.PutUint64(buf[:], u) // big endian

out = append(out, buf[:]...)

case TYPE_BYTES:

out = append(out, escapeString(v.Str)...)

out = append(out, 0) // null-terminated

default:

panic("what?")

}

}

return out

}

We’ll prepend the column type code as the tag. This also makes debugging easier since we
can now decode stuff by looking at the hexdump.

This is a small extra step to support range queries on prefix columns.
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// for primary keys and indexes

func encodeKey(out []byte, prefix uint32, vals []Value) []byte {

// 4-byte table prefix

var buf [4]byte

binary.BigEndian.PutUint32(buf[:], prefix)

out = append(out, buf[:]...)

// order-preserving encoded keys

out = encodeValues(out, vals)

return out

}

// for the input range, which can be a prefix of the index key.

func encodeKeyPartial(

out []byte, prefix uint32, vals []Value, cmp int,

) []byte {

out = encodeKey(out, prefix, vals)

if cmp == CMP_GT || cmp == CMP_LE { // encode missing columns as infinity

out = append(out, 0xff) // unreachable +infinity

} // else: -infinity is the empty string

return out

}

10.3 Maintaining secondary indexes
Sync with the primary data

An update may involve multiple B+tree keys with secondary indexes. When a row is
changed, we must remove old index keys and insert new ones. To do this, the B+tree
interface is extended to return the old value.

type UpdateReq struct {

tree *BTree

// out

Added bool // added a new key

Updated bool // added a new key or an old key was changed

Old []byte // the value before the update

// in

Key []byte

Val []byte

Mode int

}
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Use the new information:

func dbUpdate(db *DB, tdef *TableDef, rec Record, mode int) (bool, error) {

// ...

// insert the row

req := UpdateReq{Key: key, Val: val, Mode: mode}

if _, err = db.kv.Update(&req); err != nil {

return false, err

}

// maintain secondary indexes

if req.Updated && !req.Added {

// use `req.Old` to delete the old indexed keys ...

}

if req.Updated {

// add the new indexed keys ...

}

return req.Updated, nil

}

Atomicity of multi-key updates

Atomicity is not composable! We lost atomicity when multiple keys are involved, even if
individual KV operations are atomic. If the DB crashed or an error occurred while updating
a secondary index, it should revert to the previous state.

Achieving this with just get, set, del is tricky, which is why simple KV interfaces are very
limiting. Our next step is a transactional KV interface to allow atomic operations on multiple
keys or even concurrent readers.

10.4 Summary of tables and indexes on KV
• Rows and columns as KVs.
• Range queries.

– B+tree iterators.
– Order-preserving encoding.

• Secondary indexes.

– Index selection.
– A transactional interface is needed.
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CHAPTER 11

Atomic Transactions

11.1 The all-or-nothing effect
The secondary indexes from the last chapter require atomic multi-key updates. This is not
only necessary for internal DB consistency, but also useful for application data consistency,
think of account balances vs. account transactions.

We’ll drop the get-set-del interface and add a new one to allow atomic execution of a group
of operations. Concurrency is discussed in the next chapter.

Commit and rollback

We’ll add interfaces to mark the beginning and end of the transaction. At the end, updates
either take effect (commit) or are discarded (rollback) due to errors or user request (Abort).

// begin a transaction

func (kv *KV) Begin(tx *KVTX)

// end a transaction: commit updates; rollback on error

func (kv *KV) Commit(tx *KVTX) error

// end a transaction: rollback

func (kv *KV) Abort(tx *KVTX)

Atomicity via copy-on-write

With copy-on-write, both commit and rollback are just updating the root pointer. This is
already implemented as error handling in chapter 06.

type KVTX struct {

db *KV

meta []byte // for the rollback

}

func (kv *KV) Begin(tx *KVTX) {

tx.db = kv

tx.meta = saveMeta(tx.db)

}

func (kv *KV) Commit(tx *KVTX) error {

return updateOrRevert(tx.db, tx.meta)

}
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func (kv *KV) Abort(tx *KVTX) {

// nothing has written, just revert the in-memory states

loadMeta(tx.db, tx.meta)

// discard temporaries

tx.db.page.nappend = 0

tx.db.page.updates = map[uint64][]byte{}

}

Previously, updateOrRevert() was called after a single key update. Now it’s moved to
KVTX.Commit(). The B+tree can be updated as many times as needed, it’s the root pointer
that matters.

// previous chapter!!!

func (db *KV) Update(req *UpdateReq) (bool, error) {

meta := saveMeta(db)

if !db.tree.Update(req) {

return false, nil

}

err := updateOrRevert(db, meta)

return err == nil, err

}

Alternative: atomicity via logging

In a copy-on-write tree, updates are captured by the root pointer, as opposed to in-place
updates where a log is required to capture updates.

The log is used to rollback updates if a transaction is aborted. The problem is that IO errors
prevent further updates, so rollback is left to the recovery mechanism, this is also true with
copy-on-write (see updateOrRevert).

Updates are considered durable once fsync’ed in the log. So the DB can return success
to the client after only 1 fsync, as long as the log is considered for queries and eventually
merged into the main datastore.

11.2 Transactional interfaces

Move tree operations to transactions

Tree operations are now associated with a transaction, so they are moved to KVTX.
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func (tx *KVTX) Seek(key []byte, cmp int) *BIter {

return tx.db.tree.Seek(key, cmp)

}

func (tx *KVTX) Update(req *UpdateReq) bool {

return tx.db.tree.Update(req)

}

func (tx *KVTX) Del(req *DeleteReq) bool {

return tx.db.tree.Delete(req)

}

Note that these functions no longer return errors because the actual disk update is moved
to KVTX.Commit().

Transactional table operations

For the table-based interfaces, just add a wrapper type to KVTX.

type DBTX struct {

kv KVTX

db *DB

}

func (db *DB) Begin(tx *DBTX)

func (db *DB) Commit(tx *DBTX) error

func (db *DB) Abort(tx *DBTX)

And move the table operations to that wrapper.

func (tx *DBTX) Scan(table string, req *Scanner) error

func (tx *DBTX) Set(table string, rec Record, mode int) (bool, error)

func (tx *DBTX) Delete(table string, rec Record) (bool, error)

These operations no longer deal with IO errors, so there is no error handling for updating
secondary indexes.

11.3 Optional optimizations

A working relational DB is a major milestone, although it only supports sequential operations.
For further challenges, there are some optimizations to consider.
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Reduce copying on multi-key updates

Copy-on-write copies nodes from leaf to root in a single update, this is suboptimal for
multi-key updates because nodes in intermediate trees are allocated, updated once, and
then deleted within a transaction.

The optimization is to copy a node only once within a transaction and use in-place updates
on copied nodes.

Range delete

Although we can now do multi-key updates. Deleting a large number of keys, such as
dropping a table, is still problematic w.r.t. resource usage. The naive approach to dropping
a table is to iterate and delete keys one by one. This reads the entire table into memory and
does useless work as nodes are updated repeatedly before being deleted.

Some DBs use separate files for each table, so this is not a problem. In our case, a single
B+tree is used for everything, so we can implement a range delete operation that frees all leaf
nodes with a range without even looking at them.

Compress common prefixes

In any sorted data, nearby keys are likely to share a common prefix. And in typical relational
DB usages, multi-column keys also result in shared prefixes. So there’s an opportunity to
compress keys within a node.

Prefix compression makes implementation more difficult (fun), especially when the node
size is not easily predictable for merge and split.
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CHAPTER 12

Concurrency Control

12.1 Levels of concurrency
The problem: interleaved readers and writers

Concurrent clients can enter and exit transactions at will, requesting reads and writes in
between. To simplify the analysis, let’s assume that enter/exit/read/write are atomic steps,
so that concurrent TXs are just interleaved steps.

We’ll also distinguish read-only TXs from read-write TXs. This is because …

• Concurrent readers are a much easier problem than concurrent writers.
• Many apps are read-heavy, where read performance is more important.

Readers-writer lock (RWLock)

Without knowing how to do concurrency, you can always add a mutex (lock) to serialize
any data access. For read performance, you can use a readers-writer lock instead. It allows
multiple concurrent readers, but only a single writer.

• If there’s no writer, nothing can be changed, concurrent readers are OK.
• When a writer wants to enter, it waits until all readers have left.
• Readers are blocked by a writer, but not by other readers.

The usefulness of this is limited; there is no concurrency between writers, and long-running
TXs are bad because readers and writers block each other.

Read-copy-update (RCU)

To prevent readers and writers from blocking each other, we can make readers and writers
work on their own version of the data.

• There is a pointer to the immutable data, readers just grab it as a snapshot.
• A single writer updates its own copy, then flips the pointer to it.

We get this level of concurrency for free since we are copy-on-write. But a single writer
is still insufficient because the lifetime of a TX is controlled by the client, which can be
arbitrarily long.

Optimistic concurrency control

Concurrent writers lead to conflicts, for example:
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Seq TX1 TX2

1 read a

2 write a := 1

3 write b := a

4 commit
5 commit

TX1 depends on the same key that TX2 modifies, so they cannot both succeed.

Note that some seemingly “write-only” operations actually have a read dependency. For
example, our update/delete interface reports whether the key is updated/deleted, which
depends on the previous state of the key. So the following scenario is also a conflict.

Seq TX1 TX2

1 write a := 1

2 delete a

3 commit
4 commit

One way to deal with conflicts is to just abort TX when a conflict is detected.

1. TX starts.
2. Reads are on the snapshot, but writes are buffered locally.
3. Before committing, verify that there are no conflicts with committed TXs.
4. TX ends.

• If there’s a conflict, abort and rollback.
• Otherwise, transfer buffered writes to the DB.

Note that verify and commit is an atomic step. This is called optimistic concurrency control,
because it assumes conflicts are rare and does nothing to prevent them. We’ll implement
this, but there are alternatives to know about.

Alternative: pessimistic concurrency control

With optimistic concurrency control, TXs cannot progress in case of a conflict, which isn’t
very helpful from the application’s PoV because all they can do is retry in a loop. Another
way to deal with conflicts is to prevent them via locking. TXs will acquire locks on their
dependencies so that potentially conflicting TXs will wait for each other.
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This sounds much nicer, especially in the last example where write/delete can progress
without problems. However, this still doesn’t guarantee progress because TXs can now fail
with deadlocks.

A deadlock is when 2 parties are waiting for each other to release a (different) lock that they
own. This also happens for more than 2 parties as long as there is a cycle in the dependency
graph. In concurrent programming, locks should be acquired in a predefined order to avoid
cycles. This isn’t the case for DBs as the client can grab locks in any order, so a DB must
detect and resolve deadlocks, which is a graph problem.

Comparison of concurrency controls

reader-reader reader-writer writer-writer conflict

RWLock pass block block -
RCU pass pass block -
Optimistic pass pass pass abort
Pessimistic pass lock lock prevent

12.2 Snapshot isolation for readers
Isolation level refers to how a TX sees changes from other TXs. This is not an issue with
copy-on-write since a TX operates on a snapshot of the B+tree.

Capture local updates

A transaction keeps a snapshot of the DB and local updates.

• The snapshot is just a root pointer with copy-on-write.
• The local updates are held in an in-memory B+tree.

type KVTX struct {

// a read-only snapshot

snapshot BTree

// captured KV updates:

// values are prefixed by a 1-byte flag to indicate deleted keys.

pending BTree

// ...

}

Both trees are initialized at the start of the TX.
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// begin a transaction

func (kv *KV) Begin(tx *KVTX) {

// read-only snapshot, just the tree root and the page read callback

tx.snapshot.root = kv.tree.root

tx.snapshot.get = ... // read from mmap'ed pages ...

// in-memory tree to capture updates

pages := [][]byte(nil)

tx.pending.get = func(ptr uint64) []byte { return pages[ptr-1] }

tx.pending.new = func(node []byte) uint64 {

pages = append(pages, node)

return uint64(len(pages))

}

tx.pending.del = func(uint64) {}

}

To represent deleted keys, values in KVTX.pending are prefixed by a 1-byte flag.

FLAG_DELETED = byte(1)

FLAG_UPDATED = byte(2)

Read back your own write

Within a TX, the client should be able to read back what it has just written, even if it has
not been committed, so queries should consult KVTX.pending before KVTX.snapshot. That’s
why writes are held in a B+tree instead of just a list.

// point query. combines captured updates with the snapshot

func (tx *KVTX) Get(key []byte) ([]byte, bool) {

val, ok := tx.pending.Get(key)

switch {

case ok && val[0] == FLAG_UPDATED: // updated in this TX

return val[1:], true

case ok && val[0] == FLAG_DELETED: // deleted in this TX

return nil, false

case !ok: // read from the snapshot

return tx.snapshot.Get(key)

default:

panic("unreachable")

}

}
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For range queries, a new iterator type is added to combine both trees.

// an iterator that combines pending updates and the snapshot

type CombinedIter struct {

top *BIter // KVTX.pending

bot *BIter // KVTX.snapshot

// ...

}

Version numbers in the free list

Since readers can hold old versions of the DB, the free list cannot give away pages from
those versions. We’ll solve this by assigning a monotonically increasing version number to
each version. This is also called a timestamp (logically).

• We keep track of ongoing TXs and the version numbers they’re based on.
• Each page added to the free list is associated with the version number.
• The list never gives away pages that are newer than the oldest TX.

This works by checking the version when consuming from the list head. Remember that
the free list is a FILO (first-in-last-out), so pages from the oldest version will be consumed
first.

Modification 1: Version numbers in KVTX and KV.

type KVTX struct {

// a read-only snapshot

snapshot BTree

version uint64 // based on KV.version

// ...

}

type KV struct {

// ...

version uint64 // monotonic version number; persisted in the meta page

ongoing []uint64 // version numbers of concurrent TXs

}

Modification 2: Free list augmentation.
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// | next | pointer + version | unused |

// | 8B | n*(8B+8B) | ... |

type FreeList struct {

// ...

maxSeq uint64 // saved `tailSeq` to prevent consuming newly added items

maxVer uint64 // the oldest reader version

curVer uint64 // version number when committing

}

• maxVer is maintained as the oldest version in KV.ongoing when a TX exits. It prevents
page reuse in addition to the existing maxSeq.

• curVar is set to the next version by the writer on commit.

12.3 Handle conflicts for writers
Detect conflicts with history

Modification 1: All reads are added to KVTX.reads (point and range queries).

// start <= key <= stop

type KeyRange struct {

start []byte

stop []byte

}

type KVTX struct {

// ...

reads []KeyRange

}

func (tx *KVTX) Get(key []byte) ([]byte, bool) {

tx.reads = append(tx.reads, KeyRange{key, key}) // dependency

// ...

}

Modification 2: Each successful commit is added to KV.history.

type KV struct {

// ...

history []CommittedTX // chanages keys; for detecting conflicts

}

type CommittedTX struct {
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version uint64

writes []KeyRange // sorted

}

func (kv *KV) Commit(tx *KVTX) error {

// ...

if len(writes) > 0 {

kv.history = append(kv.history, CommittedTX{kv.version, writes})

}

return nil

}

Conflict detection works by checking for overlaps between its dependency and the history
that are newer than its base version.

func detectConflicts(kv *KV, tx *KVTX) bool {

for i := len(kv.history) - 1; i >= 0; i-- {

if !versionBefore(tx.version, kv.history[i].version) {

break // sorted

}

if rangesOverlap(tx.reads, kv.history[i].writes) {

return true

}

}

return false

}

The history is trimmed when the oldest TX exits.

Serialize internal data structures

In the analysis, TXs are simplified as interleaved steps, in reality, these steps can run in
parallel threads, which should be serialized as they share the KV structure.

type KV struct {

// ...

mutex sync.Mutex // serialize TX methods

}

func (kv *KV) Begin(tx *KVTX) {

kv.mutex.Lock()

defer kv.mutex.Unlock()

// ...

}
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func (kv *KV) Commit(tx *KVTX) // same

func (kv *KV) Abort(tx *KVTX) // same

We can use this lock for all KVTX methods. But there are ways to reduce the locking. For
example, we don’t have to serialize read/write methods because …

• Writes only work on KVTX.pending, they never touch KV.
• Reads only touch KV.mmap.chunks, which are the slices returned by mmap.

The commit step may modify KV.mmap.chunks by appending, so we’ll use a local copy for
each TX. This slice is append-only, so a shallow copy is enough.

func (kv *KV) Begin(tx *KVTX) {

kv.mutex.Lock()

defer kv.mutex.Unlock()

// read-only snapshot, just the tree root and the page read callback

tx.snapshot.root = kv.tree.root

chunks := kv.mmap.chunks // copied to avoid updates from writers

tx.snapshot.get = func(ptr uint64) []byte { return mmapRead(ptr, chunks) }

// ...

}

This way, read/write methods do not require the lock and can run in parallel. That’s good,
because reads can trigger page faults and block the thread.

So far, only Begin, Commit, and Abort are serialized. But considering that Commit involves IO,
we can go further by releasing the lock while waiting for IO to allow other TXs to enter
and read-only TXs to exit. The commit step should still be serialized with other commit
steps via another lock. This is left as an exercise.
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CHAPTER 13

SQL Parser

SQL is easily parsed by computers while still looking like English.

13.1 Syntax, parser, and interpreter

Tree representation of computer languages

A query language is a string parsed into a tree structure for further processing.

Example 1: SELECT ... FROM foo WHERE a > b AND a < c:

select

/ | \

columns table condition

... foo and

/ \

> <

/ \ / \

a b a c

Example 2: Expression a + b * c:

+

/ \

a *

/ \

b c

SQL is just a particular syntax; there are easier alternatives, such as the pipeline-based
PRQL[1], or even just S-expression[2].

The S-expression is just nested parentheses, it’s the simplest syntax for arbitrary tree struc-
tures. You can skip this chapter if you choose S-expression, but SQL isn’t much harder,
because everything is handled with nothing but top-down recursion. The lesson in this
chapter also applies to most computer languages.

Evaluate by visiting tree nodes

Both SELECT and UPDATE can contain arithmetic expressions on columns, which are parsed
into trees in the last example. Each tree node is an operator, and its subtrees are operands.
To evaluate a tree node, first evaluate its subtrees.

[1]https://prql-lang.org/
[2]https://en.wikipedia.org/wiki/S-expression
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# pseudo code

def eval(node):

if is_binary_operator(node):

left, right = eval(node.left), eval(node.right)

return node.operator(left, right)

elif is_value(node):

return node.value

...

In retrospect, this is the reason why trees are relevant, because trees represent the evaluation
order. A programming language also has control flows, variables, etc., but once you represent
it with a tree, the rest should be obvious.

13.2 Query language specification
Statements

Not exactly SQL, just a look-alike.

create table table_name (

a type1,

b type2,

...

index (c, b, a),

index (d, e, f),

primary key (a, b),

);

select expr... from table_name conditions limit x, y;

insert into table_name (cols...) values (a, b, c)...;

delete from table_name conditions limit x, y;

update table_name set a = expr, b = expr, ... conditions limit x, y;

Conditions

A SQL DB will choose an index based on the WHERE clause if possible, and/or fetch and filter
the rows if the condition is not fully covered by the index. This is automatic without any
direct user control.

Here we’ll deviate from SQL: Instead of WHERE, we’ll use separate clauses for indexing
conditions and filtering conditions,
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1. The INDEX BY clause selects an index and controls the sort order.

-- one of the 3 forms

select expr... from table_name index by a = 1;

select expr... from table_name index by a > 1;

select expr... from table_name index by a > 1 and a < 5;

-- the last query in descending order

select expr... from table_name index by a < 5 and a > 1;

2. The FILTER clause then filters the rows.

-- the filter condition can be arbitrary

select expr... from table_name index by condition1 filter condition2;

select expr... from table_name filter condition2;

Both are optional. And the primary key is selected if the INDEX BY is missing.

OLTP workloads often expect predictable performance; a sudden change in the query plan
is a production hazard. That’s why we make the index selection explicit to save the DB
from guessing.

Expressions

An expression is either a …

• column name,
• literal value like numbers or strings,
• binary or unary operator,
• tuple.

a OR b

a AND b

NOT a

a = b, a < b, ... -- comparisons

a + b, a - b

a * b, a / b

-a

Which is represented as a tree node.
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type QLNode struct {

Type uint32 // tagged union

I64 int64

Str []byte

Kids []QLNode // operands

}

Different operators have different priorities (precedence), as listed above. This complication
is avoided in simpler grammars like S-expression. But operator precedence can be handled
with simple recursion, as you’ll see.

13.3 Recursive descent
Tree node structures

Each statement is divided into smaller parts including the expression node QLNode, so they
are trees of components.

// statements: select, update, delete

type QLSelect struct {

QLScan

Names []string // expr AS name

Output []QLNode

}

type QLUpdate struct {

QLScan

Names []string

Values []QLNode

}

type QLDelete struct {

QLScan

}

// common structure for statements: `INDEX BY`, `FILTER`, `LIMIT`

type QLScan struct {

Table string // table name

Key1 QLNode // index by

Key2 QLNode

Filter QLNode // filter expression

Offset int64 // limit

Limit int64

}
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Split the input into smaller parts

All parsing is top-down. The topmost part is a statement, we’ll first determine its type, then
dispatch the work to the concrete function.

func pStmt(p *Parser) (r interface{}) {

switch {

case pKeyword(p, "create", "table"):

r = pCreateTable(p)

case pKeyword(p, "select"):

r = pSelect(p)

// ...

}

return r

}

pKeyword matches and consumes keywords from the input to determine the next part. Take
a look at pSelect, its 3 parts are consumed by 3 functions.

func pSelect(p *Parser) *QLSelect {

stmt := QLSelect{}

pSelectExprList(p, &stmt) // SELECT xxx

pExpect(p, "from", "expect `FROM` table")

stmt.Table = pMustSym(p) // FROM table

pScan(p, &stmt.QLScan) // INDEX BY xxx FILTER yyy LIMIT zzz

return &stmt

}

pSelectExprList is the comma-separated expression list. Each list item is dispatched to
pSelectExpr. The comma determines where the list ends.

func pSelectExprList(p *Parser, node *QLSelect) {

pSelectExpr(p, node)

for pKeyword(p, ",") {

pSelectExpr(p, node)

}

}

pScan is the last part of SELECT. It’s further divided into 3 smaller parts.
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func pScan(p *Parser, node *QLScan) {

if pKeyword(p, "index", "by") {

pIndexBy(p, node)

}

if pKeyword(p, "filter") {

pExprOr(p, &node.Filter)

}

node.Offset, node.Limit = 0, math.MaxInt64

if pKeyword(p, "limit") {

pLimit(p, node)

}

}

Without looking at every function, we’ve already got the idea of parsing:

1. Split the input into smaller and smaller parts until it ends as either an operator, a
name, or a literal value.

2. Determine the next part by looking at the next keywords.

Table 1: SELECT decomposed into smaller and smaller parts.

SELELT a, b FROM foo INDEX BY x FILTER y LIMIT z

pSelectExprList pExpect pMustSym pScan

pSelectExpr pIndexBy pExprOr pLimit

pExprOr … … pNum

…

Convert infix operators into a binary tree

pExprOr parses an arbitrary expression. Turning 1+2*3-4 into a tree regarding operator
precedence is not obvious, as it’s just an interleaved list of numbers and operators. So let’s
start with a simpler problem: only the + operator.

term

term + term

term + term + term + ...

The expression left + right is represented as:

+

/ \

left right

The left subtree can also represent an expression, so LL + LR + R becomes:
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+

/ \

+ R

/ \

LL LR

We can add more terms, and it’s still a binary tree. Pseudo-code:

def parse_terms():

node = parse_column()

while consume('+'):

right = parse_column()

node = QLNode(type='+', kids=[node, right])

return node

This is described by a simple rule:

expr := expr + term

expr := term

The left subrule expr can expand to the rule itself, but the right subrule term is the bottom-
most part that cannot expand any further.

Operator precedence with recursion

Next problem: add the * operator. It has a higher priority, so term is now expanded by a
similar rule, and the bottommost part is now factor.

expr := expr + term

expr := term

term := term * factor

term := factor

Pseudo-code:

def parse_terms():

node = parse_factors()

while consume('+'):

right = parse_factors()

node = QLNode(type='+', kids=[node, right])

return node

def parse_factors():

node = parse_column()

while consume('*'):

right = parse_column()

node = QLNode(type='*', kids=[node, right])

return node
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Table 2: Visualization of the 2-rule expansion.

a + b × c - d

1 term + term - term
2 factor factor × factor factor

The OR operator has the lowest priority, so pExprOr is the topmost function for parsing an
expression. It calls pExprAnd to handle the next priority, all the way down to the highest
priority pExprUnop, which calls pExprAtom to parse a bottommost part (a name or a literal
value).

a OR b -- pExprOr

a AND b -- pExprAnd

NOT a -- pExprNot

a = b, a < b -- pExprCmp

a + b, a - b -- pExprAdd

a * b, a / b -- pExprMul

-a -- pExprUnop

This is called recursive descent. In retrospect, it’s just divide and conquer, where the “divide”
is just checking for the next keyword.
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CHAPTER 14

Query Language

14.1 Expression evaluation

Both SELECT and UPDATE contain expressions on columns that need evaluation.

type QLEvalContex struct {

env Record // input row values

out Value // output

err error

}

Evaluating a tree is as obvious as it was discussed in the previous chapter.

func qlEval(ctx *QLEvalContex, node QLNode) {

switch node.Type {

// refer to a column

case QL_SYM:

if v := ctx.env.Get(string(node.Str)); v != nil {

ctx.out = *v

} else {

qlErr(ctx, "unknown column: %s", node.Str)

}

// a literal value

case QL_I64, QL_STR:

ctx.out = node.Value

// operators

case QL_NEG:

qlEval(ctx, node.Kids[0])

if ctx.out.Type == TYPE_INT64 {

ctx.out.I64 = -ctx.out.I64

} else {

qlErr(ctx, "QL_NEG type error")

}

// ...

}

}

INSERT contains expressions on constants that are evaluated with an empty env.
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14.2 Range queries
Set up a range query

Both SELECT, UPDATE, and DELETE can do range queries, the difference is what to do with the
results. QLScan is the common part that represents a range query.

type QLScan struct {

Table string // table name

Key1 QLNode // index by

Key2 QLNode

Filter QLNode // filter

Offset int64 // limit

Limit int64

}

It has 3 phases: INDEX BY, LIMIT, and FILTER. Scanner implements the INDEX BY.

func qlScanInit(req *QLScan, sc *Scanner) (err error) {

// convert `QLNode` to `Record` and `CMP_??`

if sc.Key1, sc.Cmp1, err = qlEvalScanKey(req.Key1); err != nil {

return err

}

if sc.Key2, sc.Cmp2, err = qlEvalScanKey(req.Key2); err != nil {

return err

}

switch { // special handling when `Key1` and `Key2` are not both present

case req.Key1.Type == 0 && req.Key2.Type == 0: // no `INDEX BY`

sc.Cmp1, sc.Cmp2 = CMP_GE, CMP_LE // full table scan

case req.Key1.Type == QL_CMP_EQ && req.Key2.Type == 0:

// equal by a prefix: INDEX BY key = val

sc.Key2 = sc.Key1

sc.Cmp1, sc.Cmp2 = CMP_GE, CMP_LE

case req.Key1.Type != 0 && req.Key2.Type == 0:

// open-ended range: INDEX BY key > val

if sc.Cmp1 > 0 {

sc.Cmp2 = CMP_LE // compare with a zero-length tuple

} else {

sc.Cmp2 = CMP_GE

}

}

return nil

}
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Revisit the infinity encoding

INDEX BY takes 1 of the 3 forms defined in the last chapter.

1. a > start AND a < end: An interval of (start, end).
2. a > s: An open-ended interval of (𝑠, +∞).
3. a = p: A prefix of the index.

Let’s say the index is (𝑎, 𝑏). Queries using a prefix of the index are already handled by the
key encoding in chapter 10. So …

• a = p is equivalent to a >= p AND a <= p, encoded as (𝑎, 𝑏) ≥ (𝑝, −∞) and (𝑎, 𝑏) ≤
(𝑝, +∞).

• a > s is equivalent to a > s AND () <= (), encoded as (𝑎, 𝑏) > (𝑠, −∞) and (𝑎, ) <
(+∞, ).

Since the use of the empty tuple (), Key1 and Key2 can now have a different set of columns,
so we have to modify the index selection to allow this.

func dbScan(tx *DBTX, tdef *TableDef, req *Scanner) error {

// ...

covered := func(key []string, index []string) bool {

return len(index) >= len(key) && slices.Equal(index[:len(key)], key)

}

req.index = slices.IndexFunc(tdef.Indexes, func(index []string) bool {

return covered(req.Key1.Cols, index) && covered(req.Key2.Cols, index)

})

// ...

}

14.3 Results iterator

Iterators all the way down

The next phases are LIMIT and FILTER. The results are consumed from iterators.

type RecordIter interface {

Valid() bool

Next()

Deref(*Record) error

}
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Why use iterators instead of an array of results? Because a DB can potentially work with
larger-than-memory data, an iterator doesn’t require the results to be ready in memory at
once, it can even stream the results as they’re produced.

Table 1: A chain of iterators for a SELECT.

Iterator Out Role

BIter KV Iterate through the B+tree.
KVIter KV Combine the snapshot with local updates.

Scanner Row Decode records and follow secondary indexes.
qlScanIter Row Offset, limit, and filter rows.

qlSelectIter Row Evaluate expressions in SELECT.

Transform data with iterators

An iterator takes another iterator as input to transform a stream of items. This is a useful
programming pattern.

type qlSelectIter struct {

iter RecordIter // input

names []string

exprs []QLNode

}

func (iter *qlSelectIter) Valid() bool {

return iter.iter.Valid()

}

func (iter *qlSelectIter) Next() {

iter.iter.Next()

}

func (iter *qlSelectIter) Deref(rec *Record) error {

if err := iter.iter.Deref(rec); err != nil {

return err

}

vals, err := qlEvelMulti(*rec, iter.exprs)

if err != nil {

return err

}

*rec = Record{iter.names, vals}

return nil

}

qlScanIter is a bit more involved, as some bookkeeping is required for filtering.
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type qlScanIter struct {

// input

req *QLScan

sc Scanner

// state

idx int64

end bool

// cached output item

rec Record

err error

}

14.4 Conclusions and next steps
We have multiple interfaces to a persistent, transactional DB:

1. A KV that can be embedded in applications.
2. A relational DB that can be embedded in applications.
3. A SQL-like query language for the relational DB.

Without adding new functionality, we can create a network protocol to allow the DB to run
in a different process or machine. Network programming in Go is high-level and easy, but
you can always learn more with a “from scratch” attitude, which you can find in the “Build
Your Own Redis”[1] book.

Since we have a basic parser and interpreter, we can take on compilers. You can create a
programming language and compile to machine code instead of merely interpreting it. See
the “From Source Code To Machine Code”[2] book.

[1]https://build-your-own.org/redis/
[2]https://build-your-own.org/compiler/
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