

Contents

1. Introduction

1.1. Prerequisites

2. Getting Started

2.1. Project Setup and Skeleton Structure

2.2. A Basic HTTP Server

2.3. API Endpoints and RESTful Routing

3. Sending JSON Responses

3.1. Fixed-Format JSON

3.2. JSON Encoding

3.3. Encoding Structs

3.4. Formatting and Enveloping Responses

3.5. Advanced JSON Customization

3.6. Sending Error Messages

4. Parsing JSON Requests

4.1. JSON Decoding

4.2. Managing Bad Requests

4.3. Restricting Inputs

4.4. Custom JSON Decoding

4.5. Validating JSON Input

5. Database Setup and Configuration

5.1. Setting up PostgreSQL

5.2. Connecting to PostgreSQL

5.3. Configuring the Database Connection Pool

6. SQL Migrations

6.1. An Overview of SQL Migrations

6.2. Working with SQL Migrations

7. CRUD Operations

7.1. Setting up the Movie Model

7.2. Creating a New Movie

7.3. Fetching a Movie

7.4. Updating a Movie

7.5. Deleting a Movie

8. Advanced CRUD Operations

8.1. Handling Partial Updates

8.2. Optimistic Concurrency Control

8.3. Managing SQL Query Timeouts

9. Filtering, Sorting, and Pagination

9.1. Parsing Query String Parameters

9.2. Validating Query String Parameters

9.3. Listing Data

9.4. Filtering Lists

9.5. Full-Text Search

9.6. Sorting Lists

9.7. Paginating Lists

9.8. Returning Pagination Metadata

10. Structured Logging and Error Handling

10.1. Structured JSON Log Entries

10.2. Panic Recovery

11. Rate Limiting

11.1. Global Rate Limiting

11.2. IP-based Rate Limiting

11.3. Configuring the Rate Limiters

12. Graceful Shutdown

12.1. Sending Shutdown Signals

12.2. Intercepting Shutdown Signals

12.3. Executing the Shutdown

13. User Model Setup and Registration

13.1. Setting up the Users Database Table

13.2. Setting up the Users Model

13.3. Registering a User

14. Sending Emails

14.1. SMTP Server Setup

14.2. Creating Email Templates

14.3. Sending a Welcome Email

14.4. Sending Background Emails

14.5. Graceful Shutdown of Background Tasks

15. User Activation

15.1. Setting up the Tokens Database Table

15.2. Creating Secure Activation Tokens

15.3. Sending Activation Tokens

15.4. Activating a User

16. Authentication

16.1. Authentication Options

16.2. Generating Authentication Tokens

16.3. Authenticating Requests

17. Permission-based Authorization

17.1. Requiring User Activation

17.2. Setting up the Permissions Database Table

17.3. Setting up the Permissions Model

17.4. Checking Permissions

17.5. Granting Permissions

18. Cross Origin Requests

18.1. An Overview of CORS

18.2. Demonstrating the Same-Origin Policy

18.3. Simple CORS Requests

18.4. Preflight CORS Requests

19. Metrics

19.1. Exposing Metrics with Expvar

19.2. Creating Custom Metrics

19.3. Request-level Metrics

19.4. Recording HTTP Status Codes

20. Building, Versioning and Quality Control

20.1. Creating and Using Makefiles

20.2. Managing Environment Variables

20.3. Quality Controlling Code

20.4. Module Proxies and Vendoring

20.5. Building Binaries

20.6. Managing and Automating Version Numbers

21. Deployment and Hosting

21.1. Creating a Digital Ocean Droplet

21.2. Server Configuration and Installing Software

21.3. Deployment and Executing Migrations

21.4. Running the API as a Background Service

21.5. Using Caddy as a Reverse Proxy

22. Appendices

22.1. Managing Password Resets

22.2. Creating Additional Activation Tokens

22.3. Authentication with JSON Web Tokens

22.4. JSON Encoding Nuances

22.5. JSON Decoding Nuances

22.6. Request Context Timeouts

Chapter 1.

Introduction

In this book we’re going to work through the start-to-finish build of an application called

Greenlight — a JSON API for retrieving and managing information about movies. You can

think of the core functionality as being a bit like the Open Movie Database API.

Ultimately, our Greenlight API will support the following endpoints and actions:

Method URL Pattern Action

GET /v1/healthcheck Show application health and version information

GET /v1/movies Show the details of all movies

POST /v1/movies Create a new movie

GET /v1/movies/:id Show the details of a specific movie

PATCH /v1/movies/:id Update the details of a specific movie

DELETE /v1/movies/:id Delete a specific movie

POST /v1/users Register a new user

PUT /v1/users/activated Activate a specific user

PUT /v1/users/password Update the password for a specific user

POST /v1/tokens/authentication Generate a new authentication token

POST /v1/tokens/password-reset Generate a new password-reset token

GET /debug/vars Display application metrics

To give you an idea of what the API will look like from a client’s point of view, by the end of

this book the GET /v1/movies/:id endpoint will return a response similar this:

http://www.omdbapi.com/

$ curl -H "Authorization: Bearer RIDBIAE3AMMK57T6IAEBUGA7ZQ" localhost:4000/v1/movies/1

{

 "movie": {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 }

}

Behind the scenes, we’ll use PostgreSQL as the database for persistently storing all the

data. And at the end of the book, we’ll deploy the finished API to a Linux server running on

Digital Ocean.

Conventions

In this book, code blocks are shown with a silver background like the snippet below. If the

code block is particularly long, parts that aren’t relevant may be replaced with an ellipsis.

To make it easy to follow along, most code blocks also have a title bar at the top indicating

the name of the file that we’re working on.

File: hello.go

package main

... // Indicates that some existing code has been omitted.

func sayHello() {

 fmt.Println("Hello world!")

}

Terminal (command line) instructions are shown with a black background and generally

start with a dollar symbol. These commands should work on any Unix-based operating

system, including macOS and Linux. Sample output is shown in silver beneath the

command, like so:

$ echo "Hello world!"

Hello world!

If you’re using Windows, you should replace these commands with the DOS equivalent or

carry out the action via the normal Windows GUI.

Some chapters in this book end with an additional information section. These sections

contain information that isn’t relevant to our application build, but is still important (or

sometimes, just interesting) to know about.

About the author

Hey, I’m Alex Edwards, a full-stack web developer and author. I began working with Go in

2013, and have been teaching people and writing about the language for nearly as long.

I’ve used Go to build a variety of production applications, from simple websites to high-

frequency trading systems. I also maintain several open-source Go packages, including the

popular session management system SCS.

I live near Innsbruck, Austria. You can follow me on GitHub, Instagram, Twitter and on my

blog.

Copyright and disclaimer

Let’s Go Further. Copyright © 2021 Alex Edwards.

Last updated 2021-05-04 16:59:42 UTC. Version 1.0.0.

The Go gopher was designed by Renee French and is used under the Creative Commons 3.0

Attributions license. Cover gopher adapted from vectors by Egon Elbre.

The information provided within this book is for general informational purposes only. While

the author and publisher have made every effort to ensure that the accuracy of the

information within this book was correct at time of publication there are no representations or

warranties, express or implied, about the completeness, accuracy, reliability, suitability or

availability with respect to the information, products, services, or related graphics contained

in this book for any purpose. Any use of this information is at your own risk.

https://github.com/alexedwards/
https://www.instagram.com/ajmedwards/
https://twitter.com/ajmedwards
https://www.alexedwards.net/
http://reneefrench.blogspot.com/
https://github.com/egonelbre/gophers

Chapter 1.1.

Prerequisites

Background knowledge

This book is written as a follow up to Let’s Go, and we’ll leverage a lot of the information and

code patterns from that book again here.

If you’ve already read and enjoyed Let’s Go, then this book should be a good fit for you and

the ideal next step in your learning. If you haven’t, then I highly recommend starting with

Let’s Go first — especially if you’re a newcomer to Go.

You can read this as a standalone book, but please be aware that it is somewhat advanced

— it doesn’t explain the fundamentals in detail, and some topics (like testing) don’t feature

at all because they were covered heavily in the previous book. But if you’re comfortable

using Go and already have a decent amount of experience behind you, then this book may

also be a good fit for you. Feel free to jump straight in.

Go 1.16

The information in this book is correct for the latest major release of Go (version 1.16), and

you should install this if you’d like to code-along with the application build.

If you’ve already got Go installed, you can check the version number from your terminal by

using the go version command. The output should look similar to this:

$ go version

go version go1.16 linux/amd64

If you need to upgrade your version of Go, then please go ahead and do that now. The

instructions for your operating system can be found here.

Other software

There are a few other bits of software that you should make sure are available on your

computer if you want to follow along fully. They are:

https://lets-go.alexedwards.net/
https://golang.org/doc/devel/release.html
https://golang.org/doc/manage-install#uninstalling

The curl tool for working with HTTP requests and responses from your terminal. On

MacOS and Linux machines it should be pre-installed or available in your software

repositories. Otherwise, you can download the latest version from here.

The hey tool for carrying out some basic load tests. If you have Go 1.16 on your

computer, you can install hey with the go install command:

$ go install github.com/rakyll/hey@latest

The git version control system. Installation instructions for all operating systems can be

found here.

A web browser with good developer tools. I’ll be using Firefox in this book, but

Chromium, Chrome or Microsoft Edge will work too.

Your favorite text editor �

https://curl.haxx.se/
https://curl.haxx.se/download.html
https://github.com/rakyll/hey
https://git-scm.com/
https://git-scm.com/downloads
https://www.mozilla.org/en-US/firefox/new/

Chapter 2.

Getting Started

In this first section of the book, we’re going to set up a project directory and lay the

groundwork for building our Greenlight API. We will:

Create a skeleton directory structure for the project and explain at a high-level how our

Go code and other assets will be organized.

Establish a HTTP server to listen for incoming HTTP requests.

Introduce a sensible pattern for managing configuration settings (via command-line

flags) and using dependency injection to make dependencies available to our handlers.

Use the httprouter package to help implement a standard RESTful structure for the API

endpoints.

https://github.com/julienschmidt/httprouter

Chapter 2.1.

Project Setup and Skeleton Structure

Let’s kick things off by creating a greenlight directory to act as the top-level ‘home’ for this

project. I’m going to create my project directory at $HOME/Projects/greenlight , but feel

free to choose a different location if you wish.

$ mkdir -p $HOME/Projects/greenlight

Then change into this directory and use the go mod init command to enable modules for

the project.

When running this command you’ll need to specify a module path, which is essentially a

unique identifier for your project. In this book I’ll use greenlight.alexedwards.net as my

module path, but if you’re following along you should ideally swap this for something that is

unique to you instead.

$ cd $HOME/Projects/greenlight

$ go mod init greenlight.alexedwards.net

go: creating new go.mod: module greenlight.alexedwards.net

At this point you’ll see that a go.mod file has been created in the root of your project

directory. If you open it up, it should look similar to this:

File: go.mod

module greenlight.alexedwards.net

go 1.16

We talked about modules in detail as part of the first Let’s Go book, but as a quick refresher

let’s recap the main points here.

When there is a valid go.mod file in the root of your project directory, your project is a

module.

When you’re working inside your project directory and download a dependency with

go get , then the exact version of the dependency will be recorded in the go.mod file.

Because the exact version is known, this makes it much easier to ensure reproducible

builds across different machines and environments.

When you run or build the code in your project, Go will use the exact dependencies listed

in the go.mod file. If the necessary dependencies aren’t already on your local machine,

then Go will automatically download them for you — along with any recursive

dependencies too.

The go.mod file also defines the module path (which is greenlight.alexedwards.net in

my case). This is essentially the identifier that will be used as the root import path for the

packages in your project.

It’s good practice to make the module path unique to you and your project. A common

convention in the Go community is to base it on a URL that you own.

Hint: If you feel unsure about any aspect of modules or how they work, the official Go

Modules Wiki is an excellent resource and contains answers to a wide range of FAQs —

although please be aware that it hasn’t yet been fully updated for Go 1.16 at the time

of writing.

Generating the skeleton directory structure

Alright, now that our project directory has been created and we have a go.mod file, you can

go ahead and run the following commands to generate a high-level skeleton structure for

the project:

$ mkdir -p bin cmd/api internal migrations remote

$ touch Makefile

$ touch cmd/api/main.go

At this point your project directory should look exactly like this:

.

├── bin
├── cmd
│ └── api
│ └── main.go
├── internal
├── migrations
├── remote
├── go.mod
└── Makefile

Let’s take a moment to talk through these files and folders and explain the purpose that

they’ll serve in our finished project.

https://github.com/golang/go/wiki/Modules
https://github.com/golang/go/wiki/Modules#faqs

The bin directory will contain our compiled application binaries, ready for deployment

to a production server.

The cmd/api directory will contain the application-specific code for our Greenlight API

application. This will include the code for running the server, reading and writing HTTP

requests, and managing authentication.

The internal directory will contain various ancillary packages used by our API. It will

contain the code for interacting with our database, doing data validation, sending emails

and so on. Basically, any code which isn’t application-specific and can potentially be

reused will live in here. Our Go code under cmd/api will import the packages in the

internal directory (but never the other way around).

The migrations directory will contain the SQL migration files for our database.

The remote directory will contain the configuration files and setup scripts for our

production server.

The go.mod file will declare our project dependencies, versions and module path.

The Makefile will contain recipes for automating common administrative tasks — like

auditing our Go code, building binaries, and executing database migrations.

It’s important to point out that the directory name internal carries a special meaning and

behavior in Go: any packages which live under this directory can only be imported by code

inside the parent of the internal directory. In our case, this means that any packages which

live in internal can only be imported by code inside our greenlight project directory.

Or, looking at it the other way, this means that any packages under internal cannot be

imported by code outside of our project.

This is useful because it prevents other codebases from importing and relying on the

(potentially unversioned and unsupported) packages in our internal directory — even if

the project code is publicly available somewhere like GitHub.

Hello world!

Before we continue, let’s quickly check that everything is setup correctly. Open the

cmd/api/main.go file in your text editor and add the following code:

File: cmd/api/main.go

package main

import "fmt"

func main() {

 fmt.Println("Hello world!")

}

Save this file, then use the go run command in your terminal to compile and execute the

code in the cmd/api package. All being well, you will see the following output:

$ go run ./cmd/api

Hello world!

Chapter 2.2.

A Basic HTTP Server

Now that the skeleton structure for our project is in place, let’s focus our attention on

getting a HTTP server up and running.

To start with, we’ll configure our server to have just one endpoint: /v1/healthcheck . This

endpoint will return some basic information about our API, including its current version

number and operating environment (development, staging, production, etc.).

URL Pattern Handler Action

/v1/healthcheck healthcheckHandler Show application information

If you’re following along, open up the cmd/api/main.go file and replace the ‘hello world’

application with the following code:

File: main.go

package main

import (

 "flag"

 "fmt"

 "log"

 "net/http"

 "os"

 "time"

)

// Declare a string containing the application version number. Later in the book we'll

// generate this automatically at build time, but for now we'll just store the version

// number as a hard-coded global constant.

const version = "1.0.0"

// Define a config struct to hold all the configuration settings for our application.

// For now, the only configuration settings will be the network port that we want the

// server to listen on, and the name of the current operating environment for the

// application (development, staging, production, etc.). We will read in these

// configuration settings from command-line flags when the application starts.

type config struct {

 port int

 env string

}

// Define an application struct to hold the dependencies for our HTTP handlers, helpers,

// and middleware. At the moment this only contains a copy of the config struct and a

// logger, but it will grow to include a lot more as our build progresses.

type application struct {

 config config

 logger *log.Logger

}

}

func main() {

 // Declare an instance of the config struct.

 var cfg config

 // Read the value of the port and env command-line flags into the config struct. We

 // default to using the port number 4000 and the environment "development" if no

 // corresponding flags are provided.

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.Parse()

 // Initialize a new logger which writes messages to the standard out stream,

 // prefixed with the current date and time.

 logger := log.New(os.Stdout, "", log.Ldate | log.Ltime)

 // Declare an instance of the application struct, containing the config struct and

 // the logger.

 app := &application{

 config: cfg,

 logger: logger,

 }

 // Declare a new servemux and add a /v1/healthcheck route which dispatches requests

 // to the healthcheckHandler method (which we will create in a moment).

 mux := http.NewServeMux()

 mux.HandleFunc("/v1/healthcheck", app.healthcheckHandler)

 // Declare a HTTP server with some sensible timeout settings, which listens on the

 // port provided in the config struct and uses the servemux we created above as the

 // handler.

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", cfg.port),

 Handler: mux,

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 // Start the HTTP server.

 logger.Printf("starting %s server on %s", cfg.env, srv.Addr)

 err := srv.ListenAndServe()

 logger.Fatal(err)

}

Important: If any of the terminology or patterns in the code above are unfamiliar to

you, then I strongly recommend reading the first Let’s Go book which explains them in

detail.

Creating the healthcheck handler

The next thing we need to do is create the healthcheckHandler method for responding to

HTTP requests. For now, we’ll keep the logic in this handler really simple and have it return

a plain-text response containing three pieces of information:

https://lets-go.alexedwards.net/

A fixed "status: available" string.

The API version from the hard-coded version constant.

The operating environment name from the env command-line flag.

Go ahead and create a new cmd/api/healthcheck.go file:

$ touch cmd/api/healthcheck.go

And then add the following code:

File: cmd/api/healthcheck.go

package main

import (

 "fmt"

 "net/http"

)

// Declare a handler which writes a plain-text response with information about the

// application status, operating environment and version.

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "status: available")

 fmt.Fprintf(w, "environment: %s\n", app.config.env)

 fmt.Fprintf(w, "version: %s\n", version)

}

The important thing to point out here is that healthcheckHandler is implemented as a

method on our application struct.

This is an effective and idiomatic way to make dependencies available to our handlers

without resorting to global variables or closures — any dependency that the

healthcheckHandler needs can simply be included as a field in the application struct when

we initialize it in main().

We can see this pattern already being used in the code above, where the operating

environment name is retrieved from the application struct by calling app.config.env.

Demonstration

OK, let’s try this out. Make sure that all your changes are saved, then use the go run

command again to execute the code in the cmd/api package. You should see a log message

confirming that the HTTP server is running, similar to this:

$ go run ./cmd/api

2021/04/05 19:42:50 starting development server on :4000

While the server is running, go ahead and try visiting localhost:4000/v1/healthcheck in

your web browser. You should get a response from the healthcheckHandler which looks like

this:

Or alternatively, you can use curl to make the request from your terminal:

$ curl -i localhost:4000/v1/healthcheck

HTTP/1.1 200 OK

Date: Mon, 05 Apr 2021 17:46:14 GMT

Content-Length: 58

Content-Type: text/plain; charset=utf-8

status: available

environment: development

version: 1.0.0

Note: The -i flag in the command above instructs curl to display the HTTP response

headers as well as the response body.

If you want, you can also verify that the command-line flags are working correctly by

http://localhost:4000/v1/healthcheck

specifying alternative port and env values when starting the application. When you do this,

you should see the contents of the log message change accordingly. For example:

$ go run ./cmd/api -port=3030 -env=production

2021/04/05 19:48:34 starting production server on :3030

Additional Information

API versioning

APIs which support real-world businesses and users often need to change their functionality

and endpoints over time — sometimes in a backwards-incompatible way. So, to avoid

problems and confusion for clients, it’s a good idea to always implement some form of API

versioning.

There are two common approaches to doing this:

1. By prefixing all URLs with your API version, like /v1/healthcheck or /v2/healthcheck .

2. By using custom Accept and Content-Type headers on requests and responses to

convey the API version, like Accept: application/vnd.greenlight-v1 .

From a HTTP semantics point of view, using headers to convey the API version is the ‘purer’

approach. But from a user-experience point of view, using a URL prefix is arguably better. It

makes it possible for developers to see which version of the API is being used at a glance,

and it also means that the API can still be explored using a regular web browser (which is

harder if custom headers are required).

Throughout this book we’ll version our API by prefixing all the URL paths with /v1/ — just

like we did with the /v1/healthcheck endpoint in this chapter.

https://stackoverflow.com/questions/389169/best-practices-for-api-versioning

Chapter 2.3.

API Endpoints and RESTful Routing

Over the next few sections of this book we’re going to gradually build up our API so that the

endpoints start to look like this:

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

GET /v1/movies listMoviesHandler Show the details of all movies

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PUT /v1/movies/:id editMovieHandler Update the details of a specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

If you’ve built APIs with REST style endpoints before, then the table above probably looks

very familiar to you and doesn’t require much explanation. But if you’re new to this, then

there are a couple of important things to point out.

The first thing is that requests with the same URL pattern will be routed to different handlers

based on the HTTP request method. For both security and semantic correctness, it’s

important that we use the appropriate HTTP method for the action that the handler is

performing.

In summary:

https://en.wikipedia.org/wiki/Representational_state_transfer
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

Method Usage

GET Use for actions that retrieve information only and don’t change the state of your

application or any data.

POST Use for non-idempotent actions that modify state. In the context of a REST API, POST

is generally used for actions that create a new resource.

PUT Use for idempotent actions that modify the state of a resource at a specific URL. In

the context of a REST API, PUT is generally used for actions that replace or update

an existing resource.

PATCH Use for actions that partially update a resource at a specific URL. It’s OK for the

action to be either idempotent or non-idempotent.

DELETE Use for actions that delete a resource at a specific URL.

The other important thing to point out is that our API endpoints will use clean URLs, with

parameters interpolated in the URL path. So — for example — to retrieve the details of a

specific movie a client will make a request like GET /v1/movies/1 , instead of appending the

movie ID in a query string parameter like GET /v1/movies?id=1 .

Choosing a router

When you’re building an API with endpoints like this in Go, one of the first hurdles you’ll

meet is the fact that http.ServeMux — the router in the Go standard library — is quite

limited in terms of its functionality. In particular it doesn’t allow you to route requests to

different handlers based on the request method (GET , POST, etc.), nor does it provide

support for clean URLs with interpolated parameters.

Although you can work-around these limitations, or implement your own router, generally

it’s easier to use one of the many third-party routers that are available instead.

In this chapter we’re going to integrate the popular httprouter package with our

application. Most importantly, httprouter is stable, well-tested and provides the

functionality we need — and as a bonus it’s also extremely fast thanks to its use of a radix

tree for URL matching. If you’re building a REST API for public consumption, then

httprouter is a solid choice.

If you’re coding-along with this book, please use go get to download version v1.3.0 of

httprouter like so:

https://tools.ietf.org/html/rfc7231#section-4.2.2
https://tools.ietf.org/html/rfc7231#section-4.2.2
https://en.wikipedia.org/wiki/Clean_URL
https://golang.org/pkg/net/http/#ServeMux
https://youtu.be/yi5A3cK1LNA?t=704
https://benhoyt.com/writings/go-routing/
https://github.com/julienschmidt/httprouter
https://github.com/julienschmidt/go-http-routing-benchmark#go-http-router-benchmark

$ go get github.com/julienschmidt/httprouter@v1.3.0

go: downloading github.com/julienschmidt/httprouter v1.3.0

go get: added github.com/julienschmidt/httprouter v1.3.0

Note: If you already have a copy of httprouter v1.3.0 on your machine from another

project, then your existing copy will be used and you won’t see a go: downloading...

message.

To demonstrate how httprouter works, we’ll start by adding the two endpoints for creating

a new movie and showing the details of a specific movie to our codebase. By the end of this

chapter, our API endpoints will look like this:

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

Encapsulating the API routes

To prevent our main() function from becoming cluttered as the API grows, let’s encapsulate

all the routing rules in a new cmd/api/routes.go file.

If you’re following along, create this new file and add the following code:

$ touch cmd/api/routes.go

File: cmd/api/routes.go

package main

import (

 "net/http"

 "github.com/julienschmidt/httprouter"

)

func (app *application) routes() *httprouter.Router {

 // Initialize a new httprouter router instance.

 router := httprouter.New()

 // Register the relevant methods, URL patterns and handler functions for our

 // endpoints using the HandlerFunc() method. Note that http.MethodGet and

 // http.MethodPost are constants which equate to the strings "GET" and "POST"

 // respectively.

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 // Return the httprouter instance.

 return router

}

Hint: The httprouter package also provides a router.Handler() method which you

can use when you want to register a regular http.Handler (rather than handler

functions, like we are in the code above).

There are a couple of benefits to encapsulating our routing rules in this way. The first

benefit is that it keeps our main() function clean and ensures all our routes are defined in

one single place. The other big benefit, which we demonstrated in the first Let’s Go book, is

that we can now easily access the router in any test code by initializing an application

instance and calling the routes() method on it.

The next thing that we need to do is update the main() function to remove the

http.ServeMux declaration, and use the httprouter instance returned by app.routes() as

our server handler instead. Like so:

https://godoc.org/github.com/julienschmidt/httprouter#Router.Handler

File: cmd/api/main.go

package main

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.Parse()

 logger := log.New(os.Stdout, "", log.Ldate|log.Ltime)

 app := &application{

 config: cfg,

 logger: logger,

 }

 // Use the httprouter instance returned by app.routes() as the server handler.

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", cfg.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 logger.Printf("starting %s server on %s", cfg.env, srv.Addr)

 err := srv.ListenAndServe()

 logger.Fatal(err)

}

Adding the new handler functions

Now that the routing rules are set up, we need to make the createMovieHandler and

showMovieHandler methods for the new endpoints. The showMovieHandler is particularly

interesting here, because as part of this we want to extract the movie ID parameter from the

URL and use it in our HTTP response.

Go ahead and create a new cmd/api/movies.go file to hold these two new handlers:

$ touch cmd/api/movies.go

And then add the following code:

File: cmd/api/movies.go

package main

import (

 "fmt"

 "net/http"

 "strconv"

 "github.com/julienschmidt/httprouter"

)

// Add a createMovieHandler for the "POST /v1/movies" endpoint. For now we simply

// return a plain-text placeholder response.

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "create a new movie")

}

// Add a showMovieHandler for the "GET /v1/movies/:id" endpoint. For now, we retrieve

// the interpolated "id" parameter from the current URL and include it in a placeholder

// response.

func (app *application) showMovieHandler(w http.ResponseWriter, r *http.Request) {

 // When httprouter is parsing a request, any interpolated URL parameters will be

 // stored in the request context. We can use the ParamsFromContext() function to

 // retrieve a slice containing these parameter names and values.

 params := httprouter.ParamsFromContext(r.Context())

 // We can then use the ByName() method to get the value of the "id" parameter from

 // the slice. In our project all movies will have a unique positive integer ID, but

 // the value returned by ByName() is always a string. So we try to convert it to a

 // base 10 integer (with a bit size of 64). If the parameter couldn't be converted,

 // or is less than 1, we know the ID is invalid so we use the http.NotFound()

 // function to return a 404 Not Found response.

 id, err := strconv.ParseInt(params.ByName("id"), 10, 64)

 if err != nil || id < 1 {

 http.NotFound(w, r)

 return

 }

 // Otherwise, interpolate the movie ID in a placeholder response.

 fmt.Fprintf(w, "show the details of movie %d\n", id)

}

And with that, we’re now ready to try this out!

Go ahead and restart the API application…

$ go run ./cmd/api

2021/04/06 08:57:25 starting development server on :4000

Then while the server is running, open a second terminal window and use curl to make

some requests to the different endpoints. If everything is set up correctly, you will see some

responses which look similar to this:

$ curl localhost:4000/v1/healthcheck

status: available

environment: development

version: 1.0.0

$ curl -X POST localhost:4000/v1/movies

create a new movie

$ curl localhost:4000/v1/movies/123

show the details of movie 123

Notice how, in the final example, the value of the movie id parameter 123 has been

successful retrieved from the URL and included in the response?

You might also want to try making some requests for a particular URL using an unsupported

HTTP method. For example, let’s try making a POST request to /v1/healthcheck :

$ curl -i -X POST localhost:4000/v1/healthcheck

HTTP/1.1 405 Method Not Allowed

Allow: GET, OPTIONS

Content-Type: text/plain; charset=utf-8

X-Content-Type-Options: nosniff

Date: Tue, 06 Apr 2021 06:59:04 GMT

Content-Length: 19

Method Not Allowed

That’s looking really good. The httprouter package has automatically sent a

405 Method Not Allowed response for us, including an Allow header which lists the HTTP

methods that are supported for the endpoint.

Likewise, you can make an OPTIONS request to a specific URL and httprouter will send back

a response with an Allow header detailing the supported HTTP methods. Like so:

$ curl -i -X OPTIONS localhost:4000/v1/healthcheck

HTTP/1.1 200 OK

Allow: GET, OPTIONS

Date: Tue, 06 Apr 2021 07:01:29 GMT

Content-Length: 0

Lastly, you might want to try making a request to the GET /v1/movies/:id endpoint with a

negative number or a non-numerical id value in the URL. This should result in a

404 Not Found response, similar to this:

$ curl -i localhost:4000/v1/movies/abc

HTTP/1.1 404 Not Found

Content-Type: text/plain; charset=utf-8

X-Content-Type-Options: nosniff

Date: Tue, 06 Apr 2021 07:02:01 GMT

Content-Length: 19

404 page not found

Creating a helper to read ID parameters

The code to extract an id parameter from a URL like /v1/movies/:id is something that we’ll

need repeatedly in our application, so let’s abstract the logic for this into a small reuseable

helper method.

Go ahead and create a new cmd/api/helpers.go file:

$ touch cmd/api/helpers.go

And add a new readIDParam() method to the application struct, like so:

File: cmd/api/helpers.go

package main

import (

 "errors"

 "net/http"

 "strconv"

 "github.com/julienschmidt/httprouter"

)

// Retrieve the "id" URL parameter from the current request context, then convert it to

// an integer and return it. If the operation isn't successful, return 0 and an error.

func (app *application) readIDParam(r *http.Request) (int64, error) {

 params := httprouter.ParamsFromContext(r.Context())

 id, err := strconv.ParseInt(params.ByName("id"), 10, 64)

 if err != nil || id < 1 {

 return 0, errors.New("invalid id parameter")

 }

 return id, nil

}

Note: The readIDParam() method doesn’t use any dependencies from our

application struct so it could just be a regular function, rather than a method on

application . But in general, I suggest setting up all your application-specific handlers

and helpers so that they are methods on application . It helps maintain consistency in

your code structure, and also future-proofs your code for when those handlers and

helpers change later and they do need access to a dependency.

With this helper method in place, the code in our showMovieHandler can now be made a lot

simpler:

File: cmd/api/movies.go

package main

import (

 "fmt"

 "net/http"

)

...

func (app *application) showMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 http.NotFound(w, r)

 return

 }

 fmt.Fprintf(w, "show the details of movie %d\n", id)

}

Additional Information

Conflicting routes

It’s important to be aware that httprouter doesn’t allow conflicting routes which

potentially match the same request. So, for example, you cannot register a route like

GET /foo/new and another route with a parameter segment that conflicts with it — like

GET /foo/:id .

If you’re using a standard REST structure for your API endpoints — like we will be in this

book — then this restriction is unlikely to cause you many problems.

In fact, it’s arguably a positive thing. Because conflicting routes aren’t allowed, there are no

routing-priority rules that you need to worry about, and it reduces the risk of bugs and

unintended behavior in your application.

But if you do need to support conflicting routes (for example, you might need to replicate

the endpoints of an existing API exactly for backwards-compatibility), then I would

recommend taking a look at pat , chi or Gorilla mux instead. All of these are good routers

which do permit conflicting routes.

Customizing httprouter behavior

The httprouter package provides a few configuration options that you can use to

customize the behavior of your application further, including enabling trailing slash

redirects and enabling automatic URL path cleaning.

More information about the available settings can be found here.

https://github.com/bmizerany/pat
https://github.com/go-chi/chi
https://github.com/gorilla/mux
https://pkg.go.dev/github.com/julienschmidt/httprouter?tab=doc#Router

Chapter 3.

Sending JSON Responses

In this section of the book, we’re going to update our API handlers so that they return JSON

responses instead of just plain text.

JSON (which is an acronym for JavaScript Object Notation) is a human-readable text format

which can be used to represent structured data. As an example, in our project a movie

could be represented with the following JSON:

{

 "id": 123,

 "title": "Casablanca",

 "runtime": 102,

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version": 1

}

To give you a very quick overview of the JSON syntax…

The parentheses {} define an JSON object, which is made up of comma-separated

key/value pairs.

The keys must be strings, and the values can be either strings, numbers, booleans, other

JSON objects, or an array of any of those things (enclosed by []).

Strings must be surrounded by double-quotes " (rather than single quotes ') and

boolean values are either true or false .

Outside of a string, whitespace characters in JSON do not carry any significance — it

would be perfectly valid for us to represent the same movie using the following JSON

instead:

{"id":123,"title":"Casablanca","runtime":102,"genres":["drama","romance","war"],"version":1}

If you’ve not used JSON at all before, then this beginner’s guide provides a comprehensive

introduction and I recommend reading it before following on.

In this section of the book you’ll learn:

How to send JSON responses from your REST API (including error responses).

https://towardsdatascience.com/an-introduction-to-json-c9acb464f43e

How to encode native Go objects into JSON using the encoding/json package.

Different techniques for customizing how Go objects are encoded to JSON — first by

using struct tags, and then by leveraging the json.Marshaler interface.

How to create a reusable helper for sending JSON responses, which will ensure that all

your API responses have a sensible and consistent structure.

https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/#Marshaler

Chapter 3.1.

Fixed-Format JSON

Let’s begin by updating our healthcheckHandler to send a well-formed JSON response

which looks like this:

{"status": "available", "environment": "development", "version": "1.0.0"}

At this stage, the thing I’d like to emphasize is that JSON is just text. Sure, it has certain

control characters that give the text structure and meaning, but fundamentally, it is just

text.

So that means you can write a JSON response from your Go handlers in the same way that

you would write any other text response: using w.Write() , io.WriteString() or one of the

fmt.Fprint functions.

In fact, the only special thing we need to do is set a Content-Type: application/json

header on the response, so that the client knows it’s receiving JSON and can interpret it

accordingly.

Let’s do exactly that.

Open up the cmd/api/healthcheck.go file and update the healthcheckHandler as follows:

File: cmd/api/healthcheck.go

package main

import (

 "fmt"

 "net/http"

)

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 // Create a fixed-format JSON response from a string. Notice how we're using a raw

 // string literal (enclosed with backticks) so that we can include double-quote

 // characters in the JSON without needing to escape them? We also use the %q verb to

 // wrap the interpolated values in double-quotes.

 js := `{"status": "available", "environment": %q, "version": %q}`

 js = fmt.Sprintf(js, app.config.env, version)

 // Set the "Content-Type: application/json" header on the response. If you forget to

 // this, Go will default to sending a "Content-Type: text/plain; charset=utf-8"

 // header instead.

 w.Header().Set("Content-Type", "application/json")

 // Write the JSON as the HTTP response body.

 w.Write([]byte(js))

}

Once you’ve made those changes, restart the API, open a second terminal, and use curl to

make a request to the GET /v1/healthcheck endpoint. You should now get back a response

which looks like this:

$ curl -i localhost:4000/v1/healthcheck

HTTP/1.1 200 OK

Content-Type: application/json

Date: Tue, 06 Apr 2021 08:38:12 GMT

Content-Length: 73

{"status": "available", "environment": "development", "version": "1.0.0"}

You might also like to try visiting localhost:4000/v1/healthcheck in your browser.

If you’re running one of the newer versions of Firefox, you’ll find that it knows the response

contains JSON (due to the Content-Type header) and it will present the response using the

inbuilt JSON viewer. Like so:

http://localhost:4000/v1/healthcheck

If you click on the Raw Data tab you should see the original unformatted JSON response:

Or you can even select the Pretty Print option to add whitespace, like so:

Of course, using a fixed-format string like we are in this chapter is a pretty simple and lo-fi

approach to generating a JSON response. But it’s worth remembering that it is a valid

option. It can be useful for API endpoints that always return the same static JSON, or as a

quick and easy way to generate small dynamic responses like we have here.

Additional Information

JSON charset

In your programming career you might have come across other JSON APIs which send

responses with the header Content-Type: application/json; charset=utf-8 .

Including a charset parameter like this isn’t normally necessary. The JSON RFC states:

JSON text exchanged between systems that are not part of a closed ecosystem MUST be

encoded using UTF-8.

The important word here is “must”. Because our API will be a public-facing application, it

means that our JSON responses must always be UTF-8 encoded. And it also means that it’s

safe for the client to assume that the responses it gets are always UTF-8 encoded. Because of

https://tools.ietf.org/html/rfc8259#section-8.1

this, including a charset=utf-8 parameter is redundant.

The RFC also explicitly notes that the application/json media type does not have a

charset parameter defined, which means that it is technically incorrect to include one too.

Basically, in our application a charset parameter serves no purpose, and it’s safe (and also

correct) to not include one in our Content-Type: application/json header.

https://tools.ietf.org/html/rfc8259#page-11

Chapter 3.2.

JSON Encoding

Let’s move on to something a bit more exciting and look at how to encode native Go objects

(like maps, structs and slices) to JSON.

At a high-level, Go’s encoding/json package provides two options for encoding things to

JSON. You can either call the json.Marshal() function, or you can declare and use a

json.Encoder type.

We’ll explain how both approaches work in this chapter, but — for the purpose of sending

JSON in a HTTP response — using json.Marshal() is generally the better choice. So let’s

start with that.

The way that json.Marshal() works is conceptually quite simple — you pass a native Go

object to it as a parameter, and it returns a JSON representation of that object in a []byte

slice. The function signature looks like this:

func Marshal(v interface{}) ([]byte, error)

Note: The v parameter in the above method has the type interface{} (known as the

empty interface). This effectively means that we’re able to pass any Go type to

Marshal() as the v parameter.

Let’s jump in and update our healthcheckHandler so that it uses json.Marshal() to

generate a JSON response directly from a Go map — instead of using a fixed-format string

like we were before. Like so:

https://golang.org/pkg/encoding/json/
https://golang.org/pkg/encoding/json/#Marshal
https://golang.org/pkg/encoding/json/#Encoder
https://www.alexedwards.net/blog/interfaces-explained

File: cmd/api/healthcheck.go

package main

import (

 "encoding/json" // New import

 "net/http"

)

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 // Create a map which holds the information that we want to send in the response.

 data := map[string]string{

 "status": "available",

 "environment": app.config.env,

 "version": version,

 }

 // Pass the map to the json.Marshal() function. This returns a []byte slice

 // containing the encoded JSON. If there was an error, we log it and send the client

 // a generic error message.

 js, err := json.Marshal(data)

 if err != nil {

 app.logger.Println(err)

 http.Error(w, "The server encountered a problem and could not process your request", http.StatusInternalServerError)

 return

 }

 // Append a newline to the JSON. This is just a small nicety to make it easier to

 // view in terminal applications.

 js = append(js, '\n')

 // At this point we know that encoding the data worked without any problems, so we

 // can safely set any necessary HTTP headers for a successful response.

 w.Header().Set("Content-Type", "application/json")

 // Use w.Write() to send the []byte slice containing the JSON as the response body.

 w.Write(js)

}

If you restart the API and visit localhost:4000/v1/healthcheck in your browser, you should

now get a response similar to this:

http://localhost:4000/v1/healthcheck

That’s looking good — we can see that the map has automatically been encoded to a JSON

object for us, with the key/value pairs in the map appearing as alphabetically sorted

key/value pairs in the JSON object.

Creating a writeJSON helper method

As our API grows we’re going to be sending a lot of JSON responses, so it makes sense to

move some of this logic into a reusable writeJSON() helper method.

As well as creating and sending the JSON, we want to design this helper so that we can

include arbitrary headers in successful responses later, such as a Location header after

creating a new movie in our system.

If you’re coding-along, open the cmd/api/helpers.go file again and create the following

writeJSON() method:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Location

File: cmd/api/helpers.go

package main

import (

 "encoding/json" // New import

 "errors"

 "net/http"

 "strconv"

 "github.com/julienschmidt/httprouter"

)

...

// Define a writeJSON() helper for sending responses. This takes the destination

// http.ResponseWriter, the HTTP status code to send, the data to encode to JSON, and a

// header map containing any additional HTTP headers we want to include in the response.

func (app *application) writeJSON(w http.ResponseWriter, status int, data interface{}, headers http.Header) error {

 // Encode the data to JSON, returning the error if there was one.

 js, err := json.Marshal(data)

 if err != nil {

 return err

 }

 // Append a newline to make it easier to view in terminal applications.

 js = append(js, '\n')

 // At this point, we know that we won't encounter any more errors before writing the

 // response, so it's safe to add any headers that we want to include. We loop

 // through the header map and add each header to the http.ResponseWriter header map.

 // Note that it's OK if the provided header map is nil. Go doesn't throw an error

 // if you try to range over (or generally, read from) a nil map.

 for key, value := range headers {

 w.Header()[key] = value

 }

 // Add the "Content-Type: application/json" header, then write the status code and

 // JSON response.

 w.Header().Set("Content-Type", "application/json")

 w.WriteHeader(status)

 w.Write(js)

 return nil

}

Now that the writeJSON() helper is in place, we can significantly simplify the code in

healthcheckHandler, like so

File: cmd/api/healthcheck.go

package main

import (

 "net/http"

)

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 data := map[string]string{

 "status": "available",

 "environment": app.config.env,

 "version": version,

 }

 err := app.writeJSON(w, http.StatusOK, data, nil)

 if err != nil {

 app.logger.Println(err)

 http.Error(w, "The server encountered a problem and could not process your request", http.StatusInternalServerError)

 }

}

If you run the application again now, everything will compile correctly and a request to the

GET /v1/healthcheck endpoint should result in the same HTTP response as before.

Additional Information

How different Go types are encoded

In this chapter we’ve been encoding a map[string]string type to JSON, which resulted in a

JSON object with JSON strings as the values in the key/value pairs. But Go supports

encoding many other native types too.

The following table summarizes how different Go types are mapped to JSON data types

during encoding:

Go type ⇒ JSON type

bool ⇒ JSON boolean

string ⇒ JSON string

int*, uint*, float*, rune ⇒ JSON number

array, slice ⇒ JSON array

struct, map ⇒ JSON object

nil pointers, interface values, slices, maps, etc. ⇒ JSON null

chan, func, complex* ⇒ Not supported

time.Time ⇒ RFC3339-format JSON string

[]byte ⇒ Base64-encoded JSON string

The last two of these are special cases which deserve a bit more explanation:

Go time.Time values (which are actually a struct behind the scenes) will be encoded as a

JSON string in RFC 3339 format like "2020-11-08T06:27:59+01:00" , rather than as a

JSON object.

A []byte slice will be encoded as a base64-encoded JSON string, rather than as a JSON

array. So, for example, a byte slice of []byte{'h','e','l','l','o'} would appear as

"aGVsbG8=" in the JSON output. The base64 encoding uses padding and the standard

character set.

A few other important things to mention:

Encoding of nested objects is supported. So, for example, if you have a slice of structs in

Go that will encode to an array of objects in JSON.

Channels, functions and complex number types cannot be encoded. If you try to do so,

you’ll get a json.UnsupportedTypeError error at runtime.

Any pointer values will encode as the value pointed to. Likewise, interface{} values will

encode as the value contained in the interface.

Using json.Encoder

At the start of this chapter I mentioned that it’s also possible to use Go’s json.Encoder type

to perform the encoding. This allows you to encode an object to JSON and write that JSON

https://github.com/golang/go/blob/dd150176c3cc49da68c8179f740eadc79404d351/src/time/time.go#L127
https://tools.ietf.org/html/rfc4648#section-4
https://golang.org/pkg/builtin/#complex128
https://golang.org/pkg/encoding/json/#UnsupportedTypeError
https://golang.org/pkg/encoding/json/#Encoder

to an output stream in a single step.

For example, you could use it in a handler like this:

func (app *application) exampleHandler(w http.ResponseWriter, r *http.Request) {

 data := map[string]string{

 "hello": "world",

 }

 // Set the "Content-Type: application/json" header on the response.

 w.Header().Set("Content-Type", "application/json")

 // Use the json.NewEncoder() function to initialize a json.Encoder instance that

 // writes to the http.ResponseWriter. Then we call its Encode() method, passing in

 // the data that we want to encode to JSON (which in this case is the map above). If

 // the data can be successfully encoded to JSON, it will then be written to our

 // http.ResponseWriter.

 err := json.NewEncoder(w).Encode(data)

 if err != nil {

 app.logger.Println(err)

 http.Error(w, "The server encountered a problem and could not process your request", http.StatusInternalServerError)

 }

}

This pattern works, and it’s very neat and elegant, but if you consider it carefully you might

notice a slight problem…

When we call json.NewEncoder(w).Encode(data) the JSON is created and written to the

http.ResponseWriter in a single step, which means there’s no opportunity to set HTTP

response headers conditionally based on whether the Encode() method returns an error or

not.

Imagine, for example, that you want to set a Cache-Control header on a successful

response, but not set a Cache-Control header if the JSON encoding fails and you have to

return an error response.

Implementing that cleanly while using the json.Encoder pattern is quite difficult.

You could set the Cache-Control header and then delete it from the header map again in the

event of an error — but that’s pretty hacky.

Another option is to write the JSON to an interim bytes.Buffer instead of directly to the

http.ResponseWriter . You can then check for any errors, before setting the Cache-Control

header and copying the JSON from the bytes.Buffer to http.ResponseWriter . But once

you start doing that, it’s simpler and cleaner (as well as slightly faster) to use the alternative

json.Marshal() approach instead.

Performance of json.Encoder and json.Marshal

https://golang.org/pkg/bytes/#Buffer

Talking of speed, you might be wondering if there’s any performance difference between

using json.Encoder and json.Marshal(). The short answer to that is yes… but the

difference is small and in most cases you should not worry about it.

The following benchmarks demonstrate the performance of the two approaches using the

code in this gist (note that each benchmark test is repeated three times):

$ go test -run=^$ -bench=. -benchmem -count=3 -benchtime=5s

goos: linux

goarch: amd64

BenchmarkEncoder-8 3477318 1692 ns/op 1046 B/op 15 allocs/op

BenchmarkEncoder-8 3435145 1704 ns/op 1048 B/op 15 allocs/op

BenchmarkEncoder-8 3631305 1595 ns/op 1039 B/op 15 allocs/op

BenchmarkMarshal-8 3624570 1616 ns/op 1119 B/op 16 allocs/op

BenchmarkMarshal-8 3549090 1626 ns/op 1123 B/op 16 allocs/op

BenchmarkMarshal-8 3548070 1638 ns/op 1123 B/op 16 allocs/op

In these results we can see that json.Marshal() requires ever so slightly more memory

(B/op) than json.Encoder, and also makes one extra heap memory allocation (allocs/op).

There’s no obvious observable difference in the average runtime (ns/op) between the two

approaches. Perhaps with a larger benchmark sample or a larger data set a difference might

become clear, but it’s likely to be in the order of microseconds, rather than anything larger.

Additional JSON encoding nuances

Encoding things to JSON in Go is mostly quite intuitive. But there are a handful of behaviors

which might either catch you out or surprise you when you first encounter them.

We’ve already mentioned a couple of these in this chapter (in particular — map entries

being sorted alphabetically and byte slices being base-64 encoded), but I’ve included a full

list in this appendix.

https://gist.github.com/alexedwards/8f11d0dc57fc119cbc791def783d8492

Chapter 3.3.

Encoding Structs

In this chapter we’re going to head back to the showMovieHandler method that we made

earlier and update it to return a JSON response which represents a single movie in our

system. Similar to this:

{

 "id": 123,

 "title": "Casablanca",

 "runtime": 102,

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version": 1

}

Instead of encoding a map to create this JSON object (like we did in the previous chapter),

this time we’re going to encode a custom Movie struct.

So, first things first, we need to begin by defining a custom Movie struct. We’ll do this inside

a new internal/data package, which later will grow to encapsulate all the custom data

types for our project along with the logic for interacting with our database.

If you’re following along, go ahead and create a new internal/data directory containing a

movies.go file:

$ mkdir internal/data

$ touch internal/data/movies.go

And in this new file let’s define the custom Movie struct, like so:

File: internal/data/movies.go

package data

import (

 "time"

)

type Movie struct {

 ID int64 // Unique integer ID for the movie

 CreatedAt time.Time // Timestamp for when the movie is added to our database

 Title string // Movie title

 Year int32 // Movie release year

 Runtime int32 // Movie runtime (in minutes)

 Genres []string // Slice of genres for the movie (romance, comedy, etc.)

 Version int32 // The version number starts at 1 and will be incremented each

 // time the movie information is updated

}

Important: It’s crucial to point out here that all the fields in our Movie struct are

exported (i.e. start with a capital letter), which is necessary for them to be visible to

Go’s encoding/json package. Any fields which aren’t exported won’t be included

when encoding a struct to JSON.

Now that’s done, let’s update our showMovieHandler to initialize an instance of the Movie

struct containing some dummy data, and then send it as a JSON response using our

writeJSON() helper.

It’s quite simple in practice:

File: cmd/api/movies.go

package main

import (

 "fmt"

 "net/http"

 "time" // New import

 "greenlight.alexedwards.net/internal/data" // New import

)

...

func (app *application) showMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 http.NotFound(w, r)

 return

 }

 // Create a new instance of the Movie struct, containing the ID we extracted from

 // the URL and some dummy data. Also notice that we deliberately haven't set a

 // value for the Year field.

 movie := data.Movie{

 ID: id,

 CreatedAt: time.Now(),

 Title: "Casablanca",

 Runtime: 102,

 Genres: []string{"drama", "romance", "war"},

 Version: 1,

 }

 // Encode the struct to JSON and send it as the HTTP response.

 err = app.writeJSON(w, http.StatusOK, movie, nil)

 if err != nil {

 app.logger.Println(err)

 http.Error(w, "The server encountered a problem and could not process your request", http.StatusInternalServerError)

 }

}

OK, let’s give this a try!

Restart the API and then visit localhost:4000/v1/movies/123 in your browser. You should

see a JSON response which looks similar to this:

http://localhost:4000/v1/movies/123

There are a few interesting things in this response to point out:

Our Movie struct has been encoded into a single JSON object, with the field names and

values as the key/value pairs.

By default, the keys in the JSON object are equal to the field names in the struct (ID,

CreatedAt , Title and so on). We’ll talk about how to customize these shortly.

If a struct field doesn’t have an explicit value set, then the JSON-encoding of the zero

value for the field will appear in the output. We can see an example of this in the

response above — we didn’t set a value for the Year field in our Go code, but it still

appears in the JSON output with the value 0 .

Changing keys in the JSON object

One of the nice things about encoding structs in Go is that you can customize the JSON by

annotating the fields with struct tags.

Probably the most common use of struct tags is to change the key names that appear in the

JSON object. This can be useful when your struct field names aren’t appropriate for public-

facing responses, or you want to use an alternative casing style in your JSON output.

To illustrate how to do this, let’s annotate our Movies struct with struct tags so that it uses

https://github.com/golang/go/wiki/Well-known-struct-tags
https://medium.com/better-programming/string-case-styles-camel-pascal-snake-and-kebab-case-981407998841

snake_case for the keys instead. Like so:

File: internal/data/movies.go

package data

...

// Annotate the Movie struct with struct tags to control how the keys appear in the

// JSON-encoded output.

type Movie struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"created_at"`

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime int32 `json:"runtime"`

 Genres []string `json:"genres"`

 Version int32 `json:"version"`

}

And if you restart the server and visit localhost:4000/v1/movies/123 again, you should

now see a response with snake_case keys similar to this:

Hiding struct fields in the JSON object

It’s also possible to control the visibility of individual struct fields in the JSON by using the

http://localhost:4000/v1/movies/123

omitempty and - struct tag directives.

The - (hyphen) directive can be used when you never want a particular struct field to

appear in the JSON output. This is useful for fields that contain internal system information

that isn’t relevant to your users, or sensitive information that you don’t want to expose (like

the hash of a password).

In contrast the omitempty directive hides a field in the JSON output if and only if the struct

field value is empty, where empty is defined as being:

Equal to false , 0 , or ""

An empty array , slice or map

A nil pointer or a nil interface value

To demonstrate how to use these directives, let’s make a couple more changes to our Movie

struct. The CreatedAt field isn’t relevant to our end users, so let’s always hide this in the

output using the - directive. And we’ll also use the omitempty directive to hide the Year,

Runtime and Genres fields in the output if and only if they are empty.

Go ahead and update the struct tags like so:

File: internal/data/movies.go

package data

...

type Movie struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"-"` // Use the - directive

 Title string `json:"title"`

 Year int32 `json:"year,omitempty"` // Add the omitempty directive

 Runtime int32 `json:"runtime,omitempty"` // Add the omitempty directive

 Genres []string `json:"genres,omitempty"` // Add the omitempty directive

 Version int32 `json:"version"`

}

Hint: If you want to use omitempty and not change the key name then you can leave it

blank in the struct tag — like this: json:",omitempty" . Notice that the leading comma

is still required.

Now when you restart the application and refresh your web browser, you should see a

response which looks exactly like this:

We can see here that the CreatedAt struct field no longer appears in the JSON at all, and

the Year field (which had the value 0) doesn’t appear either thanks to the omitempty

directive. The other fields that we used omitempty on (Runtime and Genres) are unaffected.

Note: You can also prevent a struct field from appearing in the JSON output by simply

making it unexported. But using the json:"-" struct tag is generally a better choice:

it’s an explicit indication to both Go and any future readers of your code that you don’t

want the field included in the JSON, and it helps prevents problems if someone

changes the field to be exported in the future without realizing the consequences.

Old versions of go vet used to raise an error if you tried to use a struct tag on an

unexported field, but this has now been fixed in Go 1.16.

Additional Information

The string struct tag directive

A final, less-frequently-used, struct tag directive is string. You can use this on individual

https://github.com/golang/go/issues/43196

struct fields to force the data to be represented as a string in the JSON output.

For example, if we wanted the value of our Runtime field to be represented as a JSON string

(instead of a number) we could use the string directive like this:

type Movie struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"-"`

 Title string `json:"title"`

 Year int32 `json:"year,omitempty"`

 Runtime int32 `json:"runtime,omitempty,string"` // Add the string directive

 Genres []string `json:"genres,omitempty"`

 Version int32 `json:"version"`

}

And the resulting JSON output would look like this:

{

 "id": 123,

 "title": "Casablanca",

 "runtime": "102", ← This is now a string

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version": 1

}

Note that the string directive will only work on struct fields which have int*, uint* ,

float* or bool types. For any other type of struct field it will have no effect.

Chapter 3.4.

Formatting and Enveloping Responses

So far in this book we’ve generally been making requests to our API using Firefox, which

makes the JSON responses easy-to-read thanks to the ‘pretty printing’ provided by the

built-in JSON viewer.

But if you try making some requests using curl, you’ll see that the actual JSON response

data is all just on one line with no whitespace.

$ curl localhost:4000/v1/healthcheck

{"environment":"development","status":"available","version":"1.0.0"}

$ curl localhost:4000/v1/movies/123

{"id":123,"title":"Casablanca","runtime":102,"genres":["drama","romance","war"],"version":1}

We can make these easier to read in terminals by using the json.MarshalIndent() function

to encode our response data, instead of the regular json.Marshal() function. This

automatically adds whitespace to the JSON output, putting each element on a separate line

and prefixing each line with optional prefix and indent characters.

Let’s update our writeJSON() helper to use this instead:

File: cmd/api/helpers.go

package main

...

func (app *application) writeJSON(w http.ResponseWriter, status int, data interface{}, headers http.Header) error {

 // Use the json.MarshalIndent() function so that whitespace is added to the encoded

 // JSON. Here we use no line prefix ("") and tab indents ("\t") for each element.

 js, err := json.MarshalIndent(data, "", "\t")

 if err != nil {

 return err

 }

 js = append(js, '\n')

 for key, value := range headers {

 w.Header()[key] = value

 }

 w.Header().Set("Content-Type", "application/json")

 w.WriteHeader(status)

 w.Write(js)

 return nil

}

https://golang.org/pkg/encoding/json/#MarshalIndent

If you restart the API and try making the same requests from your terminal again, you will

now receive some nicely-whitespaced JSON responses similar to these:

$ curl -i localhost:4000/v1/healthcheck

{

 "environment": "development",

 "status": "available",

 "version": "1.0.0"

}

$ curl localhost:4000/v1/movies/123

{

 "id": 123,

 "title": "Casablanca",

 "runtime": 102,

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version": 1

}

Relative performance

While using json.MarshalIndent() is positive from a readability and user-experience point

of view, it unfortunately doesn’t come for free. As well as the fact that the responses are

now slightly larger in terms of total bytes, the extra work that Go does to add the

whitespace has a notable impact on performance.

The following benchmarks help to demonstrate the relative performance of

json.Marshal() and json.MarshalIndent() using the code in this gist.

$ go test -run=^$ -bench=. -benchmem -count=3 -benchtime=5s

goos: linux

goarch: amd64

BenchmarkMarshalIndent-8 2177511 2695 ns/op 1472 B/op 18 allocs/op

BenchmarkMarshalIndent-8 2170448 2677 ns/op 1473 B/op 18 allocs/op

BenchmarkMarshalIndent-8 2150780 2712 ns/op 1476 B/op 18 allocs/op

BenchmarkMarshal-8 3289424 1681 ns/op 1135 B/op 16 allocs/op

BenchmarkMarshal-8 3532242 1641 ns/op 1123 B/op 16 allocs/op

BenchmarkMarshal-8 3619472 1637 ns/op 1119 B/op 16 allocs/op

In these benchmarks we can see that json.MarshalIndent() takes 65% longer to run and

uses around 30% more memory than json.Marshal(), as well as making two more heap

allocations. Those figures will change depending on what you’re encoding, but in my

experience they’re fairly indicative of the performance impact.

For most applications this performance difference simply isn’t something that you need to

https://gist.github.com/alexedwards/809db1839a062c4f92a65f40359e18b7

worry about. In real terms we’re talking about a few thousandths of a millisecond — and the

improved readability of responses is probably worth this trade-off. But if your API is

operating in a very resource-constrained environment, or needs to manage extremely high

levels of traffic, then this is worth being aware of and you may prefer to stick with using

json.Marshal() instead.

Note: Behind the scenes json.MarshalIndent() works by calling json.Marshal() as

normal, then running the JSON through the standalone json.Indent() function to

add the whitespace. There’s also a reverse function available, json.Compact(), which

you can use to remove whitespace from JSON.

Enveloping responses

Next let’s work on updating our responses so that the JSON data is always enveloped in a

parent JSON object. Similar to this:

{

 "movie": {

 "id": 123,

 "title": "Casablanca",

 "runtime": 102,

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version":1

 }

}

Notice how the movie data is nested under the key "movie" here, rather than being the top-

level JSON object itself?

Enveloping response data like this isn’t strictly necessary, and whether you choose to do so

is partly a matter of style and taste. But there are a few tangible benefits:

1. Including a key name (like "movie") at the top-level of the JSON helps make the

response more self-documenting. For any humans who see the response out of context,

it is a bit easier to understand what the data relates to.

2. It reduces the risk of errors on the client side, because it’s harder to accidentally process

one response thinking that it is something different. To get at the data, a client must

explicitly reference it via the "movie" key.

https://golang.org/pkg/encoding/json/#Indent
https://golang.org/pkg/encoding/json/#Compact

3. If we always envelope the data returned by our API, then we mitigate a security

vulnerability in older browsers which can arise if you return a JSON array as a response.

There are a couple of techniques that we could use to envelope our API responses, but

we’re going to keep things simple and do it by creating a custom envelope map with the

underlying type map[string]interface{}.

I’ll demonstrate.

Let’s start by updating the cmd/api/helpers.go file as follows:

File: cmd/api/helpers.go

package main

...

// Define an envelope type.

type envelope map[string]interface{}

// Change the data parameter to have the type envelope instead of interface{}.

func (app *application) writeJSON(w http.ResponseWriter, status int, data envelope, headers http.Header) error {

 js, err := json.MarshalIndent(data, "", "\t")

 if err != nil {

 return err

 }

 js = append(js, '\n')

 for key, value := range headers {

 w.Header()[key] = value

 }

 w.Header().Set("Content-Type", "application/json")

 w.WriteHeader(status)

 w.Write(js)

 return nil

}

Then we need to update our showMovieHandler to create an instance of the envelope map

containing the movie data, and pass this onwards to our writeJSON() helper instead of

passing the movie data directly.

Like so:

https://haacked.com/archive/2008/11/20/anatomy-of-a-subtle-json-vulnerability.aspx/

File: cmd/api/movies.go

package main

...

func (app *application) showMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 http.NotFound(w, r)

 return

 }

 movie := data.Movie{

 ID: id,

 CreatedAt: time.Now(),

 Title: "Casablanca",

 Runtime: 102,

 Genres: []string{"drama", "romance", "war"},

 Version: 1,

 }

 // Create an envelope{"movie": movie} instance and pass it to writeJSON(), instead

 // of passing the plain movie struct.

 err = app.writeJSON(w, http.StatusOK, envelope{"movie": movie}, nil)

 if err != nil {

 app.logger.Println(err)

 http.Error(w, "The server encountered a problem and could not process your request", http.StatusInternalServerError)

 }

}

We also need to update the code in our healthcheckHandler so that it passes an envelope

type to the writeJSON() helper too:

File: cmd/api/healthcheck.go

package main

...

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 // Declare an envelope map containing the data for the response. Notice that the way

 // we've constructed this means the environment and version data will now be nested

 // under a system_info key in the JSON response.

 env := envelope{

 "status": "available",

 "system_info": map[string]string{

 "environment": app.config.env,

 "version": version,

 },

 }

 err := app.writeJSON(w, http.StatusOK, env, nil)

 if err != nil {

 app.logger.Println(err)

 http.Error(w, "The server encountered a problem and could not process your request", http.StatusInternalServerError)

 }

}

Alright, let’s try these changes out. Go ahead and restart the server, then use curl to make

some requests to the API endpoints again. You should now get responses formatted like the

ones below.

$ curl localhost:4000/v1/movies/123

{

 "movie": {

 "id": 123,

 "title": "Casablanca",

 "runtime": 102,

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version":1

 }

}

$ curl localhost:4000/v1/healthcheck

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

Additional Information

Response structure

It’s important to emphasize that there’s no single right or wrong way to structure your JSON

responses. There are some popular formats like JSON:API and jsend that you might like to

follow or use for inspiration, but it’s certainly not necessary and most APIs don’t follow

these formats.

But whatever you do, it is valuable to think about formatting upfront and to maintain a

clear and consistent response structure across your different API endpoints — especially if

they are being made available for public use.

https://jsonapi.org/
https://github.com/omniti-labs/jsend

Chapter 3.5.

Advanced JSON Customization

By using struct tags, adding whitespace and enveloping the data, we’ve been able to add

quite a lot of customization to our JSON responses already. But what happens when these

things aren’t enough, and you need the freedom to customize your JSON even more?

To answer this question, we first need to talk some theory about how Go handles JSON

encoding behind the scenes. The key thing to understand is this:

When Go is encoding a particular type to JSON, it looks to see if the type has a MarshalJSON()

method implemented on it. If it has, then Go will call this method to determine how to encode

it.

That language is a bit fuzzy, so let’s be more exact.

Strictly speaking, when Go is encoding a particular type to JSON it looks to see if the type

satisfies the json.Marshaler interface, which looks like this:

type Marshaler interface {

 MarshalJSON() ([]byte, error)

}

If the type does satisfy the interface, then Go will call its MarshalJSON() method and use the

[]byte slice that it returns as the encoded JSON value.

If the type doesn’t have a MarshalJSON() method, then Go will fall back to trying to encode

it to JSON based on its own internal set of rules.

So, if we want to customize how something is encoded, all we need to do is implement a

MarshalJSON() method on it which returns a custom JSON representation of itself in a

[]byte slice.

Hint: You can see this in action if you look at the source code for Go’s time.Time type.

Behind the scenes time.Time is actually a struct, but it has a MarshalJSON() method

which outputs a RFC 3339 format representation of itself. This is what gets called

whenever a time.Time value is encoded to JSON.

https://golang.org/pkg/encoding/json/#Marshaler
https://github.com/golang/go/blob/73d213708e3186b48d5147b8eb939fdfd51f1f8d/src/time/time.go#L127
https://golang.org/pkg/time/#Time.MarshalJSON

Customizing the Runtime field

To help illustrate this, let’s look at a concrete example in our application.

When our Movie struct is encoded to JSON, the Runtime field (which is an int32 type) is

currently formatted as a JSON number. Let’s change this so that it’s encoded as a string

with the format "<runtime> mins" instead. Like so:

{

 "id": 123,

 "title": "Casablanca",

 "runtime": "102 mins", ← This is now a string

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version":1

}

There are a few ways we could achieve this, but a clean and simple approach is to create a

custom type specifically for the Runtime field, and implement a MarshalJSON() method on

this custom type.

To prevent our internal/data/movie.go file from getting cluttered, let’s create a new file to

hold the logic for the Runtime type:

$ touch internal/data/runtime.go

And then go ahead and add the following code:

File: internal/data/runtime.go

package data

import (

 "fmt"

 "strconv"

)

// Declare a custom Runtime type, which has the underlying type int32 (the same as our

// Movie struct field).

type Runtime int32

// Implement a MarshalJSON() method on the Runtime type so that it satisfies the

// json.Marshaler interface. This should return the JSON-encoded value for the movie

// runtime (in our case, it will return a string in the format "<runtime> mins").

func (r Runtime) MarshalJSON() ([]byte, error) {

 // Generate a string containing the movie runtime in the required format.

 jsonValue := fmt.Sprintf("%d mins", r)

 // Use the strconv.Quote() function on the string to wrap it in double quotes. It

 // needs to be surrounded by double quotes in order to be a valid *JSON string*.

 quotedJSONValue := strconv.Quote(jsonValue)

 // Convert the quoted string value to a byte slice and return it.

 return []byte(quotedJSONValue), nil

}

There are two things I’d like to emphasize here:

If your MarshalJSON() method returns a JSON string value, like ours does, then you must

wrap the string in double quotes before returning it. Otherwise it won’t be interpreted as

a JSON string and you’ll receive a runtime error similar to this:

json: error calling MarshalJSON for type data.Runtime: invalid character 'm' after top-level value

We’re deliberately using a value receiver for our MarshalJSON() method rather than a

pointer receiver like func (r *Runtime) MarshalJSON() . This gives us more flexibility

because it means that our custom JSON encoding will work on both Runtime values and

pointers to Runtime values. As Effective Go mentions:

The rule about pointers vs. values for receivers is that value methods can be invoked on

pointers and values, but pointer methods can only be invoked on pointers.

Hint: If you’re not confident about the difference between pointer and value

receivers, then this blog post provides a good summary.

OK, now that the custom Runtime type is defined, open your internal/data/movies.go file

and update the Movie struct to use it like so:

https://golang.org/doc/effective_go.html#methods
https://medium.com/globant/go-method-receiver-pointer-vs-value-ffc5ab7acdb

File: internal/data/movies.go

package data

import (

 "time"

)

type Movie struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"-"`

 Title string `json:"title"`

 Year int32 `json:"year,omitempty"`

 // Use the Runtime type instead of int32. Note that the omitempty directive will

 // still work on this: if the Runtime field has the underlying value 0, then it will

 // be considered empty and omitted -- and the MarshalJSON() method we just made

 // won't be called at all.

 Runtime Runtime `json:"runtime,omitempty"`

 Genres []string `json:"genres,omitempty"`

 Version int32 `json:"version"`

}

Let’s try this out by restarting the API and making a request to the GET /v1/movies/:id

endpoint. You should now see a response containing the custom runtime value in the

format "<runtime> mins" , similar to this:

$ curl localhost:4000/v1/movies/123

{

 "movie": {

 "id": 123,

 "title": "Casablanca",

 "runtime": "102 mins",

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version": 1

 }

}

All in all, this is a pretty nice way to generate custom JSON. Our code is succinct and clear,

and we’ve got a custom Runtime type that we can use wherever and whenever we need it.

But there is a downside. It’s important to be aware that using custom types can sometimes

be awkward when integrating your code with other packages, and you may need to perform

type conversions to change your custom type to and from a value that the other packages

understand and accept.

Additional Information

There are a couple of alternative approaches that you could take to reach the same end

result here, and I’d like to quickly describe them and talk through their pros and cons. If

you’re coding-along with the build, don’t make any of these changes (unless you’re curious,

of course!).

Alternative #1 - Customizing the Movie struct

Instead of creating a custom Runtime type, we could have implemented a MarshalJSON()

method on our Movie struct and customized the whole thing. Like this:

// Note that there are no struct tags on the Movie struct itself.

type Movie struct {

 ID int64

 CreatedAt time.Time

 Title string

 Year int32

 Runtime int32

 Genres []string

 Version int32

}

// Implement a MarshalJSON() method on the Movie struct, so that it satisfies the

// json.Marshaler interface.

func (m Movie) MarshalJSON() ([]byte, error) {

 // Declare a variable to hold the custom runtime string (this will be the empty

 // string "" by default).

 var runtime string

 // If the value of the Runtime field is not zero, set the runtime variable to be a

 // string in the format "<runtime> mins".

 if m.Runtime != 0 {

 runtime = fmt.Sprintf("%d mins", m.Runtime)

 }

 // Create an anonymous struct to hold the data for JSON encoding. This has exactly

 // the same fields, types and tags as our Movie struct, except that the Runtime

 // field here is a string, instead of an int32. Also notice that we don't include

 // a CreatedAt field at all (there's no point including one, because we don't want

 // it to appear in the JSON output).

 aux := struct {

 ID int64 `json:"id"`

 Title string `json:"title"`

 Year int32 `json:"year,omitempty"`

 Runtime string `json:"runtime,omitempty"` // This is a string.

 Genres []string `json:"genres,omitempty"`

 Version int32 `json:"version"`

 }{

 // Set the values for the anonymous struct.

 ID: m.ID,

 Title: m.Title,

 Year: m.Year,

 Runtime: runtime, // Note that we assign the value from the runtime variable here.

 Genres: m.Genres,

 Version: m.Version,

 }

 // Encode the anonymous struct to JSON, and return it.

 return json.Marshal(aux)

}

Let’s quickly take stock of what’s going on here.

In the MarshalJSON() method we create a new ‘anonymous’ struct and assign it to the

variable aux . This anonymous struct is basically identical to our Movie struct, except for the

fact that the Runtime field has the type string instead of int32 . We then copy all the values

from the Movie struct directly into the anonymous struct, except for the Runtime value

which we convert to a string in the format "<runtime> mins" first. Then finally, we encode

the anonymous struct to JSON — not the original Movie struct — and return it.

It’s also worth pointing out that this is designed so the omitempty directive still works with

our custom encoding. If the value of the Runtime field is zero, then the local runtime

variable will remain equal to "", which (as we mentioned earlier) is considered ‘empty’ for

the purpose of encoding.

Alternative #2 - Embedding an alias

The downside of the approach above is that the code feels quite verbose and repetitive. You

might be wondering: is there a better way?

To reduce duplication, instead of writing out all the struct fields long-hand it’s possible to

embed an alias of the Movie struct in the anonymous struct. Like so:

// Notice that we use the - directive on the Runtime field, so that it never appears

// in the JSON output.

type Movie struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"-"`

 Title string `json:"title"`

 Year int32 `json:"year,omitempty"`

 Runtime int32 `json:"-"`

 Genres []string `json:"genres,omitempty"`

 Version int32 `json:"version"`

}

func (m Movie) MarshalJSON() ([]byte, error) {

 // Create a variable holding the custom runtime string, just like before.

 var runtime string

 if m.Runtime != 0 {

 runtime = fmt.Sprintf("%d mins", m.Runtime)

 }

 // Define a MovieAlias type which has the underlying type Movie. Due to the way that

 // Go handles type definitions (https://golang.org/ref/spec#Type_definitions) the

 // MovieAlias type will contain all the fields that our Movie struct has but,

 // importantly, none of the methods.

 type MovieAlias Movie

 // Embed the MovieAlias type inside the anonymous struct, along with a Runtime field

 // that has the type string and the necessary struct tags. It's important that we

 // embed the MovieAlias type here, rather than the Movie type directly, to avoid

 // inheriting the MarshalJSON() method of the Movie type (which would result in an

 // infinite loop during encoding).

 aux := struct {

 MovieAlias

 Runtime string `json:"runtime,omitempty"`

 }{

 MovieAlias: MovieAlias(m),

 Runtime: runtime,

 }

 return json.Marshal(aux)

}

Note: Although we’ve used the word ‘alias’ here, the line type MovieAlias Movie is

just a regular type definition. It is not a type alias, which are generally used to help

with code refactoring and migrations.

On one hand, this approach is nice because it drastically cuts the number of lines of code

and reduces repetition. And if you have a large struct and only need to customize a couple

of fields it can be a good option. But it’s not without some downsides.

In particular:

This technique feels like a bit of a ‘trick’, which hinges on the fact that newly defined

types do not inherit methods. Although it’s still idiomatic Go, it’s more clever and less

clear than the first approach. That’s not always a good trade-off… especially if you have

new Gophers working with you on a codebase.

You lose granular control over the ordering of fields in the JSON response. In the above

example, the runtime key will always now be the last item in the JSON object, like so:

{

 "id": 123,

 "title": "Casablanca",

 "genres": [

 "drama",

 "romance",

 "war"

],

 "version": 1,

 "runtime": "102 mins"

}

From a technical point of view, this shouldn’t matter as the JSON RFC states that JSON

objects are “unordered collections of zero or more name/value pairs”. But it still might be

dissatisfactory from an aesthetic or UI point of view, or be problematic if you need to

maintain a precise field order for backward-compatibility purposes.

https://golang.org/doc/go1.9#language
https://dave.cheney.net/2019/07/09/clear-is-better-than-clever
https://tools.ietf.org/html/rfc7159#section-1

Chapter 3.6.

Sending Error Messages

At this point our API is sending nicely formatted JSON responses for successful requests,

but if a client makes a bad request — or something goes wrong in our application — we’re

still sending them a plain-text error message from the http.Error() and http.NotFound()

functions.

In this chapter we’ll fix that by creating some additional helpers to manage errors and send

the appropriate JSON responses to our clients.

If you’re following along, go ahead and create a new cmd/api/errors.go file:

$ touch cmd/api/errors.go

And then add some helper methods like so:

File: cmd/api/errors.go

package main

import (

 "fmt"

 "net/http"

)

// The logError() method is a generic helper for logging an error message. Later in the

// book we'll upgrade this to use structured logging, and record additional information

// about the request including the HTTP method and URL.

func (app *application) logError(r *http.Request, err error) {

 app.logger.Println(err)

}

// The errorResponse() method is a generic helper for sending JSON-formatted error

// messages to the client with a given status code. Note that we're using an interface{}

// type for the message parameter, rather than just a string type, as this gives us

// more flexibility over the values that we can include in the response.

func (app *application) errorResponse(w http.ResponseWriter, r *http.Request, status int, message interface{}) {

 env := envelope{"error": message}

 // Write the response using the writeJSON() helper. If this happens to return an

 // error then log it, and fall back to sending the client an empty response with a

 // 500 Internal Server Error status code.

 err := app.writeJSON(w, status, env, nil)

 if err != nil {

 app.logError(r, err)

 w.WriteHeader(500)

 }

}

// The serverErrorResponse() method will be used when our application encounters an

// unexpected problem at runtime. It logs the detailed error message, then uses the

// errorResponse() helper to send a 500 Internal Server Error status code and JSON

// response (containing a generic error message) to the client.

func (app *application) serverErrorResponse(w http.ResponseWriter, r *http.Request, err error) {

 app.logError(r, err)

 message := "the server encountered a problem and could not process your request"

 app.errorResponse(w, r, http.StatusInternalServerError, message)

}

// The notFoundResponse() method will be used to send a 404 Not Found status code and

// JSON response to the client.

func (app *application) notFoundResponse(w http.ResponseWriter, r *http.Request) {

 message := "the requested resource could not be found"

 app.errorResponse(w, r, http.StatusNotFound, message)

}

// The methodNotAllowedResponse() method will be used to send a 405 Method Not Allowed

// status code and JSON response to the client.

func (app *application) methodNotAllowedResponse(w http.ResponseWriter, r *http.Request) {

 message := fmt.Sprintf("the %s method is not supported for this resource", r.Method)

 app.errorResponse(w, r, http.StatusMethodNotAllowed, message)

}

Now those are in place, let’s update our API handlers to use these new helpers instead of

the http.Error() and http.NotFound() functions. Like so:

File: cmd/api/healthcheck.go

package main

...

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 env := envelope{

 "status": "available",

 "system_info": map[string]string{

 "environment": app.config.env,

 "version": version,

 },

 }

 err := app.writeJSON(w, http.StatusOK, env, nil)

 if err != nil {

 // Use the new serverErrorResponse() helper.

 app.serverErrorResponse(w, r, err)

 }

}

File: cmd/api/movies.go

package main

...

func (app *application) showMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 // Use the new notFoundResponse() helper.

 app.notFoundResponse(w, r)

 return

 }

 movie := data.Movie{

 ID: id,

 CreatedAt: time.Now(),

 Title: "Casablanca",

 Runtime: 102,

 Genres: []string{"drama", "romance", "war"},

 Version: 1,

 }

 err = app.writeJSON(w, http.StatusOK, envelope{"movie": movie}, nil)

 if err != nil {

 // Use the new serverErrorResponse() helper.

 app.serverErrorResponse(w, r, err)

 }

}

Routing errors

Any error messages that our own API handlers send will now be well-formed JSON

responses. Which is great!

But what about the error messages that httprouter automatically sends when it can’t find

a matching route? By default, these will still be the same plain-text (non-JSON) responses

that we saw earlier in the book.

Fortunately, httprouter allows us to set our own custom error handlers when we initialize

the router. These custom handlers must satisfy the http.Handler interface, which is good

news for us because it means we can easily re-use the notFoundResponse() and

methodNotAllowedResponse() helpers that we just made.

Open up the cmd/api/routes.go file and configure the httprouter instance like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() *httprouter.Router {

 router := httprouter.New()

 // Convert the notFoundResponse() helper to a http.Handler using the

 // http.HandlerFunc() adapter, and then set it as the custom error handler for 404

 // Not Found responses.

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 // Likewise, convert the methodNotAllowedResponse() helper to a http.Handler and set

 // it as the custom error handler for 405 Method Not Allowed responses.

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 return router

}

Let’s test out these changes. Restart the application, then try making some requests for

endpoints that don’t exist, or which use an unsupported HTTP method. You should now get

some nice JSON error responses which look similar to these:

$ curl -i localhost:4000/foo

HTTP/1.1 404 Not Found

Content-Type: application/json

Date: Tue, 06 Apr 2021 15:13:42 GMT

Content-Length: 58

{

 "error": "the requested resource could not be found"

}

$ curl -i localhost:4000/v1/movies/abc

HTTP/1.1 404 Not Found

Content-Type: application/json

Date: Tue, 06 Apr 2021 15:14:01 GMT

Content-Length: 58

{

 "error": "the requested resource could not be found"

}

$ curl -i -X PUT localhost:4000/v1/healthcheck

HTTP/1.1 405 Method Not Allowed

Allow: GET, OPTIONS

Content-Type: application/json

Date: Tue, 06 Apr 2021 15:14:21 GMT

Content-Length: 66

{

 "error": "the PUT method is not supported for this resource"

}

In this final example, notice that httprouter still automatically sets the correct Allow

header for us, even though it is now using our custom error handler for the response?

Additional Information

System-generated error responses

While we’re on the topic of errors, I’d like to mention that in certain scenarios Go’s

http.Server may still automatically generate and send plain-text HTTP responses. These

scenarios include when:

The HTTP request specifies an unsupported HTTP protocol version.

The HTTP request contains a missing or invalid Host header, or multiple Host headers.

The HTTP request contains an invalid header name or value.

The HTTP request contains an unsupported Transfer-Encoding header.

The size of the HTTP request headers exceeds the server’s MaxHeaderBytes setting.

The client makes a HTTP request to a HTTPS server.

https://golang.org/pkg/net/http/#Server

For example, if we try sending a request with an invalid Host header value we will get a

response like this:

$ curl -i -H "Host: こんにちは" http://localhost:4000/v1/healthcheck

HTTP/1.1 400 Bad Request: malformed Host header

Content-Type: text/plain; charset=utf-8

Connection: close

400 Bad Request: malformed Host header

Unfortunately, these responses are hard-coded into the Go standard library, and there’s

nothing we can do to customize them to use JSON instead.

But while this is something to be aware of, it’s not necessarily something to worry about. In

a production environment it’s relatively unlikely that well-behaved, non-malicious, clients

would trigger these responses anyway, and we shouldn’t be overly concerned if bad clients

are sometimes sent a plain-text response instead of JSON.

Chapter 4.

Parsing JSON Requests

So far we’ve been looking at how to create and send JSON responses from our API, but in

this next section of the book we’re going to explore things from the other side and discuss

how to read and parse JSON requests from clients.

To help demonstrate this, we’re going to start work on the POST /v1/movies endpoint and

createMovieHandler that we set up earlier.

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

When a client calls this endpoint, we will expect them to provide a JSON request body

containing data for the movie they want to create in our system. So, for example, if a client

wanted to add a record for the movie Moana to our API, they would send a request body

similar to this:

{

 "title": "Moana",

 "year": 2016,

 "runtime": 107,

 "genres": ["animation", "adventure"]

}

For now, we’ll just focus on the reading, parsing and validation aspects of dealing with this

JSON request body. Specifically you’ll learn:

How to read a request body and decode it to a native Go object using the encoding/json

package.

How to deal with bad requests from clients and invalid JSON, and return clear,

actionable, error messages.

How to create a reusable helper package for validating data to ensure it meets your

business rules.

Different techniques for controlling and customizing how JSON is decoded.

Chapter 4.1.

JSON Decoding

Just like JSON encoding, there are two approaches that you can take to decode JSON into a

native Go object: using a json.Decoder type or using the json.Unmarshal() function.

Both approaches have their pros and cons, but for the purpose of decoding JSON from a

HTTP request body, using json.Decoder is generally the best choice. It’s more efficient than

json.Unmarshal(), requires less code, and offers some helpful settings that you can use to

tweak its behavior.

It’s easiest to demonstrate how json.Decoder works with code, rather than words, so let’s

jump straight in and update our createMovieHandler like so:

https://golang.org/pkg/encoding/json/#Decoder
https://golang.org/pkg/encoding/json/#Unmarshal

File: cmd/api/movies.go

package main

import (

 "encoding/json" // New import

 "fmt"

 "net/http"

 "time"

 "greenlight.alexedwards.net/internal/data"

)

...

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 // Declare an anonymous struct to hold the information that we expect to be in the

 // HTTP request body (note that the field names and types in the struct are a subset

 // of the Movie struct that we created earlier). This struct will be our *target

 // decode destination*.

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime int32 `json:"runtime"`

 Genres []string `json:"genres"`

 }

 // Initialize a new json.Decoder instance which reads from the request body, and

 // then use the Decode() method to decode the body contents into the input struct.

 // Importantly, notice that when we call Decode() we pass a *pointer* to the input

 // struct as the target decode destination. If there was an error during decoding,

 // we also use our generic errorResponse() helper to send the client a 400 Bad

 // Request response containing the error message.

 err := json.NewDecoder(r.Body).Decode(&input)

 if err != nil {

 app.errorResponse(w, r, http.StatusBadRequest, err.Error())

 return

 }

 // Dump the contents of the input struct in a HTTP response.

 fmt.Fprintf(w, "%+v\n", input)

}

...

There are few important and interesting things about this code to point out:

When calling Decode() you must pass a non-nil pointer as the target decode destination.

If you don’t use a pointer, it will return a json.InvalidUnmarshalError error at runtime.

If the target decode destination is a struct — like in our case — the struct fields must be

exported (start with a capital letter). Just like with encoding, they need to be exported so

that they’re visible to the encoding/json package.

When decoding a JSON object into a struct, the key/value pairs in the JSON are mapped

to the struct fields based on the struct tag names. If there is no matching struct tag, Go

will attempt to decode the value into a field that matches the key name (exact matches

https://golang.org/pkg/encoding/json/#InvalidUnmarshalError

are preferred, but it will fall back to a case-insensitive match). Any JSON key/value pairs

which cannot be successfully mapped to the struct fields will be silently ignored.

There is no need to close r.Body after it has been read. This will be done automatically

by Go’s http.Server , so you don’t have too.

OK, let’s take this for a spin.

Fire up the application, then open a second terminal window and make a request to the

POST /v1/movies endpoint with a valid JSON request body containing some movie data.

You should see a response similar to this:

Create a BODY variable containing the JSON data that we want to send.

$ BODY='{"title":"Moana","year":2016,"runtime":107, "genres":["animation","adventure"]}'

Use the -d flag to send the contents of the BODY variable as the HTTP request body.

Note that curl will default to sending a POST request when the -d flag is used.

$ curl -i -d "$BODY" localhost:4000/v1/movies

HTTP/1.1 200 OK

Date: Tue, 06 Apr 2021 17:13:46 GMT

Content-Length: 65

Content-Type: text/plain; charset=utf-8

{Title:Moana Year:2016 Runtime:107 Genres:[animation adventure]}

Great! That seems to have worked well. We can see from the data dumped in the response

that the values we provided in the request body have been decoded into the appropriate

fields of our input struct.

Zero values

Let’s take a quick look at what happens if we omit a particular key/value pair in our JSON

request body. For example, let’s make a request with no year in the JSON, like so:

$ BODY='{"title":"Moana","runtime":107, "genres":["animation","adventure"]}'

$ curl -d "$BODY" localhost:4000/v1/movies

{Title:Moana Year:0 Runtime:107 Genres:[animation adventure]}

As you might have guessed, when we do this the Year field in our input struct is left with its

zero value (which happens to be 0 because the Year field is an int32 type).

This leads to an interesting question: how can you tell the difference between a client not

providing a key/value pair, and providing a key/value pair but deliberately setting it to its zero

value? Like this:

$ BODY='{"title":"Moana","year":0,"runtime":107, "genres":["animation","adventure"]}'

$ curl -d "$BODY" localhost:4000/v1/movies

{Title:Moana Year:0 Runtime:107 Genres:[animation adventure]}

The end result is the same, despite the different HTTP requests, and it’s not immediately

obvious how to tell the difference between the two scenarios. We’ll circle back to this topic

later in the book, but for now, it’s worth just being aware of this behavior.

Additional Information

Supported destination types

It’s important to mention that certain JSON types can be only be successfully decoded to

certain Go types. For example, if you have the JSON string "foo" it can be decoded into a Go

string, but trying to decode it into a Go int or bool will result in an error at runtime (as

we’ll demonstrate in the next chapter).

The following table shows the supported target decode destinations for the different JSON

types:

JSON type ⇒ Supported Go types

JSON boolean ⇒ bool

JSON string ⇒ string

JSON number ⇒ int*, uint*, float*, rune

JSON array ⇒ array, slice

JSON object ⇒ struct, map

Using the json.Unmarshal function

As we mentioned at the start of this chapter, it’s also possible to use the json.Unmarshal()

function to decode a HTTP request body.

For example, you could use it in a handler like this:

https://golang.org/pkg/encoding/json/#Unmarshal

func (app *application) exampleHandler(w(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Foo string `json:"foo"`

 }

 // Use io.ReadAll() to read the entire request body into a []byte slice.

 body, err := io.ReadAll(r.Body)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Use the json.Unmarshal() function to decode the JSON in the []byte slice to the

 // input struct. Again, notice that we are using a *pointer* to the input

 // struct as the decode destination.

 err = json.Unmarshal(body, &input)

 if err != nil {

 app.errorResponse(w, r, http.StatusBadRequest, err.Error())

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

...

Using this approach is fine — the code works, and it’s clear and simple. But it doesn’t offer

any benefits over and above the json.Decoder approach that we’re already taking.

Not only is the code marginally more verbose, but it’s also less efficient. If we benchmark

the relative performance for this particular use case, we can see that using

json.Unmarshal() requires about 80% more memory (B/op) than json.Decoder, as well as

being a tiny bit slower (ns/op).

$ go test -run=^$ -bench=. -benchmem -count=3 -benchtime=5s

goos: linux

goarch: amd64

BenchmarkUnmarshal-8 528088 9543 ns/op 2992 B/op 20 allocs/op

BenchmarkUnmarshal-8 554365 10469 ns/op 2992 B/op 20 allocs/op

BenchmarkUnmarshal-8 537139 10531 ns/op 2992 B/op 20 allocs/op

BenchmarkDecoder-8 811063 8644 ns/op 1664 B/op 21 allocs/op

BenchmarkDecoder-8 672088 8529 ns/op 1664 B/op 21 allocs/op

BenchmarkDecoder-8 1000000 7573 ns/op 1664 B/op 21 allocs/op

Additional JSON decoding nuances

There are a few JSON decoding nuances that are important or interesting to know about,

but which don’t fit nicely into the main content of this book. I’ve included this appendix

which explains and demonstrates them in detail.

https://gist.github.com/alexedwards/d3d44ef77efb91a6e16048f60e72c57d

Chapter 4.2.

Managing Bad Requests

Our createMovieHandler now works well when it receives a valid JSON request body with

the appropriate data. But at this point you might be wondering:

What if the client sends something that isn’t JSON, like XML or some random bytes?

What happens if the JSON is malformed or contains an error?

What if the JSON types don’t match the types we are trying to decode into?

What if the request doesn’t even contain a body?

Well… let’s look and see!

Send some XML as the request body

$ curl -d '<?xml version="1.0" encoding="UTF-8"?><note><to>Alice</to></note>' localhost:4000/v1/movies

{

 "error": "invalid character '\u003c' looking for beginning of value"

}

Send some malformed JSON (notice the trailing comma)

$ curl -d '{"title": "Moana", }' localhost:4000/v1/movies

{

 "error": "invalid character '}' looking for beginning of object key string"

}

Send a JSON array instead of an object

$ curl -d '["foo", "bar"]' localhost:4000/v1/movies

{

 "error": "json: cannot unmarshal array into Go value of type struct { Title string

 \"json:\\\"title\\\"\"; Year int32 \"json:\\\"year\\\"\"; Runtime int32 \"json:\\

 \"runtime\\\"\"; Genres []string \"json:\\\"genres\\\"\" }"

}

Send a numeric 'title' value (instead of string)

$ curl -d '{"title": 123}' localhost:4000/v1/movies

{

 "error": "json: cannot unmarshal number into Go struct field .title of type string"

}

Send an empty request body

$ curl -X POST localhost:4000/v1/movies

{

 "error": "EOF"

}

In all these cases, we can see that our createMovieHandler is doing the right thing. When it

receives an invalid request that can’t be decoded into our input struct, no further

processing takes place and the client is sent a JSON response containing the error message

returned by the Decode() method.

For a private API which won’t be used by members of the public, then this behavior is

probably fine and you needn’t do anything else.

But for a public-facing API, the error messages themselves aren’t ideal. Some are too

detailed and expose information about the underlying API implementation. Others aren’t

descriptive enough (like "EOF"), and some are just plain confusing and difficult to

understand. There isn’t consistency in the formatting or language used either.

To improve this, we’re going to explain how to triage the errors returned by Decode() and

replace them with clearer, easy-to-action, error messages to help the client debug exactly

what is wrong with their JSON.

Triaging the Decode error

At this point in our application build, the Decode() method could potentially return the

following five types of error:

Error types Reason

json.SyntaxError

io.ErrUnexpectedEOF

There is a syntax problem with the JSON being decoded.

json.UnmarshalTypeError A JSON value is not appropriate for the destination Go type.

json.InvalidUnmarshalError The decode destination is not valid (usually because it is not a

pointer). This is actually a problem with our application code,

not the JSON itself.

io.EOF The JSON being decoded is empty.

Triaging these potential errors (which we can do using Go’s errors.Is() and errors.As()

functions) is going to make the code in our createMovieHandler a lot longer and more

complicated. And the logic is something that we’ll need to duplicate in other handlers

throughout this project too.

So, to assist with this, let’s create a new readJSON() helper in the cmd/api/helpers.go file.

In this helper we’ll decode the JSON from the request body as normal, then triage the errors

and replace them with our own custom messages as necessary.

If you’re coding-along, go ahead and add the following code to the cmd/api/helpers.go file:

File: cmd/api/helpers.go

https://golang.org/pkg/encoding/json/#SyntaxError
https://golang.org/pkg/io/#pkg-variables
https://golang.org/pkg/encoding/json/#UnmarshalTypeError
https://golang.org/pkg/encoding/json/#InvalidUnmarshalError
https://golang.org/pkg/io/#pkg-variables
https://golang.org/pkg/errors/#Is
https://golang.org/pkg/errors/#As

package main

import (

 "encoding/json"

 "errors"

 "fmt" // New import

 "io" // New import

 "net/http"

 "strconv"

 "github.com/julienschmidt/httprouter"

)

...

func (app *application) readJSON(w http.ResponseWriter, r *http.Request, dst interface{}) error {

 // Decode the request body into the target destination.

 err := json.NewDecoder(r.Body).Decode(dst)

 if err != nil {

 // If there is an error during decoding, start the triage...

 var syntaxError *json.SyntaxError

 var unmarshalTypeError *json.UnmarshalTypeError

 var invalidUnmarshalError *json.InvalidUnmarshalError

 switch {

 // Use the errors.As() function to check whether the error has the type

 // *json.SyntaxError. If it does, then return a plain-english error message

 // which includes the location of the problem.

 case errors.As(err, &syntaxError):

 return fmt.Errorf("body contains badly-formed JSON (at character %d)", syntaxError.Offset)

 // In some circumstances Decode() may also return an io.ErrUnexpectedEOF error

 // for syntax errors in the JSON. So we check for this using errors.Is() and

 // return a generic error message. There is an open issue regarding this at

 // https://github.com/golang/go/issues/25956.

 case errors.Is(err, io.ErrUnexpectedEOF):

 return errors.New("body contains badly-formed JSON")

 // Likewise, catch any *json.UnmarshalTypeError errors. These occur when the

 // JSON value is the wrong type for the target destination. If the error relates

 // to a specific field, then we include that in our error message to make it

 // easier for the client to debug.

 case errors.As(err, &unmarshalTypeError):

 if unmarshalTypeError.Field != "" {

 return fmt.Errorf("body contains incorrect JSON type for field %q", unmarshalTypeError.Field)

 }

 return fmt.Errorf("body contains incorrect JSON type (at character %d)", unmarshalTypeError.Offset)

 // An io.EOF error will be returned by Decode() if the request body is empty. We

 // check for this with errors.Is() and return a plain-english error message

 // instead.

 case errors.Is(err, io.EOF):

 return errors.New("body must not be empty")

 // A json.InvalidUnmarshalError error will be returned if we pass a non-nil

 // pointer to Decode(). We catch this and panic, rather than returning an error

 // to our handler. At the end of this chapter we'll talk about panicking

 // versus returning errors, and discuss why it's an appropriate thing to do in

 // this specific situation.

 case errors.As(err, &invalidUnmarshalError):

 panic(err)

 // For anything else, return the error message as-is.

 default:

 return err

 }

 }

 return nil

}

With this new helper in place, let’s head back to the cmd/api/movies.go file and update our

createMovieHandler to use it. Like so:

File: cmd/api/movies.go

package main

import (

 "fmt"

 "net/http"

 "time"

 "greenlight.alexedwards.net/internal/data"

)

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime int32 `json:"runtime"`

 Genres []string `json:"genres"`

 }

 // Use the new readJSON() helper to decode the request body into the input struct.

 // If this returns an error we send the client the error message along with a 400

 // Bad Request status code, just like before.

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.errorResponse(w, r, http.StatusBadRequest, err.Error())

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

...

Go ahead and restart the API, and then let’s try this out by repeating the same bad requests

that we made at the start of the chapter. You should now see our new, customized, error

messages similar to this:

Send some XML as the request body

$ curl -d '<?xml version="1.0" encoding="UTF-8"?><note><to>Alex</to></note>' localhost:4000/v1/movies

{

 "error": "body contains badly-formed JSON (at character 1)"

}

Send some malformed JSON (notice the trailing comma)

$ curl -d '{"title": "Moana", }' localhost:4000/v1/movies

{

 "error": "body contains badly-formed JSON (at character 20)"

}

Send a JSON array instead of an object

$ curl -d '["foo", "bar"]' localhost:4000/v1/movies

{

 "error": "body contains incorrect JSON type (at character 1)"

}

Send a numeric 'title' value (instead of string)

$ curl -d '{"title": 123}' localhost:4000/v1/movies

{

 "error": "body contains incorrect JSON type for \"title\""

}

Send an empty request body

$ curl -X POST localhost:4000/v1/movies

{

 "error": "body must not be empty"

}

They’re looking really good. The error messages are now simpler, clearer, and consistent in

their formatting, plus they don’t expose any unnecessary information about our underlying

program.

Feel free to play around with this if you like, and try sending different request bodies to see

how the handler reacts.

Making a bad request helper

In the createMovieHandler code above we’re using our generic app.errorResponse()

helper to send the client a 400 Bad Request response along with the error message.

Let’s quickly replace this with a specialist app.badRequestResponse() helper function

instead:

File: cmd/api/errors.go

package main

...

func (app *application) badRequestResponse(w http.ResponseWriter, r *http.Request, err error) {

 app.errorResponse(w, r, http.StatusBadRequest, err.Error())

}

File: cmd/api/movies.go

package main

...

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime int32 `json:"runtime"`

 Genres []string `json:"genres"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 // Use the new badRequestResponse() helper.

 app.badRequestResponse(w, r, err)

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

...

This is a small change, but a useful one. As our application gradually gets more complex,

using specialist helpers like this to manage different kinds of errors will help ensure that our

error responses remain consistent across all our endpoints.

Additional Information

Panicking vs returning errors

The decision to panic in the readJSON() helper if we get a json.InvalidUnmarshalError

error isn’t taken lightly. As you’re probably aware, it’s generally considered best practice in

Go to return your errors and handle them gracefully.

But — in some specific circumstances — it can be OK to panic. And you shouldn’t be too

dogmatic about not panicking when it makes sense to.

It’s helpful here to distinguish between the two classes of error that your application might

encounter.

The first class of errors are expected errors that may occur during normal operation. Some

examples of expected errors are those caused by a database query timeout, a network

resource being unavailable, or bad user input. These errors don’t necessarily mean there is

a problem with your program itself — in fact they’re often caused by things outside the

control of your program. Almost all of the time it’s good practice to return these kinds of

errors and handle them gracefully.

The other class of errors are unexpected errors. These are errors which should not happen

during normal operation, and if they do it is probably the result of a developer mistake or a

logical error in your codebase. These errors are truly exceptional, and using panic in these

circumstances is more widely accepted. In fact, the Go standard library frequently does this

when you make a logical error or try to use the language features in an unintended way —

such as when trying to access an out-of-bounds index in a slice, or trying to close an

already-closed channel.

But even then, I’d recommend trying to return and gracefully handle unexpected errors in

most cases. The exception to this is when returning the error adds an unacceptable amount

of error handling to the rest of your codebase.

Bringing this back to our readJSON() helper, if we get a json.InvalidUnmarshalError at

runtime it’s because we as the developers have passed an unsupported value to Decode().

This is firmly an unexpected error which we shouldn’t see under normal operation, and is

something that should be picked up in development and tests long before deployment.

If we did return this error, rather than panicking, we would need to introduce additional

code to manage it in each of our API handlers — which doesn’t seem like a good trade-off

for an error that we’re unlikely to ever see in production.

The Go By Example page on panics summarizes all of this quite nicely:

A panic typically means something went unexpectedly wrong. Mostly we use it to fail fast

on errors that shouldn’t occur during normal operation and that we aren’t prepared to

handle gracefully.

https://gobyexample.com/panic

Chapter 4.3.

Restricting Inputs

The changes that we made in the previous chapter to deal with invalid JSON and other bad

requests were a big step in the right direction. But there are still a few things we can do to

make our JSON processing even more robust.

One such thing is dealing with unknown fields. For example, you can try sending a request

containing the unknown field rating to our createMovieHandler, like so:

$ curl -i -d '{"title": "Moana", "rating":"PG"}' localhost:4000/v1/movies

HTTP/1.1 200 OK

Date: Tue, 06 Apr 2021 18:51:50 GMT

Content-Length: 41

Content-Type: text/plain; charset=utf-8

{Title:Moana Year:0 Runtime:0 Genres:[]}

Notice how this request works without any problems — there’s no error to inform the client

that the rating field is not recognized by our application. In certain scenarios, silently

ignoring unknown fields may be exactly the behavior you want, but in our case it would be

better if we could alert the client to the issue.

Fortunately, Go’s json.Decoder provides a DisallowUnknownFields() setting that we can

use to generate an error when this happens.

Another problem we have is the fact that json.Decoder is designed to support streams of

JSON data. When we call Decode() on our request body, it actually reads the first JSON

value only from the body and decodes it. If we made a second call to Decode(), it would

read and decode the second value and so on.

But because we call Decode() once — and only once — in our readJSON() helper, anything

after the first JSON value in the request body is ignored. This means you could send a

request body containing multiple JSON values, or garbage content after the first JSON

value, and our API handlers would not raise an error. For example:

https://golang.org/pkg/encoding/json/#Decoder.DisallowUnknownFields

Body contains multiple JSON values

$ curl -i -d '{"title": "Moana"}{"title": "Top Gun"}' localhost:4000/v1/movies

HTTP/1.1 200 OK

Date: Tue, 06 Apr 2021 18:53:57 GMT

Content-Length: 41

Content-Type: text/plain; charset=utf-8

{Title:Moana Year:0 Runtime:0 Genres:[]}

Body contains garbage content after the first JSON value

$ curl -i -d '{"title": "Moana"} :~()' localhost:4000/v1/movies

HTTP/1.1 200 OK

Date: Tue, 06 Apr 2021 18:54:15 GMT

Content-Length: 41

Content-Type: text/plain; charset=utf-8

{Title:Moana Year:0 Runtime:0 Genres:[]}

Again, this behavior can be very useful, but it’s not the right fit for our use-case. We want

requests to our createMovieHandler handler to contain only one single JSON object in the

request body, with information about the movie to be created in our system.

To ensure that there are no additional JSON values (or any other content) in the request

body, we will need to call Decode() a second time in our readJSON() helper and check that

it returns an io.EOF (end of file) error.

Finally, there’s currently no upper-limit on the maximum size of the request body that we

accept. This means that our createMovieHandler would be a good target for any malicious

clients that wish to perform a denial-of-service attack on our API. We can address this by

using the http.MaxBytesReader() function to limit the maximum size of the request body.

Let’s update our readJSON() helper to fix these three things:

File: cmd/api/helpers.go

package main

import (

 "encoding/json"

 "errors"

 "fmt"

 "io"

 "net/http"

 "strconv"

 "strings" // New import

 "github.com/julienschmidt/httprouter"

)

...

func (app *application) readJSON(w http.ResponseWriter, r *http.Request, dst interface{}) error {

 // Use http.MaxBytesReader() to limit the size of the request body to 1MB.

 maxBytes := 1_048_576

 r.Body = http.MaxBytesReader(w, r.Body, int64(maxBytes))

https://golang.org/pkg/net/http/#MaxBytesReader

 // Initialize the json.Decoder, and call the DisallowUnknownFields() method on it

 // before decoding. This means that if the JSON from the client now includes any

 // field which cannot be mapped to the target destination, the decoder will return

 // an error instead of just ignoring the field.

 dec := json.NewDecoder(r.Body)

 dec.DisallowUnknownFields()

 // Decode the request body to the destination.

 err := dec.Decode(dst)

 if err != nil {

 var syntaxError *json.SyntaxError

 var unmarshalTypeError *json.UnmarshalTypeError

 var invalidUnmarshalError *json.InvalidUnmarshalError

 switch {

 case errors.As(err, &syntaxError):

 return fmt.Errorf("body contains badly-formed JSON (at character %d)", syntaxError.Offset)

 case errors.Is(err, io.ErrUnexpectedEOF):

 return errors.New("body contains badly-formed JSON")

 case errors.As(err, &unmarshalTypeError):

 if unmarshalTypeError.Field != "" {

 return fmt.Errorf("body contains incorrect JSON type for field %q", unmarshalTypeError.Field)

 }

 return fmt.Errorf("body contains incorrect JSON type (at character %d)", unmarshalTypeError.Offset)

 case errors.Is(err, io.EOF):

 return errors.New("body must not be empty")

 // If the JSON contains a field which cannot be mapped to the target destination

 // then Decode() will now return an error message in the format "json: unknown

 // field "<name>"". We check for this, extract the field name from the error,

 // and interpolate it into our custom error message. Note that there's an open

 // issue at https://github.com/golang/go/issues/29035 regarding turning this

 // into a distinct error type in the future.

 case strings.HasPrefix(err.Error(), "json: unknown field "):

 fieldName := strings.TrimPrefix(err.Error(), "json: unknown field ")

 return fmt.Errorf("body contains unknown key %s", fieldName)

 // If the request body exceeds 1MB in size the decode will now fail with the

 // error "http: request body too large". There is an open issue about turning

 // this into a distinct error type at https://github.com/golang/go/issues/30715.

 case err.Error() == "http: request body too large":

 return fmt.Errorf("body must not be larger than %d bytes", maxBytes)

 case errors.As(err, &invalidUnmarshalError):

 panic(err)

 default:

 return err

 }

 }

 // Call Decode() again, using a pointer to an empty anonymous struct as the

 // destination. If the request body only contained a single JSON value this will

 // return an io.EOF error. So if we get anything else, we know that there is

 // additional data in the request body and we return our own custom error message.

 err = dec.Decode(&struct{}{})

 if err != io.EOF {

 return errors.New("body must only contain a single JSON value")

 }

 return nil

}

Once you’ve made those changes, let’s try out the requests from earlier in the chapter

again:

$ curl -d '{"title": "Moana", "rating":"PG"}' localhost:4000/v1/movies

{

 "error": "body contains unknown key \"rating\""

}

$ curl -d '{"title": "Moana"}{"title": "Top Gun"}' localhost:4000/v1/movies

{

 "error": "body must only contain a single JSON value"

}

$ curl -d '{"title": "Moana"} :~()' localhost:4000/v1/movies

{

 "error": "body must only contain a single JSON value"

}

Those are working much better now — processing of the request is terminated and the

client receives a clear error message explaining exactly what the problem is.

Lastly, let’s try making a request with a very large JSON body.

To demonstrate this, I’ve created a 1.5MB JSON file that you can download into your /tmp

directory by running the following command:

$ wget -O /tmp/largefile.json https://www.alexedwards.net/static/largefile.json

If you try making a request to your POST /v1/movies endpoint with this file as the request

body, the http.MaxBytesReader() check will kick in and you should get a response similar

to this:

$ curl -d @/tmp/largefile.json localhost:4000/v1/movies

{

 "error": "body must not be larger than 1048576 bytes"

}

And with that, you’ll be pleased to know that we’re finally finished with the readJSON()

helper �

I must admit that the code inside readJSON() isn’t the most beautiful-looking… there’s a lot

of error handling and logic that we’ve introduced for what is ultimately a one-line call to

Decode(). But now it’s written, it’s done. You don’t need to touch it again, and it’s

something that you can copy-and-paste into other projects easily.

Chapter 4.4.

Custom JSON Decoding

Earlier on in this book we added some custom JSON encoding behavior to our API so that

movie runtime information was displayed in the format "<runtime> mins" in our JSON

responses.

In this chapter, we’re going to look at this from the other side and update our application so

that the createMovieHandler accepts runtime information in this format.

If you try sending a request with the movie runtime in this format right now, you’ll get a

400 Bad Request response (since it’s not possible to decode a JSON string into an int32

type). Like so:

$ curl -d '{"title": "Moana", "runtime": "107 mins"}' localhost:4000/v1/movies

{

 "error": "body contains incorrect JSON type for \"runtime\""

}

To make this work, what we need to do is intercept the decoding process and manually

convert the "<runtime> mins" JSON string into an int32 instead.

So how can we do that?

The json.Unmarshaler interface

The key thing here is knowing about Go’s json.Unmarshaler interface, which looks like this:

type Unmarshaler interface {

 UnmarshalJSON([]byte) error

}

When Go is decoding some JSON, it will check to see if the destination type satisfies the

json.Unmarshaler interface. If it does satisfy the interface, then Go will call it’s

UnmarshalJSON() method to determine how to decode the provided JSON into the target

type. This is basically the reverse of the json.Marshaler interface that we used earlier to

customize our JSON encoding behavior.

Let’s take a look at how to use this in practice.

https://golang.org/pkg/encoding/json/#Unmarshaler

The first thing we need to do is update our createMovieHandler so that the input struct

uses our custom Runtime type, instead of a regular int32 . You’ll remember from earlier that

our Runtime type still has the underlying type int32 , but by making this a custom type we

are free to implement a UnmarshalJSON() method on it.

Go ahead and update the handler like so:

File: cmd/api/movies.go

package main

...

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime data.Runtime `json:"runtime"` // Make this field a data.Runtime type.

 Genres []string `json:"genres"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

...

Then let’s head to the internal/data/runtime.go file and add a UnmarshalJSON() method

to our Runtime type. In this method we need to parse the JSON string in the format

"<runtime> mins" , convert the runtime number to an int32 , and then assign this to the

Runtime value itself.

It’s actually a little bit intricate, and there are some important details, so it’s probably best

to jump into the code and explain things with comments as we go.

File: internal/data/runtime.go

package data

import (

 "errors" // New import

 "fmt"

 "strconv"

 "strings" // New import

)

// Define an error that our UnmarshalJSON() method can return if we're unable to parse

// or convert the JSON string successfully.

var ErrInvalidRuntimeFormat = errors.New("invalid runtime format")

type Runtime int32

...

// Implement a UnmarshalJSON() method on the Runtime type so that it satisfies the

// json.Unmarshaler interface. IMPORTANT: Because UnmarshalJSON() needs to modify the

// receiver (our Runtime type), we must use a pointer receiver for this to work

// correctly. Otherwise, we will only be modifying a copy (which is then discarded when

// this method returns).

func (r *Runtime) UnmarshalJSON(jsonValue []byte) error {

 // We expect that the incoming JSON value will be a string in the format

 // "<runtime> mins", and the first thing we need to do is remove the surrounding

 // double-quotes from this string. If we can't unquote it, then we return the

 // ErrInvalidRuntimeFormat error.

 unquotedJSONValue, err := strconv.Unquote(string(jsonValue))

 if err != nil {

 return ErrInvalidRuntimeFormat

 }

 // Split the string to isolate the part containing the number.

 parts := strings.Split(unquotedJSONValue, " ")

 // Sanity check the parts of the string to make sure it was in the expected format.

 // If it isn't, we return the ErrInvalidRuntimeFormat error again.

 if len(parts) != 2 || parts[1] != "mins" {

 return ErrInvalidRuntimeFormat

 }

 // Otherwise, parse the string containing the number into an int32. Again, if this

 // fails return the ErrInvalidRuntimeFormat error.

 i, err := strconv.ParseInt(parts[0], 10, 32)

 if err != nil {

 return ErrInvalidRuntimeFormat

 }

 // Convert the int32 to a Runtime type and assign this to the receiver. Note that we use

 // use the * operator to deference the receiver (which is a pointer to a Runtime

 // type) in order to set the underlying value of the pointer.

 *r = Runtime(i)

 return nil

}

Once that’s done, go ahead and restart the application, then make a request using the new

format runtime value in the JSON. You should see that the request completes successfully,

and the number is extracted from the string and assigned the Runtime field of our input

struct. Like so:

$ curl -d '{"title": "Moana", "runtime": "107 mins"}' localhost:4000/v1/movies

{Title:Moana Year:0 Runtime:107 Genres:[]}

Whereas if you make the request using a JSON number, or any other format, you should

now get an error response containing the message from the ErrInvalidRuntimeFormat

variable, similar to this:

$ curl -d '{"title": "Moana", "runtime": 107}' localhost:4000/v1/movies

{

 "error": "invalid runtime format"

}

$ curl -d '{"title": "Moana", "runtime": "107 minutes"}' localhost:4000/v1/movies

{

 "error": "invalid runtime format"

}

Chapter 4.5.

Validating JSON Input

In many cases, you’ll want to perform additional validation checks on the data from a client

to make sure it meets your specific business rules before processing it. In this chapter we’ll

illustrate how to do that in the context of a JSON API by updating our createMovieHandler

to check that:

The movie title provided by the client is not empty and is not more than 500 bytes long.

The movie year is not empty and is between 1888 and the current year.

The movie runtime is not empty and is a positive integer.

The movie has between one and five (unique) genres.

If any of those checks fail, we want to send the client a 422 Unprocessable Entity response

along with error messages which clearly describe the validation failures.

Creating a validator package

To help us with validation throughout this project, we’re going to create a small

internal/validator package with some simple reusable helper types and functions. If

you’re coding-along, go ahead and create the following directory and file on your machine:

$ mkdir internal/validator

$ touch internal/validator/validator.go

Then in this new internal/validator/validator.go file add the following code:

File: internal/validator/validator.go

package validator

import (

 "regexp"

)

// Declare a regular expression for sanity checking the format of email addresses (we'll

// use this later in the book). If you're interested, this regular expression pattern is

// taken from https://html.spec.whatwg.org/#valid-e-mail-address. Note: if you're

// reading this in PDF or EPUB format and cannot see the full pattern, please see the

// note further down the page.

var (

 EmailRX = regexp.MustCompile("^[a-zA-Z0-9.!#$%&'*+\\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$"

)

// Define a new Validator type which contains a map of validation errors.

type Validator struct {

 Errors map[string]string

}

// New is a helper which creates a new Validator instance with an empty errors map.

func New() *Validator {

 return &Validator{Errors: make(map[string]string)}

}

// Valid returns true if the errors map doesn't contain any entries.

func (v *Validator) Valid() bool {

 return len(v.Errors) == 0

}

// AddError adds an error message to the map (so long as no entry already exists for

// the given key).

func (v *Validator) AddError(key, message string) {

 if _, exists := v.Errors[key]; !exists {

 v.Errors[key] = message

 }

}

// Check adds an error message to the map only if a validation check is not 'ok'.

func (v *Validator) Check(ok bool, key, message string) {

 if !ok {

 v.AddError(key, message)

 }

}

// In returns true if a specific value is in a list of strings.

func In(value string, list ...string) bool {

 for i := range list {

 if value == list[i] {

 return true

 }

 }

 return false

}

// Matches returns true if a string value matches a specific regexp pattern.

func Matches(value string, rx *regexp.Regexp) bool {

 return rx.MatchString(value)

}

// Unique returns true if all string values in a slice are unique.

func Unique(values []string) bool {

 uniqueValues := make(map[string]bool)

 for _, value := range values {

 uniqueValues[value] = true

 }

 return len(values) == len(uniqueValues)

}

To summarize this:

In the code above we’ve defined a custom Validator type which contains a map of errors.

The Validator type provides a Check() method for conditionally adding errors to the map,

and a Valid() method which returns whether the errors map is empty or not. We’ve also

added In(), Matches() and Unique() functions to help us perform some specific validation

checks.

Conceptually this Validator type is quite basic, but that’s not a bad thing. As we’ll see over

the course of this book, it’s surprisingly powerful in practice and gives us a lot of flexibility

and control over validation checks and how we perform them.

If you’re reading this book in PDF or EPUB format and you can’t see the full EmailRX regexp

pattern in the code snippet above, here it is broken up into multiple lines:

"^[a-zA-Z0-9.!#$%&'*+\\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\\.

[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$"

In your code, this regexp pattern should all be on a single line with no whitespace.

Performing validation checks

Alright, let’s start putting the Validator type to use!

The first thing we need to do is update our cmd/api/errors.go file to include a new

failedValidationResponse() helper, which writes a 422 Unprocessable Entity and the

contents of the errors map from our new Validator type as a JSON response body.

File: cmd/api/errors.go

package main

...

// Note that the errors parameter here has the type map[string]string, which is exactly

// the same as the errors map contained in our Validator type.

func (app *application) failedValidationResponse(w http.ResponseWriter, r *http.Request, errors map[string]string) {

 app.errorResponse(w, r, http.StatusUnprocessableEntity, errors)

}

Then once that’s done, head back to your createMovieHandler and update it to perform the

necessary validation checks on the input struct. Like so:

File: cmd/api/movies.go

package main

import (

 "fmt"

 "net/http"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator" // New import

)

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime data.Runtime `json:"runtime"`

 Genres []string `json:"genres"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Initialize a new Validator instance.

 v := validator.New()

 // Use the Check() method to execute our validation checks. This will add the

 // provided key and error message to the errors map if the check does not evaluate

 // to true. For example, in the first line here we "check that the title is not

 // equal to the empty string". In the second, we "check that the length of the title

 // is less than or equal to 500 bytes" and so on.

 v.Check(input.Title != "", "title", "must be provided")

 v.Check(len(input.Title) <= 500, "title", "must not be more than 500 bytes long")

 v.Check(input.Year != 0, "year", "must be provided")

 v.Check(input.Year >= 1888, "year", "must be greater than 1888")

 v.Check(input.Year <= int32(time.Now().Year()), "year", "must not be in the future")

 v.Check(input.Runtime != 0, "runtime", "must be provided")

 v.Check(input.Runtime > 0, "runtime", "must be a positive integer")

 v.Check(input.Genres != nil, "genres", "must be provided")

 v.Check(len(input.Genres) >= 1, "genres", "must contain at least 1 genre")

 v.Check(len(input.Genres) <= 5, "genres", "must not contain more than 5 genres")

 // Note that we're using the Unique helper in the line below to check that all

 // values in the input.Genres slice are unique.

 v.Check(validator.Unique(input.Genres), "genres", "must not contain duplicate values")

 // Use the Valid() method to see if any of the checks failed. If they did, then use

 // the failedValidationResponse() helper to send a response to the client, passing

 // in the v.Errors map.

 if !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

...

With that done, we should be good to try this out. Restart the API, then go ahead and issue a

request to the POST /v1/movies endpoint containing some invalid data. Similar to this:

$ BODY='{"title":"","year":1000,"runtime":"-123 mins","genres":["sci-fi","sci-fi"]}'

$ curl -i -d "$BODY" localhost:4000/v1/movies

HTTP/1.1 422 Unprocessable Entity

Content-Type: application/json

Date: Wed, 07 Apr 2021 10:33:57 GMT

Content-Length: 180

{

 "error": {

 "genres": "must not contain duplicate values",

 "runtime": "must be a positive integer",

 "title": "must be provided",

 "year": "must be greater than 1888"

 }

}

That’s looking great. Our validation checks are working and preventing the request from

being executed successfully — and even better — the client is getting a nicely formed JSON

response with clear, informative, error messages for each problem.

You can also try sending a valid request, if you like. You should find that the checks pass

successfully and the input struct is dumped in the HTTP response, just like before:

$ BODY='{"title":"Moana","year":2016,"runtime":"107 mins","genres":["animation","adventure"]}'

$ curl -i -d "$BODY" localhost:4000/v1/movies

HTTP/1.1 200 OK

Date: Wed, 07 Apr 2021 10:35:40 GMT

Content-Length: 65

Content-Type: text/plain; charset=utf-8

{Title:Moana Year:2016 Runtime:107 Genres:[animation adventure]}

Making validation rules reusable

In large projects it’s likely that you’ll want to reuse some of the same validation checks in

multiple places. In our case — for example — we’ll want to use many of these same checks

later when a client edits the movie data.

To prevent duplication, we can collect the validation checks for a movie into a standalone

ValidateMovie() function. In theory this function could live almost anywhere in our

codebase — next to the handlers in the cmd/api/movies.go file, or possibly in the

internal/validators package. But personally, I like to keep the validation checks close to

the relevant domain type in the internal/data package.

If you’re following along, reopen the internal/data/movies.go file and add a

ValidateMovie() function containing the checks like so:

File: internal/data/movies.go

package data

import (

 "time"

 "greenlight.alexedwards.net/internal/validator" // New import

)

type Movie struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"-"`

 Title string `json:"title"`

 Year int32 `json:"year,omitempty"`

 Runtime Runtime `json:"runtime,omitempty"`

 Genres []string `json:"genres,omitempty"`

 Version int32 `json:"version"`

}

func ValidateMovie(v *validator.Validator, movie *Movie) {

 v.Check(movie.Title != "", "title", "must be provided")

 v.Check(len(movie.Title) <= 500, "title", "must not be more than 500 bytes long")

 v.Check(movie.Year != 0, "year", "must be provided")

 v.Check(movie.Year >= 1888, "year", "must be greater than 1888")

 v.Check(movie.Year <= int32(time.Now().Year()), "year", "must not be in the future")

 v.Check(movie.Runtime != 0, "runtime", "must be provided")

 v.Check(movie.Runtime > 0, "runtime", "must be a positive integer")

 v.Check(movie.Genres != nil, "genres", "must be provided")

 v.Check(len(movie.Genres) >= 1, "genres", "must contain at least 1 genre")

 v.Check(len(movie.Genres) <= 5, "genres", "must not contain more than 5 genres")

 v.Check(validator.Unique(movie.Genres), "genres", "must not contain duplicate values")

}

Important: Notice that the validation checks are now being performed on a Movie

struct — not on the input struct in our handlers.

Once that’s done, we need to head back to our createMovieHandler and update it to

initialize a new Movie struct, copy across the data from our input struct, and then call this

new validation function. Like so:

File: cmd/api/movies.go

package main

...

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime data.Runtime `json:"runtime"`

 Genres []string `json:"genres"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Copy the values from the input struct to a new Movie struct.

 movie := &data.Movie{

 Title: input.Title,

 Year: input.Year,

 Runtime: input.Runtime,

 Genres: input.Genres,

 }

 // Initialize a new Validator.

 v := validator.New()

 // Call the ValidateMovie() function and return a response containing the errors if

 // any of the checks fail.

 if data.ValidateMovie(v, movie); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

...

When you’re looking at this code, there might be a couple of questions in your head.

Firstly, you might be wondering why we’re initializing the Validator instance in our handler

and passing it to the ValidateMovie() function — rather than initializing it in

ValidateMovie() and passing it back as a return value.

This is because as our application gets more complex we will need call multiple validation

helpers from our handlers, rather than just one like we are above. So initializing the

Validator in the handler, and then passing it around, gives us more flexibility.

You might also be wondering why we’re decoding the JSON request into the input struct

and then copying the data across, rather than just decoding into the Movie struct directly.

The problem with decoding directly into a Movie struct is that a client could provide the

keys id and version in their JSON request, and the corresponding values would be

decoded without any error into the ID and Version fields of the Movie struct — even though

we don’t want them to be. We could check the necessary fields in the Movie struct after the

event to make sure that they are empty, but that feels a bit hacky, and decoding into an

intermediary struct (like we are in our handler) is a cleaner, simpler, and more robust

approach — albeit a little bit verbose.

OK, with those explanations out of the way, you should be able to start the application

again and things should work the same as before from the client’s perspective. If you make

an invalid request, you should get a response containing the error messages similar to this:

$ BODY='{"title":"","year":1000,"runtime":"-123 mins","genres":["sci-fi","sci-fi"]}'

$ curl -i -d "$BODY" localhost:4000/v1/movies

HTTP/1.1 422 Unprocessable Entity

Content-Type: application/json

Date: Wed, 07 Apr 2021 10:51:00 GMT

Content-Length: 180

{

 "error": {

 "genres": "must not contain duplicate values",

 "runtime": "must be a positive integer",

 "title": "must be provided",

 "year": "must be greater than 1888"

 }

}

Feel free to play around with this, and try sending different values in the JSON until you’re

happy that all the validation checks are working as expected.

Chapter 5.

Database Setup and Configuration

In this next section of the book, we’re going to move forward with our project build and set

up a SQL database to persistently store our movie data.

Unlike the first Let’s Go book (where we used MySQL as our database), this time we’re going

to use PostgreSQL. It’s open-source, very reliable and has some helpful modern features —

including support for array and JSON data types, full-text search, and geospatial queries.

We’ll use a couple of these modern PostgreSQL features as we progress through our build.

In this section you’ll learn:

How to install and set up PostgreSQL on your local machine.

How to use the psql interactive tool to create databases, PostgreSQL extensions and

user accounts.

How to initialize a database connection pool in Go and configure its settings to improve

performance and stability.

https://www.postgresql.org/
https://www.postgresql.org/docs/13/app-psql.html

Chapter 5.1.

Setting up PostgreSQL

Installing PostgreSQL

If you’re following along, you’ll need to install PostgreSQL on your computer at this point.

The official PostgreSQL documentation contains comprehensive download and installation

instructions for all types of operating systems, but if you’re using macOS you should be able

to install it with:

$ brew install postgresql

Or if you’re using a Linux distribution you should be able to install it via your package

manager. For example, if your OS supports the apt package manager (like Debian and

Ubuntu does) you can install it with:

$ sudo apt install postgresql

On Windows machines you can install PostgreSQL using the Chocolatey package manager

with the command:

> choco install postgresql

Connecting to the PostgreSQL interactive terminal

When PostgreSQL was installed a psql binary should also have been created on your

computer. This contains a terminal-based front-end for working with PostgreSQL.

You can check that this is available by running the psql --version command from your

terminal like so:

$ psql --version

psql (PostgreSQL) 13.1 (Ubuntu 13.1-1.pgdg20.04+1)

If you’re not already familiar with PostgreSQL, the process for connecting to it for the first

time using psql can be a bit unintuitive. So let’s take a moment to walk through it.

https://www.postgresql.org/download/
https://chocolatey.org

When PostgreSQL is freshly installed it only has one user account: a superuser called

postgres. In the first instance we need to connect to PostgreSQL as this superuser to do

anything — and from there we can perform any setup steps that we need to, like creating a

database and creating other users.

During installation, an operating system user named postgres should also have been

created on your machine. On Unix-based systems you can check your /etc/passwd file to

confirm this, like so:

$ cat /etc/passwd | grep 'postgres'

postgres:x:127:134:PostgreSQL administrator,,,:/var/lib/postgresql:/bin/bash

This is important because, by default, PostgreSQL uses an authentication scheme called

peer authentication for any connections from the local machine. Peer authentication means

that if the current operating system user’s username matches a valid PostgreSQL user

username, they can log in to PostgreSQL as that user with no further authentication. There

are no passwords involved.

So it follows that if we switch to our operating system user called postgres, we should be

able to connect to PostgreSQL using psql without needing any further authentication. In

fact, you can do both these things in one step with the following command:

$ sudo -u postgres psql

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

Type "help" for help.

postgres=#

So, just to confirm, what we’ve done here is use the sudo command (superuser do) to run

the psql command as the operating system user called postgres. That opens a session in

the interactive terminal-based front-end, where we are authenticated as the PostgreSQL

superuser called postgres.

If you want, you can confirm this by running a "SELECT current_user" query to see which

PostgreSQL user you currently are:

postgres=# SELECT current_user;

 current_user

 postgres

(1 row)

Creating databases, users, and extensions

While we’re connected as the postgres superuser, let’s create a new database for our

project called greenlight, and then connect to it using the \c command like so:

postgres=# CREATE DATABASE greenlight;

CREATE DATABASE

postgres=# \c greenlight

You are now connected to database "greenlight" as user "postgres".

greenlight=#

Hint: In PostgreSQL the \ character indicates a meta command. Some other useful

meta commands are \l to list all databases, \dt to list tables, and \du to list users.

You can also run \? to see the full list of available meta commands.

Now that our greenlight database exists and we’re connected to it, there are a couple of

tasks we need to complete.

The first task is to create a new greenlight user, without superuser permissions, which we

can use to execute SQL migrations and connect to the database from our Go application.

We want to set up this new user to use password-based authentication, instead of peer

authentication.

PostgreSQL also has the concept of extensions, which add additional features on top of the

standard functionality. A list of the extensions that ship with PostgreSQL can be found here,

and there are also some others that you can download separately.

In this project we’re going to use the citext extension. This adds a case-insensitive

character string type to PostgreSQL, which we will use later in the book to store user email

addresses. It’s important to note that extensions can only be added by superusers, to a

specific database.

Go ahead and run the following commands to create a new greenlight user with a specific

password and add the citext extension to our database:

greenlight=# CREATE ROLE greenlight WITH LOGIN PASSWORD 'pa55word';

CREATE ROLE

greenlight=# CREATE EXTENSION IF NOT EXISTS citext;

CREATE EXTENSION

https://www.postgresql.org/docs/current/contrib.html
https://www.postgresql.org/download/products/6-postgresql-extensions/
https://www.postgresql.org/docs/9.5/citext.html

Important: If you’re following along, make sure to keep a mental note of the

password you set for the greenlight user. You’ll need it in the upcoming steps.

Once that’s successfully done, you can type exit or \q to close the terminal-based front-

end and revert to being your normal operating system user.

greenlight=# exit

Connecting as the new user

Before we go any further, let’s prove to ourselves that everything is set up correctly and try

connecting to the greenlight database as the greenlight user. When prompted, enter the

password that you set in the step above.

$ psql --host=localhost --dbname=greenlight --username=greenlight

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT current_user;

 current_user

 greenlight

(1 row)

greenlight=> exit

Great! That confirms that our database and the new greenlight user with password

credentials are working correctly, and that we’re able to execute SQL statements as that

user without any issues.

Additional Information

Optimizing PostgreSQL settings

The default settings that PostgreSQL ships with are quite conservative, and you can often

improve the performance of your database by tweaking the values in your postgresql.conf

file.

You can check where your postgresql.conf file lives with the following SQL query:

$ sudo -u postgres psql -c 'SHOW config_file;'

 config_file

 /etc/postgresql/13/main/postgresql.conf

(1 row)

This article provides a good introduction to some of the most important PostgreSQL

settings, and guidance on what values are reasonable to use as a starting point. If you’re

interested in optimizing PostgreSQL, I recommend giving this a read.

Alternatively, you can use this web-based tool to generate suggested values based on your

available system hardware. A nice feature of this tool is that it also outputs ALTER SYSTEM

SQL statements, which you can run against your database to change the settings instead of

altering your postgresql.conf file manually.

https://www.enterprisedb.com/postgres-tutorials/how-tune-postgresql-memory
https://pgtune.leopard.in.ua

Chapter 5.2.

Connecting to PostgreSQL

OK, now that our new greenlight database is set up, let’s look at how to connect to it from

our Go application.

As you probably remember from Let’s Go, to work with a SQL database we need to use a

database driver to act as a ‘middleman’ between Go and the database itself. You can find a

list of available drivers for PostgreSQL in the Go wiki, but for our project we’ll opt for the

popular, reliable, and well-established pq package.

If you’re coding-along with this book, then go ahead and use go get to download version

v1.10.0 of pq like so:

$ go get github.com/lib/pq@v1.10.0

go: downloading github.com/lib/pq v1.10.0

go get: added github.com/lib/pq v1.10.0

To connect to the database we’ll also need a data source name (DSN), which is basically a

string that contains the necessary connection parameters. The exact format of the DSN will

depend on which database driver you’re using (and should be described in the driver

documentation), but when using pq you should be able to connect to your local greenlight

database as the greenlight user with the following DSN:

postgres://greenlight:pa55word@localhost/greenlight

Establishing a connection pool

The code that we’ll use for connecting to the greenlight database from our Go application

is almost exactly the same as in the first Let’s Go book. So we won’t dwell on the details, and

hopefully this will all feel very familiar.

At a high-level:

We want the DSN to be configurable at runtime, so we will pass it to the application

using a command-line flag rather than hard-coding it. For simplicity during

development, we’ll use the DSN above as the default value for the flag.

In our cmd/api/main.go file we’ll create a new openDB() helper function. In this helper

https://github.com/golang/go/wiki/SQLDrivers
https://github.com/lib/pq

we’ll use the sql.Open() function to establish a new sql.DB connection pool, then —

because connections to the database are established lazily as and when needed for the

first time — we will also need to use the db.PingContext() method to actually create a

connection and verify that everything is set up correctly.

Let’s head back to our cmd/api/main.go file and update it like so:

File: cmd/api/main.go

package main

import (

 "context" // New import

 "database/sql" // New import

 "flag"

 "fmt"

 "log"

 "net/http"

 "os"

 "time"

 // Import the pq driver so that it can register itself with the database/sql

 // package. Note that we alias this import to the blank identifier, to stop the Go

 // compiler complaining that the package isn't being used.

 _ "github.com/lib/pq"

)

const version = "1.0.0"

// Add a db struct field to hold the configuration settings for our database connection

// pool. For now this only holds the DSN, which we will read in from a command-line flag.

type config struct {

 port int

 env string

 db struct {

 dsn string

 }

}

type application struct {

 config config

 logger *log.Logger

}

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 // Read the DSN value from the db-dsn command-line flag into the config struct. We

 // default to using our development DSN if no flag is provided.

 flag.StringVar(&cfg.db.dsn, "db-dsn", "postgres://greenlight:pa55word@localhost/greenlight", "PostgreSQL DSN")

 flag.Parse()

 logger := log.New(os.Stdout, "", log.Ldate | log.Ltime)

 // Call the openDB() helper function (see below) to create the connection pool,

 // passing in the config struct. If this returns an error, we log it and exit the

 // application immediately.

 db, err := openDB(cfg)

https://golang.org/pkg/database/sql/#Open
https://golang.org/pkg/database/sql/#DB
https://golang.org/pkg/database/sql/#DB.PingContext

 db, err := openDB(cfg)

 if err != nil {

 logger.Fatal(err)

 }

 // Defer a call to db.Close() so that the connection pool is closed before the

 // main() function exits.

 defer db.Close()

 // Also log a message to say that the connection pool has been successfully

 // established.

 logger.Printf("database connection pool established")

 app := &application{

 config: cfg,

 logger: logger,

 }

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", cfg.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 logger.Printf("starting %s server on %s", cfg.env, srv.Addr)

 // Because the err variable is now already declared in the code above, we need

 // to use the = operator here, instead of the := operator.

 err = srv.ListenAndServe()

 logger.Fatal(err)

}

// The openDB() function returns a sql.DB connection pool.

func openDB(cfg config) (*sql.DB, error) {

 // Use sql.Open() to create an empty connection pool, using the DSN from the config

 // struct.

 db, err := sql.Open("postgres", cfg.db.dsn)

 if err != nil {

 return nil, err

 }

 // Create a context with a 5-second timeout deadline.

 ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)

 defer cancel()

 // Use PingContext() to establish a new connection to the database, passing in the

 // context we created above as a parameter. If the connection couldn't be

 // established successfully within the 5 second deadline, then this will return an

 // error.

 err = db.PingContext(ctx)

 if err != nil {

 return nil, err

 }

 // Return the sql.DB connection pool.

 return db, nil

}

Important: We’ll talk about using context to manage timeouts properly later in the

book, so don’t worry about this too much at the moment. For now, it’s sufficient to

know that if the PingContext() call could not complete successfully in 5 seconds, then

it will return an error.

Once the cmd/api/main.go file is updated, go ahead and run the application again. You

should now see a log message on startup confirming that the connection pool has been

successfully established. Similar to this:

$ go run ./cmd/api

2021/04/07 15:56:54 database connection pool established

2021/04/07 15:56:54 starting development server on :4000

Decoupling the DSN

At the moment the default command-line flag value for our DSN is explicitly included as a

string in the cmd/api/main.go file.

Even though the username and password in the DSN are just for the development database

on your local machine, it would be preferable to not have this information hard-coded into

our project files (which could be shared or distributed in the future).

So let’s take some steps to decouple the DSN from our project code and instead store it as

an environment variable on your local machine.

If you’re following along, create a new GREENLIGHT_DB_DSN environment variable by adding

the following line to either your $HOME/.profile or $HOME/.bashrc files:

File: $HOME/.profile

...

export GREENLIGHT_DB_DSN='postgres://greenlight:pa55word@localhost/greenlight'

Once that’s done you’ll need to reboot your computer, or — if that’s not convenient right

now — run the source command on the file that you’ve just edited to effect the change. For

example:

$ source $HOME/.profile

Note: Running source will affect the current terminal window only. So, if you switch to

a different terminal window, you’ll need to run it again for it to take effect.

Either way, once you’ve rebooted or run source you should be able to see the value for the

GREENLIGHT_DB_DSN environment variable in your terminal by running the echo command.

Like so:

$ echo $GREENLIGHT_DB_DSN

postgres://greenlight:pa55word@localhost/greenlight

Now let’s update our cmd/api/main.go file to access the environment variable using the

os.Getenv() function, and set this as the default value for our DSN command-line flag.

It’s fairly straightforward in practice:

File: cmd/api/main.go

package main

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 // Use the value of the GREENLIGHT_DB_DSN environment variable as the default value

 // for our db-dsn command-line flag.

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.Parse()

 ...

}

If you restart the application again now, you should find that it compiles correctly and

works just like before.

You can also try specifying the -help flag when running the application. This should output

the descriptive text and default values for our three command-line flags, including the DSN

value pulled through from the environment variable. Similar to this:

https://golang.org/pkg/os/#Getenv

$ go run ./cmd/api -help

Usage of /tmp/go-build417842398/b001/exe/api:

 -db-dsn string

 PostgreSQL DSN (default "postgres://greenlight:pa55word@localhost/greenlight")

 -env string

 Environment (development|staging|production) (default "development")

 -port int

 API server port (default 4000)

Additional Information

Using the DSN with psql

A nice side effect of storing the DSN in an environment variable is that you can use it to

easily connect to the greenlight database as the greenlight user, rather than specifying

all the connection options manually when running psql. Like so:

$ psql $GREENLIGHT_DB_DSN

psql (13.2 (Ubuntu 13.2-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=>

Chapter 5.3.

Configuring the Database Connection

Pool

In the first Let’s Go book we talked through the sql.DB connection pool at a high-level and

demonstrated the core principles of how to use it. But in this chapter we’re going to go in-

depth — explaining how the connection pool works behind the scenes, and exploring the

settings we can use to change and optimize its behavior.

Note: This chapter contains quite a lot of theory, and although it’s interesting, it’s not

critical to the application build. If you find it too heavy-going, feel free to skim over it

for now and then circle back to it later.

So how does the sql.DB connection pool work?

The most important thing to understand is that a sql.DB pool contains two types of

connections — ‘in-use’ connections and ‘idle’ connections. A connection is marked as in-use

when you are using it to perform a database task, such as executing a SQL statement or

querying rows, and when the task is complete the connection is then marked as idle.

When you instruct Go to perform a database task, it will first check if any idle connections

are available in the pool. If one is available, then Go will reuse this existing connection and

mark it as in-use for the duration of the task. If there are no idle connections in the pool

when you need one, then Go will create a new additional connection.

When Go reuses an idle connection from the pool, any problems with the connection are

handled gracefully. Bad connections will automatically be re-tried twice before giving up, at

which point Go will remove the bad connection from the pool and create a new one to carry

out the task.

Configuring the pool

The connection pool has four methods that we can use to configure its behavior. Let’s talk

through them one-by-one.

The SetMaxOpenConns method

The SetMaxOpenConns() method allows you to set an upper MaxOpenConns limit on the

number of ‘open’ connections (in-use + idle connections) in the pool. By default, the

number of open connections is unlimited.

Important: Note that ‘open’ connections is equal to ‘in-use’ plus ‘idle’ connections —

it is not just ‘in-use’ connections.

Broadly speaking, the higher that you set the MaxOpenConns limit, the more database

queries can be performed concurrently and the lower the risk is that the connection pool

itself will be a bottleneck in your application.

But leaving it unlimited isn’t necessarily the best thing to do. By default PostgreSQL has a

hard limit of 100 open connections and, if this hard limit is hit under heavy load, it will cause

our pq driver to return a "sorry, too many clients already" error.

Note: The hard limit on open connections can be changed in your postgresql.conf

file using the max_connections setting.

To avoid this error, it makes sense limit the number of open connections in our pool to

comfortably below 100 — leaving enough headroom for any other applications or sessions

that also need to use PostgreSQL.

The other benefit of setting a MaxOpenConns limit is that it acts as a very rudimentary

throttle, and prevents the database from being swamped by a huge number of tasks all at

once.

But setting a limit comes with an important caveat. If the MaxOpenConns limit is reached, and

all connections are in-use, then any further database tasks will be forced to wait until a

connection becomes free and marked as idle. In the context of our API, the user’s HTTP

request could ‘hang’ indefinitely while waiting for a free connection. So to mitigate this, it’s

important to always set a timeout on database tasks using a context.Context object. We’ll

explain how to do that later in the book.

The SetMaxIdleConns method

The SetMaxIdleConns() method sets an upper MaxIdleConns limit on the number of idle

connections in the pool. By default, the maximum number of idle connections is 2.

In theory, allowing a higher number of idle connections in the pool will improve

https://golang.org/pkg/database/sql/#DB.SetMaxOpenConns
https://golang.org/pkg/database/sql/#DB.SetMaxIdleConns

performance because it makes it less likely that a new connection needs to be established

from scratch — therefore helping to save resources.

But it’s also important to realize that keeping an idle connection alive comes at a cost. It

takes up memory which can otherwise be used for your application and database, and it’s

also possible that if a connection is idle for too long then it may become unusable. For

example, by default MySQL will automatically close any connections which haven’t been

used for 8 hours.

So, potentially, setting MaxIdleConns too high may result in more connections becoming

unusable and more resources being used than if you had a smaller idle connection pool —

with fewer connections that are used more frequently. As a guideline: you only want to keep

a connection idle if you’re likely to be using it again soon.

Another thing to point out is that the MaxIdleConns limit should always be less than or

equal to MaxOpenConns. Go enforces this and will automatically reduce the MaxIdleConns

limit if necessary.

The SetConnMaxLifetime method

The SetConnMaxLifetime() method sets the ConnMaxLifetime limit — the maximum length

of time that a connection can be reused for. By default, there’s no maximum lifetime and

connections will be reused forever.

If we set ConnMaxLifetime to one hour, for example, it means that all connections will be

marked as ‘expired’ one hour after they were first created, and cannot be reused after

they’ve expired. But note:

This doesn’t guarantee that a connection will exist in the pool for a whole hour; it’s

possible that a connection will become unusable for some reason and be automatically

closed before then.

A connection can still be in use more than one hour after being created — it just cannot

start to be reused after that time.

This isn’t an idle timeout. The connection will expire one hour after it was first created —

not one hour after it last became idle.

Once every second Go runs a background cleanup operation to remove expired

connections from the pool.

In theory, leaving ConnMaxLifetime unlimited (or setting a long lifetime) will help

performance because it makes it less likely that new connections will need to be created

from scratch. But in certain situations, it can be useful to enforce a shorter lifetime. For

https://golang.org/pkg/database/sql/#DB.SetConnMaxLifetime

example:

If your SQL database enforces a maximum lifetime on connections, it makes sense to set

ConnMaxLifetime to a slightly shorter value.

To help facilitate swapping databases gracefully behind a load balancer.

If you do decide to set a ConnMaxLifetime on your pool, it’s important to bear in mind the

frequency at which connections will expire (and subsequently be recreated). For example, if

you have 100 open connections in the pool and a ConnMaxLifetime of 1 minute, then your

application can potentially kill and recreate up to 1.67 connections (on average) every

second. You don’t want the frequency to be so great that it ultimately hinders performance.

The SetConnMaxIdleTime method

The SetConnMaxIdleTime() method (which was introduced in Go 1.15) sets the

ConnMaxIdleTime limit. This works in a very similar way to ConnMaxLifetime , except it sets

the maximum length of time that a connection can be idle for before it is marked as expired.

By default there’s no limit.

If we set ConnMaxIdleTime to 1 hour, for example, any connections that have sat idle in the

pool for 1 hour since last being used will be marked as expired and removed by the

background cleanup operation.

This setting is really useful because it means that we can set a relatively high limit on the

number of idle connections in the pool, but periodically free-up resources by removing any

idle connections that we know aren’t really being used anymore.

Putting it into practice

So that’s a lot of information to take in… and what does it mean in practice? Let’s

summarize all the above into some actionable points.

1. As a rule of thumb, you should explicitly set a MaxOpenConns value. This should be

comfortably below any hard limits on the number of connections imposed by your

database and infrastructure, and you may also want to consider keeping it fairly low to

act as a rudimentary throttle.

For this project we’ll set a MaxOpenConns limit of 25 connections. I’ve found this to be a

reasonable starting point for small-to-medium web applications and APIs, but ideally

you should tweak this value for your hardware depending on the results of

benchmarking and load-testing.

https://golang.org/pkg/database/sql/#DB.SetConnMaxIdleTime

2. In general, higher MaxOpenConns and MaxIdleConns values will lead to better

performance. But the returns are diminishing, and you should be aware that having a

too-large idle connection pool (with connections that are not frequently re-used) can

actually lead to reduced performance and unnecessary resource consumption.

Because MaxIdleConns should always be less than or equal to MaxOpenConns, we’ll also

limit MaxIdleConns to 25 connections for this project.

3. To mitigate the risk from point 2 above, you should set generally set a ConnMaxIdleTime

value to remove idle connections that haven’t been used for a long time. In this project

we’ll set a ConnMaxIdleTime duration of 15 minutes.

4. It’s probably OK to leave ConnMaxLifetime as unlimited, unless your database imposes a

hard limit on connection lifetime, or you need it specifically to facilitate something like

gracefully swapping databases. Neither of those things apply in this project, so we’ll

leave this as the default unlimited setting.

Configuring the connection pool

Rather than hard-coding these settings, lets update the cmd/api/main.go file to accept

them as command line flags.

The command-line flag for the ConnMaxIdleTime value is particularly interesting, because

we want it to convey a duration of time which we ultimately need to convert to a Go

time.Duration type. There are a couple of options here:

1. We could use an integer to represent the number of seconds (or minutes) and convert

this to a time.Duration .

2. We could use a string representing the duration — like "5s" (5 seconds) or "10m" (10

minutes) — and then parse it using the time.ParseDuration() function.

Both approaches would work fine, but we’ll go with option 2 in this project. Go ahead and

update the cmd/api/main.go file as follows:

File: cmd/api/main.go

package main

...

// Add maxOpenConns, maxIdleConns and maxIdleTime fields to hold the configuration

// settings for the connection pool.

type config struct {

 port int

https://golang.org/pkg/time/#ParseDuration

 port int

 env string

 db struct {

 dsn string

 maxOpenConns int

 maxIdleConns int

 maxIdleTime string

 }

}

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 // Read the connection pool settings from command-line flags into the config struct.

 // Notice the default values that we're using?

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.Parse()

 ...

}

func openDB(cfg config) (*sql.DB, error) {

 db, err := sql.Open("postgres", cfg.db.dsn)

 if err != nil {

 return nil, err

 }

 // Set the maximum number of open (in-use + idle) connections in the pool. Note that

 // passing a value less than or equal to 0 will mean there is no limit.

 db.SetMaxOpenConns(cfg.db.maxOpenConns)

 // Set the maximum number of idle connections in the pool. Again, passing a value

 // less than or equal to 0 will mean there is no limit.

 db.SetMaxIdleConns(cfg.db.maxIdleConns)

 // Use the time.ParseDuration() function to convert the idle timeout duration string

 // to a time.Duration type.

 duration, err := time.ParseDuration(cfg.db.maxIdleTime)

 if err != nil {

 return nil, err

 }

 // Set the maximum idle timeout.

 db.SetConnMaxIdleTime(duration)

 ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)

 defer cancel()

 err = db.PingContext(ctx)

 if err != nil {

 return nil, err

 }

 return db, nil

}

If you go ahead and run the application again now, everything should still work correctly.

You won’t really notice any changes, and there’s not much we can do to demonstrate the

impact of these settings at this point.

But later in the book we’ll do a bit of load testing, and explain how to monitor the state of

the connection pool in real-time using the db.Stats() method. At that point, you’ll be able

to see some of the behavior that we’ve talked about in this chapter in action.

https://golang.org/pkg/database/sql/#DB.Stats

Chapter 6.

SQL Migrations

Let’s get back to something a bit more concrete and tangible in this next section of the

book, and take steps to create a movies table in our greenlight database.

To do this, we could simply use the psql tool again and run the necessary CREATE TABLE

statement against our database. But instead, we’re going to explore how to use SQL

migrations to create the table (and more generally, manage database schema changes

throughout the project).

You’ll learn about:

The high-level principles behind SQL migrations and why they are useful.

How to use the command-line migrate tool to programmatically manage changes to

your database schema.

https://github.com/golang-migrate/migrate

Chapter 6.1.

An Overview of SQL Migrations

In case you’re not familiar with the idea of SQL migrations, at a very high-level the concept

works like this:

1. For every change that you want to make to your database schema (like creating a table,

adding a column, or removing an unused index) you create a pair of migration files. One

file is the ‘up’ migration which contains the SQL statements necessary to implement the

change, and the other is a ‘down’ migration which contains the SQL statements to

reverse (or roll-back) the change.

2. Each pair of migration files is numbered sequentially, usually 0001, 0002, 0003... or

with a Unix timestamp, to indicate the order in which migrations should be applied to a

database.

3. You use some kind of tool or script to execute or rollback the SQL statements in the

sequential migration files against your database. The tool keeps track of which

migrations have already been applied, so that only the necessary SQL statements are

actually executed.

Using migrations to manage your database schema, rather than manually executing the

SQL statements yourself, has a few benefits:

The database schema (along with its evolution and changes) is completely described by

the ‘up’ and ‘down’ SQL migration files. And because these are just regular files

containing some SQL statements, they can be included and tracked alongside the rest of

your code in a version control system.

It’s possible to replicate the current database schema precisely on another machine by

running the necessary ‘up’ migrations. This is a big help when you need to manage and

synchronize database schemas in different environments (development, testing,

production, etc.).

It’s possible to roll-back database schema changes if necessary by applying the

appropriate ‘down’ migrations.

Installing the migrate tool

https://en.wikipedia.org/wiki/Unix_time

To manage SQL migrations in this project we’re going to use the migrate command-line

tool (which itself is written in Go).

Detailed installation instructions for different operating systems can be found here, but on

macOS you should be able to install it with the command:

$ brew install golang-migrate

And on Linux and Windows, the easiest method is to download a pre-built binary and move

it to a location on your system path. For example, on Linux:

$ curl -L https://github.com/golang-migrate/migrate/releases/download/v4.14.1/migrate.linux-amd64.tar.gz | tar xvz

$ mv migrate.linux-amd64 $GOPATH/bin/migrate

Before you continue, please check that it’s available and working on your machine by trying

to execute the migrate binary with the -version flag. It should output the current version

number similar to this:

$ migrate -version

4.14.1

https://github.com/golang-migrate/migrate
https://github.com/golang-migrate/migrate/tree/master/cmd/migrate
https://github.com/golang-migrate/migrate/releases

Chapter 6.2.

Working with SQL Migrations

Now that the migrate tool is installed, let’s illustrate how to use it by creating a new movies

table in our database.

The first thing we need to do is generate a pair of migration files using the migrate create

command. If you’re following along, go ahead and run the following command in your

terminal:

$ migrate create -seq -ext=.sql -dir=./migrations create_movies_table

/home/alex/Projects/greenlight/migrations/000001_create_movies_table.up.sql

/home/alex/Projects/greenlight/migrations/000001_create_movies_table.down.sql

In this command:

The -seq flag indicates that we want to use sequential numbering like 0001, 0002, ...

for the migration files (instead of a Unix timestamp, which is the default).

The -ext flag indicates that we want to give the migration files the extension .sql.

The -dir flag indicates that we want to store the migration files in the ./migrations

directory (which will be created automatically if it doesn’t already exist).

The name create_movies_table is a descriptive label that we give the migration files to

signify their contents.

If you look in your migrations directory, you should now see a pair of new ‘up’ and ‘down’

migration files like so:

./migrations/

├── 000001_create_movies_table.down.sql
└── 000001_create_movies_table.up.sql

At the moment these two new files are completely empty. Let’s edit the ‘up’ migration file

to contain the necessary CREATE TABLE statement for our movies table, like so:

File: migrations/000001_create_movies_table.up.sql

CREATE TABLE IF NOT EXISTS movies (

 id bigserial PRIMARY KEY,

 created_at timestamp(0) with time zone NOT NULL DEFAULT NOW(),

 title text NOT NULL,

 year integer NOT NULL,

 runtime integer NOT NULL,

 genres text[] NOT NULL,

 version integer NOT NULL DEFAULT 1

);

Notice here how the fields and types in this table are analogous to the fields and types in

the Movie struct that we created earlier? This is important because it means we’ll be able to

easily map the data in each row of our movies table to a single Movie struct in our Go code.

If you’re not familiar with the different PostgreSQL data types in the SQL statement above,

the official documentation provides a comprehensive overview. But the most important

things to point out are that:

The id column has the type bigserial , which is a 64-bit auto-incrementing integer

starting at 1. This will be the primary key for the table.

The genres column has the type text[] which is an array of zero-or-more text values.

It’s important to note that arrays in PostgreSQL are themselves queryable and indexable,

which is something that we’ll demonstrate later in the book.

You might remember from Let’s Go that working with NULL values in Go can be awkward,

and where possible it’s easiest to just set NOT NULL constraints on every table column

along with appropriate DEFAULT values — like we have above.

For storing strings we’re using the text type, instead of the alternative varchar or

varchar(n) types. If you’re interested, this excellent blog post explains why text is

generally the best character type to use in PostgreSQL.

Alright, let’s move on to the ‘down’ migration and add the SQL statements needed to

reverse the ‘up’ migration that we just wrote.

File: migrations/000001_create_movies_table.down.sql

DROP TABLE IF EXISTS movies;

The DROP TABLE command in PostgreSQL always removes any indexes and constraints that

exist for the target table, so this single statement is sufficient to reverse the ‘up’.

Great, that’s our first pair of migration files ready to go!

https://www.postgresql.org/docs/current/datatype.html
https://www.postgresql.org/docs/12/datatype-numeric.html#DATATYPE-NUMERIC-TABLE
https://www.postgresql.org/docs/current/arrays.html
https://www.depesz.com/2010/03/02/charx-vs-varcharx-vs-varchar-vs-text/

While we are at it, let’s also create a second pair of migration files containing CHECK

constraints to enforce some of our business rules at the database-level. Specifically, we

want to make sure that the runtime value is always greater than zero, the year value is

between 1888 and the current year, and the genres array always contains between 1 and 5

items.

Again, if you’re following along, run the command below to create a second pair of

migration files:

$ migrate create -seq -ext=.sql -dir=./migrations add_movies_check_constraints

/home/alex/Projects/greenlight/migrations/000002_add_movies_check_constraints.up.sql

/home/alex/Projects/greenlight/migrations/000002_add_movies_check_constraints.down.sql

And then add the following SQL statements to add and drop the CHECK constraints

respectively:

File: migrations/000002_add_movies_check_constraints.up.sql

ALTER TABLE movies ADD CONSTRAINT movies_runtime_check CHECK (runtime >= 0);

ALTER TABLE movies ADD CONSTRAINT movies_year_check CHECK (year BETWEEN 1888 AND date_part('year', now()));

ALTER TABLE movies ADD CONSTRAINT genres_length_check CHECK (array_length(genres, 1) BETWEEN 1 AND 5);

File: migrations/000002_add_movies_check_constraints.down.sql

ALTER TABLE movies DROP CONSTRAINT IF EXISTS movies_runtime_check;

ALTER TABLE movies DROP CONSTRAINT IF EXISTS movies_year_check;

ALTER TABLE movies DROP CONSTRAINT IF EXISTS genres_length_check;

When we insert or update data in our movies table, if any of these checks fail our database

driver will return an error similar to this:

pq: new row for relation "movies" violates check constraint "movies_year_check"

Note: It’s perfectly acceptable for a single migration file to contain multiple SQL

statements, as we see in two the files above. In fact, we could have just included the

CHECK constraints along with the CREATE TABLE statement in the first pair of migration

files, but for the purpose of this book having them in a separate second migration

helps us to illustrate how the migrate tool works.

https://www.postgresql.org/docs/9.4/ddl-constraints.html

Executing the migrations

Alright, now we’re ready to run the two ‘up’ migrations against our greenlight database.

If you’re following along, go ahead and use the following command to execute the

migrations, passing in the database DSN from your environment variable. If everything is set

up correctly, you should see some output confirming that the migrations have been

executed successfully. Similar to this:

$ migrate -path=./migrations -database=$GREENLIGHT_DB_DSN up

1/u create_movies_table (38.19761ms)

2/u add_movies_check_constraints (63.284269ms)

At this point, it’s worth opening a connection to your database and listing the tables with

the \dt meta command:

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> \dt

 List of relations

 Schema | Name | Type | Owner

--------+-------------------+-------+------------

 public | movies | table | greenlight

 public | schema_migrations | table | greenlight

(2 rows)

You should see that the movies table has been created, along with a schema_migrations

table, both of which are owned by the greenlight user.

The schema_migrations table is automatically generated by the migrate tool and used to

keep track of which migrations have been applied. Let’s take a quick look inside it:

greenlight=> SELECT * FROM schema_migrations;

 version | dirty

---------+-------

 2 | f

(1 row)

The version column here indicates that our migration files up to (and including) number 2

in the sequence have been executed against the database. The value of the dirty column is

false , which indicates that the migration files were cleanly executed without any errors and

the SQL statements they contain were successfully applied in full.

If you like, you can also run the \d meta command on the movies table to see the structure

of the table and confirm that the CHECK constraints were created correctly. Like so:

greenlight-> \d movies

 Table "public.movies"

 Column | Type | Collation | Nullable | Default

------------+-----------------------------+-----------+----------+------------------------------------

 id | bigint | | not null | nextval('movies_id_seq'::regclass)

 created_at | timestamp(0) with time zone | | not null | now()

 title | text | | not null |

 year | integer | | not null |

 runtime | integer | | not null |

 genres | text[] | | not null |

 version | integer | | not null | 1

Indexes:

 "movies_pkey" PRIMARY KEY, btree (id)

Check constraints:

 "genres_length_check" CHECK (array_length(genres, 1) >= 1 AND array_length(genres, 1) <= 5)

 "movies_runtime_check" CHECK (runtime >= 0)

 "movies_year_check" CHECK (year >= 1888 AND year::double precision <= date_part('year'::text, now()))

Additional Information

Migrating to a specific version

As an alternative to looking at the schema_migrations table, if you want to see which

migration version your database is currently on you can run the migrate tool’s version

command, like so:

$ migrate -path=./migrations -database=$EXAMPLE_DSN version

2

You can also migrate up or down to a specific version by using the goto command:

$ migrate -path=./migrations -database=$EXAMPLE_DSN goto 1

Executing down migrations

You can use the down command to roll-back by a specific number of migrations. For

example, to rollback the most recent migration you would run:

$ migrate -path=./migrations -database =$EXAMPLE_DSN down 1

Personally, I generally prefer to use the goto command to perform roll-backs (as it’s more

explicit about the target version) and reserve use of the down command for rolling-back all

migrations, like so:

$ migrate -path=./migrations -database=$EXAMPLE_DSN down

Are you sure you want to apply all down migrations? [y/N]

y

Applying all down migrations

2/d create_bar_table (39.988791ms)

1/d create_foo_table (59.460276ms)

Another variant of this is the drop command, which will remove all tables from the database

including the schema_migrations table — but the database itself will remain, along with

anything else that has been created like sequences and enums. Because of this, using drop

can leave your database in a messy and unknown state, and it’s generally better to stick

with the down command if you want to roll back everything.

Fixing errors in SQL migrations

It’s important to talk about what happens when you make a syntax error in your SQL

migration files, because the behavior of the migrate tool can be a bit confusing to start

with.

When you run a migration that contains an error, all SQL statements up to the erroneous

one will be applied and then the migrate tool will exit with a message describing the error.

Similar to this:

$ migrate -path=./migrations -database=$EXAMPLE_DSN up

1/u create_foo_table (36.6328ms)

2/u create_bar_table (71.835442ms)

error: migration failed: syntax error at end of input in line 0: CREATE TABLE (details: pq: syntax error at end of input)

If the migration file which failed contained multiple SQL statements, then it’s possible that

the migration file was partially applied before the error was encountered. In turn, this

means that the database is in an unknown state as far as the migrate tool is concerned.

Accordingly, the version field in the schema_migrations field will contain the number for

the failed migration and the dirty field will be set to true. At this point, if you run another

migration (even a ‘down’ migration) you will an error message similar to this:

Dirty database version {X}. Fix and force version.

https://github.com/golang-migrate/migrate/issues/193

What you need to do is investigate the original error and figure out if the migration file

which failed was partially applied. If it was, then you need to manually roll-back the

partially applied migration.

Once that’s done, then you must also ‘force’ the version number in the schema_migrations

table to the correct value. For example, to force the database version number to 1 you

should use the force command like so:

$ migrate -path=./migrations -database=$EXAMPLE_DSN force 1

Once you force the version, the database is considered ‘clean’ and you should be able to run

migrations again without any problem.

Remote migration files

The migrate tool also supports reading migration files from remote sources including

Amazon S3 and GitHub repositories. For example:

$ migrate -source="s3://<bucket>/<path>" -database=$EXAMPLE_DSN up

$ migrate -source="github://owner/repo/path#ref" -database=$EXAMPLE_DSN up

$ migrate -source="github://user:personal-access-token@owner/repo/path#ref" -database=$EXAMPLE_DSN up

More information about this functionality and a full list of the supported remote resources

can be found here.

Running migrations on application startup

If you want, it is also possible to use the golang-migrate/migrate Go package (not the

command-line tool) to automatically execute your database migrations on application start

up.

We won’t be using this approach in the book, so if you’re following along please don’t

change your code. But roughly, the pattern looks like this:

https://github.com/golang-migrate/migrate#migration-sources
https://github.com/golang-migrate/migrate

package main

import (

 "context"

 "database/sql"

 "flag"

 "fmt"

 "log"

 "net/http"

 "os"

 "time"

 "github.com/golang-migrate/migrate/v4" // New import

 "github.com/golang-migrate/migrate/v4/database/postgres" // New import

 _ "github.com/golang-migrate/migrate/v4/source/file" // New import

 _ "github.com/lib/pq"

)

func main() {

 ...

 db, err := openDB(cfg)

 if err != nil {

 logger.Fatal(err)

 }

 defer db.Close()

 logger.Printf("database connection pool established")

 migrationDriver, err := postgres.WithInstance(db, &postgres.Config{})

 if err != nil {

 logger.PrintFatal(err, nil)

 }

 migrator, err := migrate.NewWithDatabaseInstance("file:///path/to/your/migrations", "postgres", migrationDriver)

 if err != nil {

 logger.PrintFatal(err, nil)

 }

 err = migrator.Up()

 if err != nil && err != migrate.ErrNoChange {

 logger.PrintFatal(err, nil)

 }

 logger.Printf("database migrations applied")

 ...

}

Although this works — and it might initially seem appealing — tightly coupling the execution

of migrations with your application source code can potentially be limiting and problematic

in the longer term.

The article decoupling database migrations from server startup provides a good discussion

on this, and I recommend reading it if this is a topic that you’re interested in. It’s Python-

focused, but don’t let that put you off — the same principles apply in Go applications too.

https://pythonspeed.com/articles/schema-migrations-server-startup/

Chapter 7.

CRUD Operations

In this next section of the book we’re going to focus on building up the functionality for

creating, reading, updating and deleting movies in our system.

We’ll make quite rapid progress over the next few chapters, and by the end of this section

we’ll have the following API endpoints finished and working in full:

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PUT /v1/movies/:id updateMovieHandler Update the details of a specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

In this section you’ll learn:

How to create a database model which isolates all the logic for executing SQL queries

against your database.

How to implement the four basic CRUD (create, read, update and delete) operations on a

specific resource in the context of an API.

Chapter 7.1.

Setting up the Movie Model

In this chapter we’re going to set up the skeleton code for our movie database model.

If you don’t like the term model then you might want to think of this as your data access or

storage layer instead. But whatever you prefer to call it, the principle is the same — it will

encapsulate all the code for reading and writing movie data to and from our PostgreSQL

database.

Let’s head back to the internal/data/movies.go file and create a MovieModel struct type

and some placeholder methods for performing basic CRUD (create, read, update and

delete) actions against our movies database table.

File: internal/data/movies.go

package data

import (

 "database/sql" // New import

 "time"

 "greenlight.alexedwards.net/internal/validator"

)

...

// Define a MovieModel struct type which wraps a sql.DB connection pool.

type MovieModel struct {

 DB *sql.DB

}

// Add a placeholder method for inserting a new record in the movies table.

func (m MovieModel) Insert(movie *Movie) error {

 return nil

}

// Add a placeholder method for fetching a specific record from the movies table.

func (m MovieModel) Get(id int64) (*Movie, error) {

 return nil, nil

}

// Add a placeholder method for updating a specific record in the movies table.

func (m MovieModel) Update(movie *Movie) error {

 return nil

}

// Add a placeholder method for deleting a specific record from the movies table.

func (m MovieModel) Delete(id int64) error {

 return nil

}

As an additional step, we’re going to wrap our MovieModel in a parent Models struct. Doing

this is totally optional, but it has the benefit of giving you a convenient single ‘container’

which can hold and represent all your database models as your application grows.

If you’re following along, create a new internal/data/models.go file and add the following

code:

$ touch internal/data/models.go

File: internal/data/models.go

package data

import (

 "database/sql"

 "errors"

)

// Define a custom ErrRecordNotFound error. We'll return this from our Get() method when

// looking up a movie that doesn't exist in our database.

var (

 ErrRecordNotFound = errors.New("record not found")

)

// Create a Models struct which wraps the MovieModel. We'll add other models to this,

// like a UserModel and PermissionModel, as our build progresses.

type Models struct {

 Movies MovieModel

}

// For ease of use, we also add a New() method which returns a Models struct containing

// the initialized MovieModel.

func NewModels(db *sql.DB) Models {

 return Models{

 Movies: MovieModel{DB: db},

 }

}

And now, let’s edit our cmd/api/main.go file so that the Models struct is initialized in our

main() function, and then passed to our handlers as a dependency. Like so:

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "flag"

 "fmt"

 "log"

 "net/http"

 "os"

 "time"

 "greenlight.alexedwards.net/internal/data" // New import

 _ "github.com/lib/pq"

)

...

// Add a models field to hold our new Models struct.

type application struct {

 config config

 logger *log.Logger

 models data.Models

}

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.Parse()

 logger := log.New(os.Stdout, "", log.Ldate|log.Ltime)

 db, err := openDB(cfg)

 if err != nil {

 logger.Fatal(err)

 }

 defer db.Close()

 logger.Printf("database connection pool established")

 // Use the data.NewModels() function to initialize a Models struct, passing in the

 // connection pool as a parameter.

 app := &application{

 config: cfg,

 logger: logger,

 models: data.NewModels(db),

 }

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", cfg.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 logger.Printf("starting %s server on %s", cfg.env, srv.Addr)

 err = srv.ListenAndServe()

 logger.Fatal(err)

}

...

If you want, you can try restarting the application at this point. You should find that the

code compiles and runs successfully.

$ go run ./cmd/api

2021/04/07 21:01:22 database connection pool established

2021/04/07 21:01:22 starting development server on :4000

One of the nice things about this pattern is that the code to execute actions on our movies

table will be very clear and readable from the perspective of our API handlers. For example,

we’ll be able to execute the Insert() method by simply writing:

app.models.Movies.Insert(...)

The general structure is also easy to extend. When we create more database models in the

future, all we have to do is include them in the Models struct and they will automatically be

available to our API handlers.

Additional Information

Mocking models

With a small tweak to this pattern, it’s also possible to support mocking of your database

models for the purpose of unit testing. We already talked about this in detail in Let’s Go, so I

don’t want to rehash the same information and guidance again here. But as a quick

example, you could create a MockMovieModel struct similar to this:

File: internal/data/movies.go

package data

...

type MockMovieModel struct{}

func (m MockMovieModel) Insert(movie *Movie) error {

 // Mock the action...

}

func (m MockMovieModel) Get(id int64) (*Movie, error) {

 // Mock the action...

}

func (m MockMovieModel) Update(movie *Movie) error {

 // Mock the action...

}

func (m MockMovieModel) Delete(id int64) error {

 // Mock the action...

}

And then update the internal/data/models.go file like so:

File: internal/data/models.go

package data

import (

 "database/sql"

 "errors"

)

var (

 ErrRecordNotFound = errors.New("record not found")

)

type Models struct {

 // Set the Movies field to be an interface containing the methods that both the

 // 'real' model and mock model need to support.

 Movies interface {

 Insert(movie *Movie) error

 Get(id int64) (*Movie, error)

 Update(movie *Movie) error

 Delete(id int64) error

 }

}

...

// Create a helper function which returns a Models instance containing the mock models

// only.

func NewMockModels() Models {

 return Models{

 Movies: MockMovieModel{},

 }

}

You can then call NewMockModels() whenever you need it in your unit tests in place of the

‘real’ NewModels() function.

Chapter 7.2.

Creating a New Movie

Let’s begin with the Insert() method of our database model and update this to create a

new record in our movies table. Specifically, we want it to execute the following SQL query:

INSERT INTO movies (title, year, runtime, genres)

VALUES ($1, $2, $3, $4)

RETURNING id, created_at, version

There are few things about this query which warrant a bit of explanation.

It uses $N notation to represent placeholder parameters for the data that we want to

insert in the movies table. As we explained in Let’s Go, every time that you pass untrusted

input data from a client to a SQL database it’s important to use placeholder parameters

to help prevent SQL injection attacks, unless you have a very specific reason for not

using them.

We’re only inserting values for title , year, runtime and genres. The remaining columns

in the movies table will be filled with system-generated values at the moment of

insertion — the id will be an auto-incrementing integer, and the created_at and

version values will default to the current time and 1 respectively.

At the end of the query we have a RETURNING clause. This is a PostgreSQL-specific clause

(it’s not part of the SQL standard) that you can use to return values from any record that

is being manipulated by an INSERT, UPDATE or DELETE statement. In this query we’re

using it to return the system-generated id, created_at and version values.

Executing the SQL query

Throughout this project we’ll stick with using Go’s database/sql package to execute our

database queries, rather than using a third-party ORM or other tool. We talked about how to

use database/sql and its various features, behaviors and gotchas in Let’s Go, so hopefully

this will feel familiar to you. Consider it a short refresher!

Normally, you would use Go’s Exec() method to execute an INSERT statement against a

database table. But because our SQL query is returning a single row of data (thanks to the

RETURNING clause), we’ll need to use the QueryRow() method here instead.

https://www.postgresql.org/docs/current/dml-returning.html
https://golang.org/pkg/database/sql/
https://github.com/avelino/awesome-go#orm
https://github.com/avelino/awesome-go#database
https://golang.org/pkg/database/sql/#DB.Exec
https://golang.org/pkg/database/sql/#DB.QueryRow

Head back to your internal/data/movies.go file and update it like so:

File: internal/data/movies.go

package data

import (

 "database/sql"

 "time"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/lib/pq" // New import

)

...

// The Insert() method accepts a pointer to a movie struct, which should contain the

// data for the new record.

func (m MovieModel) Insert(movie *Movie) error {

 // Define the SQL query for inserting a new record in the movies table and returning

 // the system-generated data.

 query := `

 INSERT INTO movies (title, year, runtime, genres)

 VALUES ($1, $2, $3, $4)

 RETURNING id, created_at, version`

 // Create an args slice containing the values for the placeholder parameters from

 // the movie struct. Declaring this slice immediately next to our SQL query helps to

 // make it nice and clear *what values are being used where* in the query.

 args := []interface{}{movie.Title, movie.Year, movie.Runtime, pq.Array(movie.Genres)}

 // Use the QueryRow() method to execute the SQL query on our connection pool,

 // passing in the args slice as a variadic parameter and scanning the system-

 // generated id, created_at and version values into the movie struct.

 return m.DB.QueryRow(query, args...).Scan(&movie.ID, &movie.CreatedAt, &movie.Version)

}

...

That code is nice and succinct, but there are a few important things to mention.

Because the Insert() method signature takes a *Movie pointer as the parameter, when we

call Scan() to read in the system-generated data we’re updating the values at the location

the parameter points to. Essentially, our Insert() method mutates the Movie struct that we

pass to it and adds the system-generated values to it.

The next thing to talk about is the placeholder parameter inputs, which we declare in an

args slice like this:

args := []interface{}{movie.Title, movie.Year, movie.Runtime, pq.Array(movie.Genres)}

Storing the inputs in a slice isn’t strictly necessary, but as mentioned in the code comments

above it’s a nice pattern that can help the clarity of your code. Personally, I usually do this

for SQL queries with more than three placeholder parameters.

Also, notice the final value in the slice? In order to store our movie.Genres value (which is a

[]string slice) in the database, we need to pass it through the pq.Array() adapter function

before executing the SQL query.

Behind the scenes, the pq.Array() adapter takes our []string slice and converts it to a

pq.StringArray type. In turn, the pq.StringArray type implements the driver.Valuer and

sql.Scanner interfaces necessary to translate our native []string slice to and from a value

that our PostgreSQL database can understand and store in a text[] array column.

Hint: You can also use the pq.Array() adapter function in the same way with []bool,

[]byte, []int32 , []int64 , []float32 and []float64 slices in your Go code.

Hooking it up to our API handler

Now for the exciting part. Let’s hook up the Insert() method to our createMovieHandler

so that our POST /v1/movies endpoint works in full. Like so:

https://pkg.go.dev/github.com/lib/pq?tab=doc#Array
https://pkg.go.dev/github.com/lib/pq#StringArray
https://pkg.go.dev/database/sql/driver?tab=doc#Valuer
https://pkg.go.dev/database/sql?tab=doc#Scanner

File: cmd/api/movies.go

package main

...

func (app *application) createMovieHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime data.Runtime `json:"runtime"`

 Genres []string `json:"genres"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Note that the movie variable contains a *pointer* to a Movie struct.

 movie := &data.Movie{

 Title: input.Title,

 Year: input.Year,

 Runtime: input.Runtime,

 Genres: input.Genres,

 }

 v := validator.New()

 if data.ValidateMovie(v, movie); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Call the Insert() method on our movies model, passing in a pointer to the

 // validated movie struct. This will create a record in the database and update the

 // movie struct with the system-generated information.

 err = app.models.Movies.Insert(movie)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // When sending a HTTP response, we want to include a Location header to let the

 // client know which URL they can find the newly-created resource at. We make an

 // empty http.Header map and then use the Set() method to add a new Location header,

 // interpolating the system-generated ID for our new movie in the URL.

 headers := make(http.Header)

 headers.Set("Location", fmt.Sprintf("/v1/movies/%d", movie.ID))

 // Write a JSON response with a 201 Created status code, the movie data in the

 // response body, and the Location header.

 err = app.writeJSON(w, http.StatusCreated, envelope{"movie": movie}, headers)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

...

OK, let’s try this out!

Restart the API, then open up a second terminal window and make the following request to

the POST /v1/movies endpoint:

$ BODY='{"title":"Moana","year":2016,"runtime":"107 mins", "genres":["animation","adventure"]}'

$ curl -i -d "$BODY" localhost:4000/v1/movies

HTTP/1.1 201 Created

Content-Type: application/json

Location: /v1/movies/1

Date: Wed, 07 Apr 2021 19:21:41 GMT

Content-Length: 156

{

 "movie": {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 }

}

That’s looking perfect. We can see that the JSON response contains all the information for

the new movie, including the system-generated ID and version numbers. And the response

also includes the Location: /v1/movies/1 header, pointing to the URL which will later

represent the movie in our system.

Creating additional records

While we’re at it, let’s create a few more records in the system to help us demonstrate

different functionality as our build progresses.

If you’re coding-along, please run the following commands to create three more movie

records in the database:

$ BODY='{"title":"Black Panther","year":2018,"runtime":"134 mins","genres":["action","adventure"]}'

$ curl -d "$BODY" localhost:4000/v1/movies

{

 "movie": {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "action",

 "adventure"

],

 "version": 1

 }

}

$ BODY='{"title":"Deadpool","year":2016, "runtime":"108 mins","genres":["action","comedy"]}'

$ curl -d "$BODY" localhost:4000/v1/movies

{

 "movie": {

 "id": 3,

 "title": "Deadpool",

 "year": 2016,

 "runtime": "108 mins",

 "genres": [

 "action",

 "comedy"

],

 "version": 1

 }

}

$ BODY='{"title":"The Breakfast Club","year":1986, "runtime":"96 mins","genres":["drama"]}'

$ curl -d "$BODY" localhost:4000/v1/movies

{

 "movie": {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1986,

 "runtime": "96 mins",

 "genres": [

 "drama"

],

 "version": 1

 }

}

At this point you might also want to take a look in PostgreSQL to confirm that the records

have been created properly. You should see that the contents of the movies table now looks

similar to this (including the appropriate movie genres in an array).

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT * FROM movies;

 id | created_at | title | year | runtime | genres | version

----+------------------------+--------------------+------+---------+-----------------------+---------

 1 | 2021-04-07 21:21:41+02 | Moana | 2016 | 107 | {animation,adventure} | 1

 2 | 2021-04-07 21:28:28+02 | Black Panther | 2018 | 134 | {action,adventure} | 1

 3 | 2021-04-07 21:28:36+02 | Deadpool | 2016 | 108 | {action,comedy} | 1

 4 | 2021-04-07 21:28:44+02 | The Breakfast Club | 1986 | 96 | {drama} | 1

(4 rows)

Additional Information

$N notation

A nice feature of the PostgreSQL placeholder parameter $N notation is that you can use the

same parameter value in multiple places in your SQL statement. For example, it’s perfectly

acceptable to write code like this:

// This SQL statement uses the $1 parameter twice, and the value `123` will be used in

// both locations where $1 appears.

stmt := "UPDATE foo SET bar = $1 + $2 WHERE bar = $1"

err := db.Exec(stmt, 123, 456)

if err != nil {

 ...

}

Executing multiple statements

Occasionally you might find yourself in the position where you want to execute more than

one SQL statement in the same database call, like this:

stmt := `

 UPDATE foo SET bar = true;

 UPDATE foo SET baz = false;`

err := db.Exec(stmt)

if err != nil {

 ...

}

Having multiple statements in the same call is supported by the pq driver, so long as the

statements do not contain any placeholder parameters. If they do contain placeholder

parameters, then you’ll receive the following error message at runtime:

pq: cannot insert multiple commands into a prepared statement

To work around this, you will need to either split out the statements into separate database

calls, or if that’s not possible, you can create a custom function in PostgreSQL which acts as

a wrapper around the multiple SQL statements that you want to run.

https://www.postgresql.org/docs/current/xfunc-sql.html

Chapter 7.3.

Fetching a Movie

Now let’s move on to the code for fetching and displaying the data for a specific movie .

Again, we’ll begin in our database model here, and start by updating the Get() method to

execute the following SQL query:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE id = $1

Because our movies table uses the id column as its primary key, this query will only ever

return exactly one database row (or none at all). So, it’s appropriate for us to execute this

query using Go’s QueryRow() method again.

If you’re following along, open up your internal/data/movies.go file and update it like so:

File: internal/data/movies.go

package data

import (

 "database/sql"

 "errors" // New import

 "time"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/lib/pq"

)

...

func (m MovieModel) Get(id int64) (*Movie, error) {

 // The PostgreSQL bigserial type that we're using for the movie ID starts

 // auto-incrementing at 1 by default, so we know that no movies will have ID values

 // less than that. To avoid making an unnecessary database call, we take a shortcut

 // and return an ErrRecordNotFound error straight away.

 if id < 1 {

 return nil, ErrRecordNotFound

 }

 // Define the SQL query for retrieving the movie data.

 query := `

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE id = $1`

 // Declare a Movie struct to hold the data returned by the query.

 var movie Movie

 // Execute the query using the QueryRow() method, passing in the provided id value

 // as a placeholder parameter, and scan the response data into the fields of the

 // Movie struct. Importantly, notice that we need to convert the scan target for the

 // genres column using the pq.Array() adapter function again.

 err := m.DB.QueryRow(query, id).Scan(

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 // Handle any errors. If there was no matching movie found, Scan() will return

 // a sql.ErrNoRows error. We check for this and return our custom ErrRecordNotFound

 // error instead.

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 // Otherwise, return a pointer to the Movie struct.

 return &movie, nil

}

...

Hopefully the code above should feel clear and familiar — it’s a straight lift of the pattern

that we discussed in detail in Let’s Go.

The only real thing of note is the fact that we need to use the pq.Array() adapter again

when scanning in the genres data from the PostgreSQL text[] array. If we didn’t use this

adapter, we would get the following error at runtime:

sql: Scan error on column index 5, name "genres": unsupported Scan, storing driver.Value type []uint8 into type *[]string

Updating the API handler

OK, the next thing we need to do is update our showMovieHandler so that it calls the Get()

method we just made. The handler should check to see if Get() returns an

ErrRecordNotFound error — and if it does, the client should be sent a 404 Not Found

response. Otherwise, we can go ahead and render the returned Movie struct in a JSON

response.

Like so:

File: cmd/api/movies.go

package main

import (

 "errors" // New import

 "fmt"

 "net/http"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

)

...

func (app *application) showMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 app.notFoundResponse(w, r)

 return

 }

 // Call the Get() method to fetch the data for a specific movie. We also need to

 // use the errors.Is() function to check if it returns a data.ErrRecordNotFound

 // error, in which case we send a 404 Not Found response to the client.

 movie, err := app.models.Movies.Get(id)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 err = app.writeJSON(w, http.StatusOK, envelope{"movie": movie}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Great! That’s all nice and succinct, thanks to the structure and helpers that we’ve already

put in place.

Feel free to give this a try by restarting the API and looking up a movie that you’ve already

created in the database. For example:

$ curl -i localhost:4000/v1/movies/2

HTTP/1.1 200 OK

Content-Type: application/json

Date: Wed, 07 Apr 2021 19:37:12 GMT

Content-Length: 161

{

 "movie": {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "action",

 "adventure"

],

 "version": 1

 }

}

And likewise, you can also try making a request with a movie ID that doesn’t exist in the

database yet (but is otherwise valid). In that scenario you should receive a 404 Not Found

response like so:

$ curl -i localhost:4000/v1/movies/42

HTTP/1.1 404 Not Found

Content-Type: application/json

Date: Wed, 07 Apr 2021 19:37:58 GMT

Content-Length: 58

{

 "error": "the requested resource could not be found"

}

Additional Information

Why not use an unsigned integer for the movie ID?

At the start of the Get() method we have the following code which checks if the movie id

parameter is less than 1:

func (m MovieModel) Get(id int64) (*Movie, error) {

 if id < 1 {

 return nil, ErrRecordNotFound

 }

 ...

}

This might have led you to wonder: if the movie ID is never negative, why aren’t we using an

unsigned uint64 type to store the ID in our Go code, instead of an int64?

There are two reasons for this.

The first reason is because PostgreSQL doesn’t have unsigned integers. It’s generally sensible

to align your Go and database integer types to avoid overflows or other compatibility

problems, so because PostgreSQL doesn’t have unsigned integers, this means that we

should avoid using uint* types in our Go code for any values that we’re reading/writing to

PostgreSQL too.

Instead, it’s best to align the integer types based on the following table:

PostgreSQL type Go type

smallint, smallserial int16 (-32768 to 32767)

integer, serial int32 (-2147483648 to 2147483647)

bigint, bigserial int64 (-9223372036854775808 to 9223372036854775807)

There’s also another, more subtle, reason. Go’s database/sql package doesn’t actually

support any integer values greater than 9223372036854775807 (the maximum value for an

int64). It’s possible that a uint64 value could be greater than this, which would in turn lead

to Go generating a runtime error similar to this:

sql: converting argument $1 type: uint64 values with high bit set are not supported

By sticking with an int64 in our Go code, we eliminate the risk of ever encountering this

error.

https://golang.org/pkg/builtin/#uint64
https://github.com/golang/go/blob/4ce0a7cea6805277c3bfecbaab2170e5c2543cba/src/database/sql/driver/types.go#L270

Chapter 7.4.

Updating a Movie

In this chapter we’ll continue building up our application and add a brand-new endpoint

which allows clients to update the data for a specific movie .

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PUT /v1/movies/:id updateMovieHandler Update the details of a specific movie

More precisely, we’ll set up the endpoint so that a client can edit the title , year, runtime

and genres values for a movie. In our project the id and created_at values should never

change once they’ve been created, and the version value isn’t something that the client

should control, so we won’t allow those fields to be edited.

For now, we’ll configure this endpoint so that it performs a complete replacement of the

values for a movie. This means that the client will need to provide values for all editable

fields in their JSON request body… even if they only want to change one of them.

For example, if a client wanted to add the genre sci-fi to the movie Black Panther in our

database, they would need to send a JSON request body which looks like this:

{

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "action",

 "adventure",

 "sci-fi"

]

}

Executing the SQL query

Let’s start in our database model again, and edit the Update() method to execute the

following SQL query:

UPDATE movies

SET title = $1, year = $2, runtime = $3, genres = $4, version = version + 1

WHERE id = $5

RETURNING version

Notice here that we’re incrementing the version value as part of the query? And then at the

end we’re using the RETURNING clause to return this new, incremented, version value.

Like before, this query returns a single row of data so we’ll also need to use Go’s QueryRow()

method to execute it. If you’re following along, head back to your

internal/data/movies.go file and fill in the Update() method like so:

File: internal/data/movies.go

package data

...

func (m MovieModel) Update(movie *Movie) error {

 // Declare the SQL query for updating the record and returning the new version

 // number.

 query := `

 UPDATE movies

 SET title = $1, year = $2, runtime = $3, genres = $4, version = version + 1

 WHERE id = $5

 RETURNING version`

 // Create an args slice containing the values for the placeholder parameters.

 args := []interface{}{

 movie.Title,

 movie.Year,

 movie.Runtime,

 pq.Array(movie.Genres),

 movie.ID,

 }

 // Use the QueryRow() method to execute the query, passing in the args slice as a

 // variadic parameter and scanning the new version value into the movie struct.

 return m.DB.QueryRow(query, args...).Scan(&movie.Version)

}

...

It’s important to emphasize that — just like our Insert() method — the Update() method

takes a pointer to a Movie struct as the input parameter and mutates it in-place again — this

time updating it with the new version number only.

Creating the API handler

Now let’s head back to our cmd/api/movies.go file and update it to include the brand-new

updateMovieHandler method.

Method URL Pattern Handler Action

PUT /v1/movies/:id updateMovieHandler Update the details of a specific movie

The nice thing about this handler is that we’ve already laid all the groundwork for it — our

work here is mainly just a case of linking up the code and helper functions that we’ve

already written to handle the request.

Specifically, we’ll need to:

1. Extract the movie ID from the URL using the app.readIDParam() helper.

2. Fetch the corresponding movie record from the database using the Get() method that

we made in the previous chapter.

3. Read the JSON request body containing the updated movie data into an input struct.

4. Copy the data across from the input struct to the movie record.

5. Check that the updated movie record is valid using the data.ValidateMovie() function.

6. Call the Update() method to store the updated movie record in our database.

7. Write the updated movie data in a JSON response using the app.writeJSON() helper.

So let’s go ahead and do exactly that:

File: cmd/api/movies.go

package main

...

func (app *application) updateMovieHandler(w http.ResponseWriter, r *http.Request) {

 // Extract the movie ID from the URL.

 id, err := app.readIDParam(r)

 if err != nil {

 app.notFoundResponse(w, r)

 return

 }

 // Fetch the existing movie record from the database, sending a 404 Not Found

 // response to the client if we couldn't find a matching record.

 movie, err := app.models.Movies.Get(id)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 }

 // Declare an input struct to hold the expected data from the client.

 var input struct {

 Title string `json:"title"`

 Year int32 `json:"year"`

 Runtime data.Runtime `json:"runtime"`

 Genres []string `json:"genres"`

 }

 // Read the JSON request body data into the input struct.

 err = app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Copy the values from the request body to the appropriate fields of the movie

 // record.

 movie.Title = input.Title

 movie.Year = input.Year

 movie.Runtime = input.Runtime

 movie.Genres = input.Genres

 // Validate the updated movie record, sending the client a 422 Unprocessable Entity

 // response if any checks fail.

 v := validator.New()

 if data.ValidateMovie(v, movie); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Pass the updated movie record to our new Update() method.

 err = app.models.Movies.Update(movie)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Write the updated movie record in a JSON response.

 err = app.writeJSON(w, http.StatusOK, envelope{"movie": movie}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Lastly, to finish this off, we also need to update our application routes to include the new

endpoint. Like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() *httprouter.Router {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 // Add the route for the PUT /v1/movies/:id endpoint.

 router.HandlerFunc(http.MethodPut, "/v1/movies/:id", app.updateMovieHandler)

 return router

}

Using the new endpoint

And with that, we’re now ready to try this out!

To demonstrate, let’s continue with the example we gave at the start of this chapter and

update our record for Black Panther to include the genre sci-fi. As a reminder, the record

currently looks like this:

$ curl localhost:4000/v1/movies/2

{

 "movie": {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "action",

 "adventure"

],

 "version": 1

 }

}

To make the update to the genres field we can execute the following API call:

$ BODY='{"title":"Black Panther","year":2018,"runtime":"134 mins","genres":["sci-fi","action","adventure"]}'

$ curl -X PUT -d "$BODY" localhost:4000/v1/movies/2

{

 "movie": {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

}

That’s looking great — we can see from the response that the movie genres have been

updated to include "sci-fi" , and the version number has been incremented to 2 like we

would expect.

You should also be able to verify that the change has been persisted by making a

GET /v1/movies/2 request again, like so:

$ curl localhost:4000/v1/movies/2

{

 "movie": {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

}

Chapter 7.5.

Deleting a Movie

In this chapter we’ll add our final CRUD endpoint so that a client can delete a specific movie

from our system.

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PUT /v1/movies/:id updateMovieHandler Update the details of a specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

Compared to the other endpoints in our API, the behavior that we want to implement here

is quite straightforward.

If a movie with the id provided in the URL exists in the database, we want to delete the

corresponding record and return a success message to the client.

If the movie id doesn’t exist, we want to return a 404 Not Found response to the client.

The SQL query to delete the record in our database is also simple:

DELETE FROM books

WHERE id = $1

In this case the SQL query returns no rows, so it’s appropriate for us to use Go’s Exec()

method to execute it.

One of the nice things about Exec() is that it returns a sql.Result object, which contains

information about the number of rows that the query affected. In our scenario here, this is

really useful information.

If the number of rows affected is 1 , then we know that the movie existed in the table and

has now been deleted… so we can send the client a success message.

Conversely, if the number of rows affected is 0 we know that no movie with that id

existed at the point we tried to delete it, and we can send the client a 404 Not Found

https://golang.org/pkg/database/sql/#DB.Exec
https://golang.org/pkg/database/sql/#Result

response.

Adding the new endpoint

Let’s go ahead and update the Delete() method in our database model. Essentially, we

want this to execute the SQL query above and return an ErrRecordNotFound error if the

number of rows affected is 0 . Like so:

File: internal/data/movies.go

package data

...

func (m MovieModel) Delete(id int64) error {

 // Return an ErrRecordNotFound error if the movie ID is less than 1.

 if id < 1 {

 return ErrRecordNotFound

 }

 // Construct the SQL query to delete the record.

 query := `

 DELETE FROM movies

 WHERE id = $1`

 // Execute the SQL query using the Exec() method, passing in the id variable as

 // the value for the placeholder parameter. The Exec() method returns a sql.Result

 // object.

 result, err := m.DB.Exec(query, id)

 if err != nil {

 return err

 }

 // Call the RowsAffected() method on the sql.Result object to get the number of rows

 // affected by the query.

 rowsAffected, err := result.RowsAffected()

 if err != nil {

 return err

 }

 // If no rows were affected, we know that the movies table didn't contain a record

 // with the provided ID at the moment we tried to delete it. In that case we

 // return an ErrRecordNotFound error.

 if rowsAffected == 0 {

 return ErrRecordNotFound

 }

 return nil

}

Once that’s done, let’s head to our cmd/api/movies.go file and add a new

deleteMovieHandler method. In this we need to read the movie ID from the request URL,

call the Delete() method that we just made, and — based on the return value from

Delete() — send the appropriate response to the client.

File: cmd/api/movies.go

package main

...

func (app *application) deleteMovieHandler(w http.ResponseWriter, r *http.Request) {

 // Extract the movie ID from the URL.

 id, err := app.readIDParam(r)

 if err != nil {

 app.notFoundResponse(w, r)

 return

 }

 // Delete the movie from the database, sending a 404 Not Found response to the

 // client if there isn't a matching record.

 err = app.models.Movies.Delete(id)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Return a 200 OK status code along with a success message.

 err = app.writeJSON(w, http.StatusOK, envelope{"message": "movie successfully deleted"}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Note: You may prefer to send an empty response body and a 204 No Content status

code here, rather than a "movie successfully deleted" message. It really depends

on who your clients are — if they are humans, then sending a message similar to the

above is a nice UX touch; if they are machines, then a 204 No Content response is

probably sufficient.

Finally, we need to hook up the new route in our cmd/api/routes.go file:

File: cmd/api/routes.go

package main

...

func (app *application) routes() *httprouter.Router {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 // Add the route for the DELETE /v1/movies/:id endpoint.

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 return router

}

OK, let’s restart the API and try this out by deleting Deadpool from our movie database (this

should have an ID of 3 if you’ve been following along). The delete operation should work

without any problems, and you should receive the confirmation message like so:

$ curl -X DELETE localhost:4000/v1/movies/3

{

 "message": "movie successfully deleted"

}

If you repeat the same request to delete the already-deleted movie, you should now get a

404 Not Found response and error message. Similar to this:

$ curl -X DELETE localhost:4000/v1/movies/3

{

 "error": "the requested resource could not be found"

}

Chapter 8.

Advanced CRUD Operations

In this section of the book we’re going to look at a few more ‘advanced’ patterns that you

might want to use for the CRUD endpoints that your API provides.

You’ll learn:

How to support partial updates to a resource (so that the client only needs to send the

data that they want to change).

How to use optimistic concurrency control to avoid race conditions when two clients try

to update the same resource at the same time.

How to use context timeouts to terminate long-running database queries and prevent

unnecessary resource use.

Chapter 8.1.

Handling Partial Updates

In this chapter we’re going to change the behavior of the updateMovieHandler so that it

supports partial updates of the movie records. Conceptually this is a little more

complicated than making a complete replacement, which is why we laid the groundwork

with that approach first.

As an example, let’s say that we notice that the release year for The Breakfast Club is wrong

in our database (it should actually be 1985, not 1986). It would be nice if we could send a

JSON request containing only the change that needs to be applied, instead of all the movie

data, like so:

{"year": 1985}

Let’s quickly look at what happens if we try to send this request right now:

$ curl -X PUT -d '{"year": 1985}' localhost:4000/v1/movies/4

{

 "error": {

 "genres": "must be provided",

 "runtime": "must be provided",

 "title": "must be provided"

 }

}

As we mentioned earlier in the book, when decoding the request body any fields in our

input struct which don’t have a corresponding JSON key/value pair will retain their zero-

value. We happen to check for these zero-values during validation and return the error

messages that you see above.

In the context of partial update this causes a problem. How do we tell the difference

between:

A client providing a key/value pair which has a zero-value value — like {"title": ""} —

in which case we want to return a validation error.

A client not providing a key/value pair in their JSON at all — in which case we want to

‘skip’ updating the field but not send a validation error.

To help answer this, let’s quickly remind ourselves of what the zero-values are for different

Go types.

https://golang.org/ref/spec#The_zero_value

Go type Zero-value

int*, uint*, float*, complex 0

string ""

bool false

func, array, slice, map, chan and pointers nil

The key thing to notice here is that pointers have the zero-value nil .

So — in theory — we could change the fields in our input struct to be pointers. Then to see

if a client has provided a particular key/value pair in the JSON, we can simply check whether

the corresponding field in the input struct equals nil or not.

// Use pointers for the Title, Year and Runtime fields.

var input struct {

 Title *string `json:"title"` // This will be nil if there is no corresponding key in the JSON.

 Year *int32 `json:"year"` // Likewise...

 Runtime *data.Runtime `json:"runtime"` // Likewise...

 Genres []string `json:"genres"` // We don't need to change this because slices already have the zero-value nil.

}

Performing the partial update

Let’s put this into practice, and edit our updateMovieHandler method so it supports partial

updates as follows:

File: cmd/api/movies.go

package main

...

func (app *application) updateMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 app.notFoundResponse(w, r)

 return

 }

 // Retrieve the movie record as normal.

 movie, err := app.models.Movies.Get(id)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 return

 }

 // Use pointers for the Title, Year and Runtime fields.

 var input struct {

 Title *string `json:"title"`

 Year *int32 `json:"year"`

 Runtime *data.Runtime `json:"runtime"`

 Genres []string `json:"genres"`

 }

 // Decode the JSON as normal.

 err = app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // If the input.Title value is nil then we know that no corresponding "title" key/

 // value pair was provided in the JSON request body. So we move on and leave the

 // movie record unchanged. Otherwise, we update the movie record with the new title

 // value. Importantly, because input.Title is a now a pointer to a string, we need

 // to dereference the pointer using the * operator to get the underlying value

 // before assigning it to our movie record.

 if input.Title != nil {

 movie.Title = *input.Title

 }

 // We also do the same for the other fields in the input struct.

 if input.Year != nil {

 movie.Year = *input.Year

 }

 if input.Runtime != nil {

 movie.Runtime = *input.Runtime

 }

 if input.Genres != nil {

 movie.Genres = input.Genres // Note that we don't need to dereference a slice.

 }

 v := validator.New()

 if data.ValidateMovie(v, movie); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 err = app.models.Movies.Update(movie)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 err = app.writeJSON(w, http.StatusOK, envelope{"movie": movie}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

To summarize this: we’ve changed our input struct so that all the fields now have the zero-

value nil . After parsing the JSON request, we then go through the input struct fields and

only update the movie record if the new value is not nil .

In addition to this, for API endpoints which perform partial updates on a resource, it’s

appropriate to the use the HTTP method PATCH rather than PUT (which is intended for

replacing a resource in full).

So, before we try out our new code, let’s quickly update our cmd/api/routes.go file so that

our updateMovieHandler is only used for PATCH requests.

File: cmd/api/routes.go

package main

...

func (app *application) routes() *httprouter.Router {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 // Require a PATCH request, rather than PUT.

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 return router

}

Demonstration

With that all set up, let’s check that this partial update functionality works by correcting the

release year for The Breakfast Club to 1985. Like so:

$ curl -X PATCH -d '{"year": 1985}' localhost:4000/v1/movies/4

{

 "movie": {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "96 mins",

 "genres": [

 "drama"

],

 "version": 2

 }

}

Again, that’s looking good. We can see that the year value has been correctly updated, and

the version number has been incremented, but none of the other data fields have been

changed.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/PATCH

Let’s also quickly try the same request but including an empty title value. In this case the

update will be blocked and you should receive a validation error, like so:

$ curl -X PATCH -d '{"year": 1985, "title": ""}' localhost:4000/v1/movies/4

{

 "error": {

 "title": "must be provided"

 }

}

Additional Information

Null values in JSON

One special-case to be aware of is when the client explicitly supplies a field in the JSON

request with the value null. In this case, our handler will ignore the field and treat it like it

hasn’t been supplied.

For example, the following request would result in no changes to the movie record (apart

from the version number being incremented):

$ curl -X PATCH -d '{"title": null, "year": null}' localhost:4000/v1/movies/4

{

 "movie": {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "96 mins",

 "genres": [

 "drama"

],

 "version": 3

 }

}

In an ideal world this type of request would return some kind of validation error. But —

unless you write your own custom JSON parser — there is no way to determine the

difference between the client not supplying a key/value pair in the JSON, or supplying it

with the value null.

In most cases, it will probably suffice to explain this special-case behavior in client

documentation for the endpoint and say something like “JSON items with null values will

be ignored and will remain unchanged”.

Chapter 8.2.

Optimistic Concurrency Control

The eagle-eyed of you might have noticed a small problem in our updateMovieHandler —

there is a race condition if two clients try to update the same movie record at exactly the

same time.

To illustrate this, let’s pretend that we have two clients using our API: Alice and Bob. Alice

wants to correct the runtime value for The Breakfast Club to 97 mins, and Bob wants to add

the genre ‘comedy’ to the same movie.

Now imagine that Alice and Bob send these two update requests at exactly the same time.

As we explained in Let’s Go, Go’s http.Serverhandles each HTTP request in its own

goroutine, so when this happens the code in our updateMovieHandler will be running

concurrently in two different goroutines.

Let’s step through what could potentially happen in this scenario:

1. Alice’s goroutine calls app.models.Movies.Get() to retrieve a copy of the movie record

(which has version number N).

2. Bob’s goroutine calls app.models.Movies.Get() to retrieve a copy of the movie record

(which still has version N).

3. Alice’s goroutine changes the runtime to 97 minutes in its copy of the movie record.

4. Bob’s goroutine updates the genres to include ‘comedy’ in its copy of the movie record.

5. Alice’s goroutine calls app.models.Movies.Update() with its copy of the movie record.

The movie record is written to the database and the version number is incremented to

N+1 .

6. Bob’s goroutine calls app.models.Movies.Update() with its copy of the movie record.

The movie record is written to the database and the version number is incremented to

N+2 .

Despite making two separate updates, only Bob’s update will be reflected in the database at

the end because the two goroutines were racing each other to make the change. Alice’s

update to the movie runtime will be lost when Bob’s update overwrites it with the old

runtime value. And this happens silently — there’s nothing to inform either Alice or Bob of

the problem.

https://stackoverflow.com/questions/34510/what-is-a-race-condition

Note: This specific type of race condition is known as a data race. Data races can occur

when two or more goroutines try to use a piece of shared data (in this example the

movie record) at the same time, but the result of their operations is dependent on the

exact order that the scheduler executes their instructions.

Preventing the data race

Now we understand that the data race exists and why it’s happening, how can we prevent it?

There are a couple of options, but the simplest and cleanest approach in this case is to use a

form of optimistic locking based on the version number in our movie record.

The fix works like this:

1. Alice and Bob’s goroutines both call app.models.Movies.Get() to retrieve a copy of the

movie record. Both of these records have the version number N .

2. Alice and Bob’s goroutines make their respective changes to the movie record.

3. Alice and Bob’s goroutines call app.models.Movies.Update() with their copies of the

movie record. But the update is only executed if the version number in the database is

still N . If it has changed, then we don’t execute the update and send the client an error

message instead.

This means that the first update request that reaches our database will succeed, and

whoever is making the second update will receive an error message instead of having their

change applied.

To make this work, we’ll need to change the SQL statement for updating a movie so that it

looks like this:

UPDATE movies

SET title = $1, year = $2, runtime = $3, genres = $4, version = version + 1

WHERE id = $5 AND version = $6

RETURNING version

Notice that in the WHERE clause we’re now looking for a record with a specific ID and a

specific version number?

If no matching record can be found, this query will result in a sql.ErrNoRows error and we

know that the version number has been changed (or the record has been deleted

completely). Either way, it’s a form of edit conflict and we can use this as a trigger to send

https://stackoverflow.com/questions/129329/optimistic-vs-pessimistic-locking/129397#129397

the client an appropriate error response.

Implementing optimistic locking

OK, that’s enough theory… let’s put this into practice!

We’ll start by creating a custom ErrEditConflict error that we can return from our

database models in the event of a conflict. We’ll use this later in the book when working

with user records too, so it makes sense to define it in the internal/data/models.go file

like so:

File: internal/data/models.go

package data

import (

 "database/sql"

 "errors"

)

var (

 ErrRecordNotFound = errors.New("record not found")

 ErrEditConflict = errors.New("edit conflict")

)

...

Next let’s update our database model’s Update() method to execute the new SQL query

and manage the situation where a matching record couldn’t be found.

File: internal/data/movies.go

package data

...

func (m MovieModel) Update(movie *Movie) error {

 // Add the 'AND version = $6' clause to the SQL query.

 query := `

 UPDATE movies

 SET title = $1, year = $2, runtime = $3, genres = $4, version = version + 1

 WHERE id = $5 AND version = $6

 RETURNING version`

 args := []interface{}{

 movie.Title,

 movie.Year,

 movie.Runtime,

 pq.Array(movie.Genres),

 movie.ID,

 movie.Version, // Add the expected movie version.

 }

 // Execute the SQL query. If no matching row could be found, we know the movie

 // version has changed (or the record has been deleted) and we return our custom

 // ErrEditConflict error.

 err := m.DB.QueryRow(query, args...).Scan(&movie.Version)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return ErrEditConflict

 default:

 return err

 }

 }

 return nil

}

...

Next let’s head to our cmd/api/errors.go file and create a new editConflictResponse()

helper. We want this to send a 409 Conflict response, along with a plain-English error

message that explains the problem to the client.

File: cmd/api/errors.go

package main

...

func (app *application) editConflictResponse(w http.ResponseWriter, r *http.Request) {

 message := "unable to update the record due to an edit conflict, please try again"

 app.errorResponse(w, r, http.StatusConflict, message)

}

And then as the final step, we need to change our updateMovieHandler so that it checks for

an ErrEditConflict error and calls the editConflictResponse() helper if necessary. Like

so:

File: cmd/api/movies.go

package main

...

func (app *application) updateMovieHandler(w http.ResponseWriter, r *http.Request) {

 ...

 // Intercept any ErrEditConflict error and call the new editConflictResponse()

 // helper.

 err = app.models.Movies.Update(movie)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrEditConflict):

 app.editConflictResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 err = app.writeJSON(w, http.StatusOK, envelope{"movie": movie}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

At this point, our updateMovieHandler should now be safe from the race condition that

we’ve been talking about. If two goroutines are executing the code at the same time, the

first update will succeed, and the second will fail because the version number in the

database no longer matches the expected value.

Let’s try this out by making a pair of requests to our endpoint as concurrent background

tasks. Assuming that your terminal executes the requests closely-enough together, you

should find that one succeeds and the other fails with a 409 Conflict status code.

$ curl -i -X PATCH -d '{"runtime": "97 mins"}' "localhost:4000/v1/movies/4" & \

curl -i -X PATCH -d '{"genres": ["comedy","drama"]}' "localhost:4000/v1/movies/4" &

[1] 75637

[2] 75638

$ HTTP/1.1 200 OK

Content-Type: application/json

Date: Thu, 08 Apr 2021 10:17:34 GMT

Content-Length: 150

{

 "movie": {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "97 mins",

 "genres": [

 "comedy"

],

 "version": 10

 }

}

HTTP/1.1 409 Conflict

Content-Type: application/json

Date: Thu, 08 Apr 2021 10:17:34 GMT

Content-Length: 86

{

 "error": "unable to update the record due to an edit conflict, please try again"

}

That’s much better. We can see that the second update hasn’t been applied, the data race

has been avoided, and the client has received a clear error response.

You can press Ctrl+C in your terminal to get back to your regular terminal prompt:

^C

[1]- Done curl -X PATCH -d '{"runtime": "97 mins"}' "localhost:4000/v1/movies/4"

[2]+ Done curl -X PATCH -d '{"genres": ["comedy","drama"]}' "localhost:4000/v1/movies/4"

Bringing this to a close, the race condition that we’ve been demonstrating in this chapter is

fairly innocuous. But in other applications this exact class of race condition can have much

more serious consequences — such as when updating the stock level for a product in an

online store, or updating the balance of an account.

As I mentioned briefly in Let’s Go, it’s good to get into the habit of thinking about race

conditions whenever you write code, and structure your applications to either manage

them or avoid them completely — no matter how innocuous they might seem at the time of

development.

Additional Information

Round-trip locking

One of the nice things about the optimistic locking pattern that we’ve used here is that you

can extend it so the client passes the version number that they expect in an If-Not-Match or

X-Expected-Version header.

In certain applications, this can be useful to help the client ensure they are not sending their

update request based on outdated information.

Very roughly, you could implement this by adding a check to your updateMovieHandler like

so:

func (app *application) updateMovieHandler(w http.ResponseWriter, r *http.Request) {

 id, err := app.readIDParam(r)

 if err != nil {

 app.notFoundResponse(w, r)

 return

 }

 movie, err := app.models.Movies.Get(id)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // If the request contains a X-Expected-Version header, verify that the movie

 // version in the database matches the expected version specified in the header.

 if r.Header.Get("X-Expected-Version") != "" {

 if strconv.FormatInt(int64(movie.Version), 32) != r.Header.Get("X-Expected-Version") {

 app.editConflictResponse(w, r)

 return

 }

 }

 ...

}

Locking on other fields or types

Using an incrementing integer version number as the basis for an optimistic lock is safe

and computationally cheap. I’d recommend using this approach unless you have a specific

reason not to.

As an alternative, you could use a last_updated timestamp as the basis for the lock. But this

is less safe — there’s the theoretical possibility that two clients could update a record at

exactly the same time, and using a timestamp also introduces the risk of further problems if

your server’s clock is wrong or becomes wrong over time.

If it’s important to you that the version identifier isn’t guessable, then a good option is to

use a high-entropy random string such as a UUID in the version field. PostgreSQL has a

UUID type and the uuid-ossp extension which you could use for this purpose like so:

UPDATE movies

SET title = $1, year = $2, runtime = $3, genres = $4, version = uuid_generate_v4()

WHERE id = $5 AND version = $6

RETURNING version

https://www.postgresql.org/docs/9.1/datatype-uuid.html
https://www.postgresqltutorial.com/postgresql-uuid/

Chapter 8.3.

Managing SQL Query Timeouts

So far in our code we’ve been using Go’s Exec() and QueryRow() methods to run our SQL

queries. But Go also provides context-aware variants of these two methods: ExecContext()

and QueryRowContext() . These variants accept a context.Context instance as the first

parameter which you can leverage to terminate running database queries.

This feature can be useful when you have a SQL query that is taking longer to run than

expected. When this happens, it suggests a problem — either with that particular query or

your database or application more generally — and you probably want to cancel the query

(in order to free up resources), log an error for further investigation, and return a

500 Internal Server Error response to the client.

In this chapter we’ll update our application to do exactly that.

Mimicking a long-running query

To help demonstrate how this all works, let’s start by adapting our database model’s Get()

method so that it mimics a long-running query. Specifically, we’ll update our SQL query to

return a pg_sleep(10) value, which will make PostgreSQL sleep for 10 seconds before

returning its result.

https://golang.org/pkg/database/sql/#DB.ExecContext
https://golang.org/pkg/database/sql/#DB.QueryRowContext
https://golang.org/pkg/context/#Context

File: internal/data/movies.go

package data

...

func (m MovieModel) Get(id int64) (*Movie, error) {

 if id < 1 {

 return nil, ErrRecordNotFound

 }

 // Update the query to return pg_sleep(10) as the first value.

 query := `

 SELECT pg_sleep(10), id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE id = $1`

 var movie Movie

 // Importantly, update the Scan() parameters so that the pg_sleep(10) return value

 // is scanned into a []byte slice.

 err := m.DB.QueryRow(query, id).Scan(

 &[]byte{}, // Add this line.

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 return &movie, nil

}

...

If you restart the application and make a request to the GET /v1/movies/:id endpoint, you

should find that the request hangs for 10 seconds before you finally get a successful

response displaying the movie information. Similar to this:

$ curl -w '\nTime: %{time_total}s \n' localhost:4000/v1/movies/1

{

 "movie": {

 "id": 1,

 "title": "Moana",

 "year": 2015,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 }

}

Time: 10.013534s

Note: In the curl command above we’re using the -w flag to annotate the HTTP

response with the total time taken for the command to complete. For more details

about the timing information available in curl please see this excellent blog post.

Adding a query timeout

Now that we’ve got some code that mimics a long-running query, let’s enforce a timeout so

that the SQL query is automatically canceled if it doesn’t complete within 3 seconds.

To do this we need to:

1. Use the context.WithTimeout() function to create a context.Context instance with a 3-

second timeout deadline.

2. Execute the SQL query using the QueryRowContext() method, passing the

context.Context instance as a parameter.

I’ll demonstrate:

https://blog.josephscott.org/2011/10/14/timing-details-with-curl/
https://golang.org/pkg/context/#WithTimeout

File: internal/data/movies.go

package data

import (

 "context" // New import

 "database/sql"

 "errors"

 "time"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/lib/pq"

)

...

func (m MovieModel) Get(id int64) (*Movie, error) {

 if id < 1 {

 return nil, ErrRecordNotFound

 }

 query := `

 SELECT pg_sleep(10), id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE id = $1`

 var movie Movie

 // Use the context.WithTimeout() function to create a context.Context which carries a

 // 3-second timeout deadline. Note that we're using the empty context.Background()

 // as the 'parent' context.

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 // Importantly, use defer to make sure that we cancel the context before the Get()

 // method returns.

 defer cancel()

 // Use the QueryRowContext() method to execute the query, passing in the context

 // with the deadline as the first argument.

 err := m.DB.QueryRowContext(ctx, query, id).Scan(

 &[]byte{},

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 return &movie, nil

}

...

There are a couple of things in the code above that I’d like to emphasize and explain:

The defer cancel() line is necessary because it ensures that the resources associated

with our context will always be released before the Get() method returns, thereby

preventing a memory leak. Without it, the resources won’t be released until either the 3-

second timeout is hit or the parent context (which in this specific example is

context.Background()) is canceled.

The timeout countdown begins from the moment that the context is created using

context.WithTimeout() . Any time spent executing code between creating the context

and calling QueryRowContext() will count towards the timeout.

OK, let’s try this out.

If you restart the application and make another request to the GET /v1/movies/:id

endpoint, you should now get an error response similar to this after a 3-second delay:

$ curl -w '\nTime: %{time_total}s \n' localhost:4000/v1/movies/1

{

 "error": "the server encountered a problem and could not process your request"

}

Time: 3.025179s

If you go back to the terminal window which is running the application, you should also see

a log line with the error message "pq: canceling statement due to user request" . Like

so:

$ go run ./cmd/api

2021/04/08 14:14:52 database connection pool established

2021/04/08 14:14:52 starting development server on :4000

2021/04/08 14:14:57 pq: canceling statement due to user request

At first the wording of this error message might seem odd… until you learn that the

message “canceling statement due to user request” is coming from PostgreSQL. In that light

it makes sense: our application is the user, and we’re purposefully canceling the query after

3 seconds.

So, this is actually really good, and things are working as we would hope.

After 3 seconds, the context timeout is reached and our pq database driver sends a

cancellation signal to PostgreSQL . PostgreSQL then terminates the running query, the

corresponding resources are freed-up, and it returns the error message that we see above.

The client is then sent a 500 Internal Server Error response, and the error is logged so

†

https://golang.org/pkg/context/#Background

that we know something has gone wrong.

† More precisely, our context (the one with the 3-second timeout) has a Done channel,

and when the timeout is reached the Done channel will be closed. While the SQL query

is running, our database driver pq is also running a background goroutine which

listens on this Done channel. If the channel gets closed, then pq sends a cancellation

signal to PostgreSQL. PostgreSQL terminates the query, and then sends the error

message that we see above as a response to the original pq goroutine. That error

message is then returned to our database model’s Get() method.

Timeouts outside of PostgreSQL

There’s another important thing to point out here: it’s possible that the timeout deadline will

be hit before the PostgreSQL query even starts.

You might remember that earlier in the book we configured our sql.DB connection pool to

allow a maximum of 25 open connections. If all those connections are in-use, then any

additional queries will be ‘queued’ by sql.DB until a connection becomes available. In this

scenario — or any other which causes a delay — it’s possible that the timeout deadline will

be hit before a free database connection even becomes available. If this happens then

QueryRowContext() will return a context.DeadlineExceeded error.

In fact, we can demonstrate this in our application by setting the maximum open

connections to 1 and making two concurrent requests to our endpoint. Go ahead and

restart the API using a -db-max-open-conns=1 flag, like so:

$ go run ./cmd/api -db-max-open-conns=1

2020/12/04 11:50:39 database connection pool established

2020/12/04 11:50:39 starting development server on :4000

Then in another terminal window make two requests to the GET /v1/movies/:id endpoint

at the same time. At the moment that the 3-second timeout is reached, we should have one

running SQL query and the other still ‘queued’ in the sql.DB connection pool. You should

get two error responses which look like this:

https://golang.org/pkg/context/#pkg-variables

$ curl localhost:4000/v1/movies/1 & curl localhost:4000/v1/movies/1 &

[1] 33221

[2] 33222

$ {

 "error": "the server encountered a problem and could not process your request"

}

{

 "error": "the server encountered a problem and could not process your request"

}

When you now head back to your original terminal, you should see two different error

messages:

$ go run ./cmd/api -db-max-open-conns=1

2021/04/08 14:21:36 database connection pool established

2021/04/08 14:21:36 starting development server on :4000

2021/04/08 14:21:50 context deadline exceeded

2021/04/08 14:21:50 pq: canceling statement due to user request

Here the pq: canceling statement due to user request error message relates to the

running SQL query being terminated, whereas the context deadline exceeded message

relates to the queued SQL query being canceled before a free database connection even

became available.

In a similar vein, it’s also possible that the timeout deadline will be hit later on when the

data returned from the query is being processed with Scan(). If this happens, then Scan()

will also return a context.DeadlineExceeded error.

Updating our database model

Let’s quickly update our database model to use a 3-second timeout deadline for all our

operations. While we’re at it, we’ll remove the pg_sleep(10) clause from our Get() method

too.

File: internal/data/movies.go

package data

...

func (m MovieModel) Insert(movie *Movie) error {

 query := `

 INSERT INTO movies (title, year, runtime, genres)

 VALUES ($1, $2, $3, $4)

 RETURNING id, created_at, version`

 args := []interface{}{movie.Title, movie.Year, movie.Runtime, pq.Array(movie.Genres)}

 // Create a context with a 3-second timeout.

 // Create a context with a 3-second timeout.

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Use QueryRowContext() and pass the context as the first argument.

 return m.DB.QueryRowContext(ctx, query, args...).Scan(&movie.ID, &movie.CreatedAt, &movie.Version)

}

func (m MovieModel) Get(id int64) (*Movie, error) {

 if id < 1 {

 return nil, ErrRecordNotFound

 }

 // Remove the pg_sleep(10) clause.

 query := `

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE id = $1`

 var movie Movie

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Remove &[]byte{} from the first Scan() destination.

 err := m.DB.QueryRowContext(ctx, query, id).Scan(

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 return &movie, nil

}

func (m MovieModel) Update(movie *Movie) error {

 query := `

 UPDATE movies

 SET title = $1, year = $2, runtime = $3, genres = $4, version = version + 1

 WHERE id = $5 AND version = $6

 RETURNING version`

 args := []interface{}{

 movie.Title,

 movie.Year,

 movie.Runtime,

 pq.Array(movie.Genres),

 movie.ID,

 movie.Version,

 }

 // Create a context with a 3-second timeout.

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Use QueryRowContext() and pass the context as the first argument.

 // Use QueryRowContext() and pass the context as the first argument.

 err := m.DB.QueryRowContext(ctx, query, args...).Scan(&movie.Version)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return ErrEditConflict

 default:

 return err

 }

 }

 return nil

}

func (m MovieModel) Delete(id int64) error {

 if id < 1 {

 return ErrRecordNotFound

 }

 query := `

 DELETE FROM movies

 WHERE id = $1`

 // Create a context with a 3-second timeout.

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Use ExecContext() and pass the context as the first argument.

 result, err := m.DB.ExecContext(ctx, query, id)

 if err != nil {

 return err

 }

 rowsAffected, err := result.RowsAffected()

 if err != nil {

 return err

 }

 if rowsAffected == 0 {

 return ErrRecordNotFound

 }

 return nil

}

Additional Information

Using the request context

As an alternative to the pattern that we’ve used in the code above, we could create a

context with a timeout in our handlers using the request context as the parent — and then

pass that on to our database model.

But — and it’s a big but — doing this introduces a lot of behavioral complexity, and for most

applications the benefits aren’t large enough to make the trade-off worthwhile.

The details behind this are very interesting, but also quite intricate and heavy-going. For

that reason I’ve discussed it further in this appendix.

Chapter 9.

Filtering, Sorting, and Pagination

In this section of the book we’re going to focus on building up the functionality for a new

GET /v1/movies endpoint, which will return the details of multiple movies in a JSON array.

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

GET /v1/movies listMoviesHandler Show the details of all movies

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PATCH /v1/movies/:id updateMovieHandler Update the details of a specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

We’ll develop the functionality for this endpoint incrementally, starting out by returning

data for all movies and then gradually making it more useful and usable by adding filtering,

sorting, and pagination functionality.

In this section you’ll learn how to:

Return the details of multiple resources in a single JSON response.

Accept and apply optional filter parameters to narrow down the returned data set.

Implement full-text search on your database fields using PostgreSQL’s inbuilt

functionality.

Accept and safely apply sort parameters to change the order of results in the data set.

Develop a pragmatic, reusable, pattern to support pagination on large data sets, and

return pagination metadata in your JSON responses.

Chapter 9.1.

Parsing Query String Parameters

Over the next few chapters, we’re going configure the GET /v1/movies endpoint so that a

client can control which movie records are returned via query string parameters. For

example:

/v1/movies?title=godfather&genres=crime,drama&page=1&page_size=5&sort=-year

If a client sends a query string like this, it is essentially saying to our API: “please return the

first 5 records where the movie name includes godfather and the genres include crime and

drama , sorted by descending release year”.

Note: In the sort parameter we will use the - character to denote descending sort

order. So, for example, the parameter sort=title implies an ascending alphabetical

sort on movie title, whereas sort=-title implies a descending sort.

So the first thing we’re going to look at is how to parse these query string parameters in our

Go code.

As you can hopefully remember from Let’s Go, we can retrieve the query string data from a

request by calling the r.URL.Query() method. This returns a url.Values type, which is

basically a map holding the query string data.

We can then extract values from this map using the Get() method, which will return the

value for a specific key as a string type, or the empty string "" if no matching key exists in

the query string.

In our case, we’ll need to carry out extra post-processing on some of these query string

values too. Specifically:

The genres parameter will potentially contain multiple comma-separated values — like

genres=crime,drama. We will want to split these values apart and store them in a

[]string slice.

The page and page_size parameters will contain numbers, and we will want to convert

these query string values into Go int types.

In addition to that:

https://golang.org/pkg/net/url/#URL.Query
https://golang.org/pkg/net/url/#Values
https://golang.org/pkg/net/url/#Values.Get

There are some validation checks that we’ll want to apply to the query string values, like

making sure that page and page_size are not negative numbers.

We want our application to set some sensible default values in case parameters like

page, page_size and sort aren’t provided by the client.

Creating helper functions

To assist with this, we’re going to create three new helper functions: readString(),

readInt() and readCSV() . We’ll use these helpers to extract and parse values from the

query string, or return a default ‘fallback’ value if necessary.

Head to your cmd/api/helpers.go file and add the following code:

File: cmd/api/helpers.go

package main

import (

 "encoding/json"

 "errors"

 "fmt"

 "io"

 "net/http"

 "net/url" // New import

 "strconv"

 "strings"

 "greenlight.alexedwards.net/internal/validator" // New import

 "github.com/julienschmidt/httprouter"

)

...

// The readString() helper returns a string value from the query string, or the provided

// default value if no matching key could be found.

func (app *application) readString(qs url.Values, key string, defaultValue string) string {

 // Extract the value for a given key from the query string. If no key exists this

 // will return the empty string "".

 s := qs.Get(key)

 // If no key exists (or the value is empty) then return the default value.

 if s == "" {

 return defaultValue

 }

 // Otherwise return the string.

 return s

}

// The readCSV() helper reads a string value from the query string and then splits it

// into a slice on the comma character. If no matching key could be found, it returns

// the provided default value.

func (app *application) readCSV(qs url.Values, key string, defaultValue []string) []string {

 // Extract the value from the query string.

 csv := qs.Get(key)

 csv := qs.Get(key)

 // If no key exists (or the value is empty) then return the default value.

 if csv == "" {

 return defaultValue

 }

 // Otherwise parse the value into a []string slice and return it.

 return strings.Split(csv, ",")

}

// The readInt() helper reads a string value from the query string and converts it to an

// integer before returning. If no matching key could be found it returns the provided

// default value. If the value couldn't be converted to an integer, then we record an

// error message in the provided Validator instance.

func (app *application) readInt(qs url.Values, key string, defaultValue int, v *validator.Validator) int {

 // Extract the value from the query string.

 s := qs.Get(key)

 // If no key exists (or the value is empty) then return the default value.

 if s == "" {

 return defaultValue

 }

 // Try to convert the value to an int. If this fails, add an error message to the

 // validator instance and return the default value.

 i, err := strconv.Atoi(s)

 if err != nil {

 v.AddError(key, "must be an integer value")

 return defaultValue

 }

 // Otherwise, return the converted integer value.

 return i

}

Adding the API handler and route

Next up, let’s create a new listMoviesHandler for our GET /v1/movies endpoint. For now,

this handler will simply parse the request query string using the helpers we just made, and

then dump the contents out in a HTTP response.

If you’re following along, go ahead and create the listMoviesHandler like so:

File: cmd/api/movies.go

package main

...

func (app *application) listMoviesHandler(w http.ResponseWriter, r *http.Request) {

 // To keep things consistent with our other handlers, we'll define an input struct

 // to hold the expected values from the request query string.

 var input struct {

 Title string

 Genres []string

 Page int

 PageSize int

 Sort string

 }

 // Initialize a new Validator instance.

 v := validator.New()

 // Call r.URL.Query() to get the url.Values map containing the query string data.

 qs := r.URL.Query()

 // Use our helpers to extract the title and genres query string values, falling back

 // to defaults of an empty string and an empty slice respectively if they are not

 // provided by the client.

 input.Title = app.readString(qs, "title", "")

 input.Genres = app.readCSV(qs, "genres", []string{})

 // Get the page and page_size query string values as integers. Notice that we set

 // the default page value to 1 and default page_size to 20, and that we pass the

 // validator instance as the final argument here.

 input.Page = app.readInt(qs, "page", 1, v)

 input.PageSize = app.readInt(qs, "page_size", 20, v)

 // Extract the sort query string value, falling back to "id" if it is not provided

 // by the client (which will imply a ascending sort on movie ID).

 input.Sort = app.readString(qs, "sort", "id")

 // Check the Validator instance for any errors and use the failedValidationResponse()

 // helper to send the client a response if necessary.

 if !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Dump the contents of the input struct in a HTTP response.

 fmt.Fprintf(w, "%+v\n", input)

}

Then we need to create the GET /v1/movies route in our cmd/api/routes.go file, like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() *httprouter.Router {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 // Add the route for the GET /v1/movies endpoint.

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 return router

}

And with that, now we’re ready to see this in action!

Go ahead and try sending a request to the GET /v1/movies endpoint containing the

expected query string parameters, like below.

Important: When using curl to send a request containing more than one query string

parameter, you must wrap the URL in quotes for it to work correctly.

$ curl "localhost:4000/v1/movies?title=godfather&genres=crime,drama&page=1&page_size=5&sort=year"

{Title:godfather Genres:[crime drama] Page:1 PageSize:5 Sort:year}

That’s looking good — we can see that the values provided in our query string have all been

parsed correctly and are included in the input struct.

If you want, you can also try making a request with no query string parameters. In this case,

you should see that the values in the input struct take on the defaults we specified in our

listMoviesHandler code. Like so:

$ curl localhost:4000/v1/movies

{Title: Genres:[] Page:1 PageSize:20 Sort:id}

Creating a Filters struct

The page, page_size and sort query string parameters are things that you’ll potentially

want to use on other endpoints in your API too. So, to help make this easier, let’s quickly

split them out into a reusable Filters struct.

If you’re following along, go ahead and create a new internal/data/filters.go file:

$ touch internal/data/filters.go

And then add the following code:

File: internal/data/filters.go

package data

type Filters struct {

 Page int

 PageSize int

 Sort string

}

Once that’s done, head back to your listMoviesHandler and update it to use the new

Filters struct like so:

File: cmd/api/movies.go

package main

...

func (app *application) listMoviesHandler(w http.ResponseWriter, r *http.Request) {

 // Embed the new Filters struct.

 var input struct {

 Title string

 Genres []string

 data.Filters

 }

 v := validator.New()

 qs := r.URL.Query()

 input.Title = app.readString(qs, "title", "")

 input.Genres = app.readCSV(qs, "genres", []string{})

 // Read the page and page_size query string values into the embedded struct.

 input.Filters.Page = app.readInt(qs, "page", 1, v)

 input.Filters.PageSize = app.readInt(qs, "page_size", 20, v)

 // Read the sort query string value into the embedded struct.

 input.Filters.Sort = app.readString(qs, "sort", "id")

 if !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

At this point, you should be able to run the API again and everything should continue to

work like before.

Chapter 9.2.

Validating Query String Parameters

Thanks to the readInt() helper that we made in the previous chapter, our API should

already be returning validation errors if the page and page_size query string parameters

don’t contain integer values. Go ahead and try it out, if you like:

$ curl "localhost:4000/v1/movies?page=abc&page_size=abc"

{

 "error": {

 "page": "must be an integer value",

 "page_size": "must be an integer value"

 }

}

But we still need to perform some additional sanity checks on the query string values

provided by the client. In particular, we want to check that:

The page value is between 1 and 10,000,000.

The page_size value is between 1 and 100.

The sort parameter contains a known and supported value for our movies table.

Specifically, we’ll allow "id", "title" , "year", "runtime" , "-id" , "-title", "-year" or

"-runtime".

To fix this, let’s open up the internal/data/filters.go file and create a new

ValidateFilters() function which conducts these checks on the values.

We’ll follow the same pattern that we used for the ValidateMovie() function earlier on to

do this, like so:

File: internal/data/filters.go

package data

import (

 "greenlight.alexedwards.net/internal/validator" // New import

)

// Add a SortSafelist field to hold the supported sort values.

type Filters struct {

 Page int

 PageSize int

 Sort string

 SortSafelist []string

}

func ValidateFilters(v *validator.Validator, f Filters) {

 // Check that the page and page_size parameters contain sensible values.

 v.Check(f.Page > 0, "page", "must be greater than zero")

 v.Check(f.Page <= 10_000_000, "page", "must be a maximum of 10 million")

 v.Check(f.PageSize > 0, "page_size", "must be greater than zero")

 v.Check(f.PageSize <= 100, "page_size", "must be a maximum of 100")

 // Check that the sort parameter matches a value in the safelist.

 v.Check(validator.In(f.Sort, f.SortSafelist...), "sort", "invalid sort value")

}

Then we need to update our listMoviesHandler to set the supported values in the

SortSafelist field, and subsequently call this new ValidateFilters() function.

File: cmd/api/movies.go

package main

...

func (app *application) listMoviesHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string

 Genres []string

 data.Filters

 }

 v := validator.New()

 qs := r.URL.Query()

 input.Title = app.readString(qs, "title", "")

 input.Genres = app.readCSV(qs, "genres", []string{})

 input.Filters.Page = app.readInt(qs, "page", 1, v)

 input.Filters.PageSize = app.readInt(qs, "page_size", 20, v)

 input.Filters.Sort = app.readString(qs, "sort", "id")

 // Add the supported sort values for this endpoint to the sort safelist.

 input.Filters.SortSafelist = []string{"id", "title", "year", "runtime", "-id", "-title", "-year", "-runtime"}

 // Execute the validation checks on the Filters struct and send a response

 // containing the errors if necessary.

 if data.ValidateFilters(v, input.Filters); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 fmt.Fprintf(w, "%+v\n", input)

}

If you restart the API and try making a request with some invalid page, page_size and sort

parameters, you should now receive an error response containing the relevant validation

failure messages. Similar to this:

$ curl "localhost:4000/v1/movies?page=-1&page_size=-1&sort=foo"

{

 "error": {

 "page": "must be greater than zero",

 "page_size": "must be greater than zero",

 "sort": "invalid sort value"

 }

}

Feel free to test this out more if you like, and try sending different query string values until

you’re confident that the validation checks are all working correctly.

Chapter 9.3.

Listing Data

OK, let’s move on and get our GET /v1/movies endpoint returning some real data.

For now, we’ll ignore any query string values provided by the client and return all movie

records, sorted by movie ID. This will give us a solid base from which we can develop the

more specialized functionality around filtering, sorting, and pagination.

Our aim in this chapter will be to get the endpoint to return a JSON response containing an

array of all movies, similar to this:

{

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2015,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 },

 ... etc.

]

}

Updating the application

To retrieve this data from our PostgreSQL database, let’s create a new GetAll() method on

our database model which executes the following SQL query:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

ORDER BY id

Because we’re expecting this SQL query to return multiple records, we’ll need to run it using

Go’s QueryContext() method. We already explained how this works in detail in Let’s Go, so

let’s jump into the code:

File: internal/data/movies.go

package data

...

// Create a new GetAll() method which returns a slice of movies. Although we're not

// using them right now, we've set this up to accept the various filter parameters as

// arguments.

func (m MovieModel) GetAll(title string, genres []string, filters Filters) ([]*Movie, error) {

 // Construct the SQL query to retrieve all movie records.

 query := `

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 ORDER BY id`

 // Create a context with a 3-second timeout.

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Use QueryContext() to execute the query. This returns a sql.Rows resultset

 // containing the result.

 rows, err := m.DB.QueryContext(ctx, query)

 if err != nil {

 return nil, err

 }

 // Importantly, defer a call to rows.Close() to ensure that the resultset is closed

 // before GetAll() returns.

 defer rows.Close()

 // Initialize an empty slice to hold the movie data.

 movies := []*Movie{}

 // Use rows.Next to iterate through the rows in the resultset.

 for rows.Next() {

 // Initialize an empty Movie struct to hold the data for an individual movie.

 var movie Movie

 // Scan the values from the row into the Movie struct. Again, note that we're

 // using the pq.Array() adapter on the genres field here.

 err := rows.Scan(

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 if err != nil {

 return nil, err

 }

https://golang.org/pkg/database/sql/#DB.QueryContext

 }

 // Add the Movie struct to the slice.

 movies = append(movies, &movie)

 }

 // When the rows.Next() loop has finished, call rows.Err() to retrieve any error

 // that was encountered during the iteration.

 if err = rows.Err(); err != nil {

 return nil, err

 }

 // If everything went OK, then return the slice of movies.

 return movies, nil

}

Next up, we need to adapt the listMoviesHandler so that it calls the new GetAll() method

to retrieve the movie data, and then writes this data as a JSON response.

If you’re following along, go ahead and update the handler like so:

File: cmd/api/movies.go

package main

...

func (app *application) listMoviesHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string

 Genres []string

 data.Filters

 }

 v := validator.New()

 qs := r.URL.Query()

 input.Title = app.readString(qs, "title", "")

 input.Genres = app.readCSV(qs, "genres", []string{})

 input.Filters.Page = app.readInt(qs, "page", 1, v)

 input.Filters.PageSize = app.readInt(qs, "page_size", 20, v)

 input.Filters.Sort = app.readString(qs, "sort", "id")

 input.Filters.SortSafelist = []string{"id", "title", "year", "runtime", "-id", "-title", "-year", "-runtime"}

 if data.ValidateFilters(v, input.Filters); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Call the GetAll() method to retrieve the movies, passing in the various filter

 // parameters.

 movies, err := app.models.Movies.GetAll(input.Title, input.Genres, input.Filters)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Send a JSON response containing the movie data.

 err = app.writeJSON(w, http.StatusOK, envelope{"movies": movies}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

And now we should be ready to try this out.

Go ahead and restart the API, then when you make a GET /v1/movies request you should

see the slice of movies returned by GetAll() rendered as a JSON array. Similar to this:

$ curl localhost:4000/v1/movies

{

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 },

 {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "97 mins",

 "genres": [

 "comedy"

],

 "version": 5

 }

]

}

Chapter 9.4.

Filtering Lists

In this chapter we’re going to start putting our query string parameters to use, so that

clients can search for movies with a specific title or genres.

Specifically, we’ll build a reductive filter which allows clients to search based on a case-

insensitive exact match for movie title and/or one or more movie genres. For example:

// List all movies.

/v1/movies

// List movies where the title is a case-insensitive exact match for 'black panther'.

/v1/movies?title=black+panther

// List movies where the genres includes 'adventure'.

/v1/movies?genres=adventure

// List movies where the title is a case-insensitive exact match for 'moana' AND the

// genres include both 'animation' AND 'adventure'.

/v1/movies?title=moana&genres=animation,adventure

Note: The + symbol in the query strings above is a URL-encoded space character.

Alternatively you could use %20 instead… either will work in the context of a query

string.

Dynamic filtering in the SQL query

The hardest part of building a dynamic filtering feature like this is the SQL query to retrieve

the data — we need it to work with no filters, filters on both title and genres, or a filter on

only one of them.

To deal with this, one option is to build up the SQL query dynamically at runtime… with the

necessary SQL for each filter concatenated or interpolated into the WHERE clause. But this

approach can make your code messy and difficult to understand, especially for large

queries which need to support lots of filter options.

In this book we’ll opt for a different technique and use a fixed SQL query which looks like

this:

https://ux.stackexchange.com/questions/88993/inclusive-additive-vs-exclusive-reductive-filtering-how-to-differentiate

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (LOWER(title) = LOWER($1) OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY id

This SQL query is designed so that each of the filters behaves like it is ‘optional’. For

example, the condition (LOWER(title) = LOWER($1) OR $1 = '') will evaluate as true if

the placeholder parameter $1 is a case-insensitive match for the movie title or the

placeholder parameter equals ''. So this filter condition will essentially be ‘skipped’ when

movie title being searched for is the empty string "".

The (genres @> $2 OR $2 = '{}') condition works in the same way. The @> symbol is the

‘contains’ operator for PostgreSQL arrays, and this condition will return true if all values in

the placeholder parameter $2 are contained in the database genres field or the placeholder

parameter contains an empty array.

You’ll remember that earlier in the book we set up our listMoviesHandler so that the

empty string "" and an empty slice are used as the default values for the title and genres

filter parameters:

input.Title = app.readString(qs, "title", "")

input.Genres = app.readCSV(qs, "genres", []string{})

So, putting this all together, it means that if a client doesn’t provide a title parameter in

their query string, then value for the $1 placeholder will be the empty string "", and the

filter condition in the SQL query will evaluate to true and act like it has been ‘skipped’.

Likewise with the genres parameter.

Note: PostgreSQL also provides a range of other useful array operators and functions,

including the && ‘overlap’ operator, the <@ ‘contained by’ operator, and the

array_length() function. A complete list can be found here.

Alright, let’s head back to our internal/data/movies.go file, and update the GetAll()

method to use this new query. Like so:

https://www.postgresql.org/docs/9.6/functions-array.html

File: internal/data/movies.go

package data

...

func (m MovieModel) GetAll(title string, genres []string, filters Filters) ([]*Movie, error) {

 // Update the SQL query to include the filter conditions.

 query := `

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE (LOWER(title) = LOWER($1) OR $1 = '')

 AND (genres @> $2 OR $2 = '{}')

 ORDER BY id`

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Pass the title and genres as the placeholder parameter values.

 rows, err := m.DB.QueryContext(ctx, query, title, pq.Array(genres))

 if err != nil {

 return nil, err

 }

 defer rows.Close()

 movies := []*Movie{}

 for rows.Next() {

 var movie Movie

 err := rows.Scan(

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 if err != nil {

 return nil, err

 }

 movies = append(movies, &movie)

 }

 if err = rows.Err(); err != nil {

 return nil, err

 }

 return movies, nil

}

Now let’s restart the application and try this out, using the examples that we gave at the

start of the chapter. If you’ve been following along, the responses should look similar to

this:

$ curl "localhost:4000/v1/movies?title=black+panther"

{

 "movies": [

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

$ curl "localhost:4000/v1/movies?genres=adventure"

{

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2015,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

$ curl "localhost:4000/v1/movies?title=moana&genres=animation,adventure"

{

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 }

]

}

You can also try making a request with a filter that doesn’t match any records. In this case,

you should get an empty JSON array in the response like so:

$ curl "localhost:4000/v1/movies?genres=western"

{

 "movies": []

}

This is shaping up nicely. Our API endpoint is now returning the appropriately filtered movie

records, and we have a pattern that we can easily extend to include other filtering rules in

the future (such as a filter on the movie year or runtime) if we want to.

Chapter 9.5.

Full-Text Search

In this chapter we’re going to make our movie title filter easier to use by adapting it to

support partial matches, rather than requiring a match on the full title. So, for example, if a

client wants to find The Breakfast Club they will be able to find it with just the query string

title=breakfast .

There are a few different ways we could implement this feature in our codebase, but an

effective and intuitive method (from a client point of view) is to leverage PostgreSQL’s full-

text search functionality, which allows you to perform ‘natural language’ searches on text

fields in your database.

PostgreSQL full-text search is a powerful and highly-configurable tool, and explaining how it

works and the available options in full could easily take up a whole book in itself. So we’ll

keep the explanations in this chapter high-level, and focus on the practical implementation.

To implement a basic full-text search on our title field, we’re going to update our SQL

query to look like this:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY id

That looks pretty complicated at first glance, so let’s break it down and explain what’s going

on.

The to_tsvector('simple', title) function takes a movie title and splits it into lexemes.

We specify the simple configuration, which means that the lexemes are just lowercase

versions of the words in the title . For example, the movie title "The Breakfast Club"

would be split into the lexemes 'breakfast' 'club' 'the' .

† Other ‘non-simple’ configurations may apply additional rules to the lexemes, such as

the removal of common words or applying language-specific stemming.

The plainto_tsquery('simple', $1) function takes a search value and turns it into a

formatted query term that PostgreSQL full-text search can understand. It normalizes the

†

search value (again using the simple configuration), strips any special characters, and

inserts the and operator & between the words. As an example, the search value "The Club"

would result in the query term 'the' & 'club' .

The @@ operator is the matches operator. In our statement we are using it to check whether

the generated query term matches the lexemes. To continue the example, the query term

'the' & 'club' will match rows which contain both lexemes 'the' and 'club'.

There are a lot of specialist words in the paragraphs above, but if we illustrate it with a

couple of examples it’s actually very intuitive:

// Return all movies where the title includes the case-insensitive word 'panther'.

/v1/movies?title=panther

// Return all movies where the title includes the case-insensitive words 'the' and

// 'club'.

/v1/movies?title=the+club

Let’s go ahead and put this into action. Open up your internal/data/movies.go file and

update the GetAll() method to use the new SQL query like so:

File: internal/data/movies.go

package data

...

func (m MovieModel) GetAll(title string, genres []string, filters Filters) ([]*Movie, error) {

 // Use full-text search for the title filter.

 query := `

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

 AND (genres @> $2 OR $2 = '{}')

 ORDER BY id`

 // Nothing else below needs to change.

 ...

}

If you’re following along, restart the application and try making some requests with

different values for the movie title. You should find that partial searches now work as we

described above.

For example:

$ curl "localhost:4000/v1/movies?title=panther"

{

 "movies": [

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

$ curl "localhost:4000/v1/movies?title=the+club"

{

 "movies": [

 {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "97 mins",

 "genres": [

 "comedy"

],

 "version": 5

 }

]

}

Adding indexes

To keep our SQL query performing quickly as the dataset grows, it’s sensible to use indexes

to help avoid full table scans and avoid generating the lexemes for the title field every

time the query is run.

Note: If you are not familiar with the concept of indexes in SQL databases, the official

PostgreSQL documentation provides a good introduction and a summary of different

index types. I recommend reading these quickly to give you an overview before

continuing.

In our case it makes sense to create GIN indexes on both the genres field and the lexemes

generated by to_tsvector() , both which are used in the WHERE clause of our SQL query.

If you’re following along, go ahead and create a new pair of migration files:

https://www.postgresql.org/docs/13/indexes-intro.html
https://www.postgresql.org/docs/13/indexes-types.html
https://www.postgresql.org/docs/current/textsearch-indexes.html

$ migrate create -seq -ext .sql -dir ./migrations add_movies_indexes

Then add the following statements to the ‘up’ and ‘down’ migration files to create and drop

the necessary indexes:

File: migrations/000003_add_movies_indexes.up.sql

CREATE INDEX IF NOT EXISTS movies_title_idx ON movies USING GIN (to_tsvector('simple', title));

CREATE INDEX IF NOT EXISTS movies_genres_idx ON movies USING GIN (genres);

File: migrations/000003_add_movies_indexes.down.sql

DROP INDEX IF EXISTS movies_title_idx;

DROP INDEX IF EXISTS movies_genres_idx;

Once that’s done, you should be able to execute the ‘up’ migration to add the indexes to

your database:

$ migrate -path ./migrations -database $GREENLIGHT_DB_DSN up

3/u add_movies_indexes (38.638777ms)

Additional Information

Non-simple configuration and more information

As mentioned above, you can also use a language-specific configuration for full-text

searches instead of the simple configuration that we’re currently using. When you create

lexemes or query terms using a language-specific configuration, it will strip out common

words for the language and perform word stemming.

So, for example, if you use the english configuration, then the lexemes generated for

"One Flew Over the Cuckoo's Nest" would be 'cuckoo' 'flew' 'nest' 'one' . Or with

the spanish configuration, the lexemes for "Los lunes al sol" would be 'lun' 'sol' .

You can retrieve a list of all available configurations by running the \dF meta-command in

PostgreSQL:

https://en.wikipedia.org/wiki/Stemming

postgres=# \dF

 List of text search configurations

 Schema | Name | Description

------------+------------+---------------------------------------

 pg_catalog | arabic | configuration for arabic language

 pg_catalog | danish | configuration for danish language

 pg_catalog | dutch | configuration for dutch language

 pg_catalog | english | configuration for english language

 ...

And if you wanted to use the english configuration to search our movies, you could update

the SQL query like so:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (to_tsvector('english', title) @@ plainto_tsquery('english', $1) OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY id

If you’d like to learn more about PostgreSQL full-text search then reading this blog post is a

good next step, and the official documentation is also excellent.

Using STRPOS and ILIKE

If you don’t want to use full-text search for the partial movie title lookup, some alternatives

are the PostgreSQL STRPOS() function and ILIKE operator.

The PostgreSQL STRPOS() function allows you to check for the existence of a substring in a

particular database field. We could use it in our SQL query like this:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (STRPOS(LOWER(title), LOWER($1)) > 0 OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY id

From a client perspective, the downside of this is that it may return some unintuitive

results. For example, searching for title=the would return both The Breakfast Club and

Black Panther in our dataset.

From a server perspective it’s also not ideal for large datasets. Because there’s no effective

way to index the title field to see if the STRPOS()condition is met, it means the query

could potentially require a full-table scan each time it is run.

Another option is the ILIKE operator, which allows you to find rows which match a specific

(case-insensitive) pattern. We could use it in our SQL query like so:

https://www.compose.com/articles/indexing-for-full-text-search-in-postgresql/
https://www.postgresql.org/docs/current/textsearch.html
https://www.postgresql.org/docs/current/functions-string.html
https://www.postgresql.org/docs/current/functions-matching.html

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (title ILIKE $1 OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY id

This approach would be better from a server point of view because it’s possible to create an

index on the title field using the pg_trgm extension and a GIN index (for details please see

this post).

From the client side it’s arguably better that the STRPOS() approach too, as they can control

the matching behavior by prefixing/suffixing the search term with a % wildcard character

(which will need to be escaped to %25 in the URL query string). For example, to search for

movies with a title that starts with “the”, a client could send the query string parameter

title=the%25.

https://niallburkley.com/blog/index-columns-for-like-in-postgres/

Chapter 9.6.

Sorting Lists

Let’s now update the logic for our GET /v1/movies endpoint so that the client can control

how the movies are sorted in the JSON response.

As we briefly explained earlier, we want to let the client control the sort order via a query

string parameter in the format sort={-}{field_name} , where the optional - character is

used to indicate a descending sort order. For example:

// Sort the movies on the title field in ascending alphabetical order.

/v1/movies?sort=title

// Sort the movies on the year field in descending numerical order.

/v1/movies?sort=-year

Behind the scenes we will want to translate this into an ORDER BY clause in our SQL query,

so that a query string parameter like sort=-year would result in a SQL query like this:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (STRPOS(LOWER(title), LOWER($1)) > 0 OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY year DESC --<-- Order the result by descending year

The difficulty here is that the values for the ORDER BY clause will need to be generated at

runtime based on the query string values from the client. Ideally we’d use placeholder

parameters to insert these dynamic values into our query, but unfortunately it’s not possible

to use placeholder parameters for column names or SQL keywords (including ASC and DESC).

So instead, we’ll need to interpolate these dynamic values into our query using

fmt.Sprintf() — making sure that the values are checked against a strict safelist first to

prevent a SQL injection attack.

When working with PostgreSQL, it’s also important to be aware that the order of returned

rows is only guaranteed by the rules that your ORDER BY clause imposes. From the official

documentation:

If sorting is not chosen, the rows will be returned in an unspecified order. The actual order

in that case will depend on the scan and join plan types and the order on disk, but it must

not be relied on. A particular output ordering can only be guaranteed if the sort step is

https://www.postgresql.org/docs/current/queries-order.html
https://www.postgresql.org/docs/current/queries-order.html

explicitly chosen.

That means if we don’t include an ORDER BY clause, then PostgreSQL may return the movies

in any order — and the order may or may not change each time the query is run .

Likewise, in our database multiple movies will have the same year value. If we order based

on the year column, then the movies are guaranteed be ordered by year, but the movies for

a particular year could appear in any order at any time.

This point is particularly important in the context of an endpoint which provides pagination.

We need to make sure that the order of movies is perfectly consistent between requests to

prevent items in the list ‘jumping’ between the pages.

Fortunately, guaranteeing the order is simple — we just we need to make sure that the

ORDER BY clause always includes a primary key column (or another column with a unique

constraint on it). So, in our case, we can apply a secondary sort on the id column to ensure

an always-consistent order. Like so:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (STRPOS(LOWER(title), LOWER($1)) > 0 OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY year DESC, id ASC

Implementing sorting

To get the dynamic sorting working, let’s begin by updating our Filters struct to include

some sortColumn() and sortDirection() helpers that transform a query string value (like

-year) into values we can use in our SQL query.

File: internal/data/filters.go

package data

import (

 "strings" // New import

 "greenlight.alexedwards.net/internal/validator"

)

type Filters struct {

 Page int

 PageSize int

 Sort string

 SortSafelist []string

}

// Check that the client-provided Sort field matches one of the entries in our safelist

// and if it does, extract the column name from the Sort field by stripping the leading

// hyphen character (if one exists).

func (f Filters) sortColumn() string {

 for _, safeValue := range f.SortSafelist {

 if f.Sort == safeValue {

 return strings.TrimPrefix(f.Sort, "-")

 }

 }

 panic("unsafe sort parameter: " + f.Sort)

}

// Return the sort direction ("ASC" or "DESC") depending on the prefix character of the

// Sort field.

func (f Filters) sortDirection() string {

 if strings.HasPrefix(f.Sort, "-") {

 return "DESC"

 }

 return "ASC"

}

...

Notice that the sortColumn() function is constructed in such a way that it will panic if the

client-provided Sort value doesn’t match one of the entries in our safelist. In theory this

shouldn’t happen — the Sort value should have already been checked by calling the

ValidateFilters() function — but this is a sensible failsafe to help stop a SQL injection

attack occurring.

Now let’s update our internal/data/movies.go file to call those methods, and interpolate

the return values into our SQL query’s ORDER BY clause. Like so:

File: internal/data/movies.go

package data

import (

 "context"

 "database/sql"

 "errors"

 "fmt" // New import

 "time"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/lib/pq"

)

...

func (m MovieModel) GetAll(title string, genres []string, filters Filters) ([]*Movie, error) {

 // Add an ORDER BY clause and interpolate the sort column and direction. Importantly

 // notice that we also include a secondary sort on the movie ID to ensure a

 // consistent ordering.

 query := fmt.Sprintf(`

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

 AND (genres @> $2 OR $2 = '{}')

 ORDER BY %s %s, id ASC`, filters.sortColumn(), filters.sortDirection())

 // Nothing else below needs to change.

 ...

}

And once that’s done, we should be ready to try this out.

Restart the application then, as an example, go ahead and try making a request for the

movies sorted by descending title . You should get a response which looks like this:

$ curl "localhost:4000/v1/movies?sort=-title"

{

 "movies": [

 {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "97 mins",

 "genres": [

 "comedy"

],

 "version": 5

 },

 {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

In contrast, using a sort parameter of descending runtime should yield a response in a

totally different order. Similar to this:

$ curl "localhost:4000/v1/movies?sort=-runtime"

{

 "movies": [

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 },

 {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "97 mins",

 "genres": [

 "comedy"

],

 "version": 5

 }

]

}

Chapter 9.7.

Paginating Lists

If you have an endpoint which returns a list with hundreds or thousands of records, then for

performance or usability reasons you might want to implement some form of pagination on

the endpoint — so that it only returns a subset of the records in a single HTTP response.

To help demonstrate how to do this, in this chapter we’re going to update the

GET /v1/movies endpoint so that it supports the concept of ‘pages’ and a client can request

a specific ‘page’ of the movies list by using our page and page_size query string

parameters. For example:

// Return the 5 records on page 1 (records 1-5 in the dataset)

/v1/movies?page=1&page_size=5

// Return the next 5 records on page 2 (records 6-10 in the dataset)

/v1/movies?page=2&page_size=5

// Return the next 5 records on page 3 (records 11-15 in the dataset)

/v1/movies?page=3&page_size=5

Basically, changing the page_size parameter will alter the number of movies that are

shown on each ‘page’, and increasing the page parameter by one will show you the next

‘page’ of movies in the list.

The LIMIT and OFFSET clauses

Behind the scenes, the simplest way to support this style of pagination is by adding LIMIT

and OFFSET clauses to our SQL query.

The LIMIT clause allows you to set the maximum number of records that a SQL query

should return, and OFFSET allows you to ‘skip’ a specific number of rows before starting to

return records from the query.

Within our application, we’ll just need to translate the page and page_size values provided

by the client to the appropriate LIMIT and OFFSET values for our SQL query. The math is

pretty straightforward:

LIMIT = page_size

OFFSET = (page - 1) * page_size

https://www.postgresql.org/docs/current/queries-limit.html
https://www.postgresql.org/docs/current/queries-limit.html

Or to give a concrete example, if a client makes the following request:

/v1/movies?page_size=5&page=3

We would need to ‘translate’ this into the following SQL query:

SELECT id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY %s %s, id ASC

LIMIT 5 OFFSET 10

Let’s start by adding some helper methods to our Filters struct for calculating the

appropriate LIMIT and OFFSET values.

If you’re following along, go ahead and update the internal/data/filters.go file like so:

File: internal/data/filters.go

package data

...

type Filters struct {

 Page int

 PageSize int

 Sort string

 SortSafelist []string

}

...

func (f Filters) limit() int {

 return f.PageSize

}

func (f Filters) offset() int {

 return (f.Page - 1) * f.PageSize

}

...

Note: In the offset() method there is the theoretical risk of an integer overflow as we

are multiplying two int values together. However, this is mitigated by the validation

rules we created in our ValidateFilters() function, where we enforced maximum

values of page_size=100 and page=10000000 (10 million). This means that the value

returned by offset() should never come close to overflowing.

https://golang.org/ref/spec#Integer_overflow

Updating the database model

As the final stage in this process, we need to update our database model’s GetAll()

method to add the appropriate LIMIT and OFFSET clauses to the SQL query.

File: internal/data/movies.go

package data

...

func (m MovieModel) GetAll(title string, genres []string, filters Filters) ([]*Movie, error) {

 // Update the SQL query to include the LIMIT and OFFSET clauses with placeholder

 // parameter values.

 query := fmt.Sprintf(`

 SELECT id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

 AND (genres @> $2 OR $2 = '{}')

 ORDER BY %s %s, id ASC

 LIMIT $3 OFFSET $4`, filters.sortColumn(), filters.sortDirection())

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // As our SQL query now has quite a few placeholder parameters, let's collect the

 // values for the placeholders in a slice. Notice here how we call the limit() and

 // offset() methods on the Filters struct to get the appropriate values for the

 // LIMIT and OFFSET clauses.

 args := []interface{}{title, pq.Array(genres), filters.limit(), filters.offset()}

 // And then pass the args slice to QueryContext() as a variadic parameter.

 rows, err := m.DB.QueryContext(ctx, query, args...)

 if err != nil {

 return nil, err

 }

 // Nothing else below needs to change.

 ...

}

Once that’s done we should be ready to try this out.

Restart the server, then go ahead and make the following request with a page_size=2

parameter:

$ curl "localhost:4000/v1/movies?page_size=2"

{

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

That’s looking good. Our endpoint is now returning the first two movie records only from

our database (using the default sort order of ascending movie ID).

Then let’s try requesting the second page of results. If you’ve been following along, this

page should include the one remaining record in our system, like so:

IMPORTANT: This URL must be surrounded with double-quotes to work correctly.

$ curl "localhost:4000/v1/movies?page_size=2&page=2"

{

 "movies": [

 {

 "id": 4,

 "title": "The Breakfast Club",

 "year": 1985,

 "runtime": "97 mins",

 "genres": [

 "comedy"

],

 "version": 5

 }

]

}

If you try to request the third page, you should get an empty JSON array in the response like

so:

$ curl "localhost:4000/v1/movies?page_size=2&page=3"

{

 "movies": []

}

Chapter 9.8.

Returning Pagination Metadata

At this point the pagination on our GET /v1/movies endpoint is working nicely, but it would

be even better if we could include some additional metadata along with the response.

Information like the current and last page numbers, and the total number of available

records would help to give the client context about the response and make navigating

through the pages easier.

In this chapter we’ll improve the response so that it includes additional pagination

metadata, similar to this:

{

 "metadata": {

 "current_page": 1,

 "page_size": 20,

 "first_page": 1,

 "last_page": 42,

 "total_records": 832

 },

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2015,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 ...

]

}

Calculating the total records

The challenging part of doing this is generating the total_records figure. We want this to

reflect the total number of available records given the title and genres filters that are

applied — not the absolute total of records in the movies table.

A neat way to do this is to adapt our existing SQL query to include a window function which

counts the total number of filtered rows, like so:

https://www.postgresql.org/docs/current/tutorial-window.html

SELECT count(*) OVER(), id, created_at, title, year, runtime, genres, version

FROM movies

WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

AND (genres @> $2 OR $2 = '{}')

ORDER BY %s %s, id ASC

LIMIT $3 OFFSET $4

The inclusion of the count(*) OVER() expression at the start of the query will result in the

filtered record count being included as the first value in each row. A bit like this:

 count | id | created_at | title | year | runtime | genres | version

-------+----+------------------------+--------------------+------+---------+---------------------------+---------

 3 | 1 | 2020-11-27 17:17:25+01 | Moana | 2015 | 107 | {animation,adventure} | 1

 3 | 2 | 2020-11-27 18:01:45+01 | Black Panther | 2018 | 134 | {sci-fi,action,adventure} | 2

 3 | 4 | 2020-11-27 18:02:20+01 | The Breakfast Club | 1985 | 97 | {comedy,drama} | 6

When PostgreSQL executes this SQL query, the (very simplified) sequence of events runs

broadly like this:

1. The WHERE clause is used to filter the data in the movies table and get the qualifying

rows.

2. The window function count(*) OVER() is applied, which counts all the qualifying rows.

3. The ORDER BY rules are applied and the qualifying rows are sorted.

4. The LIMIT and OFFSET rules are applied and the appropriate sub-set of sorted qualifying

rows is returned.

Updating the code

With that brief explanation out of the way, let’s get this up and running. We’ll begin by

updating the internal/data/filters.go file to define a new Metadata struct to hold the

pagination metadata, along with a helper to calculate the values. Like so:

File: internal/data/filters.go

package data

import (

 "math" // New import

 "strings"

 "greenlight.alexedwards.net/internal/validator"

)

...

// Define a new Metadata struct for holding the pagination metadata.

type Metadata struct {

 CurrentPage int `json:"current_page,omitempty"`

 PageSize int `json:"page_size,omitempty"`

 FirstPage int `json:"first_page,omitempty"`

 LastPage int `json:"last_page,omitempty"`

 TotalRecords int `json:"total_records,omitempty"`

}

// The calculateMetadata() function calculates the appropriate pagination metadata

// values given the total number of records, current page, and page size values. Note

// that the last page value is calculated using the math.Ceil() function, which rounds

// up a float to the nearest integer. So, for example, if there were 12 records in total

// and a page size of 5, the last page value would be math.Ceil(12/5) = 3.

func calculateMetadata(totalRecords, page, pageSize int) Metadata {

 if totalRecords == 0 {

 // Note that we return an empty Metadata struct if there are no records.

 return Metadata{}

 }

 return Metadata{

 CurrentPage: page,

 PageSize: pageSize,

 FirstPage: 1,

 LastPage: int(math.Ceil(float64(totalRecords) / float64(pageSize))),

 TotalRecords: totalRecords,

 }

}

Then we need to head back to our GetAll() method and update it to use our new SQL

query (with the window function) to get the total records count. Then, if everything works

successfully, we’ll use the calculateMetadata() function to generate the pagination

metadata and return it alongside the movie data.

Go ahead and update the GetAll() function like so:

File: internal/data/movies.go

package data

...

// Update the function signature to return a Metadata struct.

func (m MovieModel) GetAll(title string, genres []string, filters Filters) ([]*Movie, Metadata, error) {

 // Update the SQL query to include the window function which counts the total

 // (filtered) records.

 // (filtered) records.

 query := fmt.Sprintf(`

 SELECT count(*) OVER(), id, created_at, title, year, runtime, genres, version

 FROM movies

 WHERE (to_tsvector('simple', title) @@ plainto_tsquery('simple', $1) OR $1 = '')

 AND (genres @> $2 OR $2 = '{}')

 ORDER BY %s %s, id ASC

 LIMIT $3 OFFSET $4`, filters.sortColumn(), filters.sortDirection())

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 args := []interface{}{title, pq.Array(genres), filters.limit(), filters.offset()}

 rows, err := m.DB.QueryContext(ctx, query, args...)

 if err != nil {

 return nil, Metadata{}, err // Update this to return an empty Metadata struct.

 }

 defer rows.Close()

 // Declare a totalRecords variable.

 totalRecords := 0

 movies := []*Movie{}

 for rows.Next() {

 var movie Movie

 err := rows.Scan(

 &totalRecords, // Scan the count from the window function into totalRecords.

 &movie.ID,

 &movie.CreatedAt,

 &movie.Title,

 &movie.Year,

 &movie.Runtime,

 pq.Array(&movie.Genres),

 &movie.Version,

)

 if err != nil {

 return nil, Metadata{}, err // Update this to return an empty Metadata struct.

 }

 movies = append(movies, &movie)

 }

 if err = rows.Err(); err != nil {

 return nil, Metadata{}, err // Update this to return an empty Metadata struct.

 }

 // Generate a Metadata struct, passing in the total record count and pagination

 // parameters from the client.

 metadata := calculateMetadata(totalRecords, filters.Page, filters.PageSize)

 // Include the metadata struct when returning.

 return movies, metadata, nil

}

Finally, we need to update our listMoviesHandler handler to receive the Metadata struct

returned by GetAll() and include the information in the JSON response for the client. Like

so:

File: cmd/api/movies.go

package main

...

func (app *application) listMoviesHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Title string

 Genres []string

 data.Filters

 }

 v := validator.New()

 qs := r.URL.Query()

 input.Title = app.readString(qs, "title", "")

 input.Genres = app.readCSV(qs, "genres", []string{})

 input.Filters.Page = app.readInt(qs, "page", 1, v)

 input.Filters.PageSize = app.readInt(qs, "page_size", 20, v)

 input.Filters.Sort = app.readString(qs, "sort", "id")

 input.Filters.SortSafelist = []string{"id", "title", "year", "runtime", "-id", "-title", "-year", "-runtime"}

 if data.ValidateFilters(v, input.Filters); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Accept the metadata struct as a return value.

 movies, metadata, err := app.models.Movies.GetAll(input.Title, input.Genres, input.Filters)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Include the metadata in the response envelope.

 err = app.writeJSON(w, http.StatusOK, envelope{"movies": movies, "metadata": metadata}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Feel free to restart the API and try out this new functionality by making some different

requests to the GET /v1/movies endpoint. You should find that the correct pagination

metadata is now included in the response. For example:

$ curl "localhost:4000/v1/movies?page=1&page_size=2"

{

 "metadata": {

 "current_page": 1,

 "page_size": 2,

 "first_page": 1,

 "last_page": 2,

 "total_records": 3

 },

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2015,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

And if you try making a request with a filter applied, you should see that the last_page

value and total_records count changes to reflect the applied filters. For example, by

requesting only movies with the genre “adventure” we can see that the total_records

count drops down to 2 :

$ curl localhost:4000/v1/movies?genres=adventure

{

 "metadata": {

 "current_page": 1,

 "page_size": 20,

 "first_page": 1,

 "last_page": 1,

 "total_records": 2

 },

 "movies": [

 {

 "id": 1,

 "title": "Moana",

 "year": 2015,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 },

 {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

]

}

Lastly, if you make a request with a too-high page value, you should get a response with an

empty metadata object and movies array, like this:

$ curl localhost:4000/v1/movies?page=100

{

 "metadata": {},

 "movies": []

}

Over the last few chapters, we’ve had to put in a lot of work on the GET /v1/movies

endpoint. But the end result is really powerful. The client now has a lot of control over what

their response contains, with filtering, pagination and sorting all supported.

With the Filters struct that we’ve created, we’ve also got something that we can easily

drop into any other endpoints that need pagination and sorting functionality in the future.

And if you take a step back at look at the final code we’ve written in the listMovieHandler

and our database model’s GetAll() method, there isn’t so much more code than there was

in the earlier iterations of the endpoint.

Chapter 10.

Structured Logging and Error

Handling

In this section of the book, we’re going to take a short break from working on our API

endpoints and focus on making some improvements to the way that we handle exceptions

and errors.

You’ll learn how to:

Create a custom logger for writing structured, levelled, log messages in JSON format.

Integrate the custom logger with your handlers and Go’s http.Server , so that all log

messages are written to one location in a consistent format.

How to recover and gracefully handle panics in your application middleware and

handlers.

Chapter 10.1.

Structured JSON Log Entries

At the moment, all of our log entries are simple free-form messages prefixed by the current

date and time, written to the standard out stream. A good example of these are the log

entries that we see when we start the API:

$ go run ./cmd/api

2021/04/09 19:43:31 database connection pool established

2021/04/09 19:43:31 starting development server on :4000

For many applications this simple style of logging will be good enough, and there’s no need

to introduce additional complexity to your project.

But for applications which do a lot of logging, it can often be useful to enforce a consistent

structure and format for your log entries. This can help make it easier to distinguish

between different types of log entry (like informational and error entries), easier to search

and filter log entries, and simpler to integrate your logs with third-party analysis and

monitoring systems.

So in this chapter we’re going demonstrate how to adapt our application so that log entries

are written in a structured JSON format, similar to this:

{"level":"INFO","time":"2020-12-16T10:53:35Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Essentially, each log entry will be a single JSON object containing the following key/value

pairs:

Key Description

level A code indicating the severity of the log entry. In this project we will use the

following three severity levels, ordered from least to most severe:

- INFO (least severe)

- ERROR

- FATAL (most severe)

time The UTC time that the log entry was made with second precision.

message A string containing the free-text information or error message.

properties Any additional information relevant to the log entry in string key/value pairs

(optional).

trace A stack trace for debugging purposes (optional).

Creating a custom logger

To implement this in our API, we’re going to create our own custom Logger type which

writes structured log entries in JSON format.

We’ll implement some convenience methods on Logger, such as PrintInfo() and

PrintError(), in order to make it easy to write log entries with a specific level from our

application in a single command. And we’ll also design the logger so that only entries at or

above a certain minimum severity level are actually logged — so if you only want to record

ERROR and FATAL messages (and not INFO messages), then that is easy to do.

If you’re following along, go ahead and create a new internal/jsonlog package like so:

$ mkdir internal/jsonlog

$ touch internal/jsonlog/jsonlog.go

And then add the following code:

File: internal/jsonlog/jsonlog.go

package jsonlog

import (

 "encoding/json"

 "io"

 "os"

 "runtime/debug"

 "sync"

 "time"

)

// Define a Level type to represent the severity level for a log entry.

type Level int8

// Initialize constants which represent a specific severity level. We use the iota

// keyword as a shortcut to assign successive integer values to the constants.

const (

 LevelInfo Level = iota // Has the value 0.

 LevelError // Has the value 1.

 LevelFatal // Has the value 2.

 LevelOff // Has the value 3.

)

// Return a human-friendly string for the severity level.

func (l Level) String() string {

 switch l {

 case LevelInfo:

 return "INFO"

 case LevelError:

 return "ERROR"

 case LevelFatal:

 return "FATAL"

 default:

 return ""

 }

}

// Define a custom Logger type. This holds the output destination that the log entries

// will be written to, the minimum severity level that log entries will be written for,

// plus a mutex for coordinating the writes.

type Logger struct {

 out io.Writer

 minLevel Level

 mu sync.Mutex

}

// Return a new Logger instance which writes log entries at or above a minimum severity

// level to a specific output destination.

func New(out io.Writer, minLevel Level) *Logger {

 return &Logger{

 out: out,

 minLevel: minLevel,

 }

}

// Declare some helper methods for writing log entries at the different levels. Notice

// that these all accept a map as the second parameter which can contain any arbitrary

// 'properties' that you want to appear in the log entry.

func (l *Logger) PrintInfo(message string, properties map[string]string) {

 l.print(LevelInfo, message, properties)

}

func (l *Logger) PrintError(err error, properties map[string]string) {

 l.print(LevelError, err.Error(), properties)

}

func (l *Logger) PrintFatal(err error, properties map[string]string) {

 l.print(LevelFatal, err.Error(), properties)

 os.Exit(1) // For entries at the FATAL level, we also terminate the application.

}

// Print is an internal method for writing the log entry.

func (l *Logger) print(level Level, message string, properties map[string]string) (int, error) {

 // If the severity level of the log entry is below the minimum severity for the

 // logger, then return with no further action.

 if level < l.minLevel {

 return 0, nil

 return 0, nil

 }

 // Declare an anonymous struct holding the data for the log entry.

 aux := struct {

 Level string `json:"level"`

 Time string `json:"time"`

 Message string `json:"message"`

 Properties map[string]string `json:"properties,omitempty"`

 Trace string `json:"trace,omitempty"`

 }{

 Level: level.String(),

 Time: time.Now().UTC().Format(time.RFC3339),

 Message: message,

 Properties: properties,

 }

 // Include a stack trace for entries at the ERROR and FATAL levels.

 if level >= LevelError {

 aux.Trace = string(debug.Stack())

 }

 // Declare a line variable for holding the actual log entry text.

 var line []byte

 // Marshal the anonymous struct to JSON and store it in the line variable. If there

 // was a problem creating the JSON, set the contents of the log entry to be that

 // plain-text error message instead.

 line, err := json.Marshal(aux)

 if err != nil {

 line = []byte(LevelError.String() + ": unable to marshal log message:" + err.Error())

 }

 // Lock the mutex so that no two writes to the output destination cannot happen

 // concurrently. If we don't do this, it's possible that the text for two or more

 // log entries will be intermingled in the output.

 l.mu.Lock()

 defer l.mu.Unlock()

 // Write the log entry followed by a newline.

 return l.out.Write(append(line, '\n'))

}

// We also implement a Write() method on our Logger type so that it satisfies the

// io.Writer interface. This writes a log entry at the ERROR level with no additional

// properties.

func (l *Logger) Write(message []byte) (n int, err error) {

 return l.print(LevelError, string(message), nil)

}

Note: If you want, you could extend this code to support additional severity levels

such as DEBUG and WARNING .

Essentially, our Logger type is a fairly thin wrapper around an io.Writer . We have some

helper methods like PrintInfo() and PrintError() which accept some data for the log

entry, encode this data to JSON, and then write it to the io.Writer .

The two most interesting things to point out in this code are our use of the iota

https://stackoverflow.com/a/2031209
https://golang.org/pkg/builtin/#pkg-constants

enumerator to create the log levels and a sync.Mutex to coordinate the writes.

You can use iota to easily assign successive integer values so a set of integer constants. It

starts at zero, and increments by 1 for every constant declaration, resetting to 0 when the

word const appears in the code again. The way that we’ve used this means that each of our

severity levels has an integer value, with the more severe levels having a higher value .

We’re also using a sync.Mutex (a mutual exclusion lock) to prevent our Logger instance

making multiple writes concurrently. Without this mutex lock, it’s possible that the content

of multiple log entries would be written at exactly the same time and be mixed up in the

output, rather than each entry being written in full on its own line.

Important: How mutexes work, and how to use them, can be quite confusing if you

haven’t encountered them before and it’s impossible to fully explain in a few short

sentences. I’ve written a much more detailed article — Understanding Mutexes —

which provides a proper explanation, and if you’re not already confident with mutexes

I highly recommend reading this before you continue.

Now that’s in place, let’s update our cmd/api/main.go file to create a new Logger instance

and then use it in our code. We’ll also add it to our application struct, so that it’s available

as a dependency to all our handlers and helpers.

Like so:

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "flag"

 "fmt"

 "net/http"

 "os"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog" // New import

 _ "github.com/lib/pq"

)

...

// Change the logger field to have the type *jsonlog.Logger, instead of

// *log.Logger.

type application struct {

 config config

 logger *jsonlog.Logger

https://golang.org/pkg/sync/#Mutex
https://golang.org/pkg/sync/#Mutex
https://www.alexedwards.net/blog/understanding-mutexes

 logger *jsonlog.Logger

 models data.Models

}

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.Parse()

 // Initialize a new jsonlog.Logger which writes any messages *at or above* the INFO

 // severity level to the standard out stream.

 logger := jsonlog.New(os.Stdout, jsonlog.LevelInfo)

 db, err := openDB(cfg)

 if err != nil {

 // Use the PrintFatal() method to write a log entry containing the error at the

 // FATAL level and exit. We have no additional properties to include in the log

 // entry, so we pass nil as the second parameter.

 logger.PrintFatal(err, nil)

 }

 defer db.Close()

 // Likewise use the PrintInfo() method to write a message at the INFO level.

 logger.PrintInfo("database connection pool established", nil)

 app := &application{

 config: cfg,

 logger: logger,

 models: data.NewModels(db),

 }

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", cfg.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 // Again, we use the PrintInfo() method to write a "starting server" message at the

 // INFO level. But this time we pass a map containing additional properties (the

 // operating environment and server address) as the final parameter.

 logger.PrintInfo("starting server", map[string]string{

 "addr": srv.Addr,

 "env": cfg.env,

 })

 err = srv.ListenAndServe()

 // Use the PrintFatal() method to log the error and exit.

 logger.PrintFatal(err, nil)

}

...

We’ll also need to update the logError() helper in our cmd/api/errors.go file to use our

new Logger instance. One of the nice things here is that it’s simple to include additional

information as properties when logging the error.

If you’re following along, go ahead and update the logError() method so that it records

the request URL and method alongside the error message. Like so:

File: cmd/api/errors.go

package main

...

func (app *application) logError(r *http.Request, err error) {

 // Use the PrintError() method to log the error message, and include the current

 // request method and URL as properties in the log entry.

 app.logger.PrintError(err, map[string]string{

 "request_method": r.Method,

 "request_url": r.URL.String(),

 })

}

...

At this point, if you restart the application you should now see two INFO level log entries in

JSON format like so:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-10T08:08:36Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-10T08:08:36Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Notice how in the second log entry the additional properties have been included in a nested

JSON object?

If you like, you can also try opening a second terminal window and starting another instance

of the API listening on the same port. This should result in a FATAL log entry and stack trace

being printed, followed by the application immediately exiting. Similar to this:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-10T08:09:53Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-10T08:09:53Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

{"level":"FATAL","time":"2021-04-10T08:09:53Z","message":"listen tcp :4000: bind: address already in use","trace":"..."}

exit status 1

Additional Information

Integration with the http.Server error log

It’s important to be aware that Go’s http.Server may also write its own log messages

relating to things like unrecovered panics, or problems accepting and writing to HTTP

connections.

By default, it writes these messages to the standard logger — which means they will be

written to the standard error stream (instead of standard out like our other log messages),

and they won’t be in our nice new JSON format.

If you want everything logged in one place, in the same format, then that’s obviously a

problem.

Unfortunately, you can’t set http.Server to use our new Logger type directly. Instead, you

will need to leverage the fact that our Logger satisfies the io.Writer interface (thanks to

the Write() method that we added to it), and set http.Server to use a regular log.Logger

instance from the standard library which writes to our own Logger as the target destination.

It’s simpler than it sounds. All you have to do is something like this:

func main() {

 ...

 // Initialize the custom logger.

 logger := jsonlog.New(os.Stdout, jsonlog.LevelInfo)

 ...

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", cfg.port),

 Handler: app.routes(),

 // Create a new Go log.Logger instance with the log.New() function, passing in

 // our custom Logger as the first parameter. The "" and 0 indicate that the

 // log.Logger instance should not use a prefix or any flags.

 ErrorLog: log.New(logger, "", 0),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 ...

}

With that set up, any log messages that http.Server writes will be passed to our

Logger.Write() method, which in turn will output a log entry in JSON format at the ERROR

level.

Third-party logging packages

https://golang.org/pkg/log/#pkg-overview
https://golang.org/pkg/log/#Logger

If you don’t want to implement your own custom logger, like we have in this chapter, then

there is a plethora of third-party packages available which implement structured logging in

JSON (and other) formats.

If I had to recommend one, it would be zerolog. It has a nice interface, and a good range of

customization options. It’s also designed to be very fast and cheap in terms of memory

allocations when writing log entries, so if your application is doing a lot of logging (i.e. more

than just occasional information and error messages) then it may be a sensible choice.

https://github.com/avelino/awesome-go#logging
https://github.com/rs/zerolog

Chapter 10.2.

Panic Recovery

At the moment any panics in our API handlers will be recovered automatically by Go’s

http.Server . This will unwind the stack for the affected goroutine (calling any deferred

functions along the way), close the underlying HTTP connection, and log an error message

and stack trace.

This behavior is OK, but it would be better for the client if we could also send a

500 Internal Server Error response to explain that something has gone wrong — rather

than just closing the HTTP connection with no context.

In Let’s Go we talked through the details of how to do this by creating some middleware to

recover the panic, and it makes sense to do the same thing again here.

If you’re following along, go ahead and create a cmd/api/middleware.go file:

$ touch cmd/api/middleware.go

And inside that file add a new recoverPanic() middleware:

File: cmd/api/middleware.go

package main

import (

 "fmt"

 "net/http"

)

func (app *application) recoverPanic(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Create a deferred function (which will always be run in the event of a panic

 // as Go unwinds the stack).

 defer func() {

 // Use the builtin recover function to check if there has been a panic or

 // not.

 if err := recover(); err != nil {

 // If there was a panic, set a "Connection: close" header on the

 // response. This acts as a trigger to make Go's HTTP server

 // automatically close the current connection after a response has been

 // sent.

 w.Header().Set("Connection", "close")

 // The value returned by recover() has the type interface{}, so we use

 // fmt.Errorf() to normalize it into an error and call our

 // serverErrorResponse() helper. In turn, this will log the error using

 // our custom Logger type at the ERROR level and send the client a 500

 // Internal Server Error response.

 app.serverErrorResponse(w, r, fmt.Errorf("%s", err))

 }

 }()

 next.ServeHTTP(w, r)

 })

}

Once that’s done, we need to update our cmd/api/routes.go file so that the

recoverPanic() middleware wraps our router. This will ensure that the middleware runs for

every one of our API endpoints.

File: cmd/api/routes.go

package main

...

// Update the routes() method to return a http.Handler instead of a *httprouter.Router.

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 // Wrap the router with the panic recovery middleware.

 return app.recoverPanic(router)

}

Now that’s in place, if there is a panic in one of our API handlers the recoverPanic()

middleware will recover it and call our regular app.serverErrorResponse() helper. In turn,

that will log the error using our custom Logger and send the client a nice

500 Internal Server Error response with a JSON body.

Additional Information

Panic recovery in other goroutines

It’s really important to realize that our middleware will only recover panics that happen in

the same goroutine that executed the recoverPanic() middleware.

If, for example, you have a handler which spins up another goroutine (e.g. to do some

background processing), then any panics that happen in the background goroutine will not

be recovered — not by the recoverPanic() middleware… and not by the panic recovery

built into http.Server . These panics will cause your application to exit and bring down the

server.

So, if you are spinning up additional goroutines from within your handlers and there is any

chance of a panic, you must make sure that you recover any panics from within those

goroutines too.

We’ll look at this topic in more detail later in the book, and demonstrate how to deal with it

when we use a background goroutine to send welcome emails to our API users.

Chapter 11.

Rate Limiting

If you’re building an API for public use, then it’s quite likely that you’ll want to implement

some form of rate limiting to prevent clients from making too many requests too quickly, and

putting excessive strain on your server.

In this section of the book we’re going to create some middleware to help with that.

Essentially, we want this middleware to check how many requests have been received in

the last ‘N’ seconds and — if there have been too many — then it should send the client a

429 Too Many Requests response. We’ll position this middleware before our main

application handlers, so that it carries out this check before we do any expensive processing

like decoding a JSON request body or querying our database.

You’ll learn:

About the principles behind token-bucket rate-limiter algorithms and how we can apply

them in the context of an API or web application.

How to create middleware to rate-limit requests to your API endpoints, first by making a

single rate global limiter, then extending it to support per-client limiting based on IP

address.

How to make rate limiter behavior configurable at runtime, including disabling the rate

limiter altogether for testing purposes.

Chapter 11.1.

Global Rate Limiting

Let’s build things up slowly and start by creating a single global rate limiter for our

application. This will consider all the requests that our API receives (rather than having

separate rate limiters for every individual client).

Instead of writing our own rate-limiting logic from scratch, which would be quite complex

and time-consuming, we can leverage the x/time/rate package to help us here. This

provides a tried-and-tested implementation of a token bucket rate limiter.

If you’re following along, please go ahead and download the latest version of this package

like so:

$ go get golang.org/x/time/rate@latest

go: downloading golang.org/x/time v0.0.0-20210220033141-f8bda1e9f3ba

go: added golang.org/x/time v0.0.0-20210220033141-f8bda1e9f3ba

Before we start writing any code, let’s take a moment to explain how token-bucket rate

limiters work. The description from the official x/time/rate documentation says:

A Limiter controls how frequently events are allowed to happen. It implements a “token

bucket” of size b , initially full and refilled at rate r tokens per second.

Putting that into the context of our API application…

We will have a bucket that starts with b tokens in it.

Each time we receive a HTTP request, we will remove one token from the bucket.

Every 1/r seconds, a token is added back to the bucket — up to a maximum of b total

tokens.

If we receive a HTTP request and the bucket is empty, then we should return a

429 Too Many Requests response.

In practice this means that our application would allow a maximum ‘burst’ of b HTTP

requests in quick succession, but over time it would allow an average of r requests per

second.

In order to create a token bucket rate limiter from x/time/rate , we will need to use the

NewLimiter() function. This has a signature which looks like this:

https://pkg.go.dev/golang.org/x/time/rate
https://en.wikipedia.org/wiki/Token_bucket#Algorithm
https://pkg.go.dev/golang.org/x/time/rate#NewLimiter

// Note that the Limit type is an 'alias' for float64.

func NewLimiter(r Limit, b int) *Limiter

So if we want to create a rate limiter which allows an average of 2 requests per second, with

a maximum of 4 requests in a single ‘burst’, we could do so with the following code:

// Allow 2 requests per second, with a maximum of 4 requests in a burst.

limiter := rate.NewLimiter(2, 4)

Enforcing a global rate limit

OK, with that high-level explanation out of the way, let’s jump into some code and see how

this works in practice.

Once of the nice things about the middleware pattern that we are using is that it is

straightforward to include ‘initialization’ code which only runs once when we wrap

something with the middleware, rather than running on every request that the middleware

handles.

func (app *application) exampleMiddleware(next http.Handler) http.Handler {

 // Any code here will run only once, when we wrap something with the middleware.

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Any code here will run for every request that the middleware handles.

 next.ServeHTTP(w, r)

 })

}

In our case, we’ll a new make a rateLimit() middleware method which creates a new rate

limiter as part of the ‘initialization’ code, and then uses this rate limiter for every request

that it subsequently handlers.

If you’re following along, open up the cmd/api/middleware.go file and create the

middleware like so:

File: cmd/api/middleware.go

package main

import (

 "fmt"

 "net/http"

 "golang.org/x/time/rate" // New import

)

...

func (app *application) rateLimit(next http.Handler) http.Handler {

 // Initialize a new rate limiter which allows an average of 2 requests per second,

 // with a maximum of 4 requests in a single ‘burst’.

 limiter := rate.NewLimiter(2, 4)

 // The function we are returning is a closure, which 'closes over' the limiter

 // variable.

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Call limiter.Allow() to see if the request is permitted, and if it's not,

 // then we call the rateLimitExceededResponse() helper to return a 429 Too Many

 // Requests response (we will create this helper in a minute).

 if !limiter.Allow() {

 app.rateLimitExceededResponse(w, r)

 return

 }

 next.ServeHTTP(w, r)

 })

}

In this code, whenever we call the Allow() method on the rate limiter exactly one token will

be consumed from the bucket. If there are no tokens left in the bucket, then Allow() will

return false and that acts as the trigger for us send the client a 429 Too Many Requests

response.

It’s also important to note that the code behind the Allow() method is protected by a

mutex and is safe for concurrent use.

Let’s now go to our cmd/api/errors.go file and create the rateLimitExceededResponse()

helper. Like so:

File: cmd/api/errors.go

package main

...

func (app *application) rateLimitExceededResponse(w http.ResponseWriter, r *http.Request) {

 message := "rate limit exceeded"

 app.errorResponse(w, r, http.StatusTooManyRequests, message)

}

Then, lastly, in the cmd/api/routes.go file we want to add the rateLimit() middleware to

our middleware chain. This should come after our panic recovery middleware (so that any

panics in rateLimit() are recovered), but otherwise we want it to be used as early as

possible to prevent unnecessary work for our server.

Go ahead and update the file accordingly:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 // Wrap the router with the rateLimit() middleware.

 return app.recoverPanic(app.rateLimit(router))

}

Now we should be ready to try this out!

Restart the API, then in another terminal window execute the following command to issue a

batch of 6 requests to our GET /v1/healthcheck endpoint in quick succession. You should

get responses which look like this:

$ for i in {1..6}; do curl http://localhost:4000/v1/healthcheck; done

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "error": "rate limit exceeded"

}

{

 "error": "rate limit exceeded"

}

We can see from this that the first 4 requests succeed, due to our limiter being set up to

permit a ‘burst’ of 4 requests in quick succession. But once those 4 requests were used up,

the tokens in the bucket ran out and our API began to return the "rate limit exceeded"

error response instead.

If you wait a second and re-run this command, you should find that some requests in the

second batch succeed again, due to the token bucket being refilled at the rate of two

tokens every second.

Chapter 11.2.

IP-based Rate Limiting

Using a global rate limiter can be useful when you want to enforce a strict limit on the total

rate of requests to your API, and you don’t care where the requests are coming from. But it’s

generally more common to want a separate rate limiter for each client, so that one bad

client making too many requests doesn’t affect all the others.

A conceptually straightforward way to implement this is to create an in-memory map of rate

limiters, using the IP address for each client as the map key.

Each time a new client makes a request to our API, we will initialize a new rate limiter and

add it to the map. For any subsequent requests, we will retrieve the client’s rate limiter from

the map and check whether the request is permitted by calling its Allow() method, just like

we did before.

Because we’ll potentially have multiple goroutines accessing the map concurrently, we’ll

need to protect access to the map by using a mutex to prevent race conditions.

If you’re following along, let’s jump into the code and update our rateLimit() middleware

to implement this.

File: cmd/api/middleware.go

package main

import (

 "fmt"

 "net" // New import

 "net/http"

 "sync" // New import

 "golang.org/x/time/rate"

)

...

func (app *application) rateLimit(next http.Handler) http.Handler {

 // Declare a mutex and a map to hold the clients' IP addresses and rate limiters.

 var (

 mu sync.Mutex

 clients = make(map[string]*rate.Limiter)

)

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Extract the client's IP address from the request.

 ip, _, err := net.SplitHostPort(r.RemoteAddr)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Lock the mutex to prevent this code from being executed concurrently.

 mu.Lock()

 // Check to see if the IP address already exists in the map. If it doesn't, then

 // initialize a new rate limiter and add the IP address and limiter to the map.

 if _, found := clients[ip]; !found {

 clients[ip] = rate.NewLimiter(2, 4)

 }

 // Call the Allow() method on the rate limiter for the current IP address. If

 // the request isn't allowed, unlock the mutex and send a 429 Too Many Requests

 // response, just like before.

 if !clients[ip].Allow() {

 mu.Unlock()

 app.rateLimitExceededResponse(w, r)

 return

 }

 // Very importantly, unlock the mutex before calling the next handler in the

 // chain. Notice that we DON'T use defer to unlock the mutex, as that would mean

 // that the mutex isn't unlocked until all the handlers downstream of this

 // middleware have also returned.

 mu.Unlock()

 next.ServeHTTP(w, r)

 })

}

Deleting old limiters

The code above will work, but there’s a slight problem — the clients map will grow

indefinitely, taking up more and more resources with every new IP address and rate limiter

that we add.

To prevent this, let’s update our code so that we also record the last seen time for each

client. We can then run a background goroutine in which we periodically delete any clients

that we haven’t been seen recently from the clients map.

To make this work, we’ll need to create a custom client struct which holds both the rate

limiter and last seen time for each client, and launch the background cleanup goroutine

when initializing the middleware.

Like so:

File: cmd/api/middleware.go

package main

import (

 "fmt"

 "net"

 "net/http"

 "sync"

 "time" // New import

 "golang.org/x/time/rate"

)

...

func (app *application) rateLimit(next http.Handler) http.Handler {

 // Define a client struct to hold the rate limiter and last seen time for each

 // client.

 type client struct {

 limiter *rate.Limiter

 lastSeen time.Time

 }

 var (

 mu sync.Mutex

 // Update the map so the values are pointers to a client struct.

 clients = make(map[string]*client)

)

 // Launch a background goroutine which removes old entries from the clients map once

 // every minute.

 go func() {

 for {

 time.Sleep(time.Minute)

 // Lock the mutex to prevent any rate limiter checks from happening while

 // the cleanup is taking place.

 mu.Lock()

 // Loop through all clients. If they haven't been seen within the last three

 // minutes, delete the corresponding entry from the map.

 for ip, client := range clients {

 if time.Since(client.lastSeen) > 3*time.Minute {

 if time.Since(client.lastSeen) > 3*time.Minute {

 delete(clients, ip)

 }

 }

 // Importantly, unlock the mutex when the cleanup is complete.

 mu.Unlock()

 }

 }()

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 ip, _, err := net.SplitHostPort(r.RemoteAddr)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 mu.Lock()

 if _, found := clients[ip]; !found {

 // Create and add a new client struct to the map if it doesn't already exist.

 clients[ip] = &client{limiter: rate.NewLimiter(2, 4)}

 }

 // Update the last seen time for the client.

 clients[ip].lastSeen = time.Now()

 if !clients[ip].limiter.Allow() {

 mu.Unlock()

 app.rateLimitExceededResponse(w, r)

 return

 }

 mu.Unlock()

 next.ServeHTTP(w, r)

 })

}

At this point, if you restart the API and try making a batch of requests in quick succession

again, you should find that the rate limiter continues to work correctly from the perspective

of an individual client — just like it did before.

$ for i in {1..6}; do curl http://localhost:4000/v1/healthcheck; done

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "error": "rate limit exceeded"

}

{

 "error": "rate limit exceeded"

}

Additional Information

Distributed applications

Using this pattern for rate-limiting will only work if your API application is running on a

single-machine. If your infrastructure is distributed, with your application running on

multiple servers behind a load balancer, then you’ll need to use an alternative approach.

If you’re using HAProxy or Nginx as a load balancer or reverse proxy, both of these have

built-in functionality for rate limiting that it would probably be sensible to use.

Alternatively, you could use a fast database like Redis to maintain a request count for

clients, running on a server which all your application servers can communicate with.

Chapter 11.3.

Configuring the Rate Limiters

At the moment our requests-per-second and burst values are hard-coded into the

rateLimit() middleware. This is OK, but it would be more flexible if they were configurable

at runtime instead. Likewise, it would be useful to have an easy way to turn off rate limiting

altogether (which is useful when you want to run benchmarks or carry out load testing,

when all requests might be coming from a small number of IP addresses).

To make these things configurable, let’s head back to our cmd/api/main.go file and update

the config struct and command-line flags like so:

File: cmd/api/main.go

package main

...

type config struct {

 port int

 env string

 db struct {

 dsn string

 maxOpenConns int

 maxIdleConns int

 maxIdleTime string

 }

 // Add a new limiter struct containing fields for the requests-per-second and burst

 // values, and a boolean field which we can use to enable/disable rate limiting

 // altogether.

 limiter struct {

 rps float64

 burst int

 enabled bool

 }

}

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 // Create command line flags to read the setting values into the config struct.

 // Notice that we use true as the default for the 'enabled' setting?

 flag.Float64Var(&cfg.limiter.rps, "limiter-rps", 2, "Rate limiter maximum requests per second")

 flag.IntVar(&cfg.limiter.burst, "limiter-burst", 4, "Rate limiter maximum burst")

 flag.BoolVar(&cfg.limiter.enabled, "limiter-enabled", true, "Enable rate limiter")

 flag.Parse()

 ...

}

...

And then let’s update our rateLimit() middleware to use these settings, like so:

File: cmd/api/middleware.go

package main

...

func (app *application) rateLimit(next http.Handler) http.Handler {

 ...

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Only carry out the check if rate limiting is enabled.

 if app.config.limiter.enabled {

 ip, _, err := net.SplitHostPort(r.RemoteAddr)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 mu.Lock()

 if _, found := clients[ip]; !found {

 clients[ip] = &client{

 // Use the requests-per-second and burst values from the config

 // struct.

 limiter: rate.NewLimiter(rate.Limit(app.config.limiter.rps), app.config.limiter.burst),

 }

 }

 clients[ip].lastSeen = time.Now()

 if !clients[ip].limiter.Allow() {

 mu.Unlock()

 app.rateLimitExceededResponse(w, r)

 return

 }

 mu.Unlock()

 }

 next.ServeHTTP(w, r)

 })

}

Once that’s done, let’s try this out by running the API with the -limiter-burst flag and the

burst value reduced to 2:

$ go run ./cmd/api/ -limiter-burst=2

{"level":"INFO","time":"2021-04-10T14:46:35Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-10T14:46:35Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

If you issue a batch of six requests in quick succession again, you should now find that only

the first two succeed:

$ for i in {1..6}; do curl http://localhost:4000/v1/healthcheck; done

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

{

 "error": "rate limit exceeded"

}

{

 "error": "rate limit exceeded"

}

{

 "error": "rate limit exceeded"

}

{

 "error": "rate limit exceeded"

}

Similarly, you can try disabling the rate limiter altogether with the limiter-enabled=false

flag like so:

$ go run ./cmd/api/ -limiter-enabled=false

{"level":"INFO","time":"2021-04-10T14:53:33Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-10T14:53:33Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

And you should find that all requests now complete successfully, no matter how many you

make.

$ for i in {1..6}; do curl http://localhost:4000/v1/healthcheck; done

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

...

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

Chapter 12.

Graceful Shutdown

In this next section of the book we’re going to talk about an important but often overlooked

topic: how to safely stop your running application .

At the moment, when we stop our API application (usually by pressing Ctrl+C) it is

terminated immediately with no opportunity for in-flight HTTP requests to complete. This

isn’t ideal for two reasons:

It means that clients won’t receive responses to their in-flight requests — all they will

experience is a hard closure of the HTTP connection.

Any work being carried out by our handlers may be left in an incomplete state.

We’re going to mitigate these problems by adding graceful shutdown functionality to our

application, so that in-flight HTTP requests have the opportunity to finish being processed

before the application is terminated.

You’ll learn about:

Shutdown signals — what they are, how to send them, and how to listen for them in your

API application.

How to use these signals to trigger a graceful shutdown of the HTTP server using Go’s

Shutdown() method.

https://golang.org/pkg/net/http/#Server.Shutdown

Chapter 12.1.

Sending Shutdown Signals

When our application is running, we can terminate it at any time by sending it a specific

signal. A common way to do this, which you’ve probably been using, is by pressing Ctrl+C

on your keyboard to send an interrupt signal — also known as a SIGINT.

But this isn’t the only type of signal which can stop our application. Some of the other

common ones are:

Signal Description Keyboard shortcut Catchable

SIGINT Interrupt from keyboard Ctrl+C Yes

SIGQUIT Quit from keyboard Ctrl+\ Yes

SIGKILL Kill process (terminate immediately) - No

SIGTERM Terminate process in orderly manner - Yes

It’s important to explain upfront that some signals are catchable and others are not.

Catachable signals can be intercepted by our application and either ignored, or used to

trigger a certain action (such as a graceful shutdown). Other signals, like SIGKILL , are not

catchable and cannot be intercepted.

Let’s take a quick look at these signals in action. If you’re following along, go ahead and

start the API application with the same go run ./cmd/api command as normal:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T07:33:39Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T07:33:39Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Doing this should start a process with the name api on your machine. You can use the

pgrep command to verify that this process exists, like so:

$ pgrep -l api

4414 api

In my case, I can see that the api process is running and has the process ID 4414 (your

process ID will most likely be different).

https://en.wikipedia.org/wiki/Signal_(IPC)#POSIX_signals

Once that’s confirmed, go ahead and try sending a SIGKILL signal to the api process using

the pkill command like so:

$ pkill -SIGKILL api

If you go back to the terminal window that is running the API application, you should see

that it has been terminated and the final line in the output stream is signal: killed .

Similar to this:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T07:33:39Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T07:33:39Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

signal: killed

Feel free to repeat the same process, but sending a SIGTERM signal instead:

$ pkill -SIGTERM api

This time you should see the line signal: terminated at the end of the output, like so:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T07:35:54Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T07:35:54Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

signal: terminated

You can also try sending a SIGQUIT signal — either by pressing Ctrl+\ on your keyboard or

running pkill -SIGQUIT api . This will cause the application to exit with a stack dump,

similar to this:

https://linuxize.com/post/pkill-command-in-linux/

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T07:40:37Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T07:40:37Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

SIGQUIT: quit

PC=0x46ebe1 m=0 sigcode=0

goroutine 0 [idle]:

runtime.futex(0x964870, 0x80, 0x0, 0x0, 0x0, 0x964720, 0x7ffd551034f8, 0x964420, 0x7ffd55103508, 0x40dcbf, ...)

 /usr/local/go/src/runtime/sys_linux_amd64.s:579 +0x21

runtime.futexsleep(0x964870, 0x0, 0xffffffffffffffff)

 /usr/local/go/src/runtime/os_linux.go:44 +0x46

runtime.notesleep(0x964870)

 /usr/local/go/src/runtime/lock_futex.go:159 +0x9f

runtime.mPark()

 /usr/local/go/src/runtime/proc.go:1340 +0x39

runtime.stopm()

 /usr/local/go/src/runtime/proc.go:2257 +0x92

runtime.findrunnable(0xc00002c000, 0x0)

 /usr/local/go/src/runtime/proc.go:2916 +0x72e

runtime.schedule()

 /usr/local/go/src/runtime/proc.go:3125 +0x2d7

runtime.park_m(0xc000000180)

 /usr/local/go/src/runtime/proc.go:3274 +0x9d

runtime.mcall(0x0)

 /usr/local/go/src/runtime/asm_amd64.s:327 +0x5b

...

We can see that these signals are effective in terminating our application — but the problem

we have is that they all cause our application to exit immediately.

Fortunately, Go provides tools in the os/signals package that we can use to intercept

catchable signals and trigger a graceful shutdown of our application. We’ll look at how to

do that in the next chapter.

https://golang.org/pkg/os/signal/

Chapter 12.2.

Intercepting Shutdown Signals

Before we get into the nuts and bolts of how to intercept signals, let’s move the code

related to our http.Server out of the main() function and into a separate file. This will give

us a cleaner, clearer, starting point from which we can build up the graceful shutdown

functionality.

If you’re following along, create a new cmd/api/server.go file:

$ touch cmd/api/server.go

And then add a new app.serve() method which initializes and starts our http.Server , like

so:

File: cmd/api/server.go

package main

import (

 "fmt"

 "net/http"

 "time"

)

func (app *application) serve() error {

 // Declare a HTTP server using the same settings as in our main() function.

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", app.config.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 // Likewise log a "starting server" message.

 app.logger.PrintInfo("starting server", map[string]string{

 "addr": srv.Addr,

 "env": app.config.env,

 })

 // Start the server as normal, returning any error.

 return srv.ListenAndServe()

}

With that in place, we can simplify our main() function to use this new app.serve() method

like so:

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "flag"

 "os"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 _ "github.com/lib/pq"

)

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.Float64Var(&cfg.limiter.rps, "limiter-rps", 2, "Rate limiter maximum requests per second")

 flag.IntVar(&cfg.limiter.burst, "limiter-burst", 4, "Rate limiter maximum burst")

 flag.BoolVar(&cfg.limiter.enabled, "limiter-enabled", true, "Enable rate limiter")

 flag.Parse()

 logger := jsonlog.New(os.Stdout, jsonlog.LevelInfo)

 db, err := openDB(cfg)

 if err != nil {

 logger.PrintFatal(err, nil)

 }

 defer db.Close()

 logger.PrintInfo("database connection pool established", nil)

 app := &application{

 config: cfg,

 logger: logger,

 models: data.NewModels(db),

 }

 // Call app.serve() to start the server.

 err = app.serve()

 if err != nil {

 logger.PrintFatal(err, nil)

 }

}

...

Catching SIGINT and SIGTERM signals

The next thing that we want to do is update our application so that it ‘catches’ any SIGINT

and SIGTERM signals. As we mentioned above, SIGKILL signals are not catchable (and will

always cause the application to terminate immediately), and we’ll leave SIGQUIT with its

default behavior (as it’s handy if you want to execute a non-graceful shutdown via a

keyboard shortcut).

To catch the signals, we’ll need to spin up a background goroutine which runs for the

lifetime of our application. In this background goroutine, we can use the signal.Notify()

function to listen for specific signals and relay them to a channel for further processing.

I’ll demonstrate.

Open up the cmd/api/server.go file and update it like so:

https://godoc.org/os/signal#Notify

File: cmd/api/server.go

package main

import (

 "fmt"

 "net/http"

 "os" // New import

 "os/signal" // New import

 "syscall" // New import

 "time"

)

func (app *application) serve() error {

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", app.config.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 // Start a background goroutine.

 go func() {

 // Create a quit channel which carries os.Signal values.

 quit := make(chan os.Signal, 1)

 // Use signal.Notify() to listen for incoming SIGINT and SIGTERM signals and

 // relay them to the quit channel. Any other signals will not be caught by

 // signal.Notify() and will retain their default behavior.

 signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM)

 // Read the signal from the quit channel. This code will block until a signal is

 // received.

 s := <-quit

 // Log a message to say that the signal has been caught. Notice that we also

 // call the String() method on the signal to get the signal name and include it

 // in the log entry properties.

 app.logger.PrintInfo("caught signal", map[string]string{

 "signal": s.String(),

 })

 // Exit the application with a 0 (success) status code.

 os.Exit(0)

 }()

 // Start the server as normal.

 app.logger.PrintInfo("starting server", map[string]string{

 "addr": srv.Addr,

 "env": app.config.env,

 })

 return srv.ListenAndServe()

}

At the moment this new code isn’t doing much — after intercepting the signal, all we do is

log a message and then exit our application. But the important thing is that it demonstrates

the pattern of how to catch specific signals and handle them in your code.

One thing I’d like to quickly emphasize about this: our quit channel is a buffered channel

https://gobyexample.com/channel-buffering

with size 1.

We need to use a buffered channel here because signal.Notify() does not wait for a

receiver to be available when sending a signal to the quit channel. If we had used a regular

(non-buffered) channel here instead, a signal could be ‘missed’ if our quit channel is not

ready to receive at the exact moment that the signal is sent. By using a buffered channel, we

avoid this problem and ensure that we never miss a signal.

OK, let’s try this out.

First, run the application and then press Ctrl+C on your keyboard to send a SIGINT signal.

You should see a "caught signal" log entry with "signal":"interrupt" in the properties,

similar to this:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T10:42:28Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T10:42:28Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

^C{"level":"INFO","time":"2021-04-11T10:42:29Z","message":"caught signal","properties":{"signal":"interrupt"}}

You can also restart the application and try sending a SIGTERM signal. This time the log entry

properties should contain "signal":"terminated" , like so:

$ pkill -SIGTERM api

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T10:42:46Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T10:42:46Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

{"level":"INFO","time":"2021-04-11T10:42:51Z","message":"caught signal","properties":{"signal":"terminated"}}

In contrast, sending a SIGKILL or SIGQUIT signal will continue to cause the application to

exit immediately without the signal being caught, so you shouldn’t see a "caught signal"

message in the logs. For example, if you restart the application and issue a SIGKILL…

$ pkill -SIGKILL api

The application should be terminated immediately, and the logs will look like this:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T10:43:12Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T10:43:12Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

signal: killed

https://github.com/golang/go/blob/bc7e4d9257693413d57ad467814ab71f1585a155/src/os/signal/signal.go#L243

Chapter 12.3.

Executing the Shutdown

Intercepting the signals is all well and good, but it’s not very useful until we do something

with them! In this chapter, we’re going to update our application so that the SIGINT and

SIGTERM signals we intercept trigger a graceful shutdown of our API.

Specifically, after receiving one of these signals we will call the Shutdown() method on our

HTTP server. The official documentation describes this as follows:

Shutdown gracefully shuts down the server without interrupting any active connections.

Shutdown works by first closing all open listeners, then closing all idle connections, and

then waiting indefinitely for connections to return to idle and then shut down.

The pattern to implement this in practice is difficult to describe with words, so let’s jump

into the code and talk through the details as we go along.

File: cmd/api/server.go

package main

import (

 "context" // New import

 "errors" // New import

 "fmt"

 "net/http"

 "os"

 "os/signal"

 "syscall"

 "time"

)

func (app *application) serve() error {

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", app.config.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 // Create a shutdownError channel. We will use this to receive any errors returned

 // by the graceful Shutdown() function.

 shutdownError := make(chan error)

 go func() {

 // Intercept the signals, as before.

 quit := make(chan os.Signal, 1)

 signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM)

 s := <-quit

 // Update the log entry to say "shutting down server" instead of "caught signal".

 app.logger.PrintInfo("shutting down server", map[string]string{

https://golang.org/pkg/net/http/#Server.Shutdown

 app.logger.PrintInfo("shutting down server", map[string]string{

 "signal": s.String(),

 })

 // Create a context with a 5-second timeout.

 ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)

 defer cancel()

 // Call Shutdown() on our server, passing in the context we just made.

 // Shutdown() will return nil if the graceful shutdown was successful, or an

 // error (which may happen because of a problem closing the listeners, or

 // because the shutdown didn't complete before the 5-second context deadline is

 // hit). We relay this return value to the shutdownError channel.

 shutdownError <- srv.Shutdown(ctx)

 }()

 app.logger.PrintInfo("starting server", map[string]string{

 "addr": srv.Addr,

 "env": app.config.env,

 })

 // Calling Shutdown() on our server will cause ListenAndServe() to immediately

 // return a http.ErrServerClosed error. So if we see this error, it is actually a

 // good thing and an indication that the graceful shutdown has started. So we check

 // specifically for this, only returning the error if it is NOT http.ErrServerClosed.

 err := srv.ListenAndServe()

 if !errors.Is(err, http.ErrServerClosed) {

 return err

 }

 // Otherwise, we wait to receive the return value from Shutdown() on the

 // shutdownError channel. If return value is an error, we know that there was a

 // problem with the graceful shutdown and we return the error.

 err = <-shutdownError

 if err != nil {

 return err

 }

 // At this point we know that the graceful shutdown completed successfully and we

 // log a "stopped server" message.

 app.logger.PrintInfo("stopped server", map[string]string{

 "addr": srv.Addr,

 })

 return nil

}

At first glance this code might seem a bit complex, but at a high-level what it’s doing can be

summarized very simply: when we receive a SIGINT or SIGTERM signal, we instruct our server

to stop accepting any new HTTP requests, and give any in-flight requests a ‘grace period’ of 5

seconds to complete before the application is terminated.

But there are a couple of important details to be aware of:

The Shutdown() method does not wait for any background tasks to complete, nor does it

close hijacked long-lived connections like WebSockets. Instead, you will need to

implement your own logic to coordinate a graceful shutdown of these things. We’ll look

at some techniques for doing this later in the book.

There is an open bug which effectively limits the grace period to 5 seconds for HTTP/2

connections. HTTP/2 is automatically supported for HTTPS connections in Go, so if

you’re planning to handle HTTPS connections from your Go application then (for now) it

is sensible to use a sub 5-second grace period for your context timeout. If it wasn’t for

this bug, I would suggest using a longer grace period in this chapter (around 20 seconds).

But those things aside, this should now be working nicely in our application.

To help demonstrate the graceful shutdown functionality, you can add a 4 second sleep

delay to the healthcheckHandler method, like so:

File: cmd/api/healthcheck.go

package main

import (

 "net/http"

 "time" // New import

)

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 env := envelope{

 "status": "available",

 "system_info": map[string]string{

 "environment": app.config.env,

 "version": version,

 },

 }

 // Add a 4 second delay.

 time.Sleep(4 * time.Second)

 err := app.writeJSON(w, http.StatusOK, env, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Then start the API, and in another terminal window issue a request to the healthcheck

endpoint followed by a SIGTERM signal.

$ curl localhost:4000/v1/healthcheck & pkill -SIGTERM api

In the logs for the server, you should immediately see a "shutting down server" message

following the SIGTERM signal, similar to this:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T10:54:55Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T10:54:55Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

{"level":"INFO","time":"2021-04-11T10:55:03Z","message":"shutting down server","properties":{"signal":"terminated"}}

https://github.com/golang/go/issues/33191

Then after a 4 second delay for the in-flight request to complete, our healthcheckHandler

should return the JSON response as normal and you should see that our API has logged a

final "stopped server" message before exiting cleanly:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-11T10:54:55Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-11T10:54:55Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

{"level":"INFO","time":"2021-04-11T10:55:03Z","message":"shutting down server","properties":{"signal":"terminated"}}

{"level":"INFO","time":"2021-04-11T10:55:07Z","message":"stopped server","properties":{"addr":":4000"}}

Notice the 4 second delay between the "shutting down server" and "stopped server"

messages in the timestamps above?

So this is working really well now. Any time that we want to gracefully shutdown our

application, we can do so by sending a SIGINT (Ctrl+C) or SIGTERM signal. So long as no in-

flight requests take more than 5 seconds to complete, our handlers will have time to

complete their work and our clients will receive a proper HTTP response. And if we ever

want to exit immediately, without a graceful shutdown, we can still do so by sending a

SIGQUIT (Ctrl+\) or SIGKILL signal instead.

Lastly, if you’re following along, please revert healthcheckHandler to remove the 4 second

sleep. Like so:

File: cmd/api/healthcheck.go

package main

import (

 "net/http"

)

func (app *application) healthcheckHandler(w http.ResponseWriter, r *http.Request) {

 env := envelope{

 "status": "available",

 "system_info": map[string]string{

 "environment": app.config.env,

 "version": version,

 },

 }

 err := app.writeJSON(w, http.StatusOK, env, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Chapter 13.

User Model Setup and Registration

In the upcoming sections of this book, we’re going to shift our focus towards users:

registering them, activating them, authenticating them, and restricting access to our API

endpoints depending on the permissions that they have.

But before we can do these things, we need to lay some groundwork. Specifically we need

to:

Create a new users table in PostgreSQL for storing our user data.

Create a UserModel which contains the code for interacting with our users table,

validating user data, and hashing user passwords.

Develop a POST /v1/users endpoint which can be used to register new users in our

application.

Chapter 13.1.

Setting up the Users Database Table

Let’s begin by creating a new users table in our database. If you’re following along, use the

migrate tool to generate a new pair of SQL migration files:

$ migrate create -seq -ext=.sql -dir=./migrations create_users_table

/home/alex/Projects/greenlight/migrations/000004_create_users_table.up.sql

/home/alex/Projects/greenlight/migrations/000004_create_users_table.down.sql

And then add the following SQL statements to the ‘up’ and ‘down’ files respectively:

File: migrations/000004_create_users_table.up.sql

CREATE TABLE IF NOT EXISTS users (

 id bigserial PRIMARY KEY,

 created_at timestamp(0) with time zone NOT NULL DEFAULT NOW(),

 name text NOT NULL,

 email citext UNIQUE NOT NULL,

 password_hash bytea NOT NULL,

 activated bool NOT NULL,

 version integer NOT NULL DEFAULT 1

);

File: migrations/000004_create_users_table.down.sql

DROP TABLE IF EXISTS users;

There are a few interesting about this CREATE TABLE statement that I’d like to quickly

explain:

1. The email column has the type citext (case-insensitive text). This type stores text data

exactly as it is inputted — without changing the case in any way — but comparisons

against the data are always case-insensitive… including lookups on associated indexes.

2. We’ve also got a UNIQUE constraint on the email column. Combined with the citext

type, this means that no two rows in the database can have the same email value —

even if they have different cases. This essentially enforces a database-level business rule

that no two users should exist with the same email address.

3. The password_hash column has the type bytea (binary string). In this column we’ll store

a one-way hash of the user’s password generated using bcrypt — not the plaintext

https://www.postgresql.org/docs/13/citext.html
https://www.postgresql.org/docs/13/datatype-binary.html
https://en.wikipedia.org/wiki/Bcrypt

password itself.

4. The activated column stores a boolean value to denote whether a user account is

‘active’ or not. We will set this to false by default when creating a new user, and require

the user to confirm their email address before we set it to true.

5. We’ve also included a version number column, which we will increment each time a

user record is updated. This will allow us to use optimistic locking to prevent race

conditions when updating user records, in the same way that we did with movies earlier

in the book.

OK, let’s execute the ‘up’ migration:

$ migrate -path=./migrations -database=$GREENLIGHT_DB_DSN up

4/u create_users_table (62.43511ms)

And then you should be able to connect to your database and verify that the new users

table has been created, as expected:

$ psql $GREENLIGHT_DB_DSN

psql (13.2 (Ubuntu 13.2-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> \d users

 Table "public.users"

 Column | Type | Collation | Nullable | Default

---------------+-----------------------------+-----------+----------+-----------------------------------

 id | bigint | | not null | nextval('users_id_seq'::regclass)

 created_at | timestamp(0) with time zone | | not null | now()

 name | text | | not null |

 email | citext | | not null |

 password_hash | bytea | | not null |

 activated | boolean | | not null |

 version | integer | | not null | 1

Indexes:

 "users_pkey" PRIMARY KEY, btree (id)

 "users_email_key" UNIQUE CONSTRAINT, btree (email)

One important thing to point out here: the UNIQUE constraint on our email column has

automatically been assigned the name users_email_key . This will become relevant in the

next chapter, when we need to handle any errors caused by a user registering twice with the

same email address.

Chapter 13.2.

Setting up the Users Model

Now that our database table is set up, we’re going to update our internal/data package to

contain a new User struct (to represent the data for an individual user), and create a

UserModel type (which we will use to perform various SQL queries against our users table).

If you’re following along, go ahead and create an internal/data/users.go file to hold this

new code:

$ touch internal/data/users.go

Let’s start by defining the User struct, along with some helper methods for setting and

verifying the password for a user.

As we mentioned earlier, in this project we will use bcrypt to hash user passwords before

storing them in the database. So the first thing we need to do is install the

golang.org/x/crypto/bcrypt package, which provides an easy-to-use Go implementation

of the bcrypt algorithm.

$ go get golang.org/x/crypto/bcrypt@latest

go: downloading golang.org/x/crypto v0.0.0-20210314154223-e6e6c4f2bb5b

go get: added golang.org/x/crypto v0.0.0-20210314154223-e6e6c4f2bb5b

Then in the internal/data/users.go file, go ahead and create the User struct and helper

methods like so:

https://pkg.go.dev/golang.org/x/crypto/bcrypt

File: internal/data/users.go

package data

import (

 "errors"

 "time"

 "golang.org/x/crypto/bcrypt"

)

// Define a User struct to represent an individual user. Importantly, notice how we are

// using the json:"-" struct tag to prevent the Password and Version fields appearing in

// any output when we encode it to JSON. Also notice that the Password field uses the

// custom password type defined below.

type User struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"created_at"`

 Name string `json:"name"`

 Email string `json:"email"`

 Password password `json:"-"`

 Activated bool `json:"activated"`

 Version int `json:"-"`

}

// Create a custom password type which is a struct containing the plaintext and hashed

// versions of the password for a user. The plaintext field is a *pointer* to a string,

// so that we're able to distinguish between a plaintext password not being present in

// the struct at all, versus a plaintext password which is the empty string "".

type password struct {

 plaintext *string

 hash []byte

}

// The Set() method calculates the bcrypt hash of a plaintext password, and stores both

// the hash and the plaintext versions in the struct.

func (p *password) Set(plaintextPassword string) error {

 hash, err := bcrypt.GenerateFromPassword([]byte(plaintextPassword), 12)

 if err != nil {

 return err

 }

 p.plaintext = &plaintextPassword

 p.hash = hash

 return nil

}

// The Matches() method checks whether the provided plaintext password matches the

// hashed password stored in the struct, returning true if it matches and false

// otherwise.

func (p *password) Matches(plaintextPassword string) (bool, error) {

 err := bcrypt.CompareHashAndPassword(p.hash, []byte(plaintextPassword))

 if err != nil {

 switch {

 case errors.Is(err, bcrypt.ErrMismatchedHashAndPassword):

 return false, nil

 default:

 return false, err

 }

 }

 return true, nil

}

We explained how the golang.org/x/crypto/bcrypt package works previously in Let’s Go,

but let’s quickly recap the key points:

The bcrypt.GenerateFromPassword() function generates a bcrypt hash of a password

using a specific cost parameter (in the code above, we use a cost of 12). The higher the

cost, the slower and more computationally expensive it is to generate the hash. There is

a balance to be struck here — we the cost to be prohibitively expensive for attackers, but

also not so slow that it harms the user experience of our API. This function returns a hash

string in the format:

$2b$[cost]$[22-character salt][31-character hash]

The bcrypt.CompareHashAndPassword() function works by re-hashing the provided

password using the same salt and cost parameter that is in the hash string that we’re

comparing against. The re-hashed value is then checked against the original hash string

using the subtle.ConstantTimeCompare() function, which performs a comparison in

constant time (to mitigate the risk of a timing attack). If they don’t match, then it will

return a bcrypt.ErrMismatchedHashAndPassword error.

Adding Validation Checks

Let’s move on and create some validation checks for our User struct. Specifically, we want

to:

Check that the Name field is not the empty string, and the value is less than 500 bytes

long.

Check that the Email field is not the empty string, and that it matches the regular

expression for email addresses that we added in our validator package earlier in the

book.

If the Password.plaintext field is not nil , then check that the value is not the empty

string and is between 8 and 72 bytes long.

Check that the Password.hash field is never nil .

https://pkg.go.dev/golang.org/x/crypto/bcrypt#GenerateFromPassword
https://pkg.go.dev/golang.org/x/crypto/bcrypt#CompareHashAndPassword
https://golang.org/pkg/crypto/subtle/#ConstantTimeCompare

Note: When creating a bcrypt hash the input is truncated to a maximum of 72 bytes.

So, if someone uses a very long password, it means that any bytes after that would

effectively be ignored when creating the hash. To avoid any confusion for users, we’ll

simply enforce a hard maximum length of 72 bytes on the password in our validation

checks. If you don’t want to enforce a maximum length, you could pre-hash the

password instead.

Additionally, we’re going to want to use the email and plaintext password validation checks

again independently later in the book, so we’ll define those checks in some standalone

functions.

Go ahead and update the internal/data/users.go file like so:

https://en.wikipedia.org/wiki/Bcrypt#Maximum_password_length
https://security.stackexchange.com/questions/61595/is-it-good-practice-to-sha512-passwords-prior-to-passing-them-to-bcrypt

File: internal/data/users.go

package data

import (

 "errors"

 "time"

 "greenlight.alexedwards.net/internal/validator" // New import

 "golang.org/x/crypto/bcrypt"

)

...

func ValidateEmail(v *validator.Validator, email string) {

 v.Check(email != "", "email", "must be provided")

 v.Check(validator.Matches(email, validator.EmailRX), "email", "must be a valid email address")

}

func ValidatePasswordPlaintext(v *validator.Validator, password string) {

 v.Check(password != "", "password", "must be provided")

 v.Check(len(password) >= 8, "password", "must be at least 8 bytes long")

 v.Check(len(password) <= 72, "password", "must not be more than 72 bytes long")

}

func ValidateUser(v *validator.Validator, user *User) {

 v.Check(user.Name != "", "name", "must be provided")

 v.Check(len(user.Name) <= 500, "name", "must not be more than 500 bytes long")

 // Call the standalone ValidateEmail() helper.

 ValidateEmail(v, user.Email)

 // If the plaintext password is not nil, call the standalone

 // ValidatePasswordPlaintext() helper.

 if user.Password.plaintext != nil {

 ValidatePasswordPlaintext(v, *user.Password.plaintext)

 }

 // If the password hash is ever nil, this will be due to a logic error in our

 // codebase (probably because we forgot to set a password for the user). It's a

 // useful sanity check to include here, but it's not a problem with the data

 // provided by the client. So rather than adding an error to the validation map we

 // raise a panic instead.

 if user.Password.hash == nil {

 panic("missing password hash for user")

 }

}

Creating the UserModel

The next step in this process is setting up a UserModel type which isolates the database

interactions with our PostgreSQL users table.

We’ll follow the same pattern here that we used for our MovieModel, and implement the

following three methods:

Insert() to create a new user record in the database.

GetByEmail() to retrieve the data for a user with a specific email address.

Update() to change the data for a specific user.

Open up the internal/data/users.go file again, and add the following code:

File: internal/data/users.go

package data

import (

 "context" // New import

 "database/sql" // New import

 "errors"

 "time"

 "greenlight.alexedwards.net/internal/validator"

 "golang.org/x/crypto/bcrypt"

)

// Define a custom ErrDuplicateEmail error.

var (

 ErrDuplicateEmail = errors.New("duplicate email")

)

...

// Create a UserModel struct which wraps the connection pool.

type UserModel struct {

 DB *sql.DB

}

// Insert a new record in the database for the user. Note that the id, created_at and

// version fields are all automatically generated by our database, so we use the

// RETURNING clause to read them into the User struct after the insert, in the same way

// that we did when creating a movie.

func (m UserModel) Insert(user *User) error {

 query := `

 INSERT INTO users (name, email, password_hash, activated)

 VALUES ($1, $2, $3, $4)

 RETURNING id, created_at, version`

 args := []interface{}{user.Name, user.Email, user.Password.hash, user.Activated}

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // If the table already contains a record with this email address, then when we try

 // to perform the insert there will be a violation of the UNIQUE "users_email_key"

 // constraint that we set up in the previous chapter. We check for this error

 // specifically, and return custom ErrDuplicateEmail error instead.

 err := m.DB.QueryRowContext(ctx, query, args...).Scan(&user.ID, &user.CreatedAt, &user.Version)

 if err != nil {

 switch {

 case err.Error() == `pq: duplicate key value violates unique constraint "users_email_key"`:

 return ErrDuplicateEmail

 default:

 return err

 }

 }

 return nil

}

// Retrieve the User details from the database based on the user's email address.

// Because we have a UNIQUE constraint on the email column, this SQL query will only

// return one record (or none at all, in which case we return a ErrRecordNotFound error).

func (m UserModel) GetByEmail(email string) (*User, error) {

 query := `

 SELECT id, created_at, name, email, password_hash, activated, version

 FROM users

 WHERE email = $1`

 var user User

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 err := m.DB.QueryRowContext(ctx, query, email).Scan(

 &user.ID,

 &user.CreatedAt,

 &user.Name,

 &user.Email,

 &user.Password.hash,

 &user.Activated,

 &user.Version,

)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 return &user, nil

}

// Update the details for a specific user. Notice that we check against the version

// field to help prevent any race conditions during the request cycle, just like we did

// when updating a movie. And we also check for a violation of the "users_email_key"

// constraint when performing the update, just like we did when inserting the user

// record originally.

func (m UserModel) Update(user *User) error {

 query := `

 UPDATE users

 SET name = $1, email = $2, password_hash = $3, activated = $4, version = version + 1

 WHERE id = $5 AND version = $6

 RETURNING version`

 args := []interface{}{

 user.Name,

 user.Email,

 user.Password.hash,

 user.Activated,

 user.ID,

 user.Version,

 }

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 err := m.DB.QueryRowContext(ctx, query, args...).Scan(&user.Version)

 if err != nil {

 switch {

 case err.Error() == `pq: duplicate key value violates unique constraint "users_email_key"`:

 return ErrDuplicateEmail

 return ErrDuplicateEmail

 case errors.Is(err, sql.ErrNoRows):

 return ErrEditConflict

 default:

 return err

 }

 }

 return nil

}

Hopefully that feels nice and straightforward — we’re using the same code patterns that we

did for the CRUD operations on our movies table earlier in the book.

The only difference is that in some of the methods we’re specifically checking for any errors

due to a violation of our unique users_email_key constraint. As we’ll see in the next

chapter, by treating this as a special case we’ll be able to respond to clients with a message

to say that “this email address is already in use” , rather than sending them a

500 Internal Server Error response like we normally would.

To finish all this off, the final thing we need to do is update our internal/data/models.go

file to include the new UserModel in our parent Models struct. Like so:

File: internal/data/models.go

package data

...

type Models struct {

 Movies MovieModel

 Users UserModel // Add a new Users field.

}

func NewModels(db *sql.DB) Models {

 return Models{

 Movies: MovieModel{DB: db},

 Users: UserModel{DB: db}, // Initialize a new UserModel instance.

 }

}

Chapter 13.3.

Registering a User

Now that we’ve laid the groundwork, let’s start putting it to use by creating a new API

endpoint to manage the process of registering (or signing up) a new user.

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

GET /v1/movies listMoviesHandler Show the details of all movies

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PATCH /v1/movies/:id updateMovieHandler Update the details of a specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

POST /v1/users registerUserHandler Register a new user

When a client calls this new POST /v1/users endpoint, we will expect them to provide the

following details for the new user in a JSON request body. Similar to this:

{

 "name": "Alice Smith",

 "email": "alice@example.com",

 "password": "pa55word"

}

When we receive this, the registerUserHandler should create a new User struct containing

these details, validate it with the ValidateUser() helper, and then pass it to our

UserModel.Insert() method to create a new database record.

In fact, we’ve already written most of the code we need for the registerUserHandler — it’s

now just a case of piecing it all together in the correct order.

If you’re following along, go ahead and create a new cmd/api/users.go file:

$ touch cmd/api/users.go

And then add the new registerUserHandler method containing the following code:

File: cmd/api/users.go

package main

import (

 "errors"

 "net/http"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

)

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 // Create an anonymous struct to hold the expected data from the request body.

 var input struct {

 Name string `json:"name"`

 Email string `json:"email"`

 Password string `json:"password"`

 }

 // Parse the request body into the anonymous struct.

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Copy the data from the request body into a new User struct. Notice also that we

 // set the Activated field to false, which isn't strictly necessary because the

 // Activated field will have the zero-value of false by default. But setting this

 // explicitly helps to make our intentions clear to anyone reading the code.

 user := &data.User{

 Name: input.Name,

 Email: input.Email,

 Activated: false,

 }

 // Use the Password.Set() method to generate and store the hashed and plaintext

 // passwords.

 err = user.Password.Set(input.Password)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 v := validator.New()

 // Validate the user struct and return the error messages to the client if any of

 // the checks fail.

 if data.ValidateUser(v, user); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Insert the user data into the database.

 err = app.models.Users.Insert(user)

 if err != nil {

 switch {

 // If we get a ErrDuplicateEmail error, use the v.AddError() method to manually

 // add a message to the validator instance, and then call our

 // failedValidationResponse() helper.

 case errors.Is(err, data.ErrDuplicateEmail):

 v.AddError("email", "a user with this email address already exists")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Write a JSON response containing the user data along with a 201 Created status

 // code.

 err = app.writeJSON(w, http.StatusCreated, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Before we try this out, we also need to add the new POST /v1/users endpoint to our

cmd/api/routes.go file. Like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 // Add the route for the POST /v1/users endpoint.

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 return app.recoverPanic(app.rateLimit(router))

}

Once that’s done, make sure all the files are saved and fire up the API.

Then go ahead and make a request to the POST /v1/users endpoint to register a new user

with the email address alice@example.com . You should get a 201 Created response

displaying the details for the user, similar to this:

$ BODY='{"name": "Alice Smith", "email": "alice@example.com", "password": "pa55word"}'

$ curl -i -d "$BODY" localhost:4000/v1/users

HTTP/1.1 201 Created

Content-Type: application/json

Date: Mon, 15 Mar 2021 14:42:58 GMT

Content-Length: 152

{

 "user": {

 "id": 1,

 "created_at": "2021-03-15T15:42:58+01:00",

 "name": "Alice Smith",

 "email": "alice@example.com",

 "activated": false

 }

}

Hint: If you’re following along, remember the password you used in the request above

— you’ll need it later!

That’s looking good. We can see from the status code that the user record has been

successfully created, and in the JSON response we can see the system-generated

information for the new user — including the user’s ID and activation status.

If you take a look at your PostgreSQL database, you should also see the new record in the

users table. Similar to this:

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT * FROM users;

 id | created_at | name | email | password_hash | activated | version

----+------------------------+-------------+-------------------+-------------------------------------+-----------+---------

 1 | 2021-04-11 14:29:45+02 | Alice Smith | alice@example.com | \x24326124313224526157784d67356d... | f | 1

(1 row)

Note: The psql tool always displays bytea values as a hex-encoded string. So the

password_hash field in the output above displays a hex-encoding of the bcrypt hash. If

you want, you can run the following query to append the regular string version to the

table too: SELECT *, encode(password_hash, 'escape') FROM users .

OK, let’s try making another request to our API but with some invalid user details. This time

our validation checks will kick in and the client should receive the relevant error messages.

For example:

$ BODY='{"name": "", "email": "bob@invalid.", "password": "pass"}'

$ curl -d "$BODY" localhost:4000/v1/users

{

 "error": {

 "email": "must be a valid email address",

 "name": "must be provided",

 "password": "must be at least 8 bytes long"

 }

}

Lastly, try registering a second account for alice@example.com . This time you should get a

validation error containing an “a user with this email address already exists” message, like

so:

$ BODY='{"name": "Alice Jones", "email": "alice@example.com", "password": "pa55word"}'

$ curl -i -d "$BODY" localhost:4000/v1/users

HTTP/1.1 422 Unprocessable Entity

Cache-Control: no-store

Content-Type: application/json

Date: Wed, 30 Dec 2020 14:22:06 GMT

Content-Length: 78

{

 "error": {

 "email": "a user with this email address already exists"

 }

}

If you want, you can also try sending some requests using alternative casings of

alice@example.com — such as ALICE@example.com or Alice@Example.com . Because the

email column in our database has the type citext, these alternative versions will be

successfully identified as duplicates too.

Additional Information

Email case-sensitivity

Let’s talk quickly about email addresses case-sensitivity in a bit more detail.

Thanks to the specifications in RFC 2821, the domain part of an email address

(username@domain) is case-insensitive. This means we can be confident that the real-life

user behind alice@example.com is the same person as alice@EXAMPLE.COM .

The username part of an email address may or may not be case-sensitive — it depends

on the email provider. Almost every major email provider treats the username as case-

https://www.ietf.org/rfc/rfc2821.txt

insensitive, but it is not absolutely guaranteed. All we can say here is that the real-life

user behind the address alice@example.com is very probably (but not definitely) the

same as ALICE@example.com .

So, what does this mean for our application?

From a security point of view, we should always store the email address using the exact

casing provided by the user during registration, and we should send them emails using

that exact casing only. If we don’t, there is a risk that emails could be delivered to the

wrong real-life user. It’s particularly important to be aware of this in any workflows that use

email for authentication purposes, such as a password-reset workflow.

However, because alice@example.com and ALICE@example.com are very probably the same

user, we should generally treat email addresses as case-insensitive for comparison

purposes.

In our registration workflow, using a case-insensitive comparison prevents users from

accidentally (or intentionally) registering multiple accounts by just using different casing.

And from a user-experience point-of-view, in workflows like login, activation or password

resets, it’s more forgiving for users if we don’t require them to submit their request with

exactly the same email casing that they used when registering.

User enumeration

It’s important to be aware that our registration endpoint is vulnerable to user enumeration.

For example, if an attacker wants to know whether alice@example.com has an account with

us, all they need to do is send a request like this:

$ BODY='{"name": "Alice Jones", "email": "alice@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/users

{

 "error": {

 "email": "a user with this email address already exists"

 }

}

And they have the answer right there. We’re explicitly telling the attacker that

alice@example.com is already a user.

So, what are the risks of leaking this information?

The first, most obvious, risk relates to user privacy. For services that are sensitive or

confidential you probably don’t want to make it obvious who has an account. The second

risk is that it makes it easier for an attacker to compromise a user’s account. Once they

know a user’s email address, they can potentially:

Target the user with social engineering or another type of tailored attack.

Search for the email address in leaked password tables, and try those same passwords

on our service.

Preventing enumeration attacks typically requires two things:

1. Making sure that the response sent to the client is always exactly the same, irrespective

of whether a user exists or not. Generally, this means changing your response wording

to be ambiguous, and notifying the user of any problems in a side-channel (such as

sending them an email to inform them that they already have an account).

2. Making sure that the time taken to send the response is always the same, irrespective of

whether a user exists or not. In Go, this generally means offloading work to a

background goroutine.

Unfortunately, these mitigations tend to increase the complexity of your application and

add friction and obscurity to your workflows. For all your regular users who are not

attackers, they’re a negative from a UX point of view. You have to ask: is it worth the trade-

off?

There are a few things to think about when answering this question. How important is user

privacy in your application? How attractive (high-value) is a compromised account to an

attacker? How important is it to reduce friction in your user workflows? The answers to

those questions will vary from project-to-project, and will help form the basis for your

decision.

It’s worth noting that many big-name services, including Twitter, GitHub and Amazon, don’t

prevent user enumeration (at least not on their registration pages). I’m not suggesting that

this makes it OK — just that those companies have decided that the additional friction for

the user is worse than the privacy and security risks in their specific case.

Chapter 14.

Sending Emails

In this section of the book we’re going to inject some interactivity into our API, and adapt

our registerUserHandler so that it sends the user a welcome email after they successfully

register.

In the process of doing this we’re going to cover a few interesting topics. You’ll learn:

How to use the Mailtrap SMTP service to send and monitor test emails during

development.

How to use the html/template package and the new Go 1.16 embedded files

functionality to create dynamic and easy-to-manage templates for your email content.

How to create a reusable internal/mailer package for sending emails from your

application.

How to implement a pattern for sending emails in background goroutines, and how to

wait for these to complete during a graceful shutdown.

https://mailtrap.io/

Chapter 14.1.

SMTP Server Setup

In order to develop our email sending functionality, we’ll need access to a SMTP (Simple

Mail Transfer Protocol) server that we can safely use for testing purposes.

There are a huge number of SMTP service providers (such as Postmark, Sendgrid or Amazon

SES) that we could use to send our emails — or you can even install and run your own SMTP

server. But in this book we’re going to use Mailtrap.

The reason for using Mailtrap is because it’s a specialist service for sending emails during

development and testing. Essentially, it delivers all emails to an inbox that you can access,

instead of sending them to the actual recipient.

I’ve got no affiliation with the company — I just find that the service works well and is simple

to use. They also offer a ‘free forever’ plan, which should be sufficient for anyone who is

coding-along with this book.

Note: If you already have your own SMTP server, or there is an alternative SMTP

provider that you want to use instead, that’s absolutely fine. Feel free to skip ahead to

the next chapter.

Setting up Mailtrap

To setup a Mailtrap account, head to the signup page where you can register using either

your email address or your Google or GitHub accounts (if you have them).

Once you’re registered and logged in, you should see a page listing your available inboxes,

similar to the screenshot below.

https://mailtrap.io/
https://mailtrap.io/register/signup

Every Mailtrap account comes with one free inbox, which by default is called Demo inbox.

You can change the name if you want by clicking the pencil icon under Actions.

If you go ahead and click through to that inbox, you should see that it’s currently empty and

contains no emails, similar to this:

Each inbox has its own set of SMTP credentials, which you can display by clicking the Show

Credentials link (highlighted by the red box in the screenshot above). This will expand to

display the inbox SMTP credentials, similar to the screenshot below.

Basically, any emails that you send using these SMTP credentials will end up in this inbox,

instead of being sent to the actual recipient.

If you’re following along, make a note of the credentials displayed on your screen (or just

keep the browser tab open) — you’ll need them in the next chapter.

Note: The credentials in the screenshot above have been reset and are no longer

valid, so please don’t try to use them!

Chapter 14.2.

Creating Email Templates

To start with, we’ll keep the content of the welcome email really simple, with a short

message to let the user know that their registration was successful and confirmation of their

ID number. Similar to this:

Hi,

Thanks for signing up for a Greenlight account. We're excited to have you on board!

For future reference, your user ID number is 123.

Thanks,

The Greenlight Team

Note: Including the user ID probably isn’t something you’d normally do in a welcome

email, but it’s a simple way for us to demonstrate how to include dynamic data in

emails — rather than just static content.

There are several different approaches we could take to define and manage the content for

this email, but a convenient and flexible way is to use Go’s templating functionality from

the html/template package.

If you’re following along, begin by creating a new internal/mailer/templates folder in

your project directory and then add a user_welcome.tmpl file. Like so:

$ mkdir -p internal/mailer/templates

$ touch internal/mailer/templates/user_welcome.tmpl

Inside this file we’re going to define three named templates to use as part of our welcome

email:

A "subject" template containing the subject line for the email.

A "plainBody" template containing the plain-text variant of the email message body.

A "htmlBody" template containing the HTML variant of the email message body.

Go ahead and update the internal/mailer/templates/user_welcome.tmpl file to include

the content for these templates:

https://golang.org/pkg/html/template/

File: internal/mailer/templates/user_welcome.tmpl

{{define "subject"}}Welcome to Greenlight!{{end}}

{{define "plainBody"}}

Hi,

Thanks for signing up for a Greenlight account. We're excited to have you on board!

For future reference, your user ID number is {{.ID}}.

Thanks,

The Greenlight Team

{{end}}

{{define "htmlBody"}}

<!doctype html>

<html>

<head>

 <meta name="viewport" content="width=device-width" />

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

</head>

<body>

 <p>Hi,</p>

 <p>Thanks for signing up for a Greenlight account. We're excited to have you on board!</p>

 <p>For future reference, your user ID number is {{.ID}}.</p>

 <p>Thanks,</p>

 <p>The Greenlight Team</p>

</body>

</html>

{{end}}

If you’ve read Let’s Go, this template syntax and structure should look very familiar to you

and we won’t dwell on the details again here. But basically:

We’ve defined the three named templates using the {{define "..."}}...{{end}} tags.

You can render dynamic data in these templates via the . character (referred to as dot).

In the next chapter we’ll pass a User struct to the templates as dynamic data, which

means that we can then render the user’s ID using the tag {{.ID}} in the templates.

Note: If you need to frequently change the text of emails or require them to be user-

editable, then it might be appropriate to store these templates as strings in your

database instead. But I’ve found that storing them in a file, like we are here, is a less

complicated approach and a good starting point for most projects.

Chapter 14.3.

Sending a Welcome Email

Now that we have the content for the welcome email written, let’s create the code to send

it.

To send emails we could use Go’s net/smtp package from the standard library. But

unfortunately it’s been frozen for a few years, and doesn’t support some of the features that

you might need in more advanced use-cases, such as the ability to add attachments.

So instead, I recommend using the third-party go-mail/mail package to help send email.

It’s well tested, has good documentation, and a very clear and useable API.

If you’re coding-along, please use go get to download version v2.3.0 of this package:

$ go get github.com/go-mail/mail/v2@v2.3.0

go: downloading github.com/go-mail/mail/v2 v2.3.0

go: downloading gopkg.in/alexcesaro/quotedprintable.v3 v3.0.0-20150716171945-2caba252f4dc

go get: added github.com/go-mail/mail/v2 v2.3.0

go get: added gopkg.in/alexcesaro/quotedprintable.v3 v3.0.0-20150716171945-2caba252f4dc

Creating an email helper

Rather than writing all the code for sending the welcome email in our

registerUserHandler , in this chapter we’re going to create a new internal/mailer

package which wraps up the logic for parsing our email templates and sending emails.

In addition to that, we’re also going to use the new Go 1.16 embedded files functionality, so

that the email template files will be built into our binary when we create it later. This is really

nice because it means we won’t have to deploy these template files separately to our

production server.

It’s probably easiest to demonstrate how this works by getting straight into the code and

talking through the details as we go.

Let’s begin by creating a new internal/mailer/mailer.go file:

$ touch internal/mailer/mailer.go

And then go ahead and add the following code:

https://golang.org/pkg/net/smtp/
https://pkg.go.dev/github.com/go-mail/mail

File: internal/mailer/mailer.go

package mailer

import (

 "bytes"

 "embed"

 "html/template"

 "time"

 "github.com/go-mail/mail/v2"

)

// Below we declare a new variable with the type embed.FS (embedded file system) to hold

// our email templates. This has a comment directive in the format `//go:embed <path>`

// IMMEDIATELY ABOVE it, which indicates to Go that we want to store the contents of the

// ./templates directory in the templateFS embedded file system variable.

// ↓↓↓

//go:embed "templates"

var templateFS embed.FS

// Define a Mailer struct which contains a mail.Dialer instance (used to connect to a

// SMTP server) and the sender information for your emails (the name and address you

// want the email to be from, such as "Alice Smith <alice@example.com>").

type Mailer struct {

 dialer *mail.Dialer

 sender string

}

func New(host string, port int, username, password, sender string) Mailer {

 // Initialize a new mail.Dialer instance with the given SMTP server settings. We

 // also configure this to use a 5-second timeout whenever we send an email.

 dialer := mail.NewDialer(host, port, username, password)

 dialer.Timeout = 5 * time.Second

 // Return a Mailer instance containing the dialer and sender information.

 return Mailer{

 dialer: dialer,

 sender: sender,

 }

}

// Define a Send() method on the Mailer type. This takes the recipient email address

// as the first parameter, the name of the file containing the templates, and any

// dynamic data for the templates as an interface{} parameter.

func (m Mailer) Send(recipient, templateFile string, data interface{}) error {

 // Use the ParseFS() method to parse the required template file from the embedded

 // file system.

 tmpl, err := template.New("email").ParseFS(templateFS, "templates/"+templateFile)

 if err != nil {

 return err

 }

 // Execute the named template "subject", passing in the dynamic data and storing the

 // result in a bytes.Buffer variable.

 subject := new(bytes.Buffer)

 err = tmpl.ExecuteTemplate(subject, "subject", data)

 if err != nil {

 return err

 }

 // Follow the same pattern to execute the "plainBody" template and store the result

 // in the plainBody variable.

 plainBody := new(bytes.Buffer)

 err = tmpl.ExecuteTemplate(plainBody, "plainBody", data)

 err = tmpl.ExecuteTemplate(plainBody, "plainBody", data)

 if err != nil {

 return err

 }

 // And likewise with the "htmlBody" template.

 htmlBody := new(bytes.Buffer)

 err = tmpl.ExecuteTemplate(htmlBody, "htmlBody", data)

 if err != nil {

 return err

 }

 // Use the mail.NewMessage() function to initialize a new mail.Message instance.

 // Then we use the SetHeader() method to set the email recipient, sender and subject

 // headers, the SetBody() method to set the plain-text body, and the AddAlternative()

 // method to set the HTML body. It's important to note that AddAlternative() should

 // always be called *after* SetBody().

 msg := mail.NewMessage()

 msg.SetHeader("To", recipient)

 msg.SetHeader("From", m.sender)

 msg.SetHeader("Subject", subject.String())

 msg.SetBody("text/plain", plainBody.String())

 msg.AddAlternative("text/html", htmlBody.String())

 // Call the DialAndSend() method on the dialer, passing in the message to send. This

 // opens a connection to the SMTP server, sends the message, then closes the

 // connection. If there is a timeout, it will return a "dial tcp: i/o timeout"

 // error.

 err = m.dialer.DialAndSend(msg)

 if err != nil {

 return err

 }

 return nil

}

Using embedded file systems

Before we continue, let’s take a quick moment to discuss embedded file systems in more

detail, because there are a couple of things that can be confusing when you first encounter

them.

You can only use the //go:embed directive on global variables at package level, not

within functions or methods. If you try to use it in a function or method, you’ll get the

error "go:embed cannot apply to var inside func" at compile time.

When you use the directive //go:embed "<path>" to create an embedded file system, the

path should be relative to the source code file containing the directive. So in our case,

//go:embed "templates" embeds the contents of the directory at

internal/mailer/templates .

The embedded file system is rooted in the directory which contains the //go:embed

directive. So, in our case, to get the user_welcome.tmpl file we need to retrieve it from

templates/user_welcome.tmpl in the embedded file system.

Paths cannot not contain . or .. elements, nor may they begin or end with a / . This

essentially restricts you to only embedding files that are contained in the same directory

(or a subdirectory) as the source code which has the //go:embed directive.

If the path is to a directory, then all files in the directory are recursively embedded,

except for files with names that begin with . or _ . If you want to include these files you

should use the * wildcard character in the path, like //go:embed "templates/*"

You can specify multiple directories and files in one directive. For example:

//go:embed "images" "styles/css" "favicon.ico" .

The path separator should always be a forward slash, even on Windows machines.

Using our mail helper

Now that our email helper package is in place, we need to hook it up to the rest of our code

in the cmd/api/main.go file. Specifically, we need to do two things:

Adapt our code to accept the configuration settings for the SMTP server as command-

line flags.

Initialize a new Mailer instance and make it available to our handlers via the

application struct.

If you’re following along, please make sure to use your own Mailtrap SMTP server settings

from the previous chapter as the default values for the command line flags here — not the

exact values I’m using in the code below.

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "flag"

 "os"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 "greenlight.alexedwards.net/internal/mailer" // New import

 _ "github.com/lib/pq"

)

const version = "1.0.0"

// Update the config struct to hold the SMTP server settings.

// Update the config struct to hold the SMTP server settings.

type config struct {

 port int

 env string

 db struct {

 dsn string

 maxOpenConns int

 maxIdleConns int

 maxIdleTime string

 }

 limiter struct {

 enabled bool

 rps float64

 burst int

 }

 smtp struct {

 host string

 port int

 username string

 password string

 sender string

 }

}

// Update the application struct to hold a new Mailer instance.

type application struct {

 config config

 logger *jsonlog.Logger

 models data.Models

 mailer mailer.Mailer

}

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.BoolVar(&cfg.limiter.enabled, "limiter-enabled", true, "Enable rate limiter")

 flag.Float64Var(&cfg.limiter.rps, "limiter-rps", 2, "Rate limiter maximum requests per second")

 flag.IntVar(&cfg.limiter.burst, "limiter-burst", 4, "Rate limiter maximum burst")

 // Read the SMTP server configuration settings into the config struct, using the

 // Mailtrap settings as the default values. IMPORTANT: If you're following along,

 // make sure to replace the default values for smtp-username and smtp-password

 // with your own Mailtrap credentials.

 flag.StringVar(&cfg.smtp.host, "smtp-host", "smtp.mailtrap.io", "SMTP host")

 flag.IntVar(&cfg.smtp.port, "smtp-port", 25, "SMTP port")

 flag.StringVar(&cfg.smtp.username, "smtp-username", "0abf276416b183", "SMTP username")

 flag.StringVar(&cfg.smtp.password, "smtp-password", "d8672aa2264bb5", "SMTP password")

 flag.StringVar(&cfg.smtp.sender, "smtp-sender", "Greenlight <no-reply@greenlight.alexedwards.net>", "SMTP sender")

 flag.Parse()

 logger := jsonlog.New(os.Stdout, jsonlog.LevelInfo)

 db, err := openDB(cfg)

 if err != nil {

 logger.PrintFatal(err, nil)

 }

 defer db.Close()

 logger.PrintInfo("database connection pool established", nil)

 // Initialize a new Mailer instance using the settings from the command line

 // flags, and add it to the application struct.

 app := &application{

 config: cfg,

 logger: logger,

 models: data.NewModels(db),

 mailer: mailer.New(cfg.smtp.host, cfg.smtp.port, cfg.smtp.username, cfg.smtp.password, cfg.smtp.sender),

 }

 err = app.serve()

 if err != nil {

 logger.PrintFatal(err, nil)

 }

}

...

And then the final thing we need to do is update our registerUserHandler to actually send

the email, which we can do like so:

File: cmd/api/users.go

package main

...

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 ... // Nothing above here needs to change.

 // Call the Send() method on our Mailer, passing in the user's email address,

 // name of the template file, and the User struct containing the new user's data.

 err = app.mailer.Send(user.Email, "user_welcome.tmpl", user)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 err = app.writeJSON(w, http.StatusCreated, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Alright, let’s try this out!

Run the application, then in another terminal use curl to register a brand-new user with the

email address bob@example.com :

$ BODY='{"name": "Bob Jones", "email": "bob@example.com", "password": "pa55word"}'

$ curl -w '\nTime: %{time_total}\n' -d "$BODY" localhost:4000/v1/users

{

 "user": {

 "id": 3,

 "created_at": "2021-04-11T20:26:22+02:00",

 "name": "Bob Jones",

 "email": "bob@example.com",

 "activated": false

 }

}

Time: 2.331957

If everything is set up correctly you should get a 201 Created response containing the new

user details, similar to the response above.

Note: I’ve used the -w flag again to display the total time taken for the request to

complete, which in my case was ≈ 2.3 seconds. That’s quite a long time for a HTTP

request to complete, and we’ll speed it up in the next chapter by sending the welcome

email in a background goroutine.

Checking the email in Mailtrap

If you’ve been following along and are using the Mailtrap SMTP server credentials, when you

go back to your account you should see now the welcome email for bob@example.com in

your Demo inbox, like so:

If you want, you can also click on the Text tab to see the plain-text version of the email, and

the Raw tab to see the complete email including headers.

Wrapping this up, we covered quite a lot of ground in this chapter. But the nice thing about

the pattern we’ve built is that it’s easy to extend. If we want to send other emails from our

application in the future, we can simply make an additional file in our

internal/mailer/templates folder with the email content, and then send it from our

handlers in the same way that we have done here.

Additional Information

Retrying email send attempts

If you want, you can make the email sending process a bit more robust by adding some

basic ‘retry’ functionality to the Mailer.Send() method. For example:

func (m Mailer) Send(recipient, templateFile string, data interface{}) error {

 ...

 // Try sending the email up to three times before aborting and returning the final

 // error. We sleep for 500 milliseconds between each attempt.

 for i := 1; i <= 3; i++ {

 err = m.dialer.DialAndSend(msg)

 // If everything worked, return nil.

 if nil == err {

 return nil

 }

 // If it didn't work, sleep for a short time and retry.

 time.Sleep(500 * time.Millisecond)

 }

 return err

}

Hint: In the code above we’re using the clause if nil == err to check if the send was

successful, rather than if err == nil . They’re functionally equivalent, but having

nil as the first item in the clause makes it a bit visually jarring and less likely to be

confused with the far more common if err != nil clause.

This retry functionality is a relatively simple addition to our code, but it helps to increase

the probability that emails are successfully sent in the event of transient network issues. If

you’re sending emails in a background process (like we will do in the next chapter), you

might want to make the sleep duration even longer here, as it won’t materially impact the

client and gives more time for transient issues to resolve.

Chapter 14.4.

Sending Background Emails

As we mentioned briefly in the last chapter, sending the welcome email from the

registerUserHandler method adds quite a lot of latency to the total request/response

round-trip for the client.

One way we could reduce this latency is by sending the email in a background goroutine.

This would effectively ‘decouple’ the task of sending an email from the rest of the code in

our registerUseHandler, and means that we could return a HTTP response to the client

without waiting for the email sending to complete.

At its very simplest, we could adapt our handler to execute the email send in a background

goroutine like this:

File: cmd/api/users.go

package main

...

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 ...

 // Launch a goroutine which runs an anonymous function that sends the welcome email.

 go func() {

 err = app.mailer.Send(user.Email, "user_welcome.tmpl", user)

 if err != nil {

 // Importantly, if there is an error sending the email then we use the

 // app.logger.PrintError() helper to manage it, instead of the

 // app.serverErrorResponse() helper like before.

 app.logger.PrintError(err, nil)

 }

 }()

 // Note that we also change this to send the client a 202 Accepted status code.

 // This status code indicates that the request has been accepted for processing, but

 // the processing has not been completed.

 err = app.writeJSON(w, http.StatusAccepted, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

When this code is executed now, a new ‘background’ goroutine will be launched for sending

the welcome email. The code in this background goroutine will be executed concurrently

with the subsequent code in our registerUserHandler , which means we are no longer

waiting for the email to be sent before we return a JSON response to the client. Most likely,

the background goroutine will still be executing its code long after the

registerUserHandler has returned.

There are a couple of things I’d like to emphasize here:

We use the app.logger.PrintError() helper to manage any errors in our background

goroutine. This is because by the time we encounter the errors, the client will probably

have already been sent a 202 Accepted response by our writeJSON() helper.

Note that we don’t want to use the app.serverErrorResponse() helper to handle any

errors in our background goroutine, as that would result in us trying to write a second

HTTP response and getting a "http: superfluous response.WriteHeader call" error

from our http.Server at runtime.

The code running in the background goroutine forms a closure over the user and app

variables. It’s important to be aware that these ‘closed over’ variables are not scoped to

the background goroutine, which means that any changes you make to them will be

reflected in the rest of your codebase. For a simple example of this, see the following

playground code.

In our case we aren’t changing the value of these variables in any way, so this behavior

won’t cause us any issues. But it is important to keep in mind.

OK, let’s try this out!

Restart the API, then go ahead and register another new user with the email address

carol@example.com . Like so:

$ BODY='{"name": "Carol Smith", "email": "carol@example.com", "password": "pa55word"}'

$ curl -w '\nTime: %{time_total}\n' -d "$BODY" localhost:4000/v1/users

{

 "user": {

 "id": 4,

 "created_at": "2021-04-11T21:21:12+02:00",

 "name": "Carol Smith",

 "email": "carol@example.com",

 "activated": false

 }

}

Time: 0.268639

This time, you should see that the time taken to return the response is much faster — in my

case 0.27 seconds compared to the previous 2.33 seconds.

And if you take a look at your Mailtrap inbox, you should see that the email for

carol@example.com has been delivered correctly. Like so:

https://play.golang.org/p/eTz1xBm4W2a

Recovering panics

It’s important to bear in mind that any panic which happens in this background goroutine

will not be automatically recovered by our recoverPanic() middleware or Go’s

http.Server , and will cause our whole application to terminate.

In very simple background goroutines (like the ones we’ve been using so far), this is less of a

worry. But the code involved in sending an email is quite complex (including calls to a third-

party package) and the risk of a runtime panic is non-negligible. So we need to make sure

that any panic in this background goroutine is manually recovered, using a similar pattern

to the one in our recoverPanic() middleware.

I’ll demonstrate.

Reopen your cmd/api/users.go file and update the registerUserHandler like so:

File: cmd/api/users.go

package main

import (

 "errors"

 "fmt" // New import

 "net/http"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

)

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 ...

 // Launch a background goroutine to send the welcome email.

 go func() {

 // Run a deferred function which uses recover() to catch any panic, and log an

 // error message instead of terminating the application.

 defer func() {

 if err := recover(); err != nil {

 app.logger.PrintError(fmt.Errorf("%s", err), nil)

 }

 }()

 // Send the welcome email.

 err = app.mailer.Send(user.Email, "user_welcome.tmpl", user)

 if err != nil {

 app.logger.PrintError(err, nil)

 }

 }()

 err = app.writeJSON(w, http.StatusAccepted, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Using a helper function

If you need to execute a lot of background tasks in your application, it can get tedious to

keep repeating the same panic recovery code — and there’s a risk that you might forget to

include it altogether.

To help take care of this, it’s possible to create a simple helper function which wraps the

panic recovery logic. If you’re following along, open your cmd/api/helpers.go file and

create a new background() helper method as follows:

File: cmd/api/helpers.go

package main

...

// The background() helper accepts an arbitrary function as a parameter.

func (app *application) background(fn func()) {

 // Launch a background goroutine.

 go func() {

 // Recover any panic.

 defer func() {

 if err := recover(); err != nil {

 app.logger.PrintError(fmt.Errorf("%s", err), nil)

 }

 }()

 // Execute the arbitrary function that we passed as the parameter.

 fn()

 }()

}

This background() helper leverages the fact that Go has first-class functions, which means

that functions can be assigned to variables and passed as parameters to other functions.

In this case, we’ve set up the background() helper so that accepts any function with the

signature func() as a parameter and stores it in the variable fn. It then spins up a

background goroutine, uses a deferred function to recover any panics and log the error, and

then executes the function itself by calling fn().

Now that this is in place, let’s update our registerUserHandler to use it like so:

https://levelup.gitconnected.com/first-class-functions-in-golang-ef2a5001bb4f

File: cmd/api/users.go

package main

import (

 "errors"

 "net/http"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

)

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 ...

 // Use the background helper to execute an anonymous function that sends the welcome

 // email.

 app.background(func() {

 err = app.mailer.Send(user.Email, "user_welcome.tmpl", user)

 if err != nil {

 app.logger.PrintError(err, nil)

 }

 })

 err = app.writeJSON(w, http.StatusAccepted, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Let’s double-check that this is still working. Restart the API, then create another new user

with the email address dave@example.com:

$ BODY='{"name": "Dave Smith", "email": "dave@example.com", "password": "pa55word"}'

$ curl -w '\nTime: %{time_total}\n' -d "$BODY" localhost:4000/v1/users

{

 "user": {

 "id": 5,

 "created_at": "2021-04-11T21:33:07+02:00",

 "name": "Dave Smith",

 "email": "dave@example.com",

 "activated": false

 }

}

Time: 0.267692

If everything is set up correctly, you’ll now see the corresponding email appear in your

Mailtrap inbox again.

Chapter 14.5.

Graceful Shutdown of Background

Tasks

Sending our welcome email in the background is working well, but there’s still an issue we

need to address.

When we initiate a graceful shutdown of our application, it won’t wait for any background

goroutines that we’ve launched to complete. So — if we happen to shutdown our server at an

unlucky moment — it’s possible that a new client will be created on our system but they will

never be sent their welcome email.

Fortunately, we can prevent this by using Go’s sync.WaitGroup functionality to coordinate

the graceful shutdown and our background goroutines.

An introduction to sync.WaitGroup

When you want to wait for a collection of goroutines to finish their work, the principal tool

to help with this is the sync.WaitGroup type.

The way that it works is conceptually a bit like a ‘counter’. Each time you launch a

background goroutine you can increment the counter by 1, and when each goroutine

finishes, you then decrement the counter by 1. You can then monitor the counter, and when

it equals zero you know that all your background goroutines have finished.

Let’s take a quick look at a standalone example of how sync.WaitGroup works in practice.

In the code below, we’ll launch five goroutines that print out "hello from a goroutine" ,

and use sync.WaitGroup to wait for them all to complete before the program exits.

https://golang.org/pkg/sync/#WaitGroup

package main

import (

 "fmt"

 "sync"

)

func main() {

 // Declare a new WaitGroup.

 var wg sync.WaitGroup

 // Execute a loop 5 times.

 for i := 1; i <= 5; i++ {

 // Increment the WaitGroup counter by 1, BEFORE we launch the background routine.

 wg.Add(1)

 // Launch the background goroutine.

 go func() {

 // Defer a call to wg.Done() to indicate that the background goroutine has

 // completed when this function returns. Behind the scenes this decrements

 // the WaitGroup counter by 1 and is the same as writing wg.Add(-1).

 defer wg.Done()

 fmt.Println("hello from a goroutine")

 }()

 }

 // Wait() blocks until the WaitGroup counter is zero --- essentially blocking until all

 // goroutines have completed.

 wg.Wait()

 fmt.Println("all goroutines finished")

}

If you run the above code, you’ll see that the output looks like this:

hello from a goroutine

hello from a goroutine

hello from a goroutine

hello from a goroutine

hello from a goroutine

all goroutines finished

One thing that’s important to emphasize here is that we increment the counter with

wg.Add(1) immediately before we launch the background goroutine. If we called wg.Add(1)

in the background goroutine itself, there is a race condition because wg.Wait() could

potentially be called before the counter is even incremented.

Fixing our application

Let’s update our application to incorporate a sync.WaitGroup that coordinates our graceful

shutdown and background goroutines.

https://play.golang.org/p/sD7kvq2goOy

We’ll begin in our cmd/api/main.go file, and edit the application struct to contain a new

sync.WaitGroup. Like so:

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "flag"

 "os"

 "sync" // New import

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 "greenlight.alexedwards.net/internal/mailer"

 _ "github.com/lib/pq"

)

...

// Include a sync.WaitGroup in the application struct. The zero-value for a

// sync.WaitGroup type is a valid, useable, sync.WaitGroup with a 'counter' value of 0,

// so we don't need to do anything else to initialize it before we can use it.

type application struct {

 config config

 logger *jsonlog.Logger

 models data.Models

 mailer mailer.Mailer

 wg sync.WaitGroup

}

...

Next let’s head to the cmd/api/helpers.go file and update the app.background() helper so

that the sync.WaitGroup counter is incremented each time before we launch a background

goroutine, and then decremented when it completes.

Like this:

File: cmd/api/helpers.go

package main

...

func (app *application) background(fn func()) {

 // Increment the WaitGroup counter.

 app.wg.Add(1)

 // Launch the background goroutine.

 go func() {

 // Use defer to decrement the WaitGroup counter before the goroutine returns.

 defer app.wg.Done()

 defer func() {

 if err := recover(); err != nil {

 app.logger.PrintError(fmt.Errorf("%s", err), nil)

 }

 }()

 fn()

 }()

}

Then the final thing we need to do is update our graceful shutdown functionality so that it

uses our new sync.WaitGroup to wait for any background goroutines before terminating the

application. We can do that by adapting our app.serve() method like so:

File: cmd/api/server.go

package main

...

func (app *application) serve() error {

 srv := &http.Server{

 Addr: fmt.Sprintf(":%d", app.config.port),

 Handler: app.routes(),

 IdleTimeout: time.Minute,

 ReadTimeout: 10 * time.Second,

 WriteTimeout: 30 * time.Second,

 }

 shutdownError := make(chan error)

 go func() {

 quit := make(chan os.Signal, 1)

 signal.Notify(quit, syscall.SIGINT, syscall.SIGTERM)

 s := <-quit

 app.logger.PrintInfo("caught signal", map[string]string{

 "signal": s.String(),

 })

 ctx, cancel := context.WithTimeout(context.Background(), 5*time.Second)

 defer cancel()

 // Call Shutdown() on the server like before, but now we only send on the

 // shutdownError channel if it returns an error.

 err := srv.Shutdown(ctx)

 if err != nil {

 shutdownError <- err

 }

 // Log a message to say that we're waiting for any background goroutines to

 // complete their tasks.

 app.logger.PrintInfo("completing background tasks", map[string]string{

 "addr": srv.Addr,

 })

 // Call Wait() to block until our WaitGroup counter is zero --- essentially

 // blocking until the background goroutines have finished. Then we return nil on

 // the shutdownError channel, to indicate that the shutdown completed without

 // any issues.

 app.wg.Wait()

 shutdownError <- nil

 }()

 app.logger.PrintInfo("starting server", map[string]string{

 "addr": srv.Addr,

 "env": app.config.env,

 })

 err := srv.ListenAndServe()

 if !errors.Is(err, http.ErrServerClosed) {

 return err

 }

 err = <-shutdownError

 if err != nil {

 return err

 }

 app.logger.PrintInfo("stopped server", map[string]string{

 "addr": srv.Addr,

 })

 return nil

}

To try this out, go ahead and restart the API and then send a request to the POST /v1/users

endpoint immediately followed by a SIGTERM signal. For example:

$ BODY='{"name": "Edith Smith", "email": "edith@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/users & pkill -SIGTERM api &

When you do this, your server logs should look similar to the output below:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-15T15:06:50Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-15T15:06:50Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

{"level":"INFO","time":"2021-04-15T15:07:06Z","message":"caught signal","properties":{"signal":"terminated"}}

{"level":"INFO","time":"2021-04-15T15:07:06Z","message":"completing background tasks","properties":{"addr":":4000"}}

{"level":"INFO","time":"2021-04-15T15:07:08Z","message":"stopped server","properties":{"addr":":4000"}}

Notice how the "completing background tasks" message is written, then there is a pause

of a couple of seconds while the background email sending completes, followed finally by

the "stopped server" message?

This nicely illustrates how the graceful shutdown process waited for the welcome email to

be sent (which took about two seconds in my case) before finally terminating the

application.

Chapter 15.

User Activation

At the moment a user can register for an account with our Greenlight API, but we don’t

know for sure that the email address they provided during registration actually belongs to

them.

So, in this section of the book, we’re going to build up the functionality to confirm that a

user used their own, real, email address by including ‘account activation’ instructions in

their welcome email.

There are several reasons for having an activation step, but the main benefits are that it

adds an additional hoop for bots to jump through, and helps prevent abuse by people who

register with a fake email address or one that doesn’t belong to them.

To give you an overview upfront, the account activation process will work like this:

1. As part of the registration process for a new user we will create a cryptographically-

secure random activation token that is impossible to guess.

2. We will then store a hash of this activation token in a new tokens table, alongside the

new user’s ID and an expiry time for the token.

3. We will send the original (unhashed) activation token to the user in their welcome email.

4. The user subsequently submits their token to a new PUT /v1/users/activated

endpoint.

5. If the hash of the token exists in the tokens table and hasn’t expired, then we’ll update

the activated status for the relevant user to true.

6. Lastly, we’ll delete the activation token from our tokens table so that it can’t be used

again.

In this section of the book, you’ll learn how to:

Implement a secure ‘account activation’ workflow which verifies a new user’s email

address.

Generate cryptographically-secure random tokens using Go’s crypto/rand and

encoding/base32 packages.

Generate fast hashes of data using the crypto/sha256 package.

Implement patterns for working with cross-table relationships in your database,

https://ux.stackexchange.com/a/111023

including setting up foreign keys and retrieving related data via SQL JOIN queries.

Chapter 15.1.

Setting up the Tokens Database Table

Let’s begin by creating a new tokens table in our database to store the activation tokens for

our users. If you’re following along, run the following command to create a new pair of

migration files:

$ migrate create -seq -ext .sql -dir ./migrations create_tokens_table

/home/alex/Projects/greenlight/migrations/000005_create_tokens_table.up.sql

/home/alex/Projects/greenlight/migrations/000005_create_tokens_table.down.sql

And then add the following SQL statements to the ‘up’ and ‘down’ migration files

respectively:

File: migrations/000005_create_tokens_table.up.sql

CREATE TABLE IF NOT EXISTS tokens (

 hash bytea PRIMARY KEY,

 user_id bigint NOT NULL REFERENCES users ON DELETE CASCADE,

 expiry timestamp(0) with time zone NOT NULL,

 scope text NOT NULL

);

File: migrations/000005_create_tokens_table.down.sql

DROP TABLE IF EXISTS tokens;

Let’s quickly step through the columns in this new tokens table and explain their purpose.

The hash column will contain a SHA-256 hash of the activation token. It’s important to

emphasize that we will only store a hash of the activation token in our database — not

the activation token itself.

We want to hash the token before storing it for the same reason that we bcrypt a user’s

password — it provides an extra layer of protection if the database is ever compromised

or leaked. Because our activation token is going to be a high-entropy random string (128

bits) — rather than something low entropy like a typical user password — it is sufficient

to use a fast algorithm like SHA-256 to create the hash, instead of a slow algorithm like

bcrypt.

The user_id column will contain the ID of the user associated with the token. We use the

https://security.stackexchange.com/questions/151257/what-kind-of-hashing-to-use-for-storing-rest-api-tokens-in-the-database

REFERENCES user syntax to create a foreign key constraint against the primary key of our

users table, which ensures that any value in the user_id column has a corresponding id

entry in our users table.

We also use the ON DELETE CASCADE syntax to instruct PostgreSQL to automatically

delete all records for a user in our tokens table when the parent record in the users table

is deleted.

Note: A common alternative to ON DELETE CASCADE is ON DELETE RESTRICT , which

in our case would prevent a parent record in the users table from being deleted if

the user has any tokens in our tokens table. If you use ON DELETE RESTRICT , you

would need to manually delete any tokens for the user before you delete the user

record itself.

The expiry column will contain the time that we consider a token to be ‘expired’ and no

longer valid. Setting a short expiry time is good from a security point-of-view because it

helps reduce the window of possibility for a successful brute-force attack against the

token. And it also helps in the scenario where the user is sent a token but doesn’t use it,

and their email account is compromised at a later time. By setting a short time limit, it

reduces the time window that the compromised token could be used.

Of course, the security risks here need to be weighed up against usability, and we want

the expiry time to be long enough for a user to be able to activate the account at their

leisure. In our case, we’ll set the expiry time for our activation tokens to 3 days from the

moment the token was created.

Lastly, the scope column will denote what purpose the token can be used for. Later in the

book we’ll also need to create and store authentication tokens, and most of the code and

storage requirements for these is exactly the same as for our activation tokens. So

instead of creating separate tables (and the code to interact with them), we’ll store them

in one table with a value in the scope column to restrict the purpose that the token can

be used for.

OK, with those explanations out of the way, you should be able to execute the ‘up’

migration with the following command:

$ migrate -path=./migrations -database=$GREENLIGHT_DB_DSN up

5/u create_tokens_table (21.568194ms)

https://www.postgresqltutorial.com/postgresql-foreign-key/

Chapter 15.2.

Creating Secure Activation Tokens

The integrity of our activation process hinges on one key thing: the ‘unguessability’ of the

token that we send to the user’s email address. If the token is easy to guess or can be brute-

forced, then it would be possible for an attacker to activate a user’s account even if they

don’t have access to the user’s email inbox.

Because of this, we want the token to be generated by a cryptographically secure random

number generator (CSPRNG) and have enough entropy (or randomness) that it is impossible

to guess. In our case, we’ll create our activation tokens using Go’s crypto/rand package

and 128-bits (16 bytes) of entropy.

If you’re following along, go ahead and create a new internal/data/tokens.go file. This will

act as the home for all our logic related to creating and managing tokens over the next

couple of chapters.

$ touch internal/data/tokens.go

Then in this file let’s define a Token struct (to represent the data for an individual token),

and a generateToken() function that we can use to create a new token.

This is another time where it’s probably easiest to jump straight into the code, and describe

what’s happening as we go along.

File: internal/data/tokens.go

package data

import (

 "crypto/rand"

 "crypto/sha256"

 "encoding/base32"

 "time"

)

// Define constants for the token scope. For now we just define the scope "activation"

// but we'll add additional scopes later in the book.

const (

 ScopeActivation = "activation"

)

// Define a Token struct to hold the data for an individual token. This includes the

// plaintext and hashed versions of the token, associated user ID, expiry time and

// scope.

type Token struct {

 Plaintext string

https://golang.org/pkg/crypto/rand/

 Plaintext string

 Hash []byte

 UserID int64

 Expiry time.Time

 Scope string

}

func generateToken(userID int64, ttl time.Duration, scope string) (*Token, error) {

 // Create a Token instance containing the user ID, expiry, and scope information.

 // Notice that we add the provided ttl (time-to-live) duration parameter to the

 // current time to get the expiry time?

 token := &Token{

 UserID: userID,

 Expiry: time.Now().Add(ttl),

 Scope: scope,

 }

 // Initialize a zero-valued byte slice with a length of 16 bytes.

 randomBytes := make([]byte, 16)

 // Use the Read() function from the crypto/rand package to fill the byte slice with

 // random bytes from your operating system's CSPRNG. This will return an error if

 // the CSPRNG fails to function correctly.

 _, err := rand.Read(randomBytes)

 if err != nil {

 return nil, err

 }

 // Encode the byte slice to a base-32-encoded string and assign it to the token

 // Plaintext field. This will be the token string that we send to the user in their

 // welcome email. They will look similar to this:

 //

 // Y3QMGX3PJ3WLRL2YRTQGQ6KRHU

 //

 // Note that by default base-32 strings may be padded at the end with the =

 // character. We don't need this padding character for the purpose of our tokens, so

 // we use the WithPadding(base32.NoPadding) method in the line below to omit them.

 token.Plaintext = base32.StdEncoding.WithPadding(base32.NoPadding).EncodeToString(randomBytes)

 // Generate a SHA-256 hash of the plaintext token string. This will be the value

 // that we store in the `hash` field of our database table. Note that the

 // sha256.Sum256() function returns an *array* of length 32, so to make it easier to

 // work with we convert it to a slice using the [:] operator before storing it.

 hash := sha256.Sum256([]byte(token.Plaintext))

 token.Hash = hash[:]

 return token, nil

}

It’s important to point out that the plaintext token strings we’re creating here like

Y3QMGX3PJ3WLRL2YRTQGQ6KRHU are not 16 characters long — but rather they have an

underlying entropy of 16 bytes of randomness.

The length of the plaintext token string itself depends on how those 16 random bytes are

encoded to create a string. In our case we encode the random bytes to a base-32 string,

which results in a string with 26 characters. In contrast, if we encoded the random bytes

using hexadecimal (base-16) the string would be 32 characters long instead.

Creating the TokenModel and Validation Checks

OK, let’s move on and set up a TokenModel type which encapsulates the database

interactions with our PostgreSQL tokens table. We’ll follow a very similar pattern to the

MovieModel and UsersModel again, and we’ll implement the following three methods on it:

Insert() to insert a new token record in the database.

New() will be a shortcut method which creates a new token using the generateToken()

function and then calls Insert() to store the data.

DeleteAllForUser() to delete all tokens with a specific scope for a specific user.

We’ll also create a new ValidateTokenPlaintext() function, which will check that a

plaintext token provided by a client in the future is exactly 26 bytes long.

Open up the internal/data/tokens.go file again, and add the following code:

File: internal/data/tokens.go

package data

import (

 "context" // New import

 "crypto/rand"

 "crypto/sha256"

 "database/sql" // New import

 "encoding/base32"

 "time"

 "greenlight.alexedwards.net/internal/validator" // New import

)

...

// Check that the plaintext token has been provided and is exactly 52 bytes long.

func ValidateTokenPlaintext(v *validator.Validator, tokenPlaintext string) {

 v.Check(tokenPlaintext != "", "token", "must be provided")

 v.Check(len(tokenPlaintext) == 26, "token", "must be 26 bytes long")

}

// Define the TokenModel type.

type TokenModel struct {

 DB *sql.DB

}

// The New() method is a shortcut which creates a new Token struct and then inserts the

// data in the tokens table.

func (m TokenModel) New(userID int64, ttl time.Duration, scope string) (*Token, error) {

 token, err := generateToken(userID, ttl, scope)

 if err != nil {

 return nil, err

 }

 err = m.Insert(token)

 return token, err

}

// Insert() adds the data for a specific token to the tokens table.

func (m TokenModel) Insert(token *Token) error {

 query := `

 INSERT INTO tokens (hash, user_id, expiry, scope)

 VALUES ($1, $2, $3, $4)`

 args := []interface{}{token.Hash, token.UserID, token.Expiry, token.Scope}

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 _, err := m.DB.ExecContext(ctx, query, args...)

 return err

}

// DeleteAllForUser() deletes all tokens for a specific user and scope.

func (m TokenModel) DeleteAllForUser(scope string, userID int64) error {

 query := `

 DELETE FROM tokens

 WHERE scope = $1 AND user_id = $2`

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 _, err := m.DB.ExecContext(ctx, query, scope, userID)

 return err

}

And finally, we need to update the internal/data/models.go file so that the new

TokenModel is included in our parent Models struct. Like so:

File: internal/data/models.go

package data

...

type Models struct {

 Movies MovieModel

 Tokens TokenModel // Add a new Tokens field.

 Users UserModel

}

func NewModels(db *sql.DB) Models {

 return Models{

 Movies: MovieModel{DB: db},

 Tokens: TokenModel{DB: db}, // Initialize a new TokenModel instance.

 Users: UserModel{DB: db},

 }

}

At this point you should be able to restart the application, and everything should work

without a hitch.

$ go run ./cmd/api/

{"level":"INFO","time":"2021-04-15T16:07:58Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-15T16:07:58Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Additional Information

The math/rand package

Go also has a math/rand package which provides a deterministic pseudo-random number

generator (PRNG). It’s important that you never use the math/rand package for any purpose

where cryptographic security is required, such as generating tokens or secrets like we are

here.

In fact, it’s arguably best to use crypto/rand as standard practice. Only opt for using

math/rand in specific scenarios where you are certain that a deterministic PRNG is

acceptable, and you actively need the faster performance of math/rand .

https://golang.org/pkg/math/rand/
https://blog.gopheracademy.com/advent-2017/a-tale-of-two-rands/#tradeoffs

Chapter 15.3.

Sending Activation Tokens

The next step is to hook this up to our registerUserHandler , so that we generate an

activation token when a user signs up and include it in their welcome email — similar to

this:

Hi,

Thanks for signing up for a Greenlight account. We're excited to have you on board!

For future reference, your user ID number is 123.

Please send a request to the `PUT /v1/users/activated` endpoint with the following JSON

body to activate your account:

{"token": "Y3QMGX3PJ3WLRL2YRTQGQ6KRHU"}

Please note that this is a one-time use token and it will expire in 3 days.

Thanks,

The Greenlight Team

The most important thing about this email is that we’re instructing the user to activate by

issuing a PUT request to our API — not by clicking a link which contains the token as part of

the URL path or query string.

Having a user click a link to activate via a GET request (which is used by default when

clicking a link) would certainly be more convenient, but in the case of our API it has some

big drawbacks. In particular:

It would violate the HTTP principle that the GET method should only be used for ‘safe’

requests which retrieve resources — not for requests that modify something (like a user’s

activation status).

It’s possible that the user’s web browser or antivirus will pre-fetch the link URL in the

background, inadvertently activating the account. This Stack Overflow comment

explains the risk of this nicely:

That could result in a scenario where a malicious actor (Eve) wants to make an account

using someone else’s email (Alice). Eve signs up, and Alice received an email. Alice opens

the email because she is curious about an account she didn’t request. Her browser (or

antivirus) requests the URL in the background, inadvertently activating the account.

https://security.stackexchange.com/a/197005

All-in-all, you should make sure that any actions which change the state of your application

(including activating a user) are only ever executed via POST, PUT , PATCH or DELETE requests

— not by GET requests.

Note: If your API is the back-end for a website, then you could adapt this email so that

it asks the user to click a link which takes them to a page on your website. They can

then click a button on the page to ‘confirm their activation’, which performs the PUT

request to your API that actually activates the user. We’ll look at this pattern in more

detail in the next chapter.

But for now, if you’re following along, go ahead and update your welcome email templates

to include the activation token as follows:

File: internal/mailer/templates/user_welcome.tmpl

{{define "subject"}}Welcome to Greenlight!{{end}}

{{define "plainBody"}}

Hi,

Thanks for signing up for a Greenlight account. We're excited to have you on board!

For future reference, your user ID number is {{.userID}}.

Please send a request to the `PUT /v1/users/activated` endpoint with the following JSON

body to activate your account:

{"token": "{{.activationToken}}"}

Please note that this is a one-time use token and it will expire in 3 days.

Thanks,

The Greenlight Team

{{end}}

{{define "htmlBody"}}

<!doctype html>

<html>

<head>

 <meta name="viewport" content="width=device-width" />

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

</head>

<body>

 <p>Hi,</p>

 <p>Thanks for signing up for a Greenlight account. We're excited to have you on board!</p>

 <p>For future reference, your user ID number is {{.userID}}.</p>

 <p>Please send a request to the <code>PUT /v1/users/activated</code> endpoint with the

 following JSON body to activate your account:</p>

 <pre><code>

 {"token": "{{.activationToken}}"}

 </code></pre>

 <p>Please note that this is a one-time use token and it will expire in 3 days.</p>

 <p>Thanks,</p>

 <p>The Greenlight Team</p>

</body>

</html>

{{end}}

Next we’ll need to update the registerUserHandler to generate a new activation token,

and pass it to the welcome email template as dynamic data, along with the user ID.

Like so:

File: cmd/api/users.go

package main

import (

 "errors"

 "net/http"

 "time" // New import

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

)

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 ...

 err = app.models.Users.Insert(user)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrDuplicateEmail):

 v.AddError("email", "a user with this email address already exists")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // After the user record has been created in the database, generate a new activation

 // token for the user.

 token, err := app.models.Tokens.New(user.ID, 3*24*time.Hour, data.ScopeActivation)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 app.background(func() {

 // As there are now multiple pieces of data that we want to pass to our email

 // templates, we create a map to act as a 'holding structure' for the data. This

 // contains the plaintext version of the activation token for the user, along

 // with their ID.

 data := map[string]interface{}{

 "activationToken": token.Plaintext,

 "userID": user.ID,

 }

 // Send the welcome email, passing in the map above as dynamic data.

 err = app.mailer.Send(user.Email, "user_welcome.tmpl", data)

 if err != nil {

 app.logger.PrintError(err, nil)

 }

 })

 err = app.writeJSON(w, http.StatusAccepted, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

OK, let’s see how this works…

Restart the application, and then register a new user account with the email address

faith@example.com . Similar to this:

$ BODY='{"name": "Faith Smith", "email": "faith@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/users

{

 "user": {

 "id": 7,

 "created_at": "2021-04-15T20:25:41+02:00",

 "name": "Faith Smith",

 "email": "faith@example.com",

 "activated": false

 }

}

And if you open your Mailtrap inbox again, you should now see the new welcome email

containing the activation token for faith@example.com , like so:

So, in my case, we can see that faith@example.com has been sent the activation token

P4B3URJZJ2NW5UPZC2OHN4H2NM. If you’re following along, your token should be a different 26-

character string.

Out of interest, let’s quickly look inside the tokens table in our PostgreSQL database. Again,

the exact values in your database will be different, but it should look similar to this:

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.0 (Ubuntu 13.0-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT * FROM tokens;

 hash | user_id | expiry | scope

--+---------+------------------------+------------

 \x09bcb40206b25fe511bfef4d56cbe8c4a141869fc29612fa984b371ef086f5f5 | 7 | 2021-04-18 20:25:41+02 | activation

We can see here that the activation token hash is displayed as the value:

09bcb40206b25fe511bfef4d56cbe8c4a141869fc29612fa984b371ef086f5f5

As we mentioned earlier, psql always displays values in bytea columns as a hex-encoded

string. So what we’re seeing here is a hexadecimal encoding of the SHA-256 hash of the

plaintext token P4B3URJZJ2NW5UPZC2OHN4H2NM that we sent in the welcome email.

Note: If you want, you can verify that this is correct by entering a plaintext activation

token from the welcome email into this online SHA-256 hash generator. You should

see that the result matches the hex-encoded value inside your PostgreSQL database.

Notice too that the user_id value of 7 is correct for our faith@example.com user, the expiry

time has been correctly set to three days from now, and the token has the scope value

activation?

Additional Information

A standalone endpoint for generating tokens

You may also want to provide a standalone endpoint for generating and sending activation

tokens to your users. This can be useful if you need to re-send an activation token, such as

when a user doesn’t activate their account within the 3-day time limit, or they never receive

their welcome email.

The code to implement this endpoint is a mix of patterns that we’ve talked about already,

so rather than repeating them in the main flow of the book the instructions are included in

this appendix.

https://xorbin.com/tools/sha256-hash-calculator

Chapter 15.4.

Activating a User

In this chapter we’re going to move on to the part of the activation workflow where we

actually activate a user. But before we write any code, I’d like to quickly talk about the

relationship between users and tokens in our system.

What we have is known in relational database terms as a one-to-many relationship — where

one user may have many tokens, but a token can only belong to one user.

When you have a one-to-many relationship like this, you’ll potentially want to execute

queries against the relationship from two different sides. In our case, for example, we might

want to either:

Retrieve the user associated with a token.

Retrieve all tokens associated with a user.

To implement these queries in your code, a clean and clear approach is to update your

database models to include some additional methods like this:

UserModel.GetForToken(token) → Retrieve the user associated with a token

TokenModel.GetAllForUser(user) → Retrieve all tokens associated with a user

The nice thing about this approach is that the entities being returned align with the main

responsibility of the models: the UserModel method is returning a user, and the TokenModel

method is returning tokens.

Creating the activateUserHandler

Now that we’ve got a very high-level idea of how we’re going to query the user ↔ token

relationship in our database models, let’s start to build up the code for activating a user.

In order to do this, we’ll need to add a new PUT /v1/users/activated endpoint to our API:

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application information

GET /v1/movies listMoviesHandler Show the details of all movies

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a specific movie

PATCH /v1/movies/:id updateMovieHandler Update the details of a specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

POST /v1/users registerUserHandler Register a new user

PUT /v1/users/activated activateUserHandler Activate a specific user

And the workflow will look like this:

1. The user submits the plaintext activation token (which they just received in their email)

to the PUT /v1/users/activated endpoint.

2. We validate the plaintext token to check that it matches the expected format, sending

the client an error message if necessary.

3. We then call the UserModel.GetForToken() method to retrieve the details of the user

associated with the provided token. If there is no matching token found, or it has

expired, we send the client an error message.

4. We activate the associated user by setting activated = true on the user record and

update it in our database.

5. We delete all activation tokens for the user from the tokens table. We can do this using

the TokenModel.DeleteAllForUser() method that we made earlier.

6. We send the updated user details in a JSON response.

Let’s begin in our cmd/api/users.go file and create the new activateUserHandler to work

through these steps:

File: cmd/api/users.go

package main

...

func (app *application) activateUserHandler(w http.ResponseWriter, r *http.Request) {

 // Parse the plaintext activation token from the request body.

 var input struct {

 TokenPlaintext string `json:"token"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Validate the plaintext token provided by the client.

 v := validator.New()

 if data.ValidateTokenPlaintext(v, input.TokenPlaintext); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Retrieve the details of the user associated with the token using the

 // GetForToken() method (which we will create in a minute). If no matching record

 // is found, then we let the client know that the token they provided is not valid.

 user, err := app.models.Users.GetForToken(data.ScopeActivation, input.TokenPlaintext)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 v.AddError("token", "invalid or expired activation token")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Update the user's activation status.

 user.Activated = true

 // Save the updated user record in our database, checking for any edit conflicts in

 // the same way that we did for our movie records.

 err = app.models.Users.Update(user)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrEditConflict):

 app.editConflictResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // If everything went successfully, then we delete all activation tokens for the

 // user.

 err = app.models.Tokens.DeleteAllForUser(data.ScopeActivation, user.ID)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Send the updated user details to the client in a JSON response.

 err = app.writeJSON(w, http.StatusOK, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

If you try to compile the application at this point, you’ll get an error because the

UserModel.GetForToken() method doesn’t yet exist. Let’s go ahead and create that now.

The UserModel.GetForToken method

As we mentioned above, we want the UserModel.GetForToken() method to retrieve the

details of the user associated with a particular activation token. If there is no matching

token found, or it has expired, we want this to return a ErrRecordNotFound error instead.

In order to do that, we’ll need to execute the following SQL query on our database:

SELECT users.id, users.created_at, users.name, users.email, users.password_hash, users.activated, users.version

FROM users

INNER JOIN tokens

ON users.id = tokens.user_id

WHERE tokens.hash = $1

AND tokens.scope = $2

AND tokens.expiry > $3

This is more complicated than most of the SQL queries we’ve used so far, so let’s take a

moment to explain what it is doing.

In this query we are using INNER JOIN to join together information from the users and

tokens tables. Specifically, we’re using the ON users.id = tokens.user_id clause to

indicate that we want to join records where the user id value equals the token user_id .

Behind the scenes, you can think of INNER JOIN as creating an ‘interim’ table containing the

joined data from both tables. Then, in our SQL query, we use the WHERE clause to filter this

interim table to leave only rows where the token hash and token scope match specific

placeholder parameter values, and the token expiry is after a specific time. Because the

token hash is also a primary key, we will always be left with exactly one record which

contains the details of the user associated with the token hash (or no records at all, if there

wasn’t a matching token).

Hint: If you’re not familiar with performing joins in SQL, then this article provides a

good overview of the different types of joins, how they work, and some examples that

should help assist your understanding.

If you’re following along, open up your internal/data/users.go file and add a

GetForToken() method which executes this SQL query like so:

File: internal/data/users.go

package data

import (

 "context"

https://www.dataquest.io/blog/sql-joins-tutorial/

 "context"

 "crypto/sha256" // New import

 "database/sql"

 "errors"

 "time"

 "greenlight.alexedwards.net/internal/validator"

 "golang.org/x/crypto/bcrypt"

)

...

func (m UserModel) GetForToken(tokenScope, tokenPlaintext string) (*User, error) {

 // Calculate the SHA-256 hash of the plaintext token provided by the client.

 // Remember that this returns a byte *array* with length 32, not a slice.

 tokenHash := sha256.Sum256([]byte(tokenPlaintext))

 // Set up the SQL query.

 query := `

 SELECT users.id, users.created_at, users.name, users.email, users.password_hash, users.activated, users.version

 FROM users

 INNER JOIN tokens

 ON users.id = tokens.user_id

 WHERE tokens.hash = $1

 AND tokens.scope = $2

 AND tokens.expiry > $3`

 // Create a slice containing the query arguments. Notice how we use the [:] operator

 // to get a slice containing the token hash, rather than passing in the array (which

 // is not supported by the pq driver), and that we pass the current time as the

 // value to check against the token expiry.

 args := []interface{}{tokenHash[:], tokenScope, time.Now()}

 var user User

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 // Execute the query, scanning the return values into a User struct. If no matching

 // record is found we return an ErrRecordNotFound error.

 err := m.DB.QueryRowContext(ctx, query, args...).Scan(

 &user.ID,

 &user.CreatedAt,

 &user.Name,

 &user.Email,

 &user.Password.hash,

 &user.Activated,

 &user.Version,

)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 // Return the matching user.

 return &user, nil

}

Now that is in place, the final thing we need to do is add the PUT /v1/users/activated

endpoint to the cmd/api/routes.go file. Like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 // Add the route for the PUT /v1/users/activated endpoint.

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 return app.recoverPanic(app.rateLimit(router))

}

As an aside, I should quickly explain that the reason we’re using PUT rather than POST for

this endpoint is because it’s idempotent.

If a client sends the same PUT /v1/users/activated request multiple times, the first will

succeed (assuming the token is valid) and then any subsequent requests will result in an

error being sent to the client (because the token has been used and deleted from the

database). But the important thing is that nothing in our application state (i.e. database)

changes after that first request.

Basically, there are no application state side-effects from the client sending the same

request multiple times, which means that the endpoint is idempotent and using PUT is more

appropriate than POST.

Alright, let’s restart the API and then try this out.

First, try making some requests to the PUT /v1/users/activated endpoint containing some

invalid tokens. You should get the appropriate error messages in response, like so:

$ curl -X PUT -d '{"token": "invalid"}' localhost:4000/v1/users/activated

{

 "error": {

 "token": "must be 26 bytes long"

 }

}

$ curl -X PUT -d '{"token": "ABCDEFGHIJKLMNOPQRSTUVWXYZ"}' localhost:4000/v1/users/activated

{

 "error": {

 "token": "invalid or expired activation token"

 }

}

Then try making a request using a valid activation token from one of your emails (which will

be in your Mailtrap inbox if you’re following along). In my case, I’ll use the token

P4B3URJZJ2NW5UPZC2OHN4H2NM to activate the user faith@example.com (who we created in

the previous chapter).

You should get a JSON response back with an activated field that confirms that the user

has been activated, similar to this:

$ curl -X PUT -d '{"token": "P4B3URJZJ2NW5UPZC2OHN4H2NM"}' localhost:4000/v1/users/activated

{

 "user": {

 "id": 7,

 "created_at": "2021-04-15T20:25:41+02:00",

 "name": "Faith Smith",

 "email": "faith@example.com",

 "activated": true

 }

}

And if you try repeating the request again with the same token, you should now get an

"invalid or expired activation token" error due to the fact we have deleted all

activation tokens for faith@example.com .

$ curl -X PUT -d '{"token": "P4B3URJZJ2NW5UPZC2OHN4H2NM"}' localhost:4000/v1/users/activated

{

 "error": {

 "token": "invalid or expired activation token"

 }

}

Important: In production, with activation tokens for real accounts, you must make

sure that the tokens are only ever accepted over an encrypted HTTPS connection —

not via regular HTTP like we are using here.

Lastly, let’s take a quick look in our database to see the state of our users table.

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT email, activated, version FROM users;

 email | activated | version

-------------------+-----------+---------

 alice@example.com | f | 1

 bob@example.com | f | 1

 carol@example.com | f | 1

 dave@example.com | f | 1

 edith@example.com | f | 1

 faith@example.com | t | 2

In contrast to all the other users, we can see that faith@example.com has now got the value

activated = true and the version number for their user record has been bumped up to 2 .

Additional Information

Web application workflow

If your API is the backend to a website, rather than a completely standalone service, you can

tweak the activation workflow to make it simpler and more intuitive for users while still

being secure.

There are two main options here. The first, and most robust, option is to ask the user to

copy-and-paste the token into a form on your website which then performs the

PUT /v1/users/activate request for them using some JavaScript. The welcome email to

support that workflow could look something like this:

Hi,

Thanks for signing up for a Greenlight account. We're excited to have you on board!

For future reference, your user ID number is 123.

To activate your Greenlight account please visit h ͟t ͟t ͟p ͟s ͟: ͟/ ͟/ ͟e ͟x ͟a ͟m ͟p ͟l ͟e ͟. ͟c ͟o ͟m ͟/ ͟u ͟s ͟e ͟r ͟s ͟/ ͟a ͟c ͟t ͟i ͟v ͟a ͟t ͟e ͟ and
enter the following code:

Y3QMGX3PJ3WLRL2YRTQGQ6KRHU

Please note that this code will expire in 3 days and can only be used once.

Thanks,

The Greenlight Team

This approach is fundamentally simple and secure — effectively your website just provides a

form that performs the PUT request for the user, rather than them needing to do it manually

using curl or another tool.

Note: When creating the link in this email, don’t rely on the Host header from r.Host

to construct the URL, as that would be vulnerable to a host header injection attack.

The URL domain should be either be hard-coded or passed in as a command-line flag

when starting the application.

Alternatively, if you don’t want the user to copy-and-paste a token, you could ask them to

click a link containing the token which takes them to a page on your website. Similar to this:

Hi,

Thanks for signing up for a Greenlight account. We're excited to have you on board!

For future reference, your user ID number is 123.

To activate your Greenlight account please click the following link:

h ͟t ͟t ͟p ͟s ͟: ͟/ ͟/ ͟e ͟x ͟a ͟m ͟p ͟l ͟e ͟. ͟c ͟o ͟m ͟/ ͟u ͟s ͟e ͟r ͟s ͟/ ͟a ͟c ͟t ͟i ͟v ͟a ͟t ͟e ͟? ͟t ͟o ͟k ͟e ͟n ͟= ͟Y ͟3 ͟Q ͟M ͟G ͟X ͟3 ͟P ͟J ͟3 ͟W ͟L ͟R ͟L ͟2 ͟Y ͟R ͟T ͟Q ͟G ͟Q ͟6 ͟K ͟R ͟H ͟U ͟

Please note that this link will expire in 3 days and can only be used once.

Thanks,

The Greenlight Team

This page should then display a button that says something like ‘Confirm your account

activation’, and some JavaScript on the webpage can extract the token from the URL and

submit it to your PUT /v1/users/activate API endpoint when the user clicks the button.

https://golang.org/pkg/net/http/#Request
https://portswigger.net/web-security/host-header

If you go with this second option, you also need to take steps to avoid the token being

leaked in a referrer header if the user navigates to a different site. You can use the

Referrer-Policy: Origin header or <meta name="referrer" content="origin"> HTML

tag to mitigate this, although you should be aware that it’s not supported by absolutely all

web browsers (support is currently at ~96%).

In all cases though, whatever the email and workflow looks like in terms of the front-end

and user-experience, the back-end API endpoint that we’ve implemented is the same and

doesn’t need to change.

SQL query timing attack

It’s worth pointing out that the SQL query we’re using in UserModel.GetForToken() is

theoretically vulnerable to a timing attack, because PostgreSQL’s evaluation of the

tokens.hash = $1 condition is not performed in constant-time.

SELECT users.id, users.created_at, users.name, users.email, users.password_hash, users.activated, users.version

FROM users

INNER JOIN tokens

ON users.id = tokens.user_id

WHERE tokens.hash = $1 --<-- This is vulnerable to a timing attack

AND tokens.scope = $2

AND tokens.expiry > $3

Although it would be somewhat tricky to pull off, in theory an attacker could issue

thousands of requests to our PUT /v1/users/activated endpoint and analyze tiny

discrepancies in the average response time to build up a picture of a hashed activation

token value in the database.

But, in our case, even if a timing attack was successful it would only leak the hashed token

value from the database — not the plaintext token value that the user actually needs to

submit to activate their account.

So the attacker would still need to use brute-force to find a 26-character string which

happens to have the same SHA-256 hash that they discovered from the timing attack. This is

incredibly difficult to do, and simply not viable with current technology.

https://medium.com/@shahjerry33/password-reset-token-leak-via-referrer-2e622500c2c1
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Referrer-Policy#integration_with_html
https://caniuse.com/referrer-policy

Chapter 16.

Authentication

In this section of the book we’re going to look at how to authenticate requests to our API, so

that we know exactly which user a particular request is coming from.

Remember: Authentication is about confirming who a user is, whereas authorization is

about checking whether that user is permitted to do something.

We will:

Lay out the possible approaches to API authentication that we could use, and talk

through their relative pro and cons.

Implement a stateful token-based authentication pattern, which allows clients to

exchange their user credentials for a time-limited authentication token identifying who

they are.

Chapter 16.1.

Authentication Options

Before we get started on writing any code, let’s talk about how we’re going to authenticate

requests to our API and find out which user a request is coming from.

Choosing a high-level approach to API authentication can be tricky — there are many

different options, and it’s not always immediately clear which one is the right fit for your

project. So in this chapter we’ll discuss some of the most common approaches at a high

level, talk through their relative pros and cons, and finish with some general guidelines

about when they’re appropriate to use.

Specifically, the five approaches that we’ll compare are:

Basic authentication

Stateful token authentication

Stateless token authentication

API key authentication

OAuth 2.0 / OpenID Connect

Important: For all authentication methods that we’re describing in this chapter, it’s

assumed that your API only communicates with clients over HTTPS.

HTTP basic authentication

Perhaps the simplest way to determine who is making a request to your API is to use HTTP

basic authentication.

With this method, the client includes an Authorization header with every request

containing their credentials. The credentials need to be in the format username:password

and base-64 encoded. So, for example, to authenticate as alice@example.com:pa55word the

client would send the following header:

Authorization: Basic YWxpY2VAZXhhbXBsZS5jb206cGE1NXdvcmQ=

In your API, you can then extract the credentials from this header using Go’s

Request.BasicAuth() method, and verify that they’re correct before continuing to process

the request.

A big plus of HTTP basic authentication is how simple it is for clients. They can just send the

same header with every request — and HTTP basic authentication is supported out-of-the-

box by most programming languages, web browsers, and tools such as curl and wget.

It’s often useful in the scenario where your API doesn’t have ‘real’ user accounts, but you

want a quick and easy way to restrict access to it or protect it from prying eyes.

For APIs with ‘real’ user accounts and — in particular — hashed passwords, it’s not such a

great fit. Comparing the password provided by a client against a (slow) hashed password is

a deliberately costly operation, and when using HTTP basic authentication you need to do

that check for every request. That will create a lot of extra work for your API server and add

significant latency to responses.

But even then, basic authentication can still be a good choice if traffic to your API is very low

and response speed is not important to you.

Token authentication

The high-level idea behind token authentication (also sometimes known as bearer token

authentication) works like this:

1. The client sends a request to your API containing their credentials (typically username

or email address, and password).

2. The API verifies that the credentials are correct, generates a bearer token which

represents the user, and sends it back to the user. The token expires after a set period of

time, after which the user will need to resubmit their credentials again to get a new

token.

3. For subsequent requests to the API, the client includes the token in an Authorization

header like this:

Authorization: Bearer <token>

4. When your API receives this request, it checks that the token hasn’t expired and

examines the token value to determine who the user is.

For APIs where user passwords are hashed (like ours), this approach is better than basic

https://golang.org/pkg/net/http/#Request.BasicAuth

authentication because it means that the slow password check only has to be done

periodically — either when creating a token for the first time or after a token has expired.

The downside is that managing tokens can be complicated for clients — they will need to

implement the necessary logic for caching tokens, monitoring and managing token expiry,

and periodically generating new tokens.

We can break down token authentication further into two sub-types: stateful and stateless

token authentication. They are quite different in terms of their pros and cons, so let’s

discuss them both separately.

Stateful token authentication

In a stateful token approach, the value of the token is a high-entropy cryptographically-

secure random string. This token — or a fast hash of it — is stored server-side in a database,

alongside the user ID and an expiry time for the token.

When the client sends back the token in subsequent requests, your API can look up the

token in the database, check that it hasn’t expired, and retrieve the corresponding user ID

to find out who the request is coming from.

The big advantage of this is that your API maintains control over the tokens — it’s

straightforward to revoke tokens on a per-token or per-user basis by deleting them from the

database or marking them as expired.

Conceptually it’s also simple and robust — the security is provided by the token being an

‘unguessable’, which is why it’s important to use a high-entropy cryptographically-secure

random value for the token.

So, what are the downsides?

Beyond the complexity for clients that is inherent with token authentication generally, it’s

difficult to find much to criticize about this approach. Perhaps the fact that it requires a

database lookup is a negative — but in most cases you will need to make a database lookup

to check the user’s activation status or retrieve additional information about them anyway.

Stateless token authentication

In contrast, stateless tokens encode the user ID and expiry time in the token itself. The token

is cryptographically signed to prevent tampering and (in some cases) encrypted to prevent

the contents being read.

There are a few different technologies that you can use to create stateless tokens. Encoding

the information in a JWT (JSON Web Token) is probably the most well-known approach, but

PASETO, Branca and nacl/secretbox are viable alternatives too. Although the

implementation details of these technologies are different, the overarching pros and cons

in terms of authentication are similar.

The main selling point of using stateless tokens for authentication is that the work to

encode and decode the token can be done in memory, and all the information required to

identify the user is contained within the token itself. There’s no need to perform a database

lookup to find out who a request is coming from.

The primary downside of stateless tokens is that they can’t easily be revoked once they are

issued.

In an emergency, you could effectively revoke all tokens by changing the secret used for

signing your tokens (forcing all users to re-authenticate), or another workaround is to

maintain a blocklist of revoked tokens in a database (although that defeats the ‘stateless’

aspect of having stateless tokens).

Note: You should generally avoid storing additional information in a stateless token,

such as a user’s activation status or permissions, and using that as the basis for

authorization checks. During the lifetime of the token, the information encoded into it

will potentially become stale and out-of-sync with the real data in your system — and

relying on stale data for authorization checks can easily lead to unexpected behavior

for users and various security issues.

Finally, with JWTs in particular, the fact that they’re highly configurable means that there

are lots of things you can get wrong . The Critical vulnerabilities in JSON Web Token libraries

and JWT Security Best Practices articles provide a good introduction to the type of things

you need to be careful of here.

Because of these downsides, stateless tokens — and JWTs in particular — are generally not

the best choice for managing authentication in most API applications.

But they can be very useful in a scenario where you need delegated authentication — where

the application creating the authentication token is different to the application consuming

it, and those applications don’t share any state (which means that using stateful tokens

isn’t an option). For instance, if you’re building a system which has a microservice-style

architecture behind the scenes, then a stateless token created by an ‘authentication’

service can subsequently be passed to other services to identify the user.

https://en.wikipedia.org/wiki/JSON_Web_Token
https://developer.okta.com/blog/2019/10/17/a-thorough-introduction-to-paseto
https://branca.io/
https://pkg.go.dev/golang.org/x/crypto/nacl/secretbox
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/
https://curity.io/resources/learn/jwt-best-practices/

API-key authentication

The idea behind API-key authentication is that a user has a non-expiring secret ‘key’

associated with their account. This key should be a high-entropy cryptographically-secure

random string, and a fast hash of the key (SHA256 or SHA512) should be stored alongside

the corresponding user ID in your database.

The user then passes their key with each request to your API in a header like this:

Authorization: Key <key>

On receiving it, your API can regenerate the fast hash of the key and use it to lookup the

corresponding user ID from your database.

Conceptually, this isn’t a million miles away from the stateful token approach — the main

difference is that the keys are permanent keys, rather than temporary tokens.

On one hand, this is nice for the client as they can use the same key for every request and

they don’t need to write code to manage tokens or expiry. On the other hand, the user now

has two long-lived secrets to manage which can potentially compromise their account: their

password, and their API key.

Supporting API keys also adds additional complexity to your API application — you’ll need a

way for users to regenerate their API key if they lose it or the key is compromised, and you

may also wish to support multiple API keys for the same user, so they can use different keys

for different purposes.

It’s also important to note that API keys themselves should only ever be communicated to

users over a secure channel, and you should treat them with the same level of care that you

would a user’s password.

OAuth 2.0 / OpenID Connect

Another option is to leverage OAuth 2.0 for authentication. With this approach, information

about your users (and their passwords) is stored by a third-party identity provider like

Google or Facebook rather than yourself.

The first thing to mention here is that OAuth 2.0 is not an authentication protocol, and you

shouldn’t really use it for authenticating users. The oauth.net website has a great article

explaining this, and I highly recommend reading it.

https://oauth.net/
https://oauth.net/articles/authentication/

If you want to implement authentication checks against a third-party identity provider, you

should use OpenID Connect (which is built directly on top of OAuth 2.0).

There’s a comprehensive overview of OpenID Connect here, but at a very, very, high level it

works like this:

When you want to authenticate a request, you redirect the user to an ‘authentication

and consent’ form hosted by the identity provider.

If the user consents, then the identity provider sends your API an authorization code.

Your API then sends the authorization code to another endpoint provided by the identity

provider. They verify the authorization code, and if it’s valid they will send you a JSON

response containing an ID token.

This ID token is itself a JWT. You need to validate and decode this JWT to get the actual

user information, which includes things like their email address, name, birth date,

timezone etc.

Now that you know who the user is, you can then implement a stateful or stateless

authentication token pattern so that you don’t have to go through the whole process for

every subsequent request.

Like all the other options we’ve looked at, there are pros and cons to using OpenID Connect.

The big plus is that you don’t need to persistently store user information or passwords

yourself. The big downside is that it’s quite complex — although there are some helper

packages like coreos/go-oidc which do a good job of masking that complexity and

providing a simple interface for the OpenID Connect workflow that you can hook in to.

It’s also important to point out that using OpenID Connect requires all your users to have an

account with the identity provider, and the ‘authentication and consent’ step requires

human interaction via a web browser — which is probably fine if your API is the back-end for

a website, but not ideal if it is a ‘standalone’ API with other computer programs as clients.

What authentication approach should I use?

It’s difficult to give blanket guidance on what authentication approach is best to use for

your API. As with most things in programming, different tools are appropriate for different

jobs.

But as simple, rough, rules-of-thumb:

If your API doesn’t have ‘real’ user accounts with slow password hashes, then HTTP basic

authentication can be a good — and often overlooked — fit.

https://openid.net/connect/
https://connect2id.com/learn/openid-connect
https://github.com/coreos/go-oidc

If you don’t want to store user passwords yourself, all your users have accounts with a

third-party identity provider that supports OpenID Connect, and your API is the back-end

for a website… then use OpenID Connect.

If you require delegated authentication, such as when your API has a microservice

architecture with different services for performing authentication and performing other

tasks, then use stateless authentication tokens.

Otherwise use API keys or stateful authentication tokens. In general:

Stateful authentication tokens are a nice fit for APIs that act as the back-end for a

website or single-page application, as there is a natural moment when the user logs-

in where they can be exchanged for user credentials.

In contrast, API keys can be better for more ‘general purpose’ APIs because they’re

permanent and simpler for developers to use in their applications and scripts.

In the rest of this book, we’re going to implement authentication using the stateful

authentication token pattern. In our case we’ve already built a lot of the necessary logic for

this as part of our activation tokens work.

Note: Although I really don’t recommend using JWTs unless you need some form of

delegated authentication, I’m aware that they hold a lot of mind-share in the

developer community and are often used more widely than that.

So, because of this, I’ve also included an appendix at the end of the book which

explains how the Greenlight API can be adapted to use a stateless authentication

token pattern with JWTs.

Chapter 16.2.

Generating Authentication Tokens

In this chapter we’re going to focus on building up the code for a new

POST/v1/tokens/authentication endpoint, which will allow a client to exchange their

credentials (email address and password) for a stateful authentication token.

Note: For conciseness, rather than repeating the words ‘stateful authentication token’

throughout the rest of this book, from now on we’ll simply refer this as the user’s

authentication token.

At a high level, the process for exchanging a user’s credentials for an authentication token

will work like this:

1. The client sends a JSON request to a new POST/v1/tokens/authentication endpoint

containing their credentials (email and password).

2. We look up the user record based on the email, and check if the password provided is

the correct one for the user. If it’s not, then we send an error response.

3. If the password is correct, we use our app.models.Tokens.New() method to generate a

token with an expiry time of 24 hours and the scope "authentication".

4. We send this authentication token back to the client in a JSON response body.

Let’s begin in our internal/data/tokens.go file.

We need to update this file to define a new "authentication" scope, and add some struct

tags to customize how the Token struct appears when it is encoded to JSON. Like so:

File: internal/data/tokens.go

package data

...

const (

 ScopeActivation = "activation"

 ScopeAuthentication = "authentication" // Include a new authentication scope.

)

// Add struct tags to control how the struct appears when encoded to JSON.

type Token struct {

 Plaintext string `json:"token"`

 Hash []byte `json:"-"`

 UserID int64 `json:"-"`

 Expiry time.Time `json:"expiry"`

 Scope string `json:"-"`

}

...

These new struct tags mean that only the Plaintext and Expiry fields will be included

when encoding a Token struct — all the other fields will be omitted. We also rename the

Plaintext field to "token" , just because it’s a more meaningful name for clients than

‘plaintext’ is.

Altogether, this means that when we encode a Token struct to JSON the result will look

similar to this:

{

 "token": "X3ASTT2CDAN66BACKSCI4SU7SI",

 "expiry": "2021-01-18T13:00:25.648511827+01:00"

}

Building the endpoint

Now let’s get into the meat of this chapter and set up all the code for the new

POST/v1/tokens/authentication endpoint. By the time we’re finished, our API routes will

look like this:

Method URL Pattern Handler Action

GET /v1/healthcheck healthcheckHandler Show application

information

GET /v1/movies listMoviesHandler Show the details of all

movies

POST /v1/movies createMovieHandler Create a new movie

GET /v1/movies/:id showMovieHandler Show the details of a

specific movie

PATCH /v1/movies/:id updateMovieHandler Update the details of a

specific movie

DELETE /v1/movies/:id deleteMovieHandler Delete a specific movie

POST /v1/users registerUserHandler Register a new user

PUT /v1/users/activated activateUserHandler Activate a specific

user

POST /v1/tokens/authentication createAuthenticationTokenHandler Generate a new

authentication token

If you’re following along, go ahead and create a new cmd/api/tokens.go file:

$ touch cmd/api/tokens.go

And in this new file we’ll add the code for the createAuthenticationTokenHandler.

Essentially, we want this handler to exchange the user’s email address and password for an

authentication token, like so:

File: cmd/api/tokens.go

package main

import (

 "errors"

 "net/http"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

)

func (app *application) createAuthenticationTokenHandler(w http.ResponseWriter, r *http.Request) {

 // Parse the email and password from the request body.

 var input struct {

 var input struct {

 Email string `json:"email"`

 Password string `json:"password"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 // Validate the email and password provided by the client.

 v := validator.New()

 data.ValidateEmail(v, input.Email)

 data.ValidatePasswordPlaintext(v, input.Password)

 if !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Lookup the user record based on the email address. If no matching user was

 // found, then we call the app.invalidCredentialsResponse() helper to send a 401

 // Unauthorized response to the client (we will create this helper in a moment).

 user, err := app.models.Users.GetByEmail(input.Email)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.invalidCredentialsResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Check if the provided password matches the actual password for the user.

 match, err := user.Password.Matches(input.Password)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // If the passwords don't match, then we call the app.invalidCredentialsResponse()

 // helper again and return.

 if !match {

 app.invalidCredentialsResponse(w, r)

 return

 }

 // Otherwise, if the password is correct, we generate a new token with a 24-hour

 // expiry time and the scope 'authentication'.

 token, err := app.models.Tokens.New(user.ID, 24*time.Hour, data.ScopeAuthentication)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Encode the token to JSON and send it in the response along with a 201 Created

 // status code.

 err = app.writeJSON(w, http.StatusCreated, envelope{"authentication_token": token}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

Let’s quickly create the invalidCredentialsResponse() helper in our cmd/api/errors.go

file too:

File: cmd/api/errors.go

package main

...

func (app *application) invalidCredentialsResponse(w http.ResponseWriter, r *http.Request) {

 message := "invalid authentication credentials"

 app.errorResponse(w, r, http.StatusUnauthorized, message)

}

Then lastly, we need to include the POST /v1/tokens/authentication endpoint in our

application routes. Like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 // Add the route for the POST /v1/tokens/authentication endpoint.

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 return app.recoverPanic(app.rateLimit(router))

}

With all that complete, we should now be able to generate an authentication token.

Go ahead and make a request to the new POST /v1/tokens/authentication endpoint with

a valid email address and password for one of the users that you’ve previously created. You

should get a 201 Created response and a JSON body containing an authentication token,

similar to this:

$ BODY='{"email": "alice@example.com", "password": "pa55word"}'

$ curl -i -d "$BODY" localhost:4000/v1/tokens/authentication

HTTP/1.1 201 Created

Content-Type: application/json

Date: Fri, 16 Apr 2021 09:03:36 GMT

Content-Length: 125

{

 "authentication_token": {

 "token": "IEYZQUBEMPPAKPOAWTPV6YJ6RM",

 "expiry": "2021-04-17T11:03:36.767078518+02:00"

 }

}

In contrast, if you try making a request with a well-formed but unknown email address, or

an incorrect password, you should get an error response. For example:

$ BODY='{"email": "alice@example.com", "password": "wrong pa55word"}'

$ curl -i -d "$BODY" localhost:4000/v1/tokens/authentication

HTTP/1.1 401 Unauthorized

Content-Type: application/json

Date: Fri, 16 Apr 2021 09:54:01 GMT

Content-Length: 51

{

 "error": "invalid authentication credentials"

}

Before we continue, let’s quickly have a look at the tokens table in our PostgreSQL

database to check that the authentication token has been created.

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT * FROM tokens WHERE scope = 'authentication';

\x4390d2ff4af7346dd4238ffccb8a5b18e8c3af9aa8cf57852895ad0f8ee2c50d | 1 | 2021-04-17 11:03:37+02 | authentication

That’s looking good. We can see that the token is associated with the user with ID 1 (which

if you’ve been following along will be the user alice@example.com) and has the correct

scope and expiry time.

Additional Information

The Authorization header

Occasionally you might come across other APIs or tutorials where authentication tokens are

sent back to the client in an Authorization header, rather than in the response body like

we are in this chapter.

You can do that, and in most cases it will probably work fine. But it’s important to be

conscious that you making a willful violation of the HTTP specifications: Authorization is a

request header, not a response header.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Chapter 16.3.

Authenticating Requests

Now that our clients have a way to exchange their credentials for an authentication token,

let’s look at how we can use that token to authenticate them, so we know exactly which user

a request is coming from.

Essentially, once a client has an authentication token we will expect them to include it with

all subsequent requests in an Authorization header, like so:

Authorization: Bearer IEYZQUBEMPPAKPOAWTPV6YJ6RM

When we receive these requests, we’ll use a new authenticate() middleware method to

execute the following logic:

If the authentication token is not valid, then we will send the client a 401 Unauthorized

response and an error message to let them know that their token is malformed or invalid.

If the authentication token is valid, we will look up the user details and add their details

to the request context.

If no Authorization header was provided at all, then we will add the details for an

anonymous user to the request context instead.

Creating the anonymous user

Let’s start with the final bullet point, and first define an anonymous user in our

internal/data/user.go file, like so:

File: internal/data/user.go

package data

...

// Declare a new AnonymousUser variable.

var AnonymousUser = &User{}

type User struct {

 ID int64 `json:"id"`

 CreatedAt time.Time `json:"created_at"`

 Name string `json:"name"`

 Email string `json:"email"`

 Password password `json:"-"`

 Activated bool `json:"activated"`

 Version int `json:"-"`

}

// Check if a User instance is the AnonymousUser.

func (u *User) IsAnonymous() bool {

 return u == AnonymousUser

}

...

So here we’ve created a new AnonymousUser variable, which holds a pointer to a User struct

representing an inactivated user with no ID, name, email or password .

We’ve also implemented an IsAnonymous() method on the User struct, so whenever we

have a User instance we can easily check whether it is the AnonymousUser instance or not.

For example:

data.AnonymousUser.IsAnonymous() // → Returns true

otherUser := &data.User{}

otherUser.IsAnonymous() // → Returns false

Reading and writing to the request context

The other setup step, before we get into creating the authenticate() middleware itself,

relates to storing the user details in the request context.

We discussed what request context is and how to use it in detail in Let’s Go, and if any of this

feels unfamiliar then I recommend re-reading that section of the book before continuing.

But as a quick reminder:

Every http.Request that our application processes has a context.Context embedded in

it, which we can use to store key/value pairs containing arbitrary data during the lifetime

https://golang.org/pkg/context/#Context

of the request. In this case we want to store a User struct containing the current user’s

information.

Any values stored in the request context have the type interface{} . This means that

after retrieving a value from the request context you need to assert it back to its original

type before using it.

It’s good practice to use your own custom type for the request context keys. This helps

prevent naming collisions between your code and any third-party packages which are

also using the request context to store information.

To help with this, let’s create a new cmd/api/context.go file containing some helper

methods for reading/writing the User struct to and from the request context.

If you’re following along, go ahead and create the new file:

$ touch cmd/api/context.go

And then add the following code:

File: cmd/api/context.go

package main

import (

 "context"

 "net/http"

 "greenlight.alexedwards.net/internal/data"

)

// Define a custom contextKey type, with the underlying type string.

type contextKey string

// Convert the string "user" to a contextKey type and assign it to the userContextKey

// constant. We'll use this constant as the key for getting and setting user information

// in the request context.

const userContextKey = contextKey("user")

// The contextSetUser() method returns a new copy of the request with the provided

// User struct added to the context. Note that we use our userContextKey constant as the

// key.

func (app *application) contextSetUser(r *http.Request, user *data.User) *http.Request {

 ctx := context.WithValue(r.Context(), userContextKey, user)

 return r.WithContext(ctx)

}

// The contextSetUser() retrieves the User struct from the request context. The only

// time that we'll use this helper is when we logically expect there to be User struct

// value in the context, and if it doesn't exist it will firmly be an 'unexpected' error.

// As we discussed earlier in the book, it's OK to panic in those circumstances.

func (app *application) contextGetUser(r *http.Request) *data.User {

 user, ok := r.Context().Value(userContextKey).(*data.User)

 if !ok {

 panic("missing user value in request context")

 }

 return user

}

Creating the authentication middleware

Now that we’ve got those things in place, we’re ready to start work on our authenticate()

middleware itself.

Open up your cmd/api/middleware.go file, and add the following code:

File: cmd/api/middleware.go

package main

import (

 "errors" // New import

 "fmt"

 "net"

 "net/http"

 "strings" // New import

 "sync"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data" // New import

 "greenlight.alexedwards.net/internal/validator" // New import

 "golang.org/x/time/rate"

)

...

func (app *application) authenticate(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Add the "Vary: Authorization" header to the response. This indicates to any

 // caches that the response may vary based on the value of the Authorization

 // header in the request.

 w.Header().Add("Vary", "Authorization")

 // Retrieve the value of the Authorization header from the request. This will

 // return the empty string "" if there is no such header found.

 authorizationHeader := r.Header.Get("Authorization")

 // If there is no Authorization header found, use the contextSetUser() helper

 // that we just made to add the AnonymousUser to the request context. Then we

 // call the next handler in the chain and return without executing any of the

 // code below.

 if authorizationHeader == "" {

 r = app.contextSetUser(r, data.AnonymousUser)

 next.ServeHTTP(w, r)

 return

 }

 // Otherwise, we expect the value of the Authorization header to be in the format

 // "Bearer <token>". We try to split this into its constituent parts, and if the

 // header isn't in the expected format we return a 401 Unauthorized response

 // using the invalidAuthenticationTokenResponse() helper (which we will create

 // in a moment).

 headerParts := strings.Split(authorizationHeader, " ")

 if len(headerParts) != 2 || headerParts[0] != "Bearer" {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 // Extract the actual authentication token from the header parts.

 token := headerParts[1]

 // Validate the token to make sure it is in a sensible format.

 v := validator.New()

 // If the token isn't valid, use the invalidAuthenticationTokenResponse()

 // helper to send a response, rather than the failedValidationResponse() helper

 // that we'd normally use.

 if data.ValidateTokenPlaintext(v, token); !v.Valid() {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 // Retrieve the details of the user associated with the authentication token,

 // again calling the invalidAuthenticationTokenResponse() helper if no

 // matching record was found. IMPORTANT: Notice that we are using

 // ScopeAuthentication as the first parameter here.

 user, err := app.models.Users.GetForToken(data.ScopeAuthentication, token)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.invalidAuthenticationTokenResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Call the contextSetUser() helper to add the user information to the request

 // context.

 r = app.contextSetUser(r, user)

 // Call the next handler in the chain.

 next.ServeHTTP(w, r)

 })

}

There’s quite a lot of code there, so to help clarify things, let’s quickly reiterate the actions

that this middleware is taking:

If a valid authentication token is provided in the Authorization header, then a User

struct containing the corresponding user details will be stored in the request context.

If no Authorization header is provided at all, our AnonymousUser struct will be stored in

the request context.

If the Authorization header is provided, but it’s malformed or contains an invalid value,

the client will be sent a 401 Unauthorized response using the

invalidAuthenticationTokenResponse() helper.

Talking of which, let’s head to our cmd/api/errors.go file and create that helper as follows:

File: cmd/api/errors.go

package main

...

func (app *application) invalidAuthenticationTokenResponse(w http.ResponseWriter, r *http.Request) {

 w.Header().Set("WWW-Authenticate", "Bearer")

 message := "invalid or missing authentication token"

 app.errorResponse(w, r, http.StatusUnauthorized, message)

}

Note: We’re including a WWW-Authenticate: Bearer header here to help inform or

remind the client that we expect them to authenticate using a bearer token.

Finally, we need to add the authenticate() middleware to our handler chain. We want to

use this middleware on all requests — after our panic recovery and rate limiter middleware,

but before our router.

Go ahead and update the cmd/api/routes.go file accordingly:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.listMoviesHandler)

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.createMovieHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.showMovieHandler)

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.updateMovieHandler)

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.deleteMovieHandler)

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 // Use the authenticate() middleware on all requests.

 return app.recoverPanic(app.rateLimit(app.authenticate(router)))

}

Demonstration

Let’s test this out by first making a request with no Authorization header. Behind the

scenes, our authenticate() middleware will add the AnonymousUser to the request context

and the request should complete successfully. Like so:

$ curl localhost:4000/v1/healthcheck

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

Then let’s try the same thing but with a valid authentication token in the Authorization

header. This time, the relevant user details should be added to the request context, and we

should again get a successful response. For example:

$ curl -d '{"email": "alice@example.com", "password": "pa55word"}' localhost:4000/v1/tokens/authentication

{

 "authentication_token": {

 "token": "FXCZM44TVLC6ML2NXTOW5OHFUE",

 "expiry": "2021-04-17T12:20:30.02833444+02:00"

 }

}

$ curl -H "Authorization: Bearer FXCZM44TVLC6ML2NXTOW5OHFUE" localhost:4000/v1/healthcheck

HTTP/1.1 200 OK

{

 "status": "available",

 "system_info": {

 "environment": "development",

 "version": "1.0.0"

 }

}

Hint: If you get an error response here, make sure that you’re using the correct

authentication token from the first request in the second request.

In contrast, you can also try sending some requests with an invalid authentication token or

a malformed Authorization header. In these cases you should get a 401 Unauthorized

response, like so:

$ curl -i -H "Authorization: Bearer XXXXXXXXXXXXXXXXXXXXXXXXXX" localhost:4000/v1/healthcheck

HTTP/1.1 401 Unauthorized

Content-Type: application/json

Vary: Authorization

Www-Authenticate: Bearer

Date: Fri, 16 Apr 2021 10:23:06 GMT

Content-Length: 56

{

 "error": "invalid or missing authentication token"

}

$ curl -i -H "Authorization: INVALID" localhost:4000/v1/healthcheck

HTTP/1.1 401 Unauthorized

Content-Type: application/json

Vary: Authorization

Www-Authenticate: Bearer

Date: Fri, 16 Apr 2021 10:23:26 GMT

Content-Length: 56

{

 "error": "invalid or missing authentication token"

}

Chapter 17.

Permission-based Authorization

By the time a request leaves our authenticate() middleware, there are now two possible

states for the request context. Either:

The request context contains a User struct (representing a valid, authenticated, user).

Or the request context contains an AnonymousUser struct.

In this section of the book, we’re going to take this to the next natural stage and look at

how to perform different authorization checks to restrict access to our API endpoints.

Specifically, you’ll learn how to:

Add checks so that only activated users are able to access the various /v1/movies**

endpoints.

Implement a permission-based authorization pattern, which provides fine-grained

control over exactly which users can access which endpoints.

Chapter 17.1.

Requiring User Activation

As we mentioned a moment ago, the first thing we’re going to do in terms of authorization

is restrict access to our /v1/movies** endpoints — so that they can only be accessed by

users who are authenticated (not anonymous), and who have activated their account.

Carrying out these kinds of checks is an ideal task for some middleware, so let’s jump in and

make a new requireActivatedUser() middleware method to handle this. In this

middleware, we want to extract the User struct from the request context and then check

the IsAnonymous() method and Activated field to determine whether the request should

continue or not.

Specifically:

If the user is anonymous we should send a 401 Unauthorized response and an error

message saying “you must be authenticated to access this resource” .

If the user is not anonymous (i.e. they have authenticated successfully and we know who

they are), but they are not activated we should send a 403 Forbidden response and an

error message saying “your user account must be activated to access this

resource” .

Remember: A 401 Unauthorized response should be used when you have missing or

bad authentication, and a 403 Forbidden response should be used afterwards, when

the user is authenticated but isn’t allowed to perform the requested operation.

So first, let’s head to our cmd/api/errors.go file and add a couple of new helpers for

sending those error messages. Like so:

File: cmd/api/errors.go

package main

...

func (app *application) authenticationRequiredResponse(w http.ResponseWriter, r *http.Request) {

 message := "you must be authenticated to access this resource"

 app.errorResponse(w, r, http.StatusUnauthorized, message)

}

func (app *application) inactiveAccountResponse(w http.ResponseWriter, r *http.Request) {

 message := "your user account must be activated to access this resource"

 app.errorResponse(w, r, http.StatusForbidden, message)

}

And then let’s create the new requireActivatedUser() middleware for carrying out the

checks. The code we need is nice and succinct:

File: cmd/api/middleware.go

package main

...

func (app *application) requireActivatedUser(next http.HandlerFunc) http.HandlerFunc {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Use the contextGetUser() helper that we made earlier to retrieve the user

 // information from the request context.

 user := app.contextGetUser(r)

 // If the user is anonymous, then call the authenticationRequiredResponse() to

 // inform the client that they should authenticate before trying again.

 if user.IsAnonymous() {

 app.authenticationRequiredResponse(w, r)

 return

 }

 // If the user is not activated, use the inactiveAccountResponse() helper to

 // inform them that they need to activate their account.

 if !user.Activated {

 app.inactiveAccountResponse(w, r)

 return

 }

 // Call the next handler in the chain.

 next.ServeHTTP(w, r)

 })

}

Notice here that our requireActivatedUser() middleware has a slightly different signature

to the other middleware we’ve built in this book. Instead of accepting and returning a

http.Handler, it accepts and returns a http.HandlerFunc.

This is a small change, but it makes it possible to wrap our /v1/movie** handler functions

directly with this middleware, without needing to make any further conversions.

Go ahead and update the cmd/api/routes.go file to do exactly that, as follows:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 // Use the requireActivatedUser() middleware on our five /v1/movies** endpoints.

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requireActivatedUser(app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requireActivatedUser(app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requireActivatedUser(app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requireActivatedUser(app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requireActivatedUser(app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 return app.recoverPanic(app.rateLimit(app.authenticate(router)))

}

Demonstration

Alright, let’s try out these changes!

We’ll begin by calling the GET /v1/movies/:id endpoint as an anonymous user. When doing

this you should now receive a 401 Unauthorized response, like so:

$ curl -i localhost:4000/v1/movies/1

HTTP/1.1 401 Unauthorized

Content-Type: application/json

Vary: Authorization

Www-Authenticate: Bearer

Date: Fri, 16 Apr 2021 15:59:33 GMT

Content-Length: 66

{

 "error": "you must be authenticated to access this resource"

}

Next, let’s try making a request as a user who has an account, but has not yet activated. If

you’ve been following along, you should be able to use the alice@example.com user to do

this, like so:

$ BODY='{"email": "alice@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/tokens/authentication

{

 "authentication_token": {

 "token": "2O4YHHWDHVVWWDNKN2UZR722BU",

 "expiry": "2021-04-17T18:03:09.598843181+02:00"

 }

}

$ curl -i -H "Authorization: Bearer 2O4YHHWDHVVWWDNKN2UZR722BU" localhost:4000/v1/movies/1

HTTP/1.1 403 Forbidden

Content-Type: application/json

Vary: Authorization

Date: Fri, 16 Apr 2021 16:03:45 GMT

Content-Length: 76

{

 "error": "your user account must be activated to access this resource"

}

Great, we can see that this now results in a 403 Forbidden response from our new

inactiveAccountResponse() helper.

Finally, let’s try making a request as an activated user.

If you’re coding-along, you might like to quickly connect to your PostgreSQL database and

double-check which users are already activated.

$ psql $GREENLIGHT_DB_DSN

psql (13.2 (Ubuntu 13.2-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT email FROM users WHERE activated = true;

 email

 faith@example.com

(1 row)

In my case the only activated user is faith@example.com , so let’s try making a request as

them. When making a request as an activated user, all the checks in our

requireActivatedUser() middleware will pass and you should get a successful response.

Similar to this:

$ BODY='{"email": "faith@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/tokens/authentication

{

 "authentication_token": {

 "token": "ZFIKQ344EYM5KEP6JL2RHLRPJQ",

 "expiry": "2021-04-17T18:04:57.513348573+02:00"

 }

}

$ curl -H "Authorization: Bearer ZFIKQ344EYM5KEP6JL2RHLRPJQ" localhost:4000/v1/movies/1

{

 "movie": {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 }

}

Splitting up the middleware

At the moment we have one piece of middleware doing two checks: first it checks that the

user is authenticated (not anonymous), and second it checks that they are activated.

But it’s possible to imagine a scenario where you only want to check that a user is

authenticated, and you don’t care whether they are activated or not. To assist with this, you

might want to introduce an additional requireAuthenticatedUser() middleware as well as

the current requireActivatedUser() middleware.

However, there would be some overlap between these two middlewares, as they would

both be checking whether a user is authenticated not. A neat way to avoid this duplication

is to have your requireActivatedUser() middleware automatically call the

requireAuthenticatedUser() middleware.

It’s hard to describe in words how this pattern works, so I’ll demonstrate. If you’re following

along go ahead and update your cmd/api/middleware.go file like so:

File: cmd/api/middleware.go

package main

...

// Create a new requireAuthenticatedUser() middleware to check that a user is not

// anonymous.

func (app *application) requireAuthenticatedUser(next http.HandlerFunc) http.HandlerFunc {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 user := app.contextGetUser(r)

 if user.IsAnonymous() {

 app.authenticationRequiredResponse(w, r)

 return

 }

 next.ServeHTTP(w, r)

 })

}

// Checks that a user is both authenticated and activated.

func (app *application) requireActivatedUser(next http.HandlerFunc) http.HandlerFunc {

 // Rather than returning this http.HandlerFunc we assign it to the variable fn.

 fn := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 user := app.contextGetUser(r)

 // Check that a user is activated.

 if !user.Activated {

 app.inactiveAccountResponse(w, r)

 return

 }

 next.ServeHTTP(w, r)

 })

 // Wrap fn with the requireAuthenticatedUser() middleware before returning it.

 return app.requireAuthenticatedUser(fn)

}

The way that we’ve set this up, our requireActivatedUser() middleware now

automatically calls the requireAuthenticatedUser() middleware before being executed

itself. In our context this makes a lot of sense — we shouldn’t be checking if a user is

activated unless we know exactly who they are!

You can go ahead and run the application again now — everything should compile and

continue to work just like it did before.

Additional Information

In-handler checks

If you only have a couple of endpoints where you want to perform authorization checks,

then rather than using middleware it can often be easier to do the checks inside the

relevant handlers instead. For example:

func (app *application) exampleHandler(w http.ResponseWriter, r *http.Request) {

 user := app.contextGetUser(r)

 if user.IsAnonymous() {

 app.authenticationRequiredResponse(w, r)

 return

 }

 if !user.Activated {

 app.inactiveAccountResponse(w, r)

 return

 }

 // The rest of the handler logic goes here...

}

Chapter 17.2.

Setting up the Permissions Database

Table

Restricting our API so that movie data can only be accessed and edited by activated users is

useful, but sometimes you might need a more granular level of control. For example, in our

case we might be happy for ‘regular’ users of our API to read the movie data (so long as they

are activated), but we want to restrict write access to a smaller subset of trusted users.

In this chapter we’re going to introduce the concept of permissions to our application, so

that only users who have a specific permission can perform specific operations. In our case,

we’re going to create two permissions: a movies:read permission which will allow a user to

fetch and filter movies, and a movies:write permission which will allow users to create, edit

and delete movies.

The required permissions will align with our API endpoints like so:

Method URL Pattern Required permission

GET /v1/healthcheck —

GET /v1/movies movies:read

POST /v1/movies movies:write

GET /v1/movies/:id movies:read

PATCH /v1/movies/:id movies:write

DELETE /v1/movies/:id movies:write

POST /v1/users —

PUT /v1/users/activated —

POST /v1/tokens/authentication —

Relationship between permissions and users

The relationship between permissions and users is a great example of a many-to-many

relationship. One user may have many permissions, and the same permission may belong to

many users.

The classic way to manage a many-to-many relationship in a relational database like

PostgreSQL is to create a joining table between the two entities. I’ll quickly explain how this

works.

Let’s say that we are storing our user data in a users table which looks like this:

id email …

1 alice@example.com …

2 bob@example.com …

And our permissions data is stored in a permissions table like this:

id code

1 movies:read

2 movies:write

Then we can create a joining table called users_permissions to store the information about

which users have which permissions, similar to this:

user_id permission_id

1 1

2 1

2 2

In the example above, the user alice@example.com (user ID 1) has the movies:read

(permission ID 1) permission only, whereas bob@example.com (user ID 2) has both the

movies:read and movies:write permissions.

Just like the one-to-many relationship that we looked at earlier in the book, you may want

to query this relationship from both sides in your database models. For example, in your

database models you might want to create the following methods:

PermissionModel.GetAllForUser(user) → Retrieve all permissions for a user

UserModel.GetAllForPermission(permission) → Retrieve all users with a specific permission

Creating the SQL migrations

Let’s put this into practice and make a SQL migration which creates new permissions and

users_permissions tables in our database, following the pattern that we’ve just described

above.

Go ahead and run the following command to create the migration files:

$ migrate create -seq -ext .sql -dir ./migrations add_permissions

/home/alex/Projects/greenlight/migrations/000006_add_permissions.up.sql

/home/alex/Projects/greenlight/migrations/000006_add_permissions.down.sql

And then add the following SQL statements to the ‘up’ migration file:

File: migrations/000006_add_permissions.up.sql

CREATE TABLE IF NOT EXISTS permissions (

 id bigserial PRIMARY KEY,

 code text NOT NULL

);

CREATE TABLE IF NOT EXISTS users_permissions (

 user_id bigint NOT NULL REFERENCES users ON DELETE CASCADE,

 permission_id bigint NOT NULL REFERENCES permissions ON DELETE CASCADE,

 PRIMARY KEY (user_id, permission_id)

);

-- Add the two permissions to the table.

INSERT INTO permissions (code)

VALUES

 ('movies:read'),

 ('movies:write');

There are a couple of important things to point out here:

The PRIMARY KEY (user_id, permission_id) line sets a composite primary key on our

users_permissions table, where the primary key is made up of both the users_id and

permission_id columns. Setting this as the primary key essentially means that the same

user/permission combination can only appear once in the table and cannot be

duplicated.

When creating the users_permissions table we use the REFERENCES user syntax to

create a foreign key constraint against the primary key of our users table, which ensures

that any value in the user_id column has a corresponding entry in our users table. And

likewise, we use the REFERENCES permissions syntax to ensure that the permission_id

column has a corresponding entry in the permissions table.

Let’s also add the necessary DROP TABLE statements to the ‘down’ migration file, like so:

File: migrations/000006_add_permissions.down.sql

DROP TABLE IF EXISTS users_permissions;

DROP TABLE IF EXISTS permissions;

Now that’s done, please go ahead and run the migration:

$ migrate -path ./migrations -database $GREENLIGHT_DB_DSN up

6/u add_permissions (22.74009ms)

Chapter 17.3.

Setting up the Permissions Model

Next let’s head to our internal/data package and add a PermissionModel to manage the

interactions with our new tables. For now, the only thing we want to include in this model is

a GetAllForUser() method to return all permission codes for a specific user . The idea is that

we’ll be able to use this in our handlers and middleware like so:

// Return a slice of the permission codes for the user with ID = 1. This would return

// something like []string{"movies:read", "movies:write"}.

app.models.Permissions.GetAllForUser(1)

Behind the scenes, the SQL statement that we need to fetch the permission codes for a

specific user looks like this:

SELECT permissions.code

FROM permissions

INNER JOIN users_permissions ON users_permissions.permission_id = permissions.id

INNER JOIN users ON users_permissions.user_id = users.id

WHERE users.id = $1

In this query we are using the INNER JOIN clause to join our permissions table to our

users_permissions table, and then using it again to join that to the users table. Then we

use the WHERE clause to filter the result, leaving only rows which relate to a specific user ID.

Let’s go ahead and setup the new PermissionModel . First create a new

internal/data/permissions.go file:

$ touch internal/data/permissions.go

And then add the following code:

File: internal/data/permissions.go

package data

import (

 "context"

 "database/sql"

 "time"

)

// Define a Permissions slice, which we will use to will hold the permission codes (like

// "movies:read" and "movies:write") for a single user.

// "movies:read" and "movies:write") for a single user.

type Permissions []string

// Add a helper method to check whether the Permissions slice contains a specific

// permission code.

func (p Permissions) Include(code string) bool {

 for i := range p {

 if code == p[i] {

 return true

 }

 }

 return false

}

// Define the PermissionModel type.

type PermissionModel struct {

 DB *sql.DB

}

// The GetAllForUser() method returns all permission codes for a specific user in a

// Permissions slice. The code in this method should feel very familiar --- it uses the

// standard pattern that we've already seen before for retrieving multiple data rows in

// an SQL query.

func (m PermissionModel) GetAllForUser(userID int64) (Permissions, error) {

 query := `

 SELECT permissions.code

 FROM permissions

 INNER JOIN users_permissions ON users_permissions.permission_id = permissions.id

 INNER JOIN users ON users_permissions.user_id = users.id

 WHERE users.id = $1`

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 rows, err := m.DB.QueryContext(ctx, query, userID)

 if err != nil {

 return nil, err

 }

 defer rows.Close()

 var permissions Permissions

 for rows.Next() {

 var permission string

 err := rows.Scan(&permission)

 if err != nil {

 return nil, err

 }

 permissions = append(permissions, permission)

 }

 if err = rows.Err(); err != nil {

 return nil, err

 }

 return permissions, nil

}

Then the last thing we need to do is add the PermissionModel to our parent Model struct, so

it’s available to our handlers and middleware. Like so:

File: internal/data/models.go

package data

...

type Models struct {

 Movies MovieModel

 Permissions PermissionModel // Add a new Permissions field.

 Tokens TokenModel

 Users UserModel

}

func NewModels(db *sql.DB) Models {

 return Models{

 Movies: MovieModel{DB: db},

 Permissions: PermissionModel{DB: db}, // Initialize a new PermissionModel instance.

 Tokens: TokenModel{DB: db},

 Users: UserModel{DB: db},

 }

}

Chapter 17.4.

Checking Permissions

Now that our PermissionModel is set up, let’s look at how we can use it to restrict access to

our API endpoints.

Conceptually, what we need to do here isn’t too complicated.

We’ll make a new requirePermission() middleware which accepts a specific permission

code like "movies:read" as an argument.

In this middleware we’ll retrieve the current user from the request context, and call the

app.models.Permissions.GetAllForUser() method (which we just made) to get a slice

of their permissions.

Then we can then check to see if the slice contains the specific permission code needed.

If it doesn’t, we should send the client a 403 Forbidden response.

To put this into practice, let’s first make a new notPermittedResponse() helper function for

sending the 403 Forbidden response. Like so:

File: cmd/api/errors.go

package main

...

func (app *application) notPermittedResponse(w http.ResponseWriter, r *http.Request) {

 message := "your user account doesn't have the necessary permissions to access this resource"

 app.errorResponse(w, r, http.StatusForbidden, message)

}

Then let’s head to our cmd/api/middleware.go file and create the new

requirePermission() middleware method.

We’re going to set this up so that the requirePermission() middleware automatically

wraps our existing requireActivatedUser() middleware, which in turn — don’t forget —

wraps our requireAuthenticatedUser() middleware.

This is important — it means that when we use the requirePermission() middleware we’ll

actually be carrying out three checks which together ensure that the request is from an

authenticated (non-anonymous), activated user, who has a specific permission.

Let’s go ahead and create this in the cmd/api/middleware.go file like so:

File: cmd/api/middleware.go

package main

...

// Note that the first parameter for the middleware function is the permission code that

// we require the user to have.

func (app *application) requirePermission(code string, next http.HandlerFunc) http.HandlerFunc {

 fn := func(w http.ResponseWriter, r *http.Request) {

 // Retrieve the user from the request context.

 user := app.contextGetUser(r)

 // Get the slice of permissions for the user.

 permissions, err := app.models.Permissions.GetAllForUser(user.ID)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Check if the slice includes the required permission. If it doesn't, then

 // return a 403 Forbidden response.

 if !permissions.Include(code) {

 app.notPermittedResponse(w, r)

 return

 }

 // Otherwise they have the required permission so we call the next handler in

 // the chain.

 next.ServeHTTP(w, r)

 }

 // Wrap this with the requireActivatedUser() middleware before returning it.

 return app.requireActivatedUser(fn)

}

Once that’s done, the final step is to update our cmd/api/routes.go file to utilize the new

middleware on the necessary endpoints.

Go ahead and update the routes so that our API requires the "movies:read" permission for

the endpoints that fetch movie data, and the "movies:write" permission for the endpoints

that create, edit or delete a movie.

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 // Use the requirePermission() middleware on each of the /v1/movies** endpoints,

 // passing in the required permission code as the first parameter.

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requirePermission("movies:read", app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requirePermission("movies:write", app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requirePermission("movies:read", app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requirePermission("movies:write", app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requirePermission("movies:write", app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 return app.recoverPanic(app.rateLimit(app.authenticate(router)))

}

Demonstration

Showing this in action is a bit awkward because, if you’ve been following along, none of the

users in our database currently have any permissions set for them.

To help demonstrate this new functionality, let’s open psql and add some permissions.

Specifically, we will:

Activate the user alice@example.com .

Give all users the "movies:read" permission.

Give the user faith@example.com the "movies:write" permission.

If you’re following along, open your psql prompt:

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=>

And execute the following statements:

-- Set the activated field for alice@example.com to true.

UPDATE users SET activated = true WHERE email = 'alice@example.com';

-- Give all users the 'movies:read' permission

INSERT INTO users_permissions

SELECT id, (SELECT id FROM permissions WHERE code = 'movies:read') FROM users;

-- Give faith@example.com the 'movies:write' permission

INSERT INTO users_permissions

VALUES (

 (SELECT id FROM users WHERE email = 'faith@example.com'),

 (SELECT id FROM permissions WHERE code = 'movies:write')

);

-- List all activated users and their permissions.

SELECT email, array_agg(permissions.code) as permissions

FROM permissions

INNER JOIN users_permissions ON users_permissions.permission_id = permissions.id

INNER JOIN users ON users_permissions.user_id = users.id

WHERE users.activated = true

GROUP BY email;

Once that completes, you should see a list of the currently activated users and their

permissions, similar to this:

 email | permissions

-------------------+----------------------------

 alice@example.com | {movies:read}

 faith@example.com | {movies:read,movies:write}

(2 rows)

Note: In that final SQL query, we’re using the aggregation function array_agg() and a

GROUP BY clause to output the permissions associated with each email address as an

array.

Now that our users have some permissions assigned to them, we’re ready to try this out.

To begin with, let’s try making some requests as alice@example.com to our

GET /v1/movies/1 and DELETE /v1/movies/1 endpoints. The first request should work

correctly, but the second should fail because the user doesn’t have the necessary

movies:write permission.

https://www.postgresql.org/docs/13/functions-aggregate.html

$ BODY='{"email": "alice@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/tokens/authentication

{

 "authentication_token": {

 "token": "OPFXEPOYZWMGNWXWKMYIMEGATU",

 "expiry": "2021-04-17T20:49:39.963768416+02:00"

 }

}

$ curl -H "Authorization: Bearer OPFXEPOYZWMGNWXWKMYIMEGATU" localhost:4000/v1/movies/1

{

 "movie": {

 "id": 1,

 "title": "Moana",

 "year": 2016,

 "runtime": "107 mins",

 "genres": [

 "animation",

 "adventure"

],

 "version": 1

 }

}

$ curl -X DELETE -H "Authorization: Bearer OPFXEPOYZWMGNWXWKMYIMEGATU" localhost:4000/v1/movies/1

{

 "error": "your user account doesn't have the necessary permissions to access this resource"

}

Great, that’s working just as we expected — the DELETE operation is blocked because

alice@example.com doesn’t have the necessary movies:write permission.

In contrast, let’s try the same operation but with faith@example.com as the user. This time

the DELETE operation should work correctly, like so:

$ BODY='{"email": "faith@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/tokens/authentication

{

 "authentication_token": {

 "token": "E42XD5OBBBO4MPUPYGLLY2GURE",

 "expiry": "2021-04-17T20:51:14.924813208+02:00"

 }

}

$ curl -X DELETE -H "Authorization: Bearer E42XD5OBBBO4MPUPYGLLY2GURE" localhost:4000/v1/movies/1

{

 "message": "movie successfully deleted"

}

Chapter 17.5.

Granting Permissions

Our permissions model and authorization middleware are now functioning well. But — at

the moment — when a new user registers an account they don’t have any permissions. In

this chapter we’re going to change that so that new users are automatically granted the

"movies:read" permission by default.

Updating the permissions model

In order to grant permissions to a user we’ll need to update our PermissionModel to include

an AddForUser() method, which adds one or more permission codes for a specific user to our

database. The idea is that we will be able to use it in our handlers like this:

// Add the "movies:read" and "movies:write" permissions for the user with ID = 2.

app.models.Permissions.AddForUser(2, "movies:read", "movies:write")

Behind the scenes, the SQL statement that we need to insert this data looks like this:

INSERT INTO users_permissions

SELECT $1, permissions.id FROM permissions WHERE permissions.code = ANY($2)

In this query the $1 parameter will be the user’s ID, and the $2 parameter will be a

PostgreSQL array of the permission codes that we want to add for the user, like

{'movies:read', 'movies:write'} .

So what’s happening here is that the SELECT ... statement on the second line creates an

‘interim’ table with rows made up of the user ID and the corresponding IDs for the permission

codes in the array. Then we insert the contents of this interim table into our

user_permissions table.

Let’s go ahead and create the AddForUser() method in the internal/data/permissions.go

file:

File: internal/data/permissions.go

package data

import (

 "context"

 "database/sql"

 "time"

 "github.com/lib/pq" // New import

)

...

// Add the provided permission codes for a specific user. Notice that we're using a

// variadic parameter for the codes so that we can assign multiple permissions in a

// single call.

func (m PermissionModel) AddForUser(userID int64, codes ...string) error {

 query := `

 INSERT INTO users_permissions

 SELECT $1, permissions.id FROM permissions WHERE permissions.code = ANY($2)`

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 _, err := m.DB.ExecContext(ctx, query, userID, pq.Array(codes))

 return err

}

Updating the registration handler

Now that’s in place, let’s update our registerUserHandler so that new users are

automatically granted the movies:read permission when they register. Like so:

File: cmd/api/users.go

package main

...

func (app *application) registerUserHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Name string `json:"name"`

 Email string `json:"email"`

 Password string `json:"password"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 user := &data.User{

 Name: input.Name,

 Email: input.Email,

 Activated: false,

 }

 err = user.Password.Set(input.Password)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 v := validator.New()

 if data.ValidateUser(v, user); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 err = app.models.Users.Insert(user)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrDuplicateEmail):

 v.AddError("email", "a user with this email address already exists")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Add the "movies:read" permission for the new user.

 err = app.models.Permissions.AddForUser(user.ID, "movies:read")

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 token, err := app.models.Tokens.New(user.ID, 3*24*time.Hour, data.ScopeActivation)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 app.background(func() {

 data := map[string]interface{}{

 "activationToken": token.Plaintext,

 "userID": user.ID,

 }

 err = app.mailer.Send(user.Email, "user_welcome.tmpl", data)

 if err != nil {

 app.logger.PrintError(err, nil)

 }

 })

 err = app.writeJSON(w, http.StatusAccepted, envelope{"user": user}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

...

Let’s check that this is working correctly by registering a brand-new user with the email

address grace@example.com :

$ BODY='{"name": "Grace Smith", "email": "grace@example.com", "password": "pa55word"}'

$ curl -d "$BODY" localhost:4000/v1/users

{

 "user": {

 "id": 8,

 "created_at": "2021-04-16T21:32:56+02:00",

 "name": "Grace Smith",

 "email": "grace@example.com",

 "activated": false

 }

}

If you open psql, you should be able to see that they have the movies:read permission by

running the following SQL query:

SELECT email, code FROM users

INNER JOIN users_permissions ON users.id = users_permissions.user_id

INNER JOIN permissions ON users_permissions.permission_id = permissions.id

WHERE users.email = 'grace@example.com';

Like so:

$ psql $GREENLIGHT_DB_DSN

Password for user greenlight:

psql (13.1 (Ubuntu 13.1-1.pgdg20.04+1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> SELECT email, code FROM users

greenlight-> INNER JOIN users_permissions ON users.id = users_permissions.user_id

greenlight-> INNER JOIN permissions ON users_permissions.permission_id = permissions.id

greenlight-> WHERE users.email = 'grace@example.com';

 email | code

-------------------+-------------

 grace@example.com | movies:read

(1 row)

Chapter 18.

Cross Origin Requests

In this section of the book, we’re going to switch to a completely new topic and update our

application so that it supports cross-origin requests (CORS) from JavaScript.

You’ll learn:

What cross-origin requests are, and why web browsers prevent them by default.

The difference between simple and preflight cross-origin requests.

How to use Access-Control headers to allow or disallow specific cross-origin requests.

About the security considerations you need to be aware of when CORS configuring

settings in your application.

Chapter 18.1.

An Overview of CORS

Before we dive into any code, or start talking about cross-origin requests specifically, let’s

talk a moment to define what we mean by the term origin.

Basically, if two URLs have the same scheme, host and port (if specified) they are said to

share the same origin. To help illustrate this, let’s compare the following URLs:

URL A URL B Same

origin?

Reason

https://foo.com/a http://foo.com/a No Different scheme (http vs https)

http://foo.com/a http://www.foo.com/a No Different host (foo.com vs

www.foo.com)

http://foo.com/a http://foo.com:443/a No Different port (no port vs 443)

http://foo.com/a http://foo.com/b Yes Only the path is different

http://foo.com/a http://foo.com/a?b=c Yes Only the query string is different

http://foo.com/a#b http://foo.com/a#c Yes Only the fragment is different

Understanding what origins are is important because all web browsers implement a

security mechanism known as the same-origin policy. There are some very small differences

in how browsers implement this policy, but broadly speaking:

A webpage on one origin can embed certain types of resources from another origin in

their HTML — including images, CSS, and JavaScript files. For example, doing this is in

your webpage is OK:

A webpage on one origin can send data to a different origin. For example, it’s OK for a

HTML form in a webpage to submit data to a different origin.

But a webpage on one origin is not allowed to receive data from a different origin.

This key thing here is the final bullet-point: the same-origin policy prevents a (potentially

malicious) website on another origin from reading (possibly confidential) information from

your website.

It’s important to emphasize that cross-origin sending of data is not prevented by the same-

origin policy, despite also being dangerous. In fact, this is why CSRF attacks are possible

and why we need to take additional steps to prevent them — like using SameSite cookies

and CSRF tokens.

As a developer, the time that you’re most likely to run up against the same-origin policy is

when making cross-origin requests from JavaScript running in a browser.

For example, let’s say that you have a webpage at https://foo.com containing some front-

end JavaScript code. If this JavaScript tries to make an HTTP request to

https://bar.com/data.json (a different origin), then the request will be sent and

processed by the bar.com server, but the user’s web browser will block the response so that

the JavaScript code from https://foo.com cannot see it.

Generally speaking, the same-origin policy is an extremely useful security safeguard. But

while it’s good in the general case, in certain circumstances you might want to relax it.

For example, if you have an API at api.example.com and a trusted JavaScript front-end

application running on www.example.com , then you’ll probably want to allow cross-origin

requests from the trusted www.example.com domain to your API.

Or perhaps you have a completely open public API, and you want to allow cross-origin

requests from anywhere so it’s easy for other developers to integrate with their own

websites.

Fortunately, most modern web browsers allow you to allow or disallow specific cross-origin

requests to your API by setting Access-Control headers on your API responses. We’ll

explain exactly how to do that and how these headers work over the next few chapters of

this book.

Chapter 18.2.

Demonstrating the Same-Origin Policy

To demonstrate how the same-origin policy works and how to relax it for requests to our

API, we need to simulate a request to our API from a different origin .

As we’re already using Go in this book, let’s quickly make a second, very simple, Go

application to make this cross-origin request. Essentially, we want this second application

to serve a webpage containing some JavaScript, which in turn makes a request to our

GET /v1/healthcheck endpoint.

If you’re following along, create a new cmd/examples/cors/simple/main.go file to hold the

code for this second application:

$ mkdir -p cmd/examples/cors/simple

$ touch cmd/examples/cors/simple/main.go

And add the following content:

File: cmd/examples/cors/simple/main.go

package main

import (

 "flag"

 "log"

 "net/http"

)

// Define a string constant containing the HTML for the webpage. This consists of a <h1>

// header tag, and some JavaScript which fetches the JSON from our GET /v1/healthcheck

// endpoint and writes it to inside the <div id="output"></div> element.

const html = `

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

</head>

<body>

 <h1>Simple CORS</h1>

 <div id="output"></div>

 <script>

 document.addEventListener('DOMContentLoaded', function() {

 fetch("http://localhost:4000/v1/healthcheck").then(

 function (response) {

 response.text().then(function (text) {

 document.getElementById("output").innerHTML = text;

 });

 },

 function(err) {

 document.getElementById("output").innerHTML = err;

 }

);

 });

 </script>

</body>

</html>`

func main() {

 // Make the server address configurable at runtime via a command-line flag.

 addr := flag.String("addr", ":9000", "Server address")

 flag.Parse()

 log.Printf("starting server on %s", *addr)

 // Start a HTTP server listening on the given address, which responds to all

 // requests with the webpage HTML above.

 err := http.ListenAndServe(*addr, http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte(html))

 }))

 log.Fatal(err)

}

The Go code here should be nice and familiar to you already, but let’s take a closer look at

the JavaScript code in the <script> tag and explain what it does.

<script>

 document.addEventListener('DOMContentLoaded', function() {

 fetch("http://localhost:4000/v1/healthcheck").then(

 function (response) {

 response.text().then(function (text) {

 document.getElementById("output").innerHTML = text;

 });

 },

 function(err) {

 document.getElementById("output").innerHTML = err;

 }

);

 });

</script>

In this code:

We use the fetch() function to make a request to our API healthcheck endpoint. By

default this sends a GET request, but it’s also possible to configure this to use different

HTTP methods and add custom headers. We’ll explain how to do that later.

The fetch() method works asynchronously and returns a promise. We use the then()

method on the promise to set up two callback functions: the first callback is executed if

fetch() is successful, and the second is executed if there is a failure.

In our ‘successful’ callback we read the response body with response.text() , and use

document.getElementById("output").innerHTML to replace the contents of the

<div id="output"></div> element with this response body.

In the ‘failure’ callback we replace the contents of the <div id="output"></div>

element with the error message.

This logic is all wrapped up in document.addEventListener(‘DOMContentLoaded’,

function(){…}), which essentially means that fetch() won’t be called until the user’s

web browser has completely loaded the HTML document.

Note: I’ve explained the above because it’s interesting, but this book isn’t about

JavaScript and you don’t really need to worry about the details here. All you need to

know is that the JavaScript makes a HTTP request to our API’s healthcheck endpoint,

and then dumps the response inside the <div id="output"></div> element.

Demonstration

OK, let’s try this out. Go ahead and start up the new application:

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API
https://www.javascripttutorial.net/es6/javascript-promises/

$ go run ./cmd/examples/cors/simple

2021/04/17 17:23:14 starting server on :9000

And then open a second terminal window and start our regular API application at the same

time:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-17T15:23:34Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-17T15:23:34Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

At this point, you should now have the API running on the origin http://localhost:4000

and the webpage with the JavaScript running on the origin http://localhost:9000 .

Because the ports are different, these are two different origins.

So, when you visit http://localhost:9000 in your web browser, the fetch() action to

http://localhost:4000/v1/healthcheck should be forbidden by the same-origin policy.

Specifically, our API should receive and process the request, but your web browser should

block the response from being read by the JavaScript code.

Let’s take a look. If you open your web browser and visit http://localhost:9000 , you

should see the Simple CORS header followed by an error message similar to this:

http://localhost:9000

Note: The error message you see here is defined by your web browser, so yours might

be slightly different if you’re not using Firefox.

It’s also helpful here to open your browser’s developer tools, refresh the page, and look at

your console log. You should see a message stating that the response from our

GET /v1/healthcheck endpoint was blocked from being read due to the same-origin policy,

similar to this:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote

resource at http://localhost:4000/v1/healthcheck.

You may also want to open the network activity tab in your developer tools and examine

the HTTP headers associated with the blocked request.

There are a couple of important things to point out here.

The first thing is that the headers demonstrate that the request was sent to our API, which

processed the request and returned a successful 200 OK response to the web browser

containing all our standard response headers. To re-iterate: the request itself was not

prevented by the same-origin policy — it’s just that the browser won’t let JavaScript see the

response.

The second thing is that the web browser automatically set an Origin header on the

request to show where the request originates from (highlighted by the red arrow above).

You’ll see that the header looks like this:

Origin: http://localhost:9000

We’ll use this header in the next chapter to help us selectively relax the same-origin policy,

depending on whether we trust the origin that a request is coming from.

Finally, it’s important to emphasize that the same-origin policy is a web browser thing only.

Outside of a web browser, anyone can make a request to our API from anywhere, using

curl, wget or any other means and read the response. That’s completely unaffected and

unchanged by the same-origin policy.

Chapter 18.3.

Simple CORS Requests

Let’s now make some changes to our API which relax the same-origin policy, so that

JavaScript can read the responses from our API endpoints.

To start with, the simplest way to achieve this is by setting the following header on all our

API responses:

Access-Control-Allow-Origin: *

The Access-Control-Allow-Origin response header is used to indicate to a browser that

it’s OK to share a response with a different origin. In this case, the header value is the

wildcard * character, which means that it’s OK to share the response with any other origin.

Let’s go ahead and create a small enableCORS() middleware function in our API application

which sets this header:

File: cmd/api/middleware.go

package main

...

func (app *application) enableCORS(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 w.Header().Set("Access-Control-Allow-Origin", "*")

 next.ServeHTTP(w, r)

 })

}

And then update your cmd/api/routes.go file so that this middleware is used on all the

application routes. Like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requirePermission("movies:read", app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requirePermission("movies:write", app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requirePermission("movies:read", app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requirePermission("movies:write", app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requirePermission("movies:write", app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 // Add the enableCORS() middleware.

 return app.recoverPanic(app.enableCORS(app.rateLimit(app.authenticate(router))))

}

It’s important to point out here that the enableCORS() middleware is deliberately

positioned early in the middleware chain.

If we positioned it after our rate limiter, for example, any cross-origin requests that exceed

the rate limit would not have the Access-Control-Allow-Origin header set. This means that

they would be blocked by the client’s web browser due to the same-origin policy, rather

than the client receiving a 429 Too Many Requests response like they should.

OK, let’s try this out.

Restart the API application and then try visiting http://localhost:9000 in your browser

again. This time the cross-origin request should complete successfully, and you should see

the JSON from our healthcheck handler presented on the webpage. Like so:

I also recommend taking a quick look at the request and response headers relating to the

JavaScript fetch() request again. You should see that the

Access-Control-Allow-Origin: * header has been set on the response, similar to this:

Restricting Origins

Using a wildcard to allow cross-origin requests, like we are in the code above, can be useful

in certain circumstances (like when you have a completely public API with no access control

checks). But more often you’ll probably want to restrict CORS to a much smaller set of

trusted origins.

To do this, you need to explicitly include the trusted origins in the

Access-Control-Allow-Origin header instead of using a wildcard. For example, if you want

to only allow CORS from the origin https://www.example.com you could send the following

header in your responses:

Access-Control-Allow-Origin: https://www.example.com

If you only have one, fixed, origin that you want to allow requests from, then doing this is

quite simple — you can just update your enableCORS() middleware to hard-code in the

necessary origin value.

But if you need to support multiple trusted origins, or you want the value to be configurable

at runtime, then things get a bit more complex.

One of the problems is that — in practice — you can only specify exactly one origin in the

Access-Control-Allow-Origin header. You can’t include a list of multiple origin values,

separated by spaces or commas like you might expect.

To work around this limitation, you’ll need to update your enableCORS() middleware to

check if the value of the Origin header matches one of your trusted origins. If it does, then

you can reflect (or echo) that value back in the Access-Control-Allow-Origin response

header.

Note: The web origin specification does permit multiple space-separated values in the

Access-Control-Allow-Origin header but, unfortunately, no web browsers actually

support this.

Supporting multiple dynamic origins

Let’s update our API so that cross-origin requests are restricted to a list of trusted origins,

configurable at runtime.

https://tools.ietf.org/html/rfc6454#section-7.1

The first thing we’ll do is add a new -cors-trusted-origins command-line flag to our API

application, which we can use to specify the list of trusted origins at runtime. We’ll set this

up so that the origins must be separated by a space character — like so:

$ go run ./cmd/api -cors-trusted-origins="https://www.example.com https://staging.example.com"

In order to process this command-line flag, we can combine the new Go 1.16 flags.Func()

and strings.Fields() functions to split the origin values into a []string slice ready for

use.

If you’re following along, open your cmd/api/main.go file and add the following code:

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "flag"

 "os"

 "strings" // New import

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 "greenlight.alexedwards.net/internal/mailer"

 _ "github.com/lib/pq"

)

const version = "1.0.0"

type config struct {

 port int

 env string

 db struct {

 dsn string

 maxOpenConns int

 maxIdleConns int

 maxIdleTime string

 }

 limiter struct {

 enabled bool

 rps float64

 burst int

 }

 smtp struct {

 host string

 port int

 username string

 password string

 sender string

 }

 // Add a cors struct and trustedOrigins field with the type []string.

 cors struct {

 trustedOrigins []string

https://golang.org/pkg/flag/#Func
https://golang.org/pkg/strings/#Fields

 trustedOrigins []string

 }

}

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", os.Getenv("GREENLIGHT_DB_DSN"), "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.BoolVar(&cfg.limiter.enabled, "limiter-enabled", true, "Enable rate limiter")

 flag.Float64Var(&cfg.limiter.rps, "limiter-rps", 2, "Rate limiter maximum requests per second")

 flag.IntVar(&cfg.limiter.burst, "limiter-burst", 4, "Rate limiter maximum burst")

 flag.StringVar(&cfg.smtp.host, "smtp-host", "smtp.mailtrap.io", "SMTP host")

 flag.IntVar(&cfg.smtp.port, "smtp-port", 25, "SMTP port")

 flag.StringVar(&cfg.smtp.username, "smtp-username", "0abf276416b183", "SMTP username")

 flag.StringVar(&cfg.smtp.password, "smtp-password", "d8672aa2264bb5", "SMTP password")

 flag.StringVar(&cfg.smtp.sender, "smtp-sender", "Greenlight <no-reply@greenlight.alexedwards.net>", "SMTP sender")

 // Use the flag.Func() function to process the -cors-trusted-origins command line

 // flag. In this we use the strings.Fields() function to split the flag value into a

 // slice based on whitespace characters and assign it to our config struct.

 // Importantly, if the -cors-trusted-origins flag is not present, contains the empty

 // string, or contains only whitespace, then strings.Fields() will return an empty

 // []string slice.

 flag.Func("cors-trusted-origins", "Trusted CORS origins (space separated)", func(val string) error {

 cfg.cors.trustedOrigins = strings.Fields(val)

 return nil

 })

 flag.Parse()

 ...

}

...

Note: If you’d like to find out more about the new flag.Func() functionality and some

of the ways in which you can use it, I’ve written a much more detailed blog post about

it here.

Once that’s done, the next step is to update our enableCORS() middleware. Specifically, we

want the middleware to check if the value of the request Origin header is an exact, case-

sensitive, match for one of our trusted origins. If there is a match, then we should set an

Access-Control-Allow-Origin response header which reflects (or echoes) back the value of

the request’s Origin header.

https://www.alexedwards.net/blog/custom-command-line-flags

Otherwise, we should allow the request to proceed as normal without setting an

Access-Control-Allow-Origin response header. In turn, that means that any cross-origin

responses will be blocked by a web browser, just like they were originally.

A side effect of this is that the response will be different depending on the origin that the

request is coming from. Specifically, the value of the Access-Control-Allow-Origin header

may be different in the response, or it may not even be included at all.

So because of this we should make sure to always set a Vary: Origin response header to

warn any caches that the response may be different. This is actually really important, and it

can be the cause of subtle bugs like this one if you forget to do it. As a rule of thumb:

If your code makes a decision about what to return based on the content of a request header,

you should include that header name in your Vary response header — even if the request

didn’t include that header.

OK, let’s update our enableCORS() middleware in line with the logic above, like so:

File: cmd/api/middleware.go

package main

...

func (app *application) enableCORS(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Add the "Vary: Origin" header.

 w.Header().Add("Vary", "Origin")

 // Get the value of the request's Origin header.

 origin := r.Header.Get("Origin")

 // Only run this if there's an Origin request header present AND at least one

 // trusted origin is configured.

 if origin != "" && len(app.config.cors.trustedOrigins) != 0 {

 // Loop through the list of trusted origins, checking to see if the request

 // origin exactly matches one of them.

 for i := range app.config.cors.trustedOrigins {

 if origin == app.config.cors.trustedOrigins[i] {

 // If there is a match, then set a "Access-Control-Allow-Origin"

 // response header with the request origin as the value.

 w.Header().Set("Access-Control-Allow-Origin", origin)

 }

 }

 }

 // Call the next handler in the chain.

 next.ServeHTTP(w, r)

 })

}

And with those changes complete, we’re now ready to try this out again.

https://textslashplain.com/2018/08/02/cors-and-vary/

Restart your API, passing in http://localhost:9000 and http://localhost:9001 as trusted

origins like so:

$ go run ./cmd/api -cors-trusted-origins="http://localhost:9000 http://localhost:9001"

{"level":"INFO","time":"2021-04-17T16:20:49Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-17T16:20:49Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

And when you refresh http://localhost:9000 in your browser, you should find that the

cross-origin request still works successfully.

If you want, you can also try running the cmd/examples/cors/simple application with :9001

as the server address, and you should find that the cross-origin request works from that too.

In contrast, try running the cmd/examples/cors/simple application with the address :9002 .

$ go run ./cmd/examples/cors/simple --addr=":9002"

2021/04/17 18:24:22 starting server on :9002

This will give the webpage an origin of http://localhost:9002 — which isn’t one of our

trusted origins — so when you visit http://localhost:9002 in your browser you should find

that the cross-origin request is blocked. Like so:

http://localhost:9000
http://localhost:9002

Additional Information

Partial origin matches

If you have a lot of trusted origins that you want to support, then you might be tempted to

check for a partial match on the origin to see if it ‘starts with’ or ‘ends with’ a specific value,

or matches a regular expression. If you do this, you must take a lot of care to avoid any

unintentional matches.

As a simple example, if http://example.com and http://www.example.com are your trusted

origins, your first thought might check that the request Origin header ends with

example.com . This would be a bad idea, as an attacker could register the domain name

attackerexample.com and any requests from that origin would pass your check.

This is just one simple example — and the following blog posts discuss some of the other

vulnerabilities that can arise when using partial match or regular expression checks:

Security Risks of CORS

Exploiting CORS misconfigurations for Bitcoins and bounties

https://medium.com/@ehayushpathak/security-risks-of-cors-e3f4a25c04d7
https://portswigger.net/research/exploiting-cors-misconfigurations-for-bitcoins-and-bounties

Generally, it’s best to check the Origin request header against an explicit safelist of full-

length trusted origins, like we have done in this chapter.

The null origin

It’s important to never include the value "null" as a trusted origin in your safelist. This is

because the request header Origin: null can be forged by an attacker by sending a

request from a sandboxed iframe.

Authentication and CORS

If your API endpoint requires credentials (cookies or HTTP basic authentication) you should

also set an Access-Control-Allow-Credentials: true header in your responses. If you

don’t set this header, then the web browser will prevent any cross-origin responses with

credentials from being read by JavaScript.

Importantly, you must never use the wildcard Access-Control-Allow-Origin: * header in

conjunction with Access-Control-Allow-Credentials: true , as this would allow any

website to make a credentialed cross-origin request to your API.

Also, importantly, if you want credentials to be sent with a cross-origin request then you’ll

need to explicitly specify this in your JavaScript. For example, with fetch() you should set

the credentials value of the request to 'include' . Like so:

fetch("https://api.example.com", {credentials: 'include'}).then(...);

Or if using XMLHTTPRequest you should set the withCredentials property to true. For

example:

var xhr = new XMLHttpRequest();

xhr.open('GET', 'https://api.example.com');

xhr.withCredentials = true;

xhr.send(null);

https://stackoverflow.com/a/44765536
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Allow-Credentials
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en-US/docs/Web/API/XMLHttpRequest/withCredentials

Chapter 18.4.

Preflight CORS Requests

The cross-origin request that we made from JavaScript in the previous chapter is known as

a simple cross-origin request. Broadly speaking, cross-origin requests are classified as

‘simple’ when all the following conditions are met:

The request HTTP method is one of the three CORS-safe methods: HEAD, GET or POST.

The request headers are all either forbidden headers or one of the four CORS-safe

headers:

Accept

Accept-Language

Content-Language

Content-Type

The value for the Content-Type header (if set) is one of:

application/x-www-form-urlencoded

multipart/form-data

text/plain

When a cross-origin request doesn’t meet these conditions, then the web browser will

trigger an initial ‘preflight’ request before the real request. The purpose of this preflight

request is to determine whether the real cross-origin request will be permitted or not.

Demonstrating a preflight request

To help demonstrate how preflight requests work and what we need to do to deal with

them, let’s create another example webpage under the cmd/examples/cors/ directory.

We’ll set up this webpage so it makes a request to our POST /v1/tokens/authentication

endpoint. When calling this endpoint we’ll include an email address and password in a

JSON request body, along with a Content-Type: application/json header. And because

the header Content-Type: application/json isn’t allowed in a ‘simple’ cross-origin

request, this should trigger a preflight request to our API.

Go ahead and create a new file at cmd/examples/cors/preflight/main.go :

https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name

$ mkdir -p cmd/examples/cors/preflight

$ touch cmd/examples/cors/preflight/main.go

And add the code below, which follows a very similar pattern to the one we used a couple of

chapters ago.

File: cmd/examples/cors/preflight/main.go

package main

import (

 "flag"

 "log"

 "net/http"

)

// Define a string constant containing the HTML for the webpage. This consists of a <h1>

// header tag, and some JavaScript which calls our POST /v1/tokens/authentication

// endpoint and writes the response body to inside the <div id="output"></div> tag.

const html = `

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

</head>

<body>

 <h1>Preflight CORS</h1>

 <div id="output"></div>

 <script>

 document.addEventListener('DOMContentLoaded', function() {

 fetch("http://localhost:4000/v1/tokens/authentication", {

 method: "POST",

 headers: {

 'Content-Type': 'application/json'

 },

 body: JSON.stringify({

 email: 'alice@example.com',

 password: 'pa55word'

 })

 }).then(

 function (response) {

 response.text().then(function (text) {

 document.getElementById("output").innerHTML = text;

 });

 },

 function(err) {

 document.getElementById("output").innerHTML = err;

 }

);

 });

 </script>

</body>

</html>`

func main() {

 addr := flag.String("addr", ":9000", "Server address")

 flag.Parse()

 log.Printf("starting server on %s", *addr)

 err := http.ListenAndServe(*addr, http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte(html))

 }))

 log.Fatal(err)

}

If you’re following along, go ahead and run this application:

$ go run ./cmd/examples/cors/preflight

2021/04/17 18:47:55 starting server on :9000

Then open a second terminal window and start our regular API application at the same time

with http://localhost:9000 as a trusted origin:

$ go run ./cmd/api -cors-trusted-origins="http://localhost:9000"

{"level":"INFO","time":"2021-04-17T16:48:55Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-17T16:48:55Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Once both are running, open your web browser and navigate to http://localhost:9000 . If

you look at the console log in your developer tools, you should see a message similar to

this:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote

resource at http://localhost:4000/v1/tokens/authentication. (Reason: header ‘content-type’

is not allowed according to header ‘Access-Control-Allow-Headers’ from CORS preflight

response).

We can see that there are two requests here marked as ‘blocked’ by the browser:

An OPTIONS /v1/tokens/authentication request (this is the preflight request).

http://localhost:9000

A POST /v1/tokens/authentication request (this is the ‘real’ request).

Let’s take a closer look at the preflight request in the network tab of the developer tools:

The interesting thing here is the preflight request headers. They might look slightly different

for you depending on the browser you’re using, but broadly they should look something like

this:

Accept: */*

Accept-Encoding: gzip, deflate

Accept-Language: en-US,en;q=0.5

Access-Control-Request-Headers: content-type

Access-Control-Request-Method: POST

Cache-Control: no-cache

Connection: keep-alive

Host: localhost:4000

Origin: http://localhost:9000

Pragma: no-cache

Referer: http://localhost:9000/

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:86.0) Gecko/20100101 Firefox/86.0

There are three headers here which are relevant to CORS:

Origin — As we saw previously, this lets our API know what origin the preflight request is

coming from.

Access-Control-Request-Method — This lets our API know what HTTP method will be

used for the real request (in this case, we can see that the real request will be a POST).

Access-Control-Request-Headers — This lets our API know what HTTP headers will be

sent with the real request (in this case we can see that the real request will include a

content-type header).

It’s important to note that Access-Control-Request-Headers won’t list all the headers that

the real request will use. Only headers that are not CORS-safe or forbidden will be listed. If

there are no such headers, then Access-Control-Request-Headers may be omitted from

the preflight request entirely.

Responding to preflight requests

In order to respond to a preflight request, the first thing we need to do is identify that it is a

preflight request — rather than just a regular (possibly even cross-origin) OPTIONS request.

To do that, we can leverage the fact that preflight requests always have three components:

the HTTP method OPTIONS , an Origin header, and an Access-Control-Request-Method

header. If any one of these pieces is missing, we know that it is not a preflight request.

Once we identify that it is a preflight request, we need to send a 200 OK response with some

special headers to let the browser know whether or not it’s OK for the real request to

proceed. These are:

An Access-Control-Allow-Origin response header, which reflects the value of the

preflight request’s Origin header (just like in the previous chapter).

An Access-Control-Allow-Methods header listing the HTTP methods that can be used in

real cross-origin requests to the URL.

An Access-Control-Allow-Headers header listing the request headers that can be

included in real cross-origin requests to the URL.

In our case, we could set the following response headers to allow cross-origin requests for

all our endpoints :

Access-Control-Allow-Origin: <reflected trusted origin>

Access-Control-Allow-Methods: OPTIONS, PUT, PATCH, DELETE

Access-Control-Allow-Headers: Authorization, Content-Type

https://developer.mozilla.org/en-US/docs/Glossary/CORS-safelisted_request_header
https://developer.mozilla.org/en-US/docs/Glossary/Forbidden_header_name

Important: When responding to a preflight request it’s not necessary to include the

CORS-safe methods HEAD, GET or POST in the Access-Control-Allow-Methods header.

Likewise, it’s not necessary to include forbidden or CORS-safe headers in

Access-Control-Allow-Headers .

When the web browser receives these headers, it compares the values to the method and

(case-insensitive) headers that it wants to use in the real request. If the method or any of

the headers are not allowed, then the browser will block the real request.

Updating our middleware

Let’s put this into action and update our enableCORS() middleware so it intercepts and

responds to any preflight requests. Specifically, we want to:

1. Set a Vary: Access-Control-Request-Method header on all responses, as the response

will be different depending on whether or not this header exists in the request.

2. Check whether the request is a preflight cross-origin request or not. If it’s not, then we

should allow the request to proceed as normal.

3. Otherwise, if it is a preflight cross-origin request, then we should add the

Access-Control-Allow-Method and Access-Control-Allow-Headers headers as

described above.

Go ahead and update the cmd/api/middleware.go file like so:

File: cmd/api/middleware.go

package main

...

func (app *application) enableCORS(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 w.Header().Add("Vary", "Origin")

 // Add the "Vary: Access-Control-Request-Method" header.

 w.Header().Add("Vary", "Access-Control-Request-Method")

 origin := r.Header.Get("Origin")

 if origin != "" && len(app.config.cors.trustedOrigins) != 0 {

 for i := range app.config.cors.trustedOrigins {

 if origin == app.config.cors.trustedOrigins[i] {

 w.Header().Set("Access-Control-Allow-Origin", origin)

 // Check if the request has the HTTP method OPTIONS and contains the

 // "Access-Control-Request-Method" header. If it does, then we treat

 // it as a preflight request.

 if r.Method == http.MethodOptions && r.Header.Get("Access-Control-Request-Method") != "" {

 // Set the necessary preflight response headers, as discussed

 // previously.

 w.Header().Set("Access-Control-Allow-Methods", "OPTIONS, PUT, PATCH, DELETE")

 w.Header().Set("Access-Control-Allow-Headers", "Authorization, Content-Type")

 // Write the headers along with a 200 OK status and return from

 // the middleware with no further action.

 w.WriteHeader(http.StatusOK)

 return

 }

 }

 }

 }

 next.ServeHTTP(w, r)

 })

}

There are a couple of additional things to point out here:

When we respond to a preflight request we deliberately send the HTTP status 200 OK

rather than 204 No Content — even though there is no response body. This is because

certain browser versions may not support 204 No Content responses and subsequently

block the real request.

If you allow the Authorization header in cross-origin requests, like we are in the code

above, it’s important to not set the wildcard Access-Control-Allow-Origin: * header

or reflect the Origin header without checking against a list of trusted origins. Otherwise,

this would leave your service vulnerable to a distributed brute-force attack against any

authentication credentials that are passed in that header.

OK, let’s try this out. Restart your API, again setting http://localhost:9000 as a trusted

https://stackoverflow.com/a/58794243

origin like so:

$ go run ./cmd/api -cors-trusted-origins="http://localhost:9000"

{"level":"INFO","time":"2021-04-17T17:23:05Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-17T17:23:05Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Then open http://localhost:9000 in your browser again. This time you should see that the

cross-origin fetch() to POST /v1/tokens/authentication succeeds, and you now get an

authentication token in the response. Similar to this:

Note: If you look at the details for the preflight request, you should see that our new

CORS headers have been set on the preflight response, shown by the red arrow in the

screenshot above.

Additional Information

Caching preflight responses

http://localhost:9000

If you want, you can also add an Access-Control-Max-Age header to your preflight

responses. This indicates the number of seconds that the information provided by the

Access-Control-Allow-Methods and Access-Control-Allow-Headers headers can be

cached by the browser.

For example, to allow the values to be cached for 60 seconds you can set the following

header on your preflight response:

Access-Control-Max-Age: 60

If you don’t set an Access-Control-Max-Age header, current versions of Chrome/Chromium

and Firefox will default to caching these preflight response values for 5 seconds. Older

versions or other browsers may have different defaults, or not cache the values at all.

Setting a long Access-Control-Max-Age duration might seem like an appealing way to

reduce requests to your API — and it is! But you also need to be careful. Not all browsers

provide a way to clear the preflight cache, so if you send back the wrong headers the user

will be stuck with them until the cache expires.

If you want to disable caching altogether, you can set the value to -1 :

Access-Control-Max-Age: -1

It’s also important to be aware that browsers may impose a hard maximum on how long the

headers can be cached for. The MDN documentation says:

Firefox caps this at 24 hours (86400 seconds).

Chromium (prior to v76) caps at 10 minutes (600 seconds).

Chromium (starting in v76) caps at 2 hours (7200 seconds).

Preflight wildcards

If you have a complex or rapidly changing API then it might be awkward to maintain a hard-

coded safelist of methods and headers for the preflight response. You might think: I just

want to allow all HTTP methods and headers for cross-origin requests.

In this case, both the Access-Control-Allow-Methods and Access-Control-Allow-Headers

headers allow you to use a wildcard * character like so:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Access-Control-Max-Age#directives

Access-Control-Allow-Methods: *

Access-Control-Allow-Headers: *

But using these comes with some important caveats:

Wildcards in these headers are currently only supported by 74% of browsers. Any

browsers which don’t support them will block the preflight request.

The Authorization header cannot be wildcarded. Instead, you will need to include this

explicitly in the header like Access-Control-Allow-Headers: Authorization, * .

Wildcards are not supported for credentialed requests (those with cookies or HTTP basic

authentication). For these, the character * will be treated as the literal string "*" , rather

than as a wildcard.

https://caniuse.com/mdn-http_headers_access-control-allow-methods_wildcard

Chapter 19.

Metrics

When your application is running in production with real-life traffic — or if you’re carrying

out targeted load testing — you might want some up-close insight into how it’s performing

and what resources it is using.

For example, you might want to answer questions like:

How much memory is my application using? How is this changing over time?

How many goroutines are currently in use? How is this changing over time?

How many database connections are in use and how many are idle? Do I need to change

the connection pool settings?

What is the ratio of successful HTTP responses to both client and server errors? Are error

rates elevated above normal?

Having insight into these things can help inform your hardware and configuration setting

choices, and act as an early warning sign of potential problems (such as memory leaks).

To assist with this, Go’s standard library includes the expvar package which makes it easy

to collate and view different application metrics at runtime.

In this section you’ll learn:

How to use the expvar package to view application metrics in JSON format via a HTTP

handler.

What default application metrics are available, and how to create your own custom

application metrics for monitoring the number of active goroutines and the database

connection pool.

How to use middleware to monitor request-level application metrics, including the

counts of different HTTP status codes.

https://golang.org/pkg/expvar/

Chapter 19.1.

Exposing Metrics with Expvar

Viewing metrics for our API is made easy by the fact that the expvar package provides an

expvar.Handler() function which returns a HTTP handler exposing your application metrics.

By default this handler displays information about memory usage, along with a reminder of

what command-line flags you used when starting the application, all outputted in JSON

format.

So the first thing that we’re going to do is mount this handler at a new GET /debug/vars

endpoint, like so:

Method URL Pattern Handler Action

… … … …

GET /debug/vars expvar.Handler() Display application metrics

https://golang.org/pkg/expvar/#Handler

File: cmd/api/routes.go

package main

import (

 "expvar" // New import

 "net/http"

 "github.com/julienschmidt/httprouter"

)

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requirePermission("movies:read", app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requirePermission("movies:write", app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requirePermission("movies:read", app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requirePermission("movies:write", app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requirePermission("movies:write", app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 // Register a new GET /debug/vars endpoint pointing to the expvar handler.

 router.Handler(http.MethodGet, "/debug/vars", expvar.Handler())

 return app.recoverPanic(app.enableCORS(app.rateLimit(app.authenticate(router))))

}

Note: Using the endpoint GET /debug/vars for the expvar handler is conventional but

certainly not necessary. If you prefer, it’s perfectly fine to register it at an alternative

endpoint like GET /v1/metrics instead.

OK, let’s try this out.

Go ahead and restart the API, passing in a couple of command line flags for demonstration

purposes. Like so:

$ go run ./cmd/api -limiter-enabled=false -port=4000

{"level":"INFO","time":"2021-04-17T18:20:12Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-17T18:20:12Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

And if you visit http://localhost:4000/debug/vars in your web browser, you should see a

JSON response containing information about your running application.

http://localhost:4000/debug/vars

In my case, the response looks like this:

We can see that the JSON here currently contains two top-level items: "cmdline" and

"memstats". Let’s quickly talk through what these represent.

The "cmdline" item contains an array of the command-line arguments used to run the

application, beginning with the program name. This is essentially a JSON representation of

the os.Args variable, and it’s useful if you want to see exactly what non-default settings

were used when starting the application.

The "memstats" item contains a ‘moment-in-time’ snapshot of memory usage, as returned

by the runtime.MemStats() function. Documentation and descriptions for all of the values

can be found here, but the most important ones are:

TotalAlloc — Cumulative bytes allocated on the heap (will not decrease).

HeapAlloc — Current number of bytes on the heap.

HeapObjects — Current number of objects on the heap.

Sys — Total bytes of memory obtained from the OS (i.e. total memory reserved by the Go

runtime for the heap, stacks, and other internal data structures).

NumGC — Number of completed garbage collector cycles.

NextGC — The target heap size of the next garbage collector cycle (Go aims to keep

HeapAlloc ≤ NextGC).

https://golang.org/pkg/os/#pkg-variables
https://golang.org/pkg/runtime/#MemStats
https://golang.org/pkg/runtime/#MemStats

Hint: If any of the terms above are unfamiliar to you, then I strongly recommend

reading the Understanding Allocations in Go blog post which provides a great

introduction to how Go allocates memory and the concepts of the heap and the stack.

https://medium.com/eureka-engineering/understanding-allocations-in-go-stack-heap-memory-9a2631b5035d

Chapter 19.2.

Creating Custom Metrics

The default information exposed by the expvar handler is a good start, but we can make it

even more useful by exposing some additional custom metrics in the JSON response.

To illustrate this, we’ll start really simple and first expose our application version number in

the JSON. If you don’t remember, the version number is currently defined as the string

constant "1.0.0" in our main.go file.

The code to do this breaks down into two basic steps: first we need to register a custom

variable with the expvar package, and then we need to set the value for the variable itself.

In one line, the code looks roughly like this:

expvar.NewString("version").Set(version)

The first part of this — expvar.NewString("version") — creates a new expvar.String type,

then publishes it so it appears in the expvar handler’s JSON response with the name

"version" , and then returns a pointer to it. Then we use the Set() method on it to assign

an actual value to the pointer.

Two other things to note:

The expvar.String type is safe for concurrent use. So — if you want to — it’s OK to

manipulate this value at runtime from your application handlers.

If you try to register two expvar variables with the same name, you’ll get a runtime panic

when the duplicate variable is registered.

Let’s go ahead and integrate this code into our main() function, like so:

https://golang.org/pkg/expvar/#String

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "expvar" // New import

 "flag"

 "os"

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 "greenlight.alexedwards.net/internal/mailer"

 _ "github.com/lib/pq"

)

// Remember, our version number is just a constant string (for now).

const version = "1.0.0"

...

func main() {

 ...

 // Publish a new "version" variable in the expvar handler containing our application

 // version number (currently the constant "1.0.0").

 expvar.NewString("version").Set(version)

 app := &application{

 config: cfg,

 logger: logger,

 models: data.NewModels(db),

 mailer: mailer.New(cfg.smtp.host, cfg.smtp.port, cfg.smtp.username, cfg.smtp.password, cfg.smtp.sender),

 }

 err = app.serve()

 if err != nil {

 logger.PrintFatal(err, nil)

 }

}

...

If you restart the API and visit http://localhost:4000/debug/vars in your web browser

again, you should now see a "version": "1.0.0" item in the JSON.

Similar to this:

http://localhost:4000/debug/vars

Note: In the code above we used the expvar.NewString() function to register and

publish a string in the expvar handler. But Go also provides functions for a few other

common data types: NewFloat(), NewInt() and NewMap(). All these work in a very

similar way, and we’ll put them to use in the next chapter.

Dynamic metrics

Occasionally you might want to publish metrics which require you to call other code — or

do some kind of pre-processing — to generate the necessary information. To help with this

there is the expvar.Publish() function, which allows you to publish the result of a function

in the JSON output.

For example, if you want to publish the number of currently active goroutines from Go’s

runtime.NumGoroutine() function, you could write the following code:

expvar.Publish("goroutines", expvar.Func(func() interface{} {

 return runtime.NumGoroutine()

}))

It’s important to point out here that the interface{} value returned from this function must

https://golang.org/pkg/expvar/#NewFloat
https://golang.org/pkg/expvar/#NewInt
https://golang.org/pkg/expvar/#NewMap
https://golang.org/pkg/expvar/#Publish
https://golang.org/pkg/runtime/#NumGoroutine

encode to JSON without any errors. If it can’t be encoded to JSON, then it will be omitted

from the expvar output and the response from the GET /debug/vars endpoint will be

malformed. Any error will be silently discarded.

In the case of the code snippet above, runtime.NumGoroutine() returns a regular int type

— which will encode to a JSON number. So there’s no problem with that here.

OK, let’s add this code to our main() function, along with two other functions which:

Publish information about the state of our database connection pool (such as the

number of idle and in-use connections) via the db.Stats() method.

Publish the current Unix timestamp with second precision.

https://golang.org/pkg/database/sql/#DB.Stats

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "expvar"

 "flag"

 "os"

 "runtime" // New import

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 "greenlight.alexedwards.net/internal/mailer"

 _ "github.com/lib/pq"

)

...

func main() {

 ...

 expvar.NewString("version").Set(version)

 // Publish the number of active goroutines.

 expvar.Publish("goroutines", expvar.Func(func() interface{} {

 return runtime.NumGoroutine()

 }))

 // Publish the database connection pool statistics.

 expvar.Publish("database", expvar.Func(func() interface{} {

 return db.Stats()

 }))

 // Publish the current Unix timestamp.

 expvar.Publish("timestamp", expvar.Func(func() interface{} {

 return time.Now().Unix()

 }))

 app := &application{

 config: cfg,

 logger: logger,

 models: data.NewModels(db),

 mailer: mailer.New(cfg.smtp.host, cfg.smtp.port, cfg.smtp.username, cfg.smtp.password, cfg.smtp.sender),

 }

 err = app.serve()

 if err != nil {

 logger.PrintFatal(err, nil)

 }

}

...

If you restart the API and open the GET /debug/vars endpoint in your browser again, you

should now see the additional "database", "goroutines" and "timestamp" items in the

JSON. Like so:

In my case, I can see that the application currently has 8 active goroutines, and the database

connection pool is in its ‘initial’ state with just one currently idle connection (which was

created when our code called db.PingContext() on startup).

If you like, you can use a tool like hey to generate some requests to your application and see

how these figures change under load. For example, you can send a batch of requests to the

POST /v1/tokens/authentication endpoint (which is slow and costly because it checks a

bcrypt-hashed password) like so:

https://github.com/rakyll/hey

$ BODY='{"email": "alice@example.com", "password": "pa55word"}'

$ hey -d "$BODY" -m "POST" http://localhost:4000/v1/tokens/authentication

Summary:

 Total: 8.0979 secs

 Slowest: 2.4612 secs

 Fastest: 1.6169 secs

 Average: 1.9936 secs

 Requests/sec: 24.6977

 Total data: 24975 bytes

 Size/request: 124 bytes

Response time histogram:

 1.617 [1] |■
 1.701 [6] |■■■■■
 1.786 [10] |■■■■■■■■■
 1.870 [26] |■■■■■■■■■■■■■■■■■■■■■■■
 1.955 [36] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 2.039 [46] |■■
 2.123 [36] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 2.208 [21] |■■■■■■■■■■■■■■■■■■
 2.292 [12] |■■■■■■■■■■
 2.377 [4] |■■■
 2.461 [2] |■■

Latency distribution:

 10% in 1.8143 secs

 25% in 1.8871 secs

 50% in 1.9867 secs

 75% in 2.1000 secs

 90% in 2.2017 secs

 95% in 2.2642 secs

 99% in 2.3799 secs

Details (average, fastest, slowest):

 DNS+dialup: 0.0009 secs, 1.6169 secs, 2.4612 secs

 DNS-lookup: 0.0005 secs, 0.0000 secs, 0.0030 secs

 req write: 0.0002 secs, 0.0000 secs, 0.0051 secs

 resp wait: 1.9924 secs, 1.6168 secs, 2.4583 secs

 resp read: 0.0000 secs, 0.0000 secs, 0.0001 secs

Status code distribution:

 [201] 200 responses

Important: Make sure that your API has the rate limiter turned off with the

-limiter-enabled=false command-line flag before you run this, otherwise the hey

tool will receive a lot of 429 Too Many Requests responses.

If you visit the GET /debug/vars endpoint while the hey tool is running, you should see that

your application metrics now look quite different:

At the moment I took this screenshot, we can see that my API application had 118 active

goroutines, with 11 database connections in use and 14 connections sat idle.

There are a couple of other interesting things to point out too.

The database WaitCount figure of 25 is the total number of times that our application had

to wait for a database connection to become available in our sql.DB pool (because all

connections were in-use). Likewise, WaitCountDuration is the cumulative amount of time

(in nanoseconds) spent waiting for a connection. From these, it’s possible to calculate that

when our application did have to wait for a database connection, the average wait time was

approximately 98 milliseconds. Ideally, you want to be seeing zeroes or very low numbers for

these two things in production.

Also, the MaxIdleTimeClosed figure is the total count of the number of connections that

have been closed because they reached their ConnMaxIdleTime limit (which in our case is set

to 15 minutes by default). If you leave the application running but don’t use it, and come

back in 15 minutes time, you should see that the number of open connections has dropped

to zero and the MaxIdleTimeClosed count has increased accordingly.

You might like to play around with this and try changing some of the configuration

parameters for the connection pool to see how it affects the behavior of these figures under

load. For example:

$ go run ./cmd/api -limiter-enabled=false -db-max-open-conns=50 -db-max-idle-conns=50 -db-max-idle-time=20s -port=4000

Additional Information

Protecting the metrics endpoint

It’s important to be aware that these metrics provide very useful information to anyone

who wants to perform a denial-of-service attack against your application, and that the

"cmdline" values may also expose potentially sensitive information (like a database DSN).

So you should make sure to restrict access to the GET /debug/vars endpoint when running

in a production environment.

There are a few different approaches you could take to do this.

One option is to leverage our existing authentication process and create a metrics:view

permission so that only certain trusted users can access the endpoint. Another option

would be to use HTTP Basic Authentication to restrict access to the endpoint.

In our case, when we deploy our application in production later we will run it behind Caddy

as a reverse proxy. As part of our Caddy set up, we’ll restrict access to the GET /debug/vars

endpoint so that it can only be accessed via connections from the local machine, rather

than being exposed on the internet.

Removing default metrics

It’s currently not possible to remove the default "cmdline" and "memstats" items from the

expvar handler, even if you want to. There’s an open issue regarding this, and hopefully it

will become possible to omit these in a future version of Go.

https://caddyserver.com/
https://github.com/golang/go/issues/29105

Chapter 19.3.

Request-level Metrics

In this chapter we’re going to create some new middleware to record custom request-level

metrics for our application. We’ll start by recording the following three things:

The total number of requests received.

The total number of responses sent.

The total (cumulative) time taken to process all requests in microseconds.

All these values will be integers, so we’ll be able to register these metrics with the expvar

package using the expvar.NewInt() function.

Let’s jump straight into the code and create a new metrics() middleware method, which

initializes the necessary expvar variables and then updates them each time we process a

request. Like so:

https://en.wikipedia.org/wiki/Microsecond
https://golang.org/pkg/expvar/#NewInt

File: cmd/api/middleware.go

package main

import (

 "errors"

 "expvar" // New import

 "fmt"

 "net"

 "net/http"

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

 "golang.org/x/time/rate"

)

...

func (app *application) metrics(next http.Handler) http.Handler {

 // Initialize the new expvar variables when the middleware chain is first built.

 totalRequestsReceived := expvar.NewInt("total_requests_received")

 totalResponsesSent := expvar.NewInt("total_responses_sent")

 totalProcessingTimeMicroseconds := expvar.NewInt("total_processing_time_μs")

 // The following code will be run for every request...

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Record the time that we started to process the request.

 start := time.Now()

 // Use the Add() method to increment the number of requests received by 1.

 totalRequestsReceived.Add(1)

 // Call the next handler in the chain.

 next.ServeHTTP(w, r)

 // On the way back up the middleware chain, increment the number of responses

 // sent by 1.

 totalResponsesSent.Add(1)

 // Calculate the number of microseconds since we began to process the request,

 // then increment the total processing time by this amount.

 duration := time.Now().Sub(start).Microseconds()

 totalProcessingTimeMicroseconds.Add(duration)

 })

}

Once that’s done we need to update the cmd/api/routes.go file to include the new

metrics() middleware, right at the beginning of the chain. Like so:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requirePermission("movies:read", app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requirePermission("movies:write", app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requirePermission("movies:read", app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requirePermission("movies:write", app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requirePermission("movies:write", app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 router.Handler(http.MethodGet, "/debug/vars", expvar.Handler())

 // Use the new metrics() middleware at the start of the chain.

 return app.metrics(app.recoverPanic(app.enableCORS(app.rateLimit(app.authenticate(router)))))

}

OK, let’s try this out. Go ahead and run the API with rate limiting disabled again:

$ go run ./cmd/api -limiter-enabled=false

{"level":"INFO","time":"2021-04-18T09:06:05Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T09:06:05Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

And when you visit localhost:4000/debug/vars in your browser, you should now see that

the JSON response includes items for total_requests_received , total_responses_sent

and total_processing_time_μs . Like so:

http://localhost:4000/debug/vars

At this point, we can see that our API has received one request and sent zero responses.

That makes sense if you think about it — at the moment that this JSON response was

generated, it hadn’t actually been sent.

If you refresh the page, you should see these numbers increment — including an increase in

the total_processing_time_μs value:

Let’s try this out under load and use hey to make some requests to the

POST /v1/tokens/authentication endpoint again.

First restart the API:

$ go run ./cmd/api -limiter-enabled=false

{"level":"INFO","time":"2021-04-18T09:18:36Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T09:18:36Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

And tThen use hey to generate the load like so:

$ BODY='{"email": "alice@example.com", "password": "pa55word"}'

$ hey -d "$BODY" -m "POST" http://localhost:4000/v1/tokens/authentication

Summary:

 Total: 9.9141 secs

 Slowest: 3.0333 secs

 Fastest: 1.6788 secs

 Average: 2.4302 secs

 Requests/sec: 20.1732

 Total data: 24987 bytes

 Size/request: 124 bytes

Response time histogram:

 1.679 [1] |■
 1.814 [1] |■
 1.950 [3] |■■■
 2.085 [8] |■■■■■■■
 2.221 [28] |■■■■■■■■■■■■■■■■■■■■■■■■
 2.356 [39] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 2.491 [46] |■■
 2.627 [34] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
 2.762 [20] |■■■■■■■■■■■■■■■■■
 2.898 [9] |■■■■■■■■
 3.033 [11] |■■■■■■■■■■

Latency distribution:

 10% in 2.1386 secs

 25% in 2.2678 secs

 50% in 2.4197 secs

 75% in 2.5769 secs

 90% in 2.7718 secs

 95% in 2.9125 secs

 99% in 3.0220 secs

Details (average, fastest, slowest):

 DNS+dialup: 0.0007 secs, 1.6788 secs, 3.0333 secs

 DNS-lookup: 0.0005 secs, 0.0000 secs, 0.0047 secs

 req write: 0.0001 secs, 0.0000 secs, 0.0012 secs

 resp wait: 2.4293 secs, 1.6787 secs, 3.0293 secs

 resp read: 0.0000 secs, 0.0000 secs, 0.0001 secs

Status code distribution:

 [201] 200 responses

Once that has completed, if you refresh localhost:4000/debug/vars in your browser your

metrics should now look something like this:

http://localhost:4000/debug/vars

Based on the total_processing_time_μs and total_responses_sent values, we can

calculate that the average processing time per request was approximately 2.4 seconds

(remember, this endpoint is deliberately slow and computationally expensive since we need

to verify the bcrypted user password).

481455830 μs / 201 reqs = 2395303 μs/req = 2.4 s/req

This aligns with the data that we’re seeing in the results summary from hey , which gives the

average response time as 2.4302 secs. The hey figure is the time for the complete round-

trip, so it will always be a little higher as it includes network latency and the time taken for

http.Server to manage the request.

Additional Information

Calculating additional metrics

Based on this information in the GET /debug/vars response, you can also derive some

additional interesting metrics. Such as…

The number of ‘active’ in-flight requests:

total_requests_received - total_responses_sent

The average number of requests received per second (between calls A and B to the

GET /debug/vars endpoint):

(total_requests_received_B - total_requests_received_A) / (timestamp_B - timestamp_A)

The average processing time per request (between calls A and B to the GET /debug/vars

endpoint):

(total_processing_time_μs_B - total_processing_time_μs_A) / (total_requests_received_B - total_requests_received_A)

Chapter 19.4.

Recording HTTP Status Codes

As well as recording the total count of responses sent, we can take this further and extend

our metrics() middleware to start tallying exactly which HTTP status codes our responses

had.

The tricky part of doing this is finding out what HTTP status code a response has in our

metrics() middleware. Unfortunately Go doesn’t make this easy — there is no built-in way

to examine a http.ResponseWriter to see what status code is going to be sent to a client.

The de-facto workaround is to create your own custom implementation of

http.ResponseWriter which records a copy of the HTTP status code for future access. But

doing this can be quite brittle and awkward — there are several edge cases that you need to

be wary of, and it can cause problems if you are using any of the ‘additional’

ResponseWriter interfaces such as http.Flusher and http.Hijacker .

Rather than making your own custom http.ResponseWriter implementation, I highly

recommend using the third-party httpsnoop package. It’s small and focused, with no

additional dependencies, and it makes it very easy to record the HTTP status code and size

of each response, along with the total processing time for each request.

If you’re following along, go ahead and download it like so:

$ go get github.com/felixge/httpsnoop@v1.0.1

go: downloading github.com/felixge/httpsnoop v1.0.1

go get: added github.com/felixge/httpsnoop v1.0.1

The key feature of httpsnoop that we’re going to use is the httpsnopp.CaptureMetrics()

function, which looks like this:

func CaptureMetrics(hnd http.Handler, w http.ResponseWriter, r *http.Request) Metrics

This function essentially wraps a http.Handler, executes the handler, and then returns a

Metrics struct containing the following information:

https://stackoverflow.com/questions/53272536/how-do-i-get-response-statuscode-in-golang-middleware
https://github.com/felixge/httpsnoop
https://pkg.go.dev/github.com/felixge/httpsnoop#CaptureMetrics

type Metrics struct {

 // Code is the first http response status code passed to the WriteHeader() method of

 // the ResponseWriter. If no such call is made, a default code of 200 is

 // assumed instead.

 Code int

 // Duration is the time it took to execute the handler.

 Duration time.Duration

 // Written is the number of bytes successfully written by the Write() method of the

 // ResponseWriter. Note that ResponseWriters may also write data to their underlying

 // connection directly, but those writes are not tracked.

 Written int64

}

Let’s dig in and adapt our metrics() middleware to use the httpsnoop package, and record

the HTTP status codes for our responses.

To do this, we’re going to publish a new total_responses_sent_by_status variable using

the expvar.NewMap() function. This will give us a map in which we can store the different

HTTP status codes, along with a running count of responses for each status. Then, for each

request, we’ll use the httpsnopp.CaptureMetrics() function to get the HTTP status code,

and increment the value in the map accordingly.

While we’re at it, let’s also remove the code that we made earlier for recording the total

processing time, and leverage the functionality built in to httpsnoop instead.

Go ahead and update the metrics() middleware as follows:

https://golang.org/pkg/expvar/#NewMap

File: cmd/api/middleware.go

package main

import (

 "errors"

 "expvar"

 "fmt"

 "net"

 "net/http"

 "strconv" // New import

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/felixge/httpsnoop" // New import

 "golang.org/x/time/rate"

)

...

func (app *application) metrics(next http.Handler) http.Handler {

 totalRequestsReceived := expvar.NewInt("total_requests_received")

 totalResponsesSent := expvar.NewInt("total_responses_sent")

 totalProcessingTimeMicroseconds := expvar.NewInt("total_processing_time_μs")
 // Declare a new expvar map to hold the count of responses for each HTTP status

 // code.

 totalResponsesSentByStatus := expvar.NewMap("total_responses_sent_by_status")

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Increment the requests received count, like before.

 totalRequestsReceived.Add(1)

 // Call the httpsnoop.CaptureMetrics() function, passing in the next handler in

 // the chain along with the existing http.ResponseWriter and http.Request. This

 // returns the metrics struct that we saw above.

 metrics := httpsnoop.CaptureMetrics(next, w, r)

 // Increment the response sent count, like before.

 totalResponsesSent.Add(1)

 // Get the request processing time in microseconds from httpsnoop and increment

 // the cumulative processing time.

 totalProcessingTimeMicroseconds.Add(metrics.Duration.Microseconds())

 // Use the Add() method to increment the count for the given status code by 1.

 // Note that the expvar map is string-keyed, so we need to use the strconv.Itoa()

 // function to convert the status code (which is an integer) to a string.

 totalResponsesSentByStatus.Add(strconv.Itoa(metrics.Code), 1)

 })

}

Alright, let’s try this out. Run the API again, but this time leave the rate limiter enabled. Like

so:

$ go run ./cmd/api

{"level":"INFO","time":"2021-04-18T10:09:09Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T10:09:09Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Then use hey again to generate some load against the POST /v1/tokens/authentication

endpoint. This should result in a small number of successful 201 Created responses, but

many more 429 Too Many Requests responses due to the rate limit being hit.

$ BODY='{"email": "alice@example.com", "password": "pa55word"}'

$ hey -d "$BODY" -m "POST" http://localhost:4000/v1/tokens/authentication

Summary:

 Total: 0.3351 secs

 Slowest: 0.3334 secs

 Fastest: 0.0001 secs

 Average: 0.0089 secs

 Requests/sec: 596.9162

 Total data: 7556 bytes

 Size/request: 37 bytes

Response time histogram:

 0.000 [1] |

 0.033 [195] |■■
 0.067 [0] |

 0.100 [0] |

 0.133 [0] |

 0.167 [0] |

 0.200 [0] |

 0.233 [0] |

 0.267 [0] |

 0.300 [0] |

 0.333 [4] |■

Latency distribution:

 10% in 0.0002 secs

 25% in 0.0002 secs

 50% in 0.0014 secs

 75% in 0.0047 secs

 90% in 0.0075 secs

 95% in 0.0088 secs

 99% in 0.3311 secs

Details (average, fastest, slowest):

 DNS+dialup: 0.0008 secs, 0.0001 secs, 0.3334 secs

 DNS-lookup: 0.0006 secs, 0.0000 secs, 0.0041 secs

 req write: 0.0002 secs, 0.0000 secs, 0.0033 secs

 resp wait: 0.0078 secs, 0.0001 secs, 0.3291 secs

 resp read: 0.0000 secs, 0.0000 secs, 0.0015 secs

Status code distribution:

 [201] 4 responses

 [429] 196 responses

And if you take a look at the metrics in your browser, you should now see the same

corresponding counts for each status code under the total_responses_sent_by_status

item, similar to this:

Additional Information

Visualizing and analyzing metrics

Now that we have some good application-level metrics being recorded, there is the whole

question of what should you do with them?

The answer to this will be different from project-to-project.

For some low-value applications, it might be sufficient to manually spot check the metrics

every so often — or only when you suspect a problem — and make sure that nothing looks

unusual or out of place.

In other projects, you might want to write a script to periodically fetch the JSON data from

the GET /debug/vars endpoint and carry out further analysis. This might include

functionality to alert you if something appears to be abnormal.

At the other end of the spectrum, you might want to use a tool like Prometheus to fetch and

https://prometheus.io/

visualize the data from the endpoint, and display graphs of the metrics in real-time.

There are a lot of different options, and the right thing to do really depends on the needs of

your project and business. But in all cases, using the expvar package to collect and publish

the metrics gives you a great platform from which you can integrate any external

monitoring, alerting or visualization tools.

Chapter 20.

Building, Versioning and Quality

Control

In this section of the book we’re going shift our focus from writing code to managing and

maintaining our project, and take steps to help automate common tasks and prepare our

API for deployment.

Specifically, you’ll learn how to:

Use a makefile to automate common tasks in your project, such as creating and

executing migrations.

Carry out quality control checks of your code using the go vet and staticcheck tools.

Vendor third-party packages, in case they ever become unavailable in the future.

Build and run executable binaries for your applications, reduce their size, and cross-

compile binaries for different platforms.

Burn-in a version number and build time to your application when building the binary.

Leverage Git to generate automated version numbers as part of your build process.

Chapter 20.1.

Creating and Using Makefiles

In this first chapter we’re going to look at how to use the GNU make utility and makefiles to

help automate common tasks in your project.

The make tool should be pre-installed in most Linux distributions, but if it’s not already on

your machine you should be able to install it via your package manager. For example, if

your OS supports the apt package manager (like Debian and Ubuntu does) you can install it

with:

$ sudo apt install make

It’s also probably already on your machine if you use macOS, but if not you can use brew to

install it:

$ brew install make

On Windows machines you can install make using the Chocolatey package manager with the

command:

> choco install make

A simple makefile

Now that the make utility is installed on your system, let’s create our first iteration of a

makefile. We’ll start simple, and then build things up step-by-step.

A makefile is essentially a text file which contains one or more rules that the make utility can

run. Each rule has a target and contains a sequence of sequential commands which are

executed when the rule is run. Generally speaking, makefile rules have the following

structure:

comment (optional)

target:

 command

 command

 ...

https://www.gnu.org/software/make/manual/make.html
https://chocolatey.org

Important: Please note that each command in a makefile rule must start with a tab

character, not spaces. If you happen to be reading this in PDF format, the tab will

appear as a single space character in the snippet above, but please make sure it is a

tab character in your own code.

If you’ve been following along, you should already have an empty Makefile in the root of

your project directory. Let’s jump in and create a rule which executes the go run ./cmd/api

command to run our API application. Like so:

File: Makefile

run:

 go run ./cmd/api

Make sure that the Makefile is saved, and then you can execute a specific rule by running

$ make <target> from your terminal.

Let’s go ahead and call make run to start the API:

$ make run

go run ./cmd/api

{"level":"INFO","time":"2021-04-18T10:38:26Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T10:38:26Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Great, that’s worked well. When we type make run , the make utility looks for a file called

Makefile or makefile in the current directory and then executes the commands associated

with the run target.

One thing to point out — by default make echoes commands in the terminal output. We can

see that in the code above where the first line in the output is the echoed command

go run ./cmd/api . If you want, it’s possible to suppress commands from being echoed by

prefixing them with the @ character.

Environment variables

When we execute a make rule, every environment variable that is available to make when it

starts is transformed into a make variable with the same name and value. We can then

access these variables using the syntax ${VARIABLE_NAME} in our makefile.

To illustrate this, let’s create two additional rules — a psql rule for connecting to our

database and an up rule to execute our database migrations. If you’ve been following along,

both of these rules will need access to the database DSN value from your

GREENLIGHT_DB_DSN environment variable.

Go ahead and update your Makefile to include these two new rules like so:

File: Makefile

run:

 go run ./cmd/api

psql:

 psql ${GREENLIGHT_DB_DSN}

up:

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

Notice here how we’ve used the @ character in the up rule to prevent the echo command

from being echoed itself when running?

OK, let’s try this out by running make up to execute our database migrations:

$ make up

Running up migrations...

migrate -path ./migrations -database postgres://greenlight:pa55word@localhost/greenlight up

no change

You should see from the output here that the value of your GREENLIGHT_DB_DSN environment

variable is successfully pulled through and used in the make rule. If you’ve been following

along, there shouldn’t be any outstanding migrations to apply, so this should then exit

successfully with no further action.

We’re also starting to see the benefits of using a makefile here — being able to type make up

is a big improvement on having to remember and use the full command for executing our

‘up’ migrations.

Likewise, if you want, you can also try running make psql to connect to the greenlight

database with psql.

Passing arguments

The make utility also allows you to pass named arguments when executing a particular rule.

To illustrate this, let’s add a migration rule to our makefile to generate a new pair of

migration files. The idea is that when we execute this rule we’ll pass the name of the

migration files as an argument, similar to this:

$ make migration name=create_example_table

The syntax to access the value of named arguments is exactly the same as for accessing

environment variables. So, in the example above, we could access the migration file name

via ${name} in our makefile.

Go ahead and update the makefile to include this new migration rule, like so:

File: Makefile

run:

 go run ./cmd/api

psql:

 psql ${GREENLIGHT_DB_DSN}

migration:

 @echo 'Creating migration files for ${name}...'

 migrate create -seq -ext=.sql -dir=./migrations ${name}

up:

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

And if you execute this new rule with the name=create_example_table argument you should

see the following output:

$ make migration name=create_example_table

Creating migration files for create_example_table ...

migrate create -seq -ext=.sql -dir=./migrations create_example_table

/home/alex/Projects/greenlight/migrations/000007_create_example_table.up.sql

/home/alex/Projects/greenlight/migrations/000007_create_example_table.down.sql

You’ll now also have two new empty migration files with the name create_example_table

in your migrations folder. Like so:

$ ls ./migrations/

000001_create_movies_table.down.sql 000004_create_users_table.up.sql

000001_create_movies_table.up.sql 000005_create_tokens_table.down.sql

000002_add_movies_check_constraints.down.sql 000005_create_tokens_table.up.sql

000002_add_movies_check_constraints.up.sql 000006_add_permissions.down.sql

000003_add_movies_indexes.down.sql 000006_add_permissions.up.sql

000003_add_movies_indexes.up.sql 000007_create_example_table.down.sql

000004_create_users_table.down.sql 000007_create_example_table.up.sql

If you’re following along, we won’t actually be using these two new migration files, so feel

free to delete them:

$ rm migrations/000007*

Note: Variable names in makefiles are case-sensitive, so foo , FOO , and Foo all refer to

different variables. The make documentation suggests using lower case letters for

variable names that only serve an internal purpose in the makefile, and using upper

case variable names otherwise.

Namespacing targets

As your makefile continues to grow, you might want to start namespacing your target

names to provide some differentiation between rules and help organize the file. For

example, in a large makefile rather than having the target name up it would be clearer to

give it the name db/migrations/up instead.

I recommend using the / character as a namespace separator, rather a period, hyphen or

the : character. In fact, the : character should be strictly avoided in target names as it can

cause problems when using target prerequisites (something that we’ll cover in a moment).

Let’s update our target names to use some sensible namespaces, like so:

File: Makefile

run/api:

 go run ./cmd/api

db/psql:

 psql ${GREENLIGHT_DB_DSN}

db/migrations/new:

 @echo 'Creating migration files for ${name}...'

 migrate create -seq -ext=.sql -dir=./migrations ${name}

db/migrations/up:

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

And you should be able to execute the rules by typing the full target name when running

make. For example:

https://www.gnu.org/software/make/manual/html_node/Using-Variables.html

$ make run/api

go run ./cmd/api

{"level":"INFO","time":"2021-04-18T10:50:23Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T10:50:23Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

A nice feature of using the / character as the namespace separator is that you get tab

completion in the terminal when typing target names. For example, if you type

make db/migrations/ and then hit tab on your keyboard the remaining targets under the

namespace will be listed. Like so:

$ make db/migrations/

new up

Prerequisite targets and asking for confirmation

The general syntax for a makefile rule that I gave at start of this chapter was a slight

simplification, because it’s also possible to specify prerequisite targets.

target: prerequisite-target-1 prerequisite-target-2 ...

 command

 command

 ...

When you specify a prerequisite target for a rule, the corresponding commands for the

prerequisite targets will be run before executing the actual target commands.

Let’s leverage this functionality to ask the user for confirmation to continue before executing

our db/migrations/up rule.

To do this, we’ll create a new confirm target which asks the user Are you sure? [y/N] and

exits with an error if they do not enter y . Then we’ll use this new confirm target as a

prerequisite for db/migrations/up.

Go ahead and update your Makefile as follows:

File: Makefile

Create the new confirm target.

confirm:

 @echo -n 'Are you sure? [y/N] ' && read ans && [$${ans:-N} = y]

run/api:

 go run ./cmd/api

db/psql:

 psql ${GREENLIGHT_DB_DSN}

db/migrations/new:

 @echo 'Creating migration files for ${name}...'

 migrate create -seq -ext=.sql -dir=./migrations ${name}

Include it as prerequisite.

db/migrations/up: confirm

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

The code in the confirm target is taken from this StackOverflow post. Essentially, what

happens here is that we ask the user Are you sure? [y/N] and then read the response. We

then use the code [$${ans:-N} = y] to evaluate the response — this will return true if

the user enters y and false if they enter anything else. If a command in a makefile returns

false , then make will stop running the rule and exit with an error message — essentially

stopping the rule in its tracks.

Also, importantly, notice that we have set confirm as a prerequisite for the

db/migrations/up target?

Let’s try this out and see what happens when we enter y :

$ make db/migrations/up

Are you sure? [y/N] y

Running up migrations...

migrate -path ./migrations -database postgres://greenlight:pa55word@localhost/greenlight up

no change

That looks good — the commands in our db/migrations/up rule have been executed as we

would expect.

In contrast, let’s try the same thing again but enter any other letter when asked for

confirmation. This time, make should exit without executing anything in the

db/migrations/up rule. Like so:

$ make db/migrations/up

Are you sure? [y/N] n

make: *** [Makefile:3: confirm] Error 1

https://stackoverflow.com/a/47839479

Using a confirm rule as a prerequisite target like this is a really nice re-usable pattern. Any

time you have a makefile rule which does something destructive or dangerous, you can now

just include confirm as a prerequisite target to ask the user for confirmation to continue.

Displaying help information

Another small thing that we can do to make our makefile more user-friendly is to include

some comments and help functionality. Specifically, we’ll prefix each rule in our makefile

with a comment in the following format:

<example target call>: <help text>

Then we’ll create a new help rule which parses the makefile itself, extracts the help text

from the comments using sed , formats them into a table and then displays them to the

user.

If you’re following along, go ahead and update your Makefile so that it looks like this:

File: Makefile

help: print this help message

help:

 @echo 'Usage:'

 @sed -n 's/^##//p' ${MAKEFILE_LIST} | column -t -s ':' | sed -e 's/^/ /'

confirm:

 @echo -n 'Are you sure? [y/N] ' && read ans && [$${ans:-N} = y]

run/api: run the cmd/api application

run/api:

 go run ./cmd/api

db/psql: connect to the database using psql

db/psql:

 psql ${GREENLIGHT_DB_DSN}

db/migrations/new name=$1: create a new database migration

db/migrations/new:

 @echo 'Creating migration files for ${name}...'

 migrate create -seq -ext=.sql -dir=./migrations ${name}

db/migrations/up: apply all up database migrations

db/migrations/up: confirm

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

https://www.gnu.org/software/sed/manual/sed.html

Note: MAKEFILE_LIST is a special variable which contains the name of the makefile

being parsed by make.

And if you now execute the help target, you should get a response which lists all the

available targets and the corresponding help text. Similar to this:

$ make help

Usage:

 help print this help message

 run/api run the cmd/api application

 db/psql connect to the database using psql

 db/migrations/new name=$1 create a new database migration

 db/migrations/up apply all up database migrations

I should also point out that positioning the help rule as the first thing in the Makefile is a

deliberate move. If you run make without specifying a target then it will default to executing

the first rule in the file.

So this means that if you try to run make without a target you’ll now be presented with the

help information, like so:

$ make

Usage:

 help print this help message

 run/api run the cmd/api application

 db/psql connect to the database using psql

 db/migrations/new name=$1 create a new database migration

 db/migrations/up apply all up database migrations

Phony targets

In this chapter we’ve been using make to execute actions, but another (and arguably, the

primary) purpose of make is to help create files on disk where the name of a target is the

name of a file being created by the rule.

If you’re using make primarily to execute actions, like we are, then this can cause a problem

if there is a file in your project directory with the same path as a target name.

If you want, you can demonstrate this problem by creating a file called ./run/api in the

root of your project directory, like so:

$ mkdir run && touch run/api

https://www.gnu.org/software/make/manual/html_node/Special-Variables.html

And then if you execute make run/api , instead of our API application starting up you’ll get

the following message:

$ make run/api

make: 'run/api' is up to date.

Because we already have a file on disk at ./run/api , the make tool considers this rule to

have already been executed and so returns the message that we see above without taking

any further action.

To work around this, we can declare our makefile targets to be phony targets:

A phony target is one that is not really the name of a file; rather it is just a name for a rule

to be executed.

To declare a target as phony, you can make it prerequisite of the special .PHONY target. The

syntax looks like this:

.PHONY: target

target: prerequisite-target-1 prerequisite-target-2 ...

 command

 command

 ...

Let’s go ahead and update out Makefile so that all our rules have phony targets, like so:

https://www.gnu.org/software/make/manual/html_node/Phony-Targets.html#Phony-Targets
https://www.gnu.org/software/make/manual/html_node/Special-Targets.html#Special-Targets

File: Makefile

help: print this help message

.PHONY: help

help:

 @echo 'Usage:'

 @sed -n 's/^##//p' ${MAKEFILE_LIST} | column -t -s ':' | sed -e 's/^/ /'

.PHONY: confirm

confirm:

 @echo -n 'Are you sure? [y/N] ' && read ans && [$${ans:-N} = y]

run/api: run the cmd/api application

.PHONY: run/api

run/api:

 go run ./cmd/api

db/psql: connect to the database using psql

.PHONY: db/psql

db/psql:

 psql ${GREENLIGHT_DB_DSN}

db/migrations/new name=$1: create a new database migration

.PHONY: db/migrations/new

db/migrations/new:

 @echo 'Creating migration files for ${name}...'

 migrate create -seq -ext=.sql -dir=./migrations ${name}

db/migrations/up: apply all up database migrations

.PHONY: db/migrations/up

db/migrations/up: confirm

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

If you run make run/api again now, it should now correctly recognize this as a phony target

and execute the rule for us:

$ make run/api

go run ./cmd/api -db-dsn=postgres://greenlight:pa55word@localhost/greenlight

{"level":"INFO","time":"2021-04-18T11:04:06Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T11:04:06Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

You might think that it’s only necessary to declare targets as phony if you have a conflicting

file name, but in practice not declaring a target as phony when it actually is can lead to bugs

or confusing behavior. For example, imagine if in the future someone unknowingly creates a

file called confirm in the root of the project directory. This would mean that our confirm

rule is never executed, which in turn would lead to dangerous or destructive rules being

executed without confirmation.

To avoid this kind of bug, if you have a makefile rule which carries out an action (rather than

creating a file) then it’s best to get into the habit of declaring it as phony.

If you’re following along, you can go ahead and remove the contents of the run directory

that we just made. Like so:

$ rm -rf run/

All in all, this is shaping up nicely. Our makefile is starting to contain some helpful

functionality, and we’ll continue to add more to it over the next few chapters of this book.

Although this is one of the last things we’re doing in this build, creating a makefile in the

root of a project directory is normally one of the very first things I do when starting a

project. I find that using a makefile for common tasks helps save both typing and mental

overhead during development, and — in the longer term — it acts as a useful entry point

and a reminder of how things work when you come back to a project after a long break.

Chapter 20.2.

Managing Environment Variables

Using the make run/api command to run our API application opens up an opportunity to

tweak our command-line flags, and remove the default value for our database DSN from the

main.go file. Like so:

File: cmd/api/main.go

package main

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 // Use the empty string "" as the default value for the db-dsn command-line flag,

 // rather than os.Getenv("GREENLIGHT_DB_DSN") like we were previously.

 flag.StringVar(&cfg.db.dsn, "db-dsn", "", "PostgreSQL DSN")

 ...

}

Instead, we can update our makefile so that the DSN value from the GREENLIGHT_DB_DSN

environment variable is passed in as part of the rule. If you’re following along, please go

ahead and update the run/api rule as follows:

File: Makefile

...

run/api: run the cmd/api application

.PHONY: run/api

run/api:

 go run ./cmd/api -db-dsn=${GREENLIGHT_DB_DSN}

...

This is a small change but a really nice one, because it means that the default configuration

values for our application no longer change depending on the operating environment. The

command-line flag values passed at runtime are the sole mechanism for configuring our

application settings, and there are still no secrets hard-coded in our project files.

During development running our application remains nice and easy — all we need to do is

type make run/api , like so:

$ make run/api

go run ./cmd/api -db-dsn=postgres://greenlight:pa55word@localhost/greenlight

{"level":"INFO","time":"2021-04-18T11:17:49Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T11:17:49Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Hint: If you’re not comfortable with the DSN value (which contains a password) being

displayed on your screen when you type make run/api , remember that you can use

the @ character in your makefile to suppress that command from being echoed.

Using a .envrc file

If you like, you could also remove the GREENLIGHT_DB_DSN environment variable from your

$HOME/.profile or $HOME/.bashrc files, and store it in a .envrc file in the root of your

project directory instead.

If you’re following along, go ahead and create a new .envrc file like so:

$ touch .envrc

File: .envrc

export GREENLIGHT_DB_DSN=postgres://greenlight:pa55word@localhost/greenlight

You can then use a tool like direnv to automatically load the variables from the .envrc file

into your current shell, or alternatively, you can add an include command at the top of your

Makefile to load them instead. Like so:

File: Makefile

Include variables from the .envrc file

include .envrc

help: print this help message

.PHONY: help

help:

 @echo 'Usage:'

 @sed -n 's/^##//p' ${MAKEFILE_LIST} | column -t -s ':' | sed -e 's/^/ /'

...

https://direnv.net/

This approach is particularly convenient in projects where you need to make frequent

changes to your environment variables, because it means that you can just edit the .envrc

file without needing to reboot your computer or run source after each change.

Another nice benefit of this approach is that it provides a degree of separation between

variables if you’re working on multiple projects on the same machine.

Important: If you use this approach and your .envrc file contains any secrets, you

must be careful to not commit the file into a version control system (like Git or

Mercurial).

In a few chapters time we’ll start version controlling our codebase with Git, so let’s

preemptively add an ignore rule so that the .envrc file is never committed.

$ echo '.envrc' >> .gitignore

Chapter 20.3.

Quality Controlling Code

In this chapter we’re going to focus on adding an audit rule to our Makefile to check, test

and tidy up our codebase automatically. In particular, the rule will:

Use the go mod tidy command to prune any unused dependencies from the go.mod and

go.sum files, and add any missing dependencies.

Use the go mod verify command to check that the dependencies on your computer

(located in your module cache located at $GOPATH/pkg/mod) haven’t been changed since

they were downloaded and that they match the cryptographic hashes in your go.sum file.

Running this helps ensure that the dependencies being used are the exact ones that you

expect.

Use the go fmt ./... command to format all .go files in the project directory, according

to the Go standard. This will reformat files ‘in place’ and output the names of any

changed files.

Use the go vet ./... command to check all .go files in the project directory. The

go vet tool runs a variety of analyzers which carry out static analysis of your code and

warn you about things which might be wrong but won’t be picked up by the compiler —

such as unreachable code, unnecessary assignments, and badly-formed build tags.

Use the go test -race -vet=off ./... command to run all tests in the project

directory. By default, go test automatically executes a small subset of the go vet

checks before running any tests, so to avoid duplication we’ll use the -vet=off flag to

turn this off. The -race flag enables Go’s race detector, which can help pick up certain

classes of race conditions while tests are running.

Use the third-party staticcheck tool to carry out some additional static analysis checks.

If you’re following along, you’ll need to install the staticcheck tool on your machine at this

point. The simplest way to do this is by running the go install command like so:

https://golang.org/cmd/vet/
https://golang.org/doc/articles/race_detector.html
https://staticcheck.io/
https://staticcheck.io/docs/checks

$ go install honnef.co/go/tools/cmd/staticcheck@latest

go: downloading honnef.co/go/tools v0.1.3

go: downloading golang.org/x/tools v0.1.0

go: downloading github.com/BurntSushi/toml v0.3.1

go: downloading golang.org/x/sys v0.0.0-20210119212857-b64e53b001e4

go: downloading golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1

go: downloading golang.org/x/mod v0.3.0

$ which staticcheck

/home/alex/go/bin/staticcheck

Note: If nothing is found by the which command, check that your $GOPATH/bin

directory is on your system path. If you’re not sure where your $GOPATH directory is,

you can find out by running go env GOPATH from your terminal.

Once that’s installed, let’s go ahead and create a new audit rule in our makefile. While

we’re at it, let’s also add some comment blocks to help organize and clarify the purpose of

our different makefile rules, like so:

File: Makefile

include .envrc

==

HELPERS

==

help: print this help message

.PHONY: help

help:

 @echo 'Usage:'

 @sed -n 's/^##//p' ${MAKEFILE_LIST} | column -t -s ':' | sed -e 's/^/ /'

.PHONY: confirm

confirm:

 @echo -n 'Are you sure? [y/N] ' && read ans && [$${ans:-N} = y]

==

DEVELOPMENT

==

run/api: run the cmd/api application

.PHONY: run/api

run/api:

 go run ./cmd/api -db-dsn=${GREENLIGHT_DB_DSN}

db/psql: connect to the database using psql

.PHONY: db/psql

db/psql:

 psql ${GREENLIGHT_DB_DSN}

db/migrations/new name=$1: create a new database migration

.PHONY: db/migrations/new

db/migrations/new:

 @echo 'Creating migration files for ${name}...'

 migrate create -seq -ext=.sql -dir=./migrations ${name}

db/migrations/up: apply all up database migrations

.PHONY: db/migrations/up

db/migrations/up: confirm

 @echo 'Running up migrations...'

 migrate -path ./migrations -database ${GREENLIGHT_DB_DSN} up

==

QUALITY CONTROL

==

audit: tidy dependencies and format, vet and test all code

.PHONY: audit

audit:

 @echo 'Tidying and verifying module dependencies...'

 go mod tidy

 go mod verify

 @echo 'Formatting code...'

 go fmt ./...

 @echo 'Vetting code...'

 go vet ./...

 staticcheck ./...

 @echo 'Running tests...'

 go test -race -vet=off ./...

Now that’s done, all you need to do is type make audit to run these checks before you

commit any code changes into your version control system or build any binaries.

Let’s give it a try. If you’ve been following along closely, the output should look very similar

to this:

$ make audit

Tidying and verifying module dependencies...

go mod tidy

go: finding module for package gopkg.in/mail.v2

go: downloading gopkg.in/mail.v2 v2.3.1

go: found gopkg.in/mail.v2 in gopkg.in/mail.v2 v2.3.1

go mod verify

all modules verified

Formatting code...

go fmt ./...

Vetting code...

go vet ./...

staticcheck ./...

Running tests...

go test -race -vet=off ./...

? greenlight.alexedwards.net/cmd/api [no test files]

? greenlight.alexedwards.net/cmd/examples/cors/preflight [no test files]

? greenlight.alexedwards.net/cmd/examples/cors/simple [no test files]

? greenlight.alexedwards.net/internal/data [no test files]

? greenlight.alexedwards.net/internal/jsonlog [no test files]

? greenlight.alexedwards.net/internal/mailer [no test files]

? greenlight.alexedwards.net/internal/validator [no test files]

That’s looking good. The go mod tidy command resulted in some additional packages

needing to be downloaded, but apart from that, all the checks completed successfully

without any problems.

Additional Information

Testing

We covered the topic of testing in a lot of detail in the first Let’s Go book, and the same

principles apply again here. If you like, feel free to revisit the testing section of Let’s Go and

re-implement some of those same patterns in your API. For example, you might like to try:

Creating an end-to-end test for the GET /v1/healthcheck endpoint to verify that the

headers and response body are what you expect.

Creating a unit-test for the rateLimit() middleware to confirm that it sends a

429 Too Many Requests response after a certain number of requests.

Creating an end-to-end integration test, using a test database instance, which confirms

that the authenticate() and requirePermission() middleware work together correctly

to allow or disallow access to specific endpoints.

Chapter 20.4.

Module Proxies and Vendoring

One of the risks of using third-party packages in your Go code is that the package repository

may cease to be available. For example, the httprouter package plays a central part in our

application, and if the author ever decided to delete it from GitHub it would cause us quite a

headache to scramble and replace it with an alternative.

(I’m not suggesting this is likely to happen with httprouter — just using it as an example!)

Fortunately, Go provides two ways in which we can mitigate this risk: module proxies and

vendoring.

Module proxies

In version 1.13, Go began to support module proxies (also known as module mirrors) by

default. These are services which mirror source code from the original, authoritative,

repositories (such as those hosted on GitHub, GitLab or BitBucket).

Go ahead and run the go env command on your machine to print out the settings for your

Go operating environment. Your output should look similar to this:

$ go env

GO111MODULE=""

GOARCH="amd64"

GOBIN=""

GOCACHE="/home/alex/.cache/go-build"

GOENV="/home/alex/.config/go/env"

GOEXE=""

GOFLAGS=""

GOHOSTARCH="amd64"

GOHOSTOS="linux"

GOINSECURE=""

GOMODCACHE="/home/alex/go/pkg/mod"

GONOPROXY=""

GONOSUMDB=""

GOOS="linux"

GOPATH="/home/alex/go"

GOPRIVATE=""

GOPROXY="https://proxy.golang.org,direct"

GOROOT="/usr/local/go"

GOSUMDB="sum.golang.org"

GOTMPDIR=""

GOTOOLDIR="/usr/local/go/pkg/tool/linux_amd64"

GCCGO="gccgo"

AR="ar"

CC="gcc"

CXX="g++"

CGO_ENABLED="1"

GOMOD="/home/alex/Projects/greenlight/go.mod"

CGO_CFLAGS="-g -O2"

CGO_CPPFLAGS=""

CGO_CXXFLAGS="-g -O2"

CGO_FFLAGS="-g -O2"

CGO_LDFLAGS="-g -O2"

PKG_CONFIG="pkg-config"

GOGCCFLAGS="..."

The important thing to look at here is the GOPROXY setting, which contains a comma-

separated list of module mirrors. By default it has the following value:

GOPROXY="https://proxy.golang.org,direct"

The URL https://proxy.golang.org that we see here points to a module mirror maintained

by the Go team at Google, containing copies of the source code from tens of thousands of

open-source Go packages.

Whenever you fetch a package using the go command — either with go get or one of the

go mod * commands — it will first attempt to retrieve the source code from this mirror.

If the mirror already has a stored copy of the source code for the required package and

version number, then it will return this code immediately in a zip file. Otherwise, if it’s not

already stored, then the mirror will attempt to fetch the code from the authoritative

repository, proxy it onwards to you, and store it for future use.

If the mirror can’t fetch the code at all, then it will return an error response and the go tool

will fall back to fetching a copy directly from the authoritative repository (thanks to the

direct directive in the GOPROXY setting).

Using a module mirror as the first fetch location has a few benefits:

The https://proxy.golang.org module mirror typically stores packages long-term,

thereby providing a degree of protection in case the original repository disappears from

the internet.

It’s not possible to override or delete a package once it’s stored in the

https://proxy.golang.org module mirror. This can help prevent any bugs or problems

which might arise if a package author (or an attacker) releases an edited version of the

package with the same version number.

Fetching modules from the https://proxy.golang.org mirror can be much faster than

getting them from the authoritative repositories.

In most cases, I would generally suggest leaving the GOPROXY setting with its default values.

But if you don’t want to use the module mirror provided by Google, or you’re behind a

firewall that blocks it, there are other alternatives like https://goproxy.io and the

Microsoft-provided https://athens.azurefd.net that you can try instead. Or you can even

host your own module mirror using the open-source Athens and goproxy projects.

For example, if you wanted to switch to using https://goproxy.io as the primary mirror,

then fall back to using https://proxy.golang.org as a secondary mirror, then fall back to a

direct fetch, you could update your GOPROXY setting like so:

$ export GOPROXY=https://goproxy.io,https://proxy.golang.org,direct

Or if you want to disable module mirrors altogether, you can simply set the value to direct

like so:

$ export GOPROXY=direct

Vendoring

Go’s module mirror functionality is great, and I recommend using it. But it isn’t a silver

bullet for all developers and all projects.

For example, perhaps you don’t want to use a module mirror provided by Google or another

https://twitter.com/sajma/status/1155006281263923201?s=21
https://goproxy.io
https://athens.azurefd.net
https://github.com/gomods/athens
https://github.com/goproxy/goproxy

third-party, but you also don’t want the overhead of hosting your own mirror. Or maybe you

need to routinely work in an environment without network access. In those scenarios you

probably still want to mitigate the risk of a disappearing dependency, but using a module

mirror isn’t possible or appealing.

You should also be aware that the default proxy.golang.org module mirror doesn’t

absolutely guarantee that it will store a copy of the module forever. From the FAQS:

proxy.golang.org does not save all modules forever. There are a number of reasons for this,

but one reason is if proxy.golang.org is not able to detect a suitable license. In this case,

only a temporarily cached copy of the module will be made available, and may become

unavailable if it is removed from the original source and becomes outdated.

Additionally, if you need to come back to a ‘cold’ codebase in 5 or 10 years’ time, will the

proxy.golang.org module mirror still be available? Hopefully it will — but it’s hard to say

for sure.

So, for these reasons, it can still be sensible to vendor your project dependencies using the

go mod vendor command. Vendoring dependencies in this way basically stores a complete

copy of the source code for third-party packages in a vendor folder in your project.

Let’s demonstrate how to do this. We’ll start by adapting our Makefile to include a new

vendor rule which calls the go mod tidy , go mod verify and go mod vendor commands,

like so:

https://proxy.golang.org/

File: Makefile

...

==

QUALITY CONTROL

==

audit: tidy and vendor dependencies and format, vet and test all code

.PHONY: audit

audit: vendor

 @echo 'Formatting code...'

 go fmt ./...

 @echo 'Vetting code...'

 go vet ./...

 staticcheck ./...

 @echo 'Running tests...'

 go test -race -vet=off ./...

vendor: tidy and vendor dependencies

.PHONY: vendor

vendor:

 @echo 'Tidying and verifying module dependencies...'

 go mod tidy

 go mod verify

 @echo 'Vendoring dependencies...'

 go mod vendor

As well as adding the vendor rule, there are a couple of other changes we’ve made here:

We’ve removed the go mod tidy and go mod verify commands from the audit rule.

We’ve added the vendor rule as a prerequisite to audit , which means it will

automatically be run each time we execute the audit rule.

Just to be clear about what’s going on behind-the-scenes here, let’s quickly step through

what will happen when we run make vendor :

The go mod tidy command will make sure the go.mod and go.sum files list all the

necessary dependencies for our project (and no unnecessary ones).

The go mod verify command will verify that the dependencies stored in your module

cache (located on your machine at $GOPATH/pkg/mod) match the cryptographic hashes in

the go.sum file.

The go mod vendor command will then copy the necessary source code from your

module cache into a new vendor directory in your project root.

Let’s try this out and run the new vendor rule like so:

$ make vendor

Tidying and verifying module dependencies...

go mod tidy

go mod verify

all modules verified

Vendoring dependencies...

go mod vendor

Once that’s completed, you should see that a new vendor directory has been created

containing copies of all the source code along with a modules.txt file. The directory

structure in your vendor folder should look similar to this:

$ tree -L 3 ./vendor/

./vendor/

├── github.com
│ ├── felixge
│ │ └── httpsnoop
│ ├── go-mail
│ │ └── mail
│ ├── julienschmidt
│ │ └── httprouter
│ └── lib
│ └── pq
├── golang.org
│ └── x
│ ├── crypto
│ └── time
├── gopkg.in
│ └── alexcesaro
│ └── quotedprintable.v3
└── modules.txt

Now, when you run a command such as go run , go test or go build , the go tool will

recognize the presence of a vendor folder and the dependency code in the vendor folder will

be used — rather than the code in the module cache on your local machine.

If you like, go ahead and try running the API application. You should find that everything

compiles and continues to work just like before.

$ make run/api

go run ./cmd/api -db-dsn=postgres://greenlight:pa55word@localhost/greenlight

{"level":"INFO","time":"2021-04-18T13:18:29Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T13:18:29Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Note: If you want to confirm that it’s really the vendored dependencies being used,

you can run go clean -modcache to remove everything from your local module cache.

When you run the API again, you should find that it still starts up correctly without

needing to re-fetch the dependencies from the Go module mirror.

Because all the dependency source code is now stored in your project repository itself, it’s

easy to check it into Git (or an alternative version control system) alongside the rest of your

code. This is reassuring because it gives you complete ownership of all the code used to

build and run your applications, kept under version control.

The downside of this, of course, is that it adds size and bloat to your project repository. This

is of particular concern in projects that have a lot of dependencies and the repository will be

cloned a lot, such as projects where a CI/CD system clones the repository with each new

commit.

Let’s also take a quick look in the vendor/modules.txt file that was created. If you’ve been

following along it should look similar to this:

File: vendor/modules.txt

github.com/felixge/httpsnoop v1.0.1

explicit

github.com/felixge/httpsnoop

github.com/go-mail/mail/v2 v2.3.0

explicit

github.com/go-mail/mail/v2

github.com/julienschmidt/httprouter v1.3.0

explicit

github.com/julienschmidt/httprouter

github.com/lib/pq v1.10.0

explicit

github.com/lib/pq

github.com/lib/pq/oid

github.com/lib/pq/scram

golang.org/x/crypto v0.0.0-20210322153248-0c34fe9e7dc2

explicit

golang.org/x/crypto/bcrypt

golang.org/x/crypto/blowfish

golang.org/x/time v0.0.0-20210220033141-f8bda1e9f3ba

explicit

golang.org/x/time/rate

gopkg.in/alexcesaro/quotedprintable.v3 v3.0.0-20150716171945-2caba252f4dc

explicit

gopkg.in/alexcesaro/quotedprintable.v3

gopkg.in/mail.v2 v2.3.1

explicit

This vendor/modules.txt file is essentially a manifest of the vendored packages and their

version numbers. When vendoring is being used, the go tool will check that the module

version numbers in modules.txt are consistent with the version numbers in the go.mod file.

If there’s any inconsistency, then the go tool will report an error.

Note: It’s important to point out that there’s no easy way to verify that the checksums

of the vendored dependencies match the checksums in the go.sum file. Or, in other

words, there’s no equivalent to go mod verify which works directly on the contents

of the vendor folder.

To mitigate that, it’s a good idea to run both go mod verify and go mod vendor

regularly. Using go mod verify will verify that the dependencies in your module cache

match the go.sum file, and go mod vendor will copy those same dependencies from

the module cache into your vendor folder. This is one of the reasons why our

make vendor rule is setup to run both commands, and why we’ve also included it as a

prerequisite to the make audit rule.

Lastly, you should avoid making any changes to the code in the vendor directory. Doing so

can potentially cause confusion (because the code would no longer be consistent with the

original version of the source code) and — besides — running go mod vendor will overwrite

any changes you make each time you run it. If you need to change the code for a

dependency, it’s far better to fork it and import the forked version instead.

Vendoring new dependencies

In the next section of the book we’re going to deploy our API application to the internet

with Caddy as a reverse-proxy in-front of it. This means that, as far as our API is concerned,

all the requests it receives will be coming from a single IP address (the one running the

Caddy instance). In turn, that will cause problems for our rate limiter middleware which

limits access based on IP address.

Fortunately, like most other reverse proxies, Caddy adds an X-Forwarded-For header to

each request. This header will contain the real IP address for the client.

Although we could write the logic to check for the presence of an X-Forwarded-For header

and handle it ourselves, I recommend using the realip package to help with this. This

package retrieves the client IP address from any X-Forwarded-For or X-Real-IP headers,

falling back to use r.RemoteAddr if neither of them are present.

If you’re following along, go ahead and install the latest version of realip using the go get

command:

https://caddyserver.com/
https://caddyserver.com/docs/caddyfile/directives/reverse_proxy#headers
https://github.com/tomasen/realip

$ go get github.com/tomasen/realip@latest

go: downloading github.com/tomasen/realip v0.0.0-20180522021738-f0c99a92ddce

go get: added github.com/tomasen/realip v0.0.0-20180522021738-f0c99a92ddce

Then open up the cmd/api/middleware.go file and update the rateLimit() middleware to

use this package like so:

File: cmd/api/middleware.go

package main

import (

 "errors"

 "expvar"

 "fmt"

 "net/http"

 "strconv"

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/felixge/httpsnoop"

 "github.com/tomasen/realip" // New import

 "golang.org/x/time/rate"

)

...

func (app *application) rateLimit(next http.Handler) http.Handler {

 ...

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 if app.config.limiter.enabled {

 // Use the realip.FromRequest() function to get the client's real IP address.

 ip := realip.FromRequest(r)

 mu.Lock()

 if _, found := clients[ip]; !found {

 clients[ip] = &client{

 limiter: rate.NewLimiter(rate.Limit(app.config.limiter.rps), app.config.limiter.burst),

 }

 }

 clients[ip].lastSeen = time.Now()

 if !clients[ip].limiter.Allow() {

 mu.Unlock()

 app.rateLimitExceededResponse(w, r)

 return

 }

 mu.Unlock()

 }

 next.ServeHTTP(w, r)

 })

}

...

If you try to run the API application again now, you should receive an error message similar

to this:

$ make run/api

go: inconsistent vendoring in /home/alex/Projects/greenlight:

 github.com/tomasen/realip@v0.0.0-20180522021738-f0c99a92ddce: is explicitly

 required in go.mod, but not marked as explicit in vendor/modules.txt

 To ignore the vendor directory, use -mod=readonly or -mod=mod.

 To sync the vendor directory, run:

 go mod vendor

make: *** [Makefile:24: run/api] Error 1

Essentially what’s happening here is that Go is looking for the github.com/tomasen/realip

package in our vendor directory, but at the moment that package doesn’t exist in there.

To solve this, you’ll need to manually run either the make vendor or make audit commands,

like so:

$ make vendor

Tidying and verifying module dependencies...

go mod tidy

go: finding module for package github.com/tomasen/realip

go: downloading github.com/tomasen/realip v0.0.0-20180522021738-f0c99a92ddce

go: found github.com/tomasen/realip in github.com/tomasen/realip v0.0.0-20180522021738-f0c99a92ddce

go mod verify

all modules verified

Vendoring dependencies...

go mod vendor

Once that’s done, everything should work correctly again:

$ make run/api

go run ./cmd/api -db-dsn=postgres://greenlight:pa55word@localhost/greenlight

{"level":"INFO","time":"2021-04-18T13:33:33Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T13:33:33Z","message":"starting server","properties":{"addr":":4000","env":"development"}}

Additional Information

The ./… pattern

Most of the go tools support the ./... wildcard pattern, like go fmt ./... , go vet ./...

and go test ./... . This pattern matches the current directory and all sub-directories,

excluding the vendor directory.

Generally speaking, this is useful because it means that we’re not formatting, vettingm or

testing the code in our vendor directory unnecessarily — and our make audit rule won’t fail

due to any problems that might exist within those vendored packages.

Chapter 20.5.

Building Binaries

So far we’ve been running our API using the go run command (or more recently,

make run/api). But in this chapter we’re going to focus on explaining how to build an

executable binary that you can distribute and run on other machines without needing the

Go toolchain installed.

To build a binary we need to use the go build command. As a simple example, usage looks

like this:

$ go build -o=./bin/api ./cmd/api

When we run this command, go build will compile the cmd/api package (and any

dependent packages) into files containing machine code, and then link these together to

form executable binary. In the command above, the executable binary will be output to

./bin/api .

For convenience, let’s add a new build/api rule to our makefile which runs this command,

like so:

File: Makefile

...

==

BUILD

==

build/api: build the cmd/api application

.PHONY: build/api

build/api:

 @echo 'Building cmd/api...'

 go build -o=./bin/api ./cmd/api

Once that’s done, go ahead and execute the make build/api rule. You should see that an

executable binary file gets created at ./bin/api .

$ make build/api

Building cmd/api...

go build -o=./bin/api ./cmd/api

$ ls -l ./bin/

total 10228

-rwxrwxr-x 1 alex alex 10470419 Apr 18 16:05 api

And you should be able to run this executable to start your API application, passing in any

command-line flag values as necessary. For example:

$./bin/api -port=4040 -db-dsn=postgres://greenlight:pa55word@localhost/greenlight

{"level":"INFO","time":"2021-04-18T14:06:11Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-18T14:06:11Z","message":"starting server","properties":{"addr":":4040","env":"development"}}

Reducing binary size

If you take a closer look at the executable binary you’ll see that it weighs in at 10470419

bytes (about 10.5MB).

$ ls -l ./bin/api

-rwxrwxr-x 1 alex alex 10470419 Apr 18 16:05 ./bin/api

Note: If you’re following along, your binary size may be slightly different. It depends

on your operating system, and the exact version of Go and the third-party

dependencies that you’re using.

It’s possible to reduce the binary size by around 25% by instructing the Go linker to strip the

DWARF debugging information and symbol table from the binary. We can do this as part of

the go build command by using the linker flag -ldflags="-s" as follows:

File: Makefile

...

==

BUILD

==

build/api: build the cmd/api application

.PHONY: build/api

build/api:

 @echo 'Building cmd/api...'

 go build -ldflags='-s' -o=./bin/api ./cmd/api

If you run make build/api again, you should now find that the size of the binary is reduced

to under 8 MB.

https://golang.org/pkg/debug/dwarf/
https://medium.com/a-journey-with-go/go-how-to-take-advantage-of-the-symbols-table-360dd52269e5

$ make build/api

Building cmd/api...

go build -ldflags='-s' -o=./bin/api ./cmd/api

$ ls -l ./bin/api

-rwxrwxr-x 1 alex alex 7618560 Apr 18 16:08 ./bin/api

It’s important to be aware that stripping the DWARF information and symbol table will make

it harder to debug an executable using a tool like Delve or gdb. But, generally, it’s not often

that you’ll need to do this — and there’s even an open proposal from Rob Pike to make

omitting DWARF information the default behavior of the linker in the future.

Cross-compilation

By default, the go build command will output a binary suitable for use on your local

machine’s operating system and architecture. But it also supports cross-compilation, so you

can generate a binary suitable for use on a different machine. This is particularly useful if

you’re developing on one operating system and deploying on another.

To see a list of all the operating system/architecture combinations that Go supports, you

can run the go tool dist list command like so:

$ go tool dist list

aix/ppc64

android/386

android/amd64

android/arm

android/arm64

darwin/amd64

...

And you can specify the operating system and architecture that you want to create the

binary for by setting GOOS and GOARCH environment variables when running go build . For

example:

$ GOOS=linux GOARCH=amd64 go build {args}

In the next section of the book, we’re going to walk through how to deploy an executable

binary on an Ubuntu Linux server hosted by Digital Ocean. For this we’ll need a binary which

is designed to run on a machine with a linux/amd64 OS and architecture combination.

So let’s update our make build/api rule so that it creates two binaries — one for use on

your local machine, and another for deploying to the Ubuntu Linux server.

https://github.com/go-delve/delve
https://www.gnu.org/software/gdb/
https://github.com/golang/go/issues/26074

File: Makefile

...

==

BUILD

==

build/api: build the cmd/api application

.PHONY: build/api

build/api:

 @echo 'Building cmd/api...'

 go build -ldflags='-s' -o=./bin/api ./cmd/api

 GOOS=linux GOARCH=amd64 go build -ldflags='-s' -o=./bin/linux_amd64/api ./cmd/api

If you’re following along, go ahead and run make build/api again.

You should see that two binaries are now created — with the cross-compiled binary located

under the ./bin/linux_amd64 directory, like so:

$ make build/api

Building cmd/api...

go build -ldflags='-s' -o=./bin/api ./cmd/api

GOOS=linux GOARCH=amd64 go build -ldflags='-s' -o=./bin/linux_amd64/api ./cmd/api

$ tree ./bin

./bin

├── api
└── linux_amd64
 └── api

As a general rule, you probably don’t want to commit your Go binaries into version control

alongside your source code as they will significantly inflate the size of your repository.

So, if you’re following along, let’s quickly add an additional rule to the .gitignore file

which instructs Git to ignore the contents of the bin directory.

$ echo 'bin/' >> .gitignore

$ cat .gitignore

.envrc

bin/

Additional Information

Build caching

It’s important to note that the go build command caches build output in the Go build

cache. This cached output will be reused again in future builds where appropriate, which

can significantly speed up the overall build time for your application.

If you’re not sure where your build cache is, you can check by running the go env GOCACHE

command:

$ go env GOCACHE

/home/alex/.cache/go-build

You should also be aware that the build cache does not automatically detect any changes to

C libraries that your code imports with cgo . So, if you’ve changed a C library since the last

build, you’ll need to use the -a flag to force all packages to be rebuilt when running

go build . Alternatively, you could use go clean to purge the cache:

$ go build -a -o=/bin/foo ./cmd/foo # Force all packages to be rebuilt

$ go clean -cache # Remove everything from the build cache

Note: If you ever run go build on a non-main package, the build output will be stored

in the build cache so it can be reused, but no executable will be produced.

https://golang.org/cmd/cgo/

Chapter 20.6.

Managing and Automating Version

Numbers

Right at the start of this book, we hard-coded the version number for our application as the

constant "1.0.0" in the cmd/api/main.go file.

In this chapter, we’re going take steps to make it easier to view and manage this version

number, and also explain how you can generate version numbers automatically based on

Git commits and integrate them into your application.

Displaying the version number

Let’s start by updating our application so that we can easily check the version number by

running the binary with a -version command-line flag, similar to this:

$./bin/api -version

Version: 1.0.0

Conceptually, this is fairly straightforward to implement. We need to define a boolean

version command-line flag, check for this flag on startup, and then print out the version

number and exit the application if necessary.

If you’re following along, go ahead and update your cmd/api/main.go file like so:

File: cmd/api/main.go

package main

import (

 "context"

 "database/sql"

 "expvar"

 "flag"

 "fmt" // New import

 "os"

 "runtime"

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/jsonlog"

 "greenlight.alexedwards.net/internal/mailer"

 "greenlight.alexedwards.net/internal/mailer"

 _ "github.com/lib/pq"

)

const version = "1.0.0"

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", "", "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.BoolVar(&cfg.limiter.enabled, "limiter-enabled", true, "Enable rate limiter")

 flag.Float64Var(&cfg.limiter.rps, "limiter-rps", 2, "Rate limiter maximum requests per second")

 flag.IntVar(&cfg.limiter.burst, "limiter-burst", 4, "Rate limiter maximum burst")

 flag.StringVar(&cfg.smtp.host, "smtp-host", "smtp.mailtrap.io", "SMTP host")

 flag.IntVar(&cfg.smtp.port, "smtp-port", 25, "SMTP port")

 flag.StringVar(&cfg.smtp.username, "smtp-username", "0abf276416b183", "SMTP username")

 flag.StringVar(&cfg.smtp.password, "smtp-password", "d8672aa2264bb5", "SMTP password")

 flag.StringVar(&cfg.smtp.sender, "smtp-sender", "Greenlight <no-reply@greenlight.alexedwards.net>", "SMTP sender")

 flag.Func("cors-trusted-origins", "Trusted CORS origins (space separated)", func(val string) error {

 cfg.cors.trustedOrigins = strings.Fields(val)

 return nil

 })

 // Create a new version boolean flag with the default value of false.

 displayVersion := flag.Bool("version", false, "Display version and exit")

 flag.Parse()

 // If the version flag value is true, then print out the version number and

 // immediately exit.

 if *displayVersion {

 fmt.Printf("Version:\t%s\n", version)

 os.Exit(0)

 }

 ...

}

...

OK, let’s try this out. Go ahead and re-build the executable binaries using make build/api ,

then run the ./bin/api binary with the -version flag.

You should find that it prints out the version number and then exits, similar to this:

$ make build/api

Building cmd/api...

go build -ldflags="-s" -o="./bin/api" ./cmd/api

GOOS=linux GOARCH=amd64 go build -ldflags="-s" -o="./bin/linux_amd64/api" ./cmd/api

$./bin/api -version

Version: 1.0.0

Remember: Boolean command-line flags without a value are interpreted as having

the value true. So running our application with -version is the same as running it

with -version=true .

Including the build time

Let’s extend this further, so that the -version flag forces our application to print out the

version number and the exact time that the executable binary was built. Similar to this:

$./bin/api -version

Version: 1.0.0

Build time: 2021-02-15T13:54:14+01:00

This is a really interesting change, because the build time is a completely dynamic value and

outside the control of our application code. We don’t know the build time in advance of

calling go build , and therefore it’s not something that we can define in our source code in

the normal way.

To make this work, we’ll need to use a special feature of go build — the -X linker flag which

allows you to assign or ‘burn-in’ a value to a variable when running go build . Specifically,

we’ll generate a string containing the current date and time in our makefile, and then ‘burn

this in’ to the binary as part of our make build/api rule.

I’ll demonstrate.

Open up the cmd/api/main.go file and update it to include and print out a new buildTime

variable, like so:

File: cmd/api/main.go

package main

...

const version = "1.0.0"

// Create a buildTime variable to hold the executable binary build time. Note that this

// must be a string type, as the -X linker flag will only work with string variables.

var buildTime string

...

func main() {

 var cfg config

 flag.IntVar(&cfg.port, "port", 4000, "API server port")

 flag.StringVar(&cfg.env, "env", "development", "Environment (development|staging|production)")

 flag.StringVar(&cfg.db.dsn, "db-dsn", "", "PostgreSQL DSN")

 flag.IntVar(&cfg.db.maxOpenConns, "db-max-open-conns", 25, "PostgreSQL max open connections")

 flag.IntVar(&cfg.db.maxIdleConns, "db-max-idle-conns", 25, "PostgreSQL max idle connections")

 flag.StringVar(&cfg.db.maxIdleTime, "db-max-idle-time", "15m", "PostgreSQL max connection idle time")

 flag.BoolVar(&cfg.limiter.enabled, "limiter-enabled", true, "Enable rate limiter")

 flag.Float64Var(&cfg.limiter.rps, "limiter-rps", 2, "Rate limiter maximum requests per second")

 flag.IntVar(&cfg.limiter.burst, "limiter-burst", 4, "Rate limiter maximum burst")

 flag.StringVar(&cfg.smtp.host, "smtp-host", "smtp.mailtrap.io", "SMTP host")

 flag.IntVar(&cfg.smtp.port, "smtp-port", 25, "SMTP port")

 flag.StringVar(&cfg.smtp.username, "smtp-username", "0abf276416b183", "SMTP username")

 flag.StringVar(&cfg.smtp.password, "smtp-password", "d8672aa2264bb5", "SMTP password")

 flag.StringVar(&cfg.smtp.sender, "smtp-sender", "Greenlight <no-reply@greenlight.alexedwards.net>", "SMTP sender")

 flag.Func("cors-trusted-origins", "Trusted CORS origins (space separated)", func(val string) error {

 cfg.cors.trustedOrigins = strings.Fields(val)

 return nil

 })

 displayVersion := flag.Bool("version", false, "Display version and exit")

 flag.Parse()

 if *displayVersion {

 fmt.Printf("Version:\t%s\n", version)

 // Print out the contents of the buildTime variable.

 fmt.Printf("Build time:\t%s\n", buildTime)

 os.Exit(0)

 }

 ...

}

...

And then we need to make a couple of changes to our Makefile. Specifically, we need to:

1. Use the unix date command to generate the current time and store it in a current_time

variable.

2. Update the build/api rule to ‘burn in’ the current time to our main.buildTime variable

using the -X linker flag.

Like this:

File: Makefile

...

==

BUILD

==

current_time = $(shell date --iso-8601=seconds)

build/api: build the cmd/api application

.PHONY: build/api

build/api:

 @echo 'Building cmd/api...'

 go build -ldflags='-s -X main.buildTime=${current_time}' -o=./bin/api ./cmd/api

 GOOS=linux GOARCH=amd64 go build -ldflags='-s -X main.buildTime=${current_time}' -o=./bin/linux_amd64/api ./cmd/api

If you re-build the binaries and run them with the -version flag, they should now print the

exact time that they were built alongside the version number. Similar to this:

$ make build/api

Building cmd/api...

go build -ldflags='-s -X main.buildTime=2021-04-18T18:21:40+02:00' -o=./bin/api ./cmd/api

GOOS=linux GOARCH=amd64 go build -ldflags='-s -X main.buildTime=2021-04-18T18:21:40+02:00' -o=./bin/linux_amd64/api ./cmd/api

$./bin/api -version

Version: 1.0.0

Build time: 2021-04-18T18:21:40+02:00

Note that if you execute the application without burning in a buildTime value, then

buildTime will retain its default value as set in the application code (which in our case is the

empty string ""). For example, when using go run :

$ go run ./cmd/api -version

Version: 1.0.0

Build time:

The lines in our Makefile are getting a bit long, so let’s quickly break out the linker flags into

a reusable variable, like so:

File: Makefile

...

==

BUILD

==

current_time = $(shell date --iso-8601=seconds)

linker_flags = '-s -X main.buildTime=${current_time}'

build/api: build the cmd/api application

.PHONY: build/api

build/api:

 @echo 'Building cmd/api...'

 go build -ldflags=${linker_flags} -o=./bin/api ./cmd/api

 GOOS=linux GOARCH=amd64 go build -ldflags=${linker_flags} -o=./bin/linux_amd64/api ./cmd/api

Automated version numbering with Git

If you’re using Git to version control your source code, then it’s possible to extend the ideas

we’ve talked about in this chapter to create automated version numbers for your

application based on your Git commits.

Important: This part of the book is only really relevant if you use Git. If you don’t, then

that’s absolutely fine and you can skip ahead to the next chapter with no issues.

Otherwise, if you’re following along (and haven’t done it already), please go ahead and

initialize a new Git repository in the root of your project directory:

$ git init

Initialized empty Git repository in /home/alex/Projects/greenlight/.git/

Then make a new commit containing all the files in your project directory, like so:

$ git add .

$ git commit -m "Initial commit"

If you look at your commit history using the git log command, you’ll see the hash for this

commit.

https://git-scm.com/docs/git-log

$ git log

commit 0f8573aab79f3cbee17d39901d5cb200121c7ed1 (HEAD -> master)

Author: Alex Edwards <alex@alexedwards.net>

Date: Sun Apr 18 18:29:48 2021 +0200

 Initial commit

In my case the commit hash is 0f8573aab79f3cbee17d39901d5cb200121c7ed1 — but yours

will be a different value.

It’s also possible to use the git describe command to get a ‘human-readable’ descriptor

for the current state of the repository. Like so:

$ git describe --always --dirty

0f8573a

In this case, we can see that git describe returns an abbreviated version of the commit

hash. We’re also using the --dirty flag, which means that the descriptor will be suffixed

with "-dirty" if there are any uncommitted changes in the repository. For example

0f8573a-dirty .

Let’s update our project so that the output from git describe is burnt-in to our binaries as

the application ‘version number’ when building the executable.

To do this, the first thing that we need to do is switch the version constant in our

cmd/api/main.go file to be a variable, because it’s not possible to ‘burn-in’ a value to a

constant.

File: cmd/api/main.go

package main

...

// Remove the hardcoded version number and make version a variable instead of a constant.

var (

 buildTime string

 version string

)

...

And then let’s update our Makefile to burn-in the git describe output to the version

variable in our application, using the same pattern that we did for the build time. Like so:

https://git-scm.com/docs/git-describe

File: Makefile

...

==

BUILD

==

current_time = $(shell date --iso-8601=seconds)

git_description = $(shell git describe --always --dirty)

linker_flags = '-s -X main.buildTime=${current_time} -X main.version=${git_description}'

build/api: build the cmd/api application

.PHONY: build/api

build/api:

 @echo 'Building cmd/api...'

 go build -ldflags=${linker_flags} -o=./bin/api ./cmd/api

 GOOS=linux GOARCH=amd64 go build -ldflags=${linker_flags} -o=./bin/linux_amd64/api ./cmd/api

At this point, let’s quickly run git describe again:

$ git describe --always --dirty

0f8573a-dirty

This output makes sense — the hash of the last commit was 0f8573a..., and the -dirty

suffix indicates that our repository now contains uncommitted changes (we’ve altered the

cmd/api/main.go and Makefile files since the previous commit).

Let’s commit these recent changes, run make build/api again, and then check the version

number in our binaries. Like so:

$ git add .

$ git commit -m "Generate version number automatically"

[master 76c976a] Generate version number automatically

 2 files changed, 6 insertions(+), 7 deletions(-)

$ make build/api

Building cmd/api...

go build -ldflags='-s -X main.buildTime=2021-04-18T18:43:32+02:00 -X main.version=76c976a' -o=./bin/api ./cmd/api

GOOS=linux GOARCH=amd64 go build -ldflags='-s -X main.buildTime=2021-04-18T18:43:32+02:00 -X main.version=76c976a' -o=./bin/linux_amd64/api ./cmd/api

$./bin/api -version

Version: 76c976a

Build time: 2021-04-18T18:43:32+02:00

We can see that our binary is now reporting that it was been built from a clean version of the

repository with the commit hash 76c976a . Let’s cross check this against the git log output

for the project:

$ git log

commit 76c976a07d0fce3d813f3a4748574f81b1e24226 (HEAD -> master)

Author: Alex Edwards <alex@alexedwards.net>

Date: Sun Apr 18 18:39:17 2021 +0200

 Generate version number automatically

commit 0f8573aab79f3cbee17d39901d5cb200121c7ed1

Author: Alex Edwards <alex@alexedwards.net>

Date: Sun Apr 18 18:29:48 2021 +0200

 Initial commit

That’s looking good — the commit hash in our Git history aligns perfectly with our

application version number. And that means it’s now easy for us to identify exactly what

code a particular binary contains — all we need to do is run the binary with the -version

flag and then cross-reference it against the Git repository history.

Using Git tags

In some projects you may want to annotate certain Git commits with tags, often to denote a

formal release number.

To illustrate this, let’s add the v1.0.0 tag to our latest commit like so:

$ git tag v1.0.0

$ git log

commit 76c976a07d0fce3d813f3a4748574f81b1e24226 (HEAD -> master, tag: v1.0.0)

Author: Alex Edwards <alex@alexedwards.net>

Date: Sun Apr 18 18:39:17 2021 +0200

 Generate version number automatically

...

If you’re tagging your commits in this way, then it’s a good idea to use the --tags and

--long flags when calling git describe to generate the version number for your

application. This will force the output to be in the following format:

{tag}-{number of additional commits}-g{abbreviated commit hash}

Let’s take a quick look at what this currently looks like for our project:

$ git describe --always --dirty --tags --long

v1.0.0-0-g76c976a

https://git-scm.com/book/en/v2/Git-Basics-Tagging

So, in this case, we can see from the version number that the repository is based on v1.0.0,

has 0 additional commits on top of that, and the latest commit hash is 76c976a . The g

character which prefixes the commit hash stands for ‘git’, and exists to help distinguish the

hash from any hashes generated by other version-control systems.

Let’s update our Makefile to use these additional flags when generating the version

number, like so:

File: Makefile

...

==

BUILD

==

current_time = $(shell date --iso-8601=seconds)

git_description = $(shell git describe --always --dirty --tags --long)

linker_flags = '-s -X main.buildTime=${current_time} -X main.version=${git_description}'

...

Then go ahead and commit this change, rebuild the binaries, and check the version

number. Your output should look similar to this:

$ git add .

$ git commit -m "Use --tags and --long flags when generating version number"

$ make build/api

$./bin/api -version

Version: v1.0.0-1-gf27fd0f

Build time: 2021-04-18T18:54:05+02:00

The version number has now been changed to v1.0.0-1-gf27fd0f , indicating that the

binary was built using the repository code from commit f27fd0f , which is 1 commit ahead

of the v1.0.0 tag.

Chapter 21.

Deployment and Hosting

In this final section of the book we’re going to look at how to deploy our API application to a

production server and expose it on the internet.

Every project and project team will have different technical and business needs in terms of

hosting and deployment, so it’s impossible to lay out a one-size-fits-all approach here.

To make the content in this section as widely-applicable and portable as possible, we’ll

focus on hosting the application on a self-managed Linux server (something provided by a

myriad of hosting companies worldwide) and using standard Linux tooling to manage

server configuration and deployment.

We’ll also be automating the server configuration and deployment process as much as

possible, so that it’s easy to make continuous deployments and possible to replicate the

server again in the future if you need to.

If you’re planning to follow along, we’ll be using Digital Ocean as the hosting provider in this

book. Digital Ocean isn’t free, but it’s good value and the cost of running a server starts at

$5 USD per month. If you don’t want to use Digital Ocean, you should be able to follow

basically the same approach that we outline here with any other Linux hosting provider.

In terms of infrastructure and architecture, we’ll run everything on a single Ubuntu Linux

server. Our stack will consist of a PostgreSQL database and the executable binary for our

Greenlight API, operating in much the same way that we have seen so far in this book. But in

addition to this, we’ll also run Caddy as a reverse proxy in front of the Greenlight API.

Using Caddy has a couple of benefits. It will automatically handle and terminate HTTPS

connections for us — including automatically generating and managing TLS certificates via

Let’s Encrypt — and we can also use Caddy to easily restrict internet access to our metrics

endpoint.

In this section you’ll learn how to:

Commission an Ubuntu Linux server running on Digital Ocean to host your application.

Automate the configuration of the server — including creating user accounts, configuring

the firewall and installing necessary software.

Automate the process of updating your application and deploying changes to the server.

https://www.digitalocean.com/
https://caddyserver.com/
https://letsencrypt.org/

How to run your application as a background service using systemd, as a non-root user.

Use Caddy as a reverse proxy in front of your application to automatically manage TLS

certificates and handle HTTPS connections.

https://en.wikipedia.org/wiki/Systemd

Chapter 21.1.

Creating a Digital Ocean Droplet

The first thing that we need to do is commission a server on Digital Ocean to host our

application.

Strictly speaking, what we’re going to commission is actually a virtual machine known in

Digital Ocean terminology as a droplet.

If you’d like to follow along with this stage of the book, you’ll need to register for a Digital

Ocean account if you don’t already have one. As part of the registration process, you’ll be

prompted confirm your email address and then add a minimum of $5 USD pre-paid credit to

your account using either a credit/debit card or PayPal.

Once you’ve completed the registration and added the credit, you should find yourself

presented with an introductory screen similar to this:

Click the “Skip this” link at the bottom of the screen to go straight to your account control

panel, which should look like this:

https://www.digitalocean.com/products/droplets/
https://cloud.digitalocean.com/registrations/new

Creating a SSH key

In order to log in to droplets in your Digital Ocean account you’ll need a SSH keypair.

Suggestion: If you’re unfamiliar with SSH, SSH keys, or public-key cryptography

generally, then I recommend reading through the first half of this guide to get an

overview before continuing.

If you already have a SSH keypair that you’re happy to use for this purpose, then that’s

great, and you can skip ahead to the next section.

But if you don’t, you’ll need to create a keypair using the ssh-keygen command on your

local machine. Similar to this:

https://en.wikipedia.org/wiki/Public-key_cryptography
https://www.digitalocean.com/community/tutorials/ssh-essentials-working-with-ssh-servers-clients-and-keys
https://www.ssh.com/ssh/keygen/

$ ssh-keygen -t rsa -b 4096 -C "greenlight@greenlight.alexedwards.net" -f $HOME/.ssh/id_rsa_greenlight

Generating public/private rsa key pair.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/alex/.ssh/id_rsa_greenlight

Your public key has been saved in /home/alex/.ssh/id_rsa_greenlight.pub

The key fingerprint is:

SHA256:/ii7Wo90BdsoaMU1UAajmd/5vBSeVmBRtf7QtoWw8YM greenlight@greenlight.alexedwards.net

The key's randomart image is:

+---[RSA 4096]----+

| ++= |

| = + . . . |

| + o . o o . |

| + . B . B o |

| o o S + E * +|

| . o = + =o|

| o o B ..|

| o.+ = . |

| ..++o o |

+----[SHA256]-----+

This will generate two new files in your $HOME/.ssh folder:

The $HOME/.ssh/id_rsa_greenlight file contains your private key. Make sure to keep

this secure, because anyone who has access to it will be able to impersonate you.

The $HOME/.ssh/id_rsa_greenlight.pub file contains your public key. We’ll upload a

copy of this public key to Digital Ocean.

If you open your public key file in a text editor you should see that the content looks similar

to this (line breaks added for readability):

ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAACAQDDdAjxtGVTW4R11nDvFI7PgE712+xIxM7v6slsLMmJ0IzpkN+f

HFdN4Nx/QSGnFbRifT2uNr7INV3wPLzYR65cjhkN9FjIAndcpmp2hsr+gE+QLwpLxfEK4X5s+UT7VrYBaB2q7Npu

8k6TsvgSG+kX09vtm/ww4rQiSMbZ4dx64EBag97QhuYeSODOGVTNog5z+HdmwhN6R12WnOkQJGmNNJ9ZzwKBr1v5

wyL6iOpumfrIV9YduI2bE8jQ69epGXmXQcVSpGtEpwvp7UqoxnSW7ycgiL2WjZfrYD/gOngWexZud+ZfXRXidWox

Lut8FOTaKMS254wFPa9RzyTSv42PRcrkM9pY4MQGBpBZVMZ+oiCp3XYFwUd8yTv6oL8l50euDdfI78PsW+sLbN4m

dfktWpdeqovAks2yIkI4os8Hi2S/2DQK/LqgcJA8aUJwcSezsdVe8yULaicOZYx7Lje0HJyHX0WzqtNVs2S14RyG

JkYeTIcMisYHbJaNGais06hgEv4Jj1xsWdynp/XWa1aXkQzBUwcQWAjjChcOyTlIi/qMEqrQbwHyp7gOVq5MM382

kgoP5UwhX3n3NjWXpQLjLP6ItIMA1VtpcRZBMDiJddvgSaxhHIVsW31enmUlKJ5KUFdV25wxS4ySf4iouupLzxLf

64JEH1GQZdPK/gwU6Q== greenlight@greenlight.alexedwards.net

And if you run the ssh-add -l command, you should see your new SSH key listed in the

output, similar to this:

$ ssh-add -l

4096 SHA256:/ii7Wo90BdsoaMU1UAajmd/5vBSeVmBRtf7QtoWw8YM greenlight@greenlight.alexedwards.net (RSA)

If you don’t see your key listed, then please add it to your SSH agent like so:

$ ssh-add $HOME/.ssh/id_rsa_greenlight

Enter passphrase for /home/alex/.ssh/id_rsa_greenlight:

Identity added: /home/alex/.ssh/id_rsa_greenlight (greenlight@greenlight.alexedwards.net)

Adding the SSH key to Digital Ocean

Now you’ve got a SSH keypair you can use, head back to your Digital Ocean control panel

and navigate to the Account › Settings › Security screen.

Click the Add SSH Key button, then in the popup window that appears paste in the text

contents from your $HOME/.ssh/id_rsa_greenlight.pub public key file, give it a memorable

name, and submit the form, similar to the screenshot below.

The screen should then update to confirm that your SSH key has been successfully added,

like so:

Creating a droplet

Now that you have a valid SSH key added to your account, it’s time to actually create a

droplet.

There are a couple of ways that you can do this. It’s possible to do so programmatically via

the Digital Ocean API or using the official command-line tool, and if you need to create or

manage a lot of servers then I recommend using these.

Or alternatively, it’s possible to create a droplet manually via your control panel on the

Digital Ocean website. This is the approach we’ll take in this book, partly because it’s simple

enough to do as a one-off, and partly because it helps give overview of the available droplet

settings if you haven’t used Digital Ocean before.

Go ahead and click the green Create button in the top right corner and select Droplets from

the dropdown menu:

This will then take you to the options page for creating a new droplet. The first thing to

choose is the operating system for your droplet. If you’re following along, please select

Ubuntu 20.04 (LTS) x64.

https://developers.digitalocean.com/documentation/v2/
https://www.digitalocean.com/community/tutorials/how-to-use-doctl-the-official-digitalocean-command-line-client

The next step is to choose a plan which matches the technical specifications you need for

the droplet. In this case we’ll select the Basic Regular Intel with SSD plan at $5/month,

which will give us a virtual machine with 1GB RAM, 25GB of disk space and 1000GB of

outbound data transfer each month (inbound data transfer is unrestricted).

https://www.digitalocean.com/docs/billing/bandwidth/

The next option allows us to add block storage to the droplet. This is essentially a droplet-

independent storage volume which acts like a local hard disk and can be moved between

different droplets. It’s not something we need right now, so you can skip this section.

After that we need to select the data center where out droplet will be physically hosted. I’m

going to choose New York 3 but feel free to pick an alternative location if you like.

https://www.digitalocean.com/products/block-storage/

After that we can select some free “add-on” features for our droplet. In our case we’ll select

Monitoring, which will allow you to later see graphs of various droplet statistics (like CPU,

memory and disk use) in your Digital Ocean control panel — and you can also set up alerts if

resource usage exceeds a certain threshold.

Under the Authentication section, make sure that SSH keys is selected as the

authentication method and that the SSH key that you just uploaded is checked.

Then we get to the final configuration options.

We only need one droplet right now, so you can leave that as the default.

You should also add a hostname for the droplet. Amongst other things, the hostname is

used as the main identifier for the droplet in the Digital Ocean control panel, and it’s also

what you’ll see when you SSH into the droplet later to administer it. So you should pick a

name that is sensible and easy-to-recognize. I’m going to use the hostname

greenlight-production , but feel free to use something different if you like.

Adding tags to your droplet is completely optional, but if you do a lot of work with Digital

Ocean they can be a useful way to help filter and manage droplets. I’ll use the tags

greenlight and production here.

Then lastly you can choose to pay an additional 20% charge to enable automated droplet

backups. If you select this option, then Digital Ocean will take a ‘snapshot’ of your droplet

once a week and store it for a period of 4 weeks. You can then restore a droplet to its

snapshotted state via the control panel if you ever need to. It’s entirely up to you whether to

enable backups or not — but it’s a simple and hassle-free safety net.

https://www.digitalocean.com/docs/droplets/how-to/tag/
https://www.digitalocean.com/docs/images/backups/

Once that’s all set, go ahead and click the Create Droplet button at the foot of the screen.

You should see a progress bar while the droplet is being set up for you, and after a minute or

two the droplet should be live and ready to use.

The most important thing at this point is noting the IP address for the droplet, which in my

case is 45.55.49.87 .

If you like, you can also click on the droplet hostname to see more detailed information

about the droplet (including the monitoring statistics) and make any further configuration

and management changes if you need to.

OK, now that the droplet is set up, it’s time for the moment of truth!

Open a new terminal window and try connecting to the droplet via SSH as the root user,

using the droplet IP address. Like so…

$ ssh root@45.55.49.87

The authenticity of host '45.55.49.87 (45.55.49.87)' can't be established.

ECDSA key fingerprint is SHA256:HWGdr4i2xF0yoU3GlRcVOYV/pqJ45pwLXhKWAjq4ahw.

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

Warning: Permanently added '45.55.49.87' (ECDSA) to the list of known hosts.

Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-51-generic x86_64)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

 System information as of Sun Apr 18 19:02:59 UTC 2021

 System load: 0.0 Users logged in: 0

 Usage of /: 5.9% of 24.06GB IPv4 address for eth0: 45.55.49.87

 Memory usage: 21% IPv4 address for eth0: 10.17.0.5

 Swap usage: 0% IPv4 address for eth1: 10.108.0.2

 Processes: 103

126 updates can be installed immediately.

60 of these updates are security updates.

To see these additional updates run: apt list --upgradable

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

root@greenlight-production:~#

Note: As this is the first time that you’re using SSH to connect to this droplet you’ll get

a message saying that “the authenticity of host can’t be established”. This is fine in

this instance and just type yes to continue. If your SSH key is protected with a

passphrase, you may also be prompted to enter that too.

Great, that looks like it’s working well. Our Ubuntu Linux droplet is up and running, and

we’ve been able to successfully connect to it as the root user over SSH.

You can go ahead and type exit to terminate the SSH connection and return to the terminal

on your local machine, like so:

root@greenlight-production:~# exit

logout

Connection to 45.55.49.87 closed.

https://superuser.com/questions/1295569/does-the-authenticity-of-host-cant-be-established-message-in-ssh-reflect-a-se

Chapter 21.2.

Server Configuration and Installing

Software

Now that our Ubuntu Linux droplet has been successfully commissioned, we need to do

some housekeeping to secure the server and get it ready-to-use. Rather than do this

manually, in this chapter we’re going to create a reusable script to automate these setup

tasks.

Note: In this chapter we’ll use a regular bash script to perform the setup tasks, but if

you’re happy using a configuration management tool such as Ansible, then please feel

free to implement the same setup process using that instead.

At a high level we want our setup script to do the following things:

Update all packages on the server, including applying security updates.

Set the server timezone (in my case I’ll set it to America/New_York) and install support for

all locales.

Create a greenlight user on the server, which we can use for day-to-day maintenance

and for running our API application (rather than using the all-powerful root user

account). We should also add the greenlight user to the sudo group, so that it can

perform actions as root if necessary.

Copy the root user’s $HOME/.ssh directory into the greenlight users home directory.

This will enable us to authenticate as the greenlight user using the same SSH key pair

that we used to authenticate as the root user. We should also force the greenlight user

to set a new password the first time they log in.

Configure firewall settings to only permit traffic on ports 22 (SSH), 80 (HTTP) and 443

(HTTPS). We’ll also install fail2ban to automatically temporarily ban an IP address if it

makes too many failed SSH login attempts.

Install PostgreSQL. We’ll also create the greenlight database and user, and create a

system-wide GREENLIGHT_DB_DSN environment variable for connecting to the database.

Install the migrate tool, using the pre-built binaries from GitHub, in exactly the same

https://www.ansible.com/
https://help.ubuntu.com/community/Locale
https://www.fail2ban.org/wiki/index.php/Main_Page
https://github.com/golang-migrate/migrate/releases

way that we did earlier in the book.

Install Caddy by following the official installation instructions for Ubuntu.

Reboot the droplet.

If you’re following along, create a new remote/setup folder in your project directory and

add a script file called 01.sh , like so:

$ mkdir -p remote/setup

$ touch remote/setup/01.sh

Then add the following code:

File: remote/setup/01.sh

#!/bin/bash

set -eu

==

VARIABLES

==

Set the timezone for the server. A full list of available timezones can be found by

running timedatectl list-timezones.

TIMEZONE=America/New_York

Set the name of the new user to create.

USERNAME=greenlight

Prompt to enter a password for the PostgreSQL greenlight user (rather than hard-coding

a password in this script).

read -p "Enter password for greenlight DB user: " DB_PASSWORD

Force all output to be presented in en_US for the duration of this script. This avoids

any "setting locale failed" errors while this script is running, before we have

installed support for all locales. Do not change this setting!

export LC_ALL=en_US.UTF-8

==

SCRIPT LOGIC

==

Enable the "universe" repository.

add-apt-repository --yes universe

Update all software packages. Using the --force-confnew flag means that configuration

files will be replaced if newer ones are available.

apt update

apt --yes -o Dpkg::Options::="--force-confnew" upgrade

Set the system timezone and install all locales.

timedatectl set-timezone ${TIMEZONE}

apt --yes install locales-all

Add the new user (and give them sudo privileges).

useradd --create-home --shell "/bin/bash" --groups sudo "${USERNAME}"

https://caddyserver.com/docs/install#debian-ubuntu-raspbian

Force a password to be set for the new user the first time they log in.

passwd --delete "${USERNAME}"

chage --lastday 0 "${USERNAME}"

Copy the SSH keys from the root user to the new user.

rsync --archive --chown=${USERNAME}:${USERNAME} /root/.ssh /home/${USERNAME}

Configure the firewall to allow SSH, HTTP and HTTPS traffic.

ufw allow 22

ufw allow 80/tcp

ufw allow 443/tcp

ufw --force enable

Install fail2ban.

apt --yes install fail2ban

Install the migrate CLI tool.

curl -L https://github.com/golang-migrate/migrate/releases/download/v4.14.1/migrate.linux-amd64.tar.gz | tar xvz

mv migrate.linux-amd64 /usr/local/bin/migrate

Install PostgreSQL.

apt --yes install postgresql

Set up the greenlight DB and create a user account with the password entered earlier.

sudo -i -u postgres psql -c "CREATE DATABASE greenlight"

sudo -i -u postgres psql -d greenlight -c "CREATE EXTENSION IF NOT EXISTS citext"

sudo -i -u postgres psql -d greenlight -c "CREATE ROLE greenlight WITH LOGIN PASSWORD '${DB_PASSWORD}'"

Add a DSN for connecting to the greenlight database to the system-wide environment

variables in the /etc/environment file.

echo "GREENLIGHT_DB_DSN='postgres://greenlight:${DB_PASSWORD}@localhost/greenlight'" >> /etc/environment

Install Caddy (see https://caddyserver.com/docs/install#debian-ubuntu-raspbian).

apt --yes install -y debian-keyring debian-archive-keyring apt-transport-https

curl -L https://dl.cloudsmith.io/public/caddy/stable/gpg.key | sudo apt-key add -

curl -L https://dl.cloudsmith.io/public/caddy/stable/debian.deb.txt | sudo tee -a /etc/apt/sources.list.d/caddy-stable.list

apt update

apt --yes install caddy

echo "Script complete! Rebooting..."

reboot

OK, let’s now run this script on our new Digital Ocean droplet. This will be a two-step

process:

1. First we need to copy the script to the droplet (which we will do using rsync).

2. Then we need to connect to the droplet via SSH and execute the script.

Go ahead and run the following command to rsync the contents of the /remote/setup

folder to the root user’s home directory on the droplet. Remember to replace the IP

address with your own!

$ rsync -rP --delete ./remote/setup root@45.55.49.87:/root

sending incremental file list

setup/

setup/01.sh

 3,327 100% 0.00kB/s 0:00:00 (xfr#1, to-chk=0/2)

https://linux.die.net/man/1/rsync

Note: In this rsync command the -r flag indicates that we want to copy the contents

of ./remote/setup recursively, the -P flag indicates that we want to display progress

of the transfer, and the --delete flag indicates that we want to delete any extraneous

files from destination directory on the droplet.

Now that a copy of our setup script is on the droplet, let’s use the ssh command to execute

the script on the remote machine as the root user. We’ll use the -t flag to force pseudo-

terminal allocation, which is useful when executing screen-based programs on a remote

machine.

Go ahead and run the script, entering a password for the greenlight PostgreSQL user, like

so:

$ ssh -t root@45.55.49.87 "bash /root/setup/01.sh"

Enter password for greenlight DB user: pa55word1234

'universe' distribution component enabled for all sources.

Hit:1 http://security.ubuntu.com/ubuntu focal-security InRelease

Hit:2 https://repos.insights.digitalocean.com/apt/do-agent main InRelease

Get:3 http://mirrors.digitalocean.com/ubuntu focal InRelease [265 kB]

Hit:4 http://mirrors.digitalocean.com/ubuntu focal-updates InRelease

Hit:5 http://mirrors.digitalocean.com/ubuntu focal-backports InRelease

...

Script complete! Rebooting...

Connection to 45.55.49.87 closed by remote host.

Connection to 45.55.49.87 closed.

Important: While this script is running you will get a message saying: A new version

of configuration file /etc/ssh/sshd_config is available, but the version

installed currently has been locally modified.

This is because Digital Ocean automatically makes some adaptations to the

sshd_config file, including disabling password-based access when you are using SSH

keys for authentication. Please select keep the local version currently installed

and then <Ok> to continue.

After a few minutes the script should complete successfully and the droplet will be rebooted

— which will also kick you off the SSH connection.

Connecting as the greenlight user

After waiting a minute for the reboot to complete, try connecting to the droplet as the

greenlight user over SSH. This should work correctly (and the SSH key pair you created in

the previous chapter should be used to authenticate the connection) but you will be

prompted to set a password.

$ ssh greenlight@45.55.49.87

You are required to change your password immediately (administrator enforced)

Welcome to Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-72-generic x86_64)

 * Documentation: https://help.ubuntu.com

 * Management: https://landscape.canonical.com

 * Support: https://ubuntu.com/advantage

 System information as of Sun Apr 18 15:51:33 EDT 2021

 System load: 0.0 Users logged in: 0

 Usage of /: 9.2% of 24.06GB IPv4 address for eth0: 45.55.49.87

 Memory usage: 20% IPv4 address for eth0: 10.17.0.5

 Swap usage: 0% IPv4 address for eth1: 10.108.0.2

 Processes: 109

0 updates can be installed immediately.

0 of these updates are security updates.

The programs included with the Ubuntu system are free software;

the exact distribution terms for each program are described in the

individual files in /usr/share/doc/*/copyright.

Ubuntu comes with ABSOLUTELY NO WARRANTY, to the extent permitted by

applicable law.

WARNING: Your password has expired.

You must change your password now and login again!

New password:

Retype new password:

passwd: password updated successfully

Connection to 45.55.49.87 closed.

The password you enter here will be the regular password for the greenlight user on your

droplet (i.e. the password you will need to type whenever you are logged in and want to

execute a sudo command). Just to be clear, it is not a SSH password for connecting as the

greenlight user.

Go ahead and enter whatever password you would like, confirm it, and check that you see a

message saying that the password change has been successful. The SSH connection will

then be automatically terminated.

If you re-connect as the greenlight user, everything should now work normally and you

should be able to execute commands on the droplet. Like so:

$ ssh greenlight@45.55.49.87

Welcome to Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-65-generic x86_64)

...

greenlight@greenlight-production:~$ whoami

greenlight

While we’re connected to the droplet, let’s take a quick look around and check that some

key things are working as we would expect.

First let’s check that the migrate binary has been downloaded and is on the system path by

running it with the -version flag. All being well, this should print the migrate version

number like so:

greenlight@greenlight-production:~$ migrate -version

4.14.1

Next let’s verify that PostgreSQL is running, and that we can connect to it using the DSN in

the GREENLIGHT_DB_DSN environment variable:

greenlight@greenlight-production:~$ psql $GREENLIGHT_DB_DSN

psql (12.6 (Ubuntu 12.6-0ubuntu0.20.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> exit

Finally, let’s check that Caddy is running by calling systemctl status caddy to see the

status of the Caddy background service. You’ll need to use sudo here to run this command

as root.

greenlight@greenlight-production:~$ sudo systemctl status caddy

● caddy.service - Caddy

 Loaded: loaded (/lib/systemd/system/caddy.service; enabled; vendor preset: enabled)

 Active: active (running) since Sun 2021-04-18 15:23:32 EDT; 37min ago

 Docs: https://caddyserver.com/docs/

 Main PID: 586 (caddy)

 Tasks: 7 (limit: 1136)

 Memory: 37.6M

 CGroup: /system.slice/caddy.service

 └─586 /usr/bin/caddy run --environ --config /etc/caddy/Caddyfile

Apr 18 15:23:33 greenlight-production caddy[586]: USER=caddy

Apr 18 15:23:33 greenlight-production caddy[586]: INVOCATION_ID=2e2dc35c3cf44786b7103847fd9a9ad8

...

You should see that the status of the Caddy service is active (running) — confirming that

Caddy is working successfully.

This means that you should be able to visit your droplet directly in a web browser via

http://<your_droplet_ip>, and you should see the following Caddy welcome page.

Connecting to the droplet

To make connecting to the droplet a bit easier, and so we don’t have to remember the IP

address, let’s quickly add a makefile rule for initializing a SSH connection to the droplet as

the greenlight user. Like so:

File: Makefile

...

==

PRODUCTION

==

production_host_ip = '45.55.49.87'

production/connect: connect to the production server

.PHONY: production/connect

production/connect:

 ssh greenlight@${production_host_ip}

Once that’s in place, you can then connect to your droplet whenever you need to by simply

typing make production/connect :

$ make production/connect

ssh greenlight@'45.55.49.87'

Welcome to Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-65-generic x86_64)

...

greenlight@greenlight-production:~$

Additional Information

Future changes to the droplet configuration

If you need to make further changes to your droplet configuration or settings, you can

create an additional remote/setup/02.sh script and then execute it in the following way:

$ rsync -rP --delete ./remote/setup greenlight@45.55.49.87:~

$ ssh -t greenlight@45.55.49.87 "sudo bash /home/greenlight/setup/02.sh"

Chapter 21.3.

Deployment and Executing Migrations

At this point our droplet is set up with all the software and user accounts that we need, so

let’s move on to the process of deploying and running our API application.

At a very high-level, our deployment process will consist of three actions:

1. Copying the application binary and SQL migration files to the droplet.

2. Executing the migrations against the PostgreSQL database on the droplet.

3. Starting the application binary as a background service.

For now we’ll just focus on steps 1 and 2, and tackle running our application as a

background service in the next chapter.

Let’s begin by creating a new make production/deploy/api rule in our makefile, which we

will use to execute these first two steps automatically. Like so:

File: Makefile

...

==

PRODUCTION

==

production_host_ip = "45.55.49.87"

production/connect: connect to the production server

.PHONY: production/connect

production/connect:

 ssh greenlight@${production_host_ip}

production/deploy/api: deploy the api to production

.PHONY: production/deploy/api

production/deploy/api:

 rsync -rP --delete ./bin/linux_amd64/api ./migrations greenlight@${production_host_ip}:~

 ssh -t greenlight@${production_host_ip} 'migrate -path ~/migrations -database $$GREENLIGHT_DB_DSN up'

Let’s quickly break down what this new rule is doing.

First, it uses the rsync command to copy the ./bin/linux_amd64/api executable binary

(the one specifically built for Linux) and the ./migrations folder into the home directory for

the greenlight user on the droplet.

Then it uses the ssh command with the -t flag to run these database migrations on our

droplet as the greenlight user with the following command:

'migrate -path ~/migrations -database $$GREENLIGHT_DB_DSN up'

Because the $ character has a special meaning in makefiles, we are escaping it in the

command above by prefixing it with an additional dollar character like $$. This means that

the command that actually runs on our droplet will be

'migrate -path ~/migrations -database $GREENLIGHT_DB_DSN up' , and in turn, the

migration will be run using the droplet environment variable GREENLIGHT_DB_DSN .

It’s also important to note that we’re surrounding this command with single quotes. If we

used double quotes, it would be an interpreted string and we would need to use an

additional escape character \ like so:

"migrate -path ~/migrations -database \$$GREENLIGHT_DB_DSN up"

Alright, let’s try this out!

Go ahead and execute the make production/deploy/api rule that we just made. You should

see that all the files copy across successfully (this may take a minute or two to complete

depending on your connection speed), and the migrations are then applied to your

database. Like so:

https://til.hashrocket.com/posts/k3kjqxtppx-escape-dollar-sign-on-makefiles

$ make production/deploy/api

rsync -rP --delete ./bin/linux_amd64/api ./migrations greenlight@"45.55.49.87":~

sending incremental file list

api

 7,618,560 100% 119.34kB/s 0:01:02 (xfr#1, to-chk=13/14)

migrations/

migrations/000001_create_movies_table.down.sql

 28 100% 27.34kB/s 0:00:00 (xfr#2, to-chk=11/14)

migrations/000001_create_movies_table.up.sql

 286 100% 279.30kB/s 0:00:00 (xfr#3, to-chk=10/14)

migrations/000002_add_movies_check_constraints.down.sql

 198 100% 193.36kB/s 0:00:00 (xfr#4, to-chk=9/14)

migrations/000002_add_movies_check_constraints.up.sql

 289 100% 282.23kB/s 0:00:00 (xfr#5, to-chk=8/14)

migrations/000003_add_movies_indexes.down.sql

 78 100% 76.17kB/s 0:00:00 (xfr#6, to-chk=7/14)

migrations/000003_add_movies_indexes.up.sql

 170 100% 166.02kB/s 0:00:00 (xfr#7, to-chk=6/14)

migrations/000004_create_users_table.down.sql

 27 100% 26.37kB/s 0:00:00 (xfr#8, to-chk=5/14)

migrations/000004_create_users_table.up.sql

 294 100% 287.11kB/s 0:00:00 (xfr#9, to-chk=4/14)

migrations/000005_create_tokens_table.down.sql

 28 100% 27.34kB/s 0:00:00 (xfr#10, to-chk=3/14)

migrations/000005_create_tokens_table.up.sql

 203 100% 99.12kB/s 0:00:00 (xfr#11, to-chk=2/14)

migrations/000006_add_permissions.down.sql

 73 100% 35.64kB/s 0:00:00 (xfr#12, to-chk=1/14)

migrations/000006_add_permissions.up.sql

 452 100% 220.70kB/s 0:00:00 (xfr#13, to-chk=0/14)

ssh -t greenlight@"45.55.49.87" 'migrate -path ~/migrations -database $GREENLIGHT_DB_DSN up'

1/u create_movies_table (11.782733ms)

2/u add_movies_check_constraints (23.109006ms)

3/u add_movies_indexes (30.61223ms)

4/u create_users_table (39.890662ms)

5/u create_tokens_table (48.659641ms)

6/u add_permissions (58.23243ms)

Connection to 45.55.49.87 closed.

Let’s quickly connect to our droplet and verify that everything has worked.

$ make production/connect

ssh greenlight@'45.55.49.87'

Welcome to Ubuntu 20.04.2 LTS (GNU/Linux 5.4.0-65-generic x86_64)

...

greenlight@greenlight-production:~$ ls -R

.:

api migrations

./migrations:

000001_create_movies_table.down.sql

000001_create_movies_table.up.sql

000002_add_movies_check_constraints.down.sql

000002_add_movies_check_constraints.up.sql

000003_add_movies_indexes.down.sql

000003_add_movies_indexes.up.sql

000004_create_users_table.down.sql

000004_create_users_table.up.sql

000005_create_tokens_table.down.sql

000005_create_tokens_table.up.sql

000006_add_permissions.down.sql

000006_add_permissions.up.sql

So far so good. We can see that the home directory of our greenlight user contains the api

executable binary and a folder containing the migration files.

Let’s also connect to the database using psql and verify that the tables have been created

by using the \dt meta command. Your output should look similar to this:

greenlight@greenlight-production:~$ psql $GREENLIGHT_DB_DSN

psql (12.6 (Ubuntu 12.6-0ubuntu0.20.04.1))

SSL connection (protocol: TLSv1.3, cipher: TLS_AES_256_GCM_SHA384, bits: 256, compression: off)

Type "help" for help.

greenlight=> \dt

 List of relations

 Schema | Name | Type | Owner

--------+-------------------+-------+------------

 public | movies | table | greenlight

 public | permissions | table | greenlight

 public | schema_migrations | table | greenlight

 public | tokens | table | greenlight

 public | users | table | greenlight

 public | users_permissions | table | greenlight

(6 rows)

Running the API

While we’re connected to the droplet, let’s try running the api executable binary. We can’t

listen for incoming connections on port 80 because Caddy is already using this, so we’ll

listen on the unrestricted port 4000 instead.

If you’ve been following along, port 4000 on your droplet should currently be blocked by the

firewall rules, so we’ll need to relax this temporarily to allow incoming requests. Go ahead

and do that like so:

greenlight@greenlight-production:~$ sudo ufw allow 4000/tcp

Rule added

Rule added (v6)

And then start the API with the following command:

greenlight@greenlight-production:~$./api -port=4000 -db-dsn=$GREENLIGHT_DB_DSN -env=production

{"level":"INFO","time":"2021-04-19T07:10:55Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-19T07:10:55Z","message":"starting server","properties":{"addr":":4000","env":"production"}}

At this point you should be able to visit http://<your_droplet_ip>:4000/v1/healthcheck

in your web browser and get a successful response from the healthcheck endpoint, similar

to this:

Lastly, head back to your SSH terminal window and press Ctrl+C to stop the API from

running on your droplet. You should see it gracefully shutdown like so:

greenlight@greenlight-production:~$ /home/greenlight/api -port=4000 -db-dsn=$GREENLIGHT_DB_DSN -env=production

{"level":"INFO","time":"2021-04-19T07:10:55Z","message":"database connection pool established"}

{"level":"INFO","time":"2021-04-19T07:10:55Z","message":"starting server","properties":{"addr":":4000","env":"production"}}

^C{"level":"INFO","time":"2021-04-19T07:13:23Z","message":"caught signal","properties":{"signal":"interrupt"}}

{"level":"INFO","time":"2021-04-19T07:13:23Z","message":"completing background tasks","properties":{"addr":":4000"}}

{"level":"INFO","time":"2021-04-19T07:13:23Z","message":"stopped server","properties":{"addr":":4000"}}

Chapter 21.4.

Running the API as a Background

Service

Now that we know our API executable works fine on our production droplet, the next step is

to configure it to run as a background service, including starting up automatically when the

droplet is rebooted.

There are a few different tools we could use to do this, but in this book we will use systemd

— a collection of tools for managing services that ships with Ubuntu (and many other Linux

distributions).

In order to run our API application as a background service, the first thing we need to do is

make a unit file, which informs systemd how and when to run the service.

If you’re following along, head back to a terminal window on your local machine and create

a new remote/production/api.service file in your project directory:

$ mkdir remote/production

$ touch remote/production/api.service

And then add the following markup:

https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/software/systemd/man/systemd.unit.html

File: remote/production/api.service

[Unit]

Description is a human-readable name for the service.

Description=Greenlight API service

Wait until PostgreSQL is running and the network is "up" before starting the service.

After=postgresql.service

After=network-online.target

Wants=network-online.target

Configure service start rate limiting. If the service is (re)started more than 5 times

in 600 seconds then don't permit it to start anymore.

StartLimitIntervalSec=600

StartLimitBurst=5

[Service]

Execute the API binary as the greenlight user, loading the environment variables from

/etc/environment and using the working directory /home/greenlight.

Type=exec

User=greenlight

Group=greenlight

EnvironmentFile=/etc/environment

WorkingDirectory=/home/greenlight

ExecStart=/home/greenlight/api -port=4000 -db-dsn=${GREENLIGHT_DB_DSN} -env=production

Automatically restart the service after a 5-second wait if it exits with a non-zero

exit code. If it restarts more than 5 times in 600 seconds, then the rate limit we

configured above will be hit and it won't be restarted anymore.

Restart=on-failure

RestartSec=5

[Install]

Start the service automatically at boot time (the 'multi-user.target' describes a boot

state when the system will accept logins).

WantedBy=multi-user.target

Now that we’ve got a unit file set up, the next step is to install this unit file on our droplet

and start up the service. Essentially we need to do three things:

1. To ‘install’ the file, we need to copy it into the /etc/systemd/system/ folder on our

droplet.

2. Then we need to run the systemctl enable api command on our droplet to make

systemd aware of the new unit file and automatically enable the service when the

droplet is rebooted.

3. Finally, we need to run systemctl restart api to start the service.

All three of these tasks will need to be run with sudo.

Let’s update our makefile to include a new production/configure/api.service rule which

automates these tasks for us. Like so:

File: Makefile

...

==

PRODUCTION

==

production_host_ip = '45.55.49.87'

...

production/configure/api.service: configure the production systemd api.service file

.PHONY: production/configure/api.service

production/configure/api.service:

 rsync -P ./remote/production/api.service greenlight@${production_host_ip}:~

 ssh -t greenlight@${production_host_ip} '\

 sudo mv ~/api.service /etc/systemd/system/ \

 && sudo systemctl enable api \

 && sudo systemctl restart api \

 '

Note: To copy the unit file into the /etc/systemd/system/ folder (which is owned by

the root user on our droplet), we need to copy it into the greenlight user’s home

directory and then use the sudo mv command to move it to its final location.

Save the makefile, then go ahead and run this new rule. You should be prompted to enter

the password for the greenlight user when it’s executing, and the rule should complete

without any errors. The output you see should look similar to this:

$ make production/configure/api.service

rsync -P ./remote/production/api.service greenlight@"45.55.49.87":~

sending incremental file list

api.service

 1,266 100% 0.00kB/s 0:00:00 (xfr#1, to-chk=0/1)

ssh -t greenlight@"45.55.49.87" '\

 sudo mv ~/api.service /etc/systemd/system/ \

 && sudo systemctl enable api \

 && sudo systemctl restart api \

'

[sudo] password for greenlight:

Created symlink /etc/systemd/system/multi-user.target.wants/api.service → /etc/systemd/system/api.service.

Connection to 45.55.49.87 closed.

Next let’s connect to the droplet and check the status of our new api service using the

sudo systemctl status api command:

$ make production/connect

greenlight@greenlight-production:~$ sudo systemctl status api

● api.service - Greenlight API service

 Loaded: loaded (/etc/systemd/system/api.service; enabled; vendor preset: enabled)

 Active: active (running) since Mon 2021-04-19 03:24:35 EDT; 2min 50s ago

 Main PID: 6997 (api)

 Tasks: 6 (limit: 1136)

 Memory: 1.8M

 CGroup: /system.slice/api.service

 └─6997 /home/greenlight/api -port=4000 -db-dsn=postgres://greenlight:pa55word1234@localhost/greenlight -env=production

Apr 19 03:24:35 greenlight-production systemd[1]: Starting Greenlight API service...

Apr 19 03:24:35 greenlight-production systemd[1]: Started Greenlight API service.

Apr 19 03:24:35 greenlight-production api[6997]: {"level":"INFO","time":"2021-04-19T07:24:35Z", ...}

Apr 19 03:24:35 greenlight-production api[6997]: {"level":"INFO","time":"2021-04-19T07:24:35Z", ...}

Great! This confirms that our api service is running successfully in the background and, in

my case, that it has the PID (process ID) 6997.

Out of interest, let’s also quickly list the running processes for our greenlight user:

greenlight@greenlight-production:~$ ps -U greenlight

 PID TTY TIME CMD

 6997 ? 00:00:00 api

 7043 ? 00:00:00 systemd

 7048 ? 00:00:00 (sd-pam)

 7117 ? 00:00:00 sshd

 7118 pts/0 00:00:00 bash

 7148 pts/0 00:00:00 ps

That tallies — we can see the api process listed here with the PID 6997, confirming that it is

indeed our greenlight user who is running the api binary.

Lastly, let’s check from an external perspective and try making a request to our healthcheck

endpoint again, either in a browser or with curl. You should get a successful response like

so:

$ curl 45.55.49.87:4000/v1/healthcheck

{

 "status": "available",

 "system_info": {

 "environment": "production",

 "version": "v1.0.0-1-gf27fd0f"

 }

}

Restarting after reboot

By running the systemctl enable api command in our makefile after we copied across the

systemd unit file, our API service should be started up automatically after the droplet is

rebooted.

If you like you can verify this yourself. While you’re connected to the droplet via SSH, go

ahead and reboot it (make sure you are connected to the droplet and don’t accidentally

reboot your local machine!).

greenlight@greenlight-production:~$ sudo reboot

greenlight@greenlight-production:~$ Connection to 45.55.49.87 closed by remote host.

Connection to 45.55.49.87 closed.

make: *** [Makefile:91: production/connect] Error 255

Wait a minute for the reboot to complete and for the droplet to come back online. Then you

should be able to reconnect and use systemctl status to check that the service is running

again. Like so:

$ make production/connect

greenlight@greenlight-production:~$ sudo systemctl status api.service

[sudo] password for greenlight:

● api.service - Greenlight API service

 Loaded: loaded (/etc/systemd/system/api.service; enabled; vendor preset: enabled)

 Active: active (running) since Mon 2021-04-19 03:36:26 EDT; 16s ago

 Main PID: 774 (api)

 Tasks: 5 (limit: 1136)

 Memory: 8.7M

 CGroup: /system.slice/api.service

 └─774 /home/greenlight/api -port=4000 -db-dsn=postgres://greenlight:pa55word1234@localhost/greenlight -env=production

Apr 19 03:36:26 greenlight-production systemd[1]: Starting Greenlight API service...

Apr 19 03:36:26 greenlight-production systemd[1]: Started Greenlight API service.

Apr 19 03:36:26 greenlight-production api[774]: {"level":"INFO","time":"2021-04-19T07:36:26Z", ...}

Apr 19 03:36:26 greenlight-production api[774]: {"level":"INFO","time":"2021-04-19T07:36:26Z", ...}

Disable port 4000

If you’ve been following along with the steps in this section of the book, let’s revert the

temporary firewall change that we made earlier and disallow traffic on port 4000 again.

greenlight@greenlight-production:~$ sudo ufw delete allow 4000/tcp

Rule deleted

Rule deleted (v6)

greenlight@greenlight-production:~$ sudo ufw status

Status: active

To Action From

-- ------ ----

22 ALLOW Anywhere

80/tcp ALLOW Anywhere

443/tcp ALLOW Anywhere

22 (v6) ALLOW Anywhere (v6)

80/tcp (v6) ALLOW Anywhere (v6)

443/tcp (v6) ALLOW Anywhere (v6)

Additional Information

Listening on a restricted port

If you’re not planning to run your application behind a reverse proxy, and want to listen for

requests directly on port 80 or 443, you’ll need to set up your unit file so that the service has

the CAP_NET_BIND_SERVICE capability (which will allow it to bind to a restricted port). For

example:

[Unit]

Description=Greenlight API service

After=postgresql.service

After=network-online.target

Wants=network-online.target

StartLimitIntervalSec=600

StartLimitBurst=5

[Service]

Type=exec

User=greenlight

Group=greenlight

CapabilityBoundingSet=CAP_NET_BIND_SERVICE

AmbientCapabilities=CAP_NET_BIND_SERVICE

EnvironmentFile=/etc/environment

WorkingDirectory=/home/greenlight

ExecStart=/home/greenlight/api -port=80 -db-dsn=${GREENLIGHT_DB_DSN} -env=production

Restart=on-failure

RestartSec=5

[Install]

WantedBy=multi-user.target

Viewing logs

It’s possible to view the logs for your background service using the journalctl command,

like so:

$ sudo journalctl -u api

-- Logs begin at Sun 2021-04-18 14:55:45 EDT, end at Mon 2021-04-19 03:39:55 EDT. --

Apr 19 03:24:35 greenlight-production systemd[1]: Starting Greenlight API service...

Apr 19 03:24:35 greenlight-production systemd[1]: Started Greenlight API service.

Apr 19 03:24:35 greenlight-production api[6997]: {"level":"INFO","time":"2021-04-19T07:24:35Z", ...}

Apr 19 03:24:35 greenlight-production api[6997]: {"level":"INFO","time":"2021-04-19T07:24:35Z", ...}

The journalctl command is really powerful and offers a wide variety of parameters that

you can use to filter your log messages and customize the formatting. This article provides a

great introduction to the details of journalctl and is well worth a read.

Configuring the SMTP provider

Our unit file is currently set up to start our API with the following command:

ExecStart=/home/greenlight/api -port=4000 -db-dsn=${GREENLIGHT_DB_DSN} -env=production

It’s important to remember that apart from the port, db-dsn and env flags that we’re

specifying here, our application will still be using the default values for the other settings

which are hardcoded into the cmd/api/main.go file — including the SMTP credentials for

your Mailtrap inbox. Under normal circumstances, you would want to set your production

SMTP credentials as part of this command in the unit file too.

Additional unit file options

Systemd unit files offer a huge range of configuration options, and we’ve only just scratched

the surface in this chapter. For more information, the Understanding Systemd Units and

Unit Files article is a really good overview, and you can find comprehensive (albeit dense)

information in the man pages.

There is also this gist which talks through the various security options that you can use to

help harden your service.

https://www.digitalocean.com/community/tutorials/how-to-use-journalctl-to-view-and-manipulate-systemd-logs
https://www.digitalocean.com/community/tutorials/understanding-systemd-units-and-unit-files
https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://gist.github.com/ageis/f5595e59b1cddb1513d1b425a323db04

Chapter 21.5.

Using Caddy as a Reverse Proxy

We’re now in the position where we have our Greenlight API application running as a

background service on our droplet, and listening for HTTP requests on port 4000. And we

also have Caddy running as a background service and listening for HTTP requests on port

80.

So the next step in setting up our production environment is to configure Caddy to act as a

reverse proxy and forward any HTTP requests that it receives onward to our API.

The simplest way to configure Caddy is to create a Caddyfile — which contains a series of

rules describing what we want Caddy to do. If you’re following along, please go ahead and

create a new remote/production/Caddyfile file in your project directory:

$ touch remote/production/Caddyfile

And then add the following content, making sure to replace the IP address with the address

of your own droplet:

File: remote/production/Caddyfile

http://45.55.49.87 {

 reverse_proxy localhost:4000

}

As you can probably guess by looking at it, this rule tells Caddy that we want it to listen for

HTTP requests to 45.55.49.87 and then act a reverse proxy, forwarding the request to port

4000 on the local machine (where our API is listening).

Hint: Caddyfiles have a lot of available settings and we’ll demonstrate some of the

more common ones as we progress through this chapter. But if you plan on using

Caddy in your own production projects, then I recommend reading through the official

Caddyfile documentation, which is excellent.

The next thing we need to do is upload this Caddyfile to our droplet and reload Caddy for

the changes to take effect.

https://caddyserver.com/docs/caddyfile

To manage this, let’s update our makefile to include a new

production/configure/caddyfile rule. This will follow the same basic pattern that we used

in the previous chapter for uploading our api.service file, but instead we’ll copy our

Caddyfile to /etc/caddy/Caddyfile on the server.

Like so:

File: Makefile

==

PRODUCTION

==

production_host_ip = '45.55.49.87'

...

production/configure/caddyfile: configure the production Caddyfile

.PHONY: production/configure/caddyfile

production/configure/caddyfile:

 rsync -P ./remote/production/Caddyfile greenlight@${production_host_ip}:~

 ssh -t greenlight@${production_host_ip} '\

 sudo mv ~/Caddyfile /etc/caddy/ \

 && sudo systemctl reload caddy \

 '

Once you’ve made that change, go ahead and run the rule to deploy the Caddyfile into

production:

$ make production/configure/caddyfile

rsync -P ./remote/production/Caddyfile greenlight@"45.55.49.87":~

sending incremental file list

Caddyfile

 53 100% 0.00kB/s 0:00:00 (xfr#1, to-chk=0/1)

ssh -t greenlight@"45.55.49.87" '\

 sudo mv ~/Caddyfile /etc/caddy/ \

 && sudo systemctl reload caddy \

'

[sudo] password for greenlight:

Connection to 45.55.49.87 closed.

You should see that the Caddyfile is copied across and the reload executes cleanly without

any errors.

At this point you can visit http://<your_droplet_ip>/v1/healthcheck in a web browser,

and you should find that the request is successfully forwarded on from Caddy to our API.

Like so:

Blocking access to application metrics

While we’re in the browser, let’s navigate to the GET /debug/vars endpoint which displays

our application metrics. You should see a response similar to this:

As we mentioned earlier, it’s really not a good idea for this sensitive information to be

publicly accessible.

Fortunately, it’s very easy to block access to this by adding a new respond directive to our

Caddyfile like so:

File: remote/production/Caddyfile

http://45.55.49.87 {

 respond /debug/* "Not Permitted" 403

 reverse_proxy localhost:4000

}

With this new directive we’re instructing Caddy to send a 403 Forbidden response for all

requests which have a URL path beginning /debug/ .

Go ahead and deploy this change to production again, and when you refresh the page in

your web browser you should find that it is now blocked.

$ make production/configure/caddyfile

https://caddyserver.com/docs/caddyfile/directives/respond

Although the metrics are no longer publicly accessible, you can still access them by

connecting to your droplet via SSH and making a request to

http://localhost:4000/debug/vars.

$ make production/connect

greenlight@greenlight-production:~$ curl http://localhost:4000/debug/vars

{

"cmdline": ...,

"database": ...,

"goroutines": 7,

"memstats": ...,

"timestamp": 1618820037,

"total_processing_time_μs": 1305,
"total_requests_received": 8,

"total_responses_sent": 7,

"total_responses_sent_by_status": {"200": 3, "404": 4},

"version": "v1.0.0-1-gf27fd0f"

}

Or alternatively, you can open a SSH tunnel to the droplet and view them using a web

browser on your local machine. For example, you could open an SSH tunnel between port

4000 on the droplet and port 9999 on your local machine by running the following

command (make sure to replace both IP addresses with your own droplet IP):

$ ssh -L :9999:45.55.49.87:4000 greenlight@45.55.49.87

While that tunnel is active, you should be able to visit http://localhost:9999/debug/vars

in your web browser and see your application metrics, like so:

Using a domain name

For the next step of our deployment we’re going to configure Caddy so that we can access

our droplet via a domain name, instead of needing to use the IP address.

If you want to follow along with this step you’ll need access to a domain name and the

ability to update the DNS records for that domain name. If you don’t have a domain name

already available that you can use, then you can get a free one via the Freenom service.

I’m going to use the domain greenlight.alexedwards.net in the sample code here, but you

should swap this out for your own domain if you’re following along.

The first thing you’ll need to do is configure the DNS records for your domain name so that

they contain an A record pointing to the IP address for your droplet. So in my case the DNS

record would look like this:

A greenlight.alexedwards.net 45.55.49.87

http://localhost:9999/debug/vars
https://www.freenom.com

Note: If you’re not sure how to alter your DNS records, your domain name registrar

should provide guidance and documentation.

Once you’ve got the DNS record in place, the next task is to update the Caddyfile to use

your domain name instead of your droplet’s IP address. Go ahead and swap this out like so

(remember to replace greenlight.alexedwards.net with your own domain name):

File: remote/production/Caddyfile

http://greenlight.alexedwards.net {

 respond /debug/* "Not Permitted" 403

 reverse_proxy localhost:4000

}

And then redeploy the Caddyfile to your droplet again:

$ make production/configure/caddyfile

Once you’ve done that, you should now be able to access the API via your domain name by

visiting http://<your_domain_name>/v1/healthcheck in your browser:

Enabling HTTPS

Now that we have a domain name set up we can utilize one of Caddy’s headline features:

automatic HTTPS.

Caddy will automatically handle provisioning and renewing TLS certificates for your domain

via Let’s Encrypt, as well as redirecting all HTTP requests to HTTPS. It’s simple to set up,

very robust, and saves you the overhead of needing to keep track of certificate renewals

manually.

To enable this, we just need to update our Caddyfile so that it looks like this:

File: remote/production/Caddyfile

Set the email address that should be used to contact you if there is a problem with

your TLS certificates.

{

 email you@example.com

}

Remove the http:// prefix from your site address.

greenlight.alexedwards.net {

 respond /debug/* "Not Permitted" 403

 reverse_proxy localhost:4000

}

For the final time, deploy this Caddyfile update to your droplet…

$ make production/configure/caddyfile

And then when you refresh the page in your web browser, you should find that it is

automatically redirected to a HTTPS version of the page.

Important: If you get an error when you refresh the page, wait a few seconds and then

try again. Sometimes it can take Caddy a moment to complete the certificate set up

for the very first time.

If you’re using Firefox, you can also look at the page information in your browser by

pressing Ctrl+i. It should look similar to this:

We can see from this that the connection has been successfully encrypted using TLS 1.3 and

using the TLS_AES_128_GCM_SHA256 cipher suite.

Lastly, if you want, you can use curl to try making a HTTP request to the application. You

should see that this issues a 308 Permanent Redirect to the HTTPS version of the

application, like so:

$ curl -i http://greenlight.alexedwards.net

HTTP/1.1 308 Permanent Redirect

Connection: close

Location: https://greenlight.alexedwards.net/

Server: Caddy

Date: Mon, 19 Apr 2021 08:36:20 GMT

Content-Length: 0

Chapter 22.

Appendices

Managing Password Resets

Creating Additional Activation Tokens

Authentication with JSON Web Tokens

JSON Encoding Nuances

JSON Decoding Nuances

Request Content Timeouts

Chapter 22.1.

Managing Password Resets

If the API you’re building is for a public audience, it’s likely that you’ll want to include

functionality for a user to reset their password when they forget it.

To support this in your API, you could add the following two endpoints:

Method URL Pattern Handler Action

POST /v1/tokens/password-

reset

createPasswordResetTokenHandler Generate a new password

reset token

PUT /v1/users/password updateUserPasswordHandler Update the password for a

specific user

And implement a workflow like this:

1. A client sends a request to the POST /v1/tokens/password-reset endpoint containing

the email address of the user whose password they want to reset.

2. If a user with that email address exists in the users table, and the user has already

confirmed their email address by activating, then generate a cryptographically-secure

high-entropy random token.

3. Store a hash of this token in the tokens table, alongside the user ID and a short (30-60

minute) expiry time for the token.

4. Send the original (unhashed) token to the user in an email.

5. If the owner of the email address didn’t request a password reset token, they can ignore

the email.

6. Otherwise, they can submit the token to the PUT /v1/users/password endpoint along

with their new password. If the hash of the token exists in the tokens table and hasn’t

expired, then generate a bcrypt hash of the new password and update the user’s record.

7. Delete all existing password reset tokens for the user.

In our codebase, you could implement this workflow by creating a new password-reset

token scope:

File: internal/data/tokens.go

package data

...

const (

 ScopeActivation = "activation"

 ScopeAuthentication = "authentication"

 ScopePasswordReset = "password-reset"

)

...

And then adding the following two handlers:

File: cmd/api/tokens.go

package main

...

// Generate a password reset token and send it to the user's email address.

func (app *application) createPasswordResetTokenHandler(w http.ResponseWriter, r *http.Request) {

 // Parse and validate the user's email address.

 var input struct {

 Email string `json:"email"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 v := validator.New()

 if data.ValidateEmail(v, input.Email); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Try to retrieve the corresponding user record for the email address. If it can't

 // be found, return an error message to the client.

 user, err := app.models.Users.GetByEmail(input.Email)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 v.AddError("email", "no matching email address found")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Return an error message if the user is not activated.

 if !user.Activated {

 v.AddError("email", "user account must be activated")

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 }

 // Otherwise, create a new password reset token with a 45-minute expiry time.

 token, err := app.models.Tokens.New(user.ID, 45*time.Minute, data.ScopePasswordReset)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Email the user with their password reset token.

 app.background(func() {

 data := map[string]interface{}{

 "passwordResetToken": token.Plaintext,

 }

 // Since email addresses MAY be case sensitive, notice that we are sending this

 // email using the address stored in our database for the user --- not to the

 // input.Email address provided by the client in this request.

 err = app.mailer.Send(user.Email, "token_password_reset.tmpl", data)

 if err != nil {

 app.logger.PrintError(err, nil)

 }

 })

 // Send a 202 Accepted response and confirmation message to the client.

 env := envelope{"message": "an email will be sent to you containing password reset instructions"}

 err = app.writeJSON(w, http.StatusAccepted, env, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

File: cmd/api/users.go

package main

...

// Verify the password reset token and set a new password for the user.

func (app *application) updateUserPasswordHandler(w http.ResponseWriter, r *http.Request) {

 // Parse and validate the user's new password and password reset token.

 var input struct {

 Password string `json:"password"`

 TokenPlaintext string `json:"token"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 v := validator.New()

 data.ValidatePasswordPlaintext(v, input.Password)

 data.ValidateTokenPlaintext(v, input.TokenPlaintext)

 if !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Retrieve the details of the user associated with the password reset token,

 // returning an error message if no matching record was found.

 // returning an error message if no matching record was found.

 user, err := app.models.Users.GetForToken(data.ScopePasswordReset, input.TokenPlaintext)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 v.AddError("token", "invalid or expired password reset token")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Set the new password for the user.

 err = user.Password.Set(input.Password)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Save the updated user record in our database, checking for any edit conflicts as

 // normal.

 err = app.models.Users.Update(user)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrEditConflict):

 app.editConflictResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // If everything was successful, then delete all password reset tokens for the user.

 err = app.models.Tokens.DeleteAllForUser(data.ScopePasswordReset, user.ID)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Send the user a confirmation message.

 env := envelope{"message": "your password was successfully reset"}

 err = app.writeJSON(w, http.StatusOK, env, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

You should also create an internal/mailer/templates/token_password_reset.tmpl file

containing the email templates for the password reset email, similar to this:

File: internal/mailer/templates/token_password_reset.tmpl

{{define "subject"}}Reset your Greenlight password{{end}}

{{define "plainBody"}}

Hi,

Please send a `PUT /v1/users/password` request with the following JSON body to set a new password:

{"password": "your new password", "token": "{{.passwordResetToken}}"}

Please note that this is a one-time use token and it will expire in 45 minutes. If you need

another token please make a `POST /v1/tokens/password-reset` request.

Thanks,

The Greenlight Team

{{end}}

{{define "htmlBody"}}

<!doctype html>

<html>

 <head>

 <meta name="viewport" content="width=device-width" />

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

 </head>

 <body>

 <p>Hi,</p>

 <p>Please send a <code>PUT /v1/users/password</code> request with the following JSON body to set a new password:</p>

 <pre><code>

 {"password": "your new password", "token": "{{.passwordResetToken}}"}

 </code></pre>

 <p>Please note that this is a one-time use token and it will expire in 45 minutes.

 If you need another token please make a <code>POST /v1/tokens/password-reset</code> request.</p>

 <p>Thanks,</p>

 <p>The Greenlight Team</p>

 </body>

</html>

{{end}}

And add the necessary routes to the cmd/api/routes.go file:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requirePermission("movies:read", app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requirePermission("movies:write", app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requirePermission("movies:read", app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requirePermission("movies:write", app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requirePermission("movies:write", app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 // Add the PUT /v1/users/password endpoint.

 router.HandlerFunc(http.MethodPut, "/v1/users/password", app.updateUserPasswordHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 // Add the POST /v1/tokens/password-reset endpoint.

 router.HandlerFunc(http.MethodPost, "/v1/tokens/password-reset", app.createPasswordResetTokenHandler)

 router.Handler(http.MethodGet, "/debug/vars", expvar.Handler())

 return app.metrics(app.recoverPanic(app.enableCORS(app.rateLimit(app.authenticate(router)))))

}

Once those things are all in place, you should be able to request a new password reset

token by making a request like this:

$ curl -X POST -d '{"email": "alice@example.com"}' localhost:4000/v1/tokens/password-reset

{

 "message": "an email will be sent to you containing password reset instructions"

}

And then you can initiate the actual password change by sending a request containing the

token received in the email. For example:

$ BODY='{"password": "your new password", "token": "Y7QCRZ7FWOWYLXLAOC2VYOLIPY"}'

$ curl -X PUT -d "$BODY" localhost:4000/v1/users/password

{

 "message": "your password was successfully reset"

}

Additional Information

Web application workflow

Just like the activation workflow we looked at earlier, if your API is the backend to a website

(rather than a completely standalone service) you can tweak this password reset workflow

to make it more intuitive for users.

For example, you could ask the user to enter the token into a form on your website along

with their new password, and use some JavaScript to submit the form contents to your

PUT /v1/users/password endpoint. The email to support that workflow could look

something like this:

Hi,

To reset your password please visit h ͟t ͟t ͟p ͟s ͟: ͟/ ͟/ ͟e ͟x ͟a ͟m ͟p ͟l ͟e ͟. ͟c ͟o ͟m ͟/ ͟u ͟s ͟e ͟r ͟s ͟/ ͟p ͟a ͟s ͟s ͟w ͟o ͟r ͟d ͟ and enter the
following secret code along with your new password:

Y7QCRZ7FWOWYLXLAOC2VYOLIPY

Please note that this code will expire in 45 minutes. If you need another code please

visit h ͟t ͟t ͟p ͟s ͟: ͟/ ͟/ ͟e ͟x ͟a ͟m ͟p ͟l ͟e ͟. ͟c ͟o ͟m ͟/ ͟t ͟o ͟k ͟e ͟n ͟s ͟/ ͟p ͟a ͟s ͟s ͟w ͟o ͟r ͟d ͟- ͟r ͟e ͟s ͟e ͟t ͟.

Thanks,

The Greenlight Team

Alternatively, if you don’t want the user to copy-and-paste a token, you could ask them to

click a link containing the token which takes them to a page on your website. Similar to this:

Hi,

To reset your password please click the following link:

h ͟t ͟t ͟p ͟s ͟: ͟/ ͟/ ͟e ͟x ͟a ͟m ͟p ͟l ͟e ͟. ͟c ͟o ͟m ͟/ ͟u ͟s ͟e ͟r ͟s ͟/ ͟p ͟a ͟s ͟s ͟w ͟o ͟r ͟d ͟? ͟t ͟o ͟k ͟e ͟n ͟= ͟Y ͟7 ͟Q ͟C ͟R ͟Z ͟7 ͟F ͟W ͟O ͟W ͟Y ͟L ͟X ͟L ͟A ͟O ͟C ͟2 ͟V ͟Y ͟O ͟L ͟I ͟P ͟Y ͟

Please note that this link will expire in 45 minutes. If you need another password reset

link please visit h ͟t ͟t ͟p ͟s ͟: ͟/ ͟/ ͟e ͟x ͟a ͟m ͟p ͟l ͟e ͟. ͟c ͟o ͟m ͟/ ͟t ͟o ͟k ͟e ͟n ͟s ͟/ ͟p ͟a ͟s ͟s ͟w ͟o ͟r ͟d ͟- ͟r ͟e ͟s ͟e ͟t ͟.

Thanks,

The Greenlight Team

This page can then display a form in which the user enters their new password, and some

JavaScript on the webpage should then extract the token from the URL and submit it to the

PUT /v1/users/activate endpoint along with the new password. Again, if you go with this

second option, you need to take steps to avoid the token being leaked in a referrer header.

Chapter 22.2.

Creating Additional Activation Tokens

You may also want to add a standalone endpoint to your API for generating activation

tokens. This can be useful in scenarios where a user doesn’t activate their account in time,

or they never receive their welcome email.

In this appendix we’ll quickly run through the code for doing that, and add the following

endpoint:

Method URL Pattern Handler Action

POST /v1/tokens/activation createActivationTokenHandler Generate a new activation token

The code for the createActivationTokenHandler handler should look like this:

File: cmd/api/tokens.go

...

func (app *application) createActivationTokenHandler(w http.ResponseWriter, r *http.Request) {

 // Parse and validate the user's email address.

 var input struct {

 Email string `json:"email"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 v := validator.New()

 if data.ValidateEmail(v, input.Email); !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Try to retrieve the corresponding user record for the email address. If it can't

 // be found, return an error message to the client.

 user, err := app.models.Users.GetByEmail(input.Email)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 v.AddError("email", "no matching email address found")

 app.failedValidationResponse(w, r, v.Errors)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Return an error if the user has already been activated.

 if user.Activated {

 v.AddError("email", "user has already been activated")

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 // Otherwise, create a new activation token.

 token, err := app.models.Tokens.New(user.ID, 3*24*time.Hour, data.ScopeActivation)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Email the user with their additional activation token.

 app.background(func() {

 data := map[string]interface{}{

 "activationToken": token.Plaintext,

 }

 // Since email addresses MAY be case sensitive, notice that we are sending this

 // email using the address stored in our database for the user --- not to the

 // input.Email address provided by the client in this request.

 err = app.mailer.Send(user.Email, "token_activation.tmpl", data)

 if err != nil {

 app.logger.PrintError(err, nil)

 }

 })

 // Send a 202 Accepted response and confirmation message to the client.

 env := envelope{"message": "an email will be sent to you containing activation instructions"}

 err = app.writeJSON(w, http.StatusAccepted, env, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

You’ll also need to create an internal/mailer/templates/token_activation.tmpl file

containing the necessary email templates, similar to this:

File: internal/mailer/templates/token_activation.tmpl

{{define "subject"}}Activate your Greenlight account{{end}}

{{define "plainBody"}}

Hi,

Please send a `PUT /v1/users/activated` request with the following JSON body to activate your account:

{"token": "{{.activationToken}}"}

Please note that this is a one-time use token and it will expire in 3 days.

Thanks,

The Greenlight Team

{{end}}

{{define "htmlBody"}}

<!doctype html>

<html>

 <head>

 <meta name="viewport" content="width=device-width" />

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

 </head>

 <body>

 <p>Hi,</p>

 <p>Please send a <code>PUT /v1/users/activated</code> request with the following JSON body to activate your account:</p>

 <pre><code>

 {"token": "{{.activationToken}}"}

 </code></pre>

 <p>Please note that this is a one-time use token and it will expire in 3 days.</p>

 <p>Thanks,</p>

 <p>The Greenlight Team</p>

 </body>

</html>

{{end}}

And update the cmd/api/routes.go file to include the new endpoint:

File: cmd/api/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(app.notFoundResponse)

 router.MethodNotAllowed = http.HandlerFunc(app.methodNotAllowedResponse)

 router.HandlerFunc(http.MethodGet, "/v1/healthcheck", app.healthcheckHandler)

 router.HandlerFunc(http.MethodGet, "/v1/movies", app.requirePermission("movies:read", app.listMoviesHandler))

 router.HandlerFunc(http.MethodPost, "/v1/movies", app.requirePermission("movies:write", app.createMovieHandler))

 router.HandlerFunc(http.MethodGet, "/v1/movies/:id", app.requirePermission("movies:read", app.showMovieHandler))

 router.HandlerFunc(http.MethodPatch, "/v1/movies/:id", app.requirePermission("movies:write", app.updateMovieHandler))

 router.HandlerFunc(http.MethodDelete, "/v1/movies/:id", app.requirePermission("movies:write", app.deleteMovieHandler))

 router.HandlerFunc(http.MethodPost, "/v1/users", app.registerUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/activated", app.activateUserHandler)

 router.HandlerFunc(http.MethodPut, "/v1/users/password", app.updateUserPasswordHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/authentication", app.createAuthenticationTokenHandler)

 // Add the POST /v1/tokens/activation endpoint.

 router.HandlerFunc(http.MethodPost, "/v1/tokens/activation", app.createActivationTokenHandler)

 router.HandlerFunc(http.MethodPost, "/v1/tokens/password-reset", app.createPasswordResetTokenHandler)

 router.Handler(http.MethodGet, "/debug/vars", expvar.Handler())

 return app.metrics(app.recoverPanic(app.enableCORS(app.rateLimit(app.authenticate(router)))))

}

Now those things are all in place, a user can request a new activation token by submitting

their email address like this:

$ curl -X POST -d '{"email": "bob@example.com"}' localhost:4000/v1/tokens/activation

{

 "message": "an email will be sent to you containing activation instructions"

}

The token will be sent to them in an email, and they can then submit the token to the

PUT /v1/users/activated endpoint to activate, in exactly the same way as if they received

the token in their welcome email.

If you implement an endpoint like this, it’s important to note that this would allow users to

potentially have multiple valid activation tokens ‘on the go’ at any one time. That’s fine —

but you just need to make sure that you delete all the activation tokens for a user once

they’ve successfully activated (not just the token that they used).

And again, if your API is the backend for a website, then you can tweak the emails and

workflow to make it more intuitive by using the same kind of patterns that we’ve talked

about previously.

Chapter 22.3.

Authentication with JSON Web Tokens

In this appendix we’re going to switch the authentication process for our API to use JSON

Web Tokens (JWTs).

Important: Using JWTs for this particular application doesn't have any benefits over

our current ‘stateful token’ approach. The JWT approach is more complex, ultimately

requires the same number of database lookups, and we lose the ability to revoke

tokens. For those reasons, it doesn't make much sense to use them here. But I still

want to explain the pattern for two reasons:

JWTs have a lot of mind-share, and as a developer it’s likely that you will run into

existing codebases that use them for authentication, or that outside influences

mean you are forced to use them.

It’s worth understanding how they work in case you need to implement APIs that

require delegated authentication, which is a scenario that they’re useful in.

Note: If you’re completely new to JWTs, I recommend reading the Introduction to

JSON Web Tokens article as a starting point.

As we briefly explained earlier in the book, JWTs are a type of stateless token. They contain a

set of claims which are signed (using either a symmetric or asymmetric signing algorithm)

and then encoded using base-64. In our case, we’ll use JWTs to carry a subject claim

containing the ID of an authenticated user.

There are a few different packages available which make working with JWTs relatively

simple in Go. In most cases the pascaldekloe/jwt package is a good choice — it has a clear

and simple API, and is designed to avoid a couple of the major JWT security vulnerabilities

by default.

If you want to follow along, please install it like so:

$ go get github.com/pascaldekloe/jwt@v1.10.0

One of the first things that you need to consider when using JWTs is the choice of signing

https://jwt.io/introduction
https://github.com/pascaldekloe/jwt

algorithm.

If your JWT is going to be consumed by a different application to the one that created it, you

should normally use an asymmetric-key algorithm like ECDSA or RSA. The ‘creating’

application uses its private key to sign the JWT, and the ‘consuming’ application uses the

corresponding public key to verify the signature.

Whereas if your JWT is going to be consumed by the same application that created it, then

the appropriate choice is a (simpler and faster) symmetric-key algorithm like HMAC-SHA256

with a random secret key. This is what we’ll use for our API.

So, to get authentication with JWTs working, you’ll first need to add a secret key for signing

the JWTs to your .envrc file. For example:

File: .envrc

export GREENLIGHT_DB_DSN=postgres://greenlight:pa55word@localhost/greenlight

export JWT_SECRET=pei3einoh0Beem6uM6Ungohn2heiv5lah1ael4joopie5JaigeikoozaoTew2Eh6

Note: Your secret key should be a cryptographically secure random string with an

underlying entropy of at least 32 bytes (256 bits).

And then you’ll need to update your Makefile to pass in the secret key as a command-line

flag when starting the application, like so:

File: Makefile

...

==

DEVELOPMENT

==

run/api: run the cmd/api application

.PHONY: run/api

run/api:

 @go run ./cmd/api -db-dsn=${GREENLIGHT_DB_DSN} -jwt-secret=${JWT_SECRET}

...

Next you’ll need to edit the cmd/api/main.go file so that it parses the JWT secret from the

command-line-flag into the config struct:

File: cmd/api/main.go

package main

...

type config struct {

 port int

 env string

 db struct {

 dsn string

 maxOpenConns int

 maxIdleConns int

 maxIdleTime string

 }

 limiter struct {

 enabled bool

 rps float64

 burst int

 }

 smtp struct {

 host string

 port int

 username string

 password string

 sender string

 }

 cors struct {

 trustedOrigins []string

 }

 jwt struct {

 secret string // Add a new field to store the JWT signing secret.

 }

}

...

func main() {

 var cfg config

 ...

 // Parse the JWT signing secret from the command-line-flag. Notice that we leave the

 // default value as the empty string if no flag is provided.

 flag.StringVar(&cfg.jwt.secret, "jwt-secret", "", "JWT secret")

 displayVersion := flag.Bool("version", false, "Display version and exit")

 flag.Parse()

 ...

}

...

And once that’s done, you can change the createAuthenticationTokenHandler() so that it

generates and sends a JWT instead of a stateful token. Like so:

File: cmd/api/tokens.go

package main

package main

import (

 "errors"

 "net/http"

 "strconv" // New import

 "time"

 "greenlight.alexedwards.net/internal/data"

 "greenlight.alexedwards.net/internal/validator"

 "github.com/pascaldekloe/jwt" // New import

)

func (app *application) createAuthenticationTokenHandler(w http.ResponseWriter, r *http.Request) {

 var input struct {

 Email string `json:"email"`

 Password string `json:"password"`

 }

 err := app.readJSON(w, r, &input)

 if err != nil {

 app.badRequestResponse(w, r, err)

 return

 }

 v := validator.New()

 data.ValidateEmail(v, input.Email)

 data.ValidatePasswordPlaintext(v, input.Password)

 if !v.Valid() {

 app.failedValidationResponse(w, r, v.Errors)

 return

 }

 user, err := app.models.Users.GetByEmail(input.Email)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.invalidCredentialsResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 match, err := user.Password.Matches(input.Password)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 if !match {

 app.invalidCredentialsResponse(w, r)

 return

 }

 // Create a JWT claims struct containing the user ID as the subject, with an issued

 // time of now and validity window of the next 24 hours. We also set the issuer and

 // audience to a unique identifier for our application.

 var claims jwt.Claims

 claims.Subject = strconv.FormatInt(user.ID, 10)

 claims.Issued = jwt.NewNumericTime(time.Now())

 claims.NotBefore = jwt.NewNumericTime(time.Now())

 claims.Expires = jwt.NewNumericTime(time.Now().Add(24 * time.Hour))

 claims.Issuer = "greenlight.alexedwards.net"

 claims.Audiences = []string{"greenlight.alexedwards.net"}

 claims.Audiences = []string{"greenlight.alexedwards.net"}

 // Sign the JWT claims using the HMAC-SHA256 algorithm and the secret key from the

 // application config. This returns a []byte slice containing the JWT as a base64-

 // encoded string.

 jwtBytes, err := claims.HMACSign(jwt.HS256, []byte(app.config.jwt.secret))

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Convert the []byte slice to a string and return it in a JSON response.

 err = app.writeJSON(w, http.StatusCreated, envelope{"authentication_token": string(jwtBytes)}, nil)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 }

}

...

Go ahead and vendor the new github.com/pascaldekloe/jwt dependency and run the API

like so:

$ make vendor

$ make run/api

Then when you make a request to the POST /v1/tokens/authentication endpoint with a

valid email address and password, you should now get a response containing a JWT like this

(line breaks added for readability):

$ curl -X POST -d '{"email": "faith@example.com", "password": "pa55word"}' localhost:4000/v1/tokens/authentication

{

 "authentication_token": "eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJncmVlbmxpZ2h0LmFsZXhlZHdhcm

 RzLm5ldCIsInN1YiI6IjciLCJhdWQiOlsiZ3JlZW5saWdodC5hbGV4ZWR3YXJkcy5uZXQiXSwiZXhwIjoxNj

 E4OTM4MjY0LjgxOTIwNSwibmJmIjoxNjE4ODUxODY0LjgxOTIwNSwiaWF0IjoxNjE4ODUxODY0LjgxOTIwND

 h9.zNK1bJPl5rlr_YvjyOXuimJwaC3KgPqmW2M1u5RvgeA"

}

If you’re curious, you can decode the base64-encoded JWT data. You should see that the

content of the claims matches the information that you would expect, similar to this:

{"alg":"HS256"}{"iss":"greenlight.alexedwards.net","sub":"7","aud":["greenlight.alexedwards.net"],

"exp":1618938264.819205,"nbf":1618851864.819205,"iat":1618851864.8192048}...

Next you’ll need to update the authenticate() middleware to accept JWTs in an

Authorization: Bearer <jwt> header, verify the JWT, and extract the user ID from the

subject claim.

When we say “verify the JWT”, what we actually mean is the following four things:

https://www.base64decode.org/

Check that the signature of the JWT matches the contents of the JWT, given our secret

key. This will confirm that the token hasn’t been altered by the client.

Check that the current time is between the “not before” and “expires” times for the JWT.

Check that the JWT “issuer” is "greenlight.alexedwards.net".

Check that "greenlight.alexedwards.net" is in the JWT “audiences”.

Go ahead and update the authenticate() middleware as follows:

File: cmd/api/middleware.go

package main

import (

 "errors"

 "expvar"

 "fmt"

 "net/http"

 "strconv"

 "strings"

 "sync"

 "time"

 "greenlight.alexedwards.net/internal/data"

 "github.com/felixge/httpsnoop"

 "github.com/pascaldekloe/jwt" // New import

 "github.com/tomasen/realip"

 "golang.org/x/time/rate"

)

...

func (app *application) authenticate(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 w.Header().Add("Vary", "Authorization")

 authorizationHeader := r.Header.Get("Authorization")

 if authorizationHeader == "" {

 r = app.contextSetUser(r, data.AnonymousUser)

 next.ServeHTTP(w, r)

 return

 }

 headerParts := strings.Split(authorizationHeader, " ")

 if len(headerParts) != 2 || headerParts[0] != "Bearer" {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 token := headerParts[1]

 // Parse the JWT and extract the claims. This will return an error if the JWT

 // contents doesn't match the signature (i.e. the token has been tampered with)

 // or the algorithm isn't valid.

 claims, err := jwt.HMACCheck([]byte(token), []byte(app.config.jwt.secret))

 if err != nil {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 }

 // Check if the JWT is still valid at this moment in time.

 if !claims.Valid(time.Now()) {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 // Check that the issuer is our application.

 if claims.Issuer != "greenlight.alexedwards.net" {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 // Check that our application is in the expected audiences for the JWT.

 if !claims.AcceptAudience("greenlight.alexedwards.net") {

 app.invalidAuthenticationTokenResponse(w, r)

 return

 }

 // At this point, we know that the JWT is all OK and we can trust the data in

 // it. We extract the user ID from the claims subject and convert it from a

 // string into an int64.

 userID, err := strconv.ParseInt(claims.Subject, 10, 64)

 if err != nil {

 app.serverErrorResponse(w, r, err)

 return

 }

 // Lookup the user record from the database.

 user, err := app.models.Users.Get(userID)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrRecordNotFound):

 app.invalidAuthenticationTokenResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 // Add the user record to the request context and continue as normal.

 r = app.contextSetUser(r, user)

 next.ServeHTTP(w, r)

 })

}

Lastly, to get this working, you’ll need to create a new UserModel.Get() method to retrieve

the user details from the database based on their ID.

File: internal/data/users.go

package data

...

func (m UserModel) Get(id int64) (*User, error) {

 query := `

 SELECT id, created_at, name, email, password_hash, activated, version

 FROM users

 WHERE id = $1`

 var user User

 ctx, cancel := context.WithTimeout(context.Background(), 3*time.Second)

 defer cancel()

 err := m.DB.QueryRowContext(ctx, query, id).Scan(

 &user.ID,

 &user.CreatedAt,

 &user.Name,

 &user.Email,

 &user.Password.hash,

 &user.Activated,

 &user.Version,

)

 if err != nil {

 switch {

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrRecordNotFound

 default:

 return nil, err

 }

 }

 return &user, nil

}

You should now be able to make a request to the one of the protected endpoints, and it will

only succeed if your request contains a valid JWT in the Authorization header. For

example:

$ curl -H "Authorization: Bearer eyJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJncmVlbmxpZ..." localhost:4000/v1/movies/2

{

 "movie": {

 "id": 2,

 "title": "Black Panther",

 "year": 2018,

 "runtime": "134 mins",

 "genres": [

 "sci-fi",

 "action",

 "adventure"

],

 "version": 2

 }

}

$ curl -H "Authorization: Bearer INVALID" localhost:4000/v1/movies/2

{

 "error": "invalid or missing authentication token"

}

Note: Because JWTs are base64-encoded, you may be able to change the final

character in the JWT and it will still be accepted as valid. This is OK, and a detailed

explanation of why can be found in this StackOverflow post and this GitHub issue.

If you’re planning to put a system into production which uses JWTs, I also recommend

spending some time to read and fully understand the following two articles:

JWT Security Best Practices

Critical vulnerabilities in JSON Web Token libraries

https://stackoverflow.com/questions/58492009/jwt-token-decoding-even-when-the-last-character-of-the-signature-is-changed
https://github.com/jwtk/jjwt/issues/269
https://curity.io/resources/learn/jwt-best-practices/
https://auth0.com/blog/critical-vulnerabilities-in-json-web-token-libraries/

Chapter 22.4.

JSON Encoding Nuances

Nil and empty slices are encoded differently

Nil slices in Go will be encoded to the null JSON value, whereas an empty (but not nil) slice

will be encoded to an empty JSON array. For example:

var nilSlice []string

emptySlice := []string{}

m := map[string][]string{

 "nilSlice": nilSlice,

 "emptySlice": emptySlice,

}

Will encode to the following JSON:

{"emptySlice":[],"nilSlice":null}

Using omitempty on a zero-valued struct doesn’t work

The omitempty struct tag directive never considers a struct to be empty — even if all the

struct fields have their zero value and you use omitempty on those fields too. It will always

appear as an object in the encoded JSON. For example, the following struct:

s := struct {

 Foo struct {

 Bar string `json:",omitempty"`

 } `json:",omitempty"`

}{}

Will encode to the JSON:

{"Foo":{}}

There’s a long-standing proposal which discusses changing this behavior, but the Go 1

compatibility promise means that it’s unlikely to happen any time soon. Instead, you can

get around this by making the field a pointer to a struct, which works because omitempty

considers nil pointers to be empty. For example:

https://github.com/golang/go/issues/11939

s := struct {

 Foo *struct {

 Bar string `json:",omitempty"`

 } `json:",omitempty"`

}{}

Will encode to an empty JSON object like this:

{}

Using omitempty on a zero-value time.Time doesn’t work

Using omitempty on a zero-value time.Time field won’t hide it in the JSON object. This is

because the time.Time type is a struct behind the scenes and, as mentioned above,

omitempty never considers structs to be empty. Instead, the string "0001-01-01T00:00:00Z"

will appear in the JSON (which is the value returned by calling the MarshalJSON() method

on a zero-value time.Time). For example, the following struct:

s := struct {

 Foo time.Time `json:",omitempty"`

}{}

Will encode to the JSON:

{"Foo":"0001-01-01T00:00:00Z"}

Non-ASCII punctuation characters aren’t supported in struct tags

When using struct tags to change the keys in a JSON object, any tags containing non-ASCII

punctuation characters will be ignored. Notably this means that you can’t use en or em

dashes, or most currency signs, in struct tags. For example, the following struct:

s := struct {

 CostUSD string `json:"cost $"` // This is OK.

 CostEUR string `json:"cost €"` // This contains the non-ASCII punctuation character

 // € and will be ignored.

}{

 CostUSD: "100.00",

 CostEUR: "100.00",

}

Will encode to the following JSON (notice that the struct tag renaming the CostEUR key has

been ignored):

{"cost $":"100.00","CostEUR":"100.00"}

Integer, time.Time and net.IP values can be used as map keys

It’s possible to encode a map which has integer values as the map keys. The integers will be

automatically converted to strings in the resulting JSON (because the keys in a JSON object

must always be strings). For example, the following map:

m := map[int]string{

 123: "foo",

 456_000: "bar",

}

Will encode to the JSON:

{"123":"foo","456000":"bar"}

In addition, map keys that implement the encoding.TextMarshaler interface are also

supported. This means that you can also use time.Time and net.IP values as map keys out-

of-the-box. For example, the following map:

t1 := time.Now()

t2 := t1.Add(24 * time.Hour)

m := map[time.Time]string{

 t1: "foo",

 t2: "bar",

}

Will encode to JSON which looks similar to this:

{"2009-11-10T23:00:00Z":"foo","2009-11-11T23:00:00Z":"bar"}

Angle brackets and ampersands in strings are escaped

If a string contains the angle brackets < or > these will be escaped to the unicode character

codes \u003c and \u003e when encoded to JSON. Likewise the & character will be escaped

to \u0026. This is to prevent some web browsers from accidentally interpreting a JSON

response as HTML. For example, the following slice:

https://golang.org/pkg/encoding/#TextMarshaler
https://unicode.org/charts/

s := []string{

 "<foo>",

 "bar & baz",

}

Will encode to the JSON:

["\u003cfoo\u003e","bar \u0026 baz"]

If you want to prevent these characters being escaped, you’ll need to use a json.Encoder

instance with SetEscapeHTML(false) to perform the encoding.

Trailing zeroes are removed from floats

When encoding a floating-point number with a fractional part that ends in zero(es), any

trailing zeroes will not appear in the JSON. For example:

s := []float64{

 123.0,

 456.100,

 789.990,

}

Will be encoded to the JSON:

[123,456.1,789.99]

Working with pre-computed JSON

If you have a string or []byte slice which contains ‘pre-computed’ or ‘pre-encoded’ JSON,

by default Go will treat it just like any other string or []byte slice during encoding. That

means that a string will be escaped and encoded as a JSON string, and a byte slice will be

encoded as a base-64 JSON string. For example, the following struct:

m := struct {

 Person string

}{

 Person: `{"name": "Alice", "age": 21}`,

}

Will encode to:

https://golang.org/pkg/encoding/json/#Encoder.SetEscapeHTML

{"Person":"{\"name\": \"Alice\", \"age\": 21}"}

If you want to interpolate the pre-computed JSON without any changes, you’ll need to

convert the pre-computed JSON value to a json.RawMessage type. Go will then directly

interpolate it into the rest of the JSON. For example:

m := struct {

 Person json.RawMessage

}{

 Person: json.RawMessage(`{"name": "Alice", "age": 21}`),

}

Will encode to the JSON:

{"Person":{"name":"Alice","age":21}}

Important: Take care when using json.RawMessage to make sure that the pre-

computed value contains valid JSON, otherwise you’ll get an error when trying to

encode the parent object. If you need to check this at runtime, you can do so by using

the json.Valid() function.

The MarshalText fallback

If a type doesn’t have a MarshalJSON() method but does have a MarshalText() method

instead (so that it implements the encoding.TextMarshaler interface), then Go will fall back

to calling this during JSON encoding and present the result as a JSON string.

For example, if you run the following code:

https://golang.org/pkg/encoding/json/#RawMessage
https://golang.org/pkg/encoding/json/#Valid
https://golang.org/pkg/encoding/#TextMarshaler
https://play.golang.org/p/wtHwCWpmKCj

type myFloat float64

func (f myFloat) MarshalText() ([]byte, error) {

 return []byte(fmt.Sprintf("%.2f", f)), nil

}

func main() {

 f := myFloat(1.0/3.0)

 js, err := json.Marshal(f)

 if err != nil {

 log.Fatal(err)

 }

 fmt.Printf("%s", js)

}

It will print the return value from MarshalText() as a JSON string:

"0.33"

The receiver matters when using MarshalJSON

We touched on this earlier in the book, but it’s really worth emphasizing because it often

catches people out. If you implement a MarshalJSON() method on a custom type and the

MarshalJSON() method uses a pointer receiver, it will only be used when you are encoding a

pointer to the custom type. For any custom type values, it will be completely ignored.

You can see this in action if you run this code on the Go playground.

Unless you specifically want this behavior, I recommend getting into the habit of always

using value receivers for a MarshalJSON() method, just like we have in this book.

https://play.golang.org/p/8ek3-nb8LaN

Chapter 22.5.

JSON Decoding Nuances

Decoding into Go arrays

When you’re decoding a JSON array into a Go array (not a slice) there are a couple of

important behaviors to be aware of:

If the Go array is smaller than the JSON array, then the additional JSON array elements

are silently discarded.

If the Go array is larger than the JSON array, then the additional Go array elements are

set to their zero values.

As an example:

js := `[1, 2, 3]`

var tooShortArray [2]int

err := json.NewDecoder(strings.NewReader(js)).Decode(&tooShortArray)

if err != nil {

 log.Fatal(err)

}

var tooLongArray [4]int

err = json.NewDecoder(strings.NewReader(js)).Decode(&tooLongArray)

if err != nil {

 log.Fatal(err)

}

fmt.Printf("tooShortArray: %v\n", tooShortArray)

fmt.Printf("tooLongArray: %v\n", tooLongArray)

Will print out:

tooShortArray: [1 2]

tooLongArray: [1 2 3 0]

Partial JSON decoding

If you have a lot of JSON input to process and only need a small part of it, it’s often possible

to leverage the json.RawMessage type to help deal with this. For example:

// Let's say that the only thing we're interested in is processing the "genres" array in

// the following JSON object

js := `{"title": "Top Gun", "genres": ["action", "romance"], "year": 1986}`

// Decode the JSON object to a map[string]json.RawMessage type. The json.RawMessage

// values in the map will retain their original, un-decoded, JSON values.

var m map[string]json.RawMessage

err := json.NewDecoder(strings.NewReader(js)).Decode(&m)

if err != nil {

 log.Fatal(err)

}

// We can then access the JSON "genres" value from the map and decode it as normal using

// the json.Unmarshal() function.

var genres []string

err = json.Unmarshal(m["genres"], &genres)

if err != nil {

 log.Fatal(err)

}

fmt.Printf("genres: %v\n", genres)

This will print out:

genres: [action romance]

In this toy example, using json.RawMessage doesn’t save us much work. But if you need to

process a JSON object with tens or hundreds of key/value pairs and only need a few of

them, then taking this approach can save you a lot of typing.

Decoding into interface{} types

It’s possible to decode JSON values into empty interface types (interface{}). When you do

this, the underlying value that the interface{} type holds will depend on the type of the

JSON value being decoded.

JSON type ⇒ Underlying Go type of interface{}

JSON boolean ⇒ bool

JSON string ⇒ string

JSON number ⇒ float64

JSON array ⇒ []interface{}

JSON object ⇒ map[string]interface{}

JSON null ⇒ nil

Decoding into an interface{} type can be useful in situations where:

You don’t know in advance exactly what you’re decoding.

You need to decode JSON arrays which contain items with different JSON types.

The key/value pair in a JSON object doesn’t always contain values with the same JSON

type.

As an example, consider the following code:

// This JSON array contains both JSON string and JSON boolean types.

js := `["foo", true]`

// Decode the JSON into a []interface{} slice.

var s []interface{}

err := json.NewDecoder(strings.NewReader(js)).Decode(&s)

if err != nil {

 log.Fatal(err)

}

// The first value in the slice will have the underlying Go type string, the second will

// have the underlying Go type bool. We can then type assert them and print them out

// the values along with their underlying type.

fmt.Printf("item: 0; type: %T; value: %v\n", s[0], s[0].(string))

fmt.Printf("item: 1; type: %T; value: %v\n", s[1], s[1].(bool))

This will print out:

item: 0; type: string; value: foo

item: 1; type: bool; value: true

Decoding a JSON number to an interface{}

As shown in the table above, when you decode a JSON number into an interface{} type

the value will have the underlying type float64 — even if it is an integer in the original

JSON. For example:

js := `10` // This JSON number is an integer.

var n interface{}

err := json.NewDecoder(strings.NewReader(js)).Decode(&n)

if err != nil {

 log.Fatal(err)

}

fmt.Printf("type: %T; value: %v\n", n, n)

Will print:

type: float64; value: 10

If you want to get the value as an integer (instead of a float64) you should call the

UseNumber() method on your json.Decoder instance before decoding. This will cause all

JSON numbers to be decoded to the underlying type json.Number instead of float64 .

The json.Number type then provides an Int64() method that you can call to get the number

as an int64 , or the String() method to get the number as a string. For example:

js := `10`

var n interface{}

dec := json.NewDecoder(strings.NewReader(js))

dec.UseNumber() // Call the UseNumber() method on the decoder before using it.

err := dec.Decode(&n)

if err != nil {

 log.Fatal(err)

}

// Type assert the interface{} value to a json.Number, and then call the Int64() method

// to get the number as a Go int64.

nInt64, err := n.(json.Number).Int64()

if err != nil {

 log.Fatal(err)

}

// Likewise, you can use the String() method to get the number as a Go string.

nString := n.(json.Number).String()

fmt.Printf("type: %T; value: %v\n", n, n)

fmt.Printf("type: %T; value: %v\n", nInt64, nInt64)

fmt.Printf("type: %T; value: %v\n", nString, nString)

This will print out:

https://golang.org/pkg/encoding/json/#Decoder.UseNumber
https://golang.org/pkg/encoding/json/#Number
https://golang.org/pkg/encoding/json/#Number.Int64
https://golang.org/pkg/encoding/json/#Number.String

type: json.Number; value: 10

type: int64; value: 10

type: string; value: 10

Struct tag directives

Using the struct tag json:"-" on a struct field will cause it to be ignored when decoding

JSON, even if the JSON input contains a corresponding key/value pair. For example:

js := `{"name": "alice", "age": 21}`

var person struct {

 Name string `json:"name"`

 Age int32 `json:"-"`

}

err := json.NewDecoder(strings.NewReader(js)).Decode(&person)

if err != nil {

 log.Fatal(err)

}

fmt.Printf("%+v", person)

Will print out:

{Name:alice Age:0}

The omitempty struct tag directive does not have any effect on JSON decoding behavior.

Chapter 22.6.

Request Context Timeouts

As an alternative to the pattern that we’ve used in this book for managing database

timeouts, we could have created a context with a timeout in our handlers using the request

context as the parent — and then passed the context on to our database model.

Very roughly, a pattern like this:

func (app *application) exampleHandler(w http.ResponseWriter, r *http.Request) {

 ...

 // Create a context.Context with a one-second timeout deadline and which has the

 // request context as the 'parent'.

 ctx, cancel := context.WithTimeout(r.Context(), time.Second)

 defer cancel()

 // Pass the context on to the Get() method.

 example, err := app.models.Example.Get(ctx, id)

 if err != nil {

 switch {

 case errors.Is(err, data.ErrNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 ...

}

In many ways, doing this would be considered good practice. Allowing context to ‘flow’

through your application is generally a good idea, and this approach is also more flexible —

whatever is calling the database model can easily control the timeout duration rather than

it always being a fixed duration set by the database model.

But using the request context as the parent introduces a lot of additional complexity.

The key thing to be aware of is that the request context will be canceled if the client closes

their HTTP connection. From the net/http docs:

For incoming server requests, the [request] context is canceled when the client’s connection

closes, the request is canceled (with HTTP/2), or when the ServeHTTP method returns.

If we use the request context as the parent, then this cancellation signal will bubble down to

our database driver pq and the running SQL query will be terminated in exactly the same

way that it is when a context timeout is reached. Importantly, it means we would receive

the same pq: canceling statement due to user request error message that we do when

a database query times out.

On one hand this is a positive thing — if there is no client left to return a response to, we

may as well cancel the SQL query and free-up resources.

On the other hand, we will receive the same error message in two very different scenarios:

When a database query takes too long to complete, in which case we would want to log it

as an error.

When a client closes the connection — which can happen for many innocuous reasons,

such as a user closing a browser tab or terminating a process. It’s not really an error from

our application’s point of view, and we would probably want to either ignore it or

perhaps log it as a warning.

Fortunately, it is possible to tell these two scenarios apart by calling the ctx.Err() method

on the context. If the context was canceled (due to a client closing the connection), then

ctx.Err() will return the error context.Canceled. If the timeout was reached, then it will

return context.DeadlineExceeded instead. If both the deadline is reached and the context

is canceled, then ctx.Err() will surface whichever happened first.

It’s also important to be aware that you may receive a context.Canceled error if the client

closes the connection while the query is queued by sql.DB, and likewise Scan() may return

a context.Canceled error too.

Putting all that together, a sensible way to manage this is to check for the error pq:

canceling statement due to user request in our database model and wrap it with the

error from ctx.Err() before returning. For example:

https://golang.org/pkg/context/#pkg-variables
https://golang.org/pkg/context/#pkg-variables

func (m ExampleModel) Get(ctx context.Context, id int64) (*Example, error) {

 query := `SELECT ... FROM examples WHERE id = $1`

 var example Example

 err := m.DB.QueryRowContext(ctx, query, id).Scan(...)

 if err != nil {

 switch {

 case err.Error() == "pq: canceling statement due to user request":

 // Wrap the error with ctx.Err().

 return nil, fmt.Errorf("%v: %w", err, ctx.Err())

 case errors.Is(err, sql.ErrNoRows):

 return nil, ErrNotFound

 default:

 return nil, err

 }

 }

 return &example, nil

}

Then in your handlers you can use errors.Is() to check if the error returned by the

database model is equal to (or wraps) context.Canceled, and manage it accordingly.

func (app *application) exampleHandler(w http.ResponseWriter, r *http.Request) {

 ...

 ctx, cancel := context.WithTimeout(r.Context(), 3*time.Second)

 defer cancel()

 example, err := app.models.Example.Get(ctx, id)

 if err != nil {

 switch {

 // If the error is equal to or wraps context.Canceled, then return without taking

 // any further action.

 case errors.Is(err, context.Canceled):

 return

 case errors.Is(err, data.ErrNotFound):

 app.notFoundResponse(w, r)

 default:

 app.serverErrorResponse(w, r, err)

 }

 return

 }

 ...

}

As well as this additional error handling, you also need to be aware of the implications when

using background goroutines. Bear in mind what I quoted earlier about request context

cancellation:

For incoming server requests, the [request] context is canceled … when the ServeHTTP

method returns.

This means that if you derive your context from the request context, any SQL queries using

the context in a background goroutine will be canceled when the HTTP response is sent for

the initial request! If you don’t want that to be the case (and you probably don’t), then you

would need to create a brand-new context for the background goroutine using

context.Background() anyway.

So, to summarize, using the request context as the parent context for database timeouts

adds quite a lot of behavioral complexity and introduces nuances that you and anyone else

working on the codebase needs to be aware of. You have to ask: is it worth it?

For most applications, on most endpoints, it’s probably not. The exceptions are probably

applications which frequently run close to saturation point of their resources, or for specific

endpoints which execute slow running or very computationally expensive SQL queries. In

those cases, canceling queries aggressively when a client disappears may have a

meaningful positive impact and make it worth the trade-off.

	Contents
	Introduction
	Conventions
	About the author
	Copyright and disclaimer
	Prerequisites
	Background knowledge
	Go 1.16
	Other software

	Getting Started
	Project Setup and Skeleton Structure
	Generating the skeleton directory structure
	Hello world!

	A Basic HTTP Server
	Creating the healthcheck handler
	Demonstration
	Additional Information
	API versioning

	API Endpoints and RESTful Routing
	Choosing a router
	Encapsulating the API routes
	Adding the new handler functions
	Creating a helper to read ID parameters
	Additional Information
	Conflicting routes
	Customizing httprouter behavior

	Sending JSON Responses
	Fixed-Format JSON
	Additional Information
	JSON charset

	JSON Encoding
	Creating a writeJSON helper method
	Additional Information
	How different Go types are encoded
	Using json.Encoder
	Performance of json.Encoder and json.Marshal
	Additional JSON encoding nuances

	Encoding Structs
	Changing keys in the JSON object
	Hiding struct fields in the JSON object
	Additional Information
	The string struct tag directive

	Formatting and Enveloping Responses
	Relative performance
	Enveloping responses
	Additional Information
	Response structure

	Advanced JSON Customization
	Customizing the Runtime field
	Additional Information
	Alternative #1 - Customizing the Movie struct
	Alternative #2 - Embedding an alias

	Sending Error Messages
	Routing errors
	Additional Information
	System-generated error responses

	Parsing JSON Requests
	JSON Decoding
	Zero values
	Additional Information
	Supported destination types
	Using the json.Unmarshal function
	Additional JSON decoding nuances

	Managing Bad Requests
	Triaging the Decode error
	Making a bad request helper
	Additional Information
	Panicking vs returning errors

	Restricting Inputs
	Custom JSON Decoding
	The json.Unmarshaler interface

	Validating JSON Input
	Creating a validator package
	Performing validation checks
	Making validation rules reusable

	Database Setup and Configuration
	Setting up PostgreSQL
	Installing PostgreSQL
	Connecting to the PostgreSQL interactive terminal
	Creating databases, users, and extensions
	Connecting as the new user
	Additional Information
	Optimizing PostgreSQL settings

	Connecting to PostgreSQL
	Establishing a connection pool
	Decoupling the DSN
	Additional Information
	Using the DSN with psql

	Configuring the Database Connection Pool
	Configuring the pool
	The SetMaxOpenConns method
	The SetMaxIdleConns method
	The SetConnMaxLifetime method
	The SetConnMaxIdleTime method

	Putting it into practice
	Configuring the connection pool

	SQL Migrations
	An Overview of SQL Migrations
	Installing the migrate tool

	Working with SQL Migrations
	Executing the migrations
	Additional Information
	Migrating to a specific version
	Executing down migrations
	Fixing errors in SQL migrations
	Remote migration files
	Running migrations on application startup

	CRUD Operations
	Setting up the Movie Model
	Additional Information
	Mocking models

	Creating a New Movie
	Executing the SQL query
	Hooking it up to our API handler
	Creating additional records
	Additional Information
	$N notation
	Executing multiple statements

	Fetching a Movie
	Updating the API handler
	Additional Information
	Why not use an unsigned integer for the movie ID?

	Updating a Movie
	Executing the SQL query
	Creating the API handler
	Using the new endpoint

	Deleting a Movie
	Adding the new endpoint

	Advanced CRUD Operations
	Handling Partial Updates
	Performing the partial update
	Demonstration
	Additional Information
	Null values in JSON

	Optimistic Concurrency Control
	Preventing the data race
	Implementing optimistic locking
	Additional Information
	Round-trip locking
	Locking on other fields or types

	Managing SQL Query Timeouts
	Mimicking a long-running query
	Adding a query timeout
	Timeouts outside of PostgreSQL
	Updating our database model
	Additional Information
	Using the request context

	Filtering, Sorting, and Pagination
	Parsing Query String Parameters
	Creating helper functions
	Adding the API handler and route
	Creating a Filters struct

	Validating Query String Parameters
	Listing Data
	Updating the application

	Filtering Lists
	Dynamic filtering in the SQL query

	Full-Text Search
	Adding indexes
	Additional Information
	Non-simple configuration and more information
	Using STRPOS and ILIKE

	Sorting Lists
	Implementing sorting

	Paginating Lists
	The LIMIT and OFFSET clauses
	Updating the database model

	Returning Pagination Metadata
	Calculating the total records
	Updating the code

	Structured Logging and Error Handling
	Structured JSON Log Entries
	Creating a custom logger
	Additional Information
	Integration with the http.Server error log
	Third-party logging packages

	Panic Recovery
	Additional Information
	Panic recovery in other goroutines

	Rate Limiting
	Global Rate Limiting
	Enforcing a global rate limit

	IP-based Rate Limiting
	Deleting old limiters
	Additional Information
	Distributed applications

	Configuring the Rate Limiters

	Graceful Shutdown
	Sending Shutdown Signals
	Intercepting Shutdown Signals
	Catching SIGINT and SIGTERM signals

	Executing the Shutdown

	User Model Setup and Registration
	Setting up the Users Database Table
	Setting up the Users Model
	Adding Validation Checks
	Creating the UserModel

	Registering a User
	Additional Information
	Email case-sensitivity
	User enumeration

	Sending Emails
	SMTP Server Setup
	Setting up Mailtrap

	Creating Email Templates
	Sending a Welcome Email
	Creating an email helper
	Using embedded file systems
	Using our mail helper
	Checking the email in Mailtrap
	Additional Information
	Retrying email send attempts

	Sending Background Emails
	Recovering panics
	Using a helper function

	Graceful Shutdown of Background Tasks
	An introduction to sync.WaitGroup
	Fixing our application

	User Activation
	Setting up the Tokens Database Table
	Creating Secure Activation Tokens
	Creating the TokenModel and Validation Checks
	Additional Information
	The math/rand package

	Sending Activation Tokens
	Additional Information
	A standalone endpoint for generating tokens

	Activating a User
	Creating the activateUserHandler
	The UserModel.GetForToken method
	Additional Information
	Web application workflow
	SQL query timing attack

	Authentication
	Authentication Options
	HTTP basic authentication
	Token authentication
	Stateful token authentication
	Stateless token authentication

	API-key authentication
	OAuth 2.0 / OpenID Connect
	What authentication approach should I use?

	Generating Authentication Tokens
	Building the endpoint
	Additional Information
	The Authorization header

	Authenticating Requests
	Creating the anonymous user
	Reading and writing to the request context
	Creating the authentication middleware
	Demonstration

	Permission-based Authorization
	Requiring User Activation
	Demonstration
	Splitting up the middleware
	Additional Information
	In-handler checks

	Setting up the Permissions Database Table
	Relationship between permissions and users
	Creating the SQL migrations

	Setting up the Permissions Model
	Checking Permissions
	Demonstration

	Granting Permissions
	Updating the permissions model
	Updating the registration handler

	Cross Origin Requests
	An Overview of CORS
	Demonstrating the Same-Origin Policy
	Demonstration

	Simple CORS Requests
	Restricting Origins
	Supporting multiple dynamic origins
	Additional Information
	Partial origin matches
	The null origin
	Authentication and CORS

	Preflight CORS Requests
	Demonstrating a preflight request
	Responding to preflight requests
	Updating our middleware
	Additional Information
	Caching preflight responses
	Preflight wildcards

	Metrics
	Exposing Metrics with Expvar
	Creating Custom Metrics
	Dynamic metrics
	Additional Information
	Protecting the metrics endpoint
	Removing default metrics

	Request-level Metrics
	Additional Information
	Calculating additional metrics

	Recording HTTP Status Codes
	Additional Information
	Visualizing and analyzing metrics

	Building, Versioning and Quality Control
	Creating and Using Makefiles
	A simple makefile
	Environment variables
	Passing arguments
	Namespacing targets
	Prerequisite targets and asking for confirmation
	Displaying help information
	Phony targets

	Managing Environment Variables
	Using a .envrc file

	Quality Controlling Code
	Additional Information
	Testing

	Module Proxies and Vendoring
	Module proxies
	Vendoring
	Vendoring new dependencies
	Additional Information
	The ./… pattern

	Building Binaries
	Reducing binary size
	Cross-compilation
	Additional Information
	Build caching

	Managing and Automating Version Numbers
	Displaying the version number
	Including the build time
	Automated version numbering with Git
	Using Git tags

	Deployment and Hosting
	Creating a Digital Ocean Droplet
	Creating a SSH key
	Adding the SSH key to Digital Ocean
	Creating a droplet

	Server Configuration and Installing Software
	Connecting as the greenlight user
	Connecting to the droplet
	Additional Information
	Future changes to the droplet configuration

	Deployment and Executing Migrations
	Running the API

	Running the API as a Background Service
	Restarting after reboot
	Disable port 4000
	Additional Information
	Listening on a restricted port
	Viewing logs
	Configuring the SMTP provider
	Additional unit file options

	Using Caddy as a Reverse Proxy
	Blocking access to application metrics
	Using a domain name
	Enabling HTTPS

	Appendices
	Managing Password Resets
	Additional Information
	Web application workflow

	Creating Additional Activation Tokens
	Authentication with JSON Web Tokens
	JSON Encoding Nuances
	Nil and empty slices are encoded differently
	Using omitempty on a zero-valued struct doesn’t work
	Using omitempty on a zero-value time.Time doesn’t work
	Non-ASCII punctuation characters aren’t supported in struct tags
	Integer, time.Time and net.IP values can be used as map keys
	Angle brackets and ampersands in strings are escaped
	Trailing zeroes are removed from floats
	Working with pre-computed JSON
	The MarshalText fallback
	The receiver matters when using MarshalJSON

	JSON Decoding Nuances
	Decoding into Go arrays
	Partial JSON decoding
	Decoding into interface{} types
	Decoding a JSON number to an interface{}
	Struct tag directives

	Request Context Timeouts

