
Introduction to
Software Testing

A Practical Guide to Testing, Design,
Automation, and Execution
—
Panagiotis Leloudas

Introduction to
Software Testing

A Practical Guide to Testing,
Design, Automation,

and Execution

Panagiotis Leloudas

Introduction to Software Testing: A Practical Guide to Testing, Design,

Automation, and Execution

ISBN-13 (pbk): 978-1-4842-9513-7		 ISBN-13 (electronic): 978-1-4842-9514-4
https://doi.org/10.1007/978-1-4842-9514-4

Copyright © 2023 by Panagiotis Leloudas

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Divya Modi
Development Editor: James Markham
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image by Freepik.com

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY
10004, U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com,
or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance
Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub (https://github.com/Apress). For more detailed information,
please visit www.apress.com/source-code.

Printed on acid-free paper

Panagiotis Leloudas
Ilioupoli, Greece

https://doi.org/10.1007/978-1-4842-9514-4

To my family

v

Table of Contents

About the Author��xi

About the Technical Reviewer��xiii

Acknowledgments���xv

Introduction���xvii

Chapter 1: ��The Importance of Software Testing������������������������������������1

Summary���4

Chapter 2: ��Software Testing Types and Techniques������������������������������5

Functional Testing��5

Unit Testing���7

Integration Testing��9

System Testing���11

User Acceptance Testing��11

Nonfunctional Testing��13

Performance Testing���14

Security Testing��17

Usability Testing���20

Compatibility Testing��21

Scalability Testing���22

Reliability Testing���23

Availability Testing��24

Installability Testing��24

vi

Maintainability Testing��26

Compliance Testing��27

Static Testing���29

Code Reviews���29

Requirement Reviews��30

Design Reviews��31

Walk-Throughs���32

Inspections���33

Summary���34

Chapter 3: ��Software Development Life Cycle���������������������������������������35

Planning Phase��36

Requirements Gathering Phase���39

Design Phase���42

Development Phase���45

Deployment Phase���48

Maintenance Phase��51

The Role of Testing in the SDLC���54

Summary���55

Chapter 4: ��Test Planning��57

Defining Testing Objectives��57

Determining the Scope of Testing��59

Selecting the Testing Approach��59

Identifying Testing Resources��61

Developing the Test Schedule��62

Defining Test Cases��63

Identifying Test Data��65

Table of Contents

vii

Defect Management Process���66

Stop Testing Criteria���67

Reviewing and Approving the Test Plan���67

Benefits of Test Planning���68

Test Plan Document���69

Test Planning Tools and Techniques���71

Summary���73

Chapter 5: ��Test Design Techniques��75

Black-Box Testing��75

Equivalence Partitioning���78

Boundary Value Analysis��82

Decision Table Testing��84

State Transition Testing��88

Use-Case Testing��93

Pairwise Testing���95

Error Guessing��98

Exploratory Testing���100

Random Testing��103

Ad Hoc Testing��105

White-Box Testing��107

Statement Coverage���109

Branch Coverage��112

Path Coverage��115

Condition Coverage��118

Decision Coverage��121

Multiple Condition Coverage���123

Modified Condition/Decision Coverage���127

Table of Contents

viii

Loop Testing���130

Data Flow Testing���132

Static Testing���133

Summary���135

Chapter 6: ��Test Execution��137

Getting Started���137

Test Execution Process��138

Test Environment Setup���139

Defect Reporting and Retesting���141

Regression Testing���144

Test Case Status Reporting��146

Test Case Completion���148

Techniques and Tools Used in Test Execution��149

Quality Metrics���150

Defect Density��150

Test Coverage���151

Code Complexity���152

Code Maintainability���152

Fault Slip Through��153

Coding Standards���154

Code Duplication��155

Dead Code��156

Lines of Code��157

Fan-Out���158

Compiler Warnings���159

Summary���159

Table of Contents

ix

Chapter 7: ��Test Automation���161

Benefits of Test Automation���161

Record and Playback Tools��162

Scripting Tools��163

Hybrid Tools��164

Frameworks���165

Automated Testing Tools���167

Automated Test Scripts���169

Summary���171

Chapter 8: ��Testing in Agile Environment���173

Agile Testing Principles��174

Agile Testing Quadrants���175

Test-Driven Development���177

Behavior-Driven Development���179

Acceptance Test-Driven Development���181

Continuous Integration and Continuous Delivery���183

Test Automation in Agile���184

Agile Testing Best Practices���186

Summary���187

Chapter 9: ��Challenges and Solutions in Software Testing�����������������189

Lack of Clear Requirements���189

Impact of Lack of Clear Requirements on Testing��190

Mitigating the Impact of Lack of Clear Requirements����������������������������������190

Time Constraints��191

Impact of Time Constraints on Software Testing��191

Strategies for Managing Time Constraints in Testing�����������������������������������192

Table of Contents

x

Lack of Skilled Resources��193

Impact of Lack of Skilled Resources on Software Testing����������������������������193

Strategies for Managing Lack of Skilled Resources in Testing���������������������194

Automation Challenges��195

Common Automation Challenges���195

Strategies for Addressing Automation Challenges���������������������������������������196

Communication and Collaboration���197

Change Management���197

Testing Across Platforms���199

Future of Software Testing���200

Risk-Based Testing��202

Summary���204

��Afterword���205

Index��207

Table of Contents

xi

About the Author

Panagiotis Leloudas is a software quality

assurance engineer with more than 10 years of

working experience in the industry. He holds

several ISTQB certifications and is an expert

in testing principles, methodologies, and

techniques. 

He decided to write this quick guide to

software testing because he needed a go-to

document for all the decisions he had to make

every day on the job and there wasn’t one. He

tried to write down everything that he would

have liked to know when he started his career.

xiii

About the Technical Reviewer

Sourabh Mishra is an entrepreneur, developer,

speaker, author, corporate trainer, and

animator. He is passionate about Microsoft

technologies and a true .NET warrior. Sourabh

has loved computers from childhood and

started his career when he was just 15 years

old. His programming experience includes

C/C++, ASP.NET, C#, VB .NET, WCF, SQL

Server, Entity Framework, MVC, Web API, Azure, jQuery, Highcharts, and

Angular. Sourabh has been awarded Most Valuable Professional (MVP)

status. He has the zeal to learn new technologies, sharing his knowledge on

several online community forums. 

He is a founder of IECE Digital and Sourabh Mishra Notes, an online

knowledge-sharing platform where people can learn new technologies.

xv

Acknowledgments

Writing a book is a significant undertaking, and I couldn’t have done it

without the support and assistance of many people along the way. I want

to express my gratitude to everyone who contributed to the creation of this

book and helped me throughout the process.

First and foremost, I want to thank my family for their unwavering

support, encouragement, and patience during the many months of writing

and editing. Your love and support mean the world to me, and I couldn’t

have done this without you.

I also want to thank my editors, Divya Modi and James Markham, for

their insightful feedback, guidance, and support throughout the writing

process. Your expertise and attention to detail were invaluable in shaping

this book into its final form.

I am grateful to Apress Media LLC for believing in this project and

providing the resources necessary to bring it to fruition.

I am indebted to the many experts, researchers, and consultants who

generously shared their knowledge, insights, and expertise to help me

with my research. Your contributions have added depth and richness to

this book.

Finally, I want to thank my readers for their interest in this book and

for taking the time to read it. Your support and feedback mean the world to

me, and I hope this book can make a positive difference in your life.

Thank you all for your support, encouragement, and contributions to

this book. I am forever grateful.

xvii

Introduction

A collection of notes, thoughts, and experiences written down to be shared

with the world: this is how I see the creation of this book. It is not meant

to be the ultimate truth about software testing; there is no such a thing

after all. I have taken several courses about software testing from different

organizations, in numerous countries, and I have spent weeks studying

testing material, but most of my knowledge comes from trial and error in

the industry. It is true that in the end you learn only what you practice.

This book takes you on a journey around the software testing world,

covering the basic principles and techniques and showing examples

of how to apply them. Software testing is a safeguard of the quality

of a software product, and a tester is responsible for reporting on the

quality status. Keep in mind that the quality of the product is not the sole

responsibility of a tester; rather, it’s a collective effort from every individual

in the organization. A chain is only as strong as its weakest link.

Different types of testing are applicable to every phase of the software

development life cycle; of course, the priorities and the risks are not the

same in all the products. Testing is all about identifying those risks and

setting up a mitigation plan by executing the necessary tests and analyzing

the results.

In this book, I will demonstrate some of the most important software

testing types and techniques that exist and how to apply them. You will

find out what testing activities take place during every phase of software

development, how to plan the testing activities, how to design the test

cases, how to execute them, and how to report defects and the status of

your activities. It is meant to be easy to understand for everyone, even

with only the slightest technical background or involvement in a product.

I hope you will enjoy the process and pick up a thing or two!

1© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_1

CHAPTER 1

The Importance
of Software Testing
Software testing is a crucial part of the software development process. It is

the process of evaluating a software system or application to find defects,

errors, or bugs, and verifying that it meets its intended requirements and

functions correctly. Software testing is essential because it ensures that

the software performs as expected, meets user needs, and is reliable and

efficient.

Testing is not a one-time event, but rather a continuous process that

begins in the early stages of development and continues through the

software’s life cycle. The process involves planning, designing, executing,

and evaluating tests to identify and fix issues and to improve the quality of

the software.

There are various types of software testing, each with a unique focus

and objective. Some of the common types include unit testing, integration

testing, system testing, acceptance testing, regression testing, performance

testing, and security testing. Each type of testing has a specific purpose and

is conducted at different stages of the software development life cycle.

One common misconception about software testing is that it is just

about finding defects or errors in software. While detecting defects is an

essential part of software testing, it is not the only goal. Testing is also

about verifying that the software meets user requirements, is easy to use,

and performs as expected. Testing also involves ensuring that the software

is scalable, secure, and efficient.

https://doi.org/10.1007/978-1-4842-9514-4_1

2

Another misconception is that testing can be eliminated by writing

perfect code or using the right tools. However, testing is an integral part

of software development, and there is no way to guarantee that software

is completely free of errors. No matter how skilled the development team

is or how advanced the tools and technologies used, there is always a

possibility of errors or unexpected outcomes. Therefore, testing is essential

to identify and fix issues early in the development process before they

become major problems.

Black-box testing is a testing technique that examines the

functionality of an application without knowing its internal code structure.

The tester focuses on the inputs and outputs of the system and tests the

application based on the specifications or requirements. The goal of

black-box testing is to identify defects in the functionality, usability, and

performance of the application.

White-box testing, on the other hand, is a testing technique that

examines the internal structure of the application. The tester focuses on

the application’s code structure, internal logic, and algorithms to test the

application. The goal of white-box testing is to identify defects in the code

structure and ensure that the application functions correctly.

Gray-box testing is a combination of black-box and white-box testing.

The tester has some knowledge of the internal code structure, but not

full access. The goal of gray-box testing is to identify defects in the code

structure and ensure that the application functions correctly.

Exploratory testing is a testing technique that involves testing the

software without predefined test cases or scripts. The tester explores the

software and tests it based on their intuition and experience. The goal

of exploratory testing is to identify defects that may not be found using

traditional testing techniques.

In addition to testing the software’s functionality, it is also essential to

test nonfunctional aspects, such as performance, security, and usability.

These types of testing ensure that the software meets its nonfunctional

requirements and provides a positive user experience.

Chapter 1 The Importance of Software Testing

3

Software testing is an ongoing process that continues throughout the

software’s life cycle. It is essential to conduct regular testing, even after

the software has been released to production, to ensure that it continues

to function correctly and meets the users’ needs. This is known as

maintenance testing.

This book will provide a simple overview of the testing activities, tools,

and techniques. By the end of it, you will have all the basic knowledge you

need in a day as a tester.

I have tried to assemble all the knowledge I have accumulated so far

into a small practical guide on how software testing is. The purpose of

this book is not to enforce processes and tools in your organization, but to

give you some ideas and best practices you might find useful in your daily

activities.

It is the responsibility of the tester to report on the quality of the

product, but the quality of a company relies on every single individual.

Software quality is the responsibility of everyone involved in the software

development process, including developers, testers, project managers,

business analysts, and other stakeholders. Here are some ways that each

individual can contribute to software quality in a company.

Developers play a critical role in ensuring software quality by writing

high-quality, well-designed, and maintainable code. They can also

contribute to software quality by adhering to coding standards, performing

code reviews, and writing automated tests.

Testers play a crucial role in ensuring software quality by designing

and executing test plans and test cases to verify that software products

meet the requirements and expectations of end users. They can also

provide feedback to development teams to help improve the quality of

the code.

Product owners are responsible for defining and prioritizing product

requirements. They can contribute to software quality by ensuring that

requirements are clear, concise, and testable, and that they meet the needs

of end users.

Chapter 1 The Importance of Software Testing

4

Project managers are responsible for managing project timelines,

resources, and budgets. They can contribute to software quality by

ensuring that projects are adequately resourced, that timelines are

realistic, and that projects are well-planned and executed.

Business analysts can contribute to software quality by ensuring

that the business requirements are clear, complete, and testable, and that

testing teams have the information they need to design effective test cases.

They can also validate the requirements with stakeholders and subject-

matter experts to identify any gaps or inconsistencies in the requirements

early in the development process.

User experience designers are responsible for ensuring that software

products are user-friendly and meet the needs of end users. They can

contribute to software quality by conducting user research, designing

intuitive user interfaces, and ensuring that products meet accessibility and

usability standards.

Operations teams are responsible for deploying and maintaining

software products. They can contribute to software quality by ensuring that

software is deployed in a reliable way.

Technical writers can contribute to software quality by ensuring

that user documentation is clear, concise, and easy to understand. This

can help to reduce the risk of user errors and improve the overall user

experience.

�Summary
To summarize, software quality is a collective effort, and the

responsibilities are distributed among the various members of a company.

There are plenty of software testing types and techniques for the core

testing team of a project, and the next chapter will dive into the details of

each and every one.

Chapter 1 The Importance of Software Testing

5

CHAPTER 2

Software Testing
Types and Techniques
Software testing is a complex process that involves various types and

techniques to ensure that the software is working correctly and meets its

intended requirements. In this chapter, we will discuss the different types

of software testing and the techniques used in each type, starting with

functional testing and the four levels it involves. We will continue with

nonfunctional testing, which can include performance testing, compliance

testing, and all the different types of -ility testing (usability, compatibility,

availability, etc.). After that, we will see the benefits of static testing, where

we can detect potential defects just by carefully examining the code

without even executing it.

�Functional Testing
This type of testing is performed to validate that the software is working as

expected and meets the user’s requirements. The primary focus is on the

software’s functionality and includes various levels of testing such as unit

testing, integration testing, system testing, and acceptance testing. These

levels are widely known as the testing pyramid, a concept introduced by

Mike Cohn.

© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_2

https://doi.org/10.1007/978-1-4842-9514-4_2

6

The lower we go on the testing pyramid (Figure 2-1), the faster and

more isolated the tests are. On the contrary, as we go higher on the testing

pyramid, the tests become slower, and more components are integrated.

Figure 2-1.  The testing pyramid

Unit testing involves testing individual units or components of the

software. The objective is to validate that each unit functions correctly and

meets its intended requirements.

Integration testing involves testing the integration of individual units

or components to ensure that they work together correctly.

System testing involves testing the entire system to ensure that it

meets the user’s requirements and functions correctly.

User acceptance testing involves testing the software from the

user’s perspective to ensure that it meets the user’s expectations and

requirements.

Chapter 2 Software Testing Types and Techniques

7

�Unit Testing
Unit testing is a software testing technique that focuses on testing

individual units or components of a software system. A unit is the smallest

testable part of any software application, usually a function, method,

or class. The purposes of unit testing are to verify that each unit of the

software performs as expected and to catch errors as early as possible in

the development process.

During unit testing, the individual units of the software are tested in

isolation from the rest of the system. This is achieved by using stubs or

mock objects to simulate the behavior of other parts of the system that the

unit depends on. Unit tests are typically automated, which enables them

to be run frequently and easily, ensuring that changes to the code do not

break existing functionality.

Unit tests are typically written by developers as part of the

development process. Here are some key characteristics of unit tests:

•	 Isolation: Unit tests are designed to test individual units

of code in isolation from the rest of the application.

This is typically achieved by using mock objects or

stubs to simulate the behavior of other parts of the

application.

•	 Automation: Unit tests are typically automated using

testing frameworks such as JUnit or NUnit. This allows

developers to run tests frequently and quickly and

to identify and fix defects early in the development

process.

•	 Coverage: Unit tests should provide coverage for all

possible execution paths through the unit of code being

tested. This helps to ensure that all possible scenarios

are tested and that defects are identified early in the

development process.

Chapter 2 Software Testing Types and Techniques

8

•	 Independence: Unit tests should be independent of

each other and should not rely on the results of other

tests. This helps to ensure that defects are identified

and fixed in a timely manner and that tests do not

interfere with each other.

•	 Maintainability: Unit tests should be easy to maintain

and update as the code evolves over time. This can help

to ensure that tests continue to provide accurate results

and that defects are identified and fixed early in the

development process.

The following are the main benefits of unit testing:

•	 Early detection of bugs: By testing individual units in

isolation, unit testing can detect errors early in the

development process, which makes them easier and

cheaper to fix.

•	 Faster debugging: Unit testing allows developers to

isolate and identify the cause of errors quickly and

efficiently.

•	 Better code quality: Unit testing forces developers to

write modular, well-structured code that is easier to

understand and maintain.

•	 Improved design: Unit testing encourages developers

to design their code with testability in mind, which can

lead to better software design.

Overall, unit testing is an essential practice in software development

that helps ensure the quality of software applications.

Chapter 2 Software Testing Types and Techniques

9

�Integration Testing
Integration testing is a type of testing that focuses on testing the interaction

between different software components, subsystems, or modules. The

purpose of integration testing is to verify that the integrated software

system works as intended and that the individual components are able to

work together without errors or issues.

The main goal of integration testing is to identify any defects or issues

that may arise when multiple software components are combined. The

objective is to detect problems early in the software development cycle,

before the product is released to the customers. This helps in reducing

the cost and effort required to fix issues in later stages of the software

development process.

There are different approaches to integration testing such as top-down,

bottom-up, and hybrid. In the top-down approach, testing starts from the

highest level and works its way down to the lowest level of the software

hierarchy. In the bottom-up approach, testing starts from the lowest level

and works its way up to the highest level of the software hierarchy. The

hybrid approach combines the top-down and bottom-up approaches.

In integration testing, individual units of code are combined and tested

as a group. Integration tests can be performed at various levels, such as the

following:

•	 Component-level integration: This involves testing the

integration of individual components or modules of an

application. Component-level integration tests ensure

that individual components work together correctly

and can communicate with each other.

•	 System-level integration: This involves testing the

integration of multiple components or subsystems of

an application. System-level integration tests ensure

that the application functions correctly as a whole and

that different subsystems work together seamlessly.

Chapter 2 Software Testing Types and Techniques

10

•	 End-to-end integration: This involves testing the

integration of the entire application, including all

subsystems and external systems that the application

interacts with. End-to-end integration tests ensure

that the application meets the needs of end users

and stakeholders and that all the components work

together correctly.

During integration testing, different types of testing techniques are

used such as functional testing, performance testing, security testing, and

usability testing. The testers ensure that the different software components

are integrated correctly and that they work together as intended.

The following are some common types of integration testing:

•	 Big Bang integration testing: In this type of testing, all

the software components are integrated together and

tested as a whole.

•	 Incremental integration testing: In this type of testing,

the software components are integrated incrementally,

one at a time, and tested as they are added to

the system.

•	 Top-down integration testing: In this type of testing,

testing starts with the highest level modules and works

its way down to the lowest level modules.

•	 Bottom-up integration testing: In this type of testing,

testing starts with the lowest-level modules and works

its way up to the highest-level modules.

•	 Sandpit integration testing: In this type of testing, a

new module is integrated with the rest of the system in

a separate environment called a sandbox or sandpit.

This allows the new module to be tested in a controlled

environment without affecting the rest of the system.

Chapter 2 Software Testing Types and Techniques

11

�System Testing
System testing is a type of software testing that is performed on a complete,

integrated system to evaluate the system’s compliance with its specified

requirements. It is generally a black-box testing approach, which means

that testers are not concerned with the internal workings of the system.

Instead, they focus on testing the system as a whole to ensure that it meets

the functional and nonfunctional requirements of the stakeholders.

System testing is typically conducted after integration testing, which

tests the integration of different components or subsystems of the system.

The objective of system testing is to verify that the integrated system satisfies

the requirements and behaves as expected in the target environment.

�User Acceptance Testing
User acceptance testing (UAT) is a process to validate whether a system

meets the specified requirements and works as expected in the real-world

scenario. UAT is performed by end users, business stakeholders, or domain

experts to ensure the system’s functionality and usability.

The following are some key characteristics of user acceptance testing:

•	 User involvement: UAT involves end users or

stakeholders testing the software product, providing

feedback, and ensuring that it meets their needs and

requirements.

•	 Real-world testing: UAT involves testing the software

product in a real-world environment, using real

data and scenarios, to ensure that it meets the user’s

business processes and workflows.

•	 Validation of business requirements: UAT ensures that

the software product meets the business requirements

and goals of the user or stakeholder.

Chapter 2 Software Testing Types and Techniques

12

•	 Acceptance criteria: UAT defines acceptance criteria

for the software product, which are used to determine

whether the product is ready for deployment.

•	 Sign-off: UAT requires the sign-off of the user or

stakeholder to indicate that they are satisfied with the

software product and that it is ready for deployment.

The primary objectives of UAT are as follows:

•	 To validate the system’s functionality from an end

user’s perspective

•	 To check whether the system meets the business

requirements

•	 To ensure that the system is user-friendly and

easy to use

•	 To find defects that were not detected in previous

testing stages

•	 To reduce the risk of system failure in production

There are three types of UAT:

•	 Alpha testing: It is performed in-house by the

development team or a group of testers before releasing

the product to the end users.

•	 Beta testing: It is performed by a group of end users in

a real-world scenario before releasing the product to

the market.

•	 Acceptance testing: It is performed by the end users

or business stakeholders to validate whether the

system meets the specified requirements and works as

expected in the real-world scenario.

Chapter 2 Software Testing Types and Techniques

13

�Nonfunctional Testing
This type of testing focuses on the software’s nonfunctional aspects, such

as performance, security, and usability. The objective is to ensure that the

software meets its nonfunctional requirements and provides a positive

user experience. Here are some examples of nonfunctional testing:

Performance testing involves testing the software’s performance

under various conditions, such as load, stress, and scalability.

Security testing involves testing the software’s security features to

ensure that it is secure from various types of attacks and vulnerabilities.

Usability testing involves testing the software’s user interface and user

experience to ensure that it is user-friendly and easy to use.

Compatibility testing is testing whether the system can work with

different software, hardware, and operating systems.

Scalability testing is testing whether the system can handle increasing

amounts of data and users.

Reliability testing is evaluating how well the system performs under

different conditions and over time.

Availability testing is testing whether the system is available to users

and can be accessed at all times.

Installability testing is testing how easy it is to install and configure

the software and whether it meets installation requirements and

specifications.

Maintainability testing is testing the software’s ability to be updated,

maintained, and supported over time, and whether it meets maintenance

requirements and specifications.

Compliance testing is testing whether the software meets specific

regulatory or industry standards, such as HIPAA, GDPR, or PCI DSS.

Chapter 2 Software Testing Types and Techniques

14

�Performance Testing
Performance testing measures how well a system or application performs

under a given workload. It helps identify bottlenecks and problems in the

application’s performance, and it can also help determine whether the

application can handle expected volumes of data or users. In this section,

we’ll discuss the different types of performance testing, how to plan for and

execute performance tests, and tools and techniques used in performance

testing.

There are different types of performance testing that can be used to

evaluate the performance of an application.

•	 Load testing: This type of testing evaluates how an

application performs under normal and peak load

conditions. It involves testing the application with a

large number of users, requests, and data to determine

its performance under different workloads.

•	 Stress testing: This type of testing is performed to

determine the application’s stability under extreme

loads. Stress testing pushes the application beyond

its normal operating conditions to evaluate how it

responds to these conditions.

•	 Spike testing: This type of testing is used to evaluate

the application’s performance when there is a sudden

and significant increase in traffic. It is designed to

determine the application’s ability to handle sudden

and unexpected spikes in traffic.

•	 Endurance testing: This type of testing is used to

evaluate the application’s performance over an

extended period of time. It is designed to test the

application’s ability to maintain its performance over a

long period.

Chapter 2 Software Testing Types and Techniques

15

•	 Volume testing: This type of testing is used to evaluate

how well the application can handle large volumes

of data. It is used to determine the application’s

performance under varying data volumes.

•	 Scalability testing: Scalability testing involves testing

the system’s ability to handle an increasing amount of

users or data without a decrease in performance.

•	 Soak testing: Soak testing involves testing the system

under a normal load for an extended period to

determine if there are any issues that arise over time.

•	 Configuration testing: Configuration testing involves

testing the system under different configurations to

determine how performance is affected by different

settings.

•	 Isolation testing: Isolation testing involves testing

individual components of the system to determine

their performance under specific conditions.

•	 Comparative testing: Comparative testing involves

comparing the performance of different systems or

configurations to determine which one performs better.

There are different tools and techniques that can be used in

performance testing.

•	 Load testing tools: These tools are used to simulate a

large number of users, requests, and data to evaluate

the application’s performance under different

workloads.

•	 Performance monitoring tools: These tools are used

to monitor the application’s performance during the

testing to identify bottlenecks and issues.

Chapter 2 Software Testing Types and Techniques

16

•	 Profiling tools: These tools are used to identify

performance bottlenecks in the application’s code.

•	 Cloud-based performance testing: This approach

involves using cloud-based infrastructure and services

to simulate real-world usage scenarios.

•	 Performance monitoring tools: Performance monitoring

tools are used to monitor the application’s performance

and identify any issues that may arise during the

testing phase. These tools can be used to monitor

various metrics such as CPU usage, memory usage, and

response time.

•	 Profiling tools: Profiling tools are used to analyze

the code and identify areas that can be optimized

to improve performance. These tools can be used

to identify memory leaks, deadlocks, and other

performance issues.

•	 Log analysis tools: Log analysis tools are used to analyze

the log files generated during the performance testing.

These tools can be used to identify any errors or issues

that may have occurred during the testing phase.

•	 Statistical analysis tools: Statistical analysis tools can

be used to analyze the performance test results and

identify any trends or patterns. These tools can be used

to determine the application’s performance under

varying loads and identify any bottlenecks.

•	 Root-cause analysis tools: Root-cause analysis tools

are used to identify the root cause of any performance

issues that may arise during the testing phase. These

tools can be used to drill down into the application

code to identify the underlying cause of the issue.

Chapter 2 Software Testing Types and Techniques

17

•	 Benchmarking tools: Benchmarking tools are used

to compare the application’s performance against

industry standards and best practices. These tools

can be used to identify any performance issues that

may arise and help to improve the application’s

performance.

�Security Testing
Security testing is a type of software testing that focuses on identifying

vulnerabilities and potential security risks within an application or system.

Security testing is an essential process for ensuring that an application or

system is secure and safe from potential attacks or malicious activity.

There are various types of security testing techniques and tools

available that can be used to identify and address potential security issues.

The following are some of the common techniques:

•	 Penetration testing: Penetration testing, or pen-testing,

is a security testing technique that involves simulating

an attack on a software system to identify and exploit

vulnerabilities in the system. Penetration testing tools

include Metasploit, Nessus, and Wireshark.

•	 Vulnerability scanning: Vulnerability scanning tools are

used to identify vulnerabilities in a software system by

scanning for weaknesses in the system. Some examples

of vulnerability scanning tools are Nmap, OpenVAS,

and Retina.

•	 Fuzz testing: Fuzz testing is a technique that involves

feeding large amounts of random data to a software

system to identify vulnerabilities in the system.

Fuzz testing tools include Peach Fuzzer, JBroFuzz,

and SPIKE.

Chapter 2 Software Testing Types and Techniques

18

•	 Code review: Code review is the process of analyzing

source code to identify and fix potential security

vulnerabilities. Code review tools include SonarQube,

Codacy, and CodeClimate.

•	 Authentication testing: Authentication testing involves

testing the login process of a software system to ensure

that it is secure and resistant to attacks. Authentication

testing tools include Burp Suite, ZAP, and Acunetix.

•	 Authorization testing: Authorization testing involves

testing the permissions and access control of a software

system to ensure that users have access only to the

resources they are authorized to use. Authorization

testing tools include OWASP WebScarab, IronWASP,

and IBM AppScan.

•	 Security configuration testing: This type of testing

checks the configuration of the system and identifies

vulnerabilities in the configuration of the operating

system, network devices, firewalls, and other security

devices.

•	 Encryption testing: This type of testing involves testing

the effectiveness of encryption mechanisms in the

application. It evaluates the strength of the encryption

algorithms and checks if the data is being stored and

transmitted securely.

•	 Input validation testing: This type of testing checks if

the application is protected from malicious inputs. It

tests if the application validates user input and does not

accept malicious input from users.

Chapter 2 Software Testing Types and Techniques

19

•	 Security code review: This type of testing involves

reviewing the application code for security

vulnerabilities. It can be done manually or using

automated tools.

•	 Security compliance testing: This type of testing checks

if the application meets the security standards and

guidelines. It includes testing against regulatory

compliance requirements such as HIPAA, PCI DSS,

and GDPR.

•	 Disaster recovery and business continuity testing: This

type of testing is done to ensure that the application

can continue to operate during and after a disaster. It

includes testing the backup and recovery processes and

the effectiveness of the disaster recovery plan.

There are numerous security vulnerabilities that can exist in a

system, and detecting them requires knowledge of the common ones

and the techniques used to find them. Here are a few common security

vulnerabilities and how they can be detected:

•	 SQL injection: SQL injection is a type of attack in which

an attacker tries to inject malicious SQL code into a

database. This can be detected by testing inputs for

SQL keywords or special characters.

•	 Cross-site scripting (XSS): This is a type of vulnerability

that allows an attacker to inject malicious scripts into

a web page viewed by other users. XSS can be detected

by testing inputs for special characters, such as < and >,

or by using an automated scanner.

Chapter 2 Software Testing Types and Techniques

20

•	 Cross-site request forgery (CSRF): This vulnerability

allows an attacker to force a user to perform an action

on a website without the user’s knowledge or consent.

CSRF can be detected by checking the HTTP Referer

header or by using an automated scanner.

•	 Broken authentication and session management: This

vulnerability allows an attacker to gain access to a

user’s account or session. It can be detected by testing

for weak passwords, session hijacking, or using an

automated scanner.

•	 Buffer overflow: This vulnerability occurs when a

program tries to write more data to a buffer than it

can hold, which can cause memory corruption and

other security issues. Buffer overflow can be detected

by performing boundary value testing or using an

automated scanner.

•	 Information disclosure: This vulnerability occurs when

sensitive information is exposed to unauthorized users.

It can be detected by performing security audits or

using an automated scanner.

These are just a few examples of common security vulnerabilities, and

there are many more that can exist in a system. It’s important to use a variety

of tools and techniques to detect and prevent security vulnerabilities.

�Usability Testing
Usability testing is a type of testing performed to evaluate how user-

friendly a product is. The objective of usability testing is to determine how

easy it is for users to learn and use the product, how efficient they are at

completing tasks, and how satisfied they are with the product.

Chapter 2 Software Testing Types and Techniques

21

Usability testing typically involves selecting a group of users who

represent the target audience for the product. These users are then given

a set of tasks to perform using the product, while the tester observes

their behavior and records their comments. The tasks are designed to be

representative of the kinds of tasks that the product is intended to support.

The usability tester may use a variety of techniques to gather feedback

from users, including questionnaires, interviews, and direct observation

of user behavior. The feedback gathered during the testing process is

then used to identify problems with the product’s usability and to suggest

improvements that can be made to the design.

Usability testing can be conducted at various stages of the product

development life cycle, from early prototypes to finished products. It can

be performed in a lab setting, in the user’s own environment, or online.

The results of usability testing are used to inform design decisions

and to improve the overall user experience of the product. By identifying

usability problems early in the development process, usability testing can

help to save time and money by avoiding costly redesigns and rework.

�Compatibility Testing
Compatibility testing is a type of software testing that is performed to

ensure that an application is compatible with various hardware, operating

systems, browsers, databases, and other third-party software components.

The purpose of compatibility testing is to identify compatibility issues

between the software application and the systems on which it will be

deployed. The goal is to ensure that the application functions properly

across a variety of environments and configurations.

To perform compatibility testing, the testing team needs to identify

the hardware, software, and other components that the application will be

required to work with. Based on this information, the testing team creates

a test plan that outlines the specific tests that need to be conducted to

ensure compatibility.

Chapter 2 Software Testing Types and Techniques

22

Compatibility testing can be conducted in a number of different ways,

including manual testing, automated testing, or a combination of both.

The testing team may use a variety of tools and techniques to simulate

different hardware and software configurations and to automate the

testing process where possible.

The following are some common areas of focus in compatibility

testing:

•	 Operating system compatibility

•	 Browser compatibility

•	 Database compatibility

•	 Mobile device compatibility

•	 Third-party software compatibility

�Scalability Testing
Scalability testing is a type of nonfunctional testing that evaluates the

ability of a system or application to scale up or scale down in response to

changing workload and data volume. The purpose of scalability testing is

to identify the maximum capacity of a system or application and to ensure

that it can handle increasing levels of load without compromising its

performance or stability.

Scalability testing is particularly important for systems that are

expected to handle a large number of users, transactions, or data volume.

It is typically performed in a controlled environment, using a combination

of manual and automated testing techniques to simulate different levels

of load and measure the system’s response time, throughput, and resource

utilization.

Chapter 2 Software Testing Types and Techniques

23

�Reliability Testing
Reliability testing is a type of software testing that aims to determine the

reliability of a software application by measuring its performance in various

conditions over a certain period of time. The goal of this testing is to identify

any defects or issues that could affect the overall reliability of the system.

Reliability testing typically involves subjecting the software to a series

of tests that simulate real-world scenarios and stress conditions. These

tests may include load testing, performance testing, and endurance

testing. The software is also tested for its ability to recover from errors or

failures and its ability to maintain its performance levels under varying

conditions.

The following are some common techniques used in reliability testing:

•	 Stress testing: This involves testing the software

application under extreme conditions, such as high

loads, to see how it behaves and whether it is able to

handle the stress.

•	 Endurance testing: This involves testing the software

application over a period of time to see how it performs

over a long period of use.

•	 Performance testing: This involves testing the software

application under normal and peak loads to measure

its performance and identify any bottlenecks or issues.

•	 Fault tolerance testing: This involves testing the

software application for its ability to continue

functioning even in the event of a system failure or

hardware malfunction.

•	 Recovery testing: This involves testing the software

application for its ability to recover from errors or

failures and return to normal functioning.

Chapter 2 Software Testing Types and Techniques

24

�Availability Testing
Availability testing is a type of nonfunctional testing that is performed

to measure the ability of a system or application to remain available

and accessible for use by its users over a specified period of time. The

primary objective of availability testing is to identify and mitigate any

factors that could lead to service disruptions or downtime, such as

hardware or software failures, network connectivity issues, or system

configuration errors.

During availability testing, testers simulate various failure scenarios

and measure the system’s ability to recover from them in a timely manner.

Availability metrics are used to measure the system’s performance.

These metrics may include the percentage of uptime, the mean time

between failures (MTBF), the mean time to repair (MTTR), and the

recovery time objective (RTO).

�Installability Testing
Installability testing is a type of software testing that evaluates how easy

it is to install, set up, and configure the software. This type of testing is

essential to ensure that the installation process is straightforward, reliable,

and consistent, and that the software meets installation requirements and

specifications.

Installability testing involves testing the software installation process

on different hardware, operating systems, and configurations, and

verifying that it meets the following criteria:

•	 Installation instructions: The installation instructions

should be clear, concise, and easy to follow, with step-

by-step guidance on how to install and configure the

software.

Chapter 2 Software Testing Types and Techniques

25

•	 Installation process: The installation process should be

straightforward, with no unexpected or confusing steps,

and should not require any specialized knowledge or

expertise.

•	 Installation options: The software should provide users

with installation options, such as custom installation,

silent installation, or network installation, to suit their

specific needs and preferences.

•	 Compatibility: The software should be compatible

with different hardware, operating systems, and

configurations, and should not cause conflicts or errors

during installation.

•	 Resource requirements: The software should meet the

minimum resource requirements for installation, such

as disk space, memory, and processor speed, and

should not require additional resources that are not

readily available.

•	 Error handling: The software should have appropriate

error handling mechanisms in place to handle

installation errors and failures and should provide clear

and helpful error messages to users.

•	 Uninstallation: The software should provide a

straightforward and reliable uninstallation process,

with no residual files or registry entries left behind, and

should not cause any system instability or conflicts.

Overall, installability testing is essential to ensure that the software

is easy to install, configure, and use, and that it meets user expectations

and requirements. By testing the software installation process thoroughly,

testers can identify and address any installation issues and can ensure that

the software is of high quality and meets user needs.

Chapter 2 Software Testing Types and Techniques

26

�Maintainability Testing
Maintainability testing is a type of software testing that evaluates the software’s

ability to be updated, maintained, and supported over time. This type of

testing is essential to ensure that the software can be modified or enhanced

easily and that it remains stable and reliable after updates and changes.

Maintainability testing involves testing the software’s maintainability

by evaluating the following criteria:

•	 Code quality: The code quality should be of high

quality and maintainable. This includes variables

and functions being named appropriately, modular

code that is easy to understand and reusable, code

comments, and so on.

•	 Documentation: The software should have clear,

concise, and up-to-date documentation that explains

how the software works, how it should be maintained,

and how to modify it.

•	 Code complexity: The software should have a low code

complexity, which means that the code should be

simple, easy to understand, and easy to modify. This

makes it easier for developers to add new features or

fix bugs.

•	 Testability: The software should be easily testable, and

the test cases should be well documented and easy

to execute. This helps in identifying bugs and fixing

them faster.

•	 Version control: The software should be under version

control to keep track of changes made to the software,

who made the changes, and when they were made.

This helps in troubleshooting and identifying issues.

Chapter 2 Software Testing Types and Techniques

27

•	 Error handling: The software should have appropriate

error handling mechanisms in place to handle errors

and failures. This helps in identifying and fixing

issues faster.

Overall, maintainability testing is essential to ensure that the software

can be updated, maintained, and supported over time, and that it remains

stable and reliable. By testing the software’s maintainability thoroughly,

testers can identify any issues and make recommendations to improve the

software’s maintainability. This helps ensure that the software remains of

high quality and meets user expectations over time.

�Compliance Testing
Compliance testing is a type of software testing that ensures that software

applications meet certain regulatory, legal, and industry-specific

standards. This type of testing is essential to ensure that the software meets

legal and regulatory requirements and is safe and secure for users.

Compliance testing involves testing the software for compliance with

the following criteria:

•	 Legal and regulatory requirements: The software should

comply with applicable laws and regulations, such

as data privacy laws, security standards, accessibility

standards, and other industry-specific regulations.

•	 Security: The software should be secure and protect

sensitive data and information from unauthorized

access, theft, or misuse. Compliance testing should

evaluate the software’s security features, such as

encryption, access control, and secure communication

protocols.

Chapter 2 Software Testing Types and Techniques

28

•	 Data privacy: The software should be designed to

protect user data and comply with data privacy laws

and regulations. This includes the collection, storage,

and use of personal data, such as names, addresses,

and financial information.

•	 Accessibility: The software should be accessible to all

users, including those with disabilities. Compliance

testing should evaluate the software’s accessibility

features, such as keyboard navigation, screen reader

compatibility, and alternative text for images.

•	 Industry-specific standards: The software should

meet industry-specific standards, such as healthcare

standards, financial services standards, or government

standards.

•	 Documentation: The software should have clear and

up-to-date documentation that explains how the

software meets compliance requirements, how it

should be used, and how to handle any compliance

issues that may arise.

Overall, compliance testing is essential to ensure that the software

meets legal and regulatory requirements and is safe and secure for users.

By testing the software’s compliance thoroughly, testers can identify any

compliance issues and make recommendations to ensure that the software

meets the required standards. This helps ensure that the software remains

of high quality and meets user expectations.

Chapter 2 Software Testing Types and Techniques

29

�Static Testing
Static testing is a software testing technique that involves the examination

of code or software documentation without actually executing the

program. The goal of static testing is to identify defects in the code,

requirements, or design before the software is actually executed. This type

of testing is also known as nonexecution testing or verification testing.

Code reviews involve a team of developers and/or testers reviewing

each other’s code to identify any defects or potential issues.

Requirements reviews are about reviewing the requirements

documentation to ensure that they are complete, clear, and accurate.

Design reviews where the team is reviewing the design documentation

to ensure that it meets the requirements and is technically feasible.

Walk-throughs usually are a team of developers looking through the

code or documentation to ensure that it meets the required specifications

and standards.

Inspections are a formal process of reviewing the code or

documentation to identify and document defects.

�Code Reviews
Code review is a form of static testing that involves reviewing the

source code of a software application to identify defects, bugs, or other

issues that may impact performance or functionality. Code reviews are

typically performed by one or more individuals who have expertise in the

programming language, design patterns, and coding standards used in the

software application.

The goals of a code review are to identify any defects or issues that may

impact the quality or functionality of the software and to provide feedback

to the developer so that they can make improvements. Code reviews can

be performed manually, using a document or spreadsheet to track issues,

or via specialized software tools that automate the review process.

Chapter 2 Software Testing Types and Techniques

30

The following are some key benefits of code reviews:

•	 Improved code quality: Code reviews can help to

identify and address defects or issues early in the

development process, leading to improved code

quality.

•	 Knowledge sharing: Code reviews can help to share

knowledge and best practices among development

teams, leading to improved collaboration and

productivity.

•	 Reduced development time and costs: Code reviews

can help to identify defects or issues early in the

development process, reducing the time and costs

associated with testing and debugging.

•	 Improved maintainability: Code reviews can help

to ensure that the code is maintainable and easy to

update, reducing the risk of introducing new defects or

issues in future development.

�Requirement Reviews
Requirement reviews are a form of static testing that involves reviewing the

software requirements to identify defects, errors, or inconsistencies. This

type of review is typically performed by stakeholders, including business

analysts, project managers, developers, testers, and end users.

The goal of a requirement review is to ensure that the software

requirements accurately reflect the needs and expectations of the

stakeholders and that they are complete, unambiguous, and consistent.

During the review process, stakeholders may ask questions, clarify

requirements, or suggest changes or additions to the requirements.

Chapter 2 Software Testing Types and Techniques

31

The following are some key benefits of requirement reviews:

•	 Improved software quality: Requirement reviews

can help to ensure that the software requirements

accurately reflect the needs and expectations of the

stakeholders, leading to improved software quality.

•	 Early defect detection: Requirement reviews can help

to identify defects or issues early in the development

process, before the software is executed.

•	 Reduced development time and costs: Requirement

reviews can help to ensure that the software

requirements are complete and accurate, reducing the

time and costs associated with rework or changes to the

requirements later in the development process.

•	 Improved stakeholder communication: Requirement

reviews can help to promote communication and

collaboration among stakeholders, leading to a shared

understanding of the software requirements.

�Design Reviews
Design reviews are a form of static testing that involves reviewing the

design documents of a software application to identify defects, errors,

or inconsistencies. The design documents may include architectural

diagrams, flowcharts, data models, and other design artifacts that describe

how the software will be implemented.

The goal of a design review is to ensure that the software design meets

the requirements of the stakeholders, and that it is efficient, maintainable,

and scalable. During the review process, stakeholders may ask questions,

suggest improvements, or identify potential issues or risks in the design.

Chapter 2 Software Testing Types and Techniques

32

The following are some key benefits of design reviews:

•	 Improved software quality: Design reviews can help

to identify defects or issues early in the development

process, leading to improved software quality.

•	 Early defect detection: Design reviews can help to

identify defects or issues early in the development

process, before the software is implemented.

•	 Reduced development time and costs: Design reviews

can help to ensure that the software design is efficient

and scalable, reducing the time and costs associated

with rework or changes to the design later in the

development process.

•	 Improved maintainability: Design reviews can help to

ensure that the software design is maintainable and

easy to update, reducing the risk of introducing new

defects or issues in future development.

�Walk-Throughs
Walk-throughs are a form of static testing that involves a group of

stakeholders reviewing a software artifact, such as a requirements

document, design document, or code, in a step-by-step manner.

During the walk-through, the participants may ask questions, suggest

improvements, or identify potential issues or risks in the artifact.

The goal of a walk-through is to ensure that the software artifact meets

the requirements of the stakeholders, and that it is complete, accurate,

and well-documented. The walk-through process can help to identify

defects or issues early in the development process, before the software is

implemented or executed.

Chapter 2 Software Testing Types and Techniques

33

The following are some key benefits of walk-throughs:

•	 Improved software quality: Walk-throughs can help

to identify defects or issues early in the development

process, leading to improved software quality.

•	 Early defect detection: Walk-throughs can help to identify

defects or issues early in the development process,

before the software is implemented or executed.

•	 Reduced development time and costs: Walk-throughs

can help to ensure that the software artifact is complete

and accurate, reducing the time and costs associated

with rework or changes to the artifact later in the

development process.

•	 Improved stakeholder communication: Walk-throughs

can help to promote communication and collaboration

among stakeholders, leading to a shared understanding

of the software artifact.

�Inspections
Inspections are a form of static testing that involves a structured and

formal process of reviewing a software artifact, such as a requirements

document, design document, or code, with the goal of identifying defects

or issues. Unlike walk-throughs, inspections are typically conducted by a

small group of trained individuals who follow a set of defined procedures

and checklists.

The inspection process typically involves several stages, including

planning, preparation, inspection, and follow-up. During the inspection

stage, the participants review the software artifact line by line, looking for

defects such as syntax errors, logical inconsistencies, and violations of

coding standards.

Chapter 2 Software Testing Types and Techniques

34

The following are some key benefits of inspections:

•	 Improved software quality: Inspections can help to

identify defects or issues early in the development

process, leading to improved software quality.

•	 Early defect detection: Inspections can help to identify

defects or issues early in the development process,

before the software is implemented or executed.

•	 Reduced development time and costs: Inspections can

help to ensure that the software artifact is complete

and accurate, reducing the time and costs associated

with rework or changes to the artifact later in the

development process.

•	 Improved stakeholder communication: Inspections can

help to promote communication and collaboration

among stakeholders, leading to a shared understanding

of the software artifact.

�Summary
The different software testing types have different purposes. Functional

testing is responsible for verifying the correct functionality of our

product and finding edge case scenarios that might have been missed.

Nonfunctional testing is about all the things that might affect the product

while its functionality stays intact. Static testing takes care of everything

around the software, without executing the software itself. That can be

coding standards, documentation, or designs. All these software testing

types have their own place in the software development life cycle, and in

the next chapter we are going to understand where we can apply them.

Chapter 2 Software Testing Types and Techniques

35

CHAPTER 3

Software Development
Life Cycle
The software development life cycle (SDLC) is a process that software

development teams follow to design, develop, test, and deploy high-quality

software applications. The SDLC provides a framework that ensures

the software meets the user’s requirements, is delivered on time and

within budget, and is of high quality. In this chapter, we will discuss the

different phases of the SDLC (Figure 3-1) and their importance in software

development.

© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_3

https://doi.org/10.1007/978-1-4842-9514-4_3

36

Figure 3-1.  The software development life cycle

Let’s walk through each of these phases one by one.

�Planning Phase
The planning phase of the SDLC is the initial phase where the project’s

objectives and requirements are established. This phase is crucial to

ensure the success of the project, and it involves several key activities, such

as gathering and analyzing requirements, defining the scope of the project,

identifying the stakeholders, and creating a project plan.

During the planning phase, the project team works with stakeholders to

determine the project’s objectives and to identify the business and technical

requirements that the project must meet. The team must analyze the

requirements carefully to ensure that they are accurate, complete, and consistent

with the business goals. This analysis helps the team to determine the resources

required to complete the project, including the team size, budget, and schedule.

Chapter 3 Software Development Life Cycle

37

Once the requirements have been analyzed, the team defines the project

scope, which outlines the deliverables, the constraints, and the assumptions

of the project. The scope helps to provide a clear understanding of what the

project will deliver and what it will not. The scope also helps to identify the

project’s risks, assumptions, and dependencies, which are important factors

that must be considered during the project planning process.

The next step in the planning phase is to identify the project

stakeholders, which include both the internal and external stakeholders.

The team must identify the stakeholders’ needs, expectations, and

requirements, and develop a communication plan to ensure that the

stakeholders are informed and engaged throughout the project.

Finally, the project team creates a project plan that includes a detailed

timeline, milestones, and deliverables. The project plan outlines the tasks,

resources, and timelines required to complete the project, and it helps to

ensure that the project is completed on time, within budget, and with the

expected quality. The project plan also helps to track progress, identify

issues, and manage changes throughout the project’s life cycle.

Testing is not a typical activity in the planning phase of the SDLC. This

phase is primarily focused on defining the project’s scope, goals, objectives,

and requirements, as well as identifying the resources and technology

required to complete the project. Testing activities are not usually performed

in this phase since there is no code or application to test.

However, there are a few test-related activities that can be performed

during the planning phase. For instance, the test manager or team can start

developing a test strategy that outlines the testing approach, test plan, testing

scope, and test schedule for the project. The test manager can also establish

testing goals and objectives that align with the project’s goals and objectives.

The test team can also start identifying the resources and tools

required for testing, such as test management tools, test automation tools,

and test data management tools. This can help ensure that the necessary

testing resources are available when testing activities begin in the later

phases of the SDLC.

Chapter 3 Software Development Life Cycle

38

Here are some ways that QA can contribute to the planning phase:

•	 Reviewing project requirements: QA can review project

requirements to ensure that they are clear, complete,

and testable. This can help to identify any gaps or

inconsistencies in the requirements early in the

development process and ensure that the requirements

are aligned with business needs.

•	 Defining quality standards: QA can work with

stakeholders to define quality standards for software

products. This can include criteria for usability,

performance, security, and reliability, among others.

Defining quality standards up front can help to ensure

that software products meet the needs of end users

and stakeholders and reduce the risk of defects and

production issues.

•	 Developing a test plan: QA can develop a test plan that

outlines the testing strategy for the project. The test

plan can include details such as the types of testing

that will be performed, the tools and techniques that

will be used, and the roles and responsibilities of the

testing team.

•	 Identifying testing resources: QA can work with project

managers to identify the testing resources that will

be needed for the project. This can include tools,

equipment, and personnel. By identifying testing

resources early in the planning phase, QA can help to

ensure that adequate resources are available for testing

and quality assurance activities.

Chapter 3 Software Development Life Cycle

39

•	 Collaborating with development teams: QA can work

closely with development teams to ensure that quality

is built into the software products from the outset. This

can include participating in code reviews, providing

feedback on testability and maintainability, and

identifying potential defects early in the development

process.

The planning phase of the SDLC typically ends with the creation of a

detailed project plan or a software project management plan (SPMP).

The project plan outlines the scope, objectives, timelines, resource

requirements, and budget for the project. It also includes a risk

management plan and a quality assurance plan that identifies the testing

methodologies, tools, and techniques to be used during the testing phase.

Once the project plan is finalized, the next step is to get the necessary

approvals and funding for the project, after which the actual development

work begins.

It is important to note that the planning phase is not a one-time event,

but an ongoing process that requires continuous review and updates

throughout the SDLC to ensure that the project stays on track and meets

the objectives and goals of the stakeholders.

When everything is in place, we are ready to proceed to the next phase.

�Requirements Gathering Phase
The requirements gathering phase is the second phase of the SDLC. It is

also known as the analysis phase. During this phase, the development

team works closely with the stakeholders to gather and document the

requirements for the software project. The main goal of this phase is to

understand the business requirements and objectives, as well as the user

requirements and expectations.

Chapter 3 Software Development Life Cycle

40

The following are the key activities that take place during the

requirements gathering phase:

•	 Gathering and analyzing requirements: The

development team works with the stakeholders to

understand their needs and expectations. This involves

conducting interviews, focus groups, and surveys to

gather information.

•	 Documenting requirements: The requirements are

documented in a detailed manner. This includes

use cases, user stories, functional and nonfunctional

requirements, and acceptance criteria.

•	 Prioritizing requirements: Once the requirements

are documented, they are prioritized based on their

importance and impact on the project.

•	 Reviewing requirements: The development team

reviews the requirements with the stakeholders to

ensure that they are accurate, complete, and feasible.

•	 Getting sign-off on requirements: Once the

requirements have been reviewed and finalized, the

stakeholders sign off on them. This signifies their

agreement that the requirements accurately represent

their needs and expectations.

The outcome of the requirements gathering phase is a detailed

requirements specification document. This document serves as a

reference point for the rest of the SDLC phases. Any changes to the

requirements during the development process must be managed through

a formal change control process to ensure that the impact of any changes is

properly assessed and that the project stays on track.

Chapter 3 Software Development Life Cycle

41

In the requirements gathering phase of the SDLC, testing involves

verifying that the gathered requirements are correct, complete, and

testable. The testing team reviews the requirements to ensure that they are

clear, unambiguous, and consistent. They work with the business analysts

and stakeholders to clarify any areas of confusion or ambiguity.

During this phase, testing also involves identifying any missing

requirements, as well as requirements that may conflict with other

requirements or the project’s overall goals. This is to ensure that the

requirements are feasible and can be implemented in the project’s scope

and timeline.

Additionally, testing in the requirements gathering phase includes

defining acceptance criteria and identifying key performance indicators

(KPIs) that will be used to measure the success of the project. This helps

to ensure that the project will meet the needs of the stakeholders and

users and that the testing team can adequately measure the quality of the

product once it is completed.

Let’s say that a software development team is tasked with building an

e-commerce platform. During the requirements gathering phase, the team

identifies a requirement that states, “The platform must be able to process

1,000 transactions per minute.”

To ensure that this requirement can be met, the QA team can ask the

following questions:

•	 What is the expected load on the platform during

peak hours?

•	 What is the maximum number of concurrent users that

the platform will need to support?

•	 What types of transactions will be processed (e.g.,

purchases, returns, refunds)?

Chapter 3 Software Development Life Cycle

42

•	 Will the platform need to integrate with any third-party

payment gateways?

•	 What security measures will be in place to protect user

data during transactions?

By asking these questions, the QA team can ensure that the

requirement is well-defined and that the development team has all the

information they need to build a platform that can meet the performance

and security needs of the business.

After the requirements are defined, reviewed, and accepted by all the

stakeholders, then the design phase is ready to start.

�Design Phase
During the design phase of the SDLC, the requirements gathered in the

previous phase are used to create a detailed design for the software system.

The design phase typically involves the following steps:

	 1.	 Architectural design: In this step, the overall system

architecture is defined, including the hardware,

software, and network components.

	 2.	 High-level design: Based on the architectural design,

the high-level design is created, which specifies the

overall structure of the software system, including

the modules or components and their relationships.

	 3.	 Detailed design: This step involves designing each

module or component in detail, including its

input and output, algorithms, data structures, and

interfaces with other modules.

Chapter 3 Software Development Life Cycle

43

	 4.	 Prototyping: Prototyping is often used to validate

the design and ensure that it meets the user

requirements. This may involve creating a working

model of the software system or individual

components.

	 5.	 Design review: Once the detailed design is complete,

it is reviewed by stakeholders to ensure that it meets

the requirements and is technically feasible.

	 6.	 Design documentation: The design is documented

to ensure that it can be easily understood and

maintained by other developers.

The output of the design phase is a detailed design specification, which

is used as the basis for the next phase of the SDLC.

In the design phase, the testing team may be involved in the review

and evaluation of the design documents to ensure that the design meets

the requirements specified in the requirements documents. This can help

to identify design issues and inconsistencies early in the development

cycle, which can reduce the cost and time associated with fixing defects in

later phases.

In addition, the testing team may be involved in the creation of test

plans and test cases based on the design documents. This can help to

ensure that the testing effort is aligned with the design and that all design

components are tested thoroughly.

The following are some common testing activities in the design phase:

•	 Reviewing the design documents for accuracy,

completeness, and consistency with the requirements

•	 Creating test plans and test cases based on the design

documents

•	 Identifying potential defects or issues in the design and

reporting them to the development team

Chapter 3 Software Development Life Cycle

44

•	 Conducting design walk-throughs or reviews to ensure

that the design meets the specified requirements

•	 Validating the design against industry standards and

best practices

Overall, testing in the design phase is important to ensure that the

design is sound and meets the specified requirements. By identifying and

addressing design issues early in the development cycle, the testing team

can help to reduce the cost and time associated with fixing defects in

later phases.

Let’s say that a software development team is designing a new feature

for a social media platform. During the design phase, the team creates a

mockup of the new feature that includes a form for users to enter personal

information.

To ensure that the design is user-friendly and meets the platform’s

quality standards, the QA team can ask the following questions:

•	 Is the form easy to navigate and understand?

•	 Are all necessary fields clearly labeled and easy to find?

•	 Are there any unnecessary fields that could be removed

to streamline the user experience?

•	 Does the design comply with accessibility

standards, such as providing alternatives for visually

impaired users?

•	 Is the design consistent with the platform’s overall look

and feel, including colors, fonts, and logos?

By asking these questions, the QA team can ensure that the design is

intuitive, accessible, and consistent with the platform’s standards.

When the designs are finalized and everyone involved has agreed, the

actual development can start.

Chapter 3 Software Development Life Cycle

45

�Development Phase
During the development phase of the SDLC, the software is designed and

developed based on the requirements gathered and design specifications

created during the previous phases.

The development phase involves creating the software code, building

and testing the software, and fixing any issues that arise during testing. The

development team typically consists of software developers, testers, and

technical writers who create user manuals, guides, and other technical

documentation for the software.

The software code is usually written in a high-level programming

language and is translated into machine code by a compiler or interpreter.

The code is then tested using a variety of testing techniques, including unit

testing, integration testing, and system testing, to ensure that it meets the

functional and nonfunctional requirements specified in the earlier phases.

During the development phase, it is important to follow coding

standards and best practices to ensure that the software code is

maintainable, reusable, and easily extendable in the future. It is also

important to ensure that the software code is well-documented and that

all functions and procedures are clearly defined and documented to aid in

future maintenance and support.

During the development phase, the focus of testing shifts from validating

the system design and requirements to identifying and resolving defects in

the software code. The objective of this phase is to ensure that the software is

functioning as expected and that all the requirements are met.

Testing in the development phase involves the following activities:

•	 Unit testing: Unit testing is a type of testing that verifies

the smallest piece of testable code, such as functions,

methods, or procedures. It is performed by the

developers themselves and is focused on validating

that the code meets the technical specifications and

works as intended.

Chapter 3 Software Development Life Cycle

46

•	 Integration testing: Integration testing is the process

of testing how different software components interact

with each other. It is performed after unit testing and

ensures that the different components are properly

integrated and work together as expected.

•	 System testing: System testing is the process of testing

the entire system as a whole. It involves testing the

software in a test environment that is similar to the

production environment, with real-world data and

simulated users. This type of testing verifies that the

system meets all the functional and nonfunctional

requirements.

•	 Acceptance testing: Acceptance testing is the final

phase of testing before the software is released to the

end users. It is a type of testing where the software

is evaluated against the user requirements, and it is

performed by the business stakeholders or end users.

•	 Regression testing: Regression testing is the process of

testing the system after changes have been made to the

software code. It ensures that the existing functionality

has not been impacted by the changes made and that

the new functionality works as expected.

•	 Performance testing: Performance testing is performed

to ensure that the system is functioning within the

acceptable limits in terms of speed, scalability,

and stability. It involves testing the system under

various workloads and conditions to identify and fix

performance-related issues.

Chapter 3 Software Development Life Cycle

47

•	 Security testing: Security testing is performed to

ensure that the system is secure and protected against

external threats. It involves identifying vulnerabilities

and testing the system for unauthorized access, data

breaches, and other security-related issues.

Testing in the development phase is an iterative process and

involves continuous testing and validation of the software code. It is

critical to ensure that the software is fully functional, meets the business

requirements, and is ready for release to the end users.

Let’s say that a software development team is building a mobile app

that includes a feature for users to upload photos. During the development

phase, the team has written the code to handle photo uploads.

To ensure that the feature works as expected and meets the platform’s

quality standards, the QA team can perform the following tests:

•	 The QA team can test the upload feature to ensure that

it works correctly and uploads the photos to the correct

location. They can also test that the app can handle

different file formats and file sizes.

•	 The QA team can test the upload feature to ensure that

it works quickly and efficiently, even when many users

are uploading photos simultaneously.

•	 The QA team can test the upload feature to ensure that

it is secure and that user data is protected during the

upload process.

•	 The QA team can test the upload feature to ensure that

it is intuitive and easy to use for users. They can also

test that any error messages or notifications are clear

and helpful.

By performing these tests, the QA team can identify any issues or bugs

in the feature and work with the development team to fix them.

Chapter 3 Software Development Life Cycle

48

The development phase stops when all the items on the definition

of done list are checked. This means that all the found defects are either

solved or accepted as a risk, the documentation is in place, and the

product owner has accepted the implementation. Then we can deploy the

changes.

�Deployment Phase
The deployment phase in the SDLC is the phase in which the developed

software is delivered to the customer for their use. It involves installing the

software in the customer’s environment, configuring it, and making sure

that it works as expected.

The deployment phase involves the following activities:

•	 Release planning: In this phase, the deployment

team identifies the necessary resources, timelines,

and activities required to deploy the software to the

customer’s environment.

•	 Configuration management: The deployment team

ensures that the software is configured correctly and all

necessary dependencies are in place.

•	 Deployment testing: The deployment team performs

testing to ensure that the software works as expected in

the customer’s environment.

•	 Data migration: The deployment team ensures that

all data from the previous system is transferred to the

new system.

•	 User training: The deployment team provides training

to the end users to use the software effectively.

Chapter 3 Software Development Life Cycle

49

•	 User acceptance testing: The deployment team works

with the customer to perform user acceptance testing

to ensure that the software meets their requirements.

•	 Go-live: The deployment team deploys the software

to the customer’s environment and ensures that it

is working correctly. The team also provides post-

deployment support to the customer.

The deployment phase is critical because it is the final stage before the

software is used in a production environment. A successful deployment

ensures that the software meets the customer’s requirements and is ready

for use.

Testing in the deployment phase is important to ensure that the

software is correctly installed and configured in the target environment.

This phase involves tasks such as the following:

•	 Installation testing: Verifying that the software is

installed correctly on the target environment and that

it meets the system requirements and compatibility

criteria

•	 Configuration testing: Testing the various configuration

options available in the software and ensuring that

the configuration is set up correctly for the target

environment

•	 Compatibility testing: Verifying that the software

is compatible with the hardware and software

components in the target environment and that there

are no conflicts or issues

•	 Security testing: Ensuring that the software is secure

in the target environment and that it adheres to the

security policies and requirements

Chapter 3 Software Development Life Cycle

50

•	 Performance testing: Verifying that the software is

performing well in the target environment and that it

meets the performance requirements

•	 Acceptance testing: Testing the software with end

users and stakeholders to ensure that it meets their

expectations and requirements

The testing in the deployment phase is often done in collaboration

with the system administrators, network administrators, and other IT

professionals who are responsible for deploying and maintaining the

software in the target environment.

Let’s say that a software development team is deploying a new version

of their web application to production. During the deployment phase, the

team needs to ensure that the application is deployed correctly and works

as expected in the production environment.

To ensure that the deployment is successful and meets the platform’s

quality standards, the QA team can perform the following tests:

•	 The QA team can perform a quick check to ensure

that the application is accessible and that the main

functionality is working as expected. This can include

verifying that pages load properly, forms can be

submitted, and data is displayed correctly.

•	 The QA team can test the application to ensure that

existing features are still working correctly after the

deployment. This can include testing that all links

still work, pages load quickly, and data is displayed

correctly.

Chapter 3 Software Development Life Cycle

51

•	 The QA team can test the application to ensure that it

can handle the expected user load. This can include

testing that the application can handle a certain

number of concurrent users and that performance

is not degraded when many users are using the

application at the same time.

•	 The QA team can test the application to ensure that it is

secure and that user data is protected. This can include

testing that user data is encrypted during transmission

and storage, that access controls are implemented

correctly, and that there are no vulnerabilities that

could be exploited by attackers.

By performing these tests, the QA team can ensure that the deployment

is successful, that the application works as expected in the production

environment, and that it meets the platform’s quality standards. Then we

can proceed to the maintenance phase.

�Maintenance Phase
The maintenance phase in the SDLC is the phase in which the software is

released to the market, and it is made available to the end users. During

this phase, the software development team is involved in fixing any bugs,

errors, or defects that are found in the software.

The maintenance phase is an important phase because it is the time

when the software is in use, and it is the time when any issues that arise

must be addressed. The maintenance phase is also the time when updates,

patches, and new features are added to the software.

Chapter 3 Software Development Life Cycle

52

There are generally three types of maintenance.

•	 Corrective maintenance: This type of maintenance

involves fixing defects, errors, and bugs in the software.

•	 Adaptive maintenance: This type of maintenance

involves modifying the software to adapt it to changes

in the environment, such as changes in the operating

system, hardware, or other software.

•	 Perfective maintenance: This type of maintenance

involves improving the software to make it more

efficient, reliable, or user-friendly.

During the maintenance phase, the software development team

may also be involved in providing technical support to end users and in

providing training to help users to get the most out of the software.

Testing in the maintenance phase of the SDLC involves verifying and

validating changes made to the software after it has been deployed to

production. The primary focus of maintenance testing is to ensure that the

software continues to meet the desired levels of quality and functionality,

while also addressing any issues that may arise during its use in the field.

Maintenance testing can take on several different forms, depending on

the nature and scope of the changes being made. The following are some

of the most common types of maintenance testing:

•	 Regression testing: This involves running a full suite of

tests to ensure that the changes made to the software

have not introduced any new defects or issues and that

the existing functionality remains intact.

•	 Patch testing: This involves testing individual patches

or updates to the software to ensure that they do not

cause any adverse effects or issues.

Chapter 3 Software Development Life Cycle

53

•	 Integration testing: This involves testing the integration

of any new or updated components of the software

to ensure that they work as expected and do not

negatively impact existing functionality.

•	 User acceptance testing: This involves testing changes

made to the software from the perspective of end users

to ensure that they meet the desired levels of quality

and usability.

In addition to these types of testing, maintenance testing also involves

monitoring the performance of the software in the field, identifying and

addressing any defects or issues that arise, and ensuring that the software

continues to meet the evolving needs and expectations of its users. This

ongoing testing and maintenance is critical to ensuring that the software

remains functional, reliable, and effective over the long term.

Let’s say that a software development team has released a mobile app

and is now in the maintenance phase, where they are addressing bugs and

making updates to the app. During this phase, the team needs to ensure

that any changes they make to the app do not introduce new issues or

negatively impact the user experience.

To ensure that the maintenance work is successful and meets the

platform’s quality standards, the QA team can perform the following tests:

•	 The QA team can test the app to ensure that changes

made to address bugs or add new features have not

introduced new issues. This can include testing that

existing functionality still works correctly and that no

new bugs have been introduced.

•	 The QA team can test the app to ensure that any

changes made to the user interface or user experience

do not negatively impact the user experience. This can

include testing that the app is still intuitive and easy to

use for users.

Chapter 3 Software Development Life Cycle

54

•	 The QA team can test the app to ensure that it still

works correctly across different devices and operating

systems. This can include testing that the app works

correctly on the latest versions of popular devices and

operating systems.

•	 The QA team can test the app to ensure that it is

still secure and that user data is protected. This can

include testing that any new features or changes do not

introduce new security vulnerabilities.

By performing these tests, the QA team can ensure that any

maintenance work is successful, that the app continues to meet the

platform’s quality standards, and that users continue to have a positive

experience.

�The Role of Testing in the SDLC
You have probably noticed that there is no testing phase in the SDLC, or

at least I did not include it. In the past, the testing phase was placed right

after the development phase, but years of collective experience in the

industry proved that testing is not an autonomous phase and it needs to be

part of every phase in the SDLC.

Testing is an essential part of the SDLC, and it plays a critical role in

ensuring the quality of the software application. The primary purpose

of testing is to identify defects or errors in the software application and

ensure that the software meets the user’s requirements. Testing also

helps to ensure that the software application is reliable, scalable, and

maintainable.

Chapter 3 Software Development Life Cycle

55

The role of testing in the SDLC can be summarized as follows:

•	 Verify that the software application meets the user’s

requirements: Testing helps to ensure that the software

application meets the user’s requirements and

performs the intended functions.

•	 Identify defects or errors in the software application:

Testing helps to identify defects or errors in the

software application that may impact the software’s

performance or functionality.

•	 Ensure the software application is of high quality:

Testing helps to ensure that the software application is

of high quality, reliable, and maintainable.

•	 Reduce the risk of software failure: Testing helps to

reduce the risk of software failure and ensures that

the software application is stable and performs as

intended.

•	 Improve user satisfaction: Testing helps to improve user

satisfaction by ensuring that the software application

meets the user’s needs and performs as expected.

�Summary
The software development life cycle comprises several stages, each with

its set of activities, deliverables, and milestones and the responsibilities

of a tester vary and overlap in every phase. It is important for the tester

to be involved as early as possible and to have a deep understanding of

the system being tested. Since there are plenty of activities for the tester

during the SDLC, it is crucial to plan ahead, estimate, and prioritize all the

activities.

Chapter 3 Software Development Life Cycle

57

CHAPTER 4

Test Planning
Test planning is an essential activity in software testing that involves creating

a comprehensive plan for testing the software application. The test plan

outlines the testing objectives, scope, approach, resources, and schedule

for the testing phase of the software development life cycle (SDLC). Test

planning ensures that testing is done effectively and efficiently and helps to

minimize the risk of defects in the software application.

In this chapter, we will go through the most important aspects of test

planning. First we will examine how to define the testing objectives and

then how to determine the scope of the system under test. It is important

to select the right testing approach for the product, because different

products have different priorities and risks. Then, based on the testing

approach, we are going to identify the resources and develop a test

schedule. We’ll continue with the definition of the test cases, and we will

find the applicable test data for the defined test cases.

We will see what a defect management process should contain and

when we can stop testing. After everything is in place, we will create a test

plan document, and we will see which tools and techniques are useful.

�Defining Testing Objectives
Defining testing objectives is a critical step in the software testing process

as it sets the direction and purpose of the testing effort. Testing objectives

are the specific goals and outcomes that the testing team wants to achieve

through the testing process.

© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_4

https://doi.org/10.1007/978-1-4842-9514-4_4

58

The objectives of testing may vary depending on the project

requirements and the SDLC phase, but generally, the main objectives of

testing include the following:

•	 Ensuring the software meets the business requirements:

Testing should ensure that the software product meets

the requirements defined by the stakeholders.

•	 Identifying defects: Testing should aim to identify

defects and bugs in the software product. These defects

can be functional or nonfunctional.

•	 Verifying software functionality: Testing should verify

that the software product functions correctly and

provides the expected output.

•	 Ensuring software quality: Testing should ensure that

the software product meets the quality standards

defined by the organization.

•	 Reducing the risk of software failure: Testing should

help in reducing the risk of software failure and

ensuring that the software product is reliable.

•	 Ensuring software security: Testing should ensure that

the software product is secure and protects user data

from unauthorized access.

•	 Increasing user satisfaction: Testing should ensure that

the software product meets the needs of the end users

and provides an excellent user experience.

By defining clear testing objectives, the testing team can develop a

comprehensive testing plan that aligns with the project requirements and

helps in achieving the testing goals.

Chapter 4 Test Planning

59

�Determining the Scope of Testing
Determining the scope of testing is a critical step in the testing process.

It involves identifying the testing areas, features, and functionality that

need to be tested, as well as defining the testing boundaries. The scope of

testing is determined based on various factors such as the application's

complexity, the risk associated with the application, and the testing

resources available. The testing scope should be defined and documented

in the test plan to ensure that all stakeholders understand what is in and

out of scope for testing.

A well-defined testing scope helps in ensuring that all critical features

and functionalities of the application are thoroughly tested, and the

application is tested to a level that meets the business requirements. The

scope of testing may also be impacted by factors such as time, budget, and

resource constraints. Therefore, it is important to prioritize the testing

efforts based on the criticality of the features and functionalities.

The scope of testing should be reviewed and updated regularly during

the testing process to ensure that the testing effort is on track, and all the

testing objectives are being met. Regular reviews and updates also help to

identify any changes in the scope of the application and its functionalities,

which may require additional testing efforts.

�Selecting the Testing Approach
Selecting the appropriate testing approach is an essential step in the

software testing process. The approach taken will depend on a number of

factors, such as the complexity of the software, the project timeline, and

the available resources.

Chapter 4 Test Planning

60

There are several testing approaches, each with its own set of

advantages and disadvantages. The following are some of the most

common testing approaches:

•	 Black-box testing: This approach tests the functionality

of the software without any knowledge of the internal

workings of the software. Testers use requirements

specifications to create test cases.

•	 White-box testing: This approach tests the internal

workings of the software, such as code, logic, and

algorithms. Testers use programming skills to create

test cases.

•	 Gray-box testing: This approach combines the elements

of black-box and white-box testing. Testers have limited

knowledge of the internal workings of the software,

allowing them to test both the functionality and the

internal workings of the software.

•	 Manual testing: This approach involves manual

execution of test cases. Testers execute the test cases by

hand and record the results.

•	 Automated testing: This approach involves the use of

software tools to execute test cases automatically. This

is a faster and more efficient testing approach than

manual testing.

•	 Exploratory testing: This approach involves testing the

software without a formal test plan. Testers use their

knowledge of the software to identify defects.

•	 Regression testing: This approach involves retesting the

software after a change has been made. The purpose of

regression testing is to ensure that the change did not

introduce any new defects.

Chapter 4 Test Planning

61

It is important to select the appropriate testing approach for each

project. The testing approach should be chosen based on the project

requirements, available resources, and time constraints.

�Identifying Testing Resources
Identifying testing resources is an important step in the testing process as

it helps to determine the skills, tools, and infrastructure needed to perform

the testing activities.

The testing resources that may be required include the following:

•	 Personnel: This includes the testing team members, test

leads, and test managers who will be responsible for

performing the testing activities.

•	 Testing tools: The testing team may require various

testing tools such as test management tools, defect

tracking tools, automation tools, performance testing

tools, and security testing tools to help perform the

testing activities.

•	 Infrastructure: The testing team may require hardware

and software infrastructure such as servers, network

equipment, and testing environments.

•	 Data: The testing team may require data that represents

the actual production environment to perform the

testing activities. This may include data such as

customer data, product data, and transaction data.

•	 Budget: The testing team may require a budget to cover

the costs of the testing activities. This may include costs

for personnel, testing tools, infrastructure, and data.

Chapter 4 Test Planning

62

Identifying and obtaining these resources early in the testing process

can help ensure that the testing activities are performed efficiently and

effectively.

�Developing the Test Schedule
Developing the test schedule is an important aspect of software testing

planning. A test schedule is a detailed plan that outlines the testing

activities, timelines, and resources required to carry out the testing

activities.

The following are the steps to develop a test schedule:

	 1.	 Determine the testing timeline: The first step is to

determine the testing timeline. The testing timeline

is the period in which the testing activities will

take place. It is important to consider the project

timeline, including the delivery date, milestones,

and other important events.

	 2.	 Identify the testing activities: Identify the testing

activities required for each stage of the SDLC such

as functional testing, performance testing, security

testing, and so on.

	 3.	 Determine the order of testing activities: Determine

the order in which the testing activities will be

carried out. This may depend on the type of

testing, the requirements of the project, and the

interdependencies of the various testing activities.

	 4.	 Allocate resources: Allocate resources to each testing

activity. This includes personnel, tools, hardware,

and software required for each testing activity.

Chapter 4 Test Planning

63

	 5.	 Develop the test schedule: Using the information

collected, create a detailed schedule of the testing

activities. The schedule should include the start

and end dates of each testing activity, the resources

allocated to each activity, and the dependencies

between the various testing activities.

	 6.	 Review and refine: Once the test schedule is created,

it should be reviewed and refined to ensure that

it is accurate and realistic. The review should also

include input from key stakeholders to ensure that

the test schedule aligns with the project objectives

and priorities.

	 7.	 Communicate the test schedule: The final step is to

communicate the test schedule to all stakeholders,

including the development team, project manager,

and other relevant parties. It is important to ensure

that all stakeholders understand the test schedule

and their roles and responsibilities in carrying out

the testing activities as per the schedule.

�Defining Test Cases
Defining test cases is an essential step in the software testing process that

involves the identification of individual test cases that need to be executed

to ensure that the software meets the specified requirements. A test case is

a set of conditions or variables under which a tester determines whether a

software system is working correctly or not.

Chapter 4 Test Planning

64

The process of defining test cases involves the following steps:

	 1.	 Identify the objective of the test case: Define

the purpose of the test case and what specific

functionality or behavior is to be tested.

	 2.	 Determine the test input data: Decide on the input

data that needs to be provided to the software for

the test case.

	 3.	 Define the expected output: Determine what the

expected output of the test case should be, based on

the input data and the requirements.

	 4.	 Specify the steps to be executed: Define the steps that

need to be followed to execute the test case. This

should include the setup required to prepare the

system for testing, the specific actions to be taken,

and the data to be used.

	 5.	 Document the test case: Write down the details of

the test case, including the objective, input data,

expected output, and steps to be executed.

	 6.	 Review and refine the test case: Review the test case

to ensure that it is complete, accurate, and effective

in verifying the software functionality. Make any

necessary revisions to improve the test case.

	 7.	 Group related test cases: Group similar or related

test cases together, to make it easier to manage and

execute them.

	 8.	 Prioritize the test cases: Assign priorities to the test

cases, based on their importance and the likelihood

of finding defects.

Chapter 4 Test Planning

65

	 9.	 Define the test coverage: Determine the coverage

of the test cases by identifying the requirements,

features, and areas of the software that the tests are

designed to cover.

�Identifying Test Data
Identifying test data is the process of selecting and preparing data that

will be used to test the software. Test data includes all input values,

configuration settings, and other necessary data needed to perform

testing on the system. The selection of test data is important, as it will

be used to validate the functionality, performance, and security of the

software.

There are different types of test data, including normal data, boundary

values, negative data, and error messages. Normal data is used to test

the software under typical operating conditions, while boundary values

are used to test the limits of the software. Negative data is used to test the

software’s ability to handle invalid input, while error messages are used to

test the software’s response to errors.

To identify test data, testers need to analyze the software requirements

and identify the different scenarios and use cases that need to be tested.

They should also consider the expected results and how the software

should behave under different conditions. Testers may use tools such as

data generators and test data management tools to generate or manage

test data.

Chapter 4 Test Planning

66

�Defect Management Process
Defining the defect management process is an important aspect of

software testing. When defects are found, they need to be recorded,

tracked, and managed to ensure that they are fixed and the software meets

the desired level of quality. The defect management process involves the

following steps:

	 1.	 Defect logging: Defects need to be logged in a defect

tracking tool or system. The defect should be logged

with a unique identifier, a summary of the issue,

a detailed description, the steps to reproduce the

defect, and the severity of the defect.

	 2.	 Defect classification: Once the defect is logged, it

needs to be classified based on its severity and

priority. This helps in prioritizing the defects based

on the level of impact they have on the software.

	 3.	 Defect analysis: Once the defects are classified, the

next step is to analyze the defects to identify the root

cause of the issue. This helps in fixing the issue and

preventing it from occurring in the future.

	 4.	 Defect assignment: After the defect analysis, the

defect is assigned to a developer or a team for fixing.

The developer or the team should be provided with

all the necessary details to reproduce the issue and

fix the defect.

	 5.	 Defect fixing: The assigned developer or team will

work on fixing the defect. Once the defect is fixed,

the developer or the team should update the status

of the defect in the defect tracking system.

Chapter 4 Test Planning

67

	 6.	 Defect verification: After the defect is fixed, it needs

to be verified to ensure that the issue has been

resolved. The tester or the test team should verify

the defect to ensure that it has been fixed and that

there are no side effects.

	 7.	 Defect closure: Once the defect has been verified,

it can be closed in the defect tracking system. The

status of the defect should be updated as “Closed” in

the defect tracking system.

�Stop Testing Criteria
Stop testing criteria refers to the conditions that need to be met for the

testing process to be stopped. These criteria help determine whether

the product or system under test is ready for release or if further testing

is required. Stop testing criteria may include factors such as meeting

predefined requirements, passing a set number of test cases, reaching a

specific level of test coverage, and achieving acceptable performance and

quality levels. These criteria can vary depending on the specific project,

testing goals, and other factors, and they are typically defined in the test

plan. It is important for testers and stakeholders to agree on the stop

testing criteria before the testing process begins to avoid confusion and

ensure that everyone is working toward the same goal.

�Reviewing and Approving the Test Plan
Reviewing and approving the test plan is an important step in the testing

process. It helps ensure that the test plan is accurate, complete, and meets

the requirements of the project.

Chapter 4 Test Planning

68

The review process should involve stakeholders, including the project

team, quality assurance team, and management. The review should

include a comprehensive analysis of the test plan, including test objectives,

scope, approach, resources, schedule, test cases, and test data.

Once the review is complete, the test plan should be approved by the

project sponsor or project manager. Approval indicates that the test plan is

acceptable, and the testing process can proceed.

It is important to remember that the test plan is a living document,

and it may need to be updated or modified as the project progresses.

Any changes to the test plan should be reviewed and approved by the

appropriate stakeholders.

�Benefits of Test Planning
The importance of test planning in software testing cannot be overstated.

It is a critical activity that ensures that testing is done effectively and

efficiently. The following are the reasons why test planning is important:

•	 Provides a clear road map: Test planning provides a

clear roadmap for the testing phase of the SDLC. It

outlines the testing objectives, scope, approach,

resources, and schedule for testing. This road map

helps to ensure that testing is done in a structured and

organized manner, which helps to minimize the risk of

defects in the software application.

•	 Minimizes risk: Test planning helps to minimize the

risk of defects in the software application. By defining

a comprehensive set of test cases and identifying

the required resources, test planning ensures that

all aspects of the software application are tested

thoroughly.

Chapter 4 Test Planning

69

•	 Reduces costs: Test planning helps to reduce the costs

of testing. By identifying the required resources and

developing a realistic and achievable test schedule, test

planning helps to ensure that testing is done efficiently

and cost-effectively.

•	 Improves test coverage: Test planning helps to improve

test coverage by ensuring that all features and

functionalities of the software application are tested.

This helps to ensure that the software application

meets the required quality standards.

•	 Increases test efficiency: Test planning increases

test efficiency by defining a testing approach that

is appropriate for the testing objectives, scope, and

available resources. This ensures that testing is done in

a manner that is both effective and efficient.

•	 Provides a basis for review and approval: Test planning

provides a basis for review and approval of the testing

phase of the SDLC. It ensures that all stakeholders

are aware of the testing objectives, scope, approach,

resources, and schedule, and have an opportunity to

provide input and feedback.

�Test Plan Document
Creating a test plan document is an essential part of the test planning

process, and it provides a detailed road map for the testing process. The

following are usually the contents of a test plan document:

•	 Introduction: This section should introduce the

purpose and scope of the test plan document. It should

also provide an overview of the software application

being tested.

Chapter 4 Test Planning

70

•	 Testing objectives: This section should clearly state

the testing objectives and goals that the testing team

aims to achieve. The testing objectives should be

aligned with the business requirements and should be

measurable and achievable.

•	 Testing approach: This section should describe the

overall testing approach that the testing team will

follow. It should include the testing methods and

techniques that will be used and how the tests will be

conducted. This section should also include the roles

and responsibilities of the testing team.

•	 Testing schedule: This section should provide a detailed

timeline for the testing process. It should include the

start and end dates for each testing phase, including

planning, design, execution, and reporting.

•	 Test environment: This section should describe the

test environment required to execute the test cases. It

should include information on the hardware, software,

and network configurations required for the testing.

•	 Test data: This section should describe the test data

required to execute the test cases. It should include the

source of the test data, the type of data required, and

any constraints or limitations on the test data.

•	 Test cases: This section should provide a detailed list

of test cases that will be executed during the testing

process. It should include information on the test case

ID, the test case description, the expected result, and

the status of each test case.

Chapter 4 Test Planning

71

•	 Test automation: This section should describe any test

automation that will be used during the testing process.

It should include information on the tools that will be

used, the test scripts that will be created, and the types

of tests that will be automated.

•	 Risks and issues: This section should provide a list of

potential risks and issues that could impact the testing

process. It should include a description of each risk or

issue, the impact it could have on the testing process, and

any mitigation strategies that will be used to address it.

•	 Reporting and communication: This section should

describe how the testing results will be reported and

communicated to the stakeholders. It should include

information on the reporting frequency, the format of

the reports, and the stakeholders who will receive the

reports.

•	 Conclusion: This section should summarize the key

points of the test plan document and provide any

additional information or recommendations.

�Test Planning Tools and Techniques
There are various tools and techniques available for test planning, which

can help testing teams to create a comprehensive test plan. The following

are some of these tools and techniques:

•	 Risk analysis: Risk analysis is a technique used to

identify and analyze potential risks that may occur

during the testing process. Risk analysis helps to

prioritize and allocate resources effectively to manage

risks. There are several methods for performing risk

Chapter 4 Test Planning

72

analysis, such as Failure Modes and Effects Analysis

(FMEA), Strengths, Weaknesses, Opportunities, and

Threats (SWOT), and Political, Economic, Social,

Technological, Environmental, and Legal (PESTEL).

•	 Test estimation: Test estimation is a technique used

to estimate the time and effort required to complete

the testing process. There are several methods for test

estimation, such as expert judgment, historical data,

and bottom-up and top-down estimation.

•	 Test case design techniques: Test case design techniques

are used to create test cases that cover all possible

scenarios and use cases of the software application

being tested. Some of the popular test case design

techniques are boundary value analysis, equivalence

partitioning, and decision table testing.

•	 Test management tools: Test management tools are

used to manage the testing process, including test

planning, test case creation, execution, and reporting.

Some popular test management tools are Jira, HP ALM,

and TestRail.

•	 Test automation tools: Test automation tools are used

to automate the testing process and improve the

efficiency and accuracy of the testing. Some popular

test automation tools are Selenium, Appium, and

TestComplete.

•	 Traceability matrix: A traceability matrix is a tool used

to track the relationship between requirements and test

cases. It helps to ensure that all the requirements are

covered by the test cases and provides visibility into the

testing process.

Chapter 4 Test Planning

73

•	 Gantt chart: A Gantt chart is a tool used to represent

the testing schedule in a graphical format. It helps to

visualize the testing timeline and identify any potential

schedule conflicts.

�Summary
When a new feature is under test, we need to make sure that we plan it

accurately. This will give a nice overview of what we test and how long it

takes. We started simply, by defining the testing objectives and the scope,

and then we move on with the testing approach, the resources we need,

and the expected schedule. We saw the items that need to be present in the

defect management process and when we can decide to stop testing. At

the end we created a test plan document, using some common tools and

techniques. In my view the most important step is the creation of the test

cases, and thankfully there are several test design techniques we can follow

to generate more test cases and to test the right things.

Chapter 4 Test Planning

75

CHAPTER 5

Test Design
Techniques
Test design techniques are methods used to create test cases that cover all

possible scenarios and use cases of the software application being tested.

Several test design techniques are available, each with its own strengths

and weaknesses. In this chapter, we will discuss some of the popular

test design techniques. We will see some common techniques, such as

equivalence partitioning and boundary value analysis, and some more

obscure but quite useful in complex situations, such as pairwise testing

and modified condition decision coverage.

�Black-Box Testing
Black-box testing is a software testing technique in which the internal

workings of the system being tested are not known to the tester. The

tester focuses on the system’s inputs and outputs and tests the system’s

functionality based on predefined requirements and specifications.

In black-box testing, the tester treats the system as a black box and tests

it by providing inputs and observing the outputs. The objective of black-

box testing is to detect any errors, bugs, or defects that are present in the

system’s functionality, without knowing how the system works internally.

© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_5

https://doi.org/10.1007/978-1-4842-9514-4_5

76

Black-box testing can be performed at different levels of software

testing, such as unit testing, integration testing, system testing, and

acceptance testing. The techniques used in black-box testing include

equivalence partitioning, boundary value analysis, decision table testing,

and use-case testing.

Black-box testing has several advantages, such as the following:

•	 It enables testers to focus on the functionality of the

system without worrying about its internal workings.

•	 It provides a clear separation between the tester and

the developer, as the tester does not need to know how

the system is implemented.

•	 It helps to uncover defects and errors that are not

visible from the system’s code or architecture.

However, black-box testing also has some limitations, such as the

following:

•	 It may not detect errors that are related to the system’s

internal workings.

•	 It may not be as effective in identifying complex defects

or bugs.

•	 It may not be suitable for testing performance or

security-related issues.

Overall, black-box testing is an important testing technique that can

help to ensure the quality and reliability of software systems by detecting

defects and errors in the system’s functionality.

In this chapter we will go through the following black-box test design

techniques:

•	 Equivalence partitioning: Dividing the input data into

partitions that should exhibit similar behavior and then

selecting representative test cases from each partition

Chapter 5 Test Design Techniques

77

•	 Boundary value analysis: Testing the boundary conditions

of input values by selecting test cases at the minimum

and maximum input values, just above and below these

values, and at points where the input changes value

•	 Decision table testing: A table-based technique that

identifies the inputs, conditions, and actions of a

system and then constructs combinations of test cases

for each possible combination of inputs

•	 State transition testing: Testing a system that can be

in one of several states by identifying the states and

transitions between them and then constructing test

cases that cover each transition at least once

•	 Use-case testing: Testing a system by focusing on the

user’s needs and requirements, identifying scenarios

that represent how a user might interact with the

system, and then testing those scenarios

•	 Pairwise testing: A combinatorial technique that

generates test cases that exercise all possible pairs of

input values

•	 Error guessing: Creating test cases based on an

understanding of likely errors that might occur in a system

•	 Exploratory testing: Testing a system by exploring it

in an unscripted manner, trying to find errors and

unexpected behavior

•	 Random testing: Selecting inputs randomly from the

input space to create test cases

•	 Ad hoc testing: Testing a system in an unplanned and

unstructured manner, often without a formal test plan

or test case documentation

Chapter 5 Test Design Techniques

78

�Equivalence Partitioning
Equivalence partitioning is a technique used in software testing that

involves dividing a set of test conditions into groups or partitions that are

equivalent or similar to each other. The idea behind this technique is to

minimize the number of test cases that need to be executed while still

ensuring that all possible scenarios are covered.

In equivalence partitioning, test cases are created based on the

equivalence classes. Equivalence classes are a set of input conditions that

are expected to behave in the same way. For example, if an application

has a field that accepts numbers, the input range can be divided into two

equivalence classes: valid numbers and invalid numbers. This way, instead

of testing each input number, we can test a representative value from each

equivalence class.

The objective of equivalence partitioning is to minimize the number

of test cases needed to test a system while still ensuring that all possible

scenarios are covered. This technique can be used in both functional and

nonfunctional testing.

These steps can be followed while applying equivalence partitioning:

	 1.	 Identify the input variables of the system to

be tested.

	 2.	 Divide the input variables into different equivalence

classes based on their expected behavior.

	 3.	 Develop test cases for each equivalence class.

	 4.	 Execute the test cases and analyze the results.

	 5.	 Repeat the process for each input variable.

By using equivalence partitioning, testers can save time and effort in

testing and ensure that the most important test cases are covered. It is a

widely used technique in both manual and automated testing.

Chapter 5 Test Design Techniques

79

Equivalence partitioning is a powerful testing technique that can be

used in many situations to optimize the number of test cases needed to

achieve high test coverage. It is particularly useful when testing inputs

that can take on many different values or ranges of values. By dividing

the input space into equivalence classes, we can test a representative set

of values from each class, rather than exhaustively testing every possible

input value.

However, there are situations where equivalence partitioning may

not be the most effective testing technique. For example, if the input

space is relatively small and well-defined, it may be more efficient to test

every input value rather than dividing them into equivalence classes.

Additionally, if the software system being tested is critical or safety-critical,

it may be necessary to test every possible input value to ensure that no

errors or bugs are present. In general, the decision to use equivalence

partitioning or another testing technique should be based on the specific

characteristics of the system being tested, the nature of the inputs and

outputs, and the desired level of test coverage.

The following are two examples of equivalence partitioning:

�User Login Page

Suppose you are testing a user login page for a website. The page requires

users to enter their username and password to log in. The input fields for

the username and password have specific requirements. The username

must be between 6 to 15 characters, and the password must be between 8

to 20 characters. Equivalence partitioning can be used to identify the valid

and invalid input values for each field.

For the username field:

•	 Valid inputs: username, 123456, qwertyuioplkj

•	 Invalid inputs: user, 1, qwertyuioplkjzxcvbnm12345

Chapter 5 Test Design Techniques

80

Then they are split into valid and invalid partitions (Table 5-1).

Table 5-1.  Partitions of Username Field

Invalid Valid Invalid

0-5 6-15 >15

Partition 1 Partition 2 Partition 3

For the password field:

•	 Valid inputs: password1, Password123,

abcdefghi123456789

•	 Invalid inputs: pass, 1234567, qwertyuioplkjzxcvbnms

Then they are split into valid and invalid partitions (Table 5-2).

Table 5-2.  Partitions of Password Field

Invalid Valid Invalid

0-7 8-20 >20

Partition 1 Partition 2 Partition 3

�Credit Card Payment

Suppose you are testing a credit card payment module of an e-commerce

website. The module accepts credit card details such as card number,

expiration date, and security code. Equivalence partitioning can be used to

identify the valid and invalid input values for each field.

For the credit card number field:

•	 Valid inputs: 16-digit credit card numbers

•	 Invalid inputs: Less than or more than 16 digits credit

card numbers, alphabetic or special characters

Chapter 5 Test Design Techniques

81

Then they are split into valid and invalid partitions (Table 5-3).

Table 5-3.  Partitions of Credit Card Number Field

Invalid Valid Invalid Invalid

0-15 16 >16 Non-numbers

Partition 1 Partition 2 Partition 3 Partition 4

For the expiration date field:

•	 Valid inputs: Any future date in MM/YY format

•	 Invalid inputs: Any past date, any date with

invalid format

Then they are split into valid and invalid partitions (Table 5-4).

Table 5-4.  Partitions of Expiration Date Field

Invalid Valid Invalid

Past date Future Date in MM/YY Invalid format

Partition 1 Partition 2 Partition 3

�Exercise

Suppose you are testing a registration form for a mobile app. The form

requires users to enter their name, email address, and phone number. The

name field must be between 3 to 20 characters, the email address must be

in a valid email format, and the phone number must be a 10-digit number.

Use equivalence partitioning to identify the valid and invalid input values

for each field.

Chapter 5 Test Design Techniques

82

�Boundary Value Analysis
Boundary value analysis (BVA) is a software testing technique that is used

to identify errors in software by focusing on the boundary conditions of

the input domain. The input domain is the set of all possible inputs to a

software system. BVA involves testing values that lie on the boundaries of

this input domain, since these values are more likely to cause errors.

The BVA technique involves testing the following values:

•	 Minimum boundary values: These are the smallest

values that can be used as input for a particular

parameter. For example, if the parameter is the number

of items that can be added to a shopping cart, the

minimum boundary value would be zero.

•	 Maximum boundary values: These are the largest

values that can be used as input for a particular

parameter. For example, if the parameter is the number

of items that can be added to a shopping cart, the

maximum boundary value would be the maximum

limit set by the system.

•	 Just above the minimum boundary values: These are

values that are just above the minimum boundary

value. For example, if the minimum boundary value for

the number of items that can be added to a shopping

cart is zero, the just above value would be one.

•	 Just below the maximum boundary values: These are

values that are just below the maximum boundary

value. For example, if the maximum boundary value for

the number of items that can be added to a shopping

cart is 10, the just below value would be 9.

Chapter 5 Test Design Techniques

83

By testing these boundary values, testers can identify any issues

that may exist in the software. For example, if the system is designed to

allow a maximum of 10 items to be added to a shopping cart, testing with

just above and just below values may reveal issues with how the system

handles values that exceed this limit.

BVA is a simple yet effective testing technique that can help identify

many types of errors in software. It is often used in conjunction with

other testing techniques, such as equivalence partitioning, to ensure that

software is thoroughly tested and that all possible scenarios are covered.

However, BVA can be avoided when testing scenarios where inputs

are not restricted by boundaries or when the boundaries themselves are

not well-defined or may change frequently. Additionally, BVA may not

be appropriate for testing scenarios where inputs have a large number

of variables and dimensions, as identifying and testing every possible

boundary condition can be time-consuming and resource-intensive.

The following are two examples of boundary value analysis.

�Age Validation

Suppose you are testing a form that requires users to enter their age. The

system allows users who are 18 years or older to register. The input field for

age has specific requirements. The user’s age must be between 18 to 60. In

boundary value analysis, the focus is on values that are at the boundaries

of this range, which are 18 and 60. Test cases can be designed for these

boundary values to check if the system handles them correctly.

•	 Test case 1: Enter age as 17: This should be rejected with

an appropriate error message.

•	 Test case 2: Enter age as 18: This should be accepted.

•	 Test case 3: Enter age as 60: This should be accepted.

•	 Test case 4: Enter age as 61: This should be rejected with

an appropriate error message.

Chapter 5 Test Design Techniques

84

�File Size Validation

Suppose you are testing a file upload feature on a website. The feature

allows users to upload files of up to 10 MB in size. The focus in boundary

value analysis is on values that are at the boundaries of this range, which

are 0 MB and 10 MB. Test cases can be designed for these boundary values

to check if the system handles them correctly.

•	 Test case 1: Upload a file with 0 MB size: This should be

rejected with an appropriate error message.

•	 Test case 2: Upload a file with 10 MB size: This should

be accepted.

•	 Test case 3: Upload a file with 11 MB size: This should

be rejected with an appropriate error message.

�Exercise

Suppose you are testing a calculator application that allows users to

perform addition, subtraction, multiplication, and division operations.

The system allows the input of only two numbers at a time. The input

fields for numbers have specific requirements. The numbers should be

between -99999 and 99999. Use boundary value analysis to identify the

valid and invalid input values for each field.

�Decision Table Testing
Decision table testing, also known as cause-effect graphing, is a black-box

testing technique that is used to test systems that have multiple inputs and

outputs, where the output is dependent on the input and a set of rules. It is

often used in complex systems where there are multiple combinations of

inputs that can be tested.

Chapter 5 Test Design Techniques

85

The process of decision table testing involves creating a table that

shows all possible combinations of inputs and their corresponding

outputs. Each combination of inputs is referred to as a rule. The table also

includes additional columns to identify the conditions that must be met

for each rule to be executed, as well as the actions that must be taken as a

result of each rule.

The main benefit of decision table testing is that it helps identify

all possible combinations of inputs and outputs, ensuring that all test

scenarios are covered. It is also a very structured approach to testing,

which makes it easy to document and review the test cases. Decision table

testing is often used in conjunction with other testing techniques to ensure

complete test coverage.

Decision table testing should be avoided when there are only a few

conditions to be tested as it can be time-consuming to create the table

and may not provide significant benefits. It may also be less effective

when there are dependencies between the conditions and the order of

testing matters. In such cases, other techniques such as pairwise testing

or exploratory testing may be more suitable. Additionally, decision table

testing may not be the best option when the rules or requirements are

likely to change frequently as it may require constant updates to the table.

The following are two examples of decision table testing.

�E-shop Discounts

An e-commerce website sells various products, and it has different

discount offers for each product. The discounts depend on the product

type, product price, and customer’s age.

For electronics, when the product price is less than $500, then the

discount is 5 percent for customers below 18 and 10 percent for customers

who are 18 and over. When the product price is $500 or more, then the

discount is 10 percent for customers who are below 18 and 20 percent for

customers who are 18 and over.

Chapter 5 Test Design Techniques

86

For clothing, when the product price is less than $100, then the

discount is 5 percent for customers below 18 and 10 percent for customers

who are 18 and over. When the product price is $100 or more, then the

discount is 15 percent for customers who are below 18 and 20 percent for

customers who are 18 and over.

In this case, a decision table can be created to identify the

combinations of inputs that result in a specific discount offer, as shown in

Table 5-5.

Table 5-5.  Decision Table

Product Type Product Price Customer Age Discount Offer

Electronics >= $500 < 18 10% off

Electronics >= $500 >= 18 20% off

Electronics < $500 < 18 5% off

Electronics < $500 >= 18 10% off

Clothing >= $100 < 18 15% off

Clothing >= $100 >= 18 20% off

Clothing < $100 < 18 5% off

Clothing < $100 >= 18 10% off

In this example, decision table testing can be used to test the system’s

ability to correctly apply the discount offers based on the product type,

product price, and customer age.

�Transportation Price

A transportation company provides transportation services for customers,

and it charges based on the distance and the number of passengers. The

pricing depends on the type of transportation, which can be either a taxi

or a bus.

Chapter 5 Test Design Techniques

87

A taxi with one or two passengers charges $5, $10, and $20 for a

distance of 0–5, 5–10, and 10+ km, respectively.

A taxi with three or four passengers charges $10, $20, and $40 for a

distance of 0–5, 5–10, and 10+ km, respectively.

A bus with 1–30 passengers charges $50, $100, and $200 for a distance

of 0–10, 10–50, and 50+ km, respectively.

In this case, a decision table (Table 5-6) can be created to identify the

combinations of inputs that result in a specific price.

Table 5-6.  Decision Table

Type of Transportation Number of Passengers Distance Price

Taxi 1–2 0–5 $5

Taxi 1–2 5–10 $10

Taxi 1–2 10+ $20

Taxi 3–4 0–5 $10

Taxi 3–4 5–10 $20

Taxi 3–4 10+ $40

Bus 1–30 0–10 $50

Bus 1–30 10–50 $100

Bus 1–30 50+ $200

In this example, decision table testing can be used to test the system’s

ability to correctly apply the pricing based on the type of transportation,

the number of passengers, and the distance.

�Exercise

Suppose you are testing a system that provides insurance quotes for

customers based on the type of vehicle, driver’s age, and driving history.

Chapter 5 Test Design Techniques

88

The system applies different rules for different vehicle types, driver

ages, and driving histories.

For vehicles of less than 10 years, if the driver is between 25 and 50

and has no prior accidents, the quote is $50. With prior accidents, the

quote is $75.

If the driver is 18–25 or more than 50 and has no prior accidents, the

quote is $60. With prior accidents, the quote is $85.

For vehicles of 10 years or more, if the driver is between 25 and 50 and

has no prior accidents, the quote is $65. With prior accidents, the quote

is $100.

If the driver is 18–25 or more than 50 and has no prior accidents, the

quote is $75. With prior accidents, the quote is $110.

Use decision table testing to identify the different combinations of

inputs that result in a specific insurance quote.

�State Transition Testing
State transition testing is a black-box testing technique used to test the

functionality of a system or software that involves the transition of the

system from one state to another. In this technique, the behavior of the

system is analyzed based on different input conditions and the resulting

transitions from one state to another.

The state transition testing technique is commonly used in systems

that have a defined set of states and in which the behavior of the

system depends on the current state. The testing process involves the

identification of all possible states and the transitions between these states.

Test cases are then designed to cover each transition and the associated

behavior.

Chapter 5 Test Design Techniques

89

The process of state transition testing involves the following steps:

	 1.	 Identify the states of the system: The first step is

to identify all the states of the system. A state is a

condition or mode in which the system operates.

	 2.	 Identify the events that cause transitions: The next

step is to identify all the events that cause the system

to transition from one state to another.

	 3.	 Create a state transition diagram: A state transition

diagram is created to illustrate the various states of

the system and the transitions between them.

	 4.	 Design test cases: Test cases are designed to cover

each transition and the associated behavior.

	 5.	 Execute test cases: The test cases are executed to

verify that the system is functioning as expected.

State transition testing can be a highly effective way to test the

functionality of a system, especially for systems with complex state-based

behavior. However, it is important to ensure that all possible transitions are

covered by the test cases to ensure adequate testing coverage.

State transition testing is most suitable when testing software

applications that have states or modes. Examples of such applications

are traffic control systems, automated teller machines (ATMs), and

elevators. In such applications, testing is required to ensure that the

system transitions correctly from one state to another and the correct

response is generated. State transition testing is also beneficial in testing

applications that rely on user input to progress through various states, such

as software games.

However, state transition testing may not be suitable for all types

of software applications. For instance, applications that do not have

clear states or modes may not benefit from this technique. Similarly,

Chapter 5 Test Design Techniques

90

applications that have a limited number of states or have simple transitions

may not require state transition testing. Additionally, state transition

testing may not be suitable for applications that are highly dynamic and

constantly changing states.

The following are two examples of state transition testing.

�Traffic Light System

Suppose you are testing a traffic light system where the light turns from red

to green to yellow to red, based on a timer.

In this example, the traffic light system has three states: Red,

Green, Yellow.

State Transition Table

Table 5-7 shows the traffic light states.

Table 5-7.  Traffic Light System States

Current State Event Next State

Red Timer expired Green

Green Timer expired Yellow

Yellow Timer expired Red

State Transition Diagram

Figure 5-1 shows the state transition diagram.

Chapter 5 Test Design Techniques

91

Figure 5-1.  Traffic light state transition diagram

�Shopping Cart

Suppose you are testing an online shopping cart with the option to add or

remove items from your cart, check out, complete your order, or cancel

everything.

In this example, the shopping cart application has four states: Empty

Cart, One Item, Two Items, and Three Items. There is also a special state

called Checkout that represents the process of checking out and paying for

items in the cart.

The state transition table lists all of the possible events that can occur

in each state, along with the resulting next state. For example, if the current

state is Empty Cart and the Add Item event occurs, the next state will be

One Item. If the current state is One Item and the Proceed to Checkout

event occurs, the next state will be Checkout.

By testing all of the possible state transitions and ensuring that

the application behaves correctly in each state, we can ensure that the

shopping cart application works as expected.

State Transition Table

Table 5-8 shows the shopping cart states.

Chapter 5 Test Design Techniques

92

Table 5-8.  Shopping Cart States

Current State Event Next State

Empty Cart Add Item One Item

Empty Cart Remove Item Error

One Item Add Item Two Items

One Item Remove Item Empty Cart

One Item Proceed to Checkout Checkout

Two Items Add Item Three Items

Two Items Remove Item One Item

Two Items Proceed to Checkout Checkout

Three Items Remove Item Two Items

Three Items Proceed to Checkout Checkout

Checkout Cancel Empty Cart

Checkout Confirm Payment Thank You

State Transition Diagram

Figure 5-2 shows the state transition diagram.

Figure 5-2.  Shopping cart state transition diagram

Chapter 5 Test Design Techniques

93

�Exercise

Suppose you are tasked with testing a vending machine that dispenses

beverages. The machine can be in three states: idle, beverage selected, and

dispensing. The user can perform the following actions:

	 1.	 Insert coins (only accepts denominations of 5, 10,

and 25 cents).

	 2.	 Select a beverage (cola, lemonade, or water).

	 3.	 Cancel the transaction.

	 4.	 Dispense the beverage.

Create a state transition diagram for this traffic light system, and test

each possible transition to ensure that the system functions as expected.

What happens if you try an invalid transition?

�Use-Case Testing
Use-case testing is a software testing technique that evaluates the

software’s ability to meet the end users’ requirements. A use case is a

specific scenario that describes how a user interacts with the software

system. Use-case testing involves creating test cases based on these

scenarios to verify that the system behaves as expected.

To perform use-case testing, the tester first identifies the system’s

different use cases. Then, for each use case, they create test cases that

include inputs, expected outputs, and steps to be taken. The test cases

are designed to evaluate whether the system meets the specific use case

requirements.

The following are the benefits of use-case testing:

•	 Improved software quality: Use-case testing helps

to ensure that the software meets the end users’

requirements, resulting in higher-quality software.

Chapter 5 Test Design Techniques

94

•	 Better test coverage: Use-case testing ensures that all

possible scenarios are tested, leading to better test

coverage.

•	 Easy to understand: Use cases are easy to understand,

making it easier for stakeholders to provide feedback

and review the software.

•	 Efficient testing: Use-case testing is efficient because it

focuses on the most important scenarios, reducing the

time and effort required for testing.

For example, consider a banking application. A use case for this

application could be withdrawing cash from an ATM. Test cases for this

use case might include verifying that the ATM is functioning correctly,

the user is authenticated, the account balance is updated, and the user

receives the requested cash amount. By testing the use case, we can verify

that the banking application meets the user’s requirements and functions

as intended.

Use-case testing is beneficial when the requirements are well-defined

and the end users’ perspective is considered. This approach is also helpful

when the system is expected to undergo changes frequently, as it allows

the team to focus on testing the most critical use cases first. Use-case

testing can be used to test the system’s functionality, as well as to ensure

that the system meets the user’s needs and expectations.

On the other hand, use-case testing may not be suitable when the

system is relatively simple and the requirements are straightforward.

It may also not be appropriate when there is not enough information

available about the user’s perspective and the system’s use cases.

Additionally, use-case testing can be time-consuming and may require

significant effort to design and execute the test cases.

Chapter 5 Test Design Techniques

95

�Exercise

Suppose you are tasked with testing a library management system. The

use cases for the system include searching for books, checking out books,

returning books, and managing user accounts.

Create a list of use cases for this library management system, and test

each one, including both valid and invalid scenarios. You also need to

ensure that the system can handle all possible combinations of use cases.

�Pairwise Testing
Pairwise testing, also known as all-pairs testing, is a technique used

in software testing to ensure that all possible combinations of input

parameters are tested at least once. It is a combinatorial testing method

that reduces the number of test cases required to cover all possible

combinations of inputs, while still providing a high level of test coverage.

The technique is based on the principle that faults often occur as a

result of interactions between input parameters, rather than just individual

parameters. By using pairwise testing, it is possible to uncover such

interactions and identify defects that might not be detected by other

testing methods.

Pairwise testing works by creating test cases that cover all possible

pairs of values for each input parameter. For example, if a system has three

input parameters, each with four possible values, there would be a total

of 64 possible combinations (4×4×4). With pairwise testing, however, it is

possible to reduce the number of test cases required to cover all possible

pairs of values to just 24, significantly reducing the time and effort required

for testing.

Pairwise testing can be performed manually, but there are also many

automated tools available that can generate test cases automatically. These

tools use algorithms to identify the most efficient set of test cases that will

cover all possible pairs of input parameters.

Chapter 5 Test Design Techniques

96

Pairwise testing can be particularly useful in situations where

there are a large number of input parameters or where the interactions

between input parameters are complex and difficult to predict. By using

this technique, testers can ensure that their test cases are efficient and

effective, helping to uncover defects early in the development cycle and

ultimately improve the quality of the software being developed.

Pairwise testing is particularly effective when there are interactions

between different input parameters that may result in unexpected

behavior. By systematically varying combinations of input parameters in a

controlled manner, it is possible to identify these interactions and ensure

that they are adequately tested.

However, pairwise testing may not be appropriate in all situations.

For example, if there are dependencies between input parameters that

cannot be captured by pairwise testing, additional testing strategies may

be necessary. Additionally, if the software being tested has a high degree

of complexity or criticality, more rigorous testing approaches may be

necessary to ensure that all possible scenarios are adequately covered.

Suppose we are testing a web form that asks for a user’s personal

information, including their first name, last name, email address, phone

number, and country. The form has the following input fields:

First Name (text field, max 50 characters)

Last Name (text field, max 50 characters)

Email Address (text field, max 100 characters)

Phone Number (text field, max 20 characters)

Country (drop-down list of 10 countries)

To apply pairwise testing, we first create a table that lists all the

possible values for each input parameter, as shown in Table 5-9.

Chapter 5 Test Design Techniques

97

Table 5-9.  All Users

First Name Last Name Email Address Phone Number Country

Alex Smith alex@test.com 1234567890 USA

Bob Jones bob@test.com 0987654321 Canada

Charlie Brown charlie@test.com 5555555555 UK

Dave Kim dave@test.com 1112223333 Japan

Emma Lee emma@test.com 4445556666 Australia

Next, we group the parameters into pairs and generate all possible

combinations, like so:

•	 First Name, Last Name

•	 First Name, Email Address

•	 First Name, Phone Number

•	 First Name, Country

•	 Last Name, Email Address

•	 Last Name, Phone Number

•	 Last Name, Country

•	 Email Address, Phone Number

•	 Email Address, Country

•	 Phone Number, Country

Chapter 5 Test Design Techniques

98

For each pair, we select test cases that cover all possible combinations

of values. For example, for the pair of First Name and Last Name, we can

select the following test cases:

•	 Enter valid values for both fields (e.g., Alex and Smith).

•	 Enter the maximum allowed number of characters for

each field (50 characters).

•	 Enter an empty value for one field and a valid value for

the other (e.g., leave First Name blank and enter Smith

for Last Name).

•	 Enter an invalid value for one field and a valid value for

the other (e.g., enter 123 for First Name and Smith for

Last Name).

•	 Enter non-ASCII characters for both fields (e.g., Álex

and Smitĥ).

We repeat this process for each pair of input parameters, until we have

selected test cases that cover all possible combinations of values.

Pairwise testing can significantly reduce the number of test cases

required to achieve thorough coverage of the input domain, while still

providing good test coverage.

�Exercise

Suppose you are testing a reservation system that has four input fields:

date, time, location, and number of guests. Using pairwise testing, select a

subset of test cases that covers all possible combinations of input values.

�Error Guessing
Error guessing is a software testing technique that is based on the tester’s

experience, intuition, and creativity to identify potential defects in the

Chapter 5 Test Design Techniques

99

software. It is a black-box testing technique that does not follow any formal

process or test case design. Instead, the tester applies a range of ad hoc

tests based on their intuition and experience with the application and its

potential weaknesses.

The process of error guessing involves identifying different scenarios

and situations in which the software may behave unexpectedly and

then attempting to replicate those scenarios and test the software’s

response. Testers use their experience and knowledge of the software to

anticipate the types of errors that may occur and then design tests to reveal

those errors.

Error guessing can be particularly effective when combined with other

testing techniques such as equivalence partitioning and boundary value

analysis. By using a combination of techniques, testers can identify a wide

range of potential errors and increase the likelihood of uncovering defects

in the software.

An example of error guessing might be a tester who has extensive

experience with a particular software application and knows that it is

particularly prone to crashing when certain input values are entered. The

tester may design a test case that intentionally enters these input values to

see if the software crashes as expected. If the software does not crash, the

tester may try other variations on the input values until they uncover the

defect. This process of guessing at possible errors and testing them is error

guessing.

Error guessing is useful when the tester has limited time and resources

to design test cases and execute them. It is also useful when the system

being tested has no documentation or formal specifications and the tester

needs to rely on their expertise to identify potential errors.

However, it is important to note that error guessing should not be

the only technique used for testing. It should be used in conjunction

with other techniques such as boundary value analysis, equivalence

partitioning, and decision table testing to ensure comprehensive testing of

Chapter 5 Test Design Techniques

100

the system. Additionally, error guessing should not be used as a substitute

for proper documentation and requirements gathering, as this can lead to

incomplete testing and potential errors being missed.

�Registration Form

Suppose you are testing a registration form that has several input fields:

name, email address, password, and confirmation password. Based on

your experience, you might guess that users will enter invalid characters

or leave required fields blank. You can design test cases that try to enter

unexpected data such as special characters in the name field, an invalid

email address, or a password that is too short.

�E-commerce Website

Suppose you are testing an e-commerce website that has a checkout

process with several pages. Based on your experience, you might guess

that users will have trouble entering shipping information, payment

information, or completing the checkout process. You can design test cases

that intentionally try to trigger errors, such as trying to submit an order

with an invalid credit card number.

�Exercise

Suppose you are testing a messaging app that allows users to send and

receive messages. Based on your experience, what are some potential

errors or defects that users may encounter? Design test cases that

intentionally try to trigger those errors.

�Exploratory Testing
Exploratory testing is a technique of software testing that emphasizes

the freedom and creativity of testers in the software testing process. It is

an approach to testing where the tester actively and dynamically learns

Chapter 5 Test Design Techniques

101

about the software while testing it. In other words, the tester designs and

executes tests while exploring the software application in an unstructured

and informal way.

Exploratory testing is often used in Agile and DevOps environments

where the requirements are rapidly changing, and the software needs to

be tested quickly and efficiently. It allows testers to adapt quickly to the

changes and continuously refine their testing approach based on their

understanding of the system.

The process of exploratory testing involves the following steps:

	 1.	 Understanding the objectives: The tester must

understand the objectives and goals of the software

testing project.

	 2.	 Creating test charters: Test charters define the scope

of the testing and provide a set of guidelines for the

tester to follow.

	 3.	 Executing tests: During this stage, the tester starts

exploring the software application, identifying

potential issues and reporting them.

	 4.	 Analyzing test results: The results of the tests are

analyzed, and the tester can identify areas that

require further testing.

	 5.	 Documenting the process: The testing process is

documented for future reference, and test cases are

updated based on the results.

Exploratory testing is a highly effective technique, as it allows testers

to find defects that may not be found through traditional testing methods.

It is also an excellent way to identify usability and user experience issues.

However, exploratory testing is not a replacement for traditional testing

methods. It should be used in conjunction with other testing techniques to

ensure that the software is of high quality.

Chapter 5 Test Design Techniques

102

Exploratory testing is useful when the software is complex, when there

is limited information available about the software, or when there are no

clear specifications or requirements. In such situations, exploratory testing

can help to identify defects that may be missed by other types of testing.

Exploratory testing is also beneficial when there are new features, changes

to existing features, or changes to the environment, and the impact of

these changes needs to be tested quickly.

However, exploratory testing may not be the best approach when

the software is well-defined and there are clear requirements and

specifications available. In such cases, it may be more efficient to use other

types of testing, such as boundary value analysis, equivalence partitioning,

or decision table testing, which are more structured and systematic.

Additionally, exploratory testing may not be suitable for large and complex

systems, where a more formal approach to testing is necessary.

�Mobile App

Suppose you are testing a mobile app that allows users to take photos and

share them with their friends. You might start by exploring the app’s user

interface and testing the different features, such as taking a photo, adding

a filter, and sharing it with friends. As you explore the app, you might try

different scenarios, such as taking a photo in low light conditions, using a

different filter, or sharing the photo with a friend who has a slow Internet

connection.

�Online Marketplace

Suppose you are testing an online marketplace that allows users to buy

and sell products. You might start by exploring the website’s search

functionality and testing how well it works for different types of products.

As you explore the website, you might try different scenarios, such as

searching for a product that has multiple variations, testing the checkout

process, or using the website from a mobile device.

Chapter 5 Test Design Techniques

103

�Exercise

Suppose you are testing a social media app that allows users to post and

share content with their friends. Design and execute an exploratory testing

session, where you explore the app and test different scenarios. Try to

identify potential defects or issues and document them.

�Random Testing
In software testing, there are various techniques and methodologies to

design and execute test cases. One such technique is random testing. As

the name suggests, it involves selecting random input values from the

input domain of the system under test (SUT) and feeding them as input

to the system. This approach can uncover faults that may not be detected

by other testing techniques. In this chapter, we will discuss the basics of

random testing, its advantages, its limitations, and the process involved.

Random testing is a black-box testing technique, which means that the

tester does not have knowledge about the internal workings of the software

application. The testing technique involves selecting random input values

from the input domain of the software application. The input values are

selected randomly using a random number generator. The input values

can be any combination of characters, numbers, special symbols, or any

other data type that the software application accepts as input.

These are some advantages of random testing:

•	 Random testing is easy to design and execute. Testers

do not have to spend a lot of time designing test cases,

making it a faster testing technique.

•	 It is an effective technique for detecting faults in

complex systems where it is not possible to test all

possible combinations of input values.

Chapter 5 Test Design Techniques

104

•	 It can detect faults that are not detected by other testing

techniques.

•	 Random testing can also help identify performance

issues in the software application as it tests the

application with various input values.

These are some limitations of random testing:

•	 The technique can be less effective for testing

applications where there are many dependencies

between different parts of the application.

•	 Since the input values are selected randomly, it is

possible that some test cases may not cover important

scenarios of the software application.

•	 It can be difficult to reproduce failures detected by

random testing as it may be hard to determine the

specific input values that caused the failure.

There are different approaches to random testing, including pure

random testing, where test cases are selected completely at random

without any constraints or structure, and guided random testing, where

inputs are randomly generated based on certain rules or constraints.

In pure random testing, inputs are selected using a random number

generator, and the output is checked for correctness. Guided random

testing, on the other hand, uses domain knowledge or heuristics to guide

the selection of input values.

Random testing is an effective technique for detecting corner cases,

race conditions, and other subtle errors that might not be found through

other testing techniques. However, it is important to note that random

testing has some limitations. Since random testing is not based on any

specific criteria, it may not be effective if not applied in combination with

other test design techniques.

Chapter 5 Test Design Techniques

105

�Web Application

Suppose you are testing a web application that allows users to register and

log in. You can use random testing to create random strings of characters

to use as input for the username and password fields. By doing so, you

can test the application’s ability to handle different types of input, such as

special characters and long strings of text.

�Game Testing

Suppose you are testing a new video game that has just been developed.

You can use random testing to test the game’s ability to handle unexpected

input from the player. For example, you can use random movements of

the controller or keyboard to simulate different scenarios that may occur

during gameplay, such as sudden changes in direction or button mashing.

�Exercise

Suppose you are testing a calculator application. How would you use

random testing to test the application’s functionality?

�Ad Hoc Testing
Ad hoc testing is a form of exploratory testing that is performed without

a formal test plan or documented test cases. In this technique, testers

randomly and informally test the system with the goal of discovering issues

that might not be found by scripted testing. Ad hoc testing is often used

in conjunction with other testing techniques, such as manual testing and

automated testing.

Chapter 5 Test Design Techniques

106

These are some advantages of ad hoc testing:

•	 Flexibility: Ad hoc testing is flexible, allowing testers

to improvise and use their knowledge of the system to

test it in a way that might not be captured by formal

test cases.

•	 Early detection of defects: Ad hoc testing can identify

defects in the system early in the development cycle,

before formal test cases are developed.

•	 Efficient: Ad hoc testing is an efficient way to test the

system because it does not require time to develop

formal test cases or test plans.

These are some disadvantages of ad hoc testing:

•	 No documentation: Ad hoc testing is not documented,

making it difficult to reproduce defects and track the

testing progress.

•	 Limited scope: Ad hoc testing may not cover all the

areas of the system because it is not based on a formal

test plan.

•	 Unstructured: Ad hoc testing is unstructured, meaning

that there is no predefined approach or methodology

for testing the system.

�Example of Ad Hoc Testing

Suppose a tester is testing an e-commerce website. During ad hoc

testing, the tester might decide to test the website’s search functionality

by entering random search queries to see if the website returns accurate

results. The tester might also test the website’s navigation by randomly

clicking links to see if they take the user to the correct pages.

Chapter 5 Test Design Techniques

107

�Exercise

Consider a social media application that allows users to post and view

photos. Perform ad hoc testing on the application to identify defects that

might not be found by scripted testing. Document the defects found during

testing and report them to the development team. Review the ad hoc testing

with other testers to ensure that all areas of the system have been covered.

�White-Box Testing
White-box testing is a software testing technique that is used to test the

internal workings of an application or system. In white-box testing, the

tester has knowledge of the internal structure and implementation of the

software being tested. Here are some white-box testing techniques:

•	 Statement coverage: This technique involves testing

each statement of the code to ensure that every

statement has been executed at least once. The goal is

to ensure that all statements are covered by tests.

•	 Branch coverage: This technique involves testing each

branch of the code to ensure that every possible branch

has been executed at least once. The goal is to ensure

that all branches of the code have been tested.

•	 Path coverage: This technique involves testing all

possible paths through the code to ensure that every

possible path has been executed at least once. The goal

is to ensure that all possible paths have been tested.

•	 Condition coverage: This technique involves testing

each condition of the code to ensure that every possible

condition has been executed at least once. The goal is

to ensure that all conditions have been tested.

Chapter 5 Test Design Techniques

108

•	 Decision coverage: This technique involves testing

every decision point in the code to ensure that each

decision has been executed at least once. The goal is to

ensure that all decisions have been tested.

•	 Multiple condition coverage: This technique involves

testing all possible combinations of conditions in

the code to ensure that all possible outcomes have

been tested.

•	 Modified condition/decision coverage (MC/DC): This is

a white-box testing technique that ensures that every

condition in a decision has been tested independently

and that every possible combination of conditions has

been tested.

•	 Loop testing: This technique involves testing the code

within a loop to ensure that the loop executes correctly

and terminates properly.

•	 Data flow testing: This technique involves testing how

data flows through the code to ensure that it is being

handled correctly.

•	 Static testing: This technique involves analyzing the

code without executing it to identify potential defects

or issues. This can be done using tools such as code

reviews, code analysis, and static analysis.

By using these techniques, white-box testing can help identify defects

that might not be caught by other testing techniques. However, it requires

a high level of technical knowledge and expertise to be able to design and

execute these tests effectively.

Chapter 5 Test Design Techniques

109

�Statement Coverage
Statement coverage is a type of white-box testing technique that is used to

determine how many statements in the source code of a software system

have been executed during the testing process. The goal of statement

coverage is to ensure that each statement in the code has been executed at

least once during the testing process.

The statement coverage technique involves executing the test cases

that have been designed for a software system and tracking the number

of statements that are executed during the testing process. A statement

is considered to be executed if it is encountered by the program during

the execution of a test case. Once all test cases have been executed, the

percentage of statements that have been executed is calculated. The goal

of statement coverage is to achieve 100 percent statement coverage, which

means that every statement in the code has been executed at least once.

Statement coverage is a useful technique for finding defects in software

systems. By ensuring that every statement in the code has been executed at

least once, statement coverage can help to uncover defects that might not

have been found through other testing techniques. Additionally, statement

coverage can help to ensure that the software system is functioning as

intended and that all of the code is working as expected.

However, statement coverage has some limitations. For example,

achieving 100 percent statement coverage does not guarantee that the

software system is completely free of defects. It is possible to have a

software system with 100 percent statement coverage that still contains

defects. Additionally, statement coverage can be a time-consuming

process, especially for large software systems.

Chapter 5 Test Design Techniques

110

For example, consider the following code:

To test the statement coverage of this code, we need to write test cases

that execute each statement at least once.

Table 5-10 shows the minimum set of test cases to achieve 100 percent

statement coverage.

Table 5-10.  Statement Coverage Test Cases (Add Numbers)

Test Case A b Result

1 3 4 7

2 0 2 0

As another example, consider the following function that calculates the

average of a list of numbers:

Chapter 5 Test Design Techniques

111

To achieve statement coverage for this function, we would need to

execute each line of code at least once during testing. This would require

at least two test cases: one where the input list is empty, and one where the

input list contains at least one number.

Table 5-11.  Statement Coverage Test Cases (Average)

Test Case Numbers Result

1 empty None

2 1,2,3 2

However, achieving statement coverage alone is not enough to

guarantee that the code is completely tested. It is possible for all

statements to be executed, but certain logic paths may not be tested.

Therefore, other testing techniques such as branch coverage and path

coverage should also be used in conjunction with statement coverage to

ensure thorough testing.

Chapter 5 Test Design Techniques

112

�Exercise

Consider the following Python function that takes a list of integers as input

and returns a new list with all the even numbers in the input list:

Write two test cases that achieve statement coverage for this function.

Make sure to include at least one test case where the input list contains no

even numbers.

�Branch Coverage
Branch coverage is a white-box testing technique that evaluates whether

all the branches in the program source code are executed at least once. In

other words, it ensures that all the possible paths in the source code are

executed at least once. This technique is used to measure the effectiveness

of the testing and quality of the code. It helps to ensure that the program’s

control flow is working as expected.

The primary objective of branch coverage testing is to determine

whether each decision point in the code has been tested. The decision

point is a code statement that determines which of two paths to take.

Branch coverage is measured by the percentage of the total number of

decision points executed during the testing process.

Chapter 5 Test Design Techniques

113

The branch coverage testing process involves following the code paths

to determine whether each possible branch is executed at least once.

This technique requires a thorough understanding of the code structure

to identify all the decision points. Once the decision points have been

identified, the tester creates a test case that exercises each path.

For example, consider a code block with an if-else statement. The

if-else statement has two branches: one that is executed if the condition

is true and the other if the condition is false. To test branch coverage, we

must create test cases that execute both the true and false branches at

least once.

Here are some benefits of branch coverage testing:

•	 It helps to identify the potential faults in the code by

testing all possible paths.

•	 It ensures that the program’s control flow is working as

expected, reducing the risk of runtime errors.

•	 It provides metrics to measure the testing effectiveness

and code quality.

•	 It provides confidence in the code quality, helping to

reduce the cost of fixing defects.

For example, consider the following code:

Chapter 5 Test Design Techniques

114

To test the branch coverage of this code, we need to write test cases

that execute each branch at least once.

Table 5-12 shows the minimum set of test cases to achieve 100 percent

branch coverage.

Table 5-12.  Branch Coverage (Add Numbers)

Test Case A b Result

1 3 4 7

2 0 2 0

Suppose we have the following function in Python:

To achieve 100 percent branch coverage for this function, we need to

test both possible outcomes of the if statement: when x is greater than y,

and when x is not greater than y.

Table 5-13.  Branch Coverage (Max of Two Numbers)

Test Case a b Result

1 3 4 4

2 3 2 3

However, even achieving branch coverage may not be sufficient to

test all possible code paths. For example, in the previous code, the case

where the input is not an integer is not tested. Therefore, additional testing

techniques such as path coverage and condition coverage may also be

necessary to ensure thorough testing.

Chapter 5 Test Design Techniques

115

�Exercise

Consider the following Python function that takes an integer as input and

returns a string indicating whether the input number is positive, negative,

or zero:

Write the test cases that achieve branch coverage for this function.

�Path Coverage
Path coverage is a white-box testing technique that involves testing all

possible paths of a program. A path is a sequence of statements that begins

with the entry point and ends with the exit point of the program. Path

coverage aims to test each unique path at least once to ensure that the

program is functioning as expected.

To achieve path coverage, a test case must execute every statement in

the program at least once. It also requires that all possible branches are

executed. A branch is a point in the program where a decision is made,

such as an if statement or a loop condition. Each branch has at least

two possible outcomes, and all possible outcomes must be executed at

least once.

Chapter 5 Test Design Techniques

116

Path coverage is a more thorough testing approach than statement

coverage or branch coverage because it takes into account the interaction

between different paths in the program. It is a useful technique for

identifying hard-to-find defects that may not be detected by other testing

methods. However, path coverage can be time-consuming and difficult

to achieve for complex programs. In addition, it may not be necessary for

all programs, depending on the level of risk associated with the software

being tested.

For example, consider the following code:

To achieve 100 percent path coverage of this code, we need to test all

possible paths through the code. Table 5-14 shows the minimum set of test

cases to achieve 100 percent path coverage.

Table 5-14.  Path Coverage (Add Numbers)

Test Case A b Result

1 3 4 7

2 0 2 0

In this example, we have tested every possible path through the code,

ensuring that all possible combinations of control flow paths are executed

at least once. However, even achieving path coverage may not be sufficient

Chapter 5 Test Design Techniques

117

to test all possible code paths. Therefore, additional testing techniques

such as condition coverage and modified condition/decision coverage

may also be necessary to ensure thorough testing.

Consider the following Python function that takes three integers as

input and returns the sum of the two largest numbers:

To achieve path coverage for this function, we would need to execute

every possible path through the control flow of the function. This would

require at least three test cases: one where a is the largest number, one

where b is the largest number, and one where c is the largest number.

For example, we could write the test cases shown in Table 5-15.

Chapter 5 Test Design Techniques

118

Table 5-15.  Path Coverage (Sum of Largest Two)

Test Case A b c Result

1 1 2 3 5

2 2 1 3 5

3 3 2 1 5

�Exercise

Consider the following Python function that takes two lists of integers as

input and returns a new list containing the elements that are common to

both input lists:

Write the test cases that achieve path coverage for this function.

�Condition Coverage
Condition coverage is a type of white-box testing technique that aims to

ensure that all possible combinations of Boolean conditions in a program

have been executed at least once. The technique focuses on evaluating

the different ways in which a program’s conditions can be evaluated as

true or false. Condition coverage can be applied to both procedural and

Chapter 5 Test Design Techniques

119

object-oriented programs, and it is typically used to verify the correctness

of complex branching structures, such as loops, if statements, and switch

statements.

Condition coverage requires a test case to cover every possible

outcome of each Boolean condition in the program. A test case can cover a

Boolean condition in one of two ways: (1) it evaluates the condition to true,

and (2) it evaluates the condition to false. In this way, condition coverage

ensures that all possible combinations of Boolean conditions are evaluated

during the testing process.

These are some advantages of condition coverage:

•	 Helps identify hidden errors: Condition coverage ensures

that all possible combinations of Boolean conditions

are evaluated during testing. This means that even

the hidden errors in the program, which might not be

evident during normal execution, are discovered.

•	 Increases test case effectiveness: Condition coverage

ensures that test cases are optimized to find errors. By

focusing on the different ways in which a program’s

conditions can be evaluated as true or false, testers can

identify and eliminate redundant test cases, thereby

increasing the effectiveness of the test cases.

These are some disadvantages of condition coverage:

•	 Time-consuming: Condition coverage requires a large

number of test cases, which can be time-consuming to

design and execute.

•	 Code complexity: Programs with complex branching

structures can require a large number of test cases to

achieve complete condition coverage. This can make

it difficult for testers to achieve complete coverage and

make it harder to maintain the test suite.

Chapter 5 Test Design Techniques

120

Here is an example to illustrate condition coverage:

To achieve condition coverage, tests would need to be created that

cover both the true and false outcomes of both conditions: a > b and c < d.

This would require four tests in total:

	 1.	 a > b is true, c < d is true.

	 2.	 a > b is true, c < d is false.

	 3.	 a > b is false, c < d is true.

	 4.	 a > b is false, c < d is false.

Another example would be this function that classifies a triangle based

on the lengths of its sides:

To achieve condition coverage, tests would need to be created that

cover both the true and false outcomes of all conditions: a <= 0, b <= 0, and

c <= 0, a == b, b == c, c == a. This would require two tests in total:

Chapter 5 Test Design Techniques

121

	 1.	 a <= 0 is true and b <= 0 is true and c <= 0 is true and

a == b is false and b == c is false and c == a is false.

	 2.	 a <= 0 is false and b <= 0 is false and c <= 0 is false

and a == b is true and b == c is true and c == a is true.

As you probably observed, this set of tests, although it provides 100

percent condition coverage, does not cover all the possible situations that

arise in the code.

�Exercise

How would you improve the set of tests in the previous example?

�Decision Coverage
Decision coverage is a white-box testing technique that is used to measure

the effectiveness of testing by checking if all decisions made in the source

code have been exercised. A decision is a condition that can lead to either

true or false outcome. Decision coverage measures the percentage of

decisions that have been executed during testing.

The goal of decision coverage is to ensure that each decision in the

code has been executed at least once and that all possible outcomes (true

and false) have been tested. This helps to ensure that the code is free of

errors and will function as expected under all possible scenarios.

To achieve decision coverage, testers must create test cases that

execute every decision point in the code. This means that every possible

outcome of each decision point must be tested. For example, if a decision

point is a simple if-else statement, then there are two possible outcomes

that must be tested.

Decision coverage is important because it helps to ensure that all

possible outcomes of the code have been tested. This is particularly

important in safety-critical systems where a failure in the code could have

catastrophic consequences.

Chapter 5 Test Design Techniques

122

Here is an example to illustrate decision coverage:

To achieve decision coverage, we need to ensure that both possible

outcomes of the if statement have been executed. This would require two

tests in total.

	 1.	 a > b is true; c < d is true.

	 2.	 a > b is false; c < d is false.

Another example would be this function that classifies a triangle based

on the lengths of its sides:

To achieve decision coverage, we need to ensure that both possible

outcomes of the if statements have been executed. This would require six

tests in total.

	 1.	 If a <= 0 or b <= 0 or c <= 0 is true

	 2.	 If a <= 0 or b <= 0 or c <= 0 is false

	 3.	 If a == b and b == c is true

	 4.	 If a == b and b == c is false

Chapter 5 Test Design Techniques

123

	 5.	 If a == b or b == c or c == a is true

	 6.	 If a == b or b == c or c == a is false

�Exercise

How would you improve the set of tests in the previous example?

�Multiple Condition Coverage
Multiple condition coverage (MCC) is a white-box testing technique used

to ensure that all possible combinations of Boolean conditions are tested

at least once. MCC is a stronger form of condition coverage.

The idea behind multiple condition coverage is to test all possible

combinations of Boolean conditions that may appear in a decision. It

is important to note that this technique is applicable only to code that

uses Boolean conditions to make decisions. To achieve MCC, all possible

combinations of each condition in the decision must be evaluated. For

example, if a decision has two conditions, A and B, then four test cases are

needed to cover all possible combinations (true/true, true/false, false/true,

and false/false).

MCC is a powerful technique, as it ensures that all combinations

of conditions are tested, which can help uncover complex logic errors.

However, it can also result in a large number of test cases, which can be

difficult to manage. Therefore, it is important to use MCC judiciously and

to combine it with other testing techniques, such as decision coverage, to

achieve a more comprehensive test suite.

To implement MCC, the tester must carefully analyze the code to

identify all decision statements and then create test cases to cover all

possible combinations of conditions within each decision. Test cases are

created by varying the values of each condition between true and false and

evaluating the resulting decision outcome. Once all combinations have

been tested, the decision can be deemed to have achieved MCC.

Chapter 5 Test Design Techniques

124

Here is an example to illustrate MCC:

To achieve multiple condition coverage for this function, we need to

test all possible combinations of truth and falsehood for each condition.

There are three conditions, each with two possible outcomes, so there are

a total of 23 = 8 possible combinations to test.

We can use a truth table (Table 5-16) to keep track of which

combinations we have tested.

Table 5-16.  MCC (getResult)

x>0 y>0 z>0 Expected Result

T T T Positive

T T F Mixed

T F T Mixed

T F F Mixed

F T T Mixed

F T F Mixed

F F T Mixed

F F F Negative

Chapter 5 Test Design Techniques

125

By testing all eight combinations, we can be sure that we have achieved

multiple condition coverage for this function.

Consider this function that calculates the shipping cost for a package

based on its weight, size, and destination:

There are multiple Boolean conditions that need to be evaluated for

multiple condition coverage:

•	 weight <= 0 or weight > 50

•	 size <= 0 or size > 100

•	 destination not in ["USA", "Canada", "Mexico"]

Chapter 5 Test Design Techniques

126

•	 weight <= 10

•	 size <= 20

•	 size <= 50

Table 5-17 shows a possible set of tests.

Table 5-17.  MCC (calculate_shipping)

weight size destination Expected Result

5 10 “USA” 10

5 30 “USA” 20

15 70 “Canada” 40

-5 10 “Mexico” “Invalid weight”

5 -10 “USA” “Invalid size”

5 10 “Japan” “Invalid destination”

�Exercise

Consider the following function that determines the letter grade for a

student based on two exam scores:

Chapter 5 Test Design Techniques

127

Write the test cases required to achieve 100 percent MCC coverage.

�Modified Condition/Decision Coverage
Modified condition decision coverage (MC/DC) is a white-box testing

technique that ensures all possible combinations of conditions and

decisions have been executed in a software system. It is considered to be

one of the most stringent testing techniques and is often used in safety-

critical systems such as aviation, defense, and medical devices.

Chapter 5 Test Design Techniques

128

The MC/DC technique requires each condition to be evaluated as true

and false at least once and that each decision is tested under all possible

combinations of conditions. In addition, it requires that each condition

must be independently evaluated and have an effect on the decision

outcome. This means that all possible variations of conditions and

decisions are tested to ensure complete coverage of the code.

The MC/DC technique can be applied at various stages of the software

development life cycle, including the requirements phase, design phase,

and testing phase. It can also be used in conjunction with other testing

techniques to ensure complete code coverage. However, implementing

MC/DC can be time-consuming and requires a high level of expertise, as it

involves understanding the code logic and identifying all possible decision

combinations.

Here is an example to illustrate MC/DC:

First we create a truth table.

We can use the truth table shown in Table 5-18 to keep track of all

possible combinations.

Chapter 5 Test Design Techniques

129

Table 5-18.  Truth Table (checkValues)

Test Case a>0 b>0 c>0 Expected Result

1 T T T true

2 T T F true

3 T F T true

4 T F F false

5 F T T true

6 F T F false

7 F F T true

8 F F F false

Now we need to find the test cases where changing a condition’s input

affects the whole decision. We can see that for the condition a > 0 to be the

decisive condition, we need to use test cases 2 and 6. For the condition b

> 0 to be the decisive condition, we need to use test cases 2 and 4. For the

condition c > 0 to be the decisive condition, we need to use test cases 3 and

4 (5 and 6 would also be correct). This leads to the set of test cases shown

in Table 5-19.

Table 5-19.  MCDC (checkValues)

Test Case a>0 b>0 c>0 Expected Result

1 T T F true

2 T F T true

3 T F F false

4 F T F false

Chapter 5 Test Design Techniques

130

The idea behind MCDC is similar to the algorithm of the Karnaugh

map. MCDC’s benefit is that you can test all the possible combinations

of conditions and decisions with fewer test cases, and it is encouraged to

be used in situations where we don’t have enough time or resources to

execute the complete set of combinations.

For a given N number of inputs, you always get N+1 test cases when

you are using the MCDC technique. If we used the MCC, the total number

of test cases would be 2N. In our example, we had three inputs (a > 0, b > 0,

c > 0) and the test cases are four (instead of eight for MCC). If we had four

inputs (a > 0, b > 0, c > 0, d > 0), the test cases would be five (instead of

sixteen for MCC).

�Loop Testing
Loop testing is a technique used in software testing to ensure that loops

within a program are functioning correctly. This type of testing is used

to identify defects or errors that can occur when a program is executed

multiple times, as is often the case with loops.

The goal of loop testing is to ensure that the loop is executed the

correct number of times, that the loop is exited when it is supposed to be

exited, and that the loop is executed with the correct inputs and outputs.

This is accomplished by testing the loop under a variety of conditions,

including boundary conditions and error conditions.

There are several different types of loop testing techniques that can be

used, including the following:

•	 Simple loop testing: In this technique, the loop is

executed with the minimum and maximum values

of the loop index, as well as with values that are in

between the minimum and maximum values. This is

done to ensure that the loop is executing the correct

number of times.

Chapter 5 Test Design Techniques

131

•	 Nested loop testing: In this technique, the loops that are

nested within the main loop are tested individually, as

well as together. This is done to ensure that the loops

are interacting correctly with one another.

•	 Concatenated loop testing: In this technique, multiple

loops are executed together to test their interaction.

This is done to ensure that the loops are executing in

the correct order and that they are interacting correctly

with one another.

•	 Iterative loop testing: In this technique, the loop is

executed with a variety of input values to ensure

that the loop is functioning correctly under different

conditions.

Loop testing is an important part of software testing, as loops are a

fundamental part of most software programs. By testing loops thoroughly,

software testers can identify and eliminate defects and ensure that the

program is functioning correctly under a variety of conditions.

Let’s see an example with the following piece of code:

This function takes an array of numbers and returns the sum of all the

numbers in the array. The for loop iterates over each element in the array

and adds it to the sum variable.

Chapter 5 Test Design Techniques

132

To test this function using loop testing, we would want to design our

test cases to exercise the loop as thoroughly as possible. The following are

some examples of test cases we might consider:

•	 An array with no elements

•	 An array with one element

•	 An array with two elements

•	 An array with many elements

•	 An array with all elements negative

•	 An array with all elements positive

•	 An array with a mix of positive and negative elements

•	 An array with large numbers that could cause overflow

We would want to test our function with a variety of inputs to ensure

that it handles edge cases and potential issues with the loop, such as off-

by-one errors, infinite loops, and so on.

Loop testing can be time-consuming, as it requires running the loop

multiple times with different inputs. However, it can be an effective way to

identify and correct issues related to loops in code.

�Data Flow Testing
Data flow testing is a technique that focuses on the flow of data within

the software being tested. It helps to identify whether the data is being

processed correctly as it moves through the different components of the

software. This testing technique can identify vulnerabilities, such as buffer

overflows, and ensure that the software is free of defects that may occur

because of the improper flow of data.

Chapter 5 Test Design Techniques

133

An example of data flow testing could involve testing a financial

application to ensure that the correct data is being processed at each stage

of a transaction. For example, when a customer initiates a transaction,

the application must correctly process their account details and the

transaction amount. The data must then flow through the different

components of the application, such as the authentication module and the

payment gateway, without being corrupted or lost.

To perform data flow testing, testers must identify the different data

flows within the application and the different components that process the

data. They then create test cases that focus on the different flows to ensure

that the data is being processed correctly at each stage.

For example, a test case may focus on a specific data flow within the

application, such as the flow of user data from the front-end interface

to the back-end database. Testers can then create a test scenario that

simulates the flow of data, including inputs and expected outputs at each

stage. They can then execute the test and compare the actual output with

the expected output to identify any discrepancies or errors. This helps to

ensure that the data is being processed correctly and that the application is

functioning as intended.

�Static Testing
Static testing is a software testing technique that involves examining the

code, design, and associated documentation of an application without

actually executing it. The purpose of static testing is to identify defects

early in the development life cycle to reduce the cost of fixing them

later on.

Chapter 5 Test Design Techniques

134

Some examples of static testing are the following:

•	 Code reviews: This is a manual inspection of the source

code by the developers or other team members to

detect any issues or defects before the code is executed.

Code reviews can be conducted in different ways, such

as formal inspections or informal reviews.

•	 Walk-throughs: This is a collaborative review process

where the author of a document or code walks through

it with other team members to explain their thought

process and clarify any doubts. This technique is helpful

in identifying issues early in the development process.

•	 Pair programming: In this technique, two programmers

work together on a single workstation to write code,

review it, and test it in real time. This technique

is particularly useful for complex code where

collaboration can improve the quality of the output.

•	 Static analysis tools: These are software tools that

analyze the source code without executing it to identify

issues such as coding standards violations, security

vulnerabilities, or potential performance problems.

•	 Document reviews: This involves reviewing project

documentation such as requirements, design

specifications, and test plans to identify any

inconsistencies or issues that could impact the quality

of the final product.

•	 Checklist-based reviews: This is a structured approach

to static testing where a checklist of potential issues

is used to review the code or documentation. The

checklist is based on industry best practices and can be

customized to suit the specific project requirements.

Chapter 5 Test Design Techniques

135

•	 Standards compliance review: This is a review to ensure

that the project documentation and source code follow

the relevant standards and guidelines such as coding

standards, software development methodologies, and

industry best practices.

�Summary
In this chapter, we went through several examples of test design

techniques. We saw how to create test cases by using these powerful

techniques with real examples. Some techniques are more elaborate than

other; for example, decision table testing makes sure that all the possible

combinations are performed, and some techniques are using several tricks

to eliminate test cases when the time or the budget are not enough for

testing everything. For example, pairwise testing will significantly reduce

the number of test cases, while covering the most important combinations.

There are structured techniques, such as boundary value analysis, and free

format techniques, such as exploratory testing. They are all useful, and

the best practice is to use them in combination. When all the test cases are

defined, it is time to execute them!

Chapter 5 Test Design Techniques

137© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_6

CHAPTER 6

Test Execution
Test execution is the process of running the tests that have been designed

and planned in the previous stages of the software testing life cycle. This

chapter will cover the importance of test execution, the test execution

process, and the various techniques and tools used in test execution. We

will go through the test execution process, the needs of the environment

setup, and the defect reporting and retesting. We will identify the needs

for regression, how to report the status of the execution, and when to

complete the activities. We will see some techniques and tools that we can

assist us, and we will choose some quality metrics for our product.

�Getting Started
The first step in preparing for test execution is to ensure that the testing

environment is set up correctly. This includes setting up test beds,

configuring hardware and software, and installing the necessary tools and

utilities. It is also important to ensure that the test environment is as close

to the production environment as possible to ensure that the testing results

are accurate.

Another important aspect of test execution preparation is the creation

of test cases. Test cases should be created based on the requirements

and design documents and should cover all possible scenarios that the

software could encounter. The test cases should be reviewed and approved

by the stakeholders before they are executed.

https://doi.org/10.1007/978-1-4842-9514-4_6

138

Test data preparation is also an important part of preparing for test

execution. Test data should be selected to cover all possible scenarios, and

it should be representative of real-world data. The data should be created

and selected based on the test cases and should be reviewed and approved

by the stakeholders before it is used.

Finally, it is important to ensure that the testing team is trained and

prepared to execute the tests. The team should understand the testing

process, the test cases, and the expected results. They should also be

trained on the tools and utilities that they will be using to execute the

tests. This will help ensure that the testing is conducted efficiently and

effectively.

�Test Execution Process
Test execution ensures that the software under test meets the required

quality standards and that it functions as expected. Without proper test

execution, defects may go unnoticed, and the software may not function

as intended, which can lead to user dissatisfaction, revenue loss, and

brand damage.

The test execution process involves the following steps:

	 1.	 Test environment setup: The test environment must

be set up in a way that simulates the production

environment, ensuring that the software under test

behaves as it would in the real world.

	 2.	 Defect reporting and retesting: Any defects that

are discovered during the test execution process

are reported to the development team. After the

development team has fixed the reported defects,

they must be retested to ensure that they have been

resolved.

Chapter 6 Test Execution

139

	 3.	 Regression testing: Regression testing is the process

of re-executing previously passed tests to ensure

that the changes made to the software have not

introduced new defects.

	 4.	 Test case status reporting: The status of each test

case should be reported to the test manager. This

includes information on which test cases have been

executed, which have passed, which have failed, and

which are still outstanding.

	 5.	 Test case completion: Once all the test cases have

been executed, the test manager should review the

results to determine whether the software meets

the required quality standards. The test manager

should also review the defect reports and determine

whether any further testing is required.

The test case execution process should be conducted systematically

and rigorously to ensure that all possible defects are identified and fixed

before the software is released to the end users.

�Test Environment Setup
Test environment setup refers to the process of preparing a testing

environment with the required hardware, software, and network

configurations to conduct software testing.

The test environment should be similar to the production environment

to accurately simulate the end users’ experience. A well-designed

test environment ensures that the testing process is performed under

conditions similar to those of the real-world environment, reducing the

risk of errors and providing accurate results.

Chapter 6 Test Execution

140

Here are some steps involved in setting up a test environment:

	 1.	 Identify the hardware, software, and network

configurations required for testing.

	 2.	 Create a plan and a checklist to document the

hardware and software requirements.

	 3.	 Install the required software and hardware.

	 4.	 Configure the network according to the

specifications of the production environment.

	 5.	 Create user accounts and assign appropriate

permissions for testing.

	 6.	 Prepare test data and ensure that it accurately

reflects the production environment.

	 7.	 Install the test management tool and configure it

according to the testing requirements.

	 8.	 Verify that the test environment is set up correctly by

performing smoke testing.

	 9.	 Document the test environment setup process and

include it in the test plan.

It is essential to test the test environment to ensure that it is stable and

working correctly. The test environment should be tested for compatibility,

connectivity, and stability. The testing team should also ensure that the

test data is accurate and reflects the production environment. The test

environment should be documented and version controlled to ensure that

it can be quickly restored in case of a failure or issue.

Chapter 6 Test Execution

141

�Defect Reporting and Retesting
Defect reporting involves identifying and documenting any issues or

defects found during testing and communicating them to the development

team to be fixed. Typically the defects are reported on a tool like Jira or

TFS, where the testers can create tickets and add the details. The process of

defect reporting typically involves the following steps:

	 1.	 Reproduce the defect: The first step in defect

reporting is to try to reproduce the issue or defect.

This is important because it helps to verify that the

defect is real and not a one-time occurrence.

	 2.	 Document the defect: Once the defect has been

reproduced, it needs to be documented in detail.

This should include information such as the steps to

reproduce the defect, the expected result, the actual

result, and any other relevant information.

	 3.	 Assign a severity and priority: Defects need to be

classified based on their severity and priority.

Severity refers to the impact of the defect on the

software or system, while priority refers to the

urgency of the defect in terms of fixing it. Defects

with higher severity and priority should be

addressed first.

	 4.	 Assign the defect to a developer: The next step is to

assign the defect to a developer who is responsible

for fixing it. This should be done based on the area

of the code that is affected by the defect, as well as

the expertise of the developer.

Chapter 6 Test Execution

142

	 5.	 Track the defect: Defect tracking is important

to ensure that defects are addressed in a timely

manner. This involves using a tracking tool to

monitor the progress of the defect from the time it is

reported to the time it is fixed.

	 6.	 Verify the fix: Once the developer has fixed the

defect, it needs to be verified to ensure that it has

been completely resolved. This involves testing

the software or system again to make sure that the

defect has been fixed and that there are no new

defects introduced as a result of the fix.

Defect reporting is a collaborative effort between the testing team and

the development team. It is important to ensure that defects are reported

and addressed in a timely manner to ensure that the software or system is

of high quality and meets the requirements of the stakeholders.

The contents of a defect, also known as a bug report, should include at

least the following information:

•	 Summary: A brief description of the issue or problem

encountered, ideally in one sentence. It should be clear

enough for the reader to understand what the defect is

about just by checking the summary.

•	 Steps to reproduce: Detailed steps or a sequence of

actions that can be taken to reproduce the problem,

including any specific inputs or data used. The steps

should be very descriptive, and it is always a good

practice to make sure that even someone with zero

knowledge of the product will be able to reproduce

the defect by following these steps. It is really common

in the industry that the junior developers or the

Chapter 6 Test Execution

143

newcomers in the team start with defect fixing to

familiarize themselves with the product and the

company processes.

•	 Expected behavior: A description of what the expected

outcome or behavior should have been. Usually this

is already defined in the acceptance criteria or the

requirements. It is the behavior the tester was trying

to verify.

•	 Actual behavior: A description of what actually

happened when the issue occurred. For example, you

were expecting to see a yellow button on the screen and

the button you saw is green.

•	 Environment information: The environment where the

issue occurred, such as the operating system, hardware,

software version, and any other relevant information. It

should be as detailed as possible, especially in products

with many different versions, because it will help you

avoid discussions about how “it works on my machine.”

•	 Severity: An assessment of how severe the issue is,

using a scale that is relevant to the context of the

software. Most of the time it is a scale 1–5 or a list like

“Small, Medium, High, Critical.”

•	 Priority: An assessment of the importance or urgency

of the issue, considering its severity and impact on the

user or system. The priority can be set by the tester as

an indication of how important they feel it is, but the

final priority is set by the business, usually a product

owner can change the priorities based on the severity

of the defect and the customer needs.

Chapter 6 Test Execution

144

•	 Attachments: Any relevant files or screenshots that

can help to reproduce or understand the issue. When

multiple steps are required to reproduce the defect, a

short video attachment might be handy.

•	 Assignee: The name or team responsible for fixing

the issue. This can be replaced by a communication

channel where all the defects are reported when found

and the teams pick them up.

By including this information in a defect, it becomes easier for the

development team to understand and reproduce the problem, which in

turn helps to resolve the issue faster and with more accuracy.

�Regression Testing
Regression testing is a type of software testing that is performed to ensure

that changes made to an application or system have not introduced new

defects or caused existing features to fail. It is an important part of the

testing process, as it helps to maintain the quality of the software and

prevent issues from arising in production.

The primary goal of regression testing is to verify that the software still

works as intended after changes have been made. This involves re-testing

all or a subset of the existing test cases that have been previously executed.

The test cases may cover functional, performance, security, or other

aspects of the software.

Regression testing can be executed at different stages of the software

development life cycle, depending on the type of change made. For

example, if a minor bug is fixed, then only a limited number of test cases

may need to be re-executed. However, if major changes are made to

the software, then a more extensive regression test suite may need to be

developed and executed.

Chapter 6 Test Execution

145

The following are some of the benefits of regression testing:

•	 Ensures the stability and reliability of the software

•	 Helps to identify defects and issues that may have been

introduced as a result of changes made to the software

•	 Helps to ensure that new features do not impact

existing functionality

•	 Helps to maintain the quality of the software

•	 Helps to build confidence in the software among users

and stakeholders

Of course, there are also some challenges that may be encountered

during regression testing:

•	 Time and resource constraints may limit the amount of

regression testing that can be performed.

•	 Maintaining and updating the test cases can be time-

consuming.

•	 Test cases may need to be executed multiple times,

which can be repetitive and monotonous.

•	 The need to identify and isolate defects can be

challenging.

Automation can be a valuable tool for performing regression testing.

Automated tests can be designed to quickly and efficiently execute a set

of predefined steps, making it possible to test large and complex systems

with relative ease. In addition to reducing the amount of time and effort

required for regression testing, automation can also help to ensure

consistency and accuracy in testing.

Chapter 6 Test Execution

146

�Test Case Status Reporting
Test case status reporting provides stakeholders with critical information

about the progress and quality of the project. Test case status reporting

involves collecting, analyzing, and presenting the results of the executed

test cases.

The purpose of test case status reporting is to keep all stakeholders

informed about the testing progress and identify any issues or defects that

have been found during testing. The report typically includes information

about the number of test cases executed, the number of test cases passed,

the number of test cases failed, and the number of defects found.

The test case status report should be concise and easy to understand

so that stakeholders can quickly identify any issues and take corrective

actions if necessary. The report should also include details about the

severity and priority of defects found so that stakeholders can make

informed decisions about which defects should be addressed first.

It's important to note that test case status reporting should be done

regularly throughout the testing process, not just at the end. This allows

stakeholders to identify and address issues early on, which can help to

reduce the overall testing time and cost.

The reporting is usually automatically generated by the test

management tool, and it contains critical information such as the

following:

•	 Test case status: This should include the current status

of each test case, such as “Passed,” “Failed,” or “In

Progress.” This information provides an overview of

how many test cases have been executed and how

many remain to be tested.

Chapter 6 Test Execution

147

•	 Test case execution details: This should include

information on the actual results of each test

case, as well as any issues or defects encountered

during testing. This information helps stakeholders

understand the quality of the software being tested and

identify areas for improvement.

•	 Test case coverage: This should include information on

the percentage of test cases executed and the areas of

the application covered by testing. This information

helps stakeholders understand the scope of testing and

identify areas that may require additional testing.

•	 Test case prioritization: This should include

information on the priority of each test case, which

helps stakeholders understand which test cases are

most critical and should be addressed first.

•	 Test case trends: This should include information on

the trend of test case results over time, such as the

number of passed, failed, or in-progress test cases. This

information helps stakeholders understand how the

quality of the software is changing over time.

•	 Defect summary: This should include a summary

of all defects found during testing, including their

severity, priority, and status. This information helps

stakeholders understand the overall quality of the

software and identify areas that require improvement.

Overall, test case status reporting should be clear, concise, and easy to

understand so that stakeholders can make informed decisions about the

software being tested. It should be tailored to the specific needs of each

project and should be updated regularly to reflect the most up-to-date

information.

Chapter 6 Test Execution

148

�Test Case Completion
Test case completion refers to the process of ensuring that all test cases

identified in the test plan have been executed and analyzed. Once all the

test cases have been executed and verified, the testing process can be

considered complete.

The following steps can be taken to ensure test case completion:

	 1.	 Ensure all test cases are identified: All test cases

that need to be executed should be identified and

documented in the test plan.

	 2.	 Execute all identified test cases: All test cases should

be executed according to the test plan. Test cases

can be executed manually or with the help of

automated testing tools.

	 3.	 Verify test results: The results of all executed test

cases should be analyzed to determine if the

software under test behaves as expected. Any

deviation from expected results should be logged as

a defect.

	 4.	 Mark test cases as passed or failed: Test cases should

be marked as passed or failed based on their test

results. A test case is considered to have passed if it

meets all the test criteria specified in the test plan. If

it fails to meet any of the test criteria, it is considered

to have failed.

	 5.	 Review the test case results: Test case results should

be reviewed to ensure that they are accurate and

complete. Any discrepancies should be investigated

and resolved.

Chapter 6 Test Execution

149

	 6.	 Update the test case status: The status of each test

case should be updated based on its test results.

This information can be used to determine the

overall status of the testing process.

	 7.	 Report on test case completion: A report should

be generated to indicate the status of the testing

process. This report can be used to communicate

the progress of the testing process to stakeholders.

By following these steps, testers can ensure that all identified test cases

have been executed and analyzed and the testing process is complete.

This information can be used to make decisions on the readiness of the

software for release or further testing.

�Techniques and Tools Used
in Test Execution
The following techniques and tools are used in test execution:

•	 Manual testing: Manual testing is the process of

executing tests manually, without the use of any

automation tools.

•	 Automated testing: Automated testing is the process of

executing tests using automation tools like Selenium,

UFT, etc.

•	 Defect management tools: Defect management tools are

used to manage the defects that are discovered during

the test execution process.

•	 Test management tools: These tools help in managing

and executing tests. They can automate the testing

process, track defects, and generate reports.

Chapter 6 Test Execution

150

•	 Automated testing tools: These tools can be used to

automate the testing process, reducing the time and

effort required for manual testing.

•	 Performance testing tools: These tools are used to

test the performance of the system under different

conditions, such as high traffic or heavy load.

•	 Security testing tools: These tools are used to test the

security of the system, checking for vulnerabilities and

potential risks.

•	 Code coverage tools: These tools help in measuring how

much of the code has been tested. They can identify

code that has not been tested, helping to ensure that all

code paths have been covered.

•	 Pair testing: This technique involves two testers

working together to test the system. This can help

identify issues and defects more quickly and efficiently.

�Quality Metrics
Quality metrics are used to measure and assess the quality of software

products and the software development process. There are various quality

metrics that can be used either to monitor the quality of the product or to

improve the development and testing processes.

�Defect Density
Defect density is a quality metric that measures the number of defects found

in a software product per unit of code or function point. It is calculated by

dividing the total number of defects by the size of the software product,

expressed in lines of code, function points, or other relevant measures.

Chapter 6 Test Execution

151

For example, if a software product has 10,000 lines of code and 50

defects are found, the defect density would be 50/10,000 or 0.005 defects

per line of code.

Defect density is an important metric as it provides insight into the

quality of the code and the potential for further improvements. A high

defect density indicates that there may be significant issues in the code

that require attention, such as coding errors, design flaws, or other issues.

A low defect density suggests that the code is of high quality and that there

may be less need for further improvements.

�Test Coverage
Test coverage is a quality metric that measures the percentage of code

or functionality that has been tested by the software testing process. It

is calculated by dividing the number of lines of code or functions that

have been tested by the total number of lines of code or functions in the

software product.

For example, if a software product has 10,000 lines of code and the

testing process has covered 8,000 lines of code, the test coverage would be

80 percent.

Test coverage is an important metric because it helps to assess the

effectiveness of the testing process and identify areas of the software

product that require additional testing. A high test coverage suggests

that most or all of the code or functionality has been tested, reducing the

risk of defects going undetected. A low test coverage, on the other hand,

indicates that there may be significant areas of the software product that

have not been adequately tested, increasing the risk of defects going

undetected.

Chapter 6 Test Execution

152

�Code Complexity
Code complexity is a quality metric that measures the complexity of

software code. It is often assessed using a software tool that calculates

a complexity score based on factors such as the number of control

structures, conditional statements, and loops in the code.

One commonly used metric for code complexity is cyclomatic

complexity, which measures the number of independent paths through

the code. The higher the cyclomatic complexity score, the more complex

the code is likely to be.

Code complexity is an important metric because complex code can be

difficult to maintain, modify, and test. High levels of code complexity can

also increase the risk of defects, as it can be more challenging to identify

and fix issues in complex code.

By identifying areas of code that are overly complex, developers and

testers can focus on reducing complexity to improve code quality and

reduce the risk of defects. Code complexity can also be used as a factor

in determining code review and testing priorities, with higher complexity

code given greater scrutiny.

Overall, code complexity is an important factor in software quality and

should be measured and monitored as part of a comprehensive quality

assurance strategy.

�Code Maintainability
Code maintainability is a quality metric that measures the ease with

which code can be modified, updated, and maintained over time. It is

often assessed using software tools that analyze code for factors such as

readability, clarity, and modularity.

Code maintainability is an important metric because software code is

rarely static and often requires updates and modifications over time. Code

that is difficult to maintain can result in higher development costs, longer

development cycles, and increased risk of defects.

Chapter 6 Test Execution

153

The following are factors that contribute to code maintainability:

•	 Readability: Code should be easy to read and

understand, with clear variable and function names,

consistent formatting, and well-structured code blocks.

•	 Modularity: Code should be modular, with well-

defined interfaces and clear separation of concerns,

making it easier to modify and maintain individual

modules.

•	 Testability: Code should be designed to be easily tested,

with clear test cases and separation of testing concerns

from other aspects of the code.

•	 Documentation: Code should be well-documented,

with clear comments and other supporting materials

that make it easier to understand and modify.

By measuring code maintainability, developers and testers can identify

areas of code that may require additional attention, such as refactoring

or redesign, to improve maintainability and reduce the risk of defects

over time.

�Fault Slip Through
Fault slip through (FST) analysis is a quality metric that measures the

effectiveness of the software testing process by tracking defects that are not

detected during testing and are found later in the development life cycle or

after the software has been released.

FST analysis involves tracking defects that were not detected during

the testing process and identifying the reasons why they were missed.

The goal of FST analysis is to identify areas of the software product or the

testing process that may require improvement and to take corrective action

to reduce the number of defects that slip through testing.

Chapter 6 Test Execution

154

FST analysis typically involves the following steps:

	 1.	 Collecting data on defects: This involves collecting

data on defects that are found after the testing

process, such as defects reported by users or defects

detected during maintenance.

	 2.	 Analyzing the data: This involves analyzing the data

to identify patterns and trends in the types of defects

that are slipping through testing, as well as the

reasons why they are being missed.

	 3.	 Taking corrective action: Based on the results of the

analysis, corrective action can be taken to improve

the testing process, such as improving test coverage,

increasing the rigor of testing, or improving the

quality of the software development process.

FST analysis is an important metric because it helps to identify areas of

the software product or the testing process that may require improvement.

By taking corrective action based on FST analysis, the effectiveness of

the testing process can be improved, resulting in higher-quality software

products and reduced costs associated with defects.

�Coding Standards
Coding standards violations are quality metrics that measure the

adherence of software code to a set of predefined coding standards or

best practices. These coding standards can cover a wide range of factors,

including code formatting, variable naming conventions, commenting

style, and more.

Coding standards violations can be detected using automated tools

that scan code for violations of the predefined standards. These tools can

be integrated into the software development process, allowing developers

to identify and correct coding standards violations in real time.

Chapter 6 Test Execution

155

Coding standards violations are an important metric because

adherence to coding standards can help to improve code quality,

maintainability, and readability. Consistent adherence to coding standards

can also make it easier for multiple developers to work on the same

codebase, as everyone is using a consistent approach.

By measuring coding standards violations, developers and testers can

identify areas of the codebase that may require additional attention, such

as refactoring or reformatting, to improve adherence to coding standards.

Over time, this can help to improve the overall quality of the codebase and

reduce the risk of defects.

Overall, coding standards violations are an important factor in

software quality and should be measured and monitored as part of a

comprehensive quality assurance strategy.

�Code Duplication
Code duplication is a quality metric that measures the amount of duplicate

or redundant code in a software project. Code duplication occurs when

similar or identical code is repeated in multiple places within the codebase.

Code duplication can be measured using automated tools that

analyze the codebase and identify sections of code that are repeated or

very similar. These tools can also calculate the percentage of code that is

duplicated, as well as the locations of the duplicated code.

Code duplication is an important metric because it can lead to a

number of negative outcomes, such as the following:

•	 Increased development time: Duplication of code can

lead to increased development time as developers

spend more time writing and testing similar code.

•	 Increased maintenance costs: Duplicated code can make

it more difficult to maintain and update the codebase

over time, leading to increased maintenance costs.

Chapter 6 Test Execution

156

•	 Increased risk of defects: Duplication of code can lead

to inconsistencies in the codebase, which can increase

the risk of defects and other quality issues.

By measuring code duplication, developers and testers can identify

areas of the codebase that may require refactoring or reorganization to

reduce duplication and improve code quality. Over time, this can help to

reduce development and maintenance costs, as well as improve the overall

quality and reliability of the software product.

�Dead Code
Dead code is a quality metric that measures the amount of code in a

software project that is no longer used or executed. Dead code can occur

due to changes in requirements, due to changes in design, or simply as a

result of refactoring or other code changes.

Dead code can be measured using automated tools that analyze the

codebase and identify sections of code that are not being executed. These

tools can also calculate the percentage of code that is dead, as well as the

locations of the dead code.

Dead code is an important metric because it can lead to a number of

negative outcomes, such as the following:

•	 Increased complexity: Dead code can make the

codebase more complex and difficult to understand,

which can increase the time required for development,

maintenance, and testing.

•	 Increased resource usage: Dead code can consume

resources, such as memory and processing power,

which can reduce the performance and scalability of

the software product.

Chapter 6 Test Execution

157

•	 Increased risk of defects: Dead code can make the

codebase more difficult to maintain and update over

time, which can increase the risk of defects and other

quality issues.

�Lines of Code
The lines of code (LOC) metric is a software quality metric that measures

the size or complexity of a software program by counting the number of

lines of code in the source code files. It is a simple metric that is easy to

measure and understand, but it has limitations and is often criticized as a

measure of software quality.

The LOC metric is calculated by counting the number of lines of code

in a source code file, including blank lines and comments. The resulting

number represents the size or complexity of the software program.

While the LOC metric can provide an indication of the size and

complexity of a software program, it has several limitations.

•	 It does not measure the quality of the code: The

LOC metric does not take into account the quality

or maintainability of the code, which can have a

significant impact on software quality.

•	 It can be influenced by coding style: The LOC metric can

be influenced by coding style and formatting, which

can vary between programmers and teams.

•	 It does not account for reuse: The LOC metric does

not account for code reuse, which can lead to an

overestimation of the size and complexity of a software

program.

Chapter 6 Test Execution

158

Despite these limitations, the LOC metric is still commonly used

as a quick and easy way to measure the size or complexity of a software

program. However, it should be used in conjunction with other metrics

and techniques to provide a more comprehensive assessment of software

quality.

�Fan-Out
Fan-out is a software metric used to measure the number of dependencies

that a module or function has on other modules or functions. Specifically,

it measures the number of other modules or functions that are called or

invoked by a given module or function. The more dependencies a module

or function has, the higher its fan-out metric.

Fan-out is important because modules or functions with a high fan-out

metric can be more difficult to understand, test, and maintain. They can

also increase the risk of defects and other quality issues.

To calculate the fan-out metric, one can count the number of external

modules or functions called or invoked by a given module or function.

Alternatively, tools such as static code analysis tools can automatically

calculate fan-out as part of a comprehensive assessment of software

quality.

By measuring fan-out, developers and testers can identify modules

or functions that may require refactoring or optimization to reduce their

dependencies on other modules or functions. This can help to improve the

maintainability and quality of the software product over time.

Overall, fan-out is an important metric to consider when assessing

software quality, as it can provide valuable insights into the complexity and

maintainability of the codebase.

Chapter 6 Test Execution

159

�Compiler Warnings
Compiler warnings are a type of software metric that measures the number

of warnings generated by a compiler during the compilation process of a

software program. Compiler warnings are generated when the compiler

detects potential issues in the code, such as unused variables, uninitialized

variables, or other potential bugs or defects.

The compiler warnings metric is important because it can provide an

indication of the quality and maintainability of the code. A high number

of compiler warnings can indicate that the codebase has a high potential

for defects or other quality issues and may require further attention from

developers and testers.

To calculate the compiler warnings metric, one can simply count the

number of warnings generated by the compiler during the compilation

process. Alternatively, tools such as static code analysis tools can

automatically identify and report compiler warnings as part of a

comprehensive assessment of software quality.

By measuring compiler warnings, developers and testers can identify

areas of the codebase that may require further attention or refactoring

to improve software quality. Over time, this can help to reduce the risk

of defects and improve the overall reliability and maintainability of the

software product.

�Summary
In this chapter, we went through the main steps of the test execution

process. We saw the needs for the environment setup and how to

report and retest the defects. We saw the report we can generate at any

moment during the execution but mainly at the completion stage. Several

techniques and tools were also used for the execution, and we explored a

variety of quality metrics for our product. Regression testing is a big part of

test execution, so the best approach for it is to automate it.

Chapter 6 Test Execution

161© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_7

CHAPTER 7

Test Automation
Test automation is the use of specialized software tools to control the

execution of tests and compare the actual results with the expected results.

The use of automation has become increasingly popular as it can help

reduce the time and cost associated with testing while also improving the

accuracy and reliability of the test results.

In this chapter, I’ll cover the benefits of test automation, along with

what are generally considered to be the best test automation tools and

frameworks.

�Benefits of Test Automation
The following are some of the benefits of test automation:

•	 Saves time and cost: Automation allows for the

execution of tests at a much faster rate than manual

testing, which saves time and reduces the cost of

testing.

•	 Improves test coverage: Automation tools can perform

repetitive and time-consuming tests, which can

improve the overall test coverage.

•	 Increases accuracy: Automation tools can execute

tests with greater accuracy than humans, reducing the

chances of errors.

https://doi.org/10.1007/978-1-4842-9514-4_7

162

•	 Reusability: Test scripts can be reused for different

versions of the application, which saves time and effort.

•	 Enhances efficiency: Automation testing can run tests

continuously, 24/7, which enhances the efficiency of

testing.

However, test automation is not without its challenges. The initial cost of

automation can be high, and maintenance can be time-consuming. Therefore,

before implementing automation, it is important to consider the following:

•	 Cost-benefit analysis: Determine the cost of automation

tools and the benefits it will provide.

•	 Technical feasibility: Ensure that the automation

tool is compatible with the technology stack and the

application under test.

•	 Skillset: Ensure that the team has the required technical

skills to use and maintain the automation tool.

•	 Scope: Determine the scope of automation testing

and identify the tests that are good candidates for

automation.

There are various types of automation testing tools available in the

market, and they can be broadly classified into the following categories.

�Record and Playback Tools
Record and playback tools are a type of test automation tool that enables

testers to create automated test scripts by recording user interactions with

an application or system under test. These tools typically capture user

actions such as mouse clicks, keyboard inputs, and data entry, and then

they generate a script that can be played back to reproduce the same set of

actions automatically.

Chapter 7 Test Automation

163

The basic process of using a record and playback tool involves starting

the recording, performing a series of user actions on the application

or system being tested, and then stopping the recording. The tool then

generates a script based on the recorded actions, which can be modified

and enhanced as needed.

Record and playback tools are often used for regression testing, which

involves retesting software after changes have been made to ensure that

existing functionality has not been affected. They can also be used for

smoke testing, which involves running a basic set of tests to quickly verify

that the application is working correctly after a new build or release.

However, record and playback tools have limitations. They can

generate scripts based only on the actions that were recorded, so they may

not be able to handle more complex scenarios or variations in user input.

In addition, any changes to the application or system under test can cause

the recorded scripts to fail, requiring updates to the scripts.

�Scripting Tools
Scripting tools are a type of test automation tool that enable testers to

write scripts or code to automate testing tasks. These tools provide a

programming interface or scripting language that allows testers to create

custom test cases and automate complex scenarios that may not be

possible with record and playback tools.

Scripting tools typically require more technical expertise and

programming knowledge than record and playback tools. Testers need

to write the test scripts themselves, which can involve writing code in

languages such as Python, Java, or Ruby, depending on the tool.

The main advantage of scripting tools is their flexibility and

extensibility. Testers can create custom scripts to automate specific test

scenarios and perform more complex testing tasks, such as database

Chapter 7 Test Automation

164

validation or performance testing. This makes scripting tools ideal for

more sophisticated test automation projects that require a higher level of

customization and control.

However, scripting tools also have some limitations. They require

a significant amount of time and effort to create and maintain the test

scripts. Additionally, testers need to have programming skills and expertise

to write effective and efficient test scripts.

Overall, scripting tools are a powerful and versatile type of test

automation tool that can be used for a wide range of testing scenarios.

However, they require a higher level of technical expertise and are best

suited for larger, more complex projects that require custom scripting

capabilities.

�Hybrid Tools
Hybrid tools are a type of test automation tool that combine the benefits of

both record and playback and scripting tools. They allow testers to create

automated test scripts using a combination of record and playback and

script-based techniques.

Hybrid tools typically offer a visual interface for recording user

interactions, which can then be edited and enhanced using a scripting

language or programming interface. This allows testers to easily create

basic test scripts using record and playback functionality, while also

providing the flexibility to add custom code or scripts as needed.

The main advantage of hybrid tools is their versatility and ease of use.

They provide a user-friendly interface for recording and editing test scripts,

while also offering more advanced features for customizing and enhancing

scripts as needed. This makes them suitable for a wide range of testing

scenarios, from simple regression testing to more complex performance

testing or load testing.

Chapter 7 Test Automation

165

However, like scripting tools, hybrid tools do require a certain level

of technical expertise and programming skills to fully leverage their

capabilities. Additionally, they can be more expensive than record and

playback tools and may require more maintenance and updates over time.

Overall, hybrid tools offer a powerful and flexible approach to test

automation, combining the ease of use of record and playback tools with

the customization and control of scripting tools. They are best suited for

projects that require a mix of automated testing techniques and a higher

level of customization and control.

�Frameworks
Frameworks are a collection of guidelines, standards, and tools that

provide a structured approach to designing, developing, and executing

automated tests. Test automation frameworks aim to standardize the

testing process and ensure consistency in the way tests are created and

executed.

A test automation framework typically consists of a set of components,

such as libraries, APIs, and utilities, that provide the building blocks for

creating automated tests. These components may include functions

for interacting with the application or system under test, test data

management, reporting and logging, and error handling.

There are several types of test automation frameworks, including the

following:

•	 Linear scripting framework: This framework is a basic

approach to test automation that involves writing

simple scripts that perform a series of predefined

actions. It is easy to create and maintain but lacks

flexibility and scalability.

Chapter 7 Test Automation

166

•	 Modular framework: This framework breaks down

the application or system under test into modules

and creates separate scripts for each module. This

approach provides greater flexibility and reusability

but requires more time and effort to design and

implement.

•	 Data-driven framework: This framework separates the

test data from the test script, allowing for more efficient

management of large volumes of test data. It can be

useful for testing scenarios that require a large number

of input combinations.

•	 Keyword-driven framework: This framework uses a set

of keywords or commands to define test steps, making

it easier for testers without programming experience to

create and execute tests.

•	 Hybrid framework: This framework combines elements

of multiple frameworks, providing greater flexibility

and scalability. It is often used for larger, more

complex testing projects that require a high level of

customization and control.

Overall, test automation frameworks provide a structured and efficient

approach to automated testing, enabling testers to create and execute tests

more quickly and reliably. The choice of framework will depend on the

specific requirements of the testing project, including the complexity of the

application or system under test, the size of the testing team, and the level

of automation needed.

Chapter 7 Test Automation

167

�Automated Testing Tools
Automated tests should be run in conjunction with manual testing to

ensure the most comprehensive testing possible. Test automation should

be done only after a thorough understanding of the application, its

business logic, and its user requirements.

Test automation can significantly improve the efficiency and

effectiveness of testing. However, it should be done with a full

understanding of its potential benefits and challenges and with careful

consideration of the most appropriate automation tools and approaches

for a given application.

Selecting the right automation tool is a critical step in the test

automation process. There are various factors to consider when choosing

an automation tool, including the following:

•	 Functionality: The tool must support the required

testing activities, such as test case design, execution,

and reporting.

•	 Platform compatibility: The tool should be compatible

with the application under test, the development

environment, and the operating system.

•	 Ease of use: The tool should have an intuitive and user-

friendly interface, and the scripting language should be

easy to learn and use.

•	 Maintenance: The tool should be easy to maintain

and update, and it should provide support for version

control and defect tracking.

•	 Cost: The tool should be affordable and provide good

value for money, taking into account the licensing,

training, and maintenance costs.

Chapter 7 Test Automation

168

•	 Integration: The tool should integrate with other tools

used in the software development life cycle, such as

bug tracking and test management tools.

•	 Support: The tool should provide good technical

support, including documentation, user forums, and

access to customer support.

Here are some commonly used automated testing tools:

Selenium: Selenium is an open-source tool used

for automating web browser testing. It supports

multiple programming languages such as Java, C#,

Python, and Ruby, and it can be used to automate

both functional and regression testing.

Appium: Appium is an open-source tool for

automating mobile application testing. It supports

multiple mobile platforms such as iOS and Android

and can be used to automate both functional and UI

testing.

TestComplete: TestComplete is a commercial

testing tool that supports multiple platforms and

technologies such as web, desktop, mobile, and

API testing. It provides a record and playback

functionality to create automated tests and supports

scripting using multiple programming languages.

JMeter: JMeter is an open-source tool used for

performance testing, load testing, and functional

testing. It is mainly used to test web applications

and supports multiple protocols such as HTTP, FTP,

JDBC, and SOAP.

Chapter 7 Test Automation

169

Cucumber: Cucumber is a behavior-driven

development (BDD) testing tool that supports

multiple programming languages such as Java,

Ruby, and JavaScript. It uses plain text, called

Gherkin, to define test scenarios and supports

automation of functional and acceptance testing.

SoapUI: SoapUI is an open-source tool used for

testing APIs and web services. It supports multiple

protocols such as SOAP, REST, JMS, and AMF, and

it provides a graphical user interface to create,

manage, and execute automated tests.

These are just a few examples of the many automated testing tools

available. When selecting an automated testing tool, it’s important to

consider the requirements of the project, the technology used, and the

expertise of the testing team. Selecting the right automation tool can

significantly improve the efficiency and effectiveness of the testing process.

It is essential to choose a tool that meets the specific needs of the project

and the organization.

�Automated Test Scripts
Creating automated test scripts is a key aspect of test automation. The

process involves converting manual test cases into automated test scripts,

which can then be executed by an automation tool.

To create effective automated test scripts, it’s important to have a

clear understanding of the test case to be automated, including the inputs

and expected outputs. Once the test case is understood, the script can be

written in the appropriate programming language for the automation tool

being used.

Chapter 7 Test Automation

170

The script should be designed to mimic the actions of a human tester,

simulating user interactions with the application under test. This involves

interacting with user interfaces, entering data, and clicking buttons or

links. The script should also be designed to verify the expected outputs and

behavior of the application.

It's important to ensure that the automated test script is maintainable

and flexible, as changes to the application may require updates to the

script. Additionally, the script should be designed to provide clear and

informative results that can be used to identify issues and make informed

decisions about the quality of the application.

Maintaining automated test scripts and updating them are important

aspects of test automation. Once the automated tests have been created,

they need to be maintained to ensure that they remain relevant and

effective over time. This involves reviewing and updating the test scripts

as needed, as well as regularly testing them to ensure they continue to

provide accurate results.

Updating automated test scripts is necessary when changes are made

to the system under test or to the test automation framework. When

changes are made to the system under test, the automated test scripts

may need to be modified to accommodate the changes. This may involve

updating the test data or the test steps to reflect the new functionality.

Changes to the test automation framework may also require updates

to the test scripts. For example, if a new version of the test automation tool

is released, the test scripts may need to be updated to work with the new

version. Additionally, if new features or functionality are added to the test

automation framework, the test scripts may need to be updated to take

advantage of them.

Maintaining and updating automated test scripts requires attention

to detail and a thorough understanding of the system under test and the

test automation framework. It is important to review and update the test

scripts on a regular basis to ensure that they remain effective and continue

to provide value to the testing process.

Chapter 7 Test Automation

171

�Summary
This chapter was an overview of the tools we can use for test automation,

the benefits of having automation, and the drawbacks of it. As I often enjoy

saying, test automation will only report defects you already anticipate.

It should be used together with manual testing, always having the needs

and the priorities of the product in mind. Test automation is a continuous

process that requires a lot of effort into the setup of the framework and the

creation of the tests. This effort is distributed among the sprints when we

are working in an Agile environment.

Chapter 7 Test Automation

173© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_8

CHAPTER 8

Testing in Agile
Environment
Agile development is an iterative and incremental approach to software

development that emphasizes flexibility, collaboration, and continuous

improvement. Testing is an integral part of the Agile development process,

and testers work closely with developers and other stakeholders to ensure

that the software meets the needs of the business and end users.

This chapter covers the following topics related to testing in Agile

development:

•	 Agile testing principles

•	 Agile testing quadrants

•	 Test-driven development (TDD)

•	 Behavior-driven development (BDD)

•	 Acceptance test-driven development (ATDD)

•	 Continuous integration/continuous delivery (CI/CD)

•	 Test automation in Agile development

•	 Agile testing best practices

https://doi.org/10.1007/978-1-4842-9514-4_8

174

�Agile Testing Principles
In Agile development, testing is integrated into the development process,

rather than being a separate phase that comes after development. Agile

testing involves testing small, incremental changes to the software as they

are developed, rather than waiting until the end of a long development

cycle to test the entire system. Testing is often done by the development

team themselves, rather than by a separate testing team. Testing in Agile

development is designed to help ensure that the software being developed

meets the needs of the customer and is of high quality, while also keeping

pace with the fast-paced development cycle of Agile projects.

Here are some testing principles in Agile development:

•	 Collaborate and communicate: In an Agile

environment, collaboration and communication are

key. It is important to have a good working relationship

with developers, product owners, and other

stakeholders to ensure everyone is on the same page.

•	 Test early and often: In Agile development, testing is

integrated throughout the development process, not

just at the end. This means testing should start as early

as possible and should be done frequently.

•	 Automate testing: Automated testing is essential in

Agile development. It helps ensure that testing is done

quickly and efficiently and can be repeated easily as

changes are made.

•	 Use continuous integration and delivery: CI/CD is a key

part of Agile development. It allows for faster feedback

and testing of changes and helps ensure that the

software is always in a releasable state.

Chapter 8 Testing in Agile Environment

175

•	 Emphasize exploratory testing: Exploratory testing is

an important part of testing in Agile development. It

allows testers to explore the software in a more open-

ended way and to find issues that may not have been

caught by automated or scripted tests.

•	 Prioritize testing based on risk: In an Agile environment,

it’s important to prioritize testing based on risk. This

means focusing on testing the features that are most

critical to the business or that have the potential to

cause the most harm if they fail.

•	 Use metrics to track progress: Metrics can be used to

track the progress of testing in an Agile environment.

This can help teams identify areas where they need to

improve and can help ensure that testing is on track to

meet the goals of the project.

•	 Embrace change: In an Agile environment, change is

inevitable. Testers need to be adaptable and able to

change their approach as the software evolves. It’s

important to be flexible and open to new ideas and to

be willing to adjust the testing approach as needed.

�Agile Testing Quadrants
Agile testing quadrants are a way to categorize different types of tests in

Agile development. As shown in Figure 8-1, the quadrants are a 2×2 matrix

that places tests into four quadrants based on two factors: business-facing

versus technology-facing and support versus critique.

Chapter 8 Testing in Agile Environment

176

Business Facing

Functional Tests
Acceptance Tests

Manual
Automated &
Manual

Automated

Unit Tests
Integration Tests
System Tests

Tools

Exploratory Tests
Usability Tests

Technology Facing

Performance Tests
Security Tests

Su
pp

or
t t

he
 T

ea
m Critique Product

Figure 8-1.  The four quadrants of Agile testing

The following are the four quadrants (see Figure 8-1):

•	 Quadrant Q1: This quadrant focuses on tests that are

technology-driven and are automated. These tests are

designed to verify the functionality of the application at

a low level. Unit tests, component tests, API tests, and

database tests fall under this quadrant.

•	 Quadrant Q2: This quadrant focuses on tests that are

business-driven and are automated. These tests are

designed to verify the functionality of the application

at a high level. Acceptance tests, functional tests, and

end-to-end tests fall under this quadrant.

•	 Quadrant Q3: This quadrant focuses on tests that

are business-driven and are manual. These tests

are designed to verify the application’s usability,

Chapter 8 Testing in Agile Environment

177

accessibility, and user experience. Exploratory testing,

usability testing, and accessibility testing fall under this

quadrant.

•	 Quadrant Q4: This quadrant focuses on tests that

are technology-driven and are manual. These tests

are designed to verify the nonfunctional aspects of

the application such as performance, security, and

reliability. Performance testing, security testing, and

reliability testing fall under this quadrant.

Agile teams use the quadrants to plan their testing activities and

ensure that they have a balanced approach to testing. By covering all

four quadrants, the team can ensure that they are testing the system from

different perspectives and reducing the risk of defects slipping through

the cracks.

�Test-Driven Development
Test-driven development (TDD) is a software development approach

where test cases are written before the code is developed. The idea is to

create automated test cases for a small piece of functionality and then

write just enough code to make those tests pass. Once the code passes the

test cases, it is refactored to ensure it is clean and maintainable.

The main objective of TDD is to produce clean code that works as

intended and to help ensure that code changes don’t introduce new bugs

or break existing functionality. TDD also encourages developers to write

code in smaller increments, which can help to catch problems earlier in

the development process.

Chapter 8 Testing in Agile Environment

178

TDD is a popular approach in Agile development, as it encourages

developers to focus on writing code that meets the requirements and

specifications of the user stories. It also helps to identify and address

defects early in the development process, leading to faster and more

efficient development.

The TDD process involves the following steps:

	 1.	 Write a test case: Write an automated test case for a

specific functionality or feature.

	 2.	 Run the test case: Run the test case and ensure that it

fails, since the functionality is not yet implemented.

	 3.	 Write the code: Write the code that implements the

functionality.

	 4.	 Run the test case: Run the test case again and ensure

that it passes.

	 5.	 Refactor the code: Refactor the code to ensure it is

clean and maintainable.

This process is repeated for each functionality or feature until the

entire application is developed. The goal is to create an automated test

suite that ensures the application meets the user requirements and

specifications, while also being reliable and maintainable.

The following are the benefits of TDD:

•	 Better quality code: Since the code is thoroughly tested

at each step, it is more reliable and less prone to errors.

•	 Faster development: TDD can help catch errors early,

reducing the amount of time spent debugging and

fixing issues.

Chapter 8 Testing in Agile Environment

179

•	 Improved collaboration: TDD can encourage

collaboration between developers and testers, as both

parties are involved in writing and executing tests.

•	 Greater confidence: TDD can give developers greater

confidence in their code, as they know that it has been

thoroughly tested and is less likely to fail in production.

However, TDD also has some challenges, such as the need for a

dedicated testing framework and the potential for tests to become overly

complex. Additionally, it can be difficult to apply TDD to legacy code or to

projects with tight deadlines.

�Behavior-Driven Development
Behavior-driven development is an Agile software development technique

that promotes collaboration between developers, testers, and business

stakeholders. BDD is based on the principles of test-driven development

and builds on it by incorporating aspects of domain-driven design (DDD)

and object-oriented analysis and design (OOAD).

BDD emphasizes the behavior of a system or feature, rather than its

implementation. It encourages the use of natural language in writing tests

and specifications, which makes it easier for nontechnical stakeholders to

understand the purpose of the feature being developed.

In BDD, the requirements are expressed in the form of scenarios,

which describe the behavior of the system from the perspective of a user

or stakeholder. These scenarios are written in a specific format called

the given-when-then (GWT) format, which makes them easy to read and

understand.

BDD involves the use of automated tests, such as acceptance tests and

integration tests, to ensure that the system or feature behaves as expected.

BDD also includes the use of automated tools, such as Cucumber, JBehave,

Chapter 8 Testing in Agile Environment

180

and SpecFlow, to generate executable tests from the scenarios written

in natural language. These tools allow developers and testers to focus

on the behavior of the system, rather than the technical details of the

implementation.

The BDD process typically involves the following steps:

	 1.	 Define behavior: The development team and

stakeholders collaborate to define the behavior of

the system in a structured way using Gherkin.

	 2.	 Automate tests: Tests are created based on the

defined behavior, using tools such as Cucumber,

SpecFlow, or Behave to automate the testing

process.

	 3.	 Run tests: Tests are run to verify that the system

behaves as expected.

	 4.	 Refactor: The development team refactors the code

to ensure that it is well-designed, readable, and

maintainable.

The following are some of the benefits of BDD:

•	 Improved collaboration: BDD encourages collaboration

between developers, testers, and stakeholders,

ensuring that everyone has a clear understanding of the

behavior of the system.

•	 Better quality code: BDD tests the behavior of the

system, not just its functionality, resulting in code that

is more reliable and less prone to errors.

•	 Clear documentation: The natural language used in

BDD provides clear documentation of the behavior of

the system, making it easier for everyone involved to

understand what the system does.

Chapter 8 Testing in Agile Environment

181

•	 Greater confidence: BDD gives developers greater

confidence in their code, as they know that it has been

thoroughly tested and meets the requirements of

stakeholders.

�Acceptance Test-Driven Development
Acceptance test-driven development is an approach to software

development that involves team members from different disciplines,

including business stakeholders, developers, and testers. The purpose of

ATDD is to ensure that the software being developed meets the business

requirements and to promote collaboration between team members.

ATDD involves writing automated acceptance tests before development

begins, and these tests serve as a form of requirements documentation. The

acceptance tests are based on user stories and describe how the system

should behave in different scenarios. The tests are then used to drive the

development process, with developers writing code to make the tests pass.

ATDD promotes collaboration between team members by ensuring

that everyone is on the same page regarding what the software should do.

It also helps to catch defects early in the development process, when they

are easier and less expensive to fix. Finally, ATDD can help to ensure that

the software meets the business requirements and is of high quality.

The ATDD process typically involves the following steps:

	 1.	 Define acceptance tests: The development team,

stakeholders, and customers collaborate to define

acceptance tests that describe the expected

behavior of the system from the user’s perspective.

	 2.	 Automate acceptance tests: The acceptance tests are

automated using testing tools such as Cucumber,

FitNesse, or SpecFlow.

Chapter 8 Testing in Agile Environment

182

	 3.	 Write code: The development team writes the code

to implement the functionality required by the

acceptance tests.

	 4.	 Run acceptance tests: The acceptance tests are

run to verify that the system behaves as expected

and meets the requirements defined in the

acceptance tests.

	 5.	 Refactor: The development team refactors the code

to ensure that it is well-designed, readable, and

maintainable.

The following are the benefits of ATDD:

•	 Improved collaboration: ATDD encourages

collaboration between developers, testers,

stakeholders, and customers, ensuring that everyone

has a clear understanding of the requirements and the

behavior of the system.

•	 Better quality code: ATDD tests the system from the

perspective of the end user or customer, resulting in

code that is more reliable and less prone to errors.

•	 Faster feedback: ATDD provides fast feedback on

whether the system meets the requirements and the

expectations of the end user or customer, enabling the

development team to make changes quickly if needed.

•	 Greater confidence: ATDD gives developers and

stakeholders greater confidence in the system, as they

know that it has been thoroughly tested and meets

the requirements and expectations of the end user or

customer.

Chapter 8 Testing in Agile Environment

183

�Continuous Integration and
Continuous Delivery
Continuous integration and continuous delivery are software development

practices that help teams to deliver software more frequently and with

higher quality. CI is a process of regularly integrating code changes into

a shared repository, while CD is the process of automatically deploying

software changes to production. This is typically achieved through the

use of a CI tool such as Bamboo, Jenkins, Travis CI, or CircleCI, which

automatically builds and tests code changes whenever they are pushed to

a shared code repository.

In CI, developers integrate their code changes to a shared repository

multiple times a day, rather than waiting for a big merge at the end of the

development cycle. This ensures that issues are detected and fixed earlier,

making the process of code integration and deployment more efficient. CI

often involves automated build, test, and deployment processes that are

triggered by code changes.

CD goes one step further and automates the process of deploying

software changes to production. This involves building, testing, and

deploying the software changes in a repeatable and reliable manner. CD

ensures that software is always in a releasable state, making it easier to

release new features and bug fixes quickly and frequently.

Implementing CI/CD requires a combination of tools and practices,

such as version control, build automation, automated testing, and

deployment automation. It also requires a culture of collaboration and

continuous improvement, with a focus on delivering high-quality software

to customers.

The following are some of the benefits of CI/CD:

•	 Faster feedback: CI/CD provides fast feedback on code

changes, enabling developers to catch and fix issues

early in the development process.

Chapter 8 Testing in Agile Environment

184

•	 Improved collaboration: CI/CD encourages

collaboration between developers, testers, and

operations teams, ensuring that everyone is working

together to deliver high-quality code.

•	 Greater efficiency: CI/CD automates many of the

manual tasks involved in building, testing, and

deploying code, freeing up developers to focus on

other tasks.

•	 Better quality code: CI/CD ensures that code changes

are thoroughly tested and integrated with the existing

codebase, resulting in code that is more reliable and

less prone to errors.

•	 Faster time-to-market: CI/CD enables organizations

to deliver code changes quickly and safely, enabling

them to respond more quickly to changing market

conditions.

However, CI/CD also has some challenges, such as the need for a

robust testing infrastructure, the need for good version control practices,

and the potential for complex deployments. Additionally, it can be difficult

to apply CI/CD to legacy systems or to projects with tight deadlines.

�Test Automation in Agile
In Agile development, test automation plays a vital role in delivering high-

quality software quickly and efficiently. Here are some ways in which test

automation can be used in Agile development:

•	 Unit testing: Test automation can be used to automate

unit tests. Unit tests are designed to test the smallest

functional components of the software and are written

Chapter 8 Testing in Agile Environment

185

by developers as part of the coding process. Automated

unit tests can be run continuously, providing

immediate feedback on any changes that break

the code.

•	 Functional testing: Test automation can be used to

automate functional tests. Functional tests are designed

to test the software from a user’s perspective, ensuring

that the software meets the specified requirements.

These tests can be run continuously, providing

immediate feedback on any changes that break the

software.

•	 Integration testing: Test automation can be used

to automate integration tests. Integration tests are

designed to test the interactions between different

components of the software. Automated integration

tests can be run continuously, providing immediate

feedback on any changes that break the integration.

•	 Acceptance testing: Test automation can be used to

automate acceptance tests. Acceptance tests are

designed to test the software against the specified

requirements and ensure that the software meets the

user’s needs. Automated acceptance tests can be run

continuously, providing immediate feedback on any

changes that break the software.

•	 Regression testing: Test automation can be used

to automate regression tests. Regression tests are

designed to test the software after changes have been

made to ensure that the changes have not introduced

any new bugs. Automated regression tests can be run

continuously, providing immediate feedback on any

changes that break the software.

Chapter 8 Testing in Agile Environment

186

In summary, test automation can help teams to deliver high-quality

software quickly and efficiently in Agile development by automating

various types of tests, such as unit, functional, integration, acceptance, and

regression tests.

�Agile Testing Best Practices
The following are Agile best practices:

•	 Involve the testers in the Agile development process

from the beginning and throughout the development

cycle to ensure that testing is integrated and

continuous.

•	 Use test automation to reduce the time and effort

required for regression testing and to facilitate

continuous testing.

•	 Adopt a risk-based approach to prioritize testing efforts

on the most critical functionality and high-risk areas.

•	 Use exploratory testing to identify issues that may not

be caught by automated testing or test cases.

•	 Use testing metrics to monitor the quality of the

product and the effectiveness of the testing process.

•	 Ensure that testing is integrated into the continuous

integration and delivery process to ensure that the

product is always in a releasable state.

•	 Foster a culture of collaboration between developers

and testers to encourage early defect identification and

resolution.

Chapter 8 Testing in Agile Environment

187

•	 Encourage continuous feedback and communication

among team members, including developers, testers,

product owners, and customers.

•	 Focus on the customer experience and business value

to ensure that the product meets the customer’s needs

and delivers value to the business.

•	 Continuously improve the testing process and adapt to

changing requirements and customer needs.

�Summary
The current trend in the industry is to work in an Agile environment,

typically Scrum or Kanban, which makes the delivery of the products

faster, and then we continuously build on the product. This of course has

led to changes in the testing side, because testing has to start sooner and

different testing principles are applied to the different testing quadrants.

BDD and TDD are increasingly popular, CI/CD is a must have, and testing

automation is required in almost every product. Although software

testing has been already established for several decades, there are some

challenges that we must face on every new or existing project.

Chapter 8 Testing in Agile Environment

189© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4_9

CHAPTER 9

Challenges and
Solutions in
Software Testing
Software testing is an essential part of software development that helps

to ensure the quality and reliability of software products. However, the

software testing process is often accompanied by various challenges

that can affect the effectiveness and efficiency of the testing process. In

this chapter, we will discuss some of the common challenges in software

testing and provide some solutions to overcome these challenges.

�Lack of Clear Requirements
Lack of clear requirements means that the tester does not have a clear

understanding of what the software is supposed to do. It could be due to

ambiguous or incomplete requirements, a lack of communication between

the development team and the testing team, or a lack of understanding of

the business domain.

https://doi.org/10.1007/978-1-4842-9514-4_9

190

�Impact of Lack of Clear Requirements on Testing
The lack of clear requirements can have a significant impact on software

testing. The following are some of the impacts:

•	 Inaccurate testing: When requirements are unclear,

the tester may not have a complete understanding of

what the software is supposed to do. This can lead to

inaccurate testing, where the tester may test the wrong

functionality or miss critical defects.

•	 Increased cost: When the testing team is not clear

on what needs to be tested, they may end up testing

functionality that is not required, leading to increased

testing effort and cost.

•	 Delayed testing: When requirements are unclear, the

testing team may need to spend more time clarifying

the requirements with the development team, leading

to delayed testing.

•	 Misaligned expectations: When the requirements

are unclear, the testing team may have different

expectations than the development team. This can lead

to misunderstandings and disagreements between the

two teams.

�Mitigating the Impact of Lack
of Clear Requirements
To mitigate the impact of lack of clear requirements, the following steps

can be taken:

Chapter 9 Challenges and Solutions in Software Testing

191

•	 Collaboration: Collaboration between the development

and testing teams can help clarify requirements and

ensure that everyone has a clear understanding of what

needs to be tested.

•	 Requirements review: A requirements review can help

identify any ambiguities or incomplete requirements,

allowing them to be clarified before testing begins.

•	 Traceability: Traceability between requirements and

test cases can help ensure that all requirements are

tested and that the testing effort is focused on the

required functionality.

•	 Domain knowledge: Ensuring that the testing team has

a clear understanding of the business domain can help

them better understand the requirements and improve

the accuracy of testing.

�Time Constraints
A time constraint is a common challenge in software testing, as testing

often has to be completed within a limited time frame. This can be due

to project deadlines, budget constraints, or other factors. In this section,

we will discuss the impact of time constraints on software testing and

strategies for managing time constraints in testing.

�Impact of Time Constraints on Software Testing
The following are some of the impacts of time constraints on software testing:

•	 Inadequate testing: Time constraints can lead to

inadequate testing, as testers may not have enough time

to test all the required functionality thoroughly. This can

lead to missed defects and reduced software quality.

Chapter 9 Challenges and Solutions in Software Testing

192

•	 Increased risk: Inadequate testing increases the

risk of defects being discovered in the production

environment, which can be costly to fix and can

damage the reputation of the development team.

•	 Increased pressure: Time constraints can create

pressure on the testing team, leading to increased stress

and fatigue, which can impact the quality of testing.

•	 Delayed release: Time constraints can lead to delays

in the release of the software, as testing may need to

be extended or additional resources may need to be

brought in to complete testing.

�Strategies for Managing Time Constraints
in Testing
The following are some strategies that can be used to manage time

constraints in testing:

•	 Prioritization: Prioritization of testing based on

criticality and risk can help ensure that the most

important functionality is tested first.

•	 Test automation: Test automation can help reduce

testing time by automating repetitive tasks and

allowing testers to focus on more complex testing

scenarios.

•	 Agile testing: Agile testing methodologies, such as

Scrum and Kanban, can help manage time constraints

by breaking testing into smaller, manageable iterations

and providing frequent feedback.

Chapter 9 Challenges and Solutions in Software Testing

193

•	 Collaboration: Collaboration between the development

and testing teams can help identify and address issues

early, reducing the need for rework and saving time.

•	 Continuous integration and delivery: Continuous

integration and delivery can help reduce testing time

by automating the build and deployment process and

providing frequent feedback.

�Lack of Skilled Resources
Lack of skilled resources is a common challenge that organizations face in

software testing. This can be due to a shortage of skilled testers, a lack of

training and development programs, or a lack of experienced personnel.

In this section, we will discuss the impact of lack of skilled resources on

software testing and strategies for managing this challenge.

�Impact of Lack of Skilled Resources
on Software Testing
The following are some of the impacts of lack of skilled resources on

software testing:

•	 Inadequate testing: Lack of skilled resources can lead

to inadequate testing, as testers may not have the

necessary skills and knowledge to test the software

thoroughly.

•	 Increased cost: Inadequate testing can lead to increased

costs, as defects may be discovered later in the

development process, which can be costly to fix.

Chapter 9 Challenges and Solutions in Software Testing

194

•	 Decreased productivity: Lack of skilled resources

can lead to decreased productivity, as testers may

take longer to complete testing tasks due to a lack of

experience or knowledge.

•	 Reduced quality: Inadequate testing and decreased

productivity can lead to reduced software quality,

which can impact customer satisfaction and

reputation.

�Strategies for Managing Lack of Skilled
Resources in Testing
The following are some strategies that can be used to manage the lack of

skilled resources in testing:

•	 Training and development: Providing training and

development programs for testers can help them

acquire the necessary skills and knowledge to test

software effectively.

•	 Knowledge sharing: Encouraging knowledge sharing

among testers can help improve the overall skill level of

the testing team.

•	 Hiring skilled testers: Hiring skilled testers can help

address the shortage of skilled resources, but this

can be a challenging task due to the high demand for

skilled testers.

•	 Test automation: Test automation can help reduce the

reliance on skilled resources by automating repetitive

testing tasks and allowing testers to focus on more

complex testing scenarios.

Chapter 9 Challenges and Solutions in Software Testing

195

�Automation Challenges
Automation can bring many benefits to organizations, including

increased efficiency, accuracy, and cost savings. However, there are also

several challenges that come with automation. In this section, we will

discuss some of the challenges you might face in automation and how to

address them.

�Common Automation Challenges
The following are some of the common challenges that organizations face

when implementing test automation:

•	 Test coverage: Automated tests can cover only the

scenarios that have been explicitly programmed, and

this can lead to incomplete testing coverage. Human

testers can improvise and test unexpected scenarios,

while automated tests cannot.

•	 Maintenance: Test automation requires maintenance,

as changes in the application being tested or the test

environment can cause the automated tests to fail. It can

be a challenge to maintain automated tests, especially if

the tests are not designed to be maintainable.

•	 Integration: Integration between test automation

tools and other tools in the development and testing

process can be a challenge. It requires additional effort

to integrate test automation with tools such as defect

tracking, test management, and continuous integration.

•	 Cost: Test automation can be expensive to implement

and maintain, especially if the organization lacks the

necessary expertise.

Chapter 9 Challenges and Solutions in Software Testing

196

•	 Expertise: Test automation requires a high level of

expertise in programming and automation tools, which

can be a challenge for organizations that lack this

expertise.

�Strategies for Addressing
Automation Challenges
The following are some strategies for addressing the common challenges

of test automation:

•	 Test coverage: To address the challenge of incomplete

test coverage, it is essential to ensure that the

automated tests cover all critical scenarios. The

automation team should work with the manual testing

team to identify the critical scenarios and ensure that

they are automated.

•	 Maintenance: To address the challenge of test

maintenance, it is essential to design the tests to be

maintainable. The automation team should use good

coding practices and create automated tests that are

modular and reusable.

•	 Integration: To address the challenge of integration, it is

essential to select automation tools that integrate well

with other tools in the development and testing process.

The automation team should also ensure that the

automated tests can be easily integrated with other tools.

•	 Cost: To address the challenge of cost, it is essential to

select automation tools that are cost-effective and to

ensure that the automation team has the necessary

expertise to implement and maintain the tests.

Chapter 9 Challenges and Solutions in Software Testing

197

•	 Expertise: To address the challenge of expertise, it

is essential to invest in training and development

programs to ensure that the automation team has the

necessary skills and knowledge to implement and

maintain the automated tests.

�Communication and Collaboration
Effective communication and collaboration among team members are

critical for successful software testing. However, it can be challenging to

maintain clear and open communication channels, especially in large and

distributed teams.

Effective communication is crucial in testing, but poor communication

channels can hinder the process. For example, if testers are not able to

communicate their findings effectively, developers may not be able to

understand the issues and make the necessary changes. Testers must use

effective communication channels, such as emails, instant messaging, or

video conferencing, to ensure that all stakeholders are kept in the loop.

�Change Management
Change management is an important aspect of software testing, as

changes to software can impact its functionality, performance, and

security. However, there are several challenges that testers may face when

managing changes in a software testing environment. In this section, we

will discuss some of the common change management challenges in

testing and how to overcome them.

•	 Lack of visibility: One of the biggest challenges in change

management is the lack of visibility into the changes that

are being made to the software. Testers may not have

access to the latest version of the software or may not

Chapter 9 Challenges and Solutions in Software Testing

198

be informed about changes that have been made. This

can lead to issues during testing, as testers may not be

able to test the software adequately. To overcome this

challenge, testers must communicate effectively with

developers and other stakeholders to ensure that they

are informed about changes to the software.

•	 Inadequate testing: Another challenge in change

management is inadequate testing. Testers may not have

the time or resources to test all changes thoroughly, which

can lead to issues with the software. To overcome this

challenge, testers must prioritize testing based on the

impact of the changes on the software. They must also

collaborate closely with developers to understand the

changes and determine the appropriate testing strategy.

•	 Inconsistent testing environments: Testing environments

must be consistent to ensure accurate and reliable

results. However, this can be a challenge in change

management, as different changes may require

different testing environments. Testers must ensure

that the testing environments are consistent across

different changes and that the testing environment is

appropriate for the specific change being made.

•	 Resistance to change: Resistance to change can also

be a challenge in change management. Stakeholders

may resist changes due to concerns about the impact

on the software or the testing process. Testers must

collaborate closely with stakeholders to understand

their concerns and address them effectively. They

must also communicate the benefits of the changes to

stakeholders to gain their support.

Chapter 9 Challenges and Solutions in Software Testing

199

�Testing Across Platforms
Testing software across different platforms is crucial to ensure that it works

seamlessly on various devices and operating systems. However, testing

across platforms can be challenging, as each platform may have its unique

features and requirements.

•	 Platform compatibility: One of the main challenges

in testing across platforms is ensuring compatibility

across different platforms. Each platform may have

its specific hardware, operating system, and software

configurations, which can impact the behavior of the

software. Testers must ensure that the software works

seamlessly across all platforms by testing it on each

platform and verifying its compatibility.

•	 Version compatibility: Another challenge in testing

across platforms is version compatibility. Different

versions of the same platform may have different

features, requirements, and configurations. Testers

must ensure that the software works seamlessly across

all versions of each platform by testing it on each

version and verifying its compatibility.

•	 User interface (UI) differences: Each platform may

have its unique user interface, which can impact the

behavior of the software. Testers must ensure that

the software works seamlessly on each platform’s

UI by testing it on each platform and verifying its

functionality and appearance.

•	 Performance differences: Each platform may have

different performance capabilities, such as processor

speed, memory, and storage. These differences can

Chapter 9 Challenges and Solutions in Software Testing

200

impact the software’s performance on each platform.

Testers must test the software on each platform and

verify its performance and responsiveness.

•	 Resource limitations: Different platforms may have

different resource limitations, such as memory, storage,

and processing power. These limitations can impact

the software’s performance and functionality on

each platform. Testers must ensure that the software

works seamlessly on each platform by testing it under

different resource limitations.

•	 Testing tools and frameworks: Testing tools and

frameworks may not be available or may differ across

different platforms. Testers must use appropriate

testing tools and frameworks that are available on each

platform to ensure accurate and reliable testing results.

�Future of Software Testing
As technology advances and the digital landscape evolves, the future

of software testing is constantly changing. Here are some potential

developments that could shape the future of software testing:

•	 Increased automation: Automation is already a

significant part of software testing, but it will likely

become even more prevalent in the future. With the

help of artificial intelligence and machine learning,

software testing could become even more efficient and

effective.

•	 Shift-left testing: In shift-left testing, testing is integrated

earlier in the software development process, and tests

are performed more frequently. This approach can

Chapter 9 Challenges and Solutions in Software Testing

201

help identify and fix issues earlier in the development

cycle, reducing the overall cost and time associated

with testing.

•	 DevOps and continuous testing: DevOps has changed

the way software is developed and delivered, and

continuous testing is becoming more important to

ensure that the software being delivered is high-quality

and meets user requirements.

•	 Mobile and IoT testing: As more devices become

connected to the Internet and more people rely on

mobile devices, testing for mobile and Internet of

Things (IoT) devices will become more important.

Testing will need to cover not only the software but also

the hardware and connectivity aspects of these devices.

•	 Blockchain testing: As blockchain technology continues

to gain popularity, testing will become increasingly

important to ensure the integrity and security of

blockchain-based applications.

•	 Cloud-based testing: As more companies move their

IT infrastructure to the cloud, testing will need to be

adapted to accommodate cloud-based environments.

•	 Increased focus on security testing: With the increasing

number of cyberattacks and data breaches, security

testing will become even more important in the future.

This will involve testing not only the software itself but

also the security of the underlying infrastructure and

data storage systems.

Chapter 9 Challenges and Solutions in Software Testing

202

•	 Virtualization and simulation testing: Virtualization

and simulation testing can help replicate real-world

scenarios in a controlled environment. This can help

ensure that software behaves as expected in a variety of

different scenarios and environments.

•	 AI-driven testing: Artificial intelligence and machine

learning can help to automatically generate test cases

and optimize testing processes, making testing more

efficient and effective.

•	 Collaborative testing: In the future, software testing will

become more collaborative, with testers, developers,

and other stakeholders working together to ensure

high-quality software is delivered.

Overall, the future of software testing will be shaped by advancements

in technology and a growing need for high-quality, secure, and reliable

software. As such, the software testing industry will need to continue to

evolve and adapt to meet changing demands and expectations.

�Risk-Based Testing
Risk-based testing is an approach to software testing that prioritizes testing

efforts based on the level of risk associated with the software application

or system being tested. This approach involves identifying potential risks

to the system and prioritizing testing efforts on the areas that pose the

greatest risk to the project, rather than testing everything equally.

It is common that during the development of a project there is not

enough time or resources to mitigate all the potential risks. By applying

risk-based testing, the tester can ensure that the most critical foreseeable

risks are mitigated and the product can go live with minimum risk.

Chapter 9 Challenges and Solutions in Software Testing

203

The most common way to apply risk-based testing is to create a list

with all the possible risks the team can identify and decide the probability

and the impact of every risk. It does not have to be very accurate, a simple

“low” and “high” separation should be enough.

Table 9-1 shows what this matrix would then look like.

The risks with a high probability and high impact must be tested

first, and they must be mitigated either by eliminating the impact or by

minimizing their probability.

Next, the risks with a low probability and high impact should be tested

to make sure that the probability is indeed low, and then the team should

have a mitigation plan about the impact.

After that, if there is still time, the risks with a high probability and a

low impact could be tested to verify that the impact is indeed low, and then

the team could reduce the probability of the risk.

Finally, the risks with low probability and low impact, always

depending on the time left and on the business, can be ignored, since they

are not likely to happen, and even if they happen, the impact might be

minimal.

Table 9-1.  Risk Matrix

Risk Probability Impact

Risk 1 LOW HIGH

Risk 2 LOW LOW

Risk 3 HIGH LOW

Risk 4 HIGH HIGH

Risk 5 HIGH HIGH

…

Risk N LOW HIGH

Chapter 9 Challenges and Solutions in Software Testing

204

Figure 9-1 shows a graph to better visualize the connection between

the impact and the probability of the risks.

Figure 9-1.  Risk graph

�Summary
There are several challenges in the software world, and testing is no

exception. Although every challenge is manageable, we should be

proactive and mitigate all the critical risks in time; otherwise, it is certain

that we will have to pay a higher price later. A structured way to do this is to

create a risk assessment session at the start of every project and revisit risk

every now and then to keep track of all the risks and their impacts.

Chapter 9 Challenges and Solutions in Software Testing

205© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4

�Afterword

In conclusion, software testing is an essential process that ensures software

products are of high quality and meet the requirements of the end users.

It involves different activities such as test planning, test design, test

execution, and test reporting, among others.

There are different types of software testing, including functional

testing, performance testing, security testing, and user acceptance testing,

among others. Each type of testing is critical and helps to identify defects

or issues that could impact the quality of the software product.

In recent years, agile development has become a popular approach

to software development, and testing is an essential component of this

approach. Agile development allows teams to work collaboratively,

respond to changes quickly, and deliver high-quality software products.

Continuous testing is also becoming increasingly important, especially

with the rise of DevOps and the need to deliver software products

faster. Continuous testing involves integrating testing into the software

development process, which helps to identify issues earlier and reduce the

overall cost of fixing defects.

In the future, software testing is expected to become more automated,

with a focus on artificial intelligence and machine learning. This will help

to improve the accuracy and efficiency of testing, reduce the time taken to

perform testing, and improve the overall quality of software products.

Automated testing is an emerging trend in software testing that can

help to speed up the testing process and improve the overall efficiency

of the testing process. However, automation alone cannot guarantee a

successful software release, and it is necessary to combine automated

testing with manual testing to achieve the best results.

https://doi.org/10.1007/978-1-4842-9514-4

206

The main message I want you to take from this book is that these are

guidelines and best practices and in no way are they absolute truths about

software testing. There are multiple ways to perform software testing, and

the decisions you will make during a project will be different every time.

The tools and the guidelines are there to help you and assist you in this

journey, but at the end of the day, the human factor, your intuition, will be

the most important asset you bring to the table. Quality assurance starts

and ends with every person in an organization.

There is always room for improvement and learning. Staying up-to-

date with the latest technologies, tools, and best practices can help you

become a better software tester and contribute to the development of

high-quality software. Remember that testing is a collaborative effort

that involves communication, teamwork, and a commitment to quality.

So, keep learning and exploring the exciting and ever-changing world of

software testing!

AFTERWORD

207© Panagiotis Leloudas 2023
P. Leloudas, Introduction to Software Testing,
https://doi.org/10.1007/978-1-4842-9514-4

Index

A
Acceptance test-driven

development (ATDD), 181
Acceptance testing, 46, 185
Ad hoc testing, 105, 107
Agile development

ATDD, 181, 182
BDD, 179, 180, 187
CI/CD, 183
quadrants, 175, 176
TDD, 177–179, 187
test automation, 184, 185
testing principles, 174, 175

All-pairs testing, 95
Authentication testing, 18
Authorization testing, 18
Automated teller machines

(ATMs), 89
Automated testing, 60
Availability testing, 13, 24

B
Behavior-driven development

(BDD), 169, 179
Black-box testing, 2, 60

ad hoc, 105–107
advantages, 76

BVA, 82
definition, 75
equivalence partitioning, 78
error guessing, 98–100
exploratory, 100–103
limitations, 76
pairwise, 95–98
random, 103–105
techniques, 76, 77
use-case, 93–95

Blockchain technology, 201
Bottom-up integration testing, 10
Boundary value analysis (BVA)

age validation, 83
definition, 82
exercise, 84
file size validation, 84
values, 82, 83

Branch coverage, 112–115
Bug report, 142
Business analysts, 4

C
Change management, testing,

197, 198
Code review, 18
Compatibility testing, 13, 21

https://doi.org/10.1007/978-1-4842-9514-4

208

Compliance testing, 13, 27
Concatenated loop testing, 131
Condition coverage, 118–120
Continuous delivery (CD), 183
Continuous integration (CI), 183
Cross-site request forgery

(CSRF), 20
Cross-site scripting (XSS), 19

D
Data flow testing, 132
Decision coverage, 121
Decision table testing

benefits, 85
definition, 84
e-commerce, 85, 86
exercise, 88
transportation price, 86, 87

Defect reporting, 142
Domain-driven

design (DDD), 179

E
Encryption algorithms, 18
Equivalence partitioning

credit card payment, 80, 81
definition, 78
functional/nonfunctional

testing, 78
user login page, 79

Error guessing, 98
Exploratory testing, 2, 60, 100–103

F
Failure Modes and Effects Analysis

(FMEA), 72
Fan-out, 158
Fault slip through (FST), 153
Functional testing, 185

integration, 9, 10
levels, 5, 6
system, 11
testing pyramid, 5
UAT, 11, 12
unit tests, 7, 8

Fuzz testing, 17

G, H
Gray-box testing, 2, 60

I, J
Incremental integration testing, 10
Installability testing, 13, 24
Integration testing, 6, 9, 10, 46, 185
Internet of Things (IoT), 201
Iterative loop testing, 131

K
Key performance indicators

(KPIs), 41

L
Lines of code (LOC), 157
Loop testing, 130–132

INDEX

209

M
Maintainability testing, 13
Maintenance testing, 3
Manual testing, 60
Mean time between failures

(MTBF), 24
Mean time to

repair (MTTR), 24
Modified condition decision

coverage (MC/DC), 127
Multiple condition coverage

(MCC), 123

N
Nested loop testing, 131
Nonexecution testing/verification

testing, 29
Nonfunctional testing

availability, 24
compatibility, 21
compliance, 27, 28
installation, 24, 25
maintainability, 26
performance, 14–17
reliability, 23
scalability, 22
security, 17, 19, 20
usability, 20

O
Object-oriented analysis and

design (OOAD), 179

P
Pairwise testing, 75, 95
Path coverage, 115
Penetration testing/pen-testing, 17
Performance testing, 13–17, 46
Political, Economic, Social,

Technological,
Environmental, and Legal
(PESTEL), 72

Q
Quality metrics

code complexity, 152
code duplication, 155, 156
code maintainability, 152
coding standards, 154
compiler warnings, 159
dead code, 156
defect density, 150
fan-out, 158
FST, 153
LOC, 157
software development

process, 150
test coverage, 151

R
Random testing, 103–105
Recovery time objective (RTO), 24
Regression testing, 46, 60, 144,

159, 185
Reliability testing, 13, 23

INDEX

210

Risk analysis, 71
Risk-based approach, 186
Risk-based testing, 202–204

S
Sandpit integration testing, 10
Scalability testing, 13
Scripting tools, 163
Security testing, 13, 17, 47
Skilled resources, testing

impact, 193
strategies, 194

Software development life cycle
(SDLC), 57

application, 54, 55
definition, 35
phases

deployment, 48–51
design, 42–44
development, 45–47
maintenance, 51–54
planning, 36, 37, 39
requirements gathering, 39–42

Software project management plan
(SPMP), 39

Software quality, 4
Software testing

developers, 3
lack of clear

requirements, 189–191
operations teams, 4
platforms, 198–200
product owners, 3

project managers, 4
technical writers, 4
technology advances, 200–202
testers, 3
types, 1
user requirements, 1

Statement coverage, 109–112
State transition testing

definition, 88
exercise, 93
online shopping cart, 91, 92
process, 89
traffic light system, 90, 91

Static testing, 133, 135
code reviews, 29, 30
definition, 29
design reviews, 31, 32
inspections, 33, 34
requirement reviews, 30, 31
walk-throughs, 32, 33

Strengths, Weaknesses,
Opportunities, and Threats
(SWOT), 72

System testing, 6, 11, 46
System under test (SUT), 103

T
Test automation

benefits, 161, 162, 171
challenges, 195
frameworks, 165

automated test scripts,
169, 170

INDEX

211

tools, 167–169
types, 165

hybrid tools, 164, 165
record/playback tools, 162
scripting tools, 163
strategies, 196
use, 161

Test-driven development (TDD), 177
Test execution

data preparation, 138
defect reporting, 141–144
environment setup, 139, 140
quality metrics, 150
quality standards, 138, 139
regression testing, 144
techniques/tools, 137, 149, 150
test cases, 137

completion, 148, 149
status reporting, 146, 147

Testing pyramid, 5
Test planning

benefits, 68, 69
defect management

process, 66, 67
developing test schedule, 62, 63
document, 69, 70
identifying test data, 65
resources, 61, 62
reviewing/approving, 67, 68
stop testing criteria, 67
test cases, 63, 64
testing approaches, 59, 60
testing objectives, 57, 58
tools/techniques, 71–73

well-defined testing scope, 59
Time constraint, 191

impacts, 191, 192
strategies, 192

Top-down integration testing, 10

U
Unit testing, 6–8, 45, 184
Usability testing, 13, 20
Use-case testing, 93–95
User acceptance testing (UAT),

6, 11, 12
User experience designers, 4

V
Virtualization and simulation

testing, 202
Vulnerability scanning, 17

W, X, Y, Z
White-box testing, 2, 60

branch coverage, 112–115
condition coverage, 118–120
data flow, 132
decision coverage, 121, 122
definition, 107
loop, 130–132
MCC, 123–127
MC/DC, 127–130
path coverage, 115–118
statement coverage, 109–112
techniques, 107, 108

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: The Importance of Software Testing
	Summary

	Chapter 2: Software Testing Types and Techniques
	Functional Testing
	Unit Testing
	Integration Testing
	System Testing
	User Acceptance Testing

	Nonfunctional Testing
	Performance Testing
	Security Testing
	Usability Testing
	Compatibility Testing
	Scalability Testing
	Reliability Testing
	Availability Testing
	Installability Testing
	Maintainability Testing
	Compliance Testing

	Static Testing
	Code Reviews
	Requirement Reviews
	Design Reviews
	Walk-Throughs
	Inspections

	Summary

	Chapter 3: Software Development Life Cycle
	Planning Phase
	Requirements Gathering Phase
	Design Phase
	Development Phase
	Deployment Phase
	Maintenance Phase
	The Role of Testing in the SDLC
	Summary

	Chapter 4: Test Planning
	Defining Testing Objectives
	Determining the Scope of Testing
	Selecting the Testing Approach
	Identifying Testing Resources
	Developing the Test Schedule
	Defining Test Cases
	Identifying Test Data
	Defect Management Process
	Stop Testing Criteria
	Reviewing and Approving the Test Plan
	Benefits of Test Planning
	Test Plan Document
	Test Planning Tools and Techniques
	Summary

	Chapter 5: Test Design Techniques
	Black-Box Testing
	Equivalence Partitioning
	User Login Page
	Credit Card Payment
	Exercise

	Boundary Value Analysis
	Age Validation
	File Size Validation
	Exercise

	Decision Table Testing
	E-shop Discounts
	Transportation Price
	Exercise

	State Transition Testing
	Traffic Light System
	State Transition Table
	State Transition Diagram

	Shopping Cart
	State Transition Table
	State Transition Diagram

	Exercise

	Use-Case Testing
	Exercise

	Pairwise Testing
	Exercise

	Error Guessing
	Registration Form
	E-commerce Website
	Exercise

	Exploratory Testing
	Mobile App
	Online Marketplace
	Exercise

	Random Testing
	Web Application
	Game Testing
	Exercise

	Ad Hoc Testing
	Example of Ad Hoc Testing
	Exercise

	White-Box Testing
	Statement Coverage
	Exercise

	Branch Coverage
	Exercise

	Path Coverage
	Exercise

	Condition Coverage
	Exercise

	Decision Coverage
	Exercise

	Multiple Condition Coverage
	Exercise

	Modified Condition/Decision Coverage
	Loop Testing
	Data Flow Testing

	Static Testing
	Summary

	Chapter 6: Test Execution
	Getting Started
	Test Execution Process
	Test Environment Setup
	Defect Reporting and Retesting
	Regression Testing
	Test Case Status Reporting
	Test Case Completion
	Techniques and Tools Used in Test Execution
	Quality Metrics
	Defect Density
	Test Coverage
	Code Complexity
	Code Maintainability
	Fault Slip Through
	Coding Standards
	Code Duplication
	Dead Code
	Lines of Code
	Fan-Out
	Compiler Warnings

	Summary

	Chapter 7: Test Automation
	Benefits of Test Automation
	Record and Playback Tools
	Scripting Tools
	Hybrid Tools
	Frameworks
	Automated Testing Tools
	Automated Test Scripts

	Summary

	Chapter 8: Testing in Agile Environment
	Agile Testing Principles
	Agile Testing Quadrants
	Test-Driven Development
	Behavior-Driven Development
	Acceptance Test-Driven Development
	Continuous Integration and Continuous Delivery
	Test Automation in Agile
	Agile Testing Best Practices
	Summary

	Chapter 9: Challenges and Solutions in Software Testing
	Lack of Clear Requirements
	Impact of Lack of Clear Requirements on Testing
	Mitigating the Impact of Lack of Clear Requirements

	Time Constraints
	Impact of Time Constraints on Software Testing
	Strategies for Managing Time Constraints in Testing

	Lack of Skilled Resources
	Impact of Lack of Skilled Resources on Software Testing
	Strategies for Managing Lack of Skilled Resources in Testing

	Automation Challenges
	Common Automation Challenges
	Strategies for Addressing Automation Challenges

	Communication and Collaboration
	Change Management
	Testing Across Platforms
	Future of Software Testing
	Risk-Based Testing
	Summary

	Afterword
	Index

