
An Introduction
to Programming
Languages:
Simultaneous Learning
in Multiple Coding
Environments

Synthesis Lectures on Computer Science

Paul A. Gagniuc

Synthesis Lectures on Computer Science

The series publishes short books on general computer science topics that will appeal to
advanced students, researchers, and practitioners in a variety of areas within computer
science.

Paul A. Gagniuc

An Introduction
to Programming
Languages: Simultaneous
Learning in Multiple
Coding Environments

Paul A. Gagniuc
Department of Engineering in Foreign
Languages
Faculty of Engineering in Foreign Languages
University Politehnica of Bucharest
Bucharest, Romania

ISSN 1932-1228 ISSN 1932-1686 (electronic)
Synthesis Lectures on Computer Science
ISBN 978-3-031-23276-3 ISBN 978-3-031-23277-0 (eBook)
https://doi.org/10.1007/978-3-031-23277-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give
a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that
may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-23277-0

On the occasion of his 85th birthday, I dedicate
this work to my best friend, science partner and
father figure, Constantin Ionescu-Tirgoviste. You
are the greatest man I know! You are intelligence,
wisdom, kindness, patience, verticality, diplomacy,
morality and inspiration, in one single package.

Acad. Prof. Dr. Constantin Ionescu-Tirgoviste

Preface

This work is an introductory textbook in several computer languages. It describes the most
well-known and popular programming environments such as: C#, C++, Java, JavaScript,
PERL, PHP, Python, Ruby, and Visual Basic (VB) or Visual Basic for Applications
(VBA). Therefore, the main objective of this unique guide is to provide code examples
reflected in these nine computer languages. Readers can easily understand the connection
and universality between the syntax of different environments and be adept at translating
code. This learning experience can be ideal for upper-undergraduate introductory courses,
researchers, doctoral students, and sociologists or engineers charged with implementing
data analysis. Graphical illustrations are used for technical details about the computa-
tion examples to aid in an in-depth understanding of their inner workings. Moreover, the
book contains original material that has been class-tested by the author and numerous
cases are examined. Readers will also benefit from the inclusion of: (1) Historical and
philosophical perspectives on the past, present and future of computer languages. (2) A
total of 448 additional files are freely available online, from which a total of 44 files are
poster presentations (i.e. PowerPoint and PDF files). (3) A total of 404 code examples
reflected in nine computer languages, namely: C#, C++, Java, JavaScript, PERL, PHP,
Python, Ruby and VB. This work first begins with a general introduction to history and
presents the natural inevitable pathway from mechanical automation to present electronic
computers. Following this historical introduction, an in-detail look is made at philosoph-
ical questions, implementations, entropy and life. More often than not, there is a genuine
amazement of the younger generations regarding the advancement of computer technol-
ogy. Historical events that led to the development of technologies have been distilled
down to the essence. However, the essence of any story is made with a massive loss of
detailed information. The essence of essences loses all the more information. Over time,
the lack of detail leads to a collective amnesia that can prevent us from understanding the
naturalness by which technology has evolved. Thus, new constructs are always built upon
older constructs to fit the evolutionary chain of technological progress, which boils down
to the same fundamental rules as biological evolution. In the first stage, this book dis-
cusses the natural path of programming constructs by starting from time immemorial and
ending with examples up to the present times. In the end, naturally driven constructs of all

vii

viii Preface

kinds also drive our society today. In the second part, the emphasis is made on the tech-
nical side where a total of nine computer languages are used simultaneously for mirrored
examples. Simultaneous learning of multiple computer languages can be regarded as an
asset in the world of science and technology. Thus, the reader can get used to the majority
of known programming or scripting languages. Moreover, a basic knowledge of software
implementation in several computer languages, even in an introductory way, helps the
versatility and adaptability of the reader to new situations that may arise in industry, edu-
cation, or research. Thus, this work is meant to bring a more concrete understanding of
the similarities and differences between computer languages.

Ionel Bujorel Păvăloiu
Department of Engineering in Foreign

Languages, Faculty of Engineering
in Foreign Languages

University Politehnica of Bucharest
Bucharest, Romania

Acknowledgements

I wish to thank my friend Andrei Vasilateanu for a wonderful and precise review. His
background in programming languages made him the perfect reviewer for this work.

ix

Personal Words

I understand from confirmed sources that 42 is the answer to all things, the universe and
everything. Today I start to believe that myself since I rapidly approach this age of wis-
dom. Much of this book is based on personal experience that comes from a time period
of rapid technological change. In my childhood, I have seen punch cards in use on the
“FELIX computers” at the very beginning of the 90s, and my personal experience in
the world of computer software started with the “Z80” processor. I know what it means
to see red after a few hours spent on the phosphorescent green tube of the monitor. I
remember the unmistakable sound of software, namely the incoming or outgoing data. I
also remember how to save and load the source code to and from a magnetic tape of a
cassette. I know what it means to switch from the “Z80” microprocessor and “BASIC”
functional keys to “286” computers equipped with DOS operating systems and “Quick-
BASIC”. I am a first-hand witness of the novelty called the mouse, and the perfection of
the rubber sphere that is supposed to be cleaned of dust from time to time. I lived to see
and feel the romance portrayed by all stages of the Internet and I was there to see the
evolution of programming languages since the mid-90s. When I switched to languages
like “C”, “Turbo Pascal”, or “Delphi”, I remember the mystery and the potential I felt in
regard to the “486 CPU” computers. Later, on “586”, I was amazed by the “Visual Studio
6.0” package, and especially amazed by the “Visual Basic 6.0” programming language.
Of this package, I am still amazed to this very day. I was fortunate enough to see the
ups and downs of tech companies and the radical changes of the Internet, and because I
am a Romanian, I witnessed the highest Internet connection speeds on the planet. I was
born at the right time to experience punch cards, magnetic tapes, cassette tapes, floppy
disks, songs/sounds of the modem, hard drives, CDs, DVDs, Blu-ray discs, USB drives
and SSD drives. Computers shaped me! The journey made me a happy young-old man.
But, could four decades encompass so much? It appears so! Well, these were the times,
the best times.

xi

Contents

1 Historical Notes . 1
1.1 Introduction . 1
1.2 The Ultimate Foundation . 2

1.2.1 Closer to Our Times . 2
1.2.2 Universality at the Crossroads . 2

1.3 On the Recent Origin of Computers . 3
1.3.1 Automatons and the Memory of the Soul 4
1.3.2 Mechanical Computers . 5
1.3.3 Electronic Computers . 5
1.3.4 American Standard Code for Information Interchange 6
1.3.5 A Conspiracy for Convergence . 7

1.4 History of Programming Languages . 7
1.4.1 The Making of an Advanced Civilization 8
1.4.2 The Dark Age of Computer Languages . 9
1.4.3 The Extraordinary Story of ActiveX . 11
1.4.4 Killed on Duty by Friendly Fire . 11
1.4.5 The Browser: Resistance is Futile, You Will be Assimilated . . . 12

1.5 Conclusions . 12

2 Philosophy and Discussions . 15
2.1 Introduction . 15
2.2 The Entropy of Software . 16

2.2.1 Entropy of Codes and Human Nature . 16
2.2.2 Raw Versus Fine-Grained Entropy . 16
2.2.3 How Does Software Entropy Increase? . 17

2.3 The Operating Systems and Entropy . 17
2.3.1 The Twins . 18
2.3.2 Rejection of Equilibrium . 18
2.3.3 The Third Party Software . 18
2.3.4 Examples of Universality . 19

xiii

xiv Contents

2.4 Software Updates and Aging . 20
2.5 Universality Supports Self-reflection . 21

2.5.1 The Evolution of Large Brains Versus Entropy 21
2.6 From Computer Languages to Art and Sports . 22

2.6.1 The Art . 23
2.6.2 The Sport . 24

2.7 Compiled Versus Interpreted . 25
2.7.1 Programming Languages . 25
2.7.2 Scripting Languages . 27
2.7.3 Source Code Encryption . 27
2.7.4 The Executable File . 28
2.7.5 Executable Files and Scripting Languages 28

2.8 The Unseen and Unspoken . 29
2.8.1 Witch Hunting Shows Weakness . 30
2.8.2 No Secrets for the Emeritus . 30
2.8.3 The War Against the Executable File . 31
2.8.4 We Decide What Product Comes About . 31

2.9 Psychological Warfare . 32
2.9.1 Removal by Threat . 32
2.9.2 Removal by Advertising . 33
2.9.3 Handling of Terms . 33
2.9.4 Battle of Computer Languages . 34
2.9.5 Uniformity Means Death . 35
2.9.6 Modern Does Not Mean Better . 35
2.9.7 Market Share Demands Responsibility . 36

2.10 Human Roles and Dilemmas . 37
2.10.1 The Identity Crisis . 37
2.10.2 Work Environments . 38
2.10.3 Genus: Homo . 38

2.11 Worst Professors Are Those Who Assume . 39
2.12 Conclusions . 40

3 Paradigms and Concepts . 41
3.1 Introduction . 41
3.2 The Story of Programming Paradigms . 42

3.2.1 Imperative Programming . 42
3.2.2 Declarative Programming . 45
3.2.3 The in Between . 46
3.2.4 The Foundation . 46

3.3 Computer Languages Used Here . 47
3.3.1 C# . 47
3.3.2 C++ . 47

Contents xv

3.3.3 Java . 48
3.3.4 JavaScript . 48
3.3.5 Perl . 48
3.3.6 PHP . 49
3.3.7 Python . 49
3.3.8 Ruby . 49
3.3.9 Visual Basic . 49

3.4 Classification Can be Misleading . 50
3.4.1 A Critique . 50
3.4.2 Which Computer Language is Better? . 51
3.4.3 The Operating System Versus the Application Makeup 53
3.4.4 The Virtual Machine: A CPU for Bytecode 54
3.4.5 Compiled Languages . 54
3.4.6 Interpreted Languages . 54
3.4.7 Just in Time Compilation . 55
3.4.8 Another Critique . 55
3.4.9 A Security Thought Experiment . 55
3.4.10 About Security Privileges . 56

3.5 The Quick Fix . 57
3.6 Conclusions . 59

4 Operators and Expressions . 61
4.1 Introduction . 61
4.2 Operators . 62

4.2.1 Arithmetic Operators . 62
4.2.2 Assignment Operators . 62
4.2.3 Relational Operators . 63
4.2.4 Concatenation Operators . 63
4.2.5 Logical Operators . 63

4.3 Operator Symbols . 63
4.3.1 Power Operator: The Curious Case of Exponentiation 64
4.3.2 The Modulo Operator . 65
4.3.3 Unitary Operators . 67
4.3.4 The String Operator . 67
4.3.5 The Repetition Operator . 67
4.3.6 The Concatenation Operator . 68
4.3.7 Relational and Logical Operators . 69

4.4 Assignments . 71
4.4.1 Simple Assignments . 71
4.4.2 Aggregate Assignments . 72
4.4.3 Multiple Assignments . 72

xvi Contents

4.5 Operator Precedence and Associativity . 73
4.6 Conclusions . 78

5 Data Types and Statements . 79
5.1 Introduction . 79
5.2 Data . 79

5.2.1 Bits and Bytes . 80
5.2.2 Symbol Frequency Matters . 82
5.2.3 The Encoding . 85
5.2.4 A Hypothetical System of Reference . 85
5.2.5 The Bytes of an Alien World . 86

5.3 Data Type . 88
5.3.1 The Curious Case of the String Data Type 89
5.3.2 Experimental Constructs . 91

5.4 Statements . 92
5.4.1 ASCII Symbols . 92
5.4.2 Unicode Transformation Format . 92
5.4.3 Sentences are Made of Constructs . 93
5.4.4 The Root of Behavior . 93
5.4.5 The End of the Line . 93
5.4.6 Statements and Lines . 94
5.4.7 Multiple Statements and Line Continuation 96
5.4.8 Recommended Versus Acceptable Statements 98

5.5 The Source Code . 101
5.5.1 Indentations . 101
5.5.2 Comments . 102

5.6 Conclusions . 104

6 Classic and Modern Variables . 105
6.1 Introduction . 105
6.2 Variables . 105

6.2.1 Literals . 106
6.2.2 Naming Variables . 109
6.2.3 Variables: Explicit and Implicit . 110
6.2.4 Statically Versus Dynamically Typed Languages 110

6.3 Evaluations of Expressions . 115
6.3.1 Details by Language . 116

6.4 Constants . 118
6.5 Classes and Objects . 120

6.5.1 About Design Patterns . 120

Contents xvii

6.6 Arrays . 121
6.6.1 Creating an Empty Array . 121
6.6.2 Creating an Array with Values . 123
6.6.3 Adding Elements . 123
6.6.4 Accessing Array Elements . 126
6.6.5 Changing Values in Array Elements . 131
6.6.6 Array Length . 131
6.6.7 Nested Arrays . 137
6.6.8 Multidimensional Arrays . 139

6.7 Conclusions . 139

7 Control Structures . 147
7.1 Introduction . 147
7.2 Conditional Statements . 148
7.3 Repeat Loops . 153

7.3.1 The While Loop . 153
7.3.2 The For Loop . 159
7.3.3 Nested Loops . 170
7.3.4 Multidimensional Traversal by One For-Loop 170

7.4 Conclusions . 184

8 Functions . 187
8.1 Introduction . 187
8.2 Defining Functions . 187

8.2.1 Simple Arguments . 189
8.2.2 Complex Arguments . 192
8.2.3 Nested Function Calls . 196
8.2.4 Chained Function Calls . 200
8.2.5 Relative Positioning of Functions . 200
8.2.6 Recursive Calls . 208
8.2.7 Global Versus Local Variables . 214
8.2.8 Functions: Pure and Impure . 218
8.2.9 Function Versus Procedure . 218
8.2.10 Built-In Functions . 223

8.3 Conclusions . 228

9 Implementations and Experiments . 233
9.1 Introduction . 233
9.2 Recursion Experiments . 234

9.2.1 Repeat String n Times . 234
9.2.2 Sum from 0 to n . 234
9.2.3 Factorial from 0 to n . 254
9.2.4 Simple Sequence Generator . 254

xviii Contents

9.2.5 Fibonacci Sequence . 255
9.2.6 Sum All Integers from Array . 255

9.3 Interval Scanning . 256
9.4 Spectral Forecast . 265
9.5 Conclusions . 274

References . 275

List of Figures

Fig. 2.1 From entropy to art and back. The word “entropy” is written
on the beaches of Golden Sands in Bulgaria. The word written
in the sand indicates low entropy, which is quickly increased by noise
represented by the waves of the Black Sea. The top-right panel shows
a viral capsid close to a cell wall, which is portrayed by ASCII art 24

Fig. 2.2 Types of computer languages and their relationship to terms. It
presents the relationship between scripting languages and programming
languages and tries to highlight the relationship with the notions
of interpreters and compilers. The first column from the left shows
the classic case of a scripting language in which the source code
is directly interpreted by an interpreter application. The middle
column shows the situation often encountered today, where the source
code is converted to bytecode, and then the bytecode is interpreted
by an interpreter application for compatibility with the operating system
and then compiled into machine code. On the right column, the classic
programming languages are OS-specific, where the source code is
directly converted into machine code. Note that Bytecode is a form
of P-code, and it means pseudo code. Also, JIT is the Just-In-Time
interpretation and compilation that a virtual machine does depending
on the operating system . 27

Fig. 3.1 Paradigms, computer languages and their syntax. It shows the link
between hardware, computer languages, paradigms and syntax
styles. Notice that low level computer languages are imperative
and unstructured. Some older high-level computer languages that are
equiped with the absolute jump commands, are in fact imperative
and unstructured (ex. QBASIC). The bridge from unstructured
to structured also exists. Some of the most recent higher-level computer
languages, are equipped with absolute jump commands and functions
at the same time (ex. VB6). Note that absolute jump commands are

xix

xx List of Figures

known as “GOTO” in most high-level computer languages of the past,
where this keyword was able to move execution from the current line
to an arbitrary line (eg. Inside a 100-line implementation, “GOTO 10”
can move execution to line 10, regardless of where the statement is
made). In the assembly language, the most well-known unconditional
jump command is the “JMP” mnemonic of Intel CPU’s. There are other
types of jumps that represent conditional jumps, and these represent
a myriad of mnemonics in groups of two to four characters that all
begin with the letter “J” (eg. “JL”—Jump if Less, “JGE”—Jump
if Greater or Equal, “JNLE”—Jump if Not Less or Equal, and so
on). In other CPUs, like Z80, the mnemonic for the absolute jump
command is “JP”. From firmware to firmware, these notations,
or mnemonics, can be represented by different sets of characters.
However, because the world works on Intel CPU designs, the word
Assembly language is often associated with Intel CPUs. Note
that mnemonics means “memoria technica” or “technical memory”,
and it refers to how information is written in the shortest way in order
to be remembered without information loss. In short, it is optimization
of notation . 44

Fig. 3.2 Bytecode portability and compilation versus interpretation. In
an abstract fashion, it shows how most interpreted computer languages
work today. It starts from the source code written by the programmer,
which is assumed to be compiled to bytecode. The bytecode represents
an abstraction of the initial source code. Bytecode is then used
as it is on any platform, because there, whatever the platform is, it
is met by an adaptation of the same virtual machine. This virtual
machine makes a combination between interpretation and sporadic
compilation (Just In Time compilation—JIT) to increase the execution
speed of the software implementation. Note that “native code”
and “machine code” have the exact same meaning across all figures
that are alike. This particular figure contains the words “Native code”
instead of “Machine code” in order to fit the text inside the horizontal
compressed shapes. Note also that in a different context, “native code”
may refer to the only language understood by some abstract object.
For instance, Java bytecode is the “native code” to the Java Virtual
Machine. As it was the case in the old days, some interpreters of lower
performance (not necessarily VMs) made a direct interpretation
of source code, without an intermediate step like the use of bytecode.
In principle, virtual machines could be designed to directly interpret
high-level source code, short circuiting the source code security

List of Figures xxi

through obscurity or the multi-step optimization, or both. Thus, in such
a case the “native code” would be the Java high-level source code.
Also, please note that the abstract representation of the modules shown
in the figure indicates a lack of extreme contrast between what is
commonly called an interpreter or a compiler. That is, the compiler
also does a little bit of interpreting and the interpreter also does a little
bit of compiling . 53

Fig. 4.1 Operator precedence and associativity symbols by computer
language. In this table, operators enclosed in the same border have
equal precedence and their associativity is shown on the column
next to the symbols. The pink color of a cell indicates a group
of operators and the light yellowish color indicates single operators
per level. Note that the abbreviation OP means Order of Precedence;
A = Associativity; N = Order of direction is not applicable
here—non-associative; L = left-to-right; R = right-to-left. Some
lesser known and used operator symbols are not shown here. The
plus and minus signs belonging to addition and subtraction can
be seen immediately below multiplication and division. Other plus
or minus symbols present either above or below that position have
dual roles, such as the plus sign in JavaScript which uses the symbol
for both concatenation and addition. Other interesting observations are:
In VB the “\” means integer division; in Ruby “=~” means matching
operator; also in Ruby “!~” means NOT match. In C# the “^” means
bitwise XOR, whereas in VB it means exponentiation 75

Fig. 4.2 Examples of operator precedence and associativity. At the top,
the two panels show one example each for operator precedence
or operator associativity. A mixed example is given at the bottom
of the figure showing the relationship between operator precedence
and operator associativity. In the lower right part there is a short list
with symbols for only a few operators. In this list, the vertical order
of the operators indicates operator precedence and the symbols found
on the same level have equal precedence. Notice that in all panels there
is a well-established and numbered sequence of computations that is
based on precedence and associativity . 76

Fig. 5.1 ASCII and UTF-8. It shows the back compatibility of UTF-8. On
the vertical axis, the first half of the figure shows the structure
of ASCII, which encodes for symbols using 8-bit sequences (1 byte).
A schematic of UTF-8 is unrivaled in the second half of the figure. The
UTF-8 relationship with ASCII is preserved for encoding positions
starting from 0 to 127. However, starting from position 128 up to 255,

xxii List of Figures

ASCII and UTF-8 use different encodings. Namely, ASCII uses 1 byte
for this range, whereas UTF-8 uses 2 bytes. Outside the ASCII range,
UTF-8 uses 2 bytes up to 4 bytes to encode new arrivals in the symbol
set. UTF-8 may stop at 32 bit (4 bytes) representations, as all symbols
with meaning in all human history, does not exceed 4.3 billion, as 4
bytes can encode . 83

Fig. 5.2 Size of text according to UTF-8. It shows the size of text “ sunny”
under UTF-8. This further includes the code points (the whole
number associated with a symbol), the corresponding bit sequences
and the actual symbols associated with these abstract representations.
Note that boxes indicate abstract regions of physical memory. The
space character and the letters that make up the word “sunny” take
up a total of 6 bytes, however, the sun symbol is new and is encoded
in 3 bytes instead of 1 byte. This observation is in fact very important.
Usually, the most necessary symbols were those that were first
introduced as characters in the development of computers over time.
Consequently, time precedence of characters is directly proportional
to their frequency of occurrence in data. Thus, preservation of the initial
encoding for the most frequent symbols dictates the conservation
of file size. UTF-8 characters can be represented by 1 byte for older
legacy symbols, up to 4 bytes for newer symbols. This is one
of the main reasons why UTF-8 is crucial to the future of technology
when compared to other character encodings . 84

Fig. 5.3 The alien text measured in alien bytes. The top of the figure
shows five hypothetical characters in a 2D formation of 5× 6 bits.
Below the representations are the 3-bit codes that can be associated
with these object characters. Just below the 3-bit codes, the characters
are displayed using colors instead of 0 and 1s. The abstract box
representation shows the 3-bit code and the character code associated
with the symbols. On the bottom of the figure, an “alien” phrase of 20
characters is shown. The meaning of the phrase is not important.
There, the comparison is made between the size of the 20 characters
(200 bytes) and the size of the encoding (20 bytes). Thus, the “alien”
example indicates the role of character encoding in reducing size
without information loss. Note that in this example, an “alien” byte
represents a 3-bit sequence . 87

List of Figures xxiii

Fig. 5.4 Data Type representation. It describes the general constructs used
by computer languages to represent data. The data type constructs
shown here are normally divided into two, primitive data types
and non-primitive data types. Primitive data types in turn are divided
into two other categories, namely numeric and non-numeric data. Non
numeric data contains the character type and the boolean type, whereas
the numeric category contains the weight of the constructs. Namely,
for integers, there is the byte type, the integer type, the long type
and the short type. In the case of the floating point category there is
double type and the float type. Among the non-primitive categories
the array type, the string type and the object type are listed. The object
type also implies the possibility of creating other new data types. Note:
there are many computer languages today that no longer use primitives
in the true sense of the word, but objects that simulate primitives, such
as pure object-oriented languages, like Ruby . 90

Fig. 5.5 Examples of multiline comments are presented in the case of Python,
which show the connection between the one-dimensional patterns
from the previous table and the two-dimensional representation
from the source code. Note that the source code is in context and works
with copy/paste . 104

Fig. 6.1 One-dimensional array variables. It presents two different
representations of array variables. The first approach from above shows
how the lower bound starts from zero (0 … n). Notice that the total
number of elements in the array is n + 1. This is the case with many
modern computer languages. The second approach shows the case
of VB, were the index of an array variable may start from any value
and end with any value that is bigger than the first (n … n + m; m >
n). Notice that the total number of elements in the array is m + 1 137

Fig. 6.2 Multi-dimensional arrays. It shows two diagrams that represent array
variables with two dimensions. The first diagram shows a lower
bound that starts at zero for both dimensions, and the second (bottom)
diagram representing an array variable with an arbitrary lower bound
position for each dimension. These two representations can be given
in three dimensions by providing another row in the diagram. This is
true for any dimensions, in wich each dimension can be represented
by boxes positioned linearly in this figure . 146

List of Tables

Table 4.1 Critical Arithmetic Operators. These operators can be safely called
the primitive operators as they are fundamental to every operation
(especially addition and subtraction). The symbols for Addition,
Subtraction, Multiplication, Division and Exponentiation, are shown
for each computer language used in this work . 64

Table 4.2 Concatenation, repetition and non-critical arithmetic operators. Some
of these operators can be considered advanced operators because they
are borderline constructs with built-in functions (notably these
operators are: Modulus, Concatenation, Repetition). The Increment
and Decrement operators are part of the list of primitive operators
continued from the previous table. Briefly, symbols for Modulus,
Concatenation, Repetition, Increment, Decrement, are shown for each
computer language used in this work . 65

Table 4.3 Relational operators. Relational operators which are also known
as comparision operators, are used for comparing the values of two
operands. Briefly, symbols for equality, inequality, less than, greater
than, less than or equal to, greater than or equal to, are shown
for each computer language used in this work. The square brackets
in the table cells indicate the optional representation of the operands . . . 69

Table 4.4 Logical operators. Relational operations can only be linked together
by using logical operators. Briefly, symbols for Logical Not, Logical
And, Logical Or, are shown for each computer language used in this
work. The square brackets in the table cells indicate the optional
representation of the operands . 70

Table 5.1 From bits to encoding possibilities and bytes. It shows the number
of encoding possibilities for bit sequences between 1 and 64.
For each bit sequence considered here, the number of bytes is shown
from the octet perspective. Namely, the last column in the table shows

xxv

xxvi List of Tables

that bytes are no longer represented by an integer value
when bit sequences are smaller or larger than multiples of 8.
It can be seen that 32-bit sequences allow close to 4.3 billion
coding possibilities

(
232 = 4.294967296e + 9

)
. Likewise, 64-bit

sequences cover the unthinkable, because there are not enough
meanings in this world to fill the space of coding possibilities(
264 = 1.84467440737e + 19

)
. 82

Table 5.2 Example of primitive data types in Java. A primitive data type
specifies the size and type of information the variable will
store. There are eight primitive data types that are fundamental
to programing. Note that 1 byte is 8 bits. Also, short is the inherited
integer. Depending on the computer language, the integer data type
may be either the old one (−32,768 to 32,767) or the new one
(−2,147,483,648 to 2,147,483,647). Note that from one computer
language to another, the ranges of the values associated with these
data types vary greatly. Due to the increase in hardware capabilities
over time, the range of values for data type constructs has naturally
increased as well . 86

Table 5.3 List of primitive data types and composite data types. The table lists
primitive data types and composite data types for each computer
language used in this work. Note that in one way or another all
computer languages have data types that lend themselves into modern
programming by necessity because of the inheritance from the past,
such as array, string, integer, boolean and so on. Without these,
the paradigm changes automatically . 91

Table 5.4 Line feed, carriage return and the ASCII conversions. Representations
for some of the non-printable ASCII characters are shown here for all
computer languages used in this work. Note that “LF” stands for line
feed, “CR” stands for carriage return, and “CR & LF” represents
the two ASCII characters as a unit. The last two columns show
the methods by which a character can be obtained based on the ASCII
code or, how the ASCII code can be obtained based on a given
character. The statements in the fifth column return a character,
while those in the last column return an integer. Letter “a” represents
an integer between 0 and 255, while “b” represents one character 95

List of Tables xxvii

Table 5.5 Multiple statements and Line continuation. Continuing a statement
over multiple lines or putting multiple statements on one line is
critical in some instances were complexity is high. The second
column shows the pattern of positioning the code lines, labeled a,
b and c, one after the other through a delimiter, namely the “:”
symbol, or more frequently the “;” symbol. The third column shows
a pattern that indicates the rules according to which a very long
statement can be broken into multiple lines. In this case the example
is made for assignments, namely on expressions placed at the right
of the equal operator. The letters a, b, and c represent values
of different data types. Note that, only in this example, the “◼”
character indicates the action of pressing the Enter key 97

Table 5.6 Comments and symbols. For exemplification, ASCII characters used
to start a line of comment are shown for each computer language.
Perhaps because of historical reasons, some characters are shared
between languages. On the third column, a series of one-dimensional
models show ways to write multi-line comments for each computer
language. In these patterns, the letters a, b and c may represent
any line of text. Only in this example, the “◼” character indicates
the action of pressing the Enter key . 103

List of Additional Algorithm

Additional algorithm 3.1 It shows the “Hello world” example for all computer
languages used in this work. This is intended
as a positive first introduction. Note that the source
code is in context and works with copy/paste 57

Additional algorithm 4.1 Examples of assignments are shown for multiple
computer languages. An important observation is
that VB refers to Visual Basic 6.0 (VB6) and VBA
syntax, namely the last version of Visual Basic.
Thus VB6 lacks aggregate assignment as this style is
a relatively new addition to computer languages. VB6
can explicitly declare multiple variables for a certain
data type (Dim a, b, c As Integer), however, it
lacks the posibility for multiple assignment. Note
that the source code is out of context and is intended
for explanation of the method . 71

Additional algorithm 5.1 The first line of each computer language
in the above list, shows an extraction of an ASCII
character on the basis of an ASCII code. The
second line shows the extraction of the ASCII
code based on a given ASCII character. The output
for any of the above statements is “Code 65 is
the: ‘A’ letter” and “Letter A has the code: ‘65’”.
Note that the source code is in context and works
with copy/paste . 95

Additional algorithm 5.2 It shows basic good practices in JavaScript, such as:
what is recommended, acceptable, and wrong. Note
that the source code is out of context and is intended
for explanation of the method . 98

xxix

xxx List of Additional Algorithm

Additional algorithm 5.3 It demonstrates multiple statements made on one
line, and a line continuation for long statements. The
statements shown here are very short, but the point
of the exercise remains valid. Note that the source
code is out of context and is intended for explanation
of the method . 99

Additional algorithm 6.1 It shows a few examples of literals. The examples
bring a series of known data types, namely an integer
literal (42), a floating point literal (3.1415), and two
string literals (“a” and “this text”). Thus, anything
that is written data is a literal. Note that the text
is out of context and is intended for explanation
of the method . 106

Additional algorithm 6.2 It shows how values (literals) of different data types
are assigned to variables. Please note that C#, C++,
Java and VB use the data type explicitly, i.e. the type
of the variable is declared before assignment. On
the other hand, notice that all the other environments
use implicit data type, that is, the value is able
to explicitly declare the variable type. Judging
by the trends, it is possible that in the future
explicit assignments may be less frequent. Note
that the source code is in context and works
with copy/paste . 107

Additional algorithm 6.3 It shows explicit and implicit declarations
of variables as well as examples of expressions
and their evaluations for all computer languages
used here. It mainly shows the connection
between operators and data types. Note
that the source code is in context and works
with copy/paste . 112

Additional algorithm 6.4 Example of interesting evaluations in PERL showing
that concatenations that use the “+” operator
instead of the “.” operator, lead to the elimination
of the string value from the result, with no error
in sight. Note that the source code is out of context
and is intended for explanation of the method 117

Additional algorithm 6.5 It shows how constants are declared in different
computer languages. Moreover, it shows
the difference between constant declaration (second
column) and variable declaration

List of Additional Algorithm xxxi

(third column). Some computer languages use
special keywords and data type declarations,
while other computer languages do not. Notice
how in certain computer languages where there
are no special keywords for defining constants,
the difference between constant and variable is
made by convention; namely a variable written
with an uppercase letter means a constant
and a variable written with a lowercase letter means
a simple variable whose content can be changed
at will. Note that the source code is out of context
and is intended for explanation of the method 119

Additional algorithm 6.6 It shows two methods of declaring an empty array.
For declaration purposes, computer languages use
either square brackets or round brackets to indicate
that the variable represents a group of “internal
subvariables”. On the second column is the array
square parentheses type of declaration. On the third
column is the array constructor type of declaration.
Most computer languages that use the array
constructor statement are usually object-oriented.
But not all of them; for example Python does
not have a special keyword of this kind, preferring
the array square parentheses notation. Those
declarations that explicitly write the data type
for the array, can obviously take any data type.
Here the example was given on a string data type
for computer languages such as C++, C#, Java
or VB6. Note that the source code is out of context
and is intended for explanation of the method 122

Additional algorithm 6.7 It shows how to create a multi-valued
one-dimensional array variable using literals. In
this example an array variable A is used to store
only string literals and an array variable B is
used to store integer literals. In languages such
as Javascript, PHP, PERL, Ruby or Python, array
variables can store several types of literals, including
objects. In languages such as C++, C#, Java or VB6,
array variables can store only one type of literal.
Note that the source code is in context and works
with copy/paste . 124

xxxii List of Additional Algorithm

Additional algorithm 6.8 It shows the statements by which an array variable
A is declared and the statements by which literal
values are subsequently inserted into the elements
of the array variable. It should be noted that some
computer languages such as Javascript, PHP, PERL
or Ruby allow the declaration of an empty array
variable, after which the values can be inserted
into newly declared elements. On the other hand,
in other computer languages such as C++, C#, Java,
VB6 and Python, the number of elements in the array
variable must be declared before the assignment
of values. Note that the source code is in context
and works with copy/paste . 127

Additional algorithm 6.9 It shows how to access the values stored
in the elements of an array variable. An array
literal is declared, in which three string values
(three separate characters, namely “a”, “b”, “c”)
are stored. Then, two variables x and y are
declared, which take values from the elements
of the array variable A. Then, once assigned to the x
and y variables, the string values are displayed
in the output for visualization. As it can be observed,
the result obtained after the execution is “bc”.
Note that the source code is in context and works
with copy/paste . 129

Additional algorithm 6.10 It shows how to change values in existing array
elements. An array variable A is declared. String
literals are assigned to each element of A. The
value from the first element of the array variable
A, is assigned to a variable x. Then, a literal string
value (i.e. “d”) is assigned to the second element
of variable array A, thus erasing the previous
value (i.e. “a”) from this element. Next, the value
from the third element of A is assigned to the second
element of A, thus deleting the initial value (i.e.
“b”) from the second element. The value stored
in variable x is assigned to the third element
of array A. At the end, the values from each element
are displayed in the output for inspection. Here,
the initial sequence “abc” was transformed

List of Additional Algorithm xxxiii

into the sequence “dcb”. Note that the source code is
in context and works with copy/paste 132

Additional algorithm 6.11 It shows how to get the total number of elements
from an array. First an array literal A is declared,
that contains three elements, each with a string
literal (one character). Next, a variable x is declared
and a value is assigned to it. The value in question
represents the number of elements in array A
and is provided either by an in-built function
or by a method of the array object, depending
on the computer language used. Finally, the content
of variable x is displayed in the output for inspection.
One thing to note is that in VB, the ubound
internal function returns the last index in the array
and not the total number of elements as expected
from the other examples. Note that the source code
is in context and works with copy/paste 135

Additional algorithm 6.12 It presents nested arrays in Javascript, Ruby
and Python. Three array variables A, B and C are
declared here, each with three literal values. To
represent the notion of nested, three other array
variables are declared, namely D, E and F, each
with three elements that hold one of the arrays A,
B or C. To provide yet another level in the nest,
a last three-element array variable is declared
(i.e. G), in which each element takes one
of the recently mentioned arrays (i.e. D, E or F).
Note that the source code is in context and works
with copy/paste . 138

Additional algorithm 6.13 It shows the way in which multidimensional
array variables can be declared. An interesting
difference can be observed between two groups
of computer languages. A group involving Javascript,
PHP, PERL, Ruby or Python and another group
involving classic computer languages, namely
C++, C#, Java or VB6. The first group (i.e.
Javascript, PHP, PERL, Ruby or Python) uses largely
the same type of declaration for several dimensions.
The Javascript example shows how to declare
two-dimensional and three-dimensional array
variables, where the pattern can be followed for any

xxxiv List of Additional Algorithm

higher dimensions (i.e. 4D, 5D, 6D, and so on). In
PHP, PERL, Ruby or Python, the exemplification
is only repeated for two dimensions and it assumes
that for more than two dimensions the declarations
can be made in the same way as in Javascript.
The second group is more different, where Java,
C# and VB are radically different in the way
statements are made. Obviously, Java and C#
have common syntax elements, but they differ
a little in the way the declarations for arrays
are made. In VB, the number of dimensions
and the number of elements in each dimension
are initially declared. Only then these elements
in their respective dimensions can receive values
by assignment. VB is so radically different
when compared to other computer languages,
that array variables have a lower bound (read
through the LBound function) and an upper bound
(read through the UBound function), a property
that can open paths in prototyping (especially
in science). In the VB examples, each Debug.Print
statement line corresponds to a row in the output.
Note that the source code is in context and works
with copy/paste . 140

Additional algorithm 7.1 Demonstrates the implementation of conditional
statements. Three variables a, b and c are declared
and assigned to different values. A condition triggers
a statement to increment the value of variable c,
only if the value of variable a is less than the value
of variable b, otherwise a decrement is applied
to the value of c. Note that the source code is
in context and works with copy/paste 149

Additional algorithm 7.2 Demonstrates the implementation of conditional
statements on array variables. Three elements
of an array variable (A) are declared and filled
with values. A condition triggers a statment
to increment the value of the last element of the array
(i.e. “A[2]”), only if the value of the first element
(i.e. “A[0]”) is less than the value of the second
element (i.e. “A[1]”), otherwise a decrement is
applied to the value

List of Additional Algorithm xxxv

of the last element of the array. Note that the source
code is in context and works with copy/paste 151

Additional algorithm 7.3 Here the positive increment while-loop structure
is demonstrated. A variable i is declared and set
to zero. A while loop structure increments variable i
from its initial value to its upper limit (number five).
At each iteration, variable i is printed in the output.
The result is an enumeration of values from 0 to 4.
Note that the source code is in context and works
with copy/paste . 155

Additional algorithm 7.4 It demonstrates the traversal of a one-dimensional
array. An array variable is declared with string
literals. The implementation also uses two
other variables. A variable t stores string values
and is initially set to empty. Another variable
(i.e. i) initialized with value zero is the counter
of a while-loop. The while-loop traverses
the elements of array A by using the counter
i as an index. At each iteration, the value
from an element is added together with other
string characters to the variable t. Once the end
of the while-loop cycle is reached, the value
collected in the variable t is printed in the output
for inspection. Note that the source code is in context
and works with copy/paste . 160

Additional algorithm 7.5 The for-loop cycle for incrementing some simple
variables is demonstrated. Specifically, two variables
a and b are declared and initialized. The variable
a is initialized to the integer five and the variable
b is set to zero. The for-loop is then declared
to start at the initial value of i and end at the value
indicated by variable a. At each increment, the value
in variable i is added to the numeric value stored
in variable b. At the end of the loop, the final
value stored in variable b is printed to the output
for inspection. Note that the source code is in context
and works with copy/paste . 166

xxxvi List of Additional Algorithm

Additional algorithm 7.6 It demonstrates the use of a for-loop for the traversal
of a one-dimensional array. An array variable is
declared with string literals. The implementation
also uses two other variables. A variable t stores
string values and is initially set to empty. Another
variable (i.e. i) initialized with value zero is
the counter of a for-loop. The for-loop traverses
the elements of array A by using the counter
i as an index. At each iteration, the value
from an element is added together with other string
characters to the content of variable t. Once the end
of the for-loop cycle is reached, the value collected
in variable t is printed in the output for inspection.
Note that the source code is in context and works
with copy/paste . 171

Additional algorithm 7.7 It demonstrates the use of nested for-loops. It shows
the traversal of a two-dimensional array by a nested
for-loop structure. A 2D-array variable (A) is
declared with mixed datatypes, namely with string
literals and number literals. A string variable t is
initially set to empty. Another two variables (i.e. i
and j) are initialized with value zero and are the main
counters of nested for-loops. The upper limit of each
for-loop is established by the two dimensions,
namely the number of rows and columns from matrix
A. The two for-loops traverse the elements of array
A by using the counters i and j as an index.
At each iteration, the value from an element is
added to the content of variable t. Once the end
of the nested for-loops is reached, the value collected
in variable t is printed in the output for inspection.
The end result is the enumeration of each value
in the output, in a linear manner. Note that the source
code is in context and works with copy/paste 174

List of Additional Algorithm xxxvii

Additional algorithm 7.8 It demonstrates the use of a single for-loop
for two-dimensional arrays. It shows the traversal
of a two-dimensional array by one for-loop structure.
A 2D-array variable (A) is declared with mixed
datatypes as before, namely with string literals
and number literals. A string variable t is initially
set to empty. A variable v is set to zero and it
represents the main counter of the for-loop. Another
two variables (i.e. i and j) are initialized with value
zero and are the main coordinates for element
identification. Each dimension of array A is stored
in variables n and m, namely the number of rows in n
and the number of columns in m. The upper limit
of the for-loop is calculated based on the two known
dimensions n and m. Thus, m times n establishes
the upper limit of the for-loop. Here, the value
of the counter v from the for-loop is used to calculate
the i and j values that are used as an index to traverse
the array variable A. The value of variable j is
computed as the v % m and the result of this
expression indicates the reminder (ex. 5 mod 3 is
2). The secret to this implementation is a condition
that increments a variable i (rows) each time j
(columns) equals zero. Thus, in this manner this
approach provides the i and j values that a nested
for-loop provides. At each iteration, the value
from an element is added to the content of variable
t. Once the end of the for-loop is reached, the value
collected in variable t is printed in the output
for inspection. The end result is the enumeration
of each value in the output, in a linear manner.
Note that the source code is in context and works
with copy/paste . 179

Additional algorithm 7.9 It demonstrates the use of a single for-loop
for three-dimensional arrays, with an extrapolation
to multidimensional arrays. Note that the example
shown here is done only for Javascript in order
to preserve paper. One can port this in any other

xxxviii List of Additional Algorithm

language as previously shown. The traversal
of a 3D array using only one for-loop structure,
is based on the previous example. A 3D-array
variable (A) is declared with mixed datatypes,
namely with string literals and number literals. The
3D-array is represented by five matrices, in which
the columns represent one dimension, the rows
represent the second dimension, and the number
of matrices, represents the third dimension. Thus,
this array can be understood as a cube-like structure.
A string variable t is initially set to empty. A variable
v is set to zero and it represents the main counter
of the for-loop. Another three variables (i.e. i, j
and d) are initialized with a value of zero and are
the main coordinates for array element identification.
Each dimension of array A is stored in variables
s, m and n, namely the number of matrices in s,
the number of rows in m and the number of columns
in n. The upper limit of the for-loop is calculated
as s× m× n. Here, the value of the counter v
from the for-loop is used, as before, to calculate
the i, j and d values that are used as an index
to traverse the array variable A. The value of variable
j is computed as the v % m. A condition increments
a variable i (rows) each time j (columns) equals
zero. Thus, both i and j values are computed.
However, the value for variable d (matrix number)
is calculated as v % (m× n), which provides a value
of zero each time a matrix was traversed. Thus,
a condition increments variable d and resets variable
i, each time the value of k equals zero. At each
iteration, the value from an element (d, i, j) is
added to the content of variable t. Once the end
of the for-loop is reached, the string value collected
in variable t is printed in the output for inspection.
The end result is the enumeration of each value
in the output, in a linear manner. Note that the source
code is in context and works with copy/paste 185

List of Additional Algorithm xxxix

Additional algorithm 8.1 It shows the use of functions that take simple
arguments. An integer literal is assigned to a variable
a. Variable a is then used as an argument
for a function called “compute”. Function
“compute” takes the argument and uses its value
in a mathematical expression. The returned value
of function “compute” is then assigned to a variable
b, which is then printed into the output for inspection.
Note that the source code is in context and works
with copy/paste . 189

Additional algorithm 8.2 It shows the use of functions by considering
complex arguments. Such complex arguments can
be strings, array variables, or complex objects. In
this specific case, a string and an array variable are
used as arguments to a function called “compute”.
An array variable containing five elements is
declared using string literals. Then a string variable
t is declared and set to empty. The two variables
are passed to the “compute” function. Inside
the “compute” function, a for-loop traverses each
element of the array a, and it adds the value
from it to the accumulator variable t. At the end
of the for-loop, the “compute” function returns
the value of t, which is assigned to a string
variable b, that is further printed onto the output
for inspection. Note that the source code is in context
and works with copy/paste . 193

Additional algorithm 8.3 It shows the principle of nested function calls
in which the return value of the most inner function
becomes the argument for the most immediate outer
function call, and so on. An integer literal is assigned
to variable a. Then, the final return value of a group
of nested function calls is assigned to a variable b,
which in turn is printed to the output for inspection.
Initially, the value stored in variable b is a negative
value (i.e. −756029). Thus, for demonstration
purposes, the minus sign is inserted in front
of variable b in order to change the sign of the stored
integer value (i.e. b = −b). Note that the source
code is in context and works with copy/paste 197

xl List of Additional Algorithm

Additional algorithm 8.4 It shows how functions may use other functions
in a chain of calls. Another important observation
made here, is related to the position of functions
relative to the main program. In some computer
languages function must be declared before the main
program, whereas in other computer languages
the order of the functions or the position
of the functions relative to main, is not important.
This fact indicates how the source code is treated
by the compiler. That is, in some computer
languages, execution is immediate, regardless
of whether the functions are loaded or not,
while in other computer languages, execution
begins once all the code is loaded. The example
from above shows how two variables become
the arguments of a function c1, which pass their
values to other functions in a chain that ends
in a function c5. This trip of the arguments shows
different types of additions until the last level is
reached, such as additions of values, either literals,
returned values from other functions or values
from new variables. Function c5 uses a for-loop
to traverse the elements of the array variable in order
to sum up the values in the accumulator variable t.
Once the for-loop finishes the iterations, the value
from variable t is returned to function c4, which
adds some other value to the this response. In
turn, function c4 returnes the value to function
c3, until it reaches the path to function c1, which
assigns the final response value to a variable
b. Variable b in turn is printed into the output
for inspection. Notice that, in the case of C++,
variable t holds the total number of elements of array
a, until the chain of calls reaches function c5. There,
the content of variable t is assigned to a new variable
(i.e. l), and variable t is set to zero to take the role
of an accumulator variable for calculating the sum. It
should be noted that pointers can be used, namely,
the parameter “int a[]” can be written as a pointer,
namely “∗a”, which will provide the same result
because the number of elements

List of Additional Algorithm xli

in array a is calculated before any function is called.
Note that the source code is in context and works
with copy/paste . 201

Additional algorithm 8.5 It shows how a recursive function call can be
a replacement of a for-loop statement. Thus,
a function called “for-loop” is capable of receiving
three arguments. An argument for a, which is
the counter for the number of self-calls, another
argument for b, which indicates the upper limit
of recursive calls (self-calls), and finally an argument
for r, which accumulates an integer literal (i.e.
5) at each iteration/recursion. Inside the function
a condition checks if the value of a is higher
or equal to the value of the limit, namely b. In
cases that a is less than b, the recursion continues,
whereas if a is higher or equal to b, the value of r
is returned back to the original caller. Once the final
return value arrives to the caller, it is immediately
assigned to variable a in the main program, an then
the content of the a variable is printed into the output
for inspection. Note that the source code is in context
and works with copy/paste . 210

Additional algorithm 8.6 This example shows the meaning of constants
and global variables. A constant (i.e. a) and a global
variable (i.e. b) are declared, either in the main
routine (e.g. in Javascript, PHP, PERL, Ruby
and Python) or outside the main routine/program
(e.g. like in C++, C#, Java and VB/VBA). In
the main routine a function named “compute”
is called to provide a return value for a variable
named b. Once the thread of execution moves
to the “compute” function, the value from the global
variable b is visible inside the function and is
assigned to a local variable x. The content
of variable x is then used inside a mathematical
expression and the result is returned to the caller.
Once the returned value is assigned to variable b,
the content of the variable and that of the constant
is then printed into the output for inspection. In
the C++ computer language, one can see a comment
declaring the constant and the global variable

xlii List of Additional Algorithm

between the two functions. For testing, the activation
of those declarations will result in an error
because in C++ or VB, constants and global
variables are written at the beginning of the program
because the compiler needs to know the context
before execution. In PHP and Python, global
variables have visibility inside a function
only if they have a special declaration (i.e. Global
$name_of_variable;). Also notice that in Ruby,
global variables are denoted using the dollar sign
in front of the name of the variable (ex. $b).
Note that the source code is in context and works
with copy/paste . 215

Additional algorithm 8.7 It shows the meaning of pure and impure
functions. A function named “pure” receives
an argument for x and returns a value that is
the result of the evaluation of a mathematical
expression. This function is pure because it does
not change anything outside the function. On
the other hand, a function called “impure” receives
the same argument for x that is used in the same
mathematical expression as in the “pure” function.
However, the “impure” function, modifies the value
of a global variable a. This modification made
outside the function makes the function impure.
Notice that both functions return the same result
in the initial call. However, in the third call
the returned value differs, as the global variable a
that is modified by the “impure” function is in fact
the argument for the next calls. Note that the source
code is in context and works with copy/paste 219

Additional algorithm 8.8 It shows the difference between functions
and procedures. A pure function named f
takes an argument and returns a value based
on a mathematical expression. A procedure named
“p” that takes no arguments and gives no return
values, is used to assign the result of a subtraction
to a local variable x (i.e. x = a − 11). Next,
the result of a mathematical expression is assigned
to a global variable b, after which the execution
thread returns automatically to the caller. Notice

List of Additional Algorithm xliii

that in PHP and Python, global variables have
visibility inside a function only if a special
declaration exists (i.e. Global $name_of_variable;).
Also, notice that VB has a special keyword
for procedures. The distinction between functions
and procedures is made by using the keyword
“function” and the keyword “Sub”, respectively.
Moreover, in VB, a sub is not called by using
the round parenthesis as “p()”, but the name
of the procedure is simply stated, like “p”. Single
letter names for procedures can be confusing in case
of VB, and procedure names with more than two
characters are adviseable. Note that the source code
is in context and works with copy/paste 224

Additional algorithm 8.9 This shows an example of using the built-in functions.
In this specific case, it shows how to check
for the presence of a string above another string.
A string literal is assigned to variable “a” and a string
literal representing the target is assigned to a variable
“q”. The number of characters found in a, is assigned
to a variable b. Next, in a function chain all q
encounters found in the string of a, are replaced
with nothing. If the q string exists in variable a
than the result is a shorter string than the original.
Next in this function chain, the result is passed
directly to the length function, which provides
the total number of characters in the procesed string.
This last result is then assigned to variable c. In
a condition statement the value of c is compared
with the value from a. If the two values are different,
it means that q was present in the original string
of a. Note that the replacement is made by using
two methods: (1) The split function that uses q
as a delimiter, provides an array wich in turn is
converted into a normal string again, without any
instances of q (this can be seen in Javascript
and VB). (2) The replace function which is able
to replace all instances of q found in a, with an empty
string (eg. it deletes q from a). Note that the source
code is in context and works with copy/paste 229

xliv List of Additional Algorithm

Additional algorithm 9.1 It shows different experiments on recursive
functions. A total of six examples are shown,
in which: (1) A recursive function repeats one
(or a group) of characters n times and returns
a string of length n. (2) A recursive function
sums integers from zero to n. (3) A recursive
function computes the factorial for an integer n.
(4) A function generated a sequence of numbers
based on various rules. (5) A recursive function
provides the Fibonacci sequence. (6) A recursive
function sums all the integers stored in the elements
of an array variable. Note that the source code is
in context and works with copy/paste 235

Additional algorithm 9.2 It shows how a distribution can be calculated
for a range of integers. This example uses
a mathematical expression shown across the chapters.
The mathematical expression takes an input value
and, as expected, provides an output value. In
this particular example, an implementation takes
a range of integers and returns a corresponding
range of values calculated using the mathematical
expression. For each computer language there
are two examples. One example that uses
a string variable to store the results, and another
example that uses an array variable to store
the results. The two examples per computer
language show the malleability of code, that points
out the possibility of multiple solutions to one
problem. Note that the source code is in context
and works with copy/paste . 257

List of Additional Algorithm xlv

Additional algorithm 9.3 It shows the implementation of the Spectral Forecast
equation on two signals. Two signals are represented
by a sequence of numbers each. This sequence
of numbers is stored as a string value in two
variables A and B. These two values are then
decoded into individual numbers inside the elements
of the array variables (tA and tB). The maximum
value found over the elements of the two array
variables is calculated and stored before switching
to the computation of Spectral Forecast. The array
variables tA and tB are then used inside a for-loop
to calculate a third signal M using the Spectral
Forecast equation for a predefined index d. The
index d determines how similar the third signal is
to signal A or signal B. The method shown here
allows for a useful protocol to manage and process
numeric data stored as simple text, a case that is
often encountered in science and engineering. Note
that in the case of C++ some new built-in functions
can be applied to a value inside a variable v,
such as: the “substr” function that cuts a certain
portion of a string, or the “strtof(v)” which converts
a string to float. Other functions of interest not used
here are: the “strtod(c)” function that converts
a string to a double, or the “v.c_str()” method
that converts a numeric value to a string. Also,
in C++ the example uses vectors, and the number
of components is given by the “size()” method.
Again, the source code is in context and works
with copy/paste . 267

1Historical Notes

1.1 Introduction

The need for artificial computation always existed in the history of our species. Here,
the history of programming languages is pushed far into the past, much further than
perhaps expected. This chapter explains the broader meaning of programming languages.
It starts from the origin of life and continues by pointing out the natural development of
technology that has led to the general purpose electronic computers of today. In order
to understand the lack of mystery, the milestone achievements from the last centuries
are presented in sequence. Namely, automatons are presented as the main route from
which mechanical computers emerged. Next, mechanical computer models are described
as the natural predecessors of electromechanical computers. In turn, the first electronic
computers based on vacuum tubes are described as the main step forward when compared
to the electromechanical relays of previous computer models. The era of vacuum tube
computers is further presented as a short-lived dream replaced by the era of transistors
and contemporary general purpose computers based on integrated circuits. Towards the
end of the chapter, a detailed presentation is made about the very first high-level computer
languages and their evolution to the present day.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_1.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_1&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_1
https://doi.org/10.1007/978-3-031-23277-0_1

2 1 Historical Notes

1.2 The Ultimate Foundation

In all aspects, life is a phenomena based on discrete components and quantities [1]. By
using a stretch of the imagination, one can assume that programming languages are con-
nected to this phenomenon. It is perhaps unusual to push the origins of computations at
the very origin of life. However, from our human perspective, two main kinds of pro-
gramming languages can be identified with ease, one class that applies to all biological
life forms and the other class that applies to machines, by extension. It can be argued
that the earliest possible language was the biochemical feedback between living organ-
isms in the earliest forms of life [2, 3]. Thus, action and reaction where the primary
roots of computation. In other words, behavior induced behavior. Since the beginning
of life, organisms were able to signal each other, or better said, program each other by
using different means of communication [4]. At the root, communication is the action of
exchanging raw or encoded information between two biological or/and artificial agents.
Thus, either chemical, mechanical, electromagnetic or another type of communication
environment, the output of one it is the input of the other [1].

1.2.1 Closer to Our Times

When hominides (great apes) came to be, programming reached new levels of complex-
ity. Prior to everything it was the sign, namely the gesture, that was used in order to
communicate instructions [5, 6]. So it is presumed; because of our observations on other
animals [7]. Later, in modern humans, sounds evolved into more meaningful channels of
communication that were capable of encoding complex information. Thus, those sounds
in turn became the way to communicate more discretised and sophisticated instructions
[8, 9]. The written language came to be, when the meaning of sounds was associated with
drawn symbols [10]. Thus, computer programming languages really are an extension of
written symbols with a meaning. For some time, sequences of symbols have been the
only practical method of coding and recording meaning. All writings, like books, articles
or letters are in fact a form of software, in which grammar has set the rules on how
instructions can be represented.

1.2.2 Universality at the Crossroads

Let us imagine a piece of text written by an individual, which later is read by another
individual. Is that text a software executed in the mind of the reader? It could be argued
that indeed this is the case. Reading a book is the process of execution of a program.
For instance, this is the main reason for which the act of written propaganda works as
it is intended [11]. The correct sequence of words allows for simple programs that are

1.3 On the Recent Origin of Computers 3

universal between the receivers. Thus, they work accordingly. In such primitive programs,
the written truth was always the main application and the written lie represented the
malware. In order to make an association, we can point out that even in our current
programming environments on computers, the source code can be implemented in a highly
language-specific manner, or, in a general widely compatible way which can be easily
portable into other environments. The point of the above discussion is to show different
forms of programming languages and their universality. In modern times, next to the
written language it was the written language of mathematics and the written language of
music (the musical notation). Thus, programming languages take different forms across
time but they are an integral part of life, regardless of the form that living beings can
take. To put things into perspective, these fundamental laws are also the reason for which
some classical expectations are being drawn in regard to extraterrestrial life forms [12,
13]. Above the kingdoms of life on our planet, all programming paradigms can be found
in one way or the other. As a side note, programming paradigms are different styles in
which a biological or artificial machine can be programmed.

1.3 On the Recent Origin of Computers

Many inventions, discoveries and innovations have been tried in the development of com-
puters. In this subchapter a short discussion points out the main steps that led to the
computer revolution. This story begins with automatons (robots) and ends with the elec-
tronic computers of today. Moreover, a description is made on the main steps and the
technologies that were adopted for achieving the final goal of a fully programmable,
general-purpose computer. The following points out how automatons were the precursors
to mechanical computers and then later to the electromechanical computers and then to the
thermionic valve (vacuum tubes) computers, and last the precursors to the transistor-based
computers and the Integrated Circuits computers. Please note that analogue computers are
not discussed here. The difference between analogue computers and digital computers is,
well, binary. As the analogue computers become more complex, these kind of machines
are always under the umbrella of chaos theory because of noise, which leads to a higher
or lower offset for values over time. In other words, the same input into a complex ana-
logue computer always leads to a slightly different output. Digital computers on the other
hand are noiseless, and are in fact able to generate a separate universe from our own, in
which the same input always leads to the same output [1]. Thus, the main story begins
with the concepts that lead to digital machines.

4 1 Historical Notes

1.3.1 Automatons and the Memory of the Soul

The ability to start a discussion about mechanical computers it is given by the quest of
the ancients for immortality and artificial life [14, 15]. The fundamental ideas behind our
electronic computers of today comes from a class of machines named automatons. An
automaton is a self-operating machine that follows a sequence of operations which may
represent predetermined instructions. Usually, such machines where mechanical robots
used in the past to mimic humans and animals [16]. The idea of digital comes from
a desire to discretize actions. Analogue machines started to incline more and more in
favor of discretization in this time period. One may imagine a rotating cylinder with hard
solid bumps that push against a series of rods. The way the bumps on the cylinder are
positioned determines the sequence in which the rods are pushed. In turn, the rods trigger
different mechanical events. This kind of mechanism is in fact at the core of a primitive
mechanical computer with a memory. The amount of information, namely the amount of
bumps that can be placed on the surface of a cylinder, is limited. The more information
is needed, the more the diameter of the cylinder has to increase or the density of bumps
must be increased by decreasing their size. To avoid these constraints, the solution was
an unfolded cylinder. The punch card system (paper tape with holes) was invented by
Basile Bouchon and Jean-Baptiste Falcon in 1725–1728 as a method to store patterns
that in turn control a loom [17, 18]. Note that a loom is a machine that is capable of
weaving cloth and tapestry. In 1741, Jacques de Vaucanson improved on the Bouchon-
Falcon design and simplified the mechanism to be useful in automatons [19]. In 1804,
Joseph Marie Jacquard made use of these “memory units”, namely the punch cards. He
patented a design that today is known as the Jacquard machine. These memory units
called “punch cards” were based on patterns of holes made on a piece of thick paper
or even on thin boards of wood. The punch cards were able to control the sequence of
operations performed by a mechanical machine. A hole in the card can be understood as
binary one, and the absence of the hole as a binary zero. By following the positions of
the holes on these cards the Jacquard machine was able to precisely construct different
pictures on textile materials [17]. The Jacquard machine represents probably one of the
most nodal points in the history of computer hardware and computer software [18, 20].
The ability to change the “memory” of the loom by replacing the punch cards was the
most important conceptual precursor of data entry and computer programming [21]. In
order to make a last obvious association between the past and present, one can force an
equivalence between the Jacquard machine and the computers of our time [20]. What
Jacquard made, is perhaps the oldest graphic card, in which the punch cards represented
the way a picture was encoded into memory, and the resulting textile material can be
viewed as the monitor display [18].

1.3 On the Recent Origin of Computers 5

1.3.2 Mechanical Computers

The step-by-step evolution from punch cards was slowly replaced with the magnetic-core
memory, the magnetic tape technology, optical discs and so on. However, the conceptual
ideas born in France are used today regardless of technology that is being used as a
support [19]. In short, these are the same binary one represented by “something”, and the
same binary zeros represented by the lack of “something”. Worldwide, punch cards have
been used to load software into computers up to the end of the 80s. Nonetheless, coming
back to 19th Century we can discuss further about other two important key points in the
history of mechanical computers. The first key point is related to the Analytical Engine
[22]. The Analytical Engine was a concept with a design, and it was never realized in
practice. The Analytical Engine was envisioned with an Arithmetic Logic Unit (ALU), a
basic flow control, and of course, punch cards. The second key point is related to the actual
design and construction of a mechanical computer. Between 1935 and 1938 the very first
mechanical digital computer called “Z1” was built in Germany, Berlin [23, 24]. The “Z”
series of machines, were also the beginning of a transition from mechanical computers to
electronic computers. Next, the “Z3” electromechanical computer was completed in 1941.
The “Z3” machine was based mainly on electrical relays and it was a programmable,
fully automatic electromechanical digital computer. The “Z1” and “Z3” machines were
not equipped with conditional branching as it was the case in later universal computers.
It is worth mentioning that in this series of machines, the “Z10” version was the first
commercially-sold computer anywhere in the world. Next, the “Z22” version was the first
computer to use magnetic storage for memory.

1.3.3 Electronic Computers

The Atanasoff–Berry machine made in 1939, was the first vacuum-tube computer [25].
However, this prototype was not a general-purpose computer. In 1945, the Electronic
Numerical Integrator and Computer (ENIAC) machine was the first vacuum tube general-
purpose digital computer [26, 27]. By using the principles of punched tapes (perforated
paper tape), ENIAC was able to receive what today we call software [28]. A crucial
point in the history of civilization was the invention of the transistor in 1947 [29, 30]. At
the end of the 40s, the high expectations of a new technological revolution was on the
rise on good grounds: Semiconductors [30]. The vacuum tube and the transistor basically
did the very same thing, namely amplification and switching [27]. The only differences
between the two where relevant properties such as power consumption, temperature and
size [31]. Thus, the first computer to use discrete transistors instead of vacuum tubes, was
the “Transistor Computer” build in 1953 [32]. Next, a few months later (January 1954),
the Bell Laboratories TRADIC (TRAnsistor DIgital Computer) was announced [33, 34].

6 1 Historical Notes

Throughout the 50s, transistor components gradually replaced vacuum tubes in all com-
puter designs. At the end of the 50s, not only that computers used only transistors, but the
revolution continued with miniaturization. The very first prototype for an Integrated Cir-
cuit (IC) was made in 1958 [35, 36]. From there the entire path of computer development
that leads to our times is most likely well-known and highly familiar to all of us. The list
of achievements from the past is large. Here, I mentioned only a few in order to show the
smooth step-by-step innovations that lead to the modern computers. The point here is that
all these developments seem natural from our perspective. Of note is that none of these
machines were only mechanical or only electromechanical, or only electronic with vac-
uum tubes, or only electronic by using transistors. The majority of these unique machines
have used hybrid technologies. For instance, the mechanical computer had an electrical
engine to power it, the electromechanical computer still had mechanical parts in it, the
vacuum tube computers still had some relays in there for different processes. Last but not
least, the transistor computers still made use of previous components like vacuum tubes
in some places. Of course, all these converged quickly to fully transistorized computers
and more miniaturization by using microchips, that is, until we reached today.

1.3.4 American Standard Code for Information Interchange

With a rapid technological evolution came an acute need for data standardization for
computers [37, 38]. Thus, in 1963 the first character encoding standard for electronic
communications appeared, and it was known as the American Standard Code for Infor-
mation Interchange (ASCII). Far into the past, prior to any kind of real technology, people
have used digital encodings by blocking or unblocking the light from fires to signal to
another individual the presence of an enemy and details about their position [39]. This
was done in all recorded history, from the ancients to the time of Stefan the Great and
Saint up to recently in the World War II [40–43]. Thus, the medium was the photons of
visible frequencies emitted from the fires [43–45]. This signaling principle has led to the
telegraph, which used a different medium (electrons), but the exact same principles of
communication [46, 47]. As the past always follows the current times, ASCII was based
on the telegraph code. Telegraph codes are character encodings extensively used in the
past to transmit information optically or by wire [48]. As it happens, in these one dimen-
sional environments codification was best done digitally, by using dots and lines, like in
the Morse code [49, 50]. Thus, their direct use for digital computers was as natural as
any other development presented above.

1.4 History of Programming Languages 7

1.3.5 A Conspiracy for Convergence

This section is the part of computer history that not many people are aware of, in order to
acknowledge the real heroes of our civilization. The 60s, where the most important years
for our current technology. The graphical interaction with a computer machine is made
earlier than expected by many. The first graphical user interface (GUI) was developed
in 1963 [51–53]. This prototype demonstrated object oriented approaches and it included
vector graphics, 3D modelling, touch screen capabilities and even a flowchart compiler
(assembler) [52]. In 1968, the computer mouse and fundamentals of modern computing
were fully demonstrated on the “SDS 940” computer, like for instance the file revision
control, hypertext linking, real-time text editing, multiple windows with flexible view con-
trol, cathode display tubes, and shared-screen teleconferencing [54–56]. The “Xerox Alto”
(1973–1975) machine was built on the concepts of modern computing that were demon-
strated years earlier on the “SDS 940” computer [57]. Moreover, “Xerox Alto” was the
very first computer desktop as it is understood today. “Xerox Alto” was equipped with
a graphical operating system, using graphical icons and a mouse to control the system
[57]. It had current day concepts like document layout, bitmaps, vector graphics editing,
and even Object Oriented Programming (i.e. OOP in the “Smalltalk” programming lan-
guage) [57–59]. In 1981, the Xerox Star computer represented objects and applications
with desktop icons in the same manner we are used today. All advanced modern fea-
tures were already a reality embedded in the Xerox Star machine (official name: Xerox
8010 Information System) [60]. For instance it used what today we call a desktop inter-
face, containing window-based graphical user interface, desktop icons, file types, folders,
copy/paste, bitmapped display, fonts, multimedia documents, printers, ethernet connec-
tion and even e-mail capabilities [61]. From this point in time up to the present day, the
following historical events are well known by many. Therefore, these events will not be
discussed further.

1.4 History of Programming Languages

The history of electronic computers is almost indistinguishable from the history of pro-
gramming languages [62, 63]. To mention one without the other means to discuss the
chicken without the egg. The very first computers where indeed instructed directly by
using the machine code without the help of any other more sophisticated programming
languages. The reason for which programming languages exist today and existed early on
in the history of computers was to provide an easy interaction with these machines [64].
Under the umbrella of the slogan “without computers we are nothing”, we can continue
with a compressed history of programming and scripting languages which provided a real
impact over our society.

8 1 Historical Notes

1.4.1 The Making of an Advanced Civilization

The mid 40s brought Plankalkül (Plan Calculus), the proposal for the first high-level
programming language (before WWII, somewhere between 1933 and 1945) [64–66].
However, the real beginning of the history of programming languages starts in the late 40s
when the assembly language was first used as a type of computer programming language
in order to simplify the interaction between scientists and computers (after WWII) [67].
This was the very first time a computer language was an intermediary between humans
and the machine code [68–70]. Once assembly language was born, the evolution of pro-
gramming languages was almost exponential for two or three decades. Early in the 50s,
“Autocode” was the name of the first computer programming language that was able to
compile the high level instructions into machine code [71, 72]. Late in the 50s, it was
an explosion of important programming languages with historical implications. A com-
puter language called “FORTRAN” (Formula Translator) was made in order to be useful
in scientific research and engineering [73]. Also, in 1958 “Algol” appeared as the first
algorithmic programming language, and it is known today as the main root for computer
languages such as “Java” and “C” [74]. However, it appears that important parts of “Al-
gol” came from the “Plankalkül” programming language, proposed in the 30 s and the
beginning of the 40s [75, 76]. At the very end of the 50s, namely in 1959, two other
computer languages where born. The first one to be mentioned is the computer language
“COBOL” (Common Business Oriented Language) designed with the intent to be univer-
sal among all computers [77]. The second one, is a programming language called “LISP”
which was made with the intent of being useful in a special field of research called arti-
ficial intelligence [78]. The 60s was the quiet decade, nevertheless, it witnessed the birth
of a historical programming language called “BASIC” (1964). The “BASIC” (Beginner
All-purpose Symbolic Instruction Code) family of languages is the main line of program-
ming and scripting languages that has led to our civilization of today, as the “BASIC”
family made computers highly popular and accessible to all [79]. The world owes much
to “BASIC”, if not all. The 70s, was perhaps the most important decade, with implications
that echo in our current times. In 1970 the programming language “PASCAL” was devel-
oped [80]. Also born in the 70s, it is one of the most respected high-level programming
languages, which has set a number of standards in the field of software development. In
1972, this programming language it was called “C”, and it was considered a true interme-
diary between machine code and humans [81]. In the same year, namely 1972, the “SQL”
computer language appears as a solution for data manipulation in databases [82]. In the
late 70s, a computer language called “MATLAB” is released as a solution for science and
education [83]. In the 80s, with small exceptions, programming languages start to look
like and feel like the programming languages of today. In 1983, two important program-
ming languages appear on the stage, one is the programming language “C++” and the
other one is the programming language “Objective-C” [84, 85]. In the late 80s, namely in

1.4 History of Programming Languages 9

1987 to be more precise, the scripting language “PERL” appears as a solution for report-
ing automatization [86, 87]. The 90s where the golden years of computer languages. The
first half of the 90s, has seen an explosion of new computer languages that are used and
continuously developed up to this day. The programming language “Haskell” was devel-
oped in 1990 as a functional computer language for higher level mathematics [88, 89].
The year 1991 witnessed the addition of two important computer languages, namely the
scripting language Python and the programming language Visual Basic [90–94]. Of note
is the fact that the two computer languages contain a similar kind of syntax. Also, the
computer language “R” is published in 1993 as a solution for mathematicians and statisti-
cians [95]. From the perspective of our current time, the year 1995 was perhaps the most
important year of the 90s, mainly because it witnessed the addition on the market of four
different and important computer languages. In 1995 the programming language “Java”
was born [96]. In the same year, the scripting language “PHP” appears as a solution for
web development [97]. The computer language “Ruby” appears also in 1995 as a general
purpose language [98]. Most important of all, the year 1995 brings the scripting language
JavaScript which today is the main scripting language for the Internet browsers [99–101].
Worth mentioning here, is the fact that JavaScript quickly becomes important today as an
environment independent from the internet browsers, step-by-step taking more and more
visible and diverse roles in science and all over the industry. Between the year 1995 and
the year 2000 nothing spectacular happened in regard to the history of programming lan-
guages, except perhaps the publication of the last true programming language in the basic
family of programming languages, namely Visual Basic 6.0 [102, 103]. In the year 2000,
“C Sharp” or “C#” comes into existence as a version of “Java”. Since 2000, there have
been several programming and scripting languages worth mentioning, namely “SCALA”
and “Groovy” in 2003, the computer language “GO” in 2009, and “Swift” in 2014 [104].

1.4.2 The Dark Age of Computer Languages

Nevertheless, the period after 2000 can be considered the great void in the history of
programming languages. The reason for this void was the lack of impact on the mar-
ket for any new spectacular innovation. However, in order to give historical credit for the
time period between 2000-present, one can say that programming and scripting languages
that appeared in the 90s have been perfected and improved according to the needs of the
industry and the needs of scientific research. One example of such a computer language is
JavaScript which by far it had a constant improvement over the years; some improvements
that were necessary with the times, and other improvements that were simply intelligent
and visionary. The good practices of JavaScript development across the years consist in
the way the syntax was strongly preserved. On the other side of history is a computer
language called Visual Basic. By the late 90s, Visual Basic 6.0 (VB6) was on the rise,
quickly becoming the favorite package for Rapid Application Development (RAD). The

10 1 Historical Notes

Visual Basic syntax strategically covered a few key environments, namely Visual Basic
Scripting (VBS), Visual Basic for Applications (VBA) and of course the “VB 6.0” pro-
gramming language, which appeared on the market in 1998. Between 1998 and 2002,
Visual Basic 6.0 quickly became the most well received and used programming language
around the world. Visual Basic 6.0 is a programming language that was so advanced
at the time and so perfectly designed in the mid 90s, that it needed no update across
the decades. Moreover, it is used today by a large group of programmers for scientific
research and advanced technologies in the industry. Unfortunately, Visual Basic 6.0 was
the very last version of BASIC up to this day, the last programming language capable of
true compilation in this family line. In 2002, VB.NET was presented as the successor of
the Visual Basic 6.0 programming language. Unfortunately, VB.NET radically changed
the BASIC syntax and lacked any back compatibility with “VB6” projects. For these rea-
sons, VB.NET has never been well received or used as much as Visual Basic 6.0. To
this very day, Visual Basic 6.0 eclipses all subsequent versions of VB.NET, both by the
amount of open source projects found online and the pool of programmers available. The
paradigm change that happened in 2002 was so important and radical that it allowed the
rise of Python and JavaScript. Back then, the Internet browsers allowed two scripting lan-
guages to be used for HTML (HyperText Markup Language) pages. The first language
was Visual Basic Scripting (VBS) and the second one was JavaScript. With the switch
made from Visual Basic 6.0 to VB.NET, the internet order was affected. The “VBS” envi-
ronment collapsed and it was replaced entirely by JavaScript. Next, the market void made
by the announcement of VB.NET allowed the rise of Python and other programming and
scripting languages. This partial takeover was not immediate, however, the close syntax
resemblance between Visual Basic 6.0 and Python made this transition possible. To point
out the importance of the Visual Basic 6.0 engine, one must look no further than Office
Excel or other packages from MS Office that use the Visual Basic for Applications (VBA)
scripting language. The example in regard to Visual Basic 6.0 is a lesson for the future in
which decision makers must exploit perfect technologies instead of just destroying them
in the name of vanity (or trying to). Once the 90s ended, different confusions appeared
in regard to what a programming language is. These misunderstandings coming from
the industry into the realm of education have been the main reason for the appearance
of bloated, memory consuming and slow software development tools. One thing to take
away from the above, is that new computer programming languages of today are con-
structed on the concepts designed for the programming languages of the 90s and even
earlier than that. Many old programming and scripting languages from the 90s are used
today. Some of these languages are updated and others are not. Time has demonstrated
that well designed programming languages or scripting languages rarely require updates,
if any. That is, because they are fundamental to all computer related fields. Unfortunately,
the will of the industry to increase the number of programmers in the name of equality,
leads to new computer languages that have the aim to simplify the work of programmers.
Simplification is done to such an extent that engineers become mere users limited by

1.4 History of Programming Languages 11

environmental constraints. This is a generational issue to which a solution must be found
in order to avoid stagnation or regression.

1.4.3 The Extraordinary Story of ActiveX

Another ferocious competition in the late 1990s that greatly disrupted the order of the
Internet, was the battle for the monopoly of dynamic web pages. At that time, the concept
of dynamic HTML page was in its infancy. The most straightforward and logical approach
for dynamic web pages was the inclusion of compiled applications and their GUI as
foreign objects in the Internet browser window. In other words, these were a kind of
primitive-like nested objects with independent execution from the Internet browser. This
approach obviously had security issues and the attempt at regulation and standardization
lasted over a decade after. Here, two technologies were strongly competing at that time,
namely ActiveX technology (“.ocx” files) and Java Applets technology (“.class” files).
Both were compiled objects. However, ActiveX objects were injected as they were into
the Internet browser window with a separate execution from the browser. On the other
hand, Java Apples were emulated by virtual machines, which in turn were injected into
the browser window as objects executed separately from the main browser. Emulation by
using virtual machines takes more execution time than the ActiveX approach, however, it
provides security.

1.4.4 Killed on Duty by Friendly Fire

With the forced replacement of VB 6.0 and other technologies that produced ActiveX
objects, the battle was automatically lost in favor of Java Applets. This unexpected gain of
Java Applets following the disappearance of ActiveX, propelled both Java and JavaScript
into the future of the Internet. The virtual machine approach has been adopted to date in
all Internet browsers because of the security umbrella it automatically provides. The level
of power, control and speed offered by ActiveX was obviously similar to any compiled
application that runs directly on the Central Processing Unit (CPU). Up to date, no other
Internet technology could be as fast as this approach was. We will probably come back to
this ActiveX-like methodology someday, both for its simplicity and for the extraordinary
speed of execution. At this moment in time, WebAssembly (“.wasm” files) seems to be
the closest secure version of what ActiveX used to be. WebAssembly is a promising
technology, advertising a near-native speed of execution and JavaScript control by using
API.

12 1 Historical Notes

1.4.5 The Browser: Resistance is Futile, You Will be Assimilated

Later in this development, other technologies appeared to be similar to Java Applets, like
for instance “Flash” Applets (“.swf” files) that used a dedicated scripting language called
“ActionScript”. In 2008, the importance of Flash and Java Applets diminished greatly
when standardisation allowed for such virtual machines to be embedded by default into
the HTML5. Thus, in the end, Cascading Style Sheets (CSS) and JavaScript replaced
all these pioneering technologies by integration of these ideas into the HTML standards.
Third-party object extinction was perhaps an inevitable outcome. The first indirect blow
to applet technology was a method called Asynchronous JavaScript and XML (Ajax),
which allowed an exchange (still does) of data between browsers and servers without
a HTML page reload. Until the advent of Ajax in 2005, all data exchanges between
Internet browsers and Internet servers were accomplished through a complete reload of
the HTML source code. The above is perhaps one of the short presentations on the process
of technological evolution that shows how the world’s most complex applications came
to exist by natural selection, namely the great Internet browsers. In other words, what
worked it was adopted into the standards, and what didn’t was forgotten. Ultimately, our
technology is an extension of our evolution. Into the future, a possible assimilation of
the operating systems by Internet browsers will not surprise anyone. I personally wonder,
do we really need the whole operating system to be a separate entity? Or can we boot
up the browser and have a desktop tab inside of it? Of course, there have been several
successful attempts to develop Internet browser operating systems in the past, but will this
be the standard? We shall see. In the following chapters of this work, discussions based
on experience will continue these observations related to software on several levels, from
entropy to psychology and finally to discussions about the human nature.

1.5 Conclusions

The whole reason for the existence of any high-level programming language is to make
a bridge between humans and the machine code. Thus, the code is readable by other
programmers and can be maintained more easily over economically driven time periods.
This chapter revealed a path that highlighted the main fundamental concepts, starting from
primitive mechanical technology and arriving to the advanced general-purpose comput-
ers of today. In this compact journey, automatons have been described as the backbone
of early mechanical computers which laid the foundation of later developments. With
the advancements in electromagnetism, mechanical switches become relays. Thus, the
electromechanical computers were then presented as the main bridge from mechanical
computers to electronic computers. Several stages have been mentioned in the case of
electronic computers, namely the short era of thermionic valves (vacuum tubes), the era
of transistors and finally the era of integrated circuits that extends to the present day. Next,

1.5 Conclusions 13

a detailed presentation was made about the history of programming languages and their
evolution. At the very end, the future dangers of hyper simplification of programming
languages are discussed. In this regard, our dependency on software technology in all
aspects of life, more likely will only increase the interest on programming and scripting
languages of the past in order to avoid a loss of know-how.

2Philosophy and Discussions

2.1 Introduction

Philosophical discussions are becoming increasingly important for understanding the
impact of computer languages on the future evolution of our civilization. Much time
has passed since software became an integral part of the environment in which we live.
Through many observations over decades, clear conclusions have been drawn regarding
software applications, which could not have been initially foreseen. Mainly, it was pos-
sible to observe the entropy that is applied both in the construction and maintenance
of software applications and especially the entropy resulting from software activity over
time (i.e. operating systems). Here we discuss in detail the communality of systems, be
they electronic or biological. The chapter explains how the human condition introduces
noise into the structure of complex software applications. By the middle of the chapter,
the life cycle of software applications is discussed in the context of harsh realities of the
Internet. Thus, based on experience, rare topics are described, which refer to technical
measures and psychological warfare used in unfair business practices. Towards the end of
the chapter, the roles and dilemmas in the industry regarding the pool of human resources
are explained in reasonable detail.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_2.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_2
https://doi.org/10.1007/978-3-031-23277-0_2

16 2 Philosophy and Discussions

2.2 The Entropy of Software

The life cycle of software is a very interesting phenomenon related to the increase of
entropy into the system (i.e. of the software application). In other words, we naturally
witness the phenomenon of aging even in the case of simple systems such as software.
From everyone’s experience, we have been able to observe how later versions of software
applications are becoming slower and larger in size, with increasing computing power
requirements. The question that arises in these situations would be: how can an applica-
tion that does primarily the same thing in all versions, require more and more hardware
resources? This paradox has been observed from the Integrated Development Environ-
ments (IDEs) of programming languages up to Internet browsers. Of course there are
many factors that participate to this phenomenon. The bottom line is that software appli-
cations are aging with us. Their entropy has two major causes: the aging of programmers
and the number of programmers working on that project over time.

2.2.1 Entropy of Codes and Human Nature

When the frequency of software errors increases for an application, it is then clear that
entropy is increasing beyond comprehension. The “cancer” that can occur over time in any
software project consists in the intimate intersection of functionalities between the original
modules, conceived at the beginning of the project in a visionary way by the software
designers. This intersection of functionality occurs when there is either a lack of interest
or a lack of time, or, too little experience or ability on the part of the programmers. There
is also the lack of attachment to projects, which of course participates in the increase
of entropy. Functional mixing (code shortcuts) done for the sake of quickly finishing a
task in an application, leads to the appearance of unnecessary code and the loss of clear
functional identity among the software modules, which in turn leads to the uncontrollable
increase in entropy, and inevitably to the end of the project.

2.2.2 Raw Versus Fine-Grained Entropy

There is a Romanian saying that states: “beat the iron while it is hot”. The same is true
with the minds of programmers. Those who start a software project are able to com-
plete it with the lowest entropy. Also, it is widely known that “adding manpower to a
late software project makes it later” [105]. However, time is only one factor in this enter-
prise. What is worth adding to the above is that programmers who later resume pieces
of projects from others, will inevitably add imperceptible noise into the source code.
Over time, this noise is produced by small inconsistencies between the original meaning
of the project initiators and the wishful interpretations made by the project successors.

2.3 The Operating Systems and Entropy 17

Moreover, the heterogeneous coding style of each individual and the subjectivity of code
interpretation between individuals, increases the entropy from one task to another. To
reduce the entropy of software applications, teams of programmers apply a process that
explains itself by name, namely: code refactoring, where optimization is usually done by
eliminating redundancies. In short, code refactoring means changing the structure of the
code without changing the external behavior of the software [106]. However, this process
locally lowers the overall entropy and introduces a fine-grained entropy into the system
as a whole [107, 108].

2.2.3 How Does Software Entropy Increase?

In a complex project, programmers are interested, as they should be, in the input–output
part of the code they are modifying. However, the problem arises and amplifies with the
complexity of the code. A line is drawn for the structure of a software application from
the beginning by the initial designers. This line cannot be perceived by other program-
mers working on that application over time. Thus, additions, deletions or code changes
will depend on the immediate functionality of these applications which is understood
locally by the programmer. A local understanding of the problem automatically leads to a
continuous deviation from the original plan thought by the designers. Also, in the case of
teams, desynchronizations that appear in the communication between programmers, also
participates in this increase of the entropy. These subtle deviations as well as the attempt
to correct them, do nothing but increase the entropy of the application. Clarity of mind
is the most important added value that a person can bring to any project. But even this
extraordinary quality of people cannot stop the software entropy due to unknowns in the
system, which require time to be known. Unfortunately, time is one of the main currencies
that balances the economy. Therefore, the pressure exerted by managers on programmers
leads to a certain rise in the entropy of software applications. For these reasons noticeable
effects can be observed, like the increase in consumption of resources and a lower and
lower speed of these applications. In time, such an undesirable effect leads to less users
that are interested on the software in question. In turn, a declining user base leads to the
extinction of the product from the market, namely it leads to the end of the application
lifecycle.

2.3 The Operating Systems and Entropy

Entropy manifests itself in everything at any scale above our frame of reference. Thus,
there is also a kind of entropy that is related to the use of software rather than an
induction of entropy through the programming process. An example that can clarify

18 2 Philosophy and Discussions

the phenomenon of software entropy is related to complex operating systems (OS). The
example discussed below was at least once experienced by each of us.

2.3.1 The Twins

Let us imagine two computers alike, and two operating systems alike. The installation of
an operating system on the first computer is followed by a shutdown for a period of two
years. After the installation of the operating system on the second computer, the machine
is continuously used by a user for two years. At the end of this two-year period, the first
computer is turned on. Which of the two computers will be faster? Obviously, the first
computer with low entropy will respond to commands faster than the second computer.
Another question that arises is: Which of the two computers is more important. Here
we can clearly say that the second one with high entropy is the important one, because
it includes the user experience and data. Here again we can make the association with
us, with the people. Young individuals with low entropy are alert but useless without
experience, only with potential. Where, individuals who have gone through life have
higher entropy and experience, but are not as responsive as the former.

2.3.2 Rejection of Equilibrium

The universality of systems can also be observed again through case association. A good
start is the comparison between artificial systems and living organisms. For instance, a
question that arises would be: Are biological organisms in equilibrium or not? The answer
may initially surprise the reader, but biological organisms are in a permanent disequilib-
rium. The body of an organism uses energy to maintain itself below the maximum entropy.
In contrast, equilibrium occurs with the death (maximum entropy) of the respective organ-
ism. The same is true in the case of operating systems as well as in the case of software
programs that require updates.

2.3.3 The Third Party Software

Endless temporary files, log files and growing reminiscent folder paths lead to memory
granulation until the system makes noticeable lags and maybe occasional crashes. This
has happened from the most primitive operating systems of the past to the most complex
ones of our time. Thus, entropy problems start early, even for low levels of complexity.
An operating system is the environment on which all other software depends on. The
primary source of entropy over all operating systems is the human from the “software
cast”. Imagine the installation of a number of software applications on the operating

2.3 The Operating Systems and Entropy 19

system. Their use on the operating system leaves traces in the registry, temporary files,
log files, folder paths and it leaves changes even in the operating system files. Once
these software are uninstalled, the entropy of the system lowers only a little bit, but the
inevitable harm to the OS is done. It is hard for different teams of developers in this
world to keep track of all the changes their software makes to the operating system over
time. A proper staged uninstall that can be planned by programmers is extremely difficult
or even impossible. Once changes are made to the operating system, other changes will
accumulate on top of the old ones in the future due to other software applications. Thus,
a correct uninstall can be either extremely complex, or it can be very direct and in the
process the OS can be broken (like the uninstall of antivirus engines of the past, where
computers were left unbootable). For many, the smartest uninstall solution so far was to
leave the traces in the system in order to avoid complications like total OS failure. The
use of third party software is like smoking cigarettes, it is useful but also harmful. If one
stops using them, the harm is done up to that point in time, because all traces are there.
Note: What is the meaning of “third party software”? The “first party software” is the
operating system and all applications accompanying it. Thus, the company that designs
the operating system makes the “first party software”. The “second party software” refers
to the software made by the user of the operating system. The “third party software” is any
software that is not made by the company of the operating system or by the user of the
operating system [109]. Thus, a “third party software” is anything outside the operating
system or the software built locally on it [110, 111]. This is why the phrase “third party
software” is so common and the other two phrases are not.

2.3.4 Examples of Universality

In society, this universality of laws is also observable. For example, social pressure
leads to an increase in the entropy of the system, that is, to what we call corruption.
A clearer example would be the emergence of new taxes and their increase (pressure),
which inevitably leads to corruption (raising entropy). Furthermore, the rise of entropy
leads to the dilution of identity and finally, destruction. Another simple example is related
to cars, the more often the driver accelerates, the shorter the life of the engine. Obviously,
these considerations echo in any system because they are governed by universal laws.
Unlike biological systems, the destructive journey of any software system can be stopped
at any point in time. However, if you are a manager, are you trying to correctly estimate
the deadline of a task to reduce the entropy in the software applications that the pro-
grammer is working on? The point of the above is to show that entropy in software has
multiple and intertwined sources.

20 2 Philosophy and Discussions

2.4 Software Updates and Aging

Software aging is a complex phenomenon that involves many considerations, and one
of those considerations is related to the upgrade process [112–114]. Some applications
have no requirements for updates. For instance, there are video games or programming
languages without any update over time, that are still used today after 20–30 years from
their initial design. However, for security applications that depend on malware signatures
to keep up with the times, perhaps such updates are indeed a necessity. The issue that
appears is not necessarily related to data updates, but with methodology updates, algo-
rithm updates and so on. Moreover, the word “update” is both a psychological word and
one of the methods by which applications age. An upgrade consists of a series of steps
that include, among many others, processes such as continuous integration (CI). Continu-
ous integration is the term used for a periodic merger of close versions of source code into
a final version [115, 116]. Thus, this process (i.e. CI) is one of the layers accumulating
entropy. The more updates one makes, the faster the aging of a software application. In
order to make an association, this phenomenon is directly equivalent to the metabolism
of the human body or any other living organism. The faster the metabolism, the faster the
body ages. A correct dosage of nutrients over the lifetime of an organism allows for the
extension of vitality and of life. The point here is that moderate hunger leads to a slower
aging of the body. To bring this universality to the extreme, the same happens with the
stars. The faster they consume themselves, the brighter they are. Thus, these stars age and
disappear faster than others. In the case of software applications, every time something
new is added and integrated into the source code, the entropy of the application increases.
This entropy translates into higher resource consumption and a noticeable slowdown of
the application. Of course, code refactoring and other methods, further decrease entropy,
but the remaining entropy becomes fine-grained. The fine-grained entropy is even harder
to manage in the subsequent additions or modifications of a software. Thus, further elim-
ination of entropy in later code changes becomes increasingly difficult. When it comes to
the frequency of software updates, the above examples become relevant. Psychologically,
these updates automatically portray trust and demand respect based on the impression
that time and paid human resources are heavily invested in these applications. However,
let us have a little reminder of operating system entropy and the third-party software
implications. It is well known that a specific digital signature is left by each third-party
software. Therefore, the signature is a characteristic to that particular software. Updates
of third party software build up new signatures over the old signatures of the same soft-
ware application until entropy is raised to the highest levels. Thus, this is just another
mechanism by which entropy is risen. In other words, all interactions with a software that
outputs new objects or adds information to old ones, will increase entropy.

2.5 Universality Supports Self-reflection 21

2.5 Universality Supports Self-reflection

Perhaps intuition may suggests that software implementations can become noisy
when greater complexity is involved. However, please note that noise does not exist
in digital systems regardless of complexity, because noise involves the element of
randomness which a computer lacks entirely without an input from the outside of
the machine (random variables from our universe). I would like to emphasize here
that low or high entropy is very different from the meaning of low or high noise.
Please read the material indicated in the main text for deeper clarifications on the
issue.

The manner in which software has evolved since the dawn of the computer age, may
have a direct analogue in our considerations on the emergence of life on our planet. All
systems in our universe have common laws that can be observed from any frame of refer-
ence. Perhaps a study of how computers have evolved over time could shed light on how
life on earth originated. Although life and modern computers are different beasts, they
still have one thing in common and one main difference. Commonality is related to dis-
cretization. Both biological and digital electronic systems use discrete elements. Atoms,
complex molecules and cells are discrete elements. Even thermal energy is discrete (pho-
tons). On the other hand, the main difference is that digital systems are noiseless, while
life is inherently noisy. This crucial property of digital systems allows us humans to obtain
simulations totally separated from the noise-related influences of our universe. Any tech-
nology is an evolutionary extension of a natural process, namely biological evolution. A
look at the technological evolution directly reflects our own emergence on earth. For more
on this subject I refer the reader to a chapter on Philosophical Transactions published in
“Algorithms in Bioinformatics: Theory and Implementation”, where these links between
biology and software are fully drawn in great detail [1].

2.5.1 The Evolution of Large Brains Versus Entropy

The most basic natural link between human behavior and computers, consists in
our ability to see the extremes. Constructs such as Yin & Yang, good and evil, or
duality in nature, like pray and predator, light and darkness, are in fact an ancestral
behavioral reminiscence of natural repetitive cycles. Perhaps, for this very reason
our computers are binary and not otherwise.

Our brains are directly responsible for the amount of entropy introduced into software
programs. Since people are different, so the levels of entropy into software are different. In

22 2 Philosophy and Discussions

order to explain the connection between software entropy and people, some assumptions
will be made here. We must first deduce how and why we emerged as a species to then
understand how entropy is introduced into software technology, which is also an extension
of the biological evolutionary process. In short, the smarter the human the lower is the
entropy injected into these applications when they are modified. How brains evolved
in time and what factors led to their current dimensions is still a mystery. There are a
number of hypotheses, but they are all guesses since no one has been able to prove with
certainty the reason behind the large skull enlargement. Nevertheless, a short plausible
explanation can be given here. Around the disappearance of the large dinosaurs 65 million
years ago, mammals experienced a relaxed environment in which to evolve [1]. For some
mammals that had multiple predators, the advantageous evolutionary adaptation was an
increase in cranial capacity. Perhaps, such an adaptation was made at the expense of
other physical traits, with the role of defensive/offensive mechanisms for the countless
predators that existed in the past. Thus, greater brain capacity led to the replacement of
defensive and offensive physical traits with complex behaviors. Mimicry was the main
trait, where for instance the behavior of the predator was copied in order to catch its
type/model of prey. Over time, across generations, the preservation of specific mimicry
behaviors has been conditioned by survival and cemented in DNA as self-traits. Thus,
among other mechanisms of behavior, our brain works by mimicry and association. Later,
complex behavior involved stone-throwing, spear-throwing, understanding the importance
of a position, designing traps, reading animal behavior. Most important of all in this
behavior, was a correct understanding of the complex implications of the positions of
other individuals in a given situation, which ultimately led to what we call teamwork.
Moreover, each animal was associated with a series of context-independent characteristics,
which were further associated with a series of defensive events to ensure survival. Then,
these associations turned into meaningful symbols, drawn and then recognized by other
individuals. Therefore, the full context of the events is intentionally forgotten because
it is irrelevant to the sequence of steps that lead to the desired outcome: survival. In
other words, a pattern molded on the situation was maintained. A return to our days
may perhaps indicate more about the current setup. When a software is modified by
programmers other than the original ones, the context is also removed, due to the way
humans have evolved. Thus, among many other elements, this contextless evolutionary
path may be one of the roots of entropy for software applications. In contrast to the
above, context keeps entropy low.

2.6 From Computer Languages to Art and Sports

The beginning of the computer age was a wide period where mathematics and art inter-
sected, if they were at all different. As stated in the previous chapter, the start of computer
era is indeed foggy and it makes more sense with automatons and looms. In the modern

2.6 From Computer Languages to Art and Sports 23

post-transistor era, the art starts to clearly develop with programming languages. Note
that I purposely write about programming languages when it comes to art, because script-
ing languages in the past were not as important or used as they are now. In the past,
the hardware requirements for many software applications were truly demanding. This
happened not because the applications were complicated, but because the hardware was
primitive/limited. To maximize the hardware capabilities of the time, these higher-order
software projects required a compilation of the source code into machine code. Once the
hardware power increased enough, scripting languages started to be taken seriously. Thus,
the art of codes appeared early in the history of programming languages.

2.6.1 The Art

Language produces art, like poetry or other pieces of literature. Thus, computer languages
can also produce art by association. The art part has several faces. One of the faces is
related to the way a code is formatted. The empty space until the beginning of a line
of text is called indentation. The role of indentation is to build nested structures from
lines of code in order to be readable by the human brain. Indentations are used as the
main form of art in all programming and scripting languages. Another face of art is the
optimization of a code in such a way that it is as short as possible and as computationally
advantageous as possible. Another face of art allows programmers to actually draw using
ASCII characters inside comments (Fig. 2.1). This is the oldest art form in programming
languages and it originated in the past when graphical interfaces were only a beautiful
dream. The most important aspect is the balance in the art of programming. A source code
should maintain a balance between how short it is and how easy it is to be understood
by another human. This is really the most subjective and interesting art form where every
programmer has a personal style or signature when coding. The same way a writer or a
painter is distinguishable by a clear personal style, the same is the case with program-
mers. Another type of art is the design of adaptable software. That means a visionary
programmer is able to predict the future environment of the software application without
trial and error. Such applications are simply adaptable to the unforeseen element, like new
variables in the medium, or new data, or new type of data in the input of the application.
In short, this is the art of dealing with partially unknown input data. This form of art is
done mainly by the most experienced programmers. Without the artistic talent, a number
of coding strategies that enforce good practices (or safe programming) can be applied to
ensure longer lifetimes for software applications. Nevertheless, we will talk about some
of these good practices throughout the book. At the “Guru” level of art, this prediction
of technology goes beyond a simple dynamic input. It may reach the point where the
programmer can intuitively predict the fundamental changes in the future versions of the
operating systems that could affect the lifetime of the application (i.e. future API changes
in the next versions of the operating system). That, is indeed the gift of logical foresight.

24 2 Philosophy and Discussions

Fig. 2.1 From entropy to art and back. The word “entropy” is written on the beaches of Golden
Sands in Bulgaria. The word written in the sand indicates low entropy, which is quickly increased
by noise represented by the waves of the Black Sea. The top-right panel shows a viral capsid close
to a cell wall, which is portrayed by ASCII art

2.6.2 The Sport

Just as the gladiators had the Roman Arena to gain sympathy and fame, so the program-
mers have such things in their corner of the world. In the past, computer languages went
hand in hand with mathematics and logic competitions. In such competitions, a problem
had to be solved as quickly as possible. In other situations, the optimal solution was
required within a limited time. At other times, the competitions tested the management
capability and cohesion of the teams involved. To be able to complete the project before
others did, a task was divided by the team leader into subtasks as best as possible. These
types of competitions obviously train young minds and prepared them for the industry in
a way. However, these are classical intellectual proprieties of the human mind that were
explored in these competitions. The sport in programming languages evolved much since
the old days. In modern times, collectively, the upper echelons of civilization wish, as it

2.7 Compiled Versus Interpreted 25

is normal, to finance and see originality in order to gain added value, which can later be
used for something that leads to progress. What the industry and education understand
about humans in general is that certain conditions appear to be great advantages in this
modern era, especially for original thinking and uniqueness. Such conditions like subtle
forms of autism or the Tourette syndrome, appear to be provided with new intellectual
abilities never fully appreciated until the era of computers.

2.7 Compiled Versus Interpreted

Higher-order computer languages such as C, C++, VB6, Erlang, Haskell, Rust, and Go
are some of the examples of compiled languages. On the other hand, computer languages
such as JavaScript, Java, C#, Python, VBA, PHP, Ruby, and Perl are examples of com-
mon interpreted languages. The main difference between programming languages and
classical scripting languages is fundamental. In short, programming languages are able
to convert high-level source code into machine code, which in turn is structured further
into a binary file (OS specific). Scripting languages use an interpreter application that
reads and executes instructions from a high-level source code, which is usually stored
further into a simple text file. In other words, an interpreted (scripting) language is unable
to protect the source code, while compiled (programming) languages protect the source
code by conversion to machine code, which is more difficult for the average programmer
to understand. Also, the machine code produced by programming languages is extremely
fast, while scripting languages are interpreted and are slower in execution. Such a radi-
cal difference between scripting languages and programming languages requires a more
extensive discussion from which conclusions can emerge (Fig. 2.2).

2.7.1 Programming Languages

Higher-order compiled languages are platform dependent, that is, hardware and operat-
ing system dependent. Compiled languages were always seen as converters, because the
compilation process is in fact a dynamic conversion process. Higher-order programming
languages are very much like LEGO bricks in which pieces of standard machine code
are added dynamically together in order to perform highly complex operations. Thus,
programming languages compile/convert source code into machine code, later to be exe-
cuted directly by the CPU. Programming languages provide source code security through
obscurity. In other words, the lack of know-how and complexity of machine code ensures
the security of an application even if it is not encrypted. Furthermore, programmers who
can reverse engineer machine code for know-how, can make a complex algorithm from
scratch without much effort.

26 2 Philosophy and Discussions

2.7 Compiled Versus Interpreted 27

⏴Fig. 2.2 Types of computer languages and their relationship to terms. It presents the relationship
between scripting languages and programming languages and tries to highlight the relationship with
the notions of interpreters and compilers. The first column from the left shows the classic case of a
scripting language in which the source code is directly interpreted by an interpreter application. The
middle column shows the situation often encountered today, where the source code is converted to
bytecode, and then the bytecode is interpreted by an interpreter application for compatibility with
the operating system and then compiled into machine code. On the right column, the classic pro-
gramming languages are OS-specific, where the source code is directly converted into machine code.
Note that Bytecode is a form of P-code, and it means pseudo code. Also, JIT is the Just-In-Time
interpretation and compilation that a virtual machine does depending on the operating system

2.7.2 Scripting Languages

Scripting languages contain a module that interprets the source code. This module is
widely known as the “interpreter”. Most of the time the source code is visible to those
interested in it. The source code can obviously be obfuscated in such a way to make theft
difficult. Obfuscation is the process of changing the appearance of text while preserving
the intended meaning, thereby making the source code difficult to understand. However,
obfuscation still allows the source code to be clearly visible. Encryption methods can
be used to hide the source code, but ultimately, with or without encryption the source
code is visible to an experienced programmer. Interestingly, most of the clever source
code protection methods were invented by malware creators. In the case of malware, the
idea of obfuscating the source code for scripts was to avoid static signatures of antivirus
engines. These engines can be tricked by clever code obfuscation. Many companies were
inspired by these methodologies. Therefore, in order to maintain the proprietary inner
workings a secret, their software products were sufficiently obfuscated and/or encrypted.

2.7.3 Source Code Encryption

Both programming and scripting languages can encrypt their code. Programming lan-
guages can encrypt important pieces of code that the machine can decrypt only for
immediate execution, and scripting languages can encrypt source code that can be
decrypted piece by piece during execution. Interestingly, the methods by which an impor-
tant application can protect its code originate from the need of virus designers in the 90s
to hide their code from antivirus engines. Moreover, those methods gave birth to polymor-
phic viruses that are able to encrypt their own body in such a way that it looks different
with each infection. Since the body of a virus looks different from infection to infec-
tion, malware specialists could provide only a subjective signature to antivirus engines.
As a small parenthesis, the core of unencrypted code that had the role of decryption, was
usually also the signature used for detection. However, the development of this subject
requires an independent book. Obviously, these innovative tactics taken from malware

28 2 Philosophy and Discussions

were finally adopted for security where the source codes were better protected from the
curious minds.

2.7.4 The Executable File

An executable file is a computer file that contains data and a sequence of instructions
that can be executed on the machine they are activated on. Such instructions can be
either in the form of machine code with direct execution on the CPU or in the form
of high-level interpreted scripts. Thus, binary machine code files that take the role of
executable files can run on any compatible OS without requiring the existence of third
party applications. In short, executable files that contain binary machine code are compiled
by different programming languages based on the higher-level source code. At execution
time, the binary file is interpreted directly by the CPU which in turn drives the other
hardware modules. An executable file can be run from a graphical user interface-based
operating system (simple events like a double-click) or by a command-line interface-
based OS. In some cases, an executable file can be triggered and run passively by other
software applications. Depending on the OS manufacturer or OS versions of the same
manufacturer, the executable files include file extensions like: .exe, .bat, .com, .cmd, .inf,
.ipa, .osx, .pif, .run, .wsh, .app and many other extensions over the existing OSs. However,
among these executable file formats, the “.exe” extension is the most known to the general
public. Thus, executable files usually refer to the “.exe” file format because of the market
presence that Microsoft Windows had over many decades around the world.

2.7.5 Executable Files and Scripting Languages

Classical scripting languages lack any kind of compiler, so they are unable to write
actual executables. However, classical scripting languages can simulate/mimic a kind of
executable files. The same executables, on the other hand, can deceive the eye at first
impression. These files that can be produced by scripting languages are a composite made
from the executable of the interpreter and the script itself, both of which are physically
part of the final executable file. The method of producing executables by using scripting
languages is one that comes, again, from malware designers. There are many classes of
viruses. One of these classes is the append or pack method. This version of the virus
infects by placing the virus file in front of the infected executable files. Post infection,
the icon of the infected file is then injected by certain techniques into the executable file
of the virus, to avoid a suspicious look regarding the infected file. When the infected file
was executed, the virus was executed first. The virus file then made a copy of the original
file from its own body into a temporary file that was automatically executed without the
knowledge of the user. Usually this temporary file, which contained the original file of

2.8 The Unseen and Unspoken 29

the user, was written in the same path as the file of the virus (virus + original file). From
this basic method of infection it was only a step to the making of executable files through
scripting languages. In the same way, the text file containing the source code is appended
to a copy of the interpreter, where both make a single executable file at the end. There-
fore, scripting languages are unable to write proper executable files. Another example
that has its roots in methods invented by malware designers is the Self-extracting archive
(SFX or SEA) file produced by WinZip or WinRAR. This type of executable contains the
unpacker and the data to be unpacked in a single file without the need to install additional
applications. In the end, it really matters how one uses a method and for what purpose.

2.8 The Unseen and Unspoken

Note: There are two main types of approaches to executable files. Third-party
applications can be designed either as simple standalone executables with no depen-
dencies (a rare situation) or as a standalone executable installers that can unpack
files (including other executable files) and configure changes to the operating sys-
tem. A standalone executable does not require dependencies on external libraries or
components, or entries in the operating system registry. Executable files that require
inclusion in the standalone installer usually have dependencies that are present in
the same package and requests for changes to the operating system need security
privileges.

A discussion about monopoly, centralized power and the real source of many innovations
is addressed in this subchapter. Much of what is discussed here is valid for the period
2005-present, and it refers both to human nature in general and to risky strategies put into
practice by third parties. The continuous battle of antivirus companies against executable
files and the inevitable consequence of revealing software methods through the intentional
or unintentional promotion of scripting languages is widely discussed. This push towards
scripting languages further led to a full disclosure of “the” work which radically reduced
the economic value of many algorithm implementations. The release of software products
into the market is discussed from the perspective of the past, and then presented as an
experience for the near future. Before much criticism that can be found below, it should
be mentioned that both antivirus engines, digital certificates or Internet browser filters
are extraordinary tools that lead to progress. However, these methods remain beneficial
instruments of order only if there are good intentions of the people behind them, otherwise
they become instruments of centralized control. Towards the end of the subchapter, the
manipulation of fundamental terms is discussed in relation to different tactics seen often
in the field of sociology.

30 2 Philosophy and Discussions

2.8.1 Witch Hunting Shows Weakness

The first question that arises in the case of any software application is: Cui bono? or cui
prodest? The answer to this question seems to show market needs and also it seems to
make a prediction for the trajectory of a software project. But is it? Experience can tell
unknown stories related to software, incompetence and politics. In order to begin a life
cycle, software applications hit various bumps or even entire walls when they are released
on the Internet. These obstacles are relatively undiscussed. For example, by using aggres-
sive unscientific or ill-conceived policies, many anti-virus/anti-malware companies have
largely succeeded in discouraging programmers from compiling executable files almost
entirely. Moreover, the so-called strict control and erroneous detection of normal files as
malware, culminated in a lack of trust in antivirus companies. This mistrust was amplified
because in the case of these false detections it was impossible even for programmers to
distinguish between malicious intent, mistake or pranks made by security companies. In
the past, it got so far that anti-viruses were no longer used by people who knew even a
little about these security issues. The mockery of the public and the civilized world was
so great that the executable files that were compiled by certain programming languages
were directly detected as malware without any reason. This is also the case with the Visual
Basic 6.0 programming language, which by default produces 16 Kb executable files that
show a simple interface. Even those default 16 Kb executables have been classified as
malware at some point. Another problem that led to disaster was the introduction of the
possibility for antivirus users to decide for themselves which executable file is suspicious
and which is not. This approach has led to a deepening of distrust in antivirus companies.

2.8.2 No Secrets for the Emeritus

Antivirus companies are responsible for raising the status of scripting languages and there-
fore for the lack of secrecy of new algorithms and new ideas developed for businesses.
Until the destruction of executables as entities with a long history and high importance,
all implementations could be, at least in theory, hidden from the eyes of opportunists who
wanted to make money out of nothing. After a partial transition to scripting languages,
all source code was visible and easy for opportunists to grab and use. Thus, the situation
created a vicious circle from which opportunists gained more than deserving people. On
the other hand, this visibility of codes led to easy access for know-how without solid
foundations. Many could see and use pieces of implementations without knowing much
about the path that led to those designs. This approach to technology is similar to a nine-
teenth century cart that uses German automobile wheels. What can we say? is a definite
improvement for the cart!

2.8 The Unseen and Unspoken 31

2.8.3 The War Against the Executable File

On one hand, the war on executable files was waged out of greed and a lack of vision for
the future. In the past, antivirus companies have unofficially requested software develop-
ers for the purchase and attachment of digital certificates to executables. These certificates
indicated to antivirus engines that an executable file should not be scanned. In the end, a
digital certificate shows that a software application really originates from a certain veri-
fied source. Thus, digital certificates also have advantages. However, this push for the use
of digital certificates had numerous consequences for the user base of some programming
languages, where their newly compiled executable files were automatically detected as
malware for no reason. In a first instance, the positive part about digital certificates would
have been a standardization and a gradual optimization of malware signature extraction.
Additional grounding of certificates would have led eventually to the elimination of the
need for security and security programs in general. Nevertheless, this approach to the use
of digital certificates was a utopian one that ultimately led to disaster. Moreover, digital
certificates led to a taxation of the software companies and of regular programmers with-
out any legal or moral basis. By association, this is very similar to the mafia demanding
protection fees. But what may be the implications of such tactics? In order for progress
to continue, the existence of a software on the Internet should perhaps not depend on
anyone. The push for the purchase of certificates to sign executable files was ultimately
the main action by which antivirus companies drastically reduced their dominance over
the Internet. How did this happen? In order to run their own commercial executables in
certain isolated ecosystems, people gradually started to uninstall antiviruses. Also, false
detections of newly compiled files that had default and clean functionality, eventually led
to a mass awareness of the uselessness of many antivirus engines. On the other hand, the
war on executable files had a positive effect also. The “strict control” of executable files
has minimized direct access to the CPU, memory and the setup of the OS, which has led
to a reduction or total elimination of errors generated by third party software applications.
However, the downside of this positive effect was the loss of low-level knowledge of oper-
ating systems by the general population of programmers. In other words, less people know
today how to interact with the internals of operating systems because the executable file
is more exclusivist now than ever before. It is true that OS also have evolved and become
more complex, but not complex enough to explain or excuse the above.

2.8.4 We Decide What Product Comes About

Both antivirus engines and browser filters have been deciding who is and who is not
allowed on the market for over two decades or more. Often, I have seen harmless and
intelligently built applications that were categorized as malware for no reason at all. The
previous statement of course included my own analysis of the executables in question.

32 2 Philosophy and Discussions

In order to have a life cycle, an application must be born on the market first. A release
on the market of a software application that is prevented by various methods such as
“confusion” with malware, can delay the start of the life cycle of an application or even
stop it completely. The psychological effect can destroy the work done on a product
even if the signatures indicating a malware detection are removed. This activity, either of
manipulations or mistakes done by security companies can be further discussed in detail
for a better understanding of the market environment.

2.9 Psychological Warfare

Whether it is computer languages or other types of software applications, these are ulti-
mately used by people. Their opinions related to certain applications dictate the future of
those applications as well as their financial success. Therefore, an important and little-
known link to software companies involves the presence of opinion leaders or even the
removal of competition through technical means offered by products already on the mar-
ket, such as antivirus engines or their extensions, internet browser filters. Moreover, these
methods may even resort to sociological propaganda tactics often used in political elec-
tion campaigns. Threat removal, advertising or distortion of terms are the main strategies
used to inflict unfair business practices, by a direct sabotage made on the mind of the
customer. To understand how these malicious methods work in the wild, a more extensive
discussion is necessary.

2.9.1 Removal by Threat

In the case of Internet browser filters, an announcement like “this file can damage your
computer” is a disaster for the company producing the file mistakenly considered “mal-
ware”. The psychological impact on the user who downloads the installation file is radical.
Even the subsequent removal of the malware signature from the signature database of
antivirus engines can no longer cover the damage and scars previously made by these
security companies. It is worth mentioning that even now security companies are not reg-
ulated and the harm they can do to small and medium-sized software companies around
the world is absolutely colossal. Of course, this kind of behavior has certain consequences
for security companies with such practices, namely a natural reduction of the userbase to
the level of bankruptcy. But these consequences stretch for years and the harm done to
third parties remains done, and unpunished. Such unfair business practices have been
observed over time by many specialists. In the case of the author, bad practices were
observed against my own security product introduced on the market in 2008, called “Scut

2.9 Psychological Warfare 33

Antivirus”. Probably, this story of Scut Antivirus deserves in itself a security book in
which the technical and psychological tactics applied in the market can be explained in
great detail.

2.9.2 Removal by Advertising

The technical and psychological struggle to remove or sustain new applications on the
Internet does not end with these “security” methods like antivirus engines or download
filters of Internet browsers. These struggles go to the point where some software compa-
nies have specially organized offices that include opinion leaders. They deal with Internet
comments, videos and even bots that analyze and comment automatically on different
platforms. These “entities” are the unseen links between the company producing a soft-
ware and current or future users. Since all software applications are used by people, their
minds are targeted. Whether it is the ordinary user or the engineer who opts for a software
solution, the psychological dangers of persuasion and indoctrination in regard to a product
are the same. Masked praises of the one product and the defamation of other products by
using false comparisons, are the main tactics behind these opinion bureaus.

2.9.3 Handling of Terms

Software applications can have a well-defined and rather short life compared to the life of
a programmer. Defamation of the image of a worthy application has financial implications
for the producing company, but not for the entire industry. However, the fundamental
terms used in research and industry are laws that support the entire field of computer
science. Therefore, the terms used in research and industry must represent the truth
because they have a particularly long life. Unfortunately, the manipulation of terms is
probably the most serious and disastrous consequence of psychological manipulations in
computer science. Because of these competitive manipulation tactics, other areas began
to be affected, such as the field of research in computer science. Here, one of the clear
examples that can be portrayed is related to the term “Artificial Intelligence”. Artificial
Intelligence (AI) is a field of research and not a reality. Thus, neural networks are often
called “Artificial Intelligence”, but these algorithms are deterministic and their regulatory
values are molded according to the desire in the output. This modeling of the neural
network environment has nothing to do with intelligence. To look at neural networks by
using associations from nature, we can imagine a landscape like a hill, a spring at the top
of the hill and a house somewhere next to the hill. Initially, spring water flows naturally
along the paths traced by the small imperfections in the landscape of the hill and the
water reaches the base of the hill far from the house. Repeated attempts to divert the river
towards the house can be associated with the training of a neural network. The position

34 2 Philosophy and Discussions

of the house being the desire from the output and the deviation of the trench can be seen
as a training process for this model. Thus, we can understand that neural networks are not
intelligent at all. Over time, the term “AI” applied to neural networks began to be used
for the sole purpose of economic impact rather than the field of research it represented.

2.9.4 Battle of Computer Languages

The battle of the programming languages is an old one, and it appeals to the frustra-
tions of programmers who have more experience in one computer language than another.
Thus, until the age of wisdom, it is about all of us (42 years old = age of wisdom,
perhaps). Tactics applied to software products are also used to manage the userbase of
computer languages. Thus, frustrated programmers are the victims of it. On the internet
one can see titles like “top X programming languages of 20XX” or “Best programming
language of 20XX” or even better, targeted questions such as: “Which is the best pro-
gramming language?”. All these titles weight great impact over the new generations, and
represent gross psychological manipulations for the intentional push of a certain com-
puter language in front of the others in order to increase the userbase. Of course, these
tactics apply to any product, from socks to fighter jets, regardless. However, the pres-
tige of computer languages is also a target of these manipulation methods. More subtle
and credible manipulations include well-structured comments on various online platforms
with the aim of advertising or defaming other competing products. In such comments, the
main ingredients are often sentences like: “X programming language is a toy language”,
or “X programming language makes spaghetti code”, or “X is not a modern program-
ming language”, or categorical injections such as “there is no such thing as…”. After all,
programming languages are also software applications and obey the same rules. In my
subjective opinion, these tactics started to be used excessively from around 2007–2008.
Since that time, these actions have led to competing companies hiring opinion leaders
to destroy the userbase of the competition. They most likely took the model from Non-
Governmental Organizations (NGOs) that do exactly the same things but usually for other
purposes and for longer periods of time. In the future, the excessive continuation of these
tactics can destroy not only the Information Technology (IT) field but even the society
in which we live, because the tendency is towards monopoly, and monopoly can lead to
unitary decisions. The question that naturally arises would be: why unitary decisions are
not desirable in this case? In short, without a backup mechanism, the first wrong decision
affects the entire system irreversibly most of the time. However, a clear example is best
for these kinds of situations.

2.9 Psychological Warfare 35

2.9.5 Uniformity Means Death

The best examples are made by association. Thus, an example related to politics and
society is in order. In the case of former communist countries, such as Romania, the fall
of the system was dampened by trade with neighboring countries. This was the backup
system of all communist countries. However, much more severe was the fall in the case
of the massive entity called the Soviet Union, where the neighboring countries hardly
cushioned the fall of the system. Considering the above, we can imagine a unitary system
at the global level. The question is, what happens if this global system makes a wrong
decision that leads to collapse? What will be the damping mechanisms of civilization?
The problem is simple, these mechanisms will not exist and civilization could disappear
without a replacement. The above example is related to the ecosystem of programming
languages, which can be seen as a kind of independent countries. The more programming
and scripting languages there are and the more stable they are, the more the IT field will
have a backup system for the existing technologies that make our civilization advanced.

2.9.6 Modern Does Not Mean Better

Again, the thread of discussion is pushed towards the meaning of the terms. New versions
of software applications are seen as modern compared with those of the past. However,
the word “modern” is often confused with the word “better”. The two words of course
have nothing in common. Thus, a new version of software can actually be worse than
an older one. For instance, an example comes to mind regarding the recent history of
programming languages. From 1998 to around 2005 (maybe even 2007), Visual Basic
6.0 was the most popular programming language in the world. To destroy the language
reputation and the pool of programmers, classic psychological tactics were applied. Over
time, one theme often pushed was the old “VB6 is not a modern programming language”.
The main motivation for these tactics was to force VB6 programmers to VB.NET and
the.NET Framework environment. The secondary motivation was the gain of specialists
for other communities of other programming languages. It is worth noting that Visual
Basic.NET (VB.NET) is not Visual Basic. Since 2002 to present, VB.NET has never
been recognized by the software community as Visual Basic. Although it bears the name
and the event-driven paradigm, VB.NET has a different syntax than BASIC and is not
backwards compatible. Moreover, Microsoft even tried a desperate move to mimic the
name of Visual Basic 6.0 and injected the name Visual Basic 9.0 for a later version to
imply a continuation of VB. Of course it didn’t work, because back compatibility with
all VB6 projects is paramount. Today, both VB6 and VBA are used more by industry and
science than all versions of VB.NET combined; and more. In time, these psychological
tactics against VB6 led to a flight of programmers to Java and Python and a total rejection
of VB.NET. Nevertheless, the majority of programmers remained in the VB6 community

36 2 Philosophy and Discussions

and now they are multi-language programmers. The most unexpected, was the annual
influx of young programmers into the VB6 community up to this day. The reason is the
myriad of advanced open source projects found online, that lure the young minds into the
VB6 collective. In the end, a two-decade-old language still seems to be clearly superior
to the languages that replaced it in the .NET Framework ecosystem. Moreover, the Com-
ponent Object Model (COM) of the 90s has proven to be so effective and crucial that
could not be easily disregarded by the .NET Framework and most likely will be used in
the future in the next generations of Windows. From far away, in regard to programming
languages, the period between the late 90s and early 2000s, seems to show a change
in human resources at Microsoft. In other words, the visionaries of the mid-90s were
replaced by presumptuous bad-decision makers of the 2000s. As a generality, spending
energy to cover up self-mediocrity or some fatal mistakes of the past out of simple frustra-
tion, are mistakes of their own in the end. Using the energy to cover it up with something
better, is the healthy way forward. The elimination of frustration removes all evils in the
human nature. Thus, perhaps the important humans are those that are frustration-resistant,
but, few of us are.

2.9.7 Market Share Demands Responsibility

The term “market share” represents the percentage of total sales in a given market. Such
a market may represent a class of products. Thus, the higher the market share, the higher
the influence and gain. Any company whose market share on a certain product exceeds a
certain percentage, has or must have a responsibility towards civilization. Here, I would
like to refer primarily to companies that build and maintain operating systems. Thus, the
moral dilemma should be: When is a software company allowed to filter the applications
that run on its own operating system? As indicated in the other subchapters, this can be
easily done by manipulating security signatures for third party files. The balance between
market share and the right to decisions of this kind should perhaps be regulated in the
future. A software company should no longer have any right to decide which applications
run on its own operating system. Why? A very large market share clearly means that the
whole (or a large part of) civilization depends on that OS. The right to run an application
can no longer be owned by the company producing the operating system because it can
easily affect both the natural development of civilization and the appearance of software
solutions that lead to the maintenance and/or development of civilization. This would be
the reason why an antivirus engine should not exist by default on the operating system,
except at the express request of the user. This moral dilemma can be even further amplified
if the security engine and the OS are made by the same company. Ultimately, the market
share of a company can be correlated with the responsibility towards civilization and
therefore regulated by a specialized consortium.

2.10 Human Roles and Dilemmas 37

2.10 Human Roles and Dilemmas

The word “computer programmer” or “programmer”, shows old roots in the field of IT
and points to highly advanced “Guru” type individuals in the art of software. A computer
programmer writes and tests the source code for new software projects, is able to debug
and update existing applications, rewrites the source code for different operating systems,
and last but not least, it secures the applications against possible cyber security threats. In
the past, technological diversity was low enough and relatively easy to understand for most
technical people. The increase in demands for software technology, either for automation
or for other tasks with economic implications, has led to a granular specialization of
technical people and this trend will probably continue with a higher complexity of the
civilization.

2.10.1 The Identity Crisis

In current times, the rapid advancement in human resources caused an identity crisis
for programmers [117]. Thus, the programmer is subdivided into roles with names and
definitions that are relatively difficult to digest. The names of these titles did not come
naturally into being and are most often imposed by different companies due to a divi-
sion of work among larger teams. Thus, today we can hear quite confusing terms for the
main title of programmer, such as: coder, software designer, software engineer, software
developer, software architect and so on. To better understand what these titles mean, a
relative description can be made as follows: Coder—a kind of contractor that can be seen
as a Joker, namely as an unpredictable misunderstood rebel. This kind is either unex-
pected as a beautiful surprise, or inexperienced and useless, but in the making. Software
developers—it should represent individuals that follow a design, namely the specifica-
tions for a software project. They are the ones that have the ability to understand the
problem and implement it as desired. The skeleton of an application is dictated by devel-
opers. All world implementations in information technology rest on the shoulders of these
developers. Software designer—it should represent an individual who does the design of a
software, namely the specification of a software. Software architect—A software architect
is responsible for high-level design choices related to the overall system structure, behav-
ior and most of all integration. These are the people who are responsible, among other
things, for keeping software entropy at low levels. Software engineer—It is the “mod-
ern” term for a programmer. Software engineering involves design, development, testing,
and maintenance of software applications. Programmer—this title contains a halo that
is above all others. Firstly, it is an old title. Secondly, the word itself refers to natively
gifted individuals of the “Guru” type that are well versed in the assembly language and
everything algorithm related. Being called a programmer is a big deal, and it refers to all
titles from the above in one package. However, all these invented titles have no meaning

38 2 Philosophy and Discussions

in the end because in addition to know-how, the highest quality that can be brought to a
software project is clarity of mind. The second extraordinary quality that a programmer
can have is to navigate through the code of other programmers in order to fix any errors
or to update it further. The first activity is called debugging. Not all programmers can
take such a task with ease. Both activities are similar to the verbal communication skills
between two individuals. Some are more adept at conversations and others are less well
spoken. The same is true in the case of debugging or when creating an update. Titles will
come and go, however, the word programmer will stay as it signifies the root and the
future of the field.

2.10.2 Work Environments

These titles can be included in different specialized work environments that have the
role of decreasing the execution time for software projects. Also, these specialized work
divisions are able to help in the fair distribution of the workload among the teams from
different departments. Thus, these previously discussed titles for a programmer can fit into
work environments such as front-end, back-end or full-stack. But what is the meaning of
these terms? First we must start with a simple definition in regards to augmentation. To
be relatively broad in meaning, one can say that augmentation is an interactive experi-
ence of a living being with an artificial machine. The “front” part refers to man–machine
augmentation. This interaction, as the name “front” indicates, means “in front of some-
thing”. Since all objects that we interact with on a computer are virtual, this is more of
an augmented reality. The “back” terminology refers to a remote machine, namely “a
machine in the back, far away from this one”. Thus, everything in this terminology is
seen from the perspective of the front-user. The remote machine is the one that receives,
processes and transmits data to the machine that performs the augmentation. This setup is
known as front-end for the client-side, and back-end for the server-side (remote machine).
Accordingly, there are role titles such as Front-end Developers, Back-end Developers, and
Full-stack Developers which includes both. These terms are usually found in reference to
web development, but the categories can be extended to any setup that includes a local
computer and a remote computer. For example, on the front-end we could include Desk-
top developers or Mobile developers and so on, whereas any machine with server software
can be included on the back-end section.

2.10.3 Genus: Homo

Before the engineering era we had seen the rise of Homo abstractus, then with more and
more need for applications we have witnessed the apparition of Homo discretus. With the
era of computers, we had seen the rise of Homo computatus, the latest in the genus. What

2.11 Worst Professors Are Those Who Assume 39

the future will reserve for our civilisation is hard to predict, it most likely be either a slow
appearance of Homo ignorantes and the end of civilisation with a gross loss of knowhow,
or a bright future of Homo ameliorates. Note that none of these species really exist, they
are just a mind-game for the reader.

2.11 Worst Professors Are Those Who Assume

The worst professors are those who assume the student knows. In the past, BASIC source
code, on the other hand, assumed nothing and was the best professor to many of us. This
subchapter tells a personal story of how a long friendship with computers began, which
I wish to share with the reader. Today, when someone starts learning programming, one
clearly understands what it is doing and why, under the principle learn-to-gain. But in the
days of the past, things were very different. In 1989, just before the Romanian coup d’état
happened, the hardware gap between the communist Romania and the West was of about
2–4 years (by my subjective appreciation). In the mid-90s, the gap between the West
and us was of almost a decade, and the trend continued as all know-how, factories and
social order were almost completely wiped out. What our people worked for in the past
was now gone. Anyway, because of this technological gap, I meet the computers of the
70 and 80s based on the Z80 microprocessor with the BASIC programming language as
default. In the early 80s, a special version of computers were designed in Romania under
the name HC-85. Released on the market in the mid-80s, the HC-85 contained the Z80
microprocessor, 16 Kb Erasable Programmable Read-Only Memory (EPROM) and 48 Kb
Random Access Memory (RAM). In short, it was probably inspired by and compatible
with the Spectrum series (ZX Spectrum) of 8-bit home personal computers developed
by Sinclair Research. The Z80 CPU clock was around 3.5 MHz, which was a lot. One
can just imagine, a capability of 3.5 million instructions per second. In the late 80s, Z80
reached clock ticks of 8 MHz by the end of development of this CPU series. In the 90s,
when I had Z80 and BASIC, the rest of the world, even in Romania, already had Pentium
(586) computers with CPU clock around 66 MHz, and the MS-DOS operating system. As
a small note, “Pentium” was a name indicating the fifth generation of×86 architecture-
compatible microprocessors produced by Intel. Now, with above 3 GHz CPU clock ticks
and multiple cores, the speed of processing is inimaginable for the majority of us. A
clock speed of 3 GHz means 3 billion operations per second or 3000 million operations
per second (3,000,000,000 Cycles Per Second, or “cps”). Today the clock speed of CPUs
is so high that nobody even bothers talking about these astonishing facts of our times.
Nevertheless, my personal journey into the world of software begins in the mid-90s with
a bug in a game called “Savage” (probably made in the early or mid-80s), which was
loaded into the computer using audio tapes. In case of errors, the source code of certain
games was clearly displayed on the screen and it was also editable. Those who managed
to fix the bug, I still remember today, could type Load “” and the game would restart with

40 2 Philosophy and Discussions

the changes made over the source code. In my case it was a monkey-type modification
in which I deleted the name of the game “Savage” and replaced it with the word “Paul”.
When restarting, instead of the animation that zoomed in and zoomed out on the word
“Savage”, there was the word “Paul” instead. From here followed a period of three weeks
where I did nothing more than to tap like a monkey in that software, learning with a
dictionary, the word “FOR”, “TO”, “LOOP”, “DO”, “GOTO” and so on. That “Savage”
game changed my life. One addition to my shame, was the human–computer interaction
with the HC-85. It was brutal, through punches or love for the keyboard (that was the
whole computer) due to my frustration on the lack of knowledge or any kind of literature
on the matter. Today, literature exists, and what we need is intellectual ability, will and
the calling to it.

2.12 Conclusions

The raising of complexity in the realm of software has required the presentation of a wider
context. Explanations about programming languages included philosophical discussions
based on experience. The effects of software entropy are visible as software complexity
increases. A close connection between biology and software was the one argued here.
Thus, this chapter made a link between entropy in software applications and human nature.
There was also a talk of the increase and decrease of entropy in third party applications.
Using several examples, it has been shown how the update activities and operation of
an application can reflect universal rules that are widely observable in different frames of
reference. The information technology (IT) world is further presented through the prism of
art, which has taken root since the stage of transistor computers. Also, the main difference
between programming and scripting languages was described, as well as the role and
types of executable files. Towards the end of the chapter, a discussion about politics and
civilization sparkled some debates on the implications for the world of software. The
same implications were shown for human resources where the role and the environment
of the programmer was presented in the context of industry and research.

3Paradigms and Concepts

3.1 Introduction

Context is important and the meaning of some terms can be of great assistance to the
reader. Therefore, this chapter presents a useful introduction to programming paradigms,
as well as a brief description of the computer languages that are covered in this work. The
focus is made on imperative and declarative programming. Next, the computer languages
used here are listed and described in the following order: C#, C++, Java, JavaScript, Perl,
PHP, Python, Ruby and Visual Basic. Also, the principles behind computer language clas-
sification are presented objectively, with both concrete explanations and some criticism.
Consequently, a connection is further made between paradigms, computer languages and
their syntax. With reference to security, the fundamental composition of operating systems
is weighted against the makeup of standard third-party applications. In order to empathize
this contrast in a meaningful way, the differences between compiled languages and inter-
preted languages are presented at length. Interpreted languages pushed further discussion
on virtual machines, bytecode and the meaning of “Just In Time Compilation”. At the end
of the chapter a technical introduction is made by a simple “hello world” in all computer
languages, which also prepares the reader for the chapters ahead.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_3.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_3&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_3
https://doi.org/10.1007/978-3-031-23277-0_3

42 3 Paradigms and Concepts

3.2 The Story of Programming Paradigms

There are two main approaches to computer programming, namely the style of imperative
programming and declarative programming. Best-known imperative computer languages
are: ALGOL, Assembler, BASIC, C#, C++, C, COBOL, Fortran, Java, Pascal, Python,
Ruby. On the other hand, declarative programming languages are less known to the gen-
eral public and to some extent to many programmers. Declarative programming languages
include names such as: Erlang, Haskell, Lisp, Miranda, Prolog and even SQL. Hybrid
approaches that allow at least two paradigms are computer languages like: Perl, Java,
Ruby, Scala, JavaScript, and other computer languages, as this seems to be a constant
trend for the future. Today, we can witness a timid shift from imperative programming
to declarative programming. For instance, even old languages like Java are being updated
with the ability to support functional programming.

3.2.1 Imperative Programming

The meaning of the word “imperative” comes from “imperare”, the Latin word for “com-
mand”. Imperative programming is much like kitchen recipes and indicates how to reach
the result. Therefore, defines control flow as statements that change the program state.
It is the oldest type of programming and the most important that we have. Imperative
programming is characterized mainly by the assignment of values to variables. Imper-
ative languages are also divided into non-structural languages and structural languages
(Fig. 3.1).

3.2.1.1 Non-structural Imperative Languages
Non-structural imperative languages are dependent on absolute jump commands. Abso-
lute jump commands are instructions that lead to processing continuing at another point
instead of the next command. For example, the assembly language is imperative and
unstructured (Fig. 3.1).

3.2.1.2 Structural Imperative Languages
On the other hand, structural imperative languages are not dependent on absolute jump
commands and make use of control loops and structures. These use modern approaches
and their point is to avoid the complexity of jumps. After compilation, these become
essentially non-structural.

3.2 The Story of Programming Paradigms 43

44 3 Paradigms and Concepts

⏴Fig. 3.1 Paradigms, computer languages and their syntax. It shows the link between hardware,
computer languages, paradigms and syntax styles. Notice that low level computer languages are
imperative and unstructured. Some older high-level computer languages that are equiped with the
absolute jump commands, are in fact imperative and unstructured (ex. QBASIC). The bridge from
unstructured to structured also exists. Some of the most recent higher-level computer languages, are
equipped with absolute jump commands and functions at the same time (ex. VB6). Note that absolute
jump commands are known as “GOTO” in most high-level computer languages of the past, where
this keyword was able to move execution from the current line to an arbitrary line (eg. Inside a 100-
line implementation, “GOTO 10” can move execution to line 10, regardless of where the statement is
made). In the assembly language, the most well-known unconditional jump command is the “JMP”
mnemonic of Intel CPU’s. There are other types of jumps that represent conditional jumps, and these
represent a myriad of mnemonics in groups of two to four characters that all begin with the letter “J”
(eg. “JL”—Jump if Less, “JGE”—Jump if Greater or Equal, “JNLE”—Jump if Not Less or Equal,
and so on). In other CPUs, like Z80, the mnemonic for the absolute jump command is “JP”. From
firmware to firmware, these notations, or mnemonics, can be represented by different sets of charac-
ters. However, because the world works on Intel CPU designs, the word Assembly language is often
associated with Intel CPUs. Note that mnemonics means “memoria technica” or “technical memo-
ry”, and it refers to how information is written in the shortest way in order to be remembered without
information loss. In short, it is optimization of notation

3.2.1.3 Procedural Programming
Procedural programming includes structural imperative languages and non-structural
imperative languages. The procedural programming is the division of algorithms into
manageable sections referred to as sub-programs, routines, or functions. Procedural pro-
gramming was a crucial step in the prevention of human induced redundancies, namely
unnecessary code repetitions.

3.2.1.4 Event-Driven Programming
Event-driven programming is somewhere above the classical paradigms mentioned here.
However, event-driven including time-driven programming is a very important paradigm
that has led to Rapid Application Development (RAD). In the event-driven programming,
hardware events trigger pieces of code that often represent the virtual extension of the
user (ex. keyboard, mouse or non-user extensions like timers, etc.).

In other words, hardware events are bound to objects, which is why the paradigm is
called event-driven. Computer languages like JavaScript, Visual Basic, Visual FoxPro or
Visual C++, are only some of the examples that can be given as representative of this
programming style.

3.2.1.5 Object Oriented Programming
As the name suggests, instead of logic and function, this approach revolves around objects
(data structures) that contain data fields and methods. Some of the principles of object-
oriented (OO) programming include what is described as encapsulation, abstraction,

3.2 The Story of Programming Paradigms 45

inheritance, and polymorphism. Encapsulation protects data and functions from improper
access from outside of the object. In abstraction, only the internal mechanisms that are
relevant for the use of the object are shown. Inheritance refers to a hierarchical reuse of
code. Pieces of new objects are added to parts of older objects to form a more complex
object. The last of these well-known basic principles of object-oriented programming is
polymorphism. The term polymorphism has its origins in the Greek word “polymorphos”,
which means “many forms” (poly: many; morphos: shapes). First uses of the word poly-
morphism originated in biology, and the term is now often used in genetics rather than
information technology (IT). However, in computer science, namely in object-oriented
computer languages, polymorphism represents context-dependent behavior.

3.2.2 Declarative Programming

The name comes from “declarare”, the Latin word for “describe”. There are two main
approaches to declarative programming, namely functional programming and logical
programming. Behaviourally, a declarative style is highly satisfying and it gives the
programmer the impression he cheated the universe a little bit, which is in fact true.

3.2.2.1 Functional Programming

To understand and work with functional programming in a hands-on manner, please
open an Excel sheet! The relationship made between the formulas inside the cells
of an Excel sheet is in fact functional programming.

Functional programming is based on function calls, as the name says. Programming is
done by applying arguments to functions. Thus, programming is mainly based on argu-
ments. Arguments are the values injected into the input of the function. This type of
programming provides an answer to the question: what result do you want? It focuses on
what to execute, defines program logic, but not detailed control flow. The source code
of declarative programming is not straight forward and natural for humans, however, it
is short. It should be noted that functional programming is based on pure functions that
lack the ability to change the state of the program. The previous statement sounds truly
vague, however, clarifications are in order: (1) In pure functions the same inputs lead
to the same outputs. (2) Pure functions have no side effects. A side effect refers to the
change of attributes of the program outside the function, which are made from the interior
of the function. In other words, it refers to the change of attributes of the program that are
not contained within the function itself. Thus, side effects are changing the state of the
program. For instance, a function is impure if it modifies the value of variables that are
outside (global variables) the function. Also, a function can be impure if it uses, besides
the arguments, some In/Out stream values or some random values for the output of the

46 3 Paradigms and Concepts

function. The lack of side effects allows for a clean software with a lower complexity
level. Functional programming, by association, is similar to the structural programming,
where the level of complexity is lowered by the removal of absolute jumps. Thus, both
paradigms allow in the end for a decrease in entropy of software implementations. Note
that at machine level nothing really changes and all of this is helpful for the human mind
only. Nonetheless, pure and impure functions are discussed with examples in the next
chapters, where functions are presented in detail from simple to complex.

3.2.2.2 Logical Programming
Logic programming is a programming paradigm seen by many as an abstract model of
computation. In such computer languages, program statements express facts and rules that
are written as logical clauses with a head and a body. Logic programming is valuable for
complex reasoning which is difficult for humans to evaluate. PROgramming LOGic (Pro-
log) is among the programming languages that use this paradigm. Logic programming can
be summarized as a method of evaluation for the relationships between abstract objects.

3.2.3 The in Between

The question is: Can functional programming exist in imperative languages? The answer
is an obvious yes. Imperative languages have the ability to formulate a set of functions and
even have default built-in functions that can be used as functional programming. Thus,
imperative languages can be declarative also. The problem of declarative languages is
one related to the future, but not in a positive way. Declarative languages and declarative
programming in general is particularly useful and greatly optimizes working time, but in
the future it can have a very real consequence in terms of know-how for imperative pro-
gramming. Declarative programming is situated at the borderline between programming
languages and regular applications. To force an association, instead of the user pressing
the buttons, he writes line by line which buttons should be pressed. Thus, declarative pro-
gramming is a hard-to-do oversimplification of programming languages. Whether it is a
declarative or imperative approach, programming or scripting languages make use of both.
Today, in practice programmers no longer realize what the difference is. It should be noted
that in-deep discussions about programming paradigms are always highly subjective.

3.2.4 The Foundation

One detail to always remember is that machine code is imperative because the hard-
ware requires it. This is why, fundamentally, everything is imperative. However, having a
declarative model as the base of computing would be a possibility, especially for the field
of computer research. Hardware can be built to be modeled on declarative programming.
Instead of the classic CPU, one can imagine hardware structures that represent different
types of complex functions. I can go so far to say that neural networks may represent

3.3 Computer Languages Used Here 47

pieces of such declarative technology. By extension, our own brains perhaps are a kind
of declarative system, and yet, we build imperatively.

3.3 Computer Languages Used Here

Prior to a brief description, some clarifications about computer languages are needed. In
general, the syntax of high-level imperative computer languages is divided in two major
types, namely: the C-Like syntax and the BASIC-Like syntax. Two common terms are
encountered when it comes to computer languages, namely: compilers for programming
languages and interpreters for scripting languages. Classical compilers convert source
code into machine language which is OS-dependent. On the other hand, scripting lan-
guages of today are more sophisticated than the older versions. Scripting languages
convert their source code to byte code, which is then converted, as the program runs, into
machine instructions. Such examples can be found in computer languages like Python,
PERL and others. One may notice that Java works in the same way and here it is called
a programming language. In the following descriptions, computer languages are referred
to as they originally began with their providers, namely as scripting or programming lan-
guages. Today, the line between programming and scripting languages is a little more
blurry than in the past.

3.3.1 C#

C# (pronounced “C sharp”) is a general-purpose programming language first released in
2002. Like Java, C# too is a multi-paradigm language able to support object-oriented
and functional programming. C sharp syntax is like Java and therefore is similar to C and
C++. Because C# depends heavily on the .NET framework, the language can be described
as a cross-platform environment.

3.3.2 C++

The original version of C++ was first released in 1979. “C with classes” was the original
terminology used for what we know today as the C++ computer language, and it was an
extension of the C programming language. However, “C with classes” was renamed to
C++ much later in 1983. The “++” represents the increment operator and it points out that
C++ is version C plus one (please see the chapter related to operators). Thus, C++ roughly
means “one step higher than C”. Today, C++ is a general-purpose programming language

48 3 Paradigms and Concepts

and a multi-paradigm environment able to support object-oriented and functional pro-
gramming. As expected, C++ is a cross-platform environment and is the root syntax for
most languages in use today.

3.3.3 Java

Java is a class-based, object-oriented programming language first created in 1995. Java
syntax is similar to C and C++. It is a cross platform environment (Windows, Mac,
Linux, Raspberry Pi, etc.), and is able to make a variety of implementations on these
platforms. It is used for desktop applications, mobile applications, web applications, server
applications, games and so on. Java made history because of Java apps used for web pages.

3.3.4 JavaScript

JavaScript is a scripting language first created in 1995, and today is the most used
computer language in the world. The front-end of the Internet covers about 99% of all
machines that are considered general purpose computers. Thus, with few exceptions, the
Internet rests on the shoulders of JavaScript. This scripting language can be described
as a cross-platform and cross-browser environment. JavaScript is also a classic exam-
ple of multi-paradigm language that supports imperative, object-oriented, and functional
programming (it has first-class functions). The basic syntax is similar to both Java and
C++.

3.3.5 Perl

Perl is a general-purpose scripting language first created in 1987 for Unix. Today, Perl is
a cross platform computer language, used for critical projects in the public and private
sectors. Perl syntax is often mistaken with Raku, a new computer language derived from
Perl. Perl is procedural in nature, however, it supports object-oriented, procedural and
functional programming. Perl syntax has been accused by some of having “line noise”,
meaning that it uses special characters in front of variables and when longer expressions
are arranged on a single line, it looks like a random sequence of characters. However, this
“line noise” can be achieved in any language to a certain extent, and usually the style is
pushed by the most advanced programmers. Perl is among the next generation scripting
languages along with Python and others, that are in between classical scripting languages
and programing languages. Text manipulation capabilities and rapid development cycle
were Perl’s trademarks. In the past, it is possible that many of the methods for text
manipulations found at the time in Perl, have been tacitly adopted in other environments.

3.3 Computer Languages Used Here 49

3.3.6 PHP

PHP is a general-purpose scripting language designed in 1994. It is a multi-paradigm
language with a C-Like syntax. It encompasses paradigms such as imperative, functional,
object-oriented, procedural and reflective styles. PHP runs on all important platforms
(Windows, Linux, Unix, MacOS, etc.). Generally, it is used on web servers as a daemon
or as a Common Gateway Interface (CGI) executable. The role of PHP is not reserved
only for back-end applications. Front-end applications are also possible, but outside of
the original scope of PHP. In contrast to JavaScript, PHP is for at least two decades the
other pillar of the Internet.

3.3.7 Python

Python is a scripting language first created in 1991. Like the great JavaScript, Python too
is a multi-paradigm language able to support object-oriented and functional programming.
It is a cross platform environment (Windows, Mac, Linux, etc.) and is able to make
a variety of implementations on these platforms. Python has a basic-like syntax with
mandatory indentation. The success of Python is owed in part to a vacuum left by Visual
Basic 6.0 in mid-2000s. Both Python and Visual Basic were released in 1991. Today,
Python is a special scripting language at the borderline with programming languages that
uses ancient malware tactics to speed up its execution. It uses the conversion of bytecode
into binary machine code.

3.3.8 Ruby

Ruby is a scripting language first released in 1995. The language is developed for
GNU/Linux, however, today it is a cross platform environment that works on Windows,
MacOS, DOS, Unix, etc. It supports multiple programming paradigms. Ruby uses both
functional programming and imperative programming. In Ruby, everything is an object,
including primitive data types. Like Python, the syntax of Ruby is very close to the BASIC
syntax. The lesson here is: If one knows BASIC than one easily understands Python or
Ruby.

3.3.9 Visual Basic

Visual Basic was first created in 1991. It is a multi-paradigm language and is able to
support object-oriented programming and multi-threaded applications. Visual Basic com-
prises of the most recent version, namely Visual Basic 6.0 (VB6) and Visual Basic for

50 3 Paradigms and Concepts

Applications (VBA). Both of them have the same syntax, however, VBA is a scripting
language and VB6 is a programming language. VBA is used throughout the Microsoft
Office package and is the most valuable scripting language in all companies in the world
since its inception. The level of automation that can be achieved with VBA exceeds
all expectations, especially for Excel or PowerPoint. VB6 was for almost a decade the
most popular programming language in the world and it was and still partially is used
for critical projects in the public and private sectors. Today it is known as the prototyp-
ing language because the BASIC syntax allows one to focus on the problem rather than
the syntax to be formulated. VB6 is designed for Windows but can also work on Linux
through the well known “Wine” environment.

3.4 Classification Can be Misleading

One likes to strictly categorize information for a better exposure of important facts to
our peers. This need to categorize is deeply ingrained in the human nature. Therefore,
the classification made above, cannot be that contrasting in reality (ex. programming vs
scripting languages). Why? one may ask. Fundamentally, all these computer languages
are roughly composed of syntax + semantics + toolset. Syntax defines the structure
and grammatical rules in a computer language, whereas semantics defines the meaning
of different combinations of words and symbols. There are many beautiful definitions
for what semantics is. Here a new definition can be tried: Semantics is the assignment of
meaning to transitions between groups of symbols in the syntax. The point of the above is
that in the end, all that matters is the toolset built around the syntax. If a compiler is built
for that syntax, then it is a programming language, and if an interpreter is built instead,
then it is a scripting language. If the toolset contains both a compiler and an interpreter,
then it can be part of both categories. With knowledge, any computer language that has
full access to the Random Access Memory (RAM) and the Solid State Drive (SSD)/Hard
Disk Drive (HDD), can create another computer language. Thus, high-level languages can
recreate low-level languages or new high-level languages. Moreover, mixed applications
can be made using multiple programming languages and intermediate communication
media, from strings as messages between processes to whole complex objects. Even files
and registry values can be used as messaging media.

3.4.1 A Critique

All the power of compiled languages and the respect for these tools comes from the possi-
bility of creating software applications without dependencies or with as few dependencies
as possible. In contrast to the above, interpreted languages are fully dependent on the

3.4 Classification Can be Misleading 51

presence of other applications. On one hand, because of the way operating systems are
built and equipped today, these application dependencies that expand from interpreted lan-
guages are less and less visible to the average developer. Nevertheless, these dependencies
exist under different forms, such as: Java Virtual Machine (JVM) of Java Runtime Envi-
ronment (JRE), Common Language Runtime (CLR) of .NET framework, Android RunTime
(ART), or other representative names for an application runtime environment (Fig. 3.2).
On the other hand, the lack of dependencies allowed compiled languages to be associ-
ated with freedom and power. A dependency difference between interpreter-based and
compiled-based applications has raised other issues in the programming community, such
as the sense of belonging to different sides. Psychologically, it has become ingrained that
programming work is done in programming languages due to the similarity of terminology
between “programming” and “programming languages”.

To avoid this association of terms, companies have started changing titles over time,
from programmers to something that cannot be associated with programming or script-
ing, something neutral like “developer” for example. Moreover, to unfocus the world of
software from programming languages, the same situation applies to the word “program-
ming”, which is now accompanied by the synonymous word “coding”. However, it is
good to clarify that in both programming languages and scripting languages, a program-
mer makes software programming. As a critique, the wannabe scripting languages that
constantly aspired to be called programming languages instead of what they are, now
are found in a futile position because of JavaScript. The wonderful JavaScript is by far
the most powerful computer language in the world. It can be added that it has no direct
access to hardware and the security measures isolate it from the operating system. Yet, it
continues to be called a scripting language with the most well-deserved pride: It drives
the biggest slice from the Internet.

3.4.2 Which Computer Language is Better?

Which computer language is better is a subjective question without a clear answer,
because there are particular situations in which one computer language behaves better
than another computer language. In general, all computer languages are very close in
value and the paradigms used are often screens used as an excuse to demonstrate some
kind of superiority. In a more relaxed manner, it can be said that there are no big differ-
ences between computer languages, and differences that exist are significant, as previously
mentioned, only in certain specific circumstances. Moreover, the access to the Application
Programming Interface (API) of the operating system makes these computer languages
almost equally powerful. Please note that programming based on APIs is a paradigm in
itself. In fact, the API paradigm may reside under declarative programming, because the
programmer indicates to the operating system what result it wants. As previously stated,
this declarative paradigm is “cheating the universe”. In the end, perhaps it is better to use

52 3 Paradigms and Concepts

3.4 Classification Can be Misleading 53

⏴Fig. 3.2 Bytecode portability and compilation versus interpretation. In an abstract fashion, it shows
how most interpreted computer languages work today. It starts from the source code written by the
programmer, which is assumed to be compiled to bytecode. The bytecode represents an abstraction
of the initial source code. Bytecode is then used as it is on any platform, because there, whatever
the platform is, it is met by an adaptation of the same virtual machine. This virtual machine makes
a combination between interpretation and sporadic compilation (Just In Time compilation—JIT) to
increase the execution speed of the software implementation. Note that “native code” and “machine
code” have the exact same meaning across all figures that are alike. This particular figure contains
the words “Native code” instead of “Machine code” in order to fit the text inside the horizontal com-
pressed shapes. Note also that in a different context, “native code” may refer to the only language
understood by some abstract object. For instance, Java bytecode is the “native code” to the Java
Virtual Machine. As it was the case in the old days, some interpreters of lower performance (not nec-
essarily VMs) made a direct interpretation of source code, without an intermediate step like the use
of bytecode. In principle, virtual machines could be designed to directly interpret high-level source
code, short circuiting the source code security through obscurity or the multi-step optimization, or
both. Thus, in such a case the “native code” would be the Java high-level source code. Also, please
note that the abstract representation of the modules shown in the figure indicates a lack of extreme
contrast between what is commonly called an interpreter or a compiler. That is, the compiler also
does a little bit of interpreting and the interpreter also does a little bit of compiling

the API, than to use a bad implementation that endangers the whole system. It’s cleaner
that way.

3.4.3 The Operating System Versus the Application Makeup

The world has less programing languages than previously believed. If one wonders why
today there are no more fatal errors because of third party software applications, is that all
applications are in fact safely interpreted. Interpretation has a positive side indeed. Third
party software should not have the same makeup as the operating system files. This is of
course debatable. If the prevalence of scripting languages is bad or good, it remains to
be seen. However, perhaps it is a very good idea to detach all non-OS applications from
the OS make-up. Until a few years ago, both system files and third-party applications
were found on equal footing (still are and will be if need be). Thus, many OS errors were
frequently seen. With interpreted computer languages these system errors are less frequent
today because the make-up of third party applications is not the same as the compiled
files of the operating system. With interpreted computer languages, the new configuration
(make-up) is the application runtime environment and bytecode, which is then safely
compiled or converted step by step to machine code and executed concomitantly.

54 3 Paradigms and Concepts

3.4.4 The Virtual Machine: A CPU for Bytecode

A virtual machine (VM) is a software application that is able to partition the hardware
resources of a physical computer. Where the hardware allows, a computer can run multi-
ple instances of virtual machines. Thus, a virtual machine can be called a guest machine
and the physical computer it runs on can be called a host machine. The VM mentioned
above is of the complex type, from which a nested general purpose computer emerges.
Thus, a VM software application is capable of hosting an entire operating system. VMs
come in different shapes, forms and separate concepts. Thus, other VMs are much sim-
pler and their existence has a specific purpose, less complex than that discussed above.
For instance, such a VM can be a part of a runtime application. VMs can include either
emulation, virtualization, or both. Most VMs apply a healthy combination of both where
appropriate, by using emulation and/or virtualization. Note that emulation means a soft-
ware simulation of hardware, while virtualization means a software allocation of hardware
resources to a software layer separate from the main operating system. Unlike VMs which
deal with complex hardware virtualization and/or emulation, the VM of a runtime appli-
cation centers around the interpretation of bytecode. The instruction set that makes up the
bytecode is universally compatible with this abstract CPU (i.e. VM), which is required
to function the same on every physical machine. In a broad sense, the VM is a software
processor driven by bytecode, just as a physical CPU is driven by machine code.

3.4.5 Compiled Languages

Classic compilers, or pure compilers, convert high-level source code into object code
(machine code) that is inspected and integrated by a linker into an executable file that is
platform-specific. Compiled languages need compilation before execution. Any changes
require new compilations. Executable files provided by classical compilers run directly
on the host machine and provide control over various hardware aspects such as memory
management and/or CPU usage.

3.4.6 Interpreted Languages

Impure compilers convert high-level source code into pseudo code, which is then inter-
preted by an interpreter to run an application. The pseudo code is often abbreviated as
P-code and the term has been replaced by the word bytecode. Bytecode is platform neutral
and helps in the famous “write once, run anywhere” approach for cross-platform execu-
tion. A Runtime Environment (RE) usually includes a virtual machine that allows for high
portability because it can be designed to exist on multiple operating systems. Thus, the
same virtual machine is tailored to the type of platform it runs on. A virtual machine
is the bytecode interpreter and runs on a linear instruction flow. To make a reference to

3.4 Classification Can be Misleading 55

a specific computer language, let us consider Java. Those using Java, will write source
code to be ultimately used by the Java Virtual Machine. Nonetheless, some computer lan-
guages can have both compiled and interpreted implementations. However, most of the
time those with the compiler option are not pure compilers in the classical sense.

3.4.7 Just in Time Compilation

Just In Time Compilation (JIT) represents the virtualization part of VM. JIT is an essential
part of the runtime environment and it refers to a performance driven compilation made
during the execution of a bytecode-based software application. JIT compilation translates
bytecode into machine code instructions that are optimized for the CPU architecture of
the host machine. Examples of JIT environments include: Java Virtual Machine (JVM),
Common Language Runtime (CLR) or Android RunTime (ART), and others.

3.4.8 Another Critique

Most sources describe the process of converting high-level source code to bytecode as the
“compilation process”. But is it? The conversion of high-level source code to bytecode
is called compilation because the reasoning behind it is that it compiles for an abstract
CPU, namely the virtual machine. Compilation classically means “the end of the line”, as
we see it with pure compilers. However, bytecode (pseudocode or P-code) is not “the end
of the line”. Bytecode is the generalized version of the implementation found in the initial
high level source code. Thus, the translation from source code to bytecode is a conversion
with interpretation rather than a classical compilation. Based on the above rationale, the
term “compilation” of the source code to bytecode is relative and improper. The moment
of conversion and compression of bytecode into machine code would represent both inter-
pretation and true compilation, as it adheres to the classical meaning of the term found in
pure compilers. Thus, as a critique, I would have to say the reference system should be
upside down, where the conversion of source code to bytecode can be called “interpreta-
tion” and the conversion of bytecode to machine code can be called “interpretation and
compilation”. At best, computer languages that use this source-bytecode-native approach
can be said to be either double-interpreted-compiled, or semi-compiled.

3.4.9 A Security Thought Experiment

Despite a negative position about the attack on binary executables, expressed in the pre-
vious chapter (Philosophy and discussions), I see some merits in its absence only for
certain situations. Bytecode also can be the bridge of security checks without the need
for complex implemented privileges in the operating system. In other words, without
the pure binary executables, the security privilege check could be done directly by these

56 3 Paradigms and Concepts

application runtime environments. But why do I say this? Pure binary executables provide
tremendous power over the operating system when they have administrator permissions.
Executable files of this type (i.e. binary) are executed on the operating system as they
come from the source without any security checks (with the exception of antiviruses). Let
us imagine that in a compiled language, the compiler would be responsible for ensuring
the security checks for the operating system on which the binary executable will be run
(this is hypothetical). But, this compiler is in the hands of the hacker, who can modify
the compiler to bypass these security measures, obviously. Now let us imagine a compi-
lation situation in P-code (bytecode). Let us imagine that in an interpreted language the
compiler is also responsible for the security of the operating system on which it will be
run (exactly as in the previous example). But, again this compiler is in the hands of the
hacker who can modify the compiler to bypass these security measures. However, the
P-code (pseudocode) is the end of the line for what the hacker can do. Thus, P-code is
the package that will be run on the destination machine, and not a pure executable. The
application runtime environment is adapted and made for each operating system. Thus, at
the destination, regardless of the operating system, the application runtime environment
will interpret the unknown P-code to transform it into compatible machine code for the
platform it belongs to. This interpretation of the P-code can no longer be touched by the
hacker, and the interpretation made by the application runtime environment from the ven-
dor, can perform security checks before execution. Thus, the security system cannot be
manipulated, except by modifying the source code of the application runtime environment
at the company that produces it (almost impossible, I should hope).

3.4.10 About Security Privileges

So far an implementation of security privileges over the application runtime has been
suggested. But what happens when the privileges are elevated for a pure executable? Pure
executables running with administrator privileges have near to absolute power over the
operating system. These security considerations are straightforward and administrators
can rarely ignore them. The most dangerous situations in security, however, are those
of granting privileges by induction. What do I mean by this? In classic scripting lan-
guages, the source code is directly interpreted and executed by the application runtime
environment without using an intermediate approach like bytecode. If the executable file
that represents the application runtime environment holds administrator rights, then any
script has full rights to manipulate the operating system through this executable file. An
ill-intentioned script application can end up having the powers that any binary executable
holds. Thus, a script application with admin rights can be more dangerous than a pure
executable with lower privileges.

3.5 The Quick Fix 57

3.5 The Quick Fix

In order to get more familiar with all the programming and scripting environments used
here, a first example is given below. This example is the classical “Hello World” shortcut
that allows for a quick fix for the very first positive experience. Any of the examples from
above should display the ‘Hello World’ text in the output of these computer languages
(Additional algorithm 3.1). Across the chapters, all the examples will be given in a total
of nine programming and scripting languages, namely: JavaScript, C++, C#, VB, PHP,
PERL, Ruby, Java, and Python. Depending on the syntax and the constraints imposed by
the environment, there are a few variations regarding the way a source code may look
like for the same exact result in the output. Note that, unless “<script></script>” tags are

<script>
alert("Hello World");

</script>

using System;
class HelloWorld
{

static void Main()
{

Console.WriteLine("Hello World");
}

}

#include <iostream>
using namespace std;

int main()
{

cout<<"Hello World";
return 0;

}

Private Sub Form_Load()
MsgBox "Hello World"

End Sub

Additional algorithm 3.1 It shows the “Hello world” example for all computer languages used in
this work. This is intended as a positive first introduction. Note that the source code is in context and
works with copy/paste

58 3 Paradigms and Concepts

<?php

echo "Hello World";

?>

print "Hello World";

puts "Hello World"

public class Main
{

public static void main(String[] args)
{

System.out.println("Hello World");
}

}

print ('Hello World')

Additional algorithm 3.1 (continued)

used, JavaScript implementations in this work were executed using the “Rhino” engine
(i.e. JavaScript (Rhino) version).

The Integrated Development Environment (IDE) is the main tool of a software devel-
oper. It consists of an editor equipped with error handling capabilities and the possibility
of two-ways communication with the compiler or/and the interpreter. Any IDE is linked
to a console terminal which is able to display the output, namely the errors encountered
by the execution process or the data resulting from the execution of the source code.
Programming and scripting languages have a specific keyword for displaying data in the
output, namely the console of the IDE. For instance, in JavaScript there are two possibil-
ities, either the data can be shown in a pop-up window or in the console log (usually the
console log of the browser). In Visual Basic, all versions, the possibilities to show data
are similar to those seen in JavaScript, namely a pop-up window or the console.log of the
IDE. On the other hand, PHP is a modern scripting language that is usually found on a
distant server (a computer). Execution of PHP scripts is done by remote requests or by
local executions. Also, the PHP output is displayed either to a local console or to a remote
console connected to the server system. In web development, the output of PHP is given
to the client, usually an Internet browser, or less often to an IDE of a computer language.
In the case of PHP, the keywords used for displaying data in the output, are either echo or
print. The same is true for PERL (print), Ruby (puts), or Python (print). Therefore, with

3.6 Conclusions 59

some exceptions, there is a kind of universality when it comes to the most important key-
words across all of these programming and scripting languages. For this reason, source
code made in one of the computer languages is portable to other computer languages with
ease.

3.6 Conclusions

Most computer languages have the same purpose, namely the instruction of a general
purpose computer. However, the substrate on which these high-level computer languages
work is fundamental and it makes the difference between freedom and confinement, or
more specifically between compiled vs interpreted. Which of the two is primary is a dif-
ficult thing to appreciate. On the one hand, freedom (compilation) is risky because it is
able to alter established and proven constructs (i.e. the operating system) and push for
their improvement or destruction. On the other hand confinement (interpretation) protects
established and proven constructs from destruction and is relatively unable to push for
their improvement. The real question in this case is: do some constructs require improve-
ment after a certain complexity and reliability is reached? The above context prompted a
brief and concise discussion about paradigms and computer languages used in this work,
such as: Java, JavaScript, Python, C#, Perl, PHP, Ruby, and Visual Basic. Computer lan-
guages have been presented in a subjective light, which casts a shadow over the certainty
and contrast of their classification. A brief description of compiled languages outlined the
composition of an operating system, whereas a more detailed presentation about inter-
preted languages showed the makeup of third-party applications. This description made
over the interpreted languages covered explanations of runtime applications and their vir-
tual machines, bytecode, and Just In Time compilation modules. Also, at the very end of
this chapter, the first technical introduction was made with a “hello world” approach.

4Operators and Expressions

In most programming languages, an expression is a combination of operators, con-
stants, and variables (i.e. a piece of code) that evaluates to a value based on a rule
of precedence (order of operations). In contrast, a statement refers to action, that is,
a piece of code that executes a specific instruction/task.

4.1 Introduction

Our written languages and high-level computer languages obey similar laws because they
must be understood by humans. In written languages, formulation of statements requires
meaningful words in a well established sequence. In mathematics, some of these meaning-
ful words are represented by specific symbols known as operators, which is why, among
others, mathematics is called a language. Computer languages have taken over and used
most of these symbols from the field of mathematics, with the goal of formulating state-
ments for machines. Thus, in this chapter, all important operators are discussed in detail
and representative examples are provided. Also, the corresponding symbols used in each
computer language to represent the operators are shown. More interesting operators are
considered for in-depth discussion, such as the power operator, the modulo operator, the
unitary operators, the string operator, the repetition operator, and the concatenation oper-
ator. Next, three types of assignments are explained, namely the simple assignments, the

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_4.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_4&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_4
https://doi.org/10.1007/978-3-031-23277-0_4

62 4 Operators and Expressions

aggregate assignments, and the multiple assignments. The chapter further shows exam-
ples of operator precedence and associativity, where a table of operator precedence and
associativity is built for all general purpose computer languages.

4.2 Operators

Generally, operators are the symbols for action. The word “operator” comes from the Latin
word “operari” that means “perform”, “action”, or “work”. Among the normal operators,
there are arithmetic, assignment, comparison, logical, and concatenation operators. Of
course, there are also special operators, however, these are not discussed here. In the case
of operators, special characters are used. These special characters contain symbols used
in mathematics that specify the type of calculation to be performed within an expression.
Depending on the computer language, the operators may look a little bit different. How-
ever, most often than not, these representative characters are chosen by the designers of
computer languages; especially if the operators in question are less frequently used or are
new.

4.2.1 Arithmetic Operators

The most basic operators are the arithmetic operators, which are used to perform fre-
quently needed mathematical operations. This means that the first arithmetic operators to
be discussed are: addition, subtraction, multiplication, division, exponentiation, incremen-
tation, decrementation and other special operators like modulo. While all other arithmetic
operators use at least two operands, the incrementation and decrementation operators are
unary operators that add or subtract 1 from their only operand. As a side note, a unary
operation is an operation with only one operand. In the case of numeral systems, a unary
numeral system is the simplest numeral system to represent natural numbers. In the case
of functions, unary functions are those functions that take only one argument.

4.2.2 Assignment Operators

Assignment operators are used to assign values to variables. The list of all assignment
operators is large. With the exception of the equal operator by which the normal assign-
ment is and was done, all other operators are complex and consist of two different
characters. Namely, a character usually from the set of arithmetic operators accompanied
by the assignment operator with the equal sign. These are called aggregate assignment
operators. These compound assignment operators represent a relatively new and sophis-
ticated evolution trait in computer languages, as there are older computer languages that
lack support for aggregate assignment (eg. VB6).

4.3 Operator Symbols 63

4.2.3 Relational Operators

As the name indicates, relational or comparison operators are used to compare two values
and return a boolean. Important comparison operators are: Equal to, Not equal, Greater
than, Less than, Greater than or equal to, Less than or equal to. With the exception of
Equal, Greater than, and Less than, which have deep roots in mathematical notation and
are as sacred as the arithmetic operators, the rest of the comparison operators support
artistic representations with symbols chosen by the makers of a computer language.

4.2.4 Concatenation Operators

The concatenation operators are able to combine two string values into one. As a method
of code optimization, some computer languages use the same symbol for both addition
and concatenation. On the other hand other computer languages preserve the separation
of the two operations by using different symbols. The two approaches and their important
effects are discussed at length in the “Evaluations of expressions” subchapter.

4.2.5 Logical Operators

Logical operators are a subset of operators, which are used to connect two or more expres-
sions. For instance, important logical operators are: equality, inequality, logical NOT,
logical AND, logical OR, or conditional selection. These operators are found in the syntax
of all programming or scripting languages. The following shows how operators look like
in multiple programming and scripting languages.

4.3 Operator Symbols

Up to this point, the types of operators have been presented and discussed without any
reference to the representative symbols. The symbols used for these operators in all the
computer languages are fully shown in a comprehensive manner in the tables below. In the
case of fundamental arithmetic operators, the symbols for addition, subtraction, multipli-
cation and division are very well grounded in mathematics and therefore are shared above
all computer languages. Because of their particularities, several interesting operators will
be discussed accordingly because of their legacy issues in the field of mathematics or the
beginnings of modern computers.

64 4 Operators and Expressions

4.3.1 Power Operator: The Curious Case of Exponentiation

Exponentiation is the operation in which a value is multiplied by itself a certain number
of times. In high-level computer languages, such an operation is difficult to implement on
machines without other “action” operators. As mentioned above, the symbols for basic
arithmetic operators are preserved among computer languages and machines (Table 4.1).
However, one of the exceptions is the symbol for exponentiation. In mathematics, expo-
nentiation lacks any representative symbol and it is expressed by a base number and the
relative top-right position of the power number:

basepower ; bp

This is known as “b raised to the power of p”. The lack of an exponentiation operator
in mathematics, over time has led to computer languages that represent the exponent
by using different types of symbols. It can be rightly said that different symbols for
exponentiation create confusion in the minds of all beginners. Most computer languages
use the multiplication symbol in a group of two consecutive characters, namely “**”. On
the other hand, in VB the exponent is represented by a single symbol called a Caret—
circumflex accent, namely “^”. Moreover, computer languages like Java and therefore by
automatic extension C#, lack an exponent operator symbol and use the “Math.pow(base,
power)” method. In all these representations, the BASIC family of computer languages
have by far the best representation for this operator.

One thing to note is that the lack of a non-critical operator is usually compensated
by a built-in function. Control structures can be used to replace the exponent operator
for computer languages that lack built-in functions for such cases (please see the next
chapter). Thus, the exponentiation operator can be viewed as a semi-critical operator
because it can be computed by using control structures. Other, less critical arithmetic

Table 4.1 Critical Arithmetic Operators. These operators can be safely called the primitive opera-
tors as they are fundamental to every operation (especially addition and subtraction). The symbols
for Addition, Subtraction, Multiplication, Division and Exponentiation, are shown for each computer
language used in this work

+ - * / ^
+ - * / **
+ - * / **
+ - * / **
+ - * / **
+ - * / **
+ - * / none
+ - * / none
+ - * / none

4.3 Operator Symbols 65

Table 4.2 Concatenation, repetition and non-critical arithmetic operators. Some of these operators
can be considered advanced operators because they are borderline constructs with built-in functions
(notably these operators are: Modulus, Concatenation, Repetition). The Increment and Decrement
operators are part of the list of primitive operators continued from the previous table. Briefly, sym-
bols for Modulus, Concatenation, Repetition, Increment, Decrement, are shown for each computer
language used in this work

Mod none none (+1) none (-1)
% + * none (+1) none (-1)
% + * none (+1) none (-1)
% . x ++ --
% . none ++ --
% + none ++ --
% + none ++ --
% + none ++ --
% + none ++ --

operators can be discussed, like modulus, increment and decrement (Table 4.2). Here,
these are named non-critical operators because some of them can be partially replaced by
common mathematical expressions that use critical arithmetic operators. Here, they are
called noncritical operators because some of them can be partially replaced by ordinary
mathematical expressions that use critical arithmetic operators.

4.3.2 The Modulo Operator

Modulo is one of the most elegant, practical, and less used operators out there. Thus,
this beautiful operator deserves some details. The word “modulus” comes from Latin,
which means “small measure”. Essentially, modulo is actually a measure, as the meaning
indicates. Thus, modulo measures the reminder of a division. To provide a graphical
example, please consider two sticks: one that is very long and the other one that is very
short. The questions that modulo will ask, are: What length remains on the long stick
once the short stick is used to measure the long stick?

How many small sticks is the length of the long stick? How many small sticks are
needed to cover the long stick? What is the length remaining on the long stick that is less
than one small stick? Let us consider that the long stick is 10 centimeters (cm) in length,
while the short stick is 4 cm in length. Thus, only two short sticks can cover the long
stick, and the remaining length is 2 cm. Please consider a as the long stick and b as the
small stick. Then, a relation can be formulated to better explain the modulo operator:

r = a − m × b

66 4 Operators and Expressions

where r is the remainder and m is the multiplier. Because the order of operations matters,
there is no need for parentheses in this expression (the result of the multiplication m×b is
then subtracted from a). Calculation of modulo implies the maximization of the multiplier
(m), such that the result of the multiplication (m×b) provides a value as close as possible
to a, without exceeding the value of a. Thus, the complex operation described above is
written as follows:

a mod b = r

Which means:

10 mod 4 = 2

Above, number 4 may fit into number 10 only 2 times. Thus, the reminder can be
computed as: r = 10 – 2× 4 = 2. Other helpful examples can be:

11 mod 4 = 3

where number 4 may fit into number 11 only 2 times. Thus, the reminder can be computed
as: r = 11 – 2 × 4 = 3. In the next example a = 12 and b = 4:

12 mod 4 = 0

where number 4 may fit into number 12 exactly 3 times. Thus, the reminder can be
computed as: r = 12 – 3 × 4 = 0. In the next example a = 15 and b = 5:

15 mod 5 = 0

where number 5 may fit into number 15 exactly 3 times. Thus, the reminder can be
computed as: r = 15 – 3× 5 = 0. In the next example a = 3 and b = 2:

3 mod 2 = 1

where number 2 may fit into number 3 only 1 time. Thus, the reminder can be computed
as: r = 3 – 1× 2 = 1. In the next example a = 5 and b = 2:

5 mod 2 = 1

In this last example from above, number 2 fits into number 5 only 2 times. Thus, the
reminder is: r = 5 – 2× 2 = 1. The stick example can also be viewed from another
angle, namely: Substract b from a until a < b: a = 10 cm; b = 4 cm; a− b = 6 cm;
a = 6 cm; a− b = 2 cm; a = 2 cm; a < b). Notice that a function is required for
the above operations, otherwise the modulo operator is difficult to implement. Thus, a
self-restriction is required where this operator can be called a semi-noncritical operator

4.3 Operator Symbols 67

instead of a noncritical operator. In the list of computer languages provided in this work,
there are only two representations for the modulo operator. A representation that is closer
to the mathematical notation is the ‘Mod’ character set which stores the symbols for
the letter ‘M’, ‘o’ and ‘d’. The other representation uses only one symbol, namely the
percentage symbol “%” (Table 4.2). Sometimes in computer languages not discussed here,
the symbol “|” is used, or the “rem” group of characters are used (“rem” is short for the
word reminder). In time, the modulo operator was less standardized and less used at the
most basic level in different implementations. Because of this, modulo has been expressed
in different ways over time. Thus, different individual symbols or groups of symbols were
used to represent the modulo operation.

4.3.3 Unitary Operators

Other important non-critical operators are the increment and decrement operators. Some
computer languages from the list, like VB, Ruby and Python, take no advantage from the
increment and decrement operators, whereas the complementary side of the list does allow
from these operators to exist. Computer languages that lack the increment and decrement
operators can simply add one or subtract one from a variable (eg. +1 or −1 form an
integer value). These two antagonist operators can be helpful to avoid the addition of
new variables within some professional-like implementations. Examples follow in later
chapters.

4.3.4 The String Operator

The last operators that “are of pure action”, are the concatenation and repetition operators.
The concatenation operator is responsible for adding two texts (joining string values) into
one and the repetition operator is responsible for duplicating a text (a string value) a
number of times.

4.3.5 The Repetition Operator

The repetition operator is a rarity among computer languages, but a future certainty in my
subjective opinion. Although any programmer can feel the repetition operator as a natu-
rally occurring operator, it is only present in computer languages such as Ruby, Python
and PERL. The repetition operator is represented by multiplication as it makes sense to
everyone. However, two different symbols are used, namely: “*” for Ruby and Python,
and “x” for PERL, which is actually closer to mathematical notation. Other computer

68 4 Operators and Expressions

languages prefer different tactics instead of the repetition operator. For example, a com-
puter language like PHP lacks the repeat operator and instead uses a built-in function
(str repeat(“text”,10); which repeats the word “text” ten times). Computer languages like
Java and JavaScript use object methods (“text”.repeat(10);), instead of the repeat operator.
In C#, there is “string x = new string(‘text’, 10);”, where x is a new string variable that
contains the word “text” ten times. Notice that computer languages that lack an operator
use methods to fill the gap. On the other hand, the lack of the repetition operator is under-
standable, as it has in fact the behavior of a function rather than an operator. Also, is not
of critical importance, because it can also be replaced by ordinary mortals which are able
to build external functions with control structures inside. However, the repeat operator is
very useful to have.

4.3.6 The Concatenation Operator

A string concatenation is the operation of joining one or more sequences of characters into
one. In other words, the concatenation of three strings, a and b and c, is the sequence of
symbols in a followed by the sequence of symbols found in b, followed by the sequence
of symbols from c, and is denoted as:

a.b.c

Consider that a represents the word “Stephen”, b represents the word “The”, and finally,
c represents the word “Great”. This concatenation yields:

a.b.c = StephenT heGreat

whereas a switch yields:

b.c.a = T heGreat Stephen

Concatenation is also associative, namely:

(a.b).c = a.(b.c)

Notice that the order of these strings on the left side must be the same as the order
of the strings on the right side. This observation is important for the relational operators
that are discussed next. The concatenation operator is represented by at least three well
known symbols, namely: “and” (&),“dot” (.) and “plus” (+). The “&” symbol is used by
the BASIC family of computer languages and is particularly intuitive, while the “.” sign
has its origins in mathematics and it is used by Ruby and PERL. The other computer

4.3 Operator Symbols 69

languages use the plus sign “+”, both for the addition operation and for the concatenation
operation.

4.3.7 Relational and Logical Operators

The last operators discussed here are the relational and logical operators that are crucial
for control structures (see next chapter). Relational or comparison operators are able to
compare the values of two operands, namely between what is to the left of the operator
and whatever is to the right of the operator. On the other hand, logical operators can
bind two or more relational operations together. The symbols for the relational operators
are universal among computer languages with a few exceptions (Table 4.3). In short, the
equality operator is represented in all computer languages (used here) by two characters
that encode the equal symbol, namely “==”. This is likely done to differentiate between
control structures and assignments (Please see the next subchapter for clarification). How-
ever, the two symbols side by side have their roots in the field of mathematics and their
meaning is “relational operator”.

There are two exceptions to this apparent rule. These exceptions point to the BASIC
family of computer languages which denote the equality operator by using a single char-
acter with the equals symbol. The other exception is the “not equal” relational operator,
which in the BASIC family of computer languages is written as “<>” and in other com-
puter languages is written as “!=”. In VB, using the less than symbol “<” followed by
the greater than symbol “>” is more intuitive because it implies that if the value is less
than or greater than, it cannot be equal. In contrast to the above meaning, the excla-
mation point “!” followed the equal symbol “−”, directly indicate “not equal”. Another

Table 4.3 Relational operators. Relational operators which are also known as comparision opera-
tors, are used for comparing the values of two operands. Briefly, symbols for equality, inequality,
less than, greater than, less than or equal to, greater than or equal to, are shown for each computer
language used in this work. The square brackets in the table cells indicate the optional representation
of the operands

==[eq] !=[ne] <[lt] >[gt] <=[le] >=[ge]
= <> < > <= >=
== != < > <= >=
== != < > <= >=
== != < > <= >=
== != < > <= >=
== != < > <= >=
== != < > <= >=
== != < > <= >=

70 4 Operators and Expressions

feature worth mentioning is that PERL relational operators also have a mirror in groups
of two letters. For example, the equality operator can be written as “eq”, not equal as
“ne”, less than as “lt”, greater than as “gt”, less than or equal to, as “le”, and as probably
expected, greater than or equal to, is written as “ge”. Finally, as mentioned above, the
logical operators are the last to be mentioned (Table 4.4). Logical operators either use
symbols outside the Latin alphabet or directly use words with the related meaning found
in the current language. Thus, for the NOT operator, either there is a keyword “Not”/“not”
(ex. VB, Python) or the exclamation point is used with the same meaning (ex. all other
computer languages in the list). In the case of the AND operator, again there is the key-
word “And”/“and” (ex. VB, Python, PHP), or the two consecutive “Ampersand” symbols
“&&”, representing the meaning of “and” (ex. all other computer languages in the list,
including PHP). Last but not least, the OR operator can be represented by the keyword
“Or”/“or” (ex. VB, Python, PHP), as well as by the two consecutive vertical line symbols
“||” that are semantically linked to the meaning for “or” (ex. all other computer languages
in the list, including PHP).

In some dynamically typed languages, such as JavaScript, PHP, and others, the standard
equality operator “==” evaluates to true if two values are equal but of different data types.
For example, the string value “42” will equal the integer, even if the two values are of a
different data type (“42” == 42 evaluates to true). A typed equality operator “===” exists,
which is returning true only for values with identical data types (in PHP, 42 === “42”
is false, but the evaluation of 42 == “42” is true). In other words, this equality operator
(“===”) returns true if the two values are exactly the same. Programming languages like
VB are able to differentiate between data types and values simply by using the standard
equal sign “=”. In Ruby, the “===” operator indicates set relationships instead of the
meaning it has in JavaScript or PHP.

Table 4.4 Logical operators. Relational operations can only be linked together by using logical
operators. Briefly, symbols for Logical Not, Logical And, Logical Or, are shown for each computer
language used in this work. The square brackets in the table cells indicate the optional representation
of the operands

Not And Or
not and or
! &&[and] ||[or]
! && ||
! && ||
! && ||
! && ||
! && ||
! && ||

4.4 Assignments 71

4.4 Assignments

In normal circumstances, assignments represent a transfer of responsibility. In computer
science, however, assignments are a kind of association between one “thing” and another
“thing”. In other words, an assignment is an association between a memory address (i.e.
where data is found) and a name (i.e. variable, constant, function, and so on). Another
angle from which this term can be viewed is like a bridge of meaning between abstract
objects. The first question that arises is: How the assignments are normally made in
high-level computer languages?, and what other variants of assignments may exist? and
why ? Therefore, this subchapter shows three main types of asignments, namely: simple
assignments, aggregate assignments and multiple assignments.

4.4.1 Simple Assignments

The assignment of values to variables is at the core of high-level computer languages and
of course, it implies the use of operators. In imperative computer languages, the equal
symbol “=” is usually the operator that assigns values to variables. The left operand of
the “=” operator is the variable name, whereas the right operand is the value stored in the
variable. The right operand can take the shape of a value, a variable, an entire expression,
and so on. Examples of simple assignments are shown for multiple computer languages
in Additional algorithm 4.1.

Lang. Simple Aggregate Multiple

PERL $a = 1; $a += 1; $a = $b = $c = 1;

PHP $a = 1; $a += 1; $a = $b = $c = 1;

JS a = 1; a += 1; a = b = c = 1;

C++ a = 1; a += 1; a = b = c = 1;
C# a = 1; a += 1; a = b = c = 1;
Java a = 1; a += 1; a = b = c = 1;
Ruby a = 1 a += 1 a = b = c = 1

a = 1 a += 1 a = b = c = 1
a = 1 none (a = a + 1) none

Additional algorithm 4.1 Examples of assignments are shown for multiple computer languages.
An important observation is that VB refers to Visual Basic 6.0 (VB6) and VBA syntax, namely the
last version of Visual Basic. Thus VB6 lacks aggregate assignment as this style is a relatively new
addition to computer languages. VB6 can explicitly declare multiple variables for a certain data type
(Dim a, b, c As Integer), however, it lacks the posibility for multiple assignment. Note that the source
code is out of context and is intended for explanation of the method

72 4 Operators and Expressions

4.4.2 Aggregate Assignments

Over time, computer languages have evolved to be more and more optimized, both in
syntax and the semantics of it. Sometimes, such optimizations make the source code of
any computer language more beautiful and precise. This is the case of aggregate assign-
ments which provide a shortcut by combining the assignment operator with some other
operation. In other words, a character usually from the set of arithmetic operators is
accompanied by the assignment operator (the equal sign). For instance, in the computer
language Javascript the “+=” operator performs addition and assignment. As an exemplifi-
cation, the expression “x = x + 9” can be rewritten us “x+ = 9”, which greatly simplifies
the syntax and the amount of information that a programmer must digest in a specific time
frame. In the case of “x = x + 9”, the x variable will hold the current value plus “9”. On
the other hand, the expression “x+ = 9” means add “9” to whatever it is already stored
in x. By using the same rules, the “* =” operator performs multiplication and assignment
(“x∗ = 9”, which is the same as “x = x ∗ 9”), or the “/=” operator performs division and
assignment (“x/ = 9”, which is the same as “x = x/9”), and so on. These examples from
above may take even expressions. Let us consider another two variables, namely variable
r and variable t.

For instance, in the expression “x+ = r ∗ t”, the variables r and t are evaluated (“r ∗
t”) and the result is added to whatever value it is already present inside variable x. When
these combinations are made between normal assignment and other types of operators,
such as logical operators, the meaning can become quite complicated to digest, especially
when compared to old habits of the past. However, arithmetic operators and the assign-
ment operator (“=”) are the ones most often used in practice for aggregate assignment.
Even some special operators can be used in some computer languages. For example,
PERL contains a repetition operator (“x”), which can be used to repeat sequences of
characters multiple times. For aggregate assignment, the duo is written as “x=”. Even
string concatenation can be used for aggregate assignment (eg “.=”). Also, this type of
aggregate assignment strongly resembles the way data is handled in the CPU registers by
the assembly language, the intermediary language between machine code and the high
level programming languages. Thus, aggregate assignments may add a drop of elegance
in the way the code is written. Simple and concise examples of aggregate assignments
are shown in Additional algorithm 4.1.

4.4.3 Multiple Assignments

What kind of optimization can be implemented for multiple variables that store the same
value? The answer to this question is given by multiple assignments. Usually, variables are
declared one by one in a separate manner, namely, on separate lines. Computer languages
such as Visual Basic 6.0, Python or JavaScript allow the assignment of a single value to

4.5 Operator Precedence and Associativity 73

several variables simultaneously. For instance, let us consider three variables, namely a, b
and c. In normal cases, by using the simple assignment method, the following statements
are true, namely: “a = 1; b = 1; c = 1;”. Note that the semicolon indicates the end
of the statement just like in JavaScript, C++, C#, Java and so on. However, by using
the multiple assignment method, those three different statements can be reduced to one,
such as: “a = b = c = 1;”. Thus, all three variables have the same value, namely 1. By
extension, value 1 can be replaced with a variable. Let us consider variable d, namely:
“a = b = c = d;”, were variables a, b and c will take the value stored in variable d,
whatever that value may be. This reduction is not only a cosmetic optimization, but an
optimization that is also reflected at the hardware level in most computer languages. That
is, because all three variables (a, b and c) are assigned to the same memory location. This
multiple assignment optimization works the same whether a real primitive data type for
an integer is involved (ex. VB) or an object that simulates a primitive data type for an
integer is involved (ex. Ruby). The multiple assignment optimization as discussed above,
is actually an old method. What is new instead, is the assignment of multiple objects to
multiple variables. In Python for instance, one can assign multiple objects to multiple
variables, namely a one-to-one correspondence like: (a, b, c = 3, “Paul”, 1). Thus, an
integer with the value “3” is assigned to the variables a. A string with the value “Paul” is
assigned to the variables b. An integer with the value “1” is assigned to the variables c.
This optimization, however, is really more for syntax cosmetics and shortening the source
code, which is otherwise very important.

4.5 Operator Precedence and Associativity

Every computer language is equipped with a well-defined set of operators. These operators
are associated with an evaluation order called “precedence”. This hierarchy of precedence
is directly rooted in the mathematical order of operations. Operators that are higher in this
order are evaluated first when compared with those of lower order. Please consider a list
of operators in which the top operators are the first to be evaluated above an expression
and the lowest operators are the last to be evaluated:

higher precedence

[…]
[/*]
[+−]
[…]

lower precedence

where the three dots in square brackets means the list has continuation above or below.
An extended list of operator symbols for each computer language can be seen in Fig. 4.1.

74 4 Operators and Expressions

4.5 Operator Precedence and Associativity 75

⏴Fig. 4.1 Operator precedence and associativity symbols by computer language. In this table, oper-
ators enclosed in the same border have equal precedence and their associativity is shown on the
column next to the symbols. The pink color of a cell indicates a group of operators and the light
yellowish color indicates single operators per level. Note that the abbreviation OP means Order of
Precedence; A = Associativity; N = Order of direction is not applicable here—non-associative; L
= left-to-right; R = right-to-left. Some lesser known and used operator symbols are not shown here.
The plus and minus signs belonging to addition and subtraction can be seen immediately below mul-
tiplication and division. Other plus or minus symbols present either above or below that position have
dual roles, such as the plus sign in JavaScript which uses the symbol for both concatenation and addi-
tion. Other interesting observations are: In VB the “\” means integer division; in Ruby “=~” means
matching operator; also in Ruby “!~” means NOT match. In C# the “^” means bitwise XOR, whereas
in VB it means exponentiation

In such a list, the term “higher precedence” means an operator is above in the operator
list when compared to another. In contrast, the term “lower precedence” is used when
an operator is below in this list when compared to another. Some of the operators can
hold the same position in the list of operators. This situation is called equal precedence
of two or more than two operators. For instance, multiplication and division have equal
precedence. In the case of the expression from below:

2 ∗ 2 / 2 / 2 ∗ 2 / 2

What should the evaluation process do? Since the two operators (“/” and “∗”) have the
same precedence, it is impossible to choose which computation is done first (please also
see Fig. 4.2 for reference). Thus, for operators of the same precedence, there is also a
direction of evaluation, called operator associativity. For the expression from above that
contains only two operators (“/” and “∗”) of equal precedence, the computation unfolds:

2 ∗ 2 / 2 / 2 ∗ 2 / 2 =
4 / 2 / 2 ∗ 2 / 2 =
2 / 2 ∗ 2 / 2 =
1 ∗ 2 / 2 =
2 / 2 =
1

Please notice the left-to-right associativity which means a computation made step by
step from the left of this expression towards the right, up to the end of it. To put this into
perspective, the use of parentheses explains it even better:

((((2 ∗ 2) / 2) / 2) ∗ 2) / 2 =
(((4 / 2) / 2) ∗ 2) / 2 =
((2 / 2) ∗ 2) / 2 =
(1 ∗ 2) / 2 =
2 / 2 =
1

76 4 Operators and Expressions

Fig. 4.2 Examples of operator precedence and associativity. At the top, the two panels show one
example each for operator precedence or operator associativity. A mixed example is given at the bot-
tom of the figure showing the relationship between operator precedence and operator associativity.
In the lower right part there is a short list with symbols for only a few operators. In this list, the ver-
tical order of the operators indicates operator precedence and the symbols found on the same level
have equal precedence. Notice that in all panels there is a well-established and numbered sequence
of computations that is based on precedence and associativity

4.5 Operator Precedence and Associativity 77

Also, operators with higher precedence are evaluated before operators with lower
precedence. For instance, addition and subtraction have the same precedence. However,
division and multiplication have a higher precedence than addition and subtraction. For
instance, in the case of:

2 ∗ 2 / 2 + 2 ∗ 2 – 2

Division and multiplication are evaluated from the left to right of the expression (left
to right associativity). The above expression yields:

2 ∗ 2 / 2 + 2 ∗ 2 – 2 =
4 / 2 + 4 – 2 =
2 + 4 – 2

Next, addition and subtraction are evaluated from the left to right of the expression:

2 + 4 – 2 =
6 – 2 =
4

In high level computer languages, parentheses force the behavior of evaluations and
are at the very top of the precedence list. All other operators have lower precedence. Thus,
the above example is equivalent to:

(((2 ∗ 2) / 2) + (2 ∗ 2)) – 2 =
((4 / 2) + 4) – 2 =
(2 + 4) – 2 =
6 – 2 =
4

Parentheses and unitary operators hold a higher precedence when compared to all other
operators (Fig. 4.1). But why? Why are these first in the list? For the parent expression,
parentheses are a bit like a kind of box where one puts something inside and the box
morphs into something else based on what was put in. Also, computer languages that are
equipped with unary operators require similar expectations from the evaluator.

Evaluation of expressions can begin as long as the terms are known. Unitary operators
have priority because the value provided by them is unknown until it is evaluated (the
same case as a parenthesis). Thus, the evaluator must obtain a value from the parentheses
or/and the unitary operators, prior to the evaluation of the expression. The parentheses
are unknowns from which either a value or an error must be obtained. Only then the
evaluation of the expression may continue. In other words, an expression in parentheses
is an expression inside another expression. E.g:

a = 2 ∗ 3
b = 3 + a

78 4 Operators and Expressions

The above two expressions are the same as:

b = 3 + (2 ∗ 3)

Parentheses are their own expressions. In short, operator precedence sets the pars-
ing of operators in relation to each other. Thus, higher precedence operators become
the operands of lower precedence operators. Above an expression, multiple operators of
the same precedence are evaluated left-to-right or right-to-left. The evaluation examples
shown previously were given on the arithmetic operators. However, the list of operators
is not limited to arithmetic operators. For example, the way in which comparisons are
made between several values through logical operators or the way in which a value is
assigned to a variable, are examples that involve an evaluation either from left-to-right
or right-to-left. In the figure below, operator precedence is shown from high to low for
each computer language on our list. Note that operators of the same level have equal
precedence. The rules of precedence and associativity are extremely important, but they
cannot be easily remembered for every computer language. As a best practice, the use of
parentheses is highly recommended, especially for less frequently used operators (other
than “\, ∗, +, −”, which are well known from mathematics). Parentheses allow for nested
expressions, or matryoshka doll like expressions, which are safe to work with.

4.6 Conclusions

A brief description was given for all important operators, namely for the arithmetic
operators, assignment operators, relational operators, concatenation operators and logi-
cal operators. The symbols used to represent each of these operators were shown for all
languages used in this book. This chapter further outlined some of the complex operators,
discussing their possible origins with real-world examples. Thus, subsequent discussions
have considered the power operator, the modulo operator, the unitary operators, the string
operator, the interesting case of the repetition operator, the concatenation operator, and
finally the relational and logical operators. Next, the meaning of the term assignment was
clearly explained. Three types of assignments were discussed, namely: the simple assign-
ments, the aggregate assignments, and multiple assignments. This chapter continued with
crucial explanations of the order of operations known in mathematics and further intro-
duced operator precedence and associativity. In order to be clearly understood, examples
of precedence and associativity were given. Moreover, a table for operator precedence
and associativity was provided for all computer languages used in this work.

5Data Types and Statements

5.1 Introduction

Information represents the medium from which humans understand the world. Represen-
tation of information is fundamental to technology. In the case of machines, data is the
form that information takes. Information constructs add different layers to this represen-
tation in the form of data structures. Thus, this chapter provides an introduction to units
of measurement and the representation of information in binary form. It also gives an
overview of important encoding systems and provides examples that show the meaning
of the data type. Following this discussion, all data types are presented as basic con-
structs in a general manner. Namely, data types are discussed in two main points, namely:
(i) primitive data types, and (ii) composite data types. The second part of the chapter
gives an introduction to computer statements. Again, the ASCII and UTF encodings are
briefly mentioned as discrete units of these statements. Next, the rules of writing com-
puter statements are discussed in the light of good practices. The chapter ends with a
simple and concise introduction to source code, which is made by expanding the notion
of indentation and commenting.

5.2 Data

The word “data” comes from the Latin “datum”, which means “a given”, namely a fact,
an observation. In modern times, data is a collection of discrete units of meaning that
represent information about observations. For humans, these discrete units of meaning

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_5.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_5

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_5&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_5
https://doi.org/10.1007/978-3-031-23277-0_5

80 5 Data Types and Statements

are the written symbols. However, there are different types of written symbols, some
representing letters, others representing numbers, and so on. Consequently, an observation
can be described with specific types of symbols, namely letters, or numbers, or other
types of symbols. For example, Morse code uses a dot symbol and a line symbol to
represent complex information. Thus, different kinds or types of data can result from
these observations.

5.2.1 Bits and Bytes

For computers, these discrete units of meaning can be represented by sequences of bits
(0 and 1s). Thus, similar to the Morse code, machine code uses the symbol for something
and the symbol for the absence of something as the basis of any type of representation.
A binary representation of complex symbols is possible in computers by considering the
bit combinations that can be made on a sequence of bits of a certain length. For example,
the sequence “01,000,001” has 8 bits and means the symbol for the capital letter “A”
in UTF-8 (in ASCII it can have 7 bits, namely “1,000,001”). The meaning of the two
abbreviations from above is: American Standard Code for Information Interchange (ASCII)
and Unicode Transformation Format (UTF). Another combination of the same length, such
as “01,100,001”, means the lowercase “a” symbol. On the other hand, in the same format,
namely 8 bits, numbers can be represented. The bit sequence “00,110,011” encodes the
symbol for the integer “3”. Many types of symbols can be encoded under the same bit
construct. The 8-bit sequence is the basic representation and many unit conversions have
arisen because of it. For example, “octet” is a unit that represents a sequence of 8 bits.
Also, a sequence of 8 bits represents 1 byte. Thus, the following units of measurement
result:

8 bits = 1 byte = 0.001 Kilobytes = 0.000001 Megabytes

80 bits = 10 bytes = 0.01 Kilobytes = 0.00001 Megabytes

800 bits = 100 bytes = 0.1 Kilobytes = 0.0001 Megabytes

8000 bits = 1000 bytes = 1 Kilobytes = 0.001 Megabytes

80000 bits = 10000 bytes = 10 Kilobytes = 0.01 Megabytes

800000 bits = 100000 bytes = 100 Kilobytes = 0.1 Megabytes

8000000 bits = 1000000 bytes = 1000 Kilobytes = 1 Megabyte

Abbreviations for the above units of measurement are: 1 b (1 Byte), 1 Kb (1 Kilobyte),
1 Mb (1 Megabyte), 1 Gb (Gigabyte), 1 Tb (Terabyte) and so on. Why was 8 the magic
number to represent a whole unit of measurement? A 4-bit sequence is insufficient to
store all the critical symbols used by the developed world. The 4-bit sequence allows 16
possibilities (eg. 24 = 16; were two represents the alphabet of the sequence made of 1

5.2 Data 81

and 0’s). Thus, since the critical symbol space is known to weigh more than 16 symbols,
bit sequences longer than 4 bits were required (Table 5.1). At some point these sequences
grew from 3 to 8 bits and finally stayed at 8 bits (eg. 28 = 256 possibilities). The 8-bit
sequence represents a balance point. Less than 8 bits cannot encode for the critical charac-
ter set required for a general purpose computer (which is around 128–256 symbols), while
more than 8 bits means that some combinations will lack any association of symbols. For
example, a 9-bit sequence has 512 possibilities (eg. 29 = 512 possibilities), however, the
critical set of symbols is much smaller than 512. Because of this coincidence between
the 8-bit sequence and the number of critical characters, the “byte” became a standard
in the early 90s, where 8 bits were defined as a byte. The term “octet” is rarely used
mainly because of this standardization, and it has become synonymous with “byte”. The
main question can be asked again: Why did the octet become a standard for representing
bytes? Text storage was the main reason. Because the octet could store one character, it
became important for indicating size, especially the size of text files. Any changes that
extend the space needed to encode more complex constructs are almost always multiples
of 8 (eg. 16, 32, 64) because the byte is a standard (Table 5.1). Over time, as hardware
power increased, the symbol set of a general-purpose computer would encompass other
alphabets, from those used by each country, to those that are extinct and historically
important.

However, the encoding of the ASCII set was established on sequences of 8 bits and
was standardized as a unit of measurement. The byte allows 256 possibilities, whereas
the symbols of the world can number in thousands or even tens of thousands. To solve the
issue of the byte, the Unicode Consortium found a stable solution to reconcile the past
with the future. That solution is today known as UTF-8. The UTF-8 solution expanded
the critical ASCII character set, remaining back-compatible by dynamically encoding
characters using between 1 byte for some of the classical ASCII characters, and 2, 3
or 4 bytes for other special characters (Fig. 5.1).

Note that UTF-8 means that the code unit is 8 bits. Thus, any complex representation is
made from multiples of 8 bits and the “byte” is in a sense the shortest unit of addressable
memory. Someone may rightfully ask: Then why is there UTF-16 and UTF-32? The
answer can be the following: A unicode character in UTF-16 encoding is between 16
bits (2 bytes) and 32 bits (4 bytes), while a unicode character in UTF-32 encoding is
always 32 bits (4 bytes). Unlike UTF-16 and UTF-32, UTF-8 is by far the most valuable
encoding system because it is back-compatible. UTF-8 extends from 8 bits (1 byte) to
32 bits (4 bytes) and it can do more if needed, as it is infinitely extendable (Fig. 5.1).
UTF-16 and UTF-32 can be seen as an experiment rather than a useful strategy, because
their existence ignores the past, which is never a good thing.

82 5 Data Types and Statements

Table 5.1 From bits to encoding possibilities and bytes. It shows the number of encoding possibili-
ties for bit sequences between 1 and 64. For each bit sequence considered here, the number of bytes is
shown from the octet perspective. Namely, the last column in the table shows that bytes are no longer
represented by an integer value when bit sequences are smaller or larger than multiples of 8. It can be

seen that 32-bit sequences allow close to 4.3 billion coding possibilities
(
232 = 4.294967296e + 9

)
.

Likewise, 64-bit sequences cover the unthinkable, because there are not enough meanings in this

world to fill the space of coding possibilities
(
264 = 1.84467440737e + 19

)

1 2 0.125
2 4 0.25
3 8 0.375
4 16 0.5
5 32 0.625
6 64 0.75
7 128 0.875
8 256 1
9 512 1.125
10 1024 1.25
11 2048 1.375
12 4096 1.5
13 8192 1.625
14 16384 1.75
15 32768 1.875
16 65536 2
… … …
24 16777216 3
… … …
32 4294967296 4
… … …
64 18446744073709551616 8
… … …

5.2.2 Symbol Frequency Matters

UTF-8 is important for the size of text files because the frequency of ASCII symbols is
huge compared to other symbols. Thus, a permanent encoding of a high-frequency symbol
on several bytes (i.e. UTF-16 or UTF-32) implies an obvious increase in the size of text
files. That can be disadvantageous for storage and the internet bandwidth. In order to
understand what was said above in regard to UTF-8, we can consider the text “ sunny”
as an example (Fig. 5.2). If only ASCII symbols were involved, then such a sequence of
characters would need to occupy 7 bytes, because there are 7 symbols in the example.
However, the “ ” symbol is encoded into a character positioned well outside the ASCII
range.

5.2 Data 83

Fig. 5.1 ASCII and UTF-8. It shows the back compatibility of UTF-8. On the vertical axis, the first
half of the figure shows the structure of ASCII, which encodes for symbols using 8-bit sequences
(1 byte). A schematic of UTF-8 is unrivaled in the second half of the figure. The UTF-8 relation-
ship with ASCII is preserved for encoding positions starting from 0 to 127. However, starting from
position 128 up to 255, ASCII and UTF-8 use different encodings. Namely, ASCII uses 1 byte for
this range, whereas UTF-8 uses 2 bytes. Outside the ASCII range, UTF-8 uses 2 bytes up to 4 bytes
to encode new arrivals in the symbol set. UTF-8 may stop at 32 bit (4 bytes) representations, as all
symbols with meaning in all human history, does not exceed 4.3 billion, as 4 bytes can encode

Thus, the “ ” character alone is encoded using 3 bytes, while the other 6 characters
(including the space character) are normally encoded by using 1 byte each. Thus, in total,
the text “ sunny” occupies 9 bytes (Fig. 5.2). Another relevant observation would be
that among the seven characters of “ sunny”, six are from the ASCII subset and one
from outside of it in the UTF-8 set. This means that even in our example, ASCII characters
have a presence of 86% (ASCII% = (100/7 characters)× 6 characters = 85.7%). If these
characters had been stored in UTF-32, the text “ sunny” would have occupied 28 bytes
(7 characters× 4 bytes = 28 bytes) instead of the 9 bytes it occupies in UTF-8. That is
because UTF-32 encodes all symbols in the set using 4 bytes.

84 5 Data Types and Statements

Fig. 5.2 Size of text according to UTF-8. It shows the size of text “ sunny” under UTF-8. This
further includes the code points (the whole number associated with a symbol), the corresponding
bit sequences and the actual symbols associated with these abstract representations. Note that boxes
indicate abstract regions of physical memory. The space character and the letters that make up the
word “sunny” take up a total of 6 bytes, however, the sun symbol is new and is encoded in 3 bytes
instead of 1 byte. This observation is in fact very important. Usually, the most necessary symbols
were those that were first introduced as characters in the development of computers over time. Con-
sequently, time precedence of characters is directly proportional to their frequency of occurrence in
data. Thus, preservation of the initial encoding for the most frequent symbols dictates the conser-
vation of file size. UTF-8 characters can be represented by 1 byte for older legacy symbols, up to
4 bytes for newer symbols. This is one of the main reasons why UTF-8 is crucial to the future of
technology when compared to other character encodings

5.2 Data 85

5.2.3 The Encoding

The encoding representation can be explained in a simplistic manner. The meaning of
the term “encoded” is important to be understood in the right context, because the 8-bit
block does not store the sequence of bits that make up the drawing pattern of a symbol, as
one might already suspect. The bits that represent the shape of the symbols are separate
pieces of bit sequences that can be displayed as white pixels for 0s and black pixels for
1s. Since the hardware of the past was limited, the purpose of the encoding process was
to store information in the shortest possible manner. The role of the 8-bit blocks is to
allow specific characters to be retrieved from an already existing set in memory. Thus, a
sequence of characters is constructed, which makes readable text visible to humans. In
other words, each 8-bit sequence in this encoding is a label for what symbols should be
fetched from an existing set. In other words, each 8-bit sequence in the ASCII encoding
is a label for the symbols that should be retrieved from a known set stored on the same
general-purpose computer. In UTF-8, these character labels can be represented by one 8-
bit sequence up to four 8-bit sequences. Realistically, the events are much more complex
than described above. These characters have different fonts. Therefore, a computer has
many sets of symbols with the same meaning, not just one. The encoding label for each
character will be associated with a memory address that points to the set from where
the string of bits that make up the symbol shape can be found and retrieved for display.
Moreover, the pixels that make up the shape of a symbol are not as simple as black
and white in our modern computers, and the color of each pixel is represented by large
numbers that indicate a complex color. Nevertheless, the examples from above refer to
how symbols are encoded in a general purpose computer. Therefore, symbols stored as
characters represent a data type. One can already suspect that data types are constructs
that can take many forms. However, regardless of the data type, all of these constructs
are measured in bytes (Table 5.2).

5.2.4 A Hypothetical System of Reference

In order to precisely understand the reference system used today in a general-purpose
computer, a narrower reference system can be imagined and discussed. A narrow frame
of reference can strongly indicate both the universality and natural evolution of infor-
mation encoding. Historically, the term “byte” was ambiguous as it represented units of
bits of different sizes. Without “byte” standardization, one can put any length for the
representative bit sequence under the pattern:

86 5 Data Types and Statements

Table 5.2 Example of primitive data types in Java. A primitive data type specifies the size and type
of information the variable will store. There are eight primitive data types that are fundamental to
programing. Note that 1 byte is 8 bits. Also, short is the inherited integer. Depending on the com-
puter language, the integer data type may be either the old one (−32,768 to 32,767) or the new one
(−2,147,483,648 to 2,147,483,647). Note that from one computer language to another, the ranges of
the values associated with these data types vary greatly. Due to the increase in hardware capabilities
over time, the range of values for data type constructs has naturally increased as well

1 byte Stores whole numbers in the range: –128 to 127.
1 bit Stores either true or false (size not precisely defined).
1 byte Stores a symbol encoded into a single character.
2 bytes Stores whole numbers in the range: –32,768 to 32,767.
2 or 4 bytes Stores whole numbers between: –2,147,483,648 to 2,147,483,647.
4 bytes Stores numbers up to 7 decimal digits.
8 bytes Stores numbers up to 15 decimal digits.
8 bytes Stores numbers in the range:

–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

x bi ts = 1 byte = 0.001 Kilobytes = 0.000001 Megabytes

x0 bits = 10 bytes = 0.01 Kilobytes = 0.00001 Megabytes

x00 bits = 100 bytes = 0.1 Kilobytes = 0.0001 Megabytes

x000 bits = 1000 bytes = 1 Kilobyte = 0.001 Megabytes

x0000 bits = 10000 bytes = 10 Kilobytes = 0.01 Megabytes

x00000 bits = 100000 bytes = 100 Kilobytes = 0.1 Megabytes

x000000 bits = 1000000 bytes = 1000 Kilobytes = 1 Megabyte

where “x” is a whole number (x > 0). The point of the above example is to show that
“byte” has been a volatile unit of measurement. Note that the term “octet” is often used
to enforce that “byte” means a unit sequence of 8-bits.

5.2.5 The Bytes of an Alien World

Let us imagine that instead of the critical characters found in ASCII, one uses a very small
critical set of an alien civilization. In the universe imagined here, this alien civilization
uses 5 critical symbols with which most representations and descriptions can be made. In
order to optimize this text, a representation can be envisioned by answering the following
question: How many bits are needed to represent the five characters from the set? As
discussed above, 1 bit can encode two possibilities, either 1 or 0. Two bits may encode a
total of four possibilities, namely: “00”, “10”, “01”, “11”. A 3-bit sequence can encode 8
possibilities, namely: “000”, “100”, “001”, “110”, “011”, “111”, “101”, “010”. Therefore,

5.2 Data 87

the 2-bit representation has a maximum of 4 possibilities and is unable to cover all 5
characters of this hypothetical alphabet. The 3-bit representation has a maximum of 8
possibilities, which is more than enough to represent the 5 characters. Moreover, since
five positions will be associated with the five characters and the other three positions will
be devoid of any association, there will be room to encode three more characters. For
simplicity, in this system each of the five characters from the alien alphabet would be
represented by a 2D-map made of five rows of 6-bit sequences (Fig. 5.3). The map of
any character would contain 30 bits (i.e. 5 rows× 6 bits). Since our alien byte is defined

Fig. 5.3 The alien text measured in alien bytes. The top of the figure shows five hypothetical char-
acters in a 2D formation of 5× 6 bits. Below the representations are the 3-bit codes that can be
associated with these object characters. Just below the 3-bit codes, the characters are displayed using
colors instead of 0 and 1s. The abstract box representation shows the 3-bit code and the character
code associated with the symbols. On the bottom of the figure, an “alien” phrase of 20 characters is
shown. The meaning of the phrase is not important. There, the comparison is made between the size
of the 20 characters (200 bytes) and the size of the encoding (20 bytes). Thus, the “alien” example
indicates the role of character encoding in reducing size without information loss. Note that in this
example, an “alien” byte represents a 3-bit sequence

88 5 Data Types and Statements

as a 3-bit sequence, one character would have 10 bytes (i.e. 30 bits/3 bits in a byte).
An alien wants to write meaning using the five characters. If it writes a proposition of
20 characters then the size of the text will be 200 bytes (i.e. 20 characters× 10 bytes
= 200 bytes). In other words, this can also be understood as 20 characters of the text
multiplied by 30 bits per character, which equals 600 bits. The 600 bits divided by the
3 bits that make up our “alien” byte would give a result of 200 bytes for the entire text.
The alien of this supposed universe realizes that 200 bytes is too much for his computer
hardware and asks himself a question: How many characters can be encoded and decoded
in as few bits as possible? The alien envisiones the association between characters and
the 3-bit combinations. He realizes that by storing the five characters on every computer
in his world, he can only send and receive sequences of 3-bit combinations that represent
characters of the alphabet. If he receives a sequence of bits, he will structure the sequence
in groups of 3-bits and ask a map to see which character corresponds to each 3-bit group.
Likewise, when the alien sends a text, instead of the actual characters, he will send a
sequence of 3-bit codes.

He looks at the map of association to see which character corresponds to which group
of 3-bits. Thus, it replaces each character with a 3-bit code, from which, a sequence of
bits emerges. In the case of the 20 character proposition, the mapping of characters to
3-bit combinations reduces the size of the information from 200 to 20 bytes (i.e. 90%
reduction in the size of this information). In perspective, a 1 Mb file of 5× 6 bit-maps is
reduced to 100 Kb when the bit-maps are replaced by 3-bit sequences.

5.3 Data Type

The discussion of how data is represented on general purpose computers showed the
significance of data types. In fact, the examples given in the previous sections provide
information about one data type, namely the character (char). A basic description is nec-
essary to see the whole picture about these constructs. Data type can be divided into
primitive data types and composite data types. Primitive data types are a set of funda-
mental data types from which all other data types are constructed (Fig. 5.4). Among the
primitive data types one can enumerate: byte, short, integer, long, float, double, boolean
and char, whereas in the case of composite data types (non-primitive data types) structures
such as Arrays, Strings and Classes (blueprints for objects) can be mentioned (Tables 5.2
and 5.3). In the case of composite data types, the situation becomes more complex, where
for example a variable may contain additional substructures. To continue the abstract illus-
tration from before, such a variable can be painted as a big box containing smaller boxes
inside. In the majority of instances, these complex variables are called arrays. Often,
arrays are known to be in fact objects in some modern computer languages (ex. Python,

5.3 Data Type 89

Ruby, JavaScript and so on). For example, Ruby is a pure Object-Oriented computer lan-
guage and all data types are based on classes. Thus, in Ruby and others, there are no real
primitive data types, only simulations of primitives.

Thus, the whole collection of data types can sometimes be language specific and
other times these are well established regardless of language (Table 5.3). For instance,
in JavaScript one can distinguish three main data types which are used, namely: Number,
String, and Boolean. A Number can be either an integer or a decimal. Strings on the
other hand are sequences of characters enclosed in a single or double quotes, depending
on the programming or scripting language used. A string variable is a variable that holds
a character string (i.e. a sequence of characters).

One observation deserving attention is that a symbol may represent any shape that
has a meaning. Thus, among others, symbols may represent the shape for the letters or
for numbers. Last but not least, Boolean type represents either true or false. In practice
boolean variables are rarely used. In other computer languages, these data types may
differ, as it can be seen in Table 5.3. In the case of primitive data types vs composite
data types we can discuss about two main points, namely: (i) Variables for primitive data
types hold the actual value of the data. (ii) variables for composite data types hold only
references to the values of the composite type.

5.3.1 The Curious Case of the String Data Type

String data type is one of the most recent proofs of the natural evolution of computer
languages. In regard to strings, one simple question can be asked, namely: Are all com-
puter languages equipped with a string data type? The majority of modern general-purpose
programming and scripting languages contain by default a string data type in their core
library or their additional libraries. Moreover, today a computer language without a string
data type is almost inconceivable for the majority of us, and straightforward useless.
Another question that arises is: What can we do in the case of a computer language that is
not equipped by default with a string data type? The answer is: programmers can design a
string data type themselves in an additional library. Not only that, but new kinds of exper-
imental data types can be formulated. The string data type is relatively a new concept.
Older programming languages lack the string data type. For instance, the “C” language
and of course the “Assembly” language do not have a string data type. The “Assembly”
language, which resides somewhere between machine code and the high level languages,
lacks the concept of data types altogether. As mentioned above, the “C” language has no
actual string type. Instead, it uses the char data type to make a string construct. In modern
computer languages, char is a primitive type that is able to store only one character (2
bytes), whereas string is a class that makes the string object, which in turn may encap-
sulate zero or more characters. Internally, a string can be viewed as an ordinary array of
chars. Thus, when referring to strings as a data type, we are doing this by extension.

90 5 Data Types and Statements

Fig. 5.4 Data Type representation. It describes the general constructs used by computer languages
to represent data. The data type constructs shown here are normally divided into two, primitive data
types and non-primitive data types. Primitive data types in turn are divided into two other cate-
gories, namely numeric and non-numeric data. Non numeric data contains the character type and
the boolean type, whereas the numeric category contains the weight of the constructs. Namely, for
integers, there is the byte type, the integer type, the long type and the short type. In the case of the
floating point category there is double type and the float type. Among the non-primitive categories
the array type, the string type and the object type are listed. The object type also implies the pos-
sibility of creating other new data types. Note: there are many computer languages today that no
longer use primitives in the true sense of the word, but objects that simulate primitives, such as pure
object-oriented languages, like Ruby

5.3 Data Type 91

Table 5.3 List of primitive data types and composite data types. The table lists primitive data types
and composite data types for each computer language used in this work. Note that in one way or
another all computer languages have data types that lend themselves into modern programming by
necessity because of the inheritance from the past, such as array, string, integer, boolean and so on.
Without these, the paradigm changes automatically

Number
Booleans
String
Object
…

int
float
double
bool
char
string
long (C#)
…

Array
Boolean
Byte
Currency
Date
Double
Integer
Long

String
Integer
Float
Boolean
Array
Object
NULL
Resource

Scalars
Arrays of
scalars
Hashes
…

Numbers
Strings
Symbols
Hashes
Arrays
Booleans
…

Byte
Short
Int
Long
Float
Double
Boolean
Char

str
int,
float complex
list
tuple
range
dict
set

String
…

… String
Arrays
…

frozenset
bool
bytes
bytearray
NoneType
…

Just by looking at the table from above, it can be intuitively said that those computer
languages that have a limited number of data types show stability and maturity, while
computer languages with a multitude of data types show a kind of immaturity, like these
are not yet fully distilled. This is not necessarily a bad thing, and it means that the design-
ers of those computer languages are still experimenting, and other useful constructs may
emerge from them for the future of software technology. Thus, data types are constructs,
which really appeared as a natural consequence of our needs to optimize programming
time and the speed of software applications.

5.3.2 Experimental Constructs

However, the use of experimental constructs (ex. a new data type) is highly dangerous for
those using them. The removal of an experimental construct by the provider of a computer
language reflects, of course, in all designs that made use of it. Thus, external dependency
on experimental constructs can sharply cut the life cycle of a software application. More-
over, experimental methods embedded in computer languages cannot be considered legacy
and expectations for back compatibility are absurd since they are called “experimental”.
Over time, this issue was directly visible for JavaScript/CSS/HTML applications, were
methods rendered absolute affected all applications that used the experimental methods
up to that point. The same is true with the experimental API of an operating system. It
can disappear from one update to another or from one version of the operating system to
another. Therefore, methods that are deeply engraved and intertwined with the makeup of

92 5 Data Types and Statements

the computer language, are the only methods that are safe to use in order to prolong the
life cycle of an application.

5.4 Statements

In the normal language phrases are made of consecutive written symbols and then recog-
nized for their meaning by educated individuals of Homo sapiens, and others. In high-level
computer languages, the same pattern of meaning is preserved. However, computers must
first be able to represent the symbols used to write meaning. At the core of any human–
machine interaction, there is a critical list of symbols used for that particular purpose. This
list of symbols is called: American Standard Code for Information Interchange (ASCII).
Secondary and less critical, is the symbol extension under the Unicode Transformation
Format (UTF) of the Unicode Consortium.

5.4.1 ASCII Symbols

ASCII witnessed many changes over time. It has its roots in the symbols used in the
telegraph system and has an even older history, which dissolves into the most primitive
signaling modes for communication. However, a stable version of ASCII became the
standard in computers many decades ago. ASCII contains 256 characters of 8 bits each.
ASCII characters represent the critical symbols needed to signify the basic operations of
a general-purpose machine. ASCII control characters (character code 0–31) are the non-
printable control codes used primarily with hardware (escape, enter, back space, and so
on) and software constructs (files, data structures, and so on). ASCII printable characters
(from code 32 to 127) represent letters, digits, punctuation marks, and other symbols.
The extended ASCII codes start from code 128 and end at code 255. In this section, the
reader also understands the numbering styles used, which is most useful at the end of this
chapter, which involves array variables. Notice that one mention states 256 characters and
another refers to code 255. In reality there are 256 characters, but the numbering of these
symbols starts from zero instead of one. In other words, one range of numbers (1–256)
refers to a total and the other range (0–255) represents the character codes or the labeling
system.

5.4.2 Unicode Transformation Format

In the modern era, the range of symbols exceeds the critical 256 characters limit of ASCII.
International efforts were made to include the entire set of known symbols in what we
recognize today as the Unicode standard. The reason for the Unicode standard is to encode

5.4 Statements 93

symbols from every language on the planet, and also to encode other significant symbols
with subjective or objective meaning. The Unicode Transformation Format (UTF) refers
to several types of Unicode character encodings, including: UTF-7, UTF-8, UTF-16, and
UTF-32. The numbers following the word “UTF” represent the bytes used to encode the
symbols (i.e. UTF-8, means 8 bytes). Many computer languages now use UTF-8 instead
of ASCII. UTF-8 encodes for much more symbols than ASCII. Moreover, UTF-8 is also
compatible with ASCII, which allows ASCII characters to be interpreted using UTF-8. In
other words, UTF-8 codes start with the full ASCII range (0–255). Thus, programmers
using UTF-8-based computer languages will hardly notice the difference, unless they
exceed the limit of 255 ASCII character codes.

5.4.3 Sentences are Made of Constructs

A statement is a complete instruction composed from consecutive ASCII characters.
Statements may contain keywords, operators, constants, variables, and entire expressions.
Statements can be declarative or executable. Declaration statements include variable nam-
ing, data types, constants, procedures. Executable statements include assignments, loops,
branching through blocks of code, and calls to methods or functions. A statement is a
section of the source code that can be evaluated by the compiler or by the interpreter
depending on the case. The organization of statements is done in lines of text, which
deserves a little expansion of the historical roots.

5.4.4 The Root of Behavior

All European languages use the Cyrillic or Latin alphabets written from left to right and
the reading for meaning is made in the same sequence. To highlight similar genetic iden-
tity among certain sub-populations of European, small additions such as diacritics have
been added over time from one country to another. Because of this beautiful inheritance,
the text of computer languages has the same rules. Namely, the interpretation of sentences
is done from left to right. However, exceptions exist. For instance, assignments of values
are made from right to left. Furthermore, the evaluation rules for mathematical expres-
sions have no left or right directions, and the order of operations dictates where and what
is evaluated.

5.4.5 The End of the Line

Actions that a program takes are expressed in statements. Thus, please note that a source
code is a collection of statements, just as a cookbook is a collection of phrases. How

94 5 Data Types and Statements

statements are represented is important. Each statement can be composed of one or more
lines. The end of each line is represented by different ASCII characters depending on the
type of syntax. In some computer languages the end of the line maybe marked in several
ways. For instance, in scripting languages like JavaScript, PHP or PERL, or in the case of
programming languages like Java, C Sharp or C++, the end of the line always ends in a
semicolon “;”. This is the way in which the interpreter or the compiler understand the end
of a line in their syntax. On the other hand, programming languages like Visual Basic,
Ruby, or Python, designate their end of line with an invisible character. This end of the
line invisible character is represented by a combination between the ASCII characters line
feed and cage return. Of course, the combination of the two ASCII characters contains
a history routed in the reality of an older mechanical technology of the past. As we can
guess, we are talking about the typewriter in which the start of a new line was composed
of two mechanical actions performed by the writer. Namely, the push of the entire paper
placed on the cage of the typewriter from the left to the right of the typewriter in order to
place the middle of the machine at the beginning of the row on the paper. However, this
wasn’t the only mechanical action needed in order to begin a new line. Thus, the writer
performed another mechanical action called line feed. This action performed a push of
the paper on the vertical axis to place the middle of the typewriter below the previous
written sentence. This is the history of the composite character behind the “Enter” key. Of
course, there are differences in between certain operating systems. What we talked about
previously, was related to the way Microsoft Windows operating system uses to denote
the end of the line for any text. In Unix for instance, the end of the line is noted by using
the ASCII character for line feed.

5.4.6 Statements and Lines

In the BASIC family of computer languages, non-printable ASCII characters can be pro-
vided by calls to a built-in function called “chr(c)”. This function receives an argument
“c” which represents the ASCII character code. Then, on return, the function is able to
provide the character in its pure form (Additional algorithm 5.1). All computer languages
are equipped with in-built functions that return the ASCII characters based on the symbol
code (Table 5.4). The last two columns of Table 5.4, titled “Code to Char” and “Char
to Code” show either built-in functions with the role of forward and backward conver-
sions or show the use of properties from the String object (Additional algorithm 5.1).
In practice, the returned values from string objects or the in-built functions, are usually
concatenated with strings. Therefore, an example is given for each computer language
(Additional algorithm 5.1).

In VB, some important non-printable ASCII characters which are responsible for struc-
turing data, have their own dedicated keywords. Such keywords are: vbCr, vbLf and

5.4 Statements 95

Lang. ExampleJS print ("Code 65 is the:'" + String.fromCharCode(65) + "' letter");
print ("Letter A has the code:'" + 'A'.charCodeAt(0) + "'");C++ cout<<"Code 65 is the:'"<<(char) 65<<"' letter\n";
cout<<"Letter A has the code:'"<<(int) 'A'<<"'";C# Console.WriteLine("Code 65 is the:'" + (char) 65 + "' letter");
Console.WriteLine("Letter A has the code:'" + (int) 'A' + "'");VB MsgBox "Code 65 is the:'" & Chr(65) & "' letter"
MsgBox "Letter A has the code:'" & Asc("A") & "'"PHP echo "Code 65 is the:'" . chr(65) . "' letter";
echo "Letter A has the code:'" . ord('A') . "'";PERL print "Code 65 is the:'" . chr(65) . "' letter";
print "Letter A has the code:'" . ord('A') . "'";Ruby puts "Code 65 is the:'" + 65.chr + "' letter"
puts "Letter A has the code:'" + ('A'.ord).to_s + "'"Java System.out.println("Code 65 is the:'" + (char) 65 + "' letter");
System.out.println("Letter A has the code:'" + (int) 'A' + "'");
print ("Code 65 is the:'" + chr(65) + "' letter")
print ("Letter A has the code:'" + str(ord('A')) + "'")

Additional algorithm 5.1 The first line of each computer language in the above list, shows an
extraction of an ASCII character on the basis of an ASCII code. The second line shows the extraction
of the ASCII code based on a given ASCII character. The output for any of the above statements is
“Code 65 is the: ‘A’ letter” and “Letter A has the code: ‘65’”. Note that the source code is in context
and works with copy/paste

Table 5.4 Line feed, carriage return and the ASCII conversions. Representations for some of the
non-printable ASCII characters are shown here for all computer languages used in this work. Note
that “LF” stands for line feed, “CR” stands for carriage return, and “CR & LF” represents the two
ASCII characters as a unit. The last two columns show the methods by which a character can be
obtained based on the ASCII code or, how the ASCII code can be obtained based on a given char-
acter. The statements in the fifth column return a character, while those in the last column return an
integer. Letter “a” represents an integer between 0 and 255, while “b” represents one character

"\n" "\r" "\r\n" String.fromCharCode(a); b.charCodeAt(0)
"\n" "\r" "\r\n" chr($a); ord($b);
"\n" "\r" "\r\n" chr($a); ord($b);
"\n" "\r" "\r\n" (char) a; (int) b;
"\n" "\r" "\r\n" (char) a; (int) b;
"\n" "\r" "\r\n" (char) a; (int) b;
"\n" "\r" "\r\n" a.chr b.ord
"\n" "\r" "\r\n" chr(a) ord(b)
vbLf vbCr vbCrLf Chr(a) Asc(b)

96 5 Data Types and Statements

vbCrLf . In the story above, a discussion of typewriters detailed the origin of some non-
printable ASCII characters. In that historical note, the technical explanations of carriage
return indicated that it meant return to the beginning of the line. Thus, the vbCr key-
word represents a carriage return for print and display functions. On the other hand,
line feed was described as “go to next line”. The representative keyword is vbLf and it
represents a line feed character for print and display. A concatenation between the two
characters is represented by the keyword vbCrLf which represents a carriage return char-
acter combined with a line feed character, again both with frequent uses for print and
display functions. In short, these two characters are provided by the Enter key each time
users press it. By contrast, these two characters (vbCrLf) also can simulate the Enter key.
All other computer languages from the list contain a specific and universally accepted
representations of the carriage return and line feed characters. The representation for the
line feed character is made by using two printable ASCII characters, namely “\n”. In con-
trast, the representation for the carriage return character is made by another two ASCII
characters, namely “\r”. Other important non printable ASCII characters are represented
in a similar way with the above (ex. the tab character is written as “\t”). The end of the
line is OS-specific.

As mentioned before, UNIX-based systems use “\n” to specify the end of line for text,
MacOS used “\n” as line delimiter, whereas DOS-based systems use “\r\n” for the same
purpose. The representations for “line feed” and/or “carriage return” characters are used
directly inside strings (ex. “\n” can be used as: print “this\n is under”;). In the ASCII
table, the representation (“\r”) for line feed is evaluated as the ASCII character with code
13 (Carriage Return—CR), and “\n” is evaluated and replaced with the ASCII character
under code 10 (Line Feed—LF). The ASCII character set should be seen as a core of
basic symbols. This critical set is today a part of the Unicode Transformation Format
(UTF). Many computer languages are UTF-8 compatible. Computer languages that are
UTF-8 compatible can also display UTF-8 symbols in their console. This is one method
to test for UTF-8 compatibility. For instance, the replacement of character code 65 in
the examples from Additional algorithm 5.1, with numbers greater than 255, will display
symbols outside the ASCII set. For instance, the character containing the sun symbol
(“ ”) is represented by UTF-8 code “9728”, the character showing a cloud (“ ”) is
represented by UTF-8 code “9729”, the UTF-8 character showing the symbol for umbrella
(“ ”) is known as the UTF-8 code “9730”, and one character used often in this chapter,
namely the filled square (“▝”), is represented by UTF-8 code “9608” (Please test this by
using Additional algorithm 5.1).

5.4.7 Multiple Statements and Line Continuation

Line continuation allows a statement that is too long to be split into multiple lines. Thus,
the entire statement, regardless of length, is brought to the attention of a programmer on

5.4 Statements 97

the vertical axis instead. In general, the breaking up of a long instruction is most easily
done between the operands on the right side of an assignment. This method is detailed
here (Table 5.5). Statement continuation on multiple lines can be achieved in numerous
ways. Line breaks of a statement also accepts other variations, such as certain array
variables in Python, the details of which can be filled in on different lines as needed (eg.
[a, ▝b, ▝c]; where the “▝” signifies the Enter key). In PERL, the variables written inside
a string value are evaluated for string interpolation. Specifically in PERL, strings accept
newline continuation every time the “\” symbol is written (ex. “$a\▝$b\▝$c”;). However,
the above expression can also be written differently by using the string concatenation
operator (ex. “${a}.▝${b}.▝${c}”;). On the other hand, there are also situations where
the lines are very short and the focus would be on too many lines of code.

Thus, most computer languages have symbols that can be used to add lines of code one
after another, so that the focus of the programmer goes more to the right side of the screen
than to the bottom of the screen. The above description is referring to multiple statements
on the same line. Therefore, multiple statements can be combined on a single line. Also,
a statement can continue on multiple lines. Depending on the computer language used,
multiple statements may exist on a single line, only if these are separated by a particular
ASCII character. In the BASIC family of computer languages, the symbol that designates
the end of one line and the beginning of another is the colon (i.e. the “:” statement
separator symbol). In the other computer languages from the list, the symbol that denotes
the end of one line and the beginning of another, is the semicolon (i.e. the “;” statement
separator symbol).

Table 5.5 Multiple statements and Line continuation. Continuing a statement over multiple lines
or putting multiple statements on one line is critical in some instances were complexity is high. The
second column shows the pattern of positioning the code lines, labeled a, b and c, one after the other
through a delimiter, namely the “:” symbol, or more frequently the “;” symbol. The third column
shows a pattern that indicates the rules according to which a very long statement can be broken into
multiple lines. In this case the example is made for assignments, namely on expressions placed at
the right of the equal operator. The letters a, b, and c represent values of different data types. Note
that, only in this example, the “▝” character indicates the action of pressing the Enter key

$a;$b;$c = ${a} .█${b} .█${c};

$a;$b;$c = $a .█$b .█$c;

a;b;c = a +█b +█+ c;

a;b;c = a +█b +█+ c;

a;b;c = a +█b +█+ c;

a;b;c = a +█b +█+ c;

a;b;c = a +█b +█c

a;b;c = a + /█b + /█c

a:b:c = a & _█b & _█c

98 5 Data Types and Statements

5.4.8 Recommended Versus Acceptable Statements

Basic good practices for statements require some subjective classifications, such as recom-
mended practices or acceptable versus wrong practices. Multiple statements on one line
or a line continuation for very long statements, are acceptable practices only when the
complexity requires it. Namely, when statements are too long, a statement continuation on
multiple lines is recommended. However, when statements are short and clearly visible at
average display resolutions, the statement continuation on multiple lines is acceptable, but
not recommended. Also, short statements that occupy too many lines, can be placed on the
same line using the appropriate delimiter symbols. To illustrate the above, a JavaScript
example can be given in Additional algorithm 5.2, by following subjective rules about
what practices are supposed to be.

JavaScript allows for the omission of the semicolon at the end of each line, whereas in
Python the omission of the semicolon is normal. In the case of C-like computer languages
that require a semicolon, it is advisable, as a good practice, to place these characters at
the end of each line in order to avoid errors. More complex examples can be given for
each computer language from our list (Additional algorithm 5.3). This time, only the
recommended and acceptable practices are shown. Understandably, wrong practices can
be many and are not discussed further. However, these are usually blocked from execution
and then alerted by the compiler or interpreter, or even by the IDE’s syntax verification
modules.

The example is closely mirrored in all computer languages from the main list (Addi-
tional algorithm 5.3). It demonstrates string concatenation, the use of carriage returns,
and statement continuation on multiple lines, in two forms: a recommended form and an
acceptable form. The recommended form contains three statements on four lines, whereas
the acceptable form contains three statements on a single line. Note that variables are used

//Recommended:
a = 7;
b = 3;

//Acceptable:
a = 7; b = 3;

//Wrong:
3 = b;
a =
7;

Additional algorithm 5.2 It shows basic good practices in JavaScript, such as: what is recom-
mended, acceptable, and wrong. Note that the source code is out of context and is intended for
explanation of the method

5.4 Statements 99

Lang. Example Output

JS // Recommended:

a = "this is ";
b = a + "JavaScript\n" +
"output";

print(b);

JS Output:
this is JS
output

// Acceptable:

a = "this is "; b = a + "JavaScript\n" +
"output"; print(b);

C# // Recommended:

String a = "this is ";
String b = a +
"C#\n" +
"output";

Console.WriteLine(b);

C# Output:
this is C#
output

// Acceptable:

String a = "this is "; String b = a + "C#\n"
+ "output"; Console.WriteLine(b);

VB ' Recommended:

a = "this is "
b = a & "Visual Basic 6.0" & _
vbCrLf & "output"

MsgBox b

VB Output:
this is VB
output

' Acceptable:

a = "this is ": b = a & "Visual Basic 6.0" &
vbCrLf & "output": Debug.Print b

PHP // Recommended:

$a = "this is ";
$b = $a . "PHP\n" .
"output";

echo $b;

PHP Output:
this is PHP
output

// Acceptable:

$a = "this is "; $b = $a . "PHP\n" .
"output"; echo $b;

Additional algorithm 5.3 It demonstrates multiple statements made on one line, and a line con-
tinuation for long statements. The statements shown here are very short, but the point of the exercise
remains valid. Note that the source code is out of context and is intended for explanation of the
method

100 5 Data Types and Statements

PERL # Recommended:

$a = "this is ";
$b = ${a} . "PERL\
output";

print $b;

PERL Output:
this is PERL
output

Acceptable:

$a = "this is ";$b = ${a} . "PERL\n" .
"output";print $b;

Ruby # Recommended:

a = "this is "
b = a + "Ruby
output"

puts "#{b}"

Ruby Output:
this is Ruby
output

Acceptable:

a = "this is "; b = a + "Ruby\n" + "output";
puts "#{b}"

Java // Recommended:

String a = "this is ";
String b = a +
"Java\n" +
"output";

System.out.println(b);

Java Output:
this is Java
output

// Acceptable:

String a = "this is "; String b = a +
"Java\n" + "output"; System.out.println(b);

Python # Recommended:

a = "this is "
b = a + "Python\n" + \
"output"

print (b)

Python Output:
this is Python
output

Acceptable:

a = "this is "; b = a + "Python\n" +
"output"; print (b)

Additional algorithm 5.3 (continued)

5.5 The Source Code 101

C++ // Recommended:

string a = "this is ";
string b = a +
"C++\n" +
"output";

cout<<b;

C++ Output:
this is C++
output

// Acceptable:

string a = "this is "; string b = a + "C++\n"
+ "output"; cout<<b;

Additional algorithm 5.3 (continued)

before any formal explanations are given in relation to these structures. For the moment,
one can say that a variable (like a or b) is representative for a piece of data, and that sim-
ple definition is enough for this stage. In words, a letter a is associated with a string with
the value “this is”. Then, a letter b is assigned the content of letter a and a string with
the value “PERL\output”, where the symbol “\” from the previously mentioned string,
denotes that the value of the string is continued on another line. Post-assignment, the
string value from b is written to the output for the observer.

5.5 The Source Code

The source code is at the very top of data structures and it represents a higher-order
organization of machine statements. Strict rules of organization make source code uni-
versal among programmers of a particular computer language. Source code is a list of
instructions that an interpreter program will follow and a compiler program will turn into
machine code. Thus, compilation can also be viewed as structure change to a lower-order.
Nonetheless, in the same source code there are statements for computers and statements
for people. In other words, the source code contains two types of instructions, namely
machine instructions as shown above and comments whose meaning is interpreted only
by the programmer. Moreover, both types of statements are organized by indentations, of
which a clear description is made below.

5.5.1 Indentations

Code indentation represents the empty space in front of the computer instructions that
show the structure of the source code in a nested manner. Usually, ASCII characters

102 5 Data Types and Statements

encode visible symbols (shapes with a meaning). However, empty space is represented
by characters that contain no symbols at all. Code indentation is the part of what we call
“good practices”. Indentation is a subjective activity in the majority of programming and
scripting languages. That is, the amount of indentation it is on the eyes of the beholder,
mainly the human that writes the code. Usually, two types of characters can be used.
One character is the space character, and the other character can be the tab character.
The amount of indentation is represented by the number of space characters or/and tab
characters in front of the line. One exception to the above discussion is the Python script-
ing language where the indentation is mandatory. In Python, each step in the indentation
shows the hierarchy of the computer instructions in the structure of the code. Moreover,
these indentations help the Python interpreter to parse the code for interpretation of the
instructions and their execution. Python allows for both the space character and the tab
character, however, in establishing the outer indentation level; it can be one or the other.
If both types of ASCII characters are used, an error will be raised by the interpreter,
namely “IndentationError: unindent does not match any outer indentation level”. In all
other computer languages, indentation can even be used to hide the source code of scripts
from the view of the screen when a file is opened by different text editing tools. Another
found use of indentations is to deceive the eye in source code obfuscation. The first and
second tactics have been widely used over time by both novice and advanced malware
writers. Note that terms such as outdent or unindent are used to describe the removal of
indentation, repositioning the line with a previous level of indentation towards the left
edge of the window.

5.5.2 Comments

Comments are an important part of the source code. Comments are used to explain code.
In some extreme cases, comments can be used to describe each individual line of code.
Imagine a situation in which a software application is designed today with no comments
at all, only the code. The designer of this application is able to remember the structure
of this code for a couple of months. However, for longer periods of time this clarity over
the code starts to fade away, as it is natural. Years later, further developments of the
same application by the same software developer or by other software developers, may
be difficult and time-consuming without some initial comments. Thus, comments can be
used to make the code more readable by humans, and it can explain the structure of the
application in a reasonable manner. Thus, comments are disregarded by the compiler or
the interpreter because they are useful only to the makers of the application. One other
use for comments is the prevention of execution for specific lines when testing of the
code is done. For instance, one may write two different lines of code, namely two or more
solutions that must be tested in sequence. Thus, instead of deleting all the lines of the other
solutions, those lines can simply be temporarily converted into a comment. Depending on

5.5 The Source Code 103

Table 5.6 Comments and symbols. For exemplification, ASCII characters used to start a line of
comment are shown for each computer language. Perhaps because of historical reasons, some char-
acters are shared between languages. On the third column, a series of one-dimensional models show
ways to write multi-line comments for each computer language. In these patterns, the letters a, b
and c may represent any line of text. Only in this example, the “▝” character indicates the action of
pressing the Enter key

' A comment in VB 'a █'b █'c

// A comment in C# /*a █ b █ c*/

// A comment in JavaScript /*a █ b █ c*/
// A comment in PHP /*a █ b █ c*/

// A comment in Java /*a █ b █ c*/

// A comment in C++ /*a █ b █ c*/
A comment in PERL =begin a █ b █ c =end █=cut
A comment in Ruby =begin a █ b █ c =end
A comment in Python '''a █ b █ c'''

the programming or scripting environment, a comment may begin by inserting a special
character at the beginning of the line. In VB this special character is “'”, whereas in
PERL, Ruby and Python, the comment character is represented by “#”. In JavaScript,
C++, C#, PHP and Java, the comment begins with a set of two characters, namely “//”
(please see Table 5.6).

The table from above shows some examples of comments in each programming and
scripting language used here (Table 5.6). In order to be useful, these comments can be
positioned one line above the code, or, immediately after the code on the same line. Mul-
tiline comments are also available when sophisticated comments are a necessity in the
source code. In order to be able to show how to open and close comments in computer
languages from our list, a one-dimensional representation method was used (Table 5.6). In
these patterns, the letters a, b and c may represent one or more lines of text, and the “▝”
the symbol represents the action of pressing the Enter key. For instance, the unfolding
of the “'a▝b▝c'” pattern for Python, yelds the meaning from Additional algorithm 5.4.
Notice also that multiline comments are not allowed in VB. Lack of possibility for mul-
tiline comments has the advantage of restricting the programmer from over-commenting
the source code. In VB, the 'a▝'b▝'c indicates that a single quote symbol is inserted at
the beginning of each new line.

Comments are also used by advanced programmers to format the entire source code
as a piece of art. This type of formatting consists of an interplay between indentation and
different special characters. Such formatting strategies can lead even to the development
of low resolution images made from ASCII characters (ASCII art).

104 5 Data Types and Statements

print('''
===
	Python	
	multiline comment [single commas]	
===
''')

print("""
===
	Python	
	multiline comment [double commas]	
===
""")

Fig. 5.5 Examples of multiline comments are presented in the case of Python, which show the con-
nection between the one-dimensional patterns from the previous table and the two-dimensional rep-
resentation from the source code. Note that the source code is in context and works with copy/paste

5.6 Conclusions

When something is born on the basis of something else, the process is called natural
evolution. This is also the case in computers, where data types exist based on the funda-
mental constructs of biological evolution. Thus, by extension data types are in themselves
natural constructs. In order to expand on the above interpretation, this chapter described
the meaning of data, data types, statements and finally the meaning of source code. It
was shown how data is measured and what is the meaning of the terms “bit” and “byte”.
Explanations made on different encoding systems, pointed out the importance of inheri-
tance, were the lack of encoding inheritance leads to inefficient computers and wasteful
resources. Consequently, the most established data types were discussed in terms of prim-
itive and non-primitive. The emphasis was made on non-primitive data types, as these
have led to the notion of strings and other more complex data types. The second half
of the chapter describes the rules for designing computer statements. ASCII was again
mentioned as the set of discrete units that makeup a computer statement. With modern
computers, this ASCII set is now a subset of UTF-8, which in turn was also described as
an important tool of statement representation. At the end of the chapter the source code
was described in the context of human-machine interaction.

6Classic and Modern Variables

6.1 Introduction

Variables are data containers that allow instructions to be broken down into smaller, more
manageable chunks. Consequently, variables are at the core of all processes. This chapter
describes what variables are and how these structures can be modified to accommodate
different data types. First, best practices are discussed regarding variable names. The
difference between explicit and implicit variable declarations are then explained in the
context of statically vs dynamically typed computer languages. Most importantly, exper-
iments in regard to variable assignments are discussed under the umbrella of operator
precedence and association, and their behavior with respect to different data types. These
simple experiments are made in each of the languages provided in this work. In the sec-
ond part, the chapter describes the structure of more complex variables, such as arrays.
Thus, the creation of arrays, the accessibility of their elements, and the addition or dele-
tion of elements are discussed extensively with examples. Furthermore, properties such
as length, upper bound, or lower bound are also discussed at the end of the chapter with
more complex implementations.

6.2 Variables

In order to understand the fundamentals, one must first learn about the concept of variable.
What a variable is and how it can be dealt with, is the main concern of this entire chapter.
A variable is a name associated with a piece of data, namely a reference to the data.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_6.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_6&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_6
https://doi.org/10.1007/978-3-031-23277-0_6

106 6 Classic and Modern Variables

Variables allow the storage or the manipulation of data in software applications. In an
abstract manner, variables may be viewed as small boxes which hold a specific piece of
information. In most computer languages, variables are first declared and then “loaded”
with literals. What are literals?

6.2.1 Literals

The term “literal” comes from the fact that data is literally written into the program.
Thus, literals are values declared in the source code and are later a part of the compiled
application (for computer languages with the possibility of compilation to machine code).
In other words, a literal is data stored directly in the source code rather than indirectly
taken from a variable or function call. Some examples of literals of different data types
are shown on each line in Additional algorithm 6.1.

Literals are fixed values and cannot be changed by the program containing them. How-
ever, literals can be copied into a variable for further use. Consequently, literals are often
used to initialize variables by assigning the literal to the variable. These written values
are also important for the read-only variables discussed later in this chapter. Below, there
are some examples that show how variables are created and how literals of different data
types are assigned to these variables above different interpreted and compiled languages
(Additional algorithm 6.2).

Up to this point, the variable declarations show only small differences between the
languages used here. These differences may consist in the presence or the absence of
the semi colon at the end of each line, or, small differences in the way the variables are
written. For instance, in PERL and PHP the variables start with the dollar sign before
the name of the variable, whereas in other languages the variables contain only the name
of the variable. Of course, regardless of the language used; there are some rules when it
comes to the name of a variable. Such restrictions are imposed by the functionality of the
compiler or interpreter, as discussed in the previous chapters.

42
3.14159265358979323846264
'a'
"this text"

Additional algorithm 6.1 It shows a few examples of literals. The examples bring a series of
known data types, namely an integer literal (42), a floating point literal (3.1415), and two string lit-
erals (“a” and “this text”). Thus, anything that is written data is a literal. Note that the text is out of
context and is intended for explanation of the method

6.2 Variables 107

<script>

var x = 10;
var y = 17;
var color = "green";
var xname = "Paul";
var logic = true;

</script>

using System;
class HelloWorld {

static void Main() {

int x = 12;
int y = 15;
string color = "green";
string xname = "Paul";
bool logic = true;

}
}

Private Sub Form_Load()

Dim x As Integer
Dim y As Integer
Dim color As String
Dim name As String
Dim logic As Boolean

x = 12
y = 15
color = "green"
xname = "Paul"
logic = True

End Sub

<?php

$x = 12;
$y = 15;
$color = "green";

Additional algorithm 6.2 It shows how values (literals) of different data types are assigned to
variables. Please note that C#, C++, Java and VB use the data type explicitly, i.e. the type of the
variable is declared before assignment. On the other hand, notice that all the other environments use
implicit data type, that is, the value is able to explicitly declare the variable type. Judging by the
trends, it is possible that in the future explicit assignments may be less frequent. Note that the source
code is in context and works with copy/paste

108 6 Classic and Modern Variables

$xname = "Paul";
$logic = true;

?>

my $x = 12;
my $y = 15;
my $color = "green";
my $xname = "Paul";
my $logic = true;

x = 12;
y = 15;
color = "green";
xname = "Paul";
logic = true;

public class Main
{

public static void main(String[] args) {

int x = 12;
int y = 15;
String color = "green";
String xname = "Paul";
boolean logic = true;

}
}

x = 12
y = 15
color = "green"
xname = "Paul"
logic = True

#include <iostream>
using namespace std;

int main()
{

int x = 12;
int y = 15;
string color = "green";
string xname = "Paul";
bool logic = true;

}

Additional algorithm 6.2 (continued)

6.2 Variables 109

6.2.2 Naming Variables

In regard to variable names, there are the few good practices that can be mentioned. Vari-
able names must start with a letter and not with a digit. When a variable name starts with
the digit, the interpreter will detect this variable as a number which should be followed
by an equal sign. Thus, it will rise an error. In order to provide an example, let us imagine
an expression like: “a = 5 + 5a”, or “5a = 5”. For both of these statements an error will
be raised. Also, the variable names are case sensitive and may contain only alpha numeric
characters and underscores (“a–z”, “A–Z”, “0–9”, and “_”). Lowercase letters and upper-
case letters make the difference. For instance, a variable name like “Paul” is not the same
as a variable name like “paul”, the two are separate entities. Usually, variable names do
not have word length restrictions. The only rule is that variable names cannot contain
space characters or tab characters. Space characters or tab characters are used in specific
circumstances by the interpreter in order to split the code in meaningful smaller pieces of
code. Most important of all, a variable name must not be the same as a reserved keyword,
such as computer instructions like “if ”, “for”, “print” and so on. Reserved keywords are
able to instruct the interpreter, therefore a variable with the same name as a reserved
keyword will be treated by the interpreter as an instruction. All reserved keywords are
placed in a specific context, otherwise the lack of context will raise an error. For instance,
in context, reserved keywords will not be followed by the equal sign like variables are.
As a simple recommendation, variable names should describe their purpose in the overall
context of the application. Unless an algorithm is built, it is advisable to avoid single letter
variables. Single letter variables allow for short and compact implementations which can
be seen all at once by a programmer. Single letter variables are used in two circumstances:
(i) The code represents an algorithm with local variables isolated inside a function, or,
(ii) the programmer is highly experienced and explains the code and the meaning of the
variables in the comments. The shorter the variable name, the more likely it is to reassign
the same variable to another purpose by mistake, especially in the case of very complex
applications. For instance, for one letter variables there are 24 variable names that can
be used. Thus, as the length of the variable name increases, the probability to reassign
a variable by mistake, of course, decreases. It goes without saying, however, it is vitally
important to distinguish between the name of the variable and the value of the variable.
For example, if an expression is considered, in which a variable is named “color” and it
is equal to a few characters, namely “green”, then color is the name of the variable and
“green” is the value. Far below, there are some examples in multiple programming and
scripting languages that point out those discussed above. If we still consider the abstract
example in which variables are associated with boxes, then “color” would be the name
of the box while “green” is what the box contains.

110 6 Classic and Modern Variables

6.2.3 Variables: Explicit and Implicit

Perhaps all computer languages of the past were typed, which means that the type of vari-
able is declared before any value is actually stored in it. Thus, explicit declared variables
are dynamically reserved memory locations to which values can be stored. Some computer
languages can be untyped, which means that once they are declared the variables don’t
have an explicit data type. In other words, once it is declared the variable may take the
data type of the value when the assignment is made. Notes: The terms typed and untyped
are actually known as, and refer to, “strongly typed” (typed) and “weakly typed” (untyped)
languages. A computer language can be of both types, strongly typed and weakly typed at
the same time. For example, VB6 is such a programming language, where the program-
mer can indicate an option at the beginning of the code (Option Explicit), which forces
the express declarations of all variables. Otherwise, all implicit declarations are consid-
ered of the type “Variant”. But how implicit declarations work? Variables in computer
languages like JavaScript or Python do not need explicit declaration to reserve memory
space. The trick here is that “explicit” declaration happens automatically when a value
is assigned to a variable. In short, when some computer languages lack explicit decla-
rations of variables, they must have an implicit declarations of variables. For example,
JavaScript is such a scripting language. In JavaScript there is no possibility to specify
that a particular variable represents an integer, or a string, or a real number. Moreover,
the same variable can have different data types in different contexts. This simplification
of JavaScript represents a colossal evolution of modern software technology. The simple
fact that a programmer attaches a data type to a variable on the fly, represents one of the
main optimizations in the software technology today. However, when we consider the old
customs in software development, we understand the possible downsides on easily chang-
ing data types on variables. In the old days, all variables were declared at the beginning of
the implementation. Thus, it was hard and time-consuming for a programmer to change
the data type of a variable. In this way, the entire software application was built from the
beginning on a skeleton foundation. With the advent of this optimization regarding the
change of data types for variables on the fly, the good practices have become important
for teams of programmers. Thus, the good practices have allowed a common ground and
a common anchoring when it comes to specific software projects/applications.

6.2.4 Statically Versus Dynamically Typed Languages

Why is the explicit declaration of variables important? Why don’t we go by default with
implicit declarations in all computer languages? The simple answer is related to error
catching and the optimization that a compiler does. When the type of variable is known
in advance, the compiler can use different optimization strategies. Compiler optimiza-
tion strategies refer to the way a high-level source code is translated into machine code

6.2 Variables 111

for higher speed and/or smaller size. In the case of implicit declarations of variables, a
compiler has a lot of surprising information, information that it does not know from the
beginning, which is why it cannot formulate a global strategy for optimizing the machine
code. For example, as shown below in the sub-chapter “Evaluations of expressions”, there
are situations in which the implicit declaration of variables can be done only after a func-
tion provides the result or/and an expression is evaluated. Normally, for type-checking a
compiler must identify the name and type of variables first and then evaluate expressions
and other semantics issues. Thus, in order for a compiler to identify the type of a vari-
able, it would have to evaluate expressions that contain variables themselves. Thus, it is
not possible and here a paradoxical situation may arise. Is not by mistake that the majority
of dynamically typed computer languages are in fact scripting languages. Regardless of
the model of interpretation, scripting languages have no compiler to satisfy and account
for. Those that have a kind of compiler, either make no optimizations because the hard-
ware of today is highly powerful and is worth the tradeoff, or, the implementation of the
compiler is able to gather information about the source code before the actual compila-
tion process (pre-compilation). Such a pre-scan of the source code means that all implicit
declarations can be translated into explicit declarations. That pre-scan implies also the
evaluation of expressions to find out the type of variable (a situation discussed above).
In short, the source code can be silently interpreted first with information gathering, and
compiled later based on that information. Nonetheless, it should be noted that a dynamic
type language allows programmers to change the type of a variable on the fly depending
on what data is assigned to it (VB6, JavaScript, Python, and so on). Again, as stated
above, most scripting languages have this feature as there is no compiler to do static
type-checking. Static typing is verbose when compared to dynamic because it declares
all variables, parameters, and return values (return values are related to functions that are
discussed in the next chapter). To understand what verbose really means, one may take
a look at Additional algorithm 6.3 on the VB6 section, where all variables are explicitly
declared. Declarations like “Dim x As Integer” can be seen, which in simple words means
“make a one-dimension empty space in memory of 2 bytes for a variable named x that
awaits for data of this size” (also please see Table 5.2 for reference). One can compare
the amount of source code from VB6 with the mirrors from JavaScript, Ruby, or Python,
where the source code is short due to implicit variable declarations. Implicit variable dec-
larations are normal in many weakly typed computer languages, as reusability is required
for optimization.

112 6 Classic and Modern Variables

<script>

var x = 12;
var y = 15;
var color = "green";
var xname = "Paul";
var logic = true;

print(logic);
print(x + y);
print(color + x);
print(x + xname);
print(x + y + color);
print(color + x + y);
print(x + x / x - x * x);

</script>

JS Output:
true
27
green12
12Paul
27green
green1215
-131

using System;
class HelloWorld {
 static void Main() {

 int x = 12;
 int y = 15;
 string color = "green";
 string xname = "Paul";
 bool logic = true;

 Console.WriteLine(logic);
 Console.WriteLine(x + y);
 Console.WriteLine(color + x);
 Console.WriteLine(x + xname);
 Console.WriteLine(x + y + color);
 Console.WriteLine(color + x + y);

C# Output:
True
27
green12
12Paul
27green
green1215
-131

Console.WriteLine(x + x / x - x * x);
}

}

Private Sub Form_Load()

Dim x As Integer
Dim y As Integer
Dim color As String

VB Output:
True
27
green12
12Paul

Additional algorithm 6.3 It shows explicit and implicit declarations of variables as well as exam-
ples of expressions and their evaluations for all computer languages used here. It mainly shows the
connection between operators and data types. Note that the source code is in context and works with
copy/paste

6.2 Variables 113

Dim name As String
Dim logic As Boolean

x = 12
y = 15
color = "green"
xname = "Paul"
logic = True

Debug.Print (logic)
Debug.Print (x + y)
Debug.Print (color & x)
Debug.Print (x & xname)
Debug.Print (x + y & color)
Debug.Print (color & x + y)
Debug.Print (x + x / x - x * x)

End Sub

12Paul
27green
green27
-131

<?php

$x = 12;
$y = 15;
$color = "green";
$xname = "Paul";
$logic = true;

print ($logic);
print ($x + $y);
print ($color . $x);
print ($x . $xname);
print ($x + $y . $color);
print $color . ($x + $y);
print ($x + $x / $x - $x * $x);

?>

PHP Output:
1
27
green12
12Paul
27green
Green27
-131

my $x = 12;
my $y = 15;
my $color = "green";
my $xname = "Paul";

PERL Output:
True
27
green12

my $logic = true;

print ($logic);
print ($x + $y);
print ($color . $x);
print ($x . $xname);
print ($x + $y . $color);
print ($color . $x + $y);
print ($x + $x / $x - $x * $x);

12Paul
27green
15
-131

Additional algorithm 6.3 (continued)

114 6 Classic and Modern Variables

x = 12;
y = 15;
color = "green";
xname = "Paul";
logic = true;

puts logic;
puts (x + y);
puts (color + x.to_s);
puts (x.to_s + xname);
puts (x + y).to_s + color;
puts color + (x + y).to_s;
puts (x + x / x - x * x);

Ruby Output:
true
27
green12
12Paul
27green
green27
-131

public class Main
{

public static void main(String[] args) {

int x = 12;
int y = 15;
String color = "green";
String xname = "Paul";
boolean logic = true;

System.out.println(logic);
System.out.println(x + y);
System.out.println(color + x);
System.out.println(x + xname);
System.out.println(x + y + color);
System.out.println(color + x + y);
System.out.println(x + x / x - x * x);

}
}

Java Output:
true
27
green12
12Paul
27green
green1215
-131

x = 12
y = 15
color = "green"
xname = "Paul"
logic = True

Python Output:
True
27
green12

print (logic)
print (x + y)
print (color + str(x))
print (str(x) + xname)
print (str(x + y) + color)
print (color + str(x + y))
print (x + x / x - x * x)

12Paul
27green
green27
-131

Additional algorithm 6.3 (continued)

6.3 Evaluations of Expressions 115

#include <iostream>
using namespace std;

int main()
{

int x = 12;
int y = 15;
string color = "green";
string xname = "Paul";
bool logic = true;

cout<<logic<<"\n";
cout<<(x + y)<<"\n";
cout<<(color + to_string(x))<<"\n";
cout<<(to_string(x) + xname)<<"\n";
cout<<(to_string(x + y) + color)<<"\n";
cout<<(color + to_string(x + y))<<"\n";
cout<<(x + x / x - x * x)<<"\n";

}

C++ Output:
1
27
green12
12Paul
27green
green27
-131

Additional algorithm 6.3 (continued)

6.3 Evaluations of Expressions

Much of the field of mathematics is represented two-dimensionally on paper (ex. matri-
ces, exponentiation, summations and so on). In the past, issues obviously existed with the
representation of mathematical expressions right from the beginning of the modern era of
computers and prior to it. Nevertheless, ultimately these one-dimensional representations
often provided more value and practicality than previously expected. Some discussions
about the evaluations of one-dimensional expressions may indeed seem trivial, until they
are not trivial anymore. How do interpreters/compilers make the evaluations of expres-
sions? and why is this important? In short, this is especially important for computer
languages that have an implicit assignment model, because these are the most affected.
Expressions may dictate the type of variable by a kind of induction. Namely, the result of
the evaluation establishes the type of variable by assignment. For instance, an expression
which adds two integers, will be evaluated to an integer (ex. 1 + 1 = 2). This result is of
course expected by any of us. Let us consider a variable name “a”. The assignment of the
result of the expression to variable a, dictates what type the a variable can be (ex. a = 1
+ 1 = 2; thus: a = 2). Therefore, variable a is an integer type because the result of the
evaluation dictated so. On the other hand, an expression which adds a string and a number
(again just an integer for simplicity), will evaluate to a string (ex. “Paul” + 1 = “Paul1”).
The assignment of the result of the expression to variable a will convert it into a string
variable (ex. a = “Paul” + 1 = “Paul1”; thus: a = “Paul1”). This is why the assignment
of an entire expression to a new variable is extremely important and deserves attention.

116 6 Classic and Modern Variables

The above observations are true for JavaScript. Computer languages use different oper-
ator symbols for mathematical expressions. Moreover, some operator symbols may have
multiple meanings. For instance, the plus symbol in JavaScript is an arithmetic operator
and a concatenation operator, whereas in other languages the two operations have differ-
ent representative symbols. For these reasons the result of the evaluation may differ from
one computer language to another. Therefore, the behavior of the evaluations discussed
above in the main text, can be inspected by using new examples for each programming
or scripting language used in this work.

The first thing to be noticed, is that for the interpreter the order of the variables does
matter. For instance, in Java, JavaScript, and C Sharp (also noted as C#), the “+” operator
is able to add different data types on the fly. However, the order in which the content
of different data types are added together imposes different results. If a string value is
declared first, followed by the “+” operator, and a number value is declared after the “+”
operator, then the result will be another string. Vice versa, if a number value is declared
first, followed by the “+” operator, and the string value is declared after the “+” operator,
the result will be the same, namely a string value. The situation becomes more interesting
when a string value is followed by the “+” operator and then by a mathematical expres-
sion. In such a case, the result will be a string value because the evaluation made by the
interpreter is done from the left to the right of this composite expression. Thus, since
the first term is a string value, anything that is added one by one to this string value;
will result in another string value. A different behavior is expected when a mathematical
expression is found in front of a string value. Namely, the evaluator will encounter the
mathematical expression first (from left to right) and the string value after. The output
will encompass the result of the mathematical expression, followed by the string value.
Thus, order matters. In other programming and scripting languages the “+” operator is
not allowed in this manner. For instance, Python, Ruby, Perl, PHP or VB do not allow for
the use of the “+” operator in this manner. To be more precise, Python and Ruby use the
“+” operator to add two strings together, namely to concatenate two strings. In these two
environments string values cannot be added directly to numbers by using the “+” opera-
tor. Number data types first require a conversion to strings by the use of special dedicated
methods (see below). Languages such as PERL, PHP and VB, require dedicated operators
in order to correctly evaluate a composite expression.

6.3.1 Details by Language

A few point-by-point observations can be made here. As expected, in the case of Java
the “+” operator works in the same manner has it works in JavaScript. In C#, the use
of the “+” operator between a Boolean value and a number will of course fail to eval-
uate (Operator “+” cannot be applied to operands of type “bool” and “int”). In Visual

6.3 Evaluations of Expressions 117

Basic, the “+” operator can be used only for mathematical expressions whereas the addi-
tion/concatenation of a string to a number is possible through the use of another operator,
namely “&”. Note that in PHP the Boolean variables are shown as “1” for true and “0”
for false. In PHP, string values cannot be concatenated with integers by using the same
“+” operator as it is done in JavaScript. Instead, for concatenation the “.” character is used
as a string operator. In PHP, a string value added to a mathematical expression results in
error (ex. “$color. $x + $y;”). In order to avoid the error, the mathematical expression
is separated from the concatenation by the use of parentheses (ex. “$color. ($x + $y);”).
Thus, the PHP example found in Additional algorithm 6.3, shows that a concatenation of
the string with the result (an integer) of the mathematical expression will provide a valid
result. The “print” instruction followed by the expression “$color. ($x + $y);”, yields
“Green27”. Moreover, the plus operator in Visual Basic and PHP cannot be used as it is
done in JavaScript or C#. For concatenation of strings, Visual Basic uses the “&” charac-
ter as an operator (“Debug.Print (color & x + y)”), whereas PHP uses the “.” character as
an operator (“print $color. ($x + $y);”). In PERL, the concatenation between a string and
any other data type is made by using the “.” character as an operator, just like in PHP.
Thus, concatenation of two strings will result into another string. Also, the concatenation
between a string and a number will also result into a string. In PERL, concatenations
that use the “+” operator instead of the “.” operator, lead to the error free removal of the
string value from the result. For instance, when the “+” operator is used for concatenation
between string values and number values, the result is “true2712122727”, as it can be
seen in Additional algorithm 6.4.

In the result of Additional algorithm 6.4, one may observe that all string values are
missing from the output. In other words, a string followed by the “+” operator and then
followed by a number value, will output the number value. Vice versa is also true. For

print ($logic); #true
print ($x + $y); #27
print ($color + $x); #12
print ($x + $xname); #12
print ($x + $y + $color); #27
print ($color + $x + $y); #27
print ($color + $x + $x / $x - $x * $x); #-131
print ($color . $x + $x / $x - $x * $x); #-143

PERL Output:
true2712122727

Additional algorithm 6.4 Example of interesting evaluations in PERL showing that concatena-
tions that use the “+” operator instead of the “.” operator, lead to the elimination of the string value
from the result, with no error in sight. Note that the source code is out of context and is intended for
explanation of the method

118 6 Classic and Modern Variables

instance, in the context of the above example, “print ($color + $x);” will output “12”, and
a switch of the terms provides “print ($color + $x);”, which also outputs “12”. Notice
however, that in PERL, the use of the “+” operator for concatenations between strings and
mathematical expressions, leads to an output in which the string is disregarded and the
result of the mathematical expression is preserved and displayed (i.e. “print ($x + $y +
$color);” will output “27” and not “27green”). Each programming language or scripting
language contains different helpers. These helpers are the internal functions, or the built
in functions, which may be considered as some black boxes that receive data and output
data. In the case of data type converters, these languages contain special built in functions
that are able to switch between data types. In Ruby, there is no implicit conversion of an
integer into a string by using the “+” operator. Thus, in order to allow for concatenation,
the number is converted to string on the fly by using the “.to_s” method. The same sit-
uation can be encountered in Python where numbers must be converted to strings prior
to the concatenation process. In Python, a number can be converted into a string on the
fly by using the “str()” method. Without the conversion of the number values to string
values, the “+” operator cannot automatically join a string and a number by default. Thus,
without additional help, strings can be added only to strings. This is true for both Python
and Ruby. Note that the last line of code in each computer language from Additional
algorithm 6.3, tests the operator precedence and association discussed far above (ex. “x
+ x/x − x× x”). PERL particularities in regard to different operations sparkled supple-
mental experimentation in Additional algorithm 6.4. Although the rules and the results
are known from the previous chapters, the operator precedence and association example
is tested in PERL with a string value and two different operators, namely the addition
operator and the concatenation operator (i.e. “$color. $x + $x/$x − $x * $x”). The string
variable (i.e. “$color”) is positioned first from left to right and the math expression is
added to it, either by using the “+” operator or the “.” operator. Each of the two opera-
tors provide different results in the evaluation of the expression, namely “−131” for the
addition operator and “−143” for the concatenation operator. These results should be of
note in case of debugging perl scripts.

6.4 Constants

Constants are read-only variables that store immutable (fixed) values called literals. In
other words, constants can be viewed as variables with post-definition restrictions. In the
source code of any computer language one would like to have keywords that indicate
a constant value. Such keywords can set a variable to a specific value once, providing
the certainty that the value of the variable never changes. Usually, when the computer
language does not allow read-only variables due to various reasons, a constant must be
written with upper-case letters so that the programmer knows, by convention, that the

6.4 Constants 119

variable is actually a constant. Thus, a good practice is to adhere to the established con-
sensus, in which variables with all upper-case names should be treated as constants. This
upper-case notation tells programmers that a variable contains a constant, but this does
not prevent the assignment of other values to that variable. Computer languages such as
Ruby or Python subscribe to those previously described. The other languages in the list
use the “const” keyword to declare a constant. Java uses the keyword “final” pointing out
the fact that the assignment for a variable is final and cannot be changed. Often times,
constants can store more than simple literals (i.e. “a”, 1 or 3.1415, and so on). Computer
languages like Javascript can declare constants that store whole objects.

For example, a statement like “const x = [‘a’, ‘b’, ‘c’];” will be valid, where x is a
constant whose value cannot be changed (please see the arrays subchapter). As described
above, static typing has the advantage of making types immutable and the disadvantage
of being too rigid at the same time. Static typing means that variables can store only
data of a certain type (i.e. a data type). In computer languages such as C++, C#, Java
or VB6, the variable declaration is accompanied by a data type declaration. The same is
true for constants, the data type declaration can indicate integers, floating point numbers,
characters, strings or boolean values (Additional algorithm 6.5). In C++, C#, Java or
VB6, the data type of constants must be declared before the assignment. For instance, the
declaration of a constant x in the form “const string x = ‘anything’;” will store the string
“anything” without the possibility of changing the value of x. The same can be done for
an integer; for example “const int x = 10;”, where x cannot be changed after it has been
declared.

Const X As Double = 3.1415926 x = 3.14159265358979323846264
X = 3.14159265358979323846264 x = 3.14159265358979323846264
X = 3.14159265358979323846264 x = 3.14159265358979323846264
use constant X => 3.14159265; $x = 3.141592653589793238462;
define("X", 3.1415926535897); $x = 3.141592653589793238462;
const X = 3.1415926535897932; var x = 3.141592653589793238;
const double X = 3.141592653; double x = 3.141592653589793;
final double X = 3.141592653; double x = 3.141592653589793;
const float a = 3.1415926535; float b = 3.1415926535897932;

Additional algorithm 6.5 It shows how constants are declared in different computer languages.
Moreover, it shows the difference between constant declaration (second column) and variable dec-
laration (third column). Some computer languages use special keywords and data type declarations,
while other computer languages do not. Notice how in certain computer languages where there are
no special keywords for defining constants, the difference between constant and variable is made by
convention; namely a variable written with an uppercase letter means a constant and a variable writ-
ten with a lowercase letter means a simple variable whose content can be changed at will. Note that
the source code is out of context and is intended for explanation of the method

120 6 Classic and Modern Variables

6.5 Classes and Objects

This subchapter briefly describes the meaning of classes and what these are in relation
to the objects. Why is it important to describe the meaning of classes and objects at this
stage? Many computer languages that are either pure object oriented or only partially
object oriented, can use objects to represent variables. Thus, in such cases a variable goes
from its classic meaning of a simple memory address to a more complex meaning of
reference to an object. For example, in object oriented computer languages like Ruby,
everything is an object. Also, objects must have the ability to interact with each other.
In Ruby, objects interact by exchanging messages. If one wishes to find out the length
of an array, it sends the “length” message to an instance of an array object. That array
object calculates the number of elements present and returns that number to the caller.
The above explanation is very different from the classical case, where data was found
at the memory address associated with the name of the variable. Thus, although this
book is not focused on the subject of classes, understanding objects is important because
these structures are used internally to represent variables in many computer languages.
Note that object-oriented programming is a paradigm and is not crucial to computers, as
non-object-oriented languages make software just as efficient.

6.5.1 About Design Patterns

Classes and objects are often concepts of object-oriented computer languages. A class is
a template (or a pattern) from which objects are created. Thus, a class does not occupy
memory, only its objects (except perhaps in interpreted languages which use memory, such
as, for example, the classloaders from Java). Because these structures are templates, or
models, the term “design patterns” refers to the most useful templates that can fit different
situations. In other words, object-oriented design patterns describe templates for reusable
solutions to frequently encountered context-specific problems. Design patterns also take
into account the relationships and interactions between classes and, consequently, between
their objects. To exaggerate an association we can say that a class is much like pho-
tolithography, where the presence or absence of light can draw shapes on the surface of
a photosensitive material. In short, an object is an instance of a class (however, in some
computer languages, such as Javascript, objects can be created without using classes). The
object is stored in a specific memory location. A reference is a variable that points to the
memory location of the variables and methods of the object. Thus, variable names that
represent objects are in fact references to objects.

6.5.1.1 Constructors and Destructors
In software engineering, the term “constructor” is often used to point out the construction
of an object based on a class. When the terms “constructor” and “destructor” are used,

6.6 Arrays 121

most of the time the reference is made in regard to objects. For the creation of an object,
the term constructor indicates that an object is instantiated (materialization), or an object
is brought into existence, so to speak. When this object is no longer required, the term
“destructor” is used, which indicates the deletion of the object and the release of the
memory occupied by it.

6.6 Arrays

Arrays are the Alfa & Omega of all imperative algorithms written in high-level languages.
An array is a compound data type that stores numbered pieces of data. Each numbered
datum it is called an element of the array and the indexed assigned to it is called an index.
The elements of an array may be of any type. In modern languages, an array can even
store elements of different types. For instance, inside an array, one element may store
numbers and another element may store strings. This is true for the scripting language
JavaScript. In older computer languages, arrays were of one data type. To circumvent
that, programmers declared the arrays as string data type. In this manner, the program-
mer was able to store any type of data camouflaged as a string. When data was needed
from the array, the first step before anything else was the conversion of the strings into
numbers, of course if that was the case. This interesting approach of simulating a modern
programming or scripting language by using an older one; was done for years in Visual
Basic or in Visual Basic for Applications (Excel) and continues to be done in the same
manner today. Of note, the methodology by which numbers are stored as strings and later
converted back to numbers when needed, is an approach highly practical even for modern
programming or scripting languages. However, for beginners the method is error-prone.
The best practice for beginners and even teams of programmers is to follow the univer-
sally agreed types throughout the source code without any conversions. Array variables
can be used for implementations that require multiple dimensions in their methodology.
First, some examples for one-dimensional arrays are given in full below, and later these
cases extend to multidimensional array variables.

6.6.1 Creating an Empty Array

To better understand arrays, one needs to observe some examples in different computer
languages (Additional algorithm 6.6). As discussed above, a classic variable is represented
by a memory location. Because an array normally represents a group of variables, a classic
array variable is represented by a sequential allocation of memory. Currently, sequential
allocation of memory for arrays is true mainly for compiled computer languages that
are not fully object-oriented (ex. C++, VB). For example, arrays in javascript are not

122 6 Classic and Modern Variables

A = [] none
A = [] A = Array.new
$A = []; $A = array();
var A = []; var A = new Array();
string A[0]; string *A = new string[0];
string[] A; string[] A = new string[0];
String[] A; String[] A = new String[0];

Dim A() as String none
@A = (); none

Additional algorithm 6.6 It shows two methods of declaring an empty array. For declaration pur-
poses, computer languages use either square brackets or round brackets to indicate that the variable
represents a group of “internal subvariables”. On the second column is the array square parentheses
type of declaration. On the third column is the array constructor type of declaration. Most computer
languages that use the array constructor statement are usually object-oriented. But not all of them;
for example Python does not have a special keyword of this kind, preferring the array square paren-
theses notation. Those declarations that explicitly write the data type for the array, can obviously
take any data type. Here the example was given on a string data type for computer languages such
as C++, C#, Java or VB6. Note that the source code is out of context and is intended for explanation
of the method

represented by sequential memory allocations. Javascript arrays are objects with enumer-
able property names and certain important methods, such as “.length”, which returns the
number of elements in the array.

Depending on the computer language used, there are two ways to create an array,
either by using array square parentheses (i.e. “var A = [1, 2, 3];”) or by instantiating a
constructor function (i.e. “A = new Array(1, 2, 3);”). In purely object-oriented languages
(Javascript, Ruby, and so on) everything is represented by objects, including variables. In
Ruby, even digits are treated as objects with proprietes. Thus, in such computer languages
there is no difference between the array literal and the array constructor, because array is
a class that is instantiated in both cases, and the result is the array object.

6.6.1.1 Using the Array Constructor
What is the point of the constructor ? Classically, in Java-like computer languages a class
must be instantiated by using the keyword “new”. The point of the array constructor is
to remind the programmer that the array variable is in fact an object. It is pointless in
modern times, but still is a reminder. The use of the array constructors takes longer to
write and lacks performance when compared to array literal declarations. However, it is
able to create an array with a certain number of empty elements. For instance, passing an
argument to the function like “A = new Array(10)”, will create an array object with 10
empty elements. In other words, the statement “new Array(10);” creates the object and
the reference to it is assigned to the variable named “A”.

6.6 Arrays 123

6.6.1.2 Using Array Literals
In all computer languages, literals are fixed values, that is, values that are written into
the source code. Thus, the following types of literals are regularly used: integer literals
(ex. “12”), double literals (ex. “4.1234”), string literals (ex. “anything”), and so on. Array
literals include the previously mentioned literals. The performance advantage of the array
literal is that it provides array compilation when the script is loaded. Note that literal
notation becomes the good practice standard in regard to arrays. All examples that follow,
use array literals.

6.6.2 Creating an Array with Values

Examples were discussed that showed the ways in which an empty array variable can
be declared (Additional algorithm 6.6). Up to this point it is understood that an array is
a special variable that can hold an array of values. The following examples show how
the array variables are declared without any value, then show the method by which the
literals are loaded into the array elements (Additional algorithm 6.7). In a first instance,
two array variables, A and B, are declared empty. Then, to show the use of two types of
literals, variable A is loaded with three string literals (i.e. “a”, “b” and “c”) and variable B
is loaded with integer literals (i.e. 1, 2, 3). The individual elements of each array variable
are displayed in the output for visualisation. The elements of array variables are numbered
from zero to n. Notice that an element of an array variable is accessed with the help of a
whole number (the index).

Different peculiarities are also shown for languages such as PERL or Ruby. In PERL,
there are many ways to declare an array; either by using the “qw” keyword for string
values that are delimited by the space character, or by declaring ranges of numeric or
letter values. For computer languages such as C# and Java, the constructor declaration is
also shown in the comments (Additional algorithm 6.7). An important aspect to remember
in the case of computer languages that are untyped, is the fact that an array variable can
hold the reference for several types of data (after all, in those computer languages the
array is an object). However, in typed computer languages, an array variable can hold
values of only one type.

6.6.3 Adding Elements

The next step shows a series of examples by which elements can be added to an array.
Here an empty array variable with the name “A” is declared (Additional algorithm 6.8).
Then new elements are generated to which different literal values are assigned, according
to the model A[index of the element] = literal. As in the previous example, after construct-
ing the array variable, the individual elements are displayed in the output for visualization,

124 6 Classic and Modern Variables

var A = [];
var B = [];

A = ["a", "b", "c"];
B = [1, 2, 3];

print(A[0] + A[1] + A[2]);
print(B[0] + B[1] + B[2]);

JS Output:
abc
6

using System;
class HelloWorld {

static void Main() {

//string[] A = new string[] {"a", "b", "c"};
//int[] B = new int[] {1, 2, 3};

string[] A = {"a", "b", "c"};
int[] B = {1, 2, 3};

Console.WriteLine(A[0] + A[1] + A[2]);
Console.WriteLine(B[0] + B[1] + B[2]);

}
}

C# Output:
abc
6

A = Array("a", "b", "c")
B = Array(1, 2, 3)

Debug.Print A(0) & A(1) & A(2)
Debug.Print B(0) + B(1) + B(2)

VB Output:
abc
6

$A = []; PHP Output:
$B = [];

$A = ["a", "b", "c"];
$B = [1, 2, 3];

print($A[0] . $A[1] . $A[2]);
print($B[0] + $B[1] + $B[2]);

abc6

@A = ();
@B = ();

@A = ("a", "b", "c");
@B = (1, 2, 3);

PERL Output:
abc6

Additional algorithm 6.7 It shows how to create a multi-valued one-dimensional array variable
using literals. In this example an array variable A is used to store only string literals and an array vari-
able B is used to store integer literals. In languages such as Javascript, PHP, PERL, Ruby or Python,
array variables can store several types of literals, including objects. In languages such as C++, C#,
Java or VB6, array variables can store only one type of literal. Note that the source code is in context
and works with copy/paste

6.6 Arrays 125

@A = ("a", "b", "c");
@B = (1, 2, 3);
@C = (1, 2, 'c');
@D = qw/a b c/;
@E = (4..10);
@F = (c..p);

A = ["a", "b", "c"]
B = [1, 2, 3]

puts A[0] + A[1] + A[2]
puts B[0] + B[1] + B[2]

#A = Array.new(3, "a")
#puts "#{A}"

Ruby Output:
abc
6

public class Main
{

public static void main(String[] args) {

//String[] A = new String[] {"a", "b", "c"};
//int[] B = new int[] {1, 2, 3};

String[] A = {"a", "b", "c"};
int[] B = {1, 2, 3};

System.out.println(A[0] + A[1] + A[2]);
System.out.println(B[0] + B[1] + B[2]);

}
}

Java Output:
abc
6

A = ["a", "b", "c"] Python Output:
B = [1, 2, 3]

print (A[0] + A[1] + A[2])
print (B[0] + B[1] + B[2])

abc
6

#include <iostream>
using namespace std;

int main()
{

string A[] = {"a", "b", "c"};
int B[] = {1, 2, 3};

cout<<(A[0] + A[1] + A[2]);
cout<<(B[0] + B[1] + B[2]);

return 0;
}

C++ Output:
abc6

print($A[0] . $A[1] . $A[2]);
print($B[0] + $B[1] + $B[2]);

Additional algorithm 6.7 (continued)

126 6 Classic and Modern Variables

where the expected result is “abc”. We note that in certain cases the number of empty
elements must be determined prior to any assignment of literals. For example, in C++,
C#, Java, VB6 and Python, the number of elements is predefined, while in other com-
puter languages the array elements can be created at the time of assignment (Additional
algorithm 6.8).

Here, one can take Javascript as an example for array elements that can be created at
assignment time. In the past, to add new empty elements to an array, one could simply
assign a value to it by using a constructor. A statement like “var A = new Array(10);” is
an example, where 10 indicates the number of empty array elements. However, one can
just as well declare an empty array (i.e. “var A = [];”) and insert the number of elements
with the help of an additional line (i.e. “A.length = 10;”). The value 10, as discussed
above, indicates the number of empty elements in the new array. So the total number of
elements is 10, that is: 0, 1, 2, … 9. Next, let us assume that a value (eg. 42) is added
to this variable at the element with the index 100 (i.e. “A[100] = 42;”). The question
that arises would be: how many elements does the array variable now have? Through
experimentation, it can be observed that the number of elements of the array variable is
automatically extended up to 101 (i.e. 0,1,2, … 100), where only element 100 will have
a value, and the other elements will be empty.

6.6.4 Accessing Array Elements

Thus, array elements are accessed by using the parentheses (ex. “()” or the “[]” operators)
and the index of the individual elements (ex. “A[the index]” or “A(the index)”, and so on).
This approach can list any value from the array. In the following example, an array literal
declaration is used in which three string values are declared. Then the value from the
element with index 1 (i.e. in Javascript: “var x = A[1];”) is assigned to a variable x and
the value from the element with index 2 (i.e. in Javascript: “var y = A[2];”) is assigned
to a variable y. The two variables x and y are then displayed in the output. Since the array
elements contain string values, consequently the x and y values also contain the same type
and the concatenation operator is used to display them. Thus, the expected result in the
output is “bc”. In some computer languages this operator is either represented by the “+”
sign or by the “.” sign.

Some interesting features are commented on in the Ruby computer language. In Ruby,
an array can be filled directly with successive values. For example, the statement “A =
Array(5.0.9)” will create an array with 5 elements (i.e. 5,6,7,8,9). Besides the classical
method shown in Additional algorithm 6.9, in Ruby a value can be extracted from an
element by using a statement such as “x = A.at(2)”, where number 2 represents the
index of the element in the array. Thus, the value from the element with index 2 will be
provided, namely number 7 (i.e. index 0 is 5, index 1 is 6, index 2 is 7, index 3 is 8,
index 4 is 9).

6.6 Arrays 127

var A = [];

A[0] = "a";
A[1] = "b";
A[2] = "c";

print(A[0] + A[1] + A[2]);

JS Output:
abc

using System;
class HelloWorld {

static void Main() {

string[] A = new string[3];

A[0] = "a";
A[1] = "b";
A[2] = "c";

Console.WriteLine(A[0] + A[1] + A[2]);
}

}

C# Output:
abc

Dim A(0 To 3) As String

A(0) = "a"
A(1) = "b"
A(2) = "c"

MsgBox A(0) & A(1) & A(2)

VB Output:
abc

$A = [];

$A[0] = "a";
$A[1] = "b";
$A[2] = "c";

echo $A[0] . $A[1] . $A[2];

PHP Output:
abc

Additional algorithm 6.8 It shows the statements by which an array variable A is declared and the
statements by which literal values are subsequently inserted into the elements of the array variable.
It should be noted that some computer languages such as Javascript, PHP, PERL or Ruby allow the
declaration of an empty array variable, after which the values can be inserted into newly declared
elements. On the other hand, in other computer languages such as C++, C#, Java, VB6 and Python,
the number of elements in the array variable must be declared before the assignment of values. Note
that the source code is in context and works with copy/paste

128 6 Classic and Modern Variables

A[0] = "a"
A[1] = "b"
A[2] = "c"

puts A[0] + A[1] + A[2]

abc

public class Main
{

public static void main(String[] args) {

String[] A = new String[3];

A[0] = "a";
A[1] = "b";
A[2] = "c";

System.out.println(A[0] + A[1] + A[2]);
}

}

Java Output:
abc

A = [0]*3

A[0] = "a"
A[1] = "b"
A[2] = "c"

print (A[0] + A[1] + A[2])

Python Output:
abc

#include <iostream>
using namespace std;

int main()
{

string A[3];

A[0] = "a";
A[1] = "b";
A[2] = "c";

cout<<(A[0] + A[1] + A[2]);

return 0;
}

C++ Output:
abc

@A = [];

$A[0] = "a";
$A[1] = "b";
$A[2] = "c";

print $A[0] . $A[1] . $A[2];

PERL Output:
abc

A = [] Ruby Output:

Additional algorithm 6.8 (continued)

6.6 Arrays 129

A = ["a", "b", "c"];

var x = A[1];
var y = A[2];

print(x + y);

JS Output:
bc

using System;
class HelloWorld {

static void Main() {

string[] A = {"a", "b", "c"};

string x = A[1];
string y = A[2];

Console.WriteLine(x + y);

C# Output:
bc

}
}

A = Array("a", "b", "c")

x = A(1)
y = A(2)

Debug.Print x & y

VB Output:
bc

$A = ["a", "b", "c"];

$x = $A[1];
$y = $A[2];

print($x . $y);

PHP Output:
bc

my @A = ("a", "b", "c");

my $x = $A[1];

PERL Output:
bc

Additional algorithm 6.9 It shows how to access the values stored in the elements of an array
variable. An array literal is declared, in which three string values (three separate characters, namely
“a”, “b”, “c”) are stored. Then, two variables x and y are declared, which take values from the ele-
ments of the array variable A. Then, once assigned to the x and y variables, the string values are
displayed in the output for visualization. As it can be observed, the result obtained after the execution
is “bc”. Note that the source code is in context and works with copy/paste

130 6 Classic and Modern Variables

A = ["a", "b", "c"]

x = A[1]
y = A[2]

puts x + y

A = Array(0..9)
x = A.at(3)
puts "#{x}"

Ruby Output:
bc

public class Main
{

public static void main(String[] args) {

String[] A = {"a", "b", "c"};

String x = A[1];
String y = A[2];

System.out.println(x + y);
}

}

Java Output:
bc

my $y = $A[2];

print($x . $y);

A = ["a", "b", "c"]

x = A[1]
y = A[2]

print (x + y)

Python Output:
bc

#include <iostream>
using namespace std;

int main()
{

string A[] = {"a", "b", "c"};

string x = A[1];
string y = A[2];

cout<<(x + y);

return 0;
}

C++ Output:
bc

Additional algorithm 6.9 (continued)

6.6 Arrays 131

6.6.5 Changing Values in Array Elements

Next, the following experiment shows how the values inside the elements of an array can
be changed (Additional algorithm 6.10). In a first instance, an array literal declaration
named A is used, where string literals are directly written for each individual element (i.e.
A = [“a”, “b”, “c”]; where index 0 is “ a”, index 1 is “b” and index 2 is “c”). Then, the
value from the array element with index 1 is assigned to a new variable x. The x variable
is a temporary variable because it has the role of holding a value for a later step. The
element with index 0 in array A is assigned with a string literal, namely the value “d”. Up
to this point, the only change to the elements of array A is the replacement of the value
“a” with a value “d” (i.e. the situation up to the current point is [“d”, “b”, “c”]).

Next, the string value from the element with index 2 of array A is assigned to the
element with index 1 of array A (i.e. the situation up to the current point is [“d”, “c”,
“c”]). In the last step, the value from the temporary variable called x is assigned to the
element with index 2 of the array A. Variable x held a copy of the initial value from the
element with index 1 of the array variable A (i.e. the situation up to the current point is
[“d”, “c”, “b”]). The content of each element of the array variable A is displayed in the
output for visualization of the result (Additional algorithm 6.10).

6.6.6 Array Length

In the next step, a series of examples are presented by which the number of elements in
an array can be found (Additional algorithm 6.11). Here, there are two possibilities. For
computer languages that are less object-oriented, this information can be found by calling
an internal function that returns the number of elements in an array variable. For object-
oriented computer languages, an array variable is an object, and information related to
the number of elements in the array is given by a method of the array object. As in the
previous example, an array literal is declared with three values, “a”, “b”, and “c”. Then,
a variable x is declared and a value is assigned to it. This value can be either returned by
a method of the object or it can be returned by an in-built function. Then, this value in
x is displayed for visualization. One thing to remember when it comes to arrays, is that
these composite variables contain a lower bound and an upper bound, namely the place
from which they begin the indexing in the first element and the place where the indexing
ends, that is, the last element from the array (Fig. 6.1). In many computer languages the
lower bound is set to zero.

In object-oriented computer languages, the number of elements inside the array is
specified by the length method of the array object, which represents the upper bound,
while the lower bound is set to zero. In other less object-oriented computer languages,
the lower bound situation is different. To find the index of the last element in the array, an
upper bound function is usually available. The same may be true for the first element in the

132 6 Classic and Modern Variables

A = ["a", "b", "c"];

var x = A[1];

A[0] = "d";
A[1] = A[2];
A[2] = x;

print(A[0] + A[1] + A[2]);

JS Output:
dcb

using System;
class HelloWorld {

static void Main() {

string[] A = {"a", "b", "c"};

string x = A[1];

A[0] = "d";
A[1] = A[2];
A[2] = x;

Console.WriteLine(A[0] + A[1] + A[2]);

}
}

C# Output:
dcb

A = Array("a", "b", "c")

x = A(1)

A(0) = "d"
A(1) = A(2)
A(2) = x

Debug.Print A(0) & A(1) & A(2)

VB Output:
dcb

Additional algorithm 6.10 It shows how to change values in existing array elements. An array
variable A is declared. String literals are assigned to each element of A. The value from the first
element of the array variable A, is assigned to a variable x. Then, a literal string value (i.e. “d”) is
assigned to the second element of variable array A, thus erasing the previous value (i.e. “a”) from
this element. Next, the value from the third element of A is assigned to the second element of A,
thus deleting the initial value (i.e. “b”) from the second element. The value stored in variable x is
assigned to the third element of array A. At the end, the values from each element are displayed in
the output for inspection. Here, the initial sequence “abc” was transformed into the sequence “dcb”.
Note that the source code is in context and works with copy/paste

6.6 Arrays 133

print($A[0] . $A[1] . $A[2]);

my @A = ("a", "b", "c");

my $x = $A[1];

$A[0] = "d";
$A[1] = $A[2];
$A[2] = $x;

print($A[0] . $A[1] . $A[2]);

PERL Output:
dcb

A = ["a", "b", "c"]

x = A[1]

A[0] = "d"
A[1] = A[2]
A[2] = x

puts (A[0] + A[1] + A[2])

Ruby Output:
dcb

public class Main
{

public static void main(String[] args) {

String[] A = {"a", "b", "c"};

String x = A[1];

A[0] = "d";
A[1] = A[2];
A[2] = x;

System.out.println(A[0] + A[1] + A[2]);
}

}

Java Output:
dcb

$A = ["a", "b", "c"];

$x = $A[1];

$A[0] = "d";
$A[1] = $A[2];
$A[2] = $x;

PHP Output:
dcb

Additional algorithm 6.10 (continued)

134 6 Classic and Modern Variables

#include <iostream>
using namespace std;

int main()
{

string A[] = {"a", "b", "c"};
string x;

x = A[1];

A[0] = "d";
A[1] = A[2];
A[2] = x;

cout<<(A[0] + A[1] + A[2]);

return 0;
}

C++ Output:
dcb

A = ["a", "b", "c"]

x = A[1]

A[0] = "d"
A[1] = A[2]
A[2] = x

print (A[0] + A[1] + A[2])

Python Output:
dcb

Additional algorithm 6.10 (continued)

array, i.e. there may be a lower bound function. Note that the comments in the VB6/VBA
example show a particularly important version that is rarely found as a possibility in
other computer languages. Namely, an array variable is declared from an arbitrary index
to another arbitrary index. This means that in VB6/VBA, array variables can be defined
to start at any index, not just at index 0.

For instance, VB6 may have the following valid statement for an array: “Dim A(−4
To −1) As String”. If these array bounds are calculated and set by an algorithm, then VB
is equipped with two built-in functions that return both the lower bound and the upper
bound of the array. The total length of the array as the meaning is observed in object-
oriented computer languages (i.e. the number of elements in the array) can be calculated
in the case of VB. The total number of elements in the array is the result of a subtraction
between the value returned by the UBound function and the value returned by the LBound
function (i.e. “total = UBound(A) – LBound(A)”).

6.6 Arrays 135

A = ["a", "b", "c"];

var x = A.length;

print(x);

JS Output:
3

using System;
class HelloWorld {

static void Main() {

string[] A = {"a", "b", "c"};

int x = A.Length;

Console.WriteLine(x);

}
}

C# Output:
3

A = Array("a", "b", "c")

x = Ubound(A)

Debug.Print x

'Dim A(4 To 7) As String

'A(4) = "a"
'A(5) = "b"
'A(6) = "c"
'A(7) = "d"

'x = LBound(A)
'y = UBound(A)

'Debug.Print x & " ... " & y

VB Output:
2

Additional algorithm 6.11 It shows how to get the total number of elements from an array. First
an array literal A is declared, that contains three elements, each with a string literal (one character).
Next, a variable x is declared and a value is assigned to it. The value in question represents the num-
ber of elements in array A and is provided either by an in-built function or by a method of the array
object, depending on the computer language used. Finally, the content of variable x is displayed in
the output for inspection. One thing to note is that in VB, the ubound internal function returns the
last index in the array and not the total number of elements as expected from the other examples.
Note that the source code is in context and works with copy/paste

136 6 Classic and Modern Variables

my @A = ("a", "b", "c");

$x = @A;

print($x);

PERL Output:
3

A = ["a", "b", "c"]

x = A.size

puts (x)

Ruby Output:
3

public class Main
{

public static void main(String[] args) {

String[] A = {"a", "b", "c"};

int x = A.length;

System.out.println(x);
}

}

Java Output:
3

A = ["a", "b", "c"]

x = len(A)

print(x)

Python Output:
3

#include <iostream>
using namespace std;

int main()
{

string A[] = {"a", "b", "c"};

int x = sizeof(A) / sizeof(string);

cout<<x;

return 0;
}

C++ Output:
3

$A = ["a", "b", "c"];

$x = count($A);

print($x);

PHP Output:
3

Additional algorithm 6.11 (continued)

6.6 Arrays 137

Fig. 6.1 One-dimensional array variables. It presents two different representations of array vari-
ables. The first approach from above shows how the lower bound starts from zero (0 … n). Notice
that the total number of elements in the array is n + 1. This is the case with many modern computer
languages. The second approach shows the case of VB, were the index of an array variable may start
from any value and end with any value that is bigger than the first (n … n + m; m > n). Notice that
the total number of elements in the array is m + 1

6.6.7 Nested Arrays

In some object oriented computer languages the array variables can hold other array vari-
ables in their elements. This can be done in a nested manner where elements of array
variables can hold other array variables and so on. For example, object-oriented com-
puter languages such as Javascript, Ruby, or Python can easily support nested arrays
because these structures are objects that hold references to other objects (Additional
algorithm 6.12). In classical computer languages the array variable is represented by
a sequential assignment of memory and the process of using nested arrays in not that
simple. Some computer languages lack support for nested arrays.

In the example, seven array variables are used, namely: A, B, C, D, E, F and G. Array
variables A, B, and C are loaded with string literals. Next, array variables D, E and F are
loaded with different combinations of arrays A, B and C. Finally, an array variable G is
loaded with the array variables D, E and F. Thus, here there are three levels of nested
arrays. The levels can continue if needed. The content of the first element of an array of
each nested level is shown in the output for visualization.

138 6 Classic and Modern Variables

var A = ["a", "b", "c"];
var B = ["d", "e", "f"];
var C = ["g", "h", "i"];

var D = [A, B, C];
var E = [B, C, A];
var F = [C, B, A];

var G = [D, E, F];

print (A[0]);
print (D[0]);
print (G[0]);

JS Output:
a
a,b,c
a,b,c,d,e,f,g,h,i

A = ["a", "b", "c"]
B = ["d", "e", "f"]
C = ["g", "h", "i"]

D = [A, B, C]
E = [B, C, A]
F = [C, B, A]

G = [D, E, F]

print (A[0])
print (D[0])
print (G[0])

Ruby Output:
a

["a", "b", "c"]

[["a", "b", "c"],
["d", "e", "f"],
["g", "h", "i"]]

A = ["a", "b", "c"]
B = ["d", "e", "f"]
C = ["g", "h", "i"]

D = [A, B, C]

Python Output:
a

['a', 'b', 'c']

E = [B, C, A]
F = [C, B, A]

G = [D, E, F]

print (A[0])
print (D[0])
print (G[0])

[['a', 'b', 'c'],
['d', 'e', 'f'],
['g', 'h', 'i']]

Additional algorithm 6.12 It presents nested arrays in Javascript, Ruby and Python. Three array
variables A, B and C are declared here, each with three literal values. To represent the notion of
nested, three other array variables are declared, namely D, E and F, each with three elements that
hold one of the arrays A, B or C. To provide yet another level in the nest, a last three-element array
variable is declared (i.e. G), in which each element takes one of the recently mentioned arrays (i.e.
D, E or F). Note that the source code is in context and works with copy/paste

6.7 Conclusions 139

6.6.8 Multidimensional Arrays

Up to this point, an array variable with a single dimension has been discussed. Most of
the time, one-dimensional array variables describe vectors. These one-dimensional com-
posite variables can also hold char type elements that form strings (eg. in the computer
language C, this is how strings are constructed), or even elements that hold strings, and in
some cases references to other objects. In Additional algorithm 6.13, a number of exam-
ples are shown for each individual computer language. In many object-oriented computer
languages, such as Javascript, PHP, PERL, Ruby or Python, array variables with multiple
dimensions can be declared in a nested array and can contain literals of multiple data
types. In the case of traditional computer languages, these array variables can also have
an unlimited number of dimensions, but only one data type per array. This is the case for
C++, C#, Java or VB6.

In Additional algorithm 6.13, some examples are given for Java, namely one example
showing the formulation of a two-dimensional array, another example for the formulation
of a three-dimensional array (Fig. 6.2). The last Java example shows a declaration of an
array variable with a fixed number of dimensions and elements per dimension. Once the
array variables have been declared in this manner, individual elements can be loaded with
values using the known index range for each dimension.

Note that examples shown for C# are the same as in Java. In VB, three separate cases
are shown, some of which resemble the Java and C# examples. The first example shows
how an array variable can be declared with a fixed number of dimensions right from
the start, then it shows how the individual elements can be loaded with values by using
the index for each dimension. Moreover, while in other languages there is only an upper
bound, in VB each dimension has a lower bound and an upper bound. A second example
for VB shows how the lower bound and upper bound can be found in multiple array
dimensions. Precisely, this example shows the statements made for a one-dimensional
array, then a two-dimensional array, and then a three-dimensional array. The statement
model can be extended for more than three dimensions for any of the mentioned computer
languages. The last example for VB shows the possibility of array resizing in the case
of two-dimensional array variables; intuitively showing how this statement model can be
extended to multiple dimensions.

6.7 Conclusions

Different structures were discussed, from simple variables that can be read and written,
to read-only variables, known as constants. In a first phase, these simple variables were
described and the values written expressly in the source code were presented under the
terminology of literals. Good practices were also the focus of this chapter, especially with

140 6 Classic and Modern Variables

Lang. Example Output

JS
//2D

var A = [
["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

];

print(A[1][2]);

JS Output:
124
g,26,884

//3D
var A = [

[
["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

],
[

["e", 48, 996],
["f", 34, 554],
["g", 26, 884],
[111, 92, "h"],

]
];

print(A[1][2]);

Additional algorithm 6.13 It shows the way in which multidimensional array variables can be
declared. An interesting difference can be observed between two groups of computer languages. A
group involving Javascript, PHP, PERL, Ruby or Python and another group involving classic com-
puter languages, namely C++, C#, Java or VB6. The first group (i.e. Javascript, PHP, PERL, Ruby
or Python) uses largely the same type of declaration for several dimensions. The Javascript exam-
ple shows how to declare two-dimensional and three-dimensional array variables, where the pattern
can be followed for any higher dimensions (i.e. 4D, 5D, 6D, and so on). In PHP, PERL, Ruby or
Python, the exemplification is only repeated for two dimensions and it assumes that for more than
two dimensions the declarations can be made in the same way as in Javascript. The second group
is more different, where Java, C# and VB are radically different in the way statements are made.
Obviously, Java and C# have common syntax elements, but they differ a little in the way the decla-
rations for arrays are made. In VB, the number of dimensions and the number of elements in each
dimension are initially declared. Only then these elements in their respective dimensions can receive
values by assignment. VB is so radically different when compared to other computer languages, that
array variables have a lower bound (read through the LBound function) and an upper bound (read
through the UBound function), a property that can open paths in prototyping (especially in science).
In the VB examples, each Debug.Print statement line corresponds to a row in the output. Note that
the source code is in context and works with copy/paste

6.7 Conclusions 141

PHP
$A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

];

print($A[1][2]);

PHP Output:
124

PERL
my @A = (

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

);

print($A[1][2]);

PERL Output:
124

Ruby
A = [["a", 88, 146],

["b", 34, 124],
["c", 96, 564],
[100, 12, "d"]]

print(A[1][2])

Ruby Output:
124

Python
A = [["a", 88, 146],

["b", 34, 124],
["c", 96, 564],
[100, 12, "d"]]

print(A[1][2])

Python Output:
124

public class Main
{

public static void main(String[] args) {

int[][] A = new int[][] {{1,2},
{3,4},
{5,6},
{7,8}};

System.out.println(A[0][1]);

Java Output:
2
5
6

Java

Additional algorithm 6.13 (continued)

142 6 Classic and Modern Variables

int[][][] B = new int[][][] {{
{1,2,3},
{4,5,6}},
{{7,8,9},
{10,11,12}}
};

System.out.println(B[0][1][1]);

int[][] C = new int[2][3];

C[0][0] = 5;
C[0][1] = 6;
C[0][2] = 5;

C[1][0] = 5;
C[1][1] = 5;
C[1][2] = 5;

System.out.println(C[0][1]);
}

}

C#
using System;
class HelloWorld {

static void Main() {

int[,] A = new int[,] {{1,2},
{3,4},
{5,6},
{7,8}};

Console.WriteLine(A[0,1]);

C# Output:
2
5
6

int[,,] B = new int[,,] {
{{1,2,3},
{4,5,6}},
{{7,8,9},
{10,11,12}}
};

Console.WriteLine(B[0,1,1]);

int[,] C = new int[2,3];

Additional algorithm 6.13 (continued)

6.7 Conclusions 143

C[0,0] = 5;
C[0,1] = 6;
C[0,2] = 5;

C[1,0] = 5;
C[1,1] = 5;
C[1,2] = 5;

Console.WriteLine(C[0,1]);

}
}

C++
#include <iostream>
using namespace std;

int main()
{

int A[][2] = {{1,2},
{3,4},
{5,6},
 {7,8}};

cout<<A[0][1];

Java Output:
2

6
5

int B[][2][3] = {
{{1,2,3},
{4,5,6}},

{{7,8,9},
{10,11,12}}

};

cout<<"\n"<<B[0][1][1];

int C[2][3];

C[0][0] = 5;
C[0][1] = 6;
C[0][2] = 5;

C[1][0] = 5;
C[1][1] = 5;
C[1][2] = 5;

cout<<"\n"<<C[0][1];

return 0;
}

Additional algorithm 6.13 (continued)

144 6 Classic and Modern Variables

VB
Private Sub Form_Load()

Dim C(0 To 2, 0 To 3) As Integer

C(0, 0) = 5
C(0, 1) = 6

VB Output:
6
1D -------

2
7

C(0, 2) = 5

C(1, 0) = 5
C(1, 1) = 5
C(1, 2) = 5

Debug.Print C(0, 1)

End Sub

2D -------
7
2
9
3
3D -------
7
2
7
2
9
3
15
 8
Before--
1
2

1
1

After--
1
2

1

3

Private Sub Form_Load()

Debug.Print ("1D -------")

'1D
Dim A(2 To 7)

Debug.Print UBound(A)
Debug.Print LBound(A)

'2D
Dim B(2 To 7, 3 To 9)

Debug.Print ("2D -------")

'Debug.Print UBound(B)
Debug.Print UBound(B, 1)
Debug.Print LBound(B, 1)

'Debug.Print LBound(B)
Debug.Print UBound(B, 2)
Debug.Print LBound(B, 2)

'3D
Dim C(2 To 7, 3 To 9, 8 To 15)

Debug.Print ("3D -------")

Debug.Print UBound(C)
Debug.Print LBound(C)

Debug.Print UBound(C, 1)
Debug.Print LBound(C, 1)

Additional algorithm 6.13 (continued)

6.7 Conclusions 145

Debug.Print UBound(C, 2)
Debug.Print LBound(C, 2)

Debug.Print UBound(C, 3)
Debug.Print LBound(C, 3)

End Sub

Private Sub Form_Load()

Dim n, m As Integer

n = 2
m = 1

Dim A() As Variant
ReDim A(1 To n, 1 To m)

Debug.Print ("Before--")
Debug.Print LBound(A, 1)
Debug.Print UBound(A, 1)
Debug.Print ("-------")
Debug.Print LBound(A, 2)
Debug.Print UBound(A, 2)
Debug.Print ("-------")

n = n + 1
m = m + 1

ReDim Preserve A(1 To m, 1 To n)

Debug.Print ("After--")
Debug.Print LBound(A, 1)
Debug.Print UBound(A, 1)
Debug.Print ("-------")
Debug.Print LBound(A, 2)
Debug.Print UBound(A, 2)
Debug.Print ("-------")

End Sub

Additional algorithm 6.13 (continued)

reference to the way variables are named and declared. The explicit or implicit declara-
tion was explained and some notions related to statically vs dynamically typed computer
languages were discussed. To make a connection between operator precedence, operator
association and variables, some expressions and different operators were experimented
with for each language in the list. Because of the way variables are handled internally in
some computer languages, the notion of a class and the notion of an object have been
briefly discussed. This was especially important for computer languages that internally,

146 6 Classic and Modern Variables

Fig. 6.2 Multi-dimensional arrays. It shows two diagrams that represent array variables with two
dimensions. The first diagram shows a lower bound that starts at zero for both dimensions, and the
second (bottom) diagram representing an array variable with an arbitrary lower bound position for
each dimension. These two representations can be given in three dimensions by providing another
row in the diagram. This is true for any dimensions, in wich each dimension can be represented by
boxes positioned linearly in this figure

have variables represented by objects, compared to other computer languages whose vari-
ables are represented by an association between a name and a memory address. Towards
the end of the chapter, the array variables are discussed. Namely, the discussions focused
on how one-dimensional array variables are represented in various computer languages
(i.e. as objects or as successive memory locations). Numerous examples have been given
that show how to declare an array variable, how to create new elements in this type of
variable, and other specific operations. Moreover, nested arrays were presented as well as
the way in which multidimensional array variables are declared.

7Control Structures

7.1 Introduction

Decisions made on the results of an abstract rule-based organization of information are
the foundations of everything. For humans, decisions represent a conclusion or judgment
reached after a logical consideration. In computing, these rule-based organizations and
decisions involve control structures and are fully deterministic in our frame of reference
because they are made in a closed system, without any interference. Some of these control
structures require specific statements, such as conditional statements, which are exempli-
fied in the first part of the chapter. In the second part of the chapter, different types of
repeat-loops are discussed. Among the control structures that involve repeat-loops, while-
loops and for-loops are presented in detail by extending the previous examples shown in
other chapters. Two types of while-repeat-loop structures are discussed, namely the do-
loop and the while-loop. Direction of iteration in these structures is exemplified by the
use of either some unary operators or the assignment operators. Moreover, the chapter
shows how to build nested loop structures for traversing array variables with multiple
dimensions. At the very end of the chapter, a strategy of traversing multidimensional
array variables is shown by using a single loop. Note that the solutions are interpreted in
several computer languages.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_7.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_7

147

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_7&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_7
https://doi.org/10.1007/978-3-031-23277-0_7

148 7 Control Structures

7.2 Conditional Statements

In short, the “if-then” statement allows programmers to make a decision based on previous
values. An “if-then” statement is used whenever a “fork” is reached in the implementation.
Conditions can be written in several ways. Please consider three variables a, b, and c. The
target in this example is a different value for variable c, depending on the values from
variables a and b. The content of variables a and b is known here because it is declared,
but, within an implementation, the content of variables a and b can be uncertain depending
on previous factors, external to the implementation. Most of the time a condition can be
written as follows:

If a < b Then c = 4 else c = 1

Which is the same as:

c = 1
if a < b then c = 4

If the relationship between a and b is true, the first condition sets the value of variable
c. In the second example, the condition only changes the value of variable c. Below are
some examples in different computer languages. Three variables are declared, namely: a
= 1, b = 2 and c = 3 (Additional algorithm 7.1). Then, variable c is further incremented
only if the value in variable a is lower than the value in variable b, otherwise the value
in variable c is decremented. The result stored in c is then printed in output. Since a =
1 and b = 2, the condition will allow the increase of the value stored in variable c, from
the value 3 to the final value 4.

Where applicable, the use of the aggregate assignment incrementation (i.e. “+=”) or
the aggregate assignment decrementation (i.e. “−=”) can be observed. In computer lan-
guages where the aggregate assignments are not permitted, there is a replacement of these
aggregate assignments with expressions (i.e. “c = c + 1”). A simple demonstration of the
conditions using simple integer variables was proposed above (Additional algorithm 7.2).
These examples can be extended to more complex variables such as array variables. As
previously discussed with array variables, their elements can be accessed by using an
index (integer).

Let us consider a variable array A, with three elements. The first element contains value
1, the second element contains value 2 and the third element contains value 3 (i.e. A =
[1, 2, 3]). Then, the value in the last element of the array is incremented only if a condi-
tion confirms that the value in the first element of the array (i.e. “A[0]”) is smaller than
the second element (i.e. “A[1]”). The value from the last element of the array is then dis-
played in the output. The aggregate assignment incrementation (i.e. “+=”) or the aggregate
assignment decrementation (i.e. “−=”) are used in computer languages where the aggre-
gate assignments are permitted. Note that instead of the aggregate assignment operators

7.2 Conditional Statements 149

Lang. Example OutputJS
a = 1;
b = 2;
c = 3;

if(a < b){c += 1;} else {c -= 1;}

print("c=" + c);

JS Output:
c=4

C#
using System;
class HelloWorld {

static void Main() {

int a = 1;
int b = 2;
int c = 3;

if(a < b){c += 1;} else {c -= 1;}

Console.WriteLine("c=" + c);
}

}

C# Output:
c=4

VB
Dim a, b, c As Integer

a = 1
b = 2
c = 3

If a < b Then c = c + 1 Else c = c - 1

Debug.Print c

VB Output:
c=4

PHP
$a = 1;
$b = 2;
$c = 3;

if($a < $b){$c += 1;} else {$c -= 1;}

echo "c=" . $c;

PHP Output:
c=4

PERL
my $a = 1;
my $b = 2;
my $c = 3;

if($a < $b){$c += 1;} else {$c -= 1;}

PERL Output:
c=4

print "$/c=" . $c;

Additional algorithm 7.1 Demonstrates the implementation of conditional statements. Three
variables a, b and c are declared and assigned to different values. A condition triggers a statement to
increment the value of variable c, only if the value of variable a is less than the value of variable b,
otherwise a decrement is applied to the value of c. Note that the source code is in context and works
with copy/paste

150 7 Control Structures

Ruby
a = 1
b = 2
c = 3

if a < b then c += 1 else c -= 1 end

puts "c=" + c.to_s

Ruby Output:
c=4

Java
public class Main
{

public static void main(String[] args) {

int a = 1;
int b = 2;
int c = 3;

if(a < b){c += 1;} else {c -= 1;}

System.out.println("c=" + c);
}

}

Java Output:
c=4

Python
a = 1
b = 2
c = 3

if a < b: c += 1
else: c -= 1

print ("c=" + str(c))

Python Output:
c=4

C++
int main()
{

int a = 1;
int b = 2;
int c = 3;

if(a < b){c += 1;} else {c -= 1;}

cout<<"c="<<c;

return 0;
}

C++ Output:
c=4

Additional algorithm 7.1 (continued)

7.2 Conditional Statements 151

Lang. Example OutputJS
var A = [1, 2, 3];

if(A[0] < A[1]){A[2] += 1;}

print("A[2]=" + A[2]);

JS Output:
A[2]=4

var A = [];

A[0] = 1;
A[1] = 2;
A[2] = 3;

if(A[0] < A[1]){A[2] += 1;}

print("A[2]=" + A[2]);C#
using System;
class HelloWorld {

static void Main() {

int[] A = {1, 2, 3};

if(A[0] < A[1]){A[2] += 1;}

Console.WriteLine("A[2]=" + A[2]);
}

}

C# Output:
A[2]=4

VB
A = Array(1, 2, 3)

If A(0) < A(1) Then A(2) = A(2) + 1

Debug.Print "A(2)=" & A(2)

VB Output:
A(2)=4

PHP
$A = [1, 2, 3];

if($A[0] < $A[1]){$A[2] += 1;}

echo "A[2]=" . $A[2];

PHP Output:
A[2]=4

Additional algorithm 7.2 Demonstrates the implementation of conditional statements on array
variables. Three elements of an array variable (A) are declared and filled with values. A condition
triggers a statment to increment the value of the last element of the array (i.e. “A[2]”), only if the
value of the first element (i.e. “A[0]”) is less than the value of the second element (i.e. “A[1]”), oth-
erwise a decrement is applied to the value of the last element of the array. Note that the source code
is in context and works with copy/paste

152 7 Control Structures

Ruby
A = [1, 2, 3]

if A[0] < A[1] then A[2] += 1 end

puts "A[2]=" + A[2].to_s

Ruby Output:
A[2]=4

Java
public class Main
{

public static void main(String[] args) {

int[] A = {1, 2, 3};

if(A[0] < A[1]){A[2] += 1;}

System.out.println("A[2]=" + A[2]);
}

}

Java Output:
A[2]=4

Python
A = [1, 2, 3];

if A[0] < A[1]: A[2] += 1

print ("A[2]=" + str(A[2]))

Python Output:
A[2]=4

C++
#include <iostream>
using namespace std;

int main()
{

int A[] = {1, 2, 3};

if(A[0] < A[1]){A[2] += 1;}

cout<<"A[2]="<<A[2];

return 0;
}

C++ Output:
A[2]=4

PERL
my @A = (1, 2, 3);

if($A[0] < $A[1]){$A[2] += 1;}

print "$/A[2]=" . $A[2];

PERL Output:
$A[2]=4

Additional algorithm 7.2 (continued)

7.3 Repeat Loops 153

(i.e. “+=”; “−=”), the operators for increment and decrement can be used directly (i.e.
“++”; “−”, namely “A[2]++” instead of “A[2]+= 1” and “A[2]–” instead of “A[2]−=
1”). Note that in the case of Javascript there are two examples. An example that uses an
array literal as in all cases from Additional algorithm 7.2, and another example where the
array is declared empty and the elements are step by step associated with values. The rest
of the examples use the array literal and assume that the second method from Javascript
can be deduced from Additional algorithm 6.8.

7.3 Repeat Loops

Up to this point, values have been assigned to variables line by line. The question that
arises is: How to perform an algorithmic distribution of values in variables? This process
is done using repeat loops. Loops are a group of statements that repeat until a specified
condition is met. Repeat loops are very powerful programming methods, especially for
imperative computer languages. Two main types of repeat loop structures can be used:
while loops and for loops. However, these are not the only possibilities for a loop manip-
ulation of values. For instance, “goto” statements (i.e. conditional jumps) and conditions,
or recursion of functions and conditions, manly do the same thing (but are not popular
among programmers for various reasons). The next chapter discusses recursion with clear
examples.

7.3.1 The While Loop

The “while loop” is used to execute a block of code while a certain condition is true.
Please consider a variable i with the value zero, which is incremented inside a while loop
until a condition indicates the upper bound for the contents of variable i. We can take
some examples in javascript, which can be extrapolated to other computer languages. For
instance, the following example can be written:

let i = 0;
while (i <= 5) {

print(i);
i++;

}

let i = 0;
do {

print(i);
i++;

} while (i <= 5);

154 7 Control Structures

Where in both cases the result is a sequence of values from 0 to 5. Notice a second type
of statement, namely the “do—while” statement, which has exactly the same meaning as
the first. Just as well, the value in variable i can be equal to ten (i.e. i = 10), and the
white loop can do a decrement of i, where the condition for breaking the loop is for the
value in i to become zero or less than zero. For instance, the following example can be
written:

let i = 5;
while (i >= 0) {

print(i);
i--;

}

let i = 5;
do {

print(i);
i--;

} while (i >= 0);

Above, the result is a sequence of values from 5 to 0. Below multiple examples can
be observed for all computer languages from our list (Additional algorithm 7.3). These
examples are given only for the incremental version of the above example to conserve
paper space. Of course, please notice the replacement of the increment operator with a
statement when the computer language does not allow it (i.e. i++; i = i + 1;).

In older computer languages that maintained a low-level connection to the assembly
language style (the non-structured programming paradigm), the “goto” keyword for abso-
lute jump statements still exists. In structured imperative computer languages of today,
keywords for absolute jumps like “goto”, no longer exist as an option. The “goto” state-
ment allows the move of execution thread to an arbitrary line (this is why it is called
absolute). Thus, instead of “white loop” structures, conditional jumps can be used instead.
A conditional jump is represented by an absolute jump and a condition. For instance, in
the computer language Visual Basic 6.0, which has the option for absolute jumps, the
“while loop” can be replaced by:

//first goto example
Private Sub Form_Load()

Dim i As Integer
i = 0

1:
Debug.Print i
i = i + 1
If i > 5 Then GoTo 2
GoTo 1

2:

End Sub

7.3 Repeat Loops 155

Lang. Example Output

JS
let i = 0;

while (i < 5) {
print("i = " + i);
i++;

}

JS Output:
i = 0
i = 1
i = 2
i = 3
i = 4

let i = 0;

do {
print("i = " + i);
i++;

}
while (i < 5);

C#
using System;
class HelloWorld {

static void Main() {

int i = 0;

while (i < 5) {
Console.WriteLine("i = " + i);
i++;

}
}

}

C# Output:
i = 0
i = 1
i = 2
i = 3
i = 4

using System;
class HelloWorld {

static void Main() {

int i = 0;

do {
Console.WriteLine("i = " + i);
i++;

}
while (i < 5);

}
}

VB
Dim i As Integer
i = 0

VB Output:
i = 0

Additional algorithm 7.3 Here the positive increment while-loop structure is demonstrated. A
variable i is declared and set to zero. A while loop structure increments variable i from its initial value
to its upper limit (number five). At each iteration, variable i is printed in the output. The result is an
enumeration of values from 0 to 4. Note that the source code is in context and works with copy/paste

156 7 Control Structures

Do While i < 5

Debug.Print "i = " & i
i = i + 1

Loop

i = 1
i = 2
i = 3
i = 4

Dim i As Integer
i = 0

Do
Debug.Print "i = " & i
i = i + 1

Loop Until i >= 5

PHP
$i = 0;

while ($i < 5) {
echo "\n i = " . $i;
$i++;

}

PHP Output:
i = 0
i = 1
i = 2
i = 3
i = 4

$i = 0;

do {
echo "\n i = " . $i;
$i++;

}
while ($i < 5);

PERL
my $i = 0;

while ($i < 5) {
print "\n i = " . $i;
$i++;

}

PERL Output:
i = 0
i = 1
i = 2
i = 3
i = 4

my $i = 0;

do {
print "\n i = " . $i;
$i++;

}
while ($i < 5);

Additional algorithm 7.3 (continued)

7.3 Repeat Loops 157

i = 0

while i < 5
puts "i = " + i.to_s
i += 1

end

Ruby Output:
i = 0
i = 1
i = 2
i = 3
i = 4

i = 0

loop do

puts "i = " + i.to_s
i += 1

if i >= 5 then break end
end

Java
public class Main
{

public static void main(String[] args) {

int i = 0;

while (i < 5) {
System.out.println("i = " + i);
i++;

}
}

}

Java Output:
i = 0
i = 1
i = 2
i = 3
i = 4

public class Main
{

public static void main(String[] args) {

int i = 0;

do {
System.out.println("i = " + i);
i++;

}
while (i < 5);

}
}

Python
i = 0

while i < 5:
print('i = ' + str(i))
i += 1

Python Output:
i = 0
i = 1
i = 2

Additional algorithm 7.3 (continued)

158 7 Control Structures

i = 3
i = 4

C++
#include <iostream>
using namespace std;

int main()
{

int i = 0;

while (i < 5) {
cout<<"\n i = "<<i;
i++;

}

return 0;
}

C++ Output:
i = 0
i = 1
i = 2
i = 3
i = 4

#include <iostream>
using namespace std;

int main()
{

int i = 0;

do {
cout<<"\n i = "<<i;
i++;

}
while (i < 5);

return 0;
}

Additional algorithm 7.3 (continued)

//second goto example
Private Sub Form_Load()

Dim i As Integer
i = 0

1:
Debug.Print i
i = i + 1
If i <= 5 Then GoTo 1

2:

End Sub

In the first example from above, two lines that are labeled “1:” and “2:”, make up the
sections of this implementation. Between line 1 and 2 a variable i is incremented and

7.3 Repeat Loops 159

a condition checks if the value of the i variable exceeds a certain limit (i.e. 5). If the
condition is false, i.e. i is less than the limit, then it does not trigger any other statements.
However, the line after this condition makes an absolute jump back to line 1, were variable
i is again incremented. This cycle continues until the condition is true, which results in an
absolute jump to line 2, where the execution ends. Of course, this structure can be greatly
simplified by reformulating the condition. In the second example above, the condition
triggers an absolute jump to line 1, only if i is less than or equal to a certain limit,
namely value 5. Otherwise, if nothing triggers, the execution is terminated naturally by
continuing to line 2. This second solution is of course the elegant one. Additionally,
repeated loops can also be achieved recursively using functions, however, these structures
will be discussed separately. Coming back to the while loop statements, they can be
extremely important for looping through array elements using the value from a variable
as an index. Thus, to enable more efficient software designs, iterative loops are ideally
suited for working with arrays. The examples from Additional algorithm 7.4 show two
types of statements that allow an array traversal.

The examples above use array literals with one character in each element of the array
(Additional algorithm 7.4). A traversal of the array elements is done with the help of a
“while loop” and simultaneously the values of each element are added to a string variable
(i.e. t), which is then printed in the output for inspection. It can be seen how in this
condition of the while loop the upper limit is represented by the number of elements in
the array. Note that depending on the computer language, the number of elements is given
either by the object method or by a specialized function.

7.3.2 The For Loop

The structure of the “while loop” was first described. However, the second structure of
the repeat loop is by far the most used loop in all computer languages. This structure is
the “for loop”. The “for loop” is used when the number of steps is known, and a counter
is needed for some variables inside a block of code. The counter is initialized before the
loop begins in most computer languages and is tested after each iteration to see if it is
below the target value. To understand the for loop strategy, some examples can be of great
value. Below are a number of examples in several computer languages that explain the for
loop on simple integer variables (Additional algorithm 7.5). The simplest example would
be the output of the value from a counter variable. As an example, a “for loop” from the
C-like family of computer languages can be shown:

for (i = 1; i <= 10; i++){
print(i);

}

160 7 Control Structures

JS
A = ["a", "b", "c", "d", "e", "f", "g"];

let i = 0;
let t = '';

while (i < A.length) {

t += "\n i[" + i + "]=" + A[i];
i++;

}

print(t);

JS Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e
i[5]=f
i[6]=g

A = ["a", "b", "c", "d", "e", "f", "g"];

let i = 0;
let t = '';

do {
t += "\n i[" + i + "]=" + A[i];
i++;

}
while (i < A.length);

print(t);

C#
using System;
class HelloWorld {

static void Main() {

string[] A = {"a", "b", "c", "d", "e"};

int i = 0;
string t = "";

while (i < A.Length) {
t += "\n i[" + i + "]=" + A[i];

C# Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e

Lang. Example Output

Additional algorithm 7.4 It demonstrates the traversal of a one-dimensional array. An array vari-
able is declared with string literals. The implementation also uses two other variables. A variable t
stores string values and is initially set to empty. Another variable (i.e. i) initialized with value zero
is the counter of a while-loop. The while-loop traverses the elements of array A by using the counter
i as an index. At each iteration, the value from an element is added together with other string char-
acters to the variable t. Once the end of the while-loop cycle is reached, the value collected in the
variable t is printed in the output for inspection. Note that the source code is in context and works
with copy/paste

7.3 Repeat Loops 161

i++;
}

Console.WriteLine(t);
}

}

using System;
class HelloWorld {

static void Main() {

string[] A = {"a", "b", "c", "d", "e"};

int i = 0;
string t = "";

do {
t += "\n i[" + i + "]=" + A[i];
i++;

}
while (i < A.Length);

Console.WriteLine(t);
}

}

VB
Dim i As Integer

A = Array("a", "b", "c", "d", "e", "f", "g")

i = 0

Do While i <= UBound(A)

t = t & vbCrLf & "i[" & i & "]=" & A(i)
i = i + 1

Loop

Debug.Print t

VB Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e
i[5]=f
i[6]=g

Dim i As Integer

A = Array("a", "b", "c", "d", "e", "f", "g")

i = 0

Additional algorithm 7.4 (continued)

162 7 Control Structures

Do
t = t & vbCrLf & "i[" & i & "]=" & A(i)
i = i + 1

Loop Until i > UBound(A)

Debug.Print t

PHP
$A = ["a", "b", "c", "d", "e", "f", "g"];

$i = 0;
$t = '';

while ($i < count($A)) {

PHP Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e

$t .= "\n i[" . $i . "]=" . $A[$i];
$i++;

}

echo $t;

i[5]=f
i[6]=g

$A = ["a", "b", "c", "d", "e", "f", "g"];

$i = 0;
$t = '';

do {
$t .= "\n i[" . $i . "]=" . $A[$i];
$i++;

}
while ($i < count($A));

echo $t;

PERL
my @A = ("a", "b", "c", "d", "e", "f", "g");

my $i = 0;
my $t = '';

while ($i < scalar(@A)) {

$t .= "\n i[" . $i . "]=" . $A[$i];
$i++;

}

print $t;

PERL Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e
i[5]=f
i[6]=g

Additional algorithm 7.4 (continued)

7.3 Repeat Loops 163

my @A = ("a", "b", "c", "d", "e", "f", "g");

my $i = 0;
my $t = '';

do {
$t .= "\n i[" . $i . "]=" . $A[$i];
$i++;

} while ($i < scalar(@A));

print $t;Ruby
A = ["a", "b", "c", "d", "e", "f", "g"]

i = 0
t = ''

Ruby Output:
i[0]=a
i[1]=b
i[2]=c

while i < A.size
t += "\n i[" + i.to_s + "]=" + A[i].to_s
i += 1

end

puts t

i[3]=d
i[4]=e
i[5]=f
i[6]=g

A = ["a", "b", "c", "d", "e", "f", "g"]

i = 0
t = ''

loop do
t += "\n i[" + i.to_s + "]=" + A[i].to_s
i += 1

if i >= A.size then break end
end

puts tJava
public class Main
{

public static void main(String[] args) {

String[] A = {"a", "b", "c", "d", "e"};

int i = 0;
String t = "";

while (i < A.length) {
t += "\n i[" + i + "]=" + A[i];
i++;

}

Java Output:

Additional algorithm 7.4 (continued)

164 7 Control Structures

i++;
}
while (i < A.length);

System.out.println(t);
}

}

Python
A = ["a", "b", "c", "d", "e", "f", "g"]

i = 0
t = ''

while i <= len(A)-1:
t += "\n i[" + str(i) + "]=" + str(A[i])
i += 1

print(t)

Python Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e
i[5]=f
i[6]=g

C++
#include <iostream>
using namespace std;

int main()
{

string A[] = {"a", "b", "c", "d", "e"};
int n = sizeof(A) / sizeof A[0];

int i = 0;
string t = "";

while (i < n) {
t += "\n i[" + to_string(i);
t += "]=" + A[i];
i++;

}

cout<<t;
return 0;

}

C++ Output:
i[0]=a
i[1]=b
i[2]=c
i[3]=d
i[4]=e

System.out.println(t);
}

}

public class Main
{

public static void main(String[] args) {

String[] A = {"a", "b", "c", "d", "e"};

int i = 0;
String t = "";

do {
t += "\n i[" + i + "]=" + A[i];

Additional algorithm 7.4 (continued)

7.3 Repeat Loops 165

do {
t += "\n i[" + to_string(i);
t += "]=" + A[i];
i++;

}
while (i < n);

cout<<t;
return 0;

}

#include <iostream>
using namespace std;

int main()
{

string A[] = {"a", "b", "c", "d", "e"};
int n = sizeof(A) / sizeof A[0];

int i = 0;
string t = "";

Additional algorithm 7.4 (continued)

where the “for loop” from above, prints the value of i at each iteration, from zero to ten
(i.e. 1 … 10). The first declaration in the round parentheses represents (i.e. i = 1) the
initialization part of the counter variable i. The second statement indicates a condition that
verifies the upper limit for the number of iterations (i.e. i < = 10). The third statement
updates the counter at each iteration (i.e. i++). In this specific case, the third statement
uses the increment operator to indicate that one is added to the value of the counter
variable at each iteration. In order to show the “direction” of the iteration, another example
can use the decrement operator:

for (i = 10; i >= 1; i--){
print(i);

}

where the “for loop” prints the value of i at each iteration, from ten to one (i.e. 10 …
1). In this example the i variable is initialized with the upper bound value, namely the
number ten (i.e. i = 10). The condition is then modified to check the lower bound of i (i.e.
i >= 1), as the decrement operator subtracts one from the counter value at each iteration
(i.e. i–). Multiple examples can be observed in the syntax of all computer languages from
our list (Additional algorithm 7.5). In order to conserve paper space, these examples are
given only for the incremental version of the “for loop”. Note: When a computer language
does not allow the increment operator, an assignment statement is used instead (i.e. i++;
i = i + 1;). In the examples from Additional algorithm 7.5, two variables a and b are

166 7 Control Structures

Lang. Example Output

JS
let a = 5;
let b = 0;

for (let i = 0; i < a; i++) {
b += i;

}

print(b);

JS Output:
10

C#
using System;
class HelloWorld {

static void Main() {

int a = 5;
int b = 0;

for (int i = 0; i < a; i++) {
b += i;

}

Console.WriteLine(b);
}

}

C# Output:
10

VB
Private Sub Form_Load()

A = 4
b = 0

For i = 0 To A
b = b + i

Next i

Debug.Print (b)

End Sub

VB Output:
10

A[0]=1
A[1]=2
A[2]=3
A[3]=4
A[4]=5

A[4]=1
A[5]=2
A[6]=3
A[7]=4
A[8]=5

A[0]=0
A[1]=0
A[2]=1
A[3]=2
A[4]=3
A[5]=0

Private Sub Form_Load()

Dim A(4 To 8) As Integer

A(4) = 1
A(5) = 2
A(6) = 3
A(7) = 4

Additional algorithm 7.5 The for-loop cycle for incrementing some simple variables is demon-
strated. Specifically, two variables a and b are declared and initialized. The variable a is initialized
to the integer five and the variable b is set to zero. The for-loop is then declared to start at the ini-
tial value of i and end at the value indicated by variable a. At each increment, the value in variable
i is added to the numeric value stored in variable b. At the end of the loop, the final value stored in
variable b is printed to the output for inspection. Note that the source code is in context and works
with copy/paste

7.3 Repeat Loops 167

A(8) = 5

u = UBound(A)
l = LBound(A)

For n = 0 To (u - l)
t = t & "A[" & n & "]=" & A(l + n)
t = t & vbCrLf

Next n

Debug.Print t

End Sub

A[6]=0
A[7]=0
A[8]=0

Private Sub Form_Load()

Dim A(4 To 8) As Integer

A(4) = 1
A(5) = 2
A(6) = 3
A(7) = 4
A(8) = 5

For n = LBound(A) To UBound(A)
t = t & "A[" & n & "]=" & A(n)
t = t & vbCrLf

Next n

Debug.Print t

End Sub

Private Sub Form_Load()

Dim A(0 To 8) As Integer

A(2) = 1
A(3) = 2
A(4) = 3

For n = 0 To UBound(A)
t = t & "A[" & n & "]=" & A(n)
t = t & vbCrLf

Next n

Debug.Print t

End Sub

Additional algorithm 7.5 (continued)

168 7 Control Structures

$a = 5;
$b = 0;

for ($i = 0; $i < $a; $i++) {
$b += $i;

}

echo $b;

PHP Output:
10

PERL
my $a = 5;
my $b = 0;

for (my $i = 0; $i < $a; $i++) {
$b += $i;

}

print $b;

PERL Output:
10

Ruby
a = 4
b = 0

for i in 0..a
b += i

end

puts b

Ruby Output:
10

Java
public class Main
{

public static void main(String[] args) {

int a = 5;
int b = 0;

for (int i = 0; i < a; i++) {
b += i;

}

System.out.println(b);
}

}

Java Output:
10

Python
a = 5
b = 0

Python Output:
10

Additional algorithm 7.5 (continued)

7.3 Repeat Loops 169

C++
#include <iostream>
using namespace std;

int main()
{

int a = 5;
int b = 0;

for (int i = 0; i < a; i++) {
b += i;

}

cout<<b;
return 0;

}

C++ Output:
10

for i in range(0, a):
b += i

print (b)

Additional algorithm 7.5 (continued)

initialized with integer values (i.e. a = 5; b = 0). Then a “for loop” uses a variable i as
a counter, where the upper limit of the loop is dictated by the a variable. Inside the loop,
the value of the i variable is added to the value from variable b at each iteration (i.e. b =
b + i; namely for b = 0 + 0, b = 0 + 1, b = 1 + 2, b = 3 + 3, b = 6 + 4, were the
condition for the end of the loop is true; i < a). In Additional algorithm 7.5, three more
examples are given as a bonus for VB6 to show the useful and interesting way of arrays
and their bounds in the context of a “for loop”.

The “while loops” and “for” loops” are essential to all algorithm designs. However,
the “while” types of cycles are both a blessing and a course. For instance, in the majority
of previous computer languages, “do-while loops” or “while loops” may enter an infinite
loop when their condition points out to infinity, freezing the computer in the process.
These type of events are characteristic for beginners or professionals who rarely use “do-
while loops” or “while loops”. The “for loops” are straightforward and intuitive, however,
even within “for loop” structures some problems can occur. For instance, a programmer
may encounter difficulties when it comes to the starting point and the ending point of the
counter. Most often than not, these issues appear when the counter is used in dealing with
the lower bound and the upper bound of arrays. These common issues appear regardless
of experience in the world of software development. Computer languages such as Python
or JavaScript contain special instructions in the case of “for loops” that work with array
objects. Such a “for loop” is written as “For x in object”, which will retrieve each element
one by one from the object in an ordered manner. This type of “for loop” statement helps
the programmer to write a traversal strategy without special considerations for the upper

170 7 Control Structures

or lower bound of the array. In the following series of examples, “for loops” are used for
the classical traversal over the elements of an array variable (Additional algorithm 7.6).

Consider an array variable A with five elements, which store different string values.
A “for loop” structure is used to traverse the elements of the array variable A, with an
addition of the content of each element to a variable t. In other words, these examples
have the role of listing the values inside the elements of an array variable. Note that
element numbering in an array usually starts at zero. In some computer languages, such
as VB, the numbering of the elements of an array can begin arbitrarily as long as the
lower bound is less than the upper bound (Additional algorithm 6.13).

7.3.3 Nested Loops

A nest is a concave object made of dry straw, in which the eggs of birds lie. This formation
contains two layers, the nest itself and the egg. For reference, among the man-made
objects that have multiple layers in this way are Matryoshka dolls where the dolls are
nested inside each other. Another association related to nesting is the onion structure.
However, in software engineering, the term “nesting” refers to information or processes
organized in layers located within each other. Up to this point, “for loop” structures have
been used either for manipulating simple variables or for manipulating one-dimensional
composite variables, such as arrays. But how can multidimensional arrays be traversed?
An intuitive approach would be to embed a “for loop” inside another “for loop” in the
case of two-dimensional arrays, or to use three “for-loop” structures inside each other
in the case of a three-dimensional array, and so on. The example below deals with the
traversal of an array variable with two dimensions (Additional algorithm 7.7).

In short, an array literal with two dimensions contains both string values and integer
values. Two nested “for loop” structures are defined, where a variable counter i is used
for the first dimension and a variable counter j is used for the second dimension. Inside
the two loops, the counter variables i and j are used to traverse the elements of the array,
and the individual values from these elements are added to a variable t. The content of
variable t is then printed to the output for inspection. Please notice that in both “for loops”
the conditions stop the counter depending on the size of each dimension.

7.3.4 Multidimensional Traversal by One For-Loop

It is probably clear that the number of dimensions of an array is covered by a for loop
each. But is such a direct association between a “for loop” structure and a dimension
the only solution for traversing multiple dimensions inside an array variable? The short
answer is no. This is because at a low level, array elements are stored sequentially in a
linear fashion, and the low-level representation can of course be implemented at a high

7.3 Repeat Loops 171

Lang. Example Output

JS
const A = ["a", "b", "c", "d", "e"];

let t = "";

for (let i = 0; i < A.length; i++) {
t += "\n A[" + i + "]=" + A[i];

}

print(t);

JS Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

C#
using System;
class HelloWorld {

static void Main() {

string[] A = {"a", "b", "c", "d", "e"};
string t = "";

for (int i = 0; i < A.Length; i++) {
t += "\n A[" + i + "]=" + A[i];

}

Console.WriteLine(t);
}

}

C# Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

VB
Private Sub Form_Load()

A = Array("a", "b", "c", "d", "e")

i = 0
t = ""

For i = 0 To UBound(A)
t = t & "A(" & i & ")=" & A(i) & vbCrLf

Next i

Debug.Print (t)

End Sub

VB Output:
A(0)=a
A(1)=b
A(2)=c
A(3)=d
A(4)=e

Additional algorithm 7.6 It demonstrates the use of a for-loop for the traversal of a one-
dimensional array. An array variable is declared with string literals. The implementation also uses
two other variables. A variable t stores string values and is initially set to empty. Another variable
(i.e. i) initialized with value zero is the counter of a for-loop. The for-loop traverses the elements
of array A by using the counter i as an index. At each iteration, the value from an element is added
together with other string characters to the content of variable t. Once the end of the for-loop cycle is
reached, the value collected in variable t is printed in the output for inspection. Note that the source
code is in context and works with copy/paste

172 7 Control Structures

for ($i = 0; $i < count($A); $i++) {
$t .= "\n A[" . $i . "]=" . $A[$i];

}

echo($t);

A[3]=d
A[4]=e

PERL
my @A = ("a", "b", "c", "d", "e");
my $t = "";

for (my $i = 0; $i < scalar(@A); $i++) {
$t .= "\n A[" . $i . "]=" . $A[$i];

}

print $t;

PERL Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

Ruby
A = ["a", "b", "c", "d", "e"]

i = 0
t = ''

for i in 0..(A.size-1)
t += "\n A[" + i.to_s + "]=" + A[i].to_s
i += 1

end

puts t

Ruby Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

Java
public class Main
{

public static void main(String[] args) {

String[] A = {"a", "b", "c", "d", "e"};
String t = "";

for (int i = 0; i < A.length; i++) {
t += "\n A[" + i + "]=" + A[i];

}

System.out.println(t);
}

}

Java Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

PHP
$A = ["a", "b", "c", "d", "e"];

$t = "";

PHP Output:
A[0]=a
A[1]=b
A[2]=c

Additional algorithm 7.6 (continued)

7.3 Repeat Loops 173

print (t)

C++
#include <iostream>
using namespace std;

int main()
{

string A[] = {"a","b","c","d","e"};
string t = "";

int n = sizeof(A) / sizeof A[0];

for (int i = 0; i < n; i++) {

t += "A["+to_string(i)+"]=";
t += A[i]+"\n";

}

cout<<t;

return 0;
}

Python Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

Python
A = ["a", "b", "c", "d", "e"]

i = 0
t = ''

for i in range(0, len(A)):
t += "\n A[" + str(i) + "]=" + str(A[i])

Python Output:
A[0]=a
A[1]=b
A[2]=c
A[3]=d
A[4]=e

Additional algorithm 7.6 (continued)

level. To better understand this description related to sequentiality, a question can be
asked: how can a matrix be represented in one dimension? The answer to this question
drives the implementation. Let us imagine a normal 3× 3 matrix A with some random
values:

A =
⎛

⎜⎝
0 1 0

1 1 0

0 1 1

⎞

⎟⎠

The above matrix (A) clearly shows two dimensions, however, these two dimensions
can be broken to one dimension. In fact, this is how information is stored in memory at
a low level. For instance, matrix A can be converted into sequence A, such as:

A = (010110011)

174 7 Control Structures

Lang. Example Output

JS
var A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

];

let t = "";

for (let i = 0; i < A.length; i++) {
for (let j = 0; j < A[i].length; j++) {

t += "\n A["+i+"]["+j+"]=" + A[i][j];

}
}

print(t);

JS Output:
A[0][0]=a
A[0][1]=88
A[0][2]=146
A[1][0]=b
A[1][1]=34
A[1][2]=124
A[2][0]=c
A[2][1]=96
A[2][2]=564
A[3][0]=100
A[3][1]=12
A[3][2]=d

PHP
$A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

];

$t = "";

for ($i = 0; $i < count($A); $i++) {
for ($j = 0; $j < count($A[$i]); $j++) {

$t .= "\n A[".$i."][".$j."]=".$A[$i][$j];

}
}

echo $t;

PHP Output:
A[0][0]=a
A[0][1]=88
A[0][2]=146
A[1][0]=b
A[1][1]=34
A[1][2]=124
A[2][0]=c
A[2][1]=96
A[2][2]=564
A[3][0]=100
A[3][1]=12
A[3][2]=d

my @A = (
["a", 88, 146],

PERL Output:
A[0][0]=a

Additional algorithm 7.7 It demonstrates the use of nested for-loops. It shows the traversal of a
two-dimensional array by a nested for-loop structure. A 2D-array variable (A) is declared with mixed
datatypes, namely with string literals and number literals. A string variable t is initially set to empty.
Another two variables (i.e. i and j) are initialized with value zero and are the main counters of nested
for-loops. The upper limit of each for-loop is established by the two dimensions, namely the number
of rows and columns from matrix A. The two for-loops traverse the elements of array A by using the
counters i and j as an index. At each iteration, the value from an element is added to the content of
variable t. Once the end of the nested for-loops is reached, the value collected in variable t is printed
in the output for inspection. The end result is the enumeration of each value in the output, in a linear
manner. Note that the source code is in context and works with copy/paste

7.3 Repeat Loops 175

["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

);

my $r = $#A;
my $c = $#{$A[0]}+1;

for($i=0; $i<=$r; $i++)
{

for($j=0; $j<$c; $j++)
{
$t .= "\n A[".$i."][".$j."]=". $A[$i][$j];

}
}

print $t;

A[0][1]=88
A[0][2]=146
A[1][0]=b
A[1][1]=34
A[1][2]=124
A[2][0]=c
A[2][1]=96
A[2][2]=564
A[3][0]=100
A[3][1]=12
A[3][2]=d

Ruby
A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"]
]

t = ""

for i in 0..(A.size-1)
for j in 0..(A[i].size-1)

t += "\n A[" + i.to_s + "]["
t += j.to_s + "]=" + A[i][j].to_s

end
end

puts t

Ruby Output:
A[0][0]=a
A[0][1]=88
A[0][2]=146
A[1][0]=b
A[1][1]=34
A[1][2]=124
A[2][0]=c
A[2][1]=96
A[2][2]=564
A[3][0]=100
A[3][1]=12
A[3][2]=d

Python
A = [["a", 88, 146],

["b", 34, 124],
["c", 96, 564],
[100, 12, "d"]]

t = ""

for i in range(0, len(A)):
for j in range(0, len(A[i])):

t += "\n A[" + str(i) + "]["
t += str(j) + "]=" + str(A[i][j])

print(t)

Python Output:
A[0][0]=a
A[0][1]=88
A[0][2]=146
A[1][0]=b
A[1][1]=34
A[1][2]=124
A[2][0]=c
A[2][1]=96
A[2][2]=564
A[3][0]=100
A[3][1]=12
A[3][2]=d

Additional algorithm 7.7 (continued)

176 7 Control Structures

public class Main
{

public static void main(String[] args) {

String[][] A = new String[][] {
{"a","b"},
{"c","d"},
{"e","f"},
{"g","h"}

};
String t = "";

int x = A.length;
int y = A[0].length;

for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {

t += "\n A["+i+"]["+j+"]="+A[i][j];

}
}

System.out.println(t);
}

}

Java Output:
A[0][0]=a
A[0][1]=b
A[1][0]=c
A[1][1]=d
A[2][0]=e
A[2][1]=f
A[3][0]=g
A[3][1]=h

C#
using System;
class HelloWorld {

static void Main() {

string[,] A = new string[,] {
{"a","b"},
{"c","d"},
{"e","f"},
{"g","h"}

};
string t = "";

int x = A.GetLength(0);
int y = A.GetLength(1);

for (int i = 0; i < x; i++) {
for (int j = 0; j < y; j++) {

t += "\n A["+i+","+j+"]=" + A[i,j];
}

}

Console.WriteLine(t);
}

}

C# Output:
A[0,0]=a
A[0,1]=b
A[1,0]=c
A[1,1]=d
A[2,0]=e
A[2,1]=f
A[3,0]=g
A[3,1]=h

Java

Additional algorithm 7.7 (continued)

7.3 Repeat Loops 177

C++
#include <iostream>
using namespace std;

int main()
{

string A[][2] = {
{"a","b"},
{"c","d"},
{"e","f"},
{"g","h"},
};

string t = "";

int n = sizeof(A) / sizeof A[0];
int m = sizeof A[0] / sizeof(string);

for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {

t += "A["+to_string(i);
t += "]["+to_string(j);
t += "]="+A[i][j]+"\n";

}
}
cout<<t;

return 0;
}

C++ Output:
A[0][0]=a
A[0][1]=b
A[1][0]=c
A[1][1]=d
A[2][0]=e
A[2][1]=f
A[3][0]=g
A[3][1]=h

VB
Private Sub Form_Load()

Dim A(0 To 1, 0 To 2) As String
Dim i As Integer
Dim t As String

A(0, 0) = "a"
A(0, 1) = "b"
A(0, 2) = "c"
A(1, 0) = "d"
A(1, 1) = "e"
A(1, 2) = "f"

For i = LBound(A, 1) To UBound(A, 1)
For j = LBound(A, 2) To UBound(A, 2)

t = t & "A(" & i & "," & j & ")="
t = t & A(i, j) & vbCrLf

Next j
Next i

Debug.Print (t)

VB Output:
A(0,0)=a
A(0,1)=b
A(0,2)=c
A(1,0)=d
A(1,1)=e
A(1,2)=f

End Sub

Additional algorithm 7.7 (continued)

178 7 Control Structures

A space between groups of three can be inserted for a better visualization, namely
“010 110 011”. Thus, a matrix is represented by a one-dimensional sequence of numbers
and a rule for the reconstruction of the two dimensions. In a left-to-right traversal of the
one-dimensional sequence, this rule indicates a new row every time a multiple of three
is reached. Thus, based on this rule, one can implement a “for loop” that traverses a
two-dimensional array A. The question now is: How can multiples of n be found? One
may recall in an earlier chapter the modulo operator and the examples related to sticks,
which are exactly what is required for this idea. In this approach, the importance of the
modulo operator is paramount (please see Chap. 4). What is needed from this approach
are the correct values for each counter (i.e. i and j) in order to be able to traverse the two-
dimensional array, as if there are two for loop structures. Examples of two-dimensional
arrays that are traversed in a single for loop can be found in Additional algorithm 7.8. As
in the previous example, array literals with two dimensions are used. The difference that
can be observed is the use of a single for loop for traversing the bi-dimensional array.

Initially, a variable n and a variable m will hold the length of the two dimensions of the
array A, and the variables i and j will be initialized to zero. To cover all the elements of
an array in a single for-loop, the first dimension and the second dimension are multiplied
(i.e. n× m) and the result indicates the upper limit at which the for-loop structure stops.
The counter variable in this loop is denoted by v. The value from the v variable is then
used to deduce the i and j coordinates of matrix A. Inside the loop, the dimension j is
calculated using the modulo operator:

// abstract formulation

j = v % m
if j = 0 then i = i + 1

// step by step

j = 0 % 3 = 0; i = 0 + 1
j = 1 % 3 = 1
j = 2 % 3 = 2
j = 3 % 3 = 0; i = 1 + 1
j = 4 % 3 = 1
j = 5 % 3 = 2
j = 6 % 3 = 0; i = 2 + 1

The modulo operator provides the remainder from a division. Thus, every time the
dimension m will be a multiple of v, the value of j will be zero and the value of i will
be incremented. Thus, for matrix A, index j can take values from 0 to 2 (i.e. 3 columns),
and i can take values from 0 to 3 (i.e. 4 rows). Note, however, that this approach does
not provide any real optimization, as the single for-loop takes the same number of steps
as nested for-loops that have the same purpose. This methodology can be applied to any
number of dimensions. For example, the implosion of three dimensions to a single dimen-
sion is done by expanding the number of rules. Examples of three-dimensional arrays that
are traversed by using a single for-loop, can be found in Additional algorithm 7.9. In this

7.3 Repeat Loops 179

Lang. Example OutputJS
var A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

];

let t = "";
let n = A. length; // rows
let m = A[0].length; // columns

let i = 0;
let j = 0;

for (let v = 0; v < n*m; v++) {

j = v % m;

if(v!=0 && j == 0){i++;}

t += v + " A["+i+"]["+j+"]=";
t += A[i][j] + "\n";

}

print(t);

JS Output:
0 A[0][0]=a
1 A[0][1]=88
2 A[0][2]=146
3 A[1][0]=b
4 A[1][1]=34
5 A[1][2]=124
6 A[2][0]=c
7 A[2][1]=96
8 A[2][2]=564
9 A[3][0]=100
10 A[3][1]=12
11 A[3][2]=d

C#
using System;
class HelloWorld {

static void Main() {

C# Output:
0 A[0,0]=a

Additional algorithm 7.8 It demonstrates the use of a single for-loop for two-dimensional arrays.
It shows the traversal of a two-dimensional array by one for-loop structure. A 2D-array variable (A)
is declared with mixed datatypes as before, namely with string literals and number literals. A string
variable t is initially set to empty. A variable v is set to zero and it represents the main counter of the
for-loop. Another two variables (i.e. i and j) are initialized with value zero and are the main coor-
dinates for element identification. Each dimension of array A is stored in variables n and m, namely
the number of rows in n and the number of columns in m. The upper limit of the for-loop is calcu-
lated based on the two known dimensions n and m. Thus, m times n establishes the upper limit of
the for-loop. Here, the value of the counter v from the for-loop is used to calculate the i and j values
that are used as an index to traverse the array variable A. The value of variable j is computed as the
v % m and the result of this expression indicates the reminder (ex. 5 mod 3 is 2). The secret to this
implementation is a condition that increments a variable i (rows) each time j (columns) equals zero.
Thus, in this manner this approach provides the i and j values that a nested for-loop provides. At
each iteration, the value from an element is added to the content of variable t. Once the end of the
for-loop is reached, the value collected in variable t is printed in the output for inspection. The end
result is the enumeration of each value in the output, in a linear manner. Note that the source code
is in context and works with copy/paste

180 7 Control Structures

}

VB
VB Output:
0 A(0,0)=a

5 A(1,2)=f

Console.WriteLine(t);
}

}

Private Sub Form_Load()

Dim A(0 To 1, 0 To 2) As String
Dim i As Integer
Dim t As String

A(0, 0) = "a"
A(0, 1) = "b"
A(0, 2) = "c"
A(1, 0) = "d"
A(1, 1) = "e"
A(1, 2) = "f"

' rows
n = UBound(A, 1) - LBound(A, 1) + 1
' columns
m = UBound(A, 2) - LBound(A, 2) + 1

i = 0
j = 0

For v = 0 To (n * m) - 1

j = v Mod m

If (v <> 0 And j = 0) Then i = i + 1

1 A(0,1)=b
2 A(0,2)=c
3 A(1,0)=d
4 A(1,1)=e

string t = "";

int n = A.GetLength(0);
int m = A.GetLength(1);
int i = 0;
int j = 0;

for (int v = 0; v < n*m; v++) {

j = v % m;
if(v!=0 && j == 0){i++;}

t += v + " A["+i+","+j+"]=";
t += A[i,j] + "\n";

string[,] A = new string[,] {
{"a","b"},
{"c","d"},
{"e","f"},
{"g","h"}

};

2 A[1,0]=c
3 A[1,1]=d
4 A[2,0]=e
5 A[2,1]=f
6 A[3,0]=g
7 A[3,1]=h

Additional algorithm 7.8 (continued)

7.3 Repeat Loops 181

$m = count($A[0]);

$i = 0;
$j = 0;

for ($v = 0; $v < $n*$m; $v++) {

$j = $v % $m;

if($v!=0 && $j == 0){$i++;}

$t .= $v . " A[".$i."][".$j."]=";
$t .= $A[$i][$j] . "\n";

}

echo $t;PERL
my @A = (

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

);

my $t = "";
my $n = $#A + 1; # rows
my $m = $#{$A[0]} + 1; # columns

my $i = 0;
my $j = 0;

for ($v = 0; $v < $n*$m; $v++) {

PERL Output:
0 A[0][0]=a
1 A[0][1]=88
2 A[0][2]=146
3 A[1][0]=b
4 A[1][1]=34
5 A[1][2]=124
6 A[2][0]=c
7 A[2][1]=96
8 A[2][2]=564
9 A[3][0]=100
10 A[3][1]=12
11 A[3][2]=d

t = t & v & " A(" & i & "," & j & ")="
t = t & A(i, j) & vbCrLf

Next v

Debug.Print (t)

End SubPHP
$A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],
];

$t = "";
$n = count($A); 7 A[2][1]=96

8 A[2][2]=564
9 A[3][0]=100
10 A[3][1]=12
11 A[3][2]=d

PHP Output:
0 A[0][0]=a
1 A[0][1]=88
2 A[0][2]=146
3 A[1][0]=b
4 A[1][1]=34
5 A[1][2]=124
6 A[2][0]=c

Additional algorithm 7.8 (continued)

182 7 Control Structures

n = (A.size) # rows
m = (A[0].size) # columns

i = 0
j = 0

for v in 0..(n*m)-1

j = v % m

if(v != 0 and j == 0)
i = i + 1

end

t += v.to_s + " A[" + i.to_s + "]["
t += j.to_s + "]=" + A[i][j].to_s + "\n"

end

puts(t)

7 A[2][1]=96
8 A[2][2]=564
9 A[3][0]=100
10 A[3][1]=12
11 A[3][2]=d

Java
public class Main
{

public static void main(String[] args) {

String[][] A = new String[][] {
{"a","b"},
{"c","d"},
{"e","f"},
{"g","h"}
};

Java Output:
0 A[0,0]=a
1 A[0,1]=b
2 A[1,0]=c
3 A[1,1]=d
4 A[2,0]=e
5 A[2,1]=f
6 A[3,0]=g
7 A[3,1]=h

$j = $v % $m;

if($v != 0 && $j == 0){$i++;}

$t .= $v . " A[".$i."][".$j."]=";
$t .= $A[$i][$j] . "\n";

}

print $t;Ruby
A = [

["a", 88, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],
]

t = ""

Ruby Output:
0 A[0][0]=a
1 A[0][1]=88
2 A[0][2]=146
3 A[1][0]=b
4 A[1][1]=34
5 A[1][2]=124
6 A[2][0]=c

Additional algorithm 7.8 (continued)

7.3 Repeat Loops 183

Python
A = [["a", 88, 146],

["b", 34, 124],
["c", 96, 564],
[100, 12, "d"]]

t = ""
n = len(A) # rows
m = len(A[0]) # columns

i = 0
j = 0

for v in range(0, n*m):
j = v % m
if(v != 0 and j == 0):

i = i + 1
t += str(v) + " A[" + str(i) + "]["
t += str(j) + "]=" + str(A[i][j]) + "\n"

print(t)

Python Output:
0 A[0][0]=a
1 A[0][1]=88
2 A[0][2]=146
3 A[1][0]=b
4 A[1][1]=34
5 A[1][2]=124
6 A[2][0]=c
7 A[2][1]=96
8 A[2][2]=564
9 A[3][0]=100
10 A[3][1]=12
11 A[3][2]=d

C++
#include <iostream>
using namespace std;

int main()
{

string A[][2] = {
{"a","b"},
{"c","d"},
{"e","f"},
{"g","h"},
};

C++ Output:
0 A[0][0]=a
1 A[0][1]=b
2 A[1][0]=c
3 A[1][1]=d
4 A[2][0]=e
5 A[2][1]=f
6 A[3][0]=g
7 A[3][1]=h

String t = "";

int n = A.length;
int m = A[0].length;

int i = 0;
int j = 0;

for (int v = 0; v < n*m; v++) {

j = v % m;
if(v!=0 && j == 0){i++;}

t += v + " A["+i+","+j+"]=";
t += A[i][j] + "\n";

}

System.out.println(t);
}

}

Additional algorithm 7.8 (continued)

184 7 Control Structures

string t = "";

int n = sizeof(A) / sizeof A[0];
int m = sizeof A[0] / sizeof(string);

int i = 0;
int j = 0;

for (int v = 0; v < n*m; v++) {

j = v % m;
if(v!=0 && j == 0){i++;}

t += to_string(v);
t += " A["+to_string(i)+"][";
t += to_string(j)+"]=";
t += A[i][j] + "\n";

}
cout<<t;

return 0;
}

Additional algorithm 7.8 (continued)

example an array A with three dimensions is first declared. Next, variables s, m and n
store the length of each dimension of array A.

Variable s represents the number of matrices, variable n stores the number of rows of
a matrix and finally variable n stores the number of columns of a matrix. A variable q
stores the result of the multiplication between the three dimensions and represents the
upper bound of the main for-loop (i.e. q = n× m× s). The index variables i, j, and d are
declared and set to zero. The for-loop is then set to iterate from zero up to q. The main
counter of the for-loop is then used to calculate all the other index variables such as i, j,
k and d. Notice that a variable k becomes zero when the result of m times n is a multiple
of v. That means, k is zero once a matrix was completely traversed. Thus, for the third
dimension of the array, a condition increments a variable d each time variable k equals
zero. Also, variable i is set to zero in the same condition. Notice that in this example, the
first index (i.e. d) represents the matrix, the second index (i.e. i) represents the row of a
matrix and the last index (i.e. j) of the array represents the columns of the matrix.

7.4 Conclusions

In order to design more useful and life like machines in the future, we instill our values
and our rules into them. For this endeavor, our foundations have become the foundations
of machines, whether these foundations are represented by absolute universal laws or not.
Thus, machines are a copy of us. Some of the rules that adhere to these foundations are

7.4 Conclusions 185

JS
JS Output:
0 A[0][0][0]=a

var A = [
[

["a", 55, 146],
["b", 34, 124],
["c", 96, 564],
[100, 12, "d"],

],
[

["e", 88, 146],
["f", 34, 124],
["g", 96, 564],
[100, 12, "h"],

],
[

["i", 88, 146],
["j", 34, 124],
["k", 96, 564],
[100, 12, "k"],

],
[

["m", 88, 146],
["n", 34, 124],
["o", 96, 564],
[100, 12, "p"],

],

1 A[0][0][1]=55
2 A[0][0][2]=146
3 A[0][1][0]=b
4 A[0][1][1]=34
5 A[0][1][2]=124
6 A[0][2][0]=c
7 A[0][2][1]=96
8 A[0][2][2]=564
9 A[0][3][0]=100
10 A[0][3][1]=12
11 A[0][3][2]=d
12 A[1][0][0]=f
13 A[1][0][1]=88
14 A[1][0][2]=146
15 A[1][1][0]=b
16 A[1][1][1]=34
17 A[1][1][2]=124
18 A[1][2][0]=c
19 A[1][2][1]=96
20 A[1][2][2]=564
21 A[1][3][0]=100
22 A[1][3][1]=12

Additional algorithm 7.9 It demonstrates the use of a single for-loop for three-dimensional
arrays, with an extrapolation to multidimensional arrays. Note that the example shown here is done
only for Javascript in order to preserve paper. One can port this in any other language as previously
shown. The traversal of a 3D array using only one for-loop structure, is based on the previous exam-
ple. A 3D-array variable (A) is declared with mixed datatypes, namely with string literals and number
literals. The 3D-array is represented by five matrices, in which the columns represent one dimension,
the rows represent the second dimension, and the number of matrices, represents the third dimen-
sion. Thus, this array can be understood as a cube-like structure. A string variable t is initially set to
empty. A variable v is set to zero and it represents the main counter of the for-loop. Another three
variables (i.e. i, j and d) are initialized with a value of zero and are the main coordinates for array
element identification. Each dimension of array A is stored in variables s, m and n, namely the num-
ber of matrices in s, the number of rows in m and the number of columns in n. The upper limit of
the for-loop is calculated as s × m × n. Here, the value of the counter v from the for-loop is used, as
before, to calculate the i, j and d values that are used as an index to traverse the array variable A. The
value of variable j is computed as the v % m. A condition increments a variable i (rows) each time
j (columns) equals zero. Thus, both i and j values are computed. However, the value for variable d
(matrix number) is calculated as v % (m × n), which provides a value of zero each time a matrix
was traversed. Thus, a condition increments variable d and resets variable i, each time the value of
k equals zero. At each iteration, the value from an element (d, i, j) is added to the content of vari-
able t. Once the end of the for-loop is reached, the string value collected in variable t is printed in
the output for inspection. The end result is the enumeration of each value in the output, in a linear
manner. Note that the source code is in context and works with copy/paste

186 7 Control Structures

let n = A[0][0].length; 34 A[2][3][1]=12

59 A[4][3][2]=d

if(v!=0 && k == 0){i = 0; d++;}

t += v + " A["+d+"]["+i+"]["+j+"]=";
t += A[d][i][j] + "\n";

}

print(t);

let t = "";

let s = A.length; // 5 matrices
let m = A[0].length; // 4 rows

30 A[2][2][0]=c
31 A[2][2][1]=96
32 A[2][2][2]=564

// 3 columns

let i = 0;
let j = 0;
let d = 0;
let k = 0;

let q = n * m * s;

for (let v = 0; v < q; v++){

k = v % (m*n);
j = v % n;

if(v!=0 && j == 0){i++;}

35 A[2][3][2]=d
36 A[3][0][0]=f
37 A[3][0][1]=88
38 A[3][0][2]=146
39 A[3][1][0]=b
.
.
.
48 A[4][0][0]=x
49 A[4][0][1]=88
50 A[4][0][2]=146
51 A[4][1][0]=b
52 A[4][1][1]=34
53 A[4][1][2]=124
54 A[4][2][0]=c
55 A[4][2][1]=96
56 A[4][2][2]=564
57 A[4][3][0]=100
58 A[4][3][1]=12

]
];

28 A[2][1][1]=34
29 A[2][1][2]=124

[
["q", 88, 146],
["r", 34, 124],
["s", 96, 564],
[100, 12, "t"],

23 A[1][3][2]=d
24 A[2][0][0]=x
25 A[2][0][1]=88
26 A[2][0][2]=146
27 A[2][1][0]=b

Additional algorithm 7.9 (continued)

control structures, which guide our own behavior. In the case of machines, two basic types
of control structures were presented: the conditional statement and the repeat-loop state-
ment. In case of repetitive loops, three types have been identified namely do-while-loop,
while-loop and for-loop. Each control structure is shown to be capable of handling a block
of expressions. The iteration direction of a repeat loop was also described. In addition,
the use of nested loops was presented in the context of multidimensional array variables.
The end of the chapter presented a method for looping through multidimensional array
variables by using the modulo operator in conjunction with a single for-loop structure.
Note that all expression blocks were written differently between the computer languages
presented here, however, the main design was preserved in a mirror-like manner.

8Functions

8.1 Introduction

Functions are constructs intended to eliminate redundancy or pseudo-redundancies. These
block structures show the significance of input-output principles in software development.
The notion of functions is fully described in context using both abstract explanations and
concrete examples. Parameters are presented as the input, namely as means of one-way
communication with the function, whereas the return value is presented as the output of
a function. In different computer languages, the keyword for representing a function is
different, which is why these keywords are discussed on a case-by-case basis. Two types
of function calls are shown, namely cascading calls and recursive calls or a mixture of
both. Examples are given for cascading function calls, and then for the recursive process,
where it is shown how repeated loops can be replaced by a function that calls itself. In
this chapter, functions provide an opportunity to discuss global and local variables and
their meaning in context. Next, some examples of pure and impure functions, discussed
in the first chapters, are presented here by way of example.

8.2 Defining Functions

Functions are blocks of instructions that perform redundant tasks. Usually, functions are
used either to eliminate redundancy, or to structure the code into subproblems. The ques-
tion that arises now is: How can such functions be defined? In all computer languages,
the function statement consists of the function keyword followed by the function name,

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_8.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_8

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_8&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_8
https://doi.org/10.1007/978-3-031-23277-0_8

188 8 Functions

a comma-separated list of parameter names, usually in parentheses, and the statements
that contain the function body. For the compiler or interpreter to be compatible with the
syntax used, the definition must be language-specific. For instance, below are some exam-
ples in several computer languages that show the most common way to define a function
(Additional algorithm 8.1). Some of the computer languages define a function by using
the keyword “function” (i.e. VB, Javascript or PHP). That is, because the meaning of the
function comes from the world of mathematics. In recent decades, the word function was
replaced with other words having in fact the same meaning. For example, in Python and
Ruby the keyword for such a “black box” is called “def”. In other languages like Perl,
the keyword for defining a function is “sub”, and in computer languages like C# or Java,
the keyword for defining a function is “static”. Note that in object oriented computer
languages, functions are also called methods, and have the added role of object commu-
nication. In C++, a function simply begins with a data type keyword and the name of
the function, without any special keyword specifying that the block of code represents a
function. In some computer languages like C++, C#, Java or VB6, the datatype returned
by the function is specified. In C# and Java, the “static” keyword can be followed by
another keyword that signifies the datatype returned by the function. In case the function
is not meant to return anything, the keyword for a datatype is replaced with the key-
word “void”, as “void” means that the function (method) has no return value. In VB, this
datatype is specified by a keyword at the end of the statement. In cases that a function is
not meant to return anything but simply execute some instructions, the datatype keyword
is not written. Depending on the syntax, the body of the function can be closed using
different strategies. For example, C-like computer languages enclose the function body
in curly braces. On the other hand, other computer languages like Ruby or VB prefer to
end the body of a function with a keyword, namely “end” or “end function”. Moreover,
Python even disregards any termination and uses the indentation to signify the hierarchi-
cal order of the code. Just before the termination of the body, a function usually contains
a return keyword followed by a variable or an entire expression, depending on the case.
The syntax of C-like computer languages is more closely related to the meaning found in
mathematics, while non-C-like syntaxes such as Python or Visual Basic are more closely
related to what we call pseudo-code, or more precisely, a syntax that is closer to the
natural language. Both classes of syntax discussed above are of great value to industry,
education, and research. These two main types of syntax allow a wider range of people
to participate and be productive in different fields of science and industry. Those people
from exact sciences such as mathematics, physics, or chemistry will prefer the C-like syn-
tax because of the striking similarities to mathematical notation, while those from other
fields will probably prefer that syntax which is closer to the natural language. Again, both
the C-like and non-C-like (i.e. VB-like) syntaxes have equal value for the progress of our
civilization, as natural language and mathematics have a lot in common.

8.2 Defining Functions 189

8.2.1 Simple Arguments

A function can hold pieces of code with various meanings. For example, a function may
contain a simple equation or an entire algorithm (or even big parts of entire applications).
A parameter is a variable in the declaration of the function, whereas an argument is the

a = 10;
b = compute(a);

print(b);

function compute(x)
{

return x + x / x - x * x;
}

JS Output:
-89

using System;
class HelloWorld {

static int compute(int x)
{

return x + x / x - x * x;
}

static void Main(string[] args)
{

int a = 10;
int b = compute(a);

Console.WriteLine(b);
}

}

C# Output:
-89

Private Sub Form_Load()
a = 10
b = compute(a)
Debug.Print b

End Sub

Function compute(x) As Integer
compute = x + x / x - x * x

VB Output:
-89

End Function

Additional algorithm 8.1 It shows the use of functions that take simple arguments. An integer
literal is assigned to a variable a. Variable a is then used as an argument for a function called “com-
pute”. Function “compute” takes the argument and uses its value in a mathematical expression. The
returned value of function “compute” is then assigned to a variable b, which is then printed into the
output for inspection. Note that the source code is in context and works with copy/paste

190 8 Functions

$a = 10;
$b = compute($a);
echo $b;

function compute($x)
{

return $x + $x / $x - $x * $x;
}

PHP Output:
-89

my $a = 10;
my $b = compute($a);
print $b;

sub compute
{

my ($x) = @_;
return $x + $x / $x - $x * $x;

}

PERL Output:
-89

def compute(x)
return x + x / x - x * x

end

a = 10
b = compute(a)
puts b

Ruby Output:
-89

public class Main
{

public static void main(String[] args) {

int a = 10;
int b = compute(a);

System.out.println(b);
}

static int compute(int x)
{

return x + x / x - x * x;
}

}

Java Output:
-89

def compute(x):
return x + x / x - x * x

Python Output:
-89.0

Additional algorithm 8.1 (continued)

8.2 Defining Functions 191

a = 10
b = compute(a)
print(b)

int compute(int x)
{

return x + x / x - x * x;
}

int main()
{

int a = 10;
int b = compute(a);

cout<<b;

return 0;
}

C++ Output:
-89.0

Additional algorithm 8.1 (continued)

value of the variable that is passed to the function. In all cases the function arguments
are the inputs to the code blocks inside the function. The result of these code blocks is
the function output that is returned to the caller (the main line that uses the function is
known as the caller). Nonetheless, the simplest function, which is also the most useless,
is a function that returns the value of the argument directly to the output. As described
above, a function incorporates three main parts, namely the function name, the input
or parameter, and the output. A useful function that can be declared is a function that
receives an argument and immediately returns the result based on a computation that uses
the value of the argument. Functions can be called by reference, by value, or by name
if the function contains no parameters. A “parameter” is a variable identifier provided as
input to a function (i.e., a placeholder in the function declaration), while an “argument”
is a value passed as an input to the function when the call is made. The argument can be
passed to the function either by value or by reference. In a “call by value” the argument
is copied from one memory location to a different memory location associated with the
parameter variable of the function. Any changes to the parameter variable will be local to
the function. However, in a “call by reference” the memory address of the variable used by
the caller, is passed to the parameter variable of the function (i.e., reference to a variable).
Thus, any changes made to the parameter variable inside the function, are reflected in
the variable used by the caller. In other words, changes to the reference arguments will
propagate to the original value. In such cases, a “call by reference” modifies the data at the
location of a variable used by the caller, which in turn can make the return of the function
optional compared to the “call by value” approach. Thus, a “call by reference” uses less
memory compared to a “call by value”, increases the speed of an application, and is used

192 8 Functions

in hardware-intensive implementations. Conversely, compared to a “call by reference”, a
“call by value” uses more memory and the application speed is slower because of it, but
it is safe and very methodical (easy to debug). However, Additional algorithm 8.1 shows
the simplest use of a single-parameter function. Two variables a and b are declared.

The first variable, namely a, is assigned with an integer literal. The second variable,
variable name b, is assigned with a value that is returned by a function called “compute”.
The call to the compute function sends the argument to the x variable. Thus, the value
of the parameter is taken from the value found in variable a, which is then passed to
the body of the function for further computations. Inside the body of the function, the
value of x is used for a trivial calculation of a mathematical expression (i.e. x + x/x −
x× x), previously discussed in the subsection operator precedence and association. Once
this expression is evaluated, the result is returned directly to the caller. The caller then
assigns the new result to variable b, which is then printed to the output for inspection.
Note: Unlike other computer languages from the list, in Perl the parameters are declared
inside the body of the function.

8.2.2 Complex Arguments

Philosophically, each software application can be viewed as a universe separate from our
own, with a beginning and an end. Thus, functions in turn can always be viewed either as
pocket universes of the main universe, namely the application, or basically as subcodes
that can always be called repeatedly. To better understand the importance of such blocks
of statements, a more complex example shows a function with two parameters, namely
a parameter that is represented by a string variable and a parameter that is represented
by an array variable that contains string literals (Additional algorithm 8.2). In Additional
algorithm 8.2, a function lists the values from the elements of an array variable. First,
string literals are assigned to the elements of an array A. Also, a string variable t is set
to empty for later use as an accumulator for different string values. Then a variable b
is declared and the value returned by a function is assigned to it. The function called
“compute” takes two arguments, namely the variable t and the array variable A.

Secondly, inside the function, a for loop is initialized with an integer variable i that
spans from zero to the upper bound of the array A. Inside the for loop, a string containing
the values from element i of the array A is added to the string variable t on each iteration.
Once the for loop completes the iteration process, the content of the string variable t is
returned to the caller. Thus, the value returned by the function is assigned to variable b.
The content of variable b is then printed to the output for inspection.

8.2 Defining Functions 193

const a = ["a", "b", "c", "d", "e"];
let t = "";
let b = compute(t, a);
print(b);

function compute(t, a)
{

for (let i = 0; i < a.length; i++) {
t += "\n a[" + i + "]=" + a[i];

}
return t;

}

JS Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

using System;
class HelloWorld {

static string compute(string t, string []
a)

{
for (int i = 0; i < a.Length; i++) {

t += "\n a[" + i + "]=" + a[i];
}

return t;
}

static void Main(string[] args)
{

string[] a = {"a", "b", "c", "d", "e"};
string t = "";
string b = compute(t, a);

Console.WriteLine(b);
}

}

C# Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

Private Sub Form_Load()

a = Array("a", "b", "c", "d", "e")
t = ""
b = compute(t, a)
Debug.Print b

End Sub

VB Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

Additional algorithm 8.2 It shows the use of functions by considering complex arguments. Such
complex arguments can be strings, array variables, or complex objects. In this specific case, a string
and an array variable are used as arguments to a function called “compute”. An array variable con-
taining five elements is declared using string literals. Then a string variable t is declared and set to
empty. The two variables are passed to the “compute” function. Inside the “compute” function, a for-
loop traverses each element of the array a, and it adds the value from it to the accumulator variable
t. At the end of the for-loop, the “compute” function returns the value of t, which is assigned to a
string variable b, that is further printed onto the output for inspection. Note that the source code is
in context and works with copy/paste

194 8 Functions

Function compute(ByRef t, ByRef a) As String

For i = 0 To UBound(a)
t = t & "a[" & i & "]=" & a(i)
t = t & vbCrLf

Next i

compute = t

End Function

$a = ["a", "b", "c", "d", "e"];
$t = "";
$b = compute($t, $a);
echo $b;

function compute($t, $a)
{

for ($i = 0; $i < count($a); $i++) {
$t .= "\n a[" . $i . "]=" . $a[$i];

}
return $t;

}

PHP Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

my @a = ("a", "b", "c", "d", "e");
my $t = "";
my $b = compute($t, $a);
print $b;

sub compute
{

my ($t, $a) = @_;

for ($i = 0; $i < scalar(@a); $i++) {
$t .= "\n a[" . $i . "]=" . $a[$i];

}
return $t;

}

PERL Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

def compute(t, a = [])
for i in 0..(a.size-1)

t += "\n a[" + i.to_s + "]="
t += a[i].to_s

end
return t

end

a = ["a", "b", "c", "d", "e"]
t = ''

Ruby Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

Additional algorithm 8.2 (continued)

8.2 Defining Functions 195

b = compute(t, a)
puts b

public class Main
{

public static void main(String[] args) {

String[] a = {"a", "b", "c", "d", "e"};
String t = "";
String b = compute(t, a);

System.out.println(b);
}

static String compute(String t, String [] a)
{

for (int i = 0; i < a.length; i++) {
t += "\n a[" + i + "]=" + a[i];

}

return t;
}

}

Java Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

def compute(t, a = []):
for i in range(0, len(a)):

t += "\n a[" + str(i) + "]="
t += str(a[i])

return t

a = ["a", "b", "c", "d", "e"]
t = ''
b = compute(t, a)
print(b)

Python Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

#include <iostream>
using namespace std;
//using std::to_string;

string compute(string t, string a[], int l)
{

for (int i = 0; i < l; i++) {
t += "\n a[" + to_string(i) +
"]=" + a[i];

}
return t;

}

int main()

C++ Output:
a[0]=a
a[1]=b
a[2]=c
a[3]=d
a[4]=e

Additional algorithm 8.2 (continued)

196 8 Functions

{
string a[5] = {"a", "b", "c", "d", "e"};
string t = "";

int l = sizeof(a) / sizeof(string);
string b = compute(t, a, l);

cout<<b;

return 0;
}

Additional algorithm 8.2 (continued)

8.2.3 Nested Function Calls

As previously described in the case of nested loops, in software engineering, the term
nesting refers to information or processes organized in layers located within each other.
Only a few of the meanings of the term “nested” can be mentioned here, such as: nested
levels of parentheses in arithmetic expressions, nested data structures (i.e. records, objects
or classes), and nested blocks of imperative source code such as nested if-clauses or
repeat-loop clauses. To simply call a function and directly assign the return value to a
variable is a straightforward statement (Additional algorithm 8.2). However, what if the
same function needs to be called multiple times with the return value as the argument
for the next call? An iterative method can be used where the function is called a certain
number of times. In such cases, an additional new variable must be declared and used
both as storage for the previous return value and as an argument to the current call. Let
us consider the following example:

// VB out-of-context formulation

a = 0

For i = 0 To UBound(a)
a = compute(a)

Next i

Where variable a and the entire repeat loop can be replaced with nested function
calls. In Additional algorithm 8.3 an example shows the idea of nested function calls.
The example involves two variables, namely a and b. An integer literal is assigned to
the variable a, while the results from a chain of calls to a function c are assigned to
variable b. A call to function c sends one argument to variable x. Thus the value of the
parameter is taken from the value found in variable a, which is then passed to the body
of the function. Like before, inside the body of function c, the argument is used for a

8.2 Defining Functions 197

mathematical expression, namely x + x/x − x× x. Once this expression is evaluated, the
result is returned directly to the caller. The caller then assigns the result as an argument
for the next call. Once this chain of calls ends, the return value is assigned to variable b.

In the next step, the negative sign of the result is changed to positive by simply attach-
ing the minus sign in front of the b variable. Thus, the positive value from b is then

a = 3;
b = c(c(c(c(a))));
b = -b;

print(b);

function c(x)
{return x + x / x - x * x;}

JS Output:
756029

using System;
class HelloWorld {

static void Main() {

int a = 3;
int b = c(c(c(c(a))));
b = -b;

Console.WriteLine(b);
}

static int c(int x)
{return x + x / x - x * x;}

}

C# Output:
756029

Private Sub Form_Load()
a = 3
b = c(c(c(c(a))))
b = -b
Debug.Print b

End Sub

Function c(x) As Double

VB Output:
756029

Additional algorithm 8.3 It shows the principle of nested function calls in which the return value
of the most inner function becomes the argument for the most immediate outer function call, and
so on. An integer literal is assigned to variable a. Then, the final return value of a group of nested
function calls is assigned to a variable b, which in turn is printed to the output for inspection. Initially,
the value stored in variable b is a negative value (i.e. −756029). Thus, for demonstration purposes,
the minus sign is inserted in front of variable b in order to change the sign of the stored integer value
(i.e. b = −b). Note that the source code is in context and works with copy/paste

198 8 Functions

c = x + x / x - x * x
End Function

$a = 3;
$b = c(c(c(c($a))));
$b = -$b;

echo $b;

function c($x)
{return $x + $x / $x - $x * $x;}

PHP Output:
756029

my $a = 3;
my $b = c(c(c(c($a))));
$b = -$b;

print $b;

sub c{
my ($x) = @_;
return $x + $x / $x - $x * $x;

}

PERL Output:
756029

def c(x)
return x + x / x - x * x

end

a = 3
b = c(c(c(c(a))))
b = -b

puts b

Ruby Output:
756029

public class Main
{

public static void main(String[] args) {

int a = 3;
int b = c(c(c(c(a))));
b = -b;

System.out.println(b);
}

static int c(int x)
{return x + x / x - x * x;}

}

Java Output:
756029

Additional algorithm 8.3 (continued)

8.2 Defining Functions 199

def c(x):
return x + x / x - x * x

a = 3
b = c(c(c(c(a))))
b = -b

print(b)

Python Output:
756029.0

#include <iostream>
using namespace std;

int c(int x)
{

return x + x / x - x * x;
}

int main()
{

int a = 3;
int b = c(c(c(c(a))));
b = -b;

cout<<b;

return 0;
}

C++ Output:
756029

Additional algorithm 8.3 (continued)

assigned to the same variable, which is then printed to the output for inspection. Notes:
The point of the minus sign in this example is to show that numeric values from inside
variables can be manipulated in this manner. Please notice the initial seed, namely the
integer value stored in variable a. Experimentation will show that a call to function c
using variable a as an argument, will return −5 as the result. However, once function c
is declared as an argument to another call to function c, the returned value will be −29
(i.e. “c(c(a))”). For three calls to function c that pass the returned value as an argument
for the next call, the result will show number −869 (i.e. “c(c(c(a)))”). In the case of four
nested calls, the result is −756029 (i.e. “c(c(c(c(a))))”).

200 8 Functions

8.2.4 Chained Function Calls

In Additional algorithm 8.4, it is shown how functions can in turn call other functions.
This time the integer literals 1 through 5 are declared for an array “a”. An integer vari-
able t is declared and set to zero and then used as an accumulator. Next, a variable b is
declared and set with the return value provided by a function called c1. The result from
variable b is then printed to the output for inspection. However, what happens beyond the
c1 function is the main demonstration of this example. Please note that function c1 calls a
function c2, and function c2 calls a function c3 and so on. Most importantly here, notice
how complex arguments are passed from one function to another (i.e. the variable t and
the array a). These arguments can of course be used at any level in this chain of function
calls. In this specific case, the arguments are passed to the last level and used there to cal-
culate the return values. Nevertheless, at each link in this chain, something new is added to
the returned value in order to show some possibilities to the reader. Once function c1 calls
function c2, function c2 returns a value made of an integer and whatever a function c3
returns. In turn, function c3 returns whatever a function c4 provides, plus an integer num-
ber. Notice that one function added a value before the return value and the other function
added a value after the return value. Next, the c3 function demonstrates that it can declare
a local variable inside the body of the function with an assigned integer value (i.e. 1).

The return value from function c3 is the contents of variable s plus the result provided
by a function c4. In turn, function c4 returns the value provided by function c5 plus
the same value returned by the same function c5. This demonstrates the ability to return
values from different types of functions inside other functions. Function c5 is the end
of the chain in this example. The c5 function takes the two arguments passed along the
chain and uses their values to process some information. Namely, function c5 takes the
value from each element of array a and makes a sum that is progressively accumulated in
variable t. At the end of the for-loop, variable t is returned to the caller, namely function
c4, and function c4 returns its own value to function c3, and function c3 returns its value
to function c2, which returns its value to function c1, which finally in turn assigns its
returned value to variable b.

8.2.5 Relative Positioning of Functions

The main program is where execution begins. Depending on the computer language used,
the main program is represented by the code that is outside the functions, or the code that
resides in a special block of code called main. Probably at this stage, one of the most
important observations that can be made in this set of computer languages will be the
position of functions relative to the main program. One can notice some particularities in
languages like C++, or Python and Ruby, and the others from the set. In C++, the order
of the functions must be visible to the compiler in their entirety. For example, the call

8.2 Defining Functions 201

const a = [1, 2, 3, 4, 5];
let t = 0;
let b = c1(t, a);
print(b);

function c1(t, a){
return 5 + c2(t, a);

}

function c2(t, a){
return c3(t, a) + 5;

}

function c3(t, a){
let s = 1;
return s + c4(t, a);

}

function c4(t, a){
return c5(t, a) + c5(t, a);

}

function c5(t, a){

for (let i = 0; i < a.length; i++){
t += a[i];

JS Output:
41

Additional algorithm 8.4 It shows how functions may use other functions in a chain of calls.
Another important observation made here, is related to the position of functions relative to the main
program. In some computer languages function must be declared before the main program, whereas
in other computer languages the order of the functions or the position of the functions relative to
main, is not important. This fact indicates how the source code is treated by the compiler. That is, in
some computer languages, execution is immediate, regardless of whether the functions are loaded or
not, while in other computer languages, execution begins once all the code is loaded. The example
from above shows how two variables become the arguments of a function c1, which pass their values
to other functions in a chain that ends in a function c5. This trip of the arguments shows different
types of additions until the last level is reached, such as additions of values, either literals, returned
values from other functions or values from new variables. Function c5 uses a for-loop to traverse the
elements of the array variable in order to sum up the values in the accumulator variable t. Once the
for-loop finishes the iterations, the value from variable t is returned to function c4, which adds some
other value to the this response. In turn, function c4 returnes the value to function c3, until it reaches
the path to function c1, which assigns the final response value to a variable b. Variable b in turn is
printed into the output for inspection. Notice that, in the case of C++, variable t holds the total num-
ber of elements of array a, until the chain of calls reaches function c5. There, the content of variable
t is assigned to a new variable (i.e. l), and variable t is set to zero to take the role of an accumulator
variable for calculating the sum. It should be noted that pointers can be used, namely, the parameter
“int a[]” can be written as a pointer, namely “∗a”, which will provide the same result because the
number of elements in array a is calculated before any function is called. Note that the source code
is in context and works with copy/paste

202 8 Functions

}

return t;
}

using System;
class HelloWorld {

static void Main(string[] args)
{

int[] a = {1, 2, 3, 4, 5};
int t = 0;
int b = c1(t, a);

Console.WriteLine(b);
}

static int c1(int t, int[] a){
return 5 + c2(t, a);

}

static int c2(int t, int[] a){
return c3(t, a) + 5;

}

static int c3(int t, int[] a){
int s = 1;
return s + c4(t, a);

}

static int c4(int t, int[] a){
return c5(t, a) + c5(t, a);

}

static int c5(int t, int[] a){

for (int i = 0; i < a.Length; i++) {
t += a[i];

}

return t;
}

}

C# Output:
41

Private Sub Form_Load()

Dim t, b As Integer

a = Array(1, 2, 3, 4, 5)
t = 0
b = c1(t, a)

VB Output:
41

Additional algorithm 8.4 (continued)

8.2 Defining Functions 203

Debug.Print b

End Sub

Function c1(ByRef t, ByRef a) As Integer
c1 = 5 + c2(t, a)

End Function

Function c2(ByRef t, ByRef a) As Integer
c2 = c3(t, a) + 5

End Function

Function c3(ByRef t, ByRef a) As Integer
Dim s As Integer
s = 1
c3 = s + c4(t, a)

End Function

Function c4(ByRef t, ByRef a) As Integer
c4 = c5(t, a) + c5(t, a)

End Function

Function c5(ByRef t, ByRef a) As Integer

For i = 0 To UBound(a) - 1
t = t + a(i)

Next i

c5 = t

End Function

$a = [1, 2, 3, 4, 5];
$t = 0;
$b = c1($t, $a);
echo $b;

function c1($t, $a){
return 5 +c2($t, $a);

}

function c2($t, $a){
return c3($t, $a) + 5;

}

function c3($t, $a){
$s = 1;
return $s + c4($t, $a);

}

function c4($t, $a){
return c5($t, $a) + c5($t, $a);

PHP Output:
41

Additional algorithm 8.4 (continued)

204 8 Functions

}

function c5($t, $a)
{

for ($i = 0; $i < count($a); $i++) {
$t += $a[$i];

}
return $t;

}

my @a = (1, 2, 3, 4, 5);
my $t = 0;
my $b = c1($t, $a);
print $b;

sub c1{
my ($t, $a) = @_;
return 5 + c2($t, $a);

}

sub c2{
my ($t, $a) = @_;
return c3($t, $a) + 5;

}

sub c3{
my ($t, $a) = @_;
my $s = 1;
return $s + c4($t, $a);

}

sub c4{
my ($t, $a) = @_;
return c5($t, $a) + c5($t, $a);

}

sub c5{
my ($t, $a) = @_;

for ($i = 0; $i < scalar(@a); $i++) {
$t += $a[$i];

}
return $t;

}

PERL Output:
41

def c1(t, a = [])
return 5 + c2(t, a)

end

def c2(t, a = [])
return c3(t, a) + 5

Ruby Output:
41

Additional algorithm 8.4 (continued)

8.2 Defining Functions 205

end

def c3(t, a = [])
s = 1
return s + c4(t, a)

end

def c4(t, a = [])
return c5(t, a) + c5(t, a)

end

def c5(t, a = [])
for i in 0..(a.size-1)

t += a[i]
end
return t

end

a = [1, 2, 3, 4, 5]
t = 0
b = c1(t, a)
puts b

public class Main
{

public static void main(String[] args) {

int[] a = {1, 2, 3, 4, 5};
int t = 0;
int b = c1(t, a);

System.out.println(b);
}

static int c1(int t, int[] a){
return 5 + c2(t, a);

}

static int c2(int t, int[] a){
return c3(t, a) + 5;

}

static int c3(int t, int[] a){
int s = 1;
return s + c4(t, a);

}

static int c4(int t, int[] a){
return c5(t, a) + c5(t, a);

}

static int c5(int t, int[] a){

Java Output:
41

Additional algorithm 8.4 (continued)

206 8 Functions

for (int i = 0; i < a.length; i++) {
t += a[i];

}

return t;
}

}

def c1(t, a = []):
return 5 + c2(t, a)

def c2(t, a = []):
return c3(t, a) + 5

def c3(t, a = []):
s = 1
return s + c4(t, a)

def c4(t, a = []):
return c5(t, a) + c5(t, a)

def c5(t, a = []):
for i in range(0, len(a)):

t += a[i]
return t

a = [1, 2, 3, 4, 5]
t = 0
b = c1(t, a)
print(b)

Python Output:
41

#include <iostream>
using namespace std;

// order of functions matters !

int c5(int t, int a[]){

int l = t;
t = 0;

for (int i = 0; i < l; i++) {
t += a[i];

}

return t;
}

int c4(int t, int a[]){
return c5(t, a) + c5(t, a);

C++ Output:
41

Additional algorithm 8.4 (continued)

8.2 Defining Functions 207

}

int c3(int t, int a[]){
int s = 1;
return s + c4(t, a);

}

int c2(int t, int a[]){
return c3(t, a) + 5;

}

int c1(int t, int a[]){
return 5 + c2(t, a);

}

int main()
{

int a[] = {1, 2, 3, 4, 5};
int t = sizeof(a) / sizeof(int);
int b = c1(t, a);

cout<<b;

return 0;
}

Additional algorithm 8.4 (continued)

of c1 eventually leads to the call of function c5. Thus, the C++ compiler must load all
functions into memory for this chain to be triggered. An order like: c1, c2, c3, c4, c5
will result in an error at runtime, as function c1 is executed before the other functions
are loaded into memory. However, an order like c5, c4, c3, c2, c1, allows the compiler to
load all of the functions into memory before function c1 is executed. In Ruby and Python,
the position of the functions relative to the main program is also important, but not as
important as it is in C++. Ruby and Python implementations result in errors if functions
are declared after the main program. Notice that in Python and Ruby all functions are
declared before the main program, however, the order of their declarations is irrelevant,
as it seems that all functions are loaded into memory before any calls are made. This
is in contrast to C++, where calls are made early. In the other computer languages from
the list, it can be seen that the order in which the functions are declared relative to the
main program is irrelevant. In Additional algorithm 8.4, where permitted, functions are
intentionally positioned after the main program to emphasize this observation. This means
that in computer languages like Javascript, PHP, PERL, C#, Java and VB, execution begins
only after all functions are known to the interpreter or compiler.

208 8 Functions

8.2.6 Recursive Calls

Recursion refers to self-calls or a chain of calls that result in a self-call. A simple func-
tion that returns a call to itself will probably throw an error if the execution is supervised,
otherwise the execution will point to infinity and lead to high CPU usage and even hang
the operating system (OS). However, there is an elegance when it comes to recursivity.
The increment of an integer variable and a simple condition statement inside such func-
tions can stop the recursive process as desired. Simple mistakes in the implementation
of recursive calls, such as wrong condition statements, can lead to problems as described
above. For this reason, recursive calls are less popular than processes like repeated loops.

function do_it() {

// do stuff

if(condition) {
// stop self-calling
// return result

} else {
do_it();

}
}

// abstract formulation

Intuitively, when we think of repeat loops, the word “push” may come to mind, while
recursive functions may be associated with the word “pull”. In Additional algorithm 8.5,
an example of recursive function is presented. A function called “for-loop” is designed,
and the name of the function points out the similarity of this process with the repeat-
loop structures. The “for-loop” function is able to receive three arguments, by using a
parameter a as a counter, a parameter b used as the upper limit of the recursion process,
and another parameter r that is able to store the results.

In the main program, the return value of the for-loop function is assigned to variable a,
that is printed in the output for inspection. Once the for-loop function is called, the thread
of execution goes to the interior of the function, were the first non-empty line increments
the value of integer variable a. Next, a comment section indicates a region in which
different variations of computations can be inserted. In this specific case of the section,
an integer literal is added to the value stored in variable r. Next, a condition verifies if
the value from the counter (variable a) is higher or equal to the value from variable b.
If the condition is true, that means the recursion process has reached the limit indicated
by the argument (i.e. variable b), and the result found in variable r is then returned to
the caller. Otherwise, the condition executes another statement which returns a call to the
same function, this time using the updated values for variable b and r. Notice that the
result indicates a value of 35 because 5 is added to the value found in variable r exactly
7 times (or b times). Self-calling is not the only type of recursion possible. Among other

8.2 Defining Functions 209

methods, recursion can also be made by a kind of induction, namely a circular chain
of function calls. For instance, such an example is shown below only in Javascript for
demonstration:

a = for_loop(0, 7, 0);
print(a);

// recursion by induction
function for_loop(a, b, r)
{

return add(a, b, r);
}

function add(a, b, r)
{

return by_induction(a, b, r);
}

function by_induction(a, b, r){

a++;
r += 5;

if(a>=b){
return r;

} else {
return for_loop(a, b, r);

}
}

Of course, this circular setup can take different paths to closure, not necessarily a
sequence of calls in a simple chain. Nevertheless, in the example from above, three func-
tions call each other in sequence in a circular manner. The return value of a function
called “for_loop” is assigned to a variable that is then printed to the output for inspec-
tion. Once the “for_loop” function is called, the return value of this function is further
requested from another function called “add”. In turn, function “add” returns whatever a
function called “by_induction” returns. Inside the body of “by_induction” function one
can see a classical recursion strategy. However, in the cases where the condition is false,
the return value is requested from the “for-loop” instead of a self-call. Thus, the recursion
works as in the previous examples, however, the call to self is done through intermedi-
ary functions. Note that the assignment to variable a can be done from any of the three
functions, as the result will be the same (i.e. 35).

210 8 Functions

a = for_loop(0, 7, 0);
print(a);

// replacement for repeat loops
function for_loop(a, b, r){

a++;
// do stuff from
r += 5;
// to here

if(a>=b){
return r;

} else {
return for_loop(a, b, r);

}
}

JS Output:
35

using System;
class HelloWorld {

// replacement for repeat loops
static int for_loop(int a, int b, int r){

a++;
// do stuff from
r +=

C# Output:
35

// to here

if(a>=b){
return r;

} else {
return for_loop(a, b, r);

}
}

5;

Additional algorithm 8.5 It shows how a recursive function call can be a replacement of a for-
loop statement. Thus, a function called “for-loop” is capable of receiving three arguments. An
argument for a, which is the counter for the number of self-calls, another argument for b, which indi-
cates the upper limit of recursive calls (self-calls), and finally an argument for r, which accumulates
an integer literal (i.e. 5) at each iteration/recursion. Inside the function a condition checks if the value
of a is higher or equal to the value of the limit, namely b. In cases that a is less than b, the recursion
continues, whereas if a is higher or equal to b, the value of r is returned back to the original caller.
Once the final return value arrives to the caller, it is immediately assigned to variable a in the main
program, an then the content of the a variable is printed into the output for inspection. Note that the
source code is in context and works with copy/paste

8.2 Defining Functions 211

Private Sub Form_Load()
Dim a As Integer
a = for_loop(0, 7, 0)
Debug.Print a

End Sub

' replacement for repeat loops
Function for_loop(a, b, r) As Integer

a = a + 1
' do stuff from
r = r + 5
' to here

If (a >= b) Then
for_loop = r

Else
for_loop = for_loop(a, b, r)

End If

End Function

VB Output:
35

static void Main() {
int a = for_loop(0, 7, 0);
Console.WriteLine(a);

}
}

} else {
return for_loop($a, $b, $r);

}
}

$a = for_loop(0, 7, 0);
echo($a);

// replacement for repeat loops
function for_loop($a, $b, $r){

$a++;
// do stuff from
$r += 5;
// to here

if($a>=$b){
return $r;

PHP Output:
35

Additional algorithm 8.5 (continued)

212 8 Functions

$a = for_loop(0, 7, 0);
print $a;

replacement for repeat loops
sub for_loop{

my ($a, $b, $r) = @_;

$a++;
do stuff from
$r += 5;
to here

if($a>=$b){
return $r;

} else {
return for_loop($a, $b, $r);

}
}

PERL Output:
35

replacement for repeat loops
def for_loop(a, b, r)

a = a + 1
do stuff from
r += 5
to here

if(a>=b)
return r

else
return for_loop(a, b, r)

end
end

Ruby Output:
35

Java Output:
35

a = for_loop(0, 7, 0)
puts(a)

public class Main
{

// replacement for repeat loops
static int for_loop(int a, int b, int r){

a++;
// do stuff from
r += 5;
// to here

Additional algorithm 8.5 (continued)

8.2 Defining Functions 213

if(a>=b){
return r;

} else {
return for_loop(a, b, r);

}
}

public static void main(String[] args) {
int a = for_loop(0, 7, 0);
System.out.println(a);

}
}

replacement for repeat loops
def for_loop(a, b, r):

a = a + 1
do stuff from
r += 5
to here

if(a>=b):
return r

else:
return for_loop(a, b, r)

a = for_loop(0, 7, 0)
print(a)

Python Output:
35

#include <iostream>
using namespace std;

// replacement for repeat loops
int for_loop(int a, int b, int r){

a++;
// do stuff from
r += 5;
// to here

C++ Output:
35

if(a>=b){
return r;

} else {
return for_loop(a, b, r);

}
}

int main()
{

int a = for_loop(0, 7, 0);
cout<<a;
return 0;

}

Additional algorithm 8.5 (continued)

214 8 Functions

8.2.7 Global Versus Local Variables

The main difference between global and local variables is that global variables can be
accessed globally in the entire program, whereas local variables can be accessed only
within the function in which they are defined. The main advantage of local variables
when compared to global variables is the immediate release of memory once their pocket
of code (i.e. functions, subs or procedures) finishes execution (additionally, local variables
have the ability to constrain errors when debugging is made). Global variables may remain
active in memory until the program is unloaded. For example, in Javascript, a declaration
of a global variable is made at the beginning of the main block, outside of any function,
and uses the keyword “var” in front of the variable name. In C++, Visual Basic 6.0 and
VBA, constants and global variables are declared first, outside any block of code. In C#
and Java, both constants and global like variables (class variable) are declared specifically
as such by using keywords such as “public” in front of the name of the variable, whereas
constants are declared by using the keyword “const”. In the case of PHP, constants have
a special type of declaration, while a global variable is just another variable positioned
outside of any code block. In other computer languages, such as Python, Ruby, or Perl,
constants do not have a special type of declaration. Instead, good practices are applied
in these computer languages, such as upper case letters for the name of constants. In
computer languages that lack the ability to declare constants, functions can be used as
constants. For example, instead of “THIS CONSTANT = 5;”, which can be easily mod-
ified by mistake, a function named “THIS CONSTANT(){return 5;}” is more difficult to
modify by mistake. Such a function can be used exactly like a constant. For example, in
the expression “x = x + THIS CONSTANT;”, a programmer will not feel the difference
between the name of the variable and the name of the function. The example from Addi-
tional algorithm 8.6 shows both the meaning of global vs local variables and the meaning
of constants.

In the main program, a constant (i.e. a) is declared and set to the value of PI. Next, a
global variable b is declared and a value is assigned to it. The point of the example is a
call to a function “compute” that is able to receive arguments by directly taking the values
from the global variable b. The value from global variable b is seen from the interior of
the function and is further assigned to a new local variable x, which is then used for the
computation of the return value. Next, the return value is assigned in the main program
to a variable c, which together with the read-only variable a, is then printed in the output
for inspection.

8.2 Defining Functions 215

const a = 3.1415; // constant
var b = 11; // global variable

b = compute();
print(b + "\n" + a);

function compute(){
let x = b;
return x + x / x - x * x;

}

JS Output:
-109
3.1415

using System;
class HelloWorld {

// constant
public const double a = 3.1415;
// global like (class variable)
public static int b;

static int compute()
{

int x = b;
return x + x / x - x * x;

}

static void Main(string[] args)
{

b = 11;
int c = compute();
Console.WriteLine(c + "\n" + a);

}
}

C# Output:
-109
3.1415

Additional algorithm 8.6 This example shows the meaning of constants and global variables.
A constant (i.e. a) and a global variable (i.e. b) are declared, either in the main routine (e.g. in
Javascript, PHP, PERL, Ruby and Python) or outside the main routine/program (e.g. like in C++, C#,
Java and VB/VBA). In the main routine a function named “compute” is called to provide a return
value for a variable named b. Once the thread of execution moves to the “compute” function, the
value from the global variable b is visible inside the function and is assigned to a local variable x.
The content of variable x is then used inside a mathematical expression and the result is returned to
the caller. Once the returned value is assigned to variable b, the content of the variable and that of
the constant is then printed into the output for inspection. In the C++ computer language, one can
see a comment declaring the constant and the global variable between the two functions. For test-
ing, the activation of those declarations will result in an error because in C++ or VB, constants and
global variables are written at the beginning of the program because the compiler needs to know the
context before execution. In PHP and Python, global variables have visibility inside a function only
if they have a special declaration (i.e. Global $name_of_variable;). Also notice that in Ruby, global
variables are denoted using the dollar sign in front of the name of the variable (ex. $b). Note that the
source code is in context and works with copy/paste

216 8 Functions

c = compute()
Debug.Print c & vbCrLf & a

End Sub

Function compute() As Integer
x = b
compute = x + x / x - x * x

End Function

define("a", 3.1415); // constant
$b = 11; // global variable

$c = compute();
echo $c . "\n" . a;

function compute()
{

global $b;
$x = $b;
return $x + $x / $x - $x * $x;

}

PHP Output:
-109
3.1415

use constant a => 3.1415; # constant
$b = 11; # global variable

my $c = compute($b);
print $c . "\n" . a;

sub compute
{

my $x = $b;
return $x + $x / $x - $x * $x;

}

PERL Output:
-109
3.1415

def compute()
x = $b
return x + x / x - x * x

end

A = 3.1415 # constant
$b = 11 # global variable

c = compute()

puts "#{c}\n#{A}";

Ruby Output:
-109
3.1415

public class Main
{

// constant

Java Output:
-109
3.1415

Const a = 3.1415 'constant
Dim b As Integer 'global variable

Private Sub Form_Load()
b = 11

VB Output:
-109
3.1415

Additional algorithm 8.6 (continued)

8.2 Defining Functions 217

public static final double a = 3.1415;
// global like (class variable)
public static int b;

static int compute()
{

int x = b;
return x + x / x - x * x;

}

public static void main(String[] args) {

b = 11;
int c = compute();
System.out.println(c + "\n" + a);

}
}

def compute():
x = b
return x + x / x - x * x

A = 3.1415 # constant
b = 11 # global variable

c = compute()

print(str(c) + "\n" + str(A));

Python Output:
-109
3.1415

#include <iostream>
using namespace std;

const float a = 3.141592; // constant
int b = 11; // global variable

int compute(){
int x = b;
return x + x / x - x * x;

}

//const float a = 3.141592;
//int b = 11;

int main()
{

b = compute();
cout<<(to_string(b) + "\n" + to_string(a));
return 0;

}

C++ Output:
-109
3.141592

Additional algorithm 8.6 (continued)

218 8 Functions

8.2.8 Functions: Pure and Impure

Earlier in this work, some discussion mentioned the notion of pure functions and impure
functions. This differentiation is important because functional programming is based
on pure functions. Thus, some examples of pure and impure functions are given here
(Additional algorithm 8.7). In pure functions, the same inputs lead to the same outputs.
These types of functions have no side effects, meaning there is no change to the attributes
of the program that reside outside of the function. In contrast, side effects change the
state of the program from the inside of a function. For example, a function is impure
if it changes the value of variables that are outside the function (ex. global variables).
An integer value (i.e. 10) is assigned to a global variable named a. Variable a is used
as an argument for two functions: A function called “pure” that returns the result from
the evaluation of a mathematical expression, and another function called “impure” that
assigns a new value to a global variable a (Additional algorithm 8.7).

Both functions receive the value from variable a, which is further used by a local
variable x. Notice that in the first call the result returned by the “pure” function and by
the “impure” function is −89. However, on a second call, the result is different, namely
−109. The reason is the modification made by the impure function to the global variable
a in the prior call. Since global variable a is an argument for the “impure” function prior
to the modification of the value in variable a, the result is not affected in the first call but
only in the second call. Notice that subsequent calls to the “pure” function will provide
the same result of -109. However, the result changes every time the “impure” function
was called in the previous call.

8.2.9 Function Versus Procedure

Some terms are deeply connected to the historical perspective. Initially, the main concern
in the science of computers was the elimination of redundancies in order to preserve
hardware resources. Thus, blocks of code that were frequently executed were organized
in subprograms, or subroutines, or procedures. Such structures are made of blocks of
instructions that can be called when needed. A call to a procedure is made without any
arguments, and no return values are expected from it. Thus, the thread of executions
simply moves from the main program to the subroutine instructions and back. Functions
on the other hand, are parameterized blocks of instructions, that can receive arguments
when they are called and may provide useful return values. Both functions and procedures
are pieces of code that can be called from different places, either from the main program
or from other procedures and functions. Functions may behave like procedures if they take
no arguments. In other words, a function receives inputs for its piece of code and it can
return an output. In contrast, a procedure lacks any inputs for their piece of code and it has
no return output. In recent decades, the notion of procedure started to fade away in some
computer languages, as functions can be used as procedures. A caller that uses a function

8.2 Defining Functions 219

that has no arguments and no usable return values, is in fact a masked procedure. A series
of examples regarding functions and procedures are given in Additional algorithm 8.8.

A global variable a is declared and an integer value is assigned to it. A variable b is
also declared and a value returned by a function “f” is assigned to it. Function “f” receives
an argument and returns the result of the evaluation of a mathematical expression. Next

a = 10;

b = pure(a);
print(b + " & " + a);

c = inpure(a);
print(c + " & " + a);

d = inpure(a);

JS Output:
-89 & 10
-89 & 11
-109 & 11

print(d + " & " + a);

function pure(x){
return x + x / x - x * x;

}

function inpure(x){
a = 11;
return x + x / x - x * x;

}

using System;
class HelloWorld {

public static int a;

static void Main() {

a = 10;

int b = pure(a);
Console.WriteLine(b + " & " + a);

C# Output:
-89 & 10
-89 & 11
-109 & 11

Additional algorithm 8.7 It shows the meaning of pure and impure functions. A function named
“pure” receives an argument for x and returns a value that is the result of the evaluation of a mathe-
matical expression. This function is pure because it does not change anything outside the function.
On the other hand, a function called “impure” receives the same argument for x that is used in the
same mathematical expression as in the “pure” function. However, the “impure” function, modifies
the value of a global variable a. This modification made outside the function makes the function
impure. Notice that both functions return the same result in the initial call. However, in the third call
the returned value differs, as the global variable a that is modified by the “impure” function is in fact
the argument for the next calls. Note that the source code is in context and works with copy/paste

220 8 Functions

int c = inpure(a);
Console.WriteLine(c + " & " + a);

int d = pure(a);
Console.WriteLine(d + " & " + a);

}

static int pure(int x){
return x + x / x - x * x;

}

static int inpure(int x){
a = 11;
return x + x / x - x * x;

}
}

Dim a, b As Integer

Private Sub Form_Load()

a = 10
b = pure(a)
Debug.Print b & " & " & a

c = inpure(a)
Debug.Print c & " & " & a

VB Output:
-89 & 10
-109 & 11
-109 & 11

d = pure(a)
Debug.Print d & " & " & a

End Sub
Function pure(x) As Integer

pure = x + x / x - x * x
End Function

Function inpure(x) As Integer
a = 11
inpure = x + x / x - x * x

End Function

$a = 10;

$b = pure($a);
echo "$b & $a\n";

$c = inpure($a);
echo "$c & $a\n";

$d = inpure($a);
echo "$d & $a";

function pure($x){
return $x + $x / $x - $x * $x;

}

PHP Output:
-89 & 10
-89 & 11
-109 & 11

Additional algorithm 8.7 (continued)

8.2 Defining Functions 221

function inpure($x){
global $a;
$a = 11;
return $x + $x / $x - $x * $x;

}

$a = 10;

my $b = pure($a);
print "$b & $a\n";

my $c = inpure($a);
print "$c & $a\n";

my $d = inpure($a);
print "$d & $a";

sub pure{
my ($x) = @_;
return $x + $x / $x - $x * $x;

}

PERL Output:
-89 & 10
-89 & 11
-109 & 11

sub inpure{
my ($x) = @_;
$a = 11;
return $x + $x / $x - $x * $x;

}

def pure(x)
return x + x / x - x * x

end

def inpure(x)
$a = 11
return x + x / x - x * x

end

$a = 10

b = pure($a)
puts "#{b} & #{$a}";

c = inpure($a)
puts "#{c} & #{$a}";

d = pure($a)
puts "#{d} & #{$a}";

Ruby Output:
-89 & 10
-89 & 11
-109 & 11

Additional algorithm 8.7 (continued)

222 8 Functions

public class Main
{

public static int a;

public static void main(String[] args) {

a = 10;

int b = pure(a);
System.out.println(b + " & " + a);

int c = inpure(a);
System.out.println(c + " & " + a);

int d = pure(a);
System.out.println(d + " & " + a);

}

static int pure(int x){
return x + x / x - x * x;

}

static int inpure(int x){
a = 11;
return x + x / x - x * x;

Java Output:
-89 & 10
-89 & 11
-109 & 11

}
}

def pure(x):
return x + x / x - x * x

def inpure(x):
global a
a = 11
return x + x / x - x * x

a = 10

b = pure(a)
print(str(b) + " & " + str(a))

c = inpure(a)
print(str(c) + " & " + str(a))

d = pure(a)
print(str(d) + " & " + str(a))

Python Output:
-89.0 & 10
-89.0 & 11
-109.0 & 11

Additional algorithm 8.7 (continued)

8.2 Defining Functions 223

#include <iostream>
using namespace std;

int a = 10;

int pure(int x){
return x + x / x - x * x;

}

int inpure(int x){
a = 11;
return x + x / x - x * x;

}

int main()
{

int b = pure(a);
cout<<b<<" & "<<a<<"\n";

int c = inpure(a);
cout<<c<<" & "<<a<<"\n";

int d = pure(a);
cout<<d<<" & "<<a;

return 0;
}

C++ Output:
-89 & 10
-89 & 11
-109 & 11

Additional algorithm 8.7 (continued)

the result is printed in the output for inspection. A call is made to procedure or function
“p”, which receives no arguments and returns no values. The block of code from “p”
is made from two lines. In the first line the result of the subtraction of integer 11 from
the content of variable a, is assigned to a local integer variable x. In the second line of
the block of code from “p” the result of a mathematical expression is assigned to global
variable b, and the thread of execution is returned to the caller. Once the procedure “p”
returns the thread of execution, the content of variable b is again printed into the output
for inspection. Please note that in C# and Java, procedures have the “void” declaration to
indicate that the return value does not exist. In PHP and Python, global variables must be
declared inside functions or procedures to make their values visible to their code blocks.

8.2.10 Built-In Functions

Any computer language is equipped by default with a series of internal functions designed
to help the programmer in case of basic processing. Many of these functions have been

224 8 Functions

a = 16;

b = f(a); print(b);
p(); print(b);

function f(x){

JS Output:
-239
-19

return x + x / x - x * x;
}

function p(){
let x = a - 11;
b = x + x / x - x * x;

}

using System;
class HelloWorld {

public static int b;
public static int a;

static void Main() {

a = 16;
b = f(a);

Console.WriteLine(b);

p();
Console.WriteLine(b);

}

static int f(int x){
return x + x / x - x * x;

}

C# Output:
-239
-19

Additional algorithm 8.8 It shows the difference between functions and procedures. A pure func-
tion named f takes an argument and returns a value based on a mathematical expression. A procedure
named “p” that takes no arguments and gives no return values, is used to assign the result of a sub-
traction to a local variable x (i.e. x = a − 11). Next, the result of a mathematical expression is
assigned to a global variable b, after which the execution thread returns automatically to the caller.
Notice that in PHP and Python, global variables have visibility inside a function only if a special
declaration exists (i.e. Global $name_of_variable;). Also, notice that VB has a special keyword for
procedures. The distinction between functions and procedures is made by using the keyword “func-
tion” and the keyword “Sub”, respectively. Moreover, in VB, a sub is not called by using the round
parenthesis as “p()”, but the name of the procedure is simply stated, like “p”. Single letter names for
procedures can be confusing in case of VB, and procedure names with more than two characters are
adviseable. Note that the source code is in context and works with copy/paste

8.2 Defining Functions 225

static void p(){
int x = a - 11;
b = x + x / x - x * x;

}
}

Dim a, b As Integer

Private Sub Form_Load()
a = 16
b = f(a)
Debug.Print b
p
Debug.Print b

End Sub

Function f(x)
f = x + x / x - x * x

End Function

Sub p()
x = a - 11

VB Output:
-239
-19

b = x + x / x - x * x
End Sub

$a = 16;
$b = f($a);
echo $b . "\n";
p(); echo $b;

function f($x){
return $x + $x / $x - $x * $x;

}

function p(){
global $a;
global $b;
$x = $a - 11;
$b = $x + $x / $x - $x * $x;

}

PHP Output:
-239
-19

$a = 16;
$b = f($a);
print $b . "\n";
p(); print $b;

sub f{
my ($x) = @_;
return $x + $x / $x - $x * $x;

}

PERL Output:
-239
-19

Additional algorithm 8.8 (continued)

226 8 Functions

sub p{
$x = $a - 11;
$b = $x + $x / $x - $x * $x;

}

def f(x)
return x + x / x - x * x

end

def p()
x = $a - 11
$b = x + x / x - x * x

end

$a = 16
$b = f($a); puts $b
p(); puts $b

Ruby Output:
-239
-19

public class Main
{

Java Output:
-239

public static int b;
public static int a;

public static void main(String[] args) {

a = 16;
b = f(a);

System.out.println(b);

p();

System.out.println(b);
}

static int f(int x){
return x + x / x - x * x;

}

static void p(){
int x = a - 11;
b = x + x / x - x * x;

}
}

-19

def f(x):
return x + x / x - x * x

Python Output:
-239
-19

Additional algorithm 8.8 (continued)

8.2 Defining Functions 227

def p():
global a
global b
x = a - 11
b = x + x / x - x * x

a = 16
b = f(a); print(b)
p(); print(b)

#include <iostream>
using namespace std;

int a = 16;
int b = 0;

int f(int x){
return x + x / x - x * x;

}

void p(){
int x = a - 11;
b = x + x / x - x * x;

C++ Output:
-239
-19

}

int main()
{

b = f(a); cout<<b;
p(); cout<<b;
return 0;

}

Additional algorithm 8.8 (continued)

used in the examples given throughout the chapters. For example, the functions for con-
version of an integer to a string, the functions for detecting the number of characters of a
string, or the detection of the number of elements inside an array, and so on. The example
below demonstrates a strategy for detecting a string inside another string by using built-in
functions, such as “replace”, “split”, “join”, “len” or their synonyms in different computer
languages. The approach is based on the length difference between two strings. Namely,
the difference in length between an original string and the length of the same string after
replacing some characters of interest. Notes: Another strategy that is demonstrated here
is function chaining, where the value returned by one function is directly an argument
to the next function, without the need to use intermediate variables. Function chaining is
grouping function calls in one single line using dot notation (i.e. a = f1(x).f2(y).f3(z)).
In normal conditions, a search for a substring is done by using a specialized function
that is able to return the position of the target on the main string. However, in many

228 8 Functions

cases the specific position of the target is not important. The detection of a target on the
main string may be more important than an exact location. The presence or absence of
the target string value is sufficient for triggering a condition statement in one direction
or another. The example from Additional algorithm 8.9 starts by declaring two variables,
namely a and q. A string is assigned to variable a and another string is assigned to vari-
able q. Variable a holds the source string. Variable q holds the target string that must be
searched inside variable a.

Next, a variable b holds the length of the original string found in variable a, whereas
another variable c holds the length of a version of the string from variable a, that lacks
any instance of q. Two main strategies for replacing substrings are shown here. Both of
them use built-in functions. The first approach is the split of the string from variable
a, based on the delimiter found in q. That will return an unnamed array. The array is
then converted back to a string using the “join” function. The “join” function allows one
argument, namely the option to insert a delimiter between the values found in the elements
of an array when the string is constructed. However, in order to obtain an “unpolluted”
string, the argument for the “join” function is void. Next, the string provided by the “join”
function is passed to the “length” function (or method), which in turn returns the number
of characters inside the string. This strategy can be observed in computer languages like
Javascript and PERL. Notice that the “split”, “join” and “length” functions are chained
to one another and the final result is assigned to variable c. The second approach is
the “replace” function. In the string stored in variable a, all q encounters are replaced
with nothing. Next, the string provided by the “replace” function is an argument for the
“length” function. The “length” function in turn provides an integer value that specifies
the number of characters in the string. Notice again that the two functions are chained
together and the final result is assigned to variable c. Thus, in order to detect the presence
of q in a, the values of the two variables b and c are compared. If the two variables contain
the same value, then it means that characters of q were not present inside the string found
in variable b. Otherwise, different values stored in variables b and c, show that characters
of q are present inside the string found in variables b. Note again that functions are called
methods in object oriented computer languages. However here the term function is used
nonetheless.

8.3 Conclusions

Functions are used whenever the repetition of a block of instructions is necessary. Func-
tions exist as a solution to redundancy, namely a solution to avoid writing the same code
over and over again. Therefore, functions are pieces of code that are executed repeatedly
in redundant tasks. These pieces of codes called functions, are able to receive certain
inputs which in turn lead to specific outputs. The input values that are passed to a func-
tion are known as arguments. One way to imagine a function by association is to think of

8.3 Conclusions 229

a = "*******%%**********%%******";
q = "%%";

b = a.length;
c = a.split(q).join("").length;

if(c < b){print("a contains q");}

JS Output:
a contains q

using System;
class HelloWorld {

static void Main() {

string a = "*******%%**********%%******";
string q = "%%";

int b = a.Length;
int c = a.Replace(q, "").Length;

if(c < b){
Console.WriteLine("a contains q");

}
}

}

C# Output:
a contains q

Private Sub Form_Load()
a = "*******%%**********%%******"
q = "%%"

b = Len(a)
c = Len(Replace(a, q, ""))

If (c < b) Then
Debug.Print "a contains q"

End If

VB Output:
a contains q

End Sub

Additional algorithm 8.9 This shows an example of using the built-in functions. In this specific
case, it shows how to check for the presence of a string above another string. A string literal is
assigned to variable “a” and a string literal representing the target is assigned to a variable “q”. The
number of characters found in a, is assigned to a variable b. Next, in a function chain all q encoun-
ters found in the string of a, are replaced with nothing. If the q string exists in variable a than the
result is a shorter string than the original. Next in this function chain, the result is passed directly to
the length function, which provides the total number of characters in the procesed string. This last
result is then assigned to variable c. In a condition statement the value of c is compared with the value
from a. If the two values are different, it means that q was present in the original string of a. Note
that the replacement is made by using two methods: (1) The split function that uses q as a delimiter,
provides an array wich in turn is converted into a normal string again, without any instances of q (this
can be seen in Javascript and VB). (2) The replace function which is able to replace all instances of
q found in a, with an empty string (eg. it deletes q from a). Note that the source code is in context
and works with copy/paste

230 8 Functions

$a = "*******%%**********%%******";
$q = "%%";

$b = strlen($a);
$c = strlen(str_replace($q, "", $a));

if($c < $b){echo "a contains q";}

PHP Output:
a contains q

$a = "*******%%**********%%******";
$q = "%%";

$b = length($a);

$c = length(join "", split($q, $a));

if($c < $b){print "a contains q";}

PERL Output:
a contains q

a = "*******%%**********%%******"
q = "%%"

b = a.length
c = a.gsub(q,'').length

if(c != b) then puts("a contains q") end

Ruby Output:
a contains q

public class Main
{

public static void main(String[] args) {

String a = "*******%%**********%%******";
String q = "%%";

int b = a.length();
int c = a.replace(q, "").length();

if(c < b){
System.out.println("a contains q");

}

}
}

Java Output:
a contains q

a = "*******%%**********%%******"
q = "%%"

Python Output:
a contains q

Additional algorithm 8.9 (continued)

8.3 Conclusions 231

b = len(a)
c = len(a.replace(q, ""))

if(c < b): print("a contains q")

#include <iostream>
#include <regex>
#include <string>
using namespace std;

int main()
{

string a = "*******%%**********%%******";
string q = "%%";

int b = a.size();
int c = (regex_replace(a,
regex(q), "")).size();

if(c < b){cout<<"a contains q";}

return 0;
}

C++ Output:
a contains q

Additional algorithm 8.9 (continued)

the function as a “black box” that performs an operation, that is, it does something when
you put something inside. The reason for which a function can be viewed as a “black
box” is related to the software community. The software community, worldwide, contains
a set of programmers. Out of this set of programmers, a good percentage of them pro-
vide coding solutions to other programmers in the community. Thus, a complex function
made in the past by a programmer can always be used as is by both novice and advanced
software developers without having to fully understand the contents of that function. The
only requirement in such cases is for another programmer to understand that this black
box called ‘the function’ may receive a series of arguments and in turn it can provide a
specific output format.

9Implementations and Experiments

9.1 Introduction

The similarity of programming paradigms between different computer languages leads
to a steep learning curve for new computer languages, which mainly involves knowl-
edge of syntaxes. For this to be true, prior knowledge of at least one computer language
is required. However, regardless of the computer language used, knowledge of algo-
rithms can be a useful tool for performing various automation operations regardless of
the computer language used. This chapter begins with descriptions of a series of recursive
functions where different types of arguments and return values are demonstrated. Exam-
ples include recursive functions that: (1) repeat a character n times to form a longer string
value, (2) perform a sum of integers between zero and n, (3) compute the factorial of an
integer n, (4) make number sequence generators, (5) compute the Fibonacci sequence, and
(6) sum all the integers found over an array variable. In the second part of the chapter,
a scanner is presented as a means to traverse a range of numbers in order to detect their
distribution when a mathematical expression is used. In the last part, the chapter describes
the implementation of a new method called Spectral Forecast. In this example, the use
of string values as number sequences is thoroughly explored. The example highlights the
use of the split function and array variables in the context of input values seen in data
science, namely data stored as string values in various file types.

Supplementary Information The online version contains supplementary material available at
https://doi.org/10.1007/978-3-031-23277-0_9.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0_9

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-23277-0_9&domain=pdf
https://doi.org/10.1007/978-3-031-23277-0_9
https://doi.org/10.1007/978-3-031-23277-0_9

234 9 Implementations and Experiments

9.2 Recursion Experiments

Recursion can be an optimal way to program a computer in certain situations because it
eliminates the redundant steps normally performed by a chain of calls. In the example
from Additional algorithm 9.1, a series of implementations are shown. A total of six
implementations of recursive functions are presented, each with different particularities
that may help the reader understand at least some of the variations that are possible. Note
that only the following examples are given in this subsection: (1) an example of recursive
function that provides a string value of a certain length, which is made by a repetition
of a specific character n times. (2) A recursive function that provides the sum of a range
starting from zero to n. (3) A recursive function that provides the result for n factorial. (4)
A recursive function that returns a sequence of numbers based on a specified mathematical
expression. (5) Another recursive function that returns the Fibonacci sequence, and finally,
(6) a recursive function that calculates a sum based on the integers found above an array
variable.

9.2.1 Repeat String n Times

The first example presents a recursive function “x” that is able to return a string of a
certain length made from a specific ASCII character. Function “x” takes three arguments.
Namely, an argument (i.e. parameter c) containing the string character used by the recur-
sive function to make the return string value, a second argument (i.e. parameter s) set to
an empty string value that is used as an accumulator for the forming string, and a third
argument (i.e. parameter n) that is used as an upper limit of the recursion. Inside function
“x”, the character stored in variable c is added by aggregate assignment (or by simple
assignment) to whatever string value is already present inside variable s. Next, a condi-
tion verifies if the number of characters in variable s is higher or equal to the upper limit
indicated in variable n. If the condition is false, the “x” function makes a call to itself
by using the updated values for variable s. If the condition is true, function “x” returns
the value of variable s. Once the value is returned, it is immediately assigned to variable
a, which is further printed into the output for inspection. Notes: The first parameter also
takes groups of characters (entire strings).

9.2.2 Sum from 0 to n

The second example makes a sum of all numbers in the range 0 and n. This is perhaps
the simplest possible recursive function as it takes one argument and it contains one
condition statement. Inside the “sum” function a condition verifies if the value of variable
n is less or equal to 1. If the condition is false, then nothing is triggered and the thread

9.2 Recursion Experiments 235

of execution continues to the next line, where the returned value is the value of variable
n plus the return value of a call to itself by using n minus one as an argument. However,

a = x("*", "", 10);
print("Repeat:\n[" + a + "]");

b = sum(23);
print("Sum:[" + b + "]");

c = factorial(10);
print("Factorial:\n[" + c + "]");

d = sequence(5, [], 0, 5);
print("A sequence:\n[" + d + "]");

e = fibonacci(2, [0, 1, 2], 5);
print("Fibonacci:\n[" + e + "]");

q = [1, 3, 3, 4, 5, 9];
f = sum_array(q.length - 1, q, 0);
print ("Sum array:[" + f + "]");

// repeat string n times
function x(c, s, n){

s += c;

if(s.length>=n){
return s;

} else {
return x(c, s, n);

}
}

JS Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35]
Fibonacci:
[0,1,2,3,5,8]
Sum array:[25]

// sum from 0 to n
function sum(n){

if (n <= 1) {return n;}
return n + sum(n - 1);

}

Additional algorithm 9.1 It shows different experiments on recursive functions. A total of six
examples are shown, in which: (1) A recursive function repeats one (or a group) of characters n times
and returns a string of length n. (2) A recursive function sums integers from zero to n. (3) A recur-
sive function computes the factorial for an integer n. (4) A function generated a sequence of numbers
based on various rules. (5) A recursive function provides the Fibonacci sequence. (6) A recursive
function sums all the integers stored in the elements of an array variable. Note that the source code
is in context and works with copy/paste

236 9 Implementations and Experiments

// factorial from 0 to n
function factorial(n){

if (n <= 1) {
return n;

} else {
return factorial(n - 1) * n;

}
}

// just a sequence
function sequence(n, m, i, t){

m[i] = n;
i++;

if (i >= t) {
return m;

} else {
return sequence((n-1)+(n-2), m, i,

t);
}

}

// fibonacci
function fibonacci(n, m, t){

n++;
m[n] = m[n-1] + m[n-2];

if (n >= t) {
return m;

} else {
return fibonacci(n, m, t);

}
}

// sum all from array
function sum_array(n, q, r){

r += q[n];

if (n <= 0) {
return r;

} else {

return sum_array(n - 1, q, r);
}

}

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 237

using System;
class HelloWorld {

static void Main() {

string a = x("*", "", 10);
Console.WriteLine("Repeat:\n[" + a +

"]");

int b = sum(23);
Console.WriteLine("Sum:[" + b + "]");

int c = factorial(10);
Console.WriteLine(

"Factorial:\n[" + c + "]"
);

int[] d = sequence(5, new int[5], 0, 5);

Console.WriteLine(
"A sequence:\n[{0}",
string.Join(",", d) + "]"

);

int[] e = fibonacci(2,
new int[3] {1,2,3}, 5);

Console.WriteLine(
"Fibonacci:\n[{0}",
string.Join(",", e) + "]"

);

int[] q = {1, 3, 3, 4, 5, 9};

int f = sum_array(q.Length - 1, q, 0);
Console.WriteLine(

"Sum array:[" + f + "]"
);

}

// repeat string n times
static string x(string c, string s,

int n){
s += c;

if(s.Length>=n){
return s;

} else {
return x(c, s, n);

}

C# Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35]
Fibonacci:
[1,2,3,5,8,13]
Sum array:[25]

Additional algorithm 9.1 (continued)

238 9 Implementations and Experiments

}

// sum from 0 to n
static int sum(int n){

if (n <= 1) {return n;}
return n + sum(n - 1);

}

// factorial from 0 to n
static int factorial(int n){

if (n <= 1) {
return n;

} else {
return factorial(n - 1) * n;

}
}

// just a sequence
static int[] sequence(int n, int[] m,

int i, int t){
m[i] = n;
i++;

if (i >= t) {
return m;

} else {
return sequence((n-1)+(n-2),

m, i, t);
}

}

// fibonacci
static int[] fibonacci(int n, int[] m,

int t){
n++;
Array.Resize(ref m, n+1);
m[n] = m[n-1] + m[n-2];

if (n >= t) {
return m;

} else {
return fibonacci(n, m, t);

}
}

// sum all from array
static int sum_array(int n, int[] q,

int r){

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 239

r += q[n];

if (n <= 0) {
return r;

} else {
return sum_array(n - 1, q, r);

}
}

}

Private Sub Form_Load()

' repeat string n times
a = x("*", "", 10)
Debug.Print ("Repeat:" & _
vbCrLf & "[" & a & "]")

' sum from 0 to n
b = sum(23)
Debug.Print ("Sum:[" & b & "]")

' factorial from 0 to n
c = factorial(10)
Debug.Print ("Factorial:[" & _
vbCrLf & "[" & c & "]")

' just a sequence
Dim m(0 To 4) As Integer
Dim d() As Integer
d = sequence(5, m, 0, 5)
For i = 0 To UBound(d)

t = t & d(i) & ","
Next i
Debug.Print ("A sequence:[" & _
vbCrLf & "[" & t & "]")

' fibonacci
Dim e() As Integer
Dim h(0 To 5) As Integer

h(0) = 0
h(1) = 1
h(2) = 2

t = Empty
e = fibonacci(2, h, 5)
For i = 0 To UBound(e)

t = t & e(i) & ","
Next i
Debug.Print ("Fibonacci:[" & _
vbCrLf & "[" & t & "]")

VB Output:
Repeat:
[**********]
Sum:[276]
Factorial:[
[3628800]
A sequence:[
[5,7,11,19,35,]
Fibonacci:[
[0,1,2,3,5,8,]
Sum array:[25]

Additional algorithm 9.1 (continued)

240 9 Implementations and Experiments

' sum all from array
q = Array(1, 3, 3, 4, 5, 9)
f = sum_array(UBound(q), q, 0)
Debug.Print ("Sum array:[" & f & "]")

End Sub

' repeat string n times
Function x(c, s, n)

s = s + c

If (Len(s) >= n) Then
x = s

Else
x = x(c, s, n)

End If

End Function

' sum from 0 to n
Function sum(n)

If (n <= 1) Then
sum = n

Else
sum = n + sum(n - 1)

End If
End Function

' factorial from 0 to n
Function factorial(n)

If (n <= 1) Then
factorial = n

Else
factorial = factorial(n - 1) * n

End If
End Function

' just a sequence
Function sequence(n, ByRef m, i, t)

m(i) = n
i = i + 1

If (i >= t) Then
sequence = m

Else
sequence = sequence(_
(n - 1) + (n - 2), m, i, t)

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 241

End If

End Function

' fibonacci
Function fibonacci(n, ByRef m, t)

n = n + 1
m(n) = m(n - 1) + m(n - 2)

If (n >= t) Then
fibonacci = m

Else
fibonacci = fibonacci(n, m, t)

End If

End Function

' sum all from array
Function sum_array(n, q, r)

r = r + q(n)

If (n <= 0) Then
sum_array = r

Else
sum_array = sum_array(n - 1, q, r)

End If

End Function

// repeat string n times
$a = x("*", "", 10);
echo("Repeat:\n[" . $a . "]\n");

// sum from 0 to n
$b = sum(23);
echo("Sum:[" . $b . "]\n");

// factorial from 0 to n
$c = factorial(10);
echo("Factorial:\n[" . $c . "]\n");

// just a sequence
$s=""; $d = sequence(5, [], 0, 5);
foreach($d as $i){$s .= $i . ",";}
echo("A sequence:\n[" . $s . "]\n");

// fibonacci
$s=""; $e = fibonacci(2, [0, 1, 2], 5);

PHP Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35,]
Fibonacci:
[0,1,2,3,5,8,]
Sum array:[25]

Additional algorithm 9.1 (continued)

242 9 Implementations and Experiments

foreach($e as $i){$s .= $i . ",";}
echo("Fibonacci:\n[" . $s . "]\n");

// sum all from array
$q = [1, 3, 3, 4, 5, 9];
$f = sum_array(count($q) - 1, $q, 0);
echo ("Sum array:[" . $f . "]");

// repeat string n times
function x($c, $s, $n){

$s .= $c;

if(strlen($s) >= $n){
return $s;

} else {
return x($c, $s, $n);

}
}

// sum from 0 to n
function sum($n){

if ($n <= 1) {return $n;}
return $n + sum($n - 1);

}

// factorial from 0 to n
function factorial($n){

if ($n <= 1) {
return $n;

} else {
return factorial($n - 1) * $n;

}
}

// just a sequence
function sequence($n, $m, $i, $t){

$m[$i] = $n;
$i++;

if ($i >= $t) {
return $m;

} else {
return sequence(($n-1)+($n-2),

$m, $i, $t);
}

}

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 243

// fibonacci
function fibonacci($n, $m, $t){

$n++;
$m[$n] = $m[$n-1] + $m[$n-2];

if ($n >= $t) {
return $m;

} else {
return fibonacci($n, $m, $t);

}
}

// sum all from array
function sum_array($n, $q, $r){

$r += $q[$n];

if ($n <= 0) {
return $r;

} else {
return sum_array($n - 1, $q, $r);

}
}

my $a = x("*", "", 10);
print "Repeat:\n[" . $a . "]\n";

sum from 0 to n
my $b = sum(23);
print "Sum:[" . $b . "]\n";

factorial from 0 to n
my $c = factorial(10);
print "Factorial:\n[" . $c . "]\n";

just a sequence
my @d = sequence(5, [], 0, 5);
print "A sequence:\n[" . join(",", @d) .
"]\n";

fibonacci
my @e = fibonacci(3, (1,2,3), 5);
print "Fibonacci:\n[" . join(",", @e) .
"]\n";

sum all from array
@q = (1, 3, 3, 4, 5, 9);
$f = sum_array($#q+1, $q, 0);
print "Sum array:[" . $f . "]";

PERL Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35]
Fibonacci:
[1,2,3,5,8]
Sum array:[25]

Additional algorithm 9.1 (continued)

244 9 Implementations and Experiments

repeat string n times
sub x{

my ($c, $s, $n) = @_;

$s .= $c;

if(length($s) >= $n){
return $s;

} else {
return x($c, $s, $n);

}
}

sum from 0 to n
sub sum($n){

my ($n) = @_;
if ($n <= 1) {return $n;}
return $n + sum($n - 1);

}

factorial from 0 to n
sub factorial($n){

my ($n) = @_;
if ($n <= 1) {

return $n;
} else {

return factorial($n - 1) * $n;
}

}

just a sequence
sub sequence{

my ($n, $m, $i, $t) = @_;

$m[$i] = $n;
$i++;

if ($i >= $t) {
return @m;

} else {
return sequence(

($n-1)+($n-2), $m, $i, $t
);

}
}

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 245

fibonacci
sub fibonacci{

my ($n, @m, $t) = @_;

$n++;
$m[$n] = $m[$n-1] + $m[$n-2];

if ($n >= $t) {
return @m;

} else {
return fibonacci($n, @m, $t);

}
}

sum all from array
sub sum_array{

my ($n, $q, $r) = @_;

$r += $q[$n];

if ($n <= 0) {
return $r;

} else {
return sum_array($n - 1, $q, $r);

}
}

repeat string n times
def x(c, s, n)

s += c

if(s.size()>=n)
return s

else
return x(c, s, n)

end
end

sum from 0 to n
def sum(n)

if (n <= 1)
return n

end
return n + sum(n - 1)

end

Ruby Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35]
Fibonacci:
[0,1,2,3,5,8]
Sum array:[25]

Additional algorithm 9.1 (continued)

246 9 Implementations and Experiments

factorial from 0 to n
def factorial(n)

if (n <= 1)
return n

else
return factorial(n - 1) * n

end
end

just a sequence
def sequence(n, m, i, t)

m[i] = n
i = i + 1

if (i >= t)
return m

else
return sequence((n-1)+(n-2), m, i, t)

end
end

fibonacci
def fibonacci(n, m, t)

n = n + 1
m[n] = m[n-1] + m[n-2]

if (n >= t)
return m

else
return fibonacci(n, m, t)

end
end

sum all from array
def sum_array(n, q, r)

r = r + q[n]

if (n <= 0)
return r

else
return sum_array(n - 1, q, r)

end
end

repeat string n times
a = x("*", "", 10)

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 247

puts("Repeat:\n[" + a + "]")

sum from 0 to n
b = sum(23)
puts("Sum:[" + b.to_s + "]")

factorial from 0 to n
c = factorial(10)
puts("Factorial:\n[" + c.to_s + "]")

just a sequence
d = sequence(5, [0]*5, 0, 5)
puts("A sequence:\n" + d.to_s)

fibonacci
t = [0]*6
t[1] = 1; t[2] = 2
e = fibonacci(2, t, 5)
puts("Fibonacci:\n" + e.to_s)

sum all from array
q = [1, 3, 3, 4, 5, 9]
f = sum_array(q.size() - 1, q, 0)
puts("Sum array:[" + f.to_s + "]")

public class Main
{

public static void main(String[] args) {

// repeat string n times
String a = x("*", "", 10);
System.out.println("Repeat:\n[" +

a + "]"
);

// sum from 0 to n
int b = sum(23);
System.out.println("Sum:[" + b + "]");

// factorial from 0 to n
int c = factorial(10);
System.out.println(

"Factorial:\n[" + c + "]"
);

// just a sequence
int[] d = sequence(5, new int[5], 0, 5);
String l = "";
for(int i = 0; i < d.length; i++){

l += d[i] + ",";
}

Java Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35,]
Fibonacci:
[1,2,3,5,8,13,]
Sum array:[25]

Additional algorithm 9.1 (continued)

248 9 Implementations and Experiments

System.out.println(
"A sequence:\n[" + l + "]"

);

// fibonacci
l = "";
int[] e = fibonacci(2,

new int[]{1,2,3,0,0,0}, 5);
for(int i = 0; i < e.length; i++){

l += e[i] + ",";
}

System.out.println(
"Fibonacci:\n[" + l + "]"

);

// sum all from array
int[] q = {1, 3, 3, 4, 5, 9};
int f = sum_array(q.length - 1, q, 0);
System.out.println(

"Sum array:[" + f + "]"
);

}

// repeat string n times
static String x(String c, String s,

int n){
s += c;

if(s.length() >= n){
return s;

} else {
return x(c, s, n);

}
}

// sum from 0 to n
static int sum(int n){

if (n <= 1) {return n;}
return n + sum(n - 1);

}

// factorial from 0 to n
static int factorial(int n){

if (n <= 1) {
return n;

} else {
return factorial(n - 1) * n;

}
}

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 249

// just a sequence
static int[] sequence(int n, int[] m,

int i, int t){
m[i] = n;
i++;

if (i >= t) {
return m;

} else {
return sequence((n-1)+(n-2),

m, i, t);
}

}

// fibonacci
static int[] fibonacci(int n, int[] m,

int t){
n++;
m[n] = m[n-1] + m[n-2];

if (n >= t) {
return m;

} else {
return fibonacci(n, m, t);

}
}

// sum all from array
static int sum_array(int n, int[] q,

int r){
r += q[n];

if (n <= 0) {
return r;

} else {
return sum_array(n - 1, q, r);

}
}

}

repeat string n times
def x(c, s, n):

s += c

if(len(s)>=n):
return s

else:

Python Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35]

Additional algorithm 9.1 (continued)

250 9 Implementations and Experiments

return x(c, s, n)

sum from 0 to n
def sum(n):

if (n <= 1): return n
return n + sum(n - 1)

factorial from 0 to n
def factorial(n):

if (n <= 1):
return n

else:
return factorial(n - 1) * n

just a sequence
def sequence(n, m, i, t):

m[i] = n
i = i + 1

if (i >= t):
return m

else:
return sequence((n-1)+(n-2), m, i, t)

fibonacci
def fibonacci(n, m, t):

n = n + 1
m[n] = m[n-1] + m[n-2]

if (n >= t):
return m

else:
return fibonacci(n, m, t)

sum all from array
def sum_array(n, q, r):

r = r + q[n]

if (n <= 0):
return r

else:
return sum_array(n - 1, q, r)

repeat string n times

Fibonacci:
[0,1,2,3,5,8]
Sum array:[25]

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 251

a = x("*", "", 10)
print("Repeat:\n[" + a + "]")

sum from 0 to n
b = sum(23)
print("Sum:[" + str(b) + "]")

factorial from 0 to n
c = factorial(10)
print("Factorial:\n[" + str(c) + "]")

just a sequence
d = sequence(5, [0]*5, 0, 5)
print("A sequence:\n" + str(d))

fibonacci
t = [0]*6
t[1] = 1; t[2] = 2
e = fibonacci(2, t, 5)
print("Fibonacci:\n" + str(e))

sum all from array
q = [1, 3, 3, 4, 5, 9]
f = sum_array(len(q) - 1, q, 0)
print("Sum array:[" + str(f) + "]")

#include <iostream>
#include <string>
using namespace std;

// repeat string n times
string x(string c, string s, int n){

 s += c;

 if(s.size()>=n){
 return s;
 } else {
 return x(c, s, n);
 }
}

// sum from 0 to n
int sum(int n){
 if (n <= 1) {return n;}
 return n + sum(n - 1);
}

// factorial from 0 to n
int factorial(int n){

C++ Output:
Repeat:
[**********]
Sum:[276]
Factorial:
[3628800]
A sequence:
[5,7,11,19,35,]
Fibonacci:
[0,1,2,3,5,8,13,]
Sum array:[25]

Additional algorithm 9.1 (continued)

252 9 Implementations and Experiments

if (n <= 1) {
return n;

} else {
return factorial(n - 1) * n;

}
}

// just a sequence
int* sequence(int n, int m[], int i, int t){

m[i] = n;
i++;

if (i >= t) {
return m;

} else {
return sequence((n-1)+(n-2), m, i,

t);
}

}

// fibonacci
int* fibonacci(int n, int m[], int t){

n++;
m[n] = m[n-1] + m[n-2];

if (n >= t) {
return m;

} else {
return fibonacci(n, m, t);

}
}

// sum all from array
int sum_array(int n, int q[], int r){

r += q[n];

if (n <= 0) {
return r;

} else {
return sum_array(n - 1, q, r);

}
}

int main()
{

// repeat string n times

Additional algorithm 9.1 (continued)

9.2 Recursion Experiments 253

string a = x("*", "", 10);
cout<<("Repeat:\n[" + a + "]\n");

// sum from 0 to n
int b = sum(23);
cout<<("Sum:[" + to_string(b) + "]");

// factorial from 0 to n
int c = factorial(10);
cout<<("\nFactorial:\n[" +
to_string(c) + "]");

// just a sequence
int t = 5;
int* d; //pointer to hold address
d = sequence(5, new int[t], 0, t);
//address of m

cout<<"\nA sequence:\n[";
for(int i=0; i<t; i++)
{cout<<d[i]<<",";}
//d[i] is equivalent to *(d+i)
cout<<"]";

// fibonacci
t = 7; int* e;
//e pointer to hold address
e = fibonacci(2, new int[8]{0,1,2}, t);

cout<<"\nFibonacci:\n[";
for(int i=0; i<t; i++)
{cout<<*(e+i)<<",";}
//e[i] is equivalent to *(e+i)
cout<<"]";

// sum all from array
int q[] = {1, 3, 3, 4, 5, 9};
int l = sizeof(q) / sizeof(int);

int f = sum_array(l - 1, q, 0);
cout<<("\nSum array:[" +
to_string(f) + "]");

return 0;
}

Additional algorithm 9.1 (continued)

254 9 Implementations and Experiments

if the condition is true, than the value of variable n is returned to the caller and is then
assigned to variable b. Variable b is then printed into the output for inspection.

9.2.3 Factorial from 0 to n

The third example shows how to calculate the factorial in the range 1 to n. A function
“factorial” takes one argument (i.e. parameter n) that represents the upper limit of the
range of iterations. Inside the function, a condition verifies if n is less or equal to 1. If the
condition is false then a return value is given from a multiplication of n with the value
coming from a call to itself, in which the argument is n minus one. If the condition is
true, than the return value is n. Then, the return value is assigned to a variable c that is
printed in the output for inspection.

9.2.4 Simple Sequence Generator

The fourth example shows a function that generates a sequence of numbers. Thus, the
“sequence” function takes a total of four arguments and is able to return an array vari-
able. The argument for the first parameter n represents the seed number from which the
sequence starts (in this case number five). The second parameter m represents an array
variable. The third parameter is a counter variable i, and the fourth parameter t, takes the
role of the upper limit for the number of recursions. Inside the function new elements are
added to the array m by using the counter i, namely the variable i. Thus, at each recursion
the value of n is assigned to an element i of variable m. Next, the value of variable i is
incremented and a condition is stated. The condition verifies if the value from the counter
is higher or equal to the value from variable t.

If the condition is false then the return value is taken from a call made to self, namely
the “sequence” function that uses the updated argument values for n, i and m. If the
condition is true, then function “sequence” returns the value of array variable m. In turn,
the returned value is assigned to variable d which is further printed into the output. Note
that the rule of getting the sequence (i.e. ((n − 1) + (n − 2)), can be any mathematical
expression that is suitable for this approach.

9.2 Recursion Experiments 255

9.2.5 Fibonacci Sequence

The fifth example shows a recursive function that provides the fibonacci sequence up to
a predefined position. A function “fibonacci” is able to take three arguments, namely an
argument for n wich represents the counter for the recursion, an array variable were the
results are stored (i.e. m), and another argument for t that specifies the upper limit of the
recursion. In this function the first non-empty line increments the counter variable n. In
the second line, the value for the element n of array m is calculated as the value from
the previous element of m plus the value from the element n – 1 of m. Next, a condition
verifies if counter n reached the upper limit indicated by variable t. In case the condition
stands false, the recursion continues by a call to self, with updated values for the counter
n and the array m. If the condition becomes true, namely the value stored in variable n
is higher or equal than the value stored in variable t, then the function returns the array
variable m. On the caller side, the returned value is assigned to variable e, which is then
printed in the output.

9.2.6 Sum All Integers from Array

The last example in Additional algorithm 9.1, shows a recursive approach on how to sum
all integers found in the elements of an array. Thus, an array q is declared in the main
program by using integer literals. Next, the returned value from a function “sum array”
is assigned to a variable f , which in turn is printed to the output for inspection. Function
“sum array” takes three arguments. The argument for the first parameter n initially repre-
sents the total number of elements in array q. The second parameter is the array variable
and the third parameter (i.e. r) is an integer variable used as an accumulator for the sum
of the values from the elements of array q. Inside function “sum array”, the integer value
from the element n of array q is added to the integer value from the accumulator variable
r. Next, a condition checks if n is less or equal to zero. If the condition is false, the return
value is further requested by a call to self. However, if the condition is true, the sum from
variable r is returned to the caller, were it is further assigned to variable f , as specified
above.

256 9 Implementations and Experiments

9.3 Interval Scanning

Earlier in the above chapters, especially in the chapter describing functions, a mathemat-
ical expression has been used to demonstrate the principles behind functions, namely: x
+ x/x − x× x. In this mathematical expression, different integers used for variable x pro-
vided specific integer values in the output. However, what if a distribution is required for
a specific range of integers? A scanner may come in handy when such a distribution is
needed for any mathematical expression. A function named “distribution” takes two argu-
ments as the range of the input, namely the start integer and the stop integer. Thus, the
function is able to provide an output integer for each integer in the input of that specified
range. Initially, the return value of function “distribution” is assigned to variable a, which
is further printed into the output for inspection. Once the thread of execution reaches the
inside of the “distribution” function, the computations are made for each integer between
the integer value declared for variable start (i.e. 3) and the integer value declared in vari-
able stop (i.e. 21). The Additional algorithm 9.2 shows two versions of the “distribution”
function. One version that uses a string variable to store the results as a string value, and
another version that uses an array variable to store the results as integers.

Inside the first version, a variable t is declared and set to an empty string. Next, a for-
loop statement traverses the range of the input, beginning from the integer value stored
in the start variable up to the integer value stored in the stop variable. Inside the for-
loop, the value returned by a “compute” function is added by aggregate assignment (i.e.
“+=”) to variable t. Once the for-loop finishes the iterations, the content of variable t
is returned back to the caller, where it is further assigned to a variable a, as specified
above. Inside the second version of the “distribution” function, an array variable b is set
to empty. Next, a for-loop statement traverses the range between zero and a calculated
value resulting from a subtraction of start from stop (i.e. start—stop). Inside the for-loop,
the return value of function “compute” is assigned to the element i of array b. At the end
of the iteration cycle, the array variable b is returned to the caller, where it is assigned in
turn to a variable that is used to print the results in the output for inspection. Notes: In
both versions, function “compute” takes an argument for x and returns the result of the
evaluation of a mathematical expression. In the first version of the “compute” function the
value of the i variable is used as an argument. In the second example, the argument used
is the value of i plus the integer value from the start variable. That is, because the for-
loop in the second example starts from zero to satisfy the positions of the elements in the
array. Also of importance are the differences between computer languages when printing
array data. In VB, Java and C++, the contents of the elements from array variables are
usually taken by a repeat-loop that traverses the array. In C#, some advantages of split
and join cascades can be used to display array data as strings without the additional help

9.3 Interval Scanning 257

let a = distribution(3, 21);
print(a);

function distribution(start, stop){

let t = "";

for (let i = start; i < stop; i++) {
t += compute(i) + "\n";

}

return t;
}

function compute(x){
return x + x / x - x * x;

}

JS Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

let a = distribution(3, 21);
print(a);

function distribution(start, stop){

let b = [];

for (let i = 0; i < stop - start; i++) {
b[i] = compute(i + start);

}

return b;
}

function compute(x){
return x + x / x - x * x;

}

Additional algorithm 9.2 It shows how a distribution can be calculated for a range of integers.
This example uses a mathematical expression shown across the chapters. The mathematical expres-
sion takes an input value and, as expected, provides an output value. In this particular example, an
implementation takes a range of integers and returns a corresponding range of values calculated
using the mathematical expression. For each computer language there are two examples. One exam-
ple that uses a string variable to store the results, and another example that uses an array variable to
store the results. The two examples per computer language show the malleability of code, that points
out the possibility of multiple solutions to one problem. Note that the source code is in context and
works with copy/paste

258 9 Implementations and Experiments

using System;
class HelloWorld {

static void Main() {
string a = distribution(3, 21);
Console.WriteLine(a);

}

static string distribution(
int start, int stop){

string t = "";

for (int i = start; i < stop; i++) {
t += compute(i) + "\n";

}

return t;
}

static int compute(int x){
return x + x / x - x * x;

}
}

C# Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

using System;
class HelloWorld {

static void Main() {
int[] a = distribution(3, 21);
Console.WriteLine(string.Join("\n", a));

}

static int[] distribution(
int start, int stop){

int[] b = new int[stop - start];

for (int i = start; i < stop; i++) {
b[i - start] = compute(i);

}

return b;
}

}

Additional algorithm 9.2 (continued)

9.3 Interval Scanning 259

static int compute(int x){
return x + x / x - x * x;

}
}

Private Sub Form_Load()
a = distribution(3, 21)
Debug.Print a

End Sub

Function distribution(stt, stp)

t = ""

For i = stt To stp
t = t & compute(i) & vbCrLf

Next i

distribution = t

End Function

Function compute(x)
compute = x + x / x - x * x

End Function

VB Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

Private Sub Form_Load()

Dim a() As Double
a = distribution(3, 20)
For i = LBound(a) To UBound(a)

Debug.Print a(i)
Next i

End Sub

Function distribution(st, sp) As Double()

Dim b() As Double
ReDim b(st To sp) As Double

For i = 0 To sp - st
b(i + st) = compute(i + st)

Next i

distribution = b

End Function

Additional algorithm 9.2 (continued)

260 9 Implementations and Experiments

Function compute(x) As Integer
compute = x + x / x - x * x

End Function

$a = distribution(3, 21);
echo ($a);

function distribution($start, $stop){

$t = "";

for ($i = $start; $i < $stop; $i++) {
$t .= compute($i) . "\n";

}

return $t;
}

function compute($x){
return $x + $x / $x - $x * $x;

}

PHP Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

$a = distribution(3, 21);
foreach($a as $i){echo $i . "\n";}

function distribution($start, $stop){

$b = [];

for ($i = 0; $i < $stop - $start; $i++) {
$b[$i] = compute($i + $start);

}

return $b;
}

function compute($x){
return $x + $x / $x - $x * $x;

}

my $a = distribution(3, 21);
print $a;

sub distribution{

my ($start, $stop) = @_;

PERL Output:
-5
-11
-19
-29

Additional algorithm 9.2 (continued)

9.3 Interval Scanning 261

$t = "";

for ($i = $start; $i < $stop; $i++) {
$t .= compute($i) . "\n";

}

return $t;
}

sub compute{
my ($x) = @_;
return $x + $x / $x - $x * $x;

}

-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

my @a = distribution(3, 21);
print join("\n", @a);

sub distribution{

my ($start, $stop) = @_;
@b = [];

for ($i = 0; $i < $stop - $start; $i++) {
$b[$i] = compute($i + $start);

}

return @b;
}

sub compute{
my ($x) = @_;
return $x + $x / $x - $x * $x;

}

def distribution(start, stop)

t = ""
for i in start..(stop-1)

t += compute(i).to_s + "\n"
end

return t
end

def compute(x)
return x + x / x - x * x

end

a = distribution(3, 21)

Ruby Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209

puts(a) -239
-271

Additional algorithm 9.2 (continued)

262 9 Implementations and Experiments

-305
-341
-379

def distribution(start, stop)

b = [stop - start]
for i in 0..(stop - start - 1)

b[i] = compute(i + start)
end

return b
end

def compute(x)
return x + x / x - x * x

end

a = distribution(3, 21)
puts(a)

public class Main
{

public static void main(String[] args) {

String a = distribution(3, 21);
System.out.println(a);

}

static String distribution(
int start, int stop){

String t = "";

for (int i = start; i < stop; i++) {
t += compute(i) + "\n";

}

return t;
}

static int compute(int x){
return x + x / x - x * x;

}
}

Java Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

int[] a = distribution(3, 21);
String l = "";

for(int i = 0; i < a.length; i++){
l += a[i] + "\n";

}

public class Main
{

public static void main(String[] args) {

Additional algorithm 9.2 (continued)

9.3 Interval Scanning 263

System.out.println(l);
}

static int[] distribution(
int start, int stop){

int[] b = new int[stop - start];

for (int i = start; i < stop; i++) {
b[i - start] = compute(i);

}

return b;
}

static int compute(int x){
return x + x / x - x * x;

}
}

def distribution(start, stop):

t = ""
for i in range(start, stop):

t += str(compute(i)) + "\n"

return t

def compute(x):
return x + x / x - x * x

a = distribution(3, 21)
print(a)

Python Output:
-5.0
-11.0
-19.0
-29.0
-41.0
-55.0
-71.0
-89.0
-109.0
-131.0
-155.0
-181.0
-209.0
-239.0
-271.0
-305.0
-341.0
-379.0

def distribution(start, stop):

b = [0]*(stop - start)

for i in range(0, stop - start):
b[i] = compute(i + start)

return b

def compute(x):
return x + x / x - x * x

a = distribution(3, 21)
print(a)

Additional algorithm 9.2 (continued)

264 9 Implementations and Experiments

#include <iostream>
using namespace std;

int compute(int x){
return x + x / x - x * x;

}

string distribution(int start, int stop){

string t = "";

for (int i = start; i < stop; i++) {
t += to_string(compute(i)) + "\n";

}

return t;
}

int main()
{

string a = distribution(3, 21);
cout<<a;

return 0;
}

C++ Output:
-5
-11
-19
-29
-41
-55
-71
-89
-109
-131
-155
-181
-209
-239
-271
-305
-341
-379

#include <iostream>
using namespace std;

int compute(int x){
return x + x / x - x * x;

}

int* distribution(int start, int stop)
{

int* b = new int[stop - start];

for (int i = 0; i < stop - start; i++) {
b[i] = compute(i + start);

}

return b;
}

int main()
{

int* a = distribution(3, 21);

for(int i=0; i<21-3; i++)
cout<<a[i]<<"\n";

// delete allocated memory
delete[] a;
return 0;

}

Additional algorithm 9.2 (continued)

9.4 Spectral Forecast 265

return b;
}

int main()
{

int* a = distribution(3, 21);

for(int i=0; i<21-3; i++)
cout<<a[i]<<"\n";

// delete allocated memory
delete[] a;
return 0;

}

Additional algorithm 9.2 (continued)

of a for-loop that traverses the array elements. In the other languages from out list, array
variables can be printed just like any other primitive variables, without any additional use
of statements.

9.4 Spectral Forecast

Spectral Forecast is a new method of prediction. The following example uses a new math-
ematical equation to process signals. The spectral forecast equation is part of this method
and can be used for computations on multidimensional objects such as number sequences
(1-dimensional), matrices (2-dimensional), tensor-like structures (n-dimensional), and so
on. Here, a form of the Spectral Forecast equation is adapted for one-dimension, namely a
sequence of numbers. This version of Spectral Forecast computes a mixed signal (i.e. M)
between two other signals (i.e. A and B). Such a mix made by Spectral Forecast can be
considered a special type of interpolation that is able to formulate a signal with dynamic
characteristics (namely M). That is, the signal that is generated (M) may be closer in
shape to one of the two signals (A or B) based on an index called distance (d). The index
d takes values between zero and the maximum number found above the two discrete
signals A and B. Thus, an index d of zero will provide a signal exactly like signal B,
whereas an index d of maximum (whatever the maximum value is), will provide a signal
M exactly like signal A. Thus, as d gets closer or farther from the maximum value, signal
M will resemble more and more one of the signals and less of the other. The formulation
of the spectral forecast is shown below:

266 9 Implementations and Experiments

Mid =
[(

d

Max(Ai)

)
× Ai

]
+

[(
(Max(d) − d)

Max(Bi)

)
× Bi

]

where Max(Ai) is the maximum value found above signal A and Max(Bi) is the maximum
value found above the components of signal B. Components Ai and Bi also represent the
homologous values of the two signals at position i. Last but not least, Max(d) repre-
sents the maximum value between Max(Ai) and Max(Bi). Therefore the value of d can
take values between 0 and Max(d). The above expression translates into C-like computer
languages as seen below:

tmp = ((d / maxA) * tA[i]) + (((max - d) / maxB) * tB[i]);

Where tA and tB are the array variables that hold the consecutive values of the two
signals. In case of iterations, the tmp variable holds the value for the third signal at
position i. Note that the maximum distance is the maximum value found over the two
signals. The example from Additional algorithm 9.3 shows an implementation of the
spectral forecast equation. Here, the example is shown on two signals A and B, both
represented by sequences of numbers. Thus, string literals representing number sequences
of the signals, are assigned to variables A and B. Next, two empty array variables are
declared, namely tA and tB. The string value assigned to A is then split based on a comma
delimiter into new elements of array tA. The string value assigned to B is also split based
on a comma delimiter (i.e. ‘,’), into new elements of array tB. Depending on the computer
language used, the arrays that store the numbers as strings are either converted to float in
computer languages like C#, Java, Python and Ruby, or, these values dictate the datatype
of the variables without any sort of conversion, as is the case of Javascript, VB6/VBA,
PHP and PERL. That is, if the string value represents a number, then the split function
will automatically assign the value to the elements of an array as a float or double. Next,
the maximum and minimum values are detected in both array variables tA and tB. This
detection can be done in two ways. One approach is to use the “MAX” or “MIN” built-in
functions that return the highest or lowest value from the array elements. In the case of
Spectral Forecast, the maximum value among both number sequences is required. Thus,
the maximum value found among the elements of tA will be assigned to variable maxA,
and the maximum value among the elements of tB will be assigned to a variable maxB.
In a second step, the “MAX” function will be called again, to return the highest value
between maxA and maxB. When these built-in functions are not available, the maximum
value among the elements of the two array variables tA and tB is computed by using a
for-loop with conditional statements, where the maximum value above the elements is
alwais assigned to a variable max (Additional algorithm 9.3).

9.4 Spectral Forecast 267

Next, an integer variable d is declared and set to an arbitrary value, namely 33. In the
last stage, a for-loop is declared from zero to an integer value that represents the number of
elements of any of the two array variables (as they contain the same number of elements).
Inside the for-loop, the result of the Spectral Forecast equation is assigned to a variable
v. The content of variable v is added to an accumulator variable M. For convenience, a

// Spectral forecast for signals in Javascript

var A ='10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4';
var B ='18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4';
var M ='';

var tA = [];
var tB = [];

var tA = A.split(',');
var tB = B.split(',');

var maxA = Math.max.apply(null, tA);
var maxB = Math.max.apply(null, tB);

var max = Math.max(maxA, maxB)

var d = 33;

for(var i=0; i < tA.length; i++) {
var v = ((d/maxA)*tA[i])+(((max-d)/maxB)*tB[i]);
M += v.toFixed(2);
if(i < tA.length-1){M += ','}

}

print('Signal A:'+A);

Additional algorithm 9.3 It shows the implementation of the Spectral Forecast equation on two
signals. Two signals are represented by a sequence of numbers each. This sequence of numbers is
stored as a string value in two variables A and B. These two values are then decoded into individual
numbers inside the elements of the array variables (tA and tB). The maximum value found over the
elements of the two array variables is calculated and stored before switching to the computation of
Spectral Forecast. The array variables tA and tB are then used inside a for-loop to calculate a third
signal M using the Spectral Forecast equation for a predefined index d. The index d determines how
similar the third signal is to signal A or signal B. The method shown here allows for a useful pro-
tocol to manage and process numeric data stored as simple text, a case that is often encountered in
science and engineering. Note that in the case of C++ some new built-in functions can be applied
to a value inside a variable v, such as: the “substr” function that cuts a certain portion of a string, or
the “strtof(v)” which converts a string to float. Other functions of interest not used here are: the “str-
tod(c)” function that converts a string to a double, or the “v.c_str()” method that converts a numeric
value to a string. Also, in C++ the example uses vectors, and the number of components is given by
the “size()” method. Again, the source code is in context and works with copy/paste

268 9 Implementations and Experiments

print('Max(A[i]):'+maxA);

print('Signal M:'+M);

print('Signal B:'+B);
print('Max(B[i]):'+maxB);

// Spectral forecast for signals in C#

using System;

public class SpectralForecast
{

public static void Main(string[] args)
{

string A = "10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4";
string B = "18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4";

string[] nA = A.Split(',');
string[] nB = B.Split(',');

string M = "";
double maxA = 0;
double maxB = 0;
double d = 33;
double v = 0;

double[] tA = new double[nA.Length];
double[] tB = new double[nB.Length];

for(int i=0; i < nA.Length; i++)
{

tA[i] = double.Parse(nA[i]);
tB[i] = double.Parse(nB[i]);
if (tA[i] > maxA){maxA = tA[i];}
if (tB[i] > maxB){maxB = tB[i];}

}

double maxAB = Math.Max(maxA, maxB);

for(int i=0; i < tA.Length; i++) {
v = ((d/maxA)*tA[i])+(((maxAB-d)/maxB)*tB[i]);
M += Math.Round(v, 2);
if(i < tA.Length-1){M += ',';}

}

Console.WriteLine (M);
}

}

Additional algorithm 9.3 (continued)

9.4 Spectral Forecast 269

Sub main()

Dim tA() As String
Dim tB() As String

A = "10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4"
B = "18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4"
M = ""

tA = Split(A, ",")
tB = Split(B, ",")

For i = 0 To UBound(tA)
If (tA(i) > maxA) Then maxA = tA(i)
If (tB(i) > maxB) Then maxB = tB(i)
If (maxA > Max) Then Max = maxA
If (maxB > Max) Then Max = maxB

Next i

d = 33

For i = 0 To UBound(tA)
v = ((d / maxA) * tA(i)) + (((Max - d) / maxB) * tB(i))
M = M & Round(v, 2)
If (i < UBound(tA) - 1) Then M = M & ","

Next i

s = s & "Signal A: " & A & vbCrLf
s = s & "Max(A[i]):" & maxA & vbCrLf

s = s & "Signal M: " & M & vbCrLf

s = s & "Signal B: " & B & vbCrLf
s = s & "Max(B[i]):" & maxB & vbCrLf

MsgBox s

End Sub

// Spectral forecast for signals in PHP

$A ='10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4';
$B ='18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4';
$M ='';

$tA = [];
$tB = [];

$d = 33;

$tA = explode(",", $A);

' Spectral forecast for signals in VB

Additional algorithm 9.3 (continued)

270 9 Implementations and Experiments

$tB = explode(",", $B);

$maxA = Max($tA);
$maxB = Max($tB);
$max = Max($maxA, $maxB);

for($i=0; $i < count($tA); $i++) {
$v = (($d/$maxA)*$tA[$i])+((($max-$d)/$maxB)*$tB[$i]);
$M .= strval(round($v,2));
if($i < count($tA)-1){$M .= ',';}

}

echo $M;

Spectral forecast for signals in Perl

my $A = '10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4';
my $B = '18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4';
my $M = "";

my $d = 33;
my $v = 0;

my @tA = split(',', $A);
my @tB = split(',', $B);

use List::Util qw(min max);
my $maxA = max @tA;
my $maxB = max @tB;
my $maxAB = ($maxA, $maxB)[$maxA < $maxB];

for(my $i = 0; $i <= $#tA; $i++){
$v = (($d/$maxA)*$tA[$i])+((($maxAB-$d)/$maxB)*$tB[$i]);
$M .= sprintf("%.2f", $v);
if($i < $#tA){$M .= ',';}

}

print($M);

Spectral forecast for signals in Ruby

A = "10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4"
B = "18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4"
m = ""

tA = A.split(",")
tB = B.split(",")

maxA = tA.max.to_f
maxB = tB.max.to_f
maxAB = [maxA, maxB].max

Additional algorithm 9.3 (continued)

9.4 Spectral Forecast 271

d = 33
v = 0

for i in (0...tA.length)
tmpA = tA[i].to_f
tmpB = tB[i].to_f
v = ((d / maxA) * tmpA) + (((maxAB - d) / maxB) * tmpB)
m += "#{v.round(2)}"
if i < tA.length then m += "," end

end

puts "#{m}"

// Spectral forecast for signals in Java

public class Main
{

public static void main(String[] args) {

String A = "10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4";
String B = "18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4";
String M = "";

String[] tA = A.split(",");
String[] tB = B.split(",");

float tmpA;
float tmpB;

float v = 0;
float d = 33;
float maxA = 0;
float maxB = 0;
float maxAB = 0;

for (int i = 0; i < tA.length; i++)
{

tmpA = Float.parseFloat(tA[i]);
tmpB = Float.parseFloat(tB[i]);

if (tmpA > maxA){maxA = tmpA;}
if (tmpB > maxB){maxB = tmpB;}
if (maxA > maxAB){maxAB = maxA;}
if (maxB > maxAB){maxAB = maxB;}

}

for (int i=0; i < tA.length; i++) {

tmpA = Float.parseFloat(tA[i]);
tmpB = Float.parseFloat(tB[i]);

Additional algorithm 9.3 (continued)

272 9 Implementations and Experiments

v = ((d/maxA)*tmpA)+(((maxAB-d)/maxB)*tmpB);
M += Math.round(v*100)/100.0;
if(i < tA.length-1){M += ",";}

}

System.out.println(M);
}

}

Spectral forecast for signals in Python

A = "10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4"
B = "18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4"
M = ""

tA = list(map(float, A.split(",")))
tB = list(map(float, B.split(",")))

maxA = max(tA)
maxB = max(tB)
maxAB = max(maxA, maxB)

d = 33

for i in range(0, len(tA)):
v = ((d / maxA) * tA[i]) + (((maxAB - d) / maxB) * tB[i])
M += str(round(v,2))
if i < (len(tA) - 1): M += ","

print(M)

// Spectral forecast for signals in C++

#include <iostream>
#include <vector>
#include <sstream>
using namespace std;

void tokenize(string const &str,
const char l, vector<string> &o)
{

stringstream g(str);
string s;
while (getline(g, s, l))
{o.push_back(s);}

}

int main()
{

string A = "10.3,23.4,44.8,63.2,44.1,35.1,46.5,62.6,50.4";
string B = "18.8,43.1,52.2,45.5,46.8,46.6,67.9,66.3,70.4";

Additional algorithm 9.3 (continued)

9.4 Spectral Forecast 273

const char l = ',';

vector<string> tA;
vector<string> tB;

tokenize(A, l, tA);
tokenize(B, l, tB);

string M = "";
float maxA = 0;
float maxB = 0;
float maxAB = 0;
float d = 33;
float v = 0;

int n = tA.size();

for(int i=0; i < n; i++)
{

if (stof(tA[i]) > maxA){maxA = stof(tA[i]);}
if (stof(tB[i]) > maxB){maxB = stof(tB[i]);}
if (maxA > maxB){maxAB = maxA;} else {maxAB = maxB;}

}

for(int i=0; i < n; i++)
{

v = ((d/maxA)*stof(tA[i]))+(((maxAB-d)/maxB)*stof(tB[i]));
M += to_string(v).substr(0,5);
if(i < n-1){M += ',';}

}

cout<<M;

return 0;
}

Additional algorithm 9.3 (continued)

conditional statement checks if variable i had reached the maximum number of elements
of the array tA. If the condition is false, a delimiter is added to in between the values that
are accumulated inside the string variable M. In contrast, if the condition is true then a
delimiter is not added at the end of the string accumulated in M. Thus, the purpose of the
condition is to avoid the addition of a delimiter character at the end of the result stored
in M. Finally, once the iterations end, the three main strings representing the signals, are
printed in the output for inspection. For the examples given in Additional algorithm 9.3,
the result stored in variable M is:

“15.37, 35.12, 51.12, 57.17, 47.89, 43.08, 60.35, 67.91, 63.72”

274 9 Implementations and Experiments

This example demonstrates the use of string values as number sequences, both for the
input and for the output. Another version that can be implemented is the use of array
variables both for the two signals (A and B) from the input but also for the signal from
the output (M). Since such an implementation can store numeric values directly, the imple-
mentation can be shorter and much easier to understand. However, it will not be presented
here, but it is left as an exercise for the reader. Note that the numeric data is usually stored
as string sequences in practice, like for instance everything related to data science is usu-
ally stored in text files (ex. “.CSV”, “.TXT” and so on). Therefore, the example shown in
Additional algorithm 9.3 may be more useful than the array version of it.

9.5 Conclusions

The first part of the chapter has shown examples of recursive functions. For example,
the following recursive methods were discussed: A recursive function for repeating a
character n times to construct a string of a given length, or a function that sums integers
from zero to n, or a function that preforms the factorial for an integer n. Furthermore,
other more complex examples have included a function that generated a sequence of
numbers based on various rules, or another recursive function that provided the Fibonacci
sequence. Finally, a recursive function that was able to sum all the integers stored in the
elements of an array variable. Next, the use of a scanner was discussed in the context of a
range of integers, for which a distribution was calculated using a mathematical expression.
Towards the end of the chapter, a new method called Spectral Forecast was described. The
implementation of the Spectral Forecast equation used sequences of numbers as string
values to show the possibility of using numerical data found in text-based files. This final
chapter concludes the examples made in our set of computer languages, namely: C++,
C#, Java, Javascript, Python, PHP, PERL, Ruby and VB.

References

1. P.A. Gagniuc, Algorithms in Bioinformatics: Theory and Implementation, Hoboken (Wiley &
Sons, USA, New Jersey, 2021)

2. N. Lahav, S. Nir, A.C. Elitzur, The emergence of life on earth. Prog. Biophys. Mol. Biol. 75(1–
2), 75–120 (2001)

3. H.J.C. Ii, Prebiotic chemistry: what we know, what we don’t. Evol. Educ. Outreach 5(1), 342–
360 (2012)

4. K.A. Dill, L. Agozzino, Driving forces in the origins of life. Open Biol. 11(1), 200324 (2021)
5. R. Etxepare, A. Irurtzun, Gravettian hand stencils as sign language formatives. Philos. Trans.

R. Soc. Lond B Biol. Sci. 376(1824), 20200205 (2021)
6. F. Facchin, Symbolism in prehistoric man. Coll. Antropol. 24(2), 541–553 (2000)
7. M. Daly, M.I. Wilson, Human evolutionary psychology and animal behavior. Anim. Behav.

57(3), 509–519 (1999)
8. C. Everett, The sounds of prehistoric speech. Phil. Trans. R. Soc. B 376(1), 20200195 (2021)
9. I. Cross, E.C. Blake, The acoustic and auditory contexts of human behavior. Curr. Anthropol.

56(1), 81–103 (2015)
10. L. Progovac, A. Benítez-Burraco, Reconstructing prehistoric languages. Phil. Trans. R. Soc. B

376(1), 20200187 (2021)
11. A. Salah, B. Lepri, F. Pianesi, A. Pentland, Human behavior understanding for inducing behav-

ioral change: application perspectives, in Human Behavior Understanding. HBU 2011. Lecture
Notes in Computer Science, vol. 7065 ed. by A.A. Salah, B. Lepri (Springer, Berlin, 2011)

12. J.P. Nelson, Mythic forecasts: researcher portrayals of extraterrestrial life discovery. Int. J.
Astrobiol. 19(1), 16–24 (2020)

13. C. Cuskley, Alien forms for alien language: investigating novel form spaces in cultural evolu-
tion. Palgrave Commun. 5(1), 87 (2019)

14. T. Koetsier, On the prehistory of programmable machines: musical automata, looms, calcula-
tors. Mech. Mach. Theory 5(36), 589–603 (2001)

15. S. Olson, Mythical androids and ancient automatons. Science 362(6410), 39 (2018)
16. R.C. Pooley, Automatons or english teachers? Engl. J. 50(3), 168–173 (1961)

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2023
P. A. Gagniuc, An Introduction to Programming Languages: Simultaneous Learning
in Multiple Coding Environments, Synthesis Lectures on Computer Science,
https://doi.org/10.1007/978-3-031-23277-0

275

https://doi.org/10.1007/978-3-031-23277-0

276 References

17. L. Albaugh, J. McCann, L. Yao, S.E. Hudson, Enabling personal computational handweaving
with a low-cost jacquard loom, in CHI Conference on Human Factors in Computing Systems
(CHI’21), May 8–13, 2021, Yokohama, Japan (ACM, New York, 2021)

18. H.W. Nelson, Jacquard Machines: Instruction Paper. (American School of Correspondence,
Chicago, Illinois, USA, 1869)

19. D.M. Fryer, J.C. Marshall, The motives of Jacques de Vaucanson. Technol. Cult. 2(20), 257
(1979)

20. T.F. Bell, Jacquard Weaving and Designing. (Longmans, Green, New York, USA, 1895), pp.1–
371

21. F.G. Heath, Origins of the binary code. Sci. Am. 227(2), 76–83 (1972)
22. A.G. Bromley, Charles Babbage’s analytical engine, 1838. Ann. Hist. Comput. 4(3), 196–217

(1982)
23. R. Rojas, Konrad Zuse’s legacy: the architecture of the Z1 and Z3. IEEE Ann. Hist. Comput.

19(2), 5–16 (1997)
24. R.C. Lyndon, The Zuse computer. Math. Tables Other Aids Comput. 2(20), 354–359 (1947)
25. J. Gilbey, Biography: the ABC of computing. Nature 468(1), 760–761 (2010)
26. H.H. Goldstine, A. Goldstine, The electronic numerical integrator and computer (ENIAC).

Math. Tables Other Aids Comput. 2(15), 97–110 (1946)
27. J.A. Fleming, Thermionic valves. Sci. Mon. 20(5), 530–534 (1925)
28. C.D. Martin, ENIAC: press conference that shook the world. IEEE Technol. Soc. Mag. 14(1),

3–10 (1995)
29. W. Shockley, The theory of p-n junctions in semiconductors and p-n junction transistors. Bell

Syst. Tech. J. Inst. Electr. Electron. Eng. (IEEE) 28(3), 435–489 (1949)
30. W. Shockley, G.L. Pearson, J.R. Haynes, Hole injection in germanium-quantitative studies and

filamentary transistors. Bell Syst. Tech. J. Inst. Electr. Electron. Eng. (IEEE) 28(2), 344–366
(1949)

31. D.G. Fink, Transistors versus vacuum tubes. Proc. IRE 44(4), 479–482 (1956)
32. D.P. Anderson, Biographies: Tom Kilburn: a pioneer of computer design. IEEE Ann. Hist.

Comput. 31(2), 82–86 (2009)
33. M.M. Irvine, Early digital computers at bell telephone laboratories. IEEE Ann. Hist. Comput.

23(3), 22–42 (2001)
34. E.G. Andrews, The Bell computer, model VI. Electr. Eng. 68(9), 751–756 (1949)
35. A.N. Saxena, Monolithic concept and the inventions of integrated circuits by Kilby and Noyce,

in Nano Science and Technology Institute Annual Conference, Santa Clara Convention Center,
California, USA, May 20–24, 2007

36. B. Hevly, T.R. Reid, The chip: how two Americans invented the microchip and launched a
revolution. Technol. Cult. 27(4), 873 (1986)

37. R.W. Bemer, A proposal for character code compatibility. Commun. ACM 3(2), 71–72 (1960)
38. G.S. Robinson, C. Cargill, History and impact of computer standards. Computer 29(10), 79–85

(1996)
39. K. MacDonald, F. Scherjon, E. van Veen, W. Roebroeks, Middle pleistocene fire use: the

first signal of widespread cultural diffusion in human evolution. PNAS 118(31), e2101108118
(2021)

40. A. Molcosean, The dimensions of the personality of stephen the great reflected in history
textbooks in the Republic of Moldova (1990–2013). Ann. Putna XVI(1), 247–274 (2020)

41. L. Cotovanu, An epitrachelion with the portrait of Stephen the great discovered in the col-
lection of the Byzantine and Christian Museum from Athens. Ann. Putna XV(1), 135–148
(2019)

References 277

42. O. Cristea, For a critical edition of Stephen the Great’s letter to the Christendom. Remarks on
the list of Ottoman commanders. Ann. Putna XV(1), 167–188 (2019)

43. C.H. Sterling, Military Communications: From Ancient Times to the 21st Century, Illustrated
edn. (Santa Barbara, California, ABC-CLIO, 2007)

44. L. Cîmpeanu, Considerations on the artillery of voivode Stephen the great. Ann. Putna XIV(1),
321–334 (2018)

45. A.A. Lumsdaine, Mass communication experiments in wartime and thereafter. Soc. Psychol.
Q. 47(2), 198–206 (1984)

46. J.D. Peters, Speaking into the Air: A History of the Idea of Communication (University of
Chicago Press, USA, 1999)

47. H. Nyquist, Certain factors affecting telegraph speed. Trans. Am. Inst. Electr. Eng. XLIII(1),
412–422 (1924)

48. P.N. Das, Telegraph codes and their uses. IETE J. Educ. 1(1), 7–14 (1959)
49. B. Gold, Machine recognition of hand-sent morse code. IRE Trans. Inf. Theory 5(1), 17–24

(1959)
50. D.M. Clawson, A.F. Healy, K.A. Ericsson, L.E. Bourne Jr., Retention and transfer of morse

code reception skill by novices: part-whole training. J. Exp. Psychol. Appl. 7(2), 129–142
51. I.E. Sutherland, Sketchpad: a man-machine graphical communication system. Technical

Report No. 574 (University of Cambridge Computer Laboratory, 2003)
52. I.E. Sutherland, SketchPad: a man-machine graphical communication system. AFIPS Conf.

Proc. 23(1), 323–328 (1963)
53. J.E. Timothy, Sketchpad III, three dimensional graphical communication with a digital com-

puter. Massachusetts Institute of Technology, Department of Mechanical Engineering, 1963
54. D.C. Engelbart, Augmenting human intellect: a conceptual framework. SRI Summary report

AFOSR-3223, prepared for: Director of Information Sciences, Air Force Office of Scientific
Research, Washington 25, DC. Contract AF 49(638)-1024. SRI Project No. 3578 (AUGMENT,
3906), 1962

55. V.G. Cerf, Augmented intelligence. IEEE Internet Comput. 17(5), 96–96 (2013)
56. P. Atkinson, The best laid plans of mice and men: the computer mouse in the history of

computing. Des. Issues 23(3), 46–61 (2007)
57. C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F. Sproull, D.R. Boggs, Alto: A Personal

Computer. (Xerox Corporation, Palo Alto, California, 1979)
58. A.C. Kay, The early history of smalltalk. ACM SIGPLAN Not. 28(3), 69–95 (1993)
59. A. Goldberg, A. Kay, Smalltalk-72 Instruction Manual. (The Learning Research Group, Xerox

Palo Alto Hesearch Center, Palo Alto, California, 1976)
60. D.C. Smith, C. Irby, R. Kimball, E. Harslem, The Star user interface: an overview, in

AFIPS’82: Proceedings of the June 7–10, 1982, National Computer Conference, New York,
NY, United States (Association for Computing Machinery, 1982), pp. 515–528

61. W.L. Bewley, T.L. Roberts, D. Schroit, W.L. Verplank, Human factors testing in the design of
Xerox’s 8010 “Star” office workstation, in CHI’83: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (New York, USA, 1983)

62. L.W. Friedman, From Babbage to Babel and beyond: a brief history of programming lan-
guages. Comput. Lang. 17(1), 1–17 (1992)

63. T.J. Bergin, A history of the history of programming languages. Commun. ACM 50(5), 69–74
(2007)

64. N. Stern, HOPL: history of programming languages conference. Ann. Hist. Comput. 1(1), 68–
71 (1979)

65. D. Knuth, L.T. Pardo, The Early Development of Programming Languages. (Stanford Univer-
sity, Department Of Computer Science, ADA032123, Palo Alto, California, 1976)

278 References

66. W. Giloi, Konrad Zuse’s Plankalkul: the first high-level, non von Neumann programming
language. IEEE Ann. Hist. Comput. 19(2), 17–24 (1997)

67. R.A. Brooker, D. Morris, An assembly program for a phrase structure language. Comput. J.
3(3), 168–174 (1960)

68. A.D. Booth, K.H.V. Britten, Coding for ARC. (The Institute for Advanced Study, Princeton,
New Jersey, USA, 1947)

69. A.D. Booth, K.H.V. Britten, Principles and progress in the construction of high-speed digital
computers. Q. J. Mech. Appl. Math. 2(2), 182–197 (1949)

70. A. Booth, K. Britten, General Considerations in the Design of an All Purpose Electronic Digital
Computer, 2nd edn. (Unpublished Report, Birkbeck College, London, 1947)

71. B. Clarke, G.E. Felton, The computer journal. Pegasus Autocode 1(4), 192–195 (1959)
72. R.A. Brooker, Further autocode facilities for the Manchester (Mercury) computer. Comput. J.

1(3), 124–127 (1958)
73. J. Backus, The history of FORTRAN I, II and III. Ann. Hist. Comput. 1(1), 21–37 (1979)
74. J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, A.J. Perlis, H. Rutishauser, K. Samel-

son, B. Vauquois, J.H. Wegstein, A. van Wijngaarden, M. Woodger, Report on the algorithmic
language ALGOL 60. Numer. Math. 2(1), 106–136 (1960)

75. K Zuse, Über den Plankalkül. Inf. Technol. 1(1–4), 68–71 (1959)
76. K. Zuse, Über den Allgemeinen Plankalkül als Mittel zur Formulierung schematisch-

kombinativer Aufgaben. Arch. Math 1(1), 441–449 (1948)
77. R.M. Paine, Automatic coding for business applications. Comput. J. 3(3), 144–149 (1960)
78. L.A. Lombardi, B. Raphael, LISP as the Language for An Incremental Computer. (Mas-

sachusetts Institute of Technology, Cambridge, Massachusetts, 1964)
79. T. Dwyer, C. Len, E. Zielinski, V. Salko, M. Critchfield, M. Seaton, A Primer for the NEWBA-

SIC/CATALYST System. (University of Pittsburgh, Pittsburgh, Pennsylvania, 1970)
80. N. Wirth, The programming language pascal. Acta Inform. 1(1), 35–63 (1971)
81. D.M. Ritchie, The development of the C language, in Second History of Programming Lan-

guages Conference, Cambridge, Massachusetts (Association for Computing Machinery, 1993)
82. D. Chamberlin, Early history of SQL. IEEE Ann. Hist. Comput. 34(4), 78–82 (2012)
83. C. Moler, in AFIPS’80: Proceedings of the May 19–22, 1980, National Computer Conference,

Design of An Interactive Matrix Calculator, New York, NY, United States (Association for
Computing Machinery, 1980), pp. 363–368

84. B. Stroustrup, The C++ programming language: reference manual: computing science. Tech-
nical Report, No. 108 (AT&T Bell Laboratories, New Jersey, 1984)

85. B.J. Cox, Object Oriented Programming: An Evolutionary Approach. (Addison-Wesley Long-
man Publishing Co., Inc., Boston, USA, 1986)

86. L. Wall, T. Christiansen, J. Orwant, Programming Perl, Third edn. (O’Reilly Media,
Sebastopol, California, 2000)

87. C. Pratchett, M. Wright, CGI/Perl Cookbook. Assem. Autom. 19(1), 78–78 (1999)
88. C.V. Hall, K. Hammond, S.L.P. Jones, P.L. Wadler, Type classes in Haskell. ACM Trans.

Program. Lang. Syst. 18(2), 109–138 (1996)
89. J. Launchbury, S.L.P. Jones, State in Haskell. LISP Symb. Comput. 8(1), 293–341 (1995)
90. C. Bishop-Clark, Comparing understanding of programming design concepts using visual

basic and traditional basic. J. Educ. Comput. Res. 18(1), 37–47 (1998)
91. E. Coburn, Visual Basic Made Easy. (PWS Publishing Company, Boston, Massachusetts, 1995)
92. D. Schneider, An Introduction to Programming using Visual Basic. (Prentice Hall, Englewood

Cliffs, New Jersey, 1995)
93. D. Zak, Programming with Microsoft Visual Basic 2.0/3.0 for Windows. (Course Technology,

Cambridge, Massachusetts, 1995)

References 279

94. P. Dubois, T.-Y. Yang, Extending python with fortran. Comput. Sci. Eng. 1(5), 66–73 (1999)
95. R. Ihaka, R. Gentleman, R: a language for data analysis and graphics. J. Comput. Graph. Stat.

5(3), 299–314 (1996)
96. S. Hadjerrouit, Java as first programming language: a critical evaluation. ACM SIGCSE Bull.

30(2), 43–47 (1998)
97. A.V. Royappa, The PHP web application server. J. Comput. Sci. Coll. 15(3), 201–211 (2000)
98. B. Baas, Ruby in the CS curriculum. J. Comput. Sci. Coll. 17(5), 95–103 (2002)
99. W. Buchanan, JavaScript, in Mastering the Internet (London, Palgrave, 1997), p. 155–178
100. D.S. Hennen, S. Ramachandran, S.A. Mamrak, The Object-JavaScript language. Softw. Pract.

Exp. 30(14), 1571–1585 (2000)
101. B.W. Benson Jr., JavaScript. ACM SIGPLAN Not. 34(4), 25–27 (1999)
102. E.O. Cerqueira, R.J. Poppi, Using dynamic data exchange to exchange information between

Visual Basic and Matlab: application to a diode array spectrophotomete. TrAC Trends Anal.
Chem. 15(10), 500–503 (1996)

103. D.I. Schneider, An Introduction to Programming Using Visual Basic 6.0. (Prentice Hall, Upper
Saddle River, New Jersey, USA, 1999)

104. P. McKenna, N. Seeve-McKenna, Hyperlanguage: to boldly go…? Lang. Learn. J. 6(1), 71–72
(1992)

105. F.P. Brooks, The Mythical Man-Month : Essays on Software Engineering. (Addison-Wesley
Pub. Co, 1975)

106. M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: improving the design of
existing code (Addison-Wesley, Boston, 1999)

107. M. de Jonge, Developing product lines with third-party components. Electron. Notes Theor.
Comput. Sci. 238(5), 63–80 (2009)

108. B. Klatt, Z. Durdik, H. Koziolek, K. Krogmann, J. Stammel, R. Weiss, Identify impacts of
evolving third party components on long-living software systems, in 16th European Confer-
ence on Software Maintenance and Reengineering (Szeged, Hungary, 2012), pp. 461–464

109. T. Remencius, A. Sillitti, G. Succi, Assessment of software developed by a third-party: a case
study and comparison. Inf. Sci. 328(1), 237–249 (2016)

110. W.T. Councill, Third-party testing and the quality of software components. IEEE Softw. 16(4),
55–57 (1999)

111. L.L. Larson, Third party software. Intern. Audit. 52(2), 44–48 (1995)
112. D. Cotroneo, R. Natella, R. Pietrantuono, S. Russo, A survey of software aging and rejuvena-

tion studies. ACM J. Emerg. Technol. Comput. Syst. (JETC) 10(1), 1–34 (2014)
113. M. Jakobsson, M.K. Reiter, Discouraging software piracy using software aging, in ACM Work-

shop on Digital Rights Management (Springer, Berlin, 2001), pp. 1–12
114. A. Bovenzi, D. Cotroneo, R. Pietrantuono, S. Russo, On the aging effects due to concurrency

bugs: a case study on MySQL, in 23rd International Symposium on Software Reliability
Engineering (IEEE, Dallas, Texas, 2012), pp. 211–220

115. G. Booch, Object Oriented Design with Applications. (Benjamin/Cummings Publishing Com-
pany, 1991)

116. P.M. Duvall, Continuous Integration: Improving Software Quality and Reducing Risk.
(Addison-Wesley, 2007)

117. B. Lennon, Program text, programming style, programmer labor: some further comments on
comments. Cult. Polit. 14(3), 372–394 (2018)

118. P. Gagniuc, C. Ionescu-Tirgoviste, Gene promoters show chromosome-specificity and reveal
chromosome territories in humans. BMC Genomics 14, 278 (2013)

119. P.A. Gagniuc, Markov chains: from theory to implementation and experimentation. (Wiley &
Sons, Hoboken, NJ, USA, 2017)

280 References

120. P.A. Gagniuc, C. Ionescu-Tirgoviste, E. Gagniuc, M. Militaru, L.C. Nwabudike, B.I. Pavaloiu,
A. Vasilăţeanu, N. Goga, G. Drăgoi, I. Popescu, S. Dima, Spectral forecast: a general pur-
pose prediction model as an alternative to classical neural networks. Chaos 30, 033119–033126
(2020)

121. A.E. Osbourn, B. Field, Operons. Cell. Mol. Life Sci. 66(23), 3755–3775 (2009)
122. X. Yang, J. Coulombe-Huntington, S. Kang, G.M. Sheynkman, T. Hao, A. Richardson, S.

Sun, F. Yang, Y.A. Shen, R.R. Murray, K. Spirohn et al., Widespread expansion of protein
interaction capabilities by alternative splicing. Cell 164(4), 805–817 (2016)

123. P. Gagniuc, C. Ionescu-Tirgoviste, Eukaryotic genomes may exhibit up to 10 generic classes
of gene promoters. BMC Genomics 13, 512 (2012)

124. P. Gagniuc et al., A sensitive method for detecting dinucleotide islands and clusters through
depth analysis. Rom. J. Diabetes Nutr. Metab. Dis. 18(2), 165–70 (2011)

	Preface
	Acknowledgements
	Personal Words
	Contents
	List of Figures
	List of Tables
	List of Additional Algorithm
	1 Historical Notes
	1.1 Introduction
	1.2 The Ultimate Foundation
	1.2.1 Closer to Our Times
	1.2.2 Universality at the Crossroads

	1.3 On the Recent Origin of Computers
	1.3.1 Automatons and the Memory of the Soul
	1.3.2 Mechanical Computers
	1.3.3 Electronic Computers
	1.3.4 American Standard Code for Information Interchange
	1.3.5 A Conspiracy for Convergence

	1.4 History of Programming Languages
	1.4.1 The Making of an Advanced Civilization
	1.4.2 The Dark Age of Computer Languages
	1.4.3 The Extraordinary Story of ActiveX
	1.4.4 Killed on Duty by Friendly Fire
	1.4.5 The Browser: Resistance is Futile, You Will be Assimilated

	1.5 Conclusions

	2 Philosophy and Discussions
	2.1 Introduction
	2.2 The Entropy of Software
	2.2.1 Entropy of Codes and Human Nature
	2.2.2 Raw Versus Fine-Grained Entropy
	2.2.3 How Does Software Entropy Increase?

	2.3 The Operating Systems and Entropy
	2.3.1 The Twins
	2.3.2 Rejection of Equilibrium
	2.3.3 The Third Party Software
	2.3.4 Examples of Universality

	2.4 Software Updates and Aging
	2.5 Universality Supports Self-reflection
	2.5.1 The Evolution of Large Brains Versus Entropy

	2.6 From Computer Languages to Art and Sports
	2.6.1 The Art
	2.6.2 The Sport

	2.7 Compiled Versus Interpreted
	2.7.1 Programming Languages
	2.7.2 Scripting Languages
	2.7.3 Source Code Encryption
	2.7.4 The Executable File
	2.7.5 Executable Files and Scripting Languages

	2.8 The Unseen and Unspoken
	2.8.1 Witch Hunting Shows Weakness
	2.8.2 No Secrets for the Emeritus
	2.8.3 The War Against the Executable File
	2.8.4 We Decide What Product Comes About

	2.9 Psychological Warfare
	2.9.1 Removal by Threat
	2.9.2 Removal by Advertising
	2.9.3 Handling of Terms
	2.9.4 Battle of Computer Languages
	2.9.5 Uniformity Means Death
	2.9.6 Modern Does Not Mean Better
	2.9.7 Market Share Demands Responsibility

	2.10 Human Roles and Dilemmas
	2.10.1 The Identity Crisis
	2.10.2 Work Environments
	2.10.3 Genus: Homo

	2.11 Worst Professors Are Those Who Assume
	2.12 Conclusions

	3 Paradigms and Concepts
	3.1 Introduction
	3.2 The Story of Programming Paradigms
	3.2.1 Imperative Programming
	3.2.2 Declarative Programming
	3.2.3 The in Between
	3.2.4 The Foundation

	3.3 Computer Languages Used Here
	3.3.1 C#
	3.3.2 C++
	3.3.3 Java
	3.3.4 JavaScript
	3.3.5 Perl
	3.3.6 PHP
	3.3.7 Python
	3.3.8 Ruby
	3.3.9 Visual Basic

	3.4 Classification Can be Misleading
	3.4.1 A Critique
	3.4.2 Which Computer Language is Better?
	3.4.3 The Operating System Versus the Application Makeup
	3.4.4 The Virtual Machine: A CPU for Bytecode
	3.4.5 Compiled Languages
	3.4.6 Interpreted Languages
	3.4.7 Just in Time Compilation
	3.4.8 Another Critique
	3.4.9 A Security Thought Experiment
	3.4.10 About Security Privileges

	3.5 The Quick Fix
	3.6 Conclusions

	4 Operators and Expressions
	4.1 Introduction
	4.2 Operators
	4.2.1 Arithmetic Operators
	4.2.2 Assignment Operators
	4.2.3 Relational Operators
	4.2.4 Concatenation Operators
	4.2.5 Logical Operators

	4.3 Operator Symbols
	4.3.1 Power Operator: The Curious Case of Exponentiation
	4.3.2 The Modulo Operator
	4.3.3 Unitary Operators
	4.3.4 The String Operator
	4.3.5 The Repetition Operator
	4.3.6 The Concatenation Operator
	4.3.7 Relational and Logical Operators

	4.4 Assignments
	4.4.1 Simple Assignments
	4.4.2 Aggregate Assignments
	4.4.3 Multiple Assignments

	4.5 Operator Precedence and Associativity
	4.6 Conclusions

	5 Data Types and Statements
	5.1 Introduction
	5.2 Data
	5.2.1 Bits and Bytes
	5.2.2 Symbol Frequency Matters
	5.2.3 The Encoding
	5.2.4 A Hypothetical System of Reference
	5.2.5 The Bytes of an Alien World

	5.3 Data Type
	5.3.1 The Curious Case of the String Data Type
	5.3.2 Experimental Constructs

	5.4 Statements
	5.4.1 ASCII Symbols
	5.4.2 Unicode Transformation Format
	5.4.3 Sentences are Made of Constructs
	5.4.4 The Root of Behavior
	5.4.5 The End of the Line
	5.4.6 Statements and Lines
	5.4.7 Multiple Statements and Line Continuation
	5.4.8 Recommended Versus Acceptable Statements

	5.5 The Source Code
	5.5.1 Indentations
	5.5.2 Comments

	5.6 Conclusions

	6 Classic and Modern Variables
	6.1 Introduction
	6.2 Variables
	6.2.1 Literals
	6.2.2 Naming Variables
	6.2.3 Variables: Explicit and Implicit
	6.2.4 Statically Versus Dynamically Typed Languages

	6.3 Evaluations of Expressions
	6.3.1 Details by Language

	6.4 Constants
	6.5 Classes and Objects
	6.5.1 About Design Patterns

	6.6 Arrays
	6.6.1 Creating an Empty Array
	6.6.2 Creating an Array with Values
	6.6.3 Adding Elements
	6.6.4 Accessing Array Elements
	6.6.5 Changing Values in Array Elements
	6.6.6 Array Length
	6.6.7 Nested Arrays
	6.6.8 Multidimensional Arrays

	6.7 Conclusions

	7 Control Structures
	7.1 Introduction
	7.2 Conditional Statements
	7.3 Repeat Loops
	7.3.1 The While Loop
	7.3.2 The For Loop
	7.3.3 Nested Loops
	7.3.4 Multidimensional Traversal by One For-Loop

	7.4 Conclusions

	8 Functions
	8.1 Introduction
	8.2 Defining Functions
	8.2.1 Simple Arguments
	8.2.2 Complex Arguments
	8.2.3 Nested Function Calls
	8.2.4 Chained Function Calls
	8.2.5 Relative Positioning of Functions
	8.2.6 Recursive Calls
	8.2.7 Global Versus Local Variables
	8.2.8 Functions: Pure and Impure
	8.2.9 Function Versus Procedure
	8.2.10 Built-In Functions

	8.3 Conclusions

	9 Implementations and Experiments
	9.1 Introduction
	9.2 Recursion Experiments
	9.2.1 Repeat String n Times
	9.2.2 Sum from 0 to n
	9.2.3 Factorial from 0 to n
	9.2.4 Simple Sequence Generator
	9.2.5 Fibonacci Sequence
	9.2.6 Sum All Integers from Array

	9.3 Interval Scanning
	9.4 Spectral Forecast
	9.5 Conclusions

	References

