


Advance Praise for 
‌“You Are Not Expected 
to Understand This”

‌“In truth, ‘You Are Not Expected to Understand This’ is startlingly 
understandable! These vivid, lucid, brilliant essays tell the ori-
gin stories of coding, the secret infrastructure that shapes our 
online life. We meet the people who wrote and rewrote the lines 
of code that changed the world. We glimpse their ambitions, mis-
takes, remorse, fixes, and ingenuity. We understand why (and 
how) women were the ones who designed early programming 
languages like COBOL; how pop-up ads came to exist; how the 
‘like’ button blew up news and politics as we knew them. Read 
this book, and you will never look at your newsfeed the same 
way again.”

—�Liza Mundy, author of Code Girls: The Untold Story of 
the American Women Code Breakers of World War II

‌“Code powers much of modern life, yet most of us spend little 
time thinking about it. This book will change that. Wide-ranging, 
provocative, and bursting with humanity, ‘You Are Not Expected to 
Understand This’ is essential reading on the history and culture 
of code.”

—�Sara Wachter-Boettcher, author of Technically Wrong: 
Sexist Apps, Biased Algorithms, and Other Threats of Toxic Tech

‌“Code governs our lives—and this book does a delightful job of 
giving us a glimpse into some of the biggest wins, and most co-
lossal blunders, in software.”

—�Clive Thompson, author of Coders: The Making 
of a New Tribe and the Remaking of the World
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Preface
Torie Bosch

In high school in the late ’90s, I took my first and only coding 
class—a course on C++. I encountered all of the problems that 
you hear about when it comes to girls and programming: the 
only girl in the class, I was coming to the subject cold. Though the 
class technically had no prerequisites, every other student had 
a working understanding of coding; many of them had learned 
from their fathers. My teacher was a woman and started out 
encouraging, but quickly became exasperated with me. From 
the first assignment, which I believe had to do with a string of 
numbers, I flailed. I eked out an A in the class, helped by the 
boys, who would spot problems in my code and tell me how to fix 
them. But I never really understood what I was doing—how pro-
gramming worked or what the different languages meant. The 
teacher largely skipped over that stuff because she assumed we 
all knew it, and, I assume, she didn’t want to hold the rest of the 
class back for me. I’ve always wondered if she was frustrated 
with me for making women and girls in STEM look bad.

Before going into that C++ class, I had thought of program-
ming as something simple and straightforward: you tell a com-
puter what to do, and it executes. But that class demonstrated, 
on a small and annoying scale, that “telling a computer what to 
do” inherently requires messy human thinking. I learned that 
code could be “wrong” yet still somehow work, and that it could 
have unintended ramifications—ramifications that might not 
matter much when I was working on, say, a birthdate calcula-
tor, but would matter a lot if I were working on a transportation 
system. Thinking about these issues was fascinating; coding 
was not for me, perhaps, but thinking about it was.

That’s the idea behind this book: that we should all think a lit-
tle more about code, because code has in infinite ways changed 
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how we live in the world, for better, worse, or somewhere in be-
tween. And behind the code, of course, are people: people who 
make decisions, make mistakes, make assumptions, take bril-
liant chances, and take shortcuts, with major—and sometimes 
unintended—ramifications. The 26 essays in this book, written 
by technologists, historians, journalists, academics, and some-
times the coders themselves, tell the stories of people writing 
code that is by turns brilliant, funny, sloppy, and shortsighted. 
The essays show us how code works—or how, sometimes, it 
doesn’t work—owing in no small way to the people behind it.

This book grew out of an article published by Slate in October 
2019 titled “The Lines of Code That Changed Everything.” From 
the time I began working on that project, I struggled with how 
to define “lines” of code. A line of code can be, literally, a single 
string of code—a line of BASIC, say. But code here also means 
the bigger ideas that underlie software programs, programming 
languages, digital platforms, and physical hardware, and the 
interaction of these elements is what defines our digital world 
today. In some cases, we can no more easily separate them than 
we can separate technology from the humans who created it. 
This book embraces the messy.

Many of the essays will focus on actual lines of code. For in-
stance, James Grimmelmann writes about a T-shirt with four 
lines of Perl code—the RSA1 encryption algorithm—that was writ-
ten to protest US export controls around encryption. Thanks to 
that activism and the clever use of code, more people today have 
the ability to communicate securely. Josephine Wolff writes about 
Heartbleed, one of the most pernicious vulnerabilities in com-
puting history, and the code mistake that made it possible. Ellen 
Stofan and Nick Partridge look at the Apollo 11 lunar module’s 
code and an error alert that nearly ended the first moon landing.

But some of the essays embrace a broader definition of “lines 
of code.” For instance, I’ve chosen to include essays that focus 
not on code per se, but on software. Charlton McIlwain, author 
of the landmark book Black Software, examines the first Police 
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Beat Algorithm, created in the 1970s, and how it led to today’s 
predictive policing software. McIlwain’s essay demonstrates 
how code cannot possibly be free of human biases around race. 
Afsaneh Rigot and Mahsa Alimardani write about the Tele-
gram channels that first helped Iranians evade government 
surveillance and censorship, only to end up putting Iranians—
especially members of the LGBTQ community—at risk.

Finally, this book includes essays on coding languages and on 
the act of coding itself. Claire L. Evans writes about the birth of 
COBOL and the much-overlooked role of women in early com-
puting history. Meredith Broussard writes about how the gender 
binary and the code binary are intertwined. Ethan Zuckerman’s 
essay looks at the role he played in creating a scourge of the 
Web: the pop-up ad. David Cassel examines how a perfectly an-
odyne comment in code—“You are not expected to under-
stand this”—became part of programming culture and, as he 
put it, a “cherished reminder of a momentary glow of humanity 
in a world of unforgiving logic.”

To narrowly focus on actual lines of code would have overly 
constrained the collection, overlooking many programming 
“mistakes,” moments of genius, and human decisions and bi-
ases that are infused into society through thousands of lines of 
code. Indeed, beyond code, these essays have a second, no less 
important focus: people. The book tells the stories of the people 
behind the programming and the people affected by it—a group 
that includes all of us. To me, certainly, these stories all feel 
personal: around the same time Zuckerman was working on the 
first pop-up ad for Tripod, I was building my own site on Tripod 
(devoted to, of all things, Backstreet Boys fan fiction), which 
would come to host its fair share of pop-up ads. It was also the 
site that taught me how to use HTML: the HTML links, as Brian 
McCollough writes in his essay, that were and are foundational 
to the Internet.

These essays should feel personal to all of us, coders or not, 
because the technological successes and failures and strange 
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moments they describe undergird our lives. The decisions 
made by the people in this book shape our online behavior: 
how we learn, how we interact, how we define ourselves. And 
in the twenty-first century, our online lives bleed into our off-
line lives, to the point where sometimes we can’t distinguish 
between them.

I became interested in the Internet—and C++—thanks to my 
mother, who bought my family a computer and signed up for 
AOL back in 1995. She had a tech background herself, having 
learned programming in the 1970s when she was a consul-
tant. She never particularly enjoyed it, though, in part because 
she felt her questions were often dismissed—especially if they 
concerned the bigger picture, beyond the work at hand. Just 
before Y2K, she told me that she once asked an instructor why 
programmers used two digits to represent years instead of four. 
“Won’t that cause problems?” she asked him. “Someone else 
will have to deal with it,” he told her. Programming mistakes, 
quick shortcuts that become permanent fixtures, flashes of 
brilliance—all of us have to deal with them.



Introduction
Error, Failure,  
and Code Creation
Ellen Ullman

You need the willingness to fail all the time.

Those words guided me throughout all the years when I worked 
to become a decent programmer, as they no doubt guided count-
less others. That one sentence reminded us that coding is a life 
in which failure will be your constant shadow. Bugs, crashes, 
halts, glitches, hacks: programmers who want to survive in the 
profession (like anyone hoping to create a new thing on earth) 
must come to a begrudging acceptance of failure as a confound-
ing helper, an agent of destruction you wish you could evade, 
but never can.

The words were spoken by John Backus, who led the group 
that created the FORTRAN programming language, fully released 
in 1957.1 FORTRAN (short for Formula Translator) was the first 
language that allowed programmers to write code that was not di-
rectly tied to any one computing environment. It was a frustrating 
project that lurched from failure to failure. Backus went on to say:

You have to generate many ideas and then you have to work 
very hard only to discover that they don’t work. And you keep 
doing that over and over until you find one that does work.2

He also told us:

If you are not failing a lot, you are probably not being as cre-
ative as you could be—you aren’t stretching your imagination.3
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Software companies try to avoid serious failures with proce-
dures, rules, reviews. But programs are works of the imagination 
that must then make the hazardous crossing into the structured 
world of code. The attempts to avoid failure will also fail.

All code has flaws, inevitably. Human thought is wonderfully 
chaotic; it allows us to hold incompatible beliefs, be interrupted, 
function in a world we do not fully understand. So much of what 
we know is inscribed in the body, the product of evolution, in-
stinctive, not readily accessible to the rational mind, what Daniel 
Kahneman has described as fast thinking (System 1). Meanwhile, 
code-writing (as opposed to the creative work of code-design) 
requires fully conscious and rational thought, Kahneman’s 
“slow thinking” (System 2),4 a level of focused attention that is 
impossible to sustain over time.

I have a friend who was once in charge of testing at a startup 
that was frantic to go public. The IPO was delayed for months on 
end because of the relentless appearance of new serious bugs. 
The higher-ups demanded to know, “When will all the bugs be 
found?” It was a ridiculous question, because the testing was 
being done even while new code was being written. Meanwhile, 
“fixes” to already discovered bugs were in the business of cre-
ating a whole new pile of bugs. In any case, no one can predict 
when the last bugs will be found, because the only correct an-
swer is, “Never.”

Many bugs are blind spots in the code. The designer and 
programmer try to protect the system by looking for condi-
tions that will break things: they will not find them all. Most 
often, software teams are rushed. They have to create systems 
quickly. Programmers don’t have time to lean back, think of 
other things, let the background of the mind speak. A prime 
source of bugs is absurd scheduling.

Other bugs are like physical vulnerabilities inscribed in the 
DNA. These bugs sit quietly until some environmental factor (in 
humans, things like ageing, chemicals, medications) suddenly 
activates the flaw, and we get sick. In the case of computing, the 
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technical environment is complex and constantly changing. 
Programs interact with modules not foreseen in the original de-
sign; with new operating systems and changed ones, variations 
in chips, network configurations, protocols, device drivers; be-
deviled by documentation that cannot keep up with the changes. 
What worked one day doesn’t work the next, and the program-
mer’s constant question is, “What changed?” Well, lots of things. 
Which one (or ones) did the damage? That way lies madness.

The deepest weaknesses are revealed when a digital creation 
is designed for expert users in a collegial environment, and then 
opened to a wider pool.

Dennis Ritchie and his team developed the C language,5 
which, along with Unix, was part of a research project con-
ducted inside the storied Bell Labs technology incubator.6 The 
language gave the team’s programmers a great deal of freedom, 
including direct access to the contents of memory, something 
systems normally do not allow, in order to protect the integrity 
of the coding environment. That level of freedom was fine as 
long as their work remained a research project. According to 
Brian Kernighan, who coauthored the book that introduced C to 
the world,7 Ritchie did not anticipate that the operating system 
and language would become “as big as they did.”8 Yet they did 
indeed become big. Programmers’ access to memory then es-
caped into the wild: programs acquired the dangerous ability to 
invade and manipulate the memory space of another program 
(mostly by accident), and that invaded program can invade an-
other’s (and so on), enabling a world of perplexing bugs.

Then there is the Internet itself, derived from the ARPANET, 
which was created as a platform in which a limited group of 
researchers could converse openly about scientific subjects.9 
Security was not assumed to be needed. And so arrived the 
hackable digital universe.

I once had the good fortune of working for a hacker. This goes 
back to the time when “hacker” was an honorific, as it still is 
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among talented hardware and software engineers. It refers to a 
type of crusty programmer who can chop through code with a 
combination of grim determination and giddy enthusiasm. The 
goal, above all, is to uncover the flaws that induce the failures, 
then (somehow or other) devise the fix that will make things work. 
Their solutions are often “ugly,” in coder parlance (aka kludges), 
the product of down-and-dirty plumbing. But no matter. Maybe 
lovely, elegant programs and systems can come later. Or not.

“Hacker” has acquired a less admirable meaning, of course, 
having acquired the taint of what we used to call “crackers,” as 
in safe crackers, people not allowed to get at what’s in the safe 
but who get in anyway. It is a chaotic world involving everyone 
from cryptocurrency tinkerers to bank thieves; from hackers 
working for hostile nation states to ones stealing data for espi-
onage and ransom; to those seen as ethical hackers, who want 
to reveal the wrongdoings of anyone or anything in power; to 
loners looking for notoriety; to pranksters, jokers, naughty boys 
of all ages, breaking in just to see if they are clever enough to 
do it. (It’s fun to make porn appear in Zoom meetings, isn’t it?)

There are the workaday hacks, the constant reports of code 
vulnerabilities. Peter G. Neumann, the revered computer sci-
ence researcher, moderates “The Risks Digest,”10 which is 
updated weekly, sometimes as often as every few days. The 
“Crypto-Gram Newsletter,”11 written by noted security analyst 
Bruce Schneier, is released monthly. As individual program-
mers and software makers struggle against the onslaught of 
flaws in their own code, they are meanwhile bombarded by the 
hacks that rain down upon the digital planet, nearly invisible, 
like the solar wind.

Then come the hackers who break into the code meant to 
defend against hackers: code to protect code becomes a vic-
tim. NASA stored reports of vulnerabilities they received from 
friendly hackers, and then the store itself was hacked.12 Software 
written by the company CodeCov,13 which is widely used to test 
for bugs and code vulnerabilities, was broken into by Russian 
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hackers, giving them a window into the very code to be pro-
tected. In a recently revealed 10-year-old hack, Chinese spies 
broke into RSA’s cryptosystem.14 The company is a corporate 
security giant whose customers include “tens of millions of 
users in government and military agencies, defense contrac-
tors, and countless corporations around the world,” according 
to wired.com. The break-in allowed “hackers to instantly bypass 
[RSA’s] security system anywhere in the world.”15

The fate of humanity hangs in the balance. Nicole Perlroth’s 
book This Is How They Tell Me the World Ends: The Cyberweapons 
Arms Race,16 describes how the Internet—buggy and hackable—
has become a potent military tool. It has the dark power to ignite 
global war: by accident, or by design.

Now I will return to the “good” use of hacker, because I want to 
preserve its historical meaning among the general public and 
give the original hackers their due: an army of sometimes di-
sheveled geniuses who were wary of rules and formalities, non-
conformist in their thinking, somehow both brilliant and prac-
tical at the same time, who could reach in, rummage around, 
and figure out what to do. A member of Backus’s FORTRAN team 
called their group “the hackers of those days.”17

A now-famous hack saved the Apollo 13 mission from di-
saster.18 Before the mission could achieve a moon landing as 
planned, an oxygen tank exploded in the command module. 
The three astronauts had to take refuge in the lunar module, 
which was designed to carry only two astronauts. To reduce 
the build-up of carbon dioxide, they retrieved an additional 
canister of lithium hydroxide pellets (a carbon dioxide scrub-
ber) from the command module.19 But there arose the sort of 
problem that plagues complex projects: components designed 
and built separately. One canister had a round connector, the 
other a square one, the proverbial square peg in a round hole.20 
A remedy had to be found—quickly—or all three men would die 
of asphyxiation.
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NASA engineers on the ground raced to find a solution. They 
threw together bits of stuff that were on the spacecraft—plastic 
bags, covers ripped from manuals, duct tape, cardboard, anything 
—and devised a bridge between the mismatched connectors. It 
was one of those “ugly” fixes. As the Apollo 13 astronaut James 
Lovell later described it: “Hose. Duct tape and an old sock.”21

Daniel Kaminsky, a famed cybersecurity expert, created an-
other legendary, down-and-dirty hack. In 2008,22 he discovered 
a security hole in the Internet’s Domain Name System (DNS), 
which converts website URLs to specific IP addresses. Kaminsky 
saw how easy it was for knowledgeable bad actors to redirect 
the user not to the intended destination, but to a world of fake 
sites—a “bank,” a “credit card company,” an “email login”—and 
therefore collect the user’s IDs and passwords. He alerted others 
and, along with Paul Vixie, coded an emergency patch.

Kaminsky, who will forever have a place of honor among the 
greats of the hacker community, died on April 23, 2021. His 
obituary in the New York Times called him “the savior of the In-
ternet.”23 He was the first to sound the alarm and respond to the 
threat. Yet, given what we know about the relationship between 
coding and error, it is no surprise to learn that the patch was far 
from perfect. After the “fix” was installed, there were 6:00 a.m. 
calls from Finnish certificate authorities saying their security 
procedures were broken. Some DNS servers stopped working 
correctly. And there were some pretty harsh words from Ka-
minsky’s peers in the security community.24 Years later, in a talk 
at the 2016 Black Hat hacker conference, Kaminsky referred 
to his patch as “that DNS mess.”25 Vixie, a longtime steward of 
the DNS, described the code they cobbled together in terms yet 
more ugly than Apollo’s old sock: he compared it to dog excre-
ment. In the way of hacker expediency, he called it the best dog 
excrement “we could have come up with.”26

Each of the programs, systems, and concepts discussed in this 
book had to go through the test of trial-by-error. The essays in 
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this book explore a wide range of topics. Several offer a deeper 
look at technologies familiar to the general public: the coming 
of Email, hyperlinking, JPEG image files, the Facebook Like. 
Some discuss historical landmarks that ought to be known more 
widely: women’s contributions to early computing; the creation 
and endurance of COBOL, the first language in general use for 
business software; the coming of BASIC, the wonderful begin-
ner’s language.

Two essays explore deeper concepts in computing: data en-
cryption, and the Markov Chain Monte-Carlo concept (MCMC), 
a foundational mathematical method used to understand dis-
tributions in data and arrive at probabilities.

Computing can bring happiness, as three essays show. There 
is pleasure (and pain) in learning to write code; in the fun brought 
into the world by Spacewar!, the first distributed video game; 
and in the advent of the Roomba, which, in addition to cleaning 
floors, also gave hours of delirious pleasure to innumerable cats.

Two essays discuss contributions to computing that I see as 
being derived from the idea of “the wisdom of the crowd”: the 
Facebook Like button and page ranking. The premise is that 
numbers in and of themselves say something about the worth of 
whatever is being liked, from websites to Instagram postings to 
dance crazes on TikTok: more likes equals more eyeballs equals 
“better.” The underlying theory is based on the belief that, given 
a very large universe of participants, a truth will emerge.

The coming of the “smart mob” has been a decidedly mixed 
blessing. Twenty-five years ago, I had an informal talk with Larry 
Page about Google’s search engine as it worked at the time. I 
said I was concerned that the order in which results were listed, 
based as it was on the number of links into a given page, was 
a species of the rich getting richer. Larry, ever thoughtful, sat 
quietly, considering his reply. Finally he said, “I worried about 
that too, but I realized there was nothing I could do about it.”

What he meant was that there was nothing he could do algo-
rithmically. Given the immense universe of knowledge, a human 
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curator would have faced an impossible task; code has to be 
the curator. Google’s search engine has improved vastly over 
time, its criteria for ranking becoming ever more sophisticated. 
And search engines, most modeled on Google’s, have brought 
astounding advances in how human beings can understand 
the world. Yet search engines have also ushered in the age of 
“most popular,” “trending,” “bests,” and posts that users hope 
will “go viral.” This amplification of responses can empower the 
public and create a world of fun. They also reveal the hazards 
of assigning wisdom to the crowd: results prejudiced by the 
cultural majority, an arms race between the search algorithm 
and sites wanting to promote themselves, conspiracy theo-
ries, hordes of influencers stoking likes and clicks, truly fake  
news.

Then there are the programs we wish had not survived the 
assault by bugs. One essay examines so-called predictive po-
licing, which pretends to predict where crime will take place in 
the future. Like all AI algorithms, it is based on databases laced 
with bad information, on methods that are rife with bias.

On a lighter note, there is another maybe-we-never-wished-
for code invention: the pop-up ad. The essay here, by the pro-
grammer who authored it, describes his remorse, the regret he 
feels about loosing the pop-up upon the world.

A book about code must necessarily address the subjects that 
are integral to the creation of software: error and failure. “The 
Lost Mars Climate Orbiter” describes a failure that, 28 years 
after Apollo 13,27 echoes the earlier mission’s mistake: system 
parts created separately. One team used the American mea-
surement system, the other the English Imperial system. The 
repetition of this type of error shows how pervasive are the haz-
ards in complex systems, where one group of engineers cannot 
possibly create the whole, and disparate parts must somehow 
be knit together, and flawlessly.

“Heartbleed” describes a bug deep in the internals of the 
Internet that caused havoc for millions of devices. A hacker ex-



Introduction  /  9

ploited weaknesses in open-source software and vulnerabilities 
in the C language, as mentioned above, which gave program-
mers direct access to the contents of memory. Like so many er-
rors, the problem lay dormant, everything apparently working, 
until something in the environment changed: the arrival of a 
hacker with malicious intent.

Another essay discusses the Morris Worm, the first to be dis-
tributed via the Internet. Robert Tappan Morris, then a graduate 
student at Cornell, wrote the invasive code as an intellectual 
project, as a test of the Internet’s weaknesses. However, a mis-
take in his code instructed the worm to keep reproducing itself, 
whether or not a system had already been infected. Then he 
inadvertently released the worm into the wild. A senior engi-
neer who worked on the emergency caused by the worm, Colm 
MacCárthaigh, later said, “It felt like the Internet was on fire.” 
Morris never intended to cause the vast damage he did. In this 
sense, his worm was a bug inside a hack.

A particularly pernicious use of errant code was deployed 
by Volkswagen to falsely lower the readings of pollution levels 
caused by their diesel engines: an intentional bug, an error cre-
ated for corporate gain.

And then we come to the day-to-day, unglamorous but vital 
chore performed by all good programmers: adding comments 
to their code. Comments are an invaluable tool; they describe 
sections of the program that are tricky, not immediately obvi-
ous or readable. Comments are acts of generosity, help for the 
unknown colleagues who will work on the code over time, in the 
hope that they will keep a system working.

Sometimes the “future” programmer will be the original au-
thor of the code, and the comment is a gift to oneself, since it is 
all but impossible for individuals to recall all the complex details 
in the software they have written. A bug is an opportunist that 
waits at the gate of any change to the body of running code; a 
comment is a weapon that, a priori, takes up the battle against 
software entropy.
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I am just old enough to remember the desperate attempts by 
the United States to match the Soviet Union’s great achieve-
ment, Sputnik, the first earth-orbiting satellite. NASA’s launches 
were broadcast on television, some live. We saw one rocket after 
another exploding spectacularly on the pad; or collapsing in 
a ball of fire after lifting-off a mere few feet; or managing to 
rise into the sky only to burst into flames at the first stage of 
separation.28 Those failures are engraved in the memories of 
those who watched the attempts: the great anguish inherent 
in technological achievement, and, per Backus, the imperative 
to try again.

Decades later, after scores of intervening successes—
including a human’s trip to the moon and projects that sent 
explorer satellites to the edge of our solar system and beyond—
NASA launched the mission to send the Perseverance Rover to 
Mars. The launch took place on July 30, 2020.29 On February 18, 
2021, nearly six months later, Perseverance landed on Mars.

The landing was streamed live30 thanks to NASA’s commit-
ment to inform the public, even if a mission might fail. What 
riveted my attention was a pane on the left side of the screen. 
It highlighted each stage as the mission unfolded, modules 
for launch, separations, cruise balance, etc. Between each 
module was a step that began with the word “Interface,” as 
in: Module A, Interface to module B, Module B, Interface 
to Module C, Module C, and so on. You could see the tension in 
the faces of the women and men staring into their monitoring 
screens. I held my breath along with them.

There is no more hazardous place in a complex project than 
the handshake between one section and the next. In this in-
terregnum lurks all the potential misunderstandings between 
separate groups of developers, as we saw with the lost Mars 
orbiter and the near catastrophe of Apollo 13. The illuminated 
word “Interface” always seemed to linger for far too long. I 
wondered if this latest generation had learned the lessons of 
their forebears, who knew the danger zones. In the case of a 
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breakdown, did these young engineers have the hackers’ skills 
to scrounge around and repair a ripped seam? This Mars Rover 
project seemed impossibly complicated, riddled with opportu-
nities for disaster. I watched in a mood of both exaltation and 
horror.

Time went by. The display followed the steps in the project: 
one module, interface, next module, interface, and the next. Fi-
nally we came to the astounding unfurling of the parachute that 
gently lowered Perseverance to the surface. And it was done.

And yet.
There is no such thing as the last bug.
The problem appeared in the initial test of the small heli-

copter, Ingenuity, which had arrived on Mars attached to the 
underbelly of Perseverance, like a baby kangaroo in the pouch 
of the mother ship. Ingenuity was to attempt to fly in the thin 
atmosphere of Mars, to pioneer an age of powered, controlled 
flight—engineered by humans—on a planet other than earth.

The first try failed. The helicopter’s start-up activities took 
longer than expected, and its computer shut down the motors. 
The engineers overseeing the mission identified a potential 
workaround and devised a patch. Yet, knowing that touching 
existing code is an excellent opportunity to break it, they wisely 
did not install it. Instead, they adjusted the commands they 
would send to the craft.31

Here was a repair that was sent not through the Internet but 
across 130 million miles of space.32 Engineers had to wait two 
anxious earth days to find out if their changes would work.33 On 
April 19, 2021, Ingenuity rose 10 feet into the Martian atmo-
sphere as planned, hovered briefly, banked, turned, and landed 
at its takeoff point.34

More flights followed. Failure had led to success. This was a 
bug-fix for our time, another hack for the ages.
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The First Line of Code
Elena Botella

What was the first line of code? It depends, a bit, on how exactly 
you define code.

For now, let’s say code is a set of instructions that are given to 
a machine. Giving instructions to machines is something most 
of us do all the time. So far this morning, even before I opened 
my laptop, I flipped a light switch to turn on and off my bath-
room lights, pushed a lever to instruct my toilet to flush, and 
pressed a button to tell my coffee grinder to grind some coffee 
beans. Each of these individual buttons or switches delivered 
a single instruction, “on” or “off,” “do” or “do not,” or, shall we 
say, “1” or “0,” to machines that each knew how to do exactly 
one thing: emit light, flush water, or grind coffee beans.

Code happens when you have a machine that’s ready to listen 
to not just one instruction, but very long sets of instructions, 
combining those “on” or “offs,” “1s” or “0s,” “dos” or “do nots” 
in practically infinite, seemingly magical combinations. And 
importantly, the difference between code and mere language 
is that code should always produce the same output given the 
same input. When I run lines of code, even on a different com-
puter than the one I wrote them on, they should always produce 
the same result.

By this definition, the first code may have been written by Ba-
sile Bouchon in 1725, more than a century before the invention 
of the electrical generator.1

Basile Bouchon was a French weaver, at a time when pat-
terned silks were the height of luxury and of fashion. Before 
Bouchon, it took several weeks of painstaking and tedious labor 
(tying knots in the loom strings) just to reconfigure a loom to 
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the selected pattern.2 As historian Abbot Payson Usher wrote in 
1929, this “work was heavy, the hours long, and serious physical 
disorders were developed by this most wretched class of silk 
workers.”3

Bouchon’s solution? The first punch card, or, more spe-
cifically, a very long sheet of paper that would be “coded” by 
punching holes in the paper. This long sheet of paper was placed 
underneath a row of needles and gradually unspooled by the 
weaver. The holes (or lack of holes) in the perforated paper 
told the loom which needles to retract and which not to retract, 
which in turn changed the design of the fabric.

In practice, Bouchon’s loom didn’t work very well, and it was 
never widely used. But even at the time, other weavers could 
see that the idea held promise. It only took a few years for other 
people to start making improvements, notably by replacing the 
continuous roll of perforated paper with sturdier, more versatile 
punch cards. A few years after that, someone designed a loom 
that eliminated the need for a human to stand by to switch the 
punch cards, doing so mechanically instead.

Bouchon wasn’t famous in his own era, but another man, 
Joseph Marie Jacquard, became rich and famous in the early 
1800s for improving upon Bouchon’s design, combining it with 
other innovations to create what became known as the “Jacquard 
Loom.”4 Emperor Napoleon Bonaparte was so impressed with 
Jacquard that, after personally visiting him, he awarded Jac-
quard an annual pension and a bonus for every Jacquard Loom 
manufactured in France.5 Jacquard became a household name, 
but Bouchon was reintroduced to history books when British 
academic Reverend Robert Willis wrote that “the merit of Jac-
quard is not . . . that of an inventor, but of an experienced work-
man, who by combining together the best parts of the machines 
of his predecessors in the same line, succeeds for the first time 
in obtaining an arrangement sufficiently practical to be gener-
ally employed,” giving the credit specifically to Bouchon for the 
use of perforated paper to program the loom.6
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The thread from Bouchon’s first lines of code to the Jacquard 
Loom to the code that controls your computers and smartphone 
is clear and direct. Ada Lovelace and Charles Babbage, who laid 
out the blueprint for the first computer in 1837 (they called it the 
“Analytical Engine”), referenced the Jacquard Loom to explain 
how computers would work, and Charles Babbage even owned 
a silk portrait of Jacquard that had been coded on a Jacquard 
loom.7 A full working model of Babbage and Lovelace’s machine 
was never built—it would have been roughly the size and weight 
of a train locomotive, and powered by its own steam engine—
but modern engineers believe that the Analytical Engine would 
have been quite powerful, albeit bulky, very slow, and without 
much storage capacity.8 In fact, Alan Turing pointed out that 

Basile Bouchon’s loom, which was controlled by perforated paper tape, an early 
predecessor of the punch card.
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Charles Babbage’s Analytical Engine could do the same set of 
essential tasks that any 1950s computer could complete.

In that paper, Turing explained what made a computer a com-
puter: the ability to perform absolutely any computation. As 
long as your machine could do that, it didn’t even need to use 
electricity, like Babbage and Lovelace’s mechanical invention. 
The machine did need to have three things: a “store” or memory 
to keep track of data, an “executive unit” to carry out operations, 
and a “control” or set of instructions—in other words, code. Both 
the data in memory and the code could be described, Turing 
pointed out, as a set of numbers (0s and 1s), just like the bi-
nary of Bouchon’s perforated paper roll. (In the same article, 
Turing defined what came to be known as the Turing Test or 
the “imitation game”—the idea that you could test the quality 
of an artificially intelligent computer by seeing if it could trick 
someone into believing it was a human.)

I said, at the beginning of this essay, that Basile Bouchon 
wrote the first lines of code if you accepted my definition: that 
code is a set of instructions, given to a machine capable of ac-
cepting long sets of instructions, that produces a consistent 
output. But some, including Turing, might say that definition 
is insufficient—or, as modern computer scientists would put it, 
Bouchon’s machine and code weren’t “Turing complete.”

And why? Well, the loom wasn’t a computer, in the sense that 
the loom or the punch cards couldn’t compute anything. In his 
1950 paper, Alan Turing used the term “universal machine” to 
describe any machine with the same capability as Lovelace and 
Babbage’s invention: the capability to compute anything that it is 
possible to compute. “The existence of machines with this prop-
erty,” Turing wrote, “has the important consequence that, con-
siderations of speed apart, it is unnecessary to design various 
new machines to do various computing processes.”9 In other 
words, since Bouchon’s loom didn’t compute anything, it wasn’t 
a computer, so his first perforated paper tape wasn’t really code. 
Computer scientists now use the term “Turing complete” to 
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describe computers and programming languages that meet the 
standards of Turing’s universal machine: virtually all comput-
ers and programming languages today qualify.

If you’ve written code, maybe in a computer science class, or 
maybe at work, it may not have always felt like you were com-
puting numbers, especially if you just wrote a program to print 
“Hello, World.” But underneath it all, even that simple line 
of code, if executed on a computer, did involve a computation. 
Everything your computer or smartphone does boils down to 
a set of math problems: even displaying graphics is a matter of 
computation. Maybe, if you’re a gamer, you’ve bought a graphics 
card (also called a GPU) for your computer, so your games would 
render more quickly—the difference between a GPU and a CPU 
is just the types of computations each kind of chip can execute 
more quickly. GPUs are best at complicated math problems with 
a lot of steps you can do simultaneously, since those are the 
types of math problems used to render graphics, while CPUs 
are best at complicated math problems whose steps need to 
be done sequentially. By the “Turing completeness” definition 
of a programming language, Bouchon’s punch cards weren’t 
code. By this definition, even HTML isn’t code, since you can 
use HTML to design websites, but not to do most computations.

Basile Bouchon may have invented the use of “binary” to 
give long sets of instructions to a machine, but he didn’t realize 
the invention’s full revolutionary potential. In 1889, a German 
immigrant, Herman Hollerith, wrote his doctoral thesis at Co-
lumbia University explaining how to use punch cards to more 
quickly compute data. His system was used by the US Census 
Bureau to complete the 1890 census, cutting down the required 
amount of computation time by at least six years. The company 
that Hollerith founded, the Tabulating Machine Company, even-
tually became known as IBM.10 Scholars debate the extent to 
which Hollerith borrowed directly from the Jacquard Loom, but 
IBM, for its part, does give Jacquard partial credit for inspiring 
Hollerith’s design.11
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Just as you could argue that Bouchon’s machine instructions 
were too simple to be considered code, you could also argue the 
first lines of code were written before Bouchon. Other people 
“programmed” or “coded” machines before his birth, especially 
to make music. The Banu Musa brothers, who lived in Baghdad 
in the eighth century, developed an “automatic flute player” 
powered by a waterwheel, believed to be the first instrument 
capable of playing a preprogrammed melody, and probably the 
first programmable machine in general. Bouchon himself came 
from a musical background: his father was an organ maker.

It’s probably no coincidence that Bouchon had exposure to 
the construction of musical instruments from a young age, but 
the connections among looms, musical instruments, and early 
computers run even deeper. Just as Herman Hollerith of IBM 
drew inspiration from weavers, he also probably learned from 
the player pianos that were commonplace in American homes 
during Hollerith’s era. These player pianos used a perforated 
roll of paper to play a melody, not dissimilar from how perfo-
rated paper dictated the patterns on Bouchon’s looms. At their 
peak in the early 1920s, player pianos, capable of performing 
automated tunes without human control, outnumbered conven-
tional pianos by nearly 50 percent.12 In a sense, the patterns of 
fabric and the verses of songs became the “loops” in modern 
computer code.

Code as holes in paper deserves a special spot in this book be-
cause of how important punch cards became as a way of repre-
senting both data and the code used to manipulate data. Binary, 
or the representation of data using 0s and 1s, is still the basic 
building block of all code and all computing: when computers 
became electronic, these 0s and 1s reflected the presence or 
absence of an electric signal.

The punch card, it turns out, is all you need to represent any 
number, any poem, any song, any computer program: practi-
cally anything at all.



2
Monte Carlo Algorithms
Random Numbers in 
Computing from the  
H-Bomb to Today
Benjamin Pope

The first code run on the first modern programmable computer 
remains a classified secret, but we know what it did: the ENIAC1 
in Philadelphia took 20 seconds to confirm to American scien-
tists, only months after devastating Hiroshima and Nagasaki 
with nuclear fission weapons, that a much more powerful hydro-
gen bomb was possible. The superpowers’ arms race demanded 
ever-more-powerful computers to calculate designs for weap-
ons, and the algorithm of choice was the Monte Carlo method.

The US nuclear weapons program attracted the eccentric and 
talented to its base in Los Alamos, New Mexico, none more so 
than Edward Teller. Born into a Hungarian Jewish family and 
educated in Germany, he had escaped after the rise of Hitler 
and settled in the United States. He was so passionate about 
developing fusion weapons that he took pride in what Soviet 
propaganda called him: “the cannibal.”2

His recruits to the nuclear program included a married cou-
ple: Marshall and Arianna Rosenbluth, who had both earned 
their PhDs at only 22 (at Chicago and Harvard, respectively) and 
met as postdoctoral fellows at Stanford. Unlike Teller, their son 
Alan remembers that they “thought of their weapons work as a 
kind of national service” but were politically liberal and would 
later become advocates for arms control.
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Teller’s colleague Stanislaw Ulam liked to gamble. While re-
covering from illness in 1946, he thought about card games:3 
How often will the house win in the notoriously hard Canfield 
solitaire? There are far too many possibilities to calculate for 
52 cards—but Ulam realized he could get a fair approximation 
by shuffling the cards a hundred times and counting the rate 
of success.

This gave him and his colleague John von Neumann the solu-
tion to a more important problem: calculating how neutrons 
would flow in a nuclear warhead. You could follow a represen-
tative sample of simulated 100 neutrons as they collide with 
atoms, deciding using computer-generated random numbers 
what happens next: How far do they fly? Do they bounce off an 
atom, or are they absorbed and lost, or do they split the atom 
and form more neutrons? If these initial 100 increase in num-
ber on average, you have a runaway nuclear reaction. Using 
ENIAC, this calculation would be fast enough to design ever-
more-powerful weapons. Their colleague Nick Metropolis sug-
gested a name for using random numbers to guide a simulation: 
the Monte Carlo method, after the world’s most famous casino, 
where Ulam’s uncle used to gamble.

A central question in simulating the H-bomb was the equa-
tion of state, which describes how matter responds to changes 
in temperature and pressure. Marshall recalled working “60 
hours or more per week trying to understand the physics of the 
interactions of radiation and matter under these extreme con-
ditions.”4 They decided to tackle a related problem: the melting 
of a solid into a liquid. Directly computing the motions of hun-
dreds of molecules, let alone trillions, would be impossible. But 
if you assume that molecules jiggle around at random, you can 
use Monte Carlo method to calculate the properties of a liquid 
based on the statistics of this random jiggling.

Teller suggested you could generate a random sample of 
configurations of molecules consistent with a given energy and 
temperature and average over them to get quantities like den-
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sity and pressure. In physics, the relative probability of finding 
a configuration of molecules at a temperature τ with an energy 
E is given by a “Boltzmann factor” exp(E/τ)—so you could make 
this fast by sampling only high-probability configurations.

Marshall realized that if you take each molecule and move 
it about in a prescribed way—a “Markov Chain,” in which each 
state is produced by a rule depending only on the last state—
then you could prove this would generate a whole chain of snap-
shots of molecular arrangements, one after another like frames 
of a movie and statistically distributed according to their true 
probability. This way, you could simulate a whole range of likely 
configurations of molecules that would contribute significantly 
to their chemical behavior and estimate the liquid’s properties 
just based on these, without worrying about extremely improb-
able arrangements (say, piling them all in a corner). With this, a 
new approach to computational physics was born, and the team 
were in the right place to implement it. Although the MANIAC5 
computer at Los Alamos was in great demand, its director, Nick 
Metropolis, let Arianna and Marshall have the midnight shift, in 
return for being lead author of their publication. Edward Teller’s 
wife, Augusta “Mici” Teller, attempted a first version of the code, 
but it was completed by Arianna, who was by that point expert 
in programming the MANIAC. The Rosenbluths then worked 
together extensively on interpreting the scientific results. The 
final paper, “Equation of State Calculations by Fast Computing 
Machines,” lists the authors as Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller (sometimes called MR2T2), and the algo-
rithm therefore became known as the Metropolis algorithm—after 
the only one who didn’t contribute directly to its development. 
The many variants of the Metropolis algorithm are now simply 
known by their core elements, under the umbrella term Markov 
Chain Monte Carlo.

The essential elements of MCMC are all present in the MR2T2 
paper. They tracked the x and y positions of 224 spherical mol-
ecules in a 2D square box.6 They then picked one molecule, 
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generated random numbers ξ1 and ξ2 between −1 and 1, and 
proposed moving the positions:

x → x + aξ1
y → y + aξ2.

Then they calculated the energy E using the formula appropri-
ate to the forces included (such as electrostatic repulsion), and 
another random number ξ3 between 0 and 1. If the move re-
sulted in a lower total energy, it was always accepted, but higher 
energy states were also accepted with a small probability:

ξ3 < exp(ΔE/τ).

Because the algorithm is able to take a random walk to explore 
less-probable regions, it can explore the full range of states of 
a real liquid with the correct probabilities for each state. This 
algorithm remains one of the main ways that the properties of 
materials are calculated, a cornerstone of condensed-matter 
physics—but the main modern applications of MCMC were 
barely envisioned at Los Alamos. In the emerging field of data 
science, the algorithm touches everything from the Big Bang 
theory to social media surveillance.

In 1970 the Canadian mathematician W. K. Hastings realized 
the MCMC algorithm, so good at randomly sampling configura-
tions of molecules compatible with physical parameters, could 
be used to sample scenarios compatible with observed data in 
any field of science.

Suppose you have many imprecise measurements of the po-
sition of a comet over time—you don’t just want to know the orbit 
that best fits the data, but the full range of orbits that are consis-
tent with it. This way, you can determine the margin of error for 
landing a probe—or find out the probability that it will strike the 
Earth. MCMC allows you to take data and explore the posterior 
distribution of models conditioned on the data. Instead of the xy 
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positions of molecules, you instead take a set of model parame-
ters (the orbital eccentricity and orientation of the comet) and 
do a random walk, just like before. You accept a proposed step if 
it makes the model more consistent with the data, or you accept 
the step with nonzero probability if the model is less consistent. 
By focusing on probable scenarios but also including less likely 
ones, you can explore the range of possibilities.

With Moore’s Law offering ever faster computers, it has been 
possible to use MCMC for increasingly complicated models and 
volumes of data. Since 1990, hundreds of versions of MCMC 
(such as “Stan,” named after Ulam) have made it straightfor-
ward not just to fit models to data—any optimizer can do that!—
but to quantify our uncertain knowledge. In my own field of 
astronomy, MCMC is how you answer questions such as: Are 
the data really precise enough to say this? Do supernovae in 
distant galaxies imply the existence of dark energy? Is the uni-
verse flat? With MCMC, the Nobel Prize–winning discoverers 
of gravitational waves could carefully measure the masses of 
colliding black holes. Insurers use MCMC to assess financial 
risk, and Nate Silver used it to predict from murky polling data 
that while Hillary Clinton was favored to win the 2016 election, 
Donald Trump still had a good chance.

The last of the MR2T2 team, Arianna Rosenbluth, died of 
COVID-19 complications in Los Angeles just after Christmas 

A new comet is discovered heading toward the Earth—and you only have a few uncer-
tain data points to determine its trajectory. Using the Markov Chain Monte Carlo algo-
rithm, you can fit many models to these data, finding that some hit the Earth, and some 
don’t. MCMC quantifies uncertainty in models like this across every field of science.
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2020, even as epidemiologists around the world applied MCMC 
to infer COVID infection rates from incomplete data. Like one 
of her simulations, her career traces a representative sample 
of the triumphs and tragedies of her discipline. As part of the 
very first generation of computer programmers, she was also 
one of the first women pushed out of the field. When she was 
working (painstakingly, in assembly language), coding was seen 
as women’s work, but over time the field came to be increas-
ingly dominated by men. Despite her auspicious start, Arianna 
retreated from physics to care for her children, while Marshall 
continued on to an acclaimed career studying nuclear fusion. 
They divorced in 1978. Arianna never wrote another paper after 
those days at Los Alamos. In her later years she declined to be 
interviewed about her career, and her contribution was not 
widely known even to experts. Computer science is only now 
beginning to recognize the achievements of the early women 
pioneers, and Arianna Rosenbluth must be counted among the 
most important.



3
Jean Sammet and the Code 
That Runs the World
Claire L. Evans

Jean Sammet wore horn-rimmed glasses, stood ramrod 
straight, and looked the world dead in the eye.1 Born in 1928, 
Jean was a math whiz. The Bronx High School of Science didn’t 
take girls, but she excelled at her public school and eventually 
at the University of Illinois, where she earned a master’s degree 
in mathematics in 1949. But when she graduated and scanned 
the classified ads for a job, she was quickly disheartened. In the 
1950s, job listings were still separated by gender. On the wom-
en’s side were openings for clerks, teachers, and housekeepers. 
Jean flipped the page and scanned the job listings for men.

Her strategy worked. By 1955, Jean was working as a mathe-
matician in upstate New York, at Sperry Gyroscope, a company 
that produced navigation equipment and radar systems for the 
US Navy. One day, Jean’s manager asked her, “By the way, do 
you know we’re building a digital computer?” She was familiar 
with analog computers—she’d even trained on a punch-card 
accounting machine once, as a trainee actuary—but she spent 
her days at Sperry working on mathematical analysis for sub-
marines and didn’t quite know what digital computing meant. 
The manager said, well, digital computing was the wave of the 
future. “Do you want to be our programmer?” he asked.

She blinked. “What’s a programmer?”
“I don’t know,” he responded. “But I know we need one.”2
That was enough for Jean. As a woman, she figured she’d 

never be allowed on a submarine. But a digital computer was 
another thing entirely.3
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“Programmer” was a job so new the classified ads never listed 
it at all. There were no books on the subject, no tutorials, and no 
instruction manuals. The new computing machines were the 
first of their kind. More often than not, their programming had 
come as an afterthought; the engineers on the Sperry project, 
Jean remembered, “somehow thought that machine was going 
to run itself.”4

Jean bootlegged herself an engineering education as she 
learned to toggle binary programs into the computer by hand. 
Even the basic loader program took three days to enter into the 
machine. But programming, as it turned out, was like doing 
jigsaw puzzles. Jean delighted in seeing all the pieces come 
together and work.5 She became the head of a growing depart-
ment, running a shop of new hires, and when Sperry Gyroscope 
merged with one of its competitors, Remington Rand, she met 
Remington Rand’s senior programmer, Grace Hopper. Hopper—
who liked to call herself “the third programmer of the first 
computer”—had made a similar blind leap from mathematics 
to programming after being enlisted, by the Navy, to run the 
Mark I computer at Harvard during the Second World War. Like 
Jean, she’d had to teach herself the job.

The two became close. Though they were decades apart in 
age, they faced similar problems at work—both technical and 
social. Whenever she could, Jean would take the afternoon train 
to Philadelphia from her office in Great Neck, New York, to run 
programs on Sperry Rand’s UNIVAC I computer, serving as a 
beta-tester in Hopper’s programming division.6 Jean had writ-
ten some basic code for the Sperry computer, but Hopper in-
troduced her to the idea of high-level programming languages. 
Only a few years earlier, Hopper had created a new intermediary 
between human and machine: a compiler, a string of code capa-
ble of compiling previously written computer subroutines into 
more sophisticated programs. It was one of the first programs 
capable of writing itself, a quantum leap in the field—and a life-
saving convenience for overworked programmers.
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Before software was an off-the-shelf product, programmers 
like Hopper and Sammet were responsible for creating, debug-
ging, and maintaining custom software installations for each 
client. Most everything was done in tedious machine code. And 
once completed, programs were essentially inscrutable to any-
one but the “shadowy priesthood”7 who had created them. At 
conferences, Hopper had been pushing the idea of “automatic 
programming”: the notion that programmers should be able to 
step above the machine level to code with a higher level of ab-
straction. Proponents of automatic programming were known 
in their industry, somewhat derisively, as “space cadets.”

After the Second World War, the electronic computers that 
had been developed in secret to run ballistics calculations were 
put to work in calculation-intensive industries like insurance 
and aviation, as well as in the payroll departments of large cor-
porations and government agencies. As a result, the computing 
industry exploded. New machines proliferated, designed by 
companies like IBM, Sperry Rand, Sylvania Electric Products, 
and Honeywell. Not only were there not enough qualified pro-
grammers to make software for all the new computers, there 
were too many computers to make software for. This period is 
known by historians as the “software crisis.” It was interpreted 
as an industry-wide lack of programming talent, but it was also 
a crisis of standards. Computing needed a shared vision, and 
a shared language, for the future. Jean Sammet would play a 
major role in shaping that language.

In the late 1950s, a programmer at the Burroughs Corpo-
ration named Mary K. Hawes saw the need for a single shared 
programming language that could be used on any machine—an 
interoperable language, created with the lay user in mind. The 
first meeting on the subject was held at the University of Penn-
sylvania Computing Center in April 1959; the small group of 
experts in attendance, including Hopper, outlined their goals 
for an industry-wide effort and put together a list of partici-
pants they wanted to enlist in the project. The second meeting, 
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hosted by the Department of Defense—which operated 225 
computing installations across the country and was beginning 
to develop a programming language of its own, AIMACO—was 
held the following May, at the Pentagon, and was attended by 
representatives from seven government organizations and 10 
computing manufacturers, including Burroughs, GE, Honey-
well, IBM, Sperry Rand, and Sylvania Electric Products—by 
that time, Jean’s employer. The Department of Defense gave 
the group a word-salad acronym worthy of any military opera-
tion: CODASYL, or the Conference on Data Systems Language.

In order to keep up with their rapidly growing industry, 
CODASYL needed to move quickly. Several companies were 
already working on their own programming languages; these 
efforts needed to be nipped in the bud. At the same time, the 
task was monumental, potentially requiring years of devel-
opment. The group settled on a tiered approach, delineating 
three committees. The Short-Range committee would exam-
ine existing languages and suggest an initial “short-range com-
posite approach” drawing from the best of those languages. An 
Intermediate-Range committee would build on those findings, 
leaving the Long-Range committee with plenty of time to de-
velop a finished product.

This plan went sideways almost immediately. As the Short-
Range committee began work on its initial specifications, it be-
came apparent that any interim solution they created would be 
permanent. In those days, it was both costly and time-consuming 
to implement a new programming language: Grace Hopper ball-
parked nearly 50 “man-years” and $945,000—worth close to $9 
million in 2021—for Remington Rand alone to make the switch.8

In order to meet the six-month deadline for their official 
findings, the Short-Range group decided to appoint a smaller 
subcommittee from within their ranks to finalize the work. Jean 
Sammet volunteered immediately. (“She was not one to sit on 
the sidelines,” remembers Dr. Tim Bergin, a friend and long-
time colleague of Sammet’s, and “if there was no leader in the 
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room, she’d stand up.”9). The final six-person subcommittee—
which also included Gertrude Tierney from IBM—spent two 
weeks holed up in a New York City hotel, pulling all-nighters, 
before finishing their specifications for an interim language in 
November of 1959. It became known as the Common Business-
Oriented Language, or COBOL.10 Betty Holberton, a former 
ENIAC programmer, checked the new language line-by-line be-
fore the Department of Defense printed the final specifications 
for COBOL that following January.

Thanks to some clever politicking by Hopper, the Navy ad-
opted COBOL as a standard, forcing its manufacturing con-
tractors to build machines that could run the language. And 
soon the entire computing industry reoriented itself toward 
the new language, which became so entrenched in computing 
infrastructure that the Long-Range Committee was never even 
formed. By 2000, 80 percent of all code on the planet was written 
in COBOL. Even today, almost half of American banking systems 
run COBOL, and 95 percent of all ATM transactions rely on it 
to function.

COBOL is not a beloved programming language. The Dutch 
computer scientist Edsger W. Dijkstra famously called teach-
ing COBOL “a criminal offense.”11 These days, scarcely anyone 
teaches it, which means there is a global shortage, yet again, 
of programmers. Although sensitive infrastructure worldwide 
relies on COBOL to function, its ongoing maintenance is con-
tinually deferred due to lack of resources and political appeal. 
During the early days of the COVID-19 pandemic, state unem-
ployment systems built on COBOL were strained to the brink, 
with few qualified people to fix them. As the technology histo-
rian Jeffrey R. Yost points out, in our technoculture, “Innovation 
is revered, and maintenance is not.”12 When we ignore the vital 
importance of maintenance, we are blind to what actually holds 
our world together. We are blind, also, to the maintainers.

Jean became the first woman president of the Association 
for Computing Machinery (ACM). She wrote what is widely 
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considered to be the textbook on the history and fundamentals 
of programming languages. In 1966, seven years after the first 
CODASYL gathering, she presented a paper to the ACM in which 
she proposed that programming languages would someday dis-
appear, allowing programmers—and lay users—to communi-
cate with computers using words. At the time, demand for pro-
gramming talent far outpaced supply. Sammet prescribed two 
remedies: “to make the professional programmers themselves 
more productive by giving them better tools,” like compilers, 
or to eliminate professionals entirely, making “the computer 
available to everyone who has a problem he wishes to solve.”13

As utopian as this may have seemed in 1966, in the decades 
that followed, Jean’s predictions came into focus. Today, we 
do have better tools; we speak with machines without a sec-
ond thought. Much of this is due to a foundation built by Jean 
Sammet and her peers, which proved hardier than she could 
ever have imagined. When she was 72 years old, Jean watched 
programmers around the world band together to shepherd her 
work into the new millennium. COBOL survived the Y2K crisis; 
it survived Jean. It survives still.



4
Spacewar
Collaborative Coding 
and the Rise of 
Gaming Culture
Arthur Daemmrich

During the winter of 1961–1962, a loosely connected group of 
young MIT employees, students, and associates coded the space 
battle simulator Spacewar and in effect launched gaming cul-
ture.1 Spacewar is easy to learn but challenging to master, as I 
have discovered while playing it on a variety of platforms. In it, 
two players control spaceships—one the needle and the other 
the wedge—and engage in a dogfight. In addition to trying to 
shoot each other, players face several challenges: fuel and pho-
ton torpedoes are limited, multiple hyperspace jumps increase 
the probability of their ship exploding, and misjudging a gravity 
well in the center leads to quick immolation.

Spacewar came about through the fortuitous alignment of 
eight young computer-savvy individuals, a leading-edge main-
frame, and an environment supportive of risk-taking and col-
laboration. It started with an idea formulated in the summer of 
1961, when Steven Russell, Wayne Wiitanen, and Martin Graetz 
rented an apartment together in Cambridge, Massachusetts. 
They jokingly named themselves the “Hingham Institute Space 
Warfare Study Group” and envisioned taking part in space bat-
tles similar to those in their favorite science fiction books and 
low-budget films.
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The opportunity to go from abstract concept to an interactive 
space game came in September 1961, when Digital Equipment 
Corporation (DEC) gave a PDP-1 to MIT’s Electrical Engineering 
department. DEC referred to it as a “programmed data proces-
sor” to differentiate from custom built “computers” that filled 
entire rooms and cost $1 million or more.2 The PDP, by contrast, 
sold for $120,000 and fit in a footprint of 17 ft2. MIT’s PDP-1 
came under the supervision of Jack Dennis, then an assistant 
professor in Electrical Engineering. It was installed in Building 
26, which famously housed an IBM 7090 (accessible only to 
trained operators) and the TX-0, an early fully transistorized 
computer built by the military-funded MIT Lincoln Laboratory. 
When a cathode-ray tube display was added and Dennis offered 
members of the Tech Model Railroad Club (TMRC) access to the 
PDP-1 in exchange for their creating an assembler, the stage 
was set.

Coding Spacewar proceeded in fits and starts. Russell, who 
had worked on LISP projects for the mathematician John Mc-
Carthy (cofounder with Marvin Minsky of the MIT Artificial In-
telligence Lab), agreed to code the much-discussed “demon-
stration” of the PDP-1’s capabilities. But as his nickname 
“Slug” might suggest, he delayed starting, citing a lack of key 
mathematical tools. Alan Kotok secured them from DEC and 
presented them to Russell with a flourish at a gathering of the 
TMRC members: “Here are the sine and cosine routines. Now 
what’s your excuse?”3

Russell then worked out the game’s core features, notably 
the two spaceships, with thrust and firing from switches on 
the PDP-1’s front panel. Ships leaving one side of the screen 
returned on the other. He also added a bright star in the center 
and random other stars in the background.

MIT undergrad Dan Edwards suggested the star should exert 
gravity.4 The gravity function, however, took a toll on the pro-
gram’s execution speed. So Edwards pioneered a “run-time 
compiler trick” that loaded the spaceship outlines when the 
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program was initialized, speeding up the main program loop.5 
Both ships accelerated toward the star in a realistic manner, 
making the game more challenging and setting the stage for 
strategies such as a slingshot maneuver to come up behind an 
opponent.

Steven Piner, an MIT student and member of TMRC, wrote 
a text editing program that made revisions to Spacewar and 
subsequent programming of the PDP-1 considerably easier. 
Jokingly named Expensive Typewriter since it mimicked the 
function of a $395 IBM Selectric typewriter on a $120,000 
computer, Piner’s program has since been celebrated as the 
first word processing program written for a general-purpose 
computer.6

Robert Saunders saw players jostling for space in an area 
meant for a single operator, became concerned about damage 
to the PDP-1, and built custom controllers. Made of wood with a 
Bakelite top, each had a firing button and two small levers, one 
for right-left rotation and the other for acceleration when pulled 
back and hyperspace when pushed forward.7

Peter Samson, an MIT undergraduate and member of TMRC, 
wrote a program for the background stars, as well as assembler 
code to generate the plot. Samson’s star map displayed some 
1,000 stars including major constellations. It also gradually 
shifted over time to mimic the view from earth. Samson’s con-
tribution was nicknamed the Expensive Planetarium.

Martin Graetz, who had been enrolled at MIT and then held 
various programming jobs at Harvard and MIT, coded hyper-
space as an escape option. When initiated, the spaceship dis-
appeared with a “Minskytron signature,” a curved series of dots 
akin to a Bohr atom.8 Considering it a bit of a cheat, Graetz in-
tentionally made it unreliable with a limit on jumps and the risk 
of reappearing in the sun.

By March 1962, Spacewar was for all intents and purposes 
finished. Both word and copies of it spread quickly across the 
academic computing community as programmers carried or 
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mailed the program on PDP-1 paper tape to other computer 
labs. Russell famously brought the game with him when he 
moved to California in mid-1962 to work at the Stanford Artifi-
cial Intelligence Laboratory.

The game also was distributed by DEC with PDP-1s sold after 
1962. Engineers used it to test PDPs prior to shipping and left it 
in core memory to demonstrate that the computer worked once 
installed. DEC even published a small brochure in 1963 that de-
scribed Spacewar as a demonstration of the PDP’s capabilities, 
anticipating befuddled responses to seeing a game on a device 
purchased by corporations or universities for process control, 
data analysis, and other nongaming purposes.9

As a game, Spacewar was fun to play. As a test of the PDP-1, 
it demonstrated the computer’s processing speed, graphics ca-
pabilities, and memory. As an innovation, it symbolized a shift 
from computing being in the hands of priest-like technicians 
operating massive computers to enthusiasts programming and 
hacking, sometimes for the sheer joy of it.

In 1971, a public version of Spacewar was set up by recent 
Stanford alum Bill Pitts and his friend Hugh Tuck when they 
purchased a PDP-11 for $12,000 and installed it into two arcade 
cabinets. Each had two mounted joysticks, and play cost ten cents 
(with three games for a quarter). The game was nearly identical 
to Spacewar, though it was called Galaxy Game. It remained in 
the Stanford Tresidder Memorial Union for eight years.10

Several months later, Nolan Bushnell and Ted Dabney, co-
founders of Syzygy Engineering (renamed Atari in 1972), devel-
oped and installed the arcade game Computer Space.11 In it, a 
single player operated a rocket that battled a pre-programmed 
pattern of two saucers with a fixed star map background. 
Though often described as derivative of Spacewar, it had clear 
differences. In Computer Space, the player competes against the 
computer, the game runs with a countdown timer, and there is 
no sun with a gravity well in the center of the screen. The game 
worked, but Computer Space was expensive to build, and play-



Spacewar  /  35

A selection of code from Spacewar’s Minskytron “Hyperspace signature,” in which a 
player sends their ship into hyperspace, often as a last resort.

ers found gameplay difficult due to its programming and the 
configuration of the controls. It was displaced by other games 
during the 1970s, starting with Pong in 1972. By the time Space 
Invaders took off in 1979, the arcade run for games directly 
inspired by Spacewar had passed.

In 1978, Atari released a Space War game for its increas-
ingly popular Video Computer System (renamed the Atari 2600 
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in 1982) home gaming platform. In the clunky Atari version, 
players could choose among some 17 game variants; the first 
seven were low-quality clones of the original Spacewar, while 
the next 10 were single or two-player games involving docking 
with a “space module.”

While neither Computer Space nor the Atari version from 
1978 were especially popular, Spacewar did have some linger-
ing influence on successful video games of the late 1970s and 
early 1980s, notably Asteroids, Defender, and Missile Com-
mand. A collapse of the video game industry in 1983 followed 
by a new era of games featuring characters and more complex 
gameplay seemed to signal an end to Spacewar’s run.

But then came emulation. Starting in the mid-1990s, a com-
bination of increased desktop computing power, faster Internet 
data transmission, and popularity of “retro” gaming gave rise 
to emulators.12 Spacewar attracted several detailed emulations, 
notably Norbert Landsteiner’s “Masswerk” project. Among 
other details, Landsteiner recovered source code for the hy-
perspace Minskytron signature and analyzed of the original 
Spacewar code in detail.13

In 2005, a team of volunteers supported by the Computer 
History Museum restored a PDP-1 and put it on display so that 
museum visitors could play Spacewar.14 Russell and Samson 
were themselves part of the attraction, volunteering regularly 
throughout the 2010s and early 2020s. Russell observed, “there 
are no outstanding user reports of crashes. There are no user 
complaints outstanding. It’s fifty years old, it’s still running, and 
support is still available.”15

Historically, the Spacewar code itself was never truly final. 
While Russell identified a “finished” version in 1962, it was 
modified with each port to a new system. Rewrites in the 1960s 
with the release of each DEC PDP model involved hours of cod-
ing, and programmers often took liberties to modify the game. 
Versions from the 1970s and 1980s suffered from poor graphics 
and uninspired gameplay, but also included some creative new 
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features. By contrast, the contemporary emulated versions have 
focused on the graphics, backdrop, and gameplay of the 1962 
version. With no way to go back in time to MIT with a freshly 
installed PDP-1 and people standing around coding and playing 
Spacewar when they are supposed to be doing computing’s “real 
work,” the emulations are technical, not social in nature. But it 
was the social process of coding that created a uniquely inno-
vative environment for computing in the 1960s and 1970s. Not 
an environment without flaws, it must be said—most notably 
around issues of gender and race since women and people of 
color were absent or marginalized.16

Spacewar had several unique features that contributed to its 
success but were irreproducible in subsequent programming 
history. First, it was coded through a voluntary and largely asyn-
chronous process. The full group was never together in one lo-
cation at the same time until a 2018 retrospective at the Smith-
sonian Institution.17 Second, for about a decade, the first time 
most people saw Spacewar was also the first time in their lives 
that they saw an interactive graphic computer game. Although it 
was not the first computer or video game, previous demonstra-
tion projects like Higinbotham’s oscilloscope-based Tennis for 
Two were unknown to most audiences. Third, the coders had no 
commercial aspirations associated with the game; it was public 
domain and predated intellectual property disputes regarding 
copyrights and patents on software.

Yet, like a surprising number of other programs, the Space-
war code lives on far beyond its inventors’ expectations and 
even the expected operational lifespan of its host machines. 
For programs such as COBOL-based unemployment software, 
long-term use demonstrates the robustness of code but also 
failures to invest in new systems. For a program like Spacewar, 
long-term use demonstrates the innately human joy of play and 
the desire of several generations of coders to preserve and cel-
ebrate their own history.



5
BASIC and the Illusion 
of Coding Empowerment
Joy Lisi Rankin

During the first half of 1964, two college-age White men, John 
McGeachie and Michael Busch, devoted hours to computer pro-
gramming. So much time, in fact, that McGeachie was known as 
225, short for the GE-225 mainframe computer for which he was 
responsible, and Busch was known as 30, short for the GE Da-
tanet-30 computer that he programmed. They were students at 
Dartmouth, an elite, overwhelmingly White, Ivy League college 
that admitted only men as undergraduates, and they were coding 
a new computing network. In the early 1960s, McGeachie’s and 
Busch’s access to technology was extraordinary.

In the 1960s, most mainframe computers ran on batch pro-
cessing. Programs were communicated to the machine through 
inputs known as keypunch cards. Holes punched in the cards 
communicated numbers, letters, and symbols to the computer. 
One program often consisted of many cards. At the time, man-
agers sought to keep computers running as much as possible—
they were quite expensive, and organizations wanted to get their 
money’s worth—so individual programs were grouped together 
and run in large groups, known as batches. For example, before 
Dartmouth acquired its own computer, Dartmouth professor 
Tom Kurtz made daytrips by train to use the MIT computer, car-
rying with him a box full of punched cards encoding his and his 
colleagues’ programs: economics models, physics simulations, 
mathematical equations.

Typically, a computer operator handled the batch input pro-
cess, as well as retrieving output such as printouts. As a result, 
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someone who wanted to create and run a computer program 
had no interaction with the computer system itself—and they 
could wait hours or days for the results of running their pro-
gram. This meant that the several thousand computers in the 
United States in the early 1960s were out of reach of nearly ev-
eryone, especially young people. Even the computers installed 
at universities were the province of a handful of faculty and 
graduate students. That would soon change.

The men at Dartmouth sought to challenge those limits of ac-
cessibility and batch processing. Math professor John Kemeny 
persuaded the trustees of the college that computing would be 
essential for Dartmouth students as the future leaders of Amer-
ican science and industry. His fellow math professor Kurtz 
envisioned a system where all students would be able to ac-
cess computers directly, without the delays and middlemen of 
batch processing. Kurtz also imagined that computing would 
be freely available to students as part of their college experi-
ence like unfettered library access—being able to browse and 
pull books directly off the shelves, rather than submit a ticket 
for someone else to retrieve a book. Finally, Kurtz believed that 
Dartmouth could accomplish this by building a time-sharing 
network.

Time-sharing was a new form of computing in the 1960s. 
Time-sharing sounds like computer users were signing up for 
blocks of computing time: Alice gets 15 minutes, then Bob gets 
15 minutes after Alice. But it actually means programming a 
mainframe computer to share its own time and computing re-
sources among multiple programs running at the same time. 
In effect, this meant that multiple people could sit at individ-
ual terminals connected to one mainframe and write, run, and 
debug their programs at the same time.

On the Dartmouth network, the individual terminals were 
teletypewriter terminals that had been developed for telegraphy. 
They looked like old-fashioned typewriters with large printers 
built in. A user saw their program as they typed on the teletype, 



40  /  CHAPTER  5

and the computer communicated results to them by printing on 
the teletype. Telephone wires connected teletypes to the main-
frame. This meant that terminals could be—and were—located 
far from the network’s mainframe, even in another state or half-
way across the country.

In May 1964, the Dartmouth College Time-Sharing Sys-
tem, the early personal and social computing network that 
McGeachie and Busch helped program, was launched with 
the simultaneous and successful run of two BASIC programs. 
BASIC was Beginner’s All-purpose Symbolic Instruction Code, a 
computing language developed at Dartmouth under the guiding 
principle that it should be easy to learn and use.

We don’t know exactly what those lines of BASIC code were. 
We don’t even know who ran the two programs.1 But we know 
now that for three reasons, those BASIC programs made Amer-
ica’s digital culture possible by spreading personal computing 
far, fast, and wide. The first and second reasons are fairly well 
known: the revolutionary accessibility of Dartmouth’s computer 
network and the radical ease of BASIC. The third reason is the 
most important, yet has been overlooked: how BASIC limited 
paths and possibilities.

Although building a computer network for undergraduate 
use was visionary in the 1960s, it would not have been nearly 
as successful if not for BASIC. BASIC and Dartmouth’s network—
and the rapid uptake of both—were inseparable. Computing 
languages prior to BASIC, such as COBOL and FORTRAN, had 
been developed for scientific, research, and business purposes. 
They were not known for being easy to learn or user-friendly. 
FORTRAN’s name came from FORmula TRANslation, reflecting 
its intended use for math and science computing.

In 1967, a student at Williams College created a program 
to score ski jump competitions—a challenging task that took 
a team of faculty and students over three hours by hand. The 
Williams student wrote his program in FORTRAN to run on 
an IBM. He spent 50 hours writing it. Meanwhile that same 
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year, an instructor at Vermont Academy created a program to 
score an entire ski meet—ski jump plus cross-country, down-
hill, and slalom. The Vermont instructor wrote his program 
in BASIC to run on Dartmouth’s network. He spent 10 hours  
writing it.

Compared with languages like FORTRAN or COBOL, BASIC 
was much faster and easier to learn. BASIC’s commands—
including IF-THEN, LET, PRINT, and READ—more closely resem-
bled everyday English. At Dartmouth, the combination of BASIC 
and the time-sharing network enabled students to quickly write 
and debug short programs, to experiment, to not be afraid of 
making mistakes, especially because they could see the results 
of their programs in seconds or minutes, not days or weeks. 
They used BASIC for their coursework and to write letters home. 
They produced computer art, simulated slot machines, and pro-
grammed and played games including chess, checkers, poker, 
and slalom skiing. By 1968, 80 percent of Dartmouth students 
regularly used the network and BASIC.

In that way, BASIC offered the illusion of coding empower-
ment. Consider the opening of this essay: sometime in May 
1964, two men sat in front of two teletypes at Dartmouth, and 
they successfully ran simultaneous BASIC programs on the col-
lege’s brand-new time-sharing network. The fact that they were 
young White men at an elite, predominantly White college, is 
central to this story, not incidental.

During the 1960s, many women and Black people worked in 
computing. Before World War II, a computer was a person who 
performed mathematical calculations. Computers worked in 
business and scientific settings, and when computers became 
machines, many women worked with computers: writing pro-
grams, translating business needs to computer applications as 
systems analysts, operating keypunches and mainframes, and 
filling similar roles across industries and academic disciplines.

A 1967 issue of Cosmopolitan magazine with the headline “The 
Computer Girls” celebrated computing as “woman’s work.” In 
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Hidden Figures, the journalist Margot Lee Shetterly documents 
how she “can put names to almost 50 black women who worked 
as computers, mathematicians, engineers, or scientists at the 
Langley Memorial Aeronautical Laboratory from 1943 through 
1980.”2 Likewise, the archivist Arvid Nelsen identifies at least 
57 Black Americans working in computing between 1959 and 
1996—just from the “Speaking of People” column in Ebony mag-
azine.3 As Claire Evans documents in her essay in this book, 
well-known women like Jean Sammet and Grace Hopper were 
not exceptions in early computing. Rather, they embodied the 
fact that early machine computing was a feminine field.

That shifted during the last decades of the twentieth century, 
when computing gained prestige in the United States and the 
United Kingdom by becoming the realm of affluent White men.4 
When Kemeny sold Dartmouth trustees on the idea that com-
puting was essential knowledge for the future American leaders 
whom Dartmouth was producing, he was associating the power 
of computing with both the Whiteness and the maleness of the 
college. Requiring all first-year students taking math courses to 
successfully write a BASIC program further cemented the re-
lationship among computing, Whiteness, affluence, and power 
at Dartmouth.

When other schools and universities around New England 
expressed interest in connecting to Dartmouth’s network during 
the 1960s, Kemeny and Kurtz happily acquiesced. In fact, the 
college even secured a National Science Foundation (NSF) grant 
to support connecting 18 high schools around New England to 
the Dartmouth network. Some high-schoolers regularly woke 
at four in the morning to use the network.

But access to the Dartmouth network was by no means equal, 
and it was generally young, wealthy, White men who benefit-
ted the most. Among the high schools connected to the Dart-
mouth network as part of the NSF Secondary Schools Project, 
the coed public schools—all predominantly White—had only 
40 hours of network time each week. By contrast, the private 
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schools—which were all male, wealthy, and almost exclusively 
White—had 72 hours of network time each week. In these years 
before the expansion of educational opportunities for Ameri-
can women, high school boys were still enrolling in many more 
math and science classes than high school girls. And it was in 
those math and science classes that they gained access to com-
puting. During this decade of the Civil Rights Movement, Ameri-
cans were reckoning with the myriad ways in which their public 
schools were separate but by no means equal. BASIC traveled in 
an American educational system that was already segregated 
by gender and race, so it ultimately amplified inequity in terms 
of computing access.

Kemeny and Kurtz decided to make BASIC’s source code 
freely available so that BASIC could be (and was) implemented 
across many different makes and models of computers and 
networks. BASIC programs were stored on networks, shared in 
handwriting or by word of mouth, and soon circulated in books 
and informal newsletters, including the popular People’s Com-
puter Company. BASIC originated the idea that programming was 
something that just about anyone could do. And the echoes of 
that unexamined assumption perpetuate the pernicious myth 
today that all you need to do to succeed in tech is learn how to 
code.5 BASIC made learning to code easy—but for whom?



6
The First Email
The Code That 
Connected Us Online
Margaret O’Mara

“A new command should be written to allow a user to send a 
private message to another user which may be delivered at the 
receiver’s convenience.” This suggestion appeared in a “pro-
gramming note” written by managers of MIT’s computer time-
sharing system sometime in late 1964 or early 1965, a docu-
ment so informal that no one bothered to affix the precise date 
at the top. Neither the authors, nor the young programmers who 
wrote the MAIL command in response six months later, realized 
the communication revolution they were helping to start.1

The first all-digital computers were designed to be machines 
of calculation, not correspondence. These mainframes were 
giant in every respect: of massive proportions, hugely expen-
sive, accessible only to the largest government agencies and 
corporations. As computer makers chased the commercial mar-
ket during the 1950s, they optimized for the very large batch 
data-processing operations demanded by corporate customers, 
designing for one user, and function, at a time.

The scale and singularity were incompatible with the needs 
of academic researchers, who worked collaboratively and 
conducted more incremental, intermittent work of program 
development. In 1955 MIT computer scientist John McCarthy 
began conceptualizing a system where multiple users could 
share computer time. The product of those early musings, MIT’s 
Compatible Time-Sharing System (CTSS), launched in 1961.2
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As in real life, when multiple people collaborated in a com-
puting environment, they wanted and needed to communicate 
with one another. Thus, as users took turns on CTSS—working 
at different times and often in different places—they began to 
leave messages on the system for their colleagues to read as 
they logged on later. These electronic notes were professional, 
not personal; they communicated system updates, or relayed 
questions or critiques about particular files. Yet there was no 
way to direct a message to one user, nor keep messages on file 
for later reading.

But the men and women of CTSS were too consumed with 
other, higher programming tasks to get around to writing the 
code that would add these improvements to the ad hoc messag-
ing system. It wasn’t until the summer of 1965 that two recent 
MIT graduates, Tom Van Vleck and Noel Morris—newly hired 
as university staffers and so entry-level that they shared one 
windowless office—decided to take on the task.3

The MAIL command was the result. It was quite straightfor-
ward, really. First, type MAIL; then NAME 1 and NAME 2, together 
representing the name of the file, following CTSS’s two-name 
convention; then PROG 1, the programmer who was the recipi-
ent. There was also a LIST option to send a message to a mailing 
list. (Yes, the listserv is as old as Email itself.)4

Mail programs quickly became common features of time-
sharing systems throughout the 1960s, but they remained lim-
ited to the users of one system. The next technical challenge was 
to find a way for messages to travel across different computers 
and hosts. Enter the ARPANET, launched in 1969, funded by 
the Pentagon and theorized and designed by some of the same 
computer scientists behind academic time-sharing systems.

At first, what would become Email did not appear to be very 
important to the ARPANET. As J.C.R. Licklider, a chief visionary 
of the system, later put it in a paper coauthored with his col-
league Albert Vezza, “electronic message service was a sleeper.” 
Yet it quickly became clear that allowing users to communicate 
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across the network was going to be one of ARPANET’s most 
useful functions.5

This was thanks to programmer Ray Tomlinson, who in 1971 
established a new protocol for ARPANET users connected via 
different hosts, fatefully choosing an “@” to connect a username 
and host name as a way to get messages across the network to 
its intended recipient. It was the missing link Email needed in 
order to scale, allowing users of different systems, in different 
places, to communicate as easily as if they were in the same 
laboratory. Even then, Tomlinson didn’t take his invention that 
seriously; “the test messages were entirely forgettable and 
I have, therefore, forgotten them,” he later admitted.6

In the total-immersion hacker culture of the early online 
world, Email was quick, informal, tolerant of typos, and im-
mensely preferable to the time-wasting small talk of phone 
calls. As Licklider and Vezza noted, “it soon became obvious 
that the ARPANET was becoming a human-communication 
medium.”

The intensely collaborative, transparent spirit of American 
academic computer science, and the ARPANET in particular, 

The MAIL command, which produced the world’s first Email.
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proved particularly helpful in rapidly advancing the state of the 
art during the 1970s. Email began to take on its modern form 
as programmers contributed suggestions and program notes 
in a series of openly accessible RFCs—requests for comment—
posted among network users. Various RFCs suggested now-
familiar Email characteristics: a “to” line, a “from” line, and 
the ability to forward messages to another user.

As the ARPANET grew, it began to introduce electronic mail 
to a wider audience. In 1976, Queen Elizabeth II christened 
the ARPANET’s first node in Great Britain by sending an Email 
on the network. (Her username: HME2.)7 In 1978 an overeager 
computer-company marketer won the dubious honor of send-
ing the first piece of commercial spam, blanketing ARPANET 
users’ Email inboxes with a note promoting a new model. By 
then, over three-fourths of the network’s traffic consisted of 
electronic mail.8

In the 1980s, Email moved beyond the ARPANET’s walled 
garden of government-funded computer science. The prolif-
eration of desktop computers in homes and offices vastly en-
larged the market of computer users, and new applications 
made Email accessible to this wider public. The popular online 
news and information service CompuServe began offering its 
home-computer customers electronic mail accounts in 1979. 
One alumnus of the University of Illinois computing center, Ray 
Ozzie of Lotus Software, developed the wildly popular business 
communication software Lotus Notes in 1986. Another Univer-
sity of Illinois researcher, Steve Dorner, developed the Eudora 
Email client in 1988 (naming it after Eudora Welty, the cele-
brated Southern novelist and author of the short story “Why I 
Live at the P.O.”).

After the US government allowed the ARPANET to become 
commercialized in the early 1990s as the Internet, Email often 
became the first program a new user experienced. It was an 
accessible gateway into the daunting and exciting new online 
world.9
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By the time the dot-com boom crested at the end of the 1990s, 
Email had become ubiquitous. Steve Dorner’s Eudora program 
had 18 million users; IBM bought Lotus for $3.5 billion thanks 
to the galloping success of Notes. The animatronic bark of AOL’s 
“you’ve got mail!” notification was everywhere from television 
commercials to Hollywood rom-coms. It became hard to imag-
ine how the world ever managed without it.10

In the 20 years since, the Internet has grown exponentially, 
and Email has grown with it, although other communication 
media have supplanted it to some extent. Email’s informal ca-
dences have given way to even more informal text strings and 
ephemeral social media posts. Yet the new forms still retain the 
characteristics—brevity, personalization, asynchronicity—that 
made Email so popular in the first place.

Six decades after that first programming note posted to the 
internal servers at MIT, billions of Emails shoot daily around 
the globe, vital in their convenience, overwhelming in their 
abundance, making the crowded inbox an inescapable feature 
of modern life. Rarely celebrated and often lamented, Email 
fundamentally changed the way people used computers and 
interacted with one another. MAIL turned out to be not just an-
other command; it became the code that gave the computer its 
humanity.



7
The Police Beat Algorithm
The Code That Launched 
Computational Policing  
and Modern Racial 
Profiling
Charlton McIlwain

In the early 1960s, the Black civil rights revolution raged in 
the streets across the United States. This quest to build a more 
racially just and equitable society happened right alongside the 
computer revolution. Soon the two fused with the advent of the 
Police Beat Algorithm (PBA), a software system to help police 
departments collect crime data and determine where to focus 
crime-fighting efforts—and one that that would end up deeply 
affecting our society from the 1960s up through the present. 
Why did the Police Beat Algorithm come to exist? What prob-
lems prompted the need for its formulation? Who developed 
it, and to what ends? The answers to each of these questions 
collectively tell a story about how a little-known computational 
experiment laid the cornerstone for what would become today’s 
surveillance infrastructure—one that has deeply and negatively 
affected communities of color across the globe.

In the early 1960s, IBM topped the list of the world’s lead-
ing computing companies. It innovated not only new com-
puter hardware and systems but new ways of thinking about 
the computer’s role and utility in everyday society. In its 1965 
Annual Report, IBM president Thomas J. Watson Jr. defined the 
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computer as essentially a problem-solving tool and aligned the 
company’s mission accordingly.

IBM’s focus on problem-solving also dictated its market-
ing strategy. The company’s marketing representatives didn’t 
peddle prepackaged products. Rather, they engaged leaders 
in every major industry—from banking to transportation to 
the military—and simply asked, “What problem do you have?” 
Then, they promised to marshal IBM’s research and develop-
ment strength to build customized solutions for its customers—
solutions that could be broadly applied and widely scaled.

While IBM labored to market new computational solutions 
to social problems, uprisings materialized across the United 
States. In 1964 alone, so-called ghetto riots broke out in places 
like Harlem and Rochester in New York; Philadelphia, Penn-
sylvania; and Dixmoor, Illinois. These uprisings captivated 
the nation, as did the rampant White violence against those 
who marched for civil rights across the South. In a speech to 
Congress on March 15, 1965, President Lyndon Johnson pro-
claimed that America’s “Negro problem” was America’s prob-
lem. Citizens across the United States identified this fracture in 
“race relations” as the nation’s most pressing dilemma.

For most White Americans, however, the urban uprisings that 
plagued the nation revealed Black Americans’ penchant toward 
violence and criminality—so much so that President Johnson’s 
White, Southern constituents thought solving America’s crime 
problem should be his government’s top priority. Heeding their 
agitation, Johnson, on July 23, 1965, formed the President’s 
Commission on Law Enforcement and the Administration of 
Justice. The Commission’s charge was to study the causes of, 
and find solutions to, America’s crime problem.

Just 19 days later, one of the most deadly and costly uprisings 
erupted in Watts, Los Angeles. One too many incidents of police 
brutality at the hands of the Los Angeles Police Department set 
off six days of unrest. Hundreds of LAPD police officers flooded 
the streets. Fourteen thousand National Guard troops stormed 
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the city. Law enforcement killed 34 Black residents and injured 
thousands more. More than $40 million worth of property was 
damaged during the siege.

Through the Watts uprisings, Black America sent a message 
to White America: We’re fed up. We’re tired of racism, discrim-
ination, and police brutality. White Americans, however, saw 
Watts as confirmation of their prejudiced belief that Black peo-
ple are lawless and violent. For the President’s Crime Commis-
sion, White America’s vision of the Watts uprisings put a face to 
the problem the president called on them to solve—a problem 
that they felt required an extraordinary remedy. They found 
great potential in the new computing technologies that had 
already revolutionized war and national defense. Computing 
held so much promise that in the spring of 1966, following the 
Watts uprisings, Johnson added the Science and Technology 
Task Force to the Commission to introduce new computational 
solutions to crime. The president justified the task force’s work 
by pointing to computing technology’s success in war, national 
defense, and space exploration:

The scientific and technological revolution that has so radi-
cally changed most of American society during the past few 
decades has had surprisingly little impact upon the criminal 
justice system. In an age when many executives in govern-
ment and industry, faced with decision making problems, 
ask the scientific and technical community for independent 
suggestions on possible alternatives and for objective anal-
yses of possible consequences of their actions, the public 
officials responsible for establishing and administering the 
criminal law .  .  . have almost no communication with the 
scientific and technical community. More than two hundred 
thousand scientists and engineers are helping to solve mili-
tary problems, but only a handful are helping to control the 
crimes that injure or frighten millions of Americans each 
year.1
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While the president and the Commission held great hope for the 
solutions the Science and Technology Task Force would pro-
duce, they placed their hopes more specifically in the one man 
whom they appointed to lead it: Saul I. Gass.

Gass was a mathematician and operations research pioneer. 
In 1958 he wrote the first textbook on linear programming—a 
mathematical modeling technique that seeks to (in large part) 
influence human behavior by quantifying and understanding 
the linear relationships between variables. Gass went to work 
for IBM in 1960 as project manager for the company’s contract 
to develop the real-time computational systems needed for 
Project Mercury, the United States’ first manned space mission. 
By 1965, when the President appointed Gass to lead the Science 
and Technology Task Force, Gass was managing all of IBM’s 
federal system projects. By heading the task force, Gass signaled 
his agreement with the Johnson administration that policing 
was the institution best equipped to solve America’s crime 
problem—and therefore developed—the Police Beat Algorithm.

The Police Beat Algorithm was designed to address two broad 
planning questions.2 First, how should police departments eq-
uitably divide the geographic and demographic parameters of a 
municipal area? (Gass focused on “urban” areas based on pop-
ulation, crime levels, and demographic factors.) Second, how 
should police departments effectively deploy police resources 
(people, weapons, vehicles, etc.) based on these geographical 
divisions? Interestingly, Gass frequently highlighted the need 
to solve these problems in order to develop “contingency riot 
and other emergency plans”—a growing concern directly tied 
back to Watts and similar uprisings.

The Police Beat Algorithm predominantly addressed four 
problems associated with police operations: 1) pattern recog-
nition, identifying crime patterns within a set of crime data; 
2) profiling, associating crime patterns with probable suspects; 
3) dragnetting, linking probable suspects of one crime with past 
crimes or arrests; and 4) patrol positioning, how to best place 
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patrols within appropriate geographical divisions of the city 
based on where the most crimes take place and where known 
criminal suspect profiles predicted who will most likely commit 
those crimes and where. This is where planning problems and 
operational problems intersected.

The Police Beat Algorithm was designed to focus on patrol 
positioning. Doing so relied on one primary component—the 
availability of crime data—and two key computational tech-
niques, norming and weighting. Norming refers to analyzing 
the data to determine “normal” and aberrant ranges of crimi-
nal activity, both across a geographical area and for particular 
groups of criminal suspects (White people versus Black people, 
for example). Weighting, in this instance, was a means to rank 
the severity of different crimes. For example, crimes like ho-
micide, rape, burglary, larceny, and auto theft were weighted 
with a score of four, signifying the most severe forms of crimes. 
Some of the arbitrary—or dare I say biased—nature of these 
weights can be seen in the lack of weighted differentiation be-
tween crimes against humanity like homicide on the one hand, 
and property crimes like car theft on the other. Traffic accidents 
received a weighted score of two, and drunkenness, a score of 
one. Geographical areas were weighted by the preponderance 
of crimes committed within their boundaries. The crime data, 
the statistical norms, weights, and geographical configurations 
of a city all figured into the Police Beat Algorithm.

In one respect, the PBA was developed to address a problem 
that framed Black people—primarily those who were poor and 
lived in urban environments—as predominantly responsible for 
crime and, as a result, the problem that needed to be solved. 
The Police Beat Algorithm was therefore predetermined to geo-
graphically locate, isolate, and target Black and brown commu-
nities for police profiling, surveillance, and patrol and tactical 
unit distribution and deployment. All of the resulting data from 
these “solutions” could be used to forecast and predict where 
crime was most likely to happen in the future and allow police 
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to plan accordingly. To be sure, the framing of the problem, and 
the configuration of the Police Beat Algorithm itself, promised 
outcomes that were not so much predictive of future crime as 
they were self-fulfilling prophesies.

Gass’s PBA was essentially a proof of concept. Nevertheless, 
it was implemented in 1968 in the Kansas City Missouri Police 
Department’s new Alert II Criminal Justice Information Sys-

The Police Beat Algorithm, along with its computational key.
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tem.3 It was through this system that the PBA’s racist impact was 
fully realized. Kansas City’s “Operation Robbery Control”4 was 
just the first example of how the algorithm led police officials 
to make the tactical decision to concentrate police personnel 
and deploy weapons on what was essentially the whole of East 
Kansas City, which housed the vast majority of the city’s Black 
citizens.

Ultimately, the Police Beat Algorithm became thousands of 
similar systems designed and built throughout the seventies, 
eighties, nineties and beyond. Over the decades, these algo-
rithms have grown to include facial recognition, mobile sur-
veillance, risk assessment, and other such tools used from local 
law enforcement to international security. The same logics and 
assumptions that motivated the creation of the PBA more than 
50 years ago continue to permeate this array of contemporary 
law enforcement technologies. Fear of crime—still personified 
disproportionately by Black and brown people—continues to be 
greatly exaggerated, justifying exorbitant investment in devel-
oping more law enforcement technologies. Belief in the objec-
tive and infallible nature, and in the predictive power of data, 
continues to run rampant among technology purveyors, law 
enforcement personnel, public officials, and policy influencers. 
And stories about the disparate outcomes these technologies 
have on communities of color continue to roll in like a steady 
drumbeat. In these ways, today’s law enforcement technologies 
are not new; they’re just more sophisticated, insidious, ubiqui-
tous, and more impactful than when the PBA was first conceived 
more than half a century ago.



8
‌“Apollo 11, Do Bailout”
Ellen R. Stofan and Nick Partridge

As Neil Armstrong and Buzz Aldrin guided the lunar module 
Eagle toward the Sea of Tranquility, Earth was watching. Apollo 
11 was inching its way to a moment a decade in the making 
and centuries in the dreaming. At around 30,000 feet from 
the lunar surface, eight minutes from their planned rendez-
vous with history, an alarm blared. The code 1202 flashed on a 
tiny display—and neither the astronauts nor flight controllers 
knew what it meant. What President Kennedy had called the 
“the most hazardous and dangerous and greatest adventure on 
which man has ever embarked”1 hung in the balance by a tiny 
thread of binary code deep in the space age machine.

It’s become a techno-trope to compare the raw computing 
power of the Apollo Guidance Computer (AGC), the system that 
guided history’s first (and so far only) crewed lunar voyages 
between 1968 and 1972, to devices we carry with us every 
day. Our phones, calculators, even smart watches outstrip the 
AGC in every measure of bit and byte.2 Poppy Northcutt, who 
calculated Apollo’s return-to-Earth trajectories, once told one 
of us wryly that the AGC was less powerful than a recordable 
birthday card—but as Poppy understood better than anyone, 
the comparison distorts the bigger picture. Comparing the AGC 
to an iPhone is like judging a piece of music based solely by the 
number of notes on the page. To understand the virtuosity of 
the Apollo code, it’s important to understand a bit more about 
the unique system and circumstances for which it was written.

Each Apollo mission carried two AGC units, one in the com-
mand module (which stayed in lunar orbit and then returned 
to Earth) and one in the lunar module (which carried two of the 
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three astronauts to the Moon’s surface). The computers were 
virtually identical, and both comported to tortuous restrictions 
on size, weight, and power consumption. Our astronauts were 
guided by machines no larger than carry-on luggage in an era 
when most computers were the size of small houses—the AGC 
was roughly one cubic foot, weighed 70 pounds, and drew less 
power than a 60-watt light bulb. The whole system, including 
more than 2,000 then-novel silicon transistor chips, was sealed 
into an unassuming metal box tucked away in an equipment 
bay. In terms of software, there was no app store for the AGC—its 
only hardwired application worked toward one perfect moment 
of human-celestial contact and a safe return.3

The AGC’s software was responsible for a wide array of func-
tions and datasets to control the movement of two spacecraft in 
multiple space environments, all while tracking star positions 
for guidance and the motion of the Earth and Moon in their or-
bits. The AGC directly controlled more than a hundred systems 
and devices within the spacecrafts, from the sextant and guid-
ance platform to the attitude control thrusters and main engines.

The astronauts interacted with the AGC through a display key-
board. The inputs were sorted into “verbs” and “nouns.” Verbs 
were actions the computer could take at the astronaut’s com-
mand, such as “load” or “display.” Nouns were data that could 
be acted upon by the verb commands, such as star positions or 
trajectories. The setup and nomenclature were holdovers from 
the early development process at MIT. The top brass at NASA 
were concerned that the interface was clunky and out of keeping 
with the sleek, high-tech spirit of the program.4 But as devel-
opers often discovered in the leadup to Apollo, astronauts are 
smart people, and they found the system intuitive, even elegant. 
Apollo 15 Commander David Scott later remarked: “It was so 
simple and straightforward that even pilots could learn how to  
use it.”5

While a tiny fraction of the AGC’s memory was random ac-
cess (RAM, in modern terms) for certain tasks and procedures, 
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the majority of the software was hardwired—literally.6 Programs 
were encoded physically on rope core memory—wires running 
through tiny rings made of iron ferrite, which were naturally 
inured to transiting magnetic fields or streaking cosmic rays in 
cislunar space. If the copper wire went through the iron donut, 
the computer would read a 1; if it went around the ring, it was 
a 0—familiar to us today as a single binary bit.7

The whole works was then woven together by hand into fabric 
ropes, mostly by women in factories in Sudbury, Massachusetts, 
during the development stage, and then nearby Waltham for 
the missions. The weavers earned the affectionate, if dimin-
utive, nickname “little old ladies” or LOLs.8 (LOL, it turns out, 
was computer slang decades before it reemerged on the proto-
Internet in the 1980s and entered the OED in 2011.) But far from 
dismissing their work, NASA recognized the LOLs’ importance. 
When astronauts visited the factory to meet the women who 
held their lives in their hands, the weavers said, “that could be 
my son, so I am going to do my job as well as I can.”9

The ingenious rope core design also meant the hardwired 
software could not be easily changed, corrected, or modified 
once encoded. Even more than the spacecraft themselves, the 
bespoke code for each mission had to be ready early, and it had 
to be flawless.

The code itself, the actual instructions for how the mission 
should weigh, prioritize, and combine all of the myriad vari-
ables, was written by a team from the MIT Instrumentation Lab-
oratory (later renamed the Charles Stark Draper Laboratory, 
after its founder).

The programmers’ notes to one another in the code read like 
a Talmudic commentary through the lens of 1960s slang—an in-
struction to reposition an antenna is labeled “CRANK THE SILLY 
THING AROUND” in order to safely continue “OFF TO SEE THE 
WIZARD.”10 Another sequence ends with “COME AGAIN SOON,” 
and a block to control instrumentation displays was filed under 
“PINBALL_GAME_BUTTONS_AND_LIGHTS.” In a nod to the lan-
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guage of the display keyboard’s interface, there was even a bit 
of Shakespeare—“Thou hast men about thee that usually talk of 
a noun and a verb, and such abominable words as no Christian 
ear can endure to hear.”11

Also apparent was the stress of writing thousands of lines of 
code on a timeline that was tight even by Apollo’s standards—
one section that made it into the final version was marked 
“TEMPORARY, I HOPE HOPE HOPE.” The state of the nation and 
the world was also reflected—an ignition sequence is titled 
“BURN_BABY_BURN,” an allusion to the Black Power movement, 
according to one young programmer. The fight for civil rights 
and the Vietnam War were heavy on their minds, even as they 
worked to deliver us to another world.

The command module’s primary software was called 
COLOSSUS, the lunar module’s LUMINARY (C for command, 
L for lunar). The way the two worked in concert with the hun-
dreds of other programs, processes, and tasks was where the 
AGC’s sophistication truly shined through—especially in the 
tense moments leading up to the first landing.

Although it strained every limit of early computer science, 
the AGC was limited—just like modern computers, it couldn’t do 
everything all at once. So it had to prioritize, and it did that well. 
Tasks were accorded a level of importance based on the criti-
cality of the action, the consequences for dropping or delaying 
it, and the power demands of the process, among other factors. 
Some tasks like navigation—while critical—could be interrupted 
or postponed by an astronaut’s query, or to protect critical data. 
AGC always focused on the most important jobs—and the soft-
ware team knew there were eventualities they couldn’t plan 
for—and as it happened, one of the most unlikely exigencies 
occurred just eight minutes before the first landing attempt.

The Apollo-Saturn stack—from the rocket that sent the astro-
nauts to the Moon to the parachutes that brought them home 
and everything in between—was so complex that no one person 
could know it all. The astronauts themselves were supported 
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by the flight controllers, who were themselves backed up by 
hundreds and hundreds of engineers and systems experts.

The lunar module was made up of two stages—the descent 
stage, with its iconic spider-like legs and golden Kapton wrap-
ping, which would become a lunar launch pad after landing, 
and the ascent stage, which held the astronauts and the rocket 
that would carry them back to the command module. Designed 
to launch from the Moon’s surface during a successful mission, 
in an abort scenario the two would separate in space by blowing 
pyrotechnic bolts, sending the descent stage crashing into the 
Moon below and hurtling the ascent stage back up into orbit. It 
was a dangerous maneuver, impossible at lower altitudes, that 
would risk the lives of the crew and end the mission.

When the 1202 alarm interrupted Apollo 11’s first and final 
approach, Neil Armstrong called down to Houston for help as 
his hand hovered over the abort handle that would snap his 
spacecraft in two and end history’s first moonshot.

Some of the engineers wanted to abort, but in less than 30 
seconds another one had diagnosed the problem. The call came 
from the back bench: GO! The alarm actually signaled a solution, 
rather than an error—the AGC code was functioning exactly as de-
signed and had reacted so quickly the astronauts and flight con-
trollers rushed to catch up.12 The 1202 code signaled a condition 
called “Executive Overflow,” caused by surplus radar data being 
fed into the overstretched processor. This triggered a sequence 
of code called “BAILOUT,” which instructed the computer to drop 
less critical tasks and restart to save the flight data needed for 
landing. In this crucial moment, the computer even considered 
the spacecraft’s display screens expendable—and they went dark. 
The restarts were happening so fast that the astronauts couldn’t 
detect them. If the alarms were only intermittent, Houston de-
termined, the mission could proceed. With their lives on the line 
and the whole world watching, the 1202 and related 1201 over-
flow alarms sounded four more times before Armstrong uttered 
“Houston, Tranquility Base here. The Eagle has landed.”13
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By placing their trust in painstakingly complex code and hav-
ing faith in the engineer who vouched for the system in that 
critical moment, two astronauts, dozens of flight controllers, 
hundreds of technicians, and thousands of support personnel 
all came together to set sail on what President Kennedy had 
called “this new sea.”14

The crucial BAILOUT code, which instructed the computer to drop less critical tasks 
and restart.
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None of the lunar modules flown in space returned to 
Earth. Some burned up on reentry, some were intentionally 
crashed into the lunar surface. One, from Apollo 10, entered 
solar orbit after its mission was complete. It’s out there now, 
along with its Apollo Guidance Computer. The code embedded 
in the hardwired rope core memory, the work of hundreds of 
hands and thousands of minds over the course of a decade, is 
intact—and with it the hopes, dreams, voices, and fingerprints 
of the generations that built it. It is a monument every bit as 
eternal, and every bit as human, as boot prints in Moondust—a 
mute testimony to the tenacity and ambition of a species willing 
to attempt the impossible, step by step and line by line.
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The Most Famous Comment 
in Unix History
‌“You Are Not Expected 
to Understand This”
David Cassel

It all started in 1975, with a routine chunk of code for the sixth 
edition of the Unix operating system, addressing something basic 
about how software gets run. Every application launched, even 
one running in the background, is considered a process. And 
back in the 1970s, before the dawn of personal computers, sev-
eral different users would all be connected to one single cen-
tral computer—meaning a system’s processes included all the 
applications being run by all the users at any given time. These 
so-called time-sharing systems were constantly switching from 
one user’s application to another’s, quickly devoting a flicker of 
resources to whatever needed to be done next.

This also meant saving all the information needed for resum-
ing later—like the numerical addresses in the memory where 
each application’s data was being stored. (Called a “context,” the 
information made it easy for the time-sharing systems to keep 
continually picking up right where they’d left off—a process 
known as “context switching.”) This was all happening in an 
era when the whole operating system fit into just 9,000 lines of 
code. Twenty-five years later, by contrast, Microsoft’s Windows 
XP operating system contained 45 million lines of code.1

Yet while that particular piece of Unix code may have turned 
obsolete decades ago, its fundamental concept is still very much 
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in use today. It’s what enables multitasking, the power to pause 
and resume programs with a single click. But what’s most be-
loved about this code is a simple explanatory comment that 
accompanied it. The Unix operating system programmer at Bell 
Labs had written:

You are not expected to understand this.

Now, normally comments are pretty prosaic. Programmers 
are taught to include comments offering succinct explanations 
for what their code is accomplishing, as a way to help future 
readers of the code make sense of what’s happening. Some-
times that future programmer may even be the person who 
originally wrote the code, now confronted with their own work 
years later and expected to make sense of it. My friend Brian 
Tanaka, a longtime programmer now working as a manager at 
Apple, once told me that he’d always thought of comments as 
“notes to future Brian.”

But those seven words from 1975 would live on for decades.
Instead of warning off readers, the enigmatic comment in-

trigued them, becoming famous in its own right, and possibly 
for all the wrong reasons—an accidental icon, resonating with 
its unseen audience for the way it seemed to capture an all-
too-familiar reality from every coder’s world of intense techni-
cal complexity. At a 2016 tech conference, systems researcher 
Arun Thomas agreed that the comment had attained a kind of 
cult following among programmers.2 “You started seeing people 
wearing sweatshirts, T-shirts, and baby onesies with ‘You are 
not expected to understand this.’ ” It was an expression of 
pride of technical mastery.

Thomas also shared another reason the comment became so 
popular: the code for the sixth edition of the Unix operating sys-
tem soon became a standard educational resource, published in 
a book by John Lions, a professor at the University of New South 
Wales (along with Lions’s own commentary). In fact, for many 
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years to come, that book was “the only detailed kernel docu-
mentation available to anyone outside Bell Labs,” according to a 
famous book on geek culture called The New Hacker’s Dictionary.3

And then in 1979 the licensing terms for Unix were changed 
to allow only official licensees to study the code. So even after 
the code was replaced in later versions of Unix, that newer code 
was never made available in a book for college students to study. 
Eventually the owners of Unix clarified that even the book was 
supposed to be available only to official licensees. But this just 
meant that, as UCLA professor Christopher M. Kelty once put 
it, “Several generations of both academic computer scientists 
and students who went on to work for computer or software 
corporations were trained on photocopies of UNIX source code, 
with a whiff of toner and illicit circulation.”4

The 1975 comment’s fame became so persistent that nearly 
30 years later, in 2004, Dennis Ritchie, one of the original pro-
grammers who wrote that Unix code, found himself creating a 
special web page just to share his own recollection of the real 
story behind it—if only to correct a common misperception.5 
“It’s often quoted as a slur on the quantity or quality of the 
comments in the Bell Labs research releases of Unix,” Ritchie 
wrote—as though the code was so horribly convoluted that no 
sane reader could be expected to understand it. (“Not an un-
fair observation in general, I fear, but in this case unjustified,” 
Ritchie had added.)

Instead, he wrote, the original programmers simply felt that 
their code was addressing an obscure edge case, and “we tried 
to explain what was going on. ‘You are not expected to un-
derstand this’ was intended as a remark in the spirit of ‘This 
won’t be on the exam,’ rather than as an impudent challenge.”

Ritchie also explained that ironically, “The real problem 
is that we didn’t understand what was going on either.” That is, 
they didn’t understand the code themselves. It contained a bug 
that wasn’t evident, since their hardware always returned the 
same value. But when Ritchie joined with his coworker Steve 
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Johnson to try porting the Unix kernel onto a new machine, 
they’d discovered that “this code was indeed on the exam.” For 
nearly a week their own bug thwarted any progress again and 
again, until they resignedly just rewrote the whole section from 
scratch.

Maybe the comment has remained so popular, despite the 
misunderstanding about what it meant, because it speaks to 
a general fondness and warm appreciation for those glimpses 
of personality that have sneaked into our computer code over 
the years. It’s a feeling that can take many forms. Just take a 
look at the Hacker’s Dictionary itself. It was originally just an ad 
hoc collection of geek culture and humor called “The Jargon 

Ken Thompson (sitting) and Dennis Ritchie working together in front of a mainframe 
computer. Thompson and Ritchie are credited with creating the Unix operating sys-
tem at Bell Laboratories.
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File,” passed around online for more than 15 years, starting 
around 1976, by its fans on ARPANET (an early forerunner to 
the Internet of today). After years of being lovingly maintained 
by a community that had wanted to preserve it, it was respect-
fully collected up and published in 1991 by future open-source 
advocate Eric S. Raymond (under a new title, The New Hackers 
Dictionary). With its enlightening definitions and examples of 
geek wordplay, the book promises to describe “the language 
hackers use among themselves for fun, social communication, 
and technical debate.” But what’s just as significant is the book’s 
implicit message: that there is a culture—a community with 
norms and values.

Of course, “You are not expected to understand this” 
isn’t the only offhand comment to delight its future readers. In 
2014, Silicon Valley’s Computer History Museum announced 
they’d received permission from Microsoft to preserve the his-
toric source code—and comments—for the original Word for 
Windows software released in 1990.6 And one Microsoft pro-
grammer begins a comment by first dubbing their section of 
code a “gruesome hack.” After a particularly technical flourish, 
another programmer added the comment: “Coded inline be-
cause we’re god.”7 And there was also, not surprisingly, a large 
amount of profanity. (One site has actually created a graph 
showing how often various expletives appeared in the Linux 
kernel’s source code over the last 30 years, with usage of the 
word “crap” recently attaining an all-time high.8)

Some comments even become cherished reminders of a mo-
mentary glow of humanity in a world of unforgiving logic, where 
years are spent laboring around a language’s requirement for 
perfect syntax. Programmers may humbly offer up a moment of 
self-deprecation, or warnings about straying too far into exotic 
and arcane solutions—and sometimes they even do both at the 
same time. When Unix pioneer Roger Faulkner passed away 
in 2016, a fellow programmer remembered one of Faulkner’s 
cautionary self-deprecating comments:



68  /  CHAPTER  9

/*

* This is a horrible kludge. It is vile. It is swill.

* If your code has to call this function then your code is the same.

*/9

So there’s an important meta-message hidden in these silent 
libraries of intellectual endeavors where moments for sharing 
are nonetheless baked into the process—that it’s people who 
write programs. And, more importantly, that communities of 
people will maintain and preserve them. (The stereotype of a 
lone genius hacking away has become an outdated pop-culture 
artifact in today’s world of massive coding collaborations.) Yet 
while code is written collectively, it’s a community that’s rarely 
seen—though often felt.

And every comment is an implicit acknowledgment of that 
community, and of all the careful caretakers who may someday 
be revisiting your code.



10
The Accidental Felon
Katie Hafner

Complex systems break in complex ways. That insight, from the 
prominent computer scientist Peter Neumann,1 aptly describes 
the cascade of events that occurred across the nascent Internet 
one night more than three decades ago.

In the late 1980s, the Internet was still brand new, having just 
evolved from the original ARPANET. And though a handful of 
computer scientists were voicing concern about the havoc that 
could ensue were a rogue program to run loose in the network, 
no one was prepared to cope with the massive assault that took 
place on November 2, 1988.

At eight-thirty that evening, a 23-year-old Cornell Univer-
sity computer science graduate student named Robert Tappan 
Morris unleashed just such a rogue program into the network. 
His motivation was more curiosity than malevolence, his pro-
gram intended as a harmless hack just to prove that it could be 
done.2 The program was supposed to copy itself from computer 
to computer and simply take up residence in as many machines 
as possible, hiding in the background to escape detection by 
computer users. After he released it, he went to dinner, and in 
the hour he was gone, the program brought the Internet to its 
knees.

The incident grabbed the nation’s attention as it painted 
in sharp relief, for the first time, the fragility of tens of thou-
sands of interconnected computers. And it captured the na-
tion’s imagination because of the riveting father-son story it 
held: a father and son who belonged to a computer science elite, 
both obsessed with exploring the subtle intricacies of complex 
computers.
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Robert Morris’ father, Bob, was a brilliant computer scien-
tist who had helped develop the Unix operating system,3 which 
is the standard operating system for technical computing and 
was the target of his son’s program. The elder Morris was the 
chief scientist for the National Security Agency’s National Com-
puter Security Center, the division of the agency that focused 
on computer security. For years, Bob Morris had tutored his son 
in methods for detecting and exploiting security weaknesses. 
Both father and son were well versed in a field in which a “game 
playing” mentality is essential: to make computers more secure, 
one must first be able to understand how to break into them.

The young Robert Morris, a quiet genius who found himself 
bored by many of his math and computer science classes, spent 
most of his undergrad time at Harvard’s Aiken Computation 
Lab. Friends came to know him by his login: rtm. His senior 
thesis adviser recommended that he go to Cornell for his PhD, as 
it was a renowned center of computer science theory. If Robert 
was to be faulted for anything, it was his tendency to allow him-
self to be seduced by the machines themselves, at the expense 
of a theoretical understanding of the underlying science.4

And it was during his first semester at Cornell, with plenty 
of free time on his hands, that young Robert Morris wrote the 
program that would break the Internet.

Using several bugs he had found in the Unix source code, 
Morris designed the program to first steal passwords by read-
ing the list of users on the target computer, then systematically 
running through their names, or permutations of their names, 
and a list of commonly used passwords. When successful in 
guessing one, the program then signed on to the computer and 
masqueraded as a legitimate user to copy itself to a remote 
machine.

Not only did Morris have no intention of crippling the Inter-
net, but he had devised a mechanism for keeping the program 
from propagating too swiftly. Once the program had entered 
a computer, it would signal its arrival to the machine and ask 
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whether that machine had already been invaded. If the answer 
was yes, the two copies would “talk” to each other and toss an 
electronic coin to decide which one should stop running.

But what if someone discovered the intrusion and tried to 
trick the incoming program into believing that it was already 
running on the machine it approached, essentially vaccinat-
ing the computer against the intrusion? Thinking like a chess 
player, Morris decided there would need to be a countermea-
sure against potential vaccines. His solution: randomization.5 
That is, one in N times, the program would enter a computer 
and command itself to run on the target machine regardless of 
the answer. Morris knew that the number he chose as N would 
bear directly on the rate of replication, but he wasn’t sure what 
it should be. Ten? A thousand? Ten thousand?

The number the budding computer scientist ended up 
using—seven—turned out to be a singularly fatal miscalcu-
lation. The number should have been higher by a factor of a 
thousand or more, as the lower number resulted in dozens, even 

The code behind the 1988 Morris Worm, which crippled the nascent Internet.
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hundreds, of copies on each machine the program entered. The 
copies were like echoes bouncing back and forth off the walls 
of canyons.

By the time he returned from dinner to check on the pro-
gram’s progress, Morris realized, to his horror, that it had spread 
wildly out of control, slowing machines to a halt. Even when 
the program’s attempts to get into a new computer were un-
successful, its repeated knocks on the door were often enough 
to render the machine useless. Within hours the program had 
crashed thousands of computers at universities and research 
institutions throughout the United States.

Morris panicked and called a friend back at Harvard, even 
dictating a message for him to post from there:

A possible virus report:

There may be a virus loose on the internet.

Here is the gist of a message I got:

I’m sorry.

Here are some steps to prevent further transmission:

1) �don’t run finger or fix it to not overrun its stack when 

reading arguments.

2) recompile sendmail w/o DEBUG defined

3) don’t run rexecd

Hope this helps, but more, I hope it is a hoax.6

It wasn’t a hoax. And it was too late. Computer managers stayed 
up through the night trying to fend off the virus as it hopped 
back and forth around the Internet, setting off havoc wherever 
it touched down. People were also frantically making other 
changes to their internal software to thwart future invaders, 
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as they had no idea whether this was just the first in a series of 
planned attacks. At one of the computing facilities at UC Berke-
ley, someone made a sign that read “Center for Disease Control” 
and taped it to the door.

Soon after the incident, computer scientists decided that the 
program was technically a worm, not a virus. A virus remains 
dormant until the infected host file is activated, at which point 
it executes its code. A worm, on the hand, doesn’t require the 
activation of its host file. Once a worm enters a system it can run, 
self-replicate, and propagate without a triggering event. The first 
worms were deployed on the ARPANET in the early 1970s. One 
was a benign program called Creeper, which resembled the Mor-
ris worm in that it copied itself from machine to machine. When it 
reached each new computer, it would display the message: “I’m 
the creeper. Catch me if you can!” As the Creeper story goes, 
a second programmer wrote another worm program that was 
designed to crawl through the ARPANET, killing all the creepers.7

Computer researchers started developing more useful 
worms, such as “town crier,” a worm program that acted as a 
messenger, and “diagnostic” worms that patrolled the network 
looking for malfunctioning computers. There was even a “vam-
pire” worm program, designed to run very complex programs 
late at night while the computer’s human users slept. When the 
humans returned in the morning, the vampire program would 
go to sleep, waiting until the evening to return to its work.

But it was the Morris worm and its aftermath that perma-
nently altered the culture of the Internet. Before the Morris 
worm, security was seen as more of a theoretical problem than 
a real one, and the network was like a rural town where every-
one knows pretty much everyone else, where people leave their 
doors unlocked. The Morris worm changed all that. The incident 
raised fundamental questions about the security of the nation’s 
computers and renewed debate over the question of who should 
be responsible for protecting the nation’s nonmilitary computer 
systems.8



74  /  CHAPTER  10

Computer scientists and systems administrators around the 
world were now on high alert, and any lingering naivete about 
the trustworthiness of those who used the Internet disappeared. 
Many computer security experts believed the Morris worm was 
an important and useful demonstration of the potential vulner-
ability of computers. Some even went so far as to argue that in 
heightening awareness of security issues, Robert Morris had 
done the field of computer security an enormous favor. Indeed, 
the Morris worm jump-started the field of computer security, 
creating demand for security experts in every quarter of the 
IT world. In the ensuing decades, every conceivable manner of 
malware came to plague the Internet, but the multibillion-dollar 
computer security industry can trace its roots to that signal 
event of 1988.

As for Morris himself, he was charged with a single felony 
count under the 1986 Computer Fraud and Abuse Act. It was the 
first charge under a provision of the law that made it illegal to 
gain unauthorized access to federal computers. A Syracuse jury 
convicted him. At the sentencing, a lenient judge spared him 
from prison and ordered him to do community service. Morris 
eventually finished his computer science PhD at Harvard, made 
a fortune in the computer industry, and became a tenured pro-
fessor at MIT. In all these years, he hasn’t spoken publicly about 
the worm and its legacy. The world has forgiven him his mis-
take, but we may never know whether he has forgiven himself.
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Internet Relay Chat
From Fish-Slap to LOL
Susan C. Herring

If you were to spend 30 minutes on any Internet Relay Chat 
channel in the late 1990s, chances are good you’d see someone 
slap another person around a bit with a large trout.

So I observed when I started hanging out on Internet Relay 
Chat (IRC) as part of an ethnographic study I conducted in 1998. 
IRC is multiparticipant text chat that takes place in real time on 
forums or “channels” hosted on interconnected servers. Cre-
ated by a student intern at the University of Oulu in Finland 
in 1988, IRC was flourishing at the time of my study, boasting 
hundreds of thousands of user-created channels, each name 
preceded by the # sign. For almost any topic you’d like to discuss 
or get help with, from #altruism to #teensex, there was an 
IRC channel that would serve your interests. Indeed, IRC was 
one of the earliest forms of social media, before social media 
existed as such. Although its popularity has been overtaken by 
web forums and social network sites since its peak in 2003, 
when there were more than 500,000 IRC servers worldwide,1 as 
of 2021 IRC still existed on nearly 200,000 servers, and its chat 
protocol has been adapted for use on contemporary platforms 
such as Discord and Twitch.tv.2

Even if you’ve never heard of it, you probably use language 
in your online communication that originated in IRC. This 
includes that prototypical example of modern netspeak, LOL 
(“laugh out loud”). That expression (and its variants lololol, 
lols, lulz, etc.) traces its lineage back to the same source as the 
“fish-slap”—that is, constructions of the type:
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* Susan slaps DrDoom around a bit with a large trout3

On IRC, such third-person, self-referential expressions are 
known as “actions,” one of a set of line commands that allow IRC 
users to interact with the system and other users in a channel. 
Typing basic “slash” commands such as /join and /nick in 
the interface of an IRC client results in changes of state (such 
as joining a channel or creating a “nickname” or username). 
Similarly, one can type /whois (to see a user’s profile informa-
tion), /ignore (to prevent a user’s text from appearing on one’s 
screen), or /part (to leave a channel).

The trout-slap, in contrast, is an example of an action com-
mand produced by typing /me followed by a verb in the simple 
present tense plus any additional specifications. The output 
replaces /me with the user’s nickname and displays a message 
in which the user appears to perform the action, like the exam-
ple above of me slapping DrDoom with a large trout. On some 
IRC servers, the trout-slap became so popular that it got its own 
abbreviated command: /slap. Other abbreviated action com-
mands include /give, /laugh, /eye, /tag, /throw, /kiss,  
/hug, and /spank.

Action commands typically describe purely virtual actions. 
IRC users, of course, are not literally slapping, spanking, kissing, 
or hugging others in a channel when they type these commands, 
nor does typing them result in any tangible change of state. At 
the same time, action commands create virtual realities that 
are not deniable.  Thus, within the virtual world of IRC, DrDoom 
might protest at being slapped around with a large trout, but he 
couldn’t plausibly deny that it happened. The command doesn’t 
just describe the trout-slap, it performs it.

From these relatively obscure beginnings on the early In-
ternet, virtual performatives spread, meme-like, throughout 
digitally mediated communication, morphing into forms that 
no longer require special commands or any knowledge of IRC 
to produce. LOL is a virtual performative; by typing it, you have 
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effectively LOL’ed, whether you were physically laughing at that 
moment or not.

So how did we get from action commands to expressions 
such as LOL? I presume their evolution went something like this. 
Before there were abbreviated commands, a user who wanted 
to create a new virtual action on IRC had to type out most of the 
words. Consider this message:

* bonzo offers free weed to the first nine callers.

In order for it to appear, the user “bonzo” would have had to type:

/me offers free weed to the first nine callers.

However, since the /me command doesn’t necessarily save key-
strokes, some IRC users started to dispense with it, typing in 
virtual actions directly. Sometimes these direct expressions 
were set off by asterisks:4

<bonzo> *offers free weed to the first nine callers*

<Susan> *slaps DrDoom with a large trout*

<whitechellie> *happy sobs*

Other users left off the asterisks:

<DeANnA> dances for joy

<p2p> drops to tie his shoe

<DrDoom> chillin with the homies

Changes to the syntax of action commands took place, as well. 
As the examples above illustrate, direct virtual performatives 
typically omitted the grammatical subject, which was under-
stood to be the users themselves, since their nick appeared by 
default (enclosed in angle brackets in the IRC client I used) at 
the beginning of each non-action message. Further, creative 
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new uses of virtual performatives started to dispense with third-
person present tense marking on the verb, producing unin-
flected forms such as *gulp*, giggle, and that now-classic 
LOL. Finally, the requirement for a verb was itself dispensed 
with. Instead, virtual performatives could be nouns, such as 
*happy sobs*, adjectives, such as *reallyfuckingbored*, 
or even expressive sounds, such as *hrmph*. Thus freed from 
the platform-specific, syntactic constraints of the /me com-
mand, performative expressions proliferated, spreading from 
IRC to other platforms. All the examples above are from my 1998 
IRC logs, but similar examples can readily be found in private 
chat and on social media nowadays.

Part of the appeal of virtual performatives is that they are 
linguistically innovative. Not only do they riff creatively on the 
syntax of the IRC action command; they disregard the rules 
of ordinary (off-line) performative expressions. In English, for 
example, there are numerous constraints on what expressions 
can be used performatively and how they are expressed. The 
subject must normally be the first person (“I”),5 as in “I apolo-
gize for being late” and “I promise to be good,” which constitute 
an apology and a promise, respectively. Some performatives 
require institutional authority, such as “I sentence you to 10 
years in prison without parole” (said by a judge). Only certain 
communication acts can be performative. You can’t register 
a complaint, for example, just by saying “I complain about 
the new regulations.” Moreover, verbs describing mental and 
emotional states can’t be used performatively; you don’t cause 
yourself to love cashews by uttering the sentence, “I love ca-
shews.” Finally, physical actions are excluded. There is no off-
line context in which saying “I dance with joy” counts as an act 
of dancing (although it may count as a metaphorical expression 
of happiness).

In IRC and other text-based virtual worlds, in contrast, there 
is no difference between the uttering and the doing of an action. 
You can virtually “dance with joy” and “complain about the new 
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regulations,” as well as apologizing and promising, and you can 
adopt the role of judge and produce utterances like:

<DrDoom> *sentences you to 10 years in prison without parole*

As of this writing, IRC action commands—classics such as 
/flirt, /hug, /insult, and /wave, as well as newer commands 
such as /bitcoin, /facepalm, /hookup, and /snopes—are 
still used on some forum web chat and gaming chat servers, as 
well as in text chat in live streaming. Among these, the trout slap 
remains popular. Wikipedia has even expanded the command 
into the graphical realm, placing an image of a trout on a con-
tributor’s Talk page when the expression {{trout}} is added. 
This practice can be traced to the cyber-geeks familiar with IRC 
who formed Wikipedia’s early user-base.6

It’s doubtful that most social media users today know about 
IRC. Yet they still use IRC-like virtual performatives, such as this 
comment posted in a recent Facebook thread:

A newly minted assistant professor enters the chat 

or this multimodal Twitter tweet:

*Sips tea 

This last example brings us to the most recent expansion 
of virtual performatives: emojis. Emojis are replacing many 
short-form performative utterances, such as  (lol),  (hugs), 

 (winks),  (kiss),  (eyes warily),  (facepalm), and 
 (dance for joy). Moreover, they can combine to perform 

sequences of virtual actions, as in this tweet by a beauty influ-
encer alongside a photo of herself at an airport:

Michelle Lewin

going places 
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In the IRC of 1998, this would be expressed as:

<Michelle Lewin> going places *dances for joy*  

*clinks champagne glass*

Thus, virtual performative constructions have come far from 
their origins in early multiparticipant text chat, all the while 
retaining their pragmatic force. Leaving me to wonder  .  .  . 
shouldn’t there really be a trout emoji?



12
Hyperlink
The Idea That Led to 
Another, and Another,  
and Another
Brian McCullough

Almost from the very beginning of computer science, you could 
split the field essentially in half: computers thinking for them-
selves (computation/calculation and artificial intelligence) and 
computers helping organize human thought. While the first gets 
more attention, the second is also challenging, asking whether 
computers can organize the infinity of human ideas—and the 
hyperlink comes very much from this second core idea in com-
puter science.

The concept of linking ideas in some sort of functional way 
is one of those great conceits that kicked around for decades 
before finally settling into its perfect expression. Ted Nelson, 
one of the philosophical godfathers of information technology, 
coined the term and the idea of the “link” in his Project Xanadu 
back in the mid-1960s. Project Xanadu was a conceptual at-
tempt at computer networking before the Internet was even 
born. But even Nelson was building off of ideas first expressed 
by another progenitor of modern computing, Vannevar Bush, 
back in his seminal 1945 Atlantic essay, “As We May Think.”1 
Bush intuited a coming world where all of human knowledge 
would be accessible. But in such a future, the old ways of orga-
nizing thought via crude alphabetic or numeric indexing would 
be insufficient. In short, it was a problem of scale.
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The human brain works by association instead of indexing, 
Bush figured, and thus if you could tie ideas together—linking 
them, if you will—it would be easier for humans to organize their 
thinking using the information computers were either storing 
or making available. Nelson built on this by proposing the “link” 
as a software concept to organize data by associations more 
amenable to human thought. This is the key insight of the link: 
it is a human brain–friendly software framework, a sort of fun-
damental, almost atomic-level schema for a human/machine 
interface.

Nelson’s Project Xanadu spent decades lurching along as an 
ultimately quixotic attempt to build out a universal repository 
for knowledge. But all the while, Nelson held fast to Bush’s idea 
of the link as a cross-referencing concept either for specific 
text strings (thoughts) or documents (fully realized ideas). In-
dependently, Douglas Engelbart implemented the link concept 
for items within a single document when he was working to 
develop modern computer interfaces.

From there, the direct lineage of the hyperlink gets mud-
dled. Hypertext, the formatting of text for computer displays 
and electronic devices, came to prominence beginning in the 
1960s (thanks to Nelson again), and the term “hyperspace” 
arose as a mental framework to imagine the sort of ethereal 
realm where these interlinked documents existed. Thus, the 
highlighted and underlined string of text used in the HyperTIES 
system,2 one of the earliest stabs at creating a “browser” for 
information retrieval (and which Tim Berners-Lee citied in his 
original proposal for the World Wide Web),3 naturally gained the 
sobriquet “hyperlink.” In the mid-1980s, the database program 
HyperCard was released for the Apple Macintosh and popular-
ized the linking between various pages within a document as 
well as linking out to other documents.

And then came the graphical user interface, with its clickable 
icons. All of the complexity of computing hidden away behind 
a friendly abstraction.
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An often-overlooked element of early computing was the 
“tyranny” of command line. To make a computer do what you 
wanted, you already had to know how to tell the computer what to 
do. Not only did you have to understand syntax and protocols 
and instructions, you had to have a mental map of a computer’s 
file structure. But then, suddenly, serendipitously, the graphical 
user interface subsumed all of this arcana behind colorful icons 
and graphics, and you could tell a computer what to do simply 
by clicking or dragging and dropping.

This user interface revolution was also long needed on the 
Internet, which for its first 20 years struggled under the twin 
burdens of the command line and file structures. To go some-
where on the Internet you needed to know where to go, often 
a string of numbers. Even when the Internet Protocol system 
was made more humane so that 182.06.254.1 (a hypothetical 
example) could be represented by something more manage-
able like “Amazon.com,” you still had to have a list of all the 
places you might want to go. And if you wanted a specific file, say 
“apple.com/x/file-source/25473s.xyz,” again, you had 
to type your directions no matter how inscrutable they were.

When Tim Berners-Lee announced the World Wide Web as a 
concept in 1989, he drew from this entire mixed lineage of the 
link and the user-friendly paradigm of the click, to create the 
key concept of the hyperlink.

And thank God he did.
The problem for the Internet has always been scale. If you 

connect all the computers in the world together, then you (in 
theory) have connected all of humanity’s collective knowledge. 
But at that point, the needle in the haystack analogy is insuf-
ficient to describe the problem by orders of magnitude. The 
hyperlink dispensed with any notions of “organizing” global 
information. The World Wide Web of associations would do the 
organizing organically and intuitively. Sometimes people like 
to talk fancifully about printing up every entry in Wikipedia, 
stacking them alphabetically, speculating on how high that 
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stack of pages might go. (Artist Michael Mandiberg actually did 
this in an installation first exhibited in 2015.) But this misses 
the point. The idea of one idea leading to another, and then 
another, and then another, click-click-click, does not just give 
us the ecstatic intellectual experience of “going down a rabbit 
hole”—it is the very mechanism that allows organized thought in 
a digital age to happen.

The great triumph of the Internet Era is that we connected 
all the computers in the world together, and thereby set out to 
map and encode all of human thought. The fact that humans can 
access their own collected knowledge is because the hyperlink 
strings it all together in the same way our brains are wired. The 
hyperlink brings software concepts to text and the structure 
of the human brain to digital data. It is a conceptual melding 
in both directions: making the act of computing more experi-
entially “brain-like” in terms of user experience, and making 
ideas more “computer friendly” in terms of user interface. 
I don’t have to know exactly where in hyperspace a given idea or 
document is, I only have to know that, via a hyperlink, someone 
has already pointed me in that direction. To journey there, 
I only have to click.

This points to one more way the hyperlink, at least as ulti-
mately manifested by Berners-Lee’s World Wide Web, makes 
the modern Internet possible. The data I am seeking can be 
stored in any number of incompatible systems. When Berners-
Lee was attempting to first explain why the Web would be useful 
to anyone, he referenced the confusing status quo of networked 
computing:

I found it frustrating that in those days, there was different 
information on different computers, but you had to log on to 
different computers to get at it. Also, sometimes you had to 
learn a different program on each computer. So finding out 
how things worked was really difficult. Often it was just easier 
to go and ask people when they were having coffee.4
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So the hyperlink also solved the problem of interoperability on 
a fundamental level. If your data is formatted in HTML, or any 
number of the modern Internet standards, most every com-
puter system in the world can read it.

Of course, the hyperlink is not perfect. For all his protes-
tations that he eventually intended to make it go both ways, 
Berners-Lee’s classic hyperlink is unidirectional. If I link from 
my blog to yours, a third party can see the direction of intent 
from me to you. But what happens if they were to stumble upon 
your blog first? The value of the citation does not flow back-
wards. And believe me, there is value in both directions. You 
only have to look at the market cap of a little company called 
Google to realize this. The other great organizing principle of 
modern digital thought, “search,” was only made possible be-
cause Google set out to reverse-engineer hyperlinking retroac-
tively. Furthermore, the idea that the “value” of links could be 
tied to actual value (i.e., money) is something that blockchains 
are only now beginning to solve, along with the problem of “link 
rot”—the unfortunate reality that the permanence of a hyperlink 
depends on the content to which it links continuing to exist.

But the hyperlink as the atomic unit of the digital age, both 
for software and for human thought, is probably best proven by 
the fact that it likely made the concepts of social media mani-
fest for everyday—even nontechnical—people. After all, what is 
a like but a link? If I “follow” you, is that not a form of citation? 
If the original Internet revolution was about linking all of the 
computers and then the ideas in the world together, then the 
social graph was merely phase three: linking all the people in 
the world and their affinities together, in the same way the 
hyperlink mapped ideas.
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JPEG
The Unsung Hero in the 
Digital Revolution
Hany Farid

In 2008, I received an unexpected call from a detective in Scot-
land. Beneath the detective’s Scottish accent, I heard a strong 
sense of urgency and seriousness. A dozen men stood accused 
of abusing young children and distributing images of the abuse. 
At the center of the complex, multiyear case was a series of 
images of unknown origin. The detective asked whether I could 
link the photographs to one of a handful of cameras that had 
been seized in the investigation. I could, thanks to the fact that 
the images were saved as JPEGs.

The JPEG image format is the standard compression scheme 
for digital cameras. Compression schemes allow for the trade-
off between image file size and image quality. A highly com-
pressed image requires relatively little memory for storage 
and transmission but may have noticeable distortions. A less 
compressed image will have greater fidelity to the original but 
requires more memory and bandwidth. The ubiquitous JPEG 
standard was established in 1992 based on a compression 
scheme proposed in 1972, which was itself based on basic 
mathematics dating back to 1882.

At the point of recording, a digital image is made up of an 
array of picture elements, or pixels. Each pixel is itself com-
posed of three numbers corresponding to the primary red, 
green, and blue colors (RGB). An uncompressed, modest-sized, 
1000 × 1000 pixel RGB image consists of one million pixels and 
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requires approximately three megabytes of memory to store 
on a camera or computer. These days, digital cameras record 
images with tens of millions of pixels which, left uncompressed, 
each require more than ten times this amount of memory.

In the early days of the Internet, digital media was highly 
compressed with relatively low quality. But at least we could 
share audio, images, and video. As bandwidth, as well as com-
puter and device memory, increased, it became easier to store 
and transmit increasingly higher-quality content. Without data 
compression, however, it would have been impossible to re-
cord, store, and share uncompressed content at the scale we 
do today: nearly two billion images per day, and, on YouTube 
alone, 500 hours of video every minute. The untold hero in this 
digital landscape is French mathematician and physicist Jean-
Baptiste Joseph Fourier (1768–1830). In his seminal 1822 work 
on heat flow, Fourier made a claim that 100 years later would 
play a critical role in the digital revolution: Fourier claimed that 
any function can be expressed as a sum of multiple sinusoids1 (a 
sinusoid, or sine function, oscillates in value smoothly through 
peaks and troughs).

The shape of the elegant sinusoid—sin(ω)—can be described 
by spinning a line around a circle and measuring the vertical 
distance between the circle’s center and the line’s tip. The speed 
with which the line spins around the circle defines the sinusoid’s 
frequency—the number of oscillations per second; the length of 
the line defines the amplitude—the height of the oscillations; and 
the starting position of the line defines the sinusoid’s phase—the 
relative position of the oscillations. A high-frequency sound like 
a squeak, for example, has many rapid oscillations in air pres-
sure per second, while a low-frequency sound, such as a rumble, 
has fewer, slower oscillations per second. Turn the radio volume 
up or down, and the sound’s amplitude increases or decreases.

There is a visual analogue to a sound’s sinusoidal representa-
tion. A high-frequency visual pattern has many abrupt changes 
in appearance across space—picture the texture of grass—while 
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a low-frequency visual pattern has only gradual changes across 
space—picture a cloud pattern. Similar to volume, amplitude 
corresponds to the brightness of the visual pattern.

As we will see next, Fourier’s insights into the power of the 
sinusoid to represent signals and patterns laid the groundwork 
for an efficient way to digitally represent, store, and transmit 
audio, image, and video, in turn revolutionizing the power and 
reach of the Internet.

That brings us to JPEG compression. The simplest way to 
compress an image is to throw away pixels. Starting with a 
1000 × 1000 pixel image, for example, throwing away every 
other pixel results in a 500 × 500 pixel image with a total of only 
250,000 pixels as compared with the original 1,000,000 pixels, 
for a savings of 4×. This, however, is highly undesirable. Why 
should we build high-resolution cameras, capable of recording 
high-fidelity images, only to reduce the image resolution im-
mediately after recording because we can’t store or transmit 
the images?

We seek, therefore, to compress an image to reduce memory 
and transmission costs, while retaining resolution and visual 
quality.

The digital-camera revolution was kick-started in 1969—the 
same year as the Apollo moon landing—when Willard Boyle and 
George Smith invented the charge-coupled device (CCD) for elec-
tronically recording and storing light. Around this same time, 
researchers were already considering how to best compress 
digital images. The Karhunen-Loeve transform (KLT) emerged 
as the best way to compress digital data. This transform, how-
ever, was computationally costly, leading Nasir Ahmed in 1972 
to develop the Discrete Cosine Transform (DCT),2 itself inspired 
by Fourier’s insights into the power of sinusoidal representa-
tions.3 The DCT quickly emerged as an effective and efficient 
way to compress digital images and eventually was adopted by 
the Joint Photographic Experts Group that, in 1992, established 
the JPEG compression standard.
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The JPEG compression standard was designed to take ad-
vantage of the human visual system’s differential sensitivity to 
various forms of visual information. This compression scheme 
attempts to preserve the image information to which we are 
most sensitive while discarding information we are unlikely to 
notice. For example, we are more sensitive to luminance con-
trast—a change from light to dark—than to color contrast—a 
change from red to green. Consequently, JPEG compression 
preserves more information about luminance than about color. 
JPEG compression also treats frequencies differently. Humans 
are more sensitive to low frequencies (cloud pattern) than to 
high frequencies (grass texture), and, accordingly, JPEG com-
pression preserves more information about low frequencies 
than about high frequencies. (Audio [MP3] and video [MPEG] 
compression operate on the same concept of transforming the 
original data to a frequency-based representation and differen-
tially compressing based on human sensitivity.)

While there are many details in the complete JPEG com-
pression scheme, the heart of this compression relies on rep-
resenting visual patterns using sinusoids (or, more precisely, a 
phase-shifted version of the sinusoid, the cosine) and removing 
content to which the human visual system is less sensitive. The 
heart of the DCT is this variation of the Fourier transform:
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The DCT transforms each 8 × 8 pixel image block ( f ) to a 
frequency-based representation (F ), allowing for differential 
compression to different frequencies. This compression is 
achieved by rounding small values in the high-frequency range 
to 0 (which can then be efficiently represented in the final JPEG 
file), while preserving the more visually salient low frequencies.

Although JPEG compression allows for fine control over the 
compression of each frequency across each luminance/color 
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channel, all standard photo-editing and coding libraries synthe-
size these compression parameters into a single setting ranging 
from high-compression/low-quality to low-compression/high-
quality. For example, I compressed an 8-megapixel image across 
an entire compression range yielding, at one end of the compres-
sion/quality spectrum, a 0.2 MB file size, and at the other end, 5.3 
MB—the uncompressed image came in at a whopping 25.8 MB.

Beyond playing its part in the digital and Internet revolution, 
JPEG compression has played a critical and unintentional role 
in the forensic analysis of digital images. Which brings me back 
to that call from Scotland.

My forensic analysis required a two-step process, the first of 
which leveraged distinct JPEG compression settings that vary 
across devices and software. Most notably, the luminance/color 
and frequency-specific quantization values vary as a result of 
different compression and visual distortion tolerances for low-, 
medium-, and high-end cameras. Because these tolerances are 
constantly being refined, even successive releases of the same 
camera may use different compression settings.4 These vari-
ations allowed me to identify the make/model used to record 
the images in question. A secondary analysis allowed me to 
uniquely identify the camera based on subtle imperfections 
in the underlying camera sensor.5 This forensic analysis, along 
with some exceptional investigatory work by Scottish police, led 
to the conviction of a dozen child predators.

A modern JPEG encoder is highly optimized to quickly compress and decompress 
images. This Python code snippet implements a nonoptimized version of the basics 
of a JPEG encoder, consisting of the DCT transform and DCT quantization.
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The Viral Internet Image 
You’ve Never Seen
Lily Hay Newman

It’s likely that the most downloaded image ever isn’t the Mona 
Lisa, the Google logo, or the first page of the King James Bible. 
In fact, you’ve never seen it, even though your browser proba-
bly requests it from servers every day. That’s because it’s not 
a famous photo or illustration—it’s a single transparent pixel1 
that’s used by all sorts of entities to silently gather data about 
you and your web activity. These minute pixels are scattered 
across websites and embedded in Emails. Simply by existing, 
they gather identifying data like your IP address, what browser 
you’re using, and which operating system you’re running. And 
they’re everywhere. This is the unseen power, and menace, of 
the tracking pixel—a relic of the ’90s Internet that has played 
an outsized role in the twenty-first-century digital marketing 
machine.

Also known as “1 × 1 pixels,” “web bugs,” and “invisible GIFs,” 
among other names, transparent 1 × 1 pixels were originally 
used as visual spacers in early web page layouts. Before the 1996 
debut of Cascading Style Sheets (or CSS, the web programming 
language used with HTML for content layout), web developers 
relied on an array of hacks and workarounds to create the visual 
elements they wanted and get everything aligned. Tiny trans-
parent images could sit next to text boxes or visible images to 
make room between components or smooth out any awkward 
formatting—like the blank type spacers used in physical printing.

To a web server, though, a transparent single-pixel image is 
just like any other. When a user navigates to a web page or opens 
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an Email, their browser or mail client sends a request for the 
images on that page or in that message and for details about how 
to display them. When the browser initiates that interaction, 
its request includes information like the time, the device the 
browser is running on, and its IP address. That simple, basic 
exchange can then give marketers, advertising networks, or 
any organization information about who opens their Emails 
and visits their web pages. These details can be combined with 
usage data from other digital tracking tools, especially cookies, 
to produce a profile of a user’s activity, interests, preferences, 
and even physical location.

“The user would never know that the pixel is there and it’s 
able to do things that the user would never expect or want,” 
says Jason Kint, CEO of the digital publishing trade organization 
Digital Content Next.2

In the mid-1990s, marketing firms on the vanguard of digi-
tal ad tracking realized that 1 × 1 transparent pixels provided 
an easy, inconspicuous way to get more granular information 
about what their target audiences were up to online. And pri-
vacy advocates were close behind on warning about the im-
plications and dangers of such behavior.

“Clearly Web Bugs are controversial,” privacy researcher 
Richard M. Smith wrote in a 1999 Electronic Frontier Founda-
tion guide titled The Web Bug FAQ.3 “Because they allow people 
to be monitored, when they don’t expect it, they certainly can be 
very upsetting. For example, most people will likely be troubled 
to learn that an outsider is tracking when they read Email.”

Early Web users certainly wouldn’t have expected that invis-
ible beacons were tracking their online activity. Even cyberse-
curity experts who understood the potential implications of the 
technology struggled with tracking pixels’ pervasive ubiquity.

An example of code for an Email tracking pixel.
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“I remember thinking about them in email at least fifteen 
years ago or more,” says longtime digital security and privacy 
researcher Katie Moussouris. She recalls “tracking pixels just 
driving up my anxiety about opening email and being annoyed 
at it being used by marketing spammers.”4

Even for web users with technical prowess, like Moussou-
ris, the most sinister aspect of tracking pixels has been their 
profound simplicity and inveterate reach. To mitigate tracking 
pixels yourself, you generally have to use browser plugins that 
can break website features, disable all image requests on a site, 
or only view Emails in plaintext.

“Users are able to turn off cookies or even remove individual 
cookies, but it’s not so easy with tracking pixels, which are me-
chanical elements of tracking scripts, embedded on websites,” 
says independent privacy researcher and consultant Lukasz 
Olejnik.5

And the tracking pixel was not a ’90s flash in the pan like 
one-hour delivery service Kozmo. Three decades after their 
creation, you regularly encounter tracking pixels across the 
Internet. But you might not realize it, even though web users 
are more aware than ever of digital tracking and the forces of 
targeted advertising.

“The scale and techniques are perhaps more advanced today, 
but the fundamentals are the same,” says former Federal Trade 
Commission chief technologist and senior White House advisor 
Ashkan Soltani, who gave Congressional testimony about the 
state of online tracking and digital privacy in 2011 and 2018. 
“The web was created in this fashion that leaves a digital trail 
everywhere you go and permitted third parties to observe that 
trail and link it to you. That didn’t need to be the case, but that’s 
what happened.”6

One descendant of the tracking pixel is Facebook’s “Like” 
button, which is embedded in websites across the Internet. The 
buttons are essentially tracking pixels that detect cookies and 
use other identifiers to collect details about what you’re up to 
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online and fuel Facebook’s ad targeting empire. The company 
also offers an invisible option known as a “Facebook Pixel” that 
businesses can embed in their websites to track new and exist-
ing customers who visit the page, target ads, and gather data on 
what happens after visitors see a given ad.

“This isn’t just a tinfoil hat paranoid thing,” security engineer 
and independent researcher Kenneth White says of tracking 
pixels. “This is one of the fundamental gears of a machine that’s 
at the heart of the global economy.”7

Decades after privacy advocates first warned about tracking 
pixels and the rise of targeted marketing, mainstream companies 
have recently started expanding their offerings to give regular 
people more control. Apple’s AppTrackingTransparency frame-
work,8 for example, which launched for users in April 2021, re-
quires that apps ask for permission to track users across multiple 
different services. The goal is to give users more choice and let 
them know how often apps are tracking them across seemingly 
disparate services, like those that incorporate Facebook Pixel.

When it comes to blocking tracking pixels specifically, there 
have long been some options available if you’re willing to make 
aesthetic and functional sacrifices. Google’s Gmail, for exam-
ple, offers a setting to “Ask before displaying external images,”9 
blocking image loading entirely unless you individually approve 
specific content. But now these types of tools are moving away 
from broad, heavy-handed blocking in favor of a more tailored 
and targeted approach.

Apple announced in June 2021 that its iOS 15, iPadOS 15, 
and macOS Monterey operating systems would have a specific 
feature in their “Mail” apps that stops Email web bugs in their 
tracks. The “Protect Mail Activity” feature loads your Emails 
through a special set of proxy servers to mask your IP address 
and details such as the time that you opened an Email, so track-
ers aren’t getting accurate or helpful information. The privacy-
focused web services company DuckDuckGo announced a sim-
ilar feature, Email Protection, in July 2021.
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“We’re seeing some people and companies reevaluating as-
sumptions, because they’re realizing that the free love Internet 
of the 1980s and ’90s had unintended consequences in a glob-
ally connected, financially motivated ecosystem,” says Soltani, 
who became executive director of the California Privacy Pro-
tection Agency, “and one of the assumptions they’re looking at 
is, should we allow invisible third parties to profile us and track 
us on the Web?”

For the average web user who’s been subjected to marketing 
surveillance and targeted advertising for decades, this industry 
introspection may feel almost laughably overdue. Small ges-
tures from tech giants often end up highlighting bigger, more 
comprehensive transformations that are not taking place. For 
example, Google’s recent efforts to kill third-party cookies in 
Chrome10 have been repeatedly delayed and revised. The com-
pany proposed a plan in February 2021 that involved an alterna-
tive in which Google alone would retain the ability to implement 
anonymized, cookie-like activity tracking.11 Almost a year later, 
amid backlash from both marketers and privacy advocates, the 
company debuted a new proposal to offer “interest-based ad-
vertising” based on broad categories that your browsing fits into 
on a given week, like “Fitness” or “Travel & Transportation.”12 
And in February 2022, Google also committed to phasing out 
inveterate and invisible cross-app tracking, following Apple’s 
move in 2021.13 After decades of maturation, the targeted ad 
industry certainly won’t be dismantled in a couple of years. But 
if something as innocuous as an invisible pixel can fuel a mar-
keting revolution, perhaps a privacy revolution can come from 
something equally humble.
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The Pop-Up Ad
The Code That Made 
the Internet Worse
Ethan Zuckerman

Sometime around 1997, I wrote a line of JavaScript code that 
made the world a measurably worse place. The line of code 
looked something like this:

window.open(‘http://tripod.com/navbar.html’ 

“width=200, height=400 toolbar=no, scrollbars=no,resizable=no 

target=_top”);

This line of code was inserted into the top of every personal 
home page we served at Tripod.com, one of the pioneers of 
“user-generated content,” the not-especially-radical idea that 
the Web would be built by ordinary users, not by professional 
media companies. When it loaded in a web browser, the code 
opened both the personal homepage the viewer had wanted 
to see, and another window, which included Tripod branding, 
tools for navigating between different user-generated pages, 
and a 200 × 200 pixel ad. It was likely the Web’s first pop-up ad.

The pop-up ad was my inelegant solution to a thorny prob-
lem the contemporary Internet still faces: How can advertising 
support user-generated content? Advertisers were excited to 
reach the tens of millions of viewers who came to view web 
pages hosted on Tripod, but they often didn’t want to be too 
closely associated with the contents of those pages, which could 
be crudely produced, in questionable taste, and sometimes ob-

http://tripod.com/navbar.html'“width=200
http://tripod.com/navbar.html'“width=200
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scene. The pop-up specifically came about after an auto com-
pany complained about their ad appearing on a personal home-
page about anal sex. My boss asked me to find a way to sell ads 
while ensuring brand managers wouldn’t send us screen shots 
of their precious brands juxtaposed with offensive content. My 
slapdash solution? Put the ad in a different window than the 
content. Presto! Plausible deniability!

A few weeks later, our leading competitor, GeoCities, copied 
our code and used it to launch a similar window on their pages. 
(This didn’t exactly require sophisticated corporate espionage—
JavaScript code like this was visible on the top of a web page’s 
source code, which could easily be viewed within a web browser. 
Many JavaScript coders learned their trade primarily from 
reading web pages they found online.) Not long after, I saw a 
pop-up window appear with only an ad in it. Then came pop-
ups that moved when you tried to close them. Pop-unders that 
loaded below a web page and revealed themselves when you 
closed it. Pop-ups that spawned other pop-ups in a cascade of 

The code that created the scourge of the Internet.
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unwanted advertising that made you regret you’d heard of the 
Internet in the first place.

Within a few years, the option to block pop-up windows was 
built into most web browsers, and advertisers moved onto other 
ways to seize an unwitting user’s attention: ads that began play-
ing music until you clicked on them, videos that began playing 
as the rest of the page loaded. Pop-up ads were an artifact of 
the early Web, like the <BLINK> tag that made text strobe until 
designers realized it was a terrible idea and stopped using it.

I had largely forgotten my role in polluting the World Wide 
Web until August 2014 when I wrote an essay for The Atlantic 
arguing that the business model of offering services at no mon-
etary cost in exchange for surveilling users and monetizing 
our attention was the “original sin” of the Web. It was a long 
and nuanced essay with literary pretensions and engaged with 
emerging critiques of the Web, like Shoshana Zuboff’s idea of 
“surveillance capitalism,” while prescribing a Web supported 
by subscriptions and micropayments as an alternative.1

My editor identified the single sentence of the article she 
knew readers would latch onto: my apology for unleashing the 
pop-up ad as part of a desperate attempt to make advertising 
work on user-generated content. She interviewed me about the 
pop-up and ran the interview as a 300-word story that gener-
ated ten times as much traffic as my 4,000-word essay.2

Within 48 hours, late-night TV hosts were cracking jokes 
about my apology. “The guy who created the pop-up ad says he’s 
sorry. He also says you can save on auto insurance with GEICO!” 
My inbox filled with a variety of invective—to this day, I know a 
content-hungry news website somewhere has published a new 
version of my pop-up “confession” because a random teenager 
has reached out to express his desire to travel through time and 
kill me instead of Hitler.

Death wishes aside, the critique I more often receive today is 
the opinion that I’m taking too much blame—and too much cred-
it—in accepting responsibility for the pop-up ad. They accurately 
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point out that someone else would surely have created the ads 
had I not unleashed them. Why harp on my minor role in Internet 
history? Is this not just a desperate plea for attention, a reminder 
of my presence in the Internet industry two dozen years ago?

I recently had the opportunity during a virtual conference 
to ask David Bohnet, the CEO of Tripod’s competitor, GeoCi-
ties, whether he had any regrets about the role our firms had 
in bringing about the ills of the contemporary Web by linking 
user-created content to surveillant advertising. He forcefully 
disclaimed any responsibility, noting that the phenomenon of 
targeted advertising preceded the advent of the Web. He noted 
with pride that GeoCities’ “neighborhoods,” where individuals 
could opt into communities of interest, had helped make an ad-
supported Web viable. When fans of country music built their 
virtual homes in the “Nashville” neighborhood, they signaled 
that interest to advertisers, perhaps allowing the advertiser to 
intuit demographics as well. Advertising based on these stated 
intentions could be less invasive than third-party cookies 
and other advertising technologies that follow us around the 
Web today. The conference’s moderator, knowing my history, 
chided me for shouldering too much blame for the Web’s con-
temporary ills and trying to share that burden with my former  
competitor.

I appreciated David’s honesty, but found myself pondering a 
deeper question: Who is responsible for the current dysfunc-
tions around social media? In the wake of Russian interference 
in the 2016 US election, the scandal around Cambridge Analyt-
ica, and the coordination of a mob that invaded the US Capitol 
on January 6, 2021, it’s not hard to conclude that something is 
amiss in social media and its effects on the general public. Mark 
Zuckerberg often positions himself as a single, easily hateable 
figure to absorb this blame. But an accurate attribution of blame 
is more complicated.

Zuboff describes “surveillance capitalism” as a new eco-
nomic system in which each action we take, each purchase we 
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make, each interaction we have becomes data to be used to pre-
dict our future behavior. This is not a business model, Zuboff 
argues, so much as a new economic paradigm—it invades all 
businesses, whether they are advertising-driven or not, using 
the logic of “big data” to turn behavior and reality itself into 
source material for processing and prediction.3

Facing a shift of this magnitude, who do we credit or blame? 
Google is Zuboff’s particular bête noire, but a case could be 
made to blame a generation of venture capitalists who rewarded 
rapid user growth above all other factors. We could blame reg-
ulators who’ve allowed a massive new economy of data sharing 
and sales to emerge almost without oversight. Or computer sci-
ence professors who have taught programming as a pragmatic 
technical skill with little thought toward ethics and values. Or 
countless engineers who made bad design choices in trying 
to navigate a set of business requirements they didn’t think to 
question. People like me.

The problem with refusing to accept personal responsibility 
for making the Web a more terrible place is that it releases you 
from the responsibility to make it better. If the emergence of 
surveillance capitalism is diffuse and multifocal, it becomes a 
force of nature, unstoppable and incomprehensible. If it’s the 
sum of small decisions made by self-interested actors, it’s un-
derstandable and possibly reversable.

My work these days is as an academic, teaching at the Uni-
versity of Massachusetts Amherst and leading a research group 
focused on alternative economic and governance models for 
social media. In other words, I’m working to build a version 
of social media that doesn’t watch you, predict your behavior, 
and target ads to you. It turns out there’s a variety of ways to do 
this, including subscriptions, micropayments, cryptographic 
tokens, sponsorship, non-surveillant advertising, or by thinking 
of digital public spaces as public goods, supported by taxpayer 
funds or volunteer efforts. Some of these models might create 
the next venture capital unicorn, but most merely enable new, 
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much smaller communities that might behave very differently 
than Facebook or YouTube.

Personally, I believe that social media should look more like 
public media, designed not to turn a profit but to address issues 
and conversations that help us live together in a democracy. 
My team is building small, single-purpose social networks de-
signed to host moderated, civil conversations about local issues. 
Our goal is to help people reimagine social media as a space for 
constructive interaction, rather than the toxic stew it so often 
becomes. We are also building tools that give users more control 
over their social networks, allowing each of us to decide what 
content we’d like to see more and less of.4

It turns out that the hardest part of inventing alternative fu-
tures for the Internet is giving yourself permission to imagine 
something radically different. My colleagues and I are imagin-
ing a future where social media is a key part of a healthy media 
ecosystem, helping us find allies and common ground, and 
argue productively with those we disagree with. But we also 
need to imagine responsibly. A great first step in stretching your 
imagination is accepting responsibility for your role in making 
the Web what it is today, even if your only responsibility has 
been not demanding something better.



16
Wear This Code, 
Go to Jail
James Grimmelmann

WARNING
This shirt is classified as a munition and

may not be exported from the United
States, or shown to a foreign national

This was the stark warning printed in high-impact white-on-
black type on the front of the “RSA T-shirt.” Beneath it were 
four lines of what looked like the output of a botched print job:

‌#!/bin/perl -s—-export-a-crypto-system-sig -RSA-3-lines-PERL

$m=unpack(H.$w,$m.”\0”x$w),$_=`echo “16do$w 2+4Oi0$d*-1[d2%Sa

2/d0<X+d*La1=z\U$n%0]SX$k”[$m*]\EszlXx++p|dc`,s/^.|\W//g,print

pack(‘H*’,$_)while read(STDIN,$m,($w=2*$d-1+length($n)&~1)/2)

This dense little block was actually the code for the RSA en-
cryption algorithm, implemented in the Perl programming lan-
guage. It was the position of the United States government that 
it was illegal to export this code without a license—making the 
T-shirt bearing it into a regulated “munition” that could not be 
given or sold to foreigners.

No one was ever prosecuted for letting America’s enemies 
wear the “RSA T-shirt,” but if they had been, it would have 
proved Adam Back’s point about the absurdity of export-control 
regulations in a digital age.1 Back and his fellow cypherpunks 
believed in digital freedom of speech, freedom to tinker, and 
freedom from surveillance. They created the shirt to protest ap-
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plying export-control laws to software. It was their contribution 
to one of the most memorable skirmishes of the crypto wars of 
the 1990s, a kind of wearable argument for the right to encrypt.

The idea behind export controls is straightforward: some 
technologies are too dangerous to let fall into the hands of a 
nation’s enemies. If you’re in the United States, you can’t sell 
howitzers, anthrax, or space lasers abroad without government 
permission.2 They’re considered “munitions” by law, and the 
State Department will ask you some pointed questions about 
who you’re selling them to. It’s not just weapons per se on the 
export-control lists, either. High-volume fermenters and cen-
trifuges need licenses, too, because they can be used to make 
and isolate viruses.3

The RSA T-shirt, a regulated “munition” that could not be exported from the 
United States.
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The export-control rules have always been an awkward fit for 
digital technology. The relentless march of Moore’s law means 
that last year’s military-grade electronics are often next year’s 
must-have Christmas present. For a time, the PlayStation 2 
technically qualified as a “supercomputer” subject to export 
control, because it was as powerful as the multimillion-dollar 
systems previously used to do the intensive computations re-
quired to design nuclear weapons.4

Encryption ended up on the export-control lists because of 
its ability to let the dreaded bad guys talk in secret. It made a 
certain kind of sense when encryption was a feature of spe-
cific physical devices, like battlefield radios that scrambled their 
signals. But as encryption became a feature implemented in 
software, any computer could become an encryption device. To 
keep up, governments tried to apply their export laws to soft-
ware too, not just the computers it ran on.

Enter the crypto geeks. Since ancient times, cryptography 
had relied on “symmetric-key” algorithms.5 The sender and 
the receiver both know a key, which has to be kept secret from 
everyone else in the world. The sender uses the key to encode 
a message; the receiver uses it to decode the message. The dif-
ficulty of setting up a safe exchange of keys made symmetric-
key cryptography hard to use, giving government snoops and 
codebreakers a leg up on their surveillance targets.

But in the 1970s, cryptographers devised a new class of 
asymmetric “public-key” algorithms that blew up the key-
distribution problem.6 Now, the sender could encode a message 
using a widely known public key, while the receiver decrypted 
it with a private key known only to her.

The first practical public-key algorithm was created in 1977 
by three MIT researchers, Ron Rivest, Adi Shamir, and Leonard 
Adelman, and named “RSA” for their initials. The idea behind 
RSA is that, as far as anyone knows, it is much easier to multi-
ply two numbers than to factor their product to determine the 
original numbers. Simplifying a bit, the receiver’s secret key is 
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a pair of very large prime numbers; the public key, suitable for 
use by any sender, is their product. Messages are encrypted by 
writing them as numbers, raising them to a specified power, and 
then dividing them by the public key and taking the remainder. 
Only the receiver, who knows the factors of the public key, is able 
to reverse the process and obtain the original message.

Inspired by RSA, many other researchers developed their 
own public-key algorithms and created new applications for 
them. Want to sign a document securely? Encode it with your 
own private key; anyone can decode it with the public key and 
know that only you could have encoded it. The 1980s were a 
time of ferment and rapid progress in cryptography.

The pace of crypto research, however, ran headlong into the 
export-control laws when Daniel Bernstein, a graduate student 
at the University of California, Berkeley, developed an encryp-
tion algorithm charmingly named Snuffle. In 1992, the State De-
partment told Bernstein that Snuffle fell within the definition of 
a “defense article” in the export-control regulations. He would 
need a license to export Snuffle—which could include mail-
ing copies of his paper abroad or presenting it at conferences 
where there were foreign nationals present. He couldn’t even 
post Snuffle’s source code online without permission, because 
there was no way to prevent foreigners from downloading it.

Bernstein sued the State Department with the help of an all-
star team of digital civil-liberties lawyers and asked the court 
to declare that he had right to share his research publicly.7 
While his case was pending, Peter Junger, a law professor at 
Case Western, filed his own suit against the export-control reg-
ulations seeking the right to post encryption software on his 
website so he could teach about it in his course on computers 
and the law.8

Bernstein’s and Junger’s suits energized an increasingly 
activist community of technologists. A loose group of “cypher-
punks” saw strong encryption and anonymity as human rights 
and defenses against government abuse. As a community, they 
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resisted other attempts to control software and encryption. 
Most famously, they fought back in 1993 and 1994 when the 
Clinton administration tried to mandate that telephone encryp-
tion use a standard called Clipper that included a government 
backdoor. (Before the matter could be settled in Congress or a 
courtroom, the effort imploded when a security researcher at 
Bell Labs found a fatal flaw in the Clipper scheme.9)

The RSA T-shirt was the most visible example of mid-1990s 
activist art intended to illustrate the futility of trying to con-
trol software. Of course, the design files were posted online so 
that anyone could make their own. A few particularly dedicated 
cypherpunks even had themselves tattooed with the RSA Perl 
code, putting a new technological spin on the old line about 
making your body into a deadly weapon.

On the one hand, turning RSA’s elegant math into a digital 
Jackson Pollock slightly undercut the freedom-of-speech ar-
gument that software is a medium of expression for program-
mers to communicate with each other. The Perl implementa-
tion is notoriously, almost incomprehensibly compact. On the 
other hand, compressing the algorithm so it fit neatly on a shirt 
helped make the central point. Software, unlike a surface-to-air 
missile, can fit anywhere. Trying to control it is like trying to 
control T-shirts. (Plus, it left room on the back for text from the 
Bill of Rights with a large red VOID stamp, in case the political 
point wasn’t obvious already.)

In 1996, a federal court ruled for Bernstein, and its deci-
sion was upheld on appeal in 1999: Snuffle’s source code was 
protected under the First Amendment. The government asked 
the court to reconsider the case and, while it was pending, 
substantially weakened the export-control rules for cryptog-
raphy, mooting his case. The rules aren’t entirely gone, though: 
software licenses still tell you not to send your copy of macOS 
to embargoed countries (such as Iran and North Korea), and 
software companies still pay lawyers to fill out export license 
application forms.10
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The software-is-speech argument has outlasted the partic-
ular debates that produced the RSA T-shirt. In the early 2000s, 
the movie industry attempted to suppress DeCSS, a program to 
decrypt DVDs. In response, activists turned its code into an ani-
mated Star Wars crawl, a square dance, an epic poem composed 
of 456 haiku, and yes, a T-shirt. They were gathered together in 
a “Gallery of CSS Descramblers” used to make the case that soft-
ware could be expressive speech.11 They made their point but 
lost the case; courts held that yes, software could have expres-
sive elements, but that speech interest could be steamrolled 
in the name of copyright.12 More recently, similar issues have 
come up in attempts to restrict files for 3D-printed firearms.13

Although it is too soon to declare that the crypto wars are 
over and crypto won, today strong encryption is everywhere. It’s 
built into every major web browser and every major messaging 
app. Banks use it, activists use it, as do cops and criminals, soft-
ware developers and users, and teenagers sending each other 
Minecraft memes.

How about Adam Back, who created the RSA T-shirt? He runs 
the blockchain company Blockstream, which has raised $100 
million to build technologies resistant to government censor-
ship.14 That’s a lot of T-shirts.



17
Needles in the World’s 
Biggest Haystack
The Algorithm That 
Ranked the Internet
John MacCormick

We’ve all experienced, from time to time, a kind of compulsive 
web surfing in which we follow link after link, browsing content 
that becomes less and less relevant to the task at hand. This 
happened to me only yesterday: while working on some artifi-
cial intelligence research, I clicked on something interesting, 
followed a few links, and 20 minutes later found I was deep into 
an article about the human brain and consciousness. Strangely 
enough, this “random surfer” model of Internet browsing also 
lies at the heart of one of the most revolutionary pieces of code 
to impact the Internet age: Google’s PageRank algorithm.

It is widely believed that the PageRank algorithm, invented 
and first published by Google cofounders Sergey Brin and Larry 
Page in 1998, was the single most important element in launch-
ing the Google search engine to its dominance of the emerging 
web search industry in the early 2000s. Around this time, Goo-
gle leapfrogged some established players such as Lycos and 
AltaVista, which have since faded into obscurity. How and why 
did this happen? The key insight of the Google cofounders was 
that a web search engine would live or die according to the qual-
ity of its ranking of search hits. The technology of crawling and 
indexing the entire web was already well understood—Lycos, 
AltaVista, and others had mastered that. The problem was that 
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most search queries would overwhelm the user with far too 
many hits. For example, if I search the Web these days for “field 
hockey,” there are more than 300 million hits. This is only a tiny 
fraction of the entire Web, but still far too large to be a useful 
set of results. A good search engine, therefore, needs to rank 
those 300 million pages. Ideally, they would be ranked so that 
the top three to five search results are highly authoritative and 
informative about field hockey. With their 1998 PageRank algo-
rithm, Brin and Page thought they had figured out a way to find 
the most authoritative and informative pages automatically—
and the public voted with their mouse clicks. Google’s results 
were far more relevant than those of competitors such as Lycos 
and AltaVista. Google’s market share soared, and a twenty-first-
century Internet giant was born.

The concept of a web page being “authoritative” is subjective. 
It’s a property that knowledgeable humans can assess, but could 
a computer algorithm exhibit this same level of understanding 
and judgment? At first glance, this is a problem that requires 

Code that simulates Google’s PageRank algorithm.
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artificial intelligence. It’s tempting to attack the problem with the 
latest neural network or machine learning techniques, because 
these tools can learn how to classify inputs based on examples. 
The insight of Brin and Page was that we don’t really need AI 
here. Instead, we can harvest—some would say crowdsource—the 
opinions of billions of humans all over the planet to automatically 
infer their opinions about the authoritativeness of web pages.

Suppose you are the author of a web page about field hockey. 
Over time, you will develop expertise about which other web-
sites are authoritative on the topic. You will probably select the 
best ones and provide links to them on your own web page. 
Thousands of other web-page authors around the globe will do 
the same thing. On average, the best field hockey pages will be 
the ones that receive the most incoming links from other web 
pages. This is the first algorithmic principle behind PageRank: 
pages with many incoming links are likely to be authoritative. 
Therefore, pages with more incoming links should be ranked 
higher than pages with fewer incoming links.

But we can do even better. We know that some authors have 
better judgment than others. For example, the author of a really 
popular sports web page is likely to be a good judge of whether 
other sports web pages are authoritative. On average, we should 
trust this author’s opinion more than that of an amateur sports 
blogger whose page has limited popularity. This is the second 
algorithmic principle behind PageRank: incoming links from 
authoritative pages should count for more than incoming links 
from pages with low authority. To achieve this, we add up the 
authority scores of a page’s incoming links and use this total 
score to rank hits that match a query. It is this total authority 
score of the incoming links that Brin and Page defined as the 
PageRank score of a given page.

You may have noticed an unfortunate chicken-and-egg prob-
lem here. The PageRank score of a page P depends on the Page
Rank scores of pages linking to P. But the scores of those pages 
depend on their own incoming links, and so on. This produces 
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an infinite chain of computations. Brin and Page knew a math-
ematical trick that transforms this infinite chain into a straight-
forward calculation. When we transform the above PageRank 
definition into mathematics, the scores of a collection of web 
pages satisfy a certain equation expressed in matrix algebra. 
That equation takes a form that is familiar to any undergrad-
uate math major: it is a so-called eigenvalue problem, and it can 
be solved efficiently on modern computers even for matrices 
that encode the links among billions of web pages. So Brin and 
Page were able to code up the eigenvalue problem, solve it, and 
use the resulting PageRank values to rank the query hits in their 
search engine prototype. The rest is history.

But where does the random surfing come in? I opened this 
essay with the claim that the indulgent time-wasting of a per-
son randomly surfing the Web mimics the algorithm behind 
Google’s rise to power. Well, if your surfing is truly random, 
you are computing Brin and Page’s chicken-and-egg PageR-
ank values! For the math to work correctly, we need to assume 
you start on a page selected at random from the entire World 
Wide Web. You randomly choose one of the links on this page 
and follow it. That leads to a new page where the process is 
repeated: a random link is selected and followed. This process 
is repeated many times, with one variation. Every so often, you 
get bored and perform a reset by restarting your surfing at a 
new random page selected from the whole Web. In their orig-
inal 1998 publication, titled “The Anatomy of a Large-Scale 
Hypertextual Web Search Engine,” Brin and Page suggested 
using a reset probability of 15 percent.1 This means that 85 
percent of the time, you follow a randomly selected link, and 
15 percent of the time you start at a new random page from 
anywhere on the Web.

The code in the figure on page 109, written in the program-
ming language Python, shows how the random surfing algo-
rithm can be implemented in a computer program. After a few 
billion iterations of the surfing strategy, the number of times 
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a given page was visited is a good statistical estimate of that 
page’s PageRank score.

In the decades since PageRank was first deployed, there have 
been debates as to how important or revolutionary it really is. 
Was PageRank good math, or just good marketing? Specialists 
in information retrieval were aware of the basic technique many 
years earlier, and a search engine called RankDex was already 
using a similar style of link analysis to rank pages when Google 
got started. In addition, search engine companies quickly dis-
covered that PageRank alone was not enough to stay ahead of 
the competition. Indeed, PageRank provides only a static score 
for each page, meaning that the score depends only on the page 
itself and not on the query entered by the user. Modern search 
engines employ dynamic scores that are query-dependent, and 
PageRank is only one component of such scoring systems.

Despite these counterarguments, there are compelling rea-
sons to believe the hype and mystique surrounding PageRank. 
Brin and Page were among the first to apply the concept at Web 
scale, where its impact turned out to be immense. And it does 
seem likely that PageRank was an important contributor to 
the quality of Google’s search results in the early years, when 
Google’s competitors were playing catch-up and desperately 
trying to improve their own search quality. Ultimately, how-
ever, these lines of code—the PageRank code—achieved much 
more than the launch of a single company from a garage in 
Menlo Park, California, to its status as a global internet super-
power less than a decade later. The PageRank code transformed 
twenty-first-century society, creating a vast new ecosystem 
based on web search, enabling us to find relevant needles in 
gigantic haystacks, and revolutionizing the way we interact with 
information.
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A Failure to Interoperate
The Lost Mars 
Climate Orbiter
Charles Duan

The Mars Climate Orbiter was falling fast. After nine months 
of flight, the spacecraft had reached the red planet on its tar-
get date of September 23, 1999, and was preparing to enter 
Mars’ orbit in order to collect weather data from the planet’s 
atmosphere. But while the orbiter was supposed to fly at least 
160 kilometers above the Martian surface, the latest estimates 
suggested it was at 110 kilometers and dropping. At less than 
98 kilometers, the spacecraft would be blasted with damaging 
heat; at less than 85, it would be rendered unsteerable. The nav-
igation crew at NASA’s Jet Propulsion Laboratory (JPL) began 
firing the orbiter’s thrusters to keep it in position, but to no 
avail. At 9:05 UTC, it entered Mars’ shadow, which blocked radio 
communication with the ground crew. It was never heard from 
again, likely having burned upon entry into Mars’ atmosphere. 
The final estimated altitude: 57 kilometers.1

In the weeks that followed, NASA and its coordinate engi-
neering teams at JPL and Lockheed Martin Aeronautics scram-
bled to explain the loss of the $145 million spacecraft. They 
and other investigators produced at least five post-mortem re-
ports on the error, variously pointing fingers at management, 
budgets, and team communication. The one point of consen-
sus among all of them was that the disaster would have been 
averted but for a software bug: a missing line of code that should 
have multiplied a number by 4.45.2 That missing line of code 
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and its destruction of a multimillion-dollar spacecraft would 
foreshadow a systemic problem with the burgeoning software 
industry—a problem that would persist for more than 20 years.

The missing code was supposed to help manage the Mars 
Climate Orbiter’s orientation during flight. About twice a day, 
the small spacecraft would execute an operation called “angu-
lar momentum desaturation,” in which it fired small thrusters 

The lost Mars Climate Orbiter, prior to crashing. (Drawing based on 1999 press 
materials from NASA.)
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to orient the spacecraft in the right direction. Unfortunately, 
the thrusters had the side effect of pushing the spacecraft off-
course, changing its velocity by a tiny amount—less than a ten 
thousandth of a percent.3

Though these delta-V’s, as the scientists called them, were 
minuscule, they were also significant because they fed into the 
larger computation of determining where the orbiter was at any 
given time. Navigating a spacecraft is hard—there are no street 
signs in space, and measurements based on star positions or 
Earth-based radar are incomplete and inaccurate at best. In-
stead, JPL kept track of all the forces acting upon it—the pres-
sure of solar wind and the gravity of the sun and planets, in ad-
dition to the delta-V’s—and predicted the orbiter’s trajectory by 
adding up the forces.4 This perhaps sounds like predicting how 
far a car has driven by tallying up presses on the gas and brake. 
But just two years earlier, JPL had used largely the same navi-
gation modeling software to successfully place the Mars Global 
Surveyor into orbit. The two spacecraft differed significantly in 
shape, intended motion, and thruster configuration, meaning 
that the navigation modeling software for the Surveyor would 
not work as-is for the Mars Climate Orbiter.5 But the physics was 
the same, and so the Mars Climate Orbiter’s engineers expected 
that they could reuse the Surveyor’s modeling software, just 
feeding it slightly modified input data tailored to the Orbiter.

Yet it was what fed into that modeling software that ultimately 
sank the Mars Climate Orbiter. Upon each of the twice-daily 
angular momentum desaturation events, a software program 
called SM_FORCES would run. That program, written by JPL’s 
contractor Lockheed Martin, would produce files of thruster 
data for JPL’s modeling software to use in its computations.6 But 
while JPL’s software expected the data files to use metric units 
of Newton-seconds, SM_FORCES produced data files in imperial 
units of pound-force-seconds.7 As a result, the numbers were 
too small by a factor of 4.45, so JPL predicted the orbiter’s delta-
V’s to be less than reality. While each individual error was small, 
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they added up: After the crash, JPL estimated that the total error 
over the mission would have been over 10,000 kilometers.8 
Even after several course corrections in flight, 169 kilometers 
of error remained in the days before the orbiter reached Mars. 
That distance was tiny compared with the 669 million kilome-
ters the orbiter had traveled,9 but given the small window for a 
successful Mars orbit, it was enough to turn the mission from 
success to failure.10

Failure to multiply by 4.45 was no doubt a software bug, but 
which line of code was buggy—and whose responsibility was 
it? Lockheed Martin’s software could have performed the con-
version, but so could JPL’s. Each side laid blame on the other: 
NASA and JPL pointed to a software requirements document 
that called for metric units,11 while Lockheed Martin’s engineers 
countered that they had written their software to match sample 
hand-computed data that JPL had provided—data that appar-
ently used imperial.12 And in a sense, both programs were cor-
rect: SM_FORCES produced numbers exactly in line with what 
its coders intended, and JPL’s software ingested and processed 
data exactly the way its coders had specified. The bug could 
be said to lie not with either piece of code, but somewhere in 
between.

That in-between space is the world of interfaces—the places 
inter two faces of software. Across that space, one program can 
send information or commands to another. But those trans-
missions are meaningless 1s and 0s unless the programs have 
a shared agreement on what they mean, just as two humans 
must have a shared understanding of a language before they can 
talk with each other. And even more so than human languages, 
the “languages” with which computer programs communicate 
must be precisely defined by agreement between the programs’ 
coders, including the choice of metric versus imperial units. 
Programs that do so are said to be compatible, or interoperable; 
those that fail will produce wrong results, or, perhaps, crash, 
literally or figuratively.
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Interoperability is what allows the massive tangle of inter-
faces that we call the Internet to function—to retrieve Emails, 
web pages, and “All Your Base” memes. As Harvard scholars 
John Palfrey and Urs Gasser have argued, interoperability born 
from that early Internet age has enabled consumer choice, en-
couraged technological progress, promoted competitive mar-
kets, and opened up efficiencies and conveniences that have 
made the highly connected society in which we live today.13

Today, interoperability is practically the expectation. In-
deed, much frustration with technology is due to failures of 
interoperability—when Microsoft Word can’t open an Apple 
Pages file, for example.14 (Apparently a file format incompat-
ibility also plagued the Mars Climate Orbiter mission, forcing 
one poor JPL analyst to recompute all of Lockheed Martin’s 
trajectory predictions by hand for the first four months of the 
mission.)15

While the failure of interoperability for the Mars Climate 
Orbiter was an honest mistake, non-interoperability in tech-
nology today often arises more deviously: forced incompati-
bility designed to secure market domination. The great virtue 
of interoperability is substitutability. JPL could switch to any 
other contractor’s compatible delta-V files with the click of a 
keyboard. But what if Lockheed Martin could “own” that com-
patible format, forcing competitors to generate only incom-
patible files—perhaps using even more exotic units of impulse, 
such as slug-feet per second or poundal-hours? One can only 
imagine how much more confusing and disaster-prone a Mars 
spacecraft operation could become in such a world where JPL 
must rewrite its software for every new contractor.

Even more worryingly, companies ranging from electronic 
health care to social media have begun to eschew the late-1990s 
embrace of interoperability, preferring instead the walled gar-
dens of curated app stores and vertically integrated products 
designed to lock in consumers and markets.16 Where once the 
norm was highly compatible Internet technology, now even a 



118  /  CHAPTER  18

coffee machine may refuse to interoperate with third-party 
coffee pods.17

This shift away from interoperability is troubling. As with 
space exploration, the digital economy depends on a diverse 
array of contributors: large firms to be sure, but also startups, 
small creators, forum frequenters, scientists, engineers, and 
many more. Interoperability is the glue that enables this diverse 
community to work together innovatively; failures of interoper-
ability, whether accidental or intentional, leave that community 
frustrated and divided. Should society fail to pay heed to the 
importance of interoperability, its technological prospects may 
very well burn up on entry many times over.
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The Code That Launched 
a Million Cat Videos
Lowen Liu

According to Colin Angle, the CEO and cofounder of iRobot, the 
Roomba faced some early difficulties before it was rescued by 
two events. The disc-shaped robot vacuum had gotten off to a 
hot start in late 2002, with good press and a sales partner in the 
novelty chain store Brookstone. Then sales started to slow, just 
as the company had spent heavily to stock up on inventory. The 
company found itself on the other side of Black Friday in 2003 
with thousands upon thousands of Roombas sitting unsold in 
warehouses.1

Then around this time, Pepsi aired a commercial starring co-
median Dave Chappelle.2 In the ad, Chappelle teases a circular 
robot vacuum with his soft drink while waiting for a date. The 
vacuum ends up eating the comedian’s pants—schlupp. Angle 
remembers that at a team meeting soon after, the head of 
e-commerce said something like: “Hey, why did sales triple yes-
terday?” The second transformative moment for the company 
was the rapid proliferation of cat videos on a new video-sharing 
platform that launched at the end of 2005. A very specific kind 
of cat video: felines pawing suspiciously at Roombas, leaping 
nervously out of Roombas’ paths, and, of course, riding on them. 
So many cats, riding on so many Roombas. It was the best kind 
of advertising a company could ask for: it not only popularized 
the company’s product but made it charming. The Roomba was 
a bona fide hit.

By the end of 2020, iRobot had sold 35 million vacuums,3 
leading the charge in a booming robot vacuum market.
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The Pepsi ad and the cat videos appear to be tales of early-
days serendipity, lessons on the power of good luck and free 
advertising. They also appear at first to be hardware stories—
stories of cool new objects entering the consumer culture. But 
the role of the Roomba’s software can’t be underestimated. It’s 
the programming that elevates the round little suckers from 
being mere appliances to something more. Those pioneering 
vacuums not only moved, they decided in some mysterious way 
where to go. In the Pepsi commercial, the vacuum is given just 
enough personality to become a date-sabotaging sidekick. In 
the cat videos the Roomba isn’t just a pet conveyer, but a dili-
gent worker, fulfilling its duties even while carrying a capricious 
passenger on its back. For the first truly successful household 
robot, the Roomba couldn’t just do its job well; it had to win over 
customers who had never seen anything like it.

Like many inventions, the Roomba was bred of good fortune 
but also a kind of inevitability. It was the brainchild of iRobot’s 
first hire, former MIT roboticist Joe Jones, who began trying 
to make an autonomous vacuum in the late 1980s. He joined 
iRobot in 1992,4 and over the next decade, as it worked on other 
projects, the company developed crucial expertise in areas of 
robotics that had nothing to do with suction: it developed a 
small, efficient multithreaded operating system; it learned to 
miniaturize mechanics while building toys for Hasbro; it gar-
nered cleaning know-how while building large floor sweepers 
for SC Johnson; it honed a spiral-based navigation system while 
creating mine-hunting robots for the US government.5 It was a 
little like learning to paint a fence and wax a car and only later 
realizing you’ve become a Karate Kid.

The first Roombas needed to be cheap—both to make and 
(relatively) to sell—to have any chance of success reaching a 
large number of American households. There was a seemingly 
endless list of constraints: a vacuum that required hardly any 
battery power, and navigation that couldn’t afford to use fancy 
lasers—only a single camera.6 The machine wasn’t going to have 
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the ability to know where it was in a room or remember where 
it had been. Its methods had to be heuristic, a set of behaviors 
that combined trial and error with canned responses to various 
inputs. If the Roomba were “alive,” as the Pepsi commercial 
playfully suggested, then its existence would more accurately 
have been interpreted as a progression of instants—did I just run 
into something? Am I coming up to a ledge? And if so, what should I do 
next? All conditions prepared for in its programming. An insect, 
essentially, reacting rather than planning.

And all this knowledge, limited as it was, had to be stuffed 
inside a tiny chip within a small plastic frame that also had to 
be able to suck up dirt. Vacuums, even handheld versions, were 
historically bulky and clumsy things, commensurate with the 
violence and noise of what they were designed to do. The first 
Roomba had to eschew a lot of the more complicated machin-
ery, relying instead on suction that accelerated through a nar-
row opening created by two rubber strips, like a reverse whistle.

But the lasting magic of those early Roombas remains 
the way they moved. Jones has said that the navigation of the 
original Roomba appears random but isn’t—every so often the 
robot should follow a wall rather than bounce away from it.7 
In the words of the original patent filed by Jones and Roomba 
cocreator Mark Chiappetta, the system combines a deterministic 
component with random motion.8 That small bit of unpredictabil-
ity was pretty good at covering the floor—and also made the 
thing mesmerizing to watch. As prototypes were developed, 
the code had to account for an increasing number of situations 
as the company uncovered new ways for the robot to get stuck, 
or new edge cases where the robot encountered two obstacles 
at once.9 All that added up until, just before launch, the robot’s 
software no longer fit on its allotted memory. Angle called up his 
cofounder, Rodney Brooks, who was about to board a transpa-
cific flight. Brooks spent the flight rewriting the code compiler, 
packing the Roomba’s software into 30 percent less space.10 The 
Roomba was born.
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In 2006 Joe Jones moved on from iRobot, and in 2015 he 
founded a company that makes robots to weed your garden.11 
The weeding robots have not, as yet, taken the gardening world 
by storm. And this brings us to perhaps the most interesting 
part of the Roomba’s legacy: how lonely it is.

You’d be in good company if you once assumed that the ar-
rival of the Roomba would open the door to an explosion of 
home robotics. Angle told me that if someone went back in time 
and let him know that iRobot would build a successful vacuum, 
he would have replied, “That’s nice, but what else did we really 
accomplish?” A simple glance around the home is evidence 
enough that a future filled with robots around the home has 
so far failed to come true. Why? Well for one, robotics, as any 
roboticist will tell you, is hard. The Roomba benefited from a set 
of very limited variables: a flat floor, a known range of obstacles, 
dirt that is more or less the same everywhere you go. And even 
that required dozens of programmed behaviors.

As Angle describes it, what makes the Roomba’s success so 
hard to replicate is how well it satisfied the three biggest cri-

A snippet of code at the heart of the Roomba’s navigation system. The robot scoots along 
the floor, constantly checking for inputs—Have I bumped into something? How about now? 
And now?—and reacting in ways that are both predetermined and a little mysterious.
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teria for adoption: it performed a task that was unpleasant; it 
performed a task that had to be done relatively frequently; and 
it was affordable. Cleaning toilets is a pain but not done super 
frequently. Folding laundry is both, but mechanically arduous. 
Vacuuming a floor, though—well, now you’re talking.

Yet for all the forces that led to the creation of the Roomba, 
its invention alone wasn’t a guarantee of success. What is it that 
made those cat videos so much fun? It’s a question that lies 
close to the heart of the Roomba’s original navigation system: 
part determinism, part randomness. My theory is that it wasn’t 
just the Roomba’s navigation that endeared it to fans—it was 
how halting and unpredictable that movement could be. The 
cats weren’t just along for an uneventful ride; they had to catch 
themselves as the robot turned unexpectedly or hit an object. 
(One YouTuber affectionately described the vacuum as “a drunk 
coming home from the bar.”) According to this theory, it’s the 
imperfection that is anthropomorphic. We are still more likely 
to welcome into our homes robots that are better at slapstick 
than superhuman feats. It’s worth noting that the top-of-the-
line Roomba today will map your rooms and store that map on 
an app, so that it can choose the most efficient lawnmower-like 
cleaning path. In these high-end models, the old spiral naviga-
tion system is no longer needed. Neither is bumping into walls.

Watching one of these Roombas clean a room is a lot less 
fun than it used to be. And it makes me wonder what the fate 
of the Roomba may have been had the first ever robot vacuum 
launched after the age of smartphones, already armed with the 
capacity to roll through rooms with precise confidence, rather 
than stumble along. It’s not always easy, after all, to trust some-
one who seems to know exactly where they are going.



20
Nakamoto’s Prophesy
Bitcoin and the 
Revolution in Trust
Quinn DuPont

When the person known as Satoshi Nakamoto started working 
on Bitcoin in 2007, then-US Federal Reserve Chair Alan Green-
span was already warning of a looming recession, and banks in 
England were facing a serious liquidity crisis. For years, banks 
had been bingeing on cheap credit and were selling mortgages 
to unqualified borrowers. In late 2008, Nakamoto published the 
now-famous “Bitcoin: A Peer-to-Peer Electronic Cash System” 
white paper that laid out the design for a novel cryptocurrency.1 
By then, the global economic crisis was in full swing. When the 
first bitcoins were “minted” in January 2009, Nakamoto made 
the system’s political mission crystal clear: indelibly encoded in 
the so-called Genesis block of transactions, Nakamoto typed out 
a London newspaper’s headline, “The Times 03/Jan/2009 Chan-
cellor on brink of second bailout for banks.” With a stroke, Na-
kamoto had timestamped Bitcoin’s origin and marked its target.

Nakamoto was keenly aware of the modern nation-state’s 
monopoly on the creation of money, which is maintained by 
taxation laws, anticounterfeit laws, and banking regulations, 
but Nakamoto also knew that most money is de facto created 
by commercial banks through their lending practices. By devel-
oping a peer-to-peer digital money beyond the remit of nation-
states and their banks, Nakamoto was championing the legacy 
of cypherpunks—information-age anarchists who sought their 
own micro-nations and digital cash. But Nakamoto also sensed 
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a broader, more socially transformative use. Bitcoin was to spur 
a revolution in trust.

The original Bitcoin whitepaper was focused on Internet 
commerce. Nakamoto wrote:

Commerce on the Internet has come to rely almost exclusively 
on financial institutions serving as trusted third parties to pro-
cess electronic payments. While the system works well enough 
for most transactions, it still suffers from the inherent weak-
nesses of the trust based model. Completely non-reversible 
transactions are not really possible, since financial institu-
tions cannot avoid mediating disputes. The cost of mediation 
increases transaction costs, limiting the minimum practical 
transaction size and cutting off the possibility for small casual 
transactions, and there is a broader cost in the loss of ability to 
make non-reversible payments for non- reversible services.2

Nakamato believed that without irreversible transactions, fi-
nancial services would need to collect ever more information 

Satoshi Nakamoto included a hash of the Times headline from January 3, 2009 in the 
Genesis block of Bitcoin.
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to be able to trust their customers, in turn reducing privacy. 
With Bitcoin, however, trust would be replaced by cryptographic 
proof, which would protect sellers from fraud and buyers from 
unscrupulous sellers through secure, automated escrow and 
smart contracts. Since Bitcoin transactions are (pseudony-
mously) recorded in a shared ledger, anyone can inspect the 
ledger to confirm payment. For the seller, the shared ledger 
offered protection, since transactions cannot be changed or 
removed from the ledger; payment is confirmed before ship-
ping. For the buyer, the shared ledger can serve as a third 
party for escrow, finalizing payment only once the shipment is  
complete.

As the global economy recovered, Nakamoto and a small 
team of open-source software developers continued to work 
on Bitcoin. At first, Bitcoin was a fun hobby for most, and each 
coin was nearly worthless. (Famously, two pizzas sold for 10,000 
bitcoins on May 22, 2010, now celebrated as “Pizza Day.”) Then, 
in 2011, with no warning and little fanfare, Nakamoto disap-
peared. Over the years, open-source software developers con-
tinued to enhance Bitcoin while the news media hunted for 
Nakamoto’s whereabouts. Remarkably, none of the estimated 
one million bitcoins held in Nakamoto’s wallet have been spent 
(now worth at least USD $50 billion).

Bitcoin has had a fascinating and tumultuous history that 
spawned copycats, a blockchain “revolution,” and even—with 
unacknowledged irony—Central Bank digital currencies. The 
success of Bitcoin can be attributed to many factors, but in the 
Bitcoin whitepaper Nakamoto singled out the “inherent weak-
nesses of the trust based model” for electronic commerce. Na-
kamoto felt that trusted third parties like payment processors 
were costly and inefficient and, worse still, could not actually be 
trusted to act impartially. Nakamoto’s suspicions were validated 
in 2011 when, buckling to US political pressure, Visa, Master-
card, and other financial organizations froze the accounts of the 
whistleblowing website Wikileaks. By supplanting trust with 
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cryptographic proof, Bitcoin made it possible to securely inter-
act without a mediating third party.

Long before ubiquitous computing and global telecommu-
nications, the sociologist Georg Simmel observed that trust—
faith in others to not deceive—was crucial to modern life.3 Fore-
shadowing the emergence of Bitcoin, Simmel observed how 
trust relationships are usually reciprocal and, increasingly, ac-
counted for by money. Indeed, more than a hundred years ago 
he observed how money produced a social “credit-economy” 
where obligations are measured by money and supported by 
trust. Another early sociologist, Max Weber, noticed that the 
fledgling capitalist economy had progressed by instituting a 
more reliable calculation of obligations through improvements 
in bookkeeping, business practices, and technology.4 With Bit-
coin, Nakamoto seemed to be suggesting, perfect accounting 
could eliminate the need for trust altogether.

Around 2014—after Nakamoto had vanished—software 
developers started to realize that Bitcoin’s underlying ledger 
system could be extended to situations beyond money. This 
ledger system, called blockchain, meant that even in low-trust 
environments, complex and robust kinds of interaction could 
be achieved. For instance, decentralized finance (DeFi) now al-
lows speculators to trade assets directly, without the commis-
sion and regulatory overhead of centralized exchanges. Today, 
billions of dollars in assets—including artwork, property, and 
cryptocurrencies—are traded this way.

In Bitcoin, the underlying blockchain is necessary to create 
agreement among globally distributed ledgers. Since Bitcoin has 
no central server (a “third party”) to order and process trans-
actions, so-called miners compete in a lottery to validate and 
bundle transactions into blocks. Using a “gossip” protocol, each 
miner listens for incoming transactions (sent from individual 
wallets) and computes an algorithm that produces a random re-
sult. If the miner discovers a random “winning” result (a param-
eter set by the protocol), it seals the transactions into a block, 
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chains it to the previous one, and is rewarded for the trouble with 
newly minted bitcoins. Because the bitcoin reward is valuable, 
miners are incentivized to run the protocol and act honestly.

So, if a dishonest person wanted to submit a fraudulent trans-
action to the Bitcoin network, a colluding miner would still be 
required to compute the expensive, power-consuming algo-
rithm. Therefore, counterfeiting is practically impossible on 
the open Bitcoin ledger because the honest majority of miners 
would reject the transaction and its mining reward, making 
collusion economically irrational. But since there is no central-
ized authority to determine valid from fraudulent blocks, how 
does the network weed out fraudsters who only attempt to alter 
existing transactions, or “double spend” coins? When presented 
with competing ledgers and two equally plausible versions of 
truth, fraudulent blocks are detected and rejected by honest 
miners because they always select the longest chain—the one 
with the most “work” behind it. Since existing transactions are 
from the past and therefore shorter in length (they have less 
work), the majority of honest miners will come to agreement 
and reject the fraudulent chain.

This remarkable process of consensus keeps Bitcoin pay-
ments secure when dealing with adversaries. Even though digi-
tal code can be endlessly copied and pasted, the blockchain pre-
vents counterfeiting and double-spending. Security is assured 
because the Bitcoin network financially encourages miners to 
check and include all valid transactions and eliminates pay-
ment reversals. Since the lottery chooses a winner at random, 
censors and cheaters gamble in a loser’s game. The blockchain 
achieves consensus and agreement about a single version of 
truth through a sophisticated dance of cryptography and eco-
nomic incentives.

When monetary transactions are replaced with executable 
code, as in the case of Ethereum and other blockchain plat-
forms, it becomes possible to achieve consensus about any com-
putational result—a decentralized “world” computer. Today, this 
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process is used to secure shipping manifests, for example, as 
they pass between companies. When combined with environ-
mental sensors and wireless networking (such as industrial-
scale Internet-of-Things), a blockchain can detect issues (like 
an opened container or a failing refrigeration unit) and auto-
matically take action. Even with untrustworthy shippers, when 
the digital manifest and its sensor data are entered onto the 
blockchain, the records cannot be altered or erased. For these 
kinds of applications, blockchain abstracts away the concept 
of digital money and extends the Bitcoin whitepaper’s original 
use case to much richer business environments.

Consensus about the result of executed code can also support 
multistakeholder, low-trust environments to enable better gov-
ernance. Indeed, achieving consensus about records bolsters 
trust in ways that may be able to solve collective action prob-
lems, including pressing social issues like climate change, cor-
ruption, and inequality. For example, since blockchains can se-
curely record the results of voting and automatically take action 
with smart contracts, a quasi-legal smart contract might, for 
example, automatically allocate funds for condo repair, where 
otherwise individual decision-making might result in a trag-
edy of the commons. These governance mechanisms are the 
practical realization of decades of development in game theory, 
which can produce socially optimal results for condo boards, 
access to water rights, land titling, and many other public or 
“toll” goods. In recent years, a refinement of game theory called 
cryptoeconomics has emerged to examine how sophisticated 
forms of consensus support trust to enable better governance. 
This fledgling discipline draws on complex systems, mecha-
nism design (known as “reverse” game theory), and information 
security and may underpin novel, algorithmically enhanced 
governance platforms.

Today, Nakamoto’s original political vision is no longer recog-
nizable; after all, Bitcoin is now largely a Silicon Valley–style ca-
sino. But Bitcoin has helped create new values for democracy, 
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financial inclusion, and ownership. The Millennial and Gen 
Z generations in particular, those who were left behind in the 
wake of the 2008 global economic crisis that birthed Bitcoin, 
have eagerly embraced this decade’s Sturm und Drang by re-
making old institutions in their own image. To the consterna-
tion of state regulators and politicians, the youth have flocked 
to Bitcoin and in turn brought new relevance to Nakamoto’s 
prophecy.



21
The Curse of the 
Awesome Button
Will Oremus

It was summer 2007. Facebook was three years old and growing 
at a heady pace. Originally for college students, it had opened 
to the public the previous fall. Now it had 30 million users.1 
What it didn’t have was a simple way for them to show interest 
in each other’s posts. The only way to acknowledge a post was 
to comment on it.

Leah Pearlman, one of Facebook’s three product managers 
at the time, found that inefficient. Popular posts would receive 
long strings of comments, many just one or two words (such as 
“awesome” or “congrats”), with no way to locate the interesting 
ones in a sea of noise. That might not seem like a big problem, 
but it chafed Pearlman and her coworkers, almost all of whom 
were in their early twenties and active Facebook users them-
selves. To Pearlman, the comment chains felt like something 
you would see on Facebook’s more established rival, MySpace, 
with its anything-goes customizability. That clashed with Face-
book’s clean design and straightforward functionality.

She and a few other Facebookers—engineering managers 
Akhil Wable and Andrew Bosworth, designer Justin Rosenstein, 
and internal communications manager Ezra Callahan—set out 
to build a universal, seamless way to express approval on the 
social network. They code-named the project “Props.”

What they ended up developing, with help from a succession 
of other designers and engineers, was a button that became an 
iconic symbol of Facebook, reshaped the Internet, reconfigured 
the media, and altered the course of world politics. If they’d 
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known the “like” button would do all that, its creators say now, 
they might have thought about it rather differently than they 
did at the time. The same virtues that made it such an elegant 
user-interface solution for a fast-growing software startup in 
2007—its simplicity, its ease of use, its universality, its conve-
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nience as a metric of value—eventually came to look like vices 
when applied on a grand, societal scale by a globally dominant 
online platform.

“I felt like I was cleaning the garage by adding the like but-
ton,” Pearlman told me.2 “I never expected what happened. . . . 
We were working on other things at the time that felt like a big-
ger deal by far.”

One obvious question is whether the Facebook like but-
ton’s creators should have anticipated those long-term conse-
quences. A more interesting, haunting question lurks behind 
that one: Would they, or could they, have done anything differ-
ently even if they’d known?

That Facebook would eventually give users an easy way to 
express affirmation was perhaps overdetermined. By 2007, a 
handful of smaller platforms had already launched approval 
buttons of various sorts. And Pearlman wasn’t the only one at 
Facebook thinking along those lines. Rosenstein told The Ringer 
in 2017 that he had been looking for “a way to increase positivity 
in the system” to help Facebook create “a world in which people 
uplift each other rather than tear each other down.”3

But just what shape Facebook’s version of “props” should 
take, and how it should work, proved contentious. Pearlman 
added the “awesome button,” as the group initially called it, 
to Facebook’s internal ideas board, and it got enough votes 
from their coworkers to spur a “hackathon”—an all-night cod-
ing session in which engineers and designers cobble together 
prototypes of potential new features. On July 17, 2007, a team 
consisting of Bosworth, Rebekah Cox, Ola Okelola, Rosenstein, 
and Tom Whitnah coded the first awesome button, according 
to a detailed account that Bosworth posted to the question-and-
answer site Quora in 2010.4 It was well-received and got the 
green light for development.

As Bosworth recalled it, the button generated excitement 
across the company.5 The ads team thought it could be used 
to show people better ads. The platform team thought it could 
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be used to filter out bad apps. The news feed team, which Bo-
sworth led, reckoned it could help them decide which posts to 
show in people’s feeds. (At that point, the main factor in feed 
ranking was the number of comments a post received.) The 
button’s seemingly universal applicability meant that it had to 
be versatile and appropriate across all sorts of contexts. And so 
seemingly trivial design decisions took on crushing weight. Was 
“awesome” the right name? Should there be a corresponding 
minus sign or thumbs down? Should it come with a counter?

Designing a button that would be both visually simple and 
instantly understandable was “a really interesting problem,” 
Pearlman said.6 “Because remember, there weren’t really but-
tons on the Internet” back then. (Digg’s thumbs-up icon and 
Vimeo’s like button were among the few precursors;7 the smaller 
social network Friendfeed launched a like button in 2007,8 
though the Facebookers who were working on the awesome 
button at the time insist they hadn’t noticed it.)

After delays, the team presented the awesome button to CEO 
Mark Zuckerberg for final approval in November 2007. Zucker-
berg surprised them by rejecting it. In Bosworth’s version of the 
story, Zuckerberg saw potential conflicts with Facebook’s pri-
vacy defaults (would likes be public or private?), a forthcoming 
ad platform (the ill-conceived and ill-fated Facebook Beacon), 
and the share button that Wable’s team was working on. He also 
dissented on the name, preferring “like” to “awesome.”9

Callahan remembers at least a couple people inside Facebook 
raising a concern that would prove prescient: they worried, he 
told me, that “low-effort directional feedback,” in the form of 
a “like” or “awesome” button, would “eliminate thoughtful en-
gagement, because people were lazy and would take the lazy 
way out” if given the option.10

That might sound like a very post-2017 critique: the notion 
that mindless clicks ought to be eschewed in favor of mean-
ingful interactions for the sake of democratic discourse and 
our own well-being. But it’s not clear that anyone at Facebook 
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back then was laboring under the assumption that their prod-
uct design decisions would have world-historical implications. 
Rather, they were focused squarely on building a better and 
more engaging product than MySpace, and the crucial ques-
tion was whether replacing comments with clicks would aid or 
inhibit that quest. The implicit assumption, according to Pearl-
man, was that what was good for Facebook’s users was good for 
Facebook’s business, and probably good for the world.11

That set of assumptions—that tech startups were underdogs, 
that they were forces for good, and that their success in business 
would naturally coincide with bettering the world—was com-
mon in Silicon Valley at the time. Think of Google’s erstwhile 
unofficial motto: “Don’t be evil.” But that blithe moral confi-
dence bred moral complacency. When you assume your good 
intentions will entail good outcomes, provided only that you 
succeed in outmaneuvering and outhustling your rivals, then 
stopping to think too hard about what could go wrong is not only 
unnecessary, it’s potentially ruinous, because it could prevent 
the good guys—that is, you—from succeeding. (Google removed 
“Don’t be evil” from its code of conduct in 2018.12)

For a time, it looked as though inertia might defeat Face-
book’s “props” initiative. By late 2008, people started joking 
about the “curse of the awesome button,” said Soleio Cuervo, 
a former Facebook designer who worked on it.13 “There was a 
lot of concern internally that ‘liking’ was going to cannibalize 
engagement.”

What saved the like button was, in true Silicon Valley fashion, 
an appeal to data. In a test, Facebook data analysts found that 
popular posts with the button actually prompted more interac-
tions than those without. Bosworth has suggested that this may 
have been at least partly because likes on a post became a signal 
for the news feed algorithm to show that post to more people.14 
That finding turned out to be decisive. By February 2009, Zuck-
erberg had approved a final version of the like button, drawn as 
a thumbs-up by Cuervo in Photoshop.
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But coding the like button involved much more than just 
drawing it. Each like had to be stored in databases that linked 
it to both the post itself and the person doing the liking. Much 
of the coding was done by engineer Jonathan Pines, with con-
tributions from another engineer, Tom Whitnah, and product 
manager Jared Morgenstern.15

On February 9, 2009, Pearlman announced the like button’s 
launch with a Facebook Note—the company’s version of a blog 
post—titled “I like this.”16 She encouraged users to deploy it lib-
erally, and users complied. The like button was an instant hit, 
and Facebook soon found ways to ingratiate it into the fabric of 
not just its platform, but the Internet beyond. By the following 
year, you could like people’s comments as well as their posts.17 
The like button also became the default way to follow publishers 
and brands on Facebook—and when you did, Facebook would 
use your like to advertise those same pages to your friends. 
In April 2010, Facebook unveiled a suite of “social plug-ins”—
including the like button—that allowed people to “like” pages 
outside of Facebook itself.18 Years later, those plug-ins became 
ad-tracking beacons, telling Facebook whenever a logged-in 
user visited a site that sported a like button, so that Facebook 
could use that information to target ads.19

The like button quickly became far bigger than even its 
biggest-thinking creators had envisioned. Likes became expres-
sions of taste and identity. They became the driving force in an 
increasingly potent and complex news-feed ranking algorithm: 
the more likes a post got, the more people Facebook would show 
it to. They became an asset for brands and advertisers. They 
became a rich source of data for Facebook itself, telling the 
company about each user’s preferences and browsing habits.

Perhaps most transformatively, likes became a powerful in-
centive for users of Facebook—a group that grew over the years 
to nearly three billion.20 The like counter on each post became 
an explicit measure of its popularity, and an implicit measure 
of its value. Consciously or otherwise, users learned what sorts 



THE  CURSE  OF  THE  AWESOME  BUTTON  /  137

of posts would rack up likes and wrote more like that, while 
learning to avoid those that garnered only a few. Those users 
included not just ordinary individuals, but public figures, cor-
porate brands, and media companies. Facebook’s news feed 
algorithm became the single most influential distributor of in-
formation in many societies, and it spawned imitators, from 
Instagram to Twitter to TikTok, until likes were everywhere.

In terms of sheer impact, the like button was one of the most 
successful pieces of code ever shipped. But when you examine 
the quality of that impact, its flaws become glaring. In building 
a feature whose primary function was to simplify the terms of 
interaction with online content, Facebook understood that it 
risked cheapening engagement. What it failed to anticipate was 
how it might lead to a cheapening of the content itself. The posts 
that thrived uniquely in Facebook’s feed, fueled by quick-twitch 
likes, were the ones that offered simple solutions to complex 
problems, that offered scapegoats, that played on people’s bi-
ases and manipulated their emotions. Those that addressed 
the same problems with nuance, with ambivalence, withered.

If failing to generate likes just meant losing a popularity con-
test on Facebook, likes might have been tolerable. But the star-
ring role that the company gave likes in the news feed algorithm 
meant that the popularity contest was not one you could opt 
out of. If your posts didn’t generate likes, they would be hidden 
from people’s feeds—even your own followers’ feeds—and re-
placed by the posts of others who were all too willing to play the 
manipulation game. Media companies laid off journalists21 or 
even went out of business22 because they couldn’t compete on 
Facebook, or because they refused to change their coverage in 
the ways needed to do so. Facebook likely played a role23 in the 
demise of local newspapers across the country, the rise and fall 
of manipulative clickbait sites across the Web, and the shifting 
of the entire media toward pandering, manipulative discourse. 
And that discourse, in turn, likely played a role in facilitating 
the rise of populist politicians expert at pandering to people’s 
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biases, fears, and base instincts. Their messaging, like Face-
book’s like button, works best when you don’t think too hard.

Facebook and other social networks are now experimenting 
with removing like counters, or hiding them from public view.24 
Whether that will undo any of the damage is not yet clear. Pearl-
man, for one, believes the real mistake was the counter; the 
button on its own, she told me, would have been more benign.

So do she and the like button’s other creators regret develop-
ing it? Not exactly. It seems that most have come to believe, or at 
least tell themselves, that it was more or less inevitable. Pearl-
man believes the harmful effects reflect human nature: “It’s my 
belief we needed to play this out all the way, to see it and decide 
to choose something else.”25 Callahan, similarly, suggested that 
if Facebook hadn’t popularized the like button, someone else 
would have.26 He acknowledged in the same breath that it feels 
like a weak excuse.

Still, there’s probably some truth in it. Facebook wasn’t the 
only company building social tools with the single-minded goal 
of connecting as many users as possible and keeping them en-
gaged. Let’s say some 2007 company was building social net-
works around the idea that friction was necessary, that nuance 
was a priority, that supporting democratic discourse was part 
of their role, and that doing so might require them to eschew 
features that would help them grow faster or become more ad-
dictive. Presumably, it would have quickly been outcompeted 
by the others in an industry where scale and network effects 
are critical to funding, ad revenue, and ultimately survival. It 
probably wouldn’t be the dominant social network today. And 
the engineers who designed its key features all those years ago, 
never thinking that their products might have world-historical 
implications, would have been correct.
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The Bug No One Was 
Responsible For—
Until Everyone Was
Josephine Wolff

On April 7, 2014, Colm MacCárthaigh was at work on the 14th 
floor of Amazon’s Blackfoot building in Seattle when he was 
paged for an emergency. MacCárthaigh was a principal engi-
neer at Amazon Web Services at the time, and the company 
had just learned about a new software vulnerability in the code 
underlying their encryption protocols—code used not just by 
Amazon but by many other companies and websites worldwide. 
Dubbed Heartbleed, the bug quickly became headline news as 
software engineers like MacCárthaigh scrambled to patch their 
products and services before attackers could take advantage of 
the vulnerability to steal sensitive information like website cre-
dentials or credit card numbers. Amazon organized an emer-
gency response conference call and started rolling out patches 
as quickly as possible, some within an hour of the call. Five 
years later, in a Twitter thread, MacCárthaigh wrote that he still 
recalled the day he learned about Heartbleed “vividly,” writing 
that “[i]t felt like the internet was on fire.”1

Software vulnerabilities are discovered every day, but Heart-
bleed was different—it was a bug in a vital piece of security soft-
ware, used by everyone from major tech firms like Amazon to 
tiny individual websites. The software affected by the Heartbleed 
bug was the OpenSSL software library, a repository for code that 
was used by many websites and other online applications to 
encrypt traffic sent to and from their users. OpenSSL, which 
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implements the Transport Layer Security (TLS) and Secure 
Sockets Layer (SSL) protocols to encrypt traffic sent between 
computers, is widely used by website operators and app devel-
opers to encrypt traffic. TLS and SSL are encryption standards 
that can be implemented using other code besides OpenSSL, 
but many companies find it helpful to use the OpenSSL imple-
mentation rather than write their own from scratch. Part of what 
makes OpenSSL code useful and popular is that it’s not owned 
by any particular corporate entity—anyone who wants to im-
plement the TLS or SSL protocols can use it without having to 
purchase a license or get permission. But that also means that 
there’s no company or individual in charge of the code’s up-
keep—a problem that came to the fore in particularly dramatic 
fashion in 2014 with Heartbleed.

The Heartbleed vulnerability was discovered by Google re-
searcher Neel Mehta. But its branding—the memorable name 
and minimalist bleeding-heart logo—came from the Finnish 
security firm Codenomicon, and it quickly became clear that 
it was everyone’s problem. Because of Heartbleed, devices and 
services that relied on OpenSSL to encrypt online communica-
tions were susceptible to leaking all sorts of sensitive informa-
tion from passwords and bank account numbers to the contents 
of Emails. When MacCárthaigh and others first learned of the 
vulnerability, it was unclear whether anyone had already started 
exploiting it to steal information. But as soon as the bug became 
public it was only a matter of time before someone would try. 
Making matters worse, the bug affected millions of devices, es-
pecially Android phones, because OpenSSL was used so widely.2

Now, every single company that had used OpenSSL in its 
products needed to update its code in order to protect its cus-
tomers. But many did not. And there was no way to force the 
people who didn’t know how to fix the problem, or didn’t want 
to bother, to take steps to patch their code. Years after the dis-
covery of Heartbleed, hundreds of thousands of devices and 
servers were still vulnerable.
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One of the primary lessons of Heartbleed was that open-
source code like OpenSSL needed stronger institutional support 
for security, rather than just relying on volunteer efforts to find 
vulnerabilities. Years after its discovery, the Heartbleed vul-
nerability had been fixed on most devices and websites, but its 
legacy was an important one for thinking about our reliance on 
open-source software libraries and how we support the mainte-
nance and security of these sorts of crucial, shared resources.

Part of what makes the Heartbleed vulnerability so striking—
and part of the reason it led to so much soul-searching about 
how to do a better job with open-source code—is its simplicity. 
Much of it comes down to a straightforward idea about com-
puter memory and a single line of code in the C programming 
language.

C is a very powerful language and also a terrifying (and often 
tedious) one to program in, partly because you can use it to 
directly manipulate a machine’s memory—that is, tell a com-
puter where to store certain bits in its memory or when to delete 
them and free up that memory for new bits of information. This 
can be a very useful and heady thing, but you also have to be 
constantly worrying about whether you’ve allocated and freed 
up memory correctly. That can be particularly hard to adjust 
to if you first learned to program with languages like Java or 

The Heartbleed code and the logo developed for the vulnerability.
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Python that don’t require thinking about computer memory. 
When you screw up memory management, one of two things 
can happen—either the program won’t work and you’ll go back 
to debugging to try to figure out where exactly you went wrong, 
or, even more frightening, it will work perfectly, and it will never 
even occur to you that you haven’t handled the memory man-
agement properly.

The latter is what happened in the case of Heartbleed. When 
two computers are connected but not actively transferring data, 
one will occasionally send the other a “heartbeat” request to let 
the other know that they’re still connected. When that happens, 
the computer that receives the request will respond, sending 
back the same piece of encrypted information it received, to 
confirm the connection. When that happens, the computer that 
sends the initial heartbeat request lets the receiver know ex-
actly how long the piece of information they’re sending is. But 
the OpenSSL software, crucially and terribly, forgot to verify 
that the length information for the heartbeat data was actually 
correct.

If that doesn’t sound so horrifying to you, it’s worth taking a 
look at the actual line of code behind Heartbleed that instructed 
the computer running it to copy the heartbeat request from a 
block of data of a particular size that is stored in memory to a 
new address:

memcpy(bp, pl, payload);

The memcpy() function performs the copying, the variable 
called “bp” designates where the information is going to be cop-
ied to, the “pl” variable designates the source where the infor-
mation is currently, and the “payload” variable tells the program 
how much data should be copied from the source address or, in 
this case, how large the heartbeat is.

This works great so long as the computer sending the heart-
beat request isn’t lying about how much information it’s send-
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ing (and requesting back). In fact, one of the reasons no one 
noticed Heartbleed for so long is that this code functions ab-
solutely fine so long as no one involved has any malicious in-
tentions. But if someone lies and claims to be sending a 60 KB 
heartbeat when they’ve actually sent a 10 KB one, then things 
deteriorate quickly. The receiver of that request would copy only 
10 KB from the original heartbeat message but would use the 
variable of 60 KB that the sender provided them to determine 
how much information to send back to the sender. So they would 
send back the 10 KB message, but they would also send back 
another 50 KB from whatever was stored in its memory next to 
those 10 KB—which could be nothing interesting whatsoever . . . 
but could also be a confidential message or an important pass-
word or secret key.

The Heartbleed code is a chilling reminder of how hard it is 
to work in languages that afford programmers the power and 
responsibility of allocating and freeing up computer memory. 
The fix is relatively straightforward: check to make sure that 
the heartbeat message actually is as long as the sender says it 
is before responding. But remembering to think that way—to 
think like someone who would be deliberately trying to sub-
vert the code, to think about the computer’s memory and how 
it works, to do both of those things at the same time—is often 
the hard part.

The code that created Heartbleed and its consequences also 
underscores just how easy it can be to let small coding mistakes 
slip through the cracks when everything seems to be working 
fine, and just how massive the ramifications of those seemingly 
small mistakes can be. Finally, Heartbleed also reinforced for 
giant technology corporations just how dependent they are on 
open-source code and the crucial importance of finding ways 
to protect and secure code that is not the clear responsibility of 
any individual company or person. In the months that followed 
Heartbleed’s discovery, 12 major technology firms, including 
Amazon, Cisco, Facebook, Google, IBM, and Microsoft, pledged 
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to contribute more than $1 million per year to an endeavor 
dubbed the Core Infrastructure Initiative, intended to support 
open-source software like OpenSSL collectively.3 That’s not an 
enormous sum of money, especially given the size of the compa-
nies involved, but it’s a great deal more than the roughly $2,000 
in annual donations that OpenSSL received prior to Heartbleed 
to support its upkeep.4

The technical vulnerability behind Heartbleed was relatively 
straightforward. But the long-term solution for how we protect 
and maintain valuable open-source code like OpenSSL will be 
anything but simple. It will require the richest and most pow-
erful companies in the tech sector to work together with their 
fiercest competitors, and to contribute time and money and 
expertise to going over lines of code that they did not write but 
must take responsibility for, nonetheless, or else no one will.



23
The Volkswagen 
Emissions Scandal
How Digital Systems 
Can Be Used to Cheat
Lee Vinsel

Word came down in September 2015: the prestigious German 
automaker Volkswagen had misled regulators and the public 
at large by using computer software to cheat air pollution tests. 
Researchers from West Virginia University found that one Volk-
swagen was spewing between 15 and 35 times the legal limit 
of nitrogen oxide, which can cause asthma, cancer, and heart 
attacks.1

VW fans took it as a slap in the face. The company had long 
touted its diesel vehicles as a green technology, meant in part 
to compete with Toyota’s hybrid vehicles, most famously the 
Prius. In VW ads, sleek cars raced against backgrounds of glo-
rious, mist-covered mountains, and mottos (“Like really clean 
diesel”) hovered above the heads of happy, conscientious  
consumers.

A study out of MIT found that excess nitrogen oxide emis-
sions from VW’s cheater cars would lead to over 1,200 prema-
ture deaths in Europe alone—people gasping their last breaths 
from an asthma attack or grabbing their chests as their hearts 
explode from the fight to breathe.2 That human toll is dramatic 
enough, especially if we rewrite the headline, “Corporation 
Toys with Computer Code and Murders over 1,000.” But on an-
other level, the Volkswagen emissions scandal shows us how 
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software has become a weapon firms can use to circumvent 
regulations and the democratic values they embody. This open-
ing for immorality—call it “innovation” in the service of crime—
demands our attention.

In the United States, the regulatory context for Volkswa-
gen’s deceit was first set by the Clean Air Act Amendments of 
1970. It was a law passed out of frustration and outright anger. 
Researchers in California had discovered that automobiles 
were responsible for Los Angeles’s famous smog and other 
significant air pollution problems in the early 1950s. At that 
time, legislators, policymakers, and others saw air pollution 
as a local problem best handled by local decision-makers, 
not federal ones. And anyway, strong traditions of American 
liberalism made lawmakers extremely reticent to regulate 
industry.

Thus began a nearly 20-year period of legislative ineffectu-
alness and industry resistance. Representatives at the local, 
state, and eventually federal levels passed toothless law after 
toothless law, and automakers swore to God on high that they 
were doing all they could to fix the problem. In 1969, the US 
federal government found that car companies were doing 
just the opposite: the Justice Department brought a lawsuit 
against the automakers under the Sherman Antitrust Act, ar-
guing that the firms were using a research-sharing agreement 
perversely to guarantee that effective emissions controls 
never reached the market.3

The modern US environmental movement reached a cre-
scendo in 1970. The first Earth Day was held. One of Ralph 
Nader’s research groups published the book Vanishing Air, 
skewering automakers as purposeful polluters and clean air 
laws as feeble and hopeless. President Richard Nixon cre-
ated the Environmental Protection Agency. And legislators, 
especially Senator Edmund Muskie, grew sick of industry in-
action and, in disgust, passed the Clean Air Act Amendments 
of 1970, perhaps the strongest antipollution law created in 
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US history. (The law would receive further important amend-
ments in 1990.)

The 1970 amendments were a clarion call for democratic 
accountability. They required automakers to reduce specific 
chemicals in emissions by 90 percent or face grave conse-
quences, including large fines and even an order to halt pro-
duction. Whether cars lived up to these requirements would be 
settled via tailpipe emissions tests (which many of us get done 
on an annual basis through state auto inspections).

The law obviously offered car companies strong incentives 
to get their acts together and control emissions. The catalytic 
converters that ride around on the bellies of our go-machines, 
tempting thieves with their precious metals, are the product of 
such efforts. But like all tests, for the unscrupulous, the law also 
created strong incentives to cheat. And cheat the companies 
did—indeed, almost immediately.

In 1972, staff members at the Environmental Protection 
Agency discovered that automakers were using mechanical de-
vices to shut down emission controls under certain conditions.4 
Customers would buy these cars without ever knowing that their 
vehicle was usually out of compliance with pollution laws. To 
give one example of how this could work: federal rules man-
dated that tests be conducted in ambient air conditions between 
68 and 86 degrees Fahrenheit. All automakers had to do is add 
devices that shut down emission controls when temperatures 
fell outside this range. EPA staff members dubbed such cheats 
“defeat devices,” and in January 1973, William Ruckelshaus, 
the first EPA administrator, ordered automakers to remove all 
defeat devices from their vehicles within 90 days.

As the defeat devices demonstrate, automakers didn’t re-
quire computers to commit crimes. But what many people do 
not realize is that many years before we began yelling at our 
vehicles, “Phone, CALL. MOM. No, no, no, I SAID . . . ,” computers 
were successfully used to manage combustion. In fact, com-
puters were first added to automobiles because of air pollution 
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laws. In the late 1970s, automakers contracted with electronics 
firms, like Motorola and Intel, to install microprocessors in cars. 
Originally, the Big Three used computers only to control carbu-
retion, and later fuel injection, to shape vehicle emissions. Then 
lawmakers—first in California in 1988 and then at the federal 
level in 1990—mandated that new cars include computerized 
onboard diagnostic tools, part of which became known as the 
“check engine light,” perhaps the greatest icon ever of automo-
tive computerization.

Computers opened up new opportunities for cheating pol-
lution laws. If companies had been able to use mechanical 
devices to snooker tests in the early 1970s, computers gave 
them even finer control of how a vehicle would perform under 
a range of conditions. Never one to pass up on an attractive 
innovation, General Motors installed a computer chip on Ca-
dillacs in the early 1990s that turned off emission controls 
whenever a car’s air conditioning or heater was turned on.5 
The company knew full well that these systems were turned 
off during tests. In 1993, the EPA discovered that the Cadil-
lacs produced three times the legal limit of carbon monoxide 
when the air was running. In the end, General Motors paid a 
$45 million fine for its deceit. But where GM innovated, others 
would follow.

Enter Volkswagen. As New York Times journalist Jack Ewing 
makes clear in his great book, Faster, Higher, Farther: How One 
of the World’s Largest Automakers Committed a Massive and Stun-
ning Fraud, in the 1990s and trailing into the first decade of the 
2000s, Volkswagen faced enormous headwinds and even finan-
cial insolvency. Executives there embraced a cutthroat, “by all 
means necessary” approach to improving the company’s posi-
tion among competitors, including by placing their underlings 
under tremendous pressure.6

In 2007, a VW executive announced the ambitious plan to 
nearly double the number of vehicles it sold, from six million 
to ten. Increasing the number of cars sold in the United States 
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was central to this vision, and in a bid to appeal to environmen-
talists, the firm’s strategy came to focus on “clean diesel” cars.

There was a problem, though. Clean diesel cars weren’t . . . 
clean. In 2007, a software engineer presented a PowerPoint at 
a meeting in VW’s Research and Development building, show-
ing how they could use computers to recognize when a car was 
being put through an emissions test. Emissions controls would 
function effectively under testing conditions, but not otherwise. 
When not being tested, so-called clean diesels could belch more 
nitrogen oxide than a new diesel tractor trailer.

As one academic article notes, today “a premium-class auto-
mobile can contain more than 70 control units and 100 million 
lines of code.”7 Engineers at Volkswagen changed code in its 
Engine Control Unit, which was manufactured by Bosch and 
was widely used in diesel passenger vehicles. The altered firm-
ware used sensors to monitor when a vehicle was under test 
conditions and modified vehicle operations when it detected 
an emissions test. It was nearly a decade before these deceptive 
changes came to light.

The Volkswagen emissions scandal is a cautionary tale 
about how digital systems can be used to circumvent rules 
made under different technological realities. And of course, it 
applies to much more than just cars. When regulations depend 
on holding technological systems up to specific technical stan-
dards, firms can potentially use computers to spoof the test. 
Moreover, many companies, including the automakers, insist 
that the software in their products is covered by copyright and 
not open to public scrutiny. Where regulations require light, 
corporations demand opacity.

But the VW scandal raises questions that go far beyond cor-
porate malfeasance. The communications scholar M. C. Forelle 
has found in her research that contemporary hot-rodders and 
tuners hack the computer systems in their cars to improve per-
formance in ways that increase emissions beyond legal limits.8 
Then, when the owners need to take their car in for an annual 
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inspection, they restore the software to factory settings—and 
the car passes the test perfectly.

Regulations are a key tool democracies use to require tech-
nologies to live up to widely shared values. In many areas, com-
puterization forces us to ask, how can we ensure that the objects 
around us conform to the demands we place on them?



24
The Code That Brought 
a Language Online
Syeda Gulshan Ferdous Jana

August 17, 2005, was a day of terror in Bangladesh—and would 
also be pivotal toward bringing Bangla, the language of Ban-
gladesh, online. It was a normal, busy office day in Dhaka, the 
capital, when one of the employees at my company received a 
call from his wife, saying that a small bomb had exploded in 
their neighborhood. Minutes later, another employee received 
a call about an explosion near his home, elsewhere in Dhaka. 
Chilling rumors started spreading about terror attacks by Isla-
mist militants all over Bangladesh.

In fact, a small extremist group had exploded 500 bombs 
in nearly all of Bangladesh’s 64 districts simultaneously. Word 
spread through mobile phones and one-to-one conversations, 
but it took several hours before TV news provided reliable up-
dates and a full day before they became available in the online 
newspapers . People were frantic, searching for information to 
assess the risk for themselves, their families, and the country.

That was when we, the small team of the newly started so-
cial media company called “Somewhere in . . . ,” saw the need 
for a citizen media: a real-time, dynamic online blog commu-
nity. While my teammates discussed possible ways to meet that 
need, I realized there was a technical problem. At the time, there 
was no way for most people to write in Bangla online.

Bringing Bangla—the language of the liberal, Muslim-
dominated country Bangladesh and the world’s sixth largest 
language—online helped create a unique and vibrant blogo-
sphere that allowed people to access information and, more 
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importantly, express themselves. But it only happened because 
of some lines of code—or, more accurately, the people behind 
those lines of code. I’m proud to say that I am one of those people.

In December 2005, four months after the attacks, we 
launched the blog community platform somewhereinblog.net. 
It was the first of its kind in Bangladesh and the first to offer 
Bangla text entry, dynamic content, and user interaction. The 
platform and concept became highly influential, and both loved 
and hated. Our blog community offered a common front page 
displaying extracts of the latest posts from any of the bloggers, 
as well as an easy way to enter Bangla text, including phonetic 
and virtual Bangla keyboards.

This was revolutionary. Back in 2005, JavaScript had limited 
power, and it worked differently in all of the mainstream brows-
ers like Internet Explorer, Firefox, and Opera. Bangla keyboard 
software for desktop use had become available via floppy discs 
a year earlier, but only experts could tweak blogging software 
like Blogspot and WordPress to accept and display this text.

Thanks to the Bangla phonetic keyboard developed in-house 
by Hasin Haider, our lead programmer, users could now type 
phonetic Bangla using any standard English keyboard and it 
would convert to Bangla on-screen. Our developers’ main focus 
was to keep the code minimal, so that it would function properly 
across all browsers. This is how it worked: We captured key-
strokes using the keyDown event, and then we calculated the 
equivalent phonetic representation of those keystrokes from an 
array. Finally, in the active text area, where the user was typing, 
we appended those Bangla characters at the position of the cur-
sor, which was tricky at that time because every browser had to 
process the text differently. This was the most challenging—and 
important— part of the whole project.

We did not want to keep this powerful tool to ourselves. Our 
head developer released the code as open source, and we en-
couraged others to use it for free, to help cement Bangla’s place 
online.
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Our Bangla Blog Community concept became so popular that 
nearly 30 other similar platforms later sprang up. In total, I es-
timate that there were about 300,000 Bangla blogs at the peak 
of blogging in 2013, with about 50 percent on our platform. The 
addition of new platforms was something we supported and 
encouraged as part of our goal to enrich the Bangla blogosphere 
and help each blogger find a place to belong. Over the years, we 
saw many bloggers gain the courage to publish their own books 
after receiving encouragement from the community to develop 
their writing.

A typical Bangla blogger could best be characterized as 25 
to 35 years of age, educated, working, and deeply engaged in 
supporting the country’s development. Journalists, activists, 
students, politicians, teachers, writers, and others used the blog 
communities for research and opinion metering. Our bloggers 
wrote posts and took part in discussions in the comments about 
current events, social injustice, taboo-related social issues, 
women’s empowerment, and corruption, but they also wrote 
beautiful poetry, colorful short stories, and insights into the 
lives of ordinary people. People did not blog for themselves, but 
for the whole blog community.

In collaboration and discussion with the bloggers, we created 
a set of rules and a “trust scale.” Trust would be earned if writ-
ers obeyed the rules, and trust would be reduced for violations, 
with the trust score gradually rebuilding itself after it had been 
reduced. We had four categories on the trust scale. Blogs on 
the “green list” and “watch list” would appear on the blogger’s 
personal page as well as the common front page, visible to all. 
For “watch list” blogs, moderators would review posts soon after 
posting for content control. We had a “red list” for blogs that had 
multiple or gross violation of the rules; these posts would not 
appear on the common front page until enough days had passed 
to restore the blog to a higher list status. Finally, we had a “black-
list” for permanent closure. For instance, one way to get on the 
blacklist was to post against the freedom and independence of 
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the country—a criminal offence in Bangladesh. In this way we 
managed to establish blog etiquette and maintain freedom of 
expression with a minimum of moderator interference.

It was not easy to promote freedom of expression in Bangla-
desh. The nation had a very painful birth in 1971. The popula-
tion was, and is, quite polarized in terms of political belonging 
and religious beliefs; many different groups claim to be the 
arbiters of truth.

We moderated posts based on the trust scale and also re-
viewed reports of abuse. Not much was removed, and often 
active and open participation in the debates by our team was 
sufficient to ensure that the conversation did not turn nasty. 
Still, our moderation was criticized many times. Even more 
often, we were criticized for not moderating. It is dangerous to 
moderate opinions, and we always strove to limit moderation 
to cases of hate speech and clear violations of the rules—rules 
that the blog community had been part of shaping. The problem 
was that neutrality is a vague term in a highly polarized nation.

The peak of Bangla blogging came in 2013, when—after years 
of demands from bloggers—a war-crime tribunal was launched, 
42 years after the liberation of Bangladesh. Until then, the war 
criminals from the genocide carried out against the nation 
roamed freely through the country, some of them even serv-
ing as ministers in the Bangladesh Nationalist Party alliance 
government from 2001 to 2006. Upon hearing the news of a 
lenient verdict for one of the worst war criminals, Bangla blog-
gers called for a sit-in demonstration in Dhaka, demanding the 
highest punishment for the war criminals and a ban on Isla-
mist politics and institutions. On the first night, 100 bloggers 
gathered at the busy Shahbag intersection in downtown Dhaka. 
The next night, perhaps 1,000 showed up. Within a few days, 
hundreds of thousands from all walks of life came to join the 
sit-in.1 This was seen as a threat by the nationalistic parties and 
religious groups; many of those on trial were their leaders. Ten 
days into the uprising, an atheist blogger was killed,2 and his 
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“anti-Islam” writings were published by conservative media. In 
the years to come, bloggers were collectively tagged as atheists3 
and anti-Islam.4 In response to a massive religious counter-
demonstration against bloggers,5 the progressive government 
jailed a handful of atheist bloggers, and it was reluctant to seek 
justice for the 25 or so bloggers and other prominent minority 
personalities who were killed.6 At the same time, advertisers 
began to shy away from blogs, possibly under pressure from 
intelligence forces, restricting ad income for blogs and thereby 
making it hard to survive for most platforms. Somewhere In . . . 
is one of the few still operating, despite being blocked for a year 
by the authorities.7

For us, intimidation and threats came with the job. Our phones 
were tapped, our every move was shadowed, and we received 
numerous death threats through phone calls and Facebook. In 
the broad sense, these were confirmations and compliments 
indicating that the work we did had a real impact and influence 
on society. Freedom of expression is one of the most important 
pillars of a democracy and is an asset for any government to 
understand the sentiments of the people. Unfortunately, that 
opportunity was greatly missed in Bangladesh, which continues 
to lose ground on the press freedom index year by year. With the 
moral support of the Google Government Affairs and Public Pol-
icy team, in March 2013 we launched what is possibly the first 
Transparency Report of any Asian digital platform, half a year 
before Yahoo launched the first in the United States. Perhaps 
because of the transparency report, which would shed light on 
government interference, Somewhere In . . . has experienced 
significantly less intimidation since 2013.8

In retrospect, these lines of code affected the lives of millions, 
mostly in a positive way, but it put others in danger for their 
activism or just for their beliefs. Still, the feeling of empowering 
people is the highest reward, which we have reaped for all of 
these years.
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Telegram
The Platform That Became 
‌“the Internet” in Iran
Mahsa Alimardani and Afsaneh Rigot

Since the introduction of the Internet to Iran in the late 1990s, 
Iranian authorities have seen it as a threat to national security 
and have been preoccupied with finding innovative ways to 
control it.1 Iran’s head of state, the Supreme Leader Ayatollah 
Khamenei, regularly says in his sermons that the Internet is a 
space that Iran’s enemies try to infiltrate with “psychological 
warfare.”2 This is the pretext for all the censorship and infor-
mation controls the Islamic Republic tries to apply online—that 
they are trying to protect the country from “Western” attacks 
that turn Iranians against the Islamic Republic.

Over the past three decades, there have been countless ex-
amples of digital censorship and surveillance in Iran. But none 
better demonstrates the peculiarities of Iran’s Internet condi-
tions than the messaging and social media application Tele-
gram and how it has affected Iranian society and politics. Few 
technologies have generated as much concern among Iran’s 
leaders as Telegram, which has functioned as both a friend and 
threat to the regime—and to the Iranian Internet users trying to 
evade the government’s censorship, targeting, and monitoring 
efforts. At the heart of Telegram in Iran is a story of Iranian 
ingenuity, as users found ways to resist the confines of author-
itarian controls.

Telegram was launched in 2013 by Pavel Durov and his 
brother Nikolai. When they launched the platform, they prom-
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ised it would be both “secure and fun.”3 To fulfill the “fun” part, 
they aimed to create a community around the technology. As 
part of that, they left their API open, so other developers could 
make their own third-party versions or add additional features 
on the application.4 (An API is an Application Programming In-
terface, and in keeping it open, Pavel and Nikolai allowed out-
side software, operating systems, and microservices to interact 
with the app itself.) This allowed developers to create a whole 
host of new features that made the platform extremely popular 
among Iranians, like custom Persian stickers or bots that could 
generate searches and queries for you in an instant. The latter 
was of particular use to Iranians: they could use Telegram bots 
to quickly and easily access information, without having to turn 
to browsers or search queries that could be extremely cumber-
some on Iran’s famously slow and brittle Internet. The bots were 
all the more useful when people wanted to engage in anything 
that would be taboo on the Iranian Internet—like finding por-
nography or researching sensitive topics like religion. However, 
the same open API would later allow developers affiliated with 
Iranian authorities to create their own “forks,” or third-party 
versions of the application that would eventually compromise 
the data and privacy of users in Iran.5

In September 2015, Telegram launched a new feature that 
changed Iran’s communication and social media landscape pro-
foundly: channels. Telegram channels are like forums, except 
that administrators are able to post messages, but other users 
are not. Channels allow administrators to broadcast messages 
to an unlimited number of subscribers.6 Soon it became impos-
sible to have any sort of media presence in Iran without hosting 
a Telegram channel. Media organizations whose websites were 
censored in Iran, such as BBC Persian, could upload entire arti-
cles or broadcasts to their Telegram channels, where they were 
followed and viewed by millions of users inside Iran. Telegram 
allowed for uncensored transfer of large files, media, and com-
munications to millions of Iranian users with unprecedented 
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speed and ease. (Competitors like WhatsApp and Viber didn’t 
accommodate as many types of files, for instance.) By 2017, 
Iran’s Ministry of Information Communications and Technology 
announced that Telegram use inside of Iran made up 15 percent 
of all of Iran’s international Internet traffic.7

As early as 2015, Iran’s politicians, officials, and state media 
organs started to express concern over the free flow of unfil-
tered information Telegram provided to users. Iran’s filtering 
committee—a multiagency body that recommends what should 
be censored—repeatedly deliberated blocking Telegram.8 At 
times, Telegram even cooperated with the government guide-
lines, such as when it censored porn bots only in Iran;9 removed 
a channel heavily involved in protest mobilization during Iran’s 
2017–18 nationwide protests;10 and, finally and most critically, 
began hosting their content delivery network servers in Iran in 
2017.11 Telegram was officially banned in April 2018 on national 
security grounds,12 though the real reason was presumably the 
role it played during the 2017–18 antigovernment protests.13 At 
that point it had effectively become “the Internet in Iran.”14 Even 
though the government has blocked it, as of late 2021 Telegram 
remains one of the most used applications in Iran, thanks to 
circumvention tools like virtual private networks.15

Telegram came to prominence under the guise (or branding) 
of a “secure messenger” that used end-to-end encryption. But 
from the start, there was confusion as to how secure Telegram 
actually was. By default, the messenger relied on plain text 
messaging that was not encrypted—users had to turn it on in 
private chats. Some of Telegram’s most popular features, such 
as channels and bots, didn’t use any security protocols.16 There 
were also questions from leading security researchers about the 
effectiveness of Telegram’s end-to-end encryption protocol.17

But Western security experts’ discussions about these flaws 
were frequently misleading. In the West, conversations about 
the security and safety of messaging platforms revolve around 
the strength of the tool’s encryption infrastructure and its han-
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dling of user data. But in Iran, law enforcement doesn’t bother 
cracking encryption protocols to identify and arrest people—it’s 
more straightforward than that. Instead, they weaponize the 
app itself by infiltrating groups and channels (either through 
fake accounts, social engineering, or similar methods) and then 
identifying admins and users.

These approaches are particularly dangerous for people who 
are already at risk, such as members of queer communities. 
LGBTQ+ Iranians are marginalized and face legal threats for 
living their lives, while having no access to queer platforms 
like Grindr or Manjam. As the center of online communication 
in Iran, Telegram quickly found use as a queer dating app, 

A map of the National Information Network, effectively an Iranian Internet that is 
hosted domestically, with restricted access to outside content. The Iranian government 
is able to impose shutdowns, in which key services—banking, e-commerce, messag-
ing and streaming apps—remain intact, but access to international media is denied.
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information hub, and community connector. This in part was 
due to its perceived security.18 But that security was largely an il-
lusion. In 2016, the website for the Revolutionary Guards’ cyber 
unit warned that “sodomites are parading on Telegram in the 
shadow of officials’ negligence.”19 They published screenshots 
of LGBTQ Telegram groups allegedly used for dating, including 
profiles of people from these channels. The article also warned 
that some of these groups were trying to “promote” homosexu-
ality while working to secure “recognition and rights for homo-
sexuals.” In another report in 2017, a prosecutor from the city of 
Ardebil told the Tasnim News Agency that “six administrators 
of Telegram channels have been arrested in Ardebil” over pro-
moting sodomy and immorality.20 Many queer-focused groups 
were infiltrated by law enforcement personnel, who gained ac-
cess to the groups’ content. Group and channel admins were 
identified, and many reported getting warnings and subpoenas 
sent to them after they were identified. Others were arrested.21

Since the 2018 censorship of Telegram and queer-focused 
dating apps, the community has had to revert to using even 
riskier online tools, such as forks like Telegram Talaei and Hot-
gram. In order to access blocked dating applications, messag-
ing, or social platforms like Telegram, queer people have had to 
rely on virtual private network and proxy services. But reports 
suggest that some popular VPN and proxy services are tied to 
Iran’s authorities and have been revealed to have recorded user 
data—major security risks to groups already disproportionately 
in danger.22

Today, Telegram’s role in Iran has faded somewhat from 
its peak. According to the most recent Internet statistics, 
WhatsApp23 is now the most used social application in Iran.

During its heyday, Telegram became an all-encompassing 
hub of commercial, social, and political life, facilitating some 
of the most fragile and intimate connections for people in Iran, 
including for some of the most marginalized. The impact of 
Telegram’s technology wasn’t necessarily due to its “code” or 
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infrastructure. It came from the way that Telegram filled in the 
gaps of Iran’s heavily censored Internet—but those gaps could 
also be traps. Telegram could be both a lifeline, when used in-
geniously by the people of Iran—or a prison sentence, when 
weaponized by law enforcement.

The authors would like to thank Sayeh Isfahani for the research contri-
butions and translations as part of the bigger research project Afsaneh 
Rigot is conducting on Queer communities and the impact of tech in 
MENA.
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Encoding Gender
Meredith Broussard

Jonathan Ferguson, a 40-year-old technical writer at the Min-
istry of Supply in London, made UK headlines in 1958 when 
he formally announced his gender transition. “His birth reg-
istration has been amended from ‘female’ to ‘male’ and his 
new Christian name inserted into the register,” reported the 
UK’s Daily Telegraph and Morning Post. This quote, which I read 
in a paper by scholar Mar Hicks called “Hacking the Cis-team: 
Transgender Citizens and the Early Digital State,”1 has stuck 
with me because it suggests ease.

In 1958, Ferguson’s interaction with the state around his 
transition involved changing a form and issuing a card. It’s not 
dissimilar to the way that a name or gender change is handled 
today—though the paperwork and expense now are far more 
substantial. From a sociotechnical perspective, Ferguson’s 
card resonates because it reminds me that 1950s culture still 
governs our lives today through the design of large bureau-
cratic computer systems. This is particularly true when it 
comes to interacting with the government. Despite advances 
in concepts of gender, and advances in LGBTQIA+ rights, most 
computer systems still encode gender as a binary value that 
can’t be changed. The next frontier in gender rights is inside  
databases.

Computing as we know it today started in 1951, when the 
Census Bureau started running the first commercially produced 
digital computer, UNIVAC. Back then, gender was generally con-
sidered fixed. If you filled out a paper form, it asked for your 
name and offered you two choices for gender: male or female. 
You could pick one. Computer programmers used those same 
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paper forms to design computer databases, and when you de-
signed a record for a database, it looked something like this:

Firstname

Lastname

Gender (M/F)

Address 1

Address 2

Zip

This was how computer database design was taught through 
the 1990s, when I learned programming. Now, we have a more 
comprehensive understanding of gender, and an increasing 
number of companies are embracing inclusive design princi-
ples that allow users to self-identify in databases as nonbinary, 
transgender, genderqueer, and other terms that encompass 
a range of LGBTQIA+ identities. However, there are artifacts 
and idiosyncrasies inside computational systems that serve as 
barriers to implementing truly inclusive design. Most of these 
problems come from the way that 1950s US and UK social per-
spectives informed how computer schemas were created.

Most of the intellectual history and the dominant social atti-
tudes in the field of computer science can be found in a single, 
sprawling database published by the Association for Computing 
Machinery (ACM). The earliest mention of gender in the ACM 
Digital Library comes in 1958, in “The Role of the Digital Com-
puter in Mechanical Translation of Languages.”2 It had to do 
with translation and pronoun matching in translation—and for 
the next 20 years, all mentions of gender have to do with trans-
lation. In other words, even though sweeping social change hap-
pened in the 1960s and 1970s, academic computer science (and 
for the most part, the computer industry) pointedly ignored the 
topic of gender except to think about how a computer might 
accurately translate gendered pronouns from one language to 
another.
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When same-sex marriage was legalized in the United States, 
it required changing thousands of database schemas. The da-
tabase redesign process was informally called Y2gay. Most da-
tabases were set up to only allow marriages between men and 
women; changing the law required changing those databases 
to comply. The name Y2gay is a reference to the Y2K problem, 
which occurred in the 1990s when people realized that most 
databases and code stored the date as two digits, using an im-
plied prefix of 19. Changing over to the year 2000 was going to 
screw up an awful lot of code.

Facebook, which began as a kind of “Hot or Not?” for male 
undergraduates to rate women, was among the first social 
media companies to allow users to change their names and 
gender identity, both of which are required at signup. Although 
its software allows users to self-identify on their profiles as one 
of more than 50 different genders, the way the system actually 
stores the data is that each user is recorded (and sold to adver-
tisers) as male, female, or null.

The reason for this has to do with both hegemonic heteronor-
mativity and math. Everything you do on a computer is secretly 
math. Many computer programs exist to slot people into neat 
categories in order to do data analysis, creating a tension be-
tween the messiness of the “real” world and people’s shifting 
identities. This is most obvious when it comes to the gender 
binary and binary representation in computer systems.

You know the gender binary: the idea that there are two gen-
ders, male or female. Binary code is also the system that powers 
computers. In a binary numeral system, there are only two num-
bers: 0 and 1. The numbers 0 through 4 look like this in binary:

0:	0

1:	1

2:	10

3:	11

4:	100
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Computers are powered by electricity, and the way they 
work is that there is a transistor, a kind of gate, through which 
electricity flows. If the gate is closed, electricity flows through, 
and that is represented by a 1. If the gate is open, there is no 
electricity, and that is represented by a 0. I’m simplifying it dra-
matically, which will enrage a certain kind of nerd, but here’s 
the gist: this unit of information, a 1 or 0, is called a bit. There 
are 8 bits in a byte (except when there aren’t), and a million 
bytes in a megabyte. This is how we talk about memory space in 
computing. Programmers are always thinking about how much 
memory space a program takes up or how much data can be 
stored because space on a computer is finite.

Different arrangements of bits can be mapped to letters or 
numbers. In the United States, the most common mapping is 
called ASCII. In ASCII, the letter A is represented as 01000001. 
My first name, Meredith, looks like this in the ASCII version of 
binary representation:

01001101 01100101 01110010 01100101  

01100100 01101001 01110100 01101000

When a computer stores information about the world, we 
call that information data. Data is stored inside a database. In a 
database, every piece of data has a type, and usually the rules 
for that type are very strict. In the very simplest form, we can 
think of data as being of three types: letters, numbers, or binary 
(0 or 1) values. A binary value is often referred to as a Boolean, 
named after a nineteenth-century guy named Charles Boole 
who invented a system of logic that only uses 1s and 0s. If you 
want to use data in a computer program, you feed that data to 
a thing in the program called a variable. Variables also have 
types, and those types are strictly governed by the rules and vo-
cabulary of a specific programming language. While their rules 
may be different, all programming languages have the same 
essential forms, meaning that they all on some level translate 
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keyboard strokes, mouse movements, variables, data, and so on 
into binary. This is why a computer can’t work without power.

So: in order to store data, we have to declare variables of a 
certain type inside a database. Speaking loosely, the types are 
string (meaning text, as in a string of letters), or number, or 
binary (aka Boolean). Boolean variables are used when a value 
is true or false, and are represented as 1 (true) or 0 (false). That 
looks something like this:

Firstname  [string]

Lastname   [string]

Gender     [Boolean]

Address 1  [string]

Address 2  [string]

Zip        [number]

In our sample database record above, we’d have to make cer-
tain decisions about each field. What type of data goes into each 
field? How large does each field need to be to hold the intended 
data? Who can enter the data? Who can change the data? Under 
what circumstances can the data be changed? Which fields can 
be edited, and which are fixed? Someone decides these factors 
every single time a database is created. But though they may 
seem mundane, these decisions can be consequential. This is 
not about math, but about implementing human social values 
inside a mathematical system. The question becomes: Whose 
values are encoded in the system?

In a paper called “The Misgendering Machines: Trans/HCI 
Implications of Automatic Gender Recognition,”3 scholar Os 
Keyes read and analyzed all of the top academic work on au-
tomated gender recognition from 1995 to 2017 and found that 
the overall assumption is that gender is binary, immutable, and/
or physiological.

Rigid assumptions about cisgender heteronormativity are 
amplified inside databases because even something as seem-
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ingly small as choosing free text entry versus a dropdown has 
implications. A letter occupies more bits and thus takes up more 
memory space. Today, it’s easy to ignore memory concerns, but 
until the late 1990s computer memory was expensive. Using a 
Boolean variable is extremely efficient. A 0 or 1 takes up less 
space than 01001101 (M) or 01000110 (F).

If you are designing code for maximum speed and efficiency 
using a minimum of memory space, you try to give users as few 
opportunities as possible to screw up the program with bad data 
entry. A Boolean for gender, rather than a free text entry field, 
gives you an incremental gain in efficiency. It also conforms to 
a certain normative aesthetic known as “elegant code.”

That aesthetic of “elegant code” is specifically exclusionary 
to someone like Zemí Yukiyú Atabey, who identifies as gen-
derqueer and nonbinary. Atabey’s pronouns are ze (where is 
ze?) zeí (zeí isn’t coming today, sorry) and zem (I don’t have 
the tickets, I gave them to zem). “As a nonbinary person, there 
is no option most of the time,” ze says of entering personal in-
formation in databases. Microsoft Word, the program I used to 
compose this essay, marked all of Atabey’s pronouns with the 
red squiggly underline, meaning that the people at Microsoft 
who wrote Word do not recognize Atabey’s pronouns as accept-
able English words, even though the genderqueer community 
has been suggesting ze and hir as pronouns for at least 20 years.

I met Atabey when ze was a graduate student. New York Uni-
versity, Atabey’s school (and my employer), is among the most 
progressive universities when it comes to gender identity. Stu-
dents can change their gender identity in Albert, the student 
information system.

In the Albert documentation, a distinction is made between 
legal sex (“a person’s sex as currently indicated on a birth certif-
icate, passport, or other official document”) and gender identity 
(“the gender with which a person identifies”). It notes, “One’s 
gender identity may or may not differ from one’s legal sex which 
is assigned at birth based on biological characteristics.”
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Making this change was a complex matter. Most university 
student information systems—the core that everything feeds 
off of—were set up in the 1960s and haven’t been overhauled. 
Changing them is complicated and expensive. It is absolutely 
possible to update university systems to encompass gender 
identity, just as it is possible to update financial systems, in-
surance systems, health systems, government systems, and 
every other system that relies on legacy design. It’s a matter of 
will and funding.

The will to change is being achieved at long last through law-
suits and legislation. As of this writing, a third gender option, X, 
on official state documents has been mandated in 19 US states 
and in Washington, DC. Unfortunately, change is slow, and adop-
tion is spotty. Even after the legislation is passed, more lawsuits 
have followed to force compliance. In March 2021, a group of 
New Yorkers sued because the databases that control access to 
Medicaid, food stamps, and other public assistance don’t in-
clude the X option. “Any time I need something as simple as 
food or to make a doctor’s appointment, I basically am forced 
to misgender myself, to be misgendered. And this takes a toll,” 
coplaintiff Jaime Mitchell said.4 Mitchell, who is nonbinary, was 
able to get their birth certificate with an X but was forced to 
declare themself male or female in order to get public benefits.

Lines of code can change the world, absolutely. In celebrating 
that fact, we need to also look at the way lines of code make cul-
ture incarnate and make social change much harder. Computer 
systems are not just mathematical, they are sociotechnical, and 
they need to be extensively updated on a regular basis. Just like 
humans.
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