

Advance Praise for
‌“You Are Not Expected
to Understand This”

‌“In truth, ‘You Are Not Expected to Understand This’ is startlingly
understandable! These vivid, lucid, brilliant essays tell the ori-
gin stories of coding, the secret infrastructure that shapes our
online life. We meet the people who wrote and rewrote the lines
of code that changed the world. We glimpse their ambitions, mis-
takes, remorse, fixes, and ingenuity. We understand why (and
how) women were the ones who designed early programming
languages like COBOL; how pop-up ads came to exist; how the
‘like’ button blew up news and politics as we knew them. Read
this book, and you will never look at your newsfeed the same
way again.”

—�Liza Mundy, author of Code Girls: The Untold Story of
the American Women Code Breakers of World War II

‌“Code powers much of modern life, yet most of us spend little
time thinking about it. This book will change that. Wide-ranging,
provocative, and bursting with humanity, ‘You Are Not Expected to
Understand This’ is essential reading on the history and culture
of code.”

—�Sara Wachter-Boettcher, author of Technically Wrong:
Sexist Apps, Biased Algorithms, and Other Threats of Toxic Tech

‌“Code governs our lives—and this book does a delightful job of
giving us a glimpse into some of the biggest wins, and most co-
lossal blunders, in software.”

—�Clive Thompson, author of Coders: The Making
of a New Tribe and the Remaking of the World

‌“You Are Not Expected
to Understand This”

‌“You Are Not
Expected to
Understand This”
How 26 Lines
of Code Changed
the World

Edited by Torie Bosch
With an introduction by Ellen Ullman
and illustrations by Kelly Chudler

Princeton University Press / Princeton & Oxford

Compilation and preface copyright © 2022 by Slate Magazine.
Essays and illustrations copyright © 2022 by Princeton University Press.

Princeton University Press is committed to the protection of copyright and the
intellectual property our authors entrust to us. Copyright promotes the progress
and integrity of knowledge. Thank you for supporting free speech and the global
exchange of ideas by purchasing an authorized edition of this book. If you wish to
reproduce or distribute any part of it in any form, please obtain permission.

Requests for permission to reproduce material from this work
should be sent to permissions@press.princeton.edu

Published by Princeton University Press
41 William Street, Princeton, New Jersey 08540
99 Banbury Road, Oxford OX2 6JX

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Names: Bosch, Torie, editor. | Chudler, Kelly S., illustrator. | Ullman, Ellen,
  writer of introduction.
Title: You are not expected to understand this : how 26 lines of code changed
  the world / edited by Torie Bosch ; with an introduction by Ellen Ullman
  and illustrations by Kelly Chudler.
Description: First edition. | Princeton : Princeton University Press, [2022] |
  Includes bibliographical references and index.
Identifiers: LCCN 2022013091 (print) | LCCN 2022013092 (ebook) |
  ISBN 9780691208480 (pbk. ; acid-free paper) | ISBN 9780691230818 (e-book)
Subjects: LCSH: Computer programming—Popular works. | Computer science—
  Social aspects—Popular works. | BISAC: COMPUTERS / Programming / General |
  SOCIAL SCIENCE / Technology Studies
Classification: LCC QA76.6 .Y585 2022 (print) | LCC QA76.6 (ebook) |
  DDC 005.13—dc23/eng/20220527
LC record available at https://lccn.loc.gov/2022013091
LC ebook record available at https://lccn.loc.gov/2022013092

British Library Cataloging-in-Publication Data is available

Editorial: Hallie Stebbins, Kristen Hop, and Kiran Pandey
Production Editorial: Natalie Baan
Text and Cover Design: Chris Ferrante
Production: Danielle Amatucci and Lauren Reese
Publicity: Kate Farquhar-Thomson and Sara Henning-Stout
Copyeditor: Michele Rosen

Page 132: Comic adapted from MonkeyUser, reproduced with permission.

This book has been composed in IBM Plex

Printed on acid-free paper. ∞

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1

https://lccn.loc.gov/2022013091
https://lccn.loc.gov/2022013092
http://press.princeton.edu

Contents

Preface	 ix
Torie Bosch

Introduction	 1
Ellen Ullman

	1	 The First Line of Code	 13
Elena Botella

	2	 Monte Carlo Algorithms: Random Numbers in
Computing from the H-Bomb to Today	 19
Benjamin Pope

	3	 Jean Sammet and the Code That Runs the World	 25
Claire L. Evans

	4	 Spacewar: Collaborative Coding and the Rise of
Gaming Culture	 31
Arthur Daemmrich

	5	 BASIC and the Illusion of Coding Empowerment	 38
Joy Lisi Rankin

	6	 The First Email: The Code That Connected Us Online	 44
Margaret O’Mara

	7	 The Police Beat Algorithm: The Code That Launched
Computational Policing and Modern Racial Profiling	 49
Charlton McIlwain

	8	 “Apollo 11, Do Bailout”	 56
Ellen R. Stofan and Nick Partridge

vi / Contents

	9	 The Most Famous Comment in Unix History:
“You Are Not Expected to Understand This”	 63
David Cassel

	10	 The Accidental Felon	 69
Katie Hafner

	11	 Internet Relay Chat: From Fish-Slap to LOL	 75
Susan C. Herring

	12	 Hyperlink: The Idea That Led to Another,
and Another, and Another	 81
Brian McCullough

	13	 JPEG: The Unsung Hero in the
Digital Revolution	 86
Hany Farid

	14	 The Viral Internet Image You’ve Never Seen	 91
Lily Hay Newman

	15	 The Pop-Up Ad: The Code That Made the
Internet Worse	 96
Ethan Zuckerman

	16	 Wear This Code, Go to Jail	 102
James Grimmelmann

	17	 Needles in the World’s Biggest Haystack:
The Algorithm That Ranked the Internet	 108
John MacCormick

	18	 A Failure to Interoperate: The Lost Mars
Climate Orbiter	 113
Charles Duan

Contents / vii

	19	 The Code That Launched a Million Cat Videos	 119
Lowen Liu

	20	 Nakamoto’s Prophecy: Bitcoin and the
Revolution in Trust	 124
Quinn DuPont

	21	 The Curse of the Awesome Button	 131
Will Oremus

	22	 The Bug No One Was Responsible For—
Until Everyone Was	 139
Josephine Wolff

	23	 The Volkswagen Emissions Scandal:
How Digital Systems Can Be Used to Cheat	 145
Lee Vinsel

	24	 The Code That Brought a Language Online	 151
Syeda Gulshan Ferdous Jana

	25	 Telegram: The Platform That Became
“the Internet” in Iran	 156
Mahsa Alimardani and Afsaneh Rigot

	26	 Encoding Gender	 162
Meredith Broussard

Acknowledgments	 169

Notes	 171

List of Contributors	 189

Index	 195

Preface
Torie Bosch

In high school in the late ’90s, I took my first and only coding
class—a course on C++. I encountered all of the problems that
you hear about when it comes to girls and programming: the
only girl in the class, I was coming to the subject cold. Though the
class technically had no prerequisites, every other student had
a working understanding of coding; many of them had learned
from their fathers. My teacher was a woman and started out
encouraging, but quickly became exasperated with me. From
the first assignment, which I believe had to do with a string of
numbers, I flailed. I eked out an A in the class, helped by the
boys, who would spot problems in my code and tell me how to fix
them. But I never really understood what I was doing—how pro-
gramming worked or what the different languages meant. The
teacher largely skipped over that stuff because she assumed we
all knew it, and, I assume, she didn’t want to hold the rest of the
class back for me. I’ve always wondered if she was frustrated
with me for making women and girls in STEM look bad.

Before going into that C++ class, I had thought of program-
ming as something simple and straightforward: you tell a com-
puter what to do, and it executes. But that class demonstrated,
on a small and annoying scale, that “telling a computer what to
do” inherently requires messy human thinking. I learned that
code could be “wrong” yet still somehow work, and that it could
have unintended ramifications—ramifications that might not
matter much when I was working on, say, a birthdate calcula-
tor, but would matter a lot if I were working on a transportation
system. Thinking about these issues was fascinating; coding
was not for me, perhaps, but thinking about it was.

That’s the idea behind this book: that we should all think a lit-
tle more about code, because code has in infinite ways changed

x / Preface

how we live in the world, for better, worse, or somewhere in be-
tween. And behind the code, of course, are people: people who
make decisions, make mistakes, make assumptions, take bril-
liant chances, and take shortcuts, with major—and sometimes
unintended—ramifications. The 26 essays in this book, written
by technologists, historians, journalists, academics, and some-
times the coders themselves, tell the stories of people writing
code that is by turns brilliant, funny, sloppy, and shortsighted.
The essays show us how code works—or how, sometimes, it
doesn’t work—owing in no small way to the people behind it.

This book grew out of an article published by Slate in October
2019 titled “The Lines of Code That Changed Everything.” From
the time I began working on that project, I struggled with how
to define “lines” of code. A line of code can be, literally, a single
string of code—a line of BASIC, say. But code here also means
the bigger ideas that underlie software programs, programming
languages, digital platforms, and physical hardware, and the
interaction of these elements is what defines our digital world
today. In some cases, we can no more easily separate them than
we can separate technology from the humans who created it.
This book embraces the messy.

Many of the essays will focus on actual lines of code. For in-
stance, James Grimmelmann writes about a T-shirt with four
lines of Perl code—the RSA1 encryption algorithm—that was writ-
ten to protest US export controls around encryption. Thanks to
that activism and the clever use of code, more people today have
the ability to communicate securely. Josephine Wolff writes about
Heartbleed, one of the most pernicious vulnerabilities in com-
puting history, and the code mistake that made it possible. Ellen
Stofan and Nick Partridge look at the Apollo 11 lunar module’s
code and an error alert that nearly ended the first moon landing.

But some of the essays embrace a broader definition of “lines
of code.” For instance, I’ve chosen to include essays that focus
not on code per se, but on software. Charlton McIlwain, author
of the landmark book Black Software, examines the first Police

Preface / xi

Beat Algorithm, created in the 1970s, and how it led to today’s
predictive policing software. McIlwain’s essay demonstrates
how code cannot possibly be free of human biases around race.
Afsaneh Rigot and Mahsa Alimardani write about the Tele-
gram channels that first helped Iranians evade government
surveillance and censorship, only to end up putting Iranians—
especially members of the LGBTQ community—at risk.

Finally, this book includes essays on coding languages and on
the act of coding itself. Claire L. Evans writes about the birth of
COBOL and the much-overlooked role of women in early com-
puting history. Meredith Broussard writes about how the gender
binary and the code binary are intertwined. Ethan Zuckerman’s
essay looks at the role he played in creating a scourge of the
Web: the pop-up ad. David Cassel examines how a perfectly an-
odyne comment in code—“You are not expected to under-
stand this”—became part of programming culture and, as he
put it, a “cherished reminder of a momentary glow of humanity
in a world of unforgiving logic.”

To narrowly focus on actual lines of code would have overly
constrained the collection, overlooking many programming
“mistakes,” moments of genius, and human decisions and bi-
ases that are infused into society through thousands of lines of
code. Indeed, beyond code, these essays have a second, no less
important focus: people. The book tells the stories of the people
behind the programming and the people affected by it—a group
that includes all of us. To me, certainly, these stories all feel
personal: around the same time Zuckerman was working on the
first pop-up ad for Tripod, I was building my own site on Tripod
(devoted to, of all things, Backstreet Boys fan fiction), which
would come to host its fair share of pop-up ads. It was also the
site that taught me how to use HTML: the HTML links, as Brian
McCollough writes in his essay, that were and are foundational
to the Internet.

These essays should feel personal to all of us, coders or not,
because the technological successes and failures and strange

xii / Preface

moments they describe undergird our lives. The decisions
made by the people in this book shape our online behavior:
how we learn, how we interact, how we define ourselves. And
in the twenty-first century, our online lives bleed into our off-
line lives, to the point where sometimes we can’t distinguish
between them.

I became interested in the Internet—and C++—thanks to my
mother, who bought my family a computer and signed up for
AOL back in 1995. She had a tech background herself, having
learned programming in the 1970s when she was a consul-
tant. She never particularly enjoyed it, though, in part because
she felt her questions were often dismissed—especially if they
concerned the bigger picture, beyond the work at hand. Just
before Y2K, she told me that she once asked an instructor why
programmers used two digits to represent years instead of four.
“Won’t that cause problems?” she asked him. “Someone else
will have to deal with it,” he told her. Programming mistakes,
quick shortcuts that become permanent fixtures, flashes of
brilliance—all of us have to deal with them.

Introduction
Error, Failure,
and Code Creation
Ellen Ullman

You need the willingness to fail all the time.

Those words guided me throughout all the years when I worked
to become a decent programmer, as they no doubt guided count-
less others. That one sentence reminded us that coding is a life
in which failure will be your constant shadow. Bugs, crashes,
halts, glitches, hacks: programmers who want to survive in the
profession (like anyone hoping to create a new thing on earth)
must come to a begrudging acceptance of failure as a confound-
ing helper, an agent of destruction you wish you could evade,
but never can.

The words were spoken by John Backus, who led the group
that created the FORTRAN programming language, fully released
in 1957.1 FORTRAN (short for Formula Translator) was the first
language that allowed programmers to write code that was not di-
rectly tied to any one computing environment. It was a frustrating
project that lurched from failure to failure. Backus went on to say:

You have to generate many ideas and then you have to work
very hard only to discover that they don’t work. And you keep
doing that over and over until you find one that does work.2

He also told us:

If you are not failing a lot, you are probably not being as cre-
ative as you could be—you aren’t stretching your imagination.3

2 / Introduction

Software companies try to avoid serious failures with proce-
dures, rules, reviews. But programs are works of the imagination
that must then make the hazardous crossing into the structured
world of code. The attempts to avoid failure will also fail.

All code has flaws, inevitably. Human thought is wonderfully
chaotic; it allows us to hold incompatible beliefs, be interrupted,
function in a world we do not fully understand. So much of what
we know is inscribed in the body, the product of evolution, in-
stinctive, not readily accessible to the rational mind, what Daniel
Kahneman has described as fast thinking (System 1). Meanwhile,
code-writing (as opposed to the creative work of code-design)
requires fully conscious and rational thought, Kahneman’s
“slow thinking” (System 2),4 a level of focused attention that is
impossible to sustain over time.

I have a friend who was once in charge of testing at a startup
that was frantic to go public. The IPO was delayed for months on
end because of the relentless appearance of new serious bugs.
The higher-ups demanded to know, “When will all the bugs be
found?” It was a ridiculous question, because the testing was
being done even while new code was being written. Meanwhile,
“fixes” to already discovered bugs were in the business of cre-
ating a whole new pile of bugs. In any case, no one can predict
when the last bugs will be found, because the only correct an-
swer is, “Never.”

Many bugs are blind spots in the code. The designer and
programmer try to protect the system by looking for condi-
tions that will break things: they will not find them all. Most
often, software teams are rushed. They have to create systems
quickly. Programmers don’t have time to lean back, think of
other things, let the background of the mind speak. A prime
source of bugs is absurd scheduling.

Other bugs are like physical vulnerabilities inscribed in the
DNA. These bugs sit quietly until some environmental factor (in
humans, things like ageing, chemicals, medications) suddenly
activates the flaw, and we get sick. In the case of computing, the

Introduction / 3

technical environment is complex and constantly changing.
Programs interact with modules not foreseen in the original de-
sign; with new operating systems and changed ones, variations
in chips, network configurations, protocols, device drivers; be-
deviled by documentation that cannot keep up with the changes.
What worked one day doesn’t work the next, and the program-
mer’s constant question is, “What changed?” Well, lots of things.
Which one (or ones) did the damage? That way lies madness.

The deepest weaknesses are revealed when a digital creation
is designed for expert users in a collegial environment, and then
opened to a wider pool.

Dennis Ritchie and his team developed the C language,5
which, along with Unix, was part of a research project con-
ducted inside the storied Bell Labs technology incubator.6 The
language gave the team’s programmers a great deal of freedom,
including direct access to the contents of memory, something
systems normally do not allow, in order to protect the integrity
of the coding environment. That level of freedom was fine as
long as their work remained a research project. According to
Brian Kernighan, who coauthored the book that introduced C to
the world,7 Ritchie did not anticipate that the operating system
and language would become “as big as they did.”8 Yet they did
indeed become big. Programmers’ access to memory then es-
caped into the wild: programs acquired the dangerous ability to
invade and manipulate the memory space of another program
(mostly by accident), and that invaded program can invade an-
other’s (and so on), enabling a world of perplexing bugs.

Then there is the Internet itself, derived from the ARPANET,
which was created as a platform in which a limited group of
researchers could converse openly about scientific subjects.9
Security was not assumed to be needed. And so arrived the
hackable digital universe.

I once had the good fortune of working for a hacker. This goes
back to the time when “hacker” was an honorific, as it still is

4 / Introduction

among talented hardware and software engineers. It refers to a
type of crusty programmer who can chop through code with a
combination of grim determination and giddy enthusiasm. The
goal, above all, is to uncover the flaws that induce the failures,
then (somehow or other) devise the fix that will make things work.
Their solutions are often “ugly,” in coder parlance (aka kludges),
the product of down-and-dirty plumbing. But no matter. Maybe
lovely, elegant programs and systems can come later. Or not.

“Hacker” has acquired a less admirable meaning, of course,
having acquired the taint of what we used to call “crackers,” as
in safe crackers, people not allowed to get at what’s in the safe
but who get in anyway. It is a chaotic world involving everyone
from cryptocurrency tinkerers to bank thieves; from hackers
working for hostile nation states to ones stealing data for espi-
onage and ransom; to those seen as ethical hackers, who want
to reveal the wrongdoings of anyone or anything in power; to
loners looking for notoriety; to pranksters, jokers, naughty boys
of all ages, breaking in just to see if they are clever enough to
do it. (It’s fun to make porn appear in Zoom meetings, isn’t it?)

There are the workaday hacks, the constant reports of code
vulnerabilities. Peter G. Neumann, the revered computer sci-
ence researcher, moderates “The Risks Digest,”10 which is
updated weekly, sometimes as often as every few days. The
“Crypto-Gram Newsletter,”11 written by noted security analyst
Bruce Schneier, is released monthly. As individual program-
mers and software makers struggle against the onslaught of
flaws in their own code, they are meanwhile bombarded by the
hacks that rain down upon the digital planet, nearly invisible,
like the solar wind.

Then come the hackers who break into the code meant to
defend against hackers: code to protect code becomes a vic-
tim. NASA stored reports of vulnerabilities they received from
friendly hackers, and then the store itself was hacked.12 Software
written by the company CodeCov,13 which is widely used to test
for bugs and code vulnerabilities, was broken into by Russian

Introduction / 5

hackers, giving them a window into the very code to be pro-
tected. In a recently revealed 10-year-old hack, Chinese spies
broke into RSA’s cryptosystem.14 The company is a corporate
security giant whose customers include “tens of millions of
users in government and military agencies, defense contrac-
tors, and countless corporations around the world,” according
to wired.com. The break-in allowed “hackers to instantly bypass
[RSA’s] security system anywhere in the world.”15

The fate of humanity hangs in the balance. Nicole Perlroth’s
book This Is How They Tell Me the World Ends: The Cyberweapons
Arms Race,16 describes how the Internet—buggy and hackable—
has become a potent military tool. It has the dark power to ignite
global war: by accident, or by design.

Now I will return to the “good” use of hacker, because I want to
preserve its historical meaning among the general public and
give the original hackers their due: an army of sometimes di-
sheveled geniuses who were wary of rules and formalities, non-
conformist in their thinking, somehow both brilliant and prac-
tical at the same time, who could reach in, rummage around,
and figure out what to do. A member of Backus’s FORTRAN team
called their group “the hackers of those days.”17

A now-famous hack saved the Apollo 13 mission from di-
saster.18 Before the mission could achieve a moon landing as
planned, an oxygen tank exploded in the command module.
The three astronauts had to take refuge in the lunar module,
which was designed to carry only two astronauts. To reduce
the build-up of carbon dioxide, they retrieved an additional
canister of lithium hydroxide pellets (a carbon dioxide scrub-
ber) from the command module.19 But there arose the sort of
problem that plagues complex projects: components designed
and built separately. One canister had a round connector, the
other a square one, the proverbial square peg in a round hole.20
A remedy had to be found—quickly—or all three men would die
of asphyxiation.

6 / Introduction

NASA engineers on the ground raced to find a solution. They
threw together bits of stuff that were on the spacecraft—plastic
bags, covers ripped from manuals, duct tape, cardboard, anything
—and devised a bridge between the mismatched connectors. It
was one of those “ugly” fixes. As the Apollo 13 astronaut James
Lovell later described it: “Hose. Duct tape and an old sock.”21

Daniel Kaminsky, a famed cybersecurity expert, created an-
other legendary, down-and-dirty hack. In 2008,22 he discovered
a security hole in the Internet’s Domain Name System (DNS),
which converts website URLs to specific IP addresses. Kaminsky
saw how easy it was for knowledgeable bad actors to redirect
the user not to the intended destination, but to a world of fake
sites—a “bank,” a “credit card company,” an “email login”—and
therefore collect the user’s IDs and passwords. He alerted others
and, along with Paul Vixie, coded an emergency patch.

Kaminsky, who will forever have a place of honor among the
greats of the hacker community, died on April 23, 2021. His
obituary in the New York Times called him “the savior of the In-
ternet.”23 He was the first to sound the alarm and respond to the
threat. Yet, given what we know about the relationship between
coding and error, it is no surprise to learn that the patch was far
from perfect. After the “fix” was installed, there were 6:00 a.m.
calls from Finnish certificate authorities saying their security
procedures were broken. Some DNS servers stopped working
correctly. And there were some pretty harsh words from Ka-
minsky’s peers in the security community.24 Years later, in a talk
at the 2016 Black Hat hacker conference, Kaminsky referred
to his patch as “that DNS mess.”25 Vixie, a longtime steward of
the DNS, described the code they cobbled together in terms yet
more ugly than Apollo’s old sock: he compared it to dog excre-
ment. In the way of hacker expediency, he called it the best dog
excrement “we could have come up with.”26

Each of the programs, systems, and concepts discussed in this
book had to go through the test of trial-by-error. The essays in

Introduction / 7

this book explore a wide range of topics. Several offer a deeper
look at technologies familiar to the general public: the coming
of Email, hyperlinking, JPEG image files, the Facebook Like.
Some discuss historical landmarks that ought to be known more
widely: women’s contributions to early computing; the creation
and endurance of COBOL, the first language in general use for
business software; the coming of BASIC, the wonderful begin-
ner’s language.

Two essays explore deeper concepts in computing: data en-
cryption, and the Markov Chain Monte-Carlo concept (MCMC),
a foundational mathematical method used to understand dis-
tributions in data and arrive at probabilities.

Computing can bring happiness, as three essays show. There
is pleasure (and pain) in learning to write code; in the fun brought
into the world by Spacewar!, the first distributed video game;
and in the advent of the Roomba, which, in addition to cleaning
floors, also gave hours of delirious pleasure to innumerable cats.

Two essays discuss contributions to computing that I see as
being derived from the idea of “the wisdom of the crowd”: the
Facebook Like button and page ranking. The premise is that
numbers in and of themselves say something about the worth of
whatever is being liked, from websites to Instagram postings to
dance crazes on TikTok: more likes equals more eyeballs equals
“better.” The underlying theory is based on the belief that, given
a very large universe of participants, a truth will emerge.

The coming of the “smart mob” has been a decidedly mixed
blessing. Twenty-five years ago, I had an informal talk with Larry
Page about Google’s search engine as it worked at the time. I
said I was concerned that the order in which results were listed,
based as it was on the number of links into a given page, was
a species of the rich getting richer. Larry, ever thoughtful, sat
quietly, considering his reply. Finally he said, “I worried about
that too, but I realized there was nothing I could do about it.”

What he meant was that there was nothing he could do algo-
rithmically. Given the immense universe of knowledge, a human

8 / Introduction

curator would have faced an impossible task; code has to be
the curator. Google’s search engine has improved vastly over
time, its criteria for ranking becoming ever more sophisticated.
And search engines, most modeled on Google’s, have brought
astounding advances in how human beings can understand
the world. Yet search engines have also ushered in the age of
“most popular,” “trending,” “bests,” and posts that users hope
will “go viral.” This amplification of responses can empower the
public and create a world of fun. They also reveal the hazards
of assigning wisdom to the crowd: results prejudiced by the
cultural majority, an arms race between the search algorithm
and sites wanting to promote themselves, conspiracy theo-
ries, hordes of influencers stoking likes and clicks, truly fake
news.

Then there are the programs we wish had not survived the
assault by bugs. One essay examines so-called predictive po-
licing, which pretends to predict where crime will take place in
the future. Like all AI algorithms, it is based on databases laced
with bad information, on methods that are rife with bias.

On a lighter note, there is another maybe-we-never-wished-
for code invention: the pop-up ad. The essay here, by the pro-
grammer who authored it, describes his remorse, the regret he
feels about loosing the pop-up upon the world.

A book about code must necessarily address the subjects that
are integral to the creation of software: error and failure. “The
Lost Mars Climate Orbiter” describes a failure that, 28 years
after Apollo 13,27 echoes the earlier mission’s mistake: system
parts created separately. One team used the American mea-
surement system, the other the English Imperial system. The
repetition of this type of error shows how pervasive are the haz-
ards in complex systems, where one group of engineers cannot
possibly create the whole, and disparate parts must somehow
be knit together, and flawlessly.

“Heartbleed” describes a bug deep in the internals of the
Internet that caused havoc for millions of devices. A hacker ex-

Introduction / 9

ploited weaknesses in open-source software and vulnerabilities
in the C language, as mentioned above, which gave program-
mers direct access to the contents of memory. Like so many er-
rors, the problem lay dormant, everything apparently working,
until something in the environment changed: the arrival of a
hacker with malicious intent.

Another essay discusses the Morris Worm, the first to be dis-
tributed via the Internet. Robert Tappan Morris, then a graduate
student at Cornell, wrote the invasive code as an intellectual
project, as a test of the Internet’s weaknesses. However, a mis-
take in his code instructed the worm to keep reproducing itself,
whether or not a system had already been infected. Then he
inadvertently released the worm into the wild. A senior engi-
neer who worked on the emergency caused by the worm, Colm
MacCárthaigh, later said, “It felt like the Internet was on fire.”
Morris never intended to cause the vast damage he did. In this
sense, his worm was a bug inside a hack.

A particularly pernicious use of errant code was deployed
by Volkswagen to falsely lower the readings of pollution levels
caused by their diesel engines: an intentional bug, an error cre-
ated for corporate gain.

And then we come to the day-to-day, unglamorous but vital
chore performed by all good programmers: adding comments
to their code. Comments are an invaluable tool; they describe
sections of the program that are tricky, not immediately obvi-
ous or readable. Comments are acts of generosity, help for the
unknown colleagues who will work on the code over time, in the
hope that they will keep a system working.

Sometimes the “future” programmer will be the original au-
thor of the code, and the comment is a gift to oneself, since it is
all but impossible for individuals to recall all the complex details
in the software they have written. A bug is an opportunist that
waits at the gate of any change to the body of running code; a
comment is a weapon that, a priori, takes up the battle against
software entropy.

10 / Introduction

I am just old enough to remember the desperate attempts by
the United States to match the Soviet Union’s great achieve-
ment, Sputnik, the first earth-orbiting satellite. NASA’s launches
were broadcast on television, some live. We saw one rocket after
another exploding spectacularly on the pad; or collapsing in
a ball of fire after lifting-off a mere few feet; or managing to
rise into the sky only to burst into flames at the first stage of
separation.28 Those failures are engraved in the memories of
those who watched the attempts: the great anguish inherent
in technological achievement, and, per Backus, the imperative
to try again.

Decades later, after scores of intervening successes—
including a human’s trip to the moon and projects that sent
explorer satellites to the edge of our solar system and beyond—
NASA launched the mission to send the Perseverance Rover to
Mars. The launch took place on July 30, 2020.29 On February 18,
2021, nearly six months later, Perseverance landed on Mars.

The landing was streamed live30 thanks to NASA’s commit-
ment to inform the public, even if a mission might fail. What
riveted my attention was a pane on the left side of the screen.
It highlighted each stage as the mission unfolded, modules
for launch, separations, cruise balance, etc. Between each
module was a step that began with the word “Interface,” as
in: Module A, Interface to module B, Module B, Interface
to Module C, Module C, and so on. You could see the tension in
the faces of the women and men staring into their monitoring
screens. I held my breath along with them.

There is no more hazardous place in a complex project than
the handshake between one section and the next. In this in-
terregnum lurks all the potential misunderstandings between
separate groups of developers, as we saw with the lost Mars
orbiter and the near catastrophe of Apollo 13. The illuminated
word “Interface” always seemed to linger for far too long. I
wondered if this latest generation had learned the lessons of
their forebears, who knew the danger zones. In the case of a

Introduction / 11

breakdown, did these young engineers have the hackers’ skills
to scrounge around and repair a ripped seam? This Mars Rover
project seemed impossibly complicated, riddled with opportu-
nities for disaster. I watched in a mood of both exaltation and
horror.

Time went by. The display followed the steps in the project:
one module, interface, next module, interface, and the next. Fi-
nally we came to the astounding unfurling of the parachute that
gently lowered Perseverance to the surface. And it was done.

And yet.
There is no such thing as the last bug.
The problem appeared in the initial test of the small heli-

copter, Ingenuity, which had arrived on Mars attached to the
underbelly of Perseverance, like a baby kangaroo in the pouch
of the mother ship. Ingenuity was to attempt to fly in the thin
atmosphere of Mars, to pioneer an age of powered, controlled
flight—engineered by humans—on a planet other than earth.

The first try failed. The helicopter’s start-up activities took
longer than expected, and its computer shut down the motors.
The engineers overseeing the mission identified a potential
workaround and devised a patch. Yet, knowing that touching
existing code is an excellent opportunity to break it, they wisely
did not install it. Instead, they adjusted the commands they
would send to the craft.31

Here was a repair that was sent not through the Internet but
across 130 million miles of space.32 Engineers had to wait two
anxious earth days to find out if their changes would work.33 On
April 19, 2021, Ingenuity rose 10 feet into the Martian atmo-
sphere as planned, hovered briefly, banked, turned, and landed
at its takeoff point.34

More flights followed. Failure had led to success. This was a
bug-fix for our time, another hack for the ages.

1
The First Line of Code
Elena Botella

What was the first line of code? It depends, a bit, on how exactly
you define code.

For now, let’s say code is a set of instructions that are given to
a machine. Giving instructions to machines is something most
of us do all the time. So far this morning, even before I opened
my laptop, I flipped a light switch to turn on and off my bath-
room lights, pushed a lever to instruct my toilet to flush, and
pressed a button to tell my coffee grinder to grind some coffee
beans. Each of these individual buttons or switches delivered
a single instruction, “on” or “off,” “do” or “do not,” or, shall we
say, “1” or “0,” to machines that each knew how to do exactly
one thing: emit light, flush water, or grind coffee beans.

Code happens when you have a machine that’s ready to listen
to not just one instruction, but very long sets of instructions,
combining those “on” or “offs,” “1s” or “0s,” “dos” or “do nots”
in practically infinite, seemingly magical combinations. And
importantly, the difference between code and mere language
is that code should always produce the same output given the
same input. When I run lines of code, even on a different com-
puter than the one I wrote them on, they should always produce
the same result.

By this definition, the first code may have been written by Ba-
sile Bouchon in 1725, more than a century before the invention
of the electrical generator.1

Basile Bouchon was a French weaver, at a time when pat-
terned silks were the height of luxury and of fashion. Before
Bouchon, it took several weeks of painstaking and tedious labor
(tying knots in the loom strings) just to reconfigure a loom to

14 / CHAPTER 1

the selected pattern.2 As historian Abbot Payson Usher wrote in
1929, this “work was heavy, the hours long, and serious physical
disorders were developed by this most wretched class of silk
workers.”3

Bouchon’s solution? The first punch card, or, more spe-
cifically, a very long sheet of paper that would be “coded” by
punching holes in the paper. This long sheet of paper was placed
underneath a row of needles and gradually unspooled by the
weaver. The holes (or lack of holes) in the perforated paper
told the loom which needles to retract and which not to retract,
which in turn changed the design of the fabric.

In practice, Bouchon’s loom didn’t work very well, and it was
never widely used. But even at the time, other weavers could
see that the idea held promise. It only took a few years for other
people to start making improvements, notably by replacing the
continuous roll of perforated paper with sturdier, more versatile
punch cards. A few years after that, someone designed a loom
that eliminated the need for a human to stand by to switch the
punch cards, doing so mechanically instead.

Bouchon wasn’t famous in his own era, but another man,
Joseph Marie Jacquard, became rich and famous in the early
1800s for improving upon Bouchon’s design, combining it with
other innovations to create what became known as the “Jacquard
Loom.”4 Emperor Napoleon Bonaparte was so impressed with
Jacquard that, after personally visiting him, he awarded Jac-
quard an annual pension and a bonus for every Jacquard Loom
manufactured in France.5 Jacquard became a household name,
but Bouchon was reintroduced to history books when British
academic Reverend Robert Willis wrote that “the merit of Jac-
quard is not . . . that of an inventor, but of an experienced work-
man, who by combining together the best parts of the machines
of his predecessors in the same line, succeeds for the first time
in obtaining an arrangement sufficiently practical to be gener-
ally employed,” giving the credit specifically to Bouchon for the
use of perforated paper to program the loom.6

THE FIRST LINE OF CODE / 15

The thread from Bouchon’s first lines of code to the Jacquard
Loom to the code that controls your computers and smartphone
is clear and direct. Ada Lovelace and Charles Babbage, who laid
out the blueprint for the first computer in 1837 (they called it the
“Analytical Engine”), referenced the Jacquard Loom to explain
how computers would work, and Charles Babbage even owned
a silk portrait of Jacquard that had been coded on a Jacquard
loom.7 A full working model of Babbage and Lovelace’s machine
was never built—it would have been roughly the size and weight
of a train locomotive, and powered by its own steam engine—
but modern engineers believe that the Analytical Engine would
have been quite powerful, albeit bulky, very slow, and without
much storage capacity.8 In fact, Alan Turing pointed out that

Basile Bouchon’s loom, which was controlled by perforated paper tape, an early
predecessor of the punch card.

16 / CHAPTER 1

Charles Babbage’s Analytical Engine could do the same set of
essential tasks that any 1950s computer could complete.

In that paper, Turing explained what made a computer a com-
puter: the ability to perform absolutely any computation. As
long as your machine could do that, it didn’t even need to use
electricity, like Babbage and Lovelace’s mechanical invention.
The machine did need to have three things: a “store” or memory
to keep track of data, an “executive unit” to carry out operations,
and a “control” or set of instructions—in other words, code. Both
the data in memory and the code could be described, Turing
pointed out, as a set of numbers (0s and 1s), just like the bi-
nary of Bouchon’s perforated paper roll. (In the same article,
Turing defined what came to be known as the Turing Test or
the “imitation game”—the idea that you could test the quality
of an artificially intelligent computer by seeing if it could trick
someone into believing it was a human.)

I said, at the beginning of this essay, that Basile Bouchon
wrote the first lines of code if you accepted my definition: that
code is a set of instructions, given to a machine capable of ac-
cepting long sets of instructions, that produces a consistent
output. But some, including Turing, might say that definition
is insufficient—or, as modern computer scientists would put it,
Bouchon’s machine and code weren’t “Turing complete.”

And why? Well, the loom wasn’t a computer, in the sense that
the loom or the punch cards couldn’t compute anything. In his
1950 paper, Alan Turing used the term “universal machine” to
describe any machine with the same capability as Lovelace and
Babbage’s invention: the capability to compute anything that it is
possible to compute. “The existence of machines with this prop-
erty,” Turing wrote, “has the important consequence that, con-
siderations of speed apart, it is unnecessary to design various
new machines to do various computing processes.”9 In other
words, since Bouchon’s loom didn’t compute anything, it wasn’t
a computer, so his first perforated paper tape wasn’t really code.
Computer scientists now use the term “Turing complete” to

THE FIRST LINE OF CODE / 17

describe computers and programming languages that meet the
standards of Turing’s universal machine: virtually all comput-
ers and programming languages today qualify.

If you’ve written code, maybe in a computer science class, or
maybe at work, it may not have always felt like you were com-
puting numbers, especially if you just wrote a program to print
“Hello, World.” But underneath it all, even that simple line
of code, if executed on a computer, did involve a computation.
Everything your computer or smartphone does boils down to
a set of math problems: even displaying graphics is a matter of
computation. Maybe, if you’re a gamer, you’ve bought a graphics
card (also called a GPU) for your computer, so your games would
render more quickly—the difference between a GPU and a CPU
is just the types of computations each kind of chip can execute
more quickly. GPUs are best at complicated math problems with
a lot of steps you can do simultaneously, since those are the
types of math problems used to render graphics, while CPUs
are best at complicated math problems whose steps need to
be done sequentially. By the “Turing completeness” definition
of a programming language, Bouchon’s punch cards weren’t
code. By this definition, even HTML isn’t code, since you can
use HTML to design websites, but not to do most computations.

Basile Bouchon may have invented the use of “binary” to
give long sets of instructions to a machine, but he didn’t realize
the invention’s full revolutionary potential. In 1889, a German
immigrant, Herman Hollerith, wrote his doctoral thesis at Co-
lumbia University explaining how to use punch cards to more
quickly compute data. His system was used by the US Census
Bureau to complete the 1890 census, cutting down the required
amount of computation time by at least six years. The company
that Hollerith founded, the Tabulating Machine Company, even-
tually became known as IBM.10 Scholars debate the extent to
which Hollerith borrowed directly from the Jacquard Loom, but
IBM, for its part, does give Jacquard partial credit for inspiring
Hollerith’s design.11

18 / CHAPTER 1

Just as you could argue that Bouchon’s machine instructions
were too simple to be considered code, you could also argue the
first lines of code were written before Bouchon. Other people
“programmed” or “coded” machines before his birth, especially
to make music. The Banu Musa brothers, who lived in Baghdad
in the eighth century, developed an “automatic flute player”
powered by a waterwheel, believed to be the first instrument
capable of playing a preprogrammed melody, and probably the
first programmable machine in general. Bouchon himself came
from a musical background: his father was an organ maker.

It’s probably no coincidence that Bouchon had exposure to
the construction of musical instruments from a young age, but
the connections among looms, musical instruments, and early
computers run even deeper. Just as Herman Hollerith of IBM
drew inspiration from weavers, he also probably learned from
the player pianos that were commonplace in American homes
during Hollerith’s era. These player pianos used a perforated
roll of paper to play a melody, not dissimilar from how perfo-
rated paper dictated the patterns on Bouchon’s looms. At their
peak in the early 1920s, player pianos, capable of performing
automated tunes without human control, outnumbered conven-
tional pianos by nearly 50 percent.12 In a sense, the patterns of
fabric and the verses of songs became the “loops” in modern
computer code.

Code as holes in paper deserves a special spot in this book be-
cause of how important punch cards became as a way of repre-
senting both data and the code used to manipulate data. Binary,
or the representation of data using 0s and 1s, is still the basic
building block of all code and all computing: when computers
became electronic, these 0s and 1s reflected the presence or
absence of an electric signal.

The punch card, it turns out, is all you need to represent any
number, any poem, any song, any computer program: practi-
cally anything at all.

2
Monte Carlo Algorithms
Random Numbers in
Computing from the
H-Bomb to Today
Benjamin Pope

The first code run on the first modern programmable computer
remains a classified secret, but we know what it did: the ENIAC1
in Philadelphia took 20 seconds to confirm to American scien-
tists, only months after devastating Hiroshima and Nagasaki
with nuclear fission weapons, that a much more powerful hydro-
gen bomb was possible. The superpowers’ arms race demanded
ever-more-powerful computers to calculate designs for weap-
ons, and the algorithm of choice was the Monte Carlo method.

The US nuclear weapons program attracted the eccentric and
talented to its base in Los Alamos, New Mexico, none more so
than Edward Teller. Born into a Hungarian Jewish family and
educated in Germany, he had escaped after the rise of Hitler
and settled in the United States. He was so passionate about
developing fusion weapons that he took pride in what Soviet
propaganda called him: “the cannibal.”2

His recruits to the nuclear program included a married cou-
ple: Marshall and Arianna Rosenbluth, who had both earned
their PhDs at only 22 (at Chicago and Harvard, respectively) and
met as postdoctoral fellows at Stanford. Unlike Teller, their son
Alan remembers that they “thought of their weapons work as a
kind of national service” but were politically liberal and would
later become advocates for arms control.

20 / CHAPTER 2

Teller’s colleague Stanislaw Ulam liked to gamble. While re-
covering from illness in 1946, he thought about card games:3
How often will the house win in the notoriously hard Canfield
solitaire? There are far too many possibilities to calculate for
52 cards—but Ulam realized he could get a fair approximation
by shuffling the cards a hundred times and counting the rate
of success.

This gave him and his colleague John von Neumann the solu-
tion to a more important problem: calculating how neutrons
would flow in a nuclear warhead. You could follow a represen-
tative sample of simulated 100 neutrons as they collide with
atoms, deciding using computer-generated random numbers
what happens next: How far do they fly? Do they bounce off an
atom, or are they absorbed and lost, or do they split the atom
and form more neutrons? If these initial 100 increase in num-
ber on average, you have a runaway nuclear reaction. Using
ENIAC, this calculation would be fast enough to design ever-
more-powerful weapons. Their colleague Nick Metropolis sug-
gested a name for using random numbers to guide a simulation:
the Monte Carlo method, after the world’s most famous casino,
where Ulam’s uncle used to gamble.

A central question in simulating the H-bomb was the equa-
tion of state, which describes how matter responds to changes
in temperature and pressure. Marshall recalled working “60
hours or more per week trying to understand the physics of the
interactions of radiation and matter under these extreme con-
ditions.”4 They decided to tackle a related problem: the melting
of a solid into a liquid. Directly computing the motions of hun-
dreds of molecules, let alone trillions, would be impossible. But
if you assume that molecules jiggle around at random, you can
use Monte Carlo method to calculate the properties of a liquid
based on the statistics of this random jiggling.

Teller suggested you could generate a random sample of
configurations of molecules consistent with a given energy and
temperature and average over them to get quantities like den-

MONTE CARLO ALGORITHMS / 21

sity and pressure. In physics, the relative probability of finding
a configuration of molecules at a temperature τ with an energy
E is given by a “Boltzmann factor” exp(E/τ)—so you could make
this fast by sampling only high-probability configurations.

Marshall realized that if you take each molecule and move
it about in a prescribed way—a “Markov Chain,” in which each
state is produced by a rule depending only on the last state—
then you could prove this would generate a whole chain of snap-
shots of molecular arrangements, one after another like frames
of a movie and statistically distributed according to their true
probability. This way, you could simulate a whole range of likely
configurations of molecules that would contribute significantly
to their chemical behavior and estimate the liquid’s properties
just based on these, without worrying about extremely improb-
able arrangements (say, piling them all in a corner). With this, a
new approach to computational physics was born, and the team
were in the right place to implement it. Although the MANIAC5
computer at Los Alamos was in great demand, its director, Nick
Metropolis, let Arianna and Marshall have the midnight shift, in
return for being lead author of their publication. Edward Teller’s
wife, Augusta “Mici” Teller, attempted a first version of the code,
but it was completed by Arianna, who was by that point expert
in programming the MANIAC. The Rosenbluths then worked
together extensively on interpreting the scientific results. The
final paper, “Equation of State Calculations by Fast Computing
Machines,” lists the authors as Metropolis, Rosenbluth, Rosen-
bluth, Teller, and Teller (sometimes called MR2T2), and the algo-
rithm therefore became known as the Metropolis algorithm—after
the only one who didn’t contribute directly to its development.
The many variants of the Metropolis algorithm are now simply
known by their core elements, under the umbrella term Markov
Chain Monte Carlo.

The essential elements of MCMC are all present in the MR2T2
paper. They tracked the x and y positions of 224 spherical mol-
ecules in a 2D square box.6 They then picked one molecule,

22 / CHAPTER 2

generated random numbers ξ1 and ξ2 between −1 and 1, and
proposed moving the positions:

x → x + aξ1
y → y + aξ2.

Then they calculated the energy E using the formula appropri-
ate to the forces included (such as electrostatic repulsion), and
another random number ξ3 between 0 and 1. If the move re-
sulted in a lower total energy, it was always accepted, but higher
energy states were also accepted with a small probability:

ξ3 < exp(ΔE/τ).

Because the algorithm is able to take a random walk to explore
less-probable regions, it can explore the full range of states of
a real liquid with the correct probabilities for each state. This
algorithm remains one of the main ways that the properties of
materials are calculated, a cornerstone of condensed-matter
physics—but the main modern applications of MCMC were
barely envisioned at Los Alamos. In the emerging field of data
science, the algorithm touches everything from the Big Bang
theory to social media surveillance.

In 1970 the Canadian mathematician W. K. Hastings realized
the MCMC algorithm, so good at randomly sampling configura-
tions of molecules compatible with physical parameters, could
be used to sample scenarios compatible with observed data in
any field of science.

Suppose you have many imprecise measurements of the po-
sition of a comet over time—you don’t just want to know the orbit
that best fits the data, but the full range of orbits that are consis-
tent with it. This way, you can determine the margin of error for
landing a probe—or find out the probability that it will strike the
Earth. MCMC allows you to take data and explore the posterior
distribution of models conditioned on the data. Instead of the xy

MONTE CARLO ALGORITHMS / 23

positions of molecules, you instead take a set of model parame-
ters (the orbital eccentricity and orientation of the comet) and
do a random walk, just like before. You accept a proposed step if
it makes the model more consistent with the data, or you accept
the step with nonzero probability if the model is less consistent.
By focusing on probable scenarios but also including less likely
ones, you can explore the range of possibilities.

With Moore’s Law offering ever faster computers, it has been
possible to use MCMC for increasingly complicated models and
volumes of data. Since 1990, hundreds of versions of MCMC
(such as “Stan,” named after Ulam) have made it straightfor-
ward not just to fit models to data—any optimizer can do that!—
but to quantify our uncertain knowledge. In my own field of
astronomy, MCMC is how you answer questions such as: Are
the data really precise enough to say this? Do supernovae in
distant galaxies imply the existence of dark energy? Is the uni-
verse flat? With MCMC, the Nobel Prize–winning discoverers
of gravitational waves could carefully measure the masses of
colliding black holes. Insurers use MCMC to assess financial
risk, and Nate Silver used it to predict from murky polling data
that while Hillary Clinton was favored to win the 2016 election,
Donald Trump still had a good chance.

The last of the MR2T2 team, Arianna Rosenbluth, died of
COVID-19 complications in Los Angeles just after Christmas

A new comet is discovered heading toward the Earth—and you only have a few uncer-
tain data points to determine its trajectory. Using the Markov Chain Monte Carlo algo-
rithm, you can fit many models to these data, finding that some hit the Earth, and some
don’t. MCMC quantifies uncertainty in models like this across every field of science.

24 / CHAPTER 2

2020, even as epidemiologists around the world applied MCMC
to infer COVID infection rates from incomplete data. Like one
of her simulations, her career traces a representative sample
of the triumphs and tragedies of her discipline. As part of the
very first generation of computer programmers, she was also
one of the first women pushed out of the field. When she was
working (painstakingly, in assembly language), coding was seen
as women’s work, but over time the field came to be increas-
ingly dominated by men. Despite her auspicious start, Arianna
retreated from physics to care for her children, while Marshall
continued on to an acclaimed career studying nuclear fusion.
They divorced in 1978. Arianna never wrote another paper after
those days at Los Alamos. In her later years she declined to be
interviewed about her career, and her contribution was not
widely known even to experts. Computer science is only now
beginning to recognize the achievements of the early women
pioneers, and Arianna Rosenbluth must be counted among the
most important.

3
Jean Sammet and the Code
That Runs the World
Claire L. Evans

Jean Sammet wore horn-rimmed glasses, stood ramrod
straight, and looked the world dead in the eye.1 Born in 1928,
Jean was a math whiz. The Bronx High School of Science didn’t
take girls, but she excelled at her public school and eventually
at the University of Illinois, where she earned a master’s degree
in mathematics in 1949. But when she graduated and scanned
the classified ads for a job, she was quickly disheartened. In the
1950s, job listings were still separated by gender. On the wom-
en’s side were openings for clerks, teachers, and housekeepers.
Jean flipped the page and scanned the job listings for men.

Her strategy worked. By 1955, Jean was working as a mathe-
matician in upstate New York, at Sperry Gyroscope, a company
that produced navigation equipment and radar systems for the
US Navy. One day, Jean’s manager asked her, “By the way, do
you know we’re building a digital computer?” She was familiar
with analog computers—she’d even trained on a punch-card
accounting machine once, as a trainee actuary—but she spent
her days at Sperry working on mathematical analysis for sub-
marines and didn’t quite know what digital computing meant.
The manager said, well, digital computing was the wave of the
future. “Do you want to be our programmer?” he asked.

She blinked. “What’s a programmer?”
“I don’t know,” he responded. “But I know we need one.”2
That was enough for Jean. As a woman, she figured she’d

never be allowed on a submarine. But a digital computer was
another thing entirely.3

26 / CHAPTER 3

“Programmer” was a job so new the classified ads never listed
it at all. There were no books on the subject, no tutorials, and no
instruction manuals. The new computing machines were the
first of their kind. More often than not, their programming had
come as an afterthought; the engineers on the Sperry project,
Jean remembered, “somehow thought that machine was going
to run itself.”4

Jean bootlegged herself an engineering education as she
learned to toggle binary programs into the computer by hand.
Even the basic loader program took three days to enter into the
machine. But programming, as it turned out, was like doing
jigsaw puzzles. Jean delighted in seeing all the pieces come
together and work.5 She became the head of a growing depart-
ment, running a shop of new hires, and when Sperry Gyroscope
merged with one of its competitors, Remington Rand, she met
Remington Rand’s senior programmer, Grace Hopper. Hopper—
who liked to call herself “the third programmer of the first
computer”—had made a similar blind leap from mathematics
to programming after being enlisted, by the Navy, to run the
Mark I computer at Harvard during the Second World War. Like
Jean, she’d had to teach herself the job.

The two became close. Though they were decades apart in
age, they faced similar problems at work—both technical and
social. Whenever she could, Jean would take the afternoon train
to Philadelphia from her office in Great Neck, New York, to run
programs on Sperry Rand’s UNIVAC I computer, serving as a
beta-tester in Hopper’s programming division.6 Jean had writ-
ten some basic code for the Sperry computer, but Hopper in-
troduced her to the idea of high-level programming languages.
Only a few years earlier, Hopper had created a new intermediary
between human and machine: a compiler, a string of code capa-
ble of compiling previously written computer subroutines into
more sophisticated programs. It was one of the first programs
capable of writing itself, a quantum leap in the field—and a life-
saving convenience for overworked programmers.

THE CODE THAT RUNS THE WORLD / 27

Before software was an off-the-shelf product, programmers
like Hopper and Sammet were responsible for creating, debug-
ging, and maintaining custom software installations for each
client. Most everything was done in tedious machine code. And
once completed, programs were essentially inscrutable to any-
one but the “shadowy priesthood”7 who had created them. At
conferences, Hopper had been pushing the idea of “automatic
programming”: the notion that programmers should be able to
step above the machine level to code with a higher level of ab-
straction. Proponents of automatic programming were known
in their industry, somewhat derisively, as “space cadets.”

After the Second World War, the electronic computers that
had been developed in secret to run ballistics calculations were
put to work in calculation-intensive industries like insurance
and aviation, as well as in the payroll departments of large cor-
porations and government agencies. As a result, the computing
industry exploded. New machines proliferated, designed by
companies like IBM, Sperry Rand, Sylvania Electric Products,
and Honeywell. Not only were there not enough qualified pro-
grammers to make software for all the new computers, there
were too many computers to make software for. This period is
known by historians as the “software crisis.” It was interpreted
as an industry-wide lack of programming talent, but it was also
a crisis of standards. Computing needed a shared vision, and
a shared language, for the future. Jean Sammet would play a
major role in shaping that language.

In the late 1950s, a programmer at the Burroughs Corpo-
ration named Mary K. Hawes saw the need for a single shared
programming language that could be used on any machine—an
interoperable language, created with the lay user in mind. The
first meeting on the subject was held at the University of Penn-
sylvania Computing Center in April 1959; the small group of
experts in attendance, including Hopper, outlined their goals
for an industry-wide effort and put together a list of partici-
pants they wanted to enlist in the project. The second meeting,

28 / CHAPTER 3

hosted by the Department of Defense—which operated 225
computing installations across the country and was beginning
to develop a programming language of its own, AIMACO—was
held the following May, at the Pentagon, and was attended by
representatives from seven government organizations and 10
computing manufacturers, including Burroughs, GE, Honey-
well, IBM, Sperry Rand, and Sylvania Electric Products—by
that time, Jean’s employer. The Department of Defense gave
the group a word-salad acronym worthy of any military opera-
tion: CODASYL, or the Conference on Data Systems Language.

In order to keep up with their rapidly growing industry,
CODASYL needed to move quickly. Several companies were
already working on their own programming languages; these
efforts needed to be nipped in the bud. At the same time, the
task was monumental, potentially requiring years of devel-
opment. The group settled on a tiered approach, delineating
three committees. The Short-Range committee would exam-
ine existing languages and suggest an initial “short-range com-
posite approach” drawing from the best of those languages. An
Intermediate-Range committee would build on those findings,
leaving the Long-Range committee with plenty of time to de-
velop a finished product.

This plan went sideways almost immediately. As the Short-
Range committee began work on its initial specifications, it be-
came apparent that any interim solution they created would be
permanent. In those days, it was both costly and time-consuming
to implement a new programming language: Grace Hopper ball-
parked nearly 50 “man-years” and $945,000—worth close to $9
million in 2021—for Remington Rand alone to make the switch.8

In order to meet the six-month deadline for their official
findings, the Short-Range group decided to appoint a smaller
subcommittee from within their ranks to finalize the work. Jean
Sammet volunteered immediately. (“She was not one to sit on
the sidelines,” remembers Dr. Tim Bergin, a friend and long-
time colleague of Sammet’s, and “if there was no leader in the

THE CODE THAT RUNS THE WORLD / 29

room, she’d stand up.”9). The final six-person subcommittee—
which also included Gertrude Tierney from IBM—spent two
weeks holed up in a New York City hotel, pulling all-nighters,
before finishing their specifications for an interim language in
November of 1959. It became known as the Common Business-
Oriented Language, or COBOL.10 Betty Holberton, a former
ENIAC programmer, checked the new language line-by-line be-
fore the Department of Defense printed the final specifications
for COBOL that following January.

Thanks to some clever politicking by Hopper, the Navy ad-
opted COBOL as a standard, forcing its manufacturing con-
tractors to build machines that could run the language. And
soon the entire computing industry reoriented itself toward
the new language, which became so entrenched in computing
infrastructure that the Long-Range Committee was never even
formed. By 2000, 80 percent of all code on the planet was written
in COBOL. Even today, almost half of American banking systems
run COBOL, and 95 percent of all ATM transactions rely on it
to function.

COBOL is not a beloved programming language. The Dutch
computer scientist Edsger W. Dijkstra famously called teach-
ing COBOL “a criminal offense.”11 These days, scarcely anyone
teaches it, which means there is a global shortage, yet again,
of programmers. Although sensitive infrastructure worldwide
relies on COBOL to function, its ongoing maintenance is con-
tinually deferred due to lack of resources and political appeal.
During the early days of the COVID-19 pandemic, state unem-
ployment systems built on COBOL were strained to the brink,
with few qualified people to fix them. As the technology histo-
rian Jeffrey R. Yost points out, in our technoculture, “Innovation
is revered, and maintenance is not.”12 When we ignore the vital
importance of maintenance, we are blind to what actually holds
our world together. We are blind, also, to the maintainers.

Jean became the first woman president of the Association
for Computing Machinery (ACM). She wrote what is widely

30 / CHAPTER 3

considered to be the textbook on the history and fundamentals
of programming languages. In 1966, seven years after the first
CODASYL gathering, she presented a paper to the ACM in which
she proposed that programming languages would someday dis-
appear, allowing programmers—and lay users—to communi-
cate with computers using words. At the time, demand for pro-
gramming talent far outpaced supply. Sammet prescribed two
remedies: “to make the professional programmers themselves
more productive by giving them better tools,” like compilers,
or to eliminate professionals entirely, making “the computer
available to everyone who has a problem he wishes to solve.”13

As utopian as this may have seemed in 1966, in the decades
that followed, Jean’s predictions came into focus. Today, we
do have better tools; we speak with machines without a sec-
ond thought. Much of this is due to a foundation built by Jean
Sammet and her peers, which proved hardier than she could
ever have imagined. When she was 72 years old, Jean watched
programmers around the world band together to shepherd her
work into the new millennium. COBOL survived the Y2K crisis;
it survived Jean. It survives still.

4
Spacewar
Collaborative Coding
and the Rise of
Gaming Culture
Arthur Daemmrich

During the winter of 1961–1962, a loosely connected group of
young MIT employees, students, and associates coded the space
battle simulator Spacewar and in effect launched gaming cul-
ture.1 Spacewar is easy to learn but challenging to master, as I
have discovered while playing it on a variety of platforms. In it,
two players control spaceships—one the needle and the other
the wedge—and engage in a dogfight. In addition to trying to
shoot each other, players face several challenges: fuel and pho-
ton torpedoes are limited, multiple hyperspace jumps increase
the probability of their ship exploding, and misjudging a gravity
well in the center leads to quick immolation.

Spacewar came about through the fortuitous alignment of
eight young computer-savvy individuals, a leading-edge main-
frame, and an environment supportive of risk-taking and col-
laboration. It started with an idea formulated in the summer of
1961, when Steven Russell, Wayne Wiitanen, and Martin Graetz
rented an apartment together in Cambridge, Massachusetts.
They jokingly named themselves the “Hingham Institute Space
Warfare Study Group” and envisioned taking part in space bat-
tles similar to those in their favorite science fiction books and
low-budget films.

32 / CHAPTER 4

The opportunity to go from abstract concept to an interactive
space game came in September 1961, when Digital Equipment
Corporation (DEC) gave a PDP-1 to MIT’s Electrical Engineering
department. DEC referred to it as a “programmed data proces-
sor” to differentiate from custom built “computers” that filled
entire rooms and cost $1 million or more.2 The PDP, by contrast,
sold for $120,000 and fit in a footprint of 17 ft2. MIT’s PDP-1
came under the supervision of Jack Dennis, then an assistant
professor in Electrical Engineering. It was installed in Building
26, which famously housed an IBM 7090 (accessible only to
trained operators) and the TX-0, an early fully transistorized
computer built by the military-funded MIT Lincoln Laboratory.
When a cathode-ray tube display was added and Dennis offered
members of the Tech Model Railroad Club (TMRC) access to the
PDP-1 in exchange for their creating an assembler, the stage
was set.

Coding Spacewar proceeded in fits and starts. Russell, who
had worked on LISP projects for the mathematician John Mc-
Carthy (cofounder with Marvin Minsky of the MIT Artificial In-
telligence Lab), agreed to code the much-discussed “demon-
stration” of the PDP-1’s capabilities. But as his nickname
“Slug” might suggest, he delayed starting, citing a lack of key
mathematical tools. Alan Kotok secured them from DEC and
presented them to Russell with a flourish at a gathering of the
TMRC members: “Here are the sine and cosine routines. Now
what’s your excuse?”3

Russell then worked out the game’s core features, notably
the two spaceships, with thrust and firing from switches on
the PDP-1’s front panel. Ships leaving one side of the screen
returned on the other. He also added a bright star in the center
and random other stars in the background.

MIT undergrad Dan Edwards suggested the star should exert
gravity.4 The gravity function, however, took a toll on the pro-
gram’s execution speed. So Edwards pioneered a “run-time
compiler trick” that loaded the spaceship outlines when the

Spacewar / 33

program was initialized, speeding up the main program loop.5
Both ships accelerated toward the star in a realistic manner,
making the game more challenging and setting the stage for
strategies such as a slingshot maneuver to come up behind an
opponent.

Steven Piner, an MIT student and member of TMRC, wrote
a text editing program that made revisions to Spacewar and
subsequent programming of the PDP-1 considerably easier.
Jokingly named Expensive Typewriter since it mimicked the
function of a $395 IBM Selectric typewriter on a $120,000
computer, Piner’s program has since been celebrated as the
first word processing program written for a general-purpose
computer.6

Robert Saunders saw players jostling for space in an area
meant for a single operator, became concerned about damage
to the PDP-1, and built custom controllers. Made of wood with a
Bakelite top, each had a firing button and two small levers, one
for right-left rotation and the other for acceleration when pulled
back and hyperspace when pushed forward.7

Peter Samson, an MIT undergraduate and member of TMRC,
wrote a program for the background stars, as well as assembler
code to generate the plot. Samson’s star map displayed some
1,000 stars including major constellations. It also gradually
shifted over time to mimic the view from earth. Samson’s con-
tribution was nicknamed the Expensive Planetarium.

Martin Graetz, who had been enrolled at MIT and then held
various programming jobs at Harvard and MIT, coded hyper-
space as an escape option. When initiated, the spaceship dis-
appeared with a “Minskytron signature,” a curved series of dots
akin to a Bohr atom.8 Considering it a bit of a cheat, Graetz in-
tentionally made it unreliable with a limit on jumps and the risk
of reappearing in the sun.

By March 1962, Spacewar was for all intents and purposes
finished. Both word and copies of it spread quickly across the
academic computing community as programmers carried or

34 / CHAPTER 4

mailed the program on PDP-1 paper tape to other computer
labs. Russell famously brought the game with him when he
moved to California in mid-1962 to work at the Stanford Artifi-
cial Intelligence Laboratory.

The game also was distributed by DEC with PDP-1s sold after
1962. Engineers used it to test PDPs prior to shipping and left it
in core memory to demonstrate that the computer worked once
installed. DEC even published a small brochure in 1963 that de-
scribed Spacewar as a demonstration of the PDP’s capabilities,
anticipating befuddled responses to seeing a game on a device
purchased by corporations or universities for process control,
data analysis, and other nongaming purposes.9

As a game, Spacewar was fun to play. As a test of the PDP-1,
it demonstrated the computer’s processing speed, graphics ca-
pabilities, and memory. As an innovation, it symbolized a shift
from computing being in the hands of priest-like technicians
operating massive computers to enthusiasts programming and
hacking, sometimes for the sheer joy of it.

In 1971, a public version of Spacewar was set up by recent
Stanford alum Bill Pitts and his friend Hugh Tuck when they
purchased a PDP-11 for $12,000 and installed it into two arcade
cabinets. Each had two mounted joysticks, and play cost ten cents
(with three games for a quarter). The game was nearly identical
to Spacewar, though it was called Galaxy Game. It remained in
the Stanford Tresidder Memorial Union for eight years.10

Several months later, Nolan Bushnell and Ted Dabney, co-
founders of Syzygy Engineering (renamed Atari in 1972), devel-
oped and installed the arcade game Computer Space.11 In it, a
single player operated a rocket that battled a pre-programmed
pattern of two saucers with a fixed star map background.
Though often described as derivative of Spacewar, it had clear
differences. In Computer Space, the player competes against the
computer, the game runs with a countdown timer, and there is
no sun with a gravity well in the center of the screen. The game
worked, but Computer Space was expensive to build, and play-

Spacewar / 35

A selection of code from Spacewar’s Minskytron “Hyperspace signature,” in which a
player sends their ship into hyperspace, often as a last resort.

ers found gameplay difficult due to its programming and the
configuration of the controls. It was displaced by other games
during the 1970s, starting with Pong in 1972. By the time Space
Invaders took off in 1979, the arcade run for games directly
inspired by Spacewar had passed.

In 1978, Atari released a Space War game for its increas-
ingly popular Video Computer System (renamed the Atari 2600

36 / CHAPTER 4

in 1982) home gaming platform. In the clunky Atari version,
players could choose among some 17 game variants; the first
seven were low-quality clones of the original Spacewar, while
the next 10 were single or two-player games involving docking
with a “space module.”

While neither Computer Space nor the Atari version from
1978 were especially popular, Spacewar did have some linger-
ing influence on successful video games of the late 1970s and
early 1980s, notably Asteroids, Defender, and Missile Com-
mand. A collapse of the video game industry in 1983 followed
by a new era of games featuring characters and more complex
gameplay seemed to signal an end to Spacewar’s run.

But then came emulation. Starting in the mid-1990s, a com-
bination of increased desktop computing power, faster Internet
data transmission, and popularity of “retro” gaming gave rise
to emulators.12 Spacewar attracted several detailed emulations,
notably Norbert Landsteiner’s “Masswerk” project. Among
other details, Landsteiner recovered source code for the hy-
perspace Minskytron signature and analyzed of the original
Spacewar code in detail.13

In 2005, a team of volunteers supported by the Computer
History Museum restored a PDP-1 and put it on display so that
museum visitors could play Spacewar.14 Russell and Samson
were themselves part of the attraction, volunteering regularly
throughout the 2010s and early 2020s. Russell observed, “there
are no outstanding user reports of crashes. There are no user
complaints outstanding. It’s fifty years old, it’s still running, and
support is still available.”15

Historically, the Spacewar code itself was never truly final.
While Russell identified a “finished” version in 1962, it was
modified with each port to a new system. Rewrites in the 1960s
with the release of each DEC PDP model involved hours of cod-
ing, and programmers often took liberties to modify the game.
Versions from the 1970s and 1980s suffered from poor graphics
and uninspired gameplay, but also included some creative new

Spacewar / 37

features. By contrast, the contemporary emulated versions have
focused on the graphics, backdrop, and gameplay of the 1962
version. With no way to go back in time to MIT with a freshly
installed PDP-1 and people standing around coding and playing
Spacewar when they are supposed to be doing computing’s “real
work,” the emulations are technical, not social in nature. But it
was the social process of coding that created a uniquely inno-
vative environment for computing in the 1960s and 1970s. Not
an environment without flaws, it must be said—most notably
around issues of gender and race since women and people of
color were absent or marginalized.16

Spacewar had several unique features that contributed to its
success but were irreproducible in subsequent programming
history. First, it was coded through a voluntary and largely asyn-
chronous process. The full group was never together in one lo-
cation at the same time until a 2018 retrospective at the Smith-
sonian Institution.17 Second, for about a decade, the first time
most people saw Spacewar was also the first time in their lives
that they saw an interactive graphic computer game. Although it
was not the first computer or video game, previous demonstra-
tion projects like Higinbotham’s oscilloscope-based Tennis for
Two were unknown to most audiences. Third, the coders had no
commercial aspirations associated with the game; it was public
domain and predated intellectual property disputes regarding
copyrights and patents on software.

Yet, like a surprising number of other programs, the Space-
war code lives on far beyond its inventors’ expectations and
even the expected operational lifespan of its host machines.
For programs such as COBOL-based unemployment software,
long-term use demonstrates the robustness of code but also
failures to invest in new systems. For a program like Spacewar,
long-term use demonstrates the innately human joy of play and
the desire of several generations of coders to preserve and cel-
ebrate their own history.

5
BASIC and the Illusion
of Coding Empowerment
Joy Lisi Rankin

During the first half of 1964, two college-age White men, John
McGeachie and Michael Busch, devoted hours to computer pro-
gramming. So much time, in fact, that McGeachie was known as
225, short for the GE-225 mainframe computer for which he was
responsible, and Busch was known as 30, short for the GE Da-
tanet-30 computer that he programmed. They were students at
Dartmouth, an elite, overwhelmingly White, Ivy League college
that admitted only men as undergraduates, and they were coding
a new computing network. In the early 1960s, McGeachie’s and
Busch’s access to technology was extraordinary.

In the 1960s, most mainframe computers ran on batch pro-
cessing. Programs were communicated to the machine through
inputs known as keypunch cards. Holes punched in the cards
communicated numbers, letters, and symbols to the computer.
One program often consisted of many cards. At the time, man-
agers sought to keep computers running as much as possible—
they were quite expensive, and organizations wanted to get their
money’s worth—so individual programs were grouped together
and run in large groups, known as batches. For example, before
Dartmouth acquired its own computer, Dartmouth professor
Tom Kurtz made daytrips by train to use the MIT computer, car-
rying with him a box full of punched cards encoding his and his
colleagues’ programs: economics models, physics simulations,
mathematical equations.

Typically, a computer operator handled the batch input pro-
cess, as well as retrieving output such as printouts. As a result,

THE ILLUSION OF EMPOWERMENT / 39

someone who wanted to create and run a computer program
had no interaction with the computer system itself—and they
could wait hours or days for the results of running their pro-
gram. This meant that the several thousand computers in the
United States in the early 1960s were out of reach of nearly ev-
eryone, especially young people. Even the computers installed
at universities were the province of a handful of faculty and
graduate students. That would soon change.

The men at Dartmouth sought to challenge those limits of ac-
cessibility and batch processing. Math professor John Kemeny
persuaded the trustees of the college that computing would be
essential for Dartmouth students as the future leaders of Amer-
ican science and industry. His fellow math professor Kurtz
envisioned a system where all students would be able to ac-
cess computers directly, without the delays and middlemen of
batch processing. Kurtz also imagined that computing would
be freely available to students as part of their college experi-
ence like unfettered library access—being able to browse and
pull books directly off the shelves, rather than submit a ticket
for someone else to retrieve a book. Finally, Kurtz believed that
Dartmouth could accomplish this by building a time-sharing
network.

Time-sharing was a new form of computing in the 1960s.
Time-sharing sounds like computer users were signing up for
blocks of computing time: Alice gets 15 minutes, then Bob gets
15 minutes after Alice. But it actually means programming a
mainframe computer to share its own time and computing re-
sources among multiple programs running at the same time.
In effect, this meant that multiple people could sit at individ-
ual terminals connected to one mainframe and write, run, and
debug their programs at the same time.

On the Dartmouth network, the individual terminals were
teletypewriter terminals that had been developed for telegraphy.
They looked like old-fashioned typewriters with large printers
built in. A user saw their program as they typed on the teletype,

40 / CHAPTER 5

and the computer communicated results to them by printing on
the teletype. Telephone wires connected teletypes to the main-
frame. This meant that terminals could be—and were—located
far from the network’s mainframe, even in another state or half-
way across the country.

In May 1964, the Dartmouth College Time-Sharing Sys-
tem, the early personal and social computing network that
McGeachie and Busch helped program, was launched with
the simultaneous and successful run of two BASIC programs.
BASIC was Beginner’s All-purpose Symbolic Instruction Code, a
computing language developed at Dartmouth under the guiding
principle that it should be easy to learn and use.

We don’t know exactly what those lines of BASIC code were.
We don’t even know who ran the two programs.1 But we know
now that for three reasons, those BASIC programs made Amer-
ica’s digital culture possible by spreading personal computing
far, fast, and wide. The first and second reasons are fairly well
known: the revolutionary accessibility of Dartmouth’s computer
network and the radical ease of BASIC. The third reason is the
most important, yet has been overlooked: how BASIC limited
paths and possibilities.

Although building a computer network for undergraduate
use was visionary in the 1960s, it would not have been nearly
as successful if not for BASIC. BASIC and Dartmouth’s network—
and the rapid uptake of both—were inseparable. Computing
languages prior to BASIC, such as COBOL and FORTRAN, had
been developed for scientific, research, and business purposes.
They were not known for being easy to learn or user-friendly.
FORTRAN’s name came from FORmula TRANslation, reflecting
its intended use for math and science computing.

In 1967, a student at Williams College created a program
to score ski jump competitions—a challenging task that took
a team of faculty and students over three hours by hand. The
Williams student wrote his program in FORTRAN to run on
an IBM. He spent 50 hours writing it. Meanwhile that same

THE ILLUSION OF EMPOWERMENT / 41

year, an instructor at Vermont Academy created a program to
score an entire ski meet—ski jump plus cross-country, down-
hill, and slalom. The Vermont instructor wrote his program
in BASIC to run on Dartmouth’s network. He spent 10 hours
writing it.

Compared with languages like FORTRAN or COBOL, BASIC
was much faster and easier to learn. BASIC’s commands—
including IF-THEN, LET, PRINT, and READ—more closely resem-
bled everyday English. At Dartmouth, the combination of BASIC
and the time-sharing network enabled students to quickly write
and debug short programs, to experiment, to not be afraid of
making mistakes, especially because they could see the results
of their programs in seconds or minutes, not days or weeks.
They used BASIC for their coursework and to write letters home.
They produced computer art, simulated slot machines, and pro-
grammed and played games including chess, checkers, poker,
and slalom skiing. By 1968, 80 percent of Dartmouth students
regularly used the network and BASIC.

In that way, BASIC offered the illusion of coding empower-
ment. Consider the opening of this essay: sometime in May
1964, two men sat in front of two teletypes at Dartmouth, and
they successfully ran simultaneous BASIC programs on the col-
lege’s brand-new time-sharing network. The fact that they were
young White men at an elite, predominantly White college, is
central to this story, not incidental.

During the 1960s, many women and Black people worked in
computing. Before World War II, a computer was a person who
performed mathematical calculations. Computers worked in
business and scientific settings, and when computers became
machines, many women worked with computers: writing pro-
grams, translating business needs to computer applications as
systems analysts, operating keypunches and mainframes, and
filling similar roles across industries and academic disciplines.

A 1967 issue of Cosmopolitan magazine with the headline “The
Computer Girls” celebrated computing as “woman’s work.” In

42 / CHAPTER 5

Hidden Figures, the journalist Margot Lee Shetterly documents
how she “can put names to almost 50 black women who worked
as computers, mathematicians, engineers, or scientists at the
Langley Memorial Aeronautical Laboratory from 1943 through
1980.”2 Likewise, the archivist Arvid Nelsen identifies at least
57 Black Americans working in computing between 1959 and
1996—just from the “Speaking of People” column in Ebony mag-
azine.3 As Claire Evans documents in her essay in this book,
well-known women like Jean Sammet and Grace Hopper were
not exceptions in early computing. Rather, they embodied the
fact that early machine computing was a feminine field.

That shifted during the last decades of the twentieth century,
when computing gained prestige in the United States and the
United Kingdom by becoming the realm of affluent White men.4
When Kemeny sold Dartmouth trustees on the idea that com-
puting was essential knowledge for the future American leaders
whom Dartmouth was producing, he was associating the power
of computing with both the Whiteness and the maleness of the
college. Requiring all first-year students taking math courses to
successfully write a BASIC program further cemented the re-
lationship among computing, Whiteness, affluence, and power
at Dartmouth.

When other schools and universities around New England
expressed interest in connecting to Dartmouth’s network during
the 1960s, Kemeny and Kurtz happily acquiesced. In fact, the
college even secured a National Science Foundation (NSF) grant
to support connecting 18 high schools around New England to
the Dartmouth network. Some high-schoolers regularly woke
at four in the morning to use the network.

But access to the Dartmouth network was by no means equal,
and it was generally young, wealthy, White men who benefit-
ted the most. Among the high schools connected to the Dart-
mouth network as part of the NSF Secondary Schools Project,
the coed public schools—all predominantly White—had only
40 hours of network time each week. By contrast, the private

THE ILLUSION OF EMPOWERMENT / 43

schools—which were all male, wealthy, and almost exclusively
White—had 72 hours of network time each week. In these years
before the expansion of educational opportunities for Ameri-
can women, high school boys were still enrolling in many more
math and science classes than high school girls. And it was in
those math and science classes that they gained access to com-
puting. During this decade of the Civil Rights Movement, Ameri-
cans were reckoning with the myriad ways in which their public
schools were separate but by no means equal. BASIC traveled in
an American educational system that was already segregated
by gender and race, so it ultimately amplified inequity in terms
of computing access.

Kemeny and Kurtz decided to make BASIC’s source code
freely available so that BASIC could be (and was) implemented
across many different makes and models of computers and
networks. BASIC programs were stored on networks, shared in
handwriting or by word of mouth, and soon circulated in books
and informal newsletters, including the popular People’s Com-
puter Company. BASIC originated the idea that programming was
something that just about anyone could do. And the echoes of
that unexamined assumption perpetuate the pernicious myth
today that all you need to do to succeed in tech is learn how to
code.5 BASIC made learning to code easy—but for whom?

6
The First Email
The Code That
Connected Us Online
Margaret O’Mara

“A new command should be written to allow a user to send a
private message to another user which may be delivered at the
receiver’s convenience.” This suggestion appeared in a “pro-
gramming note” written by managers of MIT’s computer time-
sharing system sometime in late 1964 or early 1965, a docu-
ment so informal that no one bothered to affix the precise date
at the top. Neither the authors, nor the young programmers who
wrote the MAIL command in response six months later, realized
the communication revolution they were helping to start.1

The first all-digital computers were designed to be machines
of calculation, not correspondence. These mainframes were
giant in every respect: of massive proportions, hugely expen-
sive, accessible only to the largest government agencies and
corporations. As computer makers chased the commercial mar-
ket during the 1950s, they optimized for the very large batch
data-processing operations demanded by corporate customers,
designing for one user, and function, at a time.

The scale and singularity were incompatible with the needs
of academic researchers, who worked collaboratively and
conducted more incremental, intermittent work of program
development. In 1955 MIT computer scientist John McCarthy
began conceptualizing a system where multiple users could
share computer time. The product of those early musings, MIT’s
Compatible Time-Sharing System (CTSS), launched in 1961.2

THE FIRST EMAIL / 45

As in real life, when multiple people collaborated in a com-
puting environment, they wanted and needed to communicate
with one another. Thus, as users took turns on CTSS—working
at different times and often in different places—they began to
leave messages on the system for their colleagues to read as
they logged on later. These electronic notes were professional,
not personal; they communicated system updates, or relayed
questions or critiques about particular files. Yet there was no
way to direct a message to one user, nor keep messages on file
for later reading.

But the men and women of CTSS were too consumed with
other, higher programming tasks to get around to writing the
code that would add these improvements to the ad hoc messag-
ing system. It wasn’t until the summer of 1965 that two recent
MIT graduates, Tom Van Vleck and Noel Morris—newly hired
as university staffers and so entry-level that they shared one
windowless office—decided to take on the task.3

The MAIL command was the result. It was quite straightfor-
ward, really. First, type MAIL; then NAME 1 and NAME 2, together
representing the name of the file, following CTSS’s two-name
convention; then PROG 1, the programmer who was the recipi-
ent. There was also a LIST option to send a message to a mailing
list. (Yes, the listserv is as old as Email itself.)4

Mail programs quickly became common features of time-
sharing systems throughout the 1960s, but they remained lim-
ited to the users of one system. The next technical challenge was
to find a way for messages to travel across different computers
and hosts. Enter the ARPANET, launched in 1969, funded by
the Pentagon and theorized and designed by some of the same
computer scientists behind academic time-sharing systems.

At first, what would become Email did not appear to be very
important to the ARPANET. As J.C.R. Licklider, a chief visionary
of the system, later put it in a paper coauthored with his col-
league Albert Vezza, “electronic message service was a sleeper.”
Yet it quickly became clear that allowing users to communicate

46 / CHAPTER 6

across the network was going to be one of ARPANET’s most
useful functions.5

This was thanks to programmer Ray Tomlinson, who in 1971
established a new protocol for ARPANET users connected via
different hosts, fatefully choosing an “@” to connect a username
and host name as a way to get messages across the network to
its intended recipient. It was the missing link Email needed in
order to scale, allowing users of different systems, in different
places, to communicate as easily as if they were in the same
laboratory. Even then, Tomlinson didn’t take his invention that
seriously; “the test messages were entirely forgettable and
I have, therefore, forgotten them,” he later admitted.6

In the total-immersion hacker culture of the early online
world, Email was quick, informal, tolerant of typos, and im-
mensely preferable to the time-wasting small talk of phone
calls. As Licklider and Vezza noted, “it soon became obvious
that the ARPANET was becoming a human-communication
medium.”

The intensely collaborative, transparent spirit of American
academic computer science, and the ARPANET in particular,

The MAIL command, which produced the world’s first Email.

THE FIRST EMAIL / 47

proved particularly helpful in rapidly advancing the state of the
art during the 1970s. Email began to take on its modern form
as programmers contributed suggestions and program notes
in a series of openly accessible RFCs—requests for comment—
posted among network users. Various RFCs suggested now-
familiar Email characteristics: a “to” line, a “from” line, and
the ability to forward messages to another user.

As the ARPANET grew, it began to introduce electronic mail
to a wider audience. In 1976, Queen Elizabeth II christened
the ARPANET’s first node in Great Britain by sending an Email
on the network. (Her username: HME2.)7 In 1978 an overeager
computer-company marketer won the dubious honor of send-
ing the first piece of commercial spam, blanketing ARPANET
users’ Email inboxes with a note promoting a new model. By
then, over three-fourths of the network’s traffic consisted of
electronic mail.8

In the 1980s, Email moved beyond the ARPANET’s walled
garden of government-funded computer science. The prolif-
eration of desktop computers in homes and offices vastly en-
larged the market of computer users, and new applications
made Email accessible to this wider public. The popular online
news and information service CompuServe began offering its
home-computer customers electronic mail accounts in 1979.
One alumnus of the University of Illinois computing center, Ray
Ozzie of Lotus Software, developed the wildly popular business
communication software Lotus Notes in 1986. Another Univer-
sity of Illinois researcher, Steve Dorner, developed the Eudora
Email client in 1988 (naming it after Eudora Welty, the cele-
brated Southern novelist and author of the short story “Why I
Live at the P.O.”).

After the US government allowed the ARPANET to become
commercialized in the early 1990s as the Internet, Email often
became the first program a new user experienced. It was an
accessible gateway into the daunting and exciting new online
world.9

48 / CHAPTER 6

By the time the dot-com boom crested at the end of the 1990s,
Email had become ubiquitous. Steve Dorner’s Eudora program
had 18 million users; IBM bought Lotus for $3.5 billion thanks
to the galloping success of Notes. The animatronic bark of AOL’s
“you’ve got mail!” notification was everywhere from television
commercials to Hollywood rom-coms. It became hard to imag-
ine how the world ever managed without it.10

In the 20 years since, the Internet has grown exponentially,
and Email has grown with it, although other communication
media have supplanted it to some extent. Email’s informal ca-
dences have given way to even more informal text strings and
ephemeral social media posts. Yet the new forms still retain the
characteristics—brevity, personalization, asynchronicity—that
made Email so popular in the first place.

Six decades after that first programming note posted to the
internal servers at MIT, billions of Emails shoot daily around
the globe, vital in their convenience, overwhelming in their
abundance, making the crowded inbox an inescapable feature
of modern life. Rarely celebrated and often lamented, Email
fundamentally changed the way people used computers and
interacted with one another. MAIL turned out to be not just an-
other command; it became the code that gave the computer its
humanity.

7
The Police Beat Algorithm
The Code That Launched
Computational Policing
and Modern Racial
Profiling
Charlton McIlwain

In the early 1960s, the Black civil rights revolution raged in
the streets across the United States. This quest to build a more
racially just and equitable society happened right alongside the
computer revolution. Soon the two fused with the advent of the
Police Beat Algorithm (PBA), a software system to help police
departments collect crime data and determine where to focus
crime-fighting efforts—and one that that would end up deeply
affecting our society from the 1960s up through the present.
Why did the Police Beat Algorithm come to exist? What prob-
lems prompted the need for its formulation? Who developed
it, and to what ends? The answers to each of these questions
collectively tell a story about how a little-known computational
experiment laid the cornerstone for what would become today’s
surveillance infrastructure—one that has deeply and negatively
affected communities of color across the globe.

In the early 1960s, IBM topped the list of the world’s lead-
ing computing companies. It innovated not only new com-
puter hardware and systems but new ways of thinking about
the computer’s role and utility in everyday society. In its 1965
Annual Report, IBM president Thomas J. Watson Jr. defined the

50 / CHAPTER 7

computer as essentially a problem-solving tool and aligned the
company’s mission accordingly.

IBM’s focus on problem-solving also dictated its market-
ing strategy. The company’s marketing representatives didn’t
peddle prepackaged products. Rather, they engaged leaders
in every major industry—from banking to transportation to
the military—and simply asked, “What problem do you have?”
Then, they promised to marshal IBM’s research and develop-
ment strength to build customized solutions for its customers—
solutions that could be broadly applied and widely scaled.

While IBM labored to market new computational solutions
to social problems, uprisings materialized across the United
States. In 1964 alone, so-called ghetto riots broke out in places
like Harlem and Rochester in New York; Philadelphia, Penn-
sylvania; and Dixmoor, Illinois. These uprisings captivated
the nation, as did the rampant White violence against those
who marched for civil rights across the South. In a speech to
Congress on March 15, 1965, President Lyndon Johnson pro-
claimed that America’s “Negro problem” was America’s prob-
lem. Citizens across the United States identified this fracture in
“race relations” as the nation’s most pressing dilemma.

For most White Americans, however, the urban uprisings that
plagued the nation revealed Black Americans’ penchant toward
violence and criminality—so much so that President Johnson’s
White, Southern constituents thought solving America’s crime
problem should be his government’s top priority. Heeding their
agitation, Johnson, on July 23, 1965, formed the President’s
Commission on Law Enforcement and the Administration of
Justice. The Commission’s charge was to study the causes of,
and find solutions to, America’s crime problem.

Just 19 days later, one of the most deadly and costly uprisings
erupted in Watts, Los Angeles. One too many incidents of police
brutality at the hands of the Los Angeles Police Department set
off six days of unrest. Hundreds of LAPD police officers flooded
the streets. Fourteen thousand National Guard troops stormed

THE POLICE BEAT ALGORITHM / 51

the city. Law enforcement killed 34 Black residents and injured
thousands more. More than $40 million worth of property was
damaged during the siege.

Through the Watts uprisings, Black America sent a message
to White America: We’re fed up. We’re tired of racism, discrim-
ination, and police brutality. White Americans, however, saw
Watts as confirmation of their prejudiced belief that Black peo-
ple are lawless and violent. For the President’s Crime Commis-
sion, White America’s vision of the Watts uprisings put a face to
the problem the president called on them to solve—a problem
that they felt required an extraordinary remedy. They found
great potential in the new computing technologies that had
already revolutionized war and national defense. Computing
held so much promise that in the spring of 1966, following the
Watts uprisings, Johnson added the Science and Technology
Task Force to the Commission to introduce new computational
solutions to crime. The president justified the task force’s work
by pointing to computing technology’s success in war, national
defense, and space exploration:

The scientific and technological revolution that has so radi-
cally changed most of American society during the past few
decades has had surprisingly little impact upon the criminal
justice system. In an age when many executives in govern-
ment and industry, faced with decision making problems,
ask the scientific and technical community for independent
suggestions on possible alternatives and for objective anal-
yses of possible consequences of their actions, the public
officials responsible for establishing and administering the
criminal law . . . have almost no communication with the
scientific and technical community. More than two hundred
thousand scientists and engineers are helping to solve mili-
tary problems, but only a handful are helping to control the
crimes that injure or frighten millions of Americans each
year.1

52 / CHAPTER 7

While the president and the Commission held great hope for the
solutions the Science and Technology Task Force would pro-
duce, they placed their hopes more specifically in the one man
whom they appointed to lead it: Saul I. Gass.

Gass was a mathematician and operations research pioneer.
In 1958 he wrote the first textbook on linear programming—a
mathematical modeling technique that seeks to (in large part)
influence human behavior by quantifying and understanding
the linear relationships between variables. Gass went to work
for IBM in 1960 as project manager for the company’s contract
to develop the real-time computational systems needed for
Project Mercury, the United States’ first manned space mission.
By 1965, when the President appointed Gass to lead the Science
and Technology Task Force, Gass was managing all of IBM’s
federal system projects. By heading the task force, Gass signaled
his agreement with the Johnson administration that policing
was the institution best equipped to solve America’s crime
problem—and therefore developed—the Police Beat Algorithm.

The Police Beat Algorithm was designed to address two broad
planning questions.2 First, how should police departments eq-
uitably divide the geographic and demographic parameters of a
municipal area? (Gass focused on “urban” areas based on pop-
ulation, crime levels, and demographic factors.) Second, how
should police departments effectively deploy police resources
(people, weapons, vehicles, etc.) based on these geographical
divisions? Interestingly, Gass frequently highlighted the need
to solve these problems in order to develop “contingency riot
and other emergency plans”—a growing concern directly tied
back to Watts and similar uprisings.

The Police Beat Algorithm predominantly addressed four
problems associated with police operations: 1) pattern recog-
nition, identifying crime patterns within a set of crime data;
2) profiling, associating crime patterns with probable suspects;
3) dragnetting, linking probable suspects of one crime with past
crimes or arrests; and 4) patrol positioning, how to best place

THE POLICE BEAT ALGORITHM / 53

patrols within appropriate geographical divisions of the city
based on where the most crimes take place and where known
criminal suspect profiles predicted who will most likely commit
those crimes and where. This is where planning problems and
operational problems intersected.

The Police Beat Algorithm was designed to focus on patrol
positioning. Doing so relied on one primary component—the
availability of crime data—and two key computational tech-
niques, norming and weighting. Norming refers to analyzing
the data to determine “normal” and aberrant ranges of crimi-
nal activity, both across a geographical area and for particular
groups of criminal suspects (White people versus Black people,
for example). Weighting, in this instance, was a means to rank
the severity of different crimes. For example, crimes like ho-
micide, rape, burglary, larceny, and auto theft were weighted
with a score of four, signifying the most severe forms of crimes.
Some of the arbitrary—or dare I say biased—nature of these
weights can be seen in the lack of weighted differentiation be-
tween crimes against humanity like homicide on the one hand,
and property crimes like car theft on the other. Traffic accidents
received a weighted score of two, and drunkenness, a score of
one. Geographical areas were weighted by the preponderance
of crimes committed within their boundaries. The crime data,
the statistical norms, weights, and geographical configurations
of a city all figured into the Police Beat Algorithm.

In one respect, the PBA was developed to address a problem
that framed Black people—primarily those who were poor and
lived in urban environments—as predominantly responsible for
crime and, as a result, the problem that needed to be solved.
The Police Beat Algorithm was therefore predetermined to geo-
graphically locate, isolate, and target Black and brown commu-
nities for police profiling, surveillance, and patrol and tactical
unit distribution and deployment. All of the resulting data from
these “solutions” could be used to forecast and predict where
crime was most likely to happen in the future and allow police

54 / CHAPTER 7

to plan accordingly. To be sure, the framing of the problem, and
the configuration of the Police Beat Algorithm itself, promised
outcomes that were not so much predictive of future crime as
they were self-fulfilling prophesies.

Gass’s PBA was essentially a proof of concept. Nevertheless,
it was implemented in 1968 in the Kansas City Missouri Police
Department’s new Alert II Criminal Justice Information Sys-

The Police Beat Algorithm, along with its computational key.

THE POLICE BEAT ALGORITHM / 55

tem.3 It was through this system that the PBA’s racist impact was
fully realized. Kansas City’s “Operation Robbery Control”4 was
just the first example of how the algorithm led police officials
to make the tactical decision to concentrate police personnel
and deploy weapons on what was essentially the whole of East
Kansas City, which housed the vast majority of the city’s Black
citizens.

Ultimately, the Police Beat Algorithm became thousands of
similar systems designed and built throughout the seventies,
eighties, nineties and beyond. Over the decades, these algo-
rithms have grown to include facial recognition, mobile sur-
veillance, risk assessment, and other such tools used from local
law enforcement to international security. The same logics and
assumptions that motivated the creation of the PBA more than
50 years ago continue to permeate this array of contemporary
law enforcement technologies. Fear of crime—still personified
disproportionately by Black and brown people—continues to be
greatly exaggerated, justifying exorbitant investment in devel-
oping more law enforcement technologies. Belief in the objec-
tive and infallible nature, and in the predictive power of data,
continues to run rampant among technology purveyors, law
enforcement personnel, public officials, and policy influencers.
And stories about the disparate outcomes these technologies
have on communities of color continue to roll in like a steady
drumbeat. In these ways, today’s law enforcement technologies
are not new; they’re just more sophisticated, insidious, ubiqui-
tous, and more impactful than when the PBA was first conceived
more than half a century ago.

8
‌“Apollo 11, Do Bailout”
Ellen R. Stofan and Nick Partridge

As Neil Armstrong and Buzz Aldrin guided the lunar module
Eagle toward the Sea of Tranquility, Earth was watching. Apollo
11 was inching its way to a moment a decade in the making
and centuries in the dreaming. At around 30,000 feet from
the lunar surface, eight minutes from their planned rendez-
vous with history, an alarm blared. The code 1202 flashed on a
tiny display—and neither the astronauts nor flight controllers
knew what it meant. What President Kennedy had called the
“the most hazardous and dangerous and greatest adventure on
which man has ever embarked”1 hung in the balance by a tiny
thread of binary code deep in the space age machine.

It’s become a techno-trope to compare the raw computing
power of the Apollo Guidance Computer (AGC), the system that
guided history’s first (and so far only) crewed lunar voyages
between 1968 and 1972, to devices we carry with us every
day. Our phones, calculators, even smart watches outstrip the
AGC in every measure of bit and byte.2 Poppy Northcutt, who
calculated Apollo’s return-to-Earth trajectories, once told one
of us wryly that the AGC was less powerful than a recordable
birthday card—but as Poppy understood better than anyone,
the comparison distorts the bigger picture. Comparing the AGC
to an iPhone is like judging a piece of music based solely by the
number of notes on the page. To understand the virtuosity of
the Apollo code, it’s important to understand a bit more about
the unique system and circumstances for which it was written.

Each Apollo mission carried two AGC units, one in the com-
mand module (which stayed in lunar orbit and then returned
to Earth) and one in the lunar module (which carried two of the

“APOLLO 11, DO BAILOUT” / 57

three astronauts to the Moon’s surface). The computers were
virtually identical, and both comported to tortuous restrictions
on size, weight, and power consumption. Our astronauts were
guided by machines no larger than carry-on luggage in an era
when most computers were the size of small houses—the AGC
was roughly one cubic foot, weighed 70 pounds, and drew less
power than a 60-watt light bulb. The whole system, including
more than 2,000 then-novel silicon transistor chips, was sealed
into an unassuming metal box tucked away in an equipment
bay. In terms of software, there was no app store for the AGC—its
only hardwired application worked toward one perfect moment
of human-celestial contact and a safe return.3

The AGC’s software was responsible for a wide array of func-
tions and datasets to control the movement of two spacecraft in
multiple space environments, all while tracking star positions
for guidance and the motion of the Earth and Moon in their or-
bits. The AGC directly controlled more than a hundred systems
and devices within the spacecrafts, from the sextant and guid-
ance platform to the attitude control thrusters and main engines.

The astronauts interacted with the AGC through a display key-
board. The inputs were sorted into “verbs” and “nouns.” Verbs
were actions the computer could take at the astronaut’s com-
mand, such as “load” or “display.” Nouns were data that could
be acted upon by the verb commands, such as star positions or
trajectories. The setup and nomenclature were holdovers from
the early development process at MIT. The top brass at NASA
were concerned that the interface was clunky and out of keeping
with the sleek, high-tech spirit of the program.4 But as devel-
opers often discovered in the leadup to Apollo, astronauts are
smart people, and they found the system intuitive, even elegant.
Apollo 15 Commander David Scott later remarked: “It was so
simple and straightforward that even pilots could learn how to
use it.”5

While a tiny fraction of the AGC’s memory was random ac-
cess (RAM, in modern terms) for certain tasks and procedures,

58 / CHAPTER 8

the majority of the software was hardwired—literally.6 Programs
were encoded physically on rope core memory—wires running
through tiny rings made of iron ferrite, which were naturally
inured to transiting magnetic fields or streaking cosmic rays in
cislunar space. If the copper wire went through the iron donut,
the computer would read a 1; if it went around the ring, it was
a 0—familiar to us today as a single binary bit.7

The whole works was then woven together by hand into fabric
ropes, mostly by women in factories in Sudbury, Massachusetts,
during the development stage, and then nearby Waltham for
the missions. The weavers earned the affectionate, if dimin-
utive, nickname “little old ladies” or LOLs.8 (LOL, it turns out,
was computer slang decades before it reemerged on the proto-
Internet in the 1980s and entered the OED in 2011.) But far from
dismissing their work, NASA recognized the LOLs’ importance.
When astronauts visited the factory to meet the women who
held their lives in their hands, the weavers said, “that could be
my son, so I am going to do my job as well as I can.”9

The ingenious rope core design also meant the hardwired
software could not be easily changed, corrected, or modified
once encoded. Even more than the spacecraft themselves, the
bespoke code for each mission had to be ready early, and it had
to be flawless.

The code itself, the actual instructions for how the mission
should weigh, prioritize, and combine all of the myriad vari-
ables, was written by a team from the MIT Instrumentation Lab-
oratory (later renamed the Charles Stark Draper Laboratory,
after its founder).

The programmers’ notes to one another in the code read like
a Talmudic commentary through the lens of 1960s slang—an in-
struction to reposition an antenna is labeled “CRANK THE SILLY
THING AROUND” in order to safely continue “OFF TO SEE THE
WIZARD.”10 Another sequence ends with “COME AGAIN SOON,”
and a block to control instrumentation displays was filed under
“PINBALL_GAME_BUTTONS_AND_LIGHTS.” In a nod to the lan-

“APOLLO 11, DO BAILOUT” / 59

guage of the display keyboard’s interface, there was even a bit
of Shakespeare—“Thou hast men about thee that usually talk of
a noun and a verb, and such abominable words as no Christian
ear can endure to hear.”11

Also apparent was the stress of writing thousands of lines of
code on a timeline that was tight even by Apollo’s standards—
one section that made it into the final version was marked
“TEMPORARY, I HOPE HOPE HOPE.” The state of the nation and
the world was also reflected—an ignition sequence is titled
“BURN_BABY_BURN,” an allusion to the Black Power movement,
according to one young programmer. The fight for civil rights
and the Vietnam War were heavy on their minds, even as they
worked to deliver us to another world.

The command module’s primary software was called
COLOSSUS, the lunar module’s LUMINARY (C for command,
L for lunar). The way the two worked in concert with the hun-
dreds of other programs, processes, and tasks was where the
AGC’s sophistication truly shined through—especially in the
tense moments leading up to the first landing.

Although it strained every limit of early computer science,
the AGC was limited—just like modern computers, it couldn’t do
everything all at once. So it had to prioritize, and it did that well.
Tasks were accorded a level of importance based on the criti-
cality of the action, the consequences for dropping or delaying
it, and the power demands of the process, among other factors.
Some tasks like navigation—while critical—could be interrupted
or postponed by an astronaut’s query, or to protect critical data.
AGC always focused on the most important jobs—and the soft-
ware team knew there were eventualities they couldn’t plan
for—and as it happened, one of the most unlikely exigencies
occurred just eight minutes before the first landing attempt.

The Apollo-Saturn stack—from the rocket that sent the astro-
nauts to the Moon to the parachutes that brought them home
and everything in between—was so complex that no one person
could know it all. The astronauts themselves were supported

60 / CHAPTER 8

by the flight controllers, who were themselves backed up by
hundreds and hundreds of engineers and systems experts.

The lunar module was made up of two stages—the descent
stage, with its iconic spider-like legs and golden Kapton wrap-
ping, which would become a lunar launch pad after landing,
and the ascent stage, which held the astronauts and the rocket
that would carry them back to the command module. Designed
to launch from the Moon’s surface during a successful mission,
in an abort scenario the two would separate in space by blowing
pyrotechnic bolts, sending the descent stage crashing into the
Moon below and hurtling the ascent stage back up into orbit. It
was a dangerous maneuver, impossible at lower altitudes, that
would risk the lives of the crew and end the mission.

When the 1202 alarm interrupted Apollo 11’s first and final
approach, Neil Armstrong called down to Houston for help as
his hand hovered over the abort handle that would snap his
spacecraft in two and end history’s first moonshot.

Some of the engineers wanted to abort, but in less than 30
seconds another one had diagnosed the problem. The call came
from the back bench: GO! The alarm actually signaled a solution,
rather than an error—the AGC code was functioning exactly as de-
signed and had reacted so quickly the astronauts and flight con-
trollers rushed to catch up.12 The 1202 code signaled a condition
called “Executive Overflow,” caused by surplus radar data being
fed into the overstretched processor. This triggered a sequence
of code called “BAILOUT,” which instructed the computer to drop
less critical tasks and restart to save the flight data needed for
landing. In this crucial moment, the computer even considered
the spacecraft’s display screens expendable—and they went dark.
The restarts were happening so fast that the astronauts couldn’t
detect them. If the alarms were only intermittent, Houston de-
termined, the mission could proceed. With their lives on the line
and the whole world watching, the 1202 and related 1201 over-
flow alarms sounded four more times before Armstrong uttered
“Houston, Tranquility Base here. The Eagle has landed.”13

“APOLLO 11, DO BAILOUT” / 61

By placing their trust in painstakingly complex code and hav-
ing faith in the engineer who vouched for the system in that
critical moment, two astronauts, dozens of flight controllers,
hundreds of technicians, and thousands of support personnel
all came together to set sail on what President Kennedy had
called “this new sea.”14

The crucial BAILOUT code, which instructed the computer to drop less critical tasks
and restart.

62 / CHAPTER 8

None of the lunar modules flown in space returned to
Earth. Some burned up on reentry, some were intentionally
crashed into the lunar surface. One, from Apollo 10, entered
solar orbit after its mission was complete. It’s out there now,
along with its Apollo Guidance Computer. The code embedded
in the hardwired rope core memory, the work of hundreds of
hands and thousands of minds over the course of a decade, is
intact—and with it the hopes, dreams, voices, and fingerprints
of the generations that built it. It is a monument every bit as
eternal, and every bit as human, as boot prints in Moondust—a
mute testimony to the tenacity and ambition of a species willing
to attempt the impossible, step by step and line by line.

9
The Most Famous Comment
in Unix History
‌“You Are Not Expected
to Understand This”
David Cassel

It all started in 1975, with a routine chunk of code for the sixth
edition of the Unix operating system, addressing something basic
about how software gets run. Every application launched, even
one running in the background, is considered a process. And
back in the 1970s, before the dawn of personal computers, sev-
eral different users would all be connected to one single cen-
tral computer—meaning a system’s processes included all the
applications being run by all the users at any given time. These
so-called time-sharing systems were constantly switching from
one user’s application to another’s, quickly devoting a flicker of
resources to whatever needed to be done next.

This also meant saving all the information needed for resum-
ing later—like the numerical addresses in the memory where
each application’s data was being stored. (Called a “context,” the
information made it easy for the time-sharing systems to keep
continually picking up right where they’d left off—a process
known as “context switching.”) This was all happening in an
era when the whole operating system fit into just 9,000 lines of
code. Twenty-five years later, by contrast, Microsoft’s Windows
XP operating system contained 45 million lines of code.1

Yet while that particular piece of Unix code may have turned
obsolete decades ago, its fundamental concept is still very much

64 / CHAPTER 9

in use today. It’s what enables multitasking, the power to pause
and resume programs with a single click. But what’s most be-
loved about this code is a simple explanatory comment that
accompanied it. The Unix operating system programmer at Bell
Labs had written:

You are not expected to understand this.

Now, normally comments are pretty prosaic. Programmers
are taught to include comments offering succinct explanations
for what their code is accomplishing, as a way to help future
readers of the code make sense of what’s happening. Some-
times that future programmer may even be the person who
originally wrote the code, now confronted with their own work
years later and expected to make sense of it. My friend Brian
Tanaka, a longtime programmer now working as a manager at
Apple, once told me that he’d always thought of comments as
“notes to future Brian.”

But those seven words from 1975 would live on for decades.
Instead of warning off readers, the enigmatic comment in-

trigued them, becoming famous in its own right, and possibly
for all the wrong reasons—an accidental icon, resonating with
its unseen audience for the way it seemed to capture an all-
too-familiar reality from every coder’s world of intense techni-
cal complexity. At a 2016 tech conference, systems researcher
Arun Thomas agreed that the comment had attained a kind of
cult following among programmers.2 “You started seeing people
wearing sweatshirts, T-shirts, and baby onesies with ‘You are
not expected to understand this.’ ” It was an expression of
pride of technical mastery.

Thomas also shared another reason the comment became so
popular: the code for the sixth edition of the Unix operating sys-
tem soon became a standard educational resource, published in
a book by John Lions, a professor at the University of New South
Wales (along with Lions’s own commentary). In fact, for many

THE MOST FAMOUS COMMENT / 65

years to come, that book was “the only detailed kernel docu-
mentation available to anyone outside Bell Labs,” according to a
famous book on geek culture called The New Hacker’s Dictionary.3

And then in 1979 the licensing terms for Unix were changed
to allow only official licensees to study the code. So even after
the code was replaced in later versions of Unix, that newer code
was never made available in a book for college students to study.
Eventually the owners of Unix clarified that even the book was
supposed to be available only to official licensees. But this just
meant that, as UCLA professor Christopher M. Kelty once put
it, “Several generations of both academic computer scientists
and students who went on to work for computer or software
corporations were trained on photocopies of UNIX source code,
with a whiff of toner and illicit circulation.”4

The 1975 comment’s fame became so persistent that nearly
30 years later, in 2004, Dennis Ritchie, one of the original pro-
grammers who wrote that Unix code, found himself creating a
special web page just to share his own recollection of the real
story behind it—if only to correct a common misperception.5
“It’s often quoted as a slur on the quantity or quality of the
comments in the Bell Labs research releases of Unix,” Ritchie
wrote—as though the code was so horribly convoluted that no
sane reader could be expected to understand it. (“Not an un-
fair observation in general, I fear, but in this case unjustified,”
Ritchie had added.)

Instead, he wrote, the original programmers simply felt that
their code was addressing an obscure edge case, and “we tried
to explain what was going on. ‘You are not expected to un-
derstand this’ was intended as a remark in the spirit of ‘This
won’t be on the exam,’ rather than as an impudent challenge.”

Ritchie also explained that ironically, “The real problem
is that we didn’t understand what was going on either.” That is,
they didn’t understand the code themselves. It contained a bug
that wasn’t evident, since their hardware always returned the
same value. But when Ritchie joined with his coworker Steve

66 / CHAPTER 9

Johnson to try porting the Unix kernel onto a new machine,
they’d discovered that “this code was indeed on the exam.” For
nearly a week their own bug thwarted any progress again and
again, until they resignedly just rewrote the whole section from
scratch.

Maybe the comment has remained so popular, despite the
misunderstanding about what it meant, because it speaks to
a general fondness and warm appreciation for those glimpses
of personality that have sneaked into our computer code over
the years. It’s a feeling that can take many forms. Just take a
look at the Hacker’s Dictionary itself. It was originally just an ad
hoc collection of geek culture and humor called “The Jargon

Ken Thompson (sitting) and Dennis Ritchie working together in front of a mainframe
computer. Thompson and Ritchie are credited with creating the Unix operating sys-
tem at Bell Laboratories.

THE MOST FAMOUS COMMENT / 67

File,” passed around online for more than 15 years, starting
around 1976, by its fans on ARPANET (an early forerunner to
the Internet of today). After years of being lovingly maintained
by a community that had wanted to preserve it, it was respect-
fully collected up and published in 1991 by future open-source
advocate Eric S. Raymond (under a new title, The New Hackers
Dictionary). With its enlightening definitions and examples of
geek wordplay, the book promises to describe “the language
hackers use among themselves for fun, social communication,
and technical debate.” But what’s just as significant is the book’s
implicit message: that there is a culture—a community with
norms and values.

Of course, “You are not expected to understand this”
isn’t the only offhand comment to delight its future readers. In
2014, Silicon Valley’s Computer History Museum announced
they’d received permission from Microsoft to preserve the his-
toric source code—and comments—for the original Word for
Windows software released in 1990.6 And one Microsoft pro-
grammer begins a comment by first dubbing their section of
code a “gruesome hack.” After a particularly technical flourish,
another programmer added the comment: “Coded inline be-
cause we’re god.”7 And there was also, not surprisingly, a large
amount of profanity. (One site has actually created a graph
showing how often various expletives appeared in the Linux
kernel’s source code over the last 30 years, with usage of the
word “crap” recently attaining an all-time high.8)

Some comments even become cherished reminders of a mo-
mentary glow of humanity in a world of unforgiving logic, where
years are spent laboring around a language’s requirement for
perfect syntax. Programmers may humbly offer up a moment of
self-deprecation, or warnings about straying too far into exotic
and arcane solutions—and sometimes they even do both at the
same time. When Unix pioneer Roger Faulkner passed away
in 2016, a fellow programmer remembered one of Faulkner’s
cautionary self-deprecating comments:

68 / CHAPTER 9

/*

* This is a horrible kludge. It is vile. It is swill.

* If your code has to call this function then your code is the same.

*/9

So there’s an important meta-message hidden in these silent
libraries of intellectual endeavors where moments for sharing
are nonetheless baked into the process—that it’s people who
write programs. And, more importantly, that communities of
people will maintain and preserve them. (The stereotype of a
lone genius hacking away has become an outdated pop-culture
artifact in today’s world of massive coding collaborations.) Yet
while code is written collectively, it’s a community that’s rarely
seen—though often felt.

And every comment is an implicit acknowledgment of that
community, and of all the careful caretakers who may someday
be revisiting your code.

10
The Accidental Felon
Katie Hafner

Complex systems break in complex ways. That insight, from the
prominent computer scientist Peter Neumann,1 aptly describes
the cascade of events that occurred across the nascent Internet
one night more than three decades ago.

In the late 1980s, the Internet was still brand new, having just
evolved from the original ARPANET. And though a handful of
computer scientists were voicing concern about the havoc that
could ensue were a rogue program to run loose in the network,
no one was prepared to cope with the massive assault that took
place on November 2, 1988.

At eight-thirty that evening, a 23-year-old Cornell Univer-
sity computer science graduate student named Robert Tappan
Morris unleashed just such a rogue program into the network.
His motivation was more curiosity than malevolence, his pro-
gram intended as a harmless hack just to prove that it could be
done.2 The program was supposed to copy itself from computer
to computer and simply take up residence in as many machines
as possible, hiding in the background to escape detection by
computer users. After he released it, he went to dinner, and in
the hour he was gone, the program brought the Internet to its
knees.

The incident grabbed the nation’s attention as it painted
in sharp relief, for the first time, the fragility of tens of thou-
sands of interconnected computers. And it captured the na-
tion’s imagination because of the riveting father-son story it
held: a father and son who belonged to a computer science elite,
both obsessed with exploring the subtle intricacies of complex
computers.

70 / CHAPTER 10

Robert Morris’ father, Bob, was a brilliant computer scien-
tist who had helped develop the Unix operating system,3 which
is the standard operating system for technical computing and
was the target of his son’s program. The elder Morris was the
chief scientist for the National Security Agency’s National Com-
puter Security Center, the division of the agency that focused
on computer security. For years, Bob Morris had tutored his son
in methods for detecting and exploiting security weaknesses.
Both father and son were well versed in a field in which a “game
playing” mentality is essential: to make computers more secure,
one must first be able to understand how to break into them.

The young Robert Morris, a quiet genius who found himself
bored by many of his math and computer science classes, spent
most of his undergrad time at Harvard’s Aiken Computation
Lab. Friends came to know him by his login: rtm. His senior
thesis adviser recommended that he go to Cornell for his PhD, as
it was a renowned center of computer science theory. If Robert
was to be faulted for anything, it was his tendency to allow him-
self to be seduced by the machines themselves, at the expense
of a theoretical understanding of the underlying science.4

And it was during his first semester at Cornell, with plenty
of free time on his hands, that young Robert Morris wrote the
program that would break the Internet.

Using several bugs he had found in the Unix source code,
Morris designed the program to first steal passwords by read-
ing the list of users on the target computer, then systematically
running through their names, or permutations of their names,
and a list of commonly used passwords. When successful in
guessing one, the program then signed on to the computer and
masqueraded as a legitimate user to copy itself to a remote
machine.

Not only did Morris have no intention of crippling the Inter-
net, but he had devised a mechanism for keeping the program
from propagating too swiftly. Once the program had entered
a computer, it would signal its arrival to the machine and ask

THE ACCIDENTAL FELON / 71

whether that machine had already been invaded. If the answer
was yes, the two copies would “talk” to each other and toss an
electronic coin to decide which one should stop running.

But what if someone discovered the intrusion and tried to
trick the incoming program into believing that it was already
running on the machine it approached, essentially vaccinat-
ing the computer against the intrusion? Thinking like a chess
player, Morris decided there would need to be a countermea-
sure against potential vaccines. His solution: randomization.5
That is, one in N times, the program would enter a computer
and command itself to run on the target machine regardless of
the answer. Morris knew that the number he chose as N would
bear directly on the rate of replication, but he wasn’t sure what
it should be. Ten? A thousand? Ten thousand?

The number the budding computer scientist ended up
using—seven—turned out to be a singularly fatal miscalcu-
lation. The number should have been higher by a factor of a
thousand or more, as the lower number resulted in dozens, even

The code behind the 1988 Morris Worm, which crippled the nascent Internet.

72 / CHAPTER 10

hundreds, of copies on each machine the program entered. The
copies were like echoes bouncing back and forth off the walls
of canyons.

By the time he returned from dinner to check on the pro-
gram’s progress, Morris realized, to his horror, that it had spread
wildly out of control, slowing machines to a halt. Even when
the program’s attempts to get into a new computer were un-
successful, its repeated knocks on the door were often enough
to render the machine useless. Within hours the program had
crashed thousands of computers at universities and research
institutions throughout the United States.

Morris panicked and called a friend back at Harvard, even
dictating a message for him to post from there:

A possible virus report:

There may be a virus loose on the internet.

Here is the gist of a message I got:

I’m sorry.

Here are some steps to prevent further transmission:

1) �don’t run finger or fix it to not overrun its stack when

reading arguments.

2) recompile sendmail w/o DEBUG defined

3) don’t run rexecd

Hope this helps, but more, I hope it is a hoax.6

It wasn’t a hoax. And it was too late. Computer managers stayed
up through the night trying to fend off the virus as it hopped
back and forth around the Internet, setting off havoc wherever
it touched down. People were also frantically making other
changes to their internal software to thwart future invaders,

THE ACCIDENTAL FELON / 73

as they had no idea whether this was just the first in a series of
planned attacks. At one of the computing facilities at UC Berke-
ley, someone made a sign that read “Center for Disease Control”
and taped it to the door.

Soon after the incident, computer scientists decided that the
program was technically a worm, not a virus. A virus remains
dormant until the infected host file is activated, at which point
it executes its code. A worm, on the hand, doesn’t require the
activation of its host file. Once a worm enters a system it can run,
self-replicate, and propagate without a triggering event. The first
worms were deployed on the ARPANET in the early 1970s. One
was a benign program called Creeper, which resembled the Mor-
ris worm in that it copied itself from machine to machine. When it
reached each new computer, it would display the message: “I’m
the creeper. Catch me if you can!” As the Creeper story goes,
a second programmer wrote another worm program that was
designed to crawl through the ARPANET, killing all the creepers.7

Computer researchers started developing more useful
worms, such as “town crier,” a worm program that acted as a
messenger, and “diagnostic” worms that patrolled the network
looking for malfunctioning computers. There was even a “vam-
pire” worm program, designed to run very complex programs
late at night while the computer’s human users slept. When the
humans returned in the morning, the vampire program would
go to sleep, waiting until the evening to return to its work.

But it was the Morris worm and its aftermath that perma-
nently altered the culture of the Internet. Before the Morris
worm, security was seen as more of a theoretical problem than
a real one, and the network was like a rural town where every-
one knows pretty much everyone else, where people leave their
doors unlocked. The Morris worm changed all that. The incident
raised fundamental questions about the security of the nation’s
computers and renewed debate over the question of who should
be responsible for protecting the nation’s nonmilitary computer
systems.8

74 / CHAPTER 10

Computer scientists and systems administrators around the
world were now on high alert, and any lingering naivete about
the trustworthiness of those who used the Internet disappeared.
Many computer security experts believed the Morris worm was
an important and useful demonstration of the potential vulner-
ability of computers. Some even went so far as to argue that in
heightening awareness of security issues, Robert Morris had
done the field of computer security an enormous favor. Indeed,
the Morris worm jump-started the field of computer security,
creating demand for security experts in every quarter of the
IT world. In the ensuing decades, every conceivable manner of
malware came to plague the Internet, but the multibillion-dollar
computer security industry can trace its roots to that signal
event of 1988.

As for Morris himself, he was charged with a single felony
count under the 1986 Computer Fraud and Abuse Act. It was the
first charge under a provision of the law that made it illegal to
gain unauthorized access to federal computers. A Syracuse jury
convicted him. At the sentencing, a lenient judge spared him
from prison and ordered him to do community service. Morris
eventually finished his computer science PhD at Harvard, made
a fortune in the computer industry, and became a tenured pro-
fessor at MIT. In all these years, he hasn’t spoken publicly about
the worm and its legacy. The world has forgiven him his mis-
take, but we may never know whether he has forgiven himself.

11
Internet Relay Chat
From Fish-Slap to LOL
Susan C. Herring

If you were to spend 30 minutes on any Internet Relay Chat
channel in the late 1990s, chances are good you’d see someone
slap another person around a bit with a large trout.

So I observed when I started hanging out on Internet Relay
Chat (IRC) as part of an ethnographic study I conducted in 1998.
IRC is multiparticipant text chat that takes place in real time on
forums or “channels” hosted on interconnected servers. Cre-
ated by a student intern at the University of Oulu in Finland
in 1988, IRC was flourishing at the time of my study, boasting
hundreds of thousands of user-created channels, each name
preceded by the # sign. For almost any topic you’d like to discuss
or get help with, from #altruism to #teensex, there was an
IRC channel that would serve your interests. Indeed, IRC was
one of the earliest forms of social media, before social media
existed as such. Although its popularity has been overtaken by
web forums and social network sites since its peak in 2003,
when there were more than 500,000 IRC servers worldwide,1 as
of 2021 IRC still existed on nearly 200,000 servers, and its chat
protocol has been adapted for use on contemporary platforms
such as Discord and Twitch.tv.2

Even if you’ve never heard of it, you probably use language
in your online communication that originated in IRC. This
includes that prototypical example of modern netspeak, LOL
(“laugh out loud”). That expression (and its variants lololol,
lols, lulz, etc.) traces its lineage back to the same source as the
“fish-slap”—that is, constructions of the type:

76 / CHAPTER 11

* Susan slaps DrDoom around a bit with a large trout3

On IRC, such third-person, self-referential expressions are
known as “actions,” one of a set of line commands that allow IRC
users to interact with the system and other users in a channel.
Typing basic “slash” commands such as /join and /nick in
the interface of an IRC client results in changes of state (such
as joining a channel or creating a “nickname” or username).
Similarly, one can type /whois (to see a user’s profile informa-
tion), /ignore (to prevent a user’s text from appearing on one’s
screen), or /part (to leave a channel).

The trout-slap, in contrast, is an example of an action com-
mand produced by typing /me followed by a verb in the simple
present tense plus any additional specifications. The output
replaces /me with the user’s nickname and displays a message
in which the user appears to perform the action, like the exam-
ple above of me slapping DrDoom with a large trout. On some
IRC servers, the trout-slap became so popular that it got its own
abbreviated command: /slap. Other abbreviated action com-
mands include /give, /laugh, /eye, /tag, /throw, /kiss,
/hug, and /spank.

Action commands typically describe purely virtual actions.
IRC users, of course, are not literally slapping, spanking, kissing,
or hugging others in a channel when they type these commands,
nor does typing them result in any tangible change of state. At
the same time, action commands create virtual realities that
are not deniable. Thus, within the virtual world of IRC, DrDoom
might protest at being slapped around with a large trout, but he
couldn’t plausibly deny that it happened. The command doesn’t
just describe the trout-slap, it performs it.

From these relatively obscure beginnings on the early In-
ternet, virtual performatives spread, meme-like, throughout
digitally mediated communication, morphing into forms that
no longer require special commands or any knowledge of IRC
to produce. LOL is a virtual performative; by typing it, you have

INTERNET RELAY CHAT / 77

effectively LOL’ed, whether you were physically laughing at that
moment or not.

So how did we get from action commands to expressions
such as LOL? I presume their evolution went something like this.
Before there were abbreviated commands, a user who wanted
to create a new virtual action on IRC had to type out most of the
words. Consider this message:

* bonzo offers free weed to the first nine callers.

In order for it to appear, the user “bonzo” would have had to type:

/me offers free weed to the first nine callers.

However, since the /me command doesn’t necessarily save key-
strokes, some IRC users started to dispense with it, typing in
virtual actions directly. Sometimes these direct expressions
were set off by asterisks:4

<bonzo> *offers free weed to the first nine callers*

<Susan> *slaps DrDoom with a large trout*

<whitechellie> *happy sobs*

Other users left off the asterisks:

<DeANnA> dances for joy

<p2p> drops to tie his shoe

<DrDoom> chillin with the homies

Changes to the syntax of action commands took place, as well.
As the examples above illustrate, direct virtual performatives
typically omitted the grammatical subject, which was under-
stood to be the users themselves, since their nick appeared by
default (enclosed in angle brackets in the IRC client I used) at
the beginning of each non-action message. Further, creative

78 / CHAPTER 11

new uses of virtual performatives started to dispense with third-
person present tense marking on the verb, producing unin-
flected forms such as *gulp*, giggle, and that now-classic
LOL. Finally, the requirement for a verb was itself dispensed
with. Instead, virtual performatives could be nouns, such as
happy sobs, adjectives, such as *reallyfuckingbored*,
or even expressive sounds, such as *hrmph*. Thus freed from
the platform-specific, syntactic constraints of the /me com-
mand, performative expressions proliferated, spreading from
IRC to other platforms. All the examples above are from my 1998
IRC logs, but similar examples can readily be found in private
chat and on social media nowadays.

Part of the appeal of virtual performatives is that they are
linguistically innovative. Not only do they riff creatively on the
syntax of the IRC action command; they disregard the rules
of ordinary (off-line) performative expressions. In English, for
example, there are numerous constraints on what expressions
can be used performatively and how they are expressed. The
subject must normally be the first person (“I”),5 as in “I apolo-
gize for being late” and “I promise to be good,” which constitute
an apology and a promise, respectively. Some performatives
require institutional authority, such as “I sentence you to 10
years in prison without parole” (said by a judge). Only certain
communication acts can be performative. You can’t register
a complaint, for example, just by saying “I complain about
the new regulations.” Moreover, verbs describing mental and
emotional states can’t be used performatively; you don’t cause
yourself to love cashews by uttering the sentence, “I love ca-
shews.” Finally, physical actions are excluded. There is no off-
line context in which saying “I dance with joy” counts as an act
of dancing (although it may count as a metaphorical expression
of happiness).

In IRC and other text-based virtual worlds, in contrast, there
is no difference between the uttering and the doing of an action.
You can virtually “dance with joy” and “complain about the new

INTERNET RELAY CHAT / 79

regulations,” as well as apologizing and promising, and you can
adopt the role of judge and produce utterances like:

<DrDoom> *sentences you to 10 years in prison without parole*

As of this writing, IRC action commands—classics such as
/flirt, /hug, /insult, and /wave, as well as newer commands
such as /bitcoin, /facepalm, /hookup, and /snopes—are
still used on some forum web chat and gaming chat servers, as
well as in text chat in live streaming. Among these, the trout slap
remains popular. Wikipedia has even expanded the command
into the graphical realm, placing an image of a trout on a con-
tributor’s Talk page when the expression {{trout}} is added.
This practice can be traced to the cyber-geeks familiar with IRC
who formed Wikipedia’s early user-base.6

It’s doubtful that most social media users today know about
IRC. Yet they still use IRC-like virtual performatives, such as this
comment posted in a recent Facebook thread:

A newly minted assistant professor enters the chat

or this multimodal Twitter tweet:

*Sips tea

This last example brings us to the most recent expansion
of virtual performatives: emojis. Emojis are replacing many
short-form performative utterances, such as (lol), (hugs),

 (winks), (kiss), (eyes warily), (facepalm), and
 (dance for joy). Moreover, they can combine to perform

sequences of virtual actions, as in this tweet by a beauty influ-
encer alongside a photo of herself at an airport:

Michelle Lewin

going places

80 / CHAPTER 11

In the IRC of 1998, this would be expressed as:

<Michelle Lewin> going places *dances for joy*

clinks champagne glass

Thus, virtual performative constructions have come far from
their origins in early multiparticipant text chat, all the while
retaining their pragmatic force. Leaving me to wonder . . .
shouldn’t there really be a trout emoji?

12
Hyperlink
The Idea That Led to
Another, and Another,
and Another
Brian McCullough

Almost from the very beginning of computer science, you could
split the field essentially in half: computers thinking for them-
selves (computation/calculation and artificial intelligence) and
computers helping organize human thought. While the first gets
more attention, the second is also challenging, asking whether
computers can organize the infinity of human ideas—and the
hyperlink comes very much from this second core idea in com-
puter science.

The concept of linking ideas in some sort of functional way
is one of those great conceits that kicked around for decades
before finally settling into its perfect expression. Ted Nelson,
one of the philosophical godfathers of information technology,
coined the term and the idea of the “link” in his Project Xanadu
back in the mid-1960s. Project Xanadu was a conceptual at-
tempt at computer networking before the Internet was even
born. But even Nelson was building off of ideas first expressed
by another progenitor of modern computing, Vannevar Bush,
back in his seminal 1945 Atlantic essay, “As We May Think.”1
Bush intuited a coming world where all of human knowledge
would be accessible. But in such a future, the old ways of orga-
nizing thought via crude alphabetic or numeric indexing would
be insufficient. In short, it was a problem of scale.

82 / CHAPTER 12

The human brain works by association instead of indexing,
Bush figured, and thus if you could tie ideas together—linking
them, if you will—it would be easier for humans to organize their
thinking using the information computers were either storing
or making available. Nelson built on this by proposing the “link”
as a software concept to organize data by associations more
amenable to human thought. This is the key insight of the link:
it is a human brain–friendly software framework, a sort of fun-
damental, almost atomic-level schema for a human/machine
interface.

Nelson’s Project Xanadu spent decades lurching along as an
ultimately quixotic attempt to build out a universal repository
for knowledge. But all the while, Nelson held fast to Bush’s idea
of the link as a cross-referencing concept either for specific
text strings (thoughts) or documents (fully realized ideas). In-
dependently, Douglas Engelbart implemented the link concept
for items within a single document when he was working to
develop modern computer interfaces.

From there, the direct lineage of the hyperlink gets mud-
dled. Hypertext, the formatting of text for computer displays
and electronic devices, came to prominence beginning in the
1960s (thanks to Nelson again), and the term “hyperspace”
arose as a mental framework to imagine the sort of ethereal
realm where these interlinked documents existed. Thus, the
highlighted and underlined string of text used in the HyperTIES
system,2 one of the earliest stabs at creating a “browser” for
information retrieval (and which Tim Berners-Lee citied in his
original proposal for the World Wide Web),3 naturally gained the
sobriquet “hyperlink.” In the mid-1980s, the database program
HyperCard was released for the Apple Macintosh and popular-
ized the linking between various pages within a document as
well as linking out to other documents.

And then came the graphical user interface, with its clickable
icons. All of the complexity of computing hidden away behind
a friendly abstraction.

Hyperlink / 83

An often-overlooked element of early computing was the
“tyranny” of command line. To make a computer do what you
wanted, you already had to know how to tell the computer what to
do. Not only did you have to understand syntax and protocols
and instructions, you had to have a mental map of a computer’s
file structure. But then, suddenly, serendipitously, the graphical
user interface subsumed all of this arcana behind colorful icons
and graphics, and you could tell a computer what to do simply
by clicking or dragging and dropping.

This user interface revolution was also long needed on the
Internet, which for its first 20 years struggled under the twin
burdens of the command line and file structures. To go some-
where on the Internet you needed to know where to go, often
a string of numbers. Even when the Internet Protocol system
was made more humane so that 182.06.254.1 (a hypothetical
example) could be represented by something more manage-
able like “Amazon.com,” you still had to have a list of all the
places you might want to go. And if you wanted a specific file, say
“apple.com/x/file-source/25473s.xyz,” again, you had
to type your directions no matter how inscrutable they were.

When Tim Berners-Lee announced the World Wide Web as a
concept in 1989, he drew from this entire mixed lineage of the
link and the user-friendly paradigm of the click, to create the
key concept of the hyperlink.

And thank God he did.
The problem for the Internet has always been scale. If you

connect all the computers in the world together, then you (in
theory) have connected all of humanity’s collective knowledge.
But at that point, the needle in the haystack analogy is insuf-
ficient to describe the problem by orders of magnitude. The
hyperlink dispensed with any notions of “organizing” global
information. The World Wide Web of associations would do the
organizing organically and intuitively. Sometimes people like
to talk fancifully about printing up every entry in Wikipedia,
stacking them alphabetically, speculating on how high that

84 / CHAPTER 12

stack of pages might go. (Artist Michael Mandiberg actually did
this in an installation first exhibited in 2015.) But this misses
the point. The idea of one idea leading to another, and then
another, and then another, click-click-click, does not just give
us the ecstatic intellectual experience of “going down a rabbit
hole”—it is the very mechanism that allows organized thought in
a digital age to happen.

The great triumph of the Internet Era is that we connected
all the computers in the world together, and thereby set out to
map and encode all of human thought. The fact that humans can
access their own collected knowledge is because the hyperlink
strings it all together in the same way our brains are wired. The
hyperlink brings software concepts to text and the structure
of the human brain to digital data. It is a conceptual melding
in both directions: making the act of computing more experi-
entially “brain-like” in terms of user experience, and making
ideas more “computer friendly” in terms of user interface.
I don’t have to know exactly where in hyperspace a given idea or
document is, I only have to know that, via a hyperlink, someone
has already pointed me in that direction. To journey there,
I only have to click.

This points to one more way the hyperlink, at least as ulti-
mately manifested by Berners-Lee’s World Wide Web, makes
the modern Internet possible. The data I am seeking can be
stored in any number of incompatible systems. When Berners-
Lee was attempting to first explain why the Web would be useful
to anyone, he referenced the confusing status quo of networked
computing:

I found it frustrating that in those days, there was different
information on different computers, but you had to log on to
different computers to get at it. Also, sometimes you had to
learn a different program on each computer. So finding out
how things worked was really difficult. Often it was just easier
to go and ask people when they were having coffee.4

Hyperlink / 85

So the hyperlink also solved the problem of interoperability on
a fundamental level. If your data is formatted in HTML, or any
number of the modern Internet standards, most every com-
puter system in the world can read it.

Of course, the hyperlink is not perfect. For all his protes-
tations that he eventually intended to make it go both ways,
Berners-Lee’s classic hyperlink is unidirectional. If I link from
my blog to yours, a third party can see the direction of intent
from me to you. But what happens if they were to stumble upon
your blog first? The value of the citation does not flow back-
wards. And believe me, there is value in both directions. You
only have to look at the market cap of a little company called
Google to realize this. The other great organizing principle of
modern digital thought, “search,” was only made possible be-
cause Google set out to reverse-engineer hyperlinking retroac-
tively. Furthermore, the idea that the “value” of links could be
tied to actual value (i.e., money) is something that blockchains
are only now beginning to solve, along with the problem of “link
rot”—the unfortunate reality that the permanence of a hyperlink
depends on the content to which it links continuing to exist.

But the hyperlink as the atomic unit of the digital age, both
for software and for human thought, is probably best proven by
the fact that it likely made the concepts of social media mani-
fest for everyday—even nontechnical—people. After all, what is
a like but a link? If I “follow” you, is that not a form of citation?
If the original Internet revolution was about linking all of the
computers and then the ideas in the world together, then the
social graph was merely phase three: linking all the people in
the world and their affinities together, in the same way the
hyperlink mapped ideas.

13
JPEG
The Unsung Hero in the
Digital Revolution
Hany Farid

In 2008, I received an unexpected call from a detective in Scot-
land. Beneath the detective’s Scottish accent, I heard a strong
sense of urgency and seriousness. A dozen men stood accused
of abusing young children and distributing images of the abuse.
At the center of the complex, multiyear case was a series of
images of unknown origin. The detective asked whether I could
link the photographs to one of a handful of cameras that had
been seized in the investigation. I could, thanks to the fact that
the images were saved as JPEGs.

The JPEG image format is the standard compression scheme
for digital cameras. Compression schemes allow for the trade-
off between image file size and image quality. A highly com-
pressed image requires relatively little memory for storage
and transmission but may have noticeable distortions. A less
compressed image will have greater fidelity to the original but
requires more memory and bandwidth. The ubiquitous JPEG
standard was established in 1992 based on a compression
scheme proposed in 1972, which was itself based on basic
mathematics dating back to 1882.

At the point of recording, a digital image is made up of an
array of picture elements, or pixels. Each pixel is itself com-
posed of three numbers corresponding to the primary red,
green, and blue colors (RGB). An uncompressed, modest-sized,
1000 × 1000 pixel RGB image consists of one million pixels and

JPEG / 87

requires approximately three megabytes of memory to store
on a camera or computer. These days, digital cameras record
images with tens of millions of pixels which, left uncompressed,
each require more than ten times this amount of memory.

In the early days of the Internet, digital media was highly
compressed with relatively low quality. But at least we could
share audio, images, and video. As bandwidth, as well as com-
puter and device memory, increased, it became easier to store
and transmit increasingly higher-quality content. Without data
compression, however, it would have been impossible to re-
cord, store, and share uncompressed content at the scale we
do today: nearly two billion images per day, and, on YouTube
alone, 500 hours of video every minute. The untold hero in this
digital landscape is French mathematician and physicist Jean-
Baptiste Joseph Fourier (1768–1830). In his seminal 1822 work
on heat flow, Fourier made a claim that 100 years later would
play a critical role in the digital revolution: Fourier claimed that
any function can be expressed as a sum of multiple sinusoids1 (a
sinusoid, or sine function, oscillates in value smoothly through
peaks and troughs).

The shape of the elegant sinusoid—sin(ω)—can be described
by spinning a line around a circle and measuring the vertical
distance between the circle’s center and the line’s tip. The speed
with which the line spins around the circle defines the sinusoid’s
frequency—the number of oscillations per second; the length of
the line defines the amplitude—the height of the oscillations; and
the starting position of the line defines the sinusoid’s phase—the
relative position of the oscillations. A high-frequency sound like
a squeak, for example, has many rapid oscillations in air pres-
sure per second, while a low-frequency sound, such as a rumble,
has fewer, slower oscillations per second. Turn the radio volume
up or down, and the sound’s amplitude increases or decreases.

There is a visual analogue to a sound’s sinusoidal representa-
tion. A high-frequency visual pattern has many abrupt changes
in appearance across space—picture the texture of grass—while

88 / CHAPTER 13

a low-frequency visual pattern has only gradual changes across
space—picture a cloud pattern. Similar to volume, amplitude
corresponds to the brightness of the visual pattern.

As we will see next, Fourier’s insights into the power of the
sinusoid to represent signals and patterns laid the groundwork
for an efficient way to digitally represent, store, and transmit
audio, image, and video, in turn revolutionizing the power and
reach of the Internet.

That brings us to JPEG compression. The simplest way to
compress an image is to throw away pixels. Starting with a
1000 × 1000 pixel image, for example, throwing away every
other pixel results in a 500 × 500 pixel image with a total of only
250,000 pixels as compared with the original 1,000,000 pixels,
for a savings of 4×. This, however, is highly undesirable. Why
should we build high-resolution cameras, capable of recording
high-fidelity images, only to reduce the image resolution im-
mediately after recording because we can’t store or transmit
the images?

We seek, therefore, to compress an image to reduce memory
and transmission costs, while retaining resolution and visual
quality.

The digital-camera revolution was kick-started in 1969—the
same year as the Apollo moon landing—when Willard Boyle and
George Smith invented the charge-coupled device (CCD) for elec-
tronically recording and storing light. Around this same time,
researchers were already considering how to best compress
digital images. The Karhunen-Loeve transform (KLT) emerged
as the best way to compress digital data. This transform, how-
ever, was computationally costly, leading Nasir Ahmed in 1972
to develop the Discrete Cosine Transform (DCT),2 itself inspired
by Fourier’s insights into the power of sinusoidal representa-
tions.3 The DCT quickly emerged as an effective and efficient
way to compress digital images and eventually was adopted by
the Joint Photographic Experts Group that, in 1992, established
the JPEG compression standard.

JPEG / 89

The JPEG compression standard was designed to take ad-
vantage of the human visual system’s differential sensitivity to
various forms of visual information. This compression scheme
attempts to preserve the image information to which we are
most sensitive while discarding information we are unlikely to
notice. For example, we are more sensitive to luminance con-
trast—a change from light to dark—than to color contrast—a
change from red to green. Consequently, JPEG compression
preserves more information about luminance than about color.
JPEG compression also treats frequencies differently. Humans
are more sensitive to low frequencies (cloud pattern) than to
high frequencies (grass texture), and, accordingly, JPEG com-
pression preserves more information about low frequencies
than about high frequencies. (Audio [MP3] and video [MPEG]
compression operate on the same concept of transforming the
original data to a frequency-based representation and differen-
tially compressing based on human sensitivity.)

While there are many details in the complete JPEG com-
pression scheme, the heart of this compression relies on rep-
resenting visual patterns using sinusoids (or, more precisely, a
phase-shifted version of the sinusoid, the cosine) and removing
content to which the human visual system is less sensitive. The
heart of the DCT is this variation of the Fourier transform:

F(x, y)=ax, y ∑
u=0

7

∑
v=0

7

f (u,v)cos (2u+1)xπ
16

⎛

⎝⎜
⎞

⎠⎟
cos (2v +1)y π

16
⎛

⎝⎜
⎞

⎠⎟

The DCT transforms each 8 × 8 pixel image block ( f ) to a
frequency-based representation (F ), allowing for differential
compression to different frequencies. This compression is
achieved by rounding small values in the high-frequency range
to 0 (which can then be efficiently represented in the final JPEG
file), while preserving the more visually salient low frequencies.

Although JPEG compression allows for fine control over the
compression of each frequency across each luminance/color

90 / CHAPTER 13

channel, all standard photo-editing and coding libraries synthe-
size these compression parameters into a single setting ranging
from high-compression/low-quality to low-compression/high-
quality. For example, I compressed an 8-megapixel image across
an entire compression range yielding, at one end of the compres-
sion/quality spectrum, a 0.2 MB file size, and at the other end, 5.3
MB—the uncompressed image came in at a whopping 25.8 MB.

Beyond playing its part in the digital and Internet revolution,
JPEG compression has played a critical and unintentional role
in the forensic analysis of digital images. Which brings me back
to that call from Scotland.

My forensic analysis required a two-step process, the first of
which leveraged distinct JPEG compression settings that vary
across devices and software. Most notably, the luminance/color
and frequency-specific quantization values vary as a result of
different compression and visual distortion tolerances for low-,
medium-, and high-end cameras. Because these tolerances are
constantly being refined, even successive releases of the same
camera may use different compression settings.4 These vari-
ations allowed me to identify the make/model used to record
the images in question. A secondary analysis allowed me to
uniquely identify the camera based on subtle imperfections
in the underlying camera sensor.5 This forensic analysis, along
with some exceptional investigatory work by Scottish police, led
to the conviction of a dozen child predators.

A modern JPEG encoder is highly optimized to quickly compress and decompress
images. This Python code snippet implements a nonoptimized version of the basics
of a JPEG encoder, consisting of the DCT transform and DCT quantization.

14
The Viral Internet Image
You’ve Never Seen
Lily Hay Newman

It’s likely that the most downloaded image ever isn’t the Mona
Lisa, the Google logo, or the first page of the King James Bible.
In fact, you’ve never seen it, even though your browser proba-
bly requests it from servers every day. That’s because it’s not
a famous photo or illustration—it’s a single transparent pixel1
that’s used by all sorts of entities to silently gather data about
you and your web activity. These minute pixels are scattered
across websites and embedded in Emails. Simply by existing,
they gather identifying data like your IP address, what browser
you’re using, and which operating system you’re running. And
they’re everywhere. This is the unseen power, and menace, of
the tracking pixel—a relic of the ’90s Internet that has played
an outsized role in the twenty-first-century digital marketing
machine.

Also known as “1 × 1 pixels,” “web bugs,” and “invisible GIFs,”
among other names, transparent 1 × 1 pixels were originally
used as visual spacers in early web page layouts. Before the 1996
debut of Cascading Style Sheets (or CSS, the web programming
language used with HTML for content layout), web developers
relied on an array of hacks and workarounds to create the visual
elements they wanted and get everything aligned. Tiny trans-
parent images could sit next to text boxes or visible images to
make room between components or smooth out any awkward
formatting—like the blank type spacers used in physical printing.

To a web server, though, a transparent single-pixel image is
just like any other. When a user navigates to a web page or opens

92 / CHAPTER 14

an Email, their browser or mail client sends a request for the
images on that page or in that message and for details about how
to display them. When the browser initiates that interaction,
its request includes information like the time, the device the
browser is running on, and its IP address. That simple, basic
exchange can then give marketers, advertising networks, or
any organization information about who opens their Emails
and visits their web pages. These details can be combined with
usage data from other digital tracking tools, especially cookies,
to produce a profile of a user’s activity, interests, preferences,
and even physical location.

“The user would never know that the pixel is there and it’s
able to do things that the user would never expect or want,”
says Jason Kint, CEO of the digital publishing trade organization
Digital Content Next.2

In the mid-1990s, marketing firms on the vanguard of digi-
tal ad tracking realized that 1 × 1 transparent pixels provided
an easy, inconspicuous way to get more granular information
about what their target audiences were up to online. And pri-
vacy advocates were close behind on warning about the im-
plications and dangers of such behavior.

“Clearly Web Bugs are controversial,” privacy researcher
Richard M. Smith wrote in a 1999 Electronic Frontier Founda-
tion guide titled The Web Bug FAQ.3 “Because they allow people
to be monitored, when they don’t expect it, they certainly can be
very upsetting. For example, most people will likely be troubled
to learn that an outsider is tracking when they read Email.”

Early Web users certainly wouldn’t have expected that invis-
ible beacons were tracking their online activity. Even cyberse-
curity experts who understood the potential implications of the
technology struggled with tracking pixels’ pervasive ubiquity.

An example of code for an Email tracking pixel.

THE IMAGE YOU’VE NEVER SEEN / 93

“I remember thinking about them in email at least fifteen
years ago or more,” says longtime digital security and privacy
researcher Katie Moussouris. She recalls “tracking pixels just
driving up my anxiety about opening email and being annoyed
at it being used by marketing spammers.”4

Even for web users with technical prowess, like Moussou-
ris, the most sinister aspect of tracking pixels has been their
profound simplicity and inveterate reach. To mitigate tracking
pixels yourself, you generally have to use browser plugins that
can break website features, disable all image requests on a site,
or only view Emails in plaintext.

“Users are able to turn off cookies or even remove individual
cookies, but it’s not so easy with tracking pixels, which are me-
chanical elements of tracking scripts, embedded on websites,”
says independent privacy researcher and consultant Lukasz
Olejnik.5

And the tracking pixel was not a ’90s flash in the pan like
one-hour delivery service Kozmo. Three decades after their
creation, you regularly encounter tracking pixels across the
Internet. But you might not realize it, even though web users
are more aware than ever of digital tracking and the forces of
targeted advertising.

“The scale and techniques are perhaps more advanced today,
but the fundamentals are the same,” says former Federal Trade
Commission chief technologist and senior White House advisor
Ashkan Soltani, who gave Congressional testimony about the
state of online tracking and digital privacy in 2011 and 2018.
“The web was created in this fashion that leaves a digital trail
everywhere you go and permitted third parties to observe that
trail and link it to you. That didn’t need to be the case, but that’s
what happened.”6

One descendant of the tracking pixel is Facebook’s “Like”
button, which is embedded in websites across the Internet. The
buttons are essentially tracking pixels that detect cookies and
use other identifiers to collect details about what you’re up to

94 / CHAPTER 14

online and fuel Facebook’s ad targeting empire. The company
also offers an invisible option known as a “Facebook Pixel” that
businesses can embed in their websites to track new and exist-
ing customers who visit the page, target ads, and gather data on
what happens after visitors see a given ad.

“This isn’t just a tinfoil hat paranoid thing,” security engineer
and independent researcher Kenneth White says of tracking
pixels. “This is one of the fundamental gears of a machine that’s
at the heart of the global economy.”7

Decades after privacy advocates first warned about tracking
pixels and the rise of targeted marketing, mainstream companies
have recently started expanding their offerings to give regular
people more control. Apple’s AppTrackingTransparency frame-
work,8 for example, which launched for users in April 2021, re-
quires that apps ask for permission to track users across multiple
different services. The goal is to give users more choice and let
them know how often apps are tracking them across seemingly
disparate services, like those that incorporate Facebook Pixel.

When it comes to blocking tracking pixels specifically, there
have long been some options available if you’re willing to make
aesthetic and functional sacrifices. Google’s Gmail, for exam-
ple, offers a setting to “Ask before displaying external images,”9
blocking image loading entirely unless you individually approve
specific content. But now these types of tools are moving away
from broad, heavy-handed blocking in favor of a more tailored
and targeted approach.

Apple announced in June 2021 that its iOS 15, iPadOS 15,
and macOS Monterey operating systems would have a specific
feature in their “Mail” apps that stops Email web bugs in their
tracks. The “Protect Mail Activity” feature loads your Emails
through a special set of proxy servers to mask your IP address
and details such as the time that you opened an Email, so track-
ers aren’t getting accurate or helpful information. The privacy-
focused web services company DuckDuckGo announced a sim-
ilar feature, Email Protection, in July 2021.

THE IMAGE YOU’VE NEVER SEEN / 95

“We’re seeing some people and companies reevaluating as-
sumptions, because they’re realizing that the free love Internet
of the 1980s and ’90s had unintended consequences in a glob-
ally connected, financially motivated ecosystem,” says Soltani,
who became executive director of the California Privacy Pro-
tection Agency, “and one of the assumptions they’re looking at
is, should we allow invisible third parties to profile us and track
us on the Web?”

For the average web user who’s been subjected to marketing
surveillance and targeted advertising for decades, this industry
introspection may feel almost laughably overdue. Small ges-
tures from tech giants often end up highlighting bigger, more
comprehensive transformations that are not taking place. For
example, Google’s recent efforts to kill third-party cookies in
Chrome10 have been repeatedly delayed and revised. The com-
pany proposed a plan in February 2021 that involved an alterna-
tive in which Google alone would retain the ability to implement
anonymized, cookie-like activity tracking.11 Almost a year later,
amid backlash from both marketers and privacy advocates, the
company debuted a new proposal to offer “interest-based ad-
vertising” based on broad categories that your browsing fits into
on a given week, like “Fitness” or “Travel & Transportation.”12
And in February 2022, Google also committed to phasing out
inveterate and invisible cross-app tracking, following Apple’s
move in 2021.13 After decades of maturation, the targeted ad
industry certainly won’t be dismantled in a couple of years. But
if something as innocuous as an invisible pixel can fuel a mar-
keting revolution, perhaps a privacy revolution can come from
something equally humble.

15
The Pop-Up Ad
The Code That Made
the Internet Worse
Ethan Zuckerman

Sometime around 1997, I wrote a line of JavaScript code that
made the world a measurably worse place. The line of code
looked something like this:

window.open(‘http://tripod.com/navbar.html’

“width=200, height=400 toolbar=no, scrollbars=no,resizable=no

target=_top”);

This line of code was inserted into the top of every personal
home page we served at Tripod.com, one of the pioneers of
“user-generated content,” the not-especially-radical idea that
the Web would be built by ordinary users, not by professional
media companies. When it loaded in a web browser, the code
opened both the personal homepage the viewer had wanted
to see, and another window, which included Tripod branding,
tools for navigating between different user-generated pages,
and a 200 × 200 pixel ad. It was likely the Web’s first pop-up ad.

The pop-up ad was my inelegant solution to a thorny prob-
lem the contemporary Internet still faces: How can advertising
support user-generated content? Advertisers were excited to
reach the tens of millions of viewers who came to view web
pages hosted on Tripod, but they often didn’t want to be too
closely associated with the contents of those pages, which could
be crudely produced, in questionable taste, and sometimes ob-

http://tripod.com/navbar.html'“width=200
http://tripod.com/navbar.html'“width=200

THE POP-UP AD / 97

scene. The pop-up specifically came about after an auto com-
pany complained about their ad appearing on a personal home-
page about anal sex. My boss asked me to find a way to sell ads
while ensuring brand managers wouldn’t send us screen shots
of their precious brands juxtaposed with offensive content. My
slapdash solution? Put the ad in a different window than the
content. Presto! Plausible deniability!

A few weeks later, our leading competitor, GeoCities, copied
our code and used it to launch a similar window on their pages.
(This didn’t exactly require sophisticated corporate espionage—
JavaScript code like this was visible on the top of a web page’s
source code, which could easily be viewed within a web browser.
Many JavaScript coders learned their trade primarily from
reading web pages they found online.) Not long after, I saw a
pop-up window appear with only an ad in it. Then came pop-
ups that moved when you tried to close them. Pop-unders that
loaded below a web page and revealed themselves when you
closed it. Pop-ups that spawned other pop-ups in a cascade of

The code that created the scourge of the Internet.

98 / CHAPTER 15

unwanted advertising that made you regret you’d heard of the
Internet in the first place.

Within a few years, the option to block pop-up windows was
built into most web browsers, and advertisers moved onto other
ways to seize an unwitting user’s attention: ads that began play-
ing music until you clicked on them, videos that began playing
as the rest of the page loaded. Pop-up ads were an artifact of
the early Web, like the <BLINK> tag that made text strobe until
designers realized it was a terrible idea and stopped using it.

I had largely forgotten my role in polluting the World Wide
Web until August 2014 when I wrote an essay for The Atlantic
arguing that the business model of offering services at no mon-
etary cost in exchange for surveilling users and monetizing
our attention was the “original sin” of the Web. It was a long
and nuanced essay with literary pretensions and engaged with
emerging critiques of the Web, like Shoshana Zuboff’s idea of
“surveillance capitalism,” while prescribing a Web supported
by subscriptions and micropayments as an alternative.1

My editor identified the single sentence of the article she
knew readers would latch onto: my apology for unleashing the
pop-up ad as part of a desperate attempt to make advertising
work on user-generated content. She interviewed me about the
pop-up and ran the interview as a 300-word story that gener-
ated ten times as much traffic as my 4,000-word essay.2

Within 48 hours, late-night TV hosts were cracking jokes
about my apology. “The guy who created the pop-up ad says he’s
sorry. He also says you can save on auto insurance with GEICO!”
My inbox filled with a variety of invective—to this day, I know a
content-hungry news website somewhere has published a new
version of my pop-up “confession” because a random teenager
has reached out to express his desire to travel through time and
kill me instead of Hitler.

Death wishes aside, the critique I more often receive today is
the opinion that I’m taking too much blame—and too much cred-
it—in accepting responsibility for the pop-up ad. They accurately

THE POP-UP AD / 99

point out that someone else would surely have created the ads
had I not unleashed them. Why harp on my minor role in Internet
history? Is this not just a desperate plea for attention, a reminder
of my presence in the Internet industry two dozen years ago?

I recently had the opportunity during a virtual conference
to ask David Bohnet, the CEO of Tripod’s competitor, GeoCi-
ties, whether he had any regrets about the role our firms had
in bringing about the ills of the contemporary Web by linking
user-created content to surveillant advertising. He forcefully
disclaimed any responsibility, noting that the phenomenon of
targeted advertising preceded the advent of the Web. He noted
with pride that GeoCities’ “neighborhoods,” where individuals
could opt into communities of interest, had helped make an ad-
supported Web viable. When fans of country music built their
virtual homes in the “Nashville” neighborhood, they signaled
that interest to advertisers, perhaps allowing the advertiser to
intuit demographics as well. Advertising based on these stated
intentions could be less invasive than third-party cookies
and other advertising technologies that follow us around the
Web today. The conference’s moderator, knowing my history,
chided me for shouldering too much blame for the Web’s con-
temporary ills and trying to share that burden with my former
competitor.

I appreciated David’s honesty, but found myself pondering a
deeper question: Who is responsible for the current dysfunc-
tions around social media? In the wake of Russian interference
in the 2016 US election, the scandal around Cambridge Analyt-
ica, and the coordination of a mob that invaded the US Capitol
on January 6, 2021, it’s not hard to conclude that something is
amiss in social media and its effects on the general public. Mark
Zuckerberg often positions himself as a single, easily hateable
figure to absorb this blame. But an accurate attribution of blame
is more complicated.

Zuboff describes “surveillance capitalism” as a new eco-
nomic system in which each action we take, each purchase we

100 / CHAPTER 15

make, each interaction we have becomes data to be used to pre-
dict our future behavior. This is not a business model, Zuboff
argues, so much as a new economic paradigm—it invades all
businesses, whether they are advertising-driven or not, using
the logic of “big data” to turn behavior and reality itself into
source material for processing and prediction.3

Facing a shift of this magnitude, who do we credit or blame?
Google is Zuboff’s particular bête noire, but a case could be
made to blame a generation of venture capitalists who rewarded
rapid user growth above all other factors. We could blame reg-
ulators who’ve allowed a massive new economy of data sharing
and sales to emerge almost without oversight. Or computer sci-
ence professors who have taught programming as a pragmatic
technical skill with little thought toward ethics and values. Or
countless engineers who made bad design choices in trying
to navigate a set of business requirements they didn’t think to
question. People like me.

The problem with refusing to accept personal responsibility
for making the Web a more terrible place is that it releases you
from the responsibility to make it better. If the emergence of
surveillance capitalism is diffuse and multifocal, it becomes a
force of nature, unstoppable and incomprehensible. If it’s the
sum of small decisions made by self-interested actors, it’s un-
derstandable and possibly reversable.

My work these days is as an academic, teaching at the Uni-
versity of Massachusetts Amherst and leading a research group
focused on alternative economic and governance models for
social media. In other words, I’m working to build a version
of social media that doesn’t watch you, predict your behavior,
and target ads to you. It turns out there’s a variety of ways to do
this, including subscriptions, micropayments, cryptographic
tokens, sponsorship, non-surveillant advertising, or by thinking
of digital public spaces as public goods, supported by taxpayer
funds or volunteer efforts. Some of these models might create
the next venture capital unicorn, but most merely enable new,

THE POP-UP AD / 101

much smaller communities that might behave very differently
than Facebook or YouTube.

Personally, I believe that social media should look more like
public media, designed not to turn a profit but to address issues
and conversations that help us live together in a democracy.
My team is building small, single-purpose social networks de-
signed to host moderated, civil conversations about local issues.
Our goal is to help people reimagine social media as a space for
constructive interaction, rather than the toxic stew it so often
becomes. We are also building tools that give users more control
over their social networks, allowing each of us to decide what
content we’d like to see more and less of.4

It turns out that the hardest part of inventing alternative fu-
tures for the Internet is giving yourself permission to imagine
something radically different. My colleagues and I are imagin-
ing a future where social media is a key part of a healthy media
ecosystem, helping us find allies and common ground, and
argue productively with those we disagree with. But we also
need to imagine responsibly. A great first step in stretching your
imagination is accepting responsibility for your role in making
the Web what it is today, even if your only responsibility has
been not demanding something better.

16
Wear This Code,
Go to Jail
James Grimmelmann

WARNING
This shirt is classified as a munition and

may not be exported from the United
States, or shown to a foreign national

This was the stark warning printed in high-impact white-on-
black type on the front of the “RSA T-shirt.” Beneath it were
four lines of what looked like the output of a botched print job:

‌#!/bin/perl -s—-export-a-crypto-system-sig -RSA-3-lines-PERL

$m=unpack(H.$w,$m.”\0”x$w),$_=`echo “16do$w 2+4Oi0$d*-1[d2%Sa

2/d0<X+d*La1=z\U$n%0]SX$k”[$m*]\EszlXx++p|dc`,s/^.|\W//g,print

pack(‘H*’,$_)while read(STDIN,$m,($w=2*$d-1+length($n)&~1)/2)

This dense little block was actually the code for the RSA en-
cryption algorithm, implemented in the Perl programming lan-
guage. It was the position of the United States government that
it was illegal to export this code without a license—making the
T-shirt bearing it into a regulated “munition” that could not be
given or sold to foreigners.

No one was ever prosecuted for letting America’s enemies
wear the “RSA T-shirt,” but if they had been, it would have
proved Adam Back’s point about the absurdity of export-control
regulations in a digital age.1 Back and his fellow cypherpunks
believed in digital freedom of speech, freedom to tinker, and
freedom from surveillance. They created the shirt to protest ap-

WEAR THIS CODE, GO TO JAIL / 103

plying export-control laws to software. It was their contribution
to one of the most memorable skirmishes of the crypto wars of
the 1990s, a kind of wearable argument for the right to encrypt.

The idea behind export controls is straightforward: some
technologies are too dangerous to let fall into the hands of a
nation’s enemies. If you’re in the United States, you can’t sell
howitzers, anthrax, or space lasers abroad without government
permission.2 They’re considered “munitions” by law, and the
State Department will ask you some pointed questions about
who you’re selling them to. It’s not just weapons per se on the
export-control lists, either. High-volume fermenters and cen-
trifuges need licenses, too, because they can be used to make
and isolate viruses.3

The RSA T-shirt, a regulated “munition” that could not be exported from the
United States.

104 / CHAPTER 16

The export-control rules have always been an awkward fit for
digital technology. The relentless march of Moore’s law means
that last year’s military-grade electronics are often next year’s
must-have Christmas present. For a time, the PlayStation 2
technically qualified as a “supercomputer” subject to export
control, because it was as powerful as the multimillion-dollar
systems previously used to do the intensive computations re-
quired to design nuclear weapons.4

Encryption ended up on the export-control lists because of
its ability to let the dreaded bad guys talk in secret. It made a
certain kind of sense when encryption was a feature of spe-
cific physical devices, like battlefield radios that scrambled their
signals. But as encryption became a feature implemented in
software, any computer could become an encryption device. To
keep up, governments tried to apply their export laws to soft-
ware too, not just the computers it ran on.

Enter the crypto geeks. Since ancient times, cryptography
had relied on “symmetric-key” algorithms.5 The sender and
the receiver both know a key, which has to be kept secret from
everyone else in the world. The sender uses the key to encode
a message; the receiver uses it to decode the message. The dif-
ficulty of setting up a safe exchange of keys made symmetric-
key cryptography hard to use, giving government snoops and
codebreakers a leg up on their surveillance targets.

But in the 1970s, cryptographers devised a new class of
asymmetric “public-key” algorithms that blew up the key-
distribution problem.6 Now, the sender could encode a message
using a widely known public key, while the receiver decrypted
it with a private key known only to her.

The first practical public-key algorithm was created in 1977
by three MIT researchers, Ron Rivest, Adi Shamir, and Leonard
Adelman, and named “RSA” for their initials. The idea behind
RSA is that, as far as anyone knows, it is much easier to multi-
ply two numbers than to factor their product to determine the
original numbers. Simplifying a bit, the receiver’s secret key is

WEAR THIS CODE, GO TO JAIL / 105

a pair of very large prime numbers; the public key, suitable for
use by any sender, is their product. Messages are encrypted by
writing them as numbers, raising them to a specified power, and
then dividing them by the public key and taking the remainder.
Only the receiver, who knows the factors of the public key, is able
to reverse the process and obtain the original message.

Inspired by RSA, many other researchers developed their
own public-key algorithms and created new applications for
them. Want to sign a document securely? Encode it with your
own private key; anyone can decode it with the public key and
know that only you could have encoded it. The 1980s were a
time of ferment and rapid progress in cryptography.

The pace of crypto research, however, ran headlong into the
export-control laws when Daniel Bernstein, a graduate student
at the University of California, Berkeley, developed an encryp-
tion algorithm charmingly named Snuffle. In 1992, the State De-
partment told Bernstein that Snuffle fell within the definition of
a “defense article” in the export-control regulations. He would
need a license to export Snuffle—which could include mail-
ing copies of his paper abroad or presenting it at conferences
where there were foreign nationals present. He couldn’t even
post Snuffle’s source code online without permission, because
there was no way to prevent foreigners from downloading it.

Bernstein sued the State Department with the help of an all-
star team of digital civil-liberties lawyers and asked the court
to declare that he had right to share his research publicly.7
While his case was pending, Peter Junger, a law professor at
Case Western, filed his own suit against the export-control reg-
ulations seeking the right to post encryption software on his
website so he could teach about it in his course on computers
and the law.8

Bernstein’s and Junger’s suits energized an increasingly
activist community of technologists. A loose group of “cypher-
punks” saw strong encryption and anonymity as human rights
and defenses against government abuse. As a community, they

106 / CHAPTER 16

resisted other attempts to control software and encryption.
Most famously, they fought back in 1993 and 1994 when the
Clinton administration tried to mandate that telephone encryp-
tion use a standard called Clipper that included a government
backdoor. (Before the matter could be settled in Congress or a
courtroom, the effort imploded when a security researcher at
Bell Labs found a fatal flaw in the Clipper scheme.9)

The RSA T-shirt was the most visible example of mid-1990s
activist art intended to illustrate the futility of trying to con-
trol software. Of course, the design files were posted online so
that anyone could make their own. A few particularly dedicated
cypherpunks even had themselves tattooed with the RSA Perl
code, putting a new technological spin on the old line about
making your body into a deadly weapon.

On the one hand, turning RSA’s elegant math into a digital
Jackson Pollock slightly undercut the freedom-of-speech ar-
gument that software is a medium of expression for program-
mers to communicate with each other. The Perl implementa-
tion is notoriously, almost incomprehensibly compact. On the
other hand, compressing the algorithm so it fit neatly on a shirt
helped make the central point. Software, unlike a surface-to-air
missile, can fit anywhere. Trying to control it is like trying to
control T-shirts. (Plus, it left room on the back for text from the
Bill of Rights with a large red VOID stamp, in case the political
point wasn’t obvious already.)

In 1996, a federal court ruled for Bernstein, and its deci-
sion was upheld on appeal in 1999: Snuffle’s source code was
protected under the First Amendment. The government asked
the court to reconsider the case and, while it was pending,
substantially weakened the export-control rules for cryptog-
raphy, mooting his case. The rules aren’t entirely gone, though:
software licenses still tell you not to send your copy of macOS
to embargoed countries (such as Iran and North Korea), and
software companies still pay lawyers to fill out export license
application forms.10

WEAR THIS CODE, GO TO JAIL / 107

The software-is-speech argument has outlasted the partic-
ular debates that produced the RSA T-shirt. In the early 2000s,
the movie industry attempted to suppress DeCSS, a program to
decrypt DVDs. In response, activists turned its code into an ani-
mated Star Wars crawl, a square dance, an epic poem composed
of 456 haiku, and yes, a T-shirt. They were gathered together in
a “Gallery of CSS Descramblers” used to make the case that soft-
ware could be expressive speech.11 They made their point but
lost the case; courts held that yes, software could have expres-
sive elements, but that speech interest could be steamrolled
in the name of copyright.12 More recently, similar issues have
come up in attempts to restrict files for 3D-printed firearms.13

Although it is too soon to declare that the crypto wars are
over and crypto won, today strong encryption is everywhere. It’s
built into every major web browser and every major messaging
app. Banks use it, activists use it, as do cops and criminals, soft-
ware developers and users, and teenagers sending each other
Minecraft memes.

How about Adam Back, who created the RSA T-shirt? He runs
the blockchain company Blockstream, which has raised $100
million to build technologies resistant to government censor-
ship.14 That’s a lot of T-shirts.

17
Needles in the World’s
Biggest Haystack
The Algorithm That
Ranked the Internet
John MacCormick

We’ve all experienced, from time to time, a kind of compulsive
web surfing in which we follow link after link, browsing content
that becomes less and less relevant to the task at hand. This
happened to me only yesterday: while working on some artifi-
cial intelligence research, I clicked on something interesting,
followed a few links, and 20 minutes later found I was deep into
an article about the human brain and consciousness. Strangely
enough, this “random surfer” model of Internet browsing also
lies at the heart of one of the most revolutionary pieces of code
to impact the Internet age: Google’s PageRank algorithm.

It is widely believed that the PageRank algorithm, invented
and first published by Google cofounders Sergey Brin and Larry
Page in 1998, was the single most important element in launch-
ing the Google search engine to its dominance of the emerging
web search industry in the early 2000s. Around this time, Goo-
gle leapfrogged some established players such as Lycos and
AltaVista, which have since faded into obscurity. How and why
did this happen? The key insight of the Google cofounders was
that a web search engine would live or die according to the qual-
ity of its ranking of search hits. The technology of crawling and
indexing the entire web was already well understood—Lycos,
AltaVista, and others had mastered that. The problem was that

NEEDLES IN THE BIGGEST HAYSTACK / 109

most search queries would overwhelm the user with far too
many hits. For example, if I search the Web these days for “field
hockey,” there are more than 300 million hits. This is only a tiny
fraction of the entire Web, but still far too large to be a useful
set of results. A good search engine, therefore, needs to rank
those 300 million pages. Ideally, they would be ranked so that
the top three to five search results are highly authoritative and
informative about field hockey. With their 1998 PageRank algo-
rithm, Brin and Page thought they had figured out a way to find
the most authoritative and informative pages automatically—
and the public voted with their mouse clicks. Google’s results
were far more relevant than those of competitors such as Lycos
and AltaVista. Google’s market share soared, and a twenty-first-
century Internet giant was born.

The concept of a web page being “authoritative” is subjective.
It’s a property that knowledgeable humans can assess, but could
a computer algorithm exhibit this same level of understanding
and judgment? At first glance, this is a problem that requires

Code that simulates Google’s PageRank algorithm.

110 / CHAPTER 17

artificial intelligence. It’s tempting to attack the problem with the
latest neural network or machine learning techniques, because
these tools can learn how to classify inputs based on examples.
The insight of Brin and Page was that we don’t really need AI
here. Instead, we can harvest—some would say crowdsource—the
opinions of billions of humans all over the planet to automatically
infer their opinions about the authoritativeness of web pages.

Suppose you are the author of a web page about field hockey.
Over time, you will develop expertise about which other web-
sites are authoritative on the topic. You will probably select the
best ones and provide links to them on your own web page.
Thousands of other web-page authors around the globe will do
the same thing. On average, the best field hockey pages will be
the ones that receive the most incoming links from other web
pages. This is the first algorithmic principle behind PageRank:
pages with many incoming links are likely to be authoritative.
Therefore, pages with more incoming links should be ranked
higher than pages with fewer incoming links.

But we can do even better. We know that some authors have
better judgment than others. For example, the author of a really
popular sports web page is likely to be a good judge of whether
other sports web pages are authoritative. On average, we should
trust this author’s opinion more than that of an amateur sports
blogger whose page has limited popularity. This is the second
algorithmic principle behind PageRank: incoming links from
authoritative pages should count for more than incoming links
from pages with low authority. To achieve this, we add up the
authority scores of a page’s incoming links and use this total
score to rank hits that match a query. It is this total authority
score of the incoming links that Brin and Page defined as the
PageRank score of a given page.

You may have noticed an unfortunate chicken-and-egg prob-
lem here. The PageRank score of a page P depends on the Page
Rank scores of pages linking to P. But the scores of those pages
depend on their own incoming links, and so on. This produces

NEEDLES IN THE BIGGEST HAYSTACK / 111

an infinite chain of computations. Brin and Page knew a math-
ematical trick that transforms this infinite chain into a straight-
forward calculation. When we transform the above PageRank
definition into mathematics, the scores of a collection of web
pages satisfy a certain equation expressed in matrix algebra.
That equation takes a form that is familiar to any undergrad-
uate math major: it is a so-called eigenvalue problem, and it can
be solved efficiently on modern computers even for matrices
that encode the links among billions of web pages. So Brin and
Page were able to code up the eigenvalue problem, solve it, and
use the resulting PageRank values to rank the query hits in their
search engine prototype. The rest is history.

But where does the random surfing come in? I opened this
essay with the claim that the indulgent time-wasting of a per-
son randomly surfing the Web mimics the algorithm behind
Google’s rise to power. Well, if your surfing is truly random,
you are computing Brin and Page’s chicken-and-egg PageR-
ank values! For the math to work correctly, we need to assume
you start on a page selected at random from the entire World
Wide Web. You randomly choose one of the links on this page
and follow it. That leads to a new page where the process is
repeated: a random link is selected and followed. This process
is repeated many times, with one variation. Every so often, you
get bored and perform a reset by restarting your surfing at a
new random page selected from the whole Web. In their orig-
inal 1998 publication, titled “The Anatomy of a Large-Scale
Hypertextual Web Search Engine,” Brin and Page suggested
using a reset probability of 15 percent.1 This means that 85
percent of the time, you follow a randomly selected link, and
15 percent of the time you start at a new random page from
anywhere on the Web.

The code in the figure on page 109, written in the program-
ming language Python, shows how the random surfing algo-
rithm can be implemented in a computer program. After a few
billion iterations of the surfing strategy, the number of times

112 / CHAPTER 17

a given page was visited is a good statistical estimate of that
page’s PageRank score.

In the decades since PageRank was first deployed, there have
been debates as to how important or revolutionary it really is.
Was PageRank good math, or just good marketing? Specialists
in information retrieval were aware of the basic technique many
years earlier, and a search engine called RankDex was already
using a similar style of link analysis to rank pages when Google
got started. In addition, search engine companies quickly dis-
covered that PageRank alone was not enough to stay ahead of
the competition. Indeed, PageRank provides only a static score
for each page, meaning that the score depends only on the page
itself and not on the query entered by the user. Modern search
engines employ dynamic scores that are query-dependent, and
PageRank is only one component of such scoring systems.

Despite these counterarguments, there are compelling rea-
sons to believe the hype and mystique surrounding PageRank.
Brin and Page were among the first to apply the concept at Web
scale, where its impact turned out to be immense. And it does
seem likely that PageRank was an important contributor to
the quality of Google’s search results in the early years, when
Google’s competitors were playing catch-up and desperately
trying to improve their own search quality. Ultimately, how-
ever, these lines of code—the PageRank code—achieved much
more than the launch of a single company from a garage in
Menlo Park, California, to its status as a global internet super-
power less than a decade later. The PageRank code transformed
twenty-first-century society, creating a vast new ecosystem
based on web search, enabling us to find relevant needles in
gigantic haystacks, and revolutionizing the way we interact with
information.

18
A Failure to Interoperate
The Lost Mars
Climate Orbiter
Charles Duan

The Mars Climate Orbiter was falling fast. After nine months
of flight, the spacecraft had reached the red planet on its tar-
get date of September 23, 1999, and was preparing to enter
Mars’ orbit in order to collect weather data from the planet’s
atmosphere. But while the orbiter was supposed to fly at least
160 kilometers above the Martian surface, the latest estimates
suggested it was at 110 kilometers and dropping. At less than
98 kilometers, the spacecraft would be blasted with damaging
heat; at less than 85, it would be rendered unsteerable. The nav-
igation crew at NASA’s Jet Propulsion Laboratory (JPL) began
firing the orbiter’s thrusters to keep it in position, but to no
avail. At 9:05 UTC, it entered Mars’ shadow, which blocked radio
communication with the ground crew. It was never heard from
again, likely having burned upon entry into Mars’ atmosphere.
The final estimated altitude: 57 kilometers.1

In the weeks that followed, NASA and its coordinate engi-
neering teams at JPL and Lockheed Martin Aeronautics scram-
bled to explain the loss of the $145 million spacecraft. They
and other investigators produced at least five post-mortem re-
ports on the error, variously pointing fingers at management,
budgets, and team communication. The one point of consen-
sus among all of them was that the disaster would have been
averted but for a software bug: a missing line of code that should
have multiplied a number by 4.45.2 That missing line of code

114 / CHAPTER 18

and its destruction of a multimillion-dollar spacecraft would
foreshadow a systemic problem with the burgeoning software
industry—a problem that would persist for more than 20 years.

The missing code was supposed to help manage the Mars
Climate Orbiter’s orientation during flight. About twice a day,
the small spacecraft would execute an operation called “angu-
lar momentum desaturation,” in which it fired small thrusters

The lost Mars Climate Orbiter, prior to crashing. (Drawing based on 1999 press
materials from NASA.)

A FAILURE TO INTEROPERATE / 115

to orient the spacecraft in the right direction. Unfortunately,
the thrusters had the side effect of pushing the spacecraft off-
course, changing its velocity by a tiny amount—less than a ten
thousandth of a percent.3

Though these delta-V’s, as the scientists called them, were
minuscule, they were also significant because they fed into the
larger computation of determining where the orbiter was at any
given time. Navigating a spacecraft is hard—there are no street
signs in space, and measurements based on star positions or
Earth-based radar are incomplete and inaccurate at best. In-
stead, JPL kept track of all the forces acting upon it—the pres-
sure of solar wind and the gravity of the sun and planets, in ad-
dition to the delta-V’s—and predicted the orbiter’s trajectory by
adding up the forces.4 This perhaps sounds like predicting how
far a car has driven by tallying up presses on the gas and brake.
But just two years earlier, JPL had used largely the same navi-
gation modeling software to successfully place the Mars Global
Surveyor into orbit. The two spacecraft differed significantly in
shape, intended motion, and thruster configuration, meaning
that the navigation modeling software for the Surveyor would
not work as-is for the Mars Climate Orbiter.5 But the physics was
the same, and so the Mars Climate Orbiter’s engineers expected
that they could reuse the Surveyor’s modeling software, just
feeding it slightly modified input data tailored to the Orbiter.

Yet it was what fed into that modeling software that ultimately
sank the Mars Climate Orbiter. Upon each of the twice-daily
angular momentum desaturation events, a software program
called SM_FORCES would run. That program, written by JPL’s
contractor Lockheed Martin, would produce files of thruster
data for JPL’s modeling software to use in its computations.6 But
while JPL’s software expected the data files to use metric units
of Newton-seconds, SM_FORCES produced data files in imperial
units of pound-force-seconds.7 As a result, the numbers were
too small by a factor of 4.45, so JPL predicted the orbiter’s delta-
V’s to be less than reality. While each individual error was small,

116 / CHAPTER 18

they added up: After the crash, JPL estimated that the total error
over the mission would have been over 10,000 kilometers.8
Even after several course corrections in flight, 169 kilometers
of error remained in the days before the orbiter reached Mars.
That distance was tiny compared with the 669 million kilome-
ters the orbiter had traveled,9 but given the small window for a
successful Mars orbit, it was enough to turn the mission from
success to failure.10

Failure to multiply by 4.45 was no doubt a software bug, but
which line of code was buggy—and whose responsibility was
it? Lockheed Martin’s software could have performed the con-
version, but so could JPL’s. Each side laid blame on the other:
NASA and JPL pointed to a software requirements document
that called for metric units,11 while Lockheed Martin’s engineers
countered that they had written their software to match sample
hand-computed data that JPL had provided—data that appar-
ently used imperial.12 And in a sense, both programs were cor-
rect: SM_FORCES produced numbers exactly in line with what
its coders intended, and JPL’s software ingested and processed
data exactly the way its coders had specified. The bug could
be said to lie not with either piece of code, but somewhere in
between.

That in-between space is the world of interfaces—the places
inter two faces of software. Across that space, one program can
send information or commands to another. But those trans-
missions are meaningless 1s and 0s unless the programs have
a shared agreement on what they mean, just as two humans
must have a shared understanding of a language before they can
talk with each other. And even more so than human languages,
the “languages” with which computer programs communicate
must be precisely defined by agreement between the programs’
coders, including the choice of metric versus imperial units.
Programs that do so are said to be compatible, or interoperable;
those that fail will produce wrong results, or, perhaps, crash,
literally or figuratively.

A FAILURE TO INTEROPERATE / 117

Interoperability is what allows the massive tangle of inter-
faces that we call the Internet to function—to retrieve Emails,
web pages, and “All Your Base” memes. As Harvard scholars
John Palfrey and Urs Gasser have argued, interoperability born
from that early Internet age has enabled consumer choice, en-
couraged technological progress, promoted competitive mar-
kets, and opened up efficiencies and conveniences that have
made the highly connected society in which we live today.13

Today, interoperability is practically the expectation. In-
deed, much frustration with technology is due to failures of
interoperability—when Microsoft Word can’t open an Apple
Pages file, for example.14 (Apparently a file format incompat-
ibility also plagued the Mars Climate Orbiter mission, forcing
one poor JPL analyst to recompute all of Lockheed Martin’s
trajectory predictions by hand for the first four months of the
mission.)15

While the failure of interoperability for the Mars Climate
Orbiter was an honest mistake, non-interoperability in tech-
nology today often arises more deviously: forced incompati-
bility designed to secure market domination. The great virtue
of interoperability is substitutability. JPL could switch to any
other contractor’s compatible delta-V files with the click of a
keyboard. But what if Lockheed Martin could “own” that com-
patible format, forcing competitors to generate only incom-
patible files—perhaps using even more exotic units of impulse,
such as slug-feet per second or poundal-hours? One can only
imagine how much more confusing and disaster-prone a Mars
spacecraft operation could become in such a world where JPL
must rewrite its software for every new contractor.

Even more worryingly, companies ranging from electronic
health care to social media have begun to eschew the late-1990s
embrace of interoperability, preferring instead the walled gar-
dens of curated app stores and vertically integrated products
designed to lock in consumers and markets.16 Where once the
norm was highly compatible Internet technology, now even a

118 / CHAPTER 18

coffee machine may refuse to interoperate with third-party
coffee pods.17

This shift away from interoperability is troubling. As with
space exploration, the digital economy depends on a diverse
array of contributors: large firms to be sure, but also startups,
small creators, forum frequenters, scientists, engineers, and
many more. Interoperability is the glue that enables this diverse
community to work together innovatively; failures of interoper-
ability, whether accidental or intentional, leave that community
frustrated and divided. Should society fail to pay heed to the
importance of interoperability, its technological prospects may
very well burn up on entry many times over.

19
The Code That Launched
a Million Cat Videos
Lowen Liu

According to Colin Angle, the CEO and cofounder of iRobot, the
Roomba faced some early difficulties before it was rescued by
two events. The disc-shaped robot vacuum had gotten off to a
hot start in late 2002, with good press and a sales partner in the
novelty chain store Brookstone. Then sales started to slow, just
as the company had spent heavily to stock up on inventory. The
company found itself on the other side of Black Friday in 2003
with thousands upon thousands of Roombas sitting unsold in
warehouses.1

Then around this time, Pepsi aired a commercial starring co-
median Dave Chappelle.2 In the ad, Chappelle teases a circular
robot vacuum with his soft drink while waiting for a date. The
vacuum ends up eating the comedian’s pants—schlupp. Angle
remembers that at a team meeting soon after, the head of
e-commerce said something like: “Hey, why did sales triple yes-
terday?” The second transformative moment for the company
was the rapid proliferation of cat videos on a new video-sharing
platform that launched at the end of 2005. A very specific kind
of cat video: felines pawing suspiciously at Roombas, leaping
nervously out of Roombas’ paths, and, of course, riding on them.
So many cats, riding on so many Roombas. It was the best kind
of advertising a company could ask for: it not only popularized
the company’s product but made it charming. The Roomba was
a bona fide hit.

By the end of 2020, iRobot had sold 35 million vacuums,3
leading the charge in a booming robot vacuum market.

120 / CHAPTER 19

The Pepsi ad and the cat videos appear to be tales of early-
days serendipity, lessons on the power of good luck and free
advertising. They also appear at first to be hardware stories—
stories of cool new objects entering the consumer culture. But
the role of the Roomba’s software can’t be underestimated. It’s
the programming that elevates the round little suckers from
being mere appliances to something more. Those pioneering
vacuums not only moved, they decided in some mysterious way
where to go. In the Pepsi commercial, the vacuum is given just
enough personality to become a date-sabotaging sidekick. In
the cat videos the Roomba isn’t just a pet conveyer, but a dili-
gent worker, fulfilling its duties even while carrying a capricious
passenger on its back. For the first truly successful household
robot, the Roomba couldn’t just do its job well; it had to win over
customers who had never seen anything like it.

Like many inventions, the Roomba was bred of good fortune
but also a kind of inevitability. It was the brainchild of iRobot’s
first hire, former MIT roboticist Joe Jones, who began trying
to make an autonomous vacuum in the late 1980s. He joined
iRobot in 1992,4 and over the next decade, as it worked on other
projects, the company developed crucial expertise in areas of
robotics that had nothing to do with suction: it developed a
small, efficient multithreaded operating system; it learned to
miniaturize mechanics while building toys for Hasbro; it gar-
nered cleaning know-how while building large floor sweepers
for SC Johnson; it honed a spiral-based navigation system while
creating mine-hunting robots for the US government.5 It was a
little like learning to paint a fence and wax a car and only later
realizing you’ve become a Karate Kid.

The first Roombas needed to be cheap—both to make and
(relatively) to sell—to have any chance of success reaching a
large number of American households. There was a seemingly
endless list of constraints: a vacuum that required hardly any
battery power, and navigation that couldn’t afford to use fancy
lasers—only a single camera.6 The machine wasn’t going to have

A MILLION CAT VIDEOS / 121

the ability to know where it was in a room or remember where
it had been. Its methods had to be heuristic, a set of behaviors
that combined trial and error with canned responses to various
inputs. If the Roomba were “alive,” as the Pepsi commercial
playfully suggested, then its existence would more accurately
have been interpreted as a progression of instants—did I just run
into something? Am I coming up to a ledge? And if so, what should I do
next? All conditions prepared for in its programming. An insect,
essentially, reacting rather than planning.

And all this knowledge, limited as it was, had to be stuffed
inside a tiny chip within a small plastic frame that also had to
be able to suck up dirt. Vacuums, even handheld versions, were
historically bulky and clumsy things, commensurate with the
violence and noise of what they were designed to do. The first
Roomba had to eschew a lot of the more complicated machin-
ery, relying instead on suction that accelerated through a nar-
row opening created by two rubber strips, like a reverse whistle.

But the lasting magic of those early Roombas remains
the way they moved. Jones has said that the navigation of the
original Roomba appears random but isn’t—every so often the
robot should follow a wall rather than bounce away from it.7
In the words of the original patent filed by Jones and Roomba
cocreator Mark Chiappetta, the system combines a deterministic
component with random motion.8 That small bit of unpredictabil-
ity was pretty good at covering the floor—and also made the
thing mesmerizing to watch. As prototypes were developed,
the code had to account for an increasing number of situations
as the company uncovered new ways for the robot to get stuck,
or new edge cases where the robot encountered two obstacles
at once.9 All that added up until, just before launch, the robot’s
software no longer fit on its allotted memory. Angle called up his
cofounder, Rodney Brooks, who was about to board a transpa-
cific flight. Brooks spent the flight rewriting the code compiler,
packing the Roomba’s software into 30 percent less space.10 The
Roomba was born.

122 / CHAPTER 19

In 2006 Joe Jones moved on from iRobot, and in 2015 he
founded a company that makes robots to weed your garden.11
The weeding robots have not, as yet, taken the gardening world
by storm. And this brings us to perhaps the most interesting
part of the Roomba’s legacy: how lonely it is.

You’d be in good company if you once assumed that the ar-
rival of the Roomba would open the door to an explosion of
home robotics. Angle told me that if someone went back in time
and let him know that iRobot would build a successful vacuum,
he would have replied, “That’s nice, but what else did we really
accomplish?” A simple glance around the home is evidence
enough that a future filled with robots around the home has
so far failed to come true. Why? Well for one, robotics, as any
roboticist will tell you, is hard. The Roomba benefited from a set
of very limited variables: a flat floor, a known range of obstacles,
dirt that is more or less the same everywhere you go. And even
that required dozens of programmed behaviors.

As Angle describes it, what makes the Roomba’s success so
hard to replicate is how well it satisfied the three biggest cri-

A snippet of code at the heart of the Roomba’s navigation system. The robot scoots along
the floor, constantly checking for inputs—Have I bumped into something? How about now?
And now?—and reacting in ways that are both predetermined and a little mysterious.

A MILLION CAT VIDEOS / 123

teria for adoption: it performed a task that was unpleasant; it
performed a task that had to be done relatively frequently; and
it was affordable. Cleaning toilets is a pain but not done super
frequently. Folding laundry is both, but mechanically arduous.
Vacuuming a floor, though—well, now you’re talking.

Yet for all the forces that led to the creation of the Roomba,
its invention alone wasn’t a guarantee of success. What is it that
made those cat videos so much fun? It’s a question that lies
close to the heart of the Roomba’s original navigation system:
part determinism, part randomness. My theory is that it wasn’t
just the Roomba’s navigation that endeared it to fans—it was
how halting and unpredictable that movement could be. The
cats weren’t just along for an uneventful ride; they had to catch
themselves as the robot turned unexpectedly or hit an object.
(One YouTuber affectionately described the vacuum as “a drunk
coming home from the bar.”) According to this theory, it’s the
imperfection that is anthropomorphic. We are still more likely
to welcome into our homes robots that are better at slapstick
than superhuman feats. It’s worth noting that the top-of-the-
line Roomba today will map your rooms and store that map on
an app, so that it can choose the most efficient lawnmower-like
cleaning path. In these high-end models, the old spiral naviga-
tion system is no longer needed. Neither is bumping into walls.

Watching one of these Roombas clean a room is a lot less
fun than it used to be. And it makes me wonder what the fate
of the Roomba may have been had the first ever robot vacuum
launched after the age of smartphones, already armed with the
capacity to roll through rooms with precise confidence, rather
than stumble along. It’s not always easy, after all, to trust some-
one who seems to know exactly where they are going.

20
Nakamoto’s Prophesy
Bitcoin and the
Revolution in Trust
Quinn DuPont

When the person known as Satoshi Nakamoto started working
on Bitcoin in 2007, then-US Federal Reserve Chair Alan Green-
span was already warning of a looming recession, and banks in
England were facing a serious liquidity crisis. For years, banks
had been bingeing on cheap credit and were selling mortgages
to unqualified borrowers. In late 2008, Nakamoto published the
now-famous “Bitcoin: A Peer-to-Peer Electronic Cash System”
white paper that laid out the design for a novel cryptocurrency.1
By then, the global economic crisis was in full swing. When the
first bitcoins were “minted” in January 2009, Nakamoto made
the system’s political mission crystal clear: indelibly encoded in
the so-called Genesis block of transactions, Nakamoto typed out
a London newspaper’s headline, “The Times 03/Jan/2009 Chan-
cellor on brink of second bailout for banks.” With a stroke, Na-
kamoto had timestamped Bitcoin’s origin and marked its target.

Nakamoto was keenly aware of the modern nation-state’s
monopoly on the creation of money, which is maintained by
taxation laws, anticounterfeit laws, and banking regulations,
but Nakamoto also knew that most money is de facto created
by commercial banks through their lending practices. By devel-
oping a peer-to-peer digital money beyond the remit of nation-
states and their banks, Nakamoto was championing the legacy
of cypherpunks—information-age anarchists who sought their
own micro-nations and digital cash. But Nakamoto also sensed

NAKAMOTO’S PROPHECY / 125

a broader, more socially transformative use. Bitcoin was to spur
a revolution in trust.

The original Bitcoin whitepaper was focused on Internet
commerce. Nakamoto wrote:

Commerce on the Internet has come to rely almost exclusively
on financial institutions serving as trusted third parties to pro-
cess electronic payments. While the system works well enough
for most transactions, it still suffers from the inherent weak-
nesses of the trust based model. Completely non-reversible
transactions are not really possible, since financial institu-
tions cannot avoid mediating disputes. The cost of mediation
increases transaction costs, limiting the minimum practical
transaction size and cutting off the possibility for small casual
transactions, and there is a broader cost in the loss of ability to
make non-reversible payments for non- reversible services.2

Nakamato believed that without irreversible transactions, fi-
nancial services would need to collect ever more information

Satoshi Nakamoto included a hash of the Times headline from January 3, 2009 in the
Genesis block of Bitcoin.

126 / CHAPTER 20

to be able to trust their customers, in turn reducing privacy.
With Bitcoin, however, trust would be replaced by cryptographic
proof, which would protect sellers from fraud and buyers from
unscrupulous sellers through secure, automated escrow and
smart contracts. Since Bitcoin transactions are (pseudony-
mously) recorded in a shared ledger, anyone can inspect the
ledger to confirm payment. For the seller, the shared ledger
offered protection, since transactions cannot be changed or
removed from the ledger; payment is confirmed before ship-
ping. For the buyer, the shared ledger can serve as a third
party for escrow, finalizing payment only once the shipment is
complete.

As the global economy recovered, Nakamoto and a small
team of open-source software developers continued to work
on Bitcoin. At first, Bitcoin was a fun hobby for most, and each
coin was nearly worthless. (Famously, two pizzas sold for 10,000
bitcoins on May 22, 2010, now celebrated as “Pizza Day.”) Then,
in 2011, with no warning and little fanfare, Nakamoto disap-
peared. Over the years, open-source software developers con-
tinued to enhance Bitcoin while the news media hunted for
Nakamoto’s whereabouts. Remarkably, none of the estimated
one million bitcoins held in Nakamoto’s wallet have been spent
(now worth at least USD $50 billion).

Bitcoin has had a fascinating and tumultuous history that
spawned copycats, a blockchain “revolution,” and even—with
unacknowledged irony—Central Bank digital currencies. The
success of Bitcoin can be attributed to many factors, but in the
Bitcoin whitepaper Nakamoto singled out the “inherent weak-
nesses of the trust based model” for electronic commerce. Na-
kamoto felt that trusted third parties like payment processors
were costly and inefficient and, worse still, could not actually be
trusted to act impartially. Nakamoto’s suspicions were validated
in 2011 when, buckling to US political pressure, Visa, Master-
card, and other financial organizations froze the accounts of the
whistleblowing website Wikileaks. By supplanting trust with

NAKAMOTO’S PROPHECY / 127

cryptographic proof, Bitcoin made it possible to securely inter-
act without a mediating third party.

Long before ubiquitous computing and global telecommu-
nications, the sociologist Georg Simmel observed that trust—
faith in others to not deceive—was crucial to modern life.3 Fore-
shadowing the emergence of Bitcoin, Simmel observed how
trust relationships are usually reciprocal and, increasingly, ac-
counted for by money. Indeed, more than a hundred years ago
he observed how money produced a social “credit-economy”
where obligations are measured by money and supported by
trust. Another early sociologist, Max Weber, noticed that the
fledgling capitalist economy had progressed by instituting a
more reliable calculation of obligations through improvements
in bookkeeping, business practices, and technology.4 With Bit-
coin, Nakamoto seemed to be suggesting, perfect accounting
could eliminate the need for trust altogether.

Around 2014—after Nakamoto had vanished—software
developers started to realize that Bitcoin’s underlying ledger
system could be extended to situations beyond money. This
ledger system, called blockchain, meant that even in low-trust
environments, complex and robust kinds of interaction could
be achieved. For instance, decentralized finance (DeFi) now al-
lows speculators to trade assets directly, without the commis-
sion and regulatory overhead of centralized exchanges. Today,
billions of dollars in assets—including artwork, property, and
cryptocurrencies—are traded this way.

In Bitcoin, the underlying blockchain is necessary to create
agreement among globally distributed ledgers. Since Bitcoin has
no central server (a “third party”) to order and process trans-
actions, so-called miners compete in a lottery to validate and
bundle transactions into blocks. Using a “gossip” protocol, each
miner listens for incoming transactions (sent from individual
wallets) and computes an algorithm that produces a random re-
sult. If the miner discovers a random “winning” result (a param-
eter set by the protocol), it seals the transactions into a block,

128 / CHAPTER 20

chains it to the previous one, and is rewarded for the trouble with
newly minted bitcoins. Because the bitcoin reward is valuable,
miners are incentivized to run the protocol and act honestly.

So, if a dishonest person wanted to submit a fraudulent trans-
action to the Bitcoin network, a colluding miner would still be
required to compute the expensive, power-consuming algo-
rithm. Therefore, counterfeiting is practically impossible on
the open Bitcoin ledger because the honest majority of miners
would reject the transaction and its mining reward, making
collusion economically irrational. But since there is no central-
ized authority to determine valid from fraudulent blocks, how
does the network weed out fraudsters who only attempt to alter
existing transactions, or “double spend” coins? When presented
with competing ledgers and two equally plausible versions of
truth, fraudulent blocks are detected and rejected by honest
miners because they always select the longest chain—the one
with the most “work” behind it. Since existing transactions are
from the past and therefore shorter in length (they have less
work), the majority of honest miners will come to agreement
and reject the fraudulent chain.

This remarkable process of consensus keeps Bitcoin pay-
ments secure when dealing with adversaries. Even though digi-
tal code can be endlessly copied and pasted, the blockchain pre-
vents counterfeiting and double-spending. Security is assured
because the Bitcoin network financially encourages miners to
check and include all valid transactions and eliminates pay-
ment reversals. Since the lottery chooses a winner at random,
censors and cheaters gamble in a loser’s game. The blockchain
achieves consensus and agreement about a single version of
truth through a sophisticated dance of cryptography and eco-
nomic incentives.

When monetary transactions are replaced with executable
code, as in the case of Ethereum and other blockchain plat-
forms, it becomes possible to achieve consensus about any com-
putational result—a decentralized “world” computer. Today, this

NAKAMOTO’S PROPHECY / 129

process is used to secure shipping manifests, for example, as
they pass between companies. When combined with environ-
mental sensors and wireless networking (such as industrial-
scale Internet-of-Things), a blockchain can detect issues (like
an opened container or a failing refrigeration unit) and auto-
matically take action. Even with untrustworthy shippers, when
the digital manifest and its sensor data are entered onto the
blockchain, the records cannot be altered or erased. For these
kinds of applications, blockchain abstracts away the concept
of digital money and extends the Bitcoin whitepaper’s original
use case to much richer business environments.

Consensus about the result of executed code can also support
multistakeholder, low-trust environments to enable better gov-
ernance. Indeed, achieving consensus about records bolsters
trust in ways that may be able to solve collective action prob-
lems, including pressing social issues like climate change, cor-
ruption, and inequality. For example, since blockchains can se-
curely record the results of voting and automatically take action
with smart contracts, a quasi-legal smart contract might, for
example, automatically allocate funds for condo repair, where
otherwise individual decision-making might result in a trag-
edy of the commons. These governance mechanisms are the
practical realization of decades of development in game theory,
which can produce socially optimal results for condo boards,
access to water rights, land titling, and many other public or
“toll” goods. In recent years, a refinement of game theory called
cryptoeconomics has emerged to examine how sophisticated
forms of consensus support trust to enable better governance.
This fledgling discipline draws on complex systems, mecha-
nism design (known as “reverse” game theory), and information
security and may underpin novel, algorithmically enhanced
governance platforms.

Today, Nakamoto’s original political vision is no longer recog-
nizable; after all, Bitcoin is now largely a Silicon Valley–style ca-
sino. But Bitcoin has helped create new values for democracy,

130 / CHAPTER 20

financial inclusion, and ownership. The Millennial and Gen
Z generations in particular, those who were left behind in the
wake of the 2008 global economic crisis that birthed Bitcoin,
have eagerly embraced this decade’s Sturm und Drang by re-
making old institutions in their own image. To the consterna-
tion of state regulators and politicians, the youth have flocked
to Bitcoin and in turn brought new relevance to Nakamoto’s
prophecy.

21
The Curse of the
Awesome Button
Will Oremus

It was summer 2007. Facebook was three years old and growing
at a heady pace. Originally for college students, it had opened
to the public the previous fall. Now it had 30 million users.1
What it didn’t have was a simple way for them to show interest
in each other’s posts. The only way to acknowledge a post was
to comment on it.

Leah Pearlman, one of Facebook’s three product managers
at the time, found that inefficient. Popular posts would receive
long strings of comments, many just one or two words (such as
“awesome” or “congrats”), with no way to locate the interesting
ones in a sea of noise. That might not seem like a big problem,
but it chafed Pearlman and her coworkers, almost all of whom
were in their early twenties and active Facebook users them-
selves. To Pearlman, the comment chains felt like something
you would see on Facebook’s more established rival, MySpace,
with its anything-goes customizability. That clashed with Face-
book’s clean design and straightforward functionality.

She and a few other Facebookers—engineering managers
Akhil Wable and Andrew Bosworth, designer Justin Rosenstein,
and internal communications manager Ezra Callahan—set out
to build a universal, seamless way to express approval on the
social network. They code-named the project “Props.”

What they ended up developing, with help from a succession
of other designers and engineers, was a button that became an
iconic symbol of Facebook, reshaped the Internet, reconfigured
the media, and altered the course of world politics. If they’d

132 / CHAPTER 21

known the “like” button would do all that, its creators say now,
they might have thought about it rather differently than they
did at the time. The same virtues that made it such an elegant
user-interface solution for a fast-growing software startup in
2007—its simplicity, its ease of use, its universality, its conve-

THE CURSE OF THE AWESOME BUTTON / 133

nience as a metric of value—eventually came to look like vices
when applied on a grand, societal scale by a globally dominant
online platform.

“I felt like I was cleaning the garage by adding the like but-
ton,” Pearlman told me.2 “I never expected what happened. . . .
We were working on other things at the time that felt like a big-
ger deal by far.”

One obvious question is whether the Facebook like but-
ton’s creators should have anticipated those long-term conse-
quences. A more interesting, haunting question lurks behind
that one: Would they, or could they, have done anything differ-
ently even if they’d known?

That Facebook would eventually give users an easy way to
express affirmation was perhaps overdetermined. By 2007, a
handful of smaller platforms had already launched approval
buttons of various sorts. And Pearlman wasn’t the only one at
Facebook thinking along those lines. Rosenstein told The Ringer
in 2017 that he had been looking for “a way to increase positivity
in the system” to help Facebook create “a world in which people
uplift each other rather than tear each other down.”3

But just what shape Facebook’s version of “props” should
take, and how it should work, proved contentious. Pearlman
added the “awesome button,” as the group initially called it,
to Facebook’s internal ideas board, and it got enough votes
from their coworkers to spur a “hackathon”—an all-night cod-
ing session in which engineers and designers cobble together
prototypes of potential new features. On July 17, 2007, a team
consisting of Bosworth, Rebekah Cox, Ola Okelola, Rosenstein,
and Tom Whitnah coded the first awesome button, according
to a detailed account that Bosworth posted to the question-and-
answer site Quora in 2010.4 It was well-received and got the
green light for development.

As Bosworth recalled it, the button generated excitement
across the company.5 The ads team thought it could be used
to show people better ads. The platform team thought it could

134 / CHAPTER 21

be used to filter out bad apps. The news feed team, which Bo-
sworth led, reckoned it could help them decide which posts to
show in people’s feeds. (At that point, the main factor in feed
ranking was the number of comments a post received.) The
button’s seemingly universal applicability meant that it had to
be versatile and appropriate across all sorts of contexts. And so
seemingly trivial design decisions took on crushing weight. Was
“awesome” the right name? Should there be a corresponding
minus sign or thumbs down? Should it come with a counter?

Designing a button that would be both visually simple and
instantly understandable was “a really interesting problem,”
Pearlman said.6 “Because remember, there weren’t really but-
tons on the Internet” back then. (Digg’s thumbs-up icon and
Vimeo’s like button were among the few precursors;7 the smaller
social network Friendfeed launched a like button in 2007,8
though the Facebookers who were working on the awesome
button at the time insist they hadn’t noticed it.)

After delays, the team presented the awesome button to CEO
Mark Zuckerberg for final approval in November 2007. Zucker-
berg surprised them by rejecting it. In Bosworth’s version of the
story, Zuckerberg saw potential conflicts with Facebook’s pri-
vacy defaults (would likes be public or private?), a forthcoming
ad platform (the ill-conceived and ill-fated Facebook Beacon),
and the share button that Wable’s team was working on. He also
dissented on the name, preferring “like” to “awesome.”9

Callahan remembers at least a couple people inside Facebook
raising a concern that would prove prescient: they worried, he
told me, that “low-effort directional feedback,” in the form of
a “like” or “awesome” button, would “eliminate thoughtful en-
gagement, because people were lazy and would take the lazy
way out” if given the option.10

That might sound like a very post-2017 critique: the notion
that mindless clicks ought to be eschewed in favor of mean-
ingful interactions for the sake of democratic discourse and
our own well-being. But it’s not clear that anyone at Facebook

THE CURSE OF THE AWESOME BUTTON / 135

back then was laboring under the assumption that their prod-
uct design decisions would have world-historical implications.
Rather, they were focused squarely on building a better and
more engaging product than MySpace, and the crucial ques-
tion was whether replacing comments with clicks would aid or
inhibit that quest. The implicit assumption, according to Pearl-
man, was that what was good for Facebook’s users was good for
Facebook’s business, and probably good for the world.11

That set of assumptions—that tech startups were underdogs,
that they were forces for good, and that their success in business
would naturally coincide with bettering the world—was com-
mon in Silicon Valley at the time. Think of Google’s erstwhile
unofficial motto: “Don’t be evil.” But that blithe moral confi-
dence bred moral complacency. When you assume your good
intentions will entail good outcomes, provided only that you
succeed in outmaneuvering and outhustling your rivals, then
stopping to think too hard about what could go wrong is not only
unnecessary, it’s potentially ruinous, because it could prevent
the good guys—that is, you—from succeeding. (Google removed
“Don’t be evil” from its code of conduct in 2018.12)

For a time, it looked as though inertia might defeat Face-
book’s “props” initiative. By late 2008, people started joking
about the “curse of the awesome button,” said Soleio Cuervo,
a former Facebook designer who worked on it.13 “There was a
lot of concern internally that ‘liking’ was going to cannibalize
engagement.”

What saved the like button was, in true Silicon Valley fashion,
an appeal to data. In a test, Facebook data analysts found that
popular posts with the button actually prompted more interac-
tions than those without. Bosworth has suggested that this may
have been at least partly because likes on a post became a signal
for the news feed algorithm to show that post to more people.14
That finding turned out to be decisive. By February 2009, Zuck-
erberg had approved a final version of the like button, drawn as
a thumbs-up by Cuervo in Photoshop.

136 / CHAPTER 21

But coding the like button involved much more than just
drawing it. Each like had to be stored in databases that linked
it to both the post itself and the person doing the liking. Much
of the coding was done by engineer Jonathan Pines, with con-
tributions from another engineer, Tom Whitnah, and product
manager Jared Morgenstern.15

On February 9, 2009, Pearlman announced the like button’s
launch with a Facebook Note—the company’s version of a blog
post—titled “I like this.”16 She encouraged users to deploy it lib-
erally, and users complied. The like button was an instant hit,
and Facebook soon found ways to ingratiate it into the fabric of
not just its platform, but the Internet beyond. By the following
year, you could like people’s comments as well as their posts.17
The like button also became the default way to follow publishers
and brands on Facebook—and when you did, Facebook would
use your like to advertise those same pages to your friends.
In April 2010, Facebook unveiled a suite of “social plug-ins”—
including the like button—that allowed people to “like” pages
outside of Facebook itself.18 Years later, those plug-ins became
ad-tracking beacons, telling Facebook whenever a logged-in
user visited a site that sported a like button, so that Facebook
could use that information to target ads.19

The like button quickly became far bigger than even its
biggest-thinking creators had envisioned. Likes became expres-
sions of taste and identity. They became the driving force in an
increasingly potent and complex news-feed ranking algorithm:
the more likes a post got, the more people Facebook would show
it to. They became an asset for brands and advertisers. They
became a rich source of data for Facebook itself, telling the
company about each user’s preferences and browsing habits.

Perhaps most transformatively, likes became a powerful in-
centive for users of Facebook—a group that grew over the years
to nearly three billion.20 The like counter on each post became
an explicit measure of its popularity, and an implicit measure
of its value. Consciously or otherwise, users learned what sorts

THE CURSE OF THE AWESOME BUTTON / 137

of posts would rack up likes and wrote more like that, while
learning to avoid those that garnered only a few. Those users
included not just ordinary individuals, but public figures, cor-
porate brands, and media companies. Facebook’s news feed
algorithm became the single most influential distributor of in-
formation in many societies, and it spawned imitators, from
Instagram to Twitter to TikTok, until likes were everywhere.

In terms of sheer impact, the like button was one of the most
successful pieces of code ever shipped. But when you examine
the quality of that impact, its flaws become glaring. In building
a feature whose primary function was to simplify the terms of
interaction with online content, Facebook understood that it
risked cheapening engagement. What it failed to anticipate was
how it might lead to a cheapening of the content itself. The posts
that thrived uniquely in Facebook’s feed, fueled by quick-twitch
likes, were the ones that offered simple solutions to complex
problems, that offered scapegoats, that played on people’s bi-
ases and manipulated their emotions. Those that addressed
the same problems with nuance, with ambivalence, withered.

If failing to generate likes just meant losing a popularity con-
test on Facebook, likes might have been tolerable. But the star-
ring role that the company gave likes in the news feed algorithm
meant that the popularity contest was not one you could opt
out of. If your posts didn’t generate likes, they would be hidden
from people’s feeds—even your own followers’ feeds—and re-
placed by the posts of others who were all too willing to play the
manipulation game. Media companies laid off journalists21 or
even went out of business22 because they couldn’t compete on
Facebook, or because they refused to change their coverage in
the ways needed to do so. Facebook likely played a role23 in the
demise of local newspapers across the country, the rise and fall
of manipulative clickbait sites across the Web, and the shifting
of the entire media toward pandering, manipulative discourse.
And that discourse, in turn, likely played a role in facilitating
the rise of populist politicians expert at pandering to people’s

138 / CHAPTER 21

biases, fears, and base instincts. Their messaging, like Face-
book’s like button, works best when you don’t think too hard.

Facebook and other social networks are now experimenting
with removing like counters, or hiding them from public view.24
Whether that will undo any of the damage is not yet clear. Pearl-
man, for one, believes the real mistake was the counter; the
button on its own, she told me, would have been more benign.

So do she and the like button’s other creators regret develop-
ing it? Not exactly. It seems that most have come to believe, or at
least tell themselves, that it was more or less inevitable. Pearl-
man believes the harmful effects reflect human nature: “It’s my
belief we needed to play this out all the way, to see it and decide
to choose something else.”25 Callahan, similarly, suggested that
if Facebook hadn’t popularized the like button, someone else
would have.26 He acknowledged in the same breath that it feels
like a weak excuse.

Still, there’s probably some truth in it. Facebook wasn’t the
only company building social tools with the single-minded goal
of connecting as many users as possible and keeping them en-
gaged. Let’s say some 2007 company was building social net-
works around the idea that friction was necessary, that nuance
was a priority, that supporting democratic discourse was part
of their role, and that doing so might require them to eschew
features that would help them grow faster or become more ad-
dictive. Presumably, it would have quickly been outcompeted
by the others in an industry where scale and network effects
are critical to funding, ad revenue, and ultimately survival. It
probably wouldn’t be the dominant social network today. And
the engineers who designed its key features all those years ago,
never thinking that their products might have world-historical
implications, would have been correct.

22
The Bug No One Was
Responsible For—
Until Everyone Was
Josephine Wolff

On April 7, 2014, Colm MacCárthaigh was at work on the 14th
floor of Amazon’s Blackfoot building in Seattle when he was
paged for an emergency. MacCárthaigh was a principal engi-
neer at Amazon Web Services at the time, and the company
had just learned about a new software vulnerability in the code
underlying their encryption protocols—code used not just by
Amazon but by many other companies and websites worldwide.
Dubbed Heartbleed, the bug quickly became headline news as
software engineers like MacCárthaigh scrambled to patch their
products and services before attackers could take advantage of
the vulnerability to steal sensitive information like website cre-
dentials or credit card numbers. Amazon organized an emer-
gency response conference call and started rolling out patches
as quickly as possible, some within an hour of the call. Five
years later, in a Twitter thread, MacCárthaigh wrote that he still
recalled the day he learned about Heartbleed “vividly,” writing
that “[i]t felt like the internet was on fire.”1

Software vulnerabilities are discovered every day, but Heart-
bleed was different—it was a bug in a vital piece of security soft-
ware, used by everyone from major tech firms like Amazon to
tiny individual websites. The software affected by the Heartbleed
bug was the OpenSSL software library, a repository for code that
was used by many websites and other online applications to
encrypt traffic sent to and from their users. OpenSSL, which

140 / CHAPTER 22

implements the Transport Layer Security (TLS) and Secure
Sockets Layer (SSL) protocols to encrypt traffic sent between
computers, is widely used by website operators and app devel-
opers to encrypt traffic. TLS and SSL are encryption standards
that can be implemented using other code besides OpenSSL,
but many companies find it helpful to use the OpenSSL imple-
mentation rather than write their own from scratch. Part of what
makes OpenSSL code useful and popular is that it’s not owned
by any particular corporate entity—anyone who wants to im-
plement the TLS or SSL protocols can use it without having to
purchase a license or get permission. But that also means that
there’s no company or individual in charge of the code’s up-
keep—a problem that came to the fore in particularly dramatic
fashion in 2014 with Heartbleed.

The Heartbleed vulnerability was discovered by Google re-
searcher Neel Mehta. But its branding—the memorable name
and minimalist bleeding-heart logo—came from the Finnish
security firm Codenomicon, and it quickly became clear that
it was everyone’s problem. Because of Heartbleed, devices and
services that relied on OpenSSL to encrypt online communica-
tions were susceptible to leaking all sorts of sensitive informa-
tion from passwords and bank account numbers to the contents
of Emails. When MacCárthaigh and others first learned of the
vulnerability, it was unclear whether anyone had already started
exploiting it to steal information. But as soon as the bug became
public it was only a matter of time before someone would try.
Making matters worse, the bug affected millions of devices, es-
pecially Android phones, because OpenSSL was used so widely.2

Now, every single company that had used OpenSSL in its
products needed to update its code in order to protect its cus-
tomers. But many did not. And there was no way to force the
people who didn’t know how to fix the problem, or didn’t want
to bother, to take steps to patch their code. Years after the dis-
covery of Heartbleed, hundreds of thousands of devices and
servers were still vulnerable.

THE BUG NO ONE WAS RESPONSIBLE FOR / 141

One of the primary lessons of Heartbleed was that open-
source code like OpenSSL needed stronger institutional support
for security, rather than just relying on volunteer efforts to find
vulnerabilities. Years after its discovery, the Heartbleed vul-
nerability had been fixed on most devices and websites, but its
legacy was an important one for thinking about our reliance on
open-source software libraries and how we support the mainte-
nance and security of these sorts of crucial, shared resources.

Part of what makes the Heartbleed vulnerability so striking—
and part of the reason it led to so much soul-searching about
how to do a better job with open-source code—is its simplicity.
Much of it comes down to a straightforward idea about com-
puter memory and a single line of code in the C programming
language.

C is a very powerful language and also a terrifying (and often
tedious) one to program in, partly because you can use it to
directly manipulate a machine’s memory—that is, tell a com-
puter where to store certain bits in its memory or when to delete
them and free up that memory for new bits of information. This
can be a very useful and heady thing, but you also have to be
constantly worrying about whether you’ve allocated and freed
up memory correctly. That can be particularly hard to adjust
to if you first learned to program with languages like Java or

The Heartbleed code and the logo developed for the vulnerability.

142 / CHAPTER 22

Python that don’t require thinking about computer memory.
When you screw up memory management, one of two things
can happen—either the program won’t work and you’ll go back
to debugging to try to figure out where exactly you went wrong,
or, even more frightening, it will work perfectly, and it will never
even occur to you that you haven’t handled the memory man-
agement properly.

The latter is what happened in the case of Heartbleed. When
two computers are connected but not actively transferring data,
one will occasionally send the other a “heartbeat” request to let
the other know that they’re still connected. When that happens,
the computer that receives the request will respond, sending
back the same piece of encrypted information it received, to
confirm the connection. When that happens, the computer that
sends the initial heartbeat request lets the receiver know ex-
actly how long the piece of information they’re sending is. But
the OpenSSL software, crucially and terribly, forgot to verify
that the length information for the heartbeat data was actually
correct.

If that doesn’t sound so horrifying to you, it’s worth taking a
look at the actual line of code behind Heartbleed that instructed
the computer running it to copy the heartbeat request from a
block of data of a particular size that is stored in memory to a
new address:

memcpy(bp, pl, payload);

The memcpy() function performs the copying, the variable
called “bp” designates where the information is going to be cop-
ied to, the “pl” variable designates the source where the infor-
mation is currently, and the “payload” variable tells the program
how much data should be copied from the source address or, in
this case, how large the heartbeat is.

This works great so long as the computer sending the heart-
beat request isn’t lying about how much information it’s send-

THE BUG NO ONE WAS RESPONSIBLE FOR / 143

ing (and requesting back). In fact, one of the reasons no one
noticed Heartbleed for so long is that this code functions ab-
solutely fine so long as no one involved has any malicious in-
tentions. But if someone lies and claims to be sending a 60 KB
heartbeat when they’ve actually sent a 10 KB one, then things
deteriorate quickly. The receiver of that request would copy only
10 KB from the original heartbeat message but would use the
variable of 60 KB that the sender provided them to determine
how much information to send back to the sender. So they would
send back the 10 KB message, but they would also send back
another 50 KB from whatever was stored in its memory next to
those 10 KB—which could be nothing interesting whatsoever . . .
but could also be a confidential message or an important pass-
word or secret key.

The Heartbleed code is a chilling reminder of how hard it is
to work in languages that afford programmers the power and
responsibility of allocating and freeing up computer memory.
The fix is relatively straightforward: check to make sure that
the heartbeat message actually is as long as the sender says it
is before responding. But remembering to think that way—to
think like someone who would be deliberately trying to sub-
vert the code, to think about the computer’s memory and how
it works, to do both of those things at the same time—is often
the hard part.

The code that created Heartbleed and its consequences also
underscores just how easy it can be to let small coding mistakes
slip through the cracks when everything seems to be working
fine, and just how massive the ramifications of those seemingly
small mistakes can be. Finally, Heartbleed also reinforced for
giant technology corporations just how dependent they are on
open-source code and the crucial importance of finding ways
to protect and secure code that is not the clear responsibility of
any individual company or person. In the months that followed
Heartbleed’s discovery, 12 major technology firms, including
Amazon, Cisco, Facebook, Google, IBM, and Microsoft, pledged

144 / CHAPTER 22

to contribute more than $1 million per year to an endeavor
dubbed the Core Infrastructure Initiative, intended to support
open-source software like OpenSSL collectively.3 That’s not an
enormous sum of money, especially given the size of the compa-
nies involved, but it’s a great deal more than the roughly $2,000
in annual donations that OpenSSL received prior to Heartbleed
to support its upkeep.4

The technical vulnerability behind Heartbleed was relatively
straightforward. But the long-term solution for how we protect
and maintain valuable open-source code like OpenSSL will be
anything but simple. It will require the richest and most pow-
erful companies in the tech sector to work together with their
fiercest competitors, and to contribute time and money and
expertise to going over lines of code that they did not write but
must take responsibility for, nonetheless, or else no one will.

23
The Volkswagen
Emissions Scandal
How Digital Systems
Can Be Used to Cheat
Lee Vinsel

Word came down in September 2015: the prestigious German
automaker Volkswagen had misled regulators and the public
at large by using computer software to cheat air pollution tests.
Researchers from West Virginia University found that one Volk-
swagen was spewing between 15 and 35 times the legal limit
of nitrogen oxide, which can cause asthma, cancer, and heart
attacks.1

VW fans took it as a slap in the face. The company had long
touted its diesel vehicles as a green technology, meant in part
to compete with Toyota’s hybrid vehicles, most famously the
Prius. In VW ads, sleek cars raced against backgrounds of glo-
rious, mist-covered mountains, and mottos (“Like really clean
diesel”) hovered above the heads of happy, conscientious
consumers.

A study out of MIT found that excess nitrogen oxide emis-
sions from VW’s cheater cars would lead to over 1,200 prema-
ture deaths in Europe alone—people gasping their last breaths
from an asthma attack or grabbing their chests as their hearts
explode from the fight to breathe.2 That human toll is dramatic
enough, especially if we rewrite the headline, “Corporation
Toys with Computer Code and Murders over 1,000.” But on an-
other level, the Volkswagen emissions scandal shows us how

146 / CHAPTER 23

software has become a weapon firms can use to circumvent
regulations and the democratic values they embody. This open-
ing for immorality—call it “innovation” in the service of crime—
demands our attention.

In the United States, the regulatory context for Volkswa-
gen’s deceit was first set by the Clean Air Act Amendments of
1970. It was a law passed out of frustration and outright anger.
Researchers in California had discovered that automobiles
were responsible for Los Angeles’s famous smog and other
significant air pollution problems in the early 1950s. At that
time, legislators, policymakers, and others saw air pollution
as a local problem best handled by local decision-makers,
not federal ones. And anyway, strong traditions of American
liberalism made lawmakers extremely reticent to regulate
industry.

Thus began a nearly 20-year period of legislative ineffectu-
alness and industry resistance. Representatives at the local,
state, and eventually federal levels passed toothless law after
toothless law, and automakers swore to God on high that they
were doing all they could to fix the problem. In 1969, the US
federal government found that car companies were doing
just the opposite: the Justice Department brought a lawsuit
against the automakers under the Sherman Antitrust Act, ar-
guing that the firms were using a research-sharing agreement
perversely to guarantee that effective emissions controls
never reached the market.3

The modern US environmental movement reached a cre-
scendo in 1970. The first Earth Day was held. One of Ralph
Nader’s research groups published the book Vanishing Air,
skewering automakers as purposeful polluters and clean air
laws as feeble and hopeless. President Richard Nixon cre-
ated the Environmental Protection Agency. And legislators,
especially Senator Edmund Muskie, grew sick of industry in-
action and, in disgust, passed the Clean Air Act Amendments
of 1970, perhaps the strongest antipollution law created in

THE VOLKSWAGEN EMISSIONS SCANDAL / 147

US history. (The law would receive further important amend-
ments in 1990.)

The 1970 amendments were a clarion call for democratic
accountability. They required automakers to reduce specific
chemicals in emissions by 90 percent or face grave conse-
quences, including large fines and even an order to halt pro-
duction. Whether cars lived up to these requirements would be
settled via tailpipe emissions tests (which many of us get done
on an annual basis through state auto inspections).

The law obviously offered car companies strong incentives
to get their acts together and control emissions. The catalytic
converters that ride around on the bellies of our go-machines,
tempting thieves with their precious metals, are the product of
such efforts. But like all tests, for the unscrupulous, the law also
created strong incentives to cheat. And cheat the companies
did—indeed, almost immediately.

In 1972, staff members at the Environmental Protection
Agency discovered that automakers were using mechanical de-
vices to shut down emission controls under certain conditions.4
Customers would buy these cars without ever knowing that their
vehicle was usually out of compliance with pollution laws. To
give one example of how this could work: federal rules man-
dated that tests be conducted in ambient air conditions between
68 and 86 degrees Fahrenheit. All automakers had to do is add
devices that shut down emission controls when temperatures
fell outside this range. EPA staff members dubbed such cheats
“defeat devices,” and in January 1973, William Ruckelshaus,
the first EPA administrator, ordered automakers to remove all
defeat devices from their vehicles within 90 days.

As the defeat devices demonstrate, automakers didn’t re-
quire computers to commit crimes. But what many people do
not realize is that many years before we began yelling at our
vehicles, “Phone, CALL. MOM. No, no, no, I SAID . . . ,” computers
were successfully used to manage combustion. In fact, com-
puters were first added to automobiles because of air pollution

148 / CHAPTER 23

laws. In the late 1970s, automakers contracted with electronics
firms, like Motorola and Intel, to install microprocessors in cars.
Originally, the Big Three used computers only to control carbu-
retion, and later fuel injection, to shape vehicle emissions. Then
lawmakers—first in California in 1988 and then at the federal
level in 1990—mandated that new cars include computerized
onboard diagnostic tools, part of which became known as the
“check engine light,” perhaps the greatest icon ever of automo-
tive computerization.

Computers opened up new opportunities for cheating pol-
lution laws. If companies had been able to use mechanical
devices to snooker tests in the early 1970s, computers gave
them even finer control of how a vehicle would perform under
a range of conditions. Never one to pass up on an attractive
innovation, General Motors installed a computer chip on Ca-
dillacs in the early 1990s that turned off emission controls
whenever a car’s air conditioning or heater was turned on.5
The company knew full well that these systems were turned
off during tests. In 1993, the EPA discovered that the Cadil-
lacs produced three times the legal limit of carbon monoxide
when the air was running. In the end, General Motors paid a
$45 million fine for its deceit. But where GM innovated, others
would follow.

Enter Volkswagen. As New York Times journalist Jack Ewing
makes clear in his great book, Faster, Higher, Farther: How One
of the World’s Largest Automakers Committed a Massive and Stun-
ning Fraud, in the 1990s and trailing into the first decade of the
2000s, Volkswagen faced enormous headwinds and even finan-
cial insolvency. Executives there embraced a cutthroat, “by all
means necessary” approach to improving the company’s posi-
tion among competitors, including by placing their underlings
under tremendous pressure.6

In 2007, a VW executive announced the ambitious plan to
nearly double the number of vehicles it sold, from six million
to ten. Increasing the number of cars sold in the United States

THE VOLKSWAGEN EMISSIONS SCANDAL / 149

was central to this vision, and in a bid to appeal to environmen-
talists, the firm’s strategy came to focus on “clean diesel” cars.

There was a problem, though. Clean diesel cars weren’t . . .
clean. In 2007, a software engineer presented a PowerPoint at
a meeting in VW’s Research and Development building, show-
ing how they could use computers to recognize when a car was
being put through an emissions test. Emissions controls would
function effectively under testing conditions, but not otherwise.
When not being tested, so-called clean diesels could belch more
nitrogen oxide than a new diesel tractor trailer.

As one academic article notes, today “a premium-class auto-
mobile can contain more than 70 control units and 100 million
lines of code.”7 Engineers at Volkswagen changed code in its
Engine Control Unit, which was manufactured by Bosch and
was widely used in diesel passenger vehicles. The altered firm-
ware used sensors to monitor when a vehicle was under test
conditions and modified vehicle operations when it detected
an emissions test. It was nearly a decade before these deceptive
changes came to light.

The Volkswagen emissions scandal is a cautionary tale
about how digital systems can be used to circumvent rules
made under different technological realities. And of course, it
applies to much more than just cars. When regulations depend
on holding technological systems up to specific technical stan-
dards, firms can potentially use computers to spoof the test.
Moreover, many companies, including the automakers, insist
that the software in their products is covered by copyright and
not open to public scrutiny. Where regulations require light,
corporations demand opacity.

But the VW scandal raises questions that go far beyond cor-
porate malfeasance. The communications scholar M. C. Forelle
has found in her research that contemporary hot-rodders and
tuners hack the computer systems in their cars to improve per-
formance in ways that increase emissions beyond legal limits.8
Then, when the owners need to take their car in for an annual

150 / CHAPTER 23

inspection, they restore the software to factory settings—and
the car passes the test perfectly.

Regulations are a key tool democracies use to require tech-
nologies to live up to widely shared values. In many areas, com-
puterization forces us to ask, how can we ensure that the objects
around us conform to the demands we place on them?

24
The Code That Brought
a Language Online
Syeda Gulshan Ferdous Jana

August 17, 2005, was a day of terror in Bangladesh—and would
also be pivotal toward bringing Bangla, the language of Ban-
gladesh, online. It was a normal, busy office day in Dhaka, the
capital, when one of the employees at my company received a
call from his wife, saying that a small bomb had exploded in
their neighborhood. Minutes later, another employee received
a call about an explosion near his home, elsewhere in Dhaka.
Chilling rumors started spreading about terror attacks by Isla-
mist militants all over Bangladesh.

In fact, a small extremist group had exploded 500 bombs
in nearly all of Bangladesh’s 64 districts simultaneously. Word
spread through mobile phones and one-to-one conversations,
but it took several hours before TV news provided reliable up-
dates and a full day before they became available in the online
newspapers . People were frantic, searching for information to
assess the risk for themselves, their families, and the country.

That was when we, the small team of the newly started so-
cial media company called “Somewhere in . . . ,” saw the need
for a citizen media: a real-time, dynamic online blog commu-
nity. While my teammates discussed possible ways to meet that
need, I realized there was a technical problem. At the time, there
was no way for most people to write in Bangla online.

Bringing Bangla—the language of the liberal, Muslim-
dominated country Bangladesh and the world’s sixth largest
language—online helped create a unique and vibrant blogo-
sphere that allowed people to access information and, more

152 / CHAPTER 24

importantly, express themselves. But it only happened because
of some lines of code—or, more accurately, the people behind
those lines of code. I’m proud to say that I am one of those people.

In December 2005, four months after the attacks, we
launched the blog community platform somewhereinblog.net.
It was the first of its kind in Bangladesh and the first to offer
Bangla text entry, dynamic content, and user interaction. The
platform and concept became highly influential, and both loved
and hated. Our blog community offered a common front page
displaying extracts of the latest posts from any of the bloggers,
as well as an easy way to enter Bangla text, including phonetic
and virtual Bangla keyboards.

This was revolutionary. Back in 2005, JavaScript had limited
power, and it worked differently in all of the mainstream brows-
ers like Internet Explorer, Firefox, and Opera. Bangla keyboard
software for desktop use had become available via floppy discs
a year earlier, but only experts could tweak blogging software
like Blogspot and WordPress to accept and display this text.

Thanks to the Bangla phonetic keyboard developed in-house
by Hasin Haider, our lead programmer, users could now type
phonetic Bangla using any standard English keyboard and it
would convert to Bangla on-screen. Our developers’ main focus
was to keep the code minimal, so that it would function properly
across all browsers. This is how it worked: We captured key-
strokes using the keyDown event, and then we calculated the
equivalent phonetic representation of those keystrokes from an
array. Finally, in the active text area, where the user was typing,
we appended those Bangla characters at the position of the cur-
sor, which was tricky at that time because every browser had to
process the text differently. This was the most challenging—and
important— part of the whole project.

We did not want to keep this powerful tool to ourselves. Our
head developer released the code as open source, and we en-
couraged others to use it for free, to help cement Bangla’s place
online.

BRINGING A LANGUAGE ONLINE / 153

Our Bangla Blog Community concept became so popular that
nearly 30 other similar platforms later sprang up. In total, I es-
timate that there were about 300,000 Bangla blogs at the peak
of blogging in 2013, with about 50 percent on our platform. The
addition of new platforms was something we supported and
encouraged as part of our goal to enrich the Bangla blogosphere
and help each blogger find a place to belong. Over the years, we
saw many bloggers gain the courage to publish their own books
after receiving encouragement from the community to develop
their writing.

A typical Bangla blogger could best be characterized as 25
to 35 years of age, educated, working, and deeply engaged in
supporting the country’s development. Journalists, activists,
students, politicians, teachers, writers, and others used the blog
communities for research and opinion metering. Our bloggers
wrote posts and took part in discussions in the comments about
current events, social injustice, taboo-related social issues,
women’s empowerment, and corruption, but they also wrote
beautiful poetry, colorful short stories, and insights into the
lives of ordinary people. People did not blog for themselves, but
for the whole blog community.

In collaboration and discussion with the bloggers, we created
a set of rules and a “trust scale.” Trust would be earned if writ-
ers obeyed the rules, and trust would be reduced for violations,
with the trust score gradually rebuilding itself after it had been
reduced. We had four categories on the trust scale. Blogs on
the “green list” and “watch list” would appear on the blogger’s
personal page as well as the common front page, visible to all.
For “watch list” blogs, moderators would review posts soon after
posting for content control. We had a “red list” for blogs that had
multiple or gross violation of the rules; these posts would not
appear on the common front page until enough days had passed
to restore the blog to a higher list status. Finally, we had a “black-
list” for permanent closure. For instance, one way to get on the
blacklist was to post against the freedom and independence of

154 / CHAPTER 24

the country—a criminal offence in Bangladesh. In this way we
managed to establish blog etiquette and maintain freedom of
expression with a minimum of moderator interference.

It was not easy to promote freedom of expression in Bangla-
desh. The nation had a very painful birth in 1971. The popula-
tion was, and is, quite polarized in terms of political belonging
and religious beliefs; many different groups claim to be the
arbiters of truth.

We moderated posts based on the trust scale and also re-
viewed reports of abuse. Not much was removed, and often
active and open participation in the debates by our team was
sufficient to ensure that the conversation did not turn nasty.
Still, our moderation was criticized many times. Even more
often, we were criticized for not moderating. It is dangerous to
moderate opinions, and we always strove to limit moderation
to cases of hate speech and clear violations of the rules—rules
that the blog community had been part of shaping. The problem
was that neutrality is a vague term in a highly polarized nation.

The peak of Bangla blogging came in 2013, when—after years
of demands from bloggers—a war-crime tribunal was launched,
42 years after the liberation of Bangladesh. Until then, the war
criminals from the genocide carried out against the nation
roamed freely through the country, some of them even serv-
ing as ministers in the Bangladesh Nationalist Party alliance
government from 2001 to 2006. Upon hearing the news of a
lenient verdict for one of the worst war criminals, Bangla blog-
gers called for a sit-in demonstration in Dhaka, demanding the
highest punishment for the war criminals and a ban on Isla-
mist politics and institutions. On the first night, 100 bloggers
gathered at the busy Shahbag intersection in downtown Dhaka.
The next night, perhaps 1,000 showed up. Within a few days,
hundreds of thousands from all walks of life came to join the
sit-in.1 This was seen as a threat by the nationalistic parties and
religious groups; many of those on trial were their leaders. Ten
days into the uprising, an atheist blogger was killed,2 and his

BRINGING A LANGUAGE ONLINE / 155

“anti-Islam” writings were published by conservative media. In
the years to come, bloggers were collectively tagged as atheists3
and anti-Islam.4 In response to a massive religious counter-
demonstration against bloggers,5 the progressive government
jailed a handful of atheist bloggers, and it was reluctant to seek
justice for the 25 or so bloggers and other prominent minority
personalities who were killed.6 At the same time, advertisers
began to shy away from blogs, possibly under pressure from
intelligence forces, restricting ad income for blogs and thereby
making it hard to survive for most platforms. Somewhere In . . .
is one of the few still operating, despite being blocked for a year
by the authorities.7

For us, intimidation and threats came with the job. Our phones
were tapped, our every move was shadowed, and we received
numerous death threats through phone calls and Facebook. In
the broad sense, these were confirmations and compliments
indicating that the work we did had a real impact and influence
on society. Freedom of expression is one of the most important
pillars of a democracy and is an asset for any government to
understand the sentiments of the people. Unfortunately, that
opportunity was greatly missed in Bangladesh, which continues
to lose ground on the press freedom index year by year. With the
moral support of the Google Government Affairs and Public Pol-
icy team, in March 2013 we launched what is possibly the first
Transparency Report of any Asian digital platform, half a year
before Yahoo launched the first in the United States. Perhaps
because of the transparency report, which would shed light on
government interference, Somewhere In . . . has experienced
significantly less intimidation since 2013.8

In retrospect, these lines of code affected the lives of millions,
mostly in a positive way, but it put others in danger for their
activism or just for their beliefs. Still, the feeling of empowering
people is the highest reward, which we have reaped for all of
these years.

25
Telegram
The Platform That Became
‌“the Internet” in Iran
Mahsa Alimardani and Afsaneh Rigot

Since the introduction of the Internet to Iran in the late 1990s,
Iranian authorities have seen it as a threat to national security
and have been preoccupied with finding innovative ways to
control it.1 Iran’s head of state, the Supreme Leader Ayatollah
Khamenei, regularly says in his sermons that the Internet is a
space that Iran’s enemies try to infiltrate with “psychological
warfare.”2 This is the pretext for all the censorship and infor-
mation controls the Islamic Republic tries to apply online—that
they are trying to protect the country from “Western” attacks
that turn Iranians against the Islamic Republic.

Over the past three decades, there have been countless ex-
amples of digital censorship and surveillance in Iran. But none
better demonstrates the peculiarities of Iran’s Internet condi-
tions than the messaging and social media application Tele-
gram and how it has affected Iranian society and politics. Few
technologies have generated as much concern among Iran’s
leaders as Telegram, which has functioned as both a friend and
threat to the regime—and to the Iranian Internet users trying to
evade the government’s censorship, targeting, and monitoring
efforts. At the heart of Telegram in Iran is a story of Iranian
ingenuity, as users found ways to resist the confines of author-
itarian controls.

Telegram was launched in 2013 by Pavel Durov and his
brother Nikolai. When they launched the platform, they prom-

Telegram / 157

ised it would be both “secure and fun.”3 To fulfill the “fun” part,
they aimed to create a community around the technology. As
part of that, they left their API open, so other developers could
make their own third-party versions or add additional features
on the application.4 (An API is an Application Programming In-
terface, and in keeping it open, Pavel and Nikolai allowed out-
side software, operating systems, and microservices to interact
with the app itself.) This allowed developers to create a whole
host of new features that made the platform extremely popular
among Iranians, like custom Persian stickers or bots that could
generate searches and queries for you in an instant. The latter
was of particular use to Iranians: they could use Telegram bots
to quickly and easily access information, without having to turn
to browsers or search queries that could be extremely cumber-
some on Iran’s famously slow and brittle Internet. The bots were
all the more useful when people wanted to engage in anything
that would be taboo on the Iranian Internet—like finding por-
nography or researching sensitive topics like religion. However,
the same open API would later allow developers affiliated with
Iranian authorities to create their own “forks,” or third-party
versions of the application that would eventually compromise
the data and privacy of users in Iran.5

In September 2015, Telegram launched a new feature that
changed Iran’s communication and social media landscape pro-
foundly: channels. Telegram channels are like forums, except
that administrators are able to post messages, but other users
are not. Channels allow administrators to broadcast messages
to an unlimited number of subscribers.6 Soon it became impos-
sible to have any sort of media presence in Iran without hosting
a Telegram channel. Media organizations whose websites were
censored in Iran, such as BBC Persian, could upload entire arti-
cles or broadcasts to their Telegram channels, where they were
followed and viewed by millions of users inside Iran. Telegram
allowed for uncensored transfer of large files, media, and com-
munications to millions of Iranian users with unprecedented

158 / CHAPTER 25

speed and ease. (Competitors like WhatsApp and Viber didn’t
accommodate as many types of files, for instance.) By 2017,
Iran’s Ministry of Information Communications and Technology
announced that Telegram use inside of Iran made up 15 percent
of all of Iran’s international Internet traffic.7

As early as 2015, Iran’s politicians, officials, and state media
organs started to express concern over the free flow of unfil-
tered information Telegram provided to users. Iran’s filtering
committee—a multiagency body that recommends what should
be censored—repeatedly deliberated blocking Telegram.8 At
times, Telegram even cooperated with the government guide-
lines, such as when it censored porn bots only in Iran;9 removed
a channel heavily involved in protest mobilization during Iran’s
2017–18 nationwide protests;10 and, finally and most critically,
began hosting their content delivery network servers in Iran in
2017.11 Telegram was officially banned in April 2018 on national
security grounds,12 though the real reason was presumably the
role it played during the 2017–18 antigovernment protests.13 At
that point it had effectively become “the Internet in Iran.”14 Even
though the government has blocked it, as of late 2021 Telegram
remains one of the most used applications in Iran, thanks to
circumvention tools like virtual private networks.15

Telegram came to prominence under the guise (or branding)
of a “secure messenger” that used end-to-end encryption. But
from the start, there was confusion as to how secure Telegram
actually was. By default, the messenger relied on plain text
messaging that was not encrypted—users had to turn it on in
private chats. Some of Telegram’s most popular features, such
as channels and bots, didn’t use any security protocols.16 There
were also questions from leading security researchers about the
effectiveness of Telegram’s end-to-end encryption protocol.17

But Western security experts’ discussions about these flaws
were frequently misleading. In the West, conversations about
the security and safety of messaging platforms revolve around
the strength of the tool’s encryption infrastructure and its han-

Telegram / 159

dling of user data. But in Iran, law enforcement doesn’t bother
cracking encryption protocols to identify and arrest people—it’s
more straightforward than that. Instead, they weaponize the
app itself by infiltrating groups and channels (either through
fake accounts, social engineering, or similar methods) and then
identifying admins and users.

These approaches are particularly dangerous for people who
are already at risk, such as members of queer communities.
LGBTQ+ Iranians are marginalized and face legal threats for
living their lives, while having no access to queer platforms
like Grindr or Manjam. As the center of online communication
in Iran, Telegram quickly found use as a queer dating app,

A map of the National Information Network, effectively an Iranian Internet that is
hosted domestically, with restricted access to outside content. The Iranian government
is able to impose shutdowns, in which key services—banking, e-commerce, messag-
ing and streaming apps—remain intact, but access to international media is denied.

160 / CHAPTER 25

information hub, and community connector. This in part was
due to its perceived security.18 But that security was largely an il-
lusion. In 2016, the website for the Revolutionary Guards’ cyber
unit warned that “sodomites are parading on Telegram in the
shadow of officials’ negligence.”19 They published screenshots
of LGBTQ Telegram groups allegedly used for dating, including
profiles of people from these channels. The article also warned
that some of these groups were trying to “promote” homosexu-
ality while working to secure “recognition and rights for homo-
sexuals.” In another report in 2017, a prosecutor from the city of
Ardebil told the Tasnim News Agency that “six administrators
of Telegram channels have been arrested in Ardebil” over pro-
moting sodomy and immorality.20 Many queer-focused groups
were infiltrated by law enforcement personnel, who gained ac-
cess to the groups’ content. Group and channel admins were
identified, and many reported getting warnings and subpoenas
sent to them after they were identified. Others were arrested.21

Since the 2018 censorship of Telegram and queer-focused
dating apps, the community has had to revert to using even
riskier online tools, such as forks like Telegram Talaei and Hot-
gram. In order to access blocked dating applications, messag-
ing, or social platforms like Telegram, queer people have had to
rely on virtual private network and proxy services. But reports
suggest that some popular VPN and proxy services are tied to
Iran’s authorities and have been revealed to have recorded user
data—major security risks to groups already disproportionately
in danger.22

Today, Telegram’s role in Iran has faded somewhat from
its peak. According to the most recent Internet statistics,
WhatsApp23 is now the most used social application in Iran.

During its heyday, Telegram became an all-encompassing
hub of commercial, social, and political life, facilitating some
of the most fragile and intimate connections for people in Iran,
including for some of the most marginalized. The impact of
Telegram’s technology wasn’t necessarily due to its “code” or

Telegram / 161

infrastructure. It came from the way that Telegram filled in the
gaps of Iran’s heavily censored Internet—but those gaps could
also be traps. Telegram could be both a lifeline, when used in-
geniously by the people of Iran—or a prison sentence, when
weaponized by law enforcement.

The authors would like to thank Sayeh Isfahani for the research contri-
butions and translations as part of the bigger research project Afsaneh
Rigot is conducting on Queer communities and the impact of tech in
MENA.

26
Encoding Gender
Meredith Broussard

Jonathan Ferguson, a 40-year-old technical writer at the Min-
istry of Supply in London, made UK headlines in 1958 when
he formally announced his gender transition. “His birth reg-
istration has been amended from ‘female’ to ‘male’ and his
new Christian name inserted into the register,” reported the
UK’s Daily Telegraph and Morning Post. This quote, which I read
in a paper by scholar Mar Hicks called “Hacking the Cis-team:
Transgender Citizens and the Early Digital State,”1 has stuck
with me because it suggests ease.

In 1958, Ferguson’s interaction with the state around his
transition involved changing a form and issuing a card. It’s not
dissimilar to the way that a name or gender change is handled
today—though the paperwork and expense now are far more
substantial. From a sociotechnical perspective, Ferguson’s
card resonates because it reminds me that 1950s culture still
governs our lives today through the design of large bureau-
cratic computer systems. This is particularly true when it
comes to interacting with the government. Despite advances
in concepts of gender, and advances in LGBTQIA+ rights, most
computer systems still encode gender as a binary value that
can’t be changed. The next frontier in gender rights is inside
databases.

Computing as we know it today started in 1951, when the
Census Bureau started running the first commercially produced
digital computer, UNIVAC. Back then, gender was generally con-
sidered fixed. If you filled out a paper form, it asked for your
name and offered you two choices for gender: male or female.
You could pick one. Computer programmers used those same

ENCODING GENDER / 163

paper forms to design computer databases, and when you de-
signed a record for a database, it looked something like this:

Firstname

Lastname

Gender (M/F)

Address 1

Address 2

Zip

This was how computer database design was taught through
the 1990s, when I learned programming. Now, we have a more
comprehensive understanding of gender, and an increasing
number of companies are embracing inclusive design princi-
ples that allow users to self-identify in databases as nonbinary,
transgender, genderqueer, and other terms that encompass
a range of LGBTQIA+ identities. However, there are artifacts
and idiosyncrasies inside computational systems that serve as
barriers to implementing truly inclusive design. Most of these
problems come from the way that 1950s US and UK social per-
spectives informed how computer schemas were created.

Most of the intellectual history and the dominant social atti-
tudes in the field of computer science can be found in a single,
sprawling database published by the Association for Computing
Machinery (ACM). The earliest mention of gender in the ACM
Digital Library comes in 1958, in “The Role of the Digital Com-
puter in Mechanical Translation of Languages.”2 It had to do
with translation and pronoun matching in translation—and for
the next 20 years, all mentions of gender have to do with trans-
lation. In other words, even though sweeping social change hap-
pened in the 1960s and 1970s, academic computer science (and
for the most part, the computer industry) pointedly ignored the
topic of gender except to think about how a computer might
accurately translate gendered pronouns from one language to
another.

164 / CHAPTER 26

When same-sex marriage was legalized in the United States,
it required changing thousands of database schemas. The da-
tabase redesign process was informally called Y2gay. Most da-
tabases were set up to only allow marriages between men and
women; changing the law required changing those databases
to comply. The name Y2gay is a reference to the Y2K problem,
which occurred in the 1990s when people realized that most
databases and code stored the date as two digits, using an im-
plied prefix of 19. Changing over to the year 2000 was going to
screw up an awful lot of code.

Facebook, which began as a kind of “Hot or Not?” for male
undergraduates to rate women, was among the first social
media companies to allow users to change their names and
gender identity, both of which are required at signup. Although
its software allows users to self-identify on their profiles as one
of more than 50 different genders, the way the system actually
stores the data is that each user is recorded (and sold to adver-
tisers) as male, female, or null.

The reason for this has to do with both hegemonic heteronor-
mativity and math. Everything you do on a computer is secretly
math. Many computer programs exist to slot people into neat
categories in order to do data analysis, creating a tension be-
tween the messiness of the “real” world and people’s shifting
identities. This is most obvious when it comes to the gender
binary and binary representation in computer systems.

You know the gender binary: the idea that there are two gen-
ders, male or female. Binary code is also the system that powers
computers. In a binary numeral system, there are only two num-
bers: 0 and 1. The numbers 0 through 4 look like this in binary:

0:	0

1:	1

2:	10

3:	11

4:	100

ENCODING GENDER / 165

Computers are powered by electricity, and the way they
work is that there is a transistor, a kind of gate, through which
electricity flows. If the gate is closed, electricity flows through,
and that is represented by a 1. If the gate is open, there is no
electricity, and that is represented by a 0. I’m simplifying it dra-
matically, which will enrage a certain kind of nerd, but here’s
the gist: this unit of information, a 1 or 0, is called a bit. There
are 8 bits in a byte (except when there aren’t), and a million
bytes in a megabyte. This is how we talk about memory space in
computing. Programmers are always thinking about how much
memory space a program takes up or how much data can be
stored because space on a computer is finite.

Different arrangements of bits can be mapped to letters or
numbers. In the United States, the most common mapping is
called ASCII. In ASCII, the letter A is represented as 01000001.
My first name, Meredith, looks like this in the ASCII version of
binary representation:

01001101 01100101 01110010 01100101

01100100 01101001 01110100 01101000

When a computer stores information about the world, we
call that information data. Data is stored inside a database. In a
database, every piece of data has a type, and usually the rules
for that type are very strict. In the very simplest form, we can
think of data as being of three types: letters, numbers, or binary
(0 or 1) values. A binary value is often referred to as a Boolean,
named after a nineteenth-century guy named Charles Boole
who invented a system of logic that only uses 1s and 0s. If you
want to use data in a computer program, you feed that data to
a thing in the program called a variable. Variables also have
types, and those types are strictly governed by the rules and vo-
cabulary of a specific programming language. While their rules
may be different, all programming languages have the same
essential forms, meaning that they all on some level translate

166 / CHAPTER 26

keyboard strokes, mouse movements, variables, data, and so on
into binary. This is why a computer can’t work without power.

So: in order to store data, we have to declare variables of a
certain type inside a database. Speaking loosely, the types are
string (meaning text, as in a string of letters), or number, or
binary (aka Boolean). Boolean variables are used when a value
is true or false, and are represented as 1 (true) or 0 (false). That
looks something like this:

Firstname [string]

Lastname [string]

Gender [Boolean]

Address 1 [string]

Address 2 [string]

Zip [number]

In our sample database record above, we’d have to make cer-
tain decisions about each field. What type of data goes into each
field? How large does each field need to be to hold the intended
data? Who can enter the data? Who can change the data? Under
what circumstances can the data be changed? Which fields can
be edited, and which are fixed? Someone decides these factors
every single time a database is created. But though they may
seem mundane, these decisions can be consequential. This is
not about math, but about implementing human social values
inside a mathematical system. The question becomes: Whose
values are encoded in the system?

In a paper called “The Misgendering Machines: Trans/HCI
Implications of Automatic Gender Recognition,”3 scholar Os
Keyes read and analyzed all of the top academic work on au-
tomated gender recognition from 1995 to 2017 and found that
the overall assumption is that gender is binary, immutable, and/
or physiological.

Rigid assumptions about cisgender heteronormativity are
amplified inside databases because even something as seem-

ENCODING GENDER / 167

ingly small as choosing free text entry versus a dropdown has
implications. A letter occupies more bits and thus takes up more
memory space. Today, it’s easy to ignore memory concerns, but
until the late 1990s computer memory was expensive. Using a
Boolean variable is extremely efficient. A 0 or 1 takes up less
space than 01001101 (M) or 01000110 (F).

If you are designing code for maximum speed and efficiency
using a minimum of memory space, you try to give users as few
opportunities as possible to screw up the program with bad data
entry. A Boolean for gender, rather than a free text entry field,
gives you an incremental gain in efficiency. It also conforms to
a certain normative aesthetic known as “elegant code.”

That aesthetic of “elegant code” is specifically exclusionary
to someone like Zemí Yukiyú Atabey, who identifies as gen-
derqueer and nonbinary. Atabey’s pronouns are ze (where is
ze?) zeí (zeí isn’t coming today, sorry) and zem (I don’t have
the tickets, I gave them to zem). “As a nonbinary person, there
is no option most of the time,” ze says of entering personal in-
formation in databases. Microsoft Word, the program I used to
compose this essay, marked all of Atabey’s pronouns with the
red squiggly underline, meaning that the people at Microsoft
who wrote Word do not recognize Atabey’s pronouns as accept-
able English words, even though the genderqueer community
has been suggesting ze and hir as pronouns for at least 20 years.

I met Atabey when ze was a graduate student. New York Uni-
versity, Atabey’s school (and my employer), is among the most
progressive universities when it comes to gender identity. Stu-
dents can change their gender identity in Albert, the student
information system.

In the Albert documentation, a distinction is made between
legal sex (“a person’s sex as currently indicated on a birth certif-
icate, passport, or other official document”) and gender identity
(“the gender with which a person identifies”). It notes, “One’s
gender identity may or may not differ from one’s legal sex which
is assigned at birth based on biological characteristics.”

168 / CHAPTER 26

Making this change was a complex matter. Most university
student information systems—the core that everything feeds
off of—were set up in the 1960s and haven’t been overhauled.
Changing them is complicated and expensive. It is absolutely
possible to update university systems to encompass gender
identity, just as it is possible to update financial systems, in-
surance systems, health systems, government systems, and
every other system that relies on legacy design. It’s a matter of
will and funding.

The will to change is being achieved at long last through law-
suits and legislation. As of this writing, a third gender option, X,
on official state documents has been mandated in 19 US states
and in Washington, DC. Unfortunately, change is slow, and adop-
tion is spotty. Even after the legislation is passed, more lawsuits
have followed to force compliance. In March 2021, a group of
New Yorkers sued because the databases that control access to
Medicaid, food stamps, and other public assistance don’t in-
clude the X option. “Any time I need something as simple as
food or to make a doctor’s appointment, I basically am forced
to misgender myself, to be misgendered. And this takes a toll,”
coplaintiff Jaime Mitchell said.4 Mitchell, who is nonbinary, was
able to get their birth certificate with an X but was forced to
declare themself male or female in order to get public benefits.

Lines of code can change the world, absolutely. In celebrating
that fact, we need to also look at the way lines of code make cul-
ture incarnate and make social change much harder. Computer
systems are not just mathematical, they are sociotechnical, and
they need to be extensively updated on a regular basis. Just like
humans.

Acknowledgments

This book would not have been possible without Slate’s Lowen
Liu. Lowen came up with the idea for the 2019 Slate article that
inspired this book, “The Lines of Code That Changed Every-
thing,” which was made up of 33 blurbs about particularly sig-
nificant lines of code. But the article also could not have hap-
pened without other Slate folks, some of whom are now at other
publications: Jonathan Fischer, April Glaser, Jared Hohlt, Jane
C. Hu, Lisa Larson-Walker, Aaron Mak, Susan Matthews, Molly
Olmstead, Faith Smith, and Megan Wiegand all wrote blurbs,
helped wrangle and edit, directed the art, and/or kept me from
losing my mind. Elena Botella, who had only just started at Slate,
not only wrote several entries—one of which she expanded on
for this book—but fact-checked the code and kept the project
in motion. Thank you, all!

The original Slate article also contained blurbs by an ab-
solutely brilliant group of contributors: Arthur Daemmrich,
Charles Duan, James Grimmelmann, Thomas Haigh, Amanda
Levendowski, David S. Levine, Charlton McIlwain, Chris Noes-
sel, Rusty D. Pickens, P. W. Singer, Nikki Stevens, Ellen Stofan,
Clive Thompson, Lav Varshney, Sara Wachter-Boettcher, Ari
Ezra Waldman, Josephine Wolff, Jamie Zawinski, and Ethan
Zuckerman. Your work and your passion for it inspires me.
Some of those write-ups have been expanded into essays here,
but I wish we could have included all of them.

PUP’s Hallie Stebbins saw the original Slate article and asked
me, “Have you thought about making it into a book?” I hadn’t
thought about it, and it seemed an insurmountable challenge—
but here we are. I definitely couldn’t have done it with any other
editor. Thank you also to Kelly Chudler for the absolutely inspir-
ing illustrations, Michele Rosen for the fantastic copy editing,
and Natalie Baan for production—it was a joy to work with all
of you.

170 / Acknowledgments

I am grateful to all of the folks at (or formerly of) New America
and Arizona State University who have supported Future Tense
for more than a decade, including but very much not limited
to Michael Crow, Jim O’Brien, Ed Finn, Joey Eschrich, Anne-
Marie Slaughter, Steve Coll, Fuzz Hogan, Alison Yost, and many,
many more. In particular, Andrés Martinez, my longtime boss
and friend, has offered me tremendous support in this project
and so many others—thank you for not only encouraging me to
try new things, but always helping me figure out how to make it
work, even if it requires more phone calls than I would prefer.

And thank you above all to Nick, Brian, Kirstin, Fiona, Neve,
my late parents (my mother would have been thrilled to see it
officially noted in a book that she spotted the Y2K problem long
before 1999), Bob, Diane, and, of course, Chris. Chris, I am the
luckiest.

Notes

Preface

	 1	 For more details about RSA, see James Grimmelmann’s essay, “Wear This Code,
Go to Jail,” in this book (chapter 16).

Introduction

	 1	 Steve Lohr, “John W. Backus, 82, Fortran Developer, Dies,” New York Times, March
3, 2007, last accessed January 20, 2022, https://​www​.nytimes​.com​/2007​/03​/20​
/business​/20backus​.html.

	 2	 Lohr, “John Backus.”
	 3	 “John Backus Quotes,” quotefancy, last accessed January 20, 2022, https://

quotefancy​.com​/quote​/1745630​/-John​-Backus​-I​-myself​-have​-had​-many​-failures​
-and​-I​-ve​-learned​-that​-if​-you​-are​-not​-failing.

	 4	 “The automatic operations of System 1 generate surprisingly complex patterns
of ideas, but only the slower System 2 can construct thoughts in an orderly series
of steps.” Daniel Kahneman, Thinking Fast and Slow (New York: Farrar, Straus &
Giroux, 2013), 23.

	 5	 “Unix,” Wikipedia Foundation, last edited November 21, 2021, 05:59 (UTC), https://
en​.wikipedia​.org​/wiki​/Unix.

	 6	 “Bell Laboratories,” Britannica, last accessed January 20, 2021, https://www​
.britannica​.com​/topic​/Bell​-Laboratories​.

	 7	 “The C Programming Language,” Wikipedia Foundation, last edited January 8,
2022, 19:13 (UTC), https:​//en​.wikipedia​.org​/wiki​/The_C_Programming_Language.

	 8	 Shishir Prasad, “Brian Kernighan: No One Thought C Would Become So Big,”
Forbes India, updated February 27, 2014, https:​//www​.forbesindia​.com​/interview​
/special​/brian​-kernighan​-no​-one​-thought​-c​-would​-become​-so​-big​/29982​/1​.

	 9	 “History of the Internet,” Wikipedia Foundation, last edited January 15, 2022,
17:58 (UTC), https://en​.wikipedia​.org​/wiki​/History_of_the_Internet.

	10	 “The Risks Digest,” Vol. 32, Association for Computing Machinery, Committee on
Computers and Public Policy, Peter G. Neumann, moderator, January 16, 2020,
https://catless​.ncl​.ac​.uk​/Risks​/32​/index.

	11	 Bruce Schneier, “Schneier on Security,” Cryptogram Newsletter, last accessed Jan-
uary 20, 2022, https://www​.schneier​.com/crypto​-gram/.

	12	 Nicole Perlroth, They Tell Me This Is the Way the World Ends: The Cyberweapon Arms
Race (New York: Bloomsbury, 2021), quoted in Jill Lepore, “The Next Cyberattack
Is Already Under Way,” New Yorker, February 8, 2021, https://www​.newyorker​.com​
/magazine​/2021​/02​/08​/the​-next​-cyberattack​-is​-already​-under​-way.

	13	 Raphael Satter, “US investigators probing breach at code testing company Codecov,”
Reuters, April 16, 2021, https://www​.reuters​.com​/technology​/us​-investigators​
-probing​-breach​-san​-francisco​-code​-testing​-company​-firm​-2021​-04​-16/.

https://www.nytimes.com/2007/03/20/business/20backus.html
https://www.nytimes.com/2007/03/20/business/20backus.html
https://quotefancy.com/quote/1745630/-John-Backus-I-myself-have-had-many-failures-and-I-ve-learned-that-if-you-are-not-failing
https://quotefancy.com/quote/1745630/-John-Backus-I-myself-have-had-many-failures-and-I-ve-learned-that-if-you-are-not-failing
https://quotefancy.com/quote/1745630/-John-Backus-I-myself-have-had-many-failures-and-I-ve-learned-that-if-you-are-not-failing
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/Unix
https://www.britannica.com/topic/Bell-Laboratories
https://www.britannica.com/topic/Bell-Laboratories
https://en.wikipedia.org/wiki/The_C_Programming_Language
https://www.forbesindia.com/interview/special/brian-kernighan-no-one-thought-c-would-become-so-big/29982/1
https://www.forbesindia.com/interview/special/brian-kernighan-no-one-thought-c-would-become-so-big/29982/1
https://en.wikipedia.org/wiki/History_of_the_Internet
https://catless.ncl.ac.uk/Risks/32/index
https://www.schneier.com/crypto-gram/
https://www.newyorker.com/magazine/2021/02/08/the-next-cyberattack-is-already-under-way
https://www.newyorker.com/magazine/2021/02/08/the-next-cyberattack-is-already-under-way
https://www.reuters.com/technology/us-investigators-probing-breach-san-francisco-code-testing-company-firm-2021-04-16/
https://www.reuters.com/technology/us-investigators-probing-breach-san-francisco-code-testing-company-firm-2021-04-16/

172 / NOTES TO INTRODUCTION

	14	 Andy Greenberg, “The Full Story of the Stunning RSA Hack Can Finally Be Told,”
Wired, May 20, 2021, https://www​.wired​.com​/story​/the​-full​-story​-of​-the​-stunning​
-rsa​-hack​-can​-finally​-be​-told​/,

	15	 Greenberg, “Full Story.”
	16	 Perlroth, They Tell Me.
	17	 “FORTRAN: The Pioneering Programming Language,” IBM 100, last accessed Jan-

uary 20, 2022, https://www​.ibm​.com​/ibm​/history​/ibm100/us​/en/icons/​fortran/.
	18	 Sarah Pruitt, “What Went Wrong on Apollo 13?,” History.com, updated April 13,

2020, https://www​.history​.com/news/apollo​-13​-what​-went​-wrong.
	19	 “Apollo 13,” Wikipedia Foundation, edited January 20, 2022, 19:40 (UTC), https://

en​.wikipedia​.org​/wiki​/Apollo_13.
	20	 Hermann Dür and Eric Jones, “Building an Apollo 13 LiOH Canister Adapter,”

Apollo 13 Lunar Surface Journal, last revised 30 September 2012, https://www​.hq​
.nasa​.gov​/alsj​/a13​/a13_LIOH_Adapter​.html.

	21	 Pruitt, “What Went Wrong.”
	22	 Nicole Perlroth, “Daniel Kaminsky, Internet Security Savior, Dies at 42,” New

York Times, last updated April 28, 2021, https://www​.nytimes​.com​/2021​/04​/27​
/technology​/daniel​-kaminsky​-dead​.html.

	23	 Perlroth, “Daniel Kaminsky.”
	24	 Robert McMillan, “Kaminsky: Many Ways to Attack with DNS,” Infoworld, August

6, 2008, https://www​.infoworld​.com​/article​/2652414​/kaminsky​-​-many​-ways​-to​
-attack​-with​-dns​.html.

	25	 Daniel Kaminsky, “The Hidden Architecture of Our Time: Why This Internet
Worked, How We Could Lose It” (keynote address), 2016 Black Hat Hacker Con-
ference, August 16, 2016, YouTube video, last accessed January 21, 2022, https://
www​.youtube​.com​/watch?v=RAGwol​-keXM. His statement about the “DNS mess”
occurs at approximately 24:35 of the video.

	26	 Perlroth, “Daniel Kaminsky.”
	27	 Apollo launched in April 1970. “Apollo 13,” Wikipedia. The Mars Orbiter

launched on December 11, 1998. “Mars Climate Orbiter,” Wikipedia Founda-
tion, last edited on 8 January 2022, 12:19 (UTC), https:​//en​.wikipedia​.org​/wiki​
/Mars_Climate_Orbiter.

	28	 Launch Mishaps—Early Rocket Failures at Cape Canaveral Air Force Station, produced
by Murphy Wardman, narrated by Ken Flemming (US Space Walk of Fame Foun-
dation DBA The American Space Museum), 2020, YouTube video accessed June
14, 2020, https://www​.youtube​.com/watch?v=ytaEtl2Nka4.

	29	 “Mars 2020 Mission, Perseverance Rover Launch,” NASA Science, Mars 2020 Per-
severance Rover, last accessed January 20, 2022, https://mars​.nasa​.gov​/mars2020​
/timeline​/launch/.

	30	 “Mars Timeline Landing Summary,” NASA Science, Mars 2020 Perseverance
Rover, archived February 18, 2021, https://mars​.nasa​.gov​/mars2020​/timeline​
/landing​/​.

	31	 Kenneth Chang, “NASA’s Mars Helicopter Flies Again and Gets a New Mission,”
New York Times, April 30, 2021, updated May 10, 2021, https://www​.nytimes​.com​
/2021​/04​/30​/science​/mars​-helicopter​-nasa​.html​.

https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-finally-be-told/
https://www.wired.com/story/the-full-story-of-the-stunning-rsa-hack-can-finally-be-told/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/fortran/
https://www.history.com/news/apollo-13-what-went-wrong
https://en.wikipedia.org/wiki/Apollo_13
https://en.wikipedia.org/wiki/Apollo_13
https://www.hq.nasa.gov/alsj/a13/a13_LIOH_Adapter.html
https://www.hq.nasa.gov/alsj/a13/a13_LIOH_Adapter.html
https://www.nytimes.com/2021/04/27/technology/daniel-kaminsky-dead.html
https://www.nytimes.com/2021/04/27/technology/daniel-kaminsky-dead.html
https://www.infoworld.com/article/2652414/kaminsky--many-ways-to-attack-with-dns.html
https://www.infoworld.com/article/2652414/kaminsky--many-ways-to-attack-with-dns.html
https://www.youtube.com/watch?v=RAGwol-keXM
https://www.youtube.com/watch?v=RAGwol-keXM
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://en.wikipedia.org/wiki/Mars_Climate_Orbiter
https://www.youtube.com/watch?v=ytaEtl2Nka4
https://mars.nasa.gov/mars2020/timeline/launch/
https://mars.nasa.gov/mars2020/timeline/launch/
https://mars.nasa.gov/mars2020/timeline/landing/
https://mars.nasa.gov/mars2020/timeline/landing/
https://www.nytimes.com/2021/04/30/science/mars-helicopter-nasa.html
https://www.nytimes.com/2021/04/30/science/mars-helicopter-nasa.html

NOTES TO CHAPTER 1 / 173

	32	 “NASA’s Perseverance Rover Is Midway to Mars,” NASA, Perseverance Mars Rover,
October 27, 2020, https://www​.nasa​.gov​/feature​/jpl​/nasas​-perseverance​-rover​-is​
-midway​-to​-mars

	33	 Email from David C. Agle, Perseverance/Mars Helicopter/Juno Lead, NASA, re-
ceived October 7, 2021.

	34	 “Ingenuity (helicopter),” Wikipedia Foundation, last edited on 21 January 2022,
01:45 (UTC), https://en​.wikipedia​.org​/wiki​/Ingenuity_(helicopter).

Chapter 1 / The First Line of Code

	 1	 “History of Power: The Evolution of the Electric Generation Industry,” Power, last
updated December 22, 2020, https:​//www​.powermag​.com​/history​-of​-power​-the​
-evolution​-of​-the​-electric​-generation​-industry/; Abbot Payson Usher, A History of
Mechanical Inventions, Revised Edition. (1954; New York: Dover Publications, 1988),
289–90.

	 2	 Melinda Watt, “Textile Production in Europe: Silk, 1600–1800,” Heilbrunn Timeline
of Art History. The Met, October 2003, https://www​.metmuseum​.org​/toah​/hd​/txt_s​
/hd_txt_s​.htm​/; Usher, History of Mechanical Inventions, 289.

	 3	 Usher, History of Mechanical Inventions, 289.
	 4	 Usher, History of Mechanical Inventions, 292–93.
	 5	 Franklin Allen, The Silk Industry of The World at the Opening of the Twentieth Century

(New York: Silk Association of America, 1904), 20, https://hdl​.handle​.net​/2027​
/umn​.31951000946672j; Edgar C. Smith, “The Centenary of Napoleon,” Nature
(May 5, 1921): 20, https://www​.nature​.com/articles/107302a0​.pdf/.

	 6	 Alfred Barlow, The History and Principles of Weaving by Hand and by Power, reprinted
with considerable additions from “Engineering,” with a chapter on lace-making
machinery reprinted from “Journal of the Society of Arts” (London: Sampson Low,
Marston, Searle & Rivington, 1878), 141.

	 7	 Benjamin Wooley, The Bride of Science: Romance, Reason and Byron’s Daughter (Lon-
don: Macmillan, 1999). 257, 268.

	 8	 Stan Augarten, Bit by Bit: An Illustrated History of Computers (New York: Ticknor
and Fields, 1984), chap. 2.8, http://ds​-wordpress​.haverford​.edu​/bitbybit​/bit​-by​-bit​
-contents​/chapter​-two​/the​-analytical​-engines​-machinery​/; Encyclopedia Britan­
nica Online, “Analytical Engine,” accessed April 18, 2021, https://www​.britannica​
.com​/technology​/Analytical​-Engine.

	 9	 Alan Turing, “Computing Machinery and Intelligence,” Mind, no. 59 (1950):
433–60.

	10	 “Herman Hollerith,” Columbia University Computing History, Columbia University,
last modified January 21, 2021, http:​//www​.columbia​.edu/cu​/computinghistory​
/hollerith​.html/; “Herman Hollerith,” United States Census Bureau, last modi-
fied February 3, 2021. https://www​.census​.gov​/history​/www​/census_then_now​
/notable_alumni​/herman_hollerith​.html/

	11	 “The Punched Card Tabulator,” Icons of Progress, IBM, accessed March 19, 2021.
https://www​.ibm​.com/ibm/history/ibm100/us/en/icons/tabulator/

https://www.nasa.gov/feature/jpl/nasas-perseverance-rover-is-midway-to-mars
https://www.nasa.gov/feature/jpl/nasas-perseverance-rover-is-midway-to-mars
https://en.wikipedia.org/wiki/Ingenuity_(helicopter
https://www.powermag.com/history-of-power-the-evolution-of-the-electric-generation-industry/
https://www.powermag.com/history-of-power-the-evolution-of-the-electric-generation-industry/
https://www.metmuseum.org/toah/hd/txt_s/hd_txt_s.htm/
https://www.metmuseum.org/toah/hd/txt_s/hd_txt_s.htm/
https://hdl.handle.net/2027/umn.31951000946672j
https://hdl.handle.net/2027/umn.31951000946672j
https://www.nature.com/articles/107302a0.pdf/
http://ds-wordpress.haverford.edu/bitbybit/bit-by-bit-contents/chapter-two/the-analytical-engines-machinery/
http://ds-wordpress.haverford.edu/bitbybit/bit-by-bit-contents/chapter-two/the-analytical-engines-machinery/
https://www.britannica.com/technology/Analytical-Engine
https://www.britannica.com/technology/Analytical-Engine
http://www.columbia.edu/cu/computinghistory/hollerith.html/
http://www.columbia.edu/cu/computinghistory/hollerith.html/
https://www.census.gov/history/www/census_then_now/notable_alumni/herman_hollerith.html/
https://www.census.gov/history/www/census_then_now/notable_alumni/herman_hollerith.html/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/tabulator/

174 / NOTES TO CHAPTER 2

	12	 Teun Kotsier, “On the Prehistory of Programmable Machines: Musical Automata,
Looms, Calculators,” Mechanism and Machine Theory 36, no. 5 (May 2001): 590;
David Suisman, “Sound, Knowledge, and the ‘Immanence of Human Failure:’
Rethinking Musical Mechanization through the Phonograph, the Player-Piano,
and the Piano,” Social Text 28, no. 1 (Spring 2010): 19, https://doi​.org​/10​.1215​
/01642472​-2009​-058; Thomas W. Patteson, “Player Piano,” Oxford Handbooks
Online, https://doi​.org​/10​.1093​/oxfordhb​/9780199935321​.013​.16.

Chapter 2 / Monte Carlo Algorithms

	 1	 Electronic Numerical Integrator and Computer
	 2	 Iosif Shklovsky, Five Billion Vodka Bottles to the Moon, trans. Harold Zirin & Mary

Fleming Zirin (New York: W. W. Norton, 1991).
	 3	 Roger Eckhardt, “Stan Ulam, John von Neumann, and the Monte Carlo Method,”

Los Alamos Science Special Issue (1987).
	 4	 Marshall Rosenbluth, “Genesis of the Monte Carlo Algorithm for Statistical

Mechanics,” AIP Conference Proceedings 690, no. 22 (2003).
	 5	 Mathematical Analyzer Numerical Integrator and Automatic Computer Model
	 6	 Using the Lennard-Jones potential.

Chapter 3 / Jean Sammet and the Code That Runs the World

	 1	 With gratitude to her friend, Kathy Kleiman, for this turn of phrase.
	 2	 Thomas J. Bergin, “Jean Sammet: Programming Language Contributor and Histo-

rian, and ACM President,” IEEE Annals of the History of Computing 31, no. 1 (January-
March 2009): 76–85.

	 3	 “Ten Minutes with Jean Sammet ’48,” Mount Holyoke College Alumnae Asso-
ciation, last modified November 5, 2013, https://alumnae​.mtholyoke​.edu​/blog​
/sammet/.

	 4	 Thomas J. Bergin, “Jean Sammet.”
	 5	 “Ten Minutes With Jean Sammet ’48.”
	 6	 Steve Lohr, Go To: The Story of the Math Majors, Bridge Players, Engineers, Chess Wiz­

ards, Maverick Scientists, and Iconoclasts—the Programmers Who Created the Software
Revolution (New York: Basic Books, 2008), 47.

	 7	 John Backus, “Programing in America in the 1950s: Some Personal Impressions,”
in A History of Computing in the 20th Century, eds. N. Metropolis, J. Howlett, and
Gian-Carlo Rota (New York: Academic Press, 1980), 127.

	 8	 Betty Holberton, “COBOL Session: Transcript of Discussant’s Remarks,” in History
of Programming Languages, ed. Richard L. Wexelblat (New York: Academic Press,
1981), 262.

	 9	 Dr. Tim Bergin, interview with author, March 26, 2021.
	10	 The acronym appears to have formed spontaneously. As IBM’s R. W. Bemer—an

advisor to the CODASYL committee—wrote in 1971, “we can’t find a single indi-

https://doi.org/10.1215/01642472-2009-058
https://doi.org/10.1215/01642472-2009-058
https://doi.org/10.1093/oxfordhb/9780199935321.013.16
https://alumnae.mtholyoke.edu/blog/sammet/
https://alumnae.mtholyoke.edu/blog/sammet/

NOTES TO CHAPTER 4 / 175

vidual who admits to coining the acronym.” In R. W. Bemer, “A View of the History
of COBOL,” Honeywell Computer Journal 5, no. 3 (1971): 132.

	11	 Edsger W. Dijkstra, Selected Writings on Computing: A Personal Perspective (New York:
Springer-Verlag, 1982), 130.

	12	 Jeffrey R. Yost, “Where Dinosaurs Roam and Programmers Play: Reflections on
Infrastructure, Maintenance, and Inequality,” Interfaces: Essays and Reviews on Com­
puting and Culture, May 2020, https://cse​.umn​.edu​/cbi​/interfaces.

	13	 Jean E. Sammet, “The Use of English as a Programming Language.” Communica­
tions of the ACM 9, no. 3 (March 1966), 228–30.

Chapter 4 / Spacewar

	 1	 Spacewar! has appeared with or without an exclamation mark and in all caps or in
title case throughout its history. The original PDP-1 did not include an exclamation
mark in its character set, and DEC marketing materials likewise did not include
the mark. This essay follows the convention adopted by the Special Interest Group
on Computers, Information, and Society (SIGCIS) of the Society for the History of
Technology to not include the mark.

	 2	 “PDP-1 Handbook,” Digital Equipment Corporation, 1963, https://www​
.computerhistory​.org​/pdp​-1/_media/pdf/DEC​.pdp_1​.1963​.102636240​.pdf

	 3	 Oral history interview with Stephen Russell, January 8, 2017, Video Game Pio-
neers Oral History Collection, Smithsonian National Museum of American History
Archives Center, 18, https://sova​.si​.edu/record/NMAH​.AC​.1498

	 4	 Oral history interview with Daniel Edwards, November 30, 2018, Video Game
Pioneers Oral History Collection, Smithsonian National Museum of American
History Archives Center, 6, https://sova​.si​.edu/record/NMAH​.AC​.1498

	 5	 J. Martin Graetz, “The Origin of Spacewar,” Creative Computing 7, no. 8 (1981):
56–67.

	 6	 Oral history interview with Stephen Piner, November 29, 2018, Video Game Pio-
neers Oral History Collection, Smithsonian National Museum of American History
Archives Center, https://sova​.si​.edu/record/NMAH​.AC​.1498

	 7	 J. Martin Graetz, “The Origin of Spacewar,” Creative Computing 7, no. 8 (1981):
56–67.

	 8	 The technical details are spelled out in: Norbert Landsteiner, “Inside Spacewar!
Intermission: Digging up the Minskytron Hyperspace,” June 5, 2014, https://www​
.masswerk​.at/spacewar/inside/insidespacewar​-minskytron​-hyperspace​.html

	 9	 “PDP-1 Computer and Spacewar,” Digital Equipment Corporation, 1963, https://
www​.masswerk​.at/spacewar/pdp​-1​-computer​-and​-spacewar​.html

	10	 Bill Pitts, “Letter to Stanford Magazine,” Stanford Magazine (April 30, 2012), https://
stanfordmag​.org/contents/bill​-pitts​-68.

	11	 Mark Wolf, “Introduction,” in Before the Crash: Early Video Game History, ed. Mark
Wolf (Detroit: Wayne State University Press, 2012), 1–8.

	12	 For a broader perspective on video game longevity, see Raiford Guins, Game After:
A Cultural Study of Video Game Afterlife (Cambridge, MA: MIT Press, 2014).

https://cse.umn.edu/cbi/interfaces
https://www.computerhistory.org/pdp-1/_media/pdf/DEC.pdp_1.1963.102636240.pdf
https://www.computerhistory.org/pdp-1/_media/pdf/DEC.pdp_1.1963.102636240.pdf
https://sova.si.edu/record/NMAH.AC.1498
https://sova.si.edu/record/NMAH.AC.1498
https://sova.si.edu/record/NMAH.AC.1498
https://www.masswerk.at/spacewar/inside/insidespacewar-minskytron-hyperspace.html
https://www.masswerk.at/spacewar/inside/insidespacewar-minskytron-hyperspace.html
https://www.masswerk.at/spacewar/pdp-1-computer-and-spacewar.html
https://www.masswerk.at/spacewar/pdp-1-computer-and-spacewar.html
https://stanfordmag.org/contents/bill-pitts-68
https://stanfordmag.org/contents/bill-pitts-68

176 / NOTES TO CHAPTER 5

	13	 Norbert Landsteiner, “Inside Spacewar!: A Software Archeological Approach to the
First Video Game,” mass.werk (June 2014–March 2016), https://www​.masswerk​
.at​/spacewar​/inside/

	14	 Robert Garner, “Restoring and Demonstrating 1960s Vintage Computers at the
Computer History Museum,” in Making IT Work, ed. Martin Campbell-Kelly (London:
British Computer Society, 2017): 54–67, https://​www​.computerconservationsociety​
.org​/miw​/Proc%20MIW%202017​.pdf.

	15	 Oral history interview with Stephen Russell, January 8, 2017, Video Game Pio-
neers Oral History Collection, Smithsonian National Museum of American History
Archives Center, 28, https://​sova​.si​.edu​/record​/NMAH​.AC​.1498.

	16	 Nathan Ensmenger, The Computer Boys Take Over: Computers, Programmers, and the
Politics of Technical Expertise (Cambridge: MIT Press, 2010).

	17	 Gita Jackson, “Spacewar! Creators Didn’t Know They Were Making History,” Ko-
taku.com (December 5, 2018), https://​kotaku​.com​/spacewar​​-creators​​-didnt​​-know​​
-they​​-were​-making​-history​-1830887504.

Chapter 5 / BASIC and the Illusion of Coding Empowerment

	 1	 Dartmouth maintains that they were an undergraduate and Kemeny. My research
demonstrates that Busch and McGeachie were more likely. For more on the Dart-
mouth Time-Sharing System and BASIC, see Joy Lisi Rankin, A People’s History of
Computing in the United States (Cambridge, MA: Harvard University Press, 2018).

	 2	 Margot Lee Shetterly, Hidden Figures (New York: HarperCollins, 2016), xvi.
	 3	 Arvid Nelsen, “Race and Computing: The Problem of Sources, the Potential of

Prosopography, and the Lesson of Ebony Magazine,” IEEE Annals of the History of
Computing 39, no. 1 (2016): 29–51.

	 4	 Mar Hicks, Programmed Inequality: How Britain Discarded Women Technologists and
Lost Its Edge in Computing (Cambridge, MA: MIT Press, 2017); Janet Abbate, Recoding
Gender: Women’s Changing Participation in Computing (Cambridge, MA: MIT Press,
2012); Nathan Ensmenger, The Computer Boys Take Over: Computers, Programmers,
and the Politics of Technical Expertise (Cambridge, MA: MIT Press, 2010).

	 5	 Joy Lisi Rankin, “For 50 Years, Tech Companies Have Tried to Increase Diversity
by Fixing People Instead of the System,” Slate (March 31, 2021), https://​slate​.com​
/technology​/2021​/03​/google​-acm​-digital​-skills​-training​-diversity​-history​.html.

Chapter 6 / The First Email

	 1	 Pat Crisman, Glenda Schroeder, Louis Ponzin, “Minimum System Documenta-
tion,” Programming Staff Note 39, Compatible Time-Sharing System (CTSS), MIT,
December 1964 or January 1965, https://​multicians​.org​/thvv​/psn​-39​.pdf.

	 2	 The theory of time-sharing already had come up in the context of the first com-
puter network, the US military’s Semi-Automatic Ground Environment (SAGE)
system. McCarthy, ever modest, thus was reluctant to take credit for coining the
term. See John McCarthy, “Reminiscences on the Theory of Time-Sharing,” 1983,

https://www.masswerk.at/spacewar/inside/
https://www.masswerk.at/spacewar/inside/
https://www.computerconservationsociety.org/miw/Proc%20MIW%202017.pdf
https://www.computerconservationsociety.org/miw/Proc%20MIW%202017.pdf
https://sova.si.edu/record/NMAH.AC.1498
https://kotaku.com/spacewar-creators-didnt-know-they-were-making-history-1830887504
https://kotaku.com/spacewar-creators-didnt-know-they-were-making-history-1830887504
https://slate.com/technology/2021/03/google-acm-digital-skills-training-diversity-history.html
https://slate.com/technology/2021/03/google-acm-digital-skills-training-diversity-history.html
https://multicians.org/thvv/psn-39.pdf

NOTES TO CHAPTER 7 / 177

http://​jmc​.stanford​.edu​/computing​-science​/timesharing​.html. Dartmouth and
Cambridge University also launched early academic time-sharing networks.

	 3	 Tom Van Vleck, “The IBM 7094 and CTSS at MIT,” in Compatible Time-Sharing
System: Fiftieth Year Overview, IEEE Computer Society, 2003, https://​multicians​
.org​/thvv​/ah​-9​-05​.pdf.

	 4	 CTSS Programmer’s Guide, Section AH.9.05, February 14, 1966, https://​multicians​
.org​/thvv​/ah​-9​-05​.pdf.

	 5	 J.C.R. Licklider and Albert Vezza, “Applications of Information Networks,” Proceed­
ings of the IEEE 66, no. 11 (November 1978), 1330–46.

	 6	 William Grimes, “Ray Tomlinson, Who Put the @ Symbol in Email, Dies at 74,”
New York Times, March 7, 2016, B14.

	 7	 Cade Metz, “How the Queen of England Beat Everyone to the Internet,” WIRED,
December 25, 2012, https://​www​.wired​.com​/2012​/12​/queen​-and​-the​-internet​/.

	 8	 One example of an RFC is J. White, “A Proposed Mail Protocol,” Network Work-
ing Group, June 1973, https://​tools​.ietf​.org​/html​/rfc524; more about the collab-
orative culture is found in Dave Crocker, “A History of Email,” Washington Post,
March 20, 2012; Brad Templeton, “Reaction to the DEC Spam of 1978,” https:​//​
www​.templetons​.com​/brad​/spamreact​.html; Leonard J. Shustek, “The Eudora
Email Client Source Code,” Computer History Museum, May 22, 2018, https:​//​
computerhistory​.org​/blog​/the​-eudora​-email​-client​-source​-code​/.

	 9	 “About CompuServe,” https://​www​.compuserve​.com​/home​/about​.jsp; Shustek, “Eu-
dora Email Client Source Code”; Samuel Gibbs, “How did Email Grow from Messages
between Academics to a Global Epidemic?,” Guardian, March 7, 2016, https://​www​
.theguardian​.com​/technology​/2016​/mar​/07​/email​-ray​-tomlinson​-history.

	10	 Jo Thomas, “Satisfaction in Job Well-Done is Only Reward for E-mail Software
Inventor,” New York Times, January 21, 1997, A10; Paul Keegan, “The Office that
Ozzie Built,” New York Times, October 22, 1995, M49. On the dot-com boom and
the broader adoption of Email in the 1990s, see Margaret O’Mara, The Code: Silicon
Valley and the Making of America (New York: Penguin Press, 2019).

Chapter 7 / The Police Beat Algorithm

	 1	 The Challenge of Crime in a Free Society: A Report by the President’s Commission on Law
Enforcement and Administration of Justice. (Washington, DC: United States Printing
Office, February 1967).

	 2	 Saul I. Gass, “On the Division of Police Districts into Patrol Beats,” in ACM ’68:
Proceedings of the 1968 23rd ACM National Conference (ACM, January 1968): 459–73,
https://​doi​.org​/10​.1145​/800186​.810609.

	 3	 “Computer Aids Kansas City Police Setup: Warnings Relayed.” Christian Science
Monitor, August 26, 1968; “Kansas City Police Unveil Alert System,” Los Angeles
Times, July 11, 1968, 4; IBM, “Catching the Bad Guys,” IBM Archives Value One Ex-
hibit, https://​www​.ibm​.com​/ibm​/history​/exhibits​/valueone​/valueone_bad​.html.
The following events are reported in “Computers Play a Deadly Game: Cops and
Robbers,” Think, May 1971, 28–30.

http://jmc.stanford.edu/computing-science/timesharing.html
https://multicians.org/thvv/ah-9-05.pdf
https://multicians.org/thvv/ah-9-05.pdf
https://multicians.org/thvv/ah-9-05.pdf
https://multicians.org/thvv/ah-9-05.pdf
https://www.wired.com/2012/12/queen-and-the-internet/
https://tools.ietf.org/html/rfc524
https://www.templetons.com/brad/spamreact.html
https://www.templetons.com/brad/spamreact.html
https://computerhistory.org/blog/the-eudora-email-client-source-code/
https://computerhistory.org/blog/the-eudora-email-client-source-code/
https://www.compuserve.com/home/about.jsp
https://www.theguardian.com/technology/2016/mar/07/email-ray-tomlinson-history
https://www.theguardian.com/technology/2016/mar/07/email-ray-tomlinson-history
https://doi.org/10.1145/800186.810609
https://www.ibm.com/ibm/history/exhibits/valueone/valueone_bad.html

178 / NOTES TO CHAPTER 8

	 4	 Charlton D. McIlwain, Black Software: The Internet & Racial Justice, from the Afronet
to Black Lives Matter (New York: Oxford University Press, 2019), 234–35, 244.

Chapter 8 / “Apollo 11, Do Bailout”

	 1	 John F. Kennedy, “Address at Rice University on the Nation’s Space Effort,” Sep-
tember 12, 1962, Rice University, Houston, Texas, transcript and video, https://​
www​.jfklibrary​.org​/learn​/about​-jfk​/historic​-speeches​/address​-at​-rice​-university​
-on​-the​-nations​-space​-effort​.

	 2	 David A. Mindell, Digital Apollo: Human and Machine in Space Flight (Cambridge, MA:
MIT Press, 2008).

	 3	 Mindell, Digital Apollo.
	 4	 Mindell, Digital Apollo.
	 5	 David Scott, “The Apollo Guidance Computer: A User’s View,” http:​//​klabs​.org​

/history​/history_docs​/ech​/agc_scott​.pdf​.
	 6	 James E. Tomayko, Computers in Spaceflight: The NASA Experience (Washington,

D.C.: National Aeronautics and Space Administration, Scientific and Technical In-
formation Division, contractor report, 1988), https://​history​.nasa​.gov​/computers​
/Ch2​-5​.html​.

	 7	 Tomayko, Computers in Spaceflight.
	 8	 Jonathan Fildes, “Weaving the Way to the Moon,” BBC News, July 15, 2009, http://​

news​.bbc​.co​.uk​/1​/hi​/technology​/8148730​.stm​.
	 9	 Fildes, “Weaving the Way to the Moon.”
	10	 Dexter Thomas, “The Apollo 11 Computer Code Had References to the Black Power

Movement and Quoted Shakespeare,” Los Angeles Times, July 12, 2016, https://​www​
.latimes​.com​/science​/sciencenow​/la​-sci​-sn​-apollo​-11​-computer​-code​-20160712​
-snap​-story​.html​.

	11	 Jay Bennett, “The (Surprisingly Funny) Code for the Apollo Moon Landings Is Now
on GitHub,” Popular Mechanics, July 11, 2016, https://​www​.popularmechanics​.com​
/space​/moon​-mars​/a21771​/code​-for​-apollo​-moon​-landings​-on​-github​/​.

	12	 Don Eyles, “Landing Apollo via Cambridge,” Boston Globe, 1989, reprinted by MIT
News, https://​news​.mit​.edu​/2009​/apollo​-eyles​-0717​.

	13	 Stephen Witt, “Apollo 11: Mission Out of Control,” Wired, June 24, 2019, https://
www​.wired​.com​/story​/apollo​-11​-mission​-out​-of​-control​/​.

	14	 Kennedy, “Address at Rice University on Space Exploration.”

Chapter 9 / The Most Famous Comment in Unix History

	 1	 The number of lines in Windows XP was revealed in a January 11, 2011, Facebook
post by the official Windows account, https://​www​.facebook​.com​/windows​/posts​
/155741344475532.

	 2	 David Cassel, “ ‘You Are Not Expected to Understand This’: An Explainer on
Unix’s Most Notorious Code Comment,” New Stack, January 15, 2017, https://
thenewstack.io/not-expected-understand-explainer/.

https://www.jfklibrary.org/learn/about-jfk/historic-speeches/address-at-rice-university-on-the-nations-space-effort
https://www.jfklibrary.org/learn/about-jfk/historic-speeches/address-at-rice-university-on-the-nations-space-effort
https://www.jfklibrary.org/learn/about-jfk/historic-speeches/address-at-rice-university-on-the-nations-space-effort
http://klabs.org/history/history_docs/ech/agc_scott.pdf
http://klabs.org/history/history_docs/ech/agc_scott.pdf
https://history.nasa.gov/computers/Ch2-5.html
https://history.nasa.gov/computers/Ch2-5.html
http://news.bbc.co.uk/1/hi/technology/8148730.stm
http://news.bbc.co.uk/1/hi/technology/8148730.stm
https://www.latimes.com/science/sciencenow/la-sci-sn-apollo-11-computer-code-20160712-snap-story.html
https://www.latimes.com/science/sciencenow/la-sci-sn-apollo-11-computer-code-20160712-snap-story.html
https://www.latimes.com/science/sciencenow/la-sci-sn-apollo-11-computer-code-20160712-snap-story.html
https://www.popularmechanics.com/space/moon-mars/a21771/code-for-apollo-moon-landings-on-github/
https://www.popularmechanics.com/space/moon-mars/a21771/code-for-apollo-moon-landings-on-github/
https://news.mit.edu/2009/apollo-eyles-0717
https://www.wired.com/story/apollo-11-mission-out-of-control/
https://www.wired.com/story/apollo-11-mission-out-of-control/
https://www.facebook.com/windows/posts/155741344475532
https://www.facebook.com/windows/posts/155741344475532
https://thenewstack.io/not-expected-understand-explainer/
https://thenewstack.io/not-expected-understand-explainer/

NOTES TO CHAPTER 1 1 / 179

	 3	 Eric S. Raymond, ed., The New Hacker’s Dictionary (Cambridge, MA: MIT Press,
1991), available online at http://catb.org/jargon/html/L/Lions-Book.html.

	 4	 Christopher M. Kelty, Two Bits: The Cultural Significance of Free Software (Duke Uni-
versity Press, 2008).

	 5	 Dennis Ritchie, “Odd Comments and Strange Doings in Unix,” 2004. Ritchie’s
original web page from Bell-Labs.com has been preserved at archive.org: http://
web.archive.org/web/20040206202840/http://cm.bell-labs.com/cm/cs/who/dmr​
/odd.html.

	 6	 “Computer History Museum Makes Historic MS-DOS and Word for Windows Source
Code Available to the Public,” press release, March 25, 2014, https://computerhistory​
.org/press-releases/ms-source-code/?pressalias=ms-source-code.

	 7	 A March 26, 2014, article in The Verge titled “See the Hidden Jokes in Microsoft’s
Early Code” collected up tweets from software architect/developer Leon Zandman
sharing his favorite comments. https://www.theverge.com/2014/3/26/5549208​
/microsoft-early-code-contains-hidden-jokes.

	 8	 Visit that graph online at https://www.vidarholen.net/contents/wordcount/.
	 9	 David Cassel, “Remembering Roger Faulkner: UNIX Champion,” New Stack, De-

cember 31, 2016, https://thenewstack.io/remembering-roger-faulkner/.

Chapter 10 / The Accidental Felon

	 1	 John Markoff, “Killing the Computer to Save It,” New York Times, October 30, 2012,
https://​www​.nytimes​.com​/2012​/10​/30​/science​/rethinking​-the​-computer​-at​-80​
.html.

	 2	 Katie Hafner and John Markoff, Cyberpunk: Outlaws and Hackers on the Computer
Frontier (New York: Simon & Schuster, 1991), 301.

	 3	 John Markoff, “How a Need for Challenge Seduced Computer Expert,” New York
Times, November 6, 1988, https://​www​.nytimes​.com​/1988​/11​/06​/us​/how​-a​-need​
-for​-challenge​-seduced​-computer​-expert​.html.

	 4	 Hafner and Markoff, Cyberpunk, 292.
	 5	 Hafner and Markoff, Cyberpunk, 299.
	 6	 Hafner and Markoff, Cyberpunk, 304.
	 7	 Daniel Snyder. “The very first viruses: Creeper, Wabbit and Brain,” InfoCarni-

vore.com, May 30, 2010, https://​infocarnivore​.com​/the​-very​-first​-viruses​-creeper​
-wabbit​-and​-brain​/.

	 8	 Markoff, “How a Need for Challenge Seduced Computer Expert.”

Chapter 11 / Internet Relay Chat

	 1	 “IRC Is Dead, Long Live IRC,” Tech Musings, Solar Winds Pingdom, April 24, 2012,
https://​web​.archive​.org​/web​/20160407082808​/http://​royal​.pingdom​.com​/2012​
/04​/24​/irc​-is​-dead​-long​-live​-irc​/.

	 2	 “Internet Relay Chat,” Wikipedia, accessed February 17, 2022, https://​en​.wikipedia​
.org​/wiki​/Internet_Relay_Chat​.

http://catb.org/jargon/html/L/Lions-Book.html
http://web.archive.org/web/20040206202840/http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
http://web.archive.org/web/20040206202840/http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
http://web.archive.org/web/20040206202840/http://cm.bell-labs.com/cm/cs/who/dmr/odd.html
https://computerhistory.org/press-releases/ms-source-code/?pressalias=ms-source-code
https://computerhistory.org/press-releases/ms-source-code/?pressalias=ms-source-code
https://www.theverge.com/2014/3/26/5549208/microsoft-early-code-contains-hidden-jokes
https://www.theverge.com/2014/3/26/5549208/microsoft-early-code-contains-hidden-jokes
https://www.vidarholen.net/contents/wordcount/
https://thenewstack.io/remembering-roger-faulkner/
https://www.nytimes.com/2012/10/30/science/rethinking-the-computer-at-80.html
https://www.nytimes.com/2012/10/30/science/rethinking-the-computer-at-80.html
https://www.nytimes.com/1988/11/06/us/how-a-need-for-challenge-seduced-computer-expert.html
https://www.nytimes.com/1988/11/06/us/how-a-need-for-challenge-seduced-computer-expert.html
https://infocarnivore.com/the-very-first-viruses-creeper-wabbit-and-brain/
https://infocarnivore.com/the-very-first-viruses-creeper-wabbit-and-brain/
https://web.archive.org/web/20160407082808/http://royal.pingdom.com/2012/04/24/irc-is-dead-long-live-irc/
https://web.archive.org/web/20160407082808/http://royal.pingdom.com/2012/04/24/irc-is-dead-long-live-irc/
https://en.wikipedia.org/wiki/Internet_Relay_Chat
https://en.wikipedia.org/wiki/Internet_Relay_Chat

180 / NOTES TO CHAPTER 1 2

	 3	 IRC actions are automatically preceded by an asterisk.
	 4	 These uses of asterisks in non-action messages visually set off performative

expressions from other text, while recalling their origins as action commands
(see note 3).

	 5	 The use of the third-person subject in virtual performatives likely derived from the
practice in chat platforms such as IRC and multi-user dungeons of automatically
preceding each utterance with the user’s “nick” or character name.

	 6	 “Whacking with a Wet Trout,” Wikipedia, accessed February 17, 2022, https://​en​
.wikipedia​.org​/wiki​/Wikipedia:Whacking_with_a_wet_trout.

Chapter 12 / Hyperlink

	 1	 Vannevar Bush, “As We May Think,” Atlantic, July 1945.
	 2	 Ben Shneiderman and Catherine Plaisant, “Hypertext Research: The Development

of HyperTIES,” HCIL Archive, University of Maryland Human Computer Interac-
tion Lab, updated July 2018, http://​www​.cs​.umd​.edu​/hcil​/hyperties​/.

	 3	 Tim Berners-Lee, “Information Management: A Proposal,” CERN, March 1989/
May 1990, republished by W3 Archive, https://​www​.w3​.org​/History​/1989​/proposal​
.html.

	 4	 Tim Berners-Lee, “Answers for Young People,” W3 Archive, accessed June 4, 2021,
https://​www​.w3​.org​/People​/Berners​-Lee​/Kids​.html.

Chapter 13 / JPEG

	 1	 Joseph Fourier, The Analytical Theory of Heat, The University Press, 1878.
	 2	 Nasir Ahmed, “How I Came up with the Discrete Cosine Transform,” Digital Signal

Processing, 1 no. 1 (1991): 4–5.
	 3	 Fourier, Analytical Theory of Heat.
	 4	 Hany Farid, Fake Photos (Cambridge, MA: MIT Press, 2019).
	 5	 Farid, Fake Photos.

Chapter 14 / The Viral Internet Image You’ve Never Seen

	 1	 Matthew Prince, cofounder and CEO of Cloudflare, in discussion with the author,
July 2021.

	 2	 Jason Kint, in discussion with the author, June 2021.
	 3	 Richard M. Smith, “The Web Bug FAQ,” last modified November 11, 1999, https://​

web​.archive​.org​/web​/20071016061254​/https:​/w2​.eff​.org​/Privacy​/Marketing​
/web_bug​.html.

	 4	 Katie Moussouris, founder and CEO of Luta Security, in discussion with the author,
June 2021.

	 5	 Lukasz Olejnik, in discussion with the author, June 2021.
	 6	 Ashkan Soltani, in discussion with the author, July 2021.

https://en.wikipedia.org/wiki/Wikipedia:Whacking_with_a_wet_trout
https://en.wikipedia.org/wiki/Wikipedia:Whacking_with_a_wet_trout
http://www.cs.umd.edu/hcil/hyperties/
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/People/Berners-Lee/Kids.html
https://web.archive.org/web/20071016061254/https:/w2.eff.org/Privacy/Marketing/web_bug.html
https://web.archive.org/web/20071016061254/https:/w2.eff.org/Privacy/Marketing/web_bug.html
https://web.archive.org/web/20071016061254/https:/w2.eff.org/Privacy/Marketing/web_bug.html

NOTES TO CHAPTER 1 6 / 181

	 7	 Kenneth White, security engineer and independent researcher, in discussion with
the author, July 2021.

	 8	 Lily Hay Newman, “The New iOS Update Lets You Stop Ads from Tracking You—So
Do It,” WIRED.com, April 26, 2021, https://​www​.wired​.com​/story​/ios​-app​-tracking​
-transparency​-advertising​/.

	 9	 “Turn images on or off in Gmail,” Gmail Help, Google, https://​support​.google​.com​
/mail​/answer​/145919.

	10	 Vinay Goel, “An Updated Timeline for Privacy Sandbox Milestones,” The Keyword,
Google, June 24, 2021, https://​blog​.google​/products​/chrome​/updated​-timeline​
-privacy​-sandbox​-milestones​/.

	11	 Barb Smith, “Developers: Get Ready for New SameSite=None; Secure Cookie Set-
tings,” Chromium Blog, Google, October 23, 2019, https://​blog​.chromium​.org​/2019​
/10​/developers​-get​-ready​-for​-new​.html.

	12	 Vinay Goel, “Get to Know the New Topics API for Privacy Sandbox,” Keyword, Goo-
gle, January 25, 2022, https://​blog​.google​/products​/chrome​/get​-know​-new​-topics​
-api​-privacy​-sandbox​/.

	13	 Anthony Chavez, “Introducing the Privacy Sandbox on Android,” Keyword, Goo-
gle, February 16, 2022, https://​blog​.google​/products​/android​/introducing​-privacy​
-sandbox​-android​/.

Chapter 15 / The Pop-Up Ad

	 1	 Ethan Zuckerman, “The Internet’s Original Sin,” Atlantic, August 14, 2014, https://​
www​.theatlantic​.com​/technology​/archive​/2014​/08​/advertising​-is​-the​-internets​
-original​-sin​/376041​/.

	 2	 Adrienne LaFrance, “The First Pop-Up Ad,” Atlantic, August 14, 2014, https://​www​
.theatlantic​.com​/technology​/archive​/2014​/08​/the​-first​-pop​-up​-ad​/376053​/.

	 3	 Shoshana Zuboff, “Big Other: Surveillance Capitalism and the Prospects of an
Information Civilization,” Journal of Information Technology 30, no. 1 (2015): 75–89.

	 4	 Ethan Zuckerman, “The Case for Digital Public Infrastructure,” Knight First
Amendment Institute at Columbia University, January 17, 2020, https://
knightcolumbia​.org​/content​/the​-case​-for​-digital​-public​-infrastructure.

Chapter 16 / Wear This Code, Go to Jail

	 1	 Adam Back, “Munitions T-shirt,” accessed March 8, 2021, http://​www​.cypherspace​
.org​/adam​/uk​-shirt​.html.

	 2	 United States Munitions List, 22 CFR § 121.1(a).
	 3	 United States Commerce Control List, 15 C.F.R pt. 774 supp 1.
	 4	 David E. Sanger, “High-Tech Exports Hit Antiquated Speed Bumps,” New York

Times, June 13, 1999.
	 5	 David Kahn, The Codebreakers, rev. ed. (New York: Scribner, 1996).
	 6	 Steven Levy, Crypto: How the Code Rebels Beat the Government—Saving Privacy in the

Digital Age (New York: Viking, 2001).

https://www.wired.com/story/ios-app-tracking-transparency-advertising/
https://www.wired.com/story/ios-app-tracking-transparency-advertising/
https://support.google.com/mail/answer/145919
https://support.google.com/mail/answer/145919
https://blog.google/products/chrome/updated-timeline-privacy-sandbox-milestones/
https://blog.google/products/chrome/updated-timeline-privacy-sandbox-milestones/
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html
https://blog.chromium.org/2019/10/developers-get-ready-for-new.html
https://blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/
https://blog.google/products/chrome/get-know-new-topics-api-privacy-sandbox/
https://blog.google/products/android/introducing-privacy-sandbox-android/
https://blog.google/products/android/introducing-privacy-sandbox-android/
https://www.theatlantic.com/technology/archive/2014/08/advertising-is-the-internets-original-sin/376041/
https://www.theatlantic.com/technology/archive/2014/08/advertising-is-the-internets-original-sin/376041/
https://www.theatlantic.com/technology/archive/2014/08/advertising-is-the-internets-original-sin/376041/
https://www.theatlantic.com/technology/archive/2014/08/the-first-pop-up-ad/376053/
https://www.theatlantic.com/technology/archive/2014/08/the-first-pop-up-ad/376053/
https://knightcolumbia.org/content/the-case-for-digital-public-infrastructure
https://knightcolumbia.org/content/the-case-for-digital-public-infrastructure
http://www.cypherspace.org/adam/uk-shirt.html
http://www.cypherspace.org/adam/uk-shirt.html

182 / NOTES TO CHAPTER 1 7

	 7	 Bernstein v. US Dept. of Justice, 176 F.3d 1132 (9th Cir. 1999), rehearing en banc
granted, 192 F.3d 1308 (Mem), dismissed as moot sub nomine Bernstein v. Dept. of
Commerce, No. 95–0582 (N.D. Cal. July 28, 2003).

	 8	 Junger v. Daley, 209 F.3d 481 (6th Cir. 2000).
	 9	 Steven Levy, “Battle of the Clipper Chip,” New York Times, June 12, 1994.
	10	 Apple, “Software License Agreement for macOS Big Sur,” accessed March 8, 2021,

https://​www​.apple​.com​/legal​/sla​/docs​/macOSBigSur​.pdf.
	11	 David S. Touretzky, “Gallery of CSS Descramblers,” last modified Feb. 13, 2008,

http://​www​.cs​.cmu​.edu​/~dst​/DeCSS​/Gallery​/.
	12	 Universal City Studios, Inc. v. Corley, 273 F. 3d 429 (2d Cir. 2001).
	13	 Defense Distributed v. US Dept. of State, 838 F. 3d 451 (5th Cir. 2016).
	14	 Crunchbase, “Blockstream,” accessed March 8, 2021, https://​www​.crunchbase​

.com​/organization​/blockstream.

Chapter 17 / Needles in the World’s Biggest Haystack

	 1	 Sergey Brin and Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web
Search Engine,” Computer Networks and ISDN Systems 30, no. 1 (1998): 107–17.

Chapter 18 / A Failure to Interoperate

	 1	 James Oberg, “Why the Mars Probe Went Off Course,” IEEE Spectrum 36, no. 12
(December 1999): 38; Edward A. Euler et al., “The Failures of the Mars Climate Or-
biter and Mars Polar Lander: A Perspective from the People Involved,” in Guidance
and Control: 24th Annual AAS Guidance and Control Conference, ed. Robert D. Culp
and Charles N. Schira, vol. 107 (American Astronautical Society: Univelt, 2001),
11; Mars Climate Orbiter Mishap Investigation Board, “Phase I Report,” November
10, 1999, 13–14, https://​llis​.nasa​.gov​/llis_lib​/pdf​/1009464main1_0641​-mr​.pdf.

	 2	 Mars Climate Orbiter Mishap Investigation Board, “Phase I Report,” 16; Mars Pro-
gram Independent Assessment Team, “Mars Program Independent Assessment
Team Report,” March 14, 2000, 18, https://​ntrs​.nasa​.gov​/citations​/20000032458;
Jet Propulsion Laboratory Special Review Board, “Report on the Loss of the Mars
Climate Orbiter Mission,” November 11, 1999, 5–6, https://​trs​.jpl​.nasa​.gov​/handle​
/2014​/38186; Euler et al., “Failures of Mars Climate Orbiter,” 6–7; Oberg, “Mars
Probe,” 36–37.

	 3	 “According to a JPL spokesman, every maneuver intended to dump momentum
added a velocity error of about 0.001 meter per second, on a probe that was trav-
eling at a rate of tens of kilometers per second” (Oberg, “Mars Probe,” 36).

	 4	 JPL Special Review Board, “Report on Loss,” 32–33.
	 5	 Euler et al., “Failures of Mars Climate Orbiter,” 6; JPL Special Review Board,

“Report on Loss,” 36.
	 6	 Mars Climate Orbiter Mishap Investigation Board, “Phase I Report,” 16–17; see

also Euler et al., “Failures of Mars Climate Orbiter,” 6.
	 7	 Mars Climate Orbiter Mishap Investigation Board, “Phase I Report,” 16.
	 8	 JPL Special Review Board, “Report on Loss,” 1.

https://www.apple.com/legal/sla/docs/macOSBigSur.pdf
http://www.cs.cmu.edu/~dst/DeCSS/Gallery/
https://www.crunchbase.com/organization/blockstream
https://www.crunchbase.com/organization/blockstream
https://llis.nasa.gov/llis_lib/pdf/1009464main1_0641-mr.pdf
https://ntrs.nasa.gov/citations/20000032458
https://trs.jpl.nasa.gov/handle/2014/38186
https://trs.jpl.nasa.gov/handle/2014/38186

NOTES TO CHAPTER 1 9 / 183

	 9	 NASA, “Mars Climate Orbiter Arrival: Press Kit,” September 1999, 6, https://​www​
.jpl​.nasa​.gov​/news​/press_kits​/mcoarrivehq​.pdf.

	10	 JPL Special Review Board, “Report on Loss,” 1.
	11	 JPL Special Review Board, “Report on Loss,” 37; Angular Momentum Desatu­

ration File: Software Interface Specification, by John E. Ekelund, (NASA, 1995),
secs. 4.2.2.6–17, https://​pds​.nasa​.gov​/data​/mgs​-m​-rss​-1​-map​-v1​.0​/mors_0552​
/document​/amd_sis​.htm.

	12	 Euler et al., “Failures of Mars Climate Orbiter,” 7.
	13	 John Palfrey and Urs Gasser, Interop: The Promise and Perils of Highly Interconnected

Systems (New York: Basic Books, 2012).
	14	 Palfrey and Gasser, Interop, 21–22.
	15	 JPL Special Review Board, “Report on Loss,” 40; Mars Climate Orbiter Mishap

Investigation Board, “Phase I Report,” 18.
	16	 Miriam Reisman, “EHRs: The Challenge of Making Electronic Data Usable and

Interoperable,” Pharmacy and Therapeutics 42 (September 2017): 573, https://​www​
.ncbi​.nlm​.nih​.gov​/pmc​/articles​/PMC5565131​/; Chinmayi Sharma, “Concentrated
Digital Markets, Restrictive APIs, and the Fight for Internet Interoperability,” Uni­
versity of Memphis Law Review 50 (2019): 455–61, https://​www​.memphis​.edu​/law​
/documents​/04_sharma​.pdf.

	17	 Marcus Wohlsen, “Why Copyrighted Coffee May Cripple the Internet of Things,”
Wired, March 6, 2014, https://​www​.wired​.com​/2014​/03​/copyrighted​-coffee​
-undermine​-whole​-internet​-things​/.

Chapter 19 / The Code That Launched a Million Cat Videos

	 1	 Lowen Liu interview with Colin Angle, December 6, 2018.
	 2	 “Dave Chappelle Pepsi Commercial,” posted on DailyMotion, Paris, France, circa

2008; Bob Garfield, “Pepsi Finally Acknowledges Real Point of Cola in New Ads,”
Ad Age, December 1, 2003.

	 3	 “iRobot Reports Fourth-Quarter and Full-Year 2020 Financial Results,” iRobot
(press release), PR Newswire, February 10, 2021.

	 4	 Hope Reese, “Joe Jones: Roomba Inventor. Roboticist. Vindicated Pioneer,” Tech­
Republic, November 12, 2015.

	 5	 Liu interview with Colin Angle, 2018. See also the interview of Colin Angle in New York
magazine by Jake Swearingen (“How the Roomba Company Decided to Stop Making
Bots for the Military,” New York, December 6, 2018, https://​nymag​.com​/intelligencer​
/2018​/12​/why​-the​-roomba​-company​-stopped​-making​-bots​-for​-the​-military​.html).

	 6	 Liu interview with Colin Angle, 2018.
	 7	 Evan Ackerman, “Roomba Inventor Joe Jones on His New Weed-Killing Robot,

and What’s So Hard about Consumer Robotics,” IEEE Spectrum, July 6, 2017.
	 8	 Mark J. Chiappetta and Joseph L. Jones, “Navigational Control System for a Robotic

Device,” US Patent No. US8718821B2, filed September 13, 2002.
	 9	 Ackerman, “Roomba Inventor Joe Jones.”
	10	 Liu interview with Colin Angle, 2018.
	11	 Reese, “Joe Jones: Roomba Inventor.”

https://www.jpl.nasa.gov/news/press_kits/mcoarrivehq.pdf
https://www.jpl.nasa.gov/news/press_kits/mcoarrivehq.pdf
https://pds.nasa.gov/data/mgs-m-rss-1-map-v1.0/mors_0552/document/amd_sis.htm
https://pds.nasa.gov/data/mgs-m-rss-1-map-v1.0/mors_0552/document/amd_sis.htm
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565131/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5565131/
https://www.memphis.edu/law/documents/04_sharma.pdf
https://www.memphis.edu/law/documents/04_sharma.pdf
https://www.wired.com/2014/03/copyrighted-coffee-undermine-whole-internet-things/
https://www.wired.com/2014/03/copyrighted-coffee-undermine-whole-internet-things/
https://nymag.com/intelligencer/2018/12/why-the-roomba-company-stopped-making-bots-for-the-military.html
https://nymag.com/intelligencer/2018/12/why-the-roomba-company-stopped-making-bots-for-the-military.html

184 / NOTES TO CHAPTER 2 0

Chapter 20 / Nakamoto’s Prophecy

	 1	 Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” bitcoin.org,
October 31, 2008, http://​www​.bitcoin​.org​/bitcoin​.pdf.

	 2	 Nakamoto, “Bitcoin,” 2008.
	 3	 Georg Simmel, The Philosophy of Money, 3rd enlarged edition, ed. David Frisby,

trans. Tom Bottomore (1900; New York: Routledge, 2004).
	 4	 Max Weber, General Economic History, Social Science Classics Series (1923; New

Brunswick, NJ: Transaction Books, 1981).

Chapter 21 / The Curse of the Awesome Button

	 1	 Pete Cashmore, “Facebook’s Massive Growth: Hits 30 Million Users,” Mashable,
January 29, 2009, https://​mashable​.com​/archive​/facebook​-users​-2.

	 2	 Leah Pearlman, interview with the author, May 2021.
	 3	 Victor Luckerson, “The Rise of the Like Economy,” Ringer, February 15, 2017,

https://​www​.theringer​.com​/2017​/2​/15​/16038024​/how​-the​-like​-button​-took​-over​
-the​-internet​-ebe778be2459.

	 4	 Andrew Bosworth, “What’s the History of the ‘Awesome Button’ (That Eventu-
ally Became the Like Button) on Facebook?,” Quora, last updated October 16,
2014, https://​www​.quora​.com​/Whats​-the​-history​-of​-the​-Awesome​-Button​-that​
-eventually​-became​-the​-Like​-button​-on​-Facebook.

	 5	 Bosworth, “What’s the History of the ‘Awesome Button.’ ”
	 6	 Leah Pearlman, interview with the author, May 2021.
	 7	 John Patrick Pullen, “How Vimeo Became Hipster YouTube,” Fortune, June 16,

2021, https://​fortune​.com​/2011​/02​/23​/how​-vimeo​-became​-hipster​-youtube​/.
	 8	 Bret Taylor, “I Like It, I Like It,” Friendblog (FriendFeed, October 30, 2007), http://

blog​.friendfeed​.com​/2007​/10​/i​-like​-it​-i​-like​-it​.html.
	 9	 Bosworth, “What’s the History of the ‘Awesome Button.’ ”
	10	 Ezra Callahan, interview with the author, May 2021.
	11	 Leah Pearlman, interview with the author, May 2021.
	12	 Kate Conger, “Google Removes ‘Don’t Be Evil’ Clause from Its Code of Conduct,”

Gizmodo, May 18, 2018, https://​gizmodo​.com​/google​-removes​-nearly​-all​-mentions​
-of​-dont​-be​-evil​-from​-1826153393.

	13	 Reema Khrais, “The Most Powerful Tool in Social Media,” Marketplace, American
Public Media, April 29, 2019, https://​www​.marketplace​.org​/2018​/04​/11​/it​-was​
-known​-button​-it​-was​-awesome​-button​/.

	14	 Bosworth, “What’s the History of the ‘Awesome Button.’ ”
	15	 Tom Whitnah, October 5, 2010, comment on Bosworth, “History of the ‘Awesome

Button.’ ”
	16	 Leah Pearlman, “ ‘I Like This,’ ” Facebook, February 9, 2009, https://​www​.facebook​

.com​/notes​/10160195053101729​/.
	17	 Chris Crum, “Now You Can ‘Like’ Comments on Facebook,” WebProNews, June 16,

2010, https://​www​.webpronews​.com​/now​-you​-can​-like​-comments​-on​-facebook​/.

http://www.bitcoin.org/bitcoin.pdf
https://mashable.com/archive/facebook-users-2
https://www.theringer.com/2017/2/15/16038024/how-the-like-button-took-over-the-internet-ebe778be2459
https://www.theringer.com/2017/2/15/16038024/how-the-like-button-took-over-the-internet-ebe778be2459
https://www.quora.com/Whats-the-history-of-the-Awesome-Button-that-eventually-became-the-Like-button-on-Facebook
https://www.quora.com/Whats-the-history-of-the-Awesome-Button-that-eventually-became-the-Like-button-on-Facebook
https://fortune.com/2011/02/23/how-vimeo-became-hipster-youtube/
http://blog.friendfeed.com/2007/10/i-like-it-i-like-it.html
http://blog.friendfeed.com/2007/10/i-like-it-i-like-it.html
https://gizmodo.com/google-removes-nearly-all-mentions-of-dont-be-evil-from-1826153393
https://gizmodo.com/google-removes-nearly-all-mentions-of-dont-be-evil-from-1826153393
https://www.marketplace.org/2018/04/11/it-was-known-button-it-was-awesome-button/
https://www.marketplace.org/2018/04/11/it-was-known-button-it-was-awesome-button/
https://www.facebook.com/notes/10160195053101729/
https://www.facebook.com/notes/10160195053101729/
https://www.webpronews.com/now-you-can-like-comments-on-facebook/

NOTES TO CHAPTER 2 2 / 185

	18	 Jason Kincaid, “50,000 Websites Have Already Integrated Facebook’s New
Social Plugins,” TechCrunch, April 29, 2010, https://​techcrunch​.com​/2010​
/04​/28​/50000​-websites​-have​-already​-integrated​-facebooks​-new​-social​
-plugins​/.

	19	 Tom Simonite, “Facebook’s Like Buttons Will Soon Track Your Web Browsing to
Target Ads,” MIT Technology Review, September 16, 2015, https://www.technology​
review.com​/2015​/09​/16​/166222​/facebooks​-like​-buttons​-will​-soon​-track​-your​
-web​-browsing​-to​-target​-ads/.

	20	 “Facebook Reports First Quarter 2021 Results,” Facebook Investor Relations,
April 28, 2021, https://​investor​.fb​.com​/investor​-news​/press​-release​-details​/2021​
/Facebook​-Reports​-First​-Quarter​-2021​-Results​/default​.aspx.

	21	 Robinson Meyer and Alexis Madrigal, “How Facebook’s Chaotic Push into Video
Cost Hundreds of Journalists Their Jobs,” Atlantic, October 25, 2018, https://​www​
.theatlantic​.com​/technology​/archive​/2018​/10​/facebook​-driven​-video​-push​-may​
-have​-cost​-483​-journalists​-their​-jobs​/573403​/.

	22	 Lucia Moses, “LittleThings Shuts Down, a Casualty of Facebook News Feed
Change,” Digiday, February 28, 2018, https://​digiday​.com​/media​/littlethings​-shuts​
-casualty​-facebook​-news​-feed​-change​/.

	23	 Pat Garofolo, “Close to Home: How the Power of Facebook and Google Affects Local
Communities,” American Economic Liberties Project, August 2020, https://​www​
.economicliberties​.us​/wp​-content​/uploads​/2020​/08​/Working​-Paper​-Series​-on​
-Corporate​-Power_6​.pdf.

	24	 Tom Warren, “You Can Now Hide Like Counts on Instagram and Facebook,”
Verge, May 26, 2021, https://​www​.theverge​.com​/2021​/5​/26​/22454428​/facebook​
-instagram​-hide​-like​-counts​-feature​-now​-available.

	25	 Leah Pearlman, interview with the author, May 2021.
	26	 Ezra Callahan, interview with the author, May 2021.

Chapter 22 / The Bug No One Was Responsible For—Until Everyone Was

	 1	 Colm MacCárthaigh, Twitter post, April 7, 2019, https://​twitter​.com​/colmmacc​
/status​/1114947268040327169?s=20.

	 2	 Dan Goodin, “Vicious Heartbleed Bug Bites Millions of Android Phones, Other
Devices,” Ars Technica, April 14, 2014, https://​arstechnica​.com​/information​
-technology​/2014​/04​/vicious​-heartbleed​-bug​-bites​-millions​-of​-android​-phones​
-other​-devices​/.

	 3	 Nicole Perlroth, “Companies Back Initiative to Support OpenSSL and Other Open-
Source Projects,” New York Times, April 24, 2014, Technology, https://​bits​.blogs​
.nytimes​.com​/2014​/04​/24​/companies​-back​-initiative​-to​-support​-openssl​-and​
-other​-open​-source​-projects​/.

	 4	 Jon Brodkin, “Tech Giants, Chastened by Heartbleed, Finally Agree to Fund
OpenSSL,” Ars Technica, April 24, 2014, https://​arstechnica​.com​/information​
-technology​/2014​/04​/tech​-giants​-chastened​-by​-heartbleed​-finally​-agree​-to​-fund​
-openssl​/.

https://techcrunch.com/2010/04/28/50000-websites-have-already-integrated-facebooks-new-social-plugins/
https://techcrunch.com/2010/04/28/50000-websites-have-already-integrated-facebooks-new-social-plugins/
https://techcrunch.com/2010/04/28/50000-websites-have-already-integrated-facebooks-new-social-plugins/
https://www.technologyreview.com/2015/09/16/166222/facebooks-like-buttons-will-soon-track-your-web-browsing-to-target-ads/
https://www.technologyreview.com/2015/09/16/166222/facebooks-like-buttons-will-soon-track-your-web-browsing-to-target-ads/
https://www.technologyreview.com/2015/09/16/166222/facebooks-like-buttons-will-soon-track-your-web-browsing-to-target-ads/
https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-First-Quarter-2021-Results/default.aspx
https://investor.fb.com/investor-news/press-release-details/2021/Facebook-Reports-First-Quarter-2021-Results/default.aspx
https://www.theatlantic.com/technology/archive/2018/10/facebook-driven-video-push-may-have-cost-483-journalists-their-jobs/573403/
https://www.theatlantic.com/technology/archive/2018/10/facebook-driven-video-push-may-have-cost-483-journalists-their-jobs/573403/
https://www.theatlantic.com/technology/archive/2018/10/facebook-driven-video-push-may-have-cost-483-journalists-their-jobs/573403/
https://digiday.com/media/littlethings-shuts-casualty-facebook-news-feed-change/
https://digiday.com/media/littlethings-shuts-casualty-facebook-news-feed-change/
https://www.economicliberties.us/wp-content/uploads/2020/08/Working-Paper-Series-on-Corporate-Power_6.pdf
https://www.economicliberties.us/wp-content/uploads/2020/08/Working-Paper-Series-on-Corporate-Power_6.pdf
https://www.economicliberties.us/wp-content/uploads/2020/08/Working-Paper-Series-on-Corporate-Power_6.pdf
https://www.theverge.com/2021/5/26/22454428/facebook-instagram-hide-like-counts-feature-now-available
https://www.theverge.com/2021/5/26/22454428/facebook-instagram-hide-like-counts-feature-now-available
https://twitter.com/colmmacc/status/1114947268040327169?s=20
https://twitter.com/colmmacc/status/1114947268040327169?s=20
https://arstechnica.com/information-technology/2014/04/vicious-heartbleed-bug-bites-millions-of-android-phones-other-devices/
https://arstechnica.com/information-technology/2014/04/vicious-heartbleed-bug-bites-millions-of-android-phones-other-devices/
https://arstechnica.com/information-technology/2014/04/vicious-heartbleed-bug-bites-millions-of-android-phones-other-devices/
https://bits.blogs.nytimes.com/2014/04/24/companies-back-initiative-to-support-openssl-and-other-open-source-projects/
https://bits.blogs.nytimes.com/2014/04/24/companies-back-initiative-to-support-openssl-and-other-open-source-projects/
https://bits.blogs.nytimes.com/2014/04/24/companies-back-initiative-to-support-openssl-and-other-open-source-projects/
https://arstechnica.com/information-technology/2014/04/tech-giants-chastened-by-heartbleed-finally-agree-to-fund-openssl/
https://arstechnica.com/information-technology/2014/04/tech-giants-chastened-by-heartbleed-finally-agree-to-fund-openssl/
https://arstechnica.com/information-technology/2014/04/tech-giants-chastened-by-heartbleed-finally-agree-to-fund-openssl/

186 / NOTES TO CHAPTER 2 3

Chapter 23 / The Volkswagen Emissions Scandal

	 1	 Jack Ewing, Faster, Higher, Farther: The Inside Story of the Volkswagen Scandal (New
York: W. W. Norton, 2017), e-book, p. 310, chap. “Exposure.”

	 2	 Jennifer Chu, “Study: Volkswagen’s Excess Emissions Will Lead to 1,200 Pre-
mature Deaths in Europe,” MIT News, March 3, 2017, https://​news​.mit​.edu​
/2017​/volkswagen​-emissions​-premature​-deaths​-europe​-0303#:~:text=The​
%20researchers%20estimate%20that%201%2C200,affected%20cars%20
sold%20in%20Germany.

	 3	 Lee Vinsel, Moving Violations: Automobiles, Experts, and Regulations in the United States
(Baltimore: Johns Hopkins University Press, 2019), 176–77; Scott H. Dewey, “ ‘The
Antitrust Case of the Century’: Kenneth F. Hahn and the Fight Against Smog,”
Southern California Quarterly, 81, no.3 (Fall 1999): 341–76.

	 4	 Vinsel, Moving Violations, 189–90.
	 5	 Warren Brown and Pierre Thomas, “Emissions Case Costs GM Fine, Cadillac

Recall,” Washington Post, December 1, 1995.
	 6	 Ewing, Faster, Higher, Farther, chap. 6.
	 7	 M. Contag et al., “How They Did It: An Analysis of Emission Defeat Devices in

Modern Automobiles,” 2017 IEEE Symposium on Security and Privacy (SP), 2017: 231.
	 8	 M. C. Forelle, in conversation with author, April 1, 2021.

Chapter 24 / The Code That Brought a Language Online

	 1	 “Shahbag Protests,” Wikipedia, revised October 23, 2021, https://​en​.wikipedia​.org​
/wiki​/2013_Shahbag_protests.

	 2	 “Ahmed Rajib Haider,” Wikipedia, revised November 23, 2021, https://​en​.wikipedia​
.org​/wiki​/Ahmed_Rajib_Haider.

	 3	 Rohit Khanna, “ ‘Atheist’ Tag Used to Attack Bloggers,” Times of India, June 10, 2015,
https://​timesofindia​.indiatimes​.com​/india​/atheist​-tag​-used​-to​-attack​-bloggers​
/articleshow​/47606967​.cms.

	 4	 Arafatul Islam, “Bangladesh Gags Award-Winning Blogger,” Deutsche Welle, March
25, 2013, https://​www​.dw​.com​/en​/bangladesh​-gags​-award​-winning​-blogger​
/a-16697713.

	 5	 “Hefazat Enforces Dawn-to-Dusk Hartal for Monday,” RisingBD.com, April 7, 2013,
https://​www​.risingbd​.com​/english​/Hefazat_enforces_dawn​-to​-dusk_hartal_for​
_Monday​/1536.

	 6	 Joshua Hammer, “The Imperiled Bloggers of Bangladesh,” New York Times, De-
cember 29, 2015, https://​www​.nytimes​.com​/2016​/01​/03​/magazine​/the​-price​-of​
-secularism​-in​-bangladesh​.html.

	 7	 Jana Syeda Gulshan Ferdous, “BTRC Attempts to Silence the Voice of Bloggers,”
OurTimeBD.com, February 22, 2019, https://​www​.ourtimebd​.com​/beta​/btrc​
-attempts​-to​-silence​-the​-voice​-of​-bloggers​/.

	 8	 Arild Klokkerhaug, “Transparency Report,” SomewhereinBlog.net, February 29,
2013, https://​www​.somewhereinblog​.net​/transparency_report#.

https://news.mit.edu/2017/volkswagen-emissions-premature-deaths-europe-0303#:~:text=The%20researchers%20estimate%20that%201%2C200,affected%20cars%20sold%20in%20Germany
https://news.mit.edu/2017/volkswagen-emissions-premature-deaths-europe-0303#:~:text=The%20researchers%20estimate%20that%201%2C200,affected%20cars%20sold%20in%20Germany
https://news.mit.edu/2017/volkswagen-emissions-premature-deaths-europe-0303#:~:text=The%20researchers%20estimate%20that%201%2C200,affected%20cars%20sold%20in%20Germany
https://news.mit.edu/2017/volkswagen-emissions-premature-deaths-europe-0303#:~:text=The%20researchers%20estimate%20that%201%2C200,affected%20cars%20sold%20in%20Germany
https://en.wikipedia.org/wiki/2013_Shahbag_protests
https://en.wikipedia.org/wiki/2013_Shahbag_protests
https://en.wikipedia.org/wiki/Ahmed_Rajib_Haider
https://en.wikipedia.org/wiki/Ahmed_Rajib_Haider
https://timesofindia.indiatimes.com/india/atheist-tag-used-to-attack-bloggers/articleshow/47606967.cms
https://timesofindia.indiatimes.com/india/atheist-tag-used-to-attack-bloggers/articleshow/47606967.cms
https://www.dw.com/en/bangladesh-gags-award-winning-blogger/a-16697713
https://www.dw.com/en/bangladesh-gags-award-winning-blogger/a-16697713
https://www.risingbd.com/english/Hefazat_enforces_dawn-to-dusk_hartal_for_Monday/1536
https://www.risingbd.com/english/Hefazat_enforces_dawn-to-dusk_hartal_for_Monday/1536
https://www.nytimes.com/2016/01/03/magazine/the-price-of-secularism-in-bangladesh.html
https://www.nytimes.com/2016/01/03/magazine/the-price-of-secularism-in-bangladesh.html
https://www.ourtimebd.com/beta/btrc-attempts-to-silence-the-voice-of-bloggers/
https://www.ourtimebd.com/beta/btrc-attempts-to-silence-the-voice-of-bloggers/
https://www.somewhereinblog.net/transparency_report#

NOTES TO CHAPTER 2 5 / 187

Chapter 25 / Telegram

	 1	 “Iran: Tightening the Net 2020,” ARTICLE 19, September 16, 2020, https://​www​
.article19​.org​/ttn​-iran​-november​-shutdown​/.

	 2	 Ali Khamenei, “Supreme Leader’s Speech on November 25, 2009,” Khamenei.ir,
https://​farsi​.khamenei​.ir​/speech​-content?id=8430.

	 3	 Shaun Walker, “Founder of Vkontakte Leaves after Dispute with Kremlin-Linked
Owners,” Guardian, April 2, 2014, http://​www​.theguardian​.com​/media​/2014​/apr​
/02​/founder​-pavel​-durov​-leaves​-russian​-social​-network​-site​-vkontakte.

	 4	 Catherine Shu, “Meet Telegram, a Secure Messaging App from the Founders
of VK, Russia’s Largest Social Network,” TechCrunch, October 28, 2013, https://​
techcrunch​.com​/2013​/10​/27​/meet​-telegram​-a​-secure​-messaging​-app​-from​-the​
-founders​-of​-vk​-russias​-largest​-social​-network​/.

	 5	 Ryan Gallagher, “Data Breach Shows Iranians Use Chat Apps to Spy, Researchers
Say,” Bloomberg, April 17, 2020, https://​www​.bloomberg​.com​/news​/articles​/2020​
-04​-17​/data​-breach​-shows​-iranians​-use​-chat​-apps​-to​-spy​-researchers​-say.

	 6	 Martim Lobao, “Telegram v3.2 Brings Channels for Broadcasting Your Mes-
sages to the World,” Android Police (blog), September 22, 2015, https://​www​
.androidpolice​.com​/2015​/09​/22​/telegram​-v3​-2​-brings​-channels​-broadcasting​
-messages​-world​/.

	 7	 Farhad Fatemi, “Feasibility Study for the Transfer of Telegram’s Traffic to Iran:
The Public Benefit,” Arvan Cloud (blog), September 6, 2017, https://​www​.arvan​
cloud​.com​/blog​/امکان‌سنجی​-انتقال​-ترافیک​-تلگرام​-به​-ای​/.

	 8	 Mahsa Alimardani, “The Chilling Effect of Officials Discussing Telegram’s Immi-
nent Ban in Iran,” Global Voices Advox (blog), April 25, 2018, https://​advox​.global​
voices​.org​/2018​/04​/25​/the​-chilling​-effect​-of​-officials​-discussing​-telegrams​
-imminent​-ban​-in​-iran​/.

	 9	 Mahsa Alimardani, “Is Telegram’s Compliance with Iran Compromising the
Digital Security of Its Users?” Global Voices Advox (blog), accessed July 30, 2021,
https://​advox​.globalvoices​.org​/2015​/08​/28​/is​-telegrams​-compliance​-with​-iran​
-compromising​-the​-digital​-security​-of​-its​-users​/.

	10	 Mahsa Alimardani, “What Telegram Owes Iranians,” Politico Magazine, January
1, 2018, https://​www​.politico​.com​/magazine​/story​/2018​/01​/01​/irans​-telegram​
-revolution​-216206​/.

	11	 Amir Vahdat, “Telegram Denies Iran’s Claim It Installed Servers There,” Associated
Press, July 30, 2017, https://​apnews​.com​/article​/c41a64ac397941dfa16f5267960
f1258.

	12	 “Iran: Block on Telegram is a blow to freedom of expression,” ARTICLE19, May 11,
2018, https://​www​.article19​.org​/resources​/iran​-the​-block​-on​-telegram​-in​-iran​-is​
-a​-blow​-to​-freedom​-of​-expression​/.

	13	 Alimardani, “What Telegram Owes Iranians.”
	14	 Lily Hay Newman, “Iran’s Telegram Ban Has Impacted All Corners of the Country,”

Wired, June 19, 2018, https://​www​.wired​.com​/story​/iran​-telegram​-ban​/.
	15	 “73.6% of People over the Age of 18 in the Country Currently Use Social Media /

WhatsApp Messenger Ranks First,” Islamic Students Polling Agency (ISPA),

https://www.article19.org/ttn-iran-november-shutdown/
https://www.article19.org/ttn-iran-november-shutdown/
https://farsi.khamenei.ir/speech-content?id=8430
http://www.theguardian.com/media/2014/apr/02/founder-pavel-durov-leaves-russian-social-network-site-vkontakte
http://www.theguardian.com/media/2014/apr/02/founder-pavel-durov-leaves-russian-social-network-site-vkontakte
https://techcrunch.com/2013/10/27/meet-telegram-a-secure-messaging-app-from-the-founders-of-vk-russias-largest-social-network/
https://techcrunch.com/2013/10/27/meet-telegram-a-secure-messaging-app-from-the-founders-of-vk-russias-largest-social-network/
https://techcrunch.com/2013/10/27/meet-telegram-a-secure-messaging-app-from-the-founders-of-vk-russias-largest-social-network/
https://www.bloomberg.com/news/articles/2020-04-17/data-breach-shows-iranians-use-chat-apps-to-spy-researchers-say
https://www.bloomberg.com/news/articles/2020-04-17/data-breach-shows-iranians-use-chat-apps-to-spy-researchers-say
https://www.androidpolice.com/2015/09/22/telegram-v3-2-brings-channels-broadcasting-messages-world/
https://www.androidpolice.com/2015/09/22/telegram-v3-2-brings-channels-broadcasting-messages-world/
https://www.androidpolice.com/2015/09/22/telegram-v3-2-brings-channels-broadcasting-messages-world/
https://www.arvancloud.com/blog/-----/
https://www.arvancloud.com/blog/-----/
https://advox.globalvoices.org/2018/04/25/the-chilling-effect-of-officials-discussing-telegrams-imminent-ban-in-iran/
https://advox.globalvoices.org/2018/04/25/the-chilling-effect-of-officials-discussing-telegrams-imminent-ban-in-iran/
https://advox.globalvoices.org/2018/04/25/the-chilling-effect-of-officials-discussing-telegrams-imminent-ban-in-iran/
https://advox.globalvoices.org/2015/08/28/is-telegrams-compliance-with-iran-compromising-the-digital-security-of-its-users/
https://advox.globalvoices.org/2015/08/28/is-telegrams-compliance-with-iran-compromising-the-digital-security-of-its-users/
https://www.politico.com/magazine/story/2018/01/01/irans-telegram-revolution-216206/
https://www.politico.com/magazine/story/2018/01/01/irans-telegram-revolution-216206/
https://apnews.com/article/c41a64ac397941dfa16f5267960f1258
https://apnews.com/article/c41a64ac397941dfa16f5267960f1258
https://www.article19.org/resources/iran-the-block-on-telegram-in-iran-is-a-blow-to-freedom-of-expression/
https://www.article19.org/resources/iran-the-block-on-telegram-in-iran-is-a-blow-to-freedom-of-expression/
https://www.wired.com/story/iran-telegram-ban/

188 / NOTES TO CHAPTER 2 6

February 22, 2021, accessed July 25, 2021, http://​ispa​.ir​/Default​/Details​/fa​/2282​
درصد​-افراد​-بالای​-​18-سال​-کشور،​-درحال​-حاضر​-از​-رسانه‌های​-اجتماعی​-استفاده​-می​-کنند​-​-پیام​-​73​.6/
.-رسان​-واتس​-اپ​-در​-رتبه​-اول

	16	 Matt Burgess, “Switched to Telegram? You Need to Know This about Its Encryp-
tion,” Wired UK, January 27, 2021, https://​www​.wired​.co​.uk​/article​/telegram​
-encryption​-end​-to​-end​-features.

	17	 Alimardani, “Telegram’s Compliance with Iran.”
	18	 Finbarr Toesland, “Iran’s Persecuted LGBTQ Community Seeks Refuge Online,”

Overture Global, accessed July 30, 2021, https://​www​.overtureglobal​.io​/story​/irans​
-persecuted​-lgbtq​-community​-seeks​-refuge​-online.

	19	 “Sodomites Parading on Telegram in Shadow of Officials’ Negligence,” Gerdab,
accessed July 30, 2021, https://​gerdab​.ir​/fa​/news​/23030​/جولان​-همجنس​-بازان​-در​-تلگرام​
.-در​-سایه​-غفلت​-مسئولان​-تصاویر

	20	 ”Six Telegram Admins Arrested in Ardebil over Promoting Immorality,” خبرگزاری
​Tasnim News Agency, September 14, 2017, https://​www​.tasnimnews​.com | تسنیم
/fa​/news​/1396​/06​/23​/1518311​/6​-مدیر​-کانال​-های​-تلگرامی​-به​-اتهام​-ترویج​-مسائل​-غیراخلاقی​
.-در​-اردبیل​-دستگیر​-شدند

	21	 “Apps, Arrests and Abuse in Egypt, Lebanon and Iran,” ARTICLE 19, February
22, 2018, https://​www​.article19​.org​/resources​/apps​-arrests​-abuse​-egypt​-lebanon​
-iran​/.

	22	 Gallagher, “Data Breach.”
	23	 “73.6% of People,” ISPA.

Chapter 26 / Encoding Gender

	 1	 Marie Hicks, “Hacking the Cis-Tem,” IEEE Annals of the History of Computing 41, no.
1 (January 1, 2019): 20–33, https://​doi​.org​/10​.1109​/MAHC​.2019​.2897667.

	 2	 David L. Johnson, “The Role of the Digital Computer in Mechanical Translation of
Languages,” in Proceedings of the May 6–8, 1958, Western Joint Computer Conference:
Contrasts in Computers, IRE-ACM-AIEE ’58 (Western) (New York: Association for
Computing Machinery, 1958), 161–65, https://​doi​.org​/10​.1145​/1457769​.1457815.

	 3	 Os Keyes, “The Misgendering Machines: Trans/HCI Implications of Automatic
Gender Recognition,” Proceedings of the ACM on Human-Computer Interaction 2,
CSCW (November 2018): 1–22, https://​doi​.org​/10​.1145​/3274357.

	 4	 Michael Hill, “NY Social Service Agency Sued for Not Allowing X Gender Mark,”
AP NEWS, March 29, 2021, https://​apnews​.com​/article​/new​-york​-lawsuits​-social​
-services​-coronavirus​-pandemic​-medicaid​-3e2f1cbae9d2acf2f3994df5039375b8.

http://ispa.ir/Default/Details/fa/2282/73.6----18------------------
http://ispa.ir/Default/Details/fa/2282/73.6----18------------------
http://ispa.ir/Default/Details/fa/2282/73.6----18------------------
https://www.wired.co.uk/article/telegram-encryption-end-to-end-features
https://www.wired.co.uk/article/telegram-encryption-end-to-end-features
https://www.overtureglobal.io/story/irans-persecuted-lgbtq-community-seeks-refuge-online
https://www.overtureglobal.io/story/irans-persecuted-lgbtq-community-seeks-refuge-online
https://gerdab.ir/fa/news/23030/---------
https://gerdab.ir/fa/news/23030/---------
https://www.tasnimnews.com/fa/news/1396/06/23/1518311/6-------------
https://www.tasnimnews.com/fa/news/1396/06/23/1518311/6-------------
https://www.tasnimnews.com/fa/news/1396/06/23/1518311/6-------------
https://www.article19.org/resources/apps-arrests-abuse-egypt-lebanon-iran/
https://www.article19.org/resources/apps-arrests-abuse-egypt-lebanon-iran/
https://doi.org/10.1109/MAHC.2019.2897667
https://doi.org/10.1145/1457769.1457815
https://doi.org/10.1145/3274357
https://apnews.com/article/new-york-lawsuits-social-services-coronavirus-pandemic-medicaid-3e2f1cbae9d2acf2f3994df5039375b8
https://apnews.com/article/new-york-lawsuits-social-services-coronavirus-pandemic-medicaid-3e2f1cbae9d2acf2f3994df5039375b8

Contributors

Mahsa Alimardani is an Internet researcher focusing on free-
dom of expression and access to information online in Iran. Her
research aims to understand communications ecologies within
Iran’s information control space.

Elena Botella, a principal at Omidyar Network, is the author
of Delinquent: Inside America’s Debt Machine. Her work on technol-
ogy and finance has appeared in the New Republic, Slate, Forbes,
and elsewhere.

Meredith Broussard is associate professor at the Arthur L.
Carter Journalism Institute of New York University and the au-
thor of Artificial Unintelligence: How Computers Misunderstand the
World. Her research focuses on artificial intelligence in investi-
gative reporting, with particular interests in AI ethics and using
data analysis for social good.

David Cassel has been writing about technology for more than
25 years, with articles appearing everywhere from CNN and the
Wall Street Journal’s site to popular tech news sites like Wired,
Gizmodo, and Salon. Since 2015 he’s also been a contributing
writer for The New Stack, covering the culture of technology
(and ways it intersects the broader popular culture), while also
expanding his interests into computer programming and app
development.

Arthur Daemmrich is the director of the Lemelson Center for
the Study of Invention and Innovation at the Smithsonian In-
stitution. He has published in the fields of science and tech-
nology studies, history of technology, and business policy, with
an emphasis on the interplay of innovation and risk-based
regulation.

190 / LIST OF CONTRIBUTORS

Charles Duan is a postdoctoral associate at Cornell Tech, where
he researches technology and intellectual property law. He is
also a senior policy fellow with the Program on Information Jus-
tice and Intellectual Property at American University Washing-
ton College of Law, a senior fellow for technology and innovation
policy with the R Street Institute, and the author of A Five Part
Plan for Patent Reform.

Quinn DuPont has over a decade of experience researching and
writing about crypto. His publications include Cryptocurrencies
and Blockchains (Polity Press, 2019). Previously he was an assis-
tant professor of business at University College Dublin.

Claire L. Evans is a writer and musician based in Los Ange-
les. She is the singer and coauthor of the Grammy-nominated
pop group YACHT and the author of Broad Band: The Untold Story
of the Women Who Made the Internet (Penguin Random House).

Hany Farid is a professor at the University of California, Berke-
ley with a joint appointment in Electrical Engineering & Com-
puter Sciences and the School of Information. He is the author
of Fake Photos and Photo Forensics.

James Grimmelmann is a professor at Cornell Law School and
Cornell Tech who studies Internet and intellectual property law.

Katie Hafner is a longtime science and technology writer who
has published seven books, including Cyberpunk: Outlaws and
Hackers on the Computer Frontier (with John Markoff) and Where
Wizards Stay Up Late: The Origins of the Internet (with Matthew
Lyon). She is host and co-executive producer of the narrative
podcast Lost Women of Science.

Susan C. Herring is professor of information science and
linguistics and director of the Center for Computer-Mediated

LIST OF CONTRIBUTORS / 191

Communication at Indiana University, Bloomington. She is the
editor of Computer-Mediated Communication: Linguistic, Social and
Cross-Cultural Perspectives, The Multilingual Internet: Language, Cul-
ture, and Communication Online (with B. Danet), and The Handbook
of Pragmatics of Computer-Mediated Conversation (with D. Stein and
T. Virtanen).

Syeda Gulshan Ferdous Jana, a Bangladeshi journalist, is
the cofounder and editor of somewhereinblog.net, the world’s
first Bengali language blogging platform. Her work has had a
significant impact on the freedom of expression and social ac-
tivism throughout Bangladesh and resulted in several national
and international awards.

Lowen Liu is an editor at Slate, with an interest in the impact
of technology on everyday lives.

John MacCormick is professor of computer science at Dickin-
son College. He is the author of Nine Algorithms That Changed the
Future: The Ingenious Ideas That Drive Today’s Computers and What
Can Be Computed? A Practical Guide to the Theory of Computation.

Brian McCullough is the host of the Techmeme Ride Home
podcast, Silicon Valley’s daily news podcast of record. He is the
author of How The Internet Happened: From Netscape to the iPhone.

Charlton McIlwain is Professor of Media, Culture, and Com-
munication at New York University and author of Black Software:
The Internet & Racial Justice, From the Afronet to Black Lives Matter.

Lily Hay Newman is a senior writer at Wired focused on infor-
mation security, digital privacy, and hacking. Previously she
was a technology reporter at Slate magazine, and her work has
also appeared in Gizmodo, Fast Company, IEEE Spectrum, and
Popular Mechanics.

192 / LIST OF CONTRIBUTORS

Margaret O’Mara is the Howard & Frances Keller Endowed
Professor of History at the University of Washington, where she
writes and teaches about the technology industry and its rela-
tionship to modern American politics and society. She is the
author of Cities of Knowledge: Cold War Science and the Search for
the Next Silicon Valley and The Code: Silicon Valley and the Remaking
of America.

Will Oremus is technology news analysis writer for the Wash-
ington Post, focusing on the ideas, products, and power strug-
gles shaping the digital world. Before joining the Post in 2021,
he spent eight years writing about tech for Slate magazine and
two years as a senior writer for the tech and science magazine
OneZero.

Nick Partridge is a writer and science communicator at the
Smithsonian’s National Air and Space Museum where he leads
partnerships and special projects, including the national cele-
bration of the 50th anniversary of Apollo 11. He was previously
a public radio host at WUGA in Athens, GA.

Benjamin Pope is a Lecturer in Astrophysics and ARC DECRA
Fellow at the University of Queensland, in Brisbane, Australia.
He applies modern statistical methods to searching for planets
around other stars.

Joy Lisi Rankin, PhD, wrote A People’s History of Computing
in the United States. She leads research at AI Now, focusing on
gender, race, and power in artificial intelligence and other al-
gorithmic technologies.

Afsaneh Rigot is an analyst, researcher, and advocate cover-
ing issues of law, technology, and LGBTQ, refugee, and human
rights. She is a senior researcher at ARTICLE 19 focusing on

LIST OF CONTRIBUTORS / 193

the Middle East and North African (MENA) human rights is-
sues and international corporate responsibility. She is also a
Fellow at the Harvard Kennedy School’s Technology and Pub-
lic Purpose Project (TAPP), an Affiliate at the Berkman Klein
Centre (BKC) at Harvard, and an advisor at the Cyberlaw Clinic
at Harvard.

Ellen R. Stofan, PhD, is the Undersecretary for Research
and Science at the Smithsonian Institution where she over-
sees the Institution’s research centers and sciences museums;
Smithsonian Libraries and Archives; Office of International
Relations; Smithsonian Scholarly Press; and Scientific Diving
Program. She previously led the National Air and Space Mu-
seum, served as Chief Scientist at NASA, and currently is on
the science team of the NASA Dragonfly mission to Saturn’s
moon Titan.

Ellen Ullman is a former software engineer whose essays and
opinion pieces have been widely published. She is the author
of the memoir Close to the Machine; of two novels, The Bug and By
Blood; and of the nonfiction collection Life in Code.

Lee Vinsel is an associate professor of Science, Technology,
and Society at Virginia Tech. He is the author of Moving Viola-
tions: Automobiles, Experts, and Regulations in the United States and
coauthor with Andrew L. Russell of The Innovation Delusion: How
Our Obsession with the New Has Disrupted the Work That Matters Most.

Josephine Wolff is associate professor of cybersecurity pol-
icy at the Tufts Fletcher School of Law and Diplomacy. She is
the author of Cyberinsurance Policy: Rethinking Risk in an Age of
Ransomware, Computer Fraud, Data Breaches, and Cyberattacks and
You’ll See This Message When It Is Too Late: The Legal and Economic
Aftermath of Cybersecurity Breaches.

194 / LIST OF CONTRIBUTORS

Ethan Zuckerman is associate professor of public policy, in-
formation and communication at the University of Massachu-
setts, Amherst. He is the author of Mistrust: Why Losing Faith In
Institutions Provides the Tools to Transform Them and Digital Cos-
mopolitans: Why We Think the Internet Connects Us, Why It Doesn’t
and How to Rewire It.

A page number in italics refers to an illustration.

Adelman, Leonard, 104
advertising: to support user-generated

content, 96–97, 98, 99; targeted,
93–95, 99, 136

Ahmed, Nasir, 88
Aldrin, Buzz, 56
AltaVista, 108, 109
Amazon, and Heartbleed, 139,

143–44
amplitude of oscillations, 87, 88
Analytical Engine, 15–16
Android phones, and Heartbleed, 140
Angle, Colin, 119, 121–23
AOL, 48
API (Application Programming Inter-

face), 157
Apollo 10, 62
Apollo 11, 56–62, 61
Apollo 13, 5–6
Apollo Guidance Computer (AGC),

56–62, 61
Apple: HyperCard for Macintosh, 82;

targeted marketing and, 94
Armstrong, Neil, 56, 60
ARPANET, 3, 45–47, 67, 69, 73
ASCII, 165
Association for Computing Machinery

(ACM), 29–30, 163
Asteroids video game, 36
Atabey, Zemí Yukiyú, 167
Atari, 34, 35–36
audio compression, 89

Babbage, Charles, 15–16
Back, Adam, 102, 107
Backus, John, 1, 5, 10
Bangla language blog community,

151–55
Banu Musa brothers, 18
BASIC, 40–43

batch processing, 38–39, 44
Bell Labs: C language developed at,

3; Unix comment and, 64; Unix
created at, 3, 65, 66

Bergin, Tim, 28–29
Berners-Lee, Tim, 82, 83, 84–85
Bernstein, Daniel, 105–6
binary representation: of all code,

18; of data, 18, 165; of gender,
162–68

Bitcoin: blockchain and, 126, 127–28;
Nakamoto and, 124–26, 125, 127,
129–30; new values and, 129–30;
privacy and, 126; trust and, 125–27

Black people: framed as responsible for
crime, 50–51, 53–54, 55; prevalent
in early computing, 41–42. See also
communities of color; race; racism

blockchain, 85, 107, 126, 127–29
Blockstream, 107
Bohnet, David, 99
Boltzmann factor, 21
Boole, Charles, 165
Boolean values, 165
Boolean variables, 166–67
Bosworth, Andrew, 131, 133–34, 135
bots, on Iran’s Telegram, 157, 158
Bouchon, Basile, 13–15, 15, 16, 17–18
Boyle, Willard, 88
Brin, Sergey, 108, 110, 111, 112
Brooks, Rodney, 121
bugs, 2–3; Morris worm based on, 70
Busch, Michael, 38, 40
Bush, Vannevar, 81–82
Bushnell, Nolan, 34

C, memory management in, 3, 141–42
Callahan, Ezra, 131, 134, 138
Cambridge Analytica scandal, 99
cars, computerization of, 147–48

Index

196 / INDEX

Cascading Style Sheets (CSS), 91
cat videos, 7, 119–20, 122, 123
Census Bureau, US: punch cards used

in 1890, 17; UNIVAC used in 1951,
162

channels: on Internet Relay Chat, 75; on
Telegram, 157–58

Chappelle, Dave, 119
charge-coupled device (CCD), 88
chat, 75–80
check engine light, 148
Chiappetta, Mark, 121
Chrome, third-party cookies in, 95
cisgender heteronormativity, 166–67
civil rights movement, 49, 50, 59
Clean Air Act Amendments of 1970,

146–47
click, and hyperlink concept, 83, 84
climate change, and blockchain, 129
Clinton administration, and telephone

encryption, 106
Clipper, 106
COBOL, 29, 30, 37, 40–41
CODASYL, 26, 30
code: binary representation of, 18;

definition of, 13, 16–17. See also
software

CodeCov, 4–5
Codenomicon, 140
code vulnerabilities, 4–5; Heartbleed,

139–44, 141
coding empowerment, illusion of,

41–43
comet trajectory, 22–23, 23
command line, 83
comments, 63–68
communities of color: surveillance of,

49, 53, 55. See also Black people;
race; racism

Compatible Time-Sharing System
(CTSS), 44–45

compilers, 26, 30; rewritten for
Roomba, 121; run-time compiler
trick, 32–33

compression schemes, 86–88; JPEG
standard, 86, 88–90, 90

CompuServe, 47
Computer History Museum, 36, 67
computer security industry, 74
Computer Space arcade game, 34–36
context switching, 63
cookies, 92, 93, 95, 99
copyright on software, 37, 107, 149
Core Infrastructure Initiative, 144
COVID-19: Markov Chain Monte Carlo

and, 23–24; shortage of COBOL
programmers and, 29

Cox, Rebekah, 133
CPUs, types of computations and, 17
Creeper worm, 73
crime: Black people framed as

responsible for, 50–51, 53–54, 55;
proposed computational solutions
to, 51–55, 54

crowdsourcing, 7, 8, 110
cryptoeconomics, 129
Cuervo, Soleio, 135
cypherpunks, 103, 106, 124

Dabney, Ted, 34
Dartmouth College Time-Sharing Sys-

tem, 39–40, 41, 42
data: analyzed with MCMC algorithm,

22–24; binary representation of, 18,
165; types of, 165

databases: gender in, 162–68;
LGBTQIA+ identities in, 163; types
of variables in, 165–66

decentralized finance (DeFi), 127
DeCSS, 107
Defender video game, 36
Digg, 134
Digital Equipment Corporation (DEC),

32, 34, 36
digital images, 86–90, 90
Dijkstra, Edsger W., 29
Discrete Cosine Transform (DCT), 88,

89, 90
Dorner, Steve, 47–48
dot-com boom, 48
DuckDuckGo, Email Protection feature,

94

INDEX / 197

Durov, Nikolai, 156–57
Durov, Pavel, 156–57
DVDs, encryption of, 107

Edwards, Dan, 32–33
eigenvalue problem, 111
elegant code, 4, 167
Elizabeth II, 47
Email, 44–48; interoperability and,

117; origin of @ notation in, 46;
tracking pixels in, 91–92, 92, 93,
94

emojis, 79–80
encryption: Heartbleed vulnerability

and, 139–40, 142; Iran’s Internet
and, 158; RSA algorithm for, 102–7.
See also Internet security

Engelbart, Douglas, 82
ENIAC, 19, 29
Environmental Protection Agency, 146,

147, 148
equation of state, 20–22
Ethereum, 128
Eudora, 47–48
Evans, Claire L., 42
Ewing, Jack, 148
export-control laws, 102–4, 106–7

Facebook: death threats toward Bangla
bloggers on, 155; gender identity
and, 164; like button on, 85, 93–94,
131–38, 132; and news feed algo-
rithm, 134, 135, 136, 137; open-
source software and, 143–44; popu-
list politicians and, 137–38; virtual
performatives on, 79

Facebook Beacon, 134
Facebook Pixel, 94
facial recognition, 55
failure, 1–2
fast and slow thinking, 2
Faulkner, Roger, 67–68
Ferguson, Jonathan, 162
file format incompatibility, 117
financial crisis of 2008, 124, 130
Forelle, M. C., 149

forensic analysis of images, 86, 90
forks, and Iranian Internet, 157, 160
FORTRAN, 1, 5, 40–41
Fourier, Jean-Baptiste Joseph, 87
Fourier transform, 89
freedom of expression: in Bangladesh,

154, 155; on Iran’s Telegram chan-
nels, 157–58

frequency of oscillations, 87–88; JPEG
standard and, 89–90

Friendfeed, 134

Galaxy Game arcade game, 34
game theory, and public goods, 129
gaming culture, 31–37
Gass, Saul I., 52, 54
Gasser, Urs, 117
gender binary in databases, 162–68
gender identity: and government

documents, 168; vs. legal sex, 167.
See also White men, and access to
computing; women

genderqueer identification, 167
General Motors, emissions deceit by,

148
Gen Z, and Bitcoin, 130
GeoCities, 97, 99
global economic crisis of 2008, 124,

130
Gmail, setting to block external images,

94
Google: “Don’t be evil” motto of, 135;

invisible cross-app tracking on, 95;
open-source software and, 143–44;
and PageRank algorithm, 108–12,
109; ranking issues on, 7–8;
reverse-engineered hyperlinking
and, 85; social media in Bangladesh
and, 155; and surveillance capi-
talism, 100; third-party cookies in
Chrome and, 95

governance, and blockchain, 129
GPU (graphics card), 17
Graetz, Martin, 31, 33
graphical user interface, 82–83
Greenspan, Alan, 124

198 / INDEX

hackers, 3–5
Hacker’s Dictionary, 65, 66–67
hacks, good use of, 3–4, 5–6, 11
Haider, Hasin, 152
Hastings, W. K., 22
Hawes, Mary K., 27
Heartbleed vulnerability, 139–44, 141
Hicks, Mar, 162
Higinbotham, William, 37
Holberton, Betty, 29
Hollerith, Herman, 17, 18
Hopper, Grace, 26–29, 42
HTML: Cascading Style Sheets and, 91;

interoperability and, 85; as not
Turing complete, 17

hydrogen bomb, 19–20
HyperCard, 82
hyperlinks, 81–85
hypertext, 82

IBM: buying Lotus for $3.5 billion, 48;
COBOL development and, 28, 29;
first manned US space mission and,
52; focus on problem-solving at,
49–50; FORTRAN and, 40; growth
of after Second World War, 27; Hol-
lerith’s 1889 system and, 17; MIT
and, 32; open-source software and,
143–44

images, digital, 86–90, 90
imagination, 1–2
inequality, and blockchain, 129
Instagram, 137
Internet: audio, images, and video

on, 88; commercialization of, 47;
evolution from ARPANET of, 3,
69; interoperability and, 117; in
Iran, 156–61, 159; as military tool,
5; need for hyperlinks on, 83–84;
tracking pixels on, 91–95, 92. See
also targeted advertising

Internet Relay Chat (IRC), 75–80
Internet security: emergency DNS

patch in 2008, 6; and hacking of
security companies, 4–5; Iran’s
Telegram and, 158; Morris worm

and, 69–74, 71; multibillion-dollar
industry for, 74. See also encryption

interoperability, 116–18; development
of programming language for, 27–
29; hyperlinks and, 85; shift away
from, 117–18

invisible GIFs. See tracking pixels
iOS15, and Email web bugs, 94
Iran, Internet in, 156–61, 159
iRobot, 119, 120, 122

Jacquard, Joseph Marie, 14
Jacquard Loom, 14–15, 17
January 6 invasion of US Capitol, 99
Johnson, Lyndon, 50, 52
Johnson, Steve, 65–66
Jones, Joe, 120, 121, 122
JPEG compression standard, 86, 88–90,

90
Junger, Peter, 105

Kahneman, Daniel, 2
Kaminsky, Daniel, 6
Karhunen-Loeve transform (KLT), 88
Kelty, Christopher M., 65
Kemeny, John, 39, 42, 43
Kennedy, John F., 56, 61
Kernighan, Brian, 3
Keyes, Os, 166
Khamenei, Ali, 156
Kint, Jason, 92
kludges, 4
Kotok, Alan, 32
Kurtz, Tom, 38, 39, 43

Landsteiner, Norbert, 36
law enforcement technologies, 55
LGBTQIA+ people: and database design,

163–64, 166–68; in Iran, 159–60
Licklider, J.C.R., 45–46
like button, 131–38, 132; counter of,

134, 138; flaws of, 137–38; as a link,
85; tracking pixel and, 93–94

link, software concept of, 81–82
link rot, 85
Linux, expletives in source code of, 67

INDEX / 199

Lions, John, 64–65
listserv, 45
LOL: as early computer slang, 58; emoji

for, 79; in Internet Relay Chat, 75,
77, 78, 79

loops, precursors of, 18
Los Alamos nuclear weapons program,

19–20
Lotus Notes, 47–48
Lovelace, Ada, 15–16
Lovell, James, 6
Lycos, 108, 109

MacCárthaigh, Colm, 139, 140
machine code, 27
MAIL command, 44, 45, 46, 48
mainframe computers: batch pro

cessing for, 38–39, 44; for calcu-
lation, not correspondence, 44; of
Dartmouth time-sharing system,
38–40

maintenance, ignored in our culture, 29
Mandiberg, Michael, 84
MANIAC, 21
marketing on the Internet. See targeted

advertising
Mark I computer, 26
Markov Chain Monte Carlo (MCMC),

21–24
Mars Climate Orbiter, 113–16, 114, 117
Mars Global Surveyor, 115
Masswerk, 36
McCarthy, John, 32, 44
McGeachie, John, 38, 40
Mehta, Neel, 140
Metropolis, Nick, 21
Metropolis algorithm, 21
Microsoft: open-source software and,

143–44; Windows XP’s lines of code,
63; Word for Windows, 67, 117

Millennial generation, and Bitcoin, 130
Minsky, Marvin, 32
Minskytron hyperspace signature, 33,

35, 36
Missile Command video game, 36
Mitchell, Jaime, 168

Monte Carlo method, 19, 20, 21–24
Morgenstern, Jared, 136
Morris, Bob, 70
Morris, Noel, 45
Morris, Robert Tappan, 69–74
Morris worm, 69–74, 71
Moussouris, Katie, 93
movie industry, and decryption of

DVDs, 107
MP3, 89
MPEG, 89
multitasking, of running programs, 64
music, encoded, 18
Muskie, Edmund, 146
MySpace, 131, 135

Nader, Ralph, 146
Nakamoto, Satoshi, 124–26, 125, 127,

129–30
Napoleon Bonaparte, 14
Nelsen, Arvid, 42
Nelson, Ted, 81, 82
Neumann, Peter G., 4, 69
The New Hacker’s Dictionary, 65, 67;

original version of, 66–67
Nixon, Richard, 146
norming, 53
Northcutt, Poppy, 56
nuclear weapons program, 19–20

Okelola, Ola, 133
open-source software: for Bangla text

entry, 152; Bitcoin and, 126; Heart-
bleed vulnerability and, 139–44,
141; institutional support for, 141,
143–44

OpenSSL software library, 139–40, 141,
142, 144

operating systems, lines of code in, 63
Ozzie, Ray, 47

Page, Larry, 7, 108, 110, 111, 112
PageRank algorithm, 108–12, 109
Palfrey, John, 117
PDP-1, 32–34, 36
PDP-11, 34

200 / INDEX

Pearlman, Leah, 131, 133, 134, 135,
136, 138

Perlroth, Nicole, 5
Perseverance Rover, 10–11
phase of oscillations, 87
Piner, Steven, 33
Pines, Jonathan, 136
Pitts, Bill, 34
player pianos, 18
Police Beat Algorithm, 49–55, 54
police brutality, 50–51
Pong, 35
populist politicians, 137–38
pop-up ads, 96–101, 97
pornography: appearing in Zoom meet-

ings, 4; censored in Iran, 158
privacy: Facebook like button and, 134;

Iranian authorities and, 157; motive
for Bitcoin and, 126; tracking pixels
and, 92–93, 94–95

profiling, for police, 52, 53
programming languages: BASIC, 40–43;

binary data and, 165–66; C, 3,
141–42; COBOL, 29, 30, 37, 40–41;
FORTRAN, 1, 5, 40–41; origin of,
26–30; Turing complete, 17

Project Xanadu, 81, 82
proxy services, and Iranian censorship,

160
public-key algorithms, 104–5
punch cards, 14, 16, 17, 18, 38–39

race: computing access and, 43; gam-
ing culture and, 37. See also Black
people; communities of color

racism: Police Beat Algorithm and, 55;
uprisings against, 50–51, 52

random surfing algorithm, 109, 111
RankDex, 112
Raymond, Eric S., 67
regulations, circumvented with com-

puters, 149–50
Ritchie, Dennis, 3, 65–66, 66
Rivest, Ron, 104–5
Roomba, 7, 119–23, 122
Rosenbluth, Arianna, 19, 21, 23–24

Rosenbluth, Marshall, 19, 20–21, 24
Rosenstein, Justin, 131, 133
RSA encryption algorithm, 102, 104–5
RSA security company, 5
RSA T-shirt, 102–3, 103, 106–7
Ruckelshaus, William, 147
run-time compiler trick, 32–33
Russell, Steven, 31, 32, 34, 36
Russian interference in 2016 US elec-

tion, 99

same-sex marriage, 164
Sammet, Jean, 25–30, 42
Samson, Peter, 33, 36
Schneier, Bruce, 4
Scott, David, 57
search engines: benefits and hazards

of, 8; dynamic query-dependent
scores in, 112; before Google,
108–9, 112. See also Google

Secure Sockets Layer (SSL), 140
Shamir, Adi, 104–5
Shetterly, Margot Lee, 42
Silver, Nate, 23
Simmel, Georg, 127
Smith, George, 88
Smith, Richard M., 92
Snuffle, 105, 106
social media: alternative models for,

100–101; in Bangladesh, 151–55;
current dysfunctions of, 99; hyper-
links and, 85; Internet Relay Chat
and, 75, 78, 79; replacement of
Email communications by, 48; Tele
gram application in Iran, 156–61.
See also Facebook

software: for Apollo Guidance Com-
puter, 56–62, 61; to cheat emissions
tests, 145–46, 149; copyright for, 37,
107, 149; export laws and, 102–4,
107; hardwired, 58, 62; interoper-
able, 27, 116–17; long-term use of,
37; as protected speech, 106–7. See
also code; open-source software

software crisis, 27
Soltani, Ashkan, 93, 95

INDEX / 201

“Somewhere in . . .” social media com
pany, 151–52, 155

Space Invaders arcade game, 35
Spacewar, 31–37, 35
SSL (Secure Sockets Layer), 140
surveillance: advertising and, 95, 98,

99; by Iranian authorities, 156; po-
lice algorithms and, 49, 53, 55

surveillance capitalism, 98, 99–100
Syzygy Engineering, 34

Tanaka, Brian, 64
targeted advertising: giving users more

control over, 94–95; like button and,
93–94, 136; pop-up ads and, 99;
tracking pixels and, 93–94, 95

Tech Model Railroad Club (TMRC), 32,
33

Telegram application in Iran, 156–61
Teller, Augusta, 21
Teller, Edward, 19–21
Tennis for Two, 37
Thomas, Arun, 64
Thompson, Ken, 66
3D-printed firearms, 107
Tierney, Gertrude, 29
TikTok, 137
time-sharing systems: at Dartmouth

College, 39–40, 41, 42; early mail
programs on, 44–45; one-click mul-
titasking derived from, 64

Tomlinson, Ray, 46
“town crier” worm, 73
tracking pixels, 91–95, 92
transparency report, 155
transparent 1 × 1 pixels, 91–95, 92
Transport Layer Security (TLS), 140
Tripod​.com, 96–97, 99
trout-slap, 75–76, 79, 80
trust: in Bangla blog community, 153–54;

Bitcoin and, 125–27; blockchain
and, 127–29

Tuck, Hugh, 34
Turing, Alan, 15–16
Turing completeness, 16–17
Turing Test, 16

Twitter: as imitator of Facebook, 137;
virtual performatives on, 79–80

TX-0, 32

Ulam, Stanislaw, 20, 23
UNIVAC, 26, 162
universal machine, 16–17
Unix: comments in, 63–68; creators

of, 3, 65, 66; Morris worm and, 70;
time-sharing systems in, 63–64;
unavailable source code for, 64–65

Usher, Abbot Payson, 14

vampire worm, 73
Van Vleck, Tom, 45
variables in a program, 165–66
Vezza, Albert, 45–46
Viber, 158
video compression, 89
Vimeo, 134
virtual performatives, 76–80
virtual private networks, 158, 160
Vixie, Paul, 6
Volkswagen emissions scandal, 145–50
von Neumann, John, 20

Wable, Akhil, 131, 134
Watson, Thomas J., 49–50
Watts uprisings, 50–51, 52
web bugs, 91–95, 92
Weber, Max, 127
weighting, 53
WhatsApp, 158, 160
White, Kenneth, 94
White men, and access to computing,

41, 42–43
Whitnah, Tom, 133, 136
Wiitanen, Wayne, 31
Wikileaks, frozen accounts of, 126
Willis, Robert, 14
wisdom of the crowd, 7, 8, 110
women: computing in high schools

and, 43; gaming culture and, 37; as
pioneers in computer science, 24,
25–30; prevalence of in early com-
puting, 41–42

202 / INDEX

word processing: PDP-1 program in
1960s, 33; Word for Windows, 67, 117

World Wide Web, 82, 83–84
worms, 73; Morris worm, 69–74, 71

Y2gay, 164
Y2K crisis, 30, 164

Yost, Jeffrey R., 29
“You are not expected to understand

this,” 64–68
YouTube, 87, 101, 123

Zuboff, Shoshana, 98, 99–100
Zuckerberg, Mark, 99, 134, 135

	Cover
	Contents
	Preface��������������
	Introduction
	1. The First Line of Code
	2. Monte Carlo Algorithms: Random Numbers in Computing from the H-Bomb to Today
	3. Jean Sammet and the Code That Runs the World
	4. Spacewar: Collaborative Coding and the Rise of Gaming Culture
	5. BASIC and the Illusion of Coding Empowerment
	6. The First Email: The Code That Connected Us Online
	7. The Police Beat Algorithm: The Code That Launched Computational Policing and Modern Racial Profiling
	8. “Apollo 11, Do Bailout”
	9. The Most Famous Comment in Unix History: “You Are Not Expected to Understand This”
	10. The Accidental Felon
	11. Internet Relay Chat: From Fish-Slap to LOL
	12. Hyperlink: The Idea That Led to Another, and Another, and Another
	13 JPEG: The Unsung Hero in the Digital Revolution
	14. The Viral Internet Image You’ve Never Seen
	15. The Pop-Up Ad: The Code That Made the Internet Worse
	16. Wear This Code, Go to Jail
	17. Needles in the World’s Biggest Haystack: The Algorithm That Ranked the Internet
	18. A Failure to Interoperate: The Lost Mars Climate Orbiter
	19. The Code That Launched a Million Cat Videos
	20. Nakamoto’s Prophecy: Bitcoin and the Revolution in Trust
	21. The Curse of the Awesome Button
	22. The Bug No One Was Responsible For—Until Everyone Was
	23. The Volkswagen Emissions Scandal: How Digital Systems Can Be Used to Cheat
	24. The Code That Brought a Language Online
	25. Telegram: The Platform That Became “the Internet” in Iran
	26. Encoding Gender
	Acknowledgments
	Notes������������
	List of Contributors���������������������������
	Index������������

