
The Rules of
Programming
HOW TO WRITE BETTER CODE

CHRIS
ZIMMERMAN

Praise for The Rules of Programming

The Rules of Programming combines great guidance for beginners with subtle
lessons that may teach even the experts. Zimmerman keeps it fun, too—

proving that it’s possible to be both entertaining and instructive.

—Mark Cerny, Lead System Architect, PlayStation 4 and 5

The Rules of Programming provides great insights for both new and experi-
enced coders. Zimmerman’s style makes it an entertaining read, and the
21 rules are an important contribution to better software at a time when

technology is pervasive in every part of business and society.

—Paul Daugherty, Group Chief Executive
of Technology and CTO, Accenture

The Rules of Programming is full of pragmatic rules of thumb any software
engineer can use to level up their skills. I was fortunate to learn these

lessons directly from Chris early in my career, and have successfully applied
them across a wide variety of software disciplines. With this book, you have

the opportunity to do the same.

—Chris Bentzel, Director of Software, Boston Dynamics

The Rules of
Programming

How to Write Better Code

Chris Zimmerman

978-1-098-13311-5

[LSI]

The Rules of Programming
by Chris Zimmerman

Copyright © 2023 Chris Zimmerman. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://oreilly.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mary Treseler

Development Editor: Sarah Grey

Production Editor: Gregory Hyman

Copyeditor: Charles Roumeliotis

Proofreader: Kim Cofer

Indexer: Potomac Indexing, LLC

Interior Designer: Monica Kamsvaag

Cover Designer: Susan Thompson

December 2022: First Edition

Revision History for the First Edition
2022-12-09: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098133115 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. The Rules of Programming,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s
views. While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and the author
disclaim all responsibility for errors or omissions, including without limitation responsibility
for damages resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. If any code samples or other technology
this work contains or describes is subject to open source licenses or the intellectual property
rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098133115

Contents

 | Preface v

 | The Story of the Rules ix

 | How to Disagree with the Rules xiii

Rule 1 | As Simple as Possible, but No Simpler 1

Rule 2 | Bugs Are Contagious 15

Rule 3 | A Good Name Is the Best Documentation 31

Rule 4 | Generalization Takes Three Examples 43

Rule 5 | The First Lesson of Optimization Is
Don’t Optimize 59

 | Interlude: In Which the Previous Chapter
Is Criticized 73

Rule 6 | Code Reviews Are Good for Three Reasons 77

Rule 7 | Eliminate Failure Cases 85

Rule 8 | Code That Isn’t Running Doesn’t Work 103

Rule 9 | Write Collapsible Code 115

Rule 10 | Localize Complexity 131

iii

Rule 11 | Is It Twice as Good? 147

Rule 12 | Big Teams Need Strong Conventions 155

Rule 13 | Find the Pebble That Started the Avalanche 167

Rule 14 | Code Comes in Four Flavors 181

Rule 15 | Pull the Weeds 195

Rule 16 | Work Backward from Your Result, Not Forward from
Your Code 201

Rule 17 | Sometimes the Bigger Problem Is
Easier to Solve 221

Rule 18 | Let Your Code Tell Its Own Story 233

Rule 19 | Rework in Parallel 241

Rule 20 | Do the Math 261

Rule 21 | Sometimes You Just Need to Hammer the Nails 271

 | Conclusion: Making the Rules Your Own 279

A | Reading C++ for Python Programmers 283

B | Reading C++ for JavaScript Programmers 301

 | Index 317

iv | CONTENTS

Preface

Welcome to The Rules of Programming, a set of easy-to-remember and easy-to-
apply Rules that will help you write better code. Programming is hard, but
following the Rules makes it a little bit easier.

Here are some tips on reading the book:

• All of the Rules stand on their own. If you see an interesting-looking Rule•
in the table of contents and want to jump straight into the middle of the
book, feel free. That reading pattern is fully supported.

• That said, I’d suggest starting off with Rule 1, “As Simple as Possible, but•
No Simpler”. It’s a good setup for the rest of the Rules.

• The examples in the book are all written in C++. If you’re a Python or•
JavaScript programmer, you’ll be happier if you read Appendix A, “Read-
ing C++ for Python Programmers”, or Appendix B, “Reading C++ for
JavaScript Programmers”, before getting too far into the Rules. The two
appendices act as Rosetta Stones to translate that C++ into the concepts
you’re used to. If your experience is with some other language and you
find the C++ examples hard to follow, then I suggest the phenomenal
website Rosetta Code.

• If you’re a C++ programmer, note that I’ve simplified a few things in the•
code examples to make them easier to read for non-C++ programmers. For
example, the examples use signed integers in a few places where unsigned
integers would be more typical for a C++ program, and I disabled warn-
ings about implicit conversion between signed and unsigned values. I also
compiled the examples with an implicit “using std” to avoid a boatload of
distracting “std::” references.

v

https://oreil.ly/Rr2BL

• And finally, I’m capitalizing Rule when I refer to an actual Rule in the•
book. If you see rule, it’s just a regular old rule, not an officially sanctioned
one. The distinction between the two senses of the word was confusing
without the capitalization; I hope that excuses me.

I hope you enjoy what follows! I think you’ll discover a few useful thoughts
that help you sharpen your programming skills.

Girls Who Code

All royalties from this book go to Girls Who Code, an organization working
hard to help young women discover just how rewarding programming can be.
When I graduated from college, over a third of computer science graduates were
women; these days, it’s more like a fifth. I think we’d all be better off with a
more representative gender balance. You probably do, too. And supporting Girls
Who Code through donations or volunteering is a step toward making that hope
a reality.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, envi-
ronment variables, statements, and keywords.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download
at https://oreil.ly/rules-of-programming-code.

If you have a technical question or a problem using the code examples,
please send email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and documenta-
tion. You do not need to contact us for permission unless you’re reproducing
a significant portion of the code. For example, writing a program that uses

VI | PREFACE

https://oreil.ly/QyCTX
https://oreil.ly/rules-of-programming-code
mailto:bookquestions@oreilly.com

several chunks of code from this book does not require permission. Selling or
distributing examples from O’Reilly books does require permission. Answering
a question by citing this book and quoting example code does not require permis-
sion. Incorporating a significant amount of example code from this book into
your product’s documentation does require permission.

We appreciate, but generally do not require, attribution. An attribution usu-
ally includes the title, author, publisher, and ISBN. For example: “The Rules
of Programming by Chris Zimmerman (O’Reilly). Copyright 2023 Chris Zimmer-
man, 978-1-098-13311-5.”

If you feel your use of code examples falls outside fair use or the permission
given above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning

For more than 40 years, O’Reilly Media has provided tech-
nology and business training, knowledge, and insight to
help companies succeed.

Our unique network of experts and innovators share their knowledge and
expertise through books, articles, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses,
in-depth learning paths, interactive coding environments, and a vast collection of
text and video from O’Reilly and 200+ other publishers. For more information,
visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

707-829-0515 (international or local)

707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at https://oreil.ly/rules-of-
programming.

PREFACE | VII

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com
https://oreil.ly/rules-of-programming
https://oreil.ly/rules-of-programming

If you have reactions, comments, or questions you’d like to share with the
author, see The Rules of Programming website for pointers. You can also email
bookquestions@oreilly.com to comment or ask technical questions about this book.

For news and information about our books and courses, visit https://
oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia
Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments

First off, thanks to my lovely and talented wife Laura, who encouraged me to
spend time writing this book instead of doing all the other useful things I could
have been doing.

A big round of thanks to all of the people who helped develop the Rules in
this book. That includes all Sucker Punch coders past and present, since you all
contributed whether you intended to or not, but especially Apoorva Bansal, Chris
Heidorn, David Meyer, Eric Black, Evan Christensen, James McNeill, Jasmin
Patry, Nate Slottow, Matt Durasoff, Mike Gaffney, Ranjith Rajagopalan, Rob
McDaniel, Sam Holley, Sean Smith, Wes Grandmont, and William Rossiter.

And thanks to the non–Sucker Punchers who provided a view from outside
the forest: Adam Barr, Andreas Fredriksson, Colin Bryar, David Oliver, Max
Schubert, Mike Gutmann, and Seth Fine.

Extra special thanks to the intrepid readers who made it through every single
one of the Rules: Adrian Bentley, Bill Rockenbeck, Jan Miksovsky, and Julien
Merceron. I officially owe you all a favor.

And finally, thanks to everyone on Team O’Reilly who patiently coached me
through my fumbling attempts to write this book: Charles Roumeliotis, Gregory
Hyman, Libby James, Mary Treseler, Sara Hunter, Suzanne Huston, and very
especially Sarah Grey, who did the rest of you a massive favor by filtering out the
least funny of the jokes I kept insisting on adding.

VIII | PREFACE

https://oreil.ly/jTEGo
mailto:bookquestions@oreilly.com
https://oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

1 The eagle-eyed among you may have noticed I left out Rocket: Robot on Wheels, the first Sucker Punch
game. That’s because very few of you have played it; if you’re one of the few, you have my gratitude.

The Story of the Rules

The Rules of Programming were born of exasperation.
I’d spent about a decade running programming teams at Microsoft, then

cofounded the video game company Sucker Punch in 1997. Both companies have
been successful—in large part because of their ability to recruit and develop
top-notch programming teams. At Sucker Punch, that’s led to a 25-year run of
successful games. There were the three Sly Cooper games, which let kids of all
ages experience the thrilling life of the master raccoon thief Sly Cooper and his
pals. There were the five inFamous games, which gave gamers superpowers and
the choice to use them for good or evil. And then there’s what is to this point our
magnum opus, Ghost of Tsushima, where gamers play a lone samurai fighting
back against the 1274 invasion of Japan.1

A big part of the recruiting strategy at both Microsoft and Sucker Punch
has been hiring smart young programmers, then training them in the ways of
professional developers. This practice has been undeniably successful, but it also
leads to a particular flavor of frustration.

I kept running into one problem over and over again. We’d bring a new
programmer onto the team, often someone fresh out of college. I’d review some
new feature they planned to introduce into the code, usually to solve a very
simple problem—only to discover that they’d written code that attempted to solve
a much bigger problem, one that included the very simple and concrete problem
as a small subcase.

Aargh! We didn’t need that bigger problem solved, certainly not right now!
Invariably, the solution to the bigger problem was a mediocre solution to the
simple problem we did have—more complicated to use, more complicated to

ix

2 All code committed to the Sucker Punch project gets code reviewed. See Rule 6 for more details.

3 In its original form, from Thomas Howell’s New Sonnets and Pretty Pamphlets (1570): “Count not thy
chickens that unhatched be….” A small demonstration of the staying power of a good aphorism.

understand, and capable of hiding a lot more bugs. But just saying that in the
code review2—that we didn’t need the bigger problem solved, that they should
only try to solve problems they understand—was ineffective. They kept doing it.

Out of frustration, I put my foot down. “OK,” I said. “Here’s the new rule.
Until you have three examples of a problem, you’re not allowed to write a general
solution.”

To my surprise and delight, this actually worked! Turning the general philos-
ophy into a specific rule with specific criteria was an effective way of getting
the message across. Sure, most of our new programmers made the premature
generalization mistake once, but the rule helped them avoid making it again.
It also helped them recognize when it was time to generalize. Fewer than three
examples? Don’t generalize. Three or more? Start looking for opportunities.

The rule worked because it was easy to remember, and the situations where
it applied were easy to recognize. When coders could see that they had started
moving past the bounds of the well-defined problem at hand, they could take a
step back, count the number of concrete examples of that sort of problem they’d
run into, and make a better decision about whether to generalize or not. They
wrote better code.

Over time, we found other important bits of Sucker Punch philosophy that
could be distilled into easy-to-remember phrases—aphorisms, to be precise.
There’s a long history of aphorisms—those short, pithy statements that capture
some essential truth. I bet you can rattle off quite a few from memory. Shoot, I
could limit you to bird-related aphorisms, and you’d still be able to come up with
at least two! I’ll offer a few:

• Don’t count your chickens before they’re hatched.3•

• A bird in the hand is worth two in the bush.•

• The early bird catches the worm.•

• Don’t put all your eggs in one basket.•

Aphorisms stick around because they work. They’re viral, in the modern
sense—aphorisms have been “infecting” people with bits of wisdom for

X | THE STORY OF THE RULES

4 The word aphorism itself was coined by Hippocrates around 400 BCE. Well, strictly speaking, the word he
coined was Ἀφορισμός. That was the title of his book of rules for medical diagnosis and treatment, some
of which are still spot on millennia later, like aphorism 13 from section 6—“a sneezing attack will cure a
case of hiccups.” So true.

thousands of years.4 It’s not surprising that they’re an effective way of infecting
new team members with the Sucker Punch coding philosophy.

So, bit by bit, what was once a single rule grew into a list of rules: the Rules
of Programming described in this book. They represent many of the most impor-
tant aspects of Sucker Punch engineering culture: the things that we believe have
led to our success, the ideas that new coders on the team need to absorb to be
effective. The things that even senior coders like me need reminding of at least
once in a while!

Each of the chapters that follows describes a Rule, with plenty of examples
to illustrate the thought behind it. After reading a chapter, you should have a
clear idea of the coding practice the Rule encourages and the situations where it
applies.

Are the Rules equally contagious in book form? Let’s find out.

THE STORY OF THE RULES | XI

How to Disagree
with the Rules

I hope that you don’t sail smoothly through all 21 Rules.
If you find yourself politely nodding along with each of the Rules and the

examples I use—“Oh yes, that makes sense, this example is familiar, I’ve had
this thought before, I just used different language to describe it”—well, that’s a
failure.

I hope I’ll give you things to think about. A new insight or two, ideally.
Maybe I’ll be able to put a name to a vague feeling you’ve had, or give you a crisp
example of something you’ve been unable to nail down. Maybe I’ll even give you
something entirely new to consider.

But it’s also likely that you’ll run into one or two ideas that you disagree with.
You might think I’m entirely wrong about something—that one of the Rules is
bad advice.

That’s great! Finding a Rule you strongly disagree with is an opportunity.
Rejecting it immediately and reflexively would be a mistake.

I promise that the Rule in question isn’t entirely wrong—but it may be right
for us while simultaneously being wrong for you. Understanding why this is
will help you understand and strengthen your own programming philosophy. It
means understanding the differences between Sucker Punch and your own team,
because those differences are what make a Rule an important part of our culture
but a poor match for yours. The Rules use examples from the video games we’ve
built at Sucker Punch, which should illuminate some of the things that make
video game programming different. Many of the rest are addressed in the last
chapter, “Conclusion: Making the Rules Your Own”.

Here’s the reconciliation process I’ve found helpful when I’ve run into some
statement of coding philosophy discordant with my experience:

xiii

1. Find the truth in the statement, not just the flaws. I may disagree with the1.

statement, but that’s likely because of my own assumptions. What are the
circumstances under which the statement would be true?

2. Work the problem from the other side, too. What are the circumstances2.

under which my own contrary view on the statement would be false?
What’s the difference in circumstances that changes the truthfulness of
the statement?

3. Be mindful that circumstances change. The statement might be wrong3.

for you now, but right for you on your next project. You’ve identified a
situation where your philosophy would need to change; be alert to the
possibility that you’ve wandered into exactly that situation.

I’ve gone through this process many times. Here’s an example: test-driven
development (TDD). It’s discordant with our experience at Sucker Punch; still,
the truth in it is obvious to us. You’ll see references in the Rules to the ways
in which our circumstances make TDD an awkward fit, but we know that
those circumstances might change. We’re watchful; if things change, so will our
philosophy.

So I hope that you find value in the Rules you find most objectionable…but
I understand if you choose to follow a different course of action, one credited to
Dorothy Parker:

This is not a novel to be tossed aside lightly. It should be thrown with

great force.

If so, I suggest aiming for something soft.

XIV | HOW TO DISAGREE WITH THE RULES

1 He almost certainly didn’t use those exact words—posterity has done Einstein a favor by sharpening up
his aphorisms. The closest match in the written record is “It can scarcely be denied that the supreme goal
of all theory is to make the irreducible basic elements as simple and as few as possible without having to
surrender the adequate representation of a single datum of experience.” So, pretty much the same thing,
just not as snappy. Also the actual Einstein quote is a little bit long for a Rule title.

As Simple as Possible,
but No Simpler

Programming is hard.
I’m guessing you’ve already figured this out. Anyone who picks up and reads

a book titled The Rules of Programming is likely to both:

• Be able to program, at least a little•

• Be frustrated that it’s not easier than it is•

There are lots of reasons why programming is hard, and lots of strategies to
try to make it easier. This book looks at a carefully selected subset of common
ways to screw things up and Rules to avoid those mistakes, all drawn from my
many years of making mistakes of my own and coping with the mistakes of
others.

There’s an overall pattern to the Rules, a common theme that most of them
share. It’s best summarized with a quote from Albert Einstein describing the
goals of a physical theorist: “As simple as possible, but no simpler.”1 By that,
Einstein meant that the best physical theory was the simplest one that completely
described all observable phenomena.

Recasting that idea to programming, the best way to implement a solution to
any problem is the simplest one that meets all the requirements of that problem.
The best code is the simplest code.

1

| Rule 1

2 Apologies to all non-C++ programmers for the bit twiddling in the next three examples. I promise the rest
of the book is light on bitwise operations.

Imagine that you’re writing code to count the number of bits set in an
integer. There are lots of ways to do this. You might use bit trickery2 to zero out a
bit at a time, counting how many bits get zeroed out:

int countSetBits(int value)
{
 int count = 0;

 while (value)
 {
 ++count;
 value = value & (value - 1);
 }

 return count;
}

Or you might opt for a loop-free implementation, with bit shifting and
masking to count the bits in parallel:

int countSetBits(int value)
{
 value = ((value & 0xaaaaaaaa) >> 1) + (value & 0x55555555);
 value = ((value & 0xcccccccc) >> 2) + (value & 0x33333333);
 value = ((value & 0xf0f0f0f0) >> 4) + (value & 0x0f0f0f0f);
 value = ((value & 0xff00ff00) >> 8) + (value & 0x00ff00ff);
 value = ((value & 0xffff0000) >> 16) + (value & 0x000ffff);

 return value;
}

Or you might just write the most obvious code possible:

int countSetBits(int value)
{
 int count = 0;

 for (int bit = 0; bit < 32; ++bit)
 {
 if (value & (1 << bit))
 ++count;
 }

2 | THE RULES OF PROGRAMMING

3 In a plausible alternate universe, this Rule is named “Cleverness Is Not a Virtue.”

4 Modern processors have a dedicated instruction to count the number of bits set in a value—popcnt

on x86 processors, for instance, which executes in a single cycle. You can also get carried away with
SIMD instructions to count lots of bits even faster than popcnt. But all of these approaches are hard to
understand, and which instructions are supported depend on exactly which processor you have. I’d rather
see the simplest countSetBits, unless there was a really, really good reason to use something more
complicated.

5 Bug-free within experimental error, of course. There are always bugs you haven’t found yet.

 return count;
}

The first two answers are clever…and I don’t mean that as a compliment.3 A
quick glance isn’t enough to figure out how either example actually works—they
each have a little morsel of “Wait…what?” code tucked inside the loop. With a
little bit of thought you can figure out what’s going on, and seeing the trick is
kind of fun. But untangling things takes some effort.

And that’s with a head start! I told you what the functions did before show-
ing the code, and the function names hammer their purpose home. If you hadn’t
known that the code counted set bits, untangling either of the first two examples
would have been even more work.

That’s not the case for the final answer. It’s obvious that it’s counting the bits
set. It’s as simple as possible, but no simpler, and that makes it better than the
first two answers.4

Measuring Simplicity

There are many ways to think about what makes code simple.
You might decide to measure simplicity based on how easy code is for

someone else on your team to understand. If a randomly chosen colleague can
read through a bit of code and understand it with no effort, then the code is
appropriately simple.

Or you might decide to measure simplicity by how easy it is to create the
code—not just the time to type it, but the time it takes to get the code fully
functional and bug-free as well.5 Complicated code takes a while to get right;
simple code is easier to get across the finish line.

These two measures have a lot of overlap, of course. Code that’s easy to write
tends to be easy to read, too. And there are other valid measures of complexity
you might use:

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER | 3

How much code is written
Simpler code tends to be shorter, though it’s possible to jam a lot of
complexity into a single line of code.

How many ideas are introduced
Simple code tends to build on the concepts that everyone on your team
knows; it doesn’t introduce new ways of thinking about problems or new
terminology.

How much time it takes to explain
Simple code is easy to explain—in a code review, it’s obvious enough that
the reviewer zooms right through. Complicated code takes explanation.

Code that seems simple against one measure will seem simple against the
other measures as well. You just need to choose which of the measures provides
the clearest focus for your work—but I recommend starting with ease of creation
and ease of comprehension. If you focus on getting easy-to-read code working
quickly, you’re creating simple code.

…But No Simpler

It’s better for code to be simpler, but it still needs to solve the problem it intends
to solve.

Imagine that you’re trying to count how many ways there are to climb a
ladder with some number of rungs, given the stipulation that you gain one, two,
or three rungs with each step. If the ladder has two rungs, there are two ways to
climb it—either you step on the first rung or not. Similarly, there are four ways
to climb a three-rung ladder—step on the first rung, step on the second rung,
step on the first and second rungs, or step directly to the top rung. A four-rung
ladder can be climbed in seven ways, a five-rung ladder in thirteen ways, and
so on.

You can write simple code to calculate this recursively:

int countStepPatterns(int stepCount)
{
 if (stepCount < 0)
 return 0;

 if (stepCount == 0)
 return 1;

 return countStepPatterns(stepCount - 3) +
 countStepPatterns(stepCount - 2) +

4 | THE RULES OF PROGRAMMING

 countStepPatterns(stepCount - 1);
}

The basic idea is that any journey up the ladder has to step to the top rung
from one of the three rungs below it. Adding the number of ways to climb to
each of those rungs gives the number of ways to climb to the top rung. After
that, it’s just a matter of figuring out the base cases. The preceding code allows
negative step counts as a base case to make the recursion simpler.

Unfortunately, this solution doesn’t work. Well, it does work, at least for
small stepCount values, but countStepPatterns(20) takes about twice as long to
complete as countStepPatterns(19). Computers are really fast, but exponential
growth like this will catch up to that speed. In my test, the example code started
getting pretty slow once stepCount got into the twenties.

If you’re expected to count the number of ways up longer ladders, then this
code is too simple. The core issue is that all of the intermediate results of count
StepPatterns are recalculated over and over, and this leads to exponential run
times. A standard answer to this is memoization—hanging onto the calculated
intermediate values and reusing them, as in this example:

int countStepPatterns(unordered_map<int, int> * memo, int rungCount)
{
 if (rungCount < 0)
 return 0;

 if (rungCount == 0)
 return 1;

 auto iter = memo->find(rungCount);
 if (iter != memo->end())
 return iter->second;

 int stepPatternCount = countStepPatterns(memo, rungCount - 3) +
 countStepPatterns(memo, rungCount - 2) +
 countStepPatterns(memo, rungCount - 1);

 memo->insert({ rungCount, stepPatternCount });
 return stepPatternCount;
}

int countStepPatterns(int rungCount)
{
 unordered_map<int, int> memo;
 return countStepPatterns(&memo, rungCount);
}

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER | 5

With memoization in place, each value is calculated once and inserted in the
hash map. Subsequent calls find the calculated value in the hash map in roughly
constant time, and the exponential growth goes away. The memoized code is a
smidgen more complicated, but it doesn’t hit a performance wall.

You might also decide to use dynamic programming, trading off a bit of
conceptual complexity for better code simplicity:

int countStepPatterns(int rungCount)
{
 vector<int> stepPatternCounts = { 0, 0, 1 };

 for (int rungIndex = 0; rungIndex < rungCount; ++rungIndex)
 {
 stepPatternCounts.push_back(
 stepPatternCounts[rungIndex + 0] +
 stepPatternCounts[rungIndex + 1] +
 stepPatternCounts[rungIndex + 2]);
 }

 return stepPatternCounts.back();
}

This approach runs quickly enough, too, and it’s even simpler than the
memoized recursive version.

Sometimes It’s Better to Simplify the
Problem Rather than the Solution

The problems in the original, recursive version of countStepPatterns appeared
for longer ladders. The simplest code worked perfectly well for small numbers of
rungs, but hit an exponential performance wall for large numbers of rungs. Later
versions avoided the exponential wall at the cost of slightly more complexity…but
they soon run into a different problem.

If I run the previous code to calculate countStepPatterns(36), I get the
right answer, 2,082,876,103. Calling countStepPatterns(37), though, returns
–463,960,867. That’s clearly not right!

That’s because the version of C++ I’m using stores integers as signed 32-
bit values, and calculating countStepPatterns(37) overflowed the available bits.
There are 3,831,006,429 ways to climb a 37-rung ladder, and that number is too
big to fit in a signed 32-bit integer.

So maybe the code is still too simple. It seems reasonable to expect count
StepPatterns to work for all ladder lengths, right? C++ doesn’t have a standard

6 | THE RULES OF PROGRAMMING

solution for really big integers, but there are (many) open source libraries that
implement various flavors of arbitrary-precision integers. Or given a few hundred
lines of code, you could implement your own:

struct Ordinal
{
public:

 Ordinal() :
 m_words()
 { ; }
 Ordinal(unsigned int value) :
 m_words({ value })
 { ; }

 typedef unsigned int Word;

 Ordinal operator + (const Ordinal & value) const
 {
 int wordCount = max(m_words.size(), value.m_words.size());

 Ordinal result;
 long long carry = 0;

 for (int wordIndex = 0; wordIndex < wordCount; ++wordIndex)
 {
 long long sum = carry +
 getWord(wordIndex) +
 value.getWord(wordIndex);

 result.m_words.push_back(Word(sum));
 carry = sum >> 32;
 }

 if (carry > 0)
 result.m_words.push_back(Word(carry));

 return result;
 }

protected:

 Word getWord(int wordIndex) const
 {
 return (wordIndex < m_words.size()) ? m_words[wordIndex] : 0;
 }

 vector<Word> m_words;
};

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER | 7

Dropping Ordinal into the last example in place of int produces exact
answers for longer ladders:

Ordinal countStepPatterns(int rungCount)
{
 vector<Ordinal> stepPatternCounts = { 0, 0, 1 };

 for (int rungIndex = 0; rungIndex < rungCount; ++rungIndex)
 {
 stepPatternCounts.push_back(
 stepPatternCounts[rungIndex + 0] +
 stepPatternCounts[rungIndex + 1] +
 stepPatternCounts[rungIndex + 2]);
 }

 return stepPatternCounts.back();
}

So…problem solved? With the introduction of Ordinal, an exact answer can
be calculated for much longer ladders. Sure, adding a few hundred lines of
code to implement Ordinal isn’t great, especially given that the actual countStep
Patterns function is only 14 lines long, but isn’t that the price that must be paid
to correctly solve the problem?

Probably not. If there isn’t a simple solution to a problem, interrogate the
problem before you accept a complicated solution. Is the problem you’re trying
to solve actually the problem that needs solving? Or are you making unnecessary
assumptions about the problem that are complicating your solution?

In this case, if you’re actually counting step patterns for real ladders, you
can probably assume a maximum ladder length. If the maximum ladder length
is, say, 15 rungs, then any of the solutions in this section are perfectly adequate,
even the naive recursive example presented first. Add an assert to one of them
noting the built-in limits of the function and declare victory:

int countStepPatterns(int rungCount)
{
 // NOTE (chris) can't represent the pattern count in an int
 // once we get past 36 rungs...

 assert(rungCount <= 36);

 vector<int> stepPatternCounts = { 0, 0, 1 };

 for (int rungIndex = 0; rungIndex < rungCount; ++rungIndex)
 {
 stepPatternCounts.push_back(

8 | THE RULES OF PROGRAMMING

6 A deck of cards is pretty well randomized after seven riffle shuffles. After four or five riffle shuffles the
deck isn’t randomized at all. And yes, my family gets annoyed with how many times I shuffle a deck
of cards before dealing the next hand. “We’re here to play cards, Chris, not watch you shuffle.” A little
knowledge is a dangerous thing.

 stepPatternCounts[rungIndex + 0] +
 stepPatternCounts[rungIndex + 1] +
 stepPatternCounts[rungIndex + 2]);
 }

 return stepPatternCounts.back();
}

Or if supporting really long ladders is required—handling the inspection
ladder for a wind turbine, say—then would an approximate count of steps be
enough? Probably, and if so it’s easy to replace integers with floating-point val-
ues. So easy that I’m not even going to show the code.

Look, everything overflows eventually. Solving the extreme boundary cases
for a problem will always lead to an overly complicated solution. Don’t get
trapped into solving the strictest definition of a problem. It’s much better to
have a simple solution for the part of the problem that actually needs to be solved
instead of a complicated solution to a broader definition of the problem. If you
can’t simplify the solution, try to simplify the problem.

Simple Algorithms

Sometimes it’s a poor choice of algorithm that adds complexity to your code.
There are lots of ways to solve any particular problem, after all, some more
complicated than others. Simple algorithms lead to simple code. The problem is
that the simple algorithm isn’t always obvious!

Say you’re writing code to sort a deck of cards. An obvious approach is to
simulate the riffle shuffle you likely learned as a kid—split the deck into two
piles, then fan them into each other, giving the card on each side a roughly equal
chance of ending up next into the recombined deck. Repeat until the deck is
shuffled.6

That might look like this:

vector<Card> shuffleOnce(const vector<Card> & cards)
{
 vector<Card> shuffledCards;

 int splitIndex = cards.size() / 2;
 int leftIndex = 0;

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER | 9

 int rightIndex = splitIndex;

 while (true)
 {
 if (leftIndex >= splitIndex)
 {
 for (; rightIndex < cards.size(); ++rightIndex)
 shuffledCards.push_back(cards[rightIndex]);

 break;
 }
 else if (rightIndex >= cards.size())
 {
 for (; leftIndex < splitIndex; ++leftIndex)
 shuffledCards.push_back(cards[leftIndex]);

 break;
 }
 else if (rand() & 1)
 {
 shuffledCards.push_back(cards[rightIndex]);
 ++rightIndex;
 }
 else
 {
 shuffledCards.push_back(cards[leftIndex]);
 ++leftIndex;
 }
 }

 return shuffledCards;
}

vector<Card> shuffle(const vector<Card> & cards)
{
 vector<Card> shuffledCards = cards;

 for (int i = 0; i < 7; ++i)
 {
 shuffledCards = shuffleOnce(shuffledCards);
 }

 return shuffledCards;
}

This simulated-riffle-shuffle algorithm works, and the code I’ve written here
is a fairly simple implementation of that algorithm. You’ll have to expend a little
energy making sure that all of the index checks are correct, but it’s not too bad.

10 | THE RULES OF PROGRAMMING

7 As measured experimentally; your mileage may vary. I got a little cute with the indexes and conditions
when writing the riffle-shuffle code, and it took a few tries to get working. The random selection code
worked the first time.

But there are simpler algorithms to shuffle a deck of cards. For instance, you
could build a shuffled deck one card at a time. On each iteration, take a new card
and swap it with a random card in that iteration’s deck. You can do this in place,
actually:

vector<Card> shuffle(const vector<Card> & cards)
{
 vector<Card> shuffledCards = cards;

 for (int cardIndex = shuffledCards.size(); --cardIndex >= 0;)
 {
 int swapIndex = rand() % (cardIndex + 1);
 swap(shuffledCards[swapIndex], shuffledCards[cardIndex]);
 }

 return shuffledCards;
}

By the simplicity measures introduced earlier, this version is superior. It took
less time to write.7 It’s easier to read. It’s less code. It’s easier to explain. It’s
simpler and better—not because of the code, but because of the better choice of
algorithm.

Don’t Lose the Plot

Simple code is easy to read—and the simplest code can be read straight through,
top to bottom, just like reading a book. Programs aren’t books, though. It’s easy
to end up with code that’s hard to follow if the flow through the code isn’t simple.
When code is convoluted, when it makes you jump from place to place to follow
the flow of execution, it’s much harder to read.

Convoluted code can result from trying too hard to express each idea in
exactly one place. Take the riffle-shuffle code from earlier. The bits of code that
deal with the right and left piles of cards look pretty similar to each other. The
logic to move one card or a series of cards to the shuffled pile could be split into
separate functions, then called from shuffleOnce:

void copyCard(
 vector<Card> * destinationCards,
 const vector<Card> & sourceCards,

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER | 11

 int * sourceIndex)
{
 destinationCards->push_back(sourceCards[*sourceIndex]);
 ++(*sourceIndex);
}

void copyCards(
 vector<Card> * destinationCards,
 const vector<Card> & sourceCards,
 int * sourceIndex,
 int endIndex)
{
 while (*sourceIndex < endIndex)
 {
 copyCard(destinationCards, sourceCards, sourceIndex);
 }
}

vector<Card> shuffleOnce(const vector<Card> & cards)
{
 vector<Card> shuffledCards;

 int splitIndex = cards.size() / 2;
 int leftIndex = 0;
 int rightIndex = splitIndex;

 while (true)
 {
 if (leftIndex >= splitIndex)
 {
 copyCards(&shuffledCards, cards, &rightIndex, cards.size());
 break;
 }
 else if (rightIndex >= cards.size())
 {
 copyCards(&shuffledCards, cards, &leftIndex, splitIndex);
 break;
 }
 else if (rand() & 1)
 {
 copyCard(&shuffledCards, cards, &rightIndex);
 }
 else
 {
 copyCard(&shuffledCards, cards, &leftIndex);
 }
 }

 return shuffledCards;
}

12 | THE RULES OF PROGRAMMING

8 Again, experimentally determined. Took a few tries to get it to compile, actually, as I wavered between
using pointers and references.

The previous version of shuffleOnce was readable top-to-bottom; this one
isn’t. That makes it harder to read. While reading through the shuffleOnce code
you run into the copyCard or copyCards function. Then you have to track down
those functions, figure out what they do, pop back to the original function, then
match the arguments passed from shuffleOnce to your new understanding of
copyCard or copyCards. That’s a lot harder than just reading the loops in the
original shuffleOnce.

So, the don’t-repeat-yourself version of the function took more time to write8

and is harder to read. It’s more code, too! The attempt to remove duplication
made the code more complicated, not simpler.

Obviously, there’s something to be said for reducing the amount of duplica-
tion in your code! But it’s important to recognize that there’s a cost to removing
the duplication—and for small amounts of code and simple ideas, it’s better to
just leave duplicate copies. The code will be easier to write and easier to read.

One Rule to Rule Them All

Many of the remaining Rules in this book will return to this theme of simplicity,
of keeping code as simple as possible but no simpler.

At its heart, programming is a struggle with complexity. Adding new func-
tionality often means making the code more complicated—and as code gets
more complicated, it gets harder and harder to work with, and progress gets
slower and slower. Eventually, you can reach an event horizon, where any
attempt to move forward—to fix a bug or add a feature—causes as many prob-
lems as it solves. Further progress is effectively impossible.

In the end, it will be complexity that kills your project.
That means effective programming is about delaying the inevitable. Add

as little complexity as possible as features are added and bugs fixed. Look for
opportunities to remove complexity, or architect things so that new features don’t
add much to the overall complexity of the system. Create as much simplicity as
possible in how your team works together.

If you’re diligent, you can delay the inevitable indefinitely. I wrote the first
lines of Sucker Punch code 25 years ago, and the codebase has continuously
evolved since then. There’s no end in sight—our code is wildly more complicated

AS SIMPLE AS POSSIBLE, BUT NO SIMPLER | 13

than it was 25 years ago, but we’ve been able to stay in control of that complexity,
and we’re still able to make effective progress.

We’ve been able to manage complexity, and so can you. Stay sharp, remem-
ber that complexity is the ultimate enemy, and you’ll do well.

14 | THE RULES OF PROGRAMMING

Bugs Are Contagious

There’s a truism of programming that the earlier you find a bug, the easier it will
be to fix. That’s generally true…but I think it’s even more true to say that the later
you find a bug, the more of a pain in the ass it will be to fix.

Once a bug exists, people will unintentionally write code that relies on that
bug. Sometimes that shaky bit of bug-reliant code is nearby, in the same system
as the bug. Sometimes it’s not nearby—maybe it’s downstream, in a bit of code
that calls your system and depends on the incorrect results your bug causes. Or
it’s upstream—a chunk of code that only works because the bug caused you to
call it in a particular way.

This is a natural thing—it’s impossible to avoid. We notice things that go
wrong, not things that go right. When things go wrong, we investigate to figure
out why. But when things don’t go wrong, we don’t investigate. If your code
works, or at least seems to work, then there’s a natural tendency to assume that it
works in the way you think it works, when very often it works for reasons you’ve
never imagined. And since you don’t investigate, you never discover the tangled
set of circumstances that led to your code accidentally working.

That’s true for the code you write, and it’s true for the code other people
write that calls your code. When you commit a bug to your team’s codebase, the
codebase will slowly but inevitably accumulate other bits of code that rely on your
bug. These hidden entanglements only become visible when you fix an obvious
bug and some other part of your project mysteriously stops working.

The sooner you find the bug, the fewer of these entanglements will have
time to sprout. That means fewer dependencies to clean up—which is often the
most time-consuming part of fixing a bug. It’s painfully common to spend more
time dealing with the repercussions of a bug fix than fixing the bug itself.

It’s useful to think of bugs as being contagious. Each bug in your system
tends to create new bugs, as new code works around the bug or relies on its

15

| Rule 2

1 …although perhaps not completely. I won’t weigh in on what percentage of your codebase you should aim
for covering with automated tests. Keep reading; our percentage at Sucker Punch is very low.

incorrect behavior. The best way to stop the resulting contagion is to eliminate
bugs as early as possible, before their evil influence can spread.

Don’t Count on Your Users

OK, so we want to detect problems early. How do we do that?
Here’s one thing you can’t count on—your users. Whether that means team-

mates calling your code or customers exercising your feature, users aren’t a great
first line of defense. Sure, sometimes they’ll report a problem, but more often
they’ll assume the behavior they’re observing is the behavior you intended. That’s
where the entanglements come from—unnoticed issues, sure, but also issues
that are noticed but then assumed to be part of the design.

You can try to ameliorate this. You can write better user-facing documenta-
tion. You can drag your team into a meeting room to explain a new system or
feature. You can maintain an up-to-date internal wiki with details about how
everything fits together, or put a tech note on your support site. All of these
things are worthwhile—they all help, albeit at nontrivial expense and with vary-
ing levels of effectiveness—but they don’t solve the problem. Fundamentally,
your users don’t understand your intent as well as you do, so they’re going to
assume bugs are features no matter what you do.

A better answer is some sort of continuous automated testing. Most pro-
grammers would agree that automated testing is a Good Thing. At a minimum,
programmers think that automated testing is a Good Thing for other program-
mers to do, whether or not they can be bothered to do it themselves.

There are lots of homegrown variations on the idea of continuous automated
testing, as well as more formalized methodologies like test-driven development.

Generally speaking, the idea is that your system (or better yet, your whole
project) has a set of tests that you can run quickly and conveniently and that
thoroughly1 exercise the system (or project) and report problems. If the tests
are truly quick and convenient, they’ll get run all the time—like every time you
compile or run the project. Any bugs that pop up that early are easy to nip in
the bud. If the tests are only theoretically quick and convenient, they’ll tend to
get run as part of the commit process—which is still early enough to avoid the
entanglement growth that makes bugs hard to fix.

16 | THE RULES OF PROGRAMMING

https://oreil.ly/BjsDY

This sort of testing is expensive. Writing the tests for some bit of code can
take as much time as writing the code itself. Advocates of automated testing,
however, would argue (convincingly!) that this is an illusion. After all, the hidden
cost of writing that bit of code is detecting and diagnosing problems later, when
they’re hard to fix. Coding is debugging, right? Testing proponents argue that it’s
faster to test up front—perhaps even, if you’re a diehard, writing a test before you
write the code it intends to test.

Continuous automated testing isn’t something you can easily adopt as a per-
sonal practice. Making it work requires investing in quite a bit of infrastructure—
you’ll need a nonintrusive testing framework, a testing-friendly deployment sys-
tem, and a team that’s philosophically committed to automated testing. Unless
the whole team buys in, you’re swimming against the tide. But if you’re on a
team that buys in, great!

Despite the obvious value in a test-centric approach, we haven’t committed
to it at Sucker Punch. We do have automated tests for many systems, but collec-
tively they cover only a small part of our codebase. Why is that?

Automated Testing Can Be Tricky

Some projects and some problems lend themselves better to automated testing
than others.

Some things are hard to test, either because it’s hard to cover all possible
inputs or because it’s hard to validate the outputs. Imagine you’re writing a new
lossy audio compression codec. How do you write an automated test for it?

It’s easy to verify that your compressor doesn’t crash, or to measure how
much compression you see against some set of test files. It’s not as easy to verify
that the decompressed audio actually sounds like the original. You’re writing an
audio compression codec, so you probably have enough signal processing math
to write tests that flag obvious problems, but at some point you’ll need to slap
headphones on human ears and ask people to pick the compressed sample out of
three options. That’s not a test you can run quickly or conveniently.

Some code is inherently hard to test because its success is hard to mea-
sure—and a lot of the code that gets written at Sucker Punch qualifies. Does
a shopkeeper character act like a real shopkeeper would? Does that facial anima-
tion actually convey disgust, or does the character just look they’re about to
burp? Does it feel like I’m firing a bow here, even though I’m really holding a
controller?

BUGS ARE CONTAGIOUS | 17

If you’re working on a project that has big chunks of difficult-to-test code,
then you’re forced into a hybrid model. Test what you can test, control what
you can control, and remember that you’re not testing everything. Any areas
that aren’t covered by your automated tests will need to be tested manually: plan
accordingly.

That said, you can structure your code to make it easier to test.
Imagine you’re going to write an external automated test for some bit of

code—that is, some bit of testing code, separate from the code you’re writing,
that will call your code with a set of inputs designed to flex its capabilities, then
check that the outputs match expectations. How can you structure your code to
make this test easier to write?

Stateless Code Is Easier to Test

One important strategy is to reduce the amount of state in your code. It’s a lot
easier to test code that doesn’t rely on state. Any pure function—a bit of code that
relies only on its direct inputs, has no side effects, and has predictable results—is
easy to test. Better this:

int sumVector(const vector<int> & values)
{
 int sum = 0;
 for (int value : values)
 {
 sum += value;
 }
 return sum;
}

Than this:

int reduce(
 int initialValue,
 int (*reduceFunction)(int, int),
 const vector<int> & values)
{
 int reducedValue = initialValue;
 for (int value : values)
 {
 reducedValue = reduceFunction(reducedValue, value);
 }
 return reducedValue;
}

18 | THE RULES OF PROGRAMMING

To test sumVector, you just need a set of inputs and the expected outputs
for those inputs. That’s exactly the sort of thing that test-driven development
frameworks excel at. If there’s state involved, the set of inputs required to thor-
oughly exercise the code gets a lot more complicated.

Testing reduce is harder—in the apparent pursuit of generality, or maybe as
a half-step toward threading, it repeatedly calls a passed-in function on the values
in vector. You can certainly use reduce to sum the values in the vector:

int sum(int value, int otherValue)
{
 return value + otherValue;
}

int vectorSum = reduce(0, sum, values);

But testing reduce presents problems. Who knows what the reduceFunction
function is going to do, right? Does it rely on some bit of external state? What
happens if it has side effects? What if calling that function removes something
from the values vector you’re iterating over? If you’re testing reduce, you’ve got
to anticipate and test all of those things. That’s a much more complicated set of
tests than you’d need for sumVector.

To thoroughly test code, you need to present it with a thorough representa-
tion of all the states it might encounter, then evaluate its outputs against those
states. With a pure function, the arguments to the function are the only state that
matters. But when you bring in side effects, internal state, or callouts to arbitrary
functions, the amount of state that might matter explodes. This forces a compro-
mise—you can accept less thorough test coverage, or write an unmanageable
number of test cases.

Let’s look at a simple example. Imagine you’re tracking a prioritized list of
characters. Each character has a priority, and it’s easy to get a list of all characters
sorted by that priority. The interface is simple:

class Character
{
public:

 Character(int priority);
 ~Character();

 void setPriority(int priority);
 int getPriority() const;

BUGS ARE CONTAGIOUS | 19

 static const vector<Character *> & getAllCharacters();

protected:

 int m_priority;
 int m_index;

 static vector<Character *> s_allCharacters;
};

It’s not hard to keep s_allCharacters sorted, with all characters in priority
order. You could do this incrementally, tracking where each character lives in
your prioritized list and being careful to scoot it back and forth in the list only
minimally when its priority changes. That means inserting the character in the
right place when it’s created:

Character::Character(int priority) :
 m_priority(priority),
 m_index(0)
{
 int index = 0;
 for (; index < s_allCharacters.size(); ++index)
 {
 if (priority <= s_allCharacters[index]->m_priority)
 break;
 }

 s_allCharacters.insert(s_allCharacters.begin() + index, this);

 for (; index < s_allCharacters.size(); ++index)
 {
 s_allCharacters[index]->m_index = index;
 }
}

Cleaning up indexes when the character is destroyed:

Character::~Character()
{
 s_allCharacters.erase(s_allCharacters.begin() + m_index);

 for (; index < s_allCharacters.size(); ++index)
 {
 s_allCharacters[index]->m_index = index;
 }
}

20 | THE RULES OF PROGRAMMING

And scooting the character back and forth in the list by a minimal amount if
its priority changes:

void Character::setPriority(int priority)
{
 if (priority == m_priority)
 return;

 m_priority = priority;

 while (m_index > 0)
 {
 Character * character = s_allCharacters[m_index - 1];
 if (character->m_priority <= priority)
 break;

 s_allCharacters[m_index] = character;
 character->m_index = m_index;

 --m_index;
 }

 while (m_index + 1 < s_allCharacters.size())
 {
 Character * character = s_allCharacters[m_index + 1];
 if (character->m_priority >= priority)
 break;

 s_allCharacters[m_index] = character;
 character->m_index = m_index;

 ++m_index;
 }

 s_allCharacters[m_index] = this;
}

This works, but testing it is complicated. There’s hidden state that an exter-
nal test can’t get at. A test that creates a set of prioritized characters then checks
that allCharacters returns them in the proper order will catch some bugs,
but it will miss some too. The current index could be screwed up even if the
characters are in the right order, and there’s no way to check that using the
methods Character exposes. Incorrect indexes might cause problems, but there’s
no guarantee those problems will show up soon (or even ever). And with three
separate code paths, each trying to keep the indexes correct, it’s easy to slip up.

BUGS ARE CONTAGIOUS | 21

It’s simpler to test a stateless version of Character, one that doesn’t try to
maintain state:

class Character
{
public:

 Character(int priority) :
 m_priority(priority)
 {
 s_allCharacters.push_back(this);
 }

 ~Character()
 {
 auto iter = find(
 s_allCharacters.begin(),
 s_allCharacters.end(),
 this);
 s_allCharacters.erase(iter);
 }

 void setPriority(int priority)
 {
 m_priority = priority;
 }

 int getPriority() const
 {
 return m_priority;
 }

 static int sortByPriority(
 Character * left,
 Character * right)
 {
 return left->m_priority < right->m_priority;
 }

 static vector<Character *> getAllCharacters()
 {
 vector<Character *> sortedCharacters = s_allCharacters;

 sort(
 sortedCharacters.begin(),
 sortedCharacters.end(),
 sortByPriority);

 return sortedCharacters;
 }

22 | THE RULES OF PROGRAMMING

2 You could also expose the internal state to your testing code somehow—weakening encapsulation by
“friending” your test code, say. It’s more maintainable in my experience to add internal tests instead.

protected:

 int m_priority;

 static vector<Character *> s_allCharacters;
};

There’s still state here, since you’re tracking all the characters in s_all
Characters, but it’s not hidden. Writing the test for this version of the code
might not be as simple as writing the tests for a pure function, but it’s a lot
simpler than writing the tests for the incremental version of Character you
started with.

With the prior state-based approach, you had to be paranoid about what
order you did things in. Minus that state, you can just check for expected outputs
and feel pretty safe.

This sort of stateless code is easier to get right in the first place, too. That’s a
hidden advantage of test-driven development—code that’s easier to test tends to
be easier to write. If you’re thinking about how you’re going to test some bit of
code you’re about to write, you’ll end up writing something simpler.

Audit State You Can’t Eliminate

Let’s say that circumstances force you into keeping some state. Maybe the call
pattern encourages it—say your sorted list of characters sees minor priority
adjustments interleaved with calls to AllCharacters, and all of the sorting in your
stateless implementation is thrashing your memory caches.

If it’s hard to write an external test because you can’t get at some bit of
internal state, write an internal test instead.2 An easy way to do this is to have
an auditing method on your data—in this case, an audit function that checks
whether the internal state is consistent:

void Character::audit()
{
 assert(s_allCharacters[m_index] == this);
}

BUGS ARE CONTAGIOUS | 23

This is a pretty short audit function, but that’s because I’ve stripped out
anything interesting from this Character class to use it as an example. A real
Character class would be likely to have more internal state and a longer audit
function.

You can also audit the consistency of your array:

void Character::auditAll()
{
 for (int index = 0; index < s_allCharacters.size(); ++index)
 {
 Character * character = s_allCharacters[index];

 if (index > 0)
 {
 Character * prevCharacter = s_allCharacters[index - 1];
 assert(character->m_priority >= prevCharacter->m_priority);
 }

 character->audit();
 }
}

There are advantages to this sort of internal testing, especially if you think
of internal tests as a complement to external tests. Often you can leave internal
tests running all the time, which means they’re running on actual real-world test
cases, not the artificial ones you built for your unit test.

Someone has to call these internal functions for them to be useful, obvi-
ously! A good rule of thumb is calling Character::audit at the end of any
method that updates the character’s state, and calling Character::auditAll
whenever the list changes. You can dial audit frequency up and down based
on need.

Don’t Trust the Caller

In the normal course of programming, you’re going to write code that gets called
by other people on your team. Even if you only work on one-person projects,
some future version of you will call your code—and that future version of you
might as well be a stranger. Future You won’t remember the details, and other
callers never knew them. So don’t trust that the caller is going to get the details
right!

The caller will pass incompatible sets of arguments. They’ll neglect to call
expected initialization functions, and they’ll forget to call shutdown functions.

24 | THE RULES OF PROGRAMMING

They’ll provide a callback function that doesn’t actually fulfill the basic require-
ments expected of that function. They’ll get it all wrong…and if you don’t detect
the mistakes, they won’t get fixed. An entanglement will grow instead—this time
not from a bug in your code, but from a bug in the calling code.

It might be counterintuitive, but the easiest place to find those bugs isn’t in
the calling code, it’s in the code being called. The caller might be making the
mistakes, but you’re in a better position to catch them.

Now, with good design, you can often make it impossible for callers to
get the details wrong. That’s the subject of Rule 7, “Eliminate Failure Cases”.
Sometimes you can’t, though. What do you do in those cases?

Here’s an example. You’re writing a rigid-body physics simulator that’s
going to be used by three different video games under development at your
company. You’ll be tracking internal state, like which rigid bodies are in contact
with each other, and that state has to get stored somewhere. You can’t just call
operator new, though, like you would in standard C++ code. Memory is tight,
and your clients have their own custom memory managers you need to integrate
with.

There’s a straightforward answer—have your clients hand over functions
to allocate and free the memory you need as part of an initialization step. I’m
tempted to start with a few bad examples of how to do initialization, but I’ll skip
to a decent one instead. If you’re actually writing a rigid-body physics simulator,
you’re likely to have more initialization parameters than the two named in the
following code snippet. The gravitational constant, for instance. Collect all of the
initialization parameters into a single structure, which is then passed to a single
initialization function:

struct RigidBodySimulator
{
 struct InitializationParameters
 {
 void * (* m_allocationFunction)(size_t size);
 void (* m_freeFunction)(void * memory);
 float m_gravity;
 };

 void initialize(const InitializationParameters & params);
 void shutDown();
};

BUGS ARE CONTAGIOUS | 25

Expose methods to add and remove new simulated rigid bodies to the sys-
tem, and to get and set their current state:

struct RigidBodySimulator
{
 struct ObjectDefinition
 {
 float m_mass;
 Matrix<3, 3> m_momentOfInertia;
 vector<Triangle> m_triangles;
 };

 struct ObjectState
 {
 Point m_position;
 Quaternion m_orientation;
 Vector m_velocity;
 Vector m_angularVelocity;
 };

 ObjectID createObject(
 const ObjectDefinition & objectDefinition,
 const ObjectState & objectState);
 void destroyObject(
 ObjectID objectID);
 ObjectState getObjectState(
 ObjectID objectID) const;
 void setObjectState(
 ObjectID objectID,
 const ObjectState & objectState);
};

The expected usage pattern is pretty obvious, right? Initialize the simulator
before you use it, and shut it down when you’re done. Add objects, manipulate
them, destroy them when you’re done. Nothing complicated.

But you can’t trust the caller to get even the simple details right. They’ll
forget to call initialize, they’ll ask for object state on objects that have been
deleted, or they’ll try to set object state on a random ObjectID that you’ve never
handed out.

It’s tempting to just ignore these cases—to assume that people will get the
details right and let the chips fall where they may—but that’s a huge mistake. If
you don’t detect the error and report it somehow, things will end in tears. Either
callers won’t notice their mistake, or they’ll assume the observed behavior is a
feature.

26 | THE RULES OF PROGRAMMING

3 This is also a hole in many automated tests, which rarely test unspecified cases as thoroughly as they
do specified ones. Your automated tests are unlikely to detect this destroyObject + getObjectState
example.

Imagine you’ve implemented ObjectID as a wrapper around a smaller inte-
ger, which is then used as an index into a linear list of ObjectState structures:

struct RigidBodySimulator
{
 struct ObjectID
 {
 int m_index;
 };

 ObjectState getObjectState(
 ObjectID objectID) const
 {
 return m_objectStates[objectID.m_index];
 }

 void setObjectState(
 ObjectID objectID,
 const ObjectState & objectState)
 {
 m_objectStates[objectID.m_index] = objectState;
 }

 vector<ObjectState> m_objectStates;
};

This design is simple and easily understood, but it’s is pretty shaky. It lets
easy-to-make mistakes by the caller go unnoticed. Try to get an object’s state after
you destroy it and the results will be undefined.

Actually, that’s a little misleading, though it’s the way people usually talk
about interfaces like this. They mean “undefined” in the sense that the inter-
face doesn’t promise any particular result when you call getObjectState for a
destroyed object—but, in practice, the results are completely defined! In the
implementation (which I’m not showing you), if you call getObjectState imme-
diately after destroying that object with destroyObject, you get the state the
object had right before it was deleted. It would be easy to assume, implicitly or
explicitly, that this was the intended behavior…and from such assumptions do
entanglements grow.3

Undefined results are the mark of a poorly designed interface.

BUGS ARE CONTAGIOUS | 27

Don’t let this incorrect usage go unremarked. Anyone calling getObject
State after destroyObject should hear about it—but first you need to detect the
problem. One easy fix is to supplement the index in ObjectID with a “generation”
number:

struct RigidBodySimulator
{
 class ObjectID
 {
 friend struct RigidBodySimulator;

 public:

 ObjectID() :
 m_index(-1), m_generation(-1)
 { ; }

 protected:

 ObjectID(int index, int generation) :
 m_index(index), m_generation(generation)
 { ; }

 int m_index;
 int m_generation;
 };

 bool isObjectIDValid(const ObjectID objectID) const
 {
 return objectID.m_index >= 0 &&
 objectID.m_index < m_indexGenerations.size() &&
 m_indexGenerations[objectID.m_index] == objectID.m_generation;
 }

 ObjectID createObject(
 const ObjectDefinition & objectDefinition,
 const ObjectState & objectState)
 {
 int index = findUnusedIndex();

 ++m_indexGenerations[index];
 m_objectDefinitions[index] = objectDefinition;
 m_objectStates[index] = objectState;

 return ObjectID(index, m_indexGenerations[index]);
 }

 void destroyObject(ObjectID objectID)
 {

28 | THE RULES OF PROGRAMMING

4 One of the standard paradigms for reporting problems in C is the assert macro. One way or the other,
it pops up a message at runtime if the condition it’s passed is false. The message varies depending
on which compiler and operating system you’re using (!), but typically it includes the line number in the
source code where the assert failed and the expression passed to the assert.

 assert(isObjectIDValid(objectID));
 ++m_indexGenerations[objectID.m_index];
 }

 ObjectState getObjectState(ObjectID objectID) const
 {
 assert(isObjectIDValid(objectID));
 return m_objectStates[objectID.m_index];
 }

 void setObjectState(
 ObjectID objectID,
 const ObjectState & objectState)
 {
 assert(isObjectIDValid(objectID));
 m_objectStates[objectID.m_index] = objectState;
 }

 vector<int> m_indexGenerations;
 vector<ObjectDefinition> m_objectDefinitions;
 vector<ObjectState> m_objectStates;
};

The generation detects incorrect usage of object IDs. When you create or
destroy an object, you bump its generation version number. If you try to destroy
an object, then get its state, the generations won’t match and this mismatch will
be reported.4 The caller is notified that they’ve made a mistake and can correct it
before it has a chance to fester.

You could easily add code that checks for the other usage mistakes I’ve
identified—forgetting to call initialize, for instance. Or calling it twice. In the
preceding code the interface is redesigned a bit to make it harder to create invalid
object IDs—the only public constructor creates a valid object ID, so the caller
only has easy access to object IDs that are properly constructed and returned.

There’s a reasonable discussion to be had about how to flag usage errors
like this—you could use asserts, but you could just as easily return error codes
or throw exceptions. Your answer will depend on your team’s conventions. The
important thing is that you flag the error, not how you do the flagging.

BUGS ARE CONTAGIOUS | 29

Keeping Your Code Healthy

Code that’s easier to test—or, better yet, continually tests itself—stays healthier
longer. It’s best to think about this from the start, before you write your first
line of code for some new part of the project. You might start with writing an
automated test, as with test-driven development. You might opt for a stateless
implementation of the functionality, or add continual internal auditing of the
functioning of the code.

The result is contagious bugs being discovered early, before they have chance
to multiply. That means fewer problems to fix, and easier fixes to make when
fixes are necessary.

And there’s a hidden benefit! Most of the techniques that make code easier
to test also make the code easier to write—having to write tests for all use cases
nudges you to simplify to fewer use cases. Eliminating state makes for less fiddly
code. Making your interfaces less error-prone makes them simpler.

It’s a two-way win. So keep things simple, and keep on testing.

30 | THE RULES OF PROGRAMMING

A Good Name Is the
Best Documentation

You can’t write about programming without quoting Shakespeare, obviously. It’s
sort of a cliché at this point. Nevertheless, here’s Romeo and Juliet, a quick recap:
Romeo and Juliet are star-crossed teens in love, prevented by the enmity between
their two families from spending a joyful life together. It ends poorly for all
involved.

Act II, Scene II. Juliet bemoans the situation in the fifth-most famous quote
from the play:

What’s in a name? That which we call a rose

By any other name would smell as sweet

I’ve heard similar arguments made about code, typically by colleagues frus-
trated by my persnickety code review attitude toward how stuff is named. Vari-
ables, functions, members, source files, class and structure names—I’ll quibble
about any of them.

People will argue, typically with an eye roll, that the name doesn’t really
matter, that what matters is the thing named. The true meaning of the variable
(or function, or class, whatever) can only be determined by looking at the code.
The truth of a variable is what it represents—how it’s set, how it’s used, not what
it’s named. The functionality doesn’t change if the name is changed.

So, they declare, just choose something easy to type and get on with coding.
These people are wrong.
The name of a thing is the first and most important documentation you

have. It’s inescapable. It’s always there. Whenever you see any sort of reference
to the thing, it’s by its name. That continual presence is a glorious opportunity to
tell the reader what the thing is, every single time they see it.

31

| Rule 3

1 I’m of an age where my first programming language was Applesoft Basic, which allowed long variable
names but only paid attention to the first two characters. You read that right; JUDGE$ and JUROR$ are
aliases for the same string variable. Good times. My Basic variables were all one or two characters, as in
the coding example to follow.

2 Numerical Recipes is a classic book explaining all sorts of algorithms for math and science. The Sucker
Punch codebase is littered with ideas adapted from it. 10/10, would recommend. William H. Press et al.,
Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, 2007).

This sort of opportunity should never be squandered.
Your goal when choosing the name for something is simple—the name

should encapsulate what’s important about the thing, and guide the reader in
how to think about it. If you’re naming a variable, the name should immediately
tell the reader what the variable represents. If you’re naming a function, the
name should tell the reader what the function does.

Sounds simple, right? So how do things go sideways? As many ways as there
are stars in the sky, actually, but here are a few common failure modes.

Don’t Optimize for Minimal Keystrokes

The first way things go sideways is overly curt names. Remember that code
is read much more often than it’s written. It’s easy when you’re writing code
to forget this and optimize in favor of names that are easy to type, instead of
spending a bit of extra effort to write code that’s easy to read.

In extremis, this leads to super short variable names. The older the code is,
the more likely you’ll see this style. Or, alternatively, if you run into work done
by a truly ancient programmer—someone who started programming in the ’60s
or ’70s, say—then you’re more likely to see one-letter and two-letter names.1

I think of this as Numerical Recipes code.2 I’m a big fan of Numerical Recipes,
but the coding style is pretty opaque. To paraphrase:

void cp(
 int n,
 float rr[],
 float ii[],
 float xr,
 float xi,
 float * yr,
 float * yi)
{
 float rn = 1.0f, in = 0.0f;
 *yr = 0.0f;
 *yi = 0.0f;
 for (int i = 0; i <= n; ++i)

32 | THE RULES OF PROGRAMMING

 {
 *yr += rr[i] * rn - ii[i] * in;
 *yi += ii[i] * rn + rr[i] * in;
 float rn2 = rn * xr - in * xi;
 in = in * xr + rn * xi;
 rn = rn2;
 }
}

Not immediately obvious what’s going on, right? You could puzzle it out—
the code evaluates a polynomial over complex numbers—but it’s some work.
Things are a lot easier with more appropriate names:

void evaluateComplexPolynomial(
 int degree,
 float realCoeffs[],
 float imagCoeffs[],
 float realX,
 float imagX,
 float * realY,
 float * imagY)
{
 float realXN = 1.0f, imagXN = 0.0f;
 *realY = 0.0f;
 *imagY = 0.0f;
 for (int n = 0; n <= degree; ++n)
 {
 *realY += realCoeffs[n] * realXN - imagCoeffs[n] * imagXN;
 *imagY += imagCoeffs[n] * realXN + realCoeffs[n] * imagXN;
 float realTemp = realXN * realX - imagXN * imagX;
 imagXN = imagXN * realX + realXN * imagX;
 realXN = realTemp;
 }
}

And obviously this particular bit of code is simpler if you have a data type for
complex numbers:

void evaluateComplexPolynomial(
 vector<complex<float>> & terms,
 complex<float> x,
 complex<float> * y)
{
 complex<float> xN = { 1.0f, 0.0f };
 *y = { 0.0f, 0.0f };
 for (const complex<float> & term : terms)
 {
 *y += xN * term;
 xN *= x;

A GOOD NAME IS THE BEST DOCUMENTATION | 33

 }
}

Now the structure of the algorithm is clear, if you remember how complex
numbers work. You multiply each term by the domain value x taken to the Nth
power, accumulating the results in the range variable y.

Don’t Mix and Match Conventions

The second way names go wrong is inconsistency. When code doesn’t use con-
sistent rules about how things are named, it’s easy for the reader to get confused.

For most projects, some amount of inconsistency is hard to avoid. If you use
any external libraries, then you’ve got trouble—unless all of your dependencies
share the same naming rules, and you’re willing to work within those rules
yourself. Say you’re writing a native Windows app, and you’re willing to adopt
Microsoft’s naming conventions—then your code can be consistent. Or you’re
going to use the C++ standard template libraries and can live with their conven-
tions: still consistent. Otherwise, there will be visible seams as things named
with competing conventions are mixed.

Imagine that you’ve got a vector class that pre-allocates storage for a fixed
number of elements. That’s useful and not something the C++ standard library
provides. Imagine your project has a simple naming scheme for object meth-
ods—camel case, starting with a verb. Leaving out a bunch of details, your class
looks like this:

template <class ELEM, int MAX_COUNT = 8>
class FixedVector
{
public:

 FixedVector() :
 m_count(0)
 { ; }

 void append(const ELEM & elem)
 {
 assert(!isFull());
 (void) new (&m_elements[m_count++]) ELEM(elem);
 }
 void empty()
 {
 while (m_count > 0)
 {
 m_elements[--m_count].~ELEM();
 }

34 | THE RULES OF PROGRAMMING

3 Well, a zero-sized array isn’t straightforward. Support is compiler-dependent; the compiler I use supports
them but is grouchy about it. I could write the code without a zero-sized array, but it makes things easier
to read and understand, so there you go.

 }
 int getCount() const
 { return m_count; }
 bool isEmpty() const
 { return m_count == 0; }
 bool isFull() const
 { return m_count >= MAX_COUNT; }

protected:

 int m_count;
 union
 {
 ELEM m_elements[0];
 char m_storage[sizeof(ELEM) * MAX_COUNT];
 };
};

This is pretty straightforward.3 The append method adds a new element, the
empty method empties out the whole array, and you’ve got some accessors to
check the current number of elements in the vector. But if you write code that
mixes this FixedVector class with a standard C++ container, things aren’t so
rosy:

void reverseToFixedVector(
 vector<int> * source,
 FixedVector<int, 8> * dest)
{
 dest->empty();
 while (!source->empty())
 {
 if (dest->isFull())
 break;

 dest->append(source->back());
 source->pop_back();
 }
}

Here you have two consecutive lines that call an empty method on a vector,
but those two calls do completely different things. The first call empties the

A GOOD NAME IS THE BEST DOCUMENTATION | 35

destination vector; the second call checks to see whether the source vector is
empty. It’s pretty easy to see how this would cause confusion!

Obviously you could adopt Standard Template Library (STL) conventions for
the FixedVector class—you could rename it fixed_vector, and use STL-style
names for all of its methods—but that just moves the line of confusion elsewhere
in your project. Now you’re not just asking your programmers to adapt to and
use a foreign set of naming conventions—you’re asking them to write code with
those conventions as well. That’s a much bigger undertaking.

It’s easy to underestimate the cognitive load of mixing conventions like this.
There’s a real cost to switching back and forth, constantly reinterpreting what
you’re reading in terms of which set of conventions it must be using. In this
example, that means popping back and forth in the code to figure out which vari-
able has which type, and therefore which set of conventions it uses. Assuming
that you know which conventions are used by which type, of course!

At Sucker Punch we avoided the specific problem of inconsistency between
our conventions and the standard C++ container conventions by writing our own
version of all the container classes instead of using the STL versions. That’s
a pretty extreme solution, but it does eliminate a lot of cognitive strain—the
container classes work just like all the other code we write, so single-stepping
into a container class’s method doesn’t drop you into a foreign landscape. Like,
say, the STL’s jungle of macros and truly unhinged template magic. Not to judge,
but still.

Even so, we’re not entirely free of foreign conventions, because we use code
we didn’t write, like the PlayStation platform libraries. For most projects, some
degree of mixed conventions is inevitable. The key is to minimize the mixing
where possible. Ring fence the foreign bodies if you can, in hopes that their
conventions won’t leak out into the code everyone deals with all the time.

Don’t Shoot Yourself in the Foot

Avoid self-inflicted wounds—if the programmers on your team aren’t using
consistent naming conventions, you’re all creating entirely avoidable problems
for yourselves. A jumble of conventions makes even straightforward code a chal-
lenge to sort out:

int split(int min, int max, int index, int count)
{
 return min + (max - min) * index / count;
}

36 | THE RULES OF PROGRAMMING

void split(int x0, int x1, int y0, int y1, int & r0, int & r1)
{
 r0 = split(x0, x1, y0, y1);
 r1 = split(x0, x1, y0 + 1, y1);
}

void layoutWindows(vector<HWND> ww, LPRECT rc)
{
 int w = ww.size();
 int rowCount = int(sqrtf(float(w - 1))) + 1;
 int extra = rowCount * rowCount - w;
 int r = 0, c = 0;
 HWND hWndPrev = HWND_TOP;
 for (HWND theWindow : ww)
 {
 int cols = (r < extra) ? rowCount - 1 : rowCount;
 int x0, x1, y0, y1;
 split(rc->left, rc->right, c, cols, x0, x1);
 split(rc->top, rc->bottom, r, rowCount, y0, y1);
 SetWindowPos(
 theWindow,
 hWndPrev,
 x0,
 y0,
 x1 – x0,
 y1 – y0,
 SWP_NOZORDER);
 hWndPrev = theWindow;
 if (++c >= cols)
 {
 c = 0;
 ++r;
 }
 }
}

I feel a little queasy right now. That was rough for me to type; I’m taking one
for the team here.

The algorithm isn’t that complicated—I’m just arranging windows to fill a
target rectangle by dividing them into columns and rows, keeping roughly the
same aspect ratio as the target rectangle. But I’ve made it unnecessarily hard to
figure out what’s going on with the naming choices.

The most obvious problem is the jumble of three or four different naming
styles, which is bad enough. But there’s another issue that pops up even in more
consistently named code—the name of something changing as it’s passed into a
function. The first time I call split, I pass x0 and x1 as the last two arguments.

A GOOD NAME IS THE BEST DOCUMENTATION | 37

They’ll receive the right and left sides of the window’s new rectangle. Inside the
split function, though, x0 and x1 mean something completely different.

That’s a problem. If you’re single-stepping through LayoutWindows, you’ve
got a mental model of what x0 and x1 are. If you single-step into split, you
still see x0 and x1—but now they mean something completely different. This
function is using x and y as generic variable names, just like in algebra class.
They’re not connected in any way with a coordinate system, like x and y are in
the LayoutWindows function. Algebra in one function, Cartesian coordinates in
the next—that’s cognitive load, which slows you down and creates mistakes.

Some amount of this renaming in function calls is unavoidable. Function
arguments are often the result of expressions, not just passing another variable.
In this example the first two arguments to split are rc->left and rc->right,
which can’t be the names for those concepts inside the split function. You’ll
have to create variable names—but if you’re smart, those variable names will be
left and right, which makes it easier to track what’s what as you single-step into
the function.

Here’s the same function reorganized a bit to make it more consistent and
readable:

int divideRange(int min, int max, int index, int count)
{
 return min + (max – min) * index / count;
}

void layoutWindows(vector<HWND> windows, LPRECT rect)
{
 int windowCount = windows.size();
 int rowCount = int(sqrtf(float(windowCount - 1))) + 1;
 int shortRowCount = rowCount * rowCount - windowCount;

 HWND lastWindow = HWND_TOP;
 int rowIndex = 0, colIndex = 0;

 for (HWND window : windows)
 {
 int colCount = (rowIndex < shortRowCount) ?
 rowCount - 1 :
 rowCount;

 int left = divideRange(
 rect->left,
 rect->right,
 colIndex,
 colCount);

38 | THE RULES OF PROGRAMMING

 int right = divideRange(
 rect->left,
 rect->right,
 colIndex + 1,
 colCount);
 int top = divideRange(
 rect->top,
 rect->bottom,
 rowIndex,
 rowCount);
 int bottom = divideRange(
 rect->top,
 rect->bottom,
 rowIndex + 1,
 rowCount);

 SetWindowPos(
 window,
 lastWindow,
 left,
 top,
 right - left,
 bottom - top,
 SWP_NOACTIVATE);

 lastWindow = window;
 if (++colIndex >= colCount)
 {
 colIndex = 0;
 ++rowIndex;
 }
 }
}

Still the same algorithm, but much easier to understand. Consistent naming
patterns make it easier to track what’s going on. It’s easier to identify the concept
represented by a variable solely from its name, without inspecting the code
to infer its meaning—you may not know everything about a variable named
rowIndex, but you can be pretty sure it’s the index of a row. Which row and of
what is not as clear, but knowing it’s a row index is a big head start.

Consistently naming indexes and counts has some positive side effects.
When you step into the divideRange function, it also uses index and count
as argument names. It’s easy to mentally translate the colIndex and colCount
variables in layoutWindows to the index and count arguments of divideRange.
I’ve minimized the cognitive load, especially compared to the x0/x1 mess of my
first version of this function.

A GOOD NAME IS THE BEST DOCUMENTATION | 39

4 Unsurprisingly, the class would be implemented in files named character.h and character.cpp.

This is common. If you have a consistent set of rules for naming things, then
as you pass between different functions, or different sections of the codebase,
similar things will have similar names. Identical things will usually have identi-
cal names. As you single-step through code, or try to understand how different
bits of code interact with each other, you don’t have to juggle a bunch of names
for a single thing. There’s only one name—or only a small number of obviously
and closely related names, like the index + count example earlier.

Don’t Make Me Think

Actually, you can go further with rules to create consistency.
The key to consistency is for everything to be as mechanical as possible. If your

team’s conventions for how things are named require judgment calls or careful
thought, then they won’t work. Different programmers will make different judg-
ment calls, and everyone’s names will be different.

You’d much rather be in a happy spot where everyone just naturally chooses
the same names for the same things, because that makes working with every-
one’s code much easier. And the easiest way to create this level of consistency is
to have mechanical rules that everyone follows.

The Sucker Punch rules for variable naming are especially mechanical. I
haven’t used them for the examples in this book, mostly in the interest of
approachability. Our rules work well for us, but that’s because we all use them
constantly. They’re a little strange-looking if you’re seeing them for the first time.

Instead, I’ve used gentler conventions for this book’s examples—if I’ve got
a class representing a character, the class is named Character and a variable
holding a character is typically named character, while a vector full of characters
would be named characters.4 Simple conventions chosen for readability, but
consistently used.

The Sucker Punch codebase is similar in spirit, just with a more thorough
set of rules and a little bit more terseness. We use a variant of Microsoft’s Hun-
garian standard for variable naming. This is…divisive. Not so much with Sucker

40 | THE RULES OF PROGRAMMING

5 I think the negativity misconstrues the advantages of the Hungarian standard. Originally, using it was a
workaround to the lack of type-safe linking in early C compilers. Embedding type names into variable and
function names added a degree of type safety, if only by convention. That’s unimportant at this point,
but it’s the center of most of the derision. There’s also criticism that code using the convention is hard
to read, but that’s like saying Icelandic is hard to read—sure, if you don’t speak it! The real value of the
Hungarian standard for us now is that following its rules lets us all naturally create the same names for
things, and that leads to an easier-to-work-with codebase.

Punch programmers, who adapt pretty quickly, but outside of the Microsoft
ecosystem, the Hungarian naming standard is commonly a target of derision.5

The core idea of the Hungarian standard is that the type (or sometimes
usage) of a variable mechanically determines all or part of the variable’s name.
If you have an index into an array of factions, then that variable is named
iFaction. If you have a vector of pointers to characters, then the variable is
named vpCharacter.

In many cases, that’s where the story stops. The variable name is entirely
mechanical, and as a result everyone uses exactly the same name for the variable.
That’s what we’re hoping for!

If you have multiple variables with the same type, you tack a qualifier onto
the end of the variable name. If you have two character pointers, they might be
called pCharacter and pCharacterOther. This does introduce judgment calls, but
the conventions we have about common qualifier patterns limit the inconsistency
introduced.

The important thing isn’t the details of our naming conventions—it’s that
we have strict conventions, that they’re as mechanical as we can make them, and
that they’re both well-documented and enforced. That puts us in a happy place
where everyone chooses the same names for the same things, and working with
someone else’s code feels like working with your own.

Figure out which of your own project conventions you can make more
mechanical and do it. You’ll reap the benefits for years to come.

A GOOD NAME IS THE BEST DOCUMENTATION | 41

Generalization Takes
Three Examples

We’re all taught as new programmers that general solutions are preferable to
specific ones. Better to write one function that solves two problems than to write
separate functions for each problem.

You’re unlikely to write this code:

Sign * findRedSign(const vector<Sign *> & signs)
{
 for (Sign * sign : signs)
 if (sign->color() == Color::Red)
 return sign;

 return nullptr;
}

When it would be easy to write this code:

Sign * findSignByColor(const vector<Sign *> & signs, Color color)
{
 for (Sign * sign : signs)
 if (sign->color() == color)
 return sign;

 return nullptr;
}

It’s natural to think in terms of generalization, especially for such a simple
example. If you need to find all the red signs in the world, your natural instinct
as a programmer is to write the code to find signs of an arbitrary color, then pass
in red as that color. Nature abhors a vacuum; programmers abhor code that only
solves one problem.

43

| Rule 4

It’s worth thinking about why this feels so natural. At some level, the instinct
to write findSignByColor instead of findRedSign is based on a prediction. Given
that you’re looking for a red sign, you can confidently predict that at some point
you’ll want to look for a blue sign and write the code to handle that case too.

In fact, why stop there? Why not write an even more general solution for
finding signs?

You could create a more general interface that lets you query any aspect of
the sign—color, size, location, text—so that searching for a sign by color is just a
special subcase. You might do this by creating a structure defining the acceptable
values for each aspect of a sign:

bool matchColors(
 const vector<Color> & colors,
 Color colorMatch)
{
 if (colors.empty())
 return true;

 for (Color color : colors)
 if (color == colorMatch)
 return true;

 return false;
}

bool matchLocation(
 Location location,
 float distanceMax,
 Location locationMatch)
{
 float distance = getDistance(location, locationMatch);
 return distance < distanceMax;
}

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_location(),
 m_distance(FLT_MAX),
 m_textExpression(".*")
 {
 ;
 }

 bool matchSign(const Sign * sign) const
 {

44 | THE RULES OF PROGRAMMING

 return matchColors(m_colors, sign->color()) &&
 matchLocation(m_location, m_distance, sign->location()) &&
 regex_match(sign->text(), m_textExpression);
 }

 vector<Color> m_colors;
 Location m_location;
 float m_distance;
 regex m_textExpression;
};

Designing the query parameters requires some judgment calls, since each
aspect forces a different query model. In this example, the judgment calls I made
were:

• Rather than specifying a single color, you can provide a list of acceptable•
colors. An empty list specifies that any color is acceptable.

• Internally, a Location stores latitude and longitude as floating-point val-•
ues, so looking for an exact match isn’t useful. Instead, you would specify
a maximum distance from some location.

• You could use a regular expression to match the text or partial text of the•
sign, which would handle a lot of obvious cases.

The actual code to find a matching sign is simple:

Sign * findSign(const SignQuery & query, const vector<Sign *> & signs)
{
 for (Sign * sign : signs)
 if (query.matchSign(sign))
 return sign;

 return nullptr;
}

Finding a red sign with this model is still pretty straightforward—create a
SignQuery, specify red as the only acceptable color, then call findSign:

Sign * findRedSign(const vector<Sign *> & signs)
{
 SignQuery query;
 query.m_colors = { Color::Red };
 return findSign(query, signs);
}

GENERALIZATION TAKES THREE EXAMPLES | 45

Remember that the design of SignQuery is based on one example: finding
a single red sign. The rest is all conjecture. At this point there aren’t other
examples to build on, so you’re just predicting what other kinds of signs you’ll
need to find.

And that’s the problem—your predictions are likely to be wrong. If you’re
lucky, they’ll only be a little bit wrong…but you probably won’t be lucky.

YAGNI

Most obviously, you’ll anticipate and solve for cases that never occur in practice.
Maybe the first few sign-finding use cases look like this:

• Find a red sign.•

• Find a sign near the corner of Main Street and Barr Street.•

• Find a red sign near 212 South Water Street.•

• Find a green sign.•

• Find a red sign near 902 Mill Street.•

You can solve all of these cases with SignQuery and findSign, so in that
sense the code does a decent job predicting the use cases. But I don’t see any
cases where you’re accepting multiple sign colors, and none of the use cases
looks at the sign’s text. All the actual use cases look for a single color, at most,
and some restrict to a location. The SignQuery code solves for cases that aren’t
occurring in practice.

This is a common pattern, common enough that the Extreme Programming
philosophy has a name for it—YAGNI, or “You Ain’t Gonna Need It.” The work
you did to define a list of acceptable colors rather than the single color in your
known use case? Wasted time and effort. The experiments you did with the C++
regular expression class, figuring out how to distinguish complete matches from
partial? That’s time you’re not getting back.

What’s more, the extra complexity of SignQuery imposes a cost on anyone
using it. It’s pretty obvious how to use the findSignByColor function, but find
Sign requires a little more investigation. There are three different querying mod-
els packed into it, after all!

Is a partial match of the regular expression sufficient, or does the expression
need to match the entire text of the sign? It’s not obvious how the three condi-
tions interact—is this an “and” or an “or”? If you read the code, it’s clear that

46 | THE RULES OF PROGRAMMING

a sign matches the query only if all of the conditions match, but that requires
reading the code. Which introduces a new bit of confusion—which SignQuery
fields are required? As written, an empty query straight out of the constructor
matches all signs, so you only need to set fields that you’re filtering on—but
learning this required some investigation.

Given the clear pattern in the real-world use cases, it would have been better
to have just solved the actual problem:

Sign * findSignWithColorNearLocation(
 const vector<Sign *> & signs,
 Color color = Color::Invalid,
 Location location = Location::Invalid,
 float distance = 0.0f)
{
 for (Sign * sign : signs)
 {
 if (isColorValid(color) &&
 sign->color() != color)
 {
 continue;
 }

 if (isLocationValid(location) &&
 getDistance(sign->location(), location) > distance)
 {
 continue;
 }

 return sign;
 }

 return nullptr;
}

Your response at this point might be to accuse me of cheating. Sure, now
that the first few use cases are on the table, it seems like findSignWithColorNear
Location is a better solution than SignQuery—but you couldn’t have predicted
that after the first use case. Writing findSignWithColorNearLocation as a general
solution wasn’t any more likely to succeed than writing SignQuery turned out
to be. One of the use cases might have allowed multiple colors or might have
referred to the text of the signs.

That’s exactly my point! No general solution was predictable after one
use case, so it was a mistake to try to write one. Both findSignWithColorNear
Location and SignQuery are mistakes. There’s no winner here, just two losers.

GENERALIZATION TAKES THREE EXAMPLES | 47

Here’s the best way to find a red sign:

Sign * findRedSign(const vector<Sign *> & signs)
{
 for (Sign * sign : signs)
 if (sign->color() == Color::Red)
 return sign;

 return nullptr;
}

Yes, I’m serious. I might pass in the color to match, but that’s as far as I’d
go. If you’ve got one use case, write code to solve that use case. Don’t try to guess
what the second use case will be. Write code to solve problems you understand,
not ones you’re guessing at.

An Obvious Objection to This Strategy,
in Response to Which I Double Down

“Wait a second,” you may say at this point. “Doesn’t writing code that barely
meets the requirements of the use case guarantee that you’ll run into use cases
that the code won’t handle? What do you do when the next use case that pops up
doesn’t fit the code you’ve written? That seems inevitable.”

“And isn’t this an argument for writing more general code? Sure, the first
five use cases we ran into with SignQuery didn’t exercise all of the code we wrote,
but what if the sixth use case did? Wouldn’t we be glad to have the SignQuery
code all written and ready to go when that happened?”

No, not really. Save your effort. When a use case pops up that your code
doesn’t handle, write code to handle it. You might cut and paste your first effort,
making adjustments to handle the new use case. You might start again from
scratch. Both are fine.

The first use case in the list of five was “Find a red sign,” and I wrote code
to do exactly that and no more. The second use case was “Find a sign near the
corner of Main Street and Barr Street,” so now I’ll write code to do exactly that
and no more:

Sign * findSignNearLocation(
 const vector<Sign *> & signs,
 Location location,
 float distance)
{
 for (Sign * sign : signs)
 {

48 | THE RULES OF PROGRAMMING

 if (getDistance(sign->location(), location) <= distance)
 {
 return sign;
 }
 }

 return nullptr;
}

The third use case was “Find a red sign near 212 South Water Street,” and
this isn’t handled by either of the two functions I’ve written. This is the inflection
point—now that we’ve got three independent use cases, it’s starting to make
sense to generalize. With three independent use cases, we can more confidently
predict the fourth and fifth.

Why three? What makes three a magic number? Nothing, really, except for
the fact that it’s not one or two. One example isn’t enough to guess the general
pattern. Based on my experience, two usually isn’t either—after two examples,
you’ll just be more confident in your inaccurate generalization. With three differ-
ent examples, your prediction of the pattern will be more accurate and you’re
likely to be a little bit more conservative in your generalization. Nothing like
being wrong after examples one and two to leave you humble!

Still, there’s no requirement that you generalize at this point! It would be
perfectly fine to write a third function without folding the first two functions
into it:

Sign * findSignWithColorNearLocation(
 const vector<Sign *> & signs,
 Color color,
 Location location,
 float distance)
{
 for (Sign * sign : signs)
 {
 if (sign->color() == color &&
 getDistance(sign->location(), location) >= distance)
 {
 return sign;
 }
 }

 return nullptr;
}

This three-separate-functions approach has one important benefit—the func-
tions are very simple. It’s obvious which one of them to call. If you have a color

GENERALIZATION TAKES THREE EXAMPLES | 49

1 Or, if you’re using a language like C++ that supports function overloading, you could call all three versions
of findSign and let the compiler sort things out.

and a location, call findSignWithColorNearLocation. If you just have a color, it’s
findSignWithColor; if you just have a location, it’s findSignNearLocation.1

If your sign-finding use cases continue to check for a single color and/or
location, those three functions will be fine forever. The approach doesn’t scale
very well, of course—with two separate arguments and three separate findSign
functions the approach isn’t a disaster, but with more possible arguments it
quickly becomes ridiculous. If at some point you have a use case that involves
looking at the sign text, you’ll probably shy away from creating seven variations
of the findSign function.

There’s nothing wrong at this point with combining the three findSign
functions into a single function that handles all three cases. Once you have three
separate use cases it’s safer to generalize. But generalize only if you think it
makes the code easier to write and read, based solely on the use cases you have
in hand. Never generalize because you’re worried about the next use case—only
generalize on the use cases you know.

Writing generalized code in C++ for this is a little painful because C++
doesn’t really have optional arguments, only default values for arguments. That
means inventing some way to mark our arguments as “not present.” One solu-
tion is to add Invalid values for color and location to use when we don’t care
about them. Repeating the first version of findSignWithColorNearLocation:

Sign * findSignWithColorNearLocation(
 const vector<Sign *> & signs,
 Color color = Color::Invalid,
 Location location = Location::Invalid,
 float distance = 0.0f)
{
 for (Sign * sign : signs)
 {
 if (isColorValid(color) &&
 sign->color() != color)
 {
 continue;
 }

 if (isLocationValid(location) &&
 getDistance(sign->location(), location) > distance)
 {
 continue;

50 | THE RULES OF PROGRAMMING

 }

 return sign;
 }

 return nullptr;
}

With this function written, all the calls to findSignWithColor and findSign
NearLocation could be replaced with calls to findSignWithColorNearLocation.

It’s Actually Worse than YAGNI

So far you’ve seen that generalizing prematurely means you’re likely to write
code that never gets exercised, and that’s bad. The less obvious problem is that
generalizing prematurely makes it harder to adapt to unanticipated use cases.
That’s partly because the generalized code you’ve written is more complicated
and therefore takes more work to adjust, but there’s also something more subtle
that happens. Once you’ve established the template for generalization, you’re
likely to extend that template for future use cases instead of reevaluating it.

Roll back the clock a bit. Imagine that you generalized early with the Sign
Query class, but this time the first few use cases look like this:

• Find a red sign.•

• Find a red “STOP” sign near the corner of Main Street and Barr Street.•

• Find all the red or green signs on Main Street.•

• Find all white signs with text “MPH” on Wabash Avenue or Water Street.•

• Find a sign with the text “Lane” or colored blue near 902 Mill Street.•

The first two use cases in this list fit SignQuery pretty well, but then things
start to fall apart.

The third use case, “Find all the red or green signs on Main Street,” adds two
new requirements. First, the code needs to return all matching signs instead of a
single sign. That’s not hard:

vector<Sign *> findSigns(
 const SignQuery & query,
 const vector<Sign *> & signs)
{
 vector<Sign *> matchedSigns;

 for (Sign * sign : signs)

GENERALIZATION TAKES THREE EXAMPLES | 51

 {
 if (query.matchSign(sign))
 matchedSigns.push_back(sign);
 }

 return matchedSigns;
}

The second new requirement is to find all signs along a street, and that’s
trickier. Assuming streets can be represented as a series of line segments con-
necting locations, both locations and streets can be packaged into a new Area
struct:

struct Area
{
 enum class Kind
 {
 Invalid,
 Point,
 Street,
 };

 Kind m_kind;
 vector<Location> m_locations;
 float m_maxDistance;
};

static bool matchArea(const Area & area, Location matchLocation)
{
 switch (area.m_kind)
 {
 case Area::Kind::Invalid:
 return true;

 case Area::Kind::Point:
 {
 float distance = getDistance(
 area.m_locations[0],
 matchLocation);
 return distance <= area.m_maxDistance;
 }
 break;

 case Area::Kind::Street:
 {
 for (int index = 0;
 index < area.m_locations.size() - 1;
 ++index)
 {

52 | THE RULES OF PROGRAMMING

 Location location = getClosestLocationOnSegment(
 area.m_locations[index + 0],
 area.m_locations[index + 1],
 matchLocation);

 float distance = getDistance(location, matchLocation);
 if (distance <= area.m_maxDistance)
 return true;
 }

 return false;
 }
 break;
 }
 return false;
}

Then the new Area struct can replace the location and maximum distance in
SignQuery:

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_area(),
 m_textExpression(".*")
 {
 ;
 }

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchArea(m_area, sign->location()) &&
 regex_match(sign->m_text, m_textExpression);
 }

 vector<Color> m_colors;
 Location m_location;
 float m_distance;
 regex m_textExpression;
};

The fourth use case asks for all speed-limit signs on either of two streets,
which doesn’t fit. It’s easy enough to support a list of areas:

bool matchAreas(const vector<Area> & areas, Location matchLocation)
{
 if (areas.empty())

GENERALIZATION TAKES THREE EXAMPLES | 53

 return true;

 for (const Area & area : areas)
 if (matchArea(area, matchLocation))
 return true;

 return false;
}

Then you can replace the single area in SignQuery with a list:

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_areas(),
 m_textExpression(".*")
 {
 ;
 }

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchAreas(m_areas, sign->location()) &&
 regex_match(sign->m_text, m_textExpression);
 }

 vector<Color> m_colors;
 vector<Area> m_areas;
 regex m_textExpression;
};

Use case five really mixes things up—it’s looking for a sign to mark a point
of historical interest. Those signs are usually blue, so it looks for that, but it also
might be green with particular text. That doesn’t fit the model in SignQuery.

Again, not impossible. Adding Boolean operations to SignQuery addresses
the new use case:

struct SignQuery
{
 SignQuery() :
 m_colors(),
 m_areas(),
 m_textExpression(".*"),
 m_boolean(Boolean::None),
 m_queries()
 {

54 | THE RULES OF PROGRAMMING

 ;
 }

 ~SignQuery()
 {
 for (SignQuery * query : m_queries)
 delete query;
 }

 enum class Boolean
 {
 None,
 And,
 Or,
 Not
 };

 static bool matchBoolean(
 Boolean boolean,
 const vector<SignQuery *> & queries,
 const Sign * sign)
 {
 switch (boolean)
 {
 case Boolean::Not:
 return !queries[0]->matchSign(sign);

 case Boolean::Or:
 {
 for (const SignQuery * query : queries)
 if (query->matchSign(sign))
 return true;

 return false;
 }
 break;

 case Boolean::And:
 {
 for (const SignQuery * query : queries)
 if (!query->matchSign(sign))
 return false;

 return true;
 }
 break;
 }

 return true;
 }

GENERALIZATION TAKES THREE EXAMPLES | 55

 bool matchSign(const Sign * sign) const
 {
 return matchColors(m_colors, sign->color()) &&
 matchAreas(m_areas, sign->location()) &&
 regex_match(sign->m_text, m_textExpression) &&
 matchBoolean(m_boolean, m_queries, sign);
 }

 vector<Color> m_colors;
 vector<Area> m_areas;
 regex m_textExpression;
 Boolean m_boolean;
 vector<SignQuery *> m_queries;
};

Whew. That was a more demanding set of use cases than the set we saw in
the beginning of this Rule. After making a lot of changes, though, the QuerySign
model can handle a broad range of requests. There are reasonable requests that
still can’t be answered—“find two signs within 10 meters of each other,” say—
but it’s easy to imagine that we’ve covered the important cases. Victory, right?

This Is Not What Success Looks Like

Actually, it’s not clear that extending SignQuery so much has put us in a good
spot, even though I was being scrupulously fair—there’s no YAGNI in any of the
extensions, and I kept everything as neat and tidy as I could.

When you continue to extend a general solution, you can lose sight of the
context. That’s exactly what has happened here.

Let’s compare solving that last use case using SignQuery with doing the same
thing directly. Here’s the SignQuery solution:

SignQuery * blueQuery = new SignQuery;
blueQuery->m_colors = { Color::Blue };

SignQuery * locationQuery = new SignQuery;
locationQuery->m_areas = { mainStreet };

SignQuery query;
query.m_boolean = SignQuery::Boolean::Or;
query.m_queries = { blueQuery, locationQuery };

vector<Sign *> locationSigns = findSigns(query, signs);

56 | THE RULES OF PROGRAMMING

2 You can use a hammer to drive a screw, by the way. You just have to swing the hammer harder. At the
risk of being painfully obvious, the same is true of code. You can get things to work with an awkward
abstraction—you just have to swing the abstraction harder.

And here’s the direct version:

vector<Sign *> locationSigns;
for (Sign * sign : signs)
{
 if (sign->color() == Color::Blue ||
 matchArea(mainStreet, sign->location()))
 {
 locationSigns.push_back(sign);
 }
}

The direct solution is better. It’s simpler, it’s easier to understand, it’s easier
to debug, it’s easier to extend. All the work we did on SignQuery just led us
further and further away from the simplest and best answer. And that’s the real
danger in premature generalization—not just that you’ll implement features that
never get used, but that your generalization establishes a direction that will be hard
to change.

Generalized solutions are really sticky. Once you establish an abstraction
to solve a problem, it’s hard to even conceive of alternatives. Once you use find
Signs to find all the red signs, your instinct will be to use findSigns whenever
you need to find signs of any sort. The very name of the function tells you to do
that!

So if you’ve got a case that doesn’t quite fit, the obvious answer is to extend
SignQuery and findSigns to cover the new case. The same goes for the next case
that doesn’t fit, and the one after that. As the general solution becomes more
expressive, it also becomes more cumbersome...and unless you’re very careful,
you won’t even notice that you’ve extended your generalization past its natural
bounds.

When you’re holding a hammer, everything looks like a nail, right? Creating
a general solution is handing out hammers. Don’t do it until you’re sure that
you’ve got a bag of nails instead of a bag of screws.2

GENERALIZATION TAKES THREE EXAMPLES | 57

The First Lesson of
Optimization Is Don’t
Optimize

My favorite programming task is optimization. Usually that means making some
code system run faster, though sometimes I’m optimizing memory usage or
network bandwidth or some other resource.

It’s my favorite task because it’s simple to measure success. For most coding
work, what constitutes success is fuzzy. Books like this one try hard to define
what good code or a good system looks like, but what makes a line of code good
is always imprecise.

That’s not true for optimization. There, the answers are crisper. If you’re
trying to make something run faster, you can measure your success directly.
The same goes for the cost of that success in terms of increased code size
or complexity. No worrying about semi-defined long-term benefits, no trusting
that someone reading your new code a few years from now will understand it
immediately and be swept away in a wave of emotional appreciation for you as a
programmer. Just immediate, tangible results.

I’m not alone in this fondness for optimization. In fact, it’s seductive enough
to have prompted the one programming adage that every programmer knows:

Premature optimization is the root of all evil.

That’s not the whole quote, by the way. The original version, as written down
by Donald Knuth in 1974, is more nuanced:

We should forget about small efficiencies, say about 97% of the time:

premature optimization is the root of all evil.

59

| Rule 5

1 The origin of the quote is disputed, though Knuth’s version is the first known published form of it. It’s also
attributed to Tony Hoare, who thought it sounded more like something Edsger Djikstra would have said.
All three parties appear to be unsure of the actual origin, attributing it to common folk wisdom at the
time. This is the perfect recipe for an unending argument on the internet.

2 Note the archaic syntax here, which I threw in to take the old-timers down Memory Lane.

It’s important to note the context.1 In 1974, compilers were much less
sophisticated than they are now. The “small efficiencies” Knuth talks about were
often tricky little bits of code to get the compiler to generate the code you wanted,
like caching end points to eke out a little bit of performance:

int stripNegativeValues(int count, int * data)
{
 int * to = data;

 for (int * from = data, * end = data + count;
 from < end;
 ++from)
 {
 if (*from >= 0)
 *to++ = *from;
 }

 return to - data;
}

Or using macros to avoid the cost of a function call:2

typedef struct
{
 float x, y, z;
} Vector;

#define dotProduct(A, B) (A.x * B.x + A.y * B.y + A.z * B.z)

Fortunately, these days the compiler is smart enough to generate the right
instructions for your source code, at least if you’re writing simple and straightfor-
ward code. The trickier you try to get, the less likely it is that the compiler will be
able to figure out what you mean, so old-school tricks and extravagant C++ magic
often end up generating worse code than just writing out the simplest expression
of your logic.

60 | THE RULES OF PROGRAMMING

https://oreil.ly/feSrN

Having smart compilers hasn’t saved us from ourselves, though. It’s instinc-
tive in programmers to worry about resources, whether that’s time or storage or
bandwidth—and that can lead to trying to solve performance problems before
they pop up.

Let’s say you’re choosing a random item from a list, something games do a
lot. The items aren’t equally likely—each has a weighted chance of being chosen:

template <class T>
T chooseRandomValue(int count, const int * weights, const T * values)
{
 int totalWeight = 0;
 for (int index = 0; index < count; ++index)
 {
 totalWeight += weights[index];
 }

 int selectWeight = randomInRange(0, totalWeight - 1);
 for (int index = 0;; ++index)
 {
 selectWeight -= weights[index];
 if (selectWeight < 0)
 return values[index];
 }

 assert(false);
 return T();
}

This is pretty simple. Sum up all the weights, then choose a random number
no larger than the sum. As you subtract weights, one of them will cause the sum
to go negative, selecting that weighted value. The chance of that happening is
proportional to the weight—done!

But it’s easy to look at this and decide it could be faster. The second loop
through the values doesn’t seem necessary. If you hang on to the running sum
of weights, you could divide-and-conquer your way to the answer, making the
second loop much faster:

template <class T>
T chooseRandomValue(int count, const int * weights, const T * values)
{
 vector<int> weightSums = { 0 };
 for (int index = 0; index < count; ++index)
 {
 weightSums.push_back(weightSums.back() + weights[index]);
 }

THE FIRST LESSON OF OPTIMIZATION IS DON’T OPTIMIZE | 61

 int weight = randomInRange(0, weightSums.back() - 1);

 int minIndex = 0;
 int maxIndex = count;

 while (minIndex + 1 < maxIndex)
 {
 int midIndex = (minIndex + maxIndex) / 2;
 if (weight >= weightSums[midIndex])
 minIndex = midIndex;
 else
 maxIndex = midIndex;
 }

 return values[minIndex];
}

This is a rookie mistake. Actually, it’s a whole list of rookie mistakes all
nested inside each other. Yes, the second loop is O(log N) now, not linear, but
that doesn’t really matter when the first loop is still linear. You haven’t made a
dent in overall performance.

Even that isn’t really the issue. Unless you know that you’ve got a lot of
weighted random choices, the simple linear loop is going to be faster. Until
you get to 200(!) or so choices, the linear loop is faster than the binary search,
at least as measured on my PC. That’s a bigger number than you would have
guessed, right? Up until that point, simpler logic and better memory-access
patterns trump algorithmic efficiency.

But that’s not the real issue, either. It doesn’t matter how fast you do the
lookup—the second version allocates memory, which is much slower than any-
thing else you do. If you actually run the two functions as written earlier, the first
version is twenty times faster than the second one. Twenty times!

Wait—that’s still not the real issue! The real issue is that it doesn’t matter
how fast chooseRandomValue is, as you would quickly learn with a little bit of
profiling. You might call it hundreds of times every second, but the profiler
would tell you it represents a meaningless fraction of your overall runtime.
The Sucker Punch engine has functions that are called millions of times every
second; if you’re writing a game, you do too. When it comes to performance,
those functions matter, and chooseRandomValue doesn’t.

62 | THE RULES OF PROGRAMMING

The First Lesson of Optimization

So that’s the first lesson of optimization—don’t optimize.
Make your code as simple as possible. Don’t worry about how fast it will

run. It’ll be fast enough. And if it’s not, it will be easy to make it fast. That last
bit—that it will be easy to make simple code fast—is the second lesson.

The Second Lesson of Optimization

Imagine you’ve got some simple, solid code that you took ordinary care writing.
Your section of the project is running a little slow, so you instrument it and
discover that this small bit of code is soaking up half of your performance.

This discovery is great news! If you can fix the performance of that one bit of
code, you can double your overall performance.

This is pretty typical, by the way. The first time you look at the performance
of some bit of code that’s never been optimized, there’s invariably good news. It’s
obvious what you need to work on.

Bad news would be discovering that nothing is obviously slow, but that’s rare
for code that hasn’t survived a few rounds of optimization.

Here’s a rule of thumb—if you’ve never optimized some bit of code, you can
make it five to ten times faster without a lot of work. That may seem optimistic,
but it isn’t. In practice, there’s lots of low-hanging fruit in unoptimized code.

Putting the Second Lesson to the Test

Let’s put that rule of thumb to the test. Imagine that I was wrong about choose
RandomValue. It’s getting called so often, and with so many choices, that it’s
actually taking up half of your processor time.

Now, if you were starting with the second implementation, my rule of thumb
would be easy to prove. Just switch to a simpler, no-allocation model like your
first implementation and it runs 20 times faster. Rule of thumb proven!

That’s too easy, though. Let’s assume you’re starting with the first imple-
mentation, so you don’t have the easy solution of removing memory allocation.
That’s a bit unrealistic, actually—usually the first thing you discover when you
look at performance is that someone is allocating memory inside a loop, and it’s
easy to fix. But let’s assume you got unlucky and it’s not something simple.

Here’s a five-step process for optimizing something. I’m going to focus
on performance (“processor time,” to be explicit), but the same steps work
for any resource. Just substitute network bandwidth, memory usage, power

THE FIRST LESSON OF OPTIMIZATION IS DON’T OPTIMIZE | 63

consumption, or whatever measurable thing you’re trying to optimize for in the
following steps.

STEP 1: MEASURE AND ATTRIBUTE PROCESSOR TIME

That is, measure how much processor time is being spent and attribute it to
functions, or objects, or whatever is convenient. In the preceding example, I
must have done this already because I know that chooseRandomValue is consum-
ing half of my processor time.

STEP 2: MAKE SURE THERE’S NOT A BUG

It’s pretty common to find out that what looks like a performance problem is
actually a bug. In this case, with chooseRandomValue actually soaking up half of
your cycles, I would strongly suspect a bug somewhere. I’d look pretty hard at
whether all of these calls to chooseRandomValue are appropriate.

Maybe someone is getting a loop condition wrong and a counter is wrapping
all the way around. Instead of a handful of iterations, it’s looping 232 times, plus
or minus. That’s a lot of calls to chooseRandomValue! (And yes, I’ve fixed this exact
bug.)

STEP 3: MEASURE YOUR DATA

Don’t even think about optimizing until you know what your data looks like.
How many calls are made to chooseRandomValue? How many options are you
choosing between? Are you repeatedly choosing from a small number of weigh-
ted distributions, or is it less predictable? How many zero weights are in the list?
Do the lists of values you’re choosing from have repeated values?

Most optimizations exploit some aspect of the data or how you use it. You
can’t make good decisions about optimization without thoroughly understanding
the shape of your data.

STEP 4: PLAN AND PROTOTYPE

If your optimization worked perfectly—if it drove processor time all the way to
zero—then what would overall performance look like? In this case, that would
mean that chooseRandomValue ran in zero time. If it did, would you hit your
performance target?

If not, then your plan isn’t good enough. You’ll need to identify other bits
of code that can be optimized. Don’t start working on an optimization until you
know it’s part of a plan that can succeed.

64 | THE RULES OF PROGRAMMING

3 Unless your instinct is that someone is allocating memory somewhere. Then you’re probably right.

Sometimes it’s hard to project what overall performance will look like with
a perfect optimization. Code interacts with other code in unpredictable ways.
Maybe chooseRandomValue is pulling weight values into the processor’s data
cache, and some other function is also using those values. In the worst case, you
drive chooseRandomValue to zero cycles and overall performance doesn’t change.
The core problem was loading the weight values into the data cache—you’ve just
shifted the blame to a new culprit.

Look for an opportunity to prototype your optimization. In this case, maybe
you can just have chooseRandomValue return the first value in the list of choices
every single time. That’s not correct, but it’s likely to give you a good idea of what
performance would be with a perfectly optimal solution.

STEP 5: OPTIMIZE AND REPEAT

Once you’re through the first four steps, you can start thinking about optimiza-
tion. You’ve got ideas about how expensive various parts of the code ought to be,
based on how much logic is involved and how much memory is accessed. Maybe
some of this code or memory access could be simplified or skipped. If there’s not
some simple way to speed up the code, look for things you can exploit in the data.
For instance, if most of the weights passed to chooseRandomValue are zero, you
can exploit that. If there are duplicate values, then that might be something you
can work with.

Don’t just dive in, though. A one-step optimization plan of “look for some bit
of code that looks slow and make it faster” is not going to work. Your instincts
are wrong about where the problem is, they’re wrong about what the data looks
like, and they’re wrong about what the right fix will be.3

Once you’ve completed Step 5, measure your performance again. If you’ve
hit your target, great! Declare victory and stop optimizing. Otherwise, back to
Step 1 you go. Some of the steps may go more quickly the second time through,
but it’s worth pausing at each of them to think about what you’ve learned so far.

Applying the Five-Step Optimization Process

OK, I’m ready to apply the process! I’m setting aside the word processor and
firing up the development environment. I’ll start with the first implementation of
chooseRandomValue, apply the five-step optimization process, and see how much
effort it takes to get a 10x speedup.

THE FIRST LESSON OF OPTIMIZATION IS DON’T OPTIMIZE | 65

4 Or thirtieth of a second, depending on the game. I’m not committing us to any specific performance
numbers for future games, mind you.

The first implementation of chooseRandomValue is a solid example of taking
ordinary care while writing code—it’s optimized for simplicity and clarity, which
is always the place to start. If my rule of thumb is correct, then I should be able to
get a 5x to 10x speedup without too much work.

I admit to a bit of nervousness as I type this. This has the potential to be
really embarrassing.

I’ve already done Step 1—I know that I’m spending half of my cycles in
chooseRandomValue.

For Step 2, I put in a gallant effort but don’t find any bugs. All the callers
have legitimate reasons to call, and they’re not doing anything obviously wrong.

In Step 3, I discover the problem—I’m making a lot of calls to chooseRandom
Value and in most cases passing long lists of weights and values. The data looks
pretty random, though the weights are small. Most of the values are less than 5
and none is greater than 15. Interestingly, there are lots of calls, but they’re all
from a small, static number of distributions—that is, the same lists of thousands
of weights and values are getting passed over and over.

For Step 4, I create a perfect-performance version of chooseRandomValue. In
this case, I substitute a version that returns a random value from the list while
ignoring the weights—hard to imagine anything simpler than that. You could
just return the first value in the list, but that would skip the random-number
generation call that seems inevitable, so returning an unweighted random choice
seems like a better prototype.

I’m testing it now…and the code runs roughly 50 times faster than my
baseline implementation. Looks like there’s room for the 5x to 10x speedup I
predicted. On to Step 5—making the code run faster!

Your first impulse when you need to make code run faster might be to
actually, you know, make the code run faster. Do the same stuff, just do it faster:
unroll a loop, use multimedia instructions to process multiple entries at once,
write some assembly language, move some bit of math outside a loop.

That’s a bad impulse. Those sorts of optimizations are the last thing you
should try, not the first thing. In the two million or so lines of code in Ghost
of Tsushima, there are only a few dozen places where we’ve done those sorts
of microoptimizations. It’s not that we don’t spend a lot of effort optimizing—
everything we do has to complete in a sixtieth of a second, after all.4 We sweat

66 | THE RULES OF PROGRAMMING

bullets to get the game to run that fast. But with rare exceptions, doing the same
thing faster isn’t how we improve performance.

The way to make code run faster is to do less, not to do the same things
faster. Figure out what the code is doing that it doesn’t need to be doing, or what
it’s doing multiple times that could be done once. Eliminate those bits of code
and things will run faster.

In this case, an obvious candidate is calculating the total weight for a dis-
tribution. In the first implementation of chooseRandomValue I’m doing that on
every call…but when I measured the data in Step 3 I discovered that I was
generating random values from a limited number of distributions. I could easily
calculate the total weight once for each distribution, then reuse it in choose
RandomValue:

struct Distribution
{
 Distribution(int count, int * weights, int * values);

 int chooseRandomValue() const;

 vector<int> m_weights;
 vector<int> m_values;
 int m_totalWeight;
};

Distribution::Distribution(int count, int * weights, int * values) :
 m_weights(),
 m_values(),
 m_totalWeight(0)
{
 int totalWeight = 0;

 for (int index = 0; index < count; ++index)
 {
 m_weights.push_back(weights[index]);
 m_values.push_back(values[index]);

 totalWeight += weights[index];
 }

 m_totalWeight = totalWeight;
}

int Distribution::chooseRandomValue() const
{
 int select = randomInRange(0, m_totalWeight - 1);

THE FIRST LESSON OF OPTIMIZATION IS DON’T OPTIMIZE | 67

 for (int index = 0;; ++index)
 {
 select -= m_weights[index];
 if (select < 0)
 return m_values[index];
 }

 assert(false);
 return 0;
}

Allocating memory is expensive—that’s why the ill-fated first attempt to
optimize chooseRandomValue failed. It allocated memory on every call, which
completely dominated the overall cost of the function. Here, though, I’m only
doing the allocation once per distribution, not once per call. If I was creating new
distributions all the time then these allocations would be a disaster, but I know
from Step 3 (where I measured the data) that I’ve got a relatively short list of
distributions. Allocating a chunk of memory for each distribution in that short
list is fine.

I run the code again…and it’s about 1.7 times faster than the baseline.
Encouraging, but not a complete victory. If you think about the math here,
though, you’ll realize that at best I might have hoped for a 3x speedup. I walked
through the list of weights 1.5 times on average before—all the way through once
to calculate the total weight, then on average halfway through to look up the
random value. Now I’m only doing the lookup.

The difference is the memory access. Before, the full pass through the
weights pulled them all into some level of the data cache, so the second lookup
pass had quick access to them. Now it takes more time for the second pass to
retrieve the values, so I get a 1.7x speedup instead of a 3x speedup.

There’s an obvious next step—now that memory allocation is plausible, a
binary search makes more sense. That isn’t hard to get right, just a bit fiddly:

struct Distribution
{
 Distribution(int count, int * weights, int * values);

 int chooseRandomValue() const;

 vector<int> m_weights;
 vector<int> m_values;
 vector<int> m_weightSums;
};

Distribution::Distribution(int count, int * weights, int * values) :

68 | THE RULES OF PROGRAMMING

 m_weights(),
 m_values(),
 m_weightSums()
{
 int totalWeight = 0;

 for (int index = 0; index < count; ++index)
 {
 m_weights.push_back(weights[index]);
 m_values.push_back(values[index]);
 m_weightSums.push_back(totalWeight);

 totalWeight += weights[index];
 }

 m_weightSums.push_back(totalWeight);
}

int Distribution::chooseRandomValue() const
{
 int select = randomInRange(0, m_weightSums.back() - 1);

 int minIndex = 0;
 int maxIndex = m_weights.size();

 while (minIndex + 1 < maxIndex)
 {
 int midIndex = (minIndex + maxIndex) / 2;
 if (select >= m_weightSums[midIndex])
 minIndex = midIndex;
 else
 maxIndex = midIndex;
 }

 return m_values[minIndex];
}

Testing this attempt…and it’s about 12 times faster than the baseline. Rule
of thumb validated! Imagine an audible sigh of relief from the author here as I
return, vindicated, to the word processor.

Most of the time a 12x speedup is enough. Once you’ve picked the low-
hanging fruit, move on to other things. Resist the temptation to keep optimizing.
It’s easy to get caught up in the joy of tangible success and chase more perfor-
mance wins you don’t need. The function that was a performance problem is
no longer a performance problem. At this point it’s no different than any other
function in the project. It doesn’t need more optimization.

THE FIRST LESSON OF OPTIMIZATION IS DON’T OPTIMIZE | 69

Look, I’m dealing with that temptation right now. I’ve got more ideas about
how chooseRandomValue could be faster. I’m curious about which ones will
actually work, and I’m fighting the urge to satisfy that curiosity. But the right
thing to do once you hit your performance target is to add your optimization
ideas as comments to the code, then set it aside. Declare victory and move on.

There’s an obvious question that I haven’t addressed. The first lesson of
optimization was “Don’t optimize,” right? Take ordinary care, write simple and
clear code, and trust that if you need to be able to make the code 5 to 10 times
faster it will be easy to do so.

But what if 5 to 10 times faster isn’t enough? What if you make a huge
mistake in your initial design for a system, a mistake big enough that you need
things to be 100 times or 1,000 times faster?

There Is No Third Lesson of Optimization

You might argue that there’s a third lesson of optimization: “But don’t do any-
thing stupid.” If you’re going to build a high-frequency trading application where
microseconds matter, then don’t build it in Python. If you’re defining some
result structure you’re going to be passing around all over your C++ code, don’t
design it so every copy does a memory allocation.

Honestly, I think the third lesson doesn’t exist. Programmers worry too
much about performance, full stop.

I get it. I have the same weakness. I’ll build complexity into code for the sake
of performance without a shred of evidence that performance will matter. I catch
myself doing this All. The. Time.

Maybe the third lesson is “Don’t worry about making mistakes, because you
won’t be able to make mistakes you can’t fix.”

If you do write your high-frequency trading app in Python and then run into
trouble, there’s still hope. Convert the stuff that needs to go fast to C++ and leave
the stuff that can go slow in Python. Converting from Python to C++ will get
you (another rule of thumb) a 10x speedup, and per our experiment in this Rule,
we can expect an easy 5x to 10x speedup once it’s in C++. Presto, a 50x to 100x
speedup.

This is a pretty frequent upgrade path for us at Sucker Punch, actually—
writing the first version of something in our lovely but relatively slow scripting
language, then converting it to C++ if it becomes a bottleneck. We get the
benefits of trying ideas quickly, knowing that there’s an escape path to better
performance if that proves necessary.

70 | THE RULES OF PROGRAMMING

Remember, if you actually make a mistake so bad that you’ll need to find a
100x performance win, then you’re going to know about it early. Mistakes that
bad don’t lurk in the weeds. They’re obvious from the start, so you’re not going
to get in too deep before you discover them. So, again, don’t worry about them.

Trust in the two lessons of optimization. Write simple and clear code, and
trust that solutions will appear for any performance problems you run into.

THE FIRST LESSON OF OPTIMIZATION IS DON’T OPTIMIZE | 71

1 This is a direct quote.

Interlude: In Which
the Previous Chapter
Is Criticized

I stand behind the message of the previous chapter—the first lesson of optimi-
zation is, in fact, “Don’t optimize.” However! This strongly expressed point of
view, alone among the many strongly expressed points in this book, prompted
immediate dissent from a large subset of my teammates at Sucker Punch.

It’s only fair to give their well-reasoned objections a hearing! I now present
the opposing points of view in the form of an imagined Socratic dialogue
between me and the many dissenters, whom I’ve merged into a single character
for dramatic purposes. They have all been given a chance to review this chapter
to make sure their views are fairly represented.

The Dissenter: I formally lodge my disagreement with the premise of this
chapter.1

Chris: I thought this chapter was just common sense. Didn’t you see the
Knuth quote? “We should forget about small efficiencies, say about 97% of the
time: premature optimization is the root of all evil!”

The Dissenter: That quote has been used to justify all sorts of code with
atrocious performance, and you’re just encouraging more of it.

Chris: Wow. There’s an emotional undercurrent to that feedback. Perhaps
that’s because you’ve had to spend too much time reworking other people’s code
to fix performance problems that shouldn’t have been there to begin with? And
also waiting for popular video games to boot?

The Dissenter: Yes. And yes.

73

2 Which we will not name.

Chris: And you work on performance-critical parts of our codebase, which
probably leads to a different set of priorities than someone working on, say, the
logic behind our user interface.

The Dissenter: That is true, though I’d note that we both know of a game2

whose user-interface architecture was so ill-conceived that its performance prob-
lems were deemed unfixable. The entire user interface had to be thrown out and
rebuilt, and the game missed its ship date by six months as a result.

Chris: Yes. Rule 20, “Do the Math”, applies to that case. In retrospect, they
should have realized how bad their architecture was and fixed it much earlier
in the project. Really big performance problems tend to show up right away—
but only if you measure them. I could imagine a fourth rule of optimization:
“Assume your code will be fast enough, but measure it anyway.”

The Dissenter: I would be slightly mollified by this. The biggest reason our
end-of-project optimization challenges have been manageable is that we have
accurate profiling tools and use them as part of our day-to-day engineering loop.

Chris: Yes. I think this is the Sucker Punch equivalent to the testing focus a
lot of coding teams have. We don’t have a lot of unit tests because we’re willing
to let a few bugs sneak in, but we’re less willing to be surprised by performance
problems.

The Dissenter: Still, I think your argument for Rule 5 misses an important
point. It would be easy to read it as “Don’t worry about optimization,” but what
you’re really saying is, “Simple code is easy to optimize, so write simple code.”

Chris: Yes, that’s right. This fits into Rule 1 and the overall theme of the
book: make your code as simple as possible, but no simpler. One of the benefits
of this approach is that your code will be easy to optimize.

The Dissenter: But even given that, when you write simple code, you’re think-
ing about how it could be faster if it had to be. This has definitely come up when
I’ve done a code review on your code. Or when you did a code review on my code.
Actually, probably both.

Chris: Absolutely, we all think about that. That’s not the first priority for
code—correctness and simplicity are—but scouting out your escape route for
optimization is good practice, even if it doesn’t prove necessary. And it usually
doesn’t.

The Dissenter: It’s true that optimization often isn’t free. If an optimiza-
tion makes the code more complicated, uses more memory, or adds some

74 | THE RULES OF PROGRAMMING

pre-processing step, then the performance payoff better be worth it. Faster code
isn’t strictly better code. On that we agree.

Chris: Good!
The Dissenter: I’d also like to say that while simple code may be easy to opti-

mize, being slow doesn’t make code simple. In fact making code too complicated
is one of the easiest ways to make it slow.

Chris: Absolutely.
The Dissenter: I’ve got to say, this Rule doesn’t really capture what most of

the optimization work I do is like. Generally, I’m not optimizing some bit of new
code—I’m trying to squeeze more performance out of some code that’s already
been optimized. That’s a lot harder.

Chris: Yes. The chapter really is about writing new code.
The Dissenter: Right, but even then, when I’m adding new code to some

system I already know is performance critical, I have to think about performance
from the start. I can’t just write simple code and hope for the best.

Chris: That’s probably true, or true at least enough of the time to make it
a reasonable first step. Would you agree that worrying about performance from
the start has probably led to at least some code that was more optimized than it
needed to be?

The Dissenter: I grudgingly accept this, but I think it’s uncommon. I still save
time overall by not writing code that immediately needs to be optimized.

Chris: I’d buy that. Even Knuth’s rule stops at 97%, right? If you’re confident
based on past experience that you’re working in the 3%, then it’s reasonable to
consider performance in your first implementation. Just don’t get carried away
until you’ve measured your code and discovered a problem. And if everyone on
your team thinks they’re working on the 3%, then you all need to do a better job
profiling the code.

The Dissenter: The other thing about working on optimized code is that the
gains are smaller. I’ll buy the idea that you can usually make new code 5 or 10
times faster without a lot of work. But at some point you exhaust the easy ideas,
and then performance gains are a lot harder to find.

Chris: Yes, and at that point the rules change. You’re more likely to halve
your execution time with five small changes than with one big change. But even
then, you’ve got to be alert to the idea that there could be a bigger algorithmic
fix. For example, we spent weeks of effort optimizing the main draw loop in
the first Sly Cooper game. We were eking out tiny fractions of performance at a

INTERLUDE: IN WHICH THE PREVIOUS CHAPTER IS CRITICIZED | 75

time—only to discover that switching to a spatial partitioning system quintupled
its performance.

The Dissenter: That was before my time. Cool story, though.
Chris: How about the five-step optimization process?
The Dissenter: Pretty solid. I was OK with that part of the chapter.
Chris: I can’t believe none of you commented on the brilliant insight of

“Step 2: Make Sure There’s Not a Bug”. I was proud of that step.
The Dissenter: I indicated my appreciation of Step 2 by not criticizing it.

Don’t expect a lot of praise, Chris. None of us want to deal with an even more
self-confident version of you.

Chris: Fair enough.

76 | THE RULES OF PROGRAMMING

1 Real people, not virtual ones. I’m a video game programmer: virtual people die from my bugs all the time.

Code Reviews Are
Good for Three
Reasons

One of the biggest changes in the thirty-something years I’ve been programming
full time is the gradual acceptance of code reviews of various forms.

I’d never even heard of code reviews until the early ’90s. I’m not saying they
didn’t happen, because of course they did, but they weren’t widespread outside
of failure-is-not-an-option situations, like medical-device firmware or control code
in rockets. You know, the sort of thing where bugs kill people.1

For most programmers 30 years ago, the thought of someone else looking
through your code felt…invasive. Sure, if you’re collaborating with people, you
have to at least look at the interface to your teammate’s code to figure out
how to interface with it, and you’ll probably end up single-stepping through
someone else’s code—but actually walking line-by-line through code and passing
judgment on it felt deeply weird. Like reading someone’s diary, or (in modern
terms) stumbling onto someone’s browsing history.

Anyhow, in the early ’90s I transferred into a team at Microsoft that had
a code review policy. Lucky for me, my project was so inconsequential in that
team’s grand scheme of things that my project team and I were completely
ignored. Among other things, we were left to decide what our code review
process was. I’m not even sure what the actual official code review process for
the big team was; we just did what we thought made sense and nobody ever
checked up on us. I certainly wasn’t going to ask for guidance, in fear of having

77

| Rule 6

some horrible process imposed on us. Much better to ask for forgiveness than
permission.

To my shock, I found code reviews immediately and undeniably useful. I’ve
been doing them with my teams ever since—but not for the reasons I expected.

The most obvious reason to do code reviews is to detect bugs before they’re
checked into the project. If your code review process is at all rational, the person
doing the review is well-prepared to understand the code that’s being checked
in. Maybe they’ve been part of the implementation of that section of the code, or
they’re an expert in some other bit of code that the new code relies on, or they’re
a frequent user of the code they’re reviewing. In any case, they might be able to
spot problems like an assumption you’ve missed or broken, a misuse of some bit
of code you’re calling, or maybe a change to the system’s behavior that will break
some other bit of code the reviewer is working on.

Does this happen? Do code reviews actually turn up bugs? Sure, a few—at
least in my experience, given the way we conduct code reviews on my team.

That’s an important caveat. The value you’re going to get out of code reviews
is going to depend on how much time and effort you invest into them and how you
conduct them. Here’s a quick description of how most Sucker Punch code reviews
work these days:

• It’s real time—two people sitting down at the same computer (at least in•
pre-pandemic times).

• It’s informal. When you have code ready for review, you walk over to a•
plausible reviewer’s office and ask them for a review. Our social contract
is that when someone asks for a review, you agree, barring really pressing
circumstances.

• The reviewer walks through the change in a diff utility while the reviewee•
provides commentary on the changes. It’s a dialogue, with the reviewer
asking questions until they’re satisfied they understand the changes being
made, suggesting changes, identifying things that need to be tested, and
discussing alternate approaches. Having the reviewee drive the review is
usually a mistake; it’s too easy for the reviewer to just accept what the
reviewee says instead of thinking things through for themselves.

• The reviewee is responsible for taking notes on all the suggested changes•
and extra tests to run. The social contract is that all suggestions are incor-
porated, at least by default.

78 | THE RULES OF PROGRAMMING

• Depending on the scope of the change, the code review can take five•
minutes or five hours. It’s rare to have a code review that doesn’t result in
at least a change or two before check-in. A big code review can result in
pages and pages of notes to incorporate.

• Usually one code review is enough. After the appropriate changes are•
made and extra tests run, the reviewee commits the code. Sometimes, if
it’s a big change with lots of review notes, the reviewer might re-review
the updated changes. If the original code reviewer isn’t confident they
understand some part of the change, they might suggest that another
person on the team also review the code. But most often it’s code review +
incorporate changes + commit.

With this process, we do find bugs…but again, not in the way that you’d
expect. Here are the three basic ways we find bugs in code reviews, roughly
sorted by how often bugs are found, most common to least common:

• Before you ask for a review, you walk through the diff yourself to make•
sure you’ve tidied up anything embarrassing before showing it to someone
else. In the process of self-reviewing, you find a bug: say, an error case
you’ve missed. You fix the problem before anyone sees it.

• During the review, you’re talking the reviewer through a particular section•
of the code…and being forced to explain your approach helps you under-
stand why it’s flawed. You point out the bug to the reviewer, discussion
ensues, and you make a note and move on. Or, if the flaw you’ve discov-
ered is big enough, you just bail on the code review entirely, restarting it
once you’ve made the wholesale changes you need.

• During the review, the reviewer sees a problem you’ve missed. Or the way•
you describe what you’ve done makes it clear that you’re misunderstand-
ing some bit of code you’re calling. You discuss the possible issue, agree
that it’s a problem, and make a note.

It’s rare that the reviewer finds a bug just by staring at the code in question
and applying deep insight. The code review process itself tends to surface them,
either during preparation or as a result of talking through the change. That’s
why it’s useful for code reviews to be dialogues—the process of explaining things
and understanding that explanation illuminates any mismatched assumptions

CODE REVIEWS ARE GOOD FOR THREE REASONS | 79

between reviewer and reviewee. That’s good for finding bugs, but it’s also good
for knowing where a comment is needed or a name needs to be changed.

It’s important to point out the inarguable limitations of our code review
process. Every single bug in our code managed to sneak through a code
review, and we have thousands of bugs! We don’t make exceptions to the
code review requirement—every single line of code that gets checked in has been
reviewed—so every bug was missed by multiple people before it got checked in.
Code reviews find bugs, but they certainly don’t find all of them.

Code reviews are an inefficient way to find bugs. Yet we’re still doing them.
That’s because finding bugs is only one of the reasons we do code reviews, and
it’s not even the most important reason.

Code Reviews Are About Sharing Knowledge

Here’s a more important reason to do code reviews—properly conducted, they’re
an excellent way to propagate knowledge across your team.

That’s particularly important for the team at Sucker Punch, because we’re
flexible about assignments, with coders moving pretty freely between different
parts of our codebase. That works a lot better if each of the coders has basic
knowledge of how the different parts of the codebase work. Code reviews are a
good way of spreading this knowledge.

Imagine arbitrarily dividing the programmers on your team into “junior”
and “senior” groups, based roughly on familiarity with the codebase. Senior cod-
ers know the codebase well, while junior coders are still learning its ins and outs.
Our code reviews involve two people, so there are four possible combinations of
seniority for the reviewer and reviewee. Only three of them are useful, as shown
in Table 6-1.

Table 6-1. Code review taxonomy

 Senior reviewer Junior reviewer

Senior reviewee Useful Useful

Junior reviewee Useful FORBIDDEN

If a senior coder reviews a junior coder’s work, they’re well-positioned to see
problems—not just bugs in the code being reviewed, but general misunderstand-
ings the junior coder has. Perhaps the junior coder hasn’t followed the team’s
formatting standards correctly, or they’ve generalized their solution too early, or
they’ve written a complicated solution to a simple problem. None of these are

80 | THE RULES OF PROGRAMMING

bugs, per se, but violating the Rules of Programming degrades the quality of the
code, so the senior coder should note this to be fixed in the code review.

If a junior coder reviews a senior coder’s work, they’re less likely to find
problems, but they’re more likely to ask questions in order to figure out what’s
going on. In the process of answering those questions, the reviewee helps the
reviewer understand the context for the code, leaving them with a better under-
standing of how all the pieces of the codebase fit together. The reviewer sees
and can ask about examples of good code—correctly formatted, appropriately
engineered, and clearly structured and named.

Think of these two junior–senior interactions as part of the education pro-
cess for new coders on your team. To be effective, new people need to know how
all the pieces fit together, how code gets written on your team, and why things
are done the way they are. Code reviews are an excellent way to transfer all of this
informal knowledge to new members of the team.

Useful combination number three is a senior coder reviewing another senior
coder’s code. This is a good chance to find bugs and to check both coders’
assumptions about how the changes fit into the overall scope of things, discuss
future work in the area, identify extra tests that might be run, and ensure that at
least two people understand the lines of code being checked in.

The Forbidden Code Review

The last combination, a junior coder reviewing another junior coder’s work, is
not useful. In fact, it can be really destructive. All of the benefits I just discussed
evaporate when both coders are junior. There’s no knowledge transfer, there’s
not enough context to find bugs, and there’s no using the code review as a
springboard to talk about future directions. At worst, the two junior coders
reflect half-formed opinions back and forth until they seem like official team
policy. When weird paradigms and conventions pop up in Sucker Punch code
(which happens, despite our best efforts), it’s often a result of two junior coders
ping-ponging reviews back and forth. So we ban this sort of code review.

The True Value of the Code Review

We find bugs and we transfer knowledge. That’s probably enough to justify the
effort we put into code reviews—which usually amounts to maybe 5% to 10% of
the time spent writing the code in the first place. But there’s one more important
benefit of code reviews, probably the most important one of all, and it’s entirely
social:

CODE REVIEWS ARE GOOD FOR THREE REASONS | 81

Everyone writes better code if they know someone is going to look at it.

They’ll follow formatting and naming conventions better. They won’t take
shortcuts or leave tasks for later. Their comments will be clearer. They’ll solve
problems the right way, not with hacks and workarounds. They’ll remember to
take out temporary code used to diagnose a problem.

All of this happens before the code review itself—it’s a result of the pressure
we put on ourselves as programmers to do work we’re proud of and are happy to
show to our peers. It’s a healthy form of peer pressure. We write better code, and
over time this results in a healthier codebase and a more productive team.

Code Reviews Are Inherently Social

Summing up, well-conducted code reviews are good for three reasons:

• You’ll find some bugs.•

• Everyone will understand the code better.•

• People will write code they’re happy to share.•

Look, code reviews are like any process. If you’re going to spend time on
them, you want them to be productive. That means thinking through what you’re
getting out of them and why. Get rid of the parts of the process that aren’t
helping, and double down on the things that work. Either you get more out of the
time you’re spending, or you spend less time to get the same value.

Unless you’re doing something like pair programming, writing and debug-
ging code is usually a solitary act. One lone warrior, alone at their keyboard,
triumphing over bugs and recalcitrant libraries.

Code reviews aren’t solitary. Most of their value comes from the social
interactions between the reviewer and reviewee. You realize you’ve got a bug
while explaining a line of code, you explain a section of code well enough that
the reviewer uses it correctly the next time they call it, you clean up the hack you
don’t want anyone to see before asking for a review, or you learn a simpler way of
doing something from the reviewee’s explanation of the technique they’re using.

Knowing that the value in a code review springs from social interaction,
from two people talking through a change, you should make sure your code
review process encourages that interaction. If the review is quiet—if the reviewer
silently flips through a diff and occasionally grunts while the reviewee silently
watches—then something is wrong. Yes, it’s still a code review, but you’re miss-
ing out on the real value that the review could provide.

82 | THE RULES OF PROGRAMMING

And if all of your code reviews turn into arguments, you’re doing them
wrong! A reviewee who isn’t open to the reviewer’s input won’t learn anything;
neither will a reviewer who doesn’t make the effort to understand why the
reviewee wrote the code the way they did. And, in any case, code reviews are not
the forum for arguing about the project direction, or about the team’s conven-
tions or philosophy. Work out those issues as a team; you won’t resolve anything
in a series of two-person spats.

A healthy code review strengthens your codebase while it strengthens the
bonds of your team. It’s a professional and open dialogue where both partici-
pants leave having learned something.

CODE REVIEWS ARE GOOD FOR THREE REASONS | 83

1 No kidding.

Eliminate Failure
Cases

That title seems optimistic, doesn’t it? What does it even mean?
Some failure cases are unavoidable, right? If I try to open a file, that file

might not exist, or it might be locked by some other user. No interface-design
cleverness can avoid the possibility of failing to open the file. So that can’t be
it. This must be more about eliminating the failures that actually are avoidable,
not intrinsic to file operations—perhaps usage mistakes, like writing to a file
after you’ve closed the handle to that file, or calling methods on an object before
you’ve fully initialized it.

Maybe I could design systems that make it impossible to make usage mis-
takes, but that doesn’t sound easy. And it isn’t. It’s pretty hard to design a
system that’s impossible to misuse. If you expose a feature to users, they’ll find
a bizarre way to use it that eventually causes everything to explode, like building
a functioning 8-bit processor entirely out of Minecraft blocks.1

And if you expose a feature to other programmers on your team—they will
misuse it. The misuse might be intentional, a desperate attempt to get something
working—say, closing a file handle after calling the filesystem shutdown routine
because that’s the only way to avoid an unwanted callback. More likely it will be
entirely unintentional, a misinterpretation of how your interface expects to be
called.

The key question to ask yourself about your design is: “How hard am I
making it for users of this feature or interface to shoot themselves in the foot?”

The proper answer, of course, is “Very hard,” but too often we create features
or interfaces that make inadvertent usage easy.

85

| Rule 7

https://oreil.ly/rjKQT

And if it’s easy to misuse a feature or interface, then mistakes are inevitable.
In some sense, mistakes are designed into that feature or interface. What we’d
like to do is to design mistakes out, rather than designing them in. But first let’s
look at some examples of functions that have failures designed in.

A Function That Makes It Easy to Shoot Myself in the Foot

Every C programmer knows at least one example of a function that’s easy to get
wrong—printf. There’s a fundamental problem with how printf is designed—it
expects the format string it’s given to match the argument types passed, with
unspecified mayhem occurring if the two don’t agree.

This code works because the types agree:

void showAuthorRoyalties(const char * authorName, double amount)
{
 printf("%s is due $%.2f this quarter.\n", authorName, amount);
}

But if we tweak the format string, things fall over:

void showAuthorRoyalties(const char * authorName, double amount)
{
 printf("remit $%.2f to %s this quarter.\n", authorName, amount);
}

Roughly speaking, printf tries to interpret authorName (which is a string)
as a float (uh oh). That’s going to have unpredictable results. Not a crash, proba-
bly—since all 264-bit combinations can be interpreted as doubles, something will
get formatted, even if it’s “NaN.” Next, though, printf interprets amount (which
is a double) as a string (uh oh) and this is very likely to crash.

Actually, this isn’t what happens when I compile and run the preceding
code. Mismatching arguments like this is such an easy mistake to make that
modern C compilers have hacked in an extra set of checks for printf. When I try
to compile the broken example, I get compile errors (!) for both arguments. If the
format string to printf is a constant, the compiler can (and does) check for type
agreement.

This hack sort of proves my point—the design of printf is so bad that the
compiler has to include special checks to hide the problem. Those special checks
won’t happen for any of the code you’re writing, obviously. If you roll your own

86 | THE RULES OF PROGRAMMING

2 OK, in very limited cases this isn’t true. If you’re using format strings that exactly match printf format
strings and are willing to dive deep into your compiler’s documentation, you can probably find a way to
leverage the compiler’s printf support for your case. I wouldn’t recommend this. You’re throwing good
money after bad.

3 In this case, Irish. Per an undisclosed translation app, “Tá $%.2f dlite do %s an ráithe seo.”

4 Literally—the C language and printf were invented very shortly after Unix time value zero. And printf is
still used 50 years later, an unlikely fate for any code I’ve ever written.

formatting function using a printf-style format string, the compiler is not going
to check for type agreement.2

Shooting Myself in the Foot via a Ricochet

To actually get the crash, I sidestep the compiler’s type-agreement hack:

void showAuthorRoyalties(const char * authorName, double amount)
{
 printf(
 getLocalizedMessage(MessageID::RoyaltyFormat),
 authorName,
 amount);
}

Instead of specifying a format string directly, I’m pulling it from a list. Our
games get translated into lots of languages, so any user-visible string is going to
come from a database of localized strings. The compiler has no way of knowing
what the string is, so it can’t check type agreement like it does for a literal string.

The net result is a disaster—a bad idea wrapped inside a worse one. I start
with the type shakiness of printf, then make it worse by entirely separating the
format string from its use while keeping the hidden dependence on parameter
order. Inevitably, some poor translator is going to swap the order of the two
parameters in the course of translating that line due to expected word ordering in
their language,3 and our code will crash.

Perhaps we can forgive printf its inadequacies, given that its design dates
back to the beginning of time.4 But requiring separate arguments to match in
some way is widespread, despite being a bad idea. You might write a routine that
expects two array-valued arguments to have the same size:

void showAuthorRoyalties(
 const vector<string> & titles,
 const vector<double> & royalties)
{
 assert(titles.size() == royalties.size());

ELIMINATE FAILURE CASES | 87

 for (int index = 0; index < titles.size(); ++index)
 {
 printf("%s,%f\n", titles[index].c_str(), royalties[index]);
 }
}

You could also include arguments whose interpretation depends on another
argument: say, flagging identity matrices in a coordinate-space conversion func-
tion in an (arguably misguided) attempt to avoid the cost of a matrix inversion
and a couple of matrix multiplications:

Point convertCoordinateSystem(
 const Point & point,
 bool isFromIdentity,
 const Matrix & fromMatrix,
 bool isToIdentity,
 const Matrix & toMatrix)
{
 assert(!isFromIdentity || fromMatrix.isZero());
 assert(!isToIdentity || toMatrix.isZero());

 Point convertedPoint = point;
 if (!isFromIdentity)
 convertedPoint *= fromMatrix;
 if (!isToIdentity)
 convertedPoint *= Invert(toMatrix);

 return convertedPoint;
}

At best, you’ll detect these kinds of problems when you run the code—they’ll
sail right through compilation.

When you detect a problem, the alternatives aren’t great. If you return an
error for mismatched arguments, then you’re stuck writing error-handling code
in the caller. Writing error-handling code to account for a mistake you made in
calling the function is a sign that something is seriously wrong.

Alternatively, you could add an assert that the arguments match. Depending
on how you use asserts, the effect of this could range from an immediate hard
crash to a message you can ignore at your own risk. No point along that spec-
trum is pleasant.

88 | THE RULES OF PROGRAMMING

Enlisting the Compiler’s Aid to Avoid Shooting My Foot

It would be better to design the interface to make incorrect usage impossible—
or at least to make the compiler reject it. You could combine parallel arrays to
eliminate the possibility of mismatched lengths:

void showAuthorRoyalties(const vector<TitleInfo> & titleInfos)
{
 for (const TitleInfo & titleInfo : titleInfos)
 {
 printf("%s,%f\n", titleInfo.m_title.c_str(), titleInfo.m_royalty);
 }
}

You could also collapse related arguments into a single argument:

Point convertCoordinateSystem(
 const Point & point,
 const Matrix & fromMatrix,
 const Matrix & toMatrix)
{
 Point convertedPoint = point;
 if (!fromMatrix.isIdentity())
 convertedPoint *= fromMatrix;
 if (!toMatrix.isIdentity())
 convertedPoint *= Invert(toMatrix);

 return convertedPoint;
}

The localized printf nightmare is trickier to fix. If you want to both make
things type safe and also give correct results when arguments are reordered
during translation, the simple solution of using strings for all the arguments to
the formatting function isn’t quite enough.

If you create helper functions that format a single argument, returning a
field name and the formatted argument, you can solve both problems:

void showAuthorRoyalties(const char * authorName, double amount)
{
 // Eg "{AuthorName} is due {Amount} this quarter."

 printMessage(
 MessageID::RoyaltyFormat,
 formatStringField("AuthorName", authorName),
 formatCurrencyField("Amount", "#.##", amount));
}

ELIMINATE FAILURE CASES | 89

Now you can at least detect any lack of agreement between the localized
format string and the arguments you’re passing, though unfortunately not at
compile time. The format string can specify the arguments in whatever order
makes sense for the target language and printMessage will sort things out. If the
format string names a field you’re not providing or doesn’t name a field you do
provide, that can be logged at runtime. Better yet, the mismatch could be flagged
in whatever tool the localization team uses to do localization, so that they can fix
it before the code even runs.

Timing Is Everything

A key point in creating failure-proof interfaces is to detect usage mistakes as early
as possible.

In the worst case, the mistaken usage isn’t detected at all—the feature just
generates incorrect results. It relies on the caller to realize their mistake and sort
things out. They won’t; they’ll just wonder how their foot got full of holes.

If a mistake is detected when the code runs—well, that’s not great, though
it’s better than continuing blithely on without noting the problem. Ideally the
mistake is reported in some unmissable way.

It would be better if the compiler detected the mistake instead. It’s hard to
miss code that fails to compile.

Or best of all, the design of the system might make it impossible to express
the mistaken idea at all!

A More Complicated Example

Another place where failure is often designed in rather than out is the construc-
tion of complex objects.

Here’s an example. At Sucker Punch, we write a lot of code that draws visual-
izations in our game world to help with debugging. For example, we have code
that shows a wireframe outline of the places characters are allowed to walk. We
also have code to draw little markers over the heads of NPCs that are currently
aware of the player, meaning that the AI system is modeling that the NPC knows
exactly where the player is. We have code that draws little numeric scores above
the various places an enemy swordsman is thinking about moving to in a fight.

Debug drawing like this is more complicated than it sounds. Our debug-
rendering tech supports 30 separate drawing options, all expressed on a debug-
drawing context object. The 30 options determine how the program will turn
simple drawing calls—like a call to draw a triangle when given three points—into

90 | THE RULES OF PROGRAMMING

actual drawing primitives. What coordinate space are those points in? Should the
triangle be drawn as a wireframe or opaque? Should the triangle be visible if it’s
behind a wall? And so on, for another 27 options.

We could pass 30 options to a constructor, but that’s pretty unwieldy. If
we did that for an adapted and simplified version of our actual debug-drawing
parameter structure, we might end up with something like this:

struct Params
{
 Params(
 const Matrix & matrix,
 const Sphere & sphereBounds,
 ViewKind viewKind,
 DrawStyle drawStyle,
 TimeStyle timeStyle,
 const Time & timeExpires,
 string tagName,
 const OffsetPolys & offsetPolys,
 const LineWidth & lineWidth,
 const CustomView & customView,
 const BufferStrategy & bufferStrategy,
 const XRay & xRay,
 const HitTestContext * hitTestContext,
 bool exclude,
 bool pulse,
 bool faceCamera);
};

All of these options are used by some bit of Sucker Punch code, but most
callers specify only one or two options. The default choices are usually correct.
We do most of our debug drawing in the same 3D coordinate space we use
for the game itself, for instance. If we wanted to draw a simple sphere above a
character’s head, as in our example showing which NPCs are aware of the player,
we might write something like this:

void markCharacterPosition(const Character * character)
{
 Params params(
 Matrix(Identity),
 Sphere(),
 ViewKind::World,
 DrawStyle::Wireframe,
 TimeStyle::Update,
 Time(),
 string(),
 OffsetPolys(),
 LineWidth(),

ELIMINATE FAILURE CASES | 91

 CustomView(),
 BufferStrategy(),
 XRay(),
 nullptr,
 false,
 false,
 false);

 params.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

This is pretty bad. It’s an inconvenient design to use, and it has too many
inherent failure points. You’re never going to remember the order of 16 argu-
ments, leaving you at the mercy of your IDE to remind you of what goes where.
For arguments with unique types, the compiler will likely bail you out if you
guess wrong, but good luck keeping track of which of the four random Boolean
arguments at the end of the list does what. If you’re just reading through mark
CharacterPosition, they’re a total mystery.

And keep your fingers crossed that you’ll never add or remove an argument
from the constructor. A quick review of the Sucker Punch codebase shows 850 or
so places where we build debug-rendering parameters. I wouldn’t want to be the
person who removed a parameter from each of them!

Here’s the thing about functions with lots of parameters—they’re unwieldy
to use, and the unwieldiness grows over time. That’s because you’re fighting a
positive feedback loop. The function that’s most likely to grow another parameter
is the one that already has a bunch of parameters. If a function takes eight argu-
ments, you’ve got pretty strong evidence that at some point you’ll decide to add
a ninth. The worst offenders tend to get even worse. It’s best to plan an escape
route when you feel like a function is starting to have too many parameters.

The most common workaround for parameter-heavy constructors is to break
the construction process up into multiple calls. The actual constructor fills in
default values, then you call construction-phase-only methods to fill in any non-
default values. When you’re done, you cap things off with some sort of commit
call.

Let’s imagine we want the character marker to be visible through walls, but
dimmed down by 50%. A phased constructor approach might look like this:

92 | THE RULES OF PROGRAMMING

void markCharacterPosition(const Character * character)
{
 Params params;
 params.setXRay(0.5);
 params.commit();

 params.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

This is much better than the 16-argument version, but we’ve designed in a
new failure point—we’ve introduced ordering requirements. One set of methods,
like setXRay, is called while we’re constructing the params. The other set of
methods, like drawSphere, is called after we’ve fully constructed the params. We
haven’t defined what happens if we call them out of this expected order—calling
setXRay after commit, or calling drawSphere before commit—so the editor and
compiler can’t help us. The mistake won’t be detected until runtime, in this case
probably as an assert inside setXRay or drawSphere.

Catching mistakes that late isn’t optimal. Better than not catching them at
all, but we’d like to catch them earlier, or design away the possibility.

You might use conventions to help people avoid ordering mistakes. Your
team could define a set of conventions about how to build multiphase construc-
tors—say, that there are never any arguments to the constructor, there’s always a
commit method, and asserts are used to flag usage mistakes. If you see a commit
method, then you recognize the pattern and know how to build and use the
object. That’s better than no conventions, of course, but it’s not the best we
can do.

In the ideal case, we wouldn’t rely on conventions; we’d get the compiler to
enforce correct usage. It’s better to make an incorrect usage impossible, not just
avoidable.

Making Ordering Mistakes Impossible

One way to do this is to divide the two phases into separate objects—build the
parameters, then draw using those parameters. To spice things up, let’s add a
couple of extra parameters. We’ll draw a solid version of the sphere instead of
the default wireframe, and pulse the sphere’s size a bit to make it more visible.
Separating the phases into objects, that looks like this:

ELIMINATE FAILURE CASES | 93

void markCharacterPosition(const Character * character)
{
 Params params;
 params.setXRay(0.5);
 params.setDrawStyle(DrawStyle::Solid);
 params.setPulse(true);

 Draw draw(params);
 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

With this structure, ordering is implied. You need a Params object to create a
Draw object, so it’s natural to create it first.

There’s an idiomatic C++ trick you can use to make things a little bit more
concise. If you return a reference to the object itself from the set functions, you
can chain the set calls together. You might want to avert your eyes if you’re
squeamish:

void markCharacterPosition(const Character * character)
{
 const Params params = Params()
 .setXRay(0.5)
 .setDrawStyle(DrawStyle::Solid)
 .setPulse(true);

 Draw draw(params);
 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

Unless you’re used to this idiom, that doesn’t look like C++ code, which is
not a plus. If you’re a believer in the Principle of Least Astonishment—in this
context, the belief that the least surprising expression of an algorithm is its best
expression—then it isn’t great to drop in some code that happens to be legal but
looks really weird.

There is one big plus here, though. Since all the monkeying about with
Params happens in our method chaining, we can make the Params object constant
with C++’s const keyword. That means the compiler will stop us from mucking
with it once it’s built. This fixes a lingering bit of ambiguity—it isn’t clear what

94 | THE RULES OF PROGRAMMING

happens if you alter a Params object after constructing a Draw object from it.
Making the Params object const makes this moot.

Still, though, defining two objects is a pain. Separating the classes makes
it clearer to some Sucker Puncher writing debug visualization code that they
shouldn’t call the set functions after the draw functions…but it would be even
better if it were truly impossible, not just clear. Given how I’ve created the
preceding code, we can do exactly that:

void markCharacterPosition(const Character * character)
{
 Draw draw = Params()
 .setXRay(0.5)
 .setDrawStyle(DrawStyle::Solid)
 .setPulse(true);

 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

Now the weird “method chain” idiom makes more sense! We don’t expose
the Params object to the rest of the code at all. It only exists long enough to
construct the Draw object, so there’s no copy of it for us to accidentally reference.
This is actually pretty tight code—written like this, we’ve designed out failure.

Like all weird little idioms, this one is best when it’s widely used on your
project. Then it doesn’t seem weird. Everyone on your team recognizes the idiom
when it’s used, and you don’t violate the Principle of Least Astonishment. If
your team isn’t already using this idiom, then don’t introduce it to solve one
object-construction problem. If I saw this in a code review, I’d reject it on princi-
ple, because we don’t use the method chaining idiom at Sucker Punch, but I can
easily imagine another instance of Sucker Punch somewhere in the multiverse
where method chaining is the standard way to solve problems like this.

Using Templates Instead of Method Chaining

The weird little idiom we do accept at Sucker Punch is using C++ templates to do
this sort of type-safe optional argument stuff. This isn’t the only problem we have
that involves a big bucket of parameters, only a few of which are used by most
callers, so we’ve established conventions about how to handle those problems.

The code we’d actually write for a Params object might look like this:

ELIMINATE FAILURE CASES | 95

void markCharacterPosition(const Character * character)
{
 Draw draw(XRay(0.5), DrawStyle::Solid, Pulse());

 draw.drawSphere(
 character->getPosition() + Vector(0.0, 0.0, 2.0),
 0.015,
 Color(Red));
}

This isn’t better or worse than the method-chaining model, just different.
For us, it’s better because it’s the idiom we use; to a team that uses method
chaining, it would seem opaque and weird. In the end, though, any idiom that
eliminates usage errors—that stops a programmer from shooting themself in the
foot—is a big step up from an idiom that relies on users to get all the details right
on their own.

Coordinated Control of State

This Rule has looked at two common examples so far—argument matching
and complicated constructors—and how we can design interfaces to them to
eliminate usage errors. Here’s a third example that pops up repeatedly in Sucker
Punch games: coordinating all the code that wants to manage the state of our
game’s characters.

Let’s say that we’re deciding whether a character is going to react to some
damaging event, like getting hit with an arrow. Generally, if a character is hit by
an arrow, they need to react. But not always! If the game has launched into a
scripted cut scene with the player walking up to talk to an NPC, then we’d rather
just ignore a stray arrow flying in and hitting the player. It might look dumb, but
it’s better than the alternative—inflicting damage on the player when they’re not
in control is a cardinal sin of game design. Cut scenes are also pretty fragile, so
having the player take damage could throw off everything else that’s supposed to
happen in the cut scene. Better just to have the arrow bounce off.

The tricky bit is that there are lots of reasons why a character might be
temporarily invulnerable. It’s not just cut scenes! The character might have just
chugged an invulnerability potion. We might make them briefly invulnerable
after getting hit by an arrow to avoid animation issues. Maybe it’s convenient to
make the player invulnerable while we’re testing new attacks, so we add a debug
menu option for player invulnerability. We end up with dozens of places where
characters are temporarily marked invulnerable.

96 | THE RULES OF PROGRAMMING

5 I adapted these examples from equivalent code written in our scripting language, which has built-in
support for asynchronous programming through co-routines. The sleepUntil call doesn’t block other
code from running; neither does playCutScene in the last example. That can lead to complications, as we
shall see.

The most obvious approach is to focus on the character’s invulnerability. At
any point, the character is either invulnerable or not—why not just expose that?
That seems simple:

struct Character
{
 void setInvulnerable(bool invulnerable);
 bool isInvulnerable() const;
};

Then we might make the player invulnerable for cut scenes like this:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 player->setInvulnerable(true);
 playCutScene("where's chewie's medal.cut");
 player->setInvulnerable(false);
}

This works, but only as long as only one bit of code at a time is monkeying
with the player’s invulnerability. We probably have similar code for the invulnera-
bility potion:5

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 player->setInvulnerable(true);
 sleepUntil(now() + 5.0);
 player->setInvulnerable(false);
}

It’s easy for these two bits of code to get tangled up, because the design
makes usage errors easy. If the player pops the cork on an invulnerability potion
during a cut scene, then we’ve got trouble. The cut scene starts and makes the
player invulnerable via setInvulnerable, then the potion is chugged and calls
setInvulnerable again. This doesn’t have any effect since the player is already
invulnerable. Five seconds later, the potion wears off and calls setInvulnerable
(false)…while the cut scene is still rolling. Not good.

ELIMINATE FAILURE CASES | 97

If we were going to generalize based on one example, we might try to fix the
problem like this:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 bool wasInvulnerable = player->isInvulnerable();
 player->setInvulnerable(true);
 playCutScene("where's chewie's medal.cut");
 player->setInvulnerable(wasInvulnerable);
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 bool wasInvulnerable = player->isInvulnerable();
 player->setInvulnerable(true);
 sleepUntil(now() + 5.0);
 player->setInvulnerable(wasInvulnerable);
}

This code tries to restore the original state of the flag to avoid entanglements.
This sort of works—Sucker Punch has shipped games with solutions like this—
but it falls apart once we don’t have strict nesting. That could happen if the player
chugs the invulnerability potion right before the cut scene starts, for instance,
leaving the potion to wear off after the cut scene starts.

So how to eliminate these usage errors? Well, we could think about separat-
ing the various bits of invulnerability code. If we maintained separate invulnera-
bility flags for each bit of interested code, then those bits of code wouldn’t get
entangled:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 player->setInvulnerable(InvulnerabilityReason::CutScene, true);
 playCutScene("it's anti-fur bias, that's what it is.cut");
 player->setInvulnerable(InvulnerabilityReason::CutScene, false);
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 player->setInvulnerable(InvulnerabilityReason::Potion, true);
 sleepUntil(now() + 5.0);
 player->setInvulnerable(InvulnerabilityReason::Potion, false);
}

98 | THE RULES OF PROGRAMMING

6 I’ve made both of these mistakes more than once, for the record.

With this approach, we check all of the invulnerability flags instead of a
single flag. The player is invulnerable if any of them is set. As long as there’s
only one bit of code setting each individual flag we don’t have to worry about the
separate bits of code tripping over each other.

This approach can work, but it takes discipline. If someone gets lazy and
reuses an InvulnerabilityReason in a different bit of code, then everything can
come crashing down. And adding a new value to the InvulnerabilityReason
enum every time we have a new bit of code that wants to tweak invulnerability
will quickly get annoying.

We might think about eliminating entanglement by tracking an invulnerabil-
ity count. Instead of a single flag, we count how many bits of code want the
character to be invulnerable. If any bit of code wants the character invulnerable,
then they’re invulnerable. This leads to a pretty simple push-pop model:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 player->pushInvulnerability();
 playCutScene("I'm getting my own ship.cut");
 player->popInvulnerability();
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 player->pushInvulnerability();
 sleepUntil(now() + 5.0);
 player->popInvulnerability();
}

A push-pop model like this works. Once you’re used to the idiom, it’s easy
to understand. It’s easily extended when a new bit of code wants to monkey with
damage, and different bits of code can push and pop the invulnerability count
independently without breaking things.

We’ve still left easy usage mistakes, though. If your code forgets to call
popInvulnerability, the character stays invulnerable forever. That’s an easy mis-
take to make—maybe you add an early exit to your function, not realizing that
cleanup is required. Or maybe you try to fix this by popping in your early exit
case and end up accidentally popping twice, with even more mysterious results.6

ELIMINATE FAILURE CASES | 99

7 Douglas Adams, Mostly Harmless (Del Rey, 1993).

Better to eliminate the usage mistake entirely. The easiest way to do this is to
wrap the push-pop in a constructor-destructor pair. Then the compiler becomes
our ally:

void playCelebrationCutScene()
{
 Character * player = getPlayer();
 InvulnerableToken invulnerable(player);

 playCutScene("see you later, losers.cut");
}

void chugInvulnerabilityPotion()
{
 Character * player = getPlayer();
 InvulnerableToken invulnerable(player);

 sleepUntil(now() + 5.0);
}

This is pretty tight. We’ve made it hard to get things wrong. It’s still possible
to screw things up, of course. If you create an InvulnerableHandle someplace
where it’s not going to be destroyed (embedded in a structure you’ve stored on
the heap, say), things can still go sideways. In practice, though, we’ve found
that object lifetimes are something our programmers typically get right, and
leveraging it to provide robust management of shared state works really well
for us.

Detecting Mistakes Is Good, but Making
Them Impossible to Express Is Better

In these examples, we were able to eliminate most of the ways to screw up,
usually by enlisting the compiler to lend a hand. Anything the compiler catches
makes the programmer’s job easier. The techniques we used aren’t complicated.
We’ve applied them to lots of disparate problems in Sucker Punch games. And
if things are structured so that you can’t even express the error, even better! But
Douglas Adams has something to say about the matter:7

A common mistake that people make when trying to design something

completely foolproof is to underestimate the ingenuity of complete fools.

100 | THE RULES OF PROGRAMMING

He’s right, of course. There’s no perfect answer, no way to prevent all possi-
ble usage errors. We can stop the user from shooting themselves directly in the
foot, but it’s hard to stop all the possible ricochets. Our goal isn’t a completely
foolproof design—just a design that makes it really easy to get things right and
really hard to get things wrong.

Despite our inability to make our designs completely foolproof, every bit
of foolishness we can prevent makes our systems more robust. So look for
opportunities to eliminate failure cases from your design from the start.

ELIMINATE FAILURE CASES | 101

Code That Isn’t
Running Doesn’t Work

Any big codebase, especially one that’s been around a while, has dead ends in it:
lines of code, or functions, or subsystems, that aren’t getting exercised any more.
Presumably they were added for a reason—at one point, those lines of code were
getting called. Things change, though, and at some point whatever code was
calling no longer needs to. The calls stop coming. The code has been orphaned.

Sometimes the orphaning is obvious, like a function that isn’t called from
anywhere else in the program. If your language and toolchain are robust enough,
you might even get a warning about this particular kind of dead code.

More typically, the orphaned code isn’t that obvious. It might still be
mechanical, like a virtual method defined in a base class that is never called
for a particular derived class. Static analysis can’t pick up that sort of thing up.
Or there’s code written to handle some special edge case in a function, a scenario
that requires special conditional handling. At some point, things change and that
scenario can no longer occur. The edge case code is still sitting there, but it’s
never called.

The closer you look at any mature codebase, the more orphaned code you
find—like enumerated values that are defined but never used, or special-case
code targeted at an old version of a library you haven’t used for years.

This sort of evolution of code is both natural and inevitable. The codebase
is a river, winding its way back and forth through its floodplain, occasionally
shifting course. Sometimes when the course changes enough, an old part of the
river is cut off. It still looks like a river, but now it’s a lake.

Let’s look at a simplified example of code evolution. Imagine you’ve got
some code that tracks all the characters in a game. Through the course of the

103

| Rule 8

game’s development, your requirements for character tracking evolve, and the
code evolves with it. We’ll check in at four points in this evolution.

Step 1: A Simple Beginning

Things start off simple. Your game instantiates an object for each character in
the game, and that object exposes some simple querying methods, mostly about
whether that character considers another character a threat or an ally:

struct Person
{
 Person(Faction faction, const Point & position);
 ~Person();

 bool isEnemy(const Person * otherPerson) const;

 void findNearbyEnemies(
 float maxDistance,
 vector<Person *> * enemies);
 void findAllies(
 vector<Person *> * enemies);

 Faction m_faction;
 Point m_point;

 static vector<Person *> s_persons;
 static bool s_needsSort;
};

You maintain a list of all the characters in the game:

Person::Person(Faction faction, const Point & point) :
 m_faction(faction),
 m_point(point)
{
 s_persons.push_back(this);
 s_needsSort = true;
}

Person::~Person()
{
 eraseByValue(&s_persons, this);
}

104 | THE RULES OF PROGRAMMING

A “faction” is assigned to each character, and characters from different fac-
tions are considered enemies:

bool Person::isEnemy(const Person * otherPerson) const
{
 return m_faction != otherPerson->m_faction;
}

You frequently need to find a character’s nearby enemies, so there’s a
method for that:

void Person::findNearbyEnemies(
 float maxDistance,
 vector<Person *> * enemies)
{
 for (Person * otherPerson : Person::s_persons)
 {
 float distance = getDistance(m_point, otherPerson->m_point);
 if (distance >= maxDistance)
 continue;

 if (!isEnemy(otherPerson))
 continue;

 enemies->push_back(otherPerson);
 }
}

You also need to know who a character’s allies are, so there’s a method for
that, too. That method has a little bit of trickery—characters are sorted by faction,
which puts all of the character’s allies together. You can early exit when you hit
the end of the character’s allies:

bool compareFaction(Person * person, Person * otherPerson)
{
 return person->m_faction < otherPerson->m_faction;
}

void Person::findAllies(vector<Person *> * allies)
{
 if (s_needsSort)
 {
 s_needsSort = false;
 sort(s_persons.begin(), s_persons.end(), compareFaction);
 }

 int index = 0;

CODE THAT ISN’T RUNNING DOESN’T WORK | 105

 for (; index < s_persons.size(); ++index)
 {
 if (!isEnemy(s_persons[index]))
 break;
 }

 for (; index < s_persons.size(); ++index)
 {
 Person * otherPerson = s_persons[index];
 if (isEnemy(otherPerson))
 break;

 if (otherPerson != this)
 allies->push_back(otherPerson);
 }
}

This all works—so you trundle along with a simple faction-based hostility
model. Games can get pretty far with something this simple, by the way—if you
added a function to decide which factions are hostile to which other factions,
you’d have the exact hostility model for Sucker Punch’s inFamous series of
games.

But while the hostility model seems to be sufficient, you soon outgrow the
two query functions we started with, findNearbyEnemies and findAllies. Both
are useful, but new problems arise that they don’t address. Maybe you want to
find all allies to whom the player has a clear line of sight. You could do this by
finding the player’s allies, then filtering out the ones the player can’t see:

vector<Person *> allies;
player->findAllies(&allies);

vector<Person *> visibleAllies;
for (Person * person : allies)
{
 if (isClearLineOfSight(player, person))
 visibleAllies.push_back(person);
}

You also might create more methods in Person to handle cases like this—
easy enough to add a findVisibleAllies method, right? Then you wouldn’t need
the intermediate list allies; you could skip straight to visibleAllies. But that
approach gets unwieldy as the number of find functions mounts. If you add a
dozen increasingly specialized find functions to Person, most of which are called
from exactly one place, then you’re not doing yourself any favors.

106 | THE RULES OF PROGRAMMING

1 Where “enough” is “at least three,” per Rule 4, “Generalization Takes Three Examples”.

2 You could use a lambda here, too, of course, if your team has joined the Lambda Generation.

Step 2: Generalizing a Common Pattern

You’ve accumulated enough examples of this pattern (“find characters that match
a certain set of criteria”) to feel confident generalizing,1 so you add a template
function to the Person class:

template <class COND>
void Person::findPersons(
 COND condition,
 vector<Person *> * persons)
{
 for (Person * person : s_persons)
 {
 if (condition(person))
 persons->push_back(person);
 }
}

That lets you sidestep the extra memory allocations while still having reason-
ably legible code:2

struct IsVisibleAlly
{
 IsVisibleAlly(Person * person) :
 m_person(person)
 { ; }

 bool operator () (Person * otherPerson) const
 {
 return otherPerson != m_person &&
 isClearLineOfSight(m_person, otherPerson) &&
 !m_person->isEnemy(otherPerson);
 }

 Person * m_person;
};

player->findPersons(IsVisibleAlly(player), &allies);

Once the template is solid, you sweep through all the calls to Person::find
NearbyEnemies and Person::findAllies in your codebase. When you find the
multistage filtering idiom you used in the first line of sight example, you convert
it to use the new findPersons template.

CODE THAT ISN’T RUNNING DOESN’T WORK | 107

In this process of doing this sweep, you discover that every single one of
the places you called findAllies was doing extra filtering, so you convert them
all to findPersons. That’s a good thing—the code is simpler, faster, and easier
to read. You’re happy with the results of this step. Your codebase is easier to
read without all the multistage filtering. You keep trundling forward with a few
findNearbyEnemies calls, a lot of findPersons calls, and zero findAllies calls.

But eventually you decide that your simple hostility model isn’t good
enough. You decide to let players put on disguises. Your goal is to let the player
put on a security guard’s uniform, then walk through a secured area without
getting shot.

Step 3: Adding Disguises

Adding disguises also exposes the shortcomings of the simple hostility model
you’ve used so far. Dividing the world into allies and enemies isn’t working so
well. You really need to add something in between, to reflect the ambivalence
many of the characters feel for each other. A security guard considers another
security guard their ally, but a random tourist falls somewhere in between being
an ally or an enemy.

It’s easy to abstract this more nuanced hostility model into a virtual interface:

enum class Hostility
{
 Friendly,
 Neutral,
 Hostile
};

struct Disguise
{
 virtual Hostility getHostility(const Person * otherPerson) const = 0;
};

You add a new method on Person to set the character’s current disguise,
using nullptr to indicate the lack of any disguise:

void Person::setDisguise(Disguise * disguise)
{
 m_disguise = disguise;
}

108 | THE RULES OF PROGRAMMING

Obviously the isEnemy method is going to have to change a bit:

bool Person::isEnemy(const Person * otherPerson) const
{
 if (otherPerson == this)
 return false;

 if (m_disguise)
 {
 switch (m_disguise->getHostility(otherPerson))
 {
 case Hostility::Friendly:
 return false;

 case Hostility::Hostile:
 return true;

 case Hostility::Neutral:
 break;
 }
 }

 return m_faction != otherPerson->m_faction;
}

And…that’s it, actually. All the other code we’ve written seems to work fine—
no new bugs pop up, and disguises work as expected.

But there’s a problem lurking—the old Person::findAllies method no
longer works. And we have no idea that it’s stopped working, because nobody is
calling it. Adding disguises broke a subtle assumption in findAllies. It assumes
that if we sort the whole list of characters on faction, then all of our allies will be
adjacent to each other in the array. With disguises, that’s often the case, but not
always the case.

You can’t count on code reviews to catch this sort of problem. Code reviews
are good at finding problems in code that has changed, because that’s what the
review focuses on. They’re not good at finding problems in code that hasn’t
changed, because reviewers usually skip over all of that stuff.

This particular bug is nasty because it’s not even guaranteed to show up once
we start creating and using disguises. As long as your allies form a contiguous
range in the list of characters, everything works fine. And even when findAllies
doesn’t work, it still returns a partial list of allies, so the failure isn’t necessarily
obvious.

CODE THAT ISN’T RUNNING DOESN’T WORK | 109

It’s entirely possible that this bug will stay hidden forever! I still find occa-
sional bugs in code I wrote 25 years ago, and I’m pretty sure they weren’t the last
bugs in that code. There are always more bugs still hiding in old code, waiting for
things to change enough that these latent bugs become active ones. But things
might never change in a way that exposes the latent bugs…so is this really a
problem?

Step 4: The Chickens Return Home to Roost

In this case, yes, because many months later your example evolves again. Some-
one is writing some debugging code that lists all of the player’s allies. The
Person::findAllies method is perfect for this—so they call it in the obvious way:

vector<Person *> allies;
player->findAllies(&allies);

for (Person * ally : allies)
{
 cout << ally->getName() << "\n";
}

This code certainly looks fine! If disguises haven’t been set, then it works
perfectly. Even if disguises are being used, this code won’t break in an obvious
way. Even when it doesn’t work perfectly, it will still list allies…it might not list
all the player’s allies, but you’re less likely to notice a missing ally than an enemy
popping up in the ally list. It’s entirely possible that this change sails through
your code review process, too.

But in all those months where nobody was calling findAllies, some code
was written that assumed the results returned from findPersons would be in
a stable order. That was an easy assumption to make—the order was perfectly
stable, after all! So the new code found a couple of nearby allies and had them
follow in single file behind the player, and everything worked great. Now, for
some bizarre reason, on rare and unpredictable occasions the followers all panic,
scrambling to new places in the single file order. Which is unshippable.

The problem, of course, is that innocuous-looking findAllies call. If new
characters have been added, then findAllies re-sorts the list of characters,
unpredictably scrambling the order of the results of any call to findPersons.
It’s going to be a serious hassle to review all of the places findPersons is called to
look for problems.

110 | THE RULES OF PROGRAMMING

3 If you just shouted “Where’s your unit test?!?” at the book, hang tight. I’ll get there.

Assigning Blame

So where did things go wrong?
It would be easy to point at Step 3 as the problem, because we clearly made a

mistake in that step. We added disguises, but didn’t update findAllies to match.
That was an easy mistake to make, though—the code we wrote worked perfectly,
and nothing seemed to break. No amount of product testing would find the
problem in findAllies since it’s not called anywhere. Even reviewing findAllies
itself might not have helped—the assumption is a subtle one.3

You might argue that there’s a mistake in Step 4, where we wrote new code
that resurrected the use of the unused findAllies. That’s the name of this Rule,
after all—“Code That Isn’t Running Doesn’t Work.” If I know that findAllies
hasn’t been getting called, then I should definitely assume it doesn’t work.

That’s not the general assumption you’d make as a programmer, though,
at least not if you’re working in a healthy codebase. When you’re writing some
new bit of code or fixing some problem, you have to assume that the rest of the
codebase pretty much works. If you see a bit of functionality, you expect it to
operate as intended. It’s impossible to make progress otherwise.

The real mistake in this example was made in Step 2. When you orphaned
findAllies, you created a problem. When you stopped calling it, it stopped
working.

Now, that may sound ridiculous. At the point you orphaned it, the function
still worked exactly as intended. Why would you discard perfectly functional code,
throwing away the work it took to get it to that point? It clearly didn’t stop
working until Step 3, right?

Maybe. It’s Schrödinger’s cat, right? Once we got past Step 2, the code wasn’t
running anymore, so you don’t know whether it was working or not. In this
example, it seems simple to spot the mistake—our orphaned function stopped
working in Step 3, and we discovered this (at great cost) in Step 4. But in the real
world, there were dozens of steps between Steps 2 and 4. I edited out all the ones
that didn’t have an effect…but any one of them could have broken the orphaned
function and we wouldn’t have known.

It’s simpler to assume that when we orphan something, it immediately stops
working. Over time, this is almost certainly true. We just won’t know when it
happens.

CODE THAT ISN’T RUNNING DOESN’T WORK | 111

4 The standard function strcpy copies a C-style string to a new home. It’s simple and completely stateless.
The standard function malloc is the general-purpose memory allocator for C. It manages all dynamically
allocated objects (plus or minus) in your code. It’s very complicated and nothing but state.

If we make this assumption, then the mistake in Step 2 wasn’t orphaning
findAllies. It was not deleting findAllies when we orphaned it. When we
stopped calling it, it stopped working. In Step 2, we made Steps 3 and 4 inevita-
ble—the unexercised code was eventually going to break, and someone would
eventually call it again. Much better to delete the orphaned code immediately.

The Limits of Testing

That’s not the standard answer to this problem, of course. If you work on a
testing-centric team, you may have wondered why the unit tests didn’t catch the
problem. If we have a full and complete set of unit tests, then findAllies isn’t
really orphaned. It’s still getting called by our unit tests, so we wouldn’t have to
assume that it immediately stopped working.

Unit tests are imperfect, though. There are good reasons why some teams
don’t have unit tests for every bit of code. For one, testing is much more effective
for some sorts of code than others. It’s easier to test simple stateless functions
with obvious effects than more complicated, stateful stuff. If you’re testing the C
standard libraries, it’s a lot easier to test strcpy than it is to test malloc.4 Once
things are stateful it’s a lot harder for your unit tests to exactly replicate the ways
in which the codebase actually exercises things. Use cases will slip past your unit
tests.

The test cases for findAllies were written when we wrote findAllies, long
before we thought about adding disguises to the Person class. As a result, those
test cases don’t exercise disguises. The findAllies function works fine as long
as there are no disguises in place, so no problems are reported. It’s possible
that the person adding disguises also realizes that the unit tests for findAllies
need updating, and that they’ll add tests with the particular kind of disguises that
break findAllies, and that the order of everything will exhibit the problem…but
that’s a big ask.

There’s also a cost involved for the unit test. We have to keep the unit tests
for findAllies up-to-date. There’s going to be some cost to running those tests.
And for what? To make sure a function that no one is calling keeps working?

Ah, you say…but didn’t I just claim that Step 2 (orphaning findAllies)
made Step 3 (breaking findAllies) and Step 4 (tripping over the broken code)

112 | THE RULES OF PROGRAMMING

5 If it helps, remind yourself that you can always retrieve the deleted code from your source control system.
You won’t, but maybe the fact that you could will lead you to do the right thing.

inevitable? When we orphaned the code in Step 2, we made it inevitable that we
would create a bug in the orphaned code, and that someone would eventually
call the orphaned code and trigger the bug. Surely it would be good to write a
solid unit test so that we’re more likely to detect any bugs we create, and to make
it more likely that the orphaned function still works when someone eventually
calls it?

Well—no. That’s the point of deleting the orphaned code in Step 2. Since
the code has been deleted, we don’t have to worry about bugs sprouting in it, so
there’s no Step 3. We also don’t have to worry about coders deciding to call it—it
doesn’t exist, so there’s nothing to call, so there’s no Step 4.

Instead, the coders will call findPersons, which works perfectly:

struct IsAlly
{
 IsAlly(Person * person) :
 m_person(person)
 { ; }

 bool operator () (Person * otherPerson) const
 {
 return otherPerson != m_person &&
 !m_person->isEnemy(otherPerson);
 }

 Person * m_person;
};

vector<Person *> allies;
player->findPersons(IsAlly(player), &allies);

Recognizing that a bit of code has been orphaned and can be safely removed
should spark joy.5 Seriously, this should be the happiest moment in your week.
You’re reducing the amount of code in your project, which makes everything eas-
ier, without reducing functionality in any way. It’s quick, it’s easy, and everyone
is better off.

CODE THAT ISN’T RUNNING DOESN’T WORK | 113

Write Collapsible Code

I end up spending a lot of time looking through code, trying to figure out what
it’s doing. The subject might be code I’m trying to debug, some bit of code I’m
thinking about calling from some code I’m writing, or some bit of code that’s
calling code I’m responsible for. And frequently the thing the code is trying to do
isn’t what it’s actually doing, which is what makes the exercise interesting.

At its best, reading code is just like reading any other language. You sail
along through the narrative, top to bottom, eagerly following the twists and turns
of the plot, and reach the end of the code with a full understanding of what it
does and why.

Actually, at its easiest, you sight-read code just like you’d sight-read a single
word:

int sum = 0;

Or maybe:

sum = sum + 1;

There’s no thinking or reasoning involved for these two examples—a glance
at the code is enough to understand it. You can do the same thing for bigger
chunks of code, if they neatly fit some common paradigm:

Color Flower::getColor() const
{
 return m_color;
}

You might even be able to sight-read a whole loop:

int sum = 0;
for (int value : values)

115

| Rule 9

{
 sum += value;
}

That’s pushing things, though. As blocks of code get bigger, it becomes
harder to sight-read them—or if you’re a cynical old programmer like me, it
gets harder to trust your ability to sight-read them, having made the mistake of
glancing at code and thinking I understood it way too many times.

When code gets too big to sight-read, you start reasoning about it. Think
about what your brain is doing when you look at this code:

vector<bool> flags(100, false);
vector<int> results;

for (int value = 2; value < flags.size(); ++value)
{
 if (flags[value])
 continue;

 results.push_back(value);

 for (int multiple = value;
 multiple < flags.size();
 multiple += value)
 {
 flags[multiple] = true;
 }
}

You almost certainly didn’t sight-read this—that is, you didn’t glance at it
and immediately think “Sieve of Eratosthenes”. Instead, you read through the
code, top to bottom, sight-reading a line or so at a time, reasoning through what
each line did and how it fit with the lines that had come before.

Maybe, in detail, your thought process went something like this:

flags is a vector filled with 100 falses.

Looks like we’re going to collect results in this array.

OK, just a loop over the flags array, kind of fun to start a loop index at two,
not sure what that’s about.

Hmm, skipping if the flags array is set for the current value, not sure what
that’s about either…

116 | THE RULES OF PROGRAMMING

https://oreil.ly/mgEXO

1 Or maybe working memory, if you’ve chosen that side in the ongoing debate among cognitive scientists.
I’m actually on Team Working Memory, but short-term memory is a more widely known term, so that’s
what I’m using.

Pushing the values we don’t skip into the results array? That must be the
output.

Another loop, this time over the multiples of value.

Ah, OK, we’re marking all the multiples, this is the Sieve of Era-whatever…
Erathosanes? That’s why we started with two instead of zero or one. I under-
stand this now: the results vector ends up with a list of prime numbers.

The reasoning process involved some mental juggling—seeing something
you didn’t quite understand, then setting it aside for a moment until you figured
out how it fit together with later code, just like a juggler tosses a ball into the
air knowing that they’ll need to catch it a bit later. In this case, you juggled
two mysteries—why the loop started at two, and why the outer loop skipped
flagged values. The loop over multiples resolved the two mysteries—you caught
the juggled balls and understood the code.

Jugglers can only juggle so many balls—three, in my case. The number
of balls you can mentally juggle is a bit bigger, but it’s still limited. There’s a
surprisingly low limit to how many thoughts you can set aside at once. If you try
to track too many, you’ll start losing track of a random subset of the things you’re
trying to remember.

That’s because “mental juggling” or “cognitive load” is really just short-term
memory.1 To simplify things, there’s a difference between your long-term mem-
ory, the things you remember permanently, and your short-term memory. Think
about memorizing a shopping list, which exercises your short-term memory—if
there are two or three items on your list, you just remember them. If there are a
dozen, you’ll need to write them down.

That’s because there’s a limit to how many things fit in short-term memory.
You may have heard the approximation that you can only fit seven (plus or minus
two) thoughts into your short-term memory. Try to fit any more, and the new
thoughts bump out the old ones. This is just as true when you’re reading code as
it is when you’re trying to remember all of the items on your shopping list at the
grocery store.

WRITE COLLAPSIBLE CODE | 117

2 I have experimentally determined that coffee does not affect the limit.

For most of us, that seven (plus or minus two) number is a fairly hard limit.2

Juggling three separate coding thoughts is easy—it takes no special effort to hold
onto a few mysteries about some bit of code you’re reading. Tracking a dozen
thoughts, on the other hand, is pretty much impossible. If there are a dozen
things you don’t understand about some bit of code, you’re in deep trouble. In
programming terms, your cache overflows, and you lose track of some of the
things you’re trying to figure out.

This Is What Failure Feels Like

As programmers, we’ve all had the experience of trying and failing to figure out
how some bit of complicated code works. You look through the code and see
stuff you don’t understand. In an attempt to understand it, you pop elsewhere
in the code, searching for the function that gets called, or the structures that are
defined, or looking for some comment that at least gives some context. And that
search leads to another search. By the time you actually figure something out
about the code, you’ve lost track of where you were to begin with. You’re forget-
ting things at approximately the same rate you’re learning things. Frustrating!

The Role of Short-Term Memory

Good code doesn’t set its reader up for this sort of failure. Code gets written once
but read many times, after all; if you want to write good code, you need to think
about the person reading it later. Don’t ask that person to juggle too many new
ideas at once.

If some bit of code forces the reader to keep more than seven (plus or minus
two) balls in the air, then balls will get dropped. And everything the reader is
trying to fit into their short-term memory counts as a ball. It’s not just unresolved
mysteries, though those obviously count. It’s also the accumulated facts and
connections they’re managing, hoping to see connections to the unresolved mys-
teries. If the total count of mysteries and facts and connections goes above your
reader’s limit, then things will get dropped.

Those drops make the code hard to read. If the reader drops some fact that’s
necessary to solve a mystery, then that mystery won’t get solved. And neither you
nor the reader has control over which thought gets dropped—so the one fact key
to unraveling the mystery goes missing, and the mystery isn’t resolved.

118 | THE RULES OF PROGRAMMING

Let’s count the amount of running thoughts required for the code example:

vector<bool> flags(100, false);
vector<int> results;

for (int value = 2; value < flags.size(); ++value)
{
 if (flags[value])
 continue;

 results.push_back(value);

 for (int multiple = value;
 multiple < flags.size();
 multiple += value)
 {
 flags[multiple] = true;
 }
}

flags is a vector of 100 bools, all false to begin with (+1). Count = 1.

The result looks like the output of the loop (+1). Count = 2.

It’s a loop with index value starting at two (+1). Count = 3.

We’re skipping values for some reason (+1). Count = 4.

Ah, OK, we’re storing the values into results. Theory confirmed (+0).
Count = 4.

Another loop, this time over multiples of value (+1). Count = 5.

Everything collapses down to “the results vector is full of primes.”
Count = 1.

The thought count stays safely below the limit, even if we’re counting
thoughts conservatively, so there’s no danger of overflowing the reader’s ability
to keep track of things. And the count doesn’t just go up—it can also go down.
When a variable goes out of scope, say, there’s no point in worrying about it
anymore. Or, more importantly, when a whole collection of ideas collapses into a
single thought.

WRITE COLLAPSIBLE CODE | 119

In this example, that happened when you realized that the code generates a
list of prime numbers. You were juggling a bunch of details about the code, then
realized how they fit together. Once you knew how they fit together, you stopped
worrying about the details and just held onto the result. All the details collapsed
into a single thought.

Good code makes this process easy. It’s collapsible. It stays within the limits
of short-term memory. It presents its ideas in small, related chunks, with each
chunk carefully written to fit inside the reader’s short-term memory, be put
together, then collapse down to a single thought.

There are some easy techniques for doing exactly that. Let’s look at a longer
example:

void factorValue(
 int unfactoredValue,
 vector<int> * factors)
{
 // Clear flags marking multiples of primes

 vector<bool> isMultiple;
 for (int value = 0; value < 100; ++value)
 isMultiple.push_back(false);

 // Find primes by skipping multiples of primes

 vector<int> primes;

 for (int value = 2; value < isMultiple.size(); ++value)
 {
 if (isMultiple[value])
 continue;

 primes.push_back(value);

 for (int multiple = value;
 multiple < isMultiple.size();
 multiple += value)
 {
 isMultiple[multiple] = true;
 }
 }

 // Find prime factors of value

 int remainder = unfactoredValue;

 for (int prime : primes)
 {

120 | THE RULES OF PROGRAMMING

3 This is not a smart way to factor a number, by the way. It’s just an example. Rule 19 has a smarter version.

 while (remainder % prime == 0)
 {
 factors->push_back(prime);
 remainder /= prime;
 }
 }
}

The middle section of this function is exactly the same logic as the last
example—but this version is much easier to understand.3 That’s because it’s
more collapsible.

Good names help immensely. The names primes and isMultiple give you
a head start on collapsing the loop—it’s no surprise that the array ends up
containing prime numbers. You might have spotted the Sieve of Eratosthenes a
lot earlier if the array in the first example had been named primes—that’s the
power of a good name.

The name primes is also a mighty convenient handle for the idea that the
array does in fact hold prime numbers. If the variable had been named xx
instead, you’d have needed to burn a precious short-term memory slot remem-
bering that xx is an array of primes. Remembering that primes contains primes
is trivial. At worst, it pushes your short-term memory budget toward seven plus
two, instead of seven minus two; at best, it’s so self-explanatory that it’s free,
placing zero burden on your short-term memory.

The comments also collapse the details, since they tell you what each chunk
of code is trying to do. And the comments have a second function—they mark
the chunks for you. Between each pair of comments there’s a chunky little code
puzzle, small enough to fit inside your short-term memory, which collapses
down to a single thought. The comment at the start of each chunk tells you what
that chunk is going to collapse to. Reading the code in the chunk just confirms
the comment.

This is the power of abstraction. It’s how you manage to understand com-
plicated things. Sure, you can only remember seven (plus or minus two) new
things at a time, but you can aggregate those things into new concepts, then
build things out of those aggregated concepts. Instead of remembering all the
details, you remember the abstraction—and remembering a simple abstraction
only soaks up one of your short-term memory slots.

WRITE COLLAPSIBLE CODE | 121

Where to Draw the Line

Marking the abstractions with function boundaries can also help readability. In
this case, that might mean splitting the three commented sections of getFactors
into separate functions:

void clearFlags(
 int count,
 vector<bool> * flags)
{
 flags->clear();
 for (int value = 0; value < count; ++value)
 flags->push_back(false);
}

void getPrimes(
 vector<bool> & isMultiple,
 vector<int> * primes)
{
 for (int value = 2; value < isMultiple.size(); ++value)
 {
 if (isMultiple[value])
 continue;

 primes->push_back(value);

 for (int multiple = value;
 multiple < isMultiple.size();
 multiple += value)
 {
 isMultiple[multiple] = true;
 }
 }
}

void getFactors(
 int unfactoredValue,
 const vector<int> & primes,
 vector<int> * factors)
{
 int remainder = unfactoredValue;

 for (int prime : primes)
 {
 while (remainder % prime == 0)
 {
 factors->push_back(prime);
 remainder /= prime;
 }

122 | THE RULES OF PROGRAMMING

 }
}

Then factorValue can be rewritten in terms of these three functions:

void factorValue(
 int unfactoredValue,
 vector<int> * factors)
{
 vector<bool> isMultiple;
 clearFlags(100, &isMultiple);

 vector<int> primes;
 getPrimes(isMultiple, &primes);

 getFactors(unfactoredValue, primes, factors);
}

Is this easier to read?
Yes and no! The functions define clear concepts, and once you understand

what they do, the names help fix the concepts in your head.
But instead of a simple linear progression of code, reading top to bottom,

you’re hopping around from function to function. If you start by digging into
factorValue, the first thing you run into is a call to clearFlags. You have to find
that function and read it to see what it does. While you’re looking at clearFlags,
you have to remember where you came from in factorValue, track which vari-
ables correspond to which arguments, then put everything back together when
you pop out of clearFlags.

So there’s more to track, and that makes it harder to collapse the concepts.
Remembering all the contextual details soaks up short-term memory slots, and
you’ve only got seven (plus or minus two) slots to work with. Remembering
where you are in a nested call chain can overload your short-term memory all by
itself.

There’s a thought in programming that abstraction is always a net positive—
that anything that can be pulled into a function should be pulled into a function.
The more functions, the better. Since abstraction is the tool we use to understand
complicated things, it seems to follow that anything that can be abstracted should
be abstracted.

WRITE COLLAPSIBLE CODE | 123

The Cost of Abstraction

This is silly. There’s a cost to abstraction, and a cost to separating out logic into
functions. This cost can outweigh the benefits. Here’s an example:

int sum = 0;
for (int value : values)
{
 sum += value;
}

That’s pretty simple code to understand, if you already know that values is a
vector of integers. It collapses easily—loop over the values, add them all up, and
you’ve got the sum.

You might see this instead:

int sum = reduce(values, 0, add);

Hmm. This is certainly concise. You might infer from the names of sum and
add that it’s calculating some sort of sum, but that’s just a guess. To know for
sure, you’d need to start investigating.

To start with, it’s not clear what the reduce function (or at least something
that looks like a function) is doing, nor is it clear what add is, and the 0 passed as
an argument is a mystery too. Searching for reduce in your codebase produces a
lot of hits, but it looks like this is the one that’s important:

template <class T, class D, class F>
D reduce(T & t, D init, F func)
{
 return reduce(t.begin(), t.end(), init, func);
}

OK, that’s a start. Looks like the first argument to reduce is a container class,
since begin and end are standard bits of C++ iteration goo. You need to find the
four-argument version of reduce:

template <class T, class D, class F>
D reduce(T begin, T end, D init, F func)
{
 D accum = init;
 for (auto iter = begin; iter != end; ++iter)
 {
 accum = func(accum, *iter);
 }

124 | THE RULES OF PROGRAMMING

 return accum;
}

Things become a little bit clearer! The reduce function loops over a collec-
tion, successively applying a function (or function-like thing) to each element and
an accumulated value. Popping back out a few levels, you expect that add will add
two values, and it does:

int add(int a, int b)
{
 return a + b;
}

Now the last pieces click into place. This use of reduce is calculating the
sum of the values in the array, just like the simple loop you started with…but
the simple loop is much easier to read and understand. It collapsed easily, where
this more abstracted version of the algorithm required real effort to collapse. The
extra layers of abstraction aren’t helping, they’re just obscuring what’s going on.
You had to find and interpret four separate bits of code to understand things,
stretching your short-term memory to do so.

Use Abstraction to Make Things Easier to Understand

I think there’s a good rule of thumb hidden here for making abstraction deci-
sions, whether that’s to break logic out as a function, or to use some general-
purpose abstraction to solve your specific problem. The rule is simple—will this
change make the code simpler and easier to understand? Will the code collapse
more easily with the change? If so, create the function or employ the abstraction.
If not, don’t.

The Role of Long-Term Memory

This chapter has been pretty bleak so far! A budget of seven (plus or minus two)
thoughts in short-term memory is pretty stingy. It’s hard to see how you could
build anything even half-complicated with a conceptual budget that small, even
if you’re focused on collapsing thoughts into more abstract thoughts at every
opportunity.

So that can’t be the whole story! I know for certain that I’m completely
familiar with way more than seven (plus or minus two) things in our engine.

WRITE COLLAPSIBLE CODE | 125

4 Actually there are dozens of dozens. That’s too many methods. We need to do some housekeeping.

There are dozens and dozens4 of methods on the main Sucker Punch character
class, and I know what they all do. What’s going on?

Well, it’s simple. All of the details I know about our game tech are stored in
my long-term memory, and there’s not a fixed budget for that. I am certain you
have quick recall for a truly impressive amount of stuff about your projects—con-
cepts, facts, names, development history, the person to talk to when something
goes wrong, funny stories about a bug you had to fix in that one function. All of
that lives in your long-term memory.

You use short-term memory to figure stuff out—it’s the working storage for
any reasoning you do, the place the pieces hang out while you try to figure out
how they fit together. Once the puzzle pieces fit together, once the conclusions
have time to settle, once you’ve collapsed the details into the abstraction, then
the result can move into your long-term memory. That’s where all the details
about your project live—you’re not figuring them out every time afresh, you’re
just remembering your conclusions from earlier.

That means that despite the obvious similarity, there’s a big difference
between this code:

sort(
 values.begin(),
 values.end(),
 [](float a, float b) { return a < b; });

And this code:

processVector(
 values.begin(),
 values.end(),
 [](float a, float b) { return a < b; });

I know what sort does. I know the abstraction, it’s in my long-term memory.
I can nearly sight-read it—the only work is looking at the comparison function
to see what the sort order will be. As a result, it doesn’t really take up a new
short-term-memory slot to read sort. I knew values was a vector of floats; now I
know values is a sorted vector of floats. That’s still one thought in my cache.

My reaction to processVector is entirely different. I haven’t seen it before,
and I don’t know what it does. The name isn’t helpful—it’s a good demon-
stration of the power of a weak name. My only recourse is to go look at the

126 | THE RULES OF PROGRAMMING

5 Stepping through code in the debugger is an excellent way to understand it better. 10/10, would
recommend. It doesn’t fundamentally change the need for short-term memory, but the debugger can be
a crutch to help you remember or quickly regenerate thoughts, like what all the variables are and what
values they hold.

6 The BitVector class in this chapter is (in spirit, at least) a simplified version of C++’s vector<bool>.

processVector code, maybe by single-stepping into it,5 in order to start figuring
things out. I’m back to my painfully small budget of seven (plus or minus two)
thoughts while I’m collapsing it to something simpler.

Common Knowledge Is Free; New Concepts Are Expensive

Your goal when writing code is to make it easy to understand, so it’s important
to keep the difference between sort and processVector in mind. A reference
to sort doesn’t stress the reader’s short-term memory, because they already
know what sort does. A reference to processVector is different—in order to
understand the code, the reader needs to dive into processVector to collapse it,
and that’s going to stress their cache.

Code that uses abstractions or patterns that everyone on the team under-
stands is much easier to read than code that invents new abstractions or patterns.

One takeaway from this is obvious—if you’re writing code, use the standard
abstractions and patterns common on your team. Don’t invent new ones…unless
you’re confident that the newly invented abstraction or pattern is strong enough
that it will become standardized across your team.

For instance, in the Sieve of Eratosthenes example, I kept an array of flags
(imaginatively named isMultiple) marking which integers were known not to
be prime because they were multiples of other numbers. This was a plain-old
C-style array of bool values. It’s easy to see that it would be possible to abstract
this into a “vector of bits” class, eking out a bit of storage and very slightly better
memory-access patterns.

With a BitVector class,6 the Sieve code might look like this:

vector<int> primes;
BitVector isMultiple(100);

for (int value = 2; value < isMultiple.size(); ++value)
{
 if (isMultiple[value])
 continue;

 primes.push_back(value);

WRITE COLLAPSIBLE CODE | 127

 for (int multiple = value;
 multiple < isMultiple.size();
 multiple += value)
 {
 isMultiple[multiple] = true;
 }
}

Is this easy to read? Well, if the BitVector class is a standard part of your
team’s armamentarium, something that everyone knows, then sure! It might
even be easier than the version of the code that stored these flags as a simple
array of bools.

Someone who doesn’t know BitVector is in a different boat. Well, a reckless
programmer might just assume it’s, you know, a vector of bits, and sail forward.
Reckless programmers tend to vote themselves off the island, though. A prudent
programmer would investigate the BitVector class to make sure they understand
it…and it’s not trivial, even in the simplest possible version that fits the preceding
usage pattern:

class BitVector
{
public:

 BitVector(int size) :
 m_size(size),
 m_values()
 {
 m_values.resize((size + 31) / 32, 0);
 }

 int size() const
 {
 return m_size;
 }

 class Bit
 {
 friend class BitVector;

 public:

 operator bool () const
 {
 return (*m_value & m_bit) != 0;
 }

128 | THE RULES OF PROGRAMMING

7 The primary function of C++ sometimes seems to be allowing you to pack a universe of complexity into
every raindrop of code. But I digress.

8 Not a compliment.

 void operator = (bool value)
 {
 if (value)
 *m_value |= m_bit;
 else
 *m_value *= ~m_bit;
 }

 unsigned int * m_value;
 unsigned int m_bit;
 };

 Bit operator [] (int index)
 {
 assert(index >= 0 && index < m_size);
 Bit bit = { &m_values[index / 32], 1U << (index % 32) };
 return bit;
 }

protected:

 int m_size;
 vector<unsigned int> m_values;
};

A real BitVector class would be more functional than this—and also bigger
and more complicated, of course! Even at this level of functionality there’s tricki-
ness, like creating a temporary object that wraps the ability to read and write a
single bit, then relies on C++ operators to handle getting and setting the value.7

That’s clever,8 and it lets us write code that looks like simple array access
even though it compiles to something more complicated. But sorting out the
trick is going to use up slots in the reader’s short-term memory—their goal is
to understand the Sieve code, not sort out the details of this weird BitVector
class. For programmers who haven’t internalized what BitVector does—for
programmers who haven’t collapsed and committed the BitVector abstraction
to long-term memory—its use made the Sieve code harder to understand, not
easier.

WRITE COLLAPSIBLE CODE | 129

9 Please don’t generate prime numbers this way, though. Humanity has invented much better ways of
generating primes in the intervening 2,250 years. Hats off to Eratosthenes, though! The Sieve is the third
or fourth most impressive thing on his resume, and I still know what it is.

So if you were writing the Sieve code,9 would it make sense to introduce a
new BitVector class to handle the array of flags? No, almost certainly not! It’s
unnecessary work, and it makes the code harder to read.

The only justification for introducing BitVector is if you know that it’s going
to be used broadly enough in the codebase that everyone on the team will add
it to their long-term memory, and that using it will have important advantages
over preexisting solutions. And the only way you can know that is if you’ve
identified a lot of places in the codebase where an array of bits is used, and you
have identified (and hopefully measured!) the advantages and have a good reason
for not just using vector<bool>. Then, and only then, does it make sense to
introduce BitVector.

For what it’s worth, we do have a bit vector class at Sucker Punch, used in
roughly 120 places in our fairly large codebase. It’s comfortable tech for most of
the team—they’ve internalized what it does, so a reference to the bit vector class
isn’t going to trigger an investigation. It’s part of our common knowledge, so it’s
safe to use. But it wasn’t introduced based on one use case—we wrote it based on
lots of examples of code working with large arrays of bits.

Putting It All Together

The best code—which is to say, the easiest code to read and understand—lev-
erages how short-term and long-term memory work together. It leverages the
standards and conventions of your team, because all of that stuff is already in
everyone’s long-term memory. When new thoughts are introduced, they pop
up in small-to-medium-sized chunks, small enough to fit inside the reader’s
short-term memory. Those chunks have simple, easily abstracted functionality
and carefully chosen names, which makes them easy to collapse and commit to
long-term memory.

The result? A codebase that is easy to read and easy to learn—that makes
it easy to collapse new ideas into simple abstractions, then does the same thing
with those abstractions recursively until the whole codebase is clear.

130 | THE RULES OF PROGRAMMING

Localize Complexity

Complexity is the enemy of scale.
You know that simpler code is better—as simple as possible, but no simpler,

per Rule 1—but that Rule becomes harder to follow as the scale of your project
increases. It’s easy to keep your code simple for simple problems, but as code
grows and matures it naturally grows more complicated. And as it grows more
complicated, it becomes harder to work with—you lose the ability to keep all the
details in your head. Every time you attempt to fix a bug or add a new feature,
you trip over unpredictable side effects—every step forward is matched by an
unexpected step backward.

Part of the solution is to look for opportunities to keep things simple or
make things simple. That’s Rule 1. But complexity can’t be eliminated entirely;
any moderately functional and long-lived bit of software is going to have to
weather the complexity inherent in the problems the software solves. But com-
plexity can be managed.

To borrow a sports cliché: you can’t stop complexity, you can only hope to
contain it.

Along those lines, a useful strategy is to isolate any complexity you can’t
eliminate. If the internal details of some bit of code are complicated, but its
external interface is simple, the complexity presents less of a problem. When
you’re inside that bit of code you have to cope with its internal complexity, but
outside the code you don’t have to worry about it.

A Simple Example

Consider the sine and cosine functions in your language of choice. The external
interface is simple—call the function, get the sine or cosine of the angle passed
in. The internal details are complicated, though.

131

| Rule 10

1 As I recall, my naive guess the first time my curiosity was piqued amounted to “big tables and linear
interpolation.” I’m a little embarrassed by this guess; I knew what a Taylor series was at the time.

2 Both sinf and cosf are implementation-dependent and can be surprisingly complicated. I’ve tried to
write short explanations here and failed; the important thing to keep in mind is that the functions don’t
need to calculate an exact value, only a value that’s accurate to the resolution of a floating-point value,
and that modulus math can reduce the angle to a convenient range for the approximation. Interestingly,
there are x86 instructions to calculate sine and cosine, but modern compilers don’t use them unless
explicitly ordered to do so. Those instructions, introduced in 1987, have known flaws that can’t be fixed for
the sake of backward compatibility. Sigh.

I was many years old before I wondered how these functions were actually
implemented. Until then, as far as I was concerned, they just magically produced
the right answer1…and this blissful ignorance was perfectly OK! Whatever com-
plexity existed inside of the implementation of the sine and cosine functions
didn’t affect how I used them. They just worked in the way I expected.

You can draw a circle without knowing the implementation details of sine
and cosine:

void drawCircle(Point center, float radius, Color color)
{
 int count = int(ceil(pi / acos((radius - 1.0) / radius)));
 Point previousPoint = center + Vector(radius, 0.0, 0.0);
 for (int index = 1; index <= count; ++index)
 {
 float angle = 2.0 * pi * index / count;
 Point nextPoint = center +
 radius * Vector(cosf(angle), sinf(angle), 0.0);

 drawLine(previousPoint, nextPoint, color);

 previousPoint = nextPoint;
 }
}

There’s complexity somewhere inside sinf and cosf (the C standard library’s
sine and cosine functions for 32-bit floats), but it doesn’t leak out through the
simple abstraction of those functions into the rest of your code.2 The complexity
is safely localized.

Hiding Internal Details

The same rule applies to your own code. Whenever possible, you should isolate
complexity, confining it to clearly defined sections of your code.

132 | THE RULES OF PROGRAMMING

Imagine that you’ve got a list of customer records, and you’re writing a
function to return a list of customers who’ve recently purchased something. The
customer records look like this:

struct Customer
{
 int m_customerID;
 string m_firstName;
 string m_lastName;
 Date m_lastPurchase;
 Date m_validFrom;
 Date m_validUntil;
 bool m_isClosed;
};

The complexity here is that not all customer records in your list are valid.
Some customer accounts have expired or haven’t been activated yet, and other
accounts have been closed by the customers. Your function will need to exclude
those invalid customer records:

void findRecentPurchasers(
 const vector<Customer *> & customers,
 Date startingDate,
 vector<Customer *> * recentCustomers)
{
 Date currentDate = getCurrentDate();

 for (Customer * customer : customers)
 {
 if (customer->m_validFrom >= currentDate &&
 customer->m_validUntil <= currentDate &&
 !customer->m_isClosed &&
 customer->m_lastPurchase >= startingDate)
 {
 recentCustomers->push_back(customer);
 }
 }
}

The complexity introduced by invalid customer records isn’t localized—it has
leaked into this unrelated function. Every loop through the customer list now
has to check for invalid customer records. And if the rules determining validity
change, every one of those loops will have to be updated.

The code in the previous example is pretty bad design, honestly. There’s
no reason to duplicate the customer validity check in every loop—one of the

LOCALIZE COMPLEXITY | 133

promises of object-oriented design was making it easier to hide exactly this sort
of complexity. At a minimum, the eligibility rule should be encapsulated:

struct Customer
{
 bool isValid() const
 {
 Date currentDate = getCurrentDate();

 return m_validFrom >= currentDate &&
 m_validUntil <= currentDate &&
 !m_isClosed;
 }

 int m_customerID;
 string m_firstName;
 string m_lastName;
 Date m_lastPurchase;
 Date m_validFrom;
 Date m_validUntil;
 bool m_isClosed;
};

That makes the loop a little bit simpler:

void findRecentPurchasers(
 const vector<Customer *> & customers,
 Date startingDate,
 vector<Customer *> * recentCustomers)
{
 Date currentDate = getCurrentDate();

 for (Customer * customer : customers)
 {
 if (customer->isValid() &&
 customer->m_lastPurchase >= startingDate)
 {
 recentCustomers->push_back(customer);
 }
 }
}

That’s only a half-measure, though. A better solution lies upstream: instead
of looping over all customers, it should loop over valid customers. Whatever
bit of your code provides a list of customers should also provide a list of valid
customers, likely computed from the list of all customers. Then your code will be
appropriately simple:

134 | THE RULES OF PROGRAMMING

void findRecentPurchasers(
 const vector<Customer *> & validCustomers,
 Date startingDate,
 vector<Customer *> * recentCustomers)
{
 Date currentDate = getCurrentDate();

 for (Customer * customer : validCustomers)
 {
 if (customer->m_lastPurchase >= startingDate)
 {
 recentCustomers->push_back(customer);
 }
 }
}

With this change, all the complexity is localized to the function that returns
a list of valid customers. Code like findRecentPurchasers doesn’t need to worry
about customer validity, and is easier to write and understand as a result.

Distributed State and Complexity

Object-oriented design can help localize complexity, but it’s not a panacea. It’s
easy to get in trouble, especially when you’ve distributed state across a set of
objects instead of localizing it in a single object.

Distributing state isn’t necessarily a problem! Sometimes the most natural
way of modeling a system is to create multiple objects that jointly manage the
system’s state. The promise of object-oriented design is that this sort of multiple-
object design can still hang together—each object manages its own state, with
well-defined interactions between the objects.

That promise of an easy-to-understand object-oriented design won’t be fulfil-
led without some careful coding, though. It’s easy to end up with pretty rickety
code if you’re trying to do something that depends on the current state of multi-
ple objects.

Here’s an invented example. You’re building a stealth game, in which part
of the fun is skulking around without getting spotted by your enemies. In this
family-friendly example, the player is trying to sneak up behind other characters
in order to tape “kick me” signs to their backs. To make this easier, you want to
show a little “eye” icon on screen. The eye is closed when none of the player’s
enemies can see them, but opens when an enemy has a clear line of sight to the
player. A closed eye means the player is safe, while an open eye means they’re at
risk of being spotted.

LOCALIZE COMPLEXITY | 135

You’ve got a handful of objects and classes to model this: an object for the
player, objects for all the other characters, an object for the eye icon, and an
object that tracks which characters have a clear line of sight to which other char-
acters. The last object, the awareness manager, provides a way for you to register
a callback function that is called whenever a particular character is spotted by
another character, and a second callback function that is called when that other
character loses sight of the registered character.

Given these objects, an obvious way to implement this feature centers on the
player object. The player object can implement an awareness callback function,
then use that callback to keep count of how many other characters have spotted
the player. If that count is zero, the player object sets the eye icon to closed;
otherwise, it sets it to open.

The awareness manager looks like this:

class AwarenessEvents
{
public:

 virtual void OnSpotted(Character * otherCharacter);
 virtual void OnLostSight(Character * otherCharacter);
};

class AwarenessManager
{
public:

 int getSpottedCount(Character * character);
 void subscribe(Character * character, AwarenessEvents * events);
 void unsubscribe(Character * character, AwarenessEvents * events);
};

The eye icon is even simpler:

class EyeIcon
{
public:

 bool isOpen() const;
 void open();
 void close();
};

136 | THE RULES OF PROGRAMMING

Given these objects, the player code is easy to write. Get an initial count
from the awareness manager when the player object is created and implement
the AwarenessEvents interface to catch changes. With an accurate count of
other characters who can see the player, the eye icon can be opened or closed
appropriately:

class Player : public Character, public AwarenessEvents
{
public:

 Player();

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

protected:

 int m_spottedCount;
};

Player::Player() :
 m_spottedCount(getAwarenessManager()->getSpottedCount(this))
{
 if (m_spottedCount == 0)
 getEyeIcon()->close();

 getAwarenessManager()->subscribe(this, this);
}

void Player::onSpotted(Character * otherCharacter)
{
 if (m_spottedCount == 0)
 getEyeIcon()->open();

 ++m_spottedCount;
}

void Player::onLostSight(Character * otherCharacter)
{
 --m_spottedCount;

 if (m_spottedCount == 0)
 getEyeIcon()->close();
}

LOCALIZE COMPLEXITY | 137

This isn’t bad code. There’s not a lot of it, and the code itself is pretty easy to
read. There’s a bit of subtlety in choosing when to compare m_spottedCount to 0,
but it’s not hard to figure out. I think this code is defensible.

Capacitated?

Like all designs, though, this example evolves. To add a bit of a challenge for
the player, we give it a twist: the eye icon should be open whenever the player is
incapacitated. Or, to put it another way, the eye icon should be closed when none
of the enemies have spotted the player and the player isn’t incapacitated.

In this case, the Player class has a setStatus method that’s called to mark
changes in the player’s overall well-being. It’s easy enough to insert some code
into setStatus to catch cases where the player becomes incapacitated or recovers
to be fully…um, capacitated? Unincapacitated? Whatever. You only care about a
change in the player’s status when m_spottedCount is zero, since otherwise the
eye icon is already open. Similarly, when the spotted count’s zero-ness changes,
you only have to worry about the eye icon if the player isn’t incapacitated:

enum class STATUS
{
 Normal,
 Blindfolded
};

class Player : public Character, public AwarenessEvents
{
public:

 Player();

 void setStatus(STATUS status);

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

protected:

 STATUS m_status;
 int m_spottedCount;
};

Player::Player() :
 m_status(STATUS::Normal),
 m_spottedCount(getAwarenessManager()->getSpottedCount(this))
{
 if (m_spottedCount == 0)

138 | THE RULES OF PROGRAMMING

 getEyeIcon()->close();

 getAwarenessManager()->subscribe(this, this);
}

void Player::setStatus(STATUS status)
{
 if (status == m_status)
 return;

 if (m_spottedCount == 0)
 {
 if (status == STATUS::Normal)
 getEyeIcon()->close();
 else if (m_status == STATUS::Normal)
 getEyeIcon()->open();
 }

 m_status = status;
}

void Player::onSpotted(Character * otherCharacter)
{
 if (m_spottedCount == 0 && m_status == STATUS::Normal)
 getEyeIcon()->open();

 ++m_spottedCount;
}

void Player::onLostSight(Character * otherCharacter)
{
 --m_spottedCount;

 if (m_spottedCount == 0 && m_status == STATUS::Normal)
 getEyeIcon()->close();
}

This has added some complexity, especially in how the two overlapping con-
ditions for showing the health indicator interact with each other. It still doesn’t
seem disastrous, though.

The assumptions the code makes to minimize work—like only updating
the eye icon in CPlayer::setStatus when the spotted count is zero—are more
subtle now. It’s not too hard to figure out what’s going on, but there’s a price in
complexity being paid for a little bit of efficiency.

LOCALIZE COMPLEXITY | 139

Things Start to Get Foggy

The design evolves again, surprising absolutely no one. This time you’re adding
weather effects. If the weather is foggy, then the eye icon should be open, just
like when the player has been spotted or is incapacitated.

The weather system, like the awareness system, provides a simple query and
callback API:

enum class WEATHER
{
 Clear,
 Foggy
};

class WeatherEvents
{
public:

 virtual void onWeatherChanged(WEATHER oldWeather, WEATHER newWeather);
};

class WeatherManager
{
public:

 WEATHER getCurrentWeather() const;
 void subscribe(WeatherEvents * events);
};

This fits into the pattern you used for awareness. Implement a weather
callback, add some initialization code, mix some new logic into the existing
checks, and you’ve got a working system:

class Player :
 public Character,
 public AwarenessEvents,
 public WeatherEvents
{
public:

 Player();

 void setStatus(STATUS status);

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

 void onWeatherChanged(WEATHER oldWeather, WEATHER newWeather) override;

140 | THE RULES OF PROGRAMMING

protected:

 STATUS m_status;
 int m_spottedCount;
};

Player::Player() :
 m_status(STATUS::Normal),
 m_spottedCount(getAwarenessManager()->getSpottedCount(this))
{
 if (m_spottedCount == 0 &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->close();
 }

 getAwarenessManager()->subscribe(this, this);
 getWeatherManager()->subscribe(this);
}

void Player::setStatus(STATUS status)
{
 if (status == m_status)
 return;

 if (m_spottedCount == 0 &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 if (status == STATUS::Normal)
 getEyeIcon()->close();
 else if (m_status == STATUS::Normal)
 getEyeIcon()->open();
 }

 m_status = status;
}

void Player::onSpotted(Character * otherCharacter)
{
 if (m_spottedCount == 0 &&
 m_status == STATUS::Normal &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->open();
 }

 ++m_spottedCount;
}

void Player::onLostSight(Character * otherCharacter)

LOCALIZE COMPLEXITY | 141

{
 --m_spottedCount;

 if (m_spottedCount == 0 &&
 m_status == STATUS::Normal &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->close();
 }
}

void Player::onWeatherChanged(WEATHER oldWeather, WEATHER newWeather)
{
 if (m_spottedCount == 0 &&
 m_status == STATUS::Normal)
 {
 if (oldWeather == WEATHER::Foggy)
 getEyeIcon()->close();
 else if (newWeather == WEATHER::Foggy)
 getEyeIcon()->open();
 }
}

Again, if you’ve just written code like this, it can feel reasonable. I’ve cer-
tainly written code like this and not felt bad about it!

It’s an evolution of the approach of the first version—look at the state of the
world when the player object is initialized, then track changes in the world’s state
to keep the eye icon up-to-date.

Conceptually, at least, there’s a common, repeated theme that grew out of
the initial implementation—don’t bother updating the eye icon when its state
shouldn’t change. When the weather changes, there’s no need to update the
eye icon unless the spotted count is zero and the player isn’t incapacitated. If
the spotted count is nonzero or the player is incapacitated, then the eye icon is
already open and should remain so.

There are three variations of that idea in the code: for line of sight, player
status, and current weather. The idea is expressed slightly differently for each of
them, but it’s still just one idea, so it doesn’t seem that complicated.

Take a step back, though. It’s easy to see the shared idea when you’re writing
the code—it’s your idea, after all! Imagine a teammate was looking at the last
example. Will the basic idea be obvious to them? Uh…not so much.

142 | THE RULES OF PROGRAMMING

If you know the idea—that is, don’t bother updating the eye icon when its
state shouldn’t change—then you can see how the idea gets expressed in each of
its repetitions. If you’re trying to go the other direction, to infer the basic idea
from all the ways it’s expressed…well, then it’s not so obvious.

Rethinking the Approach

There’s a bigger problem here, though. The user-visible design of this feature is
pretty simple—the eye icon should be closed when three conditions are met:

• No enemy has spotted the player.•

• The player isn’t incapacitated.•

• The weather isn’t foggy.•

As written earlier, you have five (!) separate implementations of this logic,
all expressing those three conditions in different ways. That’s confusing. And
there’s no simple, straightforward implementation of the rules—no place where
you just check the three conditions. All five implementations are variations, all
using bits of context to minimize the work done.

If your design changes in any way, you need to update each of the five
implementations to match. For example, if you add a new WEATHER:HeavyFog
state for the weather system, then you have to add checks for it in all the places
you checked for WEATHER:Foggy.

More dangerously, what if the methods you’ve added change in some other
way? Maybe you decide the player model should turn his head to look at any
enemy that spots him, which means more code in CPlayer::onSpotted. Now you
have to make sure that you’re not inadvertently breaking the stealth indicator.

There’s a pretty big problem underlying this code—it fails to localize the
complexity of the design. You’ve got a simple design—the three conditions out-
lined at the start of the section—but you’ve scattered the implementation of that
design across five separate implementations, all written slightly differently. Each
condition adds a bit of complexity, and each bit of complexity interacts with all
the other bits of complexity. They get tangled up very quickly.

If you’ve got a complicated idea, like the rules for when the eye icon is open
or closed, then aim to express that complicated idea in one place.

LOCALIZE COMPLEXITY | 143

In this case, that means one straightforward implementation of the three
conditions. Then you can build the rest of the code around that implementation.
Leaving the rest of the system alone, you might end up with something like this:

enum class STATUS
{
 Normal,
 Blindfolded
};

class Player :
 public Character,
 public AwarenessEvents,
 public WeatherEvents
{
public:

 Player();

 void setStatus(STATUS status);

 void onSpotted(Character * otherCharacter) override;
 void onLostSight(Character * otherCharacter) override;

 void onWeatherChanged(WEATHER oldWeather, WEATHER newWeather) override;

protected:

 void refreshStealthIndicator();

 STATUS m_status;
};

Player::Player() :
 m_status(STATUS::Normal)
{
 refreshStealthIndicator();

 getAwarenessManager()->subscribe(this, this);
 getWeatherManager()->subscribe(this);
}

void Player::setStatus(STATUS status)
{
 m_status = status;

 refreshStealthIndicator();
}

void Player::onSpotted(Character * otherCharacter)

144 | THE RULES OF PROGRAMMING

{
 refreshStealthIndicator();
}

void Player::onLostSight(Character * otherCharacter)
{
 refreshStealthIndicator();
}

void Player::onWeatherChanged(WEATHER oldWeather, WEATHER newWeather)
{
 refreshStealthIndicator();
}

void Player::refreshStealthIndicator()
{
 if (m_status == STATUS::Normal &&
 getAwarenessManager()->getSpottedCount(this) == 0 &&
 getWeatherManager()->getCurrentWeather() != WEATHER::Foggy)
 {
 getEyeIcon()->close();
 }
 else
 {
 getEyeIcon()->open();
 }
}

Here, all five implementations of the condition checks are collapsed into
a single method, refreshStealthIndicator. That method is called whenever
there’s a change in the conditions that method checks. There’s still a little bit
of nonlocalized complexity, because the connection between the conditions you
check and the callbacks that detect changes to those conditions isn’t obvious, but
there’s way less of this than before.

And this implementation is linear with the number of conditions. If a new
condition is added, you can add a new check to refreshStealthIndicator, write
a bit of initialization code, and check for changes in the condition in one or two
places. If you had 10 conditions, you’d have 10 times as much code.

That’s much better than the earlier examples that didn’t localize the com-
plexity. In computer science terms, the code had quadratic complexity: every time
you added a new condition, you added a new place to check all the conditions
and a new check in each of the existing implementations of the logic. As a direct
result, the number of lines of code implementing your design increased by the
square of the number of conditions in that design. That’s not good! You’ll quickly
run into a wall if your code’s complexity grows quadratically.

LOCALIZE COMPLEXITY | 145

Localized Complexity, Simple Interactions

The thing you want to avoid at all costs is complicated interactions between
different parts of your system. You can accept some complicated details, as long
as the complexity is localized. A component with a simple interface and simple
interactions but some complicated internal details won’t sink your project. A
component with a complicated interface and complicated interactions might be
your death knell, even if the internal details are simple.

A system built of components with simple interactions tends to have linear
complexity. Each component makes the system a little bit more complicated, but
the complexity stays manageable.

If the interactions between components are complicated, things get out of
control fast.

If adding a new feature entails writing code in a lot of places, that’s a bad
sign. At best, it means the new feature is a misfit with your existing code—and if
every feature you add requires code in lots of places, then you’ve probably failed
to localize complexity. That’s going to end in tears.

146 | THE RULES OF PROGRAMMING

Is It Twice as Good?

Every project eventually hits the natural limits of its architecture—you hit some
problem that just doesn’t fit the way things work. Maybe you need to add a
feature that can’t be expressed in your paradigm. Say you’ve got a filtering
mechanism that lets you specify a set of criteria that all need to be met, and you
run into a case where you need to OR some criteria instead of ANDing them.

Or the shape of the data has changed. You built the system to solve problems
of some size, and over time it starts to be applied to problems of a different size
or shape, and you’re running into existential performance problems.

It could be that things are just getting tangled. Your paradigm provides ways
to tweak the core behavior of the system in special cases, which is one of the
reasons it’s lasted as long as it has. But now the extension mechanism is used
in every single case, not just special ones. Every use of the system is a hopscotch
through different exceptional cases, and it’s hard for people to figure out whether
something new works, much less how it works.

Maybe some bit of code is old enough that it just doesn’t fit with the rest
of your codebase. You’ve got a bit of C code in your fairly forward-thinking C++
project, and you recoil at all of its hand-rolled pointer structures. It represents an
older, alien way of thinking, and everyone wants to rewrite it in a more modern
paradigm.

This sort of thing is natural and inevitable, and shouldn’t cause you to panic.
It’s not even really a problem. It’s just how things go.

If you think you can forestall this—that hitting the natural limits of your
architecture is a sign of poor initial design, and that a better design would have
avoided the problem—then remember the example of Rule 4, that generalization
takes three examples. Your initial design may well have been poor. But the most
likely result of trying to predict the future would have been a similarly poor but
more complicated design that would have hit its limits even earlier.

147

| Rule 11

You won’t hit architectural limits on every single part of your project, either.
Some parts will happily tick along for years without any rework. That’s not an
accident—if you make good choices in your initial design, the problems you’re
solving stay pretty much the same, you and your teammates are diligent about
keeping things tidy, and whatever exceptional cases you run into are localized
and easily handled, then things can trundle along with no changes indefinitely.

That’s why futureproofing is so dangerous. Some of the time it’s not neces-
sary, and the rest of the time it doesn’t work.

Three Paths Forward: Ignore, Tweak, or Refactor

Anyhow, you’ve run into a natural limit of some sort. That doesn’t mean you’re
forced to tear up the code and start again from scratch.

You could just live with the natural limit, for instance. Don’t allow OR clauses
in your filtering, or buy bigger hardware to deal with your performance prob-
lems, or live with some extra complexity and old-fashioned code.

Small tweaks and exceptional cases might also work. Maybe your filtering is
really an AND-of-ORs, like most websites, and you can handle the one extra OR in
your special case by combining two categories in your UI. Maybe most of your
performance issue springs from recalculating some bit of data, and a little bit of
caching will mostly fix the problem. Maybe every use of the system runs through
the exceptional mechanism, but most of those exceptions are all the same thing,
and you can just fold that case into your core code path and get rid of a bunch
of exceptional cases. Maybe the only really old-fashioned thing is the use of a set
of half-baked macro-driven functions to deal with allocating C arrays, and it’s not
too hard to just convert them to std::vector.

Or maybe you really do need to make some major changes. Your architecture
was designed to address the problem as you understood it when work started.
The problem has changed, though—or maybe your understanding of the prob-
lem is deeper now. Your current architecture just can’t solve the problem as you
now understand it, and you see a better approach.

So how do you decide which of these three basic approaches to take? Do you
ignore the issue, tweak things to address it, or do a bigger refactoring?

148 | THE RULES OF PROGRAMMING

Gradual Evolution Versus Continual Reinvention

There’s a natural tendency in programmers to handle this question poorly—to
make big changes for the wrong reason at the wrong time and end up causing
more problems than they solve.

More specifically, there are two subspecies of programmers. Type One pro-
grammers think incrementally. They look at each new problem in terms of the
existing solution; they always solve problems by tweaking the current design.
Type Two programmers think of the problem and solution together; they’re
attracted to fixing all the issues with a system, not just the issue at hand, and
jump at the chance to start over with a new design.

Either tendency taken to extremes is a disaster. If all fixes are incremental,
you end up trapped, pushing off requests for improvements to the project, slowly
buried under the weight of years of tweaks and exceptional cases. If no fixes
are incremental, if all changes are ground-up reworks, then you thrash in place.
You’re continually throwing out the things you’ve learned about the last architec-
ture. Every new architecture brings a new set of problems and you never make
progress.

As in most things, the best results come from striking a balance. Choosing
the right approach—ignore, tweak, or refactor—can be tricky, but knowing your
tendencies and the tendencies of your coworkers can help you make better deci-
sions. If your response to uncertainty is to make the decision that is comfortable
for you, then you risk choosing the same alternative every time. If you’re a Type
One programmer, the comfortable decision is incremental, and all problems are
solved by tweaking or ignoring. If you’re a Type Two programmer, the comforta-
ble decision is to rework everything, so that’s what happens every time. That’s
not good; you need to balance the two.

Some red flags that Type One thinking might be getting out of control:

• Describing the issue at hand in terms of the current architecture. That•
might be as simple as using internal terms instead of describing the issue
in its own problem space. Sometimes it’s hard for Type One coders to even
think about the problem except in terms of the existing architecture, and
this shows up in the language they use.

• Using words like impossible to describe the issue. That’s almost certainly•
not true—at worst, the issue is difficult to solve without major changes to
the system architecture.

IS IT TWICE AS GOOD? | 149

• Deploying the project schedule as a conversation-stopper. This is not to•
imply that schedule concerns aren’t valid—they obviously are! But if the
first and only argument you make against a big change is that it won’t fit
in the schedule, then you might be stuck in Type One thinking.

• It’s been years since the last major change was made to the system, despite•
many incremental changes to it.

Some warning signs that Type Two thinking is taking over:

• The best reason you’ve got for reworking the system is “we really need to•
clean up that bit of code.”

• The decision to rework a system is driven by one particular case, like•
a single feature that’s hard to implement, or a dataset that creates poor
performance.

• The argument for reworking things is driven by performance or resource•
issues, but nobody has actually profiled the system to find the bottleneck.

• You present arguments for reworking the system in terms of the solution,•
not the issue at hand. Any proposals that aren’t grounded in the problem
are pretty suspect.

• Some bright, shiny object—a new language, a new library, some new•
language construct—is central to the proposed reworking.

You might have recognized some of your own thought patterns in there!
I certainly do—I’m Type Two at heart and have to keep that mind when I’m
making decisions. Luckily there are lots of Type Ones on my team who I can rely
on to provide some decision-making balance.

It’s also common to get mixed signals, with Type One and Type Two
warning signs popping up for the same problem. For example, maybe you’re
considering a big change for a system that hasn’t seen fundamental rework for
years, but the impetus for the suggested change appears to be excitement about
deploying a cool new database technology. That’s a Type One signal (the system’s
architecture has been static for a long time) and a Type Two signal (Squee! A new
database!) mixed together.

Recognizing these patterns can help your decision-making process, but they
won’t make the decision for you. You might see some conservative Type One
patterns in your logic, but that doesn’t mean an incremental solution is wrong!
Nor does the presence of Type Two signals mean that reworking your system

150 | THE RULES OF PROGRAMMING

is inappropriate. You need something more to help you make the big decision
about whether to embark on major rework or keep making incremental changes.

A Simple Rule of Thumb

Here’s my simple rule of thumb for making a big change: is it twice as good?
If you’re confident that after your changes, the reworked system will be twice

as good as the system you’ve got now, then the reward is big enough to justify
the disruption and the new problems that the rework will inevitably introduce. If
not—if the new system isn’t going to be twice as good as the current one—then
it’s better to address the issue incrementally.

Sometimes the answer is obvious. You absolutely need to do something,
and your current architecture absolutely can’t do it. Say you need to rework your
server code to support new legally mandated privacy restrictions. Those restric-
tions require a “right to be forgotten,” implying functionality that your current
architecture fundamentally can’t support because it intermixes data histories in a
way that precludes removing an individual’s old data.

Will a new system be twice as good? In this case, you need to do something
that the reworked system will support and the current system can’t support. In
some sense, the reworked system is infinitely better than the old one. Since
“infinitely” is comfortably larger than “twice,” the decision is clear, and you set
forth on your rework.

More commonly the answer isn’t as obvious, and you need to do some meas-
urement (if possible) and estimation (if measurement isn’t possible) to decide
whether the new answer is twice as good as the old one.

For instance, when Sucker Punch started work on Ghost of Tsushima, we
realized that the way we physically modeled the ground was going to struggle
with the size of the new game. Our previous games had all represented the
ground as a surface composed of hand-built triangles, but the new game covered
40 or so times as much ground. The actual ground of the island of Tsushima was
created using a collection of height maps, each a 512 × 512 bitmap representing a
uniform grid of heights covering a 200-meter square.

The incremental solution was to convert the height maps to triangles and
feed them through our normal physics pipeline. This worked fine, but it was
really bulky—there were half a million triangles, and even after some light opti-
mization we were spending many megabytes of storage keeping track of all of
them.

IS IT TWICE AS GOOD? | 151

1 For a complex set of reasons, we eventually ended up making a separate copy of the height map used by
rendering, then converting it to floating point as part of the copy, at a total cost of about 1 megabyte for
each 200-meter-by-200-meter square.

We had an alternative—we could rework the physics engine to support
height maps directly, but this implied a lot of work. It meant handling the height
maps’ interaction with all of the other basic physics primitive types, figuring out
how to encode the extra information our physics engine needed about surface
types into the height map, adding height map support to all of our debugging
tools, and so on. Getting everything working would end up taking about three
programmer-months of work.

Applying the rule of thumb, then—would the reworked system be twice as
good? On a few axes, absolutely! We already had the height maps for use by our
rendering engine, and we could infer everything else we needed. Instead of the
20+ megabytes we’d needed to physically model each 200-meter-by-200-meter
square of the game, we would need only a few hundred bytes to integrate a
height map.1

Similarly, basic physics operations (like testing a short line segment) only
needed to query a cell or two in the height map, instead of hopping through
dozens of layers of the binary spatial partitioning tree we use to represent more
free-form geometry. This would be much more than twice as fast.

So, the rule of thumb said that this rework made sense—the new system
would be twice as good on important metrics, and we decided this would be
worth the cost of implementing and dealing with the revised workflows and new
bugs.

Dealing with Fuzzy Benefits

It’s not always easy to quantify the benefits of reworking stuff, but that’s not a
good excuse for side-stepping the “twice as good” rule. If you’re focused on soft
improvements—like a change that will make your programmers happier, or a
rebuilt authoring pipeline that will let your designers create slicker UX—then
figure out how to quantify them.

If you don’t, you’re setting yourself up to make the most comfortable deci-
sion—the one that fits your natural tendency. If you make the comfortable
decision too often, you’ll get yourself in trouble.

Let’s say the goal of some change is merely to make the programmers on the
team happier, like the earlier example of replacing some old-fashioned code. So

152 | THE RULES OF PROGRAMMING

why will your programmers be happier? Will they be more productive because
they’re not struggling with the bugs that reliably pop from the current tangled
mess? If so, how much more productive? Twice as productive?

Or let’s say you’re deciding whether to rebuild your UX authoring pipeline.
How much slicker will the new UX be? Why and how will it be better for your
product’s users, and how can you predict that improvement? Will users spend
more time enjoying your product, which is what we aim for with games? Or, if
you work on more traditional software, will your users be able to get their tasks
done more quickly and effectively?

Rework Is a Good Opportunity to Fix Small Problems

One last thought before we get back to a chapter with actual source code.
Once you’ve decided to rework a system, you might as well tidy up all the

little things that are wrong with it. You wouldn’t embark on major rework just
to fix some bit of old-fashioned code—the benefit isn’t worth the problems you’d
introduce. But if you’ve already decided to tear up that bit of code, you’re already
going to absorb the cost of changing things, and you’re going to be testing your
changes thoroughly anyhow—so you might as well solve some smaller problems
along the way, like replacing that bit with more modern code.

This is a pretty productive pattern. Note the little problems in your code that
you can’t fix right away. Then, when you’re doing major work in an area, sweep
up all those little problems at the same time.

That doesn’t say you shouldn’t look for incremental improvements. Use
incremental changes to make those improvements. Maybe, over time, you’ll
collect enough small ideas about ways the system could improve that you can
justify major rework. That’s pretty common, actually, especially if you start to see
patterns. If you see a half-dozen small issues with the current system that could
all be addressed by the same bit of rework, then maybe you’ve found the tipping
point where the cumulative value makes the rework worth the effort. Collectively,
the improvement would be major and justifies major rework.

“Twice as good” is a convenient way to say that major changes require major
improvements. Don’t tear up something to replace it with something marginally
better; that’s a bad strategy. Tear something up to replace it with something much
better. Twice as good.

IS IT TWICE AS GOOD? | 153

Big Teams Need
Strong Conventions

The most basic idea in this book is that programming is complicated, and that
your productivity as an individual and as a team is gated on that complexity. The
more complicated you make things—or let things become—the less successful
you’ll be. The simpler you keep things, the more successful you’ll be—so keep
things simple!

That advice holds true no matter what sort of project you’re working on, but
it’s truer for some projects than others.

There are projects that are small enough and simple enough that unneces-
sary complexity won’t really matter. If you’re writing a hundred lines of code by
yourself in an afternoon and you’re going to throw away the code when you’re
done, then you can write that code just about any way you’d like and get away
with it.

Once you’re on a team, even if it’s a two-person team, that’s less true. You
might try to draw lines between “my code” and “your code,” with each of you
deciding how code gets written on your side of the line…but this won’t work very
well. Unless your two halves are extraordinarily cleanly separated and remain
that way through the life of the project, you’ll be popping back and forth across
the boundary routinely. Even defining the interface between the two halves gets
problematic—for example, who decides how things in the interface are named,
when half of the interface is on each side of the line?

There’s no good way to extend this my-side-your-side pattern to larger teams,
but that doesn’t stop people from trying. For some programmers, there’s a strong
appeal to making all the decisions about “your” code. It’s easy to argue that
programming is a creative act, and that constraints make for less creativity. It’s
easy to argue that different parts of the projects have different needs, and so

155

| Rule 12

should be treated differently. It’s easy to get attached to the smallest parts of your
programming style, only to find yourself in a heated argument about where a
curly brace goes.

All of these arguments are wrong. Not entirely wrong, but whatever small
kernel of truth exists in each of them is outweighed by the reality of working on
a large team on a large project. Differences in coding style add complexity, which
makes everyone’s jobs harder.

Formatting Conventions

Every bit of code embodies some style and philosophy. Working your way
through some bit of code that uses a foreign style or philosophy is slower and
more error-prone. It’s like reading a foreign language you only mostly under-
stand; everything is a struggle.

If you’re used to code that looks like this:

/// \struct TREE
/// \brief Binary tree of integers
/// \var TREE::l
/// Left subtree
/// \var TREE::r
/// Right subtree
/// \var TREE::n
/// Data

/// \fn sum(Tree * t)
/// \brief Return sum of all integers in the tree
/// \param t Root of tree (or subtree) to sum
/// \returns Sum of integers in tree

struct TREE { typedef TREE self; self * l; self * r; int n; };
int sum(TREE * t) { return (!t) ? 0 : t->n + sum(t->l) + sum(t->r); }

…then code like this is going to be harder to read, and vice versa:

// Integer tree node

struct STree
{
 STree * m_leftTree;
 STree * m_rightTree;
 int m_data;
};

156 | THE RULES OF PROGRAMMING

// Return sum of all integers in tree

int sumTree(STree * tree)
{
 if (!tree)
 return 0;

 return tree->m_data +
 sumTree(tree->m_leftTree) +
 sumTree(tree->m_rightTree);
}

I’m not making a value judgment here—in some sense, this is the same
code; the only differences are naming and formatting. I’m used to programming
in something like the second style, so the first style seems strange to me. Read-
ing it requires some mental translation. If you’re used to the first style, you’d
have the opposite reaction.

The problem here isn’t the coding style, it’s mixing those styles. If you
mix styles—again, adding complexity—you’re going to struggle when moving
between them. Trying to maintain different styles for different sections of your
code is a bad idea.

Language Usage Conventions

The same is true for use of language features. If you’re used to “basic” C++ code
like the previous example, then more “modern” C++ like this is going to be hard
to read:

int sumTree(const Tree * tree)
{
 int sum = 0;
 visitInOrder(tree, [&sum](const Tree * tree) { sum += tree->m_data; });
 return sum;
}

If you’re used to older versions of C++, you might not even recognize this as
legitimate code! There’s a lambda definition in there (it’s the part starting with
[&sum]), and lambdas weren’t added until C++ 11.

Again, I’m not making a value statement here. Lambdas can be useful,
and I understand why C++’s implementation works the way it does. If lambdas
are a standard part of your team’s workflow, and you all have a solid shared
understanding of how and where to use them, then there’s nothing wrong with
the preceding code. If you’re the lone lambda champion on the team, then the

BIG TEAMS NEED STRONG CONVENTIONS | 157

same code is a disaster. The problem here isn’t the use of language features per
se—it’s mixing different expectations about which language features to use. If
you’re used to one set of language features, then adjusting to a different set saps
your energy. That’s especially true when those transitions are unexpected, leaving
you unsure of which set of conventions is in force for some bit of code you’re
looking at.

Problem-Solving Conventions

Programmers don’t run into a lot of problems that have only one solution, so
we all develop our own instincts about how to solve a particular problem when
writing code. That creates problems when your instincts don’t match up with
those of your teammates—you’ll solve the same problem in different ways. At
best, that increases cognitive load as you look at each other’s code. More likely,
it results in reinventing the wheel: you all end up solving the same problem
multiple times in multiple ways, because you don’t recognize that it has already
been solved.

Take error handling. There are lots of ways of handling errors: some intro-
duced by the language and its libraries, others extrapolated by teams to meet
their own particular needs. Even if you limit yourself to the built-in parts of C++,
you’ll find at least three distinct error-handling models, each featured at some
point in the 50-year evolution of the language.

Even the definition of error itself is up for grabs! You could reasonably
decide that usage mistakes are errors—after all, this is what the operating system
and most libraries do. You could just as easily decide that errors should be
reserved for unavoidable problems, like a missing file, not entirely avoidable
usage mistakes.

At Sucker Punch, for instance, we deal with usage errors as asserts, not
as errors. That’s our convention. Given the many choices about how to handle
errors, we chose one, and we all stick to it.

Sticking to one convention is a challenge, not least because every library
or other dependency drags you into its error-handling model. At a minimum,
you need to deal with the errors the library returns—and then decide how to
propagate them. If you’re dealing with really old-school C-style file handling, that
leads to some unpleasant code:

string getFileAsString(string fileName)
{
 errno = 0;
 string s;

158 | THE RULES OF PROGRAMMING

 FILE * file = fopen(fileName.c_str(), "r");
 if (file)
 {
 while (true)
 {
 int c = getc(file);
 if (c == EOF)
 {
 if (ferror(file))
 s.clear();

 break;
 }

 s += c;
 }

 fclose(file);
 }

 return s;
}

In this 1980s-style code, errors are returned with a combination of global
state and special return values. The details aren’t that important—but the relative
lack of conventions here is notable. Every function has a slightly different idea of
how to return errors—fopen returns nullptr on error, getc returns EOF but sets a
global flag, and so on. Using this model means memorizing a bunch of arbitrary
details.

Moving errors onto the objects themselves improves things slightly—and
new, stronger conventions can be introduced:

bool tryGetFileAsString(string fileName, string * result)
{
 ifstream file;
 file.open(fileName.c_str(), ifstream::in);
 if (!file.good())
 {
 log(
 "failed to open file %s: %s",
 fileName.c_str(),
 strerror(errno));

 return false;
 }

 string s;
 while (true)

BIG TEAMS NEED STRONG CONVENTIONS | 159

 {
 char c = file.get();
 if (c == EOF)
 {
 if (file.bad())
 {
 log(
 "error reading file %s: %s",
 fileName.c_str(),
 strerror(errno));

 return false;
 }

 break;
 }

 s += c;
 }

 *result = s;
 return true;
}

The convention here is that functions with names starting with try might
fail. They return true on success and false on failure, and any details about the
failure are reported to a system error log. If you see a try-named function, you
know exactly what to expect. That’s the power of conventions—they’re a shortcut
to understanding, much preferable to reading through the code to figure out the
details for yourself. As in this code, any library that doesn’t use the convention
forces some conversion work, but that’s work only one coder has to do—the rest
of the team can enjoy a consistent error-handling convention.

I’ve worked on projects that defined a richer error type, instead of returning
a simple bool for success or failure:

struct Result
{
 Result(ErrorCode errorCode);
 Result(const char * format, …);

 operator bool () const
 { return m_errorCode == ErrorCode::None; }

 ErrorCode m_errorCode;
 string m_error;
};

160 | THE RULES OF PROGRAMMING

This kind of error reporting lets code propagate errors around while still
allowing detailed, contextual error information. This is a useful model for
projects that deal with lots of errors, especially when combined with a naming
convention like try:

Result tryGetFileAsString(string fileName, string * result)
{
 result->clear();

 ifstream file;
 file.open(fileName.c_str(), ifstream::in);
 if (!file.good())
 {
 return Result(
 "failed to open file %s: %s",
 fileName.c_str(),
 strerror(errno));
 }

 string s;
 while (true)
 {
 int c = file.get();
 if (c == EOF)
 break;

 if (file.bad())
 return Result(
 "error reading file %s: %s",
 fileName.c_str(),
 strerror(errno));

 s += c;
 }

 *result = s;
 return ErrorCode::None;
}

Or you could use exceptions, the third basic error-handling model of the C++
libraries:

string getFileAsString(string fileName)
{
 ifstream file;
 file.exceptions(ifstream::failbit | ifstream::badbit);
 file.open(fileName.c_str(), ifstream::in);

 string s;

BIG TEAMS NEED STRONG CONVENTIONS | 161

1 Given the other Rules in this book—most importantly Rule 10, “Localize Complexity”—it will not surprise
you to hear that C++ exceptions are not used at Sucker Punch, and it’s for this very reason. We do have a
few try statements in the codebase, but only when forced to by external libraries in our toolchain.

 file.exceptions(ifstream::badbit);
 while (true)
 {
 int c = file.get();
 if (c == EOF)
 break;

 s += c;
 }

 return s;
}

For better or worse, this function hides the actual exceptions, which are
thrown from file.open or file.get. The advantage is that the normal flow of
operation isn’t cluttered with error-handling stuff; the disadvantage is that the
complexity of how errors are detected and handled is hidden and scattered over
multiple functions.1

All four of these styles are viable, as are many others. You could choose any
of them as your convention—well, you’re not going to use the first style, because
that would be silly. But any of the other three could make sense, depending on
your project.

Here’s what doesn’t make sense—mixing different error-handling conven-
tions in the same project. Inconsistent conventions will leave everyone on the
team slightly confused at all times, and confused programmers write bugs.

I hid an example of this in the two try-named function conventions. Both
conventions pass back the “actual” return value of the function through a pointer.
But in the first convention, the function leaves the actual return value unchanged
if it fails; in the second convention, it’s cleared in error cases.

You can make a solid argument for either option—but you can’t mix them
in the same project, because that’s an obvious disaster. The same is true with
mixing exceptions in amongst error codes, which is destined to end in tears.

You might also be able to argue that your program should have no error
handling. That’s right, no error handling! That’s actually the approach we take
for most of our game code—we don’t define errors, so there’s no error handling.

162 | THE RULES OF PROGRAMMING

Usage errors are handled with asserts. Catastrophic problems like running out
of memory just halt the game. Edge cases trigger default behaviors rather than
returning errors.

It’s true that we’re forced to deal with errors at the edges of our code—our
networking code needs to handle packets getting dropped, for instance. But
Sucker Punch programmers can go for months and months without generating
or handling a single error.

Effective Teams Think Alike

Your goal as a team—not as individuals, but as a team—should be to think as
one. The ideal situation would be for everyone on the team to be so in sync that
each of you would write exactly the same code when presented with a particular
problem. And by “exactly,” I mean exactly: same algorithm, same formatting,
same names for everything.

We all know that it’s easier to read and work with your own code than it is
to work with other people’s code. Any bit of code embeds countless assumptions
about how code should be written. When you’re reading your own code, all of
those assumptions feel natural, so you don’t notice them. When you read other
people’s code, you trip over every single one of the assumptions you don’t share.

If the naming conventions don’t match your expectations, you hit a snag.
Sure, you can figure it out, but it takes time and energy. If the curly braces are in
the wrong place, or the code uses unfamiliar language features or does common
things using more than one convention, like the constructor example earlier,
same thing.

The solution is obvious. If you want to work smoothly and harmoniously as a
team, align your assumptions! Use the same conventions! Stop being dumb!

The conventions themselves—where the curly brace goes and so on—rarely
matter. You can have a principled discussion about curly brace placement, but
there are lots of good answers to where they go. It doesn’t matter which style you
choose, as long as you all choose the same style and use it consistently.

BIG TEAMS NEED STRONG CONVENTIONS | 163

2 We are, alas, not this smart. Our formatting conventions are…idiosyncratic.

3 Hence conventions.

Here’s how we deal with this at Sucker Punch. We have a set of coding
standards that set out pretty strict rules for everything we can think of, including:

• How to name everything.•

• How to format code. If you’re smart, your formatting conventions will•
exactly match the output from one of the many code-formatting tools,
which makes following the convention easy—just run the formatting tool.2

• How to use language features, including which to use and which to avoid.•

• Conventions for all the common problems we solve. We have a very stan-•
dardized way to write a state machine, for instance, because our game code
has lots of state machines.

• Where to draw file boundaries, and how code should be ordered and•
grouped within those files.

• How to represent constants in the code. It’s not enough to say that you’re•
going to use a #define or a const instead of embedding magic numbers in
your code—what should your const be named? Where should you define
it? Near the use, at the top of the source file with the other constants, or
maybe in a project-wide header file?

Everyone follows these conventions, which are gently enforced during our
code review process. It’s an adjustment for many of our new coders to work
within strict standards like these, but it doesn’t take long for the benefits of strict
adherence to the coding standards to become obvious.

At the beginning of every project, we let anyone on the coding team propose
any change they’d like to the coding standards. We debate each proposed change,
then vote. If a proposal wins a majority of the vote, it goes into effect for the
new project. During the last round of voting, for instance, we approved the use of
auto in certain circumstances, which (depending on your own proclivities) may
seem horribly strict or entirely too permissive.3

Once we’ve made all the changes to our standard, we divvy up our fairly large
codebase and sweep through it like a swarm of hungry locusts, converting every-
thing to match the new standard. This isn’t cheap, but it takes less than a week,
and at the end we’ve got squeaky-clean compliance with our team conventions.

164 | THE RULES OF PROGRAMMING

4 OK, OK, not actually stress-free. But a lot less stressful.

Remember our goal: that any Sucker Punch coder, faced with a particular
problem, will write exactly the same solution as any other Sucker Punch coder.
The closer we get to that, the closer we are to the perfect situation—where
working with anyone else’s code is as easy as working with your own. If I’m
looking at some bit of Sucker Punch code and I can’t tell who wrote it—or even
whether I wrote it myself—then I know we’re getting close to that goal, and we’ve
set ourselves up for stress-free programming.4

BIG TEAMS NEED STRONG CONVENTIONS | 165

Find the Pebble That
Started the Avalanche

If I tell you that coding is really debugging, you’ll probably shake your head
ruefully and mutter something along the lines of “Ain’t it the truth, buddy. Ain’t
it the truth.”

Well, not really—nobody talks like that. But you’d certainly agree with the
premise. When you’re turning an idea into a fully working implementation,
you’ll inevitably spend a lot more time in the “getting it to work” phase than in
the “typing it in” phase. Barring extreme circumstances—a simple idea and a run
of incredible luck, say—you’ll spend more time debugging than coding. This is
so obvious it’s rarely even stated.

Here’s the twist.
You know that coding is actually debugging, but how does that affect the way

you approach coding projects? You know that coding is actually debugging—so
what are you going to do about it?

One obvious answer is to write code with fewer bugs. That’s what the rest
of this book is about, so let’s set it aside for now. This Rule is about something
different: writing code that’s easy to debug.

The Lifecycle of a Bug

Let’s take a step back and think about what debugging actually is. There are four
basic stages in the lifecycle of a bug:

1. The bug is detected—you discover the problem.1.

2. Next it’s diagnosed—you investigate and uncover what’s causing the2.

errant behavior.

167

| Rule 13

3. Then you fix it, changing your implementation to eliminate the errant3.

behavior.

4. Finally, you test to make sure that the bug has actually been fixed and that4.

your fix didn’t cause new problems, then you commit the fix.

The diagnosis phase is often the longest and most frustrating. That’s because
most bugs arrive with no details. Typically you’ve got a description of the symp-
tom—the program crashed, or the OK button on a dialog is always disabled, or
a list of all your users swaps the first and last names for a quarter of the entries.
If you’re lucky, the bug report will have some context, such as what the user was
doing when the program crashed.

What you’re missing is why the symptom occurred. What led to the symp-
tom? What exactly went wrong? Diagnosis is the process of answering these
questions. Until you know what went wrong, you can’t fix the problem.

The thing you’ve got going for you is that computers are deterministic. If
the computer is presented with exactly the same situation, it will generate exactly
the same result. If you don’t see the same result, then you didn’t reproduce the
situation exactly.

Bugs would be easy to diagnose if you could time travel back to right before
things started going wrong. Then your job would be easy—just step through
the code looking for trouble. If you accidentally step past the problem, or if you
didn’t start early enough, no worries: fire up your time machine and pop a little
further backward in time.

Of course, you can’t actually time travel—or, if you can, you’ll have higher
priorities for your time travel powers than fixing bugs in your code. Instead,
you need to fake the ability to time travel, getting the code back into exactly the
situation that will cause the problem, then break into the debugger right before
things go sideways.

There’s often a gap between things starting to go sideways and the bug’s
symptom showing up, so knowing when to break into the debugger is a bit
of a magic trick. If you’re really lucky, the actual underlying problem and the
symptom are one and the same:

void showObjectDetails(const Character * character)
{
 trace(
 "character %s [%s] %s",
 (character) ? character->name() : "",
 character,

168 | THE RULES OF PROGRAMMING

 (character->sourceFile()) ? character->sourceFile() : "");
}

A crash here with a null object is easy to diagnose. The symptom (the
crash) is in the same statement as the actual problem (we’re checking whether
character is null, implying that null objects are supported, but then dereferenc-
ing character with no null check two lines later). With no gap between symptom
and problem, diagnosis is easy.

Or, at some slightly smaller value of “lucky,” the symptom and problem are
neighbors:

int calculateHighestCharacterPriority()
{
 Character * bestCharacter = nullptr;

 for (Character * character : g_allCharacters)
 {
 if (!bestCharacter ||
 character->priority() > bestCharacter->priority())
 {
 bestCharacter = character;
 }
 }

 return bestCharacter->priority();
}

Another null pointer crash, this time if calculateHighestCharacterPriority
is called when no characters exist. The symptom here (crashing with best
Character still null) is separated by a few lines from the problem (the logic of the
preceding loop doesn’t handle an empty characters list).

Here we get the first inkling of the actual process of diagnosing a bug.
Earlier we said that if we could time travel back to the point where things started
going wrong, it would be easy to diagnose the bug. That’s true, and that’s sort
of what we’re doing during diagnosis, but it’s rare to be able to jump all the way
back to the original cause, the point where things started going wrong, all in one
step.

It’s more typical for things to fall apart bit by bit instead of all at once.
Instead of jumping straight back in time to the point where things go wrong,
you’re working backward bit by bit. You identify something that looks wrong,
then work backward to identify when it started looking wrong. That often leads
to something else that looks wrong, another process of working backward, then

FIND THE PEBBLE THAT STARTED THE AVALANCHE | 169

more rounds of the same until you land on the pebble whose tumble started the
whole avalanche that led to your eventual symptom. That’s what diagnosing a
bug is.

I understand if this effort to decompose the process of debugging doesn’t
seem useful. You started with an idea of what debugging is like. You’re a pro-
grammer, and coding is debugging, so you’ve debugged code. Why all this effort
to describe a process that’s obvious?

Well, our goal is to make debugging easier, and we can’t do that without a
crisp definition of what debugging is.

If we define debugging as the process of stepping backward in time, recon-
structing the cascade of things going wrong that eventually lead to the symptom
we’ve detected, then we make debugging easier by making it easier to step
backward in time. Eventually, we work backward to the pebble that started the
avalanche, which is where we’d like to fix things. The easier it is to work back-
ward, the more likely we are to follow the chain of causation to its source.

That’s the thing about avalanches. We don’t have to work all the way back-
ward to the original pebble. We can just fix the symptom, and not worry about
diagnosing our way backward to the cause of that symptom. Faced with the crash
in our second example, we could just add a null pointer check to stomp on the
symptom, the crash when called with no characters:

int calculateHighestCharacterPriority()
{
 Character * bestCharacter = nullptr;

 for (Character * character : g_allCharacters)
 {
 if (!bestCharacter ||
 character->priority() > bestCharacter->priority())
 {
 bestCharacter = character;
 }
 }

 return (bestCharacter) ? bestCharacter->priority() : 0;
}

When working backward is hard, there’s a strong temptation to do exactly
this—to fix the symptom rather than tracing back to its cause. The temptation is
strong because in some sense it works. This code was crashing, and now it’s not.
Your work is done.

170 | THE RULES OF PROGRAMMING

1 So how do you know when you’ve found the pebble and not just another symptom? Well, if you’re not sure
why or when the purported pebble occurs, then you probably haven’t found the pebble and should keep
investigating. But don’t obsess about it—every step uphill toward the actual pebble is helpful.

If we’d done just a little bit more tracing backward, we’d probably realize that
a better fix would be getting rid of the bestCharacter pointer:

int calculateHighestCharacterPriority()
{
 int highestPriority = 0;

 for (Character * character : g_allCharacters)
 {
 highestPriority = max(
 highestPriority,
 character->priority());
 }

 return highestPriority;
}

Most bugs aren’t as simple as this example. Patching the symptom without
tracing backward to the original problem leaves that original problem still lying
in wait, poised to start an avalanche.

In this example, the pebble is a pointer that’s null, but only in a special case.
We wrote code that missed the special case once. We’re likely to miss that special
case again. Better to get rid of the pebble by eliminating the pointer entirely.

The temptation to deal with the symptom rather than its cause exists at
every step along the way of your exploration up the causal chain. As you slowly
work your way backward in time from symptom to cause, and to the cause of
that cause, and then the cause of that cause, at any point you can stomp on a
problem and declare victory. This is a victory of sorts—the eventual symptom
that prompted your debugging disappears.

But declaring victory midway through the avalanche means that the pebble
is still there. At some point it will cause another avalanche, whether you’re the
coder who gets buried or someone else is. The easier we make it to take steps
backward in time, the easier it is to resist the temptation to fix symptoms instead
of tracing back to their root causes. That makes it easier to fix pebbles instead of
patching avalanches.1

FIND THE PEBBLE THAT STARTED THE AVALANCHE | 171

2 This is not a good way to calculate Fibonacci numbers. Don’t use it on a programming test.

Minimizing State

Given this definition of debugging, we can spot the opportunities for
improvement:

Pushing symptoms closer to causes makes tracing upstream easier.
If the cause is nearby in the source code, or if it happened more recently,
then discovering the connection gets easier.

Reducing the length of the causal chain shortens the debugging process.
A symptom that has a single cause is easier to fix than a symptom with
a long cascade of symptoms leading to causes leading to other causes ad
nauseum.

Making it easier to hop backward in time helps trace each link.
If it’s easy to reproduce the state that led to the cause of each symptom, it
will be easy to explore the causal chain.

The easiest target here is the last one listed. Reproducing state is hard if
there’s lots of state. If we reduce the amount of state we need to reproduce, we’ll
have an easier time hopping backward up the causal chain.

It’s easy to debug a problem in a pure function—a function that has no side
effects and depends only on its inputs. If the function returns an incorrect value
for some set of inputs, just call it again with the same inputs and it will return
the same output. Repeat as needed.

Say we’re calculating Fibonacci numbers, and we’ve got a bug. Calculating
Fibonacci numbers is a problem that is only ever solved in programming tests
and whiteboard interviews, but hang with me. Here’s the code.2 The bug report is
that getFibonacci returns the wrong value:

int getFibonacci(int n)
{
 static vector<int> values = { 0, 1, 1, 2, 3, 5, 8, 13, 23, 34, 55 };
 for (int i = values.size(); i <= n; ++i)
 {
 values.push_back(values[i - 2] + values[i - 1]);
 }
 return values[n];
}

172 | THE RULES OF PROGRAMMING

This is a pure function, so reproducing the problem is easy. The only state
it relies on is its argument, so every time we call getFibonacci(8) we’ll get the
same incorrect result, 23 instead of 21. Once we’re stepping into the function,
it’s pretty obvious what’s wrong—we’re priming the values array with the wrong
value. Diagnosis complete.

That’s our first takeaway, then. If you build your code with pure functions,
you’ll have an easier time reproducing state and an easier time debugging
problems.

Let’s look at a more complicated scenario. Imagine we’ve got a Character
method that returns a “threat” value based on that character’s current weapon,
armor, health level, status effects, and so on. We could write code to maintain
that threat value as state in the character:

struct Character
{
 void setArmor(Armor * armor)
 {
 m_threat -= m_armor->getThreat();
 m_threat += armor->getThreat();
 m_armor = armor;
 }

 void setWeapon(Weapon * weapon)
 {
 m_threat -= weapon->getThreat();
 m_threat += weapon->getThreat();
 m_weapon = weapon;
 }

 void setHitPoint(float hitPoints)
 {
 m_threat -= getThreatFromHitPoints(m_hitPoints);
 m_threat += getThreatFromHitPoints(hitPoints);
 m_hitPoints = hitPoints;
 }

 int getThreat() const
 {
 return m_threat;
 }

protected:

 int m_threat;
 Armor * m_armor;
 Weapon * m_weapon;

FIND THE PEBBLE THAT STARTED THE AVALANCHE | 173

 float m_hitPoints;
};

There’s a bug in this code, reported as something like “player doesn’t appear
threatened by an enemy with a +1 Sword of Grievous Wounding.” Luckily this
bug is easy to reproduce manually. If you walk up to the enemy holding the
magic sword, the player character still plays his unconcerned animation instead
of looking ready for action.

The preceding code isn’t where that symptom shows up, of course. The
actual symptom in this case is the player character playing an inappropriate
animation, looking unconcerned when they should be looking threatened. We’ve
already traced a few steps upstream in the causal chain before we hit our example
code, but when we do we find that m_threat doesn’t have the right value.

So now we need to figure out why it doesn’t have the right value! We’ve got
to do the magic trick of jumping backward in time, reproducing the state that led
to m_threat being set to the wrong value.

And that’s tricky in this case. The code isn’t “nearby,” like it was in the prior
simple examples. Nor is it “recent.” At some point in the past, we set m_threat to
the wrong value, but we’re not sure when.

That’s the problem with stateful code. You don’t detect problems until long
after things have gone sideways, and this delay between cause and symptom
makes diagnosing the problem difficult. In this case, we know that m_threat has
the wrong value, but we’re not sure why or when that incorrect value was set.

If you follow the advice about audit functions in Rule 2, then diagnosing the
problem is cake. Add a call to the audit function whenever you’re updating the
character’s state:

struct Character
{
 void setWeapon(Weapon * weapon)
 {
 m_threat -= weapon->getThreat();
 m_threat += weapon->getThreat();
 m_weapon = weapon;
 audit();
 }

 void audit() const
 {
 int expectedThreat = m_armor->getThreat() +
 m_weapon->getThreat() +
 getThreatFromHitPoints(m_hitPoints);

174 | THE RULES OF PROGRAMMING

 assert(m_threat == expectedThreat);
 }
};

If we do this, then the audit function asserts at the end of setWeapon. Face
palm; we meant to subtract the threat from the old weapon before adding the
threat from the new weapon. It’s no wonder the player character was so blasé.

Without the help of an audit function, diagnosing the problem is decidedly
not cake. You probably end up placing breakpoints on all the lines where
m_threat is set, then running the code and verifying the state each time you hit
one of those breakpoints. Tedious, and in this case easily avoided—you shouldn’t
have been maintaining m_threat as a bit of state. Don’t add state unless it’s
absolutely necessary.

Contrast with a similar bug in stateless code:

struct Character
{
 void setArmor(Armor * armor)
 {
 m_armor = armor;
 }

 void setWeapon(Weapon * weapon)
 {
 m_weapon = weapon;
 }

 void setHitPoint(float hitPoints)
 {
 m_hitPoints = hitPoints;
 }

 int getThreat() const
 {
 return m_armor->getThreat() -
 m_weapon->getThreat() +
 getThreatFromHitPoints(m_hitPoints);
 }

protected:

 Armor * m_armor;
 Weapon * m_weapon;
 float m_hitPoints;
};

FIND THE PEBBLE THAT STARTED THE AVALANCHE | 175

3 This is movie logic. Arrows don’t have that much energy. They’re not going to knock anything bigger than
a squirrel backward. But it’s what everyone playing video games expects, so there you go.

With the stateless code, we have a clear plan of action when we discover
Character::getThreat is returning the wrong value. Walk up to the enemy with
the magic sword, then set a breakpoint on getThreat. Diagnosis is easy—there’s
an errant minus sign where a plus sign was clearly intended. Reducing the
amount of state made diagnosis much easier.

We haven’t eliminated state entirely from Character. The state that
remains—the character’s armor, weapon, and current hit points—is sort of the
point of the Character object. It’s irreducible.

That’s true for a lot of video game code, where we’re modeling real-world
objects with virtual analogs, and those objects have state. Like an object’s position
and velocity, or the player’s current hit points, or what magic gems are slotted
into the player’s magic sword. That’s all state, and it’s not easily eliminated.

But where you can get rid of state, do. State makes debugging harder, and
coding is debugging. Where possible, build behavior out of pure functions. It’s
easier to get the details correct, and when things go wrong problems are a lot
easier to diagnose.

Dealing with Unavoidable State

When state is unavoidable it makes diagnosing problems more complicated.
Imagine you’re diagnosing a problem—characters sometimes react inappropri-
ately to arrow impacts. They’re expected to stumble backward,3 but sometimes
they stumble forward instead.

Hmm. There’s a suggestive word in that bug description…“sometimes” tells
you that the problem is probably related to the state of the interacting objects—
my guess would be the problem is inside the character, which probably has the
most state, though the arrow is also a possibility. Diagnosing the problem is
going to require reproducing that state.

That might be easy! If the bug is showing up 100% of the time in one of
your unit tests, you’re home free. The unit test is creating the state that leads to
the incorrect behavior, which makes diagnosis straightforward. Set a breakpoint
that fires when the ill-fated arrow hits the character and start debugging—you
might need to explore up the causal stream to find the pebble that started the
avalanche, but the hard part of each step backward in time is reproducing state,
and the unit test is taking care of that for you.

176 | THE RULES OF PROGRAMMING

Or maybe you’re slightly less lucky. You don’t have an automated test, but
given a few tries you can reproduce the problem manually, and you can detect
the problem when it occurs.

In the Sucker Punch engine there’s an object that maps every damage record
to an appropriate reaction—that’s where the code decides what a character does
when an arrow thunks into them. We can detect the problem in the mapping
code—we just need to add code that makes sure the impact velocity of the arrow
and the character stumble direction point in the same direction:

void DamageArbiter::getDamageReaction(
 const Damage * damage,
 Reaction * reaction) const
{
 // All the actual logic for mapping damage to reactions goes here.
 // There's a single function that does this in the Sucker Punch
 // engine. That function is nearly 3000 lines long and is not the
 // purest embodiment of the Rules, though to be fair it's solving
 // a very complicated problem.

 if (damage->isArrow())
 {
 assert(reaction->isStumble());
 Vector arrowVelocity = damage->impactVelocity();
 Vector stumbleDirection = reaction->stumbleDirection();
 assert(dotProduct(arrowVelocity, stumbleDirection) > 0.0f);
 }
}

When this assert fires, you’re in good shape to diagnose the problem.
The getDamageReaction function is relatively pure—it returns the same

Reaction every time for any bit of Damage, and it doesn’t have side effects, but
it also makes decisions based on the state of arbitrary objects in the world. That
sounds like a disaster—do we have to reproduce the state of every single object in
the world in order to reproduce the problem?

That’s why it’s important that we detect the problem early, before we return
from getDamageReaction. That lets us diagnose the problem. The function has no
side effects, so the state of all the objects in the world hasn’t changed. If we call
getDamageReaction again immediately, we should get the same result.

In the olden days I’d insert code to handle this. When the problem is detec-
ted, break into the debugger to let me start single-stepping, then call the pure
function recursively:

FIND THE PEBBLE THAT STARTED THE AVALANCHE | 177

void DamageArbiter::getDamageReaction(
 const Damage * damage,
 Reaction * reaction) const
{
 // All the actual logic for mapping damage to reactions goes here.
 // There's a single function that does this in the Sucker Punch
 // engine. That function is nearly 3000 lines long and is not the
 // purest embodiment of the Rules, though to be fair it's solving
 // a very complicated problem.

 if (damage->isArrow())
 {
 assert(reaction->isStumble());
 Vector arrowVelocity = damage->impactVelocity();
 Vector stumbleDirection = reaction->stumbleDirection();
 if (dotProduct(arrowVelocity, stumbleDirection) <= 0.0f)
 {
 assert(false);

 static bool s_debugProblem = CHRISZ;
 if (s_debugProblem)
 {
 getDamageReaction(damage, reaction);
 }
 }
 }
}

These days, I can be more improvisatory. The IDE we use at Sucker Punch
lets me set the next line to execute whenever I’m stopped on a line in the
debugger. This is not without some danger, since randomly jumping around in
the code can create its own problems, but given some care it works well. If I
realize I’ve hit a problem, especially in a pure function, I can pop backward in
the code to identify the cause of the problem. This ability transforms diagnosis. A
single step backward in time that was difficult to execute has become easy. If the
underlying cause of the problem is local—recent, and nearby in the code—then
it’s easy to find.

Eliminating state doesn’t have to be an all-or-nothing thing. Making some
bit of code completely stateless will make it easier to diagnose problems, even if
nearby code still maintains state. Every little bit of state you eliminate helps.

Dealing with Unavoidable Delay

In the examples we’ve looked at so far, we could detect the symptom mechan-
ically. If we crashed, then the problem sort of detected itself. If our code is
self-policing through asserts, then it detects its own problems. In cases like

178 | THE RULES OF PROGRAMMING

our arrow example, we noticed the problem through manual testing, but could
translate the problem into an assert in the code.

Detecting symptoms like this isn’t always possible, and this complicates
diagnosis. Sometimes the symptom isn’t immediately apparent.

Here’s a Sucker Punch example—debugging problems in our animation
code. The movement of characters in our games is driven by animations created
by our animation team. Each animation describes where each part of the charac-
ter’s body moves as a function of time. Say, at 1.5 seconds into the animation, the
left hand goes exactly here and is oriented exactly like this; at 1.53 seconds into
the animation, it’s moved slightly up and rotated forward a tiny bit. And so on,
for each of the six hundred or so parts of the character body we manage, every
sixtieth of a second as long as the animation lasts.

Each animation on its own is a pure function. It doesn’t rely on any external
state, or have any side effects. All it cares about is its sole input variable, the exact
time within the animation’s timeline we’re evaluating. If we repeatedly evaluate
the animation with the same input variable, we’ll repeatedly get the same body
position.

It’s not quite that simple, though. When we switch from one animation to
another—when a character who is running decides to jump, say—then we don’t
just cut over to the new animation. That would cause the character’s body to pop
into a new position, which looks bad. Instead, we smoothly transition from the
old animation to the new one.

Smoothing makes things more complicated because it relies on the charac-
ter’s current body position as well as the position in the animation timeline. For
us to reproduce a problem in smoothing, we need the position and orientation
of all six hundred or so parts of the character’s body we manage as well as that
single timeline value for the animation.

Wait, it gets worse! While our brains are really good at detecting glitches in
animations, it takes a while for us to realize we’ve seen a problem, and we’re
reevaluating the animation sixty times a second. By the time we realize that
something looked wrong, we’ve reevaluated the animation a dozen times, and
whatever state caused the animation glitch is long lost.

There’s a solution, though it’s an expensive one. Animation smoothing relies
on a lot of state, but at least it’s state we can identify. If we captured all of
that state every time we evaluated the animation, then we could reevaluate the
animation smoothing using that state to diagnose problems.

FIND THE PEBBLE THAT STARTED THE AVALANCHE | 179

And in fact that’s what we do. Because glitch-free animation is an absolute
requirement, we’ve invested in debugging animations. We capture all the charac-
ter state that affects animation every frame, and have a debugging tool that lets
us scroll back and forth over recent evaluations of the animation. When we see
a glitch, we can pause the game, fire up the animation debugging tool, scroll
backward in time to the glitch, then break into the debugger to start tracing from
symptom to cause up the causal chain.

With this tool we automated the hard part of debugging—reproducing the
state that led to the problem. If you’ve got code that relies on state, but that state
can be scoped, then capturing the state makes debugging a lot easier.

Think of this technique as creating an executable logfile—a logfile that
doesn’t just describe what happened, but contains all the data necessary to
cause that same thing to happen again. If you’ve built your system out of pure
functions, then building an executable logfile is completely plausible. You just
capture all of the inputs and provide a way to play them back.

This isn’t easy to do, but for crucially important and hard-to-debug problems
like animation quality at Sucker Punch, it’s worth the effort.

180 | THE RULES OF PROGRAMMING

Code Comes in
Four Flavors

Here’s an incredibly oversimplified but still useful model for thinking about
code. Imagine that there are two kinds of programming problems to be solved—
Easy and Hard.

You’ve already got an idea of what an Easy problem is, but let me give you
some generic examples: Finding the largest and smallest values in an array of
numbers. Inserting a node into a sorted binary tree. Removing odd values from
an array.

Hard problems are also easy to identify: memory allocation, for instance—
implementing the C standard library’s malloc and free. Parsing a scripting
language. Writing a linear-constraints problem solver.

Now, Easy and Hard, as I’ve defined them here, are really only two points on
a spectrum, and they aren’t even the extreme points. Some problems are trivial,
even easier than the Easy examples—summing two numbers, say. And there
are problems much harder than the Hard examples, like creating a journaling
filesystem from scratch.

But they’re two useful points. Between Easy and Hard lie most of the prob-
lems programmers solve every day. For what it’s worth, I’ve written solutions
to all of these examples—except building a journaling filesystem from scratch,
although that sounds like fun.

It seems obvious that you’re going to need to write more code to solve a
Hard problem than to solve an Easy one, and that the code you’ll write will be
more complicated. This is often the case. Solutions to Hard problems are usually
more difficult to write, and end up longer and more complicated than solutions
to Easy problems.

181

| Rule 14

That leads to another oversimplified model. This time, imagine that there are
two kinds of solutions to problems: Simple and Complicated. Simple solutions
are short and easy to understand. Complicated solutions are long and difficult to
understand. Again, these are just two points on a spectrum. There are obviously
Moderately Complicated or Simple-ish solutions, too, but it’s useful to think
about the Simple and Complicated points on that spectrum.

You’re a programmer, so at this point you’ve figured out how we get to four
flavors of code (Table 14-1), per the Rule title.

Table 14-1. Simple and Complicated solutions to Easy and Hard problems

 Easy problem Hard problem

Simple solution Expected Aspirational

Complicated solution Really, really bad Accepted

It’s obvious that there are Simple solutions to Easy problems, and that there
are Complicated solutions to Hard problems. From personal experience, we
can all attest that it’s distressingly easy to write Complicated solutions to Easy
problems. And, in some cases, it’s possible to write Simple solutions to Hard
problems.

Per Rule 1, we’d like to find solutions that are as simple as possible, so it’s
clear where this Rule is headed! But let’s look at some examples.

Easy Problem, Simple Solution

Let’s start with an example of an Easy problem—finding the largest and smallest
values in an array. Here is a Simple solution to this Easy problem:

struct Bounds
{
 Bounds(int minValue, int maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }

 int m_minValue;
 int m_maxValue;
};

Bounds findBounds(const vector<int> & values)
{
 int minValue = INT_MAX;
 int maxValue = INT_MIN;

 for (int value : values)

182 | THE RULES OF PROGRAMMING

 {
 minValue = min(minValue, value);
 maxValue = max(maxValue, value);
 }

 return Bounds(minValue, maxValue);
}

The algorithm is simple—it just loops through the values, tracking the larg-
est and smallest values it finds. There’s some very minor subtlety about how
to get started—I’m using a fairly standard trick to make sure the first element
sets both minValue and maxValue. Other than that, the code is easy to follow and
understand. It’s appropriately simple.

Easy Problem, Three Complicated Solutions

It’s entirely possible to take exactly the same algorithm and make the code much
more complicated. We’ve all seen code that buries a simple algorithm under
multiple layers of abstractions, like this:

enum EmptyTag
{
 kEmpty
};

template <typename T> T MinValue() { return 0; }
template <typename T> T MaxValue() { return 0; }

template <> int MinValue<int>() { return INT_MIN; }
template <> int MaxValue<int>() { return INT_MAX; }

template <class T>
struct Bounds
{
 Bounds(const T & value)
 : m_minValue(value), m_maxValue(value)
 { ; }
 Bounds(const T & minValue, const T & maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }
 Bounds(EmptyTag)
 : m_minValue(MaxValue<T>()), m_maxValue(MinValue<T>())
 { ; }

 Bounds & operator |= (const T & value)
 {
 m_minValue = min(m_minValue, value);
 m_maxValue = max(m_maxValue, value);

CODE COMES IN FOUR FLAVORS | 183

 return *this;
 }

 T m_minValue;
 T m_maxValue;
};

template <class T>
struct Range
{
 Range(const T::iterator & begin, const T:: & end)
 : m_begin(begin), m_end(end)
 { ; }

 const T & begin() const
 { return m_begin; }

 const T & end() const
 { return m_end; }

 T m_begin;
 T m_end;
};

template <class T>
Range<typename vector<T>::iterator> getVectorRange(
 const vector<T> & values,
 int beginIndex,
 int endIndex)
{
 return Range<vector<T>::const_iterator>(
 values.begin() + beginIndex,
 values.begin() + endIndex);
}

template <class T, class I>
T iterateAndMerge(const T & init, const I & iterable)
{
 T merge(init);

 for (const auto & value : iterable)
 {
 merge |= value;
 }

 return merge;
}

void findBounds(const vector<int> & values, Bounds<int> * bounds)
{

184 | THE RULES OF PROGRAMMING

 *bounds = iterateAndMerge(
 Bounds<int>(kEmpty),
 getVectorRange(values, 0, values.size()));
}

This is exactly the same algorithm, though there’s a lot to dig through to
convince yourself of that. The code is well-meaning, at least. There’s nothing
egregious here—we’re not exploiting any particularly weird quirks of C++, with
template specialization being as fancy as things get. The names are all descrip-
tive. You can imagine the justification for each line, with a little squinting.

And yet…it’s four times as much code, and it’s a lot harder to follow and
understand than the simple example we started with. It’s Complicated code, at
least relative to the problem we’re solving. Our previous example was appropri-
ately Simple; this example is inappropriately Complicated.

That’s only one way to overcomplicate the solution, obviously. We’ve also all
seen code that oversteps the problem it attempts to solve:

struct Bounds
{
 Bounds(int minValue, int maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }

 int m_minValue;
 int m_maxValue;
};

template <class COMPARE>
int findNth(const vector<int> & values, int n)
{
 priority_queue<int, vector<int>, COMPARE> queue;
 COMPARE compare;

 for (int value : values)
 {
 if (queue.size() < n)
 {
 queue.push(value);
 }
 else if (compare(value, queue.top()))
 {
 queue.pop();
 queue.push(value);
 }
 }

 return queue.top();

CODE COMES IN FOUR FLAVORS | 185

1 Its performance is atrocious, too, but having told you not to worry about optimization in Rule 5, I feel
duty-bound to demote the performance concern to a footnote. In my defense, the simplest solution here
is the fastest, and that is not uncommon.

}

void findBounds(const vector<int> & values, Bounds * bounds)
{
 bounds->m_minValue = findNth<less<int>>(values, 1);
 bounds->m_maxValue = findNth<greater<int>>(values, 1);
}

Here we’ve chosen to solve a more general problem, finding the Nth largest
(or smallest) number in an array, and then finding the min and max values as
a special case. This sort of overly general approach is almost always misguided.
Yes, there’s not that much extra code, and it’s more fun to write something clever
like this than a simpler solution, but it’s a lot harder to read.1

Finally, it’s possible to overcomplicate things by getting the algorithm wrong.
That’s hard to do in this case, since the simple solution is pretty obvious, but
we’ve all seen code that misses the easy algorithm:

struct Bounds
{
 Bounds(int minValue, int maxValue)
 : m_minValue(minValue), m_maxValue(maxValue)
 { ; }

 int m_minValue;
 int m_maxValue;
};

int findExtreme(const vector<int> & values, int sign)
{
 for (int index = 0; index < values.size(); ++index)
 {
 for (int otherIndex = 0;; ++otherIndex)
 {
 if (otherIndex >= values.size())
 return values[index];

 if (sign * values[index] < sign * values[otherIndex])
 break;
 }
 }

 assert(false);
 return 0;

186 | THE RULES OF PROGRAMMING

}

void findBounds(const vector<int> & values, Bounds * bounds)
{
 bounds->m_minValue = findExtreme(values, -1);
 bounds->m_maxValue = findExtreme(values, +1);
}

So, in all, these are three pretty commonplace ways to make things more
complicated than they need to be: using too much abstraction, adding too much
generality, and choosing the wrong algorithm.

The Cost of Complexity

There’s a real cost to extra complexity. It takes longer to write complicated code
than simple code, and much longer to debug it. Anyone reading the code has
to fight their way through the complexity to understand what’s going on. Our
Simple solution has none of these problems—it’s easy to get it right the first
time, and it’s easy to glance at it and understand both how it works and that it’s
correct.

In fact, this single issue—do you solve Easy problems with Simple solu-
tions?—is the best discriminator between mediocre programmers and good
ones. When we interview candidates at Sucker Punch, we look for two things:
can the candidate solve Hard problems, and do they write Simple solutions for
Easy problems? Unless the answer is yes to both of these questions, we’re not
interested.

Someone writing Complicated solutions to Easy problems isn’t just making
their own job harder, they’re making it harder for everyone else on the team. Not
only do their solutions take more time to create and introduce more bugs into the
codebase, those solutions are more difficult and frustrating for everyone else to
work with. We can’t afford that.

The Four (But Really Three) Kinds of Programmers

Just like there are four flavors of code—Easy and Hard problems, Simple and
Complicated solutions—there are four kinds of programmers. Given an Easy
problem, do you write a Simple answer or a Complicated solution? And given a
Hard problem, is your solution Simple or Complicated?

Now it turns out that there really aren’t coders who write Simple solutions to
Hard problems but Complicated solutions to Easy ones. That leaves us with three
kinds of programmers, as Table 14-2 makes clear.

CODE COMES IN FOUR FLAVORS | 187

Table 14-2. Three kinds of programmers

Kind of programmer Easy problem Hard problem

Mediocre Complicated Complicated

Good Simple Complicated

Great Simple Simple

The difference between mediocre programmers and good ones is that good
programmers write Simple answers to Easy problems. The difference between
good programmers and great ones is that even as the problem gets Harder, the
great programmer still finds a Simple solution.

At some point, problems get Hard enough that there are no Simple solutions
to be found. The best measure of a programmer, then, is how far along this spec-
trum they can go before their solutions start getting Complicated. The farther
along the spectrum they make it and the Harder the problems they can solve
with Simple solutions, the better they are as a programmer.

In fact, you can look at this another way. The core skill of a great program-
mer is that they recognize when a problem that seems Hard is actually Easy, if
considered from the right perspective.

Hard Problem, Somewhat Complicated Solutions That Don’t Work

Consider the problem of checking whether any permutation of a particular set
of letters (let’s say “abc”) appears in a string. That is, given a “permute string”
that represents a set of letters, does some ordering of those letters appear con-
secutively in another “search string”? For the permute string abc, the function
should return true if the search string is cabbage or abacus, but false if the
search string is scramble or brackish.

It’s not obvious how to solve this, right? The most obvious thing to do would
be to generate all the permutations of the set of letters, then check whether
any of them appear in the string. Generating permutations recursively is pretty
simple. Grab each character from the permute string in turn, prepending it to all
the permutations of the remaining characters in the search string. Here’s a first
attempt at this:

vector<string> generatePermutations(const string & permute)
{
 vector<string> permutations;

 if (permute.length() == 1)
 {

188 | THE RULES OF PROGRAMMING

2 Well, not “never.” With 4 letters, generatePermutations is so fast it’s hard to measure on my PC. With 8
letters, it takes about a hundredth of a second. With 12 letters, I had to wait 42 seconds, during which my
PC’s fan kicked on full blast in a desperate attempt to stop me from melting something.

 permutations.push_back(permute);
 }
 else
 {
 for (int index = 0; index < permute.length(); ++index)
 {
 string single = permute.substr(index, 1);
 string rest = permute.substr(0, index) +
 permute.substr(
 index + 1,
 permute.length() - index - 1);

 for (string permutation : generatePermutations(rest))
 {
 permutations.push_back(single + permutation);
 }
 }
 }

 return permutations;
}

bool findPermutation(const string & permute, const string & search)
{
 vector<string> permutations = generatePermutations(permute);
 for (const string & permutation : permutations)
 {
 if (search.find(permutation) != string::npos)
 return true;
 }

 return false;
}

The logic here is pretty simple, and things seem to work…until the permute
string gets a teensy bit long. At that point things explode. The number of permu-
tations is factorial in the length of the string, so our findPermutation function
quickly becomes unusable. Give it a list of four characters to permute, as in
our example, and it’s happy as a clam. Give it a dozen and it disappears into a
recursive hole, never to return.2

CODE COMES IN FOUR FLAVORS | 189

A naive reaction to this explosion would be to realize that I’m doing extra
work. If any of the characters in the list are duplicated, then I’ll have duplicate
entries in the list of permutations. Maybe eliminating duplicates from the list of
permutations would help:

vector<string> generatePermutations(const string & permute)
{
 vector<string> permutations;

 if (permute.length() == 1)
 {
 permutations.push_back(permute);
 }
 else
 {
 for (int index = 0; index < permute.length(); ++index)
 {
 string single = permute.substr(index, 1);
 string rest = permute.substr(0, index) +
 permute.substr(
 index + 1,
 permute.length() - index - 1);

 for (string permutation : generatePermutations(rest))
 {
 permutations.push_back(single + permutation);
 }
 }
 }

 sort(
 permutations.begin(),
 permutations.end());
 permutations.erase(
 unique(permutations.begin(), permutations.end()),
 permutations.end());

 return permutations;
}

Yeah, not so much. I didn’t add that much code, which is great, and the code
I added is simple, but I didn’t really address the core problem. It’s not possible to
optimize your way out of a factorial mess. Unless all of our sets of characters to
permute are small or are mostly duplicated letters, this code is still unworkable.

190 | THE RULES OF PROGRAMMING

Hard Problem, Somewhat Complicated Solution

A better change is to let go of the idea that we’re going to generate all the
permutations. That approach is doomed.

Instead, we need to invert the way we’re thinking about the problem. Let’s
check each substring of the search string. If we can match each character in
the permute string to a single character in that substring, then we’ve found a
permutation:

bool findPermutation(const string & permute, const string & search)
{
 int permuteLength = permute.length();
 int searchLength = search.length();

 vector<bool> found(permuteLength, false);

 for (int lastIndex = permuteLength;
 lastIndex < searchLength;
 ++lastIndex)
 {
 bool foundPermutation = true;

 for (int searchIndex = lastIndex - permuteLength;
 searchIndex < lastIndex;
 ++searchIndex)
 {
 bool foundMatch = false;

 for (int permuteIndex = 0;
 permuteIndex < permuteLength;
 ++permuteIndex)
 {
 if (search[searchIndex] == permute[permuteIndex] &&
 !found[permuteIndex])
 {
 foundMatch = true;
 found[permuteIndex] = true;
 break;
 }
 }

 if (!foundMatch)
 {
 foundPermutation = false;
 break;
 }
 }

CODE COMES IN FOUR FLAVORS | 191

 if (foundPermutation)
 return true;

 fill(found.begin(), found.end(), false);
 }

 return false;
}

This works, though the logic of the nested loops is a little tangled. You
might get twinges of performance anxiety seeing the three nested loops—our
first attempt at this function failed because of performance, after all—but in
practice the N3-ness of this approach isn’t an issue. Unless the permute string is
a thousand characters long, performance won’t be the problem here.

If there’s an issue here, it’s the complexity of the logic. This is a Simple
example, sized to fit this book, so the problem we’re solving isn’t actually that
Hard. You might hope that we could find a Simple solution to it, and the preced-
ing solution doesn’t quite qualify. It’s the sort of solution a Good programmer
would write—completely functional, but more complicated than it needs to be.

Actually, a more typical solution from a Good programmer would include
a spasm of premature optimization to avoid the three nested loops. They might
keep running counts, for instance, then hash the set of counts to roughly linea-
rize the function:

#define LARGE_PRIME 104729

bool findPermutation(const string & permute, const string & search)
{
 int permuteCounts[UCHAR_MAX] = {};
 int currentCounts[UCHAR_MAX] = {};

 int permuteHash = 0;
 int currentHash = 0;

 for (unsigned char character : permute)
 {
 ++permuteCounts[character];
 permuteHash += character * (character + LARGE_PRIME);
 }

 int permuteLength = permute.length();
 int searchLength = search.length();

 if (searchLength < permuteLength)
 return false;

192 | THE RULES OF PROGRAMMING

 for (int searchIndex = 0; searchIndex < permuteLength; ++searchIndex)
 {
 unsigned char character = search[searchIndex];

 ++currentCounts[character];
 currentHash += character * (character + LARGE_PRIME);
 }

 for (int searchIndex = permuteLength;; ++searchIndex)
 {
 if (currentHash == permuteHash)
 {
 bool match = true;

 for (char character : permute)
 {
 if (permuteCounts[character] != currentCounts[character])
 match = false;
 }

 if (match)
 return true;
 }

 if (searchIndex >= searchLength)
 break;

 unsigned char removeCharacter = search[searchIndex - permuteLength];
 unsigned char addCharacter = search[searchIndex];

 --currentCounts[removeCharacter];
 currentHash -= removeCharacter * (removeCharacter + LARGE_PRIME);

 ++currentCounts[addCharacter];
 currentHash += addCharacter * (addCharacter + LARGE_PRIME);
 }

 return false;
}

Again, this is functional, just overly Complicated. Under some conditions, it
will have better performance than the last solution…but that doesn’t matter. The
last solution had perfectly reasonable performance and is easier to understand.

Hard Problem, Simple Solution

But is there a simpler solution, one that’s easy to read and understand? What
separates Great programmers from Good programmers is finding those sorts of
solutions.

CODE COMES IN FOUR FLAVORS | 193

In this case, the algorithm we’re using is fine—checking each substring of
the search string to see whether it’s a permutation of the permute string—it’s
our expression of that algorithm that’s getting tangled. But there’s a simpler way
to think about checking for a match.

If we standardize the order of the letters in the permute string, then similarly
standardize the order of each substring we compare it to, we can just compare
the two standardized strings:

bool findPermutation(const string & permute, const string & search)
{
 int permuteLength = permute.length();

 string sortedPermute = permute;
 sort(sortedPermute.begin(), sortedPermute.end());

 for (int index = permuteLength; index < search.length(); ++index)
 {
 string sortedSubstring = search.substr(
 index - permuteLength,
 permuteLength);
 sort(sortedSubstring.begin(), sortedSubstring.end());

 if (sortedPermute == sortedSubstring)
 return true;
 }

 return false;
}

We haven’t changed the fundamental algorithm here, but expressing it this
way makes it much easier to understand. It’s Simple where the last example
was Complicated. A Great programmer finds simple and clear solutions like this
one—and realizes that simplicity and clarity are almost always the important
issues. The Greatest programmer isn’t the one who can write the most compli-
cated code: it’s the one who finds the simplest answers to the most complicated
problems.

194 | THE RULES OF PROGRAMMING

Pull the Weeds

When my daughters were young, we had a Nintendo GameCube. It turns out
that one side effect of having a dad who makes video games for a living is that
your house is fully equipped with every single video game console. My children
did not realize until much later that not everyone’s house was like this.

Our favorite game was Animal Crossing, a game in which the three of us
shared a small village filled with anthropomorphized animals. You could do all
kinds of things in the village—dig for fossils, design new clothes, decorate your
house, gather seashells, go fishing, make friends with the animals who lived in
the town, or just kick back and listen to KK Slider play his guitar.

One of the things you sort of needed to do in Animal Crossing was pull
weeds. Every night, a few weeds would pop up in your village, whether you’d
played the game that day or not. Pulling weeds was easy—run over to the weed,
push a button, and pop! The weed’s out of the ground. But you needed to keep
up. The weeds kept growing whether you pulled them or not. The weeds even
grew on days you didn’t play the game! If you stopped pulling weeds, the weeds
took over.

They’re still making Animal Crossing games 20 years later. Tens of millions
of people have played some iteration of the game, and every single one has
had the same experience—you come back to the tidy little village you’ve worked
so hard on after a few weeks away, and it’s completely overgrown with weeds.
Twenty years later, I can still feel the pain.

Your project is like that village. You’ve got to pull the weeds—the little bits
of annoyance that continually sprout in any codebase. Every day, whether you’re
working on the project or not, whether you’re pulling weeds or not, more weeds
are growing. If you don’t pull the weeds, they’ll choke the project.

So what are the weeds in this metaphor? They’re small problems that are
easy to fix, but also easy to ignore. Think of the weeds in Animal Crossing—

195

| Rule 15

pulling them is as easy as pushing a button. Pulling a weed doesn’t have side
effects. It doesn’t cause problems elsewhere. All that changes is that you have
one less weed.

Here’s a weedy bit of code:

// @brief Remove duplicate integers from a vector
//
// @param values Integer vector to compress

template <class T>
void compressVector(
 vector<T> & values,
 bool (* is_equal)(const T &, const T &))
{
 if (values.size() == 0)
 return;

 int iDst = 1;

 for (int iSrc = 1, c = values.size(); iSrc < c; ++iSrc) {
 // Check for unqiue values
 if (!is_equal(values[iDst - 1], values[iSrc]))
 {
 values[iDst++] = values[iSrc];
 }
 }

 values.resize(iDst);
}

There are a couple of obvious problems with the comments in this code.
The header comment doesn’t match the function, to begin with. It looks like this
started as a function that compressed duplicate values from a vector of integers,
and whoever adapted it into a template forgot to update the comment. On top of
that, the comment itself is too vague—we’re not removing all duplicate values,
we’re removing adjacent duplicates. Unless the array is sorted, those aren’t the
same thing. To complete the trifecta, there’s a spelling mistake in the second
comment. With those problems fixed:

// @brief Compress sequences of equal values in a vector
//
// For any sequence of values in the vector considered equal, keep only
// the first value in that sequence, removing the duplicates.
//
// @param values Vector to compress
// @param is_equal Comparison function to use

196 | THE RULES OF PROGRAMMING

template <class T>
void compressVector(
 vector<T> & values,
 bool (* is_equal)(const T &, const T &))
{
 if (values.size() == 0)
 return;

 int iDst = 1;

 for (int iSrc = 1, c = values.size(); iSrc < c; ++iSrc) {
 // Check for unique values
 if (!is_equal(values[iDst - 1], values[iSrc]))
 {
 values[iDst++] = values[iSrc];
 }
 }

 values.resize(iDst);
}

Fixing these problems is pulling weeds. It’s easy to do. Repairing the com-
ments won’t cause problems elsewhere. And I’ve made the code better—fixing
the ambiguity of the comment is likely to save somebody a bug at some point.

I could do more, though. There are some naming and formatting issues
sprinkled in, too. The i and c variables aren’t following standard conventions—
this project uses index and count, not one-letter conventions. The is_equal
argument ought to be isEqual to match the project’s function naming style. The
curly braces aren’t consistent, and this project’s conventions frown on packing
multiple arguments into the for statement. The conventions also expect blank
lines after comments, which the second comment doesn’t have.

All easy to fix:

// @brief Compress sequences of equal values in a vector
//
// For any sequence of values in the vector considered equal, keep only
// the first value in that sequence, removing the duplicates.
//
// @param values Vector to compress
// @param isEqual Comparison function to use

template <class T>
void compressVector(
 vector<T> & values,
 bool (* isEqual)(const T &, const T &))
{
 int count = values.size();

PULL THE WEEDS | 197

 if (count == 0)
 return;

 // Copy values that aren't equal to their predecessor

 int destIndex = 1;
 for (int sourceIndex = 1; sourceIndex < count; ++sourceIndex)
 {
 if (!isEqual(values[destIndex - 1], values[sourceIndex]))
 {
 values[destIndex++] = values[sourceIndex];
 }
 }

 values.resize(destIndex);
}

This round of changes was also safe, though not as safe as the comment
changes made in the first round. It’s possible to introduce a bug with these sorts
of changes—mistyping a sourceIndex when you meant destIndex, say. Unlikely,
but possible.

Weed Identification

It’s safety that defines whether an issue you spot is a weed or not. If you can fix
it safely, then it’s a weed that should be pulled. Fixing a spelling problem in a
comment is absolutely safe. For a more substantive mistake in a comment, like
the ambiguity we cleaned up in our first round of changes, fixing the problem is
also safe…as long as you’re actually right about what the function does!

You can fix naming issues safely, too. Doing a search + replace over a section
of your source code will work, and the compiler will probably catch any mistakes
you make, at least for compiled languages like C++.

In the second round of changes, I moved some variables around when I
renamed them. That was safe-ish, but less safe than the other changes. Still a
weed, probably, but getting less weedy.

There’s a spectrum here, obviously! None of the changes I’ve made so far
are functional—the compiler will generate the same code, more or less. We’ve
improved its readability and consistency without affecting its functionality.

You can imagine more substantive changes that still don’t affect the code’s
functionality—like changing the name of a class member, which requires match-
ing changes in many source files, or writing a new expected-usage comment
for a class. As long as the functionality of the code isn’t affected, it’s a weed.
Changes that shouldn’t change functionality as long as you get the details right,

198 | THE RULES OF PROGRAMMING

1 Per the gardener’s maxim, “A weed is just a plant in the wrong place.” Which reminds me of the time I
decided to surprise my wife by weeding her vegetable garden for her. The surprise in that case was that I
pulled out all of the asparagus she’d recently planted. If my goal was to never be asked to weed anything
ever again…mission accomplished.

like moving or renaming a variable, are probably still weeds, but a little more
caution is called for.

When you are intentionally changing functionality, it’s not a weed anymore:
it’s a bug, and different rules apply. You pull weeds automatically; fixing bugs
isn’t as automatic, because doing so often introduces new problems. By defini-
tion, fixing a weed doesn’t introduce new problems.

Pulling weeds is easy, and a weed-free codebase is much more pleasant to
work in...so why do most projects have so many weeds?

How Code Gets Weedy

Well, it’s easy to pull a weed, but it’s just as easy to ignore it. We all have more
tasks than time. And the cost of pulling the weed is immediate, though small,
while its benefits are diffused and delayed. It’s tempting to avert your eyes.

Furthermore, what looks like a weed to one coder may look like a flower to
another.1 You may be confused by a comment and suspect that it’s incorrect, but
not be confident enough in your understanding of the code to change it. You
could take a more thorough look at the code or ask someone who’s more familiar
with it to double-check your suspicion, but (see previous paragraph) you’ve got a
long to-do list, and fixing this random comment is not on it.

Or you may see some formatting issues in a chunk of code written by a new
member of the team. You could fix them yourself, but it’s easy to reason that
fixing them yourself won’t teach the new team member the right formatting.
Better to let their next code review identify the mistake.

Even though weeds are easy to pull, it’s almost as easy to leave them be.
The factors that make you reluctant to pull them—needing to focus on important
issues, being unsure of whether the weed is actually a weed or not—they’re all
real.

But weeds breed more weeds. You may have a crisply defined set of naming
and formatting conventions, but if your project is full of weedy bits of noncon-
forming code, then no one will know what to trust. Do they trust the conventions,
or the code? I know what happens in this case: they shrug and copy whichever
they’re more comfortable with.

PULL THE WEEDS | 199

2 Just be sure it’s not asparagus.

The comment that confused you? It’s going to confuse the next person who
sees it, too. And you’d be surprised and how often the process of fixing a com-
ment—verifying that the function does what you think, checking that the code
around it is making the correct assumptions, talking about the new comment in
a code review—turns up a “real” bug in the code.

Look, pulling weeds is by definition quick. This isn’t something that needs to
be scheduled. If something is going to take appreciable time, it isn’t a weed.

Our focus at Sucker Punch on weeds works because we all agree what a
weed is. We have strong and strict team conventions, per Rule 12. A lot of weed
pulling fixes something that doesn’t match the conventions. That strengthens the
conventions themselves—not least because the change will get reviewed, and in
the review the two of you will look at the noncompliant and compliant versions,
pre- and post-weed pull, and agree that it was a weed that needed pulling. If as a
code reviewer you think the reviewee is wasting time on unimportant issues, the
problem is that you don’t agree on what’s important. Fix that.

In the end, it’s simple. If you know something is a weed, pull it. If you
suspect something is a weed, it’s worth a small bit of effort to verify that and pull
the weed.2

This places a counterintuitive imperative on your best, most senior team
members. They’re the ones who will be best at spotting weeds. The person who
wrote your project conventions is best positioned to spot deviations from those
conventions, after all. They’re also likely to be one of the more senior people on
the team. Does it make sense for them to spend a little bit of time fixing little
problems?

Absolutely! Clearing the project of weeds makes everyone’s job easier. It
makes the important stuff more visible.

200 | THE RULES OF PROGRAMMING

Work Backward
from Your Result,
Not Forward from
Your Code

Forgive me for the following brief descent into metaphor.
Programming is about bridging gaps. You’ve got some problem you want

to solve, and you’ve got some pile of code and tech to work with. In between,
there’s a gap. You’ll build a bridge across it by extending the code you have and
recombining bits and pieces of it in new ways, solving a bit of the problem at a
time until you’re done.

Sometimes you only have a small gap to cross. The code you have on hand
nearly solves the problem, or just needs to be called in the right way. It barely
even takes programming to build the bridge: you’re just invoking your code with
the right parameters set.

Sometimes the gap is huge. It’s not at all clear how your code can solve
the problem. Sometimes it’s not entirely clear exactly what problem needs to be
solved! That’s particularly likely when you’re working on a video game, where
it’s hard to predict what’s going to be fun before you have it working. At Sucker
Punch it’s depressingly common to solve a tricky problem only to discover there
was no point in solving it because the result isn’t fun to play.

Every gap has two sides. You’re standing on one side, looking across the gap
at the other. The question here is—are you standing on the side that holds your
existing pile of code, or are you standing on the other side, with the problem?

In other words, putting the bridge metaphor aside, are you thinking about
the problem in terms of your existing code? Or are you thinking about your code
in terms of the problem?

201

| Rule 16

Probably the former, right? You know your existing code very well, whereas
the problem may be entirely new. It might be described in completely different
language than you’d use for your tech, for example. At Sucker Punch, we might
describe a feature in terms of the emotions it generates in the player—say, that
using an ability in the game should make the player feel “heavy” or “solid.” It’s
not clear how that translates into loops and data structures!

If you’re programming in a more traditional space, you still have to deal
with problems defined in domain-specific ways: a reference to legal auditing
requirements on the data you’re updating, say, or some bit of business-school
doublespeak about actionable measurables.

It’s natural to try to understand the problem in terms of the tech you have
on hand. In the Sucker Punch example, I might think about our “heavy-feeling”
player ability in terms of the animation system, our sound and visual effects
system, the tech we have for doing haptic feedback, and so on. I think about how
I might put together these different bits of tech to make the ability feel heavy.

For those more traditional examples, I might think about how we can adapt
our journaling system to handle a set of auditing requirements, or about how
we can use our UX tech to pop together something to let our sales staff identify
and track leads (which, it turns out, is what the new operations exec meant by
“actionable measurables”).

An Example

Let’s say I’m building a system that has lots of parameters that need adjusting in
different production environments. Some of the parameters are simple—a max
number of worker threads we should fire up, or the path of a logfile. Others are
more complicated, like a list of bits of plug-in logic along with parameters for
each of the plug-ins. Depending on the environment, I might have hundreds of
individual parameters to adjust.

Sounds like a config file is in order. As it turns out, I’ve got some JSON
handling code on hand that seems like a good fit. The types and predictable
structure of the parameters fit cleanly, it’s easy to edit and debug the text-based
format, and JSON is extensible enough to make me feel confident that new
parameters will be easy to incorporate. Seems perfect!

202 | THE RULES OF PROGRAMMING

Here’s what the interface to my JSON code looks like:

namespace Json
{
 class Value;
 class Stream;

 struct Object
 {
 unordered_map<string, Value> m_values;
 };

 struct Array
 {
 vector<Value> m_values;
 };

 class Value
 {
 public:

 Value() :
 m_type(Type::Null),
 m_str(),
 m_number(0.0),
 m_object(),
 m_array()
 { ; }

 bool isString() const;
 bool isNumber() const;
 bool isObject() const;
 bool isArray() const;
 bool isTrue() const;
 bool isFalse() const;
 bool isNull() const;

 operator const string & () const;
 operator double () const;
 operator const Object & () const;
 operator const Array & () const;

 void format(int indent) const;

 static bool tryReadValue(Stream * stream, Value * value);
 };
};

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 203

1 The eagle-eyed among you have likely spotted by now that this isn’t a fully compliant JSON handler. Its
object handling implies unique keys by using unordered_map, even though duplicate keys are explicitly
allowed in JSON. Moving along.

Using JSON with this interface is straightforward—parse some JSON with
Json::Value::tryReadValue to get a Value, then check its type before using the
appropriate accessor. If a mismatched accessor is called—trying to convert an
array to an object, say—the code asserts and returns a default value.1

In this simplified example, one of the configurable parameters we support is
a list of blocked servers. Here’s an excerpt from that part of the JSON config file:

{
 "security" : {
 "blocked_servers" : [
 "www.espn.com",
 "www.theathletic.com",
 "www.xkcd.com",
 "www.penny-arcade.com",
 "www.cad-comic.com",
 "www.brothers-brick.com"
]
 }
}

Apparently whoever configured things decided I shouldn’t waste time at
work, since that’s a good chunk of my list of Chrome bookmarks. Things are
looking good, though: that’s pretty easy JSON to read and write.

Implementing a function to check the list of blocked servers is easy, if I’m
willing to handle a little unpredictability in the config file. It’s just a JSON file
getting edited in a text editor, after all, so I can’t count on it being set up
exactly like I expect. Whoever is editing the file will make mistakes—misspelled
option names, deprecated config options, specifying a number where a string is
expected or a single string when we expect an array.

The JSON parser I’m using will take care of verifying the correctness of
the JSON I pass it, so at least that’s not a worry. And some unpredictability is
part of the design, like making the security and blocked_servers keys optional.
If they’re omitted, then there aren’t any blocked servers. I need to make sure
the code is robust against other forms of unpredictability, though, like someone
sticking a number in the list of blocked servers.

204 | THE RULES OF PROGRAMMING

Writing robust code for this file is straightforward, though a bit wordy:

bool isServerBlocked(string server)
{
 if (!g_config.isObject())
 {
 log("expected object for config");
 return false;
 }

 const Object & configObject = g_config;
 const auto & findSecurity = configObject.m_values.find("security");
 if (findSecurity == configObject.m_values.end())
 return false;

 if (!findSecurity->second.isObject())
 {
 log("expected object for config.security");
 return false;
 }

 const Object & securityObject = findSecurity->second;
 const auto & find = securityObject.m_values.find("blocked_servers");
 if (find == securityObject.m_values.end())
 return false;

 if (!find->second.isArray())
 {
 log("expected string array for config.security.blocked_servers");
 return false;
 }

 const Array & blockedServersArray = find->second;
 for (const Value & value : blockedServersArray.m_values)
 {
 if (!value.isString())
 {
 log("expect string array for config.security.blocked_servers");
 continue;
 }

 const string & blockedServer = value;
 if (blockedServer == server)
 return true;
 }

 return false;
}

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 205

So…victory, right? I took my existing JSON library and quickly adapted it to
handle a config file. The code I wrote to walk through the parsed JSON data is a
little bit bulky, but it’s easy enough to write and read. The JSON code is known to
be robust, so it makes sense to leverage it to solve this problem.

I’ve worked forward from the technology to solve the problem and, with not
a whole lot of effort, ended up with something that worked OK. Anyone who’s
used the JSON library will have no problems working with the config file.

An Annoyance Appears

After a while, though, my team is likely to get a little annoyed with the amount
of code required to delve down into the configuration info. It’s easy code to read
and write, but after you’ve written the same basic code a half dozen times—check
that you’ve got an object, look for the key, handle a missing key, repeat as
needed—you’ll be ready to generalize.

I’ve already taken a step toward this with the errors I’m logging. They name
a list of keys by separating the keys with periods, which is safe as long as the keys
themselves don’t have periods in them. I can accept that limitation on key names
for my config file, leading to a simple function that walks through nested Objects
(assuming I’ve got string splitting and joining functions to call):

const Value * evaluateKeyPath(const Value & rootValue, string keyPath)
{
 vector<string> keys = splitString(keyPath, ".");

 const Value * currentValue = &rootValue;
 for (unsigned int keyIndex = 0; keyIndex < keys.size(); ++keyIndex)
 {
 if (!currentValue->isObject())
 {
 log(
 "expected %s to be an object",
 joinString(&keys[0], &keys[keyIndex + 1], ".").c_str());
 return nullptr;
 }

 const Object & object = *currentValue;
 const auto & findKey = object.m_values.find(keys[keyIndex]);
 if (findKey == object.m_values.end())
 return nullptr;

 currentValue = &findKey->second;
 }

206 | THE RULES OF PROGRAMMING

 return currentValue;
}

That eliminates some of the bulk of isServerBlocked, roughly halving the
amount of code required:

bool isServerBlocked(string server)
{
 const Value * value = evaluateKeyPath(
 g_config,
 "security.blocked_servers");
 if (!value)
 return false;

 if (!value->isArray())
 {
 log("expected string array for security.blocked_servers");
 return false;
 }

 const Array & blockedServersArray = *value;
 for (const Value & value : blockedServersArray.m_values)
 {
 if (!value.isString())
 {
 log("expected string array for security.blocked_servers");
 continue;
 }

 const string & blockedServer = value;
 if (blockedServer == server)
 return true;
 }

 return false;
}

I could simplify things further if I introduce a version of evaluateKeyPath
that verifies it is returning an array:

bool isServerBlocked(string server)
{
 const Array * array = evaluateKeyPathToArray(
 g_config,
 "security.blocked_servers");
 if (!array)
 return false;

 for (const Value & value : array->m_values)

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 207

 {
 if (!value.isString())
 {
 log("expected string array for security.blocked_servers");
 continue;
 }

 const string & blockedServer = value;
 if (blockedServer == server)
 return true;
 }

 return false;
}

This all represents real progress—this version of isServerBlocked is half the
size of my first attempt. With hundreds of options to handle, that’s a big deal.
That’s just math.

But despite the improvement, it still feels like we’re writing a lot of boiler-
plate code. What’s going wrong?

Choosing a Side of the Gap

In all of these examples—the initial decision to use the JSON library, then my
successive refinements—I’m starting from the technology and working forward.
Our team has a JSON library that we all understand well, and I’m figuring out
how to apply it to our config file problem. Once I’ve got that bit of tech working, I
look to improve it incrementally.

In our bridge metaphor, I’m standing with my technology, looking across a
gap at the problem I’m trying to solve. This is a common pattern—to think about
the problem in terms of the solution you plan to apply.

Here’s the problem with this approach, though. Through the lens of a JSON
file, your config problem starts to adopt the shape of JSON. If you have a list
of similar things, you think of them as a JSON array. You invent short names
for each config option, because it’s obvious that they’re keys in a JSON object.
You group related config options into objects, because that’s a natural way to
organize a big JSON file. If one of your config options is an enumerated option
that says whether to run code locally or remotely, you think of it as a string
instead, because that’s one of the JSON types.

208 | THE RULES OF PROGRAMMING

2 If the idea of a global object freaks you out, my apologies. This particular example—config options that
are read at boot time then never changed, and hundreds of config option checks scattered through the
project—is a great example of why global objects can be a good thing.

That’s not inevitable. If you’d chosen a different format, you’d think about
the problem differently. At Sucker Punch, one of our config files is written in
a binary format, not as text. We didn’t think about a hierarchy for the config
options, because the serialization tech we use didn’t suggest that. We’re writing
both integers and floating-point values directly, not converting everything to float-
ing point as JSON does, because that’s more natural. In short, the tech you’re
using strongly influences how you think about the problem you’re trying to solve.

What if I broke this tendency and thought about the config file problem
without worrying about how I’m going to solve it? How would I think about things if
I were standing on the other side of the gap, the side with the problem, working
backward from the problem instead of forward from the technology?

Working Backward Instead

Here’s another way to frame that. If reading and writing the config file just
magically happened, what would be the most convenient implementation of
isServerBlocked?

Seems like it would be easiest to just have a global structure that holds all of
the config options.2 Then the list of blocked servers can just be a set of strings in
that structure. Something like this:

struct Config
{
 set<string> m_blockedServers;
};
const Config g_config;

bool isServerBlocked(string serverURL)
{
 return (g_config.m_blockedServers.count(serverURL) > 0);
}

Hmm. That’s a lot simpler than even the simplest version of isServer
Blocked I built on top of our JSON tech. It’s a lot easier to write and easier
to read, with way fewer things to trip up on. It has much better performance, too,
though that’s probably not important in this context.

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 209

Actually, simplicity is only the start. If you really think about the config file
problem, it doesn’t take long to see some other issues with my JSON implemen-
tation. Some examples:

• My JSON code complains when some supported section of config.json•
doesn’t have the expected structure—say, if a key’s value has the wrong
type or a required key is missing. Unsupported and unrecognized options
are silently ignored. As long as the config file is legal JSON, it can con-
tain all sorts of apparent config options that aren’t actually hooked up to
anything. That’s not great—common mistakes like misspelling a config
option name will be hard to discover.

• Our team will only discover problems with an option in our implementa-•
tion when we try to use it. Here, isServerBlocked will log the issues it
recognizes, but only when we call it to see whether a server is blocked. If
the function isn’t called, then any error in that section of the config file will
go undetected. And if the function is called a lot, we could be spamming
our log with a bunch of duplicate config-file formatting reports.

• At some point, our team is probably going to need to document the config•
file. When we do, we’re starting from scratch. The expected structure
of the config file is defined by all of the bits of code that use it, and
they’re scattered all over our codebase. Figuring out what config options
are allowed is going to take some detective work.

These issues sound familiar…and that’s because we’ve stumbled through
a side door into the ongoing holy war between early-bound and late-bound
solutions. As a programmer, you’ve probably at least dabbled in late-bound lan-
guages—Python, or Lua, or JavaScript—and tried early-bound languages like C
or Java.

To simplify things to the breaking point: in late-bound solutions, you find
out about problems late. With early-bound solutions, you discover at least some
of your problems much earlier. In early-bound languages, you discover some
of your bugs (but rarely all, unfortunately) when you compile. With late-bound
languages, all the bugs appear when your code runs.

The solutions I built on top of our JSON library were late-bound.
Any problems with the security.blocked_servers key aren’t discovered until
isServerBlocked is called. Contrast that with the solution based on a global
config struct, which was early-bound. When I initialized that Config struct—

210 | THE RULES OF PROGRAMMING

presumably loading it from some sort of config file—I ironed out any problems I
found, making it much easier to implement isServerBlocked.

Maybe I haven’t actually improved things, then—it sounds like I just moved
the problem around. Sure, this implementation of isServerBlocked is much
simpler, but is that because I’ve left out the parsing and validation code that must
live somewhere? Having to write parsing code for the hundreds of options in our
config file doesn’t sound like fun.

There’s nothing stopping me from combining the two approaches—using
our JSON library to read the config file, but using a Config struct when I’m
accessing config options in the code. I just need to write a function to unpack the
data our JSON parser reads into the Config struct. With the right set of helper
functions, that’s not hard:

void unpackStringArray(
 const Value & value,
 const char * keyPath,
 set<string> * strings)
{
 const Array * array = evaluateKeyPathToArray(value, keyPath);
 if (array)
 {
 for (const Value & valueString : array->m_values)
 {
 if (!valueString.isString())
 {
 log("expected %s to be an array of strings", keyPath);
 }

 strings->emplace(valueString);
 }
 }
}

void unpackConfig(const Value & value, Config * config)
{
 unpackStringArray(
 value,
 "security.blocked_servers",
 &config->m_blockedServers);
}

There are hundreds of config file options, but most of them are pretty sim-
ple—simple types, or lists of simple types, accessed through a simple hierarchi-
cal namespace. I can handle just about everything with a dozen or so “unpack”

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 211

functions. I’ll have to write a bit of code if I’m dealing with a list of structured
data—in JSON terms, an Array of Objects—but it’s not tricky code.

Structuring things this way solves some of the problems I touched on earlier.
I discover problems in the config file earlier, since they’re all reported when the
config file is unpacked. I don’t spam our log with multiple reports of the same
problem. If the config file has required options, then I can write my code to
expect that they’re present—and if they’re missing, our unpackConfig file can
report an error and fail at startup time.

I haven’t solved all of my problems, though. I noted earlier the need to docu-
ment the config file format somehow, and haven’t made any progress against
that. I’m also not doing anything to detect attempts to set unrecognized config
options.

With the implementation I have now, the supported structure of this config
file is defined by the code that unpacks it, so maybe there’s a way to infer the
structure from the unpacking calls I make. Since I’m unpacking the entire config
file, for instance, I might infer that anything in the JSON file that doesn’t get
unpacked is unsupported. If I track which bits of JSON have been successfully
unpacked, then any bits of the JSON file that weren’t unpacked can be reported
as unrecognized options.

Similarly, I know the name and type of every option in the config file,
since I’m unpacking the whole thing. From the names and types, I can build
minimal documentation listing the supported options and types. Better minimal
documentation than none, after all—and this minimal documentation has the
huge plus of being reliably accurate, since it’s derived directly from the code!

It’s possible to do both these things—but it’s not simple. I wrote code to
detect and report unrecognized options. It’s not terribly long, but it was too long
to fit in this chapter. And besides, it felt like I was marching forward from the
solution I’d built, not backward from the problem space.

And Now for Something Completely Different

Here’s a wild idea—if the problem is that I’m having a hard time inferring the
structure of the config file from the code I’ve written, why not flip things around?
Define the structure, then infer the code from that.

A word of warning first—this is a pretty long example! I wanted a “nothing
up my sleeve” example of what working backward from your result can look
like, and the code in this example is surprisingly tight given how functional it is.

212 | THE RULES OF PROGRAMMING

Alone among the examples in this book, this one is usable as is. So bear with me
for the next few pages!

For this simple example, I might define the structure of the config file like
this, using a global structure to manage all of the config options:

struct Config
{
 Config() :
 m_security()
 { ; }

 struct Security
 {
 Security() :
 m_blockedServers()
 { ; }

 set<string> m_blockedServers;
 };

 Security m_security;
};
Config g_config;

StructType<Config::Security> g_securityType(
 Field<Config::Security>(
 "blocked_servers",
 new SetType<string>(new StringType),
 &Config::Security::m_blockedServers));

StructType<Config> g_configType(
 Field<Config>("security", &g_securityType, &Config::m_security));

It should be pretty obvious what the intent is here, even though the code is
a bit of a C++ template rodeo. Each of the objects in the JSON file is described
with a global variable using the StructType template. Here the “security” object
is described by g_securityType; the “server.blockedServers” config file option is
described as part of g_securityType. The config file as a whole is described by
g_configType.

These descriptors define the translation from JSON objects to C++ structs.
I need to know four bits of information to do this translation—the JSON keys
and types for the object fields, and the C++ types and member pointers for the
matching C++ structs. It’s a little bit tricky to do this sort of metaprogramming in
C++, but it’s feasible.

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 213

The hard part is shuffling the C++ type information around to keep things
type safe. To do that, I define a template class that couples a C++ type with a
matching JSON type:

struct UnsafeType
{
protected:

 template <typename T> friend struct StructType;
 virtual bool tryUnpack (const Value & value, void * data) const = 0;
};

template <class T>
struct SafeType : public UnsafeType
{
 virtual bool tryUnpack(const Value & value, T * data) const = 0;

protected:

 virtual bool tryUnpack(const Value & value, void * data) const override
 { return tryUnpack(value, static_cast<T *>(data)); }
};

The SafeType abstract struct provides type-safe unpacking for a particular C++
type—it ensures that we’re unpacking strings into string variables, integers into
integer variables, and so on. For the most part, I’ll use SafeType to unpack
things. When I get around to handling structs, though, the code will be a little
bit simpler (thanks to the type-unsafe unpacking interface introduced by Unsafe
Type), but still type safe (thanks to some template trickery).

Here are SafeType definitions for some C++ types:

struct BoolType : public SafeType<bool>
{
 bool tryUnpack(const Value & value, void * data) const override;
};

struct IntegerType : public SafeType<int>
{
 bool tryUnpack(const Value & value, void * data) const override;
};

struct DoubleType : public SafeType<double>
{
 bool tryUnpack(const Value & value, void * data) const override;
};

struct StringType : public SafeType<string>

214 | THE RULES OF PROGRAMMING

{
 bool tryUnpack(const Value & value, void * data) const override;
};

bool BoolType::tryUnpack(const Value & value, bool * data) const
{
 if (value.isTrue())
 {
 *data = true;
 return true;
 }
 else if (value.isFalse())
 {
 *data = false;
 return true;
 }
 else
 {
 log("expected true or false");
 return false;
 }
}

bool IntegerType::tryUnpack(const Value & value, int * data) const
{
 if (!value.isNumber())
 {
 log("expected number");
 return false;
 }

 double number = value;
 if (number != int(number))
 {
 log("expected integer");
 return false;
 }

 *data = int(number);
 return true;
}

bool DoubleType::tryUnpack(const Value & value, double * data) const
{
 if (!value.isNumber())
 {
 log("expected number");
 return false;
 }

 *data = value;

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 215

 return true;
}

bool StringType::tryUnpack(const Value & value, string * data) const
{
 if (!value.isString())
 {
 log("expected string");
 return false;
 }

 *data = static_cast<const string &>(value);
 return true;
}

This is the same sort of code as in earlier instantiations of our Config
example. Here it’s packaged as a type class, but the purpose is the same—check
the types of the JSON values, then convert them into native values. That lets
me handle the common cases, like config values that are known to be integers.
Numeric values in JSON are floating point, so the IntegerType code checks that
the floating-point value is actually an integer.

Moving beyond the simple types, let’s look at lists of strings, like the blocked
servers list in the config file example. I used a C++ set to represent that list, so I
need to create a SetType:

template <class T>
struct SetType : public SafeType<set<T>>
{
 SetType(SafeType<T> * elementType);
 bool tryUnpack(const Value & value, set<T> * data) const override;

 SafeType<T> * m_elementType;
};

template <class T>
SetType<T>::SetType(SafeType<T> * elementType) :
 m_elementType(elementType)
{
}

template <class T>
bool SetType<T>::tryUnpack(const Value & value, set<T> * data) const
{
 if (!value.isArray())
 {
 log("expected array");
 return false;

216 | THE RULES OF PROGRAMMING

 }

 const Array & array = value;
 for (const Value & arrayValue : array.m_values)
 {
 T t;
 if (!m_elementType->tryUnpack(arrayValue, &t))
 return false;

 data->emplace(t);
 }

 return true;
}

With hundreds of config file options, I’m likely to have some lists, too. I’ll
leave the VectorType that wraps vector as a proof for the reader—it’s nearly
identical to SetType. The only difference is that it calls the vector’s push_back()
method, where SetType calls the set’s emplace() method.

The last thing to handle is mapping JSON objects to C++ structs—or, more
precisely, mapping JSON key/value pairs into members of C++ structs or objects.
I define a type-safe Field struct to be used by StructType:

template <class S>
struct Field
{
 template <class T>
 Field(const char * name, SafeType<T> * type, T S:: * member);

 const char * m_name;
 const UnsafeType * m_type;
 int S::* m_member;
};

template <class S>
template <class T>
Field<S>::Field(const char * name, SafeType<T> * type, T S::* member) :
 m_name(name),
 m_type(type),
 m_member(reinterpret_cast<int S::*>(member))
 { ; }

I’m handling type safety a bit differently in the Field struct. Type safety is
imposed by the constructor. I require that the SafeType and member pointer
have matching types. I can then safely use the type-unsafe UnsafeType and

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 217

integer pointer-to-member values in the Field struct, since I know they actually
have matching types.

StructType is surprisingly straightforward. Given all the other template
wackiness going on here, I’m going to use a variadic template (a template that
takes a variable number of arguments) in the constructor. In for a dime, in for a
dollar:

template <class T>
struct StructType : public SafeType<T>
{
 template <class... TT>
 StructType(TT... fields);

 bool tryUnpack(const Value & value, T * data) const override;

protected:

 vector<Field<T>> m_fields;
};

template <class T>
template <class... TT>
StructType<T>::StructType(TT... fields) :
 m_fields()
{
 m_fields.insert(m_fields.end(), { fields... });
}

The tryUnpack method is pretty simple—loop through the fields of the JSON
object, matching each of them to a field from our StructType. Building the
looping this way makes it easy to report unrecognized options in the config file,
knocking off one of my lingering problems:

template <class T>
bool StructType<T>::tryUnpack(const Value & value, T * data) const
{
 if (!value.isObject())
 {
 log("expected object");
 return false;
 }

 const Object & object = value;
 for (const auto & objectValue : object.m_values)
 {
 const Field<T> * match = nullptr;

218 | THE RULES OF PROGRAMMING

 for (const Field<T> & field : m_fields)
 {
 if (field.m_name == objectValue.first)
 {
 match = &field;
 break;
 }
 }

 if (!match)
 {
 log("unrecognized option %s", objectValue.first.c_str());
 return false;
 }

 int T::* member = match->m_member;
 int * fieldData = &(data->*member);

 if (!match->m_type->tryUnpack(objectValue.second, fieldData))
 return false;
 }

 return true;
}

Once I’ve got a Value from the JSON library, I just call tryUnpack on the
StructType I built for the config file:

bool tryStartup()
{
 FILE * file;
 if (fopen_s(&file, "config.json", "r"))
 return false;

 Stream stream(file);
 Value value;
 if (!Value::tryReadValue(&stream, &value))
 return false;

 if (!g_configType.tryUnpack(value, &g_config))
 return false;

 return true;
}

Things are looking good at this point! I’ve got solid, type-safe parsing of
the config file and didn’t have to write a lot of code to get it—all of the type
and unpacking logic is less than 300 lines of C++. That’s a huge example for a

WORK BACKWARD FROM YOUR RESULT, NOT FORWARD FROM YOUR CODE | 219

3 If you’re interested in doing something like this, you might also take a look at generated-code solutions
like protocol buffers or C++ reflection magic like clReflect.

book, but a tiny part of most coding projects. With hundreds of config options in
this example, that cost amortizes out pretty quickly. My description of the config
file schema isn’t self-documenting yet, but that’s easy to add—tack a description
string onto each Field, then write a simple recursive descent through the type
hierarchy to generate the documentation.

Working Forward and Working Backward

This chapter explored two paths for parsing a config file. In the first path, we
started with the format of the config file. We realized we could represent all of
our options in JSON, recognized that we had a JSON parser ready to go, then just
marched forward. And this absolutely worked—it was easy to parse the config file
and easy enough to extract options from it.

In the second path we pivoted to look at the problem from another perspec-
tive: that of the programmers implementing the hundreds of config options
supported, not the programmer parsing the config file. I chose a solution in
the first path that was convenient to implement, but inconvenient to use. In the
second path we worked backward from our desired solution, rather than forward
from our tech, and ended up with a simpler and better solution.3

220 | THE RULES OF PROGRAMMING

https://oreil.ly/qvptL
https://oreil.ly/pOnLe

1 You’ll forgive the metaphor. I’ve lived in Seattle for 35 years; I’ve earned a cloud metaphor.

Sometimes the
Bigger Problem Is
Easier to Solve

“Pick the most boring approach to every problem you encounter; if you can think
of an exciting approach to solving a problem, it’s probably a bad idea.”

If this is how you’d paraphrase most of the advice in this book, I wouldn’t
blame you. A lot of these Rules can be a bit of a buzzkill. They point to some
interesting or clever technique you might use to solve a problem, then immedi-
ately inform you that it would be a bad idea to use that technique. And it’s true
that the simple, boring approach is almost always the best approach. But only
almost!

On some very special occasions, the clouds majestically part and you’re
bathed in the warmth of a single ray of sunlight spearing down from the heavens
to illuminate you at your keyboard.1 And in this brief, glorious moment, you
realize that it would be simpler and easier to solve a more general version of
whatever specific problem you’re working on.

Revel in these occasions, because they don’t come very often. When they
do come, be ready to take advantage. Write the simple code, solve the general
problem, and glory in the moment.

Jumping to Conclusions

Here’s an example. In one of the early Sucker Punch games, the player bounds
through levels as the master raccoon thief Sly Cooper. Sly is very agile, leaping
into the air, then landing on tiny outcroppings or alighting on thin tightropes

221

| Rule 17

2 This algorithm is covered by US Patent 7,147,560. Sorry, software patents were in vogue at that point.
Fear not; the patent expires on December 12, 2023, at which point you’re entirely free to create your own
raccoon-agility-centered platformer using the exact algorithm presented here.

3 Personally suffered through by your author, who wrote the code in question.

strung between buildings. The controls are simple—press the X button to jump,
bend Sly’s midair trajectory (in a physically impossible but entirely believable
way) using one of the controller’s sticks, then press the O button to land on
things like spires or tightropes.

Of course, there was code to make this all happen!2 The trickiest bit of that
code handled choosing the place where Sly lands when the player presses the O
button. The player knows where they want to land when they press O, and the
game needs to guess the player’s intent somehow. When the guess is correct, the
player doesn’t even notice the magic; when the guess isn’t, the player is very, very
frustrated.

Guessing the landing spot the player has in mind is much easier said than
done. Imagine that the player is steering Sly toward a tightrope and there are
no other possible landing spots nearby. The code needs to decide where on the
tightrope the player is trying to land. What’s the algorithm for choosing this
point?

The simple answers don’t work very well. Steering for the point on the tight-
rope closest to Sly’s current location doesn’t work very well—if you’re jumping
along the tightrope, you’d get sucked backward to the point you were over when
you pressed the button. To avoid that particular problem, the code could project
Sly’s current trajectory forward, then land on the point on the tightrope closest to
that trajectory. That’s a better solution, but it still broke badly in common cases.
And in fact these seemingly simple answers weren’t at all easy to implement,
given that the tightrope was actually a cubic curve, not a straight line.

Cue a long sequence of increasingly desperate prototypes, each trying some
new hacky heuristic to solve the problem of landing on a tightrope. This went on
for weeks. Painful, painful weeks.3

Until, one day, the metaphoric clouds opened and a metaphoric beam of
light hit me at the keyboard as I struggled with yet another doomed prototype.
The problem was that I was thinking small, and I needed to think big.

I’d been looking for an analytic solution, trying (and repeatedly failing) to
find a single magic function that would spit out the best position given the
inputs—Sly’s position and velocity, the player’s input on the controller, and the

222 | THE RULES OF PROGRAMMING

4 The algorithm isn’t complicated—you could sort it out from the code that follows without giving yourself
a headache—but if you’ve got better ways to spend the next 10 minutes, take a look at the Wikipedia
explanation. As it turned out, the golden section optimizer helped solve multiple problems, and we call it
from a couple of dozen places in the Sucker Punch codebase.

geometry of the tightrope. I didn’t want to calculate the best landing point on
the tightrope, I now realized—what I really wanted was to write a function that
would evaluate the appropriateness of every single point on the tightrope, then
choose the best one.

Well, not exactly. I didn’t actually need to evaluate the function for each
individual point on the tightrope—I only needed to find the point that was most
appropriate. I needed to minimize a cost function (measuring appropriateness)
over a domain (a parameter identifying the points along the tightrope).

In short, I had an optimization problem. If I solved the bigger problem of
finding a local optimum for a function that mapped floats to floats, then wrote
a cost function for Sly landing on a point, I could find the point with the lowest
cost. If the cost function matched what the player had in mind, then the game
would choose the right point on the tightrope.

The golden section optimization algorithm is pretty bulletproof and not hard
to implement:4

float optimizeViaGoldenSection(
 const ObjectiveFunction & objectiveFunction,
 float initialGuess,
 float step,
 float tolerance)
{
 // Track a domain + range pair for the objective function

 struct Sample
 {
 Sample(float x, const ObjectiveFunction & objectiveFunction) :
 m_x(x),
 m_y(objectiveFunction.evaluate(x))
 { ; }
 Sample(
 const Sample & a,
 const Sample & b,
 float r,
 const ObjectiveFunction & objectiveFunction) :
 m_x(a.m_x + (b.m_x - a.m_x) * r),
 m_y(objectiveFunction.evaluate(m_x))
 { ; }

SOMETIMES THE BIGGER PROBLEM IS EASIER TO SOLVE | 223

https://oreil.ly/0ocWS

 float m_x;
 float m_y;
 };

 // Get an initial triplet of samples around the initial guess

 Sample a(initialGuess - step, objectiveFunction);
 Sample mid(initialGuess, objectiveFunction);
 Sample b(initialGuess + step, objectiveFunction);

 // Make sure the "a" side has a smaller range value than the "b"
 // side. If we haven't lucked into an initial range bracketing a
 // minimum, we'll travel toward "a" until we find one.

 if (a.m_y > b.m_y)
 {
 swap(a, b);
 }

 // Find a point where the "mid" range value is smaller than the
 // "a" and "b" range values. That guarantees a local minimum
 // somewhere between a and b.

 while (a.m_y < mid.m_y)
 {
 b = mid;
 mid = a;
 a = Sample(b, mid, 2.61034f, objectiveFunction);
 }

 // Loop until we've got a tight enough bracket on the domain

 while (abs(a.m_x - b.m_x) > tolerance)
 {
 // Makes sure the "a" side brackets a bigger domain than the
 // "b" side, so that the golden section is taken out of the
 // bigger side.

 if (abs(mid.m_x - a.m_x) < abs(mid.m_x - b.m_x))
 swap(a, b);

 // Test a point between the "mid" sample (our best guess so
 // far) and the "a" sample. If it's better than the mid
 // sample, it becomes the new mid sample and the old mid
 // sample is the new "b" side. Otherwise, the new sample
 // becomes the new "a" side.

 Sample test(mid, a, 0.381966f, objectiveFunction);

 if (test.m_y < mid.m_y)
 {

224 | THE RULES OF PROGRAMMING

 b = mid;
 mid = test;
 }
 else
 {
 a = test;
 }
 }

 // Return the best domain value we found

 return mid.m_x;
}

Once the general-purpose golden section algorithm implementation was
tight, I could implement an objective function for falling to the tightrope. Tight-
ropes were modeled as Bezier curves, one of many ways to represent a cubic
curve. To simplify the actual code just a bit, the objective function is the time
it takes to fall to the landing point (meaning that points the player can land
on earlier are preferred) times the maximum acceleration needed to land on
that point. The context required to calculate this, like Sly’s current position and
velocity, is part of the object that implements the objective function:

struct BezierCostFunction : public ObjectiveFunction
{
 BezierCostFunction(
 const Bezier & bezier,
 const Point & currentPosition,
 const Vector & currentVelocity,
 float gravity) :
 m_bezier(bezier),
 m_currentPosition(currentPosition),
 m_currentVelocity(currentVelocity),
 m_gravity(gravity)
 {
 }

 float evaluate(float u) const override;

 Bezier m_bezier;
 Point m_currentPosition;
 Vector m_currentVelocity;
 float m_gravity;
};

SOMETIMES THE BIGGER PROBLEM IS EASIER TO SOLVE | 225

.

https://oreil.ly/YWuzT

The evaluate method isn’t very complicated:

float BezierCostFunction::evaluate(float u) const
{
 // Get point along curve

 Point point = m_bezier.evaluate(u);

 // Calculate how much time it will take to fall to the height
 // of that point

 QuadraticSolution result;
 result = solveQuadratic(
 0.5f * m_gravity,
 m_currentVelocity.m_z,
 m_currentPosition.m_z - point.m_z);

 float t = result.m_solutions[1];

 // Assume we scrub off all horizontal velocity before landing

 Vector finalVelocity =
 {
 0.0f,
 0.0f,
 m_currentVelocity.m_z + t * m_gravity
 };

 // Get immediate and final accelerations...since we're
 // following a cubic curve one of these will be the maximum
 // acceleration

 Vector a0 = (6.0f / (t * t)) * (point - m_currentPosition) +
 -4.0f / t * m_currentVelocity +
 -2.0f / t * finalVelocity;

 Vector a1 = (-6.0f / (t * t)) * (point - m_currentPosition) +
 2.0f / t * m_currentVelocity +
 4.0f / t * finalVelocity;

 // Ignore acceleration in Z, since we know that's gravity

 a0.m_z = 0.0f;
 a1.m_z = 0.0f;

 // Calculate cost function

 return t * max(a0.getLength(), a1.getLength());
}

226 | THE RULES OF PROGRAMMING

5 The edge cases aren’t that bad—and were easy enough to handle by adding penalties onto the cost
function. If the evaluate function tries to evaluate a point off the end of the curve, a penalty is added.
Careful construction of the penalty helps point the optimizer back toward the valid range of the curve.
Similarly, if Sly doesn’t jump high enough to reach a point, this adds a separate penalty.

6 If you try using an optimizer like this to solve problems, remember that it will find a minimum, but maybe
not the minimum you want. Your cost function needs to be constructed carefully, as does your initial
guess.

Running the golden section optimizer on this function produced a landing
point that felt more or less natural. It did require some tuning, and I’ve left
the edge cases out of the evaluate implementation,5 but even the first results
were better than the long string of failed prototypes this solution replaced. After
tuning, it felt completely predictable and natural—and in practice, players trained
themselves to match the cost function, and the game guessed what they had in
mind nearly all the time.6

As a rule, it’s almost always better to solve the specific problem you do
understand rather than trying to solve a general problem you don’t understand.
Generalization takes three examples, per Rule 4. But that truth isn’t quite univer-
sal—sometimes the general problem is easier to solve than the specific one. In
this case, the specific problem of choosing a spot for Sly to land on the tightrope
was hard to solve, at least analytically, while the general problem was relatively
easy to solve.

Finding a Clear Path Forward

Time for another example drawn from the annals of Sucker Punch history…this
one a bit more recent. In Ghost of Tsushima, the player can make a short, explo-
sive dash, usually to avoid incoming attacks. They deflect a stick on the controller
to choose a direction, then press a button to dash. Poof! Our samurai hero, Jin
Sakai, dodges in that direction and danger is averted. Or at least that’s what it
feels like for players.

Jin doesn’t always dash in exactly the direction the player has chosen. If the
player is fighting enemies in a forest, say, it’s no fun if Jin dashes straight into a
tree—even if, strictly speaking, that’s the direction the player has chosen. Nobody
wants to be a clumsy samurai! Instead, the code chooses a direction to dash that
avoids all the trees, while staying close to the direction the player has chosen. The
player is none the wiser—they feel graceful instead of clumsy, and everyone’s
happy.

SOMETIMES THE BIGGER PROBLEM IS EASIER TO SOLVE | 227

7 The A* algorithm isn’t that complicated, but nevertheless it’s too much to explain here. By discovered
graph, I mean that the theoretical search space consists of links between any pair of points in the world.
We discover which pairs of points are accessible from each other as we go, by clipping the line between
them against all the obstacles in the world.

The Sucker Punch engine has code to do this sort of pathing through the
game environment—roughly speaking, to try to reach the far end of a search area
while skirting areas the player can’t move through. To oversimplify the code: it
checks the line segments starting from an initial point to the end of the search
area, wraps around any obstructions we encounter, then straightens out kinks
in the resulting path as best it can. To undersimplify the code, it’s A* over a
discovered graph.7

Using this pathing code as is was a great start toward natural-feeling-but-
graceful dashes, but it wasn’t good enough to ship. Jin dodged gracefully through
trees, but blundered clumsily into other characters, whether they were enemies
or allies. The obvious fix was to adjust the pathing checks to include characters as
well as trees. That was not something the existing pathing code knew how to do!
It worked against the fixed obstacles in the environment, like trees and buildings,
but it knew nothing about temporary obstacles, like an enemy character charging
at the player.

It didn’t seem too hard to add that support, though, so that’s what I did.
Remember that at a simple level, the pathing code checks for the intersection
of a path with obstructions. If the path runs into an obstruction, the pathing
code builds a new path that wraps around that obstruction. So adding support
for characters meant two things: checking for intersections between the path
and characters, and wrapping paths around characters. Neither was too hard,
though it was all new code because characters were represented as circles. And
a bonus problem was added—I needed to worry about the intersections between
the space carved out for characters with environmental obstacles, and the inter-
sections between characters themselves. All of these intersections were plausible
endpoints to the path.

Ugh. This worked, but it meant a lot of new code to handle a lot of new
cases. This made the complicated pathing code even more complicated, all to
handle the special case of player dashes. Then I discovered that the simple
circular obstacle I was carving out for characters didn’t work very well for moving

228 | THE RULES OF PROGRAMMING

https://oreil.ly/XOban

8 Just as a circle is the set of points at some fixed distance from a point, a lozenge is the set of points at a
fixed distance from a line segment. Paper clips and running tracks are lozenge-shaped—two half-circles
connected by parallel lines.

characters, so I switched to lozenge-shaped obstacles instead8—and things got
worse. The extra complexity I was adding felt unjustified.

Cue the metaphoric parting of clouds and beam of light. I was adding code
in the wrong place! The pathing code already supported the arbitrary geometry
of the environment, after all. Trees are circular obstacles, just like a character
standing still. If I could just pretend people were temporary trees, the pathing
code could just avoid them, without all the extra complexity I’d added.

Once I pivoted to this point of view, a clear path forward presented itself. The
underlying representations of trees and buildings and fences and all the other
fixed parts of the environment were just a really big grid, with each cell marked
as passable or impassable. I could introduce temporary obstructions via a simple
interface—all I needed was an extra check for whether a particular cell in the grid
was blocked:

struct GridPoint
{
 int m_x;
 int m_y;
};

struct PathExtension
{
 virtual bool isCellClear(const GridPoint & gridPoint) const = 0;
};

This extension interface could then be passed into the basic calls to the
pathing code, like checking a line segment for obstructions or finding the best
path forward in a given direction. Here’s what the original calls looked like:

class PathManager
{
public:

 float clipEdge(
 const Point & start,
 const Point & end) const;
 vector<Point> findPath(
 const Point & startPoint,
 float heading,

SOMETIMES THE BIGGER PROBLEM IS EASIER TO SOLVE | 229

 float idealDistance) const;
};

And here’s the new version:

class PathManager
{
public:

 float clipEdge(
 const Point & start,
 const Point & end,
 const PathExtension * pathExtension = nullptr) const;
 vector<Point> findPath(
 const Point & startPoint,
 float heading,
 float idealDistance,
 const PathExtension * pathExtension = nullptr) const;
};

The internal details of clipEdge and findPath were barely affected. Wherever
they had previously checked the giant pathing grid, I added an extra check to the
PathExtension interface. That’s less than a dozen lines of code, total, across these
functions and a handful of other similar functions.

This account leaves out the work to implement the PathExtension interface,
but that work was similarly simple:

struct AvoidLozenges : public PathExtension
{
 struct Lozenge
 {
 Point m_points[2];
 float m_radius;
 };

 bool isCellClear(const GridPoint & gridPoint) const override
 {
 Point point = getPointFromGridPoint(gridPoint);

 for (const Lozenge & lozenge : m_lozenges)
 {
 float distance = getDistanceToLineSegment(
 point,
 lozenge.m_points[0],
 lozenge.m_points[1]);

 if (distance < lozenge.m_radius)
 return false;

230 | THE RULES OF PROGRAMMING

9 Where “enough” is “at least three.”

 }

 return true;
 }

 vector<Lozenge> m_lozenges;
};

And that was that. A couple of dozen lines of simple code, instead of the
thousand or so lines of nastiness I’d struggled with in my attempt to solve the
problem directly.

The new PathExtension interface was much more general, obviously—it
handled any sort of temporary obstruction you wanted to add to the grid, with
no stipulation about shape or size or way the obstruction was represented. That’s
a step forward from the first attempt, which only added hardwired support for
circles and then lozenges. But this extra generality is entirely beside the point!

The point isn’t that this solution was more general—it’s that it was simpler
and easier to implement than the more specific, less general solution. In fact,
as I write this, the Sucker Punch codebase has exactly one implementation of
PathExtension—the one I’ve just presented. We haven’t taken advantage of the
extra generality, and that’s perfectly OK.

Recognizing the Opportunity

Most of the time, the specific solution is easier to implement than the general
solution. Solve the problem you understand. Don’t try to solve a more gen-
eral problem until you’ve got enough examples to be confident that the more
general problem is worth solving.9

It’s rare to bump into a problem like the examples in this Rule, where the
general problem is simpler and easier to solve than the specific one. These two
examples are separated by 18 years (!), and nearly all of the umpteen problems we
solved in between were solved simply and directly.

While such general solutions are rare, they’re important. These two exam-
ples, along with a handful of others, were important breakthroughs for Sucker
Punch. Sometimes the breakthrough represented a new paradigm, as in the
first example, which prompted us to solve many gameplay problems via a local
optimizer; other times it was just a one-off solution to a hard problem, as in the
second example. They all created better, more successful products.

SOMETIMES THE BIGGER PROBLEM IS EASIER TO SOLVE | 231

That leaves open an important question—what are the clues that a more
general solution will create simpler code? How can you spot these opportunities
in your code?

I did find one common factor as I looked over the quarter-century-long
engineering history of Sucker Punch. In all the examples of the general solution
being the simpler path, a major change in perspective was necessary. The general
solution represented a completely different way of thinking about the problem,
and this new perspective allowed a radically simpler solution.

In this Rule’s examples, the change in perspective was technical—switching
from an analytic approach to an optimization approach in the first example and
adding the new feature in a completely different part of the code in the second
example.

Sometimes, though, the change in perspective isn’t technical at all. You
might realize that your code targets the wrong user for a feature, for instance.
We’ve often unlocked much simpler approaches by moving a feature historically
used by the programming team to the production team instead, or vice versa.

But there’s always a moment when you realize you’ve been thinking about
the problem all wrong. And when that realization hits, there’s a chance that the
clouds will part and a beam of sunshine will hit and you’ll get to experience the
infinite joy of solving a single tough problem with a simple, general solution.

232 | THE RULES OF PROGRAMMING

Let Your Code Tell
Its Own Story

There’s a lot of focus in this book about making your code easier to read,
whether it’s by being careful about hiding the behavior of your code behind extra
abstractions, choosing good names for things, or choosing the simplest workable
approach to a problem. Writing code that’s easy to read makes everything else go
more smoothly, since we all spend a lot more time reading and debugging code
than we spent writing it in the first place. When you’re debugging a bit of code,
it’s much easier to figure out what’s going wrong when you have a quick way to
understand what it’s trying to accomplish.

That’s especially true for a project you’re working on as part of a team, but
it’s even true for a solo project. If you’ve got a nontrivial solo project going, one
that you’re spending weeks or months or even years on, you’ll end up needing
to refamiliarize yourself with code you wrote long before. Whatever thoughts you
had in your head when you wrote that code will have faded away; all that’s left
will be the code itself. At this point, you’re in pretty much the same place as
a coworker on a group project: you need to sort out what the code is doing (or
trying to do) by reading it.

Here’s another way of thinking about this—Future You is a stranger.
Unless your project will get wrapped up and thrown away in a day or two,

expect to come back to your code as a stranger. Do Future You a favor and make
it easy to read.

Imagine walking someone through some bit of code you’ve written. If your
team does code reviews (and it should; see Rule 6), then you’re probably used
to doing that. You talk about what this code is trying to accomplish, how it fits
into the larger scope of the project, and why you made the decisions you did. You
point out any bits of trickiness or cleverness (hopefully there aren’t many), note

233

| Rule 18

any issues that haven’t been taken care of yet, walk through how the pieces fit
together, and probably narrate the control flow through the individual functions
you’ve written.

In short, you’re telling the story of your code. The better a job you do of
telling that story, the more quickly and completely your audience will understand
that code. And in a perfect world, the code would tell its own story, without your
narration.

That’s a pretty lofty target, especially if your code has to be a little bit compli-
cated to solve its target problem. Nevertheless, code that tells its own story is
what you should always be shooting for.

Don’t Tell Stories That Aren’t True

So—what does it mean for code to tell its own story? I’ve touched on some of the
important concepts, like choosing good names (Rule 3), and making the intent of
your code as simple and obvious as possible (Rule 1). After all, it’s much easier to
follow a simple story than it is to follow a complicated one!

I haven’t really addressed formatting or commenting yet in this book—the
code examples accompanying the Rules are largely comment-free. That’s not a
statement on my part—in this book I can write whole paragraphs of text explain-
ing the code examples, so keeping them comment-free and compact makes
sense. In real code, comments can be a huge help for code readability.

That doesn’t mean all comments are good, though! It’s entirely possible for
comments to do more harm than good. Some comments are never true to begin
with; others were true when the comment was written, but reality has since
drifted away.

Here’s an example:

void postToStagingServer(string url, Blob * payload)
{
 // Will always get a valid handle back due to Connect::Retry

 ConnectionHandle handle = connectToStagingServer(
 url,
 Connect::Retry | Connect::InternalServer);

 // Post data

 postBlob(handle, payload);
}

234 | THE RULES OF PROGRAMMING

This seems pretty simple, but it’s not—the first comment is wrong. When
the code was written, the Connect::Retry flag guaranteed success. Things got
more complicated when the (imaginary, in this case) team decided that there
were no situations in which infinite retry (hanging until a successful connection
was made) was a good strategy. The behavior of Connect::Retry changed, but
this bit of code, which relied on the old behavior, didn’t change to match.

So now there’s a bug in PostToStagingServer, but one that doesn’t show up
very often, because ConnectToStagingServer almost always works. Pity the poor
programmer who’s trying to debug this, especially if PostBlob is written to be
robust against the empty handle that ConnectToStagingServer returns in error
cases. The poor programmer reads the code, sees the comment, accepts it, and
moves on, missing the actual problem.

If not for that comment, the bug would have been found sooner, because
it would have been obvious that an error was possible. It’s this sort of situation
that leads some programmers to argue that all comments are bad, insisting that
the problems caused by out-of-date comments outweigh the benefits of accurate
ones.

Remember that code that isn’t running doesn’t work, per Rule 8. If some
bit of code isn’t getting exercised frequently, it will stop working, and you won’t
know that it’s stopped working because it isn’t getting run.

In some sense, comments are code that never runs—the closest they come
to running is when someone reads through and compares the comments to the
actual code. That doesn’t happen very often, and generally isn’t very thorough
when it does, so it shouldn’t be a surprise that comments “stop working” as
the functionality of the code they describe slowly drifts out of touch with the
comment.

The easiest way to avoid this is to change the comment into an assert. Don’t
mention in a comment that one of the arguments to a function is expected to
be non-null—assert that it is. Or in this case, don’t claim that ConnectToStaging
Server always returns a valid handle—assert that it does. You’ve told the same
story, just in a much more effective way.

Make Sure There’s a Point to the Story

Sometimes comments aren’t wrong—they’re just useless. We’ve all seen less-
than-informative comments, often as an unintended result of some fixed com-
menting style that all code on your project must follow. Here’s an example of
code that adheres to a project-wide dictate that all functions must be documented

LET YOUR CODE TELL ITS OWN STORY | 235

1 Doxygen is a widely used tool that extracts strangely formatted comments from source code and
generates project documentation from them. The idea is that documentation that’s right next to the code
is more likely to stay up-to-date. This is true, though in my experience only for small values of more and
likely. I apologize for the formatting to non-C++ programmers. I wanted to use a real example, and all of
these documentation-generating tools use strange formatting on purpose—because the tool looks for the
strange formatting to mark the text it needs to process.

2 They mark terms that should be typeset in a fixed-width font, like Courier. Hence “c”.

with Doxygen.1 The comment here follows the rule without actually passing
along any information:

/**
* @brief Post payload to staging server
*
* Attempt to post the given payload to the staging server at the
* given address, returning @c true if the post is successful and
* @c false if it fails for some reason.
*
* @param url URL to server
* @param payload Data to post
* @returns true on success
*/
bool tryPostToStagingServer(string url, Blob * payload);

Nothing in that comment is wrong—it’s just not very useful. We can assume
that the “try” at the beginning of the function name is a project convention that
marks functions that return true on success. If that’s the case, then all of the
information in the comment is directly implied by the function declaration. The
comment isn’t adding anything new; it just restates the function name, then
restates it, then restates it again.

If the comment accompanies the declaration of a function rather than its
definition, as in this example, then the space taken up by fixed-format comments
can quickly overwhelm the space devoted to actual function declarations. That’s
the cost of this commenting style—the comments make it hard to find the actual
code. This is exacerbated by whatever awkwardness pops up in the comment
itself as it fits itself to the format—those @cs in the comment aren’t helping
readability.2

There is a potential upside—the point of Doxygen isn’t just the comments,
it’s also the documentation that’s generated from them. That documentation
isn’t as useful as it once was, now that editors are much better at hyperlinking
back and forth within projects, but it can still be useful if done thoughtfully.

236 | THE RULES OF PROGRAMMING

That’s usually not the case, though. Programmers in a hurry write hurried
comments, not thoughtful ones. They aim to meet mechanical standards before
moving on, which produces comments that are correct but uninformative, like
the one in this section. A list of uninformative entries for individual functions
and types doesn’t make for a useful introduction or reference to the code—you’re
not learning anything you wouldn’t learn from reading through the code.

Telling Good Stories

So what makes a good comment?
The most obvious answer is that a good comment tells the reader something

about the code that isn’t obvious. A comment that recapitulates the obvious, like
the prior example, is correct but not very useful. A good comment, one that helps
the reader understand the code, might explain why the code is written the way it
is, give the expected usage for a function, or mark some bit of logic that might
need further work.

There’s another important role that good comments fill—they punctuate
the code. They tell you what parts of the code fit together and separate bits
of code that represent separate thoughts. In this way, they act like spaces and
punctuation in writing. Youcanreadsentencesthatdontincludespacingorpunctua-
tion…but it’s a lot easier to read sentences that do, right? The spaces break up the
words. Punctuation breaks up sentences and clauses. Paragraphs break separate
thoughts.

The same is true of code, with spacing and comments filling the roles that
spacing and punctuation do in normal writing. Here’s an example. (I’m exagger-
ating the point here by using a super-compact naming style for variables and
compressing out more whitespace than you’d normally see.)

bool findPermutation(const string & p, const string & s)
{
 int pl = p.length(), sl = s.length();
 if (sl < pl) return false;
 int pcs[CHAR_MAX] = {}, scs[CHAR_MAX] = {};
 for (unsigned char c : p)
 { ++pcs[c]; }
 int si = 0;
 for (; si < pl; ++si)
 { ++scs[static_cast<unsigned char>(s[si])]; }
 for (;; ++si)
 {
 for (int pi = 0;; ++pi)
 {

LET YOUR CODE TELL ITS OWN STORY | 237

 if (pi >= pl) return true;
 unsigned char c = p[pi];
 if (pcs[c] != scs[c]) break;
 }
 if (si >= sl) break;
 --scs[static_cast<unsigned char>(s[si - pl])];
 ++scs[static_cast<unsigned char>(s[si])];
 }
 return false;
}

It’s certainly possible to figure out what this function is doing—it has a
descriptive name, at least, so you’ve got a head start. Adding more descriptive
names, spacing to separate thoughts, and comments to explain those thoughts
will make it much easier to read:

// Check whether any permutation of the permute string appears in the
// search string

bool tryFindPermutation(const string & permute, const string & search)
{
 // If the search string is shorter than the permute string, then there's
 // no way it can be a permutation. Exit now to simplify things.

 int permuteLength = permute.length();
 int searchLength = search.length();
 if (searchLength < permuteLength)
 return false;

 // Count how many times each letter shows up in the permute string.
 // We'll compare these counts to running counts we'll keep in the
 // search string.

 int permuteCounts[UCHAR_MAX] = {};
 for (unsigned char c : permute)
 {
 ++permuteCounts[c];
 }

 // Make the same counts for the first possible match in the
 // search string

 int searchCounts[UCHAR_MAX] = {};
 int searchIndex = 0;

 for (; searchIndex < permuteLength; ++searchIndex)
 {
 unsigned char c = search[searchIndex];
 ++searchCounts[c];

238 | THE RULES OF PROGRAMMING

 }

 // Loop over the possible matching substrings in the search string

 for (;; ++searchIndex)
 {
 // Check whether the current substring matches the permute string

 for (int permuteIndex = 0;; ++permuteIndex)
 {
 // If we didn't find any character count mismatches after we've
 // checked all the characters in the permute string, then we've
 // found a permutation. Return true to mark that success.

 if (permuteIndex >= permuteLength)
 return true;

 // If the count of this character in the permute string doesn't
 // match the count in this substring of the search string, then
 // the substring isn't a permutation. Move on to the next one.

 unsigned char c = permute[permuteIndex];
 if (permuteCounts[c] != searchCounts[c])
 break;
 }

 // Stop once we've checked all possible substrings in the
 // search string

 if (searchIndex >= searchLength)
 break;

 // Update the running character counts to match the next
 // possible match

 unsigned char drop = search[searchIndex - permuteLength];
 unsigned char add = search[searchIndex];

 --searchCounts[drop];
 ++searchCounts[add];
 }

 // If we make it here, then we're out of substrings and didn't find
 // any matching permutations, since we return immediately once
 // they're found.

 return false;
}

LET YOUR CODE TELL ITS OWN STORY | 239

Much easier to follow, right? Read the previous example and you’re in for
some tough sledding figuring what’s going on. Read this example from top to
bottom, and you understand exactly what it’s doing and why.

The extra spacing breaks up the bits of logic, just like spaces break up
words in a sentence. Indentation groups related thoughts. Choosing good names
for variables is a shortcut to understand their purpose—good names are your
first and most important bit of documentation. Comments provide context and
explanation—they focus on the big picture, the “why” to the code’s “what.”

If you’re used to explaining code or having it explained to you, then reading
code written this way feels familiar. Good comments feel like reading a story.

You could also think of good code as a song. Songs have music and lyrics,
with each playing complementary roles. Good code is the same way—the actual
code and the comments have separate but related roles. They support each other.
The lines of code are the functioning part; good naming and formatting make the
function of each line clear. The comments support this with context, explaining
how the lines fit together and what the purpose of each line is.

Your code editor probably color-codes things, with comments showing up
in a different color than lines of code. Since most people’s brains are pretty
good at sorting colors, spacing and color-coding make it easy to focus on code or
comments separately, while still keeping it easy to look at them together. That’s
just like reading sheet music: the music is shown as notes in a staff, while the
lyrics are printed alongside, roughly aligned but separate. You can focus on the
music or the lyrics when reading sheet music.

You’ll be in great shape if you remember that good comments complement
code instead of duplicating it. They pull the bare mechanics of the code into a
story, making it much easier to understand the code. If you can read through the
comments while ignoring the code and still feel like you understand what’s going
on, then you’ve done a top-notch job.

240 | THE RULES OF PROGRAMMING

Rework in Parallel

Most of the time, for most of the work you do as a programmer, you’ll only make
brief departures from the main codebase. You’ll investigate a problem, check out
the files you need to fix the problem, test and review your changes, then commit
them back into the main branch. You might complete the whole cycle in a day,
though that’s pretty quick if there’s any testing to be done; more typically, you’ll
spend days with stuff checked out.

Eventually, though, you run into a task where this simple model falls apart.
You’re teaming up on something with another programmer, say. When you’re
working solo, the work in progress only exists on your machine, but that doesn’t
work when you’re partnered with someone. The two of you need to maintain a
shared version of the work in progress.

The standard answer to this is to create a new branch in your source code
control system for the work the two of you have planned. This branch starts as
a copy of the main branch, but quickly diverges from the main branch as you
work. You probably look for occasional chances to integrate changes from the
main branch into your branch to keep up with the work being done by the rest
of the team, resolving any conflicts introduced by changes on the main branch.
Eventually your work is complete; you integrate one last time from the main
branch, do a final test, review your work, and check in.

Bumps in the Road

This approach works—that’s why it’s the standard answer—but it’s not free of
problems.

Integrating changes from the main branch can be hard, for instance. The
rest of the team has no visibility into what you’re doing on your branch, so it’s
easy for them to break your work in progress. This can be a minor annoyance,
as when someone introduces a new call into the system you’re reworking. It

241

| Rule 19

can be more troublesome, as when someone fixes a bug in the old system that
has to be mirrored in your reworked version. Or it can be truly painful, like
someone deciding to reorganize a source file, destroying all the diffs you’ve been
relying on.

If you’re reworking the old system in place, which is typically the case, then
it’s easy to lose sight of how the old system worked. You started with source
code for the old system, which you could consult to understand its function—but
every line you change makes it harder to see which behaviors were original and
which have been added. The workarounds for this—like keeping a full copy of
the original source to consult, or continually referring to diffs from the original
source—are painful.

If you’re part of a big team, then just keeping up with the churn from the
rest of the team can be a challenge. Typically, the core of the work you’re focused
on is confined to a handful of source files, but calls to that core can be scattered
across dozens of files. Every change to any of those dozens of files is a potential
merge conflict. If you’ve got a big team of people checking in changes to the
main branch, then the smaller team working on a branch can get saturated just
integrating changes.

It’s easy to get lost in a tangle of source-code control branches. The flexibility
branching provides is tempting, and it’s easy to get carried away. The simple
branching I described for the standard approach—a single branch leaving the
main branch and rejoining it later—is easy enough to track. If it gets more
complicated than that—throwaway branches for testing new approaches to the
problem, branches for personal backups, multiple main branches to manage
release staging—you can get lost pretty quick.

We’ve followed this standard branch-and-change approach for a few big
changes at Sucker Punch. The results were painful, so we’ve tried alternatives.
We’ve had pretty good luck with a particular approach, a duplicate-and-switch
model.

Build a Parallel System Instead

Here’s the idea—instead of changing a system in place, we build a parallel
system. The new system is checked in while work is still in progress, but is only
enabled (via a runtime switch) for the small team working on it. Most of the team
uses the old system, never touching the new code paths. When the new system is
ready to go, we use the runtime switch to enable it for everyone. Once everyone is
successfully using the new system, we excise the old one from the project.

242 | THE RULES OF PROGRAMMING

There’s a great aphorism from Kent Beck that applies:

For each desired change, make the change easy (warning: this may be

hard), then make the easy change.

It’s straightforward to apply this aphorism on small projects. The parallel
system technique is a way to apply it to big changes on larger projects, where the
preparatory work spans many bits of code committed from multiple coders. All
the hard work of building the parallel system sets you up for the cut-over point,
which is easy in comparison.

A Concrete Example

Let’s look at a real-world example. It’s going to take a few pages to set up the
context, but we’ll return to the idea of building a parallel system before too long.

At Sucker Punch we use a stack-based memory allocator in much of our
code, instead of relying on the standard heap allocator in all cases. The basic idea
of a stack allocator is to simplify allocation by not freeing allocated blocks—at
least, not individual blocks. With the standard heap allocator, each allocated block
must later be freed. A stack allocator works more like variables on the call stack—
any block allocated in a function is automatically freed when the function exits.
Stack-based allocation is easier to use because you don’t have to worry about
freeing blocks. It’s also wicked fast, which is important in a lot of our game
programming scenarios.

Scopes are defined with a “context” object. All stack allocations are associated
with the current context. When a context goes out of scope, all blocks associated
with that context are freed. The blocks have all been allocated sequentially, so this
mass freeing is trivial, just as each allocation was. We’re just pushing pointers
around. Here’s the allocator:

class StackAlloc
{
 friend class StackContext;

public:

 static void * alloc(int byteCount);

 template <class T>
 static T * alloc(int count)
 { return static_cast<T *>(alloc(sizeof(T) * count)); }

REWORK IN PARALLEL | 243

https://oreil.ly/8YWdU

protected:

 struct Index
 {
 int m_chunkIndex;
 int m_byteIndex;
 };

 static Index s_index;
 static vector<char *> s_chunks;
};

StackAlloc::Index StackAlloc::s_index;
vector<char *> StackAlloc::s_chunks;

const int c_chunkSize = 1024 * 1024;

void * StackAlloc::alloc(int byteCount)
{
 assert(byteCount <= c_chunkSize);

 while (true)
 {
 int chunkIndex = s_index.m_chunkIndex;
 int byteIndex = s_index.m_byteIndex;

 if (chunkIndex >= s_chunks.size())
 {
 s_chunks.push_back(new char[c_chunkSize]);
 }

 if (s_index.m_byteIndex + byteCount <= c_chunkSize)
 {
 s_index.m_byteIndex += byteCount;
 return &s_chunks[chunkIndex][byteIndex];
 }

 s_index = { chunkIndex + 1, 0 };
 }
}

The stack allocator tracks a list of chunks of memory, where blocks may have
been allocated from the chunks at the start of the list. If a requested allocation
fits in the last chunk with allocated blocks, we add the new block to that chunk,
right after the last allocated block in that chunk. If it doesn’t, we add it at the
beginning of the next chunk, allocating new chunks when necessary.

244 | THE RULES OF PROGRAMMING

1 Yes, the first lesson of optimization is “don’t optimize,” as Rule 5 explains; believe me when I tell you that
we have plenty of data about the importance of quick dynamic-memory allocation in our games.

2 Most importantly, the blocks only stay around as long as the context. If you want to hold onto some bit of
data for longer than the context’s lifetime, you’re out of luck.

The context object is even more trivial. It just remembers the next place we’d
allocate a block:

class StackContext
{
public:

 StackContext()
 : m_index(StackAlloc::s_index)
 { ; }
 ~StackContext()
 { StackAlloc::s_index = m_index; }

protected:

 StackAlloc::Index m_index;
};

This allocation model has a few advantages. It’s much faster than a general
heap allocator, since allocations are simple pointer math and releasing a context
is almost free.1 More importantly, it has great locality, since consecutively alloca-
ted blocks are right next to each other in memory. And since the blocks are freed
automatically, there’s no risk that you’ll forget to free one.

There are plenty of disadvantages, too,2 but there are two main use cases
where stack-based allocation is a good fit. First, you often need to allocate some
scratch space for a function’s internal logic, and stack-based allocation is perfect
for that. Second, if you’re returning variable-sized data, then allocating space for
that returned data via StackAlloc works really well.

Stack Allocation in Practice

The original Sucker Punch version of stack allocation looked roughly like the
code in the previous section. Over time, however, we’ve mostly migrated to
using stack-based vectors instead—a quick search of the codebase turns up a few
hundred calls to raw stack-based allocation, but five thousand uses of stack-based
vectors.

REWORK IN PARALLEL | 245

Here’s a simplified version of the stack-based vector class, with method
names chosen to match the standard C++ vector:

template <class ELEMENT>
class StackVector
{
public:

 StackVector();
 ~StackVector();

 void reserve(int capacity);
 int size() const;
 void push_back(const ELEMENT & element);
 void pop_back();
 ELEMENT & back();
 ELEMENT & operator [](int index);

protected:

 int m_count;
 int m_capacity;
 ELEMENT * m_elements;
};

Creating the vector is trivial, since it starts with no elements. Destroying it
is almost as simple. There’s no memory to free, so all that’s needed is to call the
destructor for each of the elements in the vector:

template <class ELEMENT>
StackVector<ELEMENT>::StackVector() :
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
StackVector<ELEMENT>::~StackVector()
{
 for (int index = 0; index < m_count; ++index)
 {
 m_elements[index].~ELEMENT();
 }
}

246 | THE RULES OF PROGRAMMING

The basic vector operations are straightforward. Note that if the vector needs
to be resized, the old memory doesn’t need to be freed. The elements need
copying to the new storage, but that’s it:

template <class ELEMENT>
void StackVector<ELEMENT>::reserve(int capacity)
{
 if (capacity <= m_capacity)
 return;

 ELEMENT * newElements = StackAlloc::alloc<ELEMENT>(capacity);

 for (int index = 0; index < m_count; ++index)
 {
 newElements[index] = move(m_elements[index]);
 }

 m_capacity = capacity;
 m_elements = newElements;
}

template <class ELEMENT>
int StackVector<ELEMENT>::size() const
{
 return m_count;
}

template <class ELEMENT>
void StackVector<ELEMENT>::push_back(const ELEMENT & element)
{
 if (m_count >= m_capacity)
 {
 reserve(max(8, m_capacity * 2));
 }

 new (&m_elements[m_count++]) ELEMENT(element);
}

template <class ELEMENT>
void StackVector<ELEMENT>::pop_back()
{
 m_elements[--m_count].~ELEMENT();
}

template <class ELEMENT>
ELEMENT & StackVector<ELEMENT>::back()
{
 return m_elements[m_count - 1];
}

REWORK IN PARALLEL | 247

template <class ELEMENT>
ELEMENT & StackVector<ELEMENT>::operator [](int index)
{
 return m_elements[index];
}

Here’s a simple usage example:

void getPrimeFactors(
 int number,
 StackVector<int> * factors)
{
 for (int factor = 2; factor * factor <= number;)
 {
 if (number % factor == 0)
 {
 factors->push_back(factor);
 number /= factor;
 }
 else
 {
 ++factor;
 }
 }

 factors->push_back(number);
}

So far, so good! It’s just a vector with better performance in some well-
defined circumstances, which is a pretty simple thing to get your head around.
That’s why stack vectors are used so widely in our codebase.

A Cloud on the Horizon

But there’s a nagging problem. There are two main use cases for stack vectors—
allocating scratch storage for a routine and returning values from a routine—and
they don’t mesh. Let me explain.

Imagine you’d like to write a function for a video game that returns enemies
within five meters of the player. Imagine further that you’ve got a good starting
point: a function that returns all nearby characters, whatever their emotional rela-
tionship to the player, along with their positions, all in a stack vector. It should be
possible to call that code to get nearby characters, then filter out everyone except
the enemies.

248 | THE RULES OF PROGRAMMING

Here’s the code you’d like to write:

void findNearbyEnemies(
 float maxDistance,
 StackVector<Character *> * enemies)
{
 StackContext context;
 StackVector<CharacterData> datas;
 findNearbyCharacters(maxDistance, &datas);

 for (const CharacterData & data : datas)
 {
 if (data.m_character->isEnemy())
 {
 enemies->push_back(data.m_character);
 }
 }
}

But this doesn’t work, at least not with the simple stack allocator defined in
the last section.

The problem is that two stack contexts are getting tangled up. You create
a StackContext and StackVector for the character data returned by findNearby
Characters, and this works great. But when you call enemies->push_back in the
second half of the function, it will allocate memory from the stack context you
created locally, rather than the stack context associated with the enemies array.
The enemies array is probably defined in the calling function, inside a different
stack context.

That’s bad! You’d get unpredictable results if you used the returned array in
the caller. In fact, when the real Sucker Punch stack vector class tries to allocate
memory with a mismatched stack context, it asserts to catch exactly this kind of
bug. It’s possible to work around the stack context tangle, but I’m not going to
show you the code because, frankly, it’s a little embarrassing.

Making Stack Contexts a Little Smarter

There’s a fairly straightforward way to fix this. The stack allocator defined earlier
is global, like the standard heap allocator—when you allocate a block, it’s associ-
ated with the stack context created most recently. That was the root cause of the
tangled stack contexts we’re trying to untangle. If it was possible to associate a
block with a particular stack context, we could fix things.

REWORK IN PARALLEL | 249

That’s not hard. The easiest way to do this is to move the alloc method
to the StackContext object. If you’re allocating from the current context, you’ll
allocate bytes from a shared stack. In the uncommon case that you’re allocating
from some context that’s not current, you’ll switch to a backup allocation strat-
egy. You can do this without sacrificing the benefits of stack allocation if you’re
careful with the implementation.

First, here is the restructured StackContext class:

class StackContext
{
public:

 StackContext();
 ~StackContext();

 void * alloc(int byteCount);

 template <class T>
 T * alloc(int count)
 { return static_cast<T *>(alloc(sizeof(T) * count)); }

 static StackContext * currentContext();

protected:

 struct Index
 {
 int m_chunkIndex;
 int m_byteIndex;
 };

 static char * ensureChunk();
 static void recoverChunk(char * chunk);

 struct Sequence
 {
 Sequence() :
 m_index({ 0, 0 }), m_chunks()
 { ; }

 void * alloc(int byteCount);

 Index m_index;
 vector<char *> m_chunks;
 };

 Index m_initialIndex;
 Sequence m_extraSequence;

250 | THE RULES OF PROGRAMMING

 static const int c_chunkSize = 1024 * 1024;

 static Sequence s_mainSequence;
 static vector<char *> s_unusedChunks;
 static vector<StackContext *> s_contexts;
};

New functions are created to create big chunks of memory as needed, reus-
ing them when they’re no longer needed:

char * StackContext::ensureChunk()
{
 char * chunk = nullptr;

 if (!s_unusedChunks.empty())
 {
 chunk = s_unusedChunks.back();
 s_unusedChunks.pop_back();
 }
 else
 {
 chunk = new char[c_chunkSize];
 }

 return chunk;
}

void StackContext::recoverChunk(char * chunk)
{
 s_unusedChunks.push_back(chunk);
}

The code to allocate a new block into the last chunk moves into a new
Sequence object:

void * StackContext::Sequence::alloc(int byteCount)
{
 assert(byteCount <= c_chunkSize);

 while (true)
 {
 int chunkIndex = m_index.m_chunkIndex;
 int byteIndex = m_index.m_byteIndex;

 if (chunkIndex >= m_chunks.size())
 {
 m_chunks.push_back(new char[c_chunkSize]);
 }

REWORK IN PARALLEL | 251

 if (m_index.m_byteIndex + byteCount <= c_chunkSize)
 {
 m_index.m_byteIndex += byteCount;
 return &m_chunks[chunkIndex][byteIndex];
 }

 m_index = { chunkIndex + 1, 0 };
 }
}

The stack context methods that are left are simple. Track the current set
of nested stack contexts. When an allocation is made from the topmost stack
context (the typical case), it comes from a global sequence. When an allocation is
made from any other stack context (the exceptional case), a sequence owned by
that stack context is used instead:

StackContext::StackContext() :
 m_initialIndex(s_mainSequence.m_index),
 m_extraSequence()
{
 s_contexts.push_back(this);
}

StackContext::~StackContext()
{
 assert(s_contexts.back() == this);

 for (char * chunk : m_extraSequence.m_chunks)
 {
 recoverChunk(chunk);
 }

 s_mainSequence.m_index = m_initialIndex;
 s_contexts.pop_back();
}

void * StackContext::alloc(int byteCount)
{
 return (s_contexts.back() == this) ?
 s_mainSequence.alloc(byteCount) :
 m_extraSequence.alloc(byteCount);
}

In normal usage, the backup sequence in the stack context isn’t used, so
there’s very little penalty for this new functionality. Allocation is still fast and
easy.

252 | THE RULES OF PROGRAMMING

The new stack context code forces a few simple changes to the StackVector
class, which now needs to specify which stack context to allocate from. Leaving
out the stuff that doesn’t change:

template <class ELEMENT>
class StackVector
{
public:

 StackVector(StackContext * context);

protected:

 StackContext * m_context;
 int m_count;
 int m_capacity;
 ELEMENT * m_elements;
};

template <class ELEMENT>
StackVector<ELEMENT>::StackVector(StackContext * context) :
 m_context(context),
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
void StackVector<ELEMENT>::reserve(int capacity)
{
 if (capacity <= m_capacity)
 return;

 ELEMENT * newElements = m_context->alloc<ELEMENT>(capacity);

 for (int index = 0; index < m_count; ++index)
 {
 newElements[index] = move(m_elements[index]);
 }

 m_capacity = capacity;
 m_elements = newElements;
}

REWORK IN PARALLEL | 253

With these new implementations, we’re in good shape. We’ve kept the pos-
itive aspects of stack allocations—lightning-fast allocation and free operations,
plus good locality—while fixing the annoying inability to mix and match local
scratch space and variable-sized return values.

Migrating from Old Stack Contexts to New Ones

Now it’s time to circle back to the main premise of the chapter, which you’ve
likely forgotten in this blizzard of source code. You’ll recall that we’ve got an old
version of stack allocation and a new one, and they’re not exactly the same.

So how do we get from Point A to Point B? The new stack allocator and
stack array are conceptually the same as the old versions, but their interfaces
have evolved a bit. The thousands of places in our source code where we’ve used
the old model of StackContext and StackVector don’t match the new interface
exactly, so we can’t just drop in the new implementation. There’s a lot of existing
source code that needs slight changes.

You should be a little nervous about introducing new problems with the
switch to the new implementation. There are likely bugs lurking somewhere
in those thousands of uses of the old model. Somebody somewhere is relying
on the old system’s behavior—allocating memory from the wrong stack context
without realizing it, perhaps, and relying on the old behavior to keep their code
working. That bit of code will break when we switch to a new model that actually
supports out-of-order allocation.

An easy way to address these problems is by building parallel implementa-
tions and using a runtime flag to switch between them.

First, give the two classes different names so that they can coexist in the
same codebase. In C++, wrap the StackAlloc and StackContext classes with
two namespaces—say, OldStack and NewStack—so that the classes have names
like NewStack::StackContext. (You could just as easily rename the classes to
NewStackAlloc and OldStackAlloc.)

Second, create new StackAlloc and StackContext adapter classes. These
adapter classes will delegate to either the old or the new versions of StackAlloc
and StackContext, depending on a new global flag. The adapter classes support
the union of the slightly different interfaces to the old and new classes.

254 | THE RULES OF PROGRAMMING

This is pretty simple:

bool g_useNewStackAlloc = false;

class StackAlloc
{
public:

 static void * alloc(int byteCount);
};

void * StackAlloc::alloc(int byteCount)
{
 return (g_useNewStackAlloc) ?
 NewStack::StackContext::currentContext()->alloc(byteCount) :
 OldStack::StackAlloc::alloc(byteCount);
}

The StackAlloc adapter just consults the runtime flag and calls the right
allocator; simple. The StackContext adapter can be even simpler—since the old
StackContext didn’t have an alloc method, no code has been written to call it.
Any new code calling alloc on the StackContext adapter is opting into using the
new StackContext:

class StackContext
{
public:

 StackContext() :
 m_oldContext(),
 m_newContext()
 { s_contexts.push_back(this); }
 ~StackContext()
 { s_contexts.pop_back(); }

 void * alloc(int byteCount);

 static StackContext * currentContext()
 { return (s_contexts.empty()) ? nullptr : s_contexts.back(); }

protected:

 OldStack::StackContext m_oldContext;
 NewStack::StackContext m_newContext;

 static vector<StackContext *> s_contexts;
};

REWORK IN PARALLEL | 255

vector<StackContext *> StackContext::s_contexts;

void * StackContext::alloc(int byteCount)
{
 return m_newContext.alloc(byteCount);
}

Your goal at this point is to minimize intervention in the old code path. As
long as the global flag is false, the code is running through almost exactly the
same logic as before the change. You’ll create old-style StackContexts as before
and StackAlloc works as before, so you shouldn’t find any big issues while
testing.

At this point, assuming testing works out, you could commit your work. You
don’t need to update StackVector first, since it will work as is. It’s allocating
stack memory like any other stack memory user, and you can switch between the
old and new stack memory allocators using the runtime flag.

The ability to check in partial work to the main branch is a big advantage
of the parallel rework technique. It’s not so important here, with this small exam-
ple—you could easily incorporate the next couple of steps into a single change
list and skip the intermediate steps. With a more realistically sized example,
though, being able to migrate to a new solution over a series of partial steps
makes the process much easier to pull off.

Preparing to Migrate StackVector

The next step is to decide how to migrate the StackVector class. One obvious
answer is to follow the model we used for StackContext, where a new shim
StackVector class embeds both an old-style and a new-style StackVector, switch-
ing between the two of them based on the global flag. That leads to delegation
methods like this:

template <class ELEMENT>
size_t StackVector<ELEMENT>::size() const
{
 if (g_useNewStackAlloc)
 return m_oldArray.size();
 else
 return m_newArray.size();
}

256 | THE RULES OF PROGRAMMING

As a temporary measure, this isn’t too bad. Creating the delegation functions
is a little mind-numbing, but at least it’s obvious what’s going on to anyone who
stumbles into this code during the migration to the new system.

The other option is to make the switch where the stack allocator is called.
That works beautifully in this case—the StackVector class allocates stack mem-
ory in exactly one place. If that code can handle both allocating memory from a
global stack (as in the original code) and from an explicit stack context (which
we’re migrating to) then you’ll be in good shape:

template <class ELEMENT>
class StackVector
{
public:

 StackVector();
 StackVector(StackContext * context);

 void reserve(int capacity);

protected:

 bool m_isExplicitContext;
 StackContext * m_context;
 int m_count;
 int m_capacity;
 ELEMENT * m_elements;
};

template <class ELEMENT>
StackVector<ELEMENT>::StackVector()
: m_isExplicitContext(false),
 m_context(StackContext::currentContext()),
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

template <class ELEMENT>
StackVector<ELEMENT>::StackVector(StackContext * context)
: m_isExplicitContext(true),
 m_context(context),
 m_count(0),
 m_capacity(0),
 m_elements(nullptr)
{
}

REWORK IN PARALLEL | 257

3 In case you’re not familiar with this expression, an explanation. Penguins nest on land, but hunt at
sea. This means diving off ice floes into the ocean, not sure whether a hungry leopard seal is lurking
underneath the waves. Penguins tend to gather in jostling mobs at the water’s edge, all waiting for one
penguin to be brave enough to dive in—or, more likely, to be jostled in; there is no honor among penguins.
Anyhow, if that penguin doesn’t get eaten, the rest of the penguins follow. Hence, “first penguin.”

template <class ELEMENT>
void StackVector<ELEMENT>::reserve(int capacity)
{
 if (capacity <= m_capacity)
 return;

 assert(
 m_isExplicitContext ||
 m_context == StackContext::currentContext());

 ELEMENT * newElements = (m_isExplicitContext) ?
 m_context->allocNew<ELEMENT>(capacity) :
 m_context->alloc<ELEMENT>(capacity);

 for (int index = 0; index < m_count; ++index)
 {
 newElements[index] = move(m_elements[index]);
 }

 m_elements = newElements;
}

Having two StackVector constructors lets you track which kind of allocation
is appropriate. All your existing code will use the first constructor, at least to start
with, since it takes the same arguments as the original version of the class. You’ll
eventually migrate to using the second constructor, but none of that code has
been written yet. If the first constructor is used, then isExplicitContext won’t
be set, and reserve will run exactly as before.

Once again, you’re at a safe point to commit changes. All existing uses of
StackVector will go through the old stack allocation code path if the global flag
is unset. Anyone setting the global flag runs through the new code path, as does
any code that creates a stack array with the new explicit-context constructor.

Time to Migrate

Now you’re set up to migrate!
At Sucker Punch, we’d do this in a few steps. First, some small number of

first penguins3 set the global flag that switches to the new stack allocation system.

258 | THE RULES OF PROGRAMMING

If they don’t discover problems, we then recruit a larger set of people. When
everything looks safe, we check in with the global flag set to true so that everyone
uses the new system. If at any point during this rollout we detect a problem, it’s
simple to switch everyone back to the old system while we diagnose and fix the
problem.

Once everyone is safely using the new system, we can start to tear out the
adapters. The new StackContext class replaces the old one without trouble. We
can tear out the small bit of wiring we added to the StackVector class, too, since
everything goes through the new allocator now.

There’s a policy decision to make about whether to require a context to be
passed to each StackVector. It’s a trade-off between the convenience of inferring
the topmost stack context and the bugs that pop up when a stack context is
accidentally deleted or misplaced. If we decide to require a context, then we can
do that in parts—we don’t have to update all five thousand (!) places where we
create stack arrays at once.

It might seem crazy that we’d consider converting five thousand lines of
code when there’s a reasonable defaulting strategy that avoids the need for any
conversion...but our focus is on the long term. If requiring the context would
make us more efficient by avoiding a whole class of bugs, then it’s probably
worth the effort.

It’s not that hard to convert the code. Just write a little bit of Python to
find all the StackVectors, figure out what stack context was implied (which isn’t
that hard, because it’s nearly always the last StackContext defined), update the
constructor, and check out the changed file. The real cost isn’t updating the
code—it’s figuring out how to test the change.

The compiler will catch almost all the problems, but for this case I’d also
apply this chapter’s strategy recursively. I’d add a special constructor for all the
places where I’ve inferred a context, then assert at runtime that the constructor
passed is topmost on the context stack. Once I verify that I haven’t changed
contexts, I’d switch to the normal constructor. If I’ve got a good code-coverage
test, I’m in great shape.

All that’s left at this point is the code that allocates stack memory directly.
We’ve got two choices: continue to support a global stack allocation that implic-
itly uses the current stack context, or convert a few hundred lines of code to call
alloc on the StackContext variable directly. In this case, I’d convert everything,
gaining the robustness of the new allocation model.

REWORK IN PARALLEL | 259

Once the last bits of direct allocation are converted, you’re done. All of the
vestiges of the old stack allocation are gone—and you were able to do it bit by bit,
in a series of commits, taking small, safe steps. With this approach, if you run
into any bumps along the way, you can quickly back up to the old behavior, so the
team as a whole isn’t disrupted.

Recognizing When Parallel Rework Is a Good Strategy

This parallel rework strategy is very useful in the right circumstances, but it’s
not a panacea. You’ll still run into the occasional need to fix bugs in two places.
Coders who aren’t running with the new version of the system will inadvertently
break your work. These things will happen less often and be less disruptive than
if you’d gone on off onto your own private branch in source control, but they will
happen.

Parallel rework imposes some overhead, too. Just managing three separate
names for the same concept—original, reworked, and adapter—is a hassle. You’ll
write more code overall, since you’re likely to make copies of some of the bits of
the original solution.

It may be that your new, reworked system is so fundamentally different from
the original version that parallel rework doesn’t make sense. If you can’t define
an adapter layer, something that switches dynamically between the old and new
versions, then you can’t apply the technique as I’ve described it here.

In a lot of cases, though, parallel rework provides a manageable way to make
major changes to your codebase incrementally and safely. At Sucker Punch we
don’t use it for all changes, but for big rework it’s our go-to strategy.

260 | THE RULES OF PROGRAMMING

1 It will not surprise you to learn that we have a convention for this at Sucker Punch: “get” implies that no
(or very little) calculation is done, while “calculate” or something similar implies that work is involved to
produce the value. It’s a nice head start on understanding what a function does.

Do the Math

This isn’t a very math-y book. Sure, numbers pop up in a few of the Rules (like
Rule 4, “Generalization Takes Three Examples”, and Rule 11, “Is It Twice as
Good?”), but the Rules are more concepts than equations.

It’s sort of surprising that there isn’t more math in computer programming.
Computers are just number processing machines, after all. Everything is reduced
to numbers for processing—words are sequences of characters represented as
numbers, bitmaps are pixels represented by colors represented by numbers,
music is a pair of waveforms represented as a series of numbers. You’d think
that some of that would leak through—that, as a programmer, you’d be figuring
equations at some point. That doesn’t happen very often, though.

Most of the decisions a programmer makes are squidgy. Deciding whether
the clarity a lengthy comment would add is worth complicating the flow of logic,
say. Choosing between getPriority or calculatePriority as the name for a
function.1 Identifying the right time to switch over to a new version of some
system.

It’s easy to fall into thinking that all decisions are squidgy, not just most
decisions. Some decisions boil down to simple math, though, and you need to
recognize them when they pop up. If you don’t, if you forge ahead without doing
the simple math, you may be in for a painful realization later on. You may
discover that the approach you’ve followed was never going to work, and that you
could have saved yourself a lot of time by just doing the math. This will make you
sad; better to do the math up front.

261

| Rule 20

2 Ahem. This is not a hard scenario for me to imagine.

To Automate or Not to Automate

Here’s a common scenario. You’ve got some process you’ve been doing by hand,
and you’re thinking about automating it. Is the automation work worth doing?

That’s just a math problem! If you’ll spend less time writing the code than
you’ll spend repeating the task by hand, then it’s worth doing. If not, then it
isn’t.

This may seem obvious, and it is, but that doesn’t mean the math gets
done.

I’ve seen this math get skipped way more times than I’ve seen it done.
Let me spin a typical counter-example—a programmer gets annoyed by some
manual process, immediately dives into a two-day project to automate it, then
congratulates themselves every time they run the resulting macro. Which they do
maybe once a week, saving 15 seconds each time.

The two-day automation project may have been fun, but it wasn’t justifiable,
and doing the math before starting would have made this clear. Look, we’re
programmers because we like to program. We’re going to have a bias toward
solving problems by programming—but programming isn’t the right solution to
every problem.

Deciding whether to automate some task is an optimization problem—
you’re just optimizing the work process rather than the program execution. You
apply the same steps as with any optimization, including the absolute need to
measure the process before trying to optimize it.

Let’s look at a concrete automation scenario. Imagine you’re writing a book
about programming. You’re using Visual Studio to edit all of your coding exam-
ples, but you’re using Word to write the book. The code examples are indented
in the source file, but shouldn’t be indented in the book.2 Your manual process is
simple and pretty fast:

1. Select a code block in your editor.1.

2. Unindent it.2.

3. Copy it to the clipboard.3.

4. Undo the unindentation.4.

5. Switch to Word.5.

262 | THE RULES OF PROGRAMMING

3 Because that’s how long the manual process took when I timed it.

6. Create a paragraph with the right style.6.

7. Paste the code example into the paragraph.7.

Is this worth automating? Will you save time overall by automating this
operation? Time to do the math.

There are two sides to the math here: the cost side and the benefit side.
The cost is how much work will be required to implement the automation. The
benefit is how much time you’ll save once the task is automated.

In this concrete scenario, some of the steps will still remain even after
automation. You’ll still switch to your code editor to select the code block, and
you’ll still switch back to Word to paste it in. When you’re doing the math
for the scenario you can ignore the steps that don’t change, since you’re only
interested in the time difference pre- and post-automation. Everything else can be
automated, and once automated will take effectively zero time.

You can’t do the math without numbers. Where possible, use real numbers
rather than estimates. That means measuring the things that can be measured—
in this case, how long the manual process takes. So time it—let’s say it takes
6 seconds.3 You look at the chapters you’ve written and they average 8 code
samples, so 8 code samples per chapter goes into the math. Your publishing
contract calls for 20 or so chapters, so that’s the number to use. You’ve also
noted that it’s common to revise code samples, and this means cutting and
pasting them more than once. You think that on average each example is pasted
3 times; that’s the one estimate in all of this.

That’s enough to do the benefit side of the math:

6 seconds (per copy operation) ×
8 (code samples per chapter) ×
20 (chapters) ×
3 (revisions of each sample) = 48 minutes

OK, so that’s the benefit side of things. On to the cost side.
How long will it take to automate the process? It’s not easy to automate

things in Visual Studio, at least as it comes out of the box, but Word is surpris-
ingly automatable. If you’ve written Word macros before, and especially if you’ve

DO THE MATH | 263

4 An optimistic estimate, in my opinion.

written code that manipulates the clipboard, then you’ve got the basics covered.
There’s just some text cleanup to do on top of the clipboard manipulation.

And that cleanup doesn’t seem bad. Pull the contents of the clipboard into an
array of strings, one per line of text. Detect the minimum amount of indentation
in any string, then rebuild the array subtracting out that indentation. You’ll
probably need to think about how blank lines affect things, and also should
consider that spaces and tabs look pretty much the same in the text editor but
pretty different in Word. And after cleaning up the lines you have to reassemble
them into a text block and insert it in the document, then bind your new macro
to a hot key.

Let’s say your estimate is an hour to get this all working correctly.4

An hour is more than 48 minutes, so the math tells us to not do the
automation. But it seems close; maybe the estimates on the benefit side were a
little off. Maybe it’s an average of 4 revisions per sample instead of 3. That would
be enough to push the math positive—if it’s 4 revisions per sample instead of 3,
the math says go ahead. And the fact is, it is really annoying to do the steps by
hand, even if it’s only taking 6 seconds a pop.

Hold on there, cowpoke. Which do you think is more likely—that you were
a little too pessimistic on your estimate of the benefits, or a little too optimistic
on how much time it was going to take to get the code working? You’re a
programmer, you know the answer to this question. You’re much more likely to
miss your estimate on coding time.

If the cost-benefit math for automation looks like a toss-up, then don’t do it.

Look for Hard Limits

If you’ve got hard limits in your problem space or on your solution, then you
should respect them from the start of your design process.

One of the nice things about creating games for video game consoles is that
they present plenty of hard limits. Like the amount of memory in a console—
that’s fixed. The number of bytes you can pack on a Blu-ray disk is fixed. The size
of a UDP networking packet is fixed. Each frame is a sixtieth of a second, full
stop.

Our team will also invent hard limits to clarify our technical design process.
Take available network bandwidth, for example. It varies from customer to cus-
tomer, and it can be unpredictable, but we have pretty reliable numbers on

264 | THE RULES OF PROGRAMMING

5 Not everywhere, though. McMurdo Station in Antarctica shares 25 Mbps of bandwidth between a
thousand people in the summer. That’s less than our hard cap; sorry, scientists. Also it might make sense
to cut back on the Netflix, scientists; sorry about that too. Keep up the good work, though.

6 Well, it’s easy for the coders to do the math, at least. And easy for the coders to explain to anyone who
doesn’t want to do the math.

measured network bandwidth for customers around the world. We can invent a
hard limit on network bandwidth that covers nearly all of our customers; if we
stay within that invented hard limit, the game will run well for almost everyone.5

It may seem strange to rejoice in hard caps like this. Why would having hard
limits be something to celebrate?

Take the hard limit on memory that we work with when doing console
programming. This seems like a bad thing—wouldn’t virtual memory make
programming easier? The answer is yes, of course, but it’s at the cost of turning
a hard limit on memory into a softer limit. If you overflow available physical
memory, virtual memory swaps pages out to disk, trading time for space. That’s
a problem for a video game. Updating the screen once every couple of seconds
when virtual memory starts thrashing isn’t acceptable; we have a hard limit of a
sixtieth of a second for each frame. In the end it’s simpler to accept a hard limit
on memory.

So we identify the hard limits that exist, and invent hard limits out of softer
limits to simplify our design decisions. That’s true for the coding team, but even
more so for all of the Sucker Punchers who aren’t coders. Trade-offs and soft
limits are really hard for people to wrap their heads around. Hard limits are
easier—they turn some parts of the design process into simple math, and that’s
easy to do.6

Consider a network protocol design example. The basic networking design
is fixed—you’re writing a peer-to-peer game, so every connected machine is
communicating directly with the other connected machines. Each machine is
the “authority” for a subset of the characters in the game, and is responsible
for broadcasting to the other machines the state of those characters. The hard
limits you need to respect are 1 Mbps network bandwidth received and 256 Kbps
bandwidth sent—if you stay within those bounds, nearly all players will get good
performance. You need to support four connected players.

The design you’re considering is for each machine to broadcast in UDP
packets the position and orientation of each character it has authority over
each frame, plus enough information to reconstruct the animations currently
applied to that character. In combination, that’s enough to position and pose the

DO THE MATH | 265

character on the other machines. If packets get dropped, it’s not that big a deal,
since you’re sending information about each character 60 times a second.

This is just another math problem! You’ve got a hard limit on network
bandwidth that has to be respected, so you need to figure out how much data
your design would send each second. That means measuring wherever possible,
and estimating where a measurement can’t be made.

In the simplest possible version of this design, you’d use the native represen-
tation for the things you’re going to network. Internally, character positions are
a vector of three 32-bit floating point numbers, and the character orientation can
be boiled down to a compass heading also represented in floating point. That
covers position and orientation, leaving the information necessary to reconstruct
animations in the remote machine.

Luckily, you’ve got a single-player version of the game that you can use for
measurement, and you discover that on average each character blends together
the effects of six animations. You’ll need to send an animation count, plus
enough data to reconstruct each of the active animations. That means identifying
the animation—internally, you do that with a unique 8-byte identifier. You’ll also
need to capture where you are in the timeline for the animation, internally a
4-byte floating-point number, and any factor used to blend between the results of
two animations, also represented in floating point.

The math for each character is clear now, in this simple version of the
design. Your floating-point values are all stored in 4 bytes, and you use 4-byte
integers for counts by default.

Position is 12 bytes, plus 4 bytes for orientation, plus 4 bytes for an anima-
tion count. Each animation is an 8-byte identifier, then two 4-byte floating-point
values for the timeline and blend factor. That’s 12 + 4 + 4 + 6 × (8 + 4 + 4) = 116
bytes per character, which doesn’t seem too bad.

There’s more math, though. You broadcast information about each character
once per frame, so you need to multiply by 60 to calculate how many bytes per
second of bandwidth you’re using.

Your peer-to-peer architecture means that you send out three copies of the
character’s data each frame, too—one copy to each of the three peers. You also
receive data from each of the three peers about the characters they have authority
over. The worst case with this design is when a machine ends up with authority
over all the characters—that machine then sends out three copies for all charac-
ters, and receives copies for none.

266 | THE RULES OF PROGRAMMING

You’ve got one more fixed point—the number of characters you need to
handle, which your game design team has decided is 30. Now you’ve got enough
numbers to do the math:

30 (frames per second) ×
3 (copies to our peers) ×
30 (characters) ×
116 (bytes per character) ×
8 (bits per byte) = 2.5 Mbps

Uh oh. That’s 10 times your available bandwidth on bits sent. Doing the
math let you know that the simple design you had in mind couldn’t work.
Actually, the dangerous part is that the design will work fine on your internal 1G
network, where it won’t even cause a ripple in available bandwidth. You’ll only
discover the problem when you deploy to the field. Yikes.

It’s a little bit tough to salvage this simple design.
There’s lots of room to compress the data sent about each character, so

that’s a place to start. Maybe 16 bits is enough for each of the coordinates,
given that multiplayer areas are small, and 8 bits should be enough detail for
heading. Creating a table of all networkable animation names would mean that
10 bits would be enough to identify an animation, and each animation could
write its own networked state, which is more compressible than the raw blend
weights and time values you sent. Throwing all of these compression tricks at the
problem, you squeeze the bytes per character down to 16 instead of 116.

The math still doesn’t work out:

30 (frames per second) ×
3 (copies to our peers) ×
30 (characters) ×
16 (bytes per character) ×
8 (bits per byte) = 345 Kbps

Much closer, but still above the hard limit. Something’s going to have to
give—maybe the design team can be persuaded that 24 characters is enough. On
the technical side, maybe you could get away with sending data about characters

DO THE MATH | 267

7 Actually the easiest fix is to miss the ship date for your game by a few years and hope that your
customers’ internet connections get faster. You’d be surprised at how often this turns out to be the
eventual fix for a performance problem.

8 Because the alternative of switching from using tabs to using spaces in your code is completely unac-
ceptable, naturally. We all have our foibles.

every other frame, rather than every frame. Either of these changes would get the
design safely under the hard cap.7

Crucially, the math happens before implementation starts. The math told
you that the initial design couldn’t work. It’s a lot easier to switch to the design
where the math pencils out before all the code is written. Once all the multiplayer
content is built, it’s going to be a lot harder convincing the design team to reduce
the maximum character count to 24!

It’s important to note that doing the math is designed to identify solutions
that won’t work, not to necessarily verify that a solution will work. This simple
network design could fall apart for any number of other reasons—but at least it
won’t fail due to basic math.

When the Math Changes

Let’s go back to the first example, where you had to decide whether to automate
a manual process to cut and paste code samples from Visual Studio into Word.
The process focused on normalizing the indentation of the code samples, and the
math told you that automation wasn’t worth doing.

Imagine, then, that your first understanding of the problem was incomplete.
Normalizing the indentation isn’t enough. All of the tabs in the code samples
need to be converted to spaces, too, because that’s how the publisher lays out
books.

Does the original math still apply? Not anymore—because the manual pro-
cess you measured doesn’t match the new requirement. You’ll need to tweak the
manual process—say, by finding a Visual Studio plug-in that converts tabs to
spaces,8 then adding an extra step to trigger this plug-in on the selection, then
adding an extra undo step—then remeasure.

That tweak affects both halves of the math. The extra two steps—a tabs-to-
spaces conversion, and an extra undo—will slow down the manual process.
Maybe each run through the cut-and-paste process takes 10 seconds now instead
of 6, and that increases the benefit side of the equation.

The tweak also affected the cost side of the manual process, too, because
now you’re spending time to find and install the right extension, then spending

268 | THE RULES OF PROGRAMMING

9 I had an excellent time writing the resulting Word macro, by the way. Word macros are written in Visual
Basic for Applications, and Basic was the first programming language I learned. Good times.

time experimenting to understand exactly how it works. Your process depends
mightily on how the new plug-in interacts with the undo stack, for instance.
It’s only fair to add this to the cost side of the math, since the time you spend
finagling the extension could have been spent on your automation effort instead.

If you do the math again with these two adjustments and some new esti-
mates, the balance changes, first for the manual process:

10 seconds (per copy operation) ×
8 (code samples per chapter) ×
20 (chapters) ×
3 (revisions of each sample) = 80 minutes

If you add in 45 minutes to research an appropriate tabs-to-spaces plug-in,
including installation and experimentation, and bump up your estimate of auto-
mation to 90 minutes to include the extra work of doing tabs-to-spaces conver-
sion, the math changes:

80 minutes + 45 minutes (manual process) > 90 minutes (automated
process)

Now the math tells you to do the automation. You could still cut and paste
code samples with a manual process, but the process will be slower and will take
time to figure out. Better to just automate it.9

When the Math Problem Changes Back into a Word Problem

If you take this chapter to heart, you’ll do a better job identifying problems that
imply a little bit of math. Quantifiable constraints and measurable solutions are
the cue—when you see both of them, you should do the math to help identify
solutions that will never work.

But be wary that there aren’t qualitative problems lurking in all of the quanti-
tative analysis! Take task automation: it’s not always as simple as just doing the
math.

Your primary goal when automating a task is to reduce the total time spent…
but that may not be your only goal. The manual process might be error-prone, for

DO THE MATH | 269

instance. Maybe you could quantify how often errors occur, and how much time
they take to fix, but these are tough things to be crisp about.

Or maybe a manual task that should be completed daily is so annoying that
it’s only done weekly. It doesn’t make sense to focus solely on the time spent on
the task. If automation ensures that the task is done daily, then it might be worth
doing, despite the amount of time saved being small.

And it’s not unreasonable to consider team sanity as a soft goal. A manual
task may not be all that time consuming, but if it’s a constant irritant and it can
be fixed relatively easily, it might be worth doing even if the math doesn’t quite
work out. Don’t be afraid to spend a day now and then just to make everyone’s
lives more pleasant—especially when the math is a close call anyhow.

On the flip side, if you don’t deeply understand a task, then be wary of
automating it even if the numbers look good! In the preceding examples, I was
automating one of my own tasks. I knew all of its ins and outs. If it had been
someone else’s job to cut and paste code examples into this book, things would
have been a lot fuzzier. I wouldn’t have been sure I knew what the right approach
to automation was, much less that I’d got the math right.

Fundamentally, though, trust the numbers. If there’s quick arithmetic you
can do that verifies the basic sanity of the problem-solving approach you’re
considering, then do the math.

270 | THE RULES OF PROGRAMMING

1 You’ve made it to the last Rule in the book, which I’m taking as evidence of your wisdom and insight.

Sometimes You
Just Need to Hammer
the Nails

Programming is an inherently creative, intellectually challenging activity. That’s
a big part of why I love it, and you’d probably say the same. Every problem
is different than the ones before, requiring a little bit of cleverness to solve—
though, per the Rules in this book, hopefully not too much cleverness!

But not every problem has an elegant solution. Even the most exciting pro-
gramming assignment has moments of drudgery: tasks that aren’t interesting,
that it’s difficult to get excited about, that nobody wants to do. It’s easy to work
on the exciting stuff instead, putting off the drudgery and secretly hoping that
someone else on your team will take it on instead.

With that setup, the moral of this chapter will come as no surprise—don’t
skip the drudgery. That unlovable task isn’t going anywhere. There’s no hidden
army of code elves who’ll do the work while you’re sleeping. And half-completed
tasks are a slow poison, working to kill your project.

The key is to know the danger signs. You’re a clever person,1 more than
clever enough to rationalize away the necessity of the tasks you don’t enjoy.
That’s especially true if you have a long backlog of more interesting tasks to
get to.

Knowing the sorts of tasks that you personally tend to ignore is a key bit
of self-knowledge. Your list may not match mine, or match your coworkers’—
one programmer’s drudgery is another programmer’s day at the park, to coin a

271

| Rule 21

phrase. Once you can identify which tasks you tend to avoid, you can be more
conscious of giving them the priority they deserve.

That said, this would be a pretty empty chapter without some examples!
They were not hard to find, since I could draw both from the kinds of tasks I
personally dread and from the tasks I’ve seen others avoid.

A New Argument

Imagine that you’ve got a function like this:

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance);

The function returns all characters within some bounding sphere. Dozens
and dozens of calls to this function are scattered throughout your codebase.
You’ve found a handful of places where the basic behavior of this function
isn’t quite right. In these cases there are a handful of characters you’d like to
exclude from the search, and you’ve decided to add a new argument to handle the
exclusion:

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 vector<Character *> excludeCharacters);

Now you’re faced with a choice—do you update all the places the old code
was called, adding the new argument? Or do you avoid this work by specifying a
default argument, like this:

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 vector<Character *> excludeCharacters = vector<Character *>())
{
 return vector<Character *>();
}

Or perhaps avoid the work by having two overloaded versions of the
function?

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance);
vector<Character *> findNearbyCharacters(

272 | THE RULES OF PROGRAMMING

 const Point & point,
 float maxDistance,
 vector<Character *> excludeCharacters);

Overloading and default arguments let you skip the work of updating exist-
ing uses of findNearbyCharacters. That’s good, right? You can get on with the
stuff on your backlog.

Maybe, maybe not. Going through the places the old version of the function
is called isn’t just about converting them—it’s also about looking at how those
pieces of code are using the function. The chances are good that a few of them
are excluding characters from the list—exactly what your new argument handles.
These examples should be converted to use the new argument.

Imagine that soon thereafter, you run into the need for finer-grained filter-
ing. Say that you want to find only nearby enemies that pose a threat, instead of
all characters. You decide to add a simple filtering interface:

struct CharacterFilter
{
 virtual bool isCharacterAllowed(Character * character) const = 0;
};

vector<Character *> findNearbyCharacters(
 const Point & point,
 float maxDistance,
 CharacterFilter * filter);

Here’s a filter that accepts threatening enemies, but rejects allies and incapa-
citated characters:

struct ThreatFilter : public CharacterFilter
{
 ThreatFilter(const Character * character) :
 m_character(character)
 { ; }

 bool isCharacterAllowed(Character * character) const override
 {
 return !character->isAlliedWith(m_character) &&
 !character->isIncapacitated();
 }

 const Character * m_character;
};

SOMETIMES YOU JUST NEED TO HAMMER THE NAILS | 273

Now you have another set of decisions to make. Add another overloaded
version of findNearbyCharacters? Or maybe two new overloaded versions: one
with filtering and an excluded characters list, the other just with filtering? That
would bring you up to three or four overloaded versions of the function. Seems
complicated—three or four versions of the function to keep in sync? Confusion
about where to set breakpoints? Things are starting to get out of hand.

It might be better to handle excluded characters with a filter instead. Imple-
menting a CharacterFilter that checks a list of characters is trivial. That would
keep the number of versions of the function under control, and you’ll likely find
a few more uses of findNearbyCharacters that would be simpler with a filter:

struct ExcludeFilter : public CharacterFilter
{
 ExcludeFilter(const vector<const Character *> & characters) :
 m_characters(characters)
 { ; }

 bool isCharacterAllowed(Character * character) const override
 {
 return m_characters.end() == find(
 m_characters.begin(),
 m_characters.end(),
 character);
 }

 vector<const Character *> m_characters;
};

Converting to using filters everywhere implies some work. There are dozens
of places where findNearbyCharacters is called. All of the calling code has to be
inspected, and at least some of it will get converted to the new filter model. That
sounds like drudgery to me. Faced with that amount of work, it’s really tempting
to live with three overloaded versions and just convert the code that has to be
converted.

That’s a mistake—or, at best, a reasonable decision made for the wrong
reasons. You’re trading off the short-term cost of inspecting and updating the
existing code against the long-term benefit of a simpler, cleaner model for find-
ing nearby characters.

As programmers, most of us have a tendency to tie-break in favor of short-
term costs instead of long-term benefits, usually to our later chagrin. If you think

274 | THE RULES OF PROGRAMMING

2 Or cowboy up, if that’s your style.

you know what the right solution to a problem is, but you’re reluctant to do it
because of the amount of work involved, just cowgirl up2 and do the work.

There’s Never Just One Bug

Here’s another example. You stumble onto a bug—some bit of code is call-
ing another bit of code incorrectly. That’s understandable, because the second
bit of code has doubled down on its poor name choices by omitting any
documentation:

void squashAdjacentDups(
 vector<Unit> & units,
 unsigned int (* hash)(const Unit &));

Seems pretty straightforward—it looks like the function squashes out adja-
cent duplicate values using the provided hash function. And that’s almost what it
does:

void squashAdjacentDups(
 vector<Unit> & units,
 int (* hash)(const Unit &))
{
 int nextIndex = 1;

 for (int index = 1; index < units.size(); ++index)
 {
 if (hash(units[index]) != hash(units[nextIndex - 1]))
 {
 units[nextIndex++] = units[index];
 }
 }

 while (units.size() > nextIndex)
 {
 units.pop_back();
 }
}

The problem is that the hash argument to squashAdjacentDups is expected
to return a fully unique value, given how the code is written. That’s not what
a hash function does, though. Given two equivalent objects, the hash function
returns the same hash value, but it also might return that hash value for another

SOMETIMES YOU JUST NEED TO HAMMER THE NAILS | 275

object that isn’t equivalent. You always have to check for equivalency after the
hash values are compared, which squash doesn’t do.

The bug you’ve just fixed is a result of this quirk—the caller passed in a hash
function, not a unique identifier function:

struct Unit
{
 int m_id;
 string m_firstName;
 string m_lastName;
 string m_userName;
};

unsigned int hashUnit(const Unit & unit)
{
 return combineHashes(
 hashString(unit.m_firstName),
 hashString(unit.m_lastName),
 hashString(unit.m_userName));
}

This almost always works, which is why the bug wasn’t caught earlier…but
once two adjacent Units hashed to the same value, things broke.

So should you fix the bug and move on? Nope, not until the drudgery is out
of the way.

First of all, you have to rename the hash argument. Its current name is a lie,
and that’s going to cause more problems. Either use it like a real hash function,
with a separate call to check actual equivalence, or rename the argument to
reflect its actual usage.

Second, you should review all the other places where squashAdjacentDups
is called. Odds are good that at least one of them is going to exhibit exactly the
same bug you just fixed. In fact, there’s a decent chance that all of the callers
of squashAdjacentDups will exhibit the bug. You’ve done the work to diagnose a
pretty subtle bug, so leverage your new understanding to find the other instances
of that bug in the code.

Fixing the name takes very little time—it’s easy to convince yourself to take
that step. Reviewing all the other callers of squashAdjacentDups, on the other
hand, is going to be a slog. But it will pay off—maybe not for you, but for
someone on your team. Short-term pain, long-term benefit. Take your time,
review the other callers, and fix the problems you find.

276 | THE RULES OF PROGRAMMING

The Siren Call of Automation

Programmers have a predictable reaction to encountering some bit of drudgery:
they want to automate it.

Automation can take many forms. Perhaps you could fiddle together a
regular expression in your source editor to find all of the calls to findNearby
Characters and insert a new argument. Or maybe it would be better to write
some Python code to do this, since that would let you handle the exceptions
more easily. For that matter, you’ve had to deal with this sort of argument-adding
situation before—maybe what the project really needs is a generalized argument-
adding utility app written in Python. That would be a good project; better get
started on it!

Believe me, I get it. It’s more fun to noodle on a regular expression until it
flawlessly handles every variation of whatever bit of drudgery you’re facing, or to
write a bunch of clean-sheet Python code to do the same thing. It’s certainly a lot
more fun than making the same manual edit over and over again. But it isn’t very
smart. You’ll spend less time just making the edits by hand; do the math, per
Rule 20.

Maybe you can get a running start with regular expressions—hey, if there’s
an easy, no-fiddling-required regular expression that solves 80% of the drudgery,
by all means do it! You can sweep up the other 20% of the drudgery by hand.

Keep in mind that tasks like the examples presented here feel repetitive,
but rarely are they so repetitive that they’re easily automated. There’s judgment
involved, even if it’s as simple as breaking up a function call over multiple lines
or adjusting a comment to match the new function signature.

Managing File Sizes

Code evolves over time—and despite the undeniable joys of deleting code, you’ll
end up adding more code to your project than you end up deleting. In the
process of adding code, your source files get longer and longer, maybe to the
point of being uncomfortably long.

That may be a natural product of your team’s conventions. At Sucker Punch,
by convention the source code for a particular class all resides in a single source
file and a single header file. And, like a lot of teams, despite our best efforts we’ve
ended up with a couple of kitchen-sink classes, like our main character class. It’s
a convenient spot in the class hierarchy to add features, so lots of features have
been added, and lots of features mean lots of source code. I just checked, and the
implementation file for our main character class is 19,000 lines long. Ouch.

SOMETIMES YOU JUST NEED TO HAMMER THE NAILS | 277

Is this a problem? Yeah, at least a little bit. It’s harder to work in a file that
size. You have to use text search to find anything, as paging through the code
gets you nowhere fast. It takes longer to compile than the other files, which
throws off your build distribution. It’s hard to tell which bits of code are related to
which other bits when they’re separated by thousands of lines.

So why hasn’t it been fixed? Because reducing the number of lines would
involve a lot of drudgery: copying and pasting code to a new file, refactoring
chunks of behavior into separate classes to respect our “one source file per class”
convention, reexamining the header files in the old and new files to make sure
they’re still appropriate, and resolving any dangling references after the files are
moved. That work is zero fun, and we’re all busy. We’ve collectively decided to
whistle past the graveyard, avoiding the drudgery and ignoring the increasingly
unwieldy size of the file, even though we’d all be happier with a shorter version
of the file.

I should note that the Sucker Punch team is well-adjusted, with everyone
on the team showing their commitment every day to a clean and functional
codebase. For the first two examples, everyone on the team would have chosen
the hard path, powering through the drudgery to update code to match the new
argument set or looking for bugs similar to the one that had just been fixed. But
we still have a 19,000-line source file that we’re all faintly embarrassed about.

Look, it’s hard to dive into the drudgery, even for a disciplined team. The
first step is to recognize that you’re avoiding a task because you don’t want to
do it. The second step is to take a step back to evaluate the long-term benefits
of tackling it—it’s entirely possible that the task is both unpleasant and not
particularly valuable, in which case you certainly shouldn’t do it! But if it’s going
to pay off in the long term, even though it’s going to suck in the near term, then
it’s time for step three: hammer the nails.

There Are No Shortcuts

Imagine that you’ve got a big chunk of wood with a hundred nails sticking out
of it. They make it impossible to use the chunk of wood for anything else. You
could just ignore the nails. You could hope that someone else will hammer the
nails for you. You could spend a lot of time tinkering with a nail-hammering
machine that might work someday.

Or you could just take out your hammer and get to work. Sometimes you
just need to hammer the nails.

278 | THE RULES OF PROGRAMMING

Conclusion: Making
the Rules Your Own

The Rules, as I’ve laid them out in this book, distill the lessons we’ve learned
at Sucker Punch over the quarter-century of its existence. They’re specific to our
experience. They reflect the things that we think are important—our program-
ming culture. And that programming culture reflects the specific constraints and
characteristics of creating the sorts of video games that Sucker Punch makes.

You’ve read a lot of Rules at this point. I’d guess that you immediately saw
how some of the Rules apply to the work you do, while others feel more loosely
connected to your experience. That’s not a surprise! If the programming work
you do is radically different from the work we do, then some of our Rules may
not make sense for you.

So what makes writing video games like ours different—and how does that
affect the Rules?

• First of all, our projects are long. Our last game, Ghost of Tsushima, took•
about six years to create. And we weren’t starting from scratch—most of
the code in Ghost is an evolution (or just a direct copy) of code that ran
in earlier Sucker Punch games. We place a premium on long-term code
quality because we have to—the code we write today has a good chance of
still running ten years from now.

• The coding team is big, with 30-odd full-time coders currently on staff.•
Depending on your own situation, that may seem tiny or huge. Personally,
I’d define a “small” programming team as one where one person can
know all the details of all the code. By that standard, Sucker Punch hasn’t
been small for a long time. At this point, nobody knows all the details of

279

the codebase, and all of us have to sort things out in unfamiliar code. If
our code isn’t easy to read and understand, we’ll be in deep trouble.

• Performance is important for video games, much more so than for most•
code. There are websites that measure our performance to the millisecond!
But that doesn’t mean all of our code needs to run fast. We’re like any
project—our performance is determined by a small subset of our code.
Some of our code needs to run quickly, but most of our code needs to be
created quickly.

• We release our games infrequently. That’s not true for all games—what-•
ever games you’re playing on your mobile phone are likely updated all the
time—but it is for us. That makes it easier to sign up for big changes
to the code. It also means we face less of a constant quality burden—it’s
important that our code keeps running reliably and correctly, because
otherwise the 80% of Sucker Punch that isn’t on the coding team is going
to be really grumpy, but the changes we make aren’t showing up in the
customer experience until long after we check them in. We can tolerate
a few temporary bugs in the code if it helps us create the game more
quickly.

• Every game for us is a fresh sheet of paper. While we build on top of the•
work we’d done for our last game, we’re not locked into it. We have no
backward compatibility or continuity issues, and that makes it easier to for
us to make major changes.

• Our approach to game development is iterative. Our successes come from•
trying lots of new ideas to see which one works, not from designing a
game first on paper and then building it. Ideas we try that sort of work
are tweaked and experimented with; ideas that don’t work are immediately
deleted. We prioritize creating and iterating on new code quickly…while
still remembering that the code that does survive is likely to be around
forever. That’s a tough combination.

These characteristics have an obvious effect on the Rules. For example, the
fact that we release games infrequently has a huge impact on how we approach
big changes to the code—if we had a weekly release schedule, we’d need a very
different approach.

280 | CONCLUSION: MAKING THE RULES YOUR OWN

https://oreil.ly/eB0hg

Use Your Best Judgment

The Rules can send you in contradictory directions, too—maybe your team’s
conventions expect get and set functions to access an object’s protected state,
but that means writing a set function you know is never called. That’s a conflict
between following team conventions (Rule 12) and deleting code that isn’t called
(Rule 8). Use your best judgment in cases like this—I’d follow team conventions
if the set function is simple, but that’s just me.

You’ll also need to use your best judgment to decide which Rules apply to
your own work. Some of our Rules might be a poor fit if the characteristics of the
work you do differ enough from our projects at Sucker Punch. If that’s the case,
then don’t follow the Rule—this isn’t a dogma, it’s just a set of useful rules.

But…there’s a chance that a Rule is true for you even if it’s hard to accept.
I accept plenty of things now that I would have rejected ten or fifteen years
ago. Take Rule 10, “Localize Complexity”. In the early years of Sucker Punch, I
designed and built a lot of systems out of tangles of interacting objects. It took
a long time—and a lot of failed architectures—to realize that my mistake was
fundamental. Rule 10 grew out of those failures, and out of our more recent
successes after localizing complexity.

Discuss Amongst Yourselves

This book was never intended to be a complete set of Rules, just a useful one.
Use these Rules as a starting line, not a finish line. Develop your own set of
Rules.

Obviously that will work best if you’re on the same page with the rest of your
team! Everyone on the team choosing their own set of Rules is a recipe for chaos
and strife. That’s probably not your goal.

Here’s an idea—start a book club. Everyone on the team reads a Rule or two,
then you all get together to discuss how the Rules you’ve just read apply to your
own projects. Figure out how you’d amend the Rule to better match the work you
do, if it isn’t a good fit. Or decide to discard it entirely, if you all think that makes
sense!

If you’re like most technical teams, you don’t spend a lot of time talking
about coding philosophy. And when you do, it’s probably in the context of some
particular technical issue you need to sort out, which inevitably leads to the
technical discussion and philosophical one getting all tangled up. That’s not a
recipe for progress. Better to separate the two discussions; you’re more likely to
end up in a happy place that way.

CONCLUSION: MAKING THE RULES YOUR OWN | 281

You’ll be much more effective as a team if you’ve aligned your ideas of how
to write code, and the quickest way to get there is to talk about those ideas.
The Rules can be a good starting point for that sort of discussion. They can
provide some structure to your discussion, a framework to come to some consen-
sus about how to write code. And that’s worthwhile—investing in developing a
shared coding philosophy will pay off many times over.

Signing Off

So that’s it! No more Rules!
This book has been fun to write; I hope it’s been fun to read.
If you’ve got reactions or comments you’d like to share, see The Rules of

Programming website for pointers. I promise your input won’t be piped straight
to dev/null. The website also points you at the source code examples used in the
book.

282 | CONCLUSION: MAKING THE RULES YOUR OWN

https://oreil.ly/jTEGo
https://oreil.ly/jTEGo

Reading C++ for
Python Programmers

The examples in this book are all presented in C++. That’s the language I do
most of my programming in, and it’s the language I’m most proficient in. That
said, I’ve written a reasonable amount of Python, too—it’s the second-most used
programming language at Sucker Punch. At the moment, we have about 2.8
million lines of C++ in our codebase and about 600,000 lines of Python.

If you’re a Python programmer, you don’t need to learn how to program in
C++ in order to read the examples in this book. Code is code, basically—a loop
is a loop, variables are variables, and functions are functions. There are some
cosmetic differences, but the basic ideas in this book’s C++ examples translate
pretty directly to Python, even when that translation isn’t immediately obvious!

This chapter is about explaining the translation. You won’t be able to write
C++ code after working your way through this appendix—that’s at least a whole
book’s worth of content—but you should be much more capable of reading it.

Types

Nothing like an example to show how straightforward reading C++ can be for a
Python programmer! Here’s a simple function that calculates the sum of an array
of numbers, first in Python:

def calculateSum (numbers):

 sum = 0

 for number in numbers:
 sum += number

 return sum

283

| Appendix A

1 That’s why Guido ditched them.

And then in C++:

int calculateSum(const vector<int> & numbers)
{
 int sum = 0;

 for (int number : numbers)
 sum += number;

 return sum;
}

It’s the same code, right? There’s some extra cruft in the C++ version, but
the variables and the logic are the same.

As a Python programmer, you can pretty much ignore the curly braces and
semicolons in this book’s examples. In C++, the curly braces and semicolons
define sections of code, like indentation does in Python. Here, though, I’m also
indenting the C++ to show sections, because that makes it easier to read; the
curly braces and semicolons aren’t adding much value.1

The most confusing bit of C++ for an old-school Python programmer is
the types—the int and const vector<int>& syntax. These type annotations tell
the C++ compiler what kinds of values to expect for the annotated variables or
arguments—in this case, an integer and a list of integers. The compiler needs to
know the types before it can actually compile the code.

There are types in Python, too, of course, even if the language doesn’t force
you to worry about them. In Python the type details are usually sorted out when
the code runs, not when it’s compiled. You can always call isinstance() to find
out what the actual type is for an expression.

There are advantages to knowing about the types earlier in C++, most impor-
tantly that it helps you find bugs earlier, but specifying types does mean writing a
bit more code. Python lets you skip some steps that C++ requires, which makes it
easier to just write a little bit of code in Python.

Here’s how you can tell that both of these approaches are appealing: new
versions of C++ let you skip the type annotations in lots of cases, and recent
versions of Python let you add type annotations. Now you can write Python that
looks more like C++:

284 | READING C++ FOR PYTHON PROGRAMMERS

2 Like a deck of cards. Or poker chips, if you’re trying to look like a professional poker player.

def calculateSum (numbers: Iterable[int]) -> int:

 sum:int = 0

 for number in numbers:
 sum += number

 return sum

And C++ that looks more like Python:

auto calculateSum(const vector<int> & numbers)
{
 auto sum = 0;

 for (auto number : numbers)
 sum += number;

 return sum;
}

The examples in this book stick to “old-school” C++ and use explicit types.
That’s our policy at Sucker Punch—we think it makes the code easier to read—so
I’ve continued the practice here.

Formatting and Comments

Sometimes the overall structure of the code is the same in C++ and Python, but
the syntax you’ll use to get there has more differences than in the first example.
Here’s a function that shows up in Rule 1—it merges two arrays into a single
array by doing a riffle shuffle.2 First, in Python:

Riffle shuffle two lists into a single list by randomly
choosing a number from one list or the other until both
lists are exhausted

def riffleShuffle (leftValues, rightValues):

 leftIndex = 0
 rightIndex = 0

 shuffledValues = []

 while leftIndex < len(leftValues) or \
 rightIndex < len(rightValues):

READING C++ FOR PYTHON PROGRAMMERS | 285

 if rightIndex >= len(rightValues):
 nextValue = leftValues[leftIndex]
 leftIndex += 1
 elif leftIndex >= len(leftValues):
 nextValue = rightValues[rightIndex]
 rightIndex += 1
 elif random.randrange(0, 2) == 0:
 nextValue = leftValues[leftIndex]
 leftIndex += 1
 else:
 nextValue = rightValues[rightIndex]
 rightIndex += 1

 shuffledValues.append(nextValue)

 return shuffledValues

The algorithm is simple—choose a value from one list or the other until
you’ve exhausted both lists, appending those values to a list of shuffled values. In
C++ the same code looks like this:

// Riffle shuffle two lists into a single list by randomly
// choosing a number from one list or the other until both
// lists are exhausted

vector<int> riffleShuffle(
 const vector<int> & leftValues,
 const vector<int> & rightValues)
{
 int leftIndex = 0;
 int rightIndex = 0;

 vector<int> shuffledValues;

 while (leftIndex < leftValues.size() ||
 rightIndex < rightValues.size())
 {
 int nextValue = 0;

 if (rightIndex >= rightValues.size())
 {
 nextValue = leftValues[leftIndex++];
 }
 else if (leftIndex >= leftValues.size())
 {
 nextValue = rightValues[rightIndex++];
 }
 else if (rand() % 2 == 0)
 {

286 | READING C++ FOR PYTHON PROGRAMMERS

 nextValue = leftValues[leftIndex++];
 }
 else
 {
 nextValue = rightValues[rightIndex++];
 }

 shuffledValues.push_back(nextValue);
 }

 return shuffledValues;
}

Again, the structure of the code is the same. The two languages have the
same basic features, so it’s easy to see how the various parts correspond to each
other, but there are lots of small syntactic differences.

COMMENTS

First, comments—there are a few ways to comment C++ code, but the examples
in this book use a double forward slash to mark comments:

// Riffle shuffle two lists into a single list by randomly
// choosing a value from one list or the other until both
// lists are exhausted

Compare to Python’s hash comments:

Riffle shuffle two lists into a single list by randomly
choosing a value from one list or the other until both
lists are exhausted

INDENTATION AND SPLIT LINES

Rules about splitting lines are different, too. In C++, all whitespace is considered
equivalent. Spaces, tabs, and line breaks are interchangeable, so splitting the
condition of the while loop across two lines requires no special syntax. You’re
just exchanging a space for a new line:

while (leftIndex < leftValues.size() ||
 rightIndex < rightValues.size())

Line breaks are important in Python, so the two-line condition requires an
explicit line continuation with a backslash:

while leftIndex < len(leftValues) or \
 rightIndex < len(rightValues):

READING C++ FOR PYTHON PROGRAMMERS | 287

Indentation is more free-form in C++, too, and that can take getting used
to for a Python programmer. The actual grouping is defined by curly braces or
semicolons—there’s no real meaning to the indentation. In this example, the two
clauses are lined up in the same column, but that’s just to make the code easier
to read.

BOOLEAN OPERATIONS

Boolean operations are represented with symbols in C++. In this loop condition,
C++ uses || where Python uses the much more straightforward or. In the same
vein, C++ uses && for Python’s and, and ! for Python’s not.

Sometimes the two languages don’t line up exactly. The C++ function rand
returns a random integer; this example checks whether that random integer is
even or odd to randomly choose a source vector. The % character here calculates a
modulo value, in this case 0 if the random value is even and 1 if it’s odd:

else if (rand() % 2 == 0)

In Python, the random module’s randrange function is used to do the same
thing:

elif random.randrange(0, 2) == 0:

LISTS

What Python calls “lists” are called “vectors” in C++. Python lists and C++ vectors
work pretty much the same way, albeit with different names for everything. C++
uses the particularly lovely name push_back to append an item to the end of a
vector:

shuffledValues.push_back(nextValue);

Python’s append is much clearer:

shuffledValues.append(nextValue)

You also use a size method on a C++ vector to get its length, rather than
calling a global len function like Python does.

INCREMENT OPERATORS

Finally—wow, there were a lot of little details packed into this example—C++ has
a syntactic shortcut for incrementing or decrementing a variable. This expression

288 | READING C++ FOR PYTHON PROGRAMMERS

retrieves the leftIndex’th value from leftValues, increments leftIndex, then
puts the retrieved value into nextValue:

nextValue = leftValues[leftIndex++];

The same logic takes two lines in Python:

nextValue = leftValues[leftIndex]
leftIndex += 1

So, overall, lots of small differences, but everything in this C++ example has
a pretty close analog in Python.

Classes

Both C++ and Python support classes, and the syntax for doing so isn’t all
that different. The ways the two languages actually implement classes are very
different, but that’s not important for the examples in this book. If you think of a
C++ class as being like a Python class, where all of the instance attributes are set
in __init__, you’ll find the examples easy to follow.

Here’s a Python class implementing a 3D vector concept:

class Vector:

 _vectorCount = 0

 def __init__(self):
 self.x = 0
 self.y = 0
 self.z = 0
 self._length = 0
 Vector._vectorCount = Vector._vectorCount + 1

 def __del__(self):
 Vector._vectorCount = Vector._vectorCount - 1

 def set(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z
 self._calculateLength()

 def getLength(self):
 return self._length

 def getVectorCount():
 return Vector._vectorCount

READING C++ FOR PYTHON PROGRAMMERS | 289

 def _calculateLength(self):
 self._length = math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)

Any 3D vector class is going to track three coordinates: x, y, and z. This
particular class also caches the length of the vector and counts the number of
vectors that currently exist. There’s no justification for the latter two features, by
the way, other than illustrating a couple of syntactic differences between Python
and C++.

Here’s the C++ equivalent:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }
 ~Vector()
 { --s_vectorCount; }

 void set(float x, float y, float z);

 float getLength() const
 {
 return m_length;
 }

 static int getVectorCount()
 {
 return s_vectorCount;
 }

protected:

 void calculateLength();

 float m_x;
 float m_y;
 float m_z;
 float m_length;

 static int s_vectorCount;
};

void Vector::set(float x, float y, float z)

290 | READING C++ FOR PYTHON PROGRAMMERS

{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

void Vector::calculateLength()
{
 m_length = sqrtf(m_x * m_x + m_y * m_y + m_z * m_z);
}

I’ve inadvertently demonstrated one of the benefits of Python here—Python
is typically more concise than C++, with the Python version of this example
clocking in at about half as many lines as the C++ version.

These two versions of the class have the same pieces, but those pieces are
rearranged. Sometimes the rearrangement is obvious. In Python, the __init__
method is called when an object is created, and __del__ is called when the object
is destroyed:

class Vector:

 def __init__(self):
 self.x = 0
 self.y = 0
 self.z = 0
 self._length = 0
 Vector._vectorCount = Vector._vectorCount + 1

 def __del__(self):
 Vector._vectorCount = Vector._vectorCount - 1

In C++, the class name itself is used for those two methods, with a pre-
pended tilde (~) to mark the latter method. These two methods are called the
constructor and destructor in C++ land. There’s also special syntax to initialize the
instance variables:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }

READING C++ FOR PYTHON PROGRAMMERS | 291

 ~Vector()
 { --s_vectorCount; }
};

Slightly different syntax is used for accessing the class’s variables. In Python,
you need to be explicit about this with the self keyword:

class Vector:

 def getLength(self):
 return self._length

In C++, this is optional. You’re allowed to use this, C++’s equivalent to self,
but the class’s variables are already in scope. The compiler can implicitly look up
member variables for you:

class Vector
{
 float getLength() const
 {
 return m_length;
 }
};

If you see something in C++ that looks like a reference to a variable that
hasn’t been defined yet, it’s probably a class variable.

Visibility

Python and C++ have different ways to manage the bits of internal logic that
users of the class shouldn’t touch. In Python, there’s a convention to follow: start
the name with an underscore. The Python example uses this for a class variable:

class Vector:

 _vectorCount = 0

There’s also a method:

class Vector:

 def _calculateLength(self):
 self.length = math.sqrt(self.x ** 2 + self.y ** 2 + self.z ** 2)

C++ solves the same problem with syntax, not conventions. The public
keyword at the top of the Vector class marks what follows as being visible and

292 | READING C++ FOR PYTHON PROGRAMMERS

usable to anyone with an instance of the object. The protected keyword, a bit
further down, hides what follows from any code outside the class. As a result,
users of the class can call the set method, but can’t call calculateLength. The
calculateLength method can only be called from inside other Vector methods.

Class Vector
{
public:

 void set(float x, float y, float z);

protected:

 void calculateLength();
};

Declarations and Definitions

Next, let’s look at splitting a function’s declaration from its definition. In Python,
all of a class’s methods are defined in the class itself:

class Vector:

 def set(self, x, y, z):
 self.x = x
 self.y = y
 self.z = z
 self._calculateLength()

 def getLength(self):
 return self.length

Many of the examples in this book will do the same thing in C++:

class Vector
{
public:

 float getLength() const
 {
 return m_length;
 }
};

In other cases, though, the examples will split the declaration of the method.
First the code establishes that a method with a given name and type signature
exists:

READING C++ FOR PYTHON PROGRAMMERS | 293

class Vector
{
public:

 void set(float x, float y, float z);
};

The function is then defined separately:

void Vector::set(float x, float y, float z)
{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

These two forms are typically compiled differently in C++, with methods
defined inside the class compiled inline, meaning that a separate copy of the
function is generated and inserted wherever it’s called, while a single copy exists
for functions with a separate definition. That’s not important for the examples in
this book, though, so don’t worry about the distinction.

The last thing to point out in this example is how C++ deals with class
attributes. In Python, class attributes are defined with statements in the class,
and instance attributes are added in an __init__ method:

class Vector:

 _vectorCount = 0

 def __init__(self):
 self.x = 0
 self.y = 0
 self.z = 0
 self._length = 0

In C++, both class and instance attributes (or “members,” in C++-speak) are
added in the class definition. The static keyword marks any class attributes;
everything that isn’t marked with static is an instance attribute:

class Vector
{
protected:

 float m_x;
 float m_y;

294 | READING C++ FOR PYTHON PROGRAMMERS

 float m_z;
 float m_length;

 static int s_vectorCount;
};

Function Overloading

There are some features in C++ that don’t have direct analogs in Python. The
converse is true, as well, of course—there are lots of Python features that
C++ doesn’t have—but that’s unimportant here, since we’re focused on reading
C++ code.

One thing that can be confusing to Python programmers is seeing two
functions with the same name. Here’s an example in C++:

int min(int a, int b)
{
 return (a <= b) ? a : b;
}

int min(int a, int b, int c)
{
 return min(a, min(b, c));
}

void example()
{
 printf("%d %d\n", min(5, 8), min(13, 21, 34));
}

It’s not clear how this works—if you try to call the min function, which
version is called? The C++ compiler makes this decision based on the arguments.
If two integers are passed, it calls the first one; if three integers, it calls the
second one. The example function prints 5 and 13.

I snuck a useful bit of C++ syntax into the functions—the question mark
operator, which lets you choose between two values based on an expression:

return (a <= b) ? a : b;

The Python equivalent to this is similarly funky:

return a if a <= b else b

READING C++ FOR PYTHON PROGRAMMERS | 295

For what it’s worth, this Python syntax confuses me every time I see it. So if
you want to make a C++ programmer feel just a little bit clueless, make sure you
add lots of ternary expressions to your code.

Templates

Another concept from C++ that has no Python analog is templates. To simplify
things a bit: C++ templates are a way to write one chunk of code that handles
multiple types. The compiler generates new code for each set of types used with
the template.

The first example in this appendix summed an array of integer values. If you
wanted to sum an array of floating-point values, you might write new code:

float calculateSum(const vector<float> & numbers)
{
 float sum = 0;

 for (float number : numbers)
 sum += number;

 return sum;
}

Or you might write a single version of calculateSum using templates and let
the compiler do the work for you:

template <class T>
T calculateSum(const vector<T> & numbers)
{
 T sum = T(0);

 for (T number : numbers)
 sum += number;

 return sum;
}

The templated version of calculateSum will work for any type that imple-
ments the += operator and supports 0 as a value. That’s true for integers and
floating-point values, but could also easily be arranged for other types. You could
implement += and 0 for the Vector class from a few sections ago, for instance,
and gain the ability to sum an array of Vectors.

296 | READING C++ FOR PYTHON PROGRAMMERS

In Python, there’s no need for any of this. The Python code I wrote to
sum a list of values works perfectly well for any type that supports addition and
initialization to 0:

def calculateSum (numbers):

 sum = 0

 for number in numbers:
 sum = sum + number

 return sum

When you see the C++ template syntax in the examples, it usually marks
some bit of code that would work fine in Python without any templating at all.

Pointers and References

There’s one final thing that Python mostly hides from view but that C++ makes
programmers worry about, and that’s passing arguments by value versus passing
them by reference. In Python, simple types like numbers or strings are passed by
value—a new copy is made whenever they’re assigned to a variable or passed as
an argument to a function. It’s more complicated for types like lists or objects.
Here’s an example:

def makeChanges (number, numbers):

 number = 3
 numbers.append(21)
 print(number, numbers)

globalNumber = 0
globalNumbers = [3, 5, 8, 13]

print(globalNumber, globalNumbers)
makeChanges(globalNumber, globalNumbers)
print(globalNumber, globalNumbers)

When this code is run it prints out:

0 [3, 5, 8, 13]
3 [3, 5, 8, 13, 21]
0 [3, 5, 8, 13, 21]

Notice how the simple value changes inside makeChanges to 3, then changes
back to 0 when makeChanges returns, but the list changes without changing back.

READING C++ FOR PYTHON PROGRAMMERS | 297

That’s because 0 was passed by value. A new copy was made when makeChanges
was called. When makeChanges sets number to 3, it’s only changing the copy.

Python didn’t make a copy of the globalNumbers list—it just passed the
original list. Both numbers and globalNumbers are holding onto the same list.
When 21 is appended, it’s appended to that list. When you print numbers before
returning or globalNumbers after, 21 shows up, because you’re printing the same
list in both cases.

C++, by contrast, makes all of this more explicit. All variables and arguments
are explicitly passed by value or passed by reference. The C++ equivalent to the
preceding Python code looks like this:

void makeChanges(int number, vector<int> & numbers)
{
 number = 3;
 numbers.push_back(21);
 cout << number << " " << numbers << "\n";
}

The ampersand in front of numbers is important—it tells the compiler that
this argument is passed by reference, not by value, so the compiler won’t make
a copy of it when makeChanges is called. There’s no ampersand for number, so the
compiler does make a copy of number.

If the ampersands are flipped, then the compiler makes a copy of numbers
but not of number:

void makeChanges(int & number, vector<int> numbers)
{
 number = 3;
 numbers.push_back(21);
 cout << number << " " << numbers << "\n";
}

This version produces different output. Now it’s the simple value that is
permanently changed, while the list pops back to its original value:

0 [3 5 8 13]
3 [3 5 8 13 21]
3 [3 5 8 13]

The examples in this book will often use references to avoid making expen-
sive copies of bulky values. In most cases, the references will be marked with the
const keyword to mark something that shouldn’t be altered, despite being passed

298 | READING C++ FOR PYTHON PROGRAMMERS

by reference. That showed up (and was never explained) in the first C++ example
in this appendix:

int calculateSum(const vector<int> & numbers)

With this usage, no copy is made of numbers, but the compiler won’t allow
any changes to numbers either. In practice this is really similar to passing it by
value, but at much lower cost.

As a final note, in a few cases the examples use the other (sigh) C++ syntax
for passing things by reference—pointers. Pointers and references are almost
exactly the same thing, and the differences aren’t really important if you’re just
trying to figure out what the code is doing. The key syntactic differences are:

• Pointers are defined with * instead of &.•

• Pointers use -> instead of . to get at members.•

• To convert a pointer to a reference, you use *; to convert a reference to a•
pointer, you use &.

Here’s the example code written with pointers:

void example(int number, vector<int> * numbers)
{
 number = 3;
 numbers->push_back(21);
 cout << number << " " << *numbers << "\n";
}

void callExample()
{
 int number = 0;
 vector<int> numbers = { 3, 5, 8, 13 };
 cout << number << " " << numbers << "\n";
 example(3, &numbers);
 cout << number << " " << numbers << "\n";
}

This book’s examples use constant references whenever an argument is
conceptually being passed by value, but actually passing the argument by value
would be expensive. In all other cases, pointers are used.

READING C++ FOR PYTHON PROGRAMMERS | 299

1 I had to choose a JavaScript version for these examples. For better or worse, I chose ES6. If you’re stuck
on a version earlier than that, my apologies.

Reading C++
for JavaScript
Programmers

The examples in this book are all presented in C++. That’s the language I do
most of my programming in, and it’s the language I’m most proficient in.

If you’re a JavaScript programmer, don’t despair—the Rules are still useful!
You don’t need to learn how to program in C++ in order to read the examples in
this book. Code is code, basically—a loop is a loop, variables are variables, and
functions are functions. There are some cosmetic differences, but the basic ideas
in this book’s C++ examples translate pretty directly to JavaScript, even when that
translation isn’t immediately obvious!

This appendix explains how to do that translation—how to read C++ and
convert it in your head to the JavaScript equivalent. You won’t be able to write
C++ code after working your way through this appendix—that would take a
whole book—but you should be much more capable of reading it.

Types

Time for an example! Here’s a simple function that calculates the sum of an
array of numbers, first in JavaScript:1

function calculateSum(numbers) {

 let sum = 0;

301

| Appendix B

 for (let number of numbers)
 sum += value

 return sum;
}

And then in C++:

int calculateSum(const vector<int> & numbers)
{
 int sum = 0;

 for (int number : numbers)
 sum += number;

 return sum;
}

Um…it’s the same code. Maybe we don’t need an appendix after all.
Or maybe we do. JavaScript syntax was heavily influenced by C syntax, and

I won’t have to explain what curly braces and semicolons mean like I did in the
Python appendix, but there are plenty of quirky differences.

First, everything in C++ is scoped. Imagine a let or const before every
variable defined in the examples, because that’s implicitly true for all variables in
C++.

If you haven’t dabbled in TypeScript yet—if you’ve stuck to straight Java-
Script so far in your programming career—then the explicit types in the example
might be confusing. The int and const vector<int>& type annotations tell the
C++ compiler what kinds of values to expect—in this case, an integer and a list of
integers. The compiler needs to know the types before it can actually compile the
code.

There are types in JavaScript, too, of course, even if the language doesn’t
force you to worry about them. If you do care about the type of an expression,
you can call typeof(), but typically you don’t care. In JavaScript the type details
are usually sorted out when the code runs, not when it’s compiled. Not always,
though—your web browser tries pretty hard to infer types for everything, because
if it can then the JavaScript can be compiled to a more efficient form and run a
lot faster.

C++ skips right to the “run a lot faster” part, even if that adds some extra
steps to writing code. Knowing about types also lets the compiler detect a whole
class of bugs earlier, which is a huge advantage.

302 | READING C++ FOR JAVASCRIPT PROGRAMMERS

Here’s how you can tell that both of these approaches are appealing: new
versions of C++ let you skip the type annotations in lots of cases, and the increas-
ingly popular TypeScript extension of JavaScript lets you type annotations. Now
you can write JavaScript/TypeScript that looks more like C++:

function calculateSum(numbers: int[]): int {

 let sum: int = 0;

 for (let number of numbers)
 sum += number;

 return sum;
}

And C++ that looks more like JavaScript:

auto calculateSum(const vector<int> & numbers)
{
 auto sum = 0;

 for (auto number : numbers)
 sum += number;

 return sum;
}

The examples in this book stick to “old-school” C++ and use explicit types.
That’s our policy at Sucker Punch—we think it makes the code easier to read—so
I’ve continued the practice here.

Arrays

Despite the surface similarity between C++ and JavaScript, there’s an endless
list of quirky differences. Here’s a simple example that reverses the values in an
array, first in JavaScript:

function reverseList(values) {

 let reversedValues = []

 for (let index = values.length; --index >= 0;) {
 reversedValues.push(values[index]);
 }

 return reversedValues;
}

READING C++ FOR JAVASCRIPT PROGRAMMERS | 303

And then in C++:

vector<int> reverseList(const vector<int> values)
{
 vector<int> reversedValues;

 for (int index = values.size(); --index >= 0;)
 reversedValues.push_back(values[index]);

 return reversedValues;
}

Again, the code looks very similar. The closest analog to a JavaScript array in
C++ is the vector type. The concepts are the same, but the details are different.
In JavaScript, the length property tells you how many elements are in the array.
C++ doesn’t have properties, just data members and methods; you get the count
of elements in the vector by calling a size() method.

Similarly, both JavaScript arrays and C++ vectors allow new elements to
be appended. In C++, it’s the push_back() method, whereas in JavaScript it’s
push(). That’s a pretty easy translation.

It’s worth noting that there are big differences lurking beneath the shared
syntax. For instance, the JavaScript array values could be a list array of anything
—maybe even a jumble of entirely different types, like [1, “hello”, true]. The C++
vector is always a list of integers, no more and no less.

But that won’t be a problem when you read the C++ examples. JavaScript
allows more type flexibility than the C++ examples use, but JavaScript is com-
pletely happy to deal with simply typed lists.

Classes

Both C++ and JavaScript support classes, and the syntax for doing so isn’t all
that different. The ways the two languages actually implement classes are very
different, but that’s not important for the examples in this book. If you think of
a C++ class as being like a JavaScript class where all the fields are defined with
public or private field declarations, you’ll find the examples easy to follow.

Here’s a JavaScript class implementing a 3D vector concept:

class Vector {

 constructor () {
 ++Vector.#vectorCount;
 }

304 | READING C++ FOR JAVASCRIPT PROGRAMMERS

 set (x, y, z) {
 this.#x = x;
 this.#y = y;
 this.#z = z;
 this.#calculateLength();
 }

 getLength () {
 return this.#length;
 }

 static getVectorCount() {
 return Vector.#vectorCount;
 }

 #calculateLength () {
 this.#length = Math.sqrt(
 this.#x ** 2 +
 this.#y ** 2 +
 this.#z ** 2);
 }

 #x = 0
 #y = 0
 #z = 0
 #length = 0

 static #vectorCount = 0
};

And here is an equivalent C++ class:

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }
 ~Vector()
 { --s_vectorCount; }

 void set(float x, float y, float z);

 float getLength() const
 {
 return m_length;

READING C++ FOR JAVASCRIPT PROGRAMMERS | 305

 }

 static int getVectorCount()
 {
 return s_vectorCount;
 }

protected:

 void calculateLength();

 float m_x;
 float m_y;
 float m_z;
 float m_length;

 static int s_vectorCount;
};

void Vector::set(float x, float y, float z)
{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

void Vector::calculateLength()
{
 m_length = sqrtf(m_x * m_x + m_y * m_y + m_z * m_z);
}

The two versions of the Vector class have the same pieces, but those pieces
are rearranged. The translations are straightforward, for the most part. In Java-
Script you need to be explicit with your access to fields with the this keyword, or
the class name for class fields:

class Vector {

 getLength () {
 return this.#length;
 }

 static getVectorCount() {
 return Vector.#vectorCount;
 }

 #length = 0

306 | READING C++ FOR JAVASCRIPT PROGRAMMERS

 static #vectorCount = 0
};

C++ allows explicit specification in these cases—you’re allowed to specify
this-> and Vector:: to disambiguate normal and static member references,
respectively—but it also allows implicit use of members, and that’s what the
examples all use:

class Vector
{
public:

 float getLength() const
 {
 return m_length;
 }

 static int getVectorCount()
 {
 return s_vectorCount;
 }

protected:

 float m_length;

 static int s_vectorCount;
};

These two examples also show how member visibility is handled in both
languages. Private fields have names with a hashtag (#) prefix in JavaScript.
In C++ the private keyword is used for this—it marks the start of a section
where all methods and members being declared are considered private. All of the
examples in this book use the similar keyword protected.

Moving on to constructors! In JavaScript, a special constructor function is
called when a new Vector is created:

class Vector {

 constructor () {
 ++Vector.#vectorCount;
 }
};

In C++, the class name itself is used for this method. It is nevertheless (and
somewhat confusingly) called the constructor:

READING C++ FOR JAVASCRIPT PROGRAMMERS | 307

class Vector
{
public:

 Vector() :
 m_x(0.0f),
 m_y(0.0f),
 m_z(0.0f),
 m_length(0.0f)
 { ++s_vectorCount; }
};

C++ classes also have an important concept that doesn’t really exist in Java-
Script—the destructor. An object’s constructor is called when an object is created,
and the destructor when it is destroyed. The destructor also uses the class name,
this time with a tilde (~) prepended:

class Vector
{
public:

 ~Vector()
 { --s_vectorCount; }
};

There’s no real equivalent to this in JavaScript—the closest you can come
to this is registering a callback with a FinalizationRegistry object, which is
a recent and (arguably) underbaked addition to JavaScript. This mechanism
doesn’t have quite the same behavior as a C++ destructor. In C++, the destructor
is called immediately when an object goes out of scope. Here’s an example where
a Vector is created as a local variable inside a function:

void functionA()
{
 printf("%d, \n", Vector::getVectorCount());
 Vector a;
 printf("%d, \n", Vector::getVectorCount());
};

Vector b;
functionA();
printf("%d\n", Vector::getVectorCount());

This code prints “1, 2, 1” when run—the destructor for a is called when
functionA returns, so s_vectorCount is decremented immediately. In JavaScript,
any finalization callback is triggered by garbage collection, and the timing of

308 | READING C++ FOR JAVASCRIPT PROGRAMMERS

garbage collection is implementation-specific. There isn’t a reliable way to get the
same timing in JavaScript, as in the preceding C++ example.

That’s too bad. The lack of a destructor rules out some useful tricks—Sucker
Punch code often uses object lifetimes as a robust way to manage things, and
you’ll see some of this in the C++ examples. Just remember that the destructor
gets called immediately and you’ll be able to follow along.

Declarations and Definitions

Next, let’s look at splitting a function’s declaration from its definition. In Java-
Script, all of a class’s methods are defined in the class itself:

class Vector {

 set (x, y, z) {
 this.#x = x;
 this.#y = y;
 this.#z = z;
 this.#calculateLength();
 }

 getLength () {
 return this.#length;
 }

Many of the examples in this book will do the same thing in C++:

class Vector
{
public:

 float getLength() const
 {
 return m_length;
 }
};

In other cases, though, the examples will split the declaration of the method.
First the code establishes that a method with a given name and type signature
exists:

class Vector
{
public:

 void set(float x, float y, float z);
};

READING C++ FOR JAVASCRIPT PROGRAMMERS | 309

The function is then defined separately:

void Vector::set(float x, float y, float z)
{
 m_x = x;
 m_y = y;
 m_z = z;
 calculateLength();
}

These two forms are typically compiled differently in C++, with methods
defined inside the class compiled inline, meaning that a separate copy of the
function is generated and inserted wherever it’s called, while a single copy exists
for functions with a separate definition. That’s not important for the examples in
this book, though, so don’t worry about the distinction.

Function Overloading

There are other features in C++ that don’t have direct analogs in JavaScript. The
converse is true, as well, of course—there are lots of JavaScript features that
C++ doesn’t have—but that’s unimportant here, since we’re focused on reading
C++ code.

One thing that can be confusing to JavaScript programmers is seeing two
functions with the same name. Here’s an example in C++:

int min(int a, int b)
{
 return (a <= b) ? a : b;
}

int min(int a, int b, int c)
{
 return min(a, min(b, c));
}

void example()
{
 printf("%d %d\n", min(5, 8), min(13, 21, 34));
}

It’s not clear how this works—if you try to call the min function, which
version is called? The C++ compiler makes this decision based on the arguments.
If two integers are passed, it calls the first one; if three integers, it calls the
second one. The example function prints 5 and 13.

310 | READING C++ FOR JAVASCRIPT PROGRAMMERS

In JavaScript, you’d instead write a single min function that supports an
arbitrary number of arguments. Something like this:

function min () {

 if (arguments.length == 0)
 return Infinity;

 let result = arguments[0];
 for (let index = 1; index < arguments.length; ++index) {
 result = Math.min(result, arguments[index])
 }

 return result;
}

This is exactly what Math.min does, of course, so no need to write this
function yourself!

Templates

Another concept from C++ that has no Python analog is templates. To simplify
things a bit: C++ templates are a way to write one chunk of code that handles
multiple types. The compiler generates new code for each set of types used with
the template.

The first example in this appendix summed an array of integer values. If you
wanted to sum an array of floating-point values, you might write new code:

float calculateSum(const vector<float> & numbers)
{
 float sum = 0;

 for (float number : numbers)
 sum += number;

 return sum;
}

Or you might write a single version of calculateSum using templates and let
the compiler do the work for you:

template <class T>
T calculateSum(const vector<T> & numbers)
{
 T sum = T(0);

READING C++ FOR JAVASCRIPT PROGRAMMERS | 311

 for (T number : numbers)
 sum += number;

 return sum;
}

The templated version of calculateSum will work for any type that imple-
ments the += operator and supports 0 as a value. That’s true for integers and
floating-point values, but could also easily be arranged for other types. You could
implement += and 0 for the Vector class from the last section, for instance, and
gain the ability to sum an array of Vectors.

In JavaScript, there’s no need for any of this. The JavaScript code I wrote to
sum a list of values works perfectly well for any type that supports addition and
initialization to 0:

function calculateSum(number) {

 let sum = 0;

 for (let number of numbers)
 sum += number

 return sum;
}

When you see the C++ template syntax in the examples, it usually marks
some bit of code that would work fine in JavaScript without any templating at all.

Pointers and References

There’s one final thing that JavaScript mostly hides from view but that C++
makes programmers worry about, and that’s passing arguments by value versus
passing them by reference. In JavaScript, simple types like numbers or strings are
passed by value—a new copy is made whenever they’re assigned to a variable or
passed as an argument to a function. It’s more complicated for types like lists or
objects. Here’s an example:

function makeChanges (number, numbers) {
 number = 3;
 numbers.push(21);
 console.log(number, numbers);
}

let number = 0;
let numbers = [3, 5, 8, 13];

312 | READING C++ FOR JAVASCRIPT PROGRAMMERS

console.log(number, numbers);
makeChanges(number, numbers);
console.log(number, numbers);

When this code is run it prints out:

0 (4) [3, 5, 8, 13]
3 (5) [3, 5, 8, 13, 21]
0 (5) [3, 5, 8, 13, 21]

Notice how the simple value changes inside makeChanges to 3, then changes
back to 0 when makeChanges returns, but the list changes without changing back.
That’s because 0 was passed by value. A new copy was made when makeChanges
was called. When makeChanges sets number to 3, it’s only changing the copy.

JavaScript didn’t make a copy of the globalNumbers list—it just passed the
original list. Both numbers and globalNumbers are holding onto the same list.
When 21 is appended, it’s appended to that list. When numbers is logged before
returning or globalNumbers after, 21 shows up, because you’re printing the same
list in both cases.

C++, by contrast, makes all of this more explicit. All variables and arguments
are explicitly passed by value or passed by reference. The C++ equivalent to the
preceding JavaScript code looks like this:

void makeChanges(int number, vector<int> & numbers)
{
 number = 3;
 numbers.push_back(21);
 cout << number << " " << numbers << "\n";
}

The ampersand in front of numbers is important—it tells the compiler that
this argument is passed by reference, not by value, so the compiler won’t make
a copy of it when makeChanges is called. There’s no ampersand for number, so the
compiler does make a copy of number.

If the ampersands are flipped, then the compiler makes a copy of numbers
but not of number:

void makeChanges(int & number, vector<int> numbers)
{
 number = 3;
 numbers.push_back(21);

READING C++ FOR JAVASCRIPT PROGRAMMERS | 313

 cout << number << " " << numbers << "\n";
}

This version produces different output. Now it’s the simple value that is
permanently changed, while the list pops back to its original value:

0 [3 5 8 13]
3 [3 5 8 13 21]
3 [3 5 8 13]

The examples in this book will often use references to avoid making expen-
sive copies of bulky values. In most cases, the references will be marked with the
const keyword to mark something that shouldn’t be altered, despite being passed
by reference. That showed up (and was never explained) in the first C++ example
in this appendix:

int calculateSum(const vector<int> & numbers);

With this usage, no copy is made of numbers, but the compiler won’t allow
any changes to numbers either. In practice this is really similar to passing it by
value, but at much lower cost.

As a final note, in a few cases the examples use the other (sigh) C++ syntax
for passing things by reference—pointers. Pointers and references are almost
exactly the same thing, and the differences aren’t really important if you’re just
trying to figure out what the code is doing. The key syntactic differences are:

• Pointers are defined with * instead of &.•

• Pointers use -> instead of . to get at members.•

• To convert a pointer to a reference, you use *; to convert a reference to a•
pointer, you use &.

Here’s the example code written with pointers:

void example(int number, vector<int> * numbers)
{
 number = 3;
 numbers->push_back(21);
 cout << number << " " << *numbers << "\n";
}

void callExample()
{
 int number = 0;

314 | READING C++ FOR JAVASCRIPT PROGRAMMERS

 vector<int> numbers = { 3, 5, 8, 13 };
 cout << number << " " << numbers << "\n";
 example(3, &numbers);
 cout << number << " " << numbers << "\n";
}

This book’s examples use constant references whenever an argument is
conceptually being passed by value, but actually passing the argument by value
would be expensive. In all other cases, pointers are used.

READING C++ FOR JAVASCRIPT PROGRAMMERS | 315

Index

A
A* algorithm, 228

abstraction, best practice for readable code,

121-125

Adams, Douglas, 100

adapter classes, in parallel reworking of

code, 254

allocated memory, 68, 243, 245-254

Animal Crossing, 195

animation smoothing, relying on state for,

179-180

arbitrary-precision integers, 6

architecture limits, reaching, 147-153

assessing size of change’s impact,

151-152

fuzzy benefits, dealing with, 152

gradual evolution versus continual rein-

vention, 149-151

ignore, tweak, or refactor choice, 148

rework focus on small problems, 153

Area struct, 52

arguments

collapsing related arguments into one,

89

mismatched arguments leading to fail-

ure, 87-90

type-safe optional arguments, 94-95

arrays

JavaScript versus C++, 303

solving Easy problems in, 182-187

StackVector class, 253, 256

using to avoid mismatched argument

failure, 89

assert macro, 29, 158, 235

audio compression codec, and automated

testing, 17

audit function, 24, 174

auditAll function, 24

automated testing, pros and cons of, 16-18

automating

not using to skip needed drudgery, 277

reproduction of problem in debugging,

180

testing mathematically, 262-264,

268-269

AvoidLozenges struct, 230

awareness callback function, 136-138

AwarenessEvents interface, 136-139

B
Beck, Kent, 243

Bezier curves, 225

BezierCostFunction struct, 225-227

317

binary search as optimization method for

memory allocation issue, 68

bit trickery, 2

BitVector class, 127-130

Boolean operations, Python versus C++,

288

branch-and-change model to control

reworking of code, 241-242

bugs (see debugging)

C
C++, 50

(see also JavaScript, working with C++;

Python, working with C++)

chaining set calls trick, 94-95

generalized coding challenge, 50

language use conventions for teams,

157

templates for type-safe optional argu-

ments, 95

C-style file handling, error returns, 158

caller of code, importance of not trusting,

24-29

capacitated versus incapacitated status,

containing complexity, 138-139

Character class, 24

Character struct, debugging chain, 173-176

chooseRandomValue function, 61-62,

64-70

classes

JavaScript versus C++, 304-309

Python versus C++, 289-292

code annoyances, removing, 195-200

code evolution, 103-110

code reviews, 77-83

bug-finding value of, 81

to enforce conventions, 164

forbidden code review, 81

importance of shared process in real

time, 79, 80

limitations in finding orphaned code,

109

sharing knowledge as benefit of, 80

social characteristic of, 82-83

Sucker Punch process, 78-80

code, working forward from to problem

solution (see working backward from

problem)

coding style

need for team consistency in, 156

valuing your own, 279-282

cognitive load

of common knowledge versus new con-

cepts, 127-130

of mixing naming conventions, 36-40

from nested call chain, 123

and reading code, 117

collapsible code, 115-130

abstraction, cost and best use of,

124-125

collapsing related arguments into one,

89

improving readability, 118-123

localizing complexity, 143-145

memory limits and value of, 115-120,

125-130

color-coding for readability, 240

comments

avoiding useless, 235-237

collapsing code details with, 121

fixing small problems in, 196

nonobvious, 237

providing space and punctuation for

code, 237-240

318 | INDEX

Python versus C++, 285-287

and telling true code stories, 234-240

using asserts instead, 235

commit process, automated testing in, 16

compiler as assistant in eliminating failure

cases, 88-90

complex data type, 33

complexity, 131-146

and adding new effects, 140-143

in capacitated versus incapacitated char-

acter status, 138-139

collapsing implementations in single

method, 143-145

cost of, 187

and distributed state, 135-138

hiding internal details, 132-135

isolation of, 131-135

objects with failure designed in, 90-93

in pathing code for character move-

ments around obstacles, 227-229

programming as continual struggle

with, 13

Complicated solutions to problems,

182-193

Config struct, 209-220

consistency, importance of

in naming conventions, 34-41, 198

in team coding, 156, 164

constants, representing, 164

constructor-destructor pair, wrapping

push-pop in, 99

container classes, writing single consistent

version, 36

continuous automated testing, 16

controlled vocabulary for team, 36-40, 164

conventions, 155-164

code reviews to enforce, 164

fixing small problems regularly,

197-199

formatting, 156

language usage, 157

multiphase constructor ordering, 93

naming (see naming conventions)

problem solving, 158-163

convertCoordinateSystem function, 89

convoluted code, 11-13

cosf function, 132

countStepPatterns function, 4-6

Customer struct, 133-135

D
DamageArbiter, 177-178

data measurement, before optimization,

64

dead code (see orphaned code)

debug-rendering parameters, 91

debugging, 15-30, 167-180

auditing states you can’t eliminate,

23-24

automated testing issues with, 17

automating reproduction of problem,

180

bug detection optimization, 64

caller of code, importance of not trust-

ing, 24-29

code as, 17

and code reviews, 78, 79

contagiousness of bugs, 15

diagnosis, 168-178

drawing wireframes for visualization,

90-93

and early-bound versus late-bound lan-

guages, 210

INDEX | 319

facing manual drudgery corrections,

275-276

fixing symptoms versus causes, 170

lifecycle of a bug, 167-171

minimizing state, 172-176

orphaned code, 103-113

and parsing complicated code, 187

problem detection sources, 16-17

stateless code for testing, 18-23, 112, 175

stepping through code in debugger to

learn it, 126

unavoidable delays, dealing with,

178-180

unavoidable state, dealing with, 176-178

“weeds” versus bugs, 199

declarations and definitions

JavaScript versus C++, 309-310

Python versus C++, 293-294

dependencies, cleaning up bug, 15

disguises, and orphaned code, 108-110

distributed state in stealth game, 135-145

Doxygen, 235

duplicate-and-switch model for reworking

code, 242

(see also parallel system for reworking

code)

dynamic programming, 6

E
early-bound versus late-bound languages,

210-212

Easy problem, 181, 195-200

Easy problem, Complicated solutions,

183-188

Easy problem, Simple solution, 182

edge cases of errors, 163

Einstein, Albert, 1

entanglements, 15-16, 24, 27

error-handling models, 158-163

evaluateComplexPolynomial function,

33-34

evaluateKeyPath function, 206-208

exception-style error handling, 161

executable logfile, 180

explanation issue in measuring simplicity,

4

F
failure cases, eliminating, 85-101

compiler as assistant in, 88-90

complex objects with failure designed

in, 90-93

coordinated control of state, 96-100

detecting usage mistakes early, 90

functions with failure designed in, 86

making mistakes impossible to express,

100

making mistakes impossible to order,

93-95

ricochet, failure via, 87-88

templates versus method chaining, 95

features, misusing and causing failure

cases, 85

Fibonacci numbers debugging example,

172

Field struct, 217

file boundaries, importance of consistent,

164

file size management, 277-278

findAllies function, 106, 109-113

findNearbyEnemies function, 106

findRecentPurchasers function, 132-135

first penguins for flag switch in parallel

rework of code, 258

320 | INDEX

FixedVector class, 34-36

flavors of code, 181-194

cost of complexity, 187

Easy problem, Complicated solutions,

183-187

Easy problem, Simple solution, 182

Hard problem, Complicated solutions,

182, 188-193

Hard problem, Simple solution, 188,

193

kinds of programmers, 187

forbidden code review combination, 81

foreign naming conventions, 36

formatting of code, 164, 285-289

free function, 181

function boundaries, and collapsible code,

122-123

function calls, in performance versus run-

ning algorithm, 62

functions

ease of testing/debugging with pure,

18, 173, 176

easy ones to get wrong, 86

initialization function to take control

from callers, 25-26

overloading, 295, 310-311

renaming challenges in calls, 37-39

three functions needed before generali-

zation, 48-51

try-named, 159-160

futureproofing, avoiding, 148

G
generalization

adapting to unanticipated use cases,

51-56

of common problem, 107-108

efficiency of avoiding, 48

and limits of architecture, 147-153

losing context when extending too far,

56-57

perspective-changing problem leading

to, 232

rare situations when preferable, 231

reining in new programmers, ix

Sly Cooper landing scenario to use, 227

three-examples rule for going to, 43-57,

231

YAGNI, 46-48

getDamageReaction function, 177-178

Ghost of Tsushima, ix, 66, 151-152, 227-231

global objects, 209, 213

golden section optimization algorithm,

223-227

GridPoint solution to unobstructed path

for character, 229

H
hammers

driving screws with, 57

hammering nails with, 278

hard limits, respecting in design process,

264-268

Hard problem, 181, 188

Hard problem, Complicated solutions, 182,

188-193

Hard problem, Simple solution, 188, 193

hash value bug, fixing manually, 275-276

heap memory allocator, 243, 245

hidden internal details of code, using to

simplify, 132-135

hostility model, in code evolution example,

104-106

Hungarian naming standard, 40-41

INDEX | 321

I
increment operators, 288

incremental versus new design thinking,

balancing, 149-151

indention, Python versus C++, 287

inFamous games, ix, 106

initialization function, to take control from

callers, 25-26

initialize function, 26, 29

IntegerType, 216

internal auditing to access internal states,

23-24

invulnerability of character, managing by

coordinated control of state, 96-100

isServerBlocked function, 205-209

IsVisibleAlly struct, 107

J
JavaScript, working with C++, 301-314

arrays, 303

classes, 304

declarations and definitions, 309-310

function overloading, 310-311

pointers and references, 312-314

templates, 311-312

types, 301-303

Jin Sakai character, 227

journaling filesystem, building from

scratch, 181

JSON

code example approach to a problem,

203-212

translating objects to C++ structs, 213

junior versus senior code review-

ers/reviewees, 80

K
Knuth, Donald, 59

L
language features, consistency in team

coding, 164

late-bound versus early-bound languages,

210-212

linearizing a function, 192

lists, Python versus C++, 288

localization and printf problem, 87, 89

long-term versus short-term memory, 117,

125-127, 130

loop-free implementation, counting bits in

integer, 2

loops, lack of simplicity in, 3

lozenge shape, moving along, 228

M
malloc function, 112, 181

markCharacterPosition function, 91-95

math, 261-270

handling changes in, 268-269

looking for hard limits, 264-268

pros and cons of automating, 262-264

members, mapping from JSON to C++,

217

memoization when coding counting pat-

terns, 5-6

memory

allocation of computer, 68, 243,

245-254

common knowledge versus new con-

cepts, 127-130

limits and value of human, 115-120,

125-130

322 | INDEX

long-term versus short-term, 117,

125-127, 130

method chaining, 94-95

Minecraft, 85

minimal keystrokes, avoiding, 32-34

mixing and matching, avoiding in naming,

34-40

multiphase constructors, ordering conven-

tions, 93

N
naming conventions, 31-41

changing names when passed into a

function, 37-39

controlling vocabulary for team, 36-40,

164

fixing small naming inconsistencies

globally, 198

maintaining consistent rules for, 40-41

and making code readable, 40, 121, 240

minimal keystrokes, avoiding, 32-34

mixing and matching, avoiding, 34-40

nested call chain, cognitive overload from,

123

network protocol design, hard limits exam-

ple, 265-268

number of ideas introduced, and simplic-

ity, 4

Numerical Recipes code, 32

O
object-oriented design, and localizing com-

plexity, 135-138

ObjectID struct, 26-29

objects

basing errors in, 159-160

defining scopes within, 243-245

with failure designed in, 90-93

global, 209, 213

translating JSON to C++ structs, 213

unit testing challenge for stateful, 112

optimization, 59-71

applying five-step process, 65-70

automating as work process, 262

avoiding over-optimization, 69

five-step process, 63-69

golden section optimization algorithm,

223-227

not optimizing as first choice, 59-63

performance factor, 62, 67-69, 73-76

optimizeViaGoldenSection function,

223-227

ordering mistakes, making impossible,

93-95

Ordinal struct, 7-8

orphaned code, 103-113

adding disguises, 108-110

consequences of, 108-110

generalizing a common pattern,

107-108

identifying the culprit, 110-113

testing’s limits, 112-113

overloading of functions, 272-274

P
parallel arrays, to avoid mismatched argu-

ment failure, 89

parallel system for reworking code,

241-260

concrete example, 243-245

migrating from old stack contexts,

254-260

recognizing when to apply strategy,

260

INDEX | 323

smarter stack contexts, 249-254

stack allocation, 245-248

stack vector use case conflict, 248

StackVector migration, 256-260

versus traditional branching, 242

parameter-adjustment config file example,

202-208

Params struct, 91

Parker, Dorothy, xiv

PathExtension interface, 230

pathing code for character movements,

228-231

PathManager class, 229

penguins, antisocial behavior of, 258

performance factor, and optimization, 61,

62, 67-69, 73-76

permute string search example, 188-194

Person struct, 104-110

pointers

JavaScript versus C++, 312-314

Python versus C++, 297-299

Principle of Least Astonishment, 94

printf function, 86

problems

and code annoyances, 195-200

conventions for problem solving,

158-164

debugging (see debugging)

focus on overall before details, 221-232

JSON approach to, 203-212

solving within simplicity principle, 4-9

types of, 181-194

working backward from (see working

backward from problem)

processor time, measure and attribute, 63

processVector versus sort functions, 126

profiling in day-to-day engineering, 74, 75

programmers, kinds of, 187

prototyping an optimization, 65

pure functions, ease of testing/debugging

with, 18, 173, 176

push-pop model for invulnerability entan-

glements, 99

Python, working with C++, 283-299

classes, 289-292

declarations and definitions, 293-294

formatting and comments, 285-289

function overloading, 295

for optimum performance, 70

pointers and references, 297-299

templates, 296-297

types, 283-285

visibility, 292

Q
quadratic complexity, 145

qualifiers, using consistent name for, 41

R
readability

and abstraction best practice, 121-125

best use for short- and long-term

human memory, 130

collapsible code, 118-123

color-coding for, 240

creating space and comment punctua-

tion, 237-240

impact on cognitive load, 117

naming conventions, 40, 121, 240

reasoning through longer code, 116-117

reduceFunction function, 19

refactoring a system, 148, 153

(see also parallel system for reworking

code)

324 | INDEX

references

JavaScript versus C++, 312-314

Python versus C++, 297-299

Result struct, 160

riffle-shuffling cards, simple algorithms,

9-13

RigidBodySimulator struct, 25-29

S
safety issue in fixing small problems, 198

SafeType struct, 214-218

scopes, defining within context object,

243-245

senior versus junior code review-

ers/reviewees, 80

setStatus method, 138

SetType struct, 216

Shakespeare, William, 31

short-term memory

failure in tracking code, 118-121

versus long-term, 117, 125-127, 130

shorter code, and simplicity, 4

showAuthorRoyalties function, 86-88

shuffleOnce function, 9-13

shuffling cards, simple algorithms, 9-13

Sieve of Eratosthenes, 127-130

SignQuery struct, 44-48, 51, 53-56

simplicity, 1-14

versus convoluted code, 11-13

Easy problem, Simple solution, 182

as first optimization step, 65, 67, 74

Hard problem, Simple solution, 188,

193

hiding internal details of code, 132-135

and localizing complexity, 146

measuring, 3

and optimization decision, 60, 63, 75

solving the problem within, 4-9

sinf function, 132

Sly Cooper character, ix, 221-227

social characteristic of code reviews, 80-83

sort versus processVector functions, 126

sorting characters, stateful versus stateless

testing, 19-23

source files, 198, 277-278

split lines, Python versus C++, 287

StackAlloc class, 243-245, 254-256

StackContext class, 243-245, 250-256, 259

stacks

memory allocation, 243, 245-254

migrating from old contexts to new

ones, 254-260

smarter contexts, 249-254

StackVector migration, 256-260

use case conflict, 248

StackVector class, 246-249, 253, 256-260

Standard Template Library (STL) conven-

tions, 36

state

in animation smoothing, 179-180

auditing states you can’t eliminate,

23-24

coordinated control of, 96-100

dealing with unavoidable, 176-178

distributing in stealth game, 135-145

minimizing in debugging, 172-176

sorting characters, 19-23

stateful objects, unit testing challenge

with, 112

stateless code for testing, 18-23, 112, 175

STATUS class, stealth game, 144-145

stealth game example, distributing state,

135-145

INDEX | 325

STL (Standard Template Library) conven-

tions, 36

story, code as, 233-240

strcpy function, 112

StructType template, 213, 218-220

structure first, inferring code from it sec-

ond, 212-220

subjective elements in test evaluation, 17

Sucker Punch coding philosophy, ix-xi, xiii-

xiv, 13, 78-80, 164, 279-282

sumVector function, 18-19

T
TDD (test-driven development), xiv, 16, 23

teams, coding

code review benefits for teamwork, 83

controlling vocabulary for, 36-40, 164

effective teams thinking alike, 163-164

formatting conventions, 156

language use conventions, 157

problem solving conventions, 158-163

templates

JavaScript versus C++, 311-312

versus method chaining, 95

Python versus C++, 296

variadic, 218

test-driven development (TDD), xiv, 16, 23

testing

automated pros and cons, 16-18

automating mathematical, 262-264,

268-269

easier as better, 30

orphaned code and limits of, 112-113

pure functions for, 18, 173, 176

stateless code for, 18-23, 112, 175

three-separate-functions approach, 48-51

tightrope landing example, 221-227

time to code

dealing with unavoidable delays,

178-180

as measure of simplicity, 4

translatability of code, as simplicity, 3

try-named functions, 159-160

“Twice as good” rule for changing code,

151-153

type safety, 214-218

types

JavaScript versus C++, 301-303

Python versus C++, 283-285

U
undefined results, and poor design of

interface, 27

unit tests, 112, 176

usage mistakes, detecting early, 90

use cases

allowing to lead code rather than antici-

pating, 48-49

and preventing failure cases, 85-101

three use cases before generalizing

principle, 49

V
variables

choosing good names for readability,

240

Hungarian naming standard, 40-41

importance of meaningful-length

names, 32

variadic template, 218

vector class example of naming inconsis-

tency, 34-36

VectorType, 217

video gaming, ix, 279-282

326 | INDEX

visibility, Python versus C++, 292

W
Weather class, 140-143

“weeding” of code annoyances, 195-200

word problem, moving from math back to,

269, 272

working backward from problem, 201-220

defining structure and inferring code

from it, 212-220

early-bound versus late-bound lan-

guages, 209-212

versus problem in terms of solution

you want to apply, 202-208

working memory (see short-term memory)

Y
YAGNI (You Ain’t Gonna Need It), 46-48

INDEX | 327

About the Author
Chris Zimmerman cofounded the video game studio Sucker Punch Productions
in 1997 and led the coding team through 20-plus years of successful video
games, including three Sly Cooper games and five inFamous games, culminating
in 2020’s Game of the Year candidate Ghost of Tsushima. He split his time
between designing and writing code, like the melee combat in Ghost, and the
day-to-day work of building and managing a 20-something-person coding team.
Prior to Sucker Punch, Chris spent roughly a decade at Microsoft, but the things
he worked on there were much less interesting. He graduated from Princeton in
1988, and as a result owns more orange clothing than you do.

Colophon
The cover design and original cover art are by Susan Thompson. The cover fonts
are Guardian Sans and Gilroy Semibold. The text fonts are Scala Pro, Benton
Sans, and Minion Pro; the heading font is Benton Sans; and the code font is
Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Girls Who Code
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	The Story of the Rules
	How to Disagree with the Rules
	Rule 1: As Simple as Possible, but No Simpler
	Measuring Simplicity
	…But No Simpler
	Sometimes It’s Better to Simplify the Problem Rather than the Solution
	Simple Algorithms
	Don’t Lose the Plot
	One Rule to Rule Them All

	Rule 2: Bugs Are Contagious
	Don’t Count on Your Users
	Automated Testing Can Be Tricky
	Stateless Code Is Easier to Test
	Audit State You Can’t Eliminate
	Don’t Trust the Caller
	Keeping Your Code Healthy

	Rule 3: A Good Name Is the Best Documentation
	Don’t Optimize for Minimal Keystrokes
	Don’t Mix and Match Conventions
	Don’t Shoot Yourself in the Foot
	Don’t Make Me Think

	Rule 4: Generalization Takes Three Examples
	YAGNI
	An Obvious Objection to This Strategy, in Response to Which I Double Down
	It’s Actually Worse than YAGNI
	This Is Not What Success Looks Like

	Rule 5: The First Lesson of Optimization Is Don’t Optimize
	The First Lesson of Optimization
	The Second Lesson of Optimization
	Putting the Second Lesson to the Test
	Step 1: Measure and Attribute Processor Time
	Step 2: Make Sure There’s Not a Bug
	Step 3: Measure Your Data
	Step 4: Plan and Prototype
	Step 5: Optimize and Repeat

	Applying the Five-Step Optimization Process
	There Is No Third Lesson of Optimization

	Interlude: In Which the Previous Chapter Is Criticized
	Rule 6: Code Reviews Are Good for Three Reasons
	Code Reviews Are About Sharing Knowledge
	The Forbidden Code Review
	The True Value of the Code Review
	Code Reviews Are Inherently Social

	Rule 7: Eliminate Failure Cases
	A Function That Makes It Easy to Shoot Myself in the Foot
	Shooting Myself in the Foot via a Ricochet
	Enlisting the Compiler’s Aid to Avoid Shooting My Foot
	Timing Is Everything
	A More Complicated Example
	Making Ordering Mistakes Impossible
	Using Templates Instead of Method Chaining
	Coordinated Control of State
	Detecting Mistakes Is Good, but Making Them Impossible to Express Is Better

	Rule 8: Code That Isn’t Running Doesn’t Work
	Step 1: A Simple Beginning
	Step 2: Generalizing a Common Pattern
	Step 3: Adding Disguises
	Step 4: The Chickens Return Home to Roost
	Assigning Blame
	The Limits of Testing

	Rule 9: Write Collapsible Code
	This Is What Failure Feels Like
	The Role of Short-Term Memory
	Where to Draw the Line
	The Cost of Abstraction
	Use Abstraction to Make Things Easier to Understand
	The Role of Long-Term Memory
	Common Knowledge Is Free; New Concepts Are Expensive
	Putting It All Together

	Rule 10: Localize Complexity
	A Simple Example
	Hiding Internal Details
	Distributed State and Complexity
	Capacitated?
	Things Start to Get Foggy
	Rethinking the Approach
	Localized Complexity, Simple Interactions

	Rule 11: Is It Twice as Good?
	Three Paths Forward: Ignore, Tweak, or Refactor
	Gradual Evolution Versus Continual Reinvention
	A Simple Rule of Thumb
	Dealing with Fuzzy Benefits
	Rework Is a Good Opportunity to Fix Small Problems

	Rule 12: Big Teams Need Strong Conventions
	Formatting Conventions
	Language Usage Conventions
	Problem-Solving Conventions
	Effective Teams Think Alike

	Rule 13: Find the Pebble That Started the Avalanche
	The Lifecycle of a Bug
	Minimizing State
	Dealing with Unavoidable State
	Dealing with Unavoidable Delay

	Rule 14: Code Comes in Four Flavors
	Easy Problem, Simple Solution
	Easy Problem, Three Complicated Solutions
	The Cost of Complexity
	The Four (But Really Three) Kinds of Programmers
	Hard Problem, Somewhat Complicated Solutions That Don’t Work
	Hard Problem, Somewhat Complicated Solution
	Hard Problem, Simple Solution

	Rule 15: Pull the Weeds
	Weed Identification
	How Code Gets Weedy

	Rule 16: Work Backward from Your Result, Not Forward from Your Code
	An Example
	An Annoyance Appears
	Choosing a Side of the Gap
	Working Backward Instead
	And Now for Something Completely Different
	Working Forward and Working Backward

	Rule 17: Sometimes the Bigger Problem Is Easier to Solve
	Jumping to Conclusions
	Finding a Clear Path Forward
	Recognizing the Opportunity

	Rule 18: Let Your Code Tell Its Own Story
	Don’t Tell Stories That Aren’t True
	Make Sure There’s a Point to the Story
	Telling Good Stories

	Rule 19: Rework in Parallel
	Bumps in the Road
	Build a Parallel System Instead
	A Concrete Example
	Stack Allocation in Practice
	A Cloud on the Horizon
	Making Stack Contexts a Little Smarter
	Migrating from Old Stack Contexts to New Ones
	Preparing to Migrate StackVector
	Time to Migrate
	Recognizing When Parallel Rework Is a Good Strategy

	Rule 20: Do the Math
	To Automate or Not to Automate
	Look for Hard Limits
	When the Math Changes
	When the Math Problem Changes Back into a Word Problem

	Rule 21: Sometimes You Just Need to Hammer the Nails
	A New Argument
	There’s Never Just One Bug
	The Siren Call of Automation
	Managing File Sizes
	There Are No Shortcuts

	Conclusion: Making the Rules Your Own
	Use Your Best Judgment
	Discuss Amongst Yourselves
	Signing Off

	Appendix A. Reading C++ for Python Programmers
	Types
	Formatting and Comments
	Comments
	Indentation and Split Lines
	Boolean Operations
	Lists
	Increment Operators

	Classes
	Visibility
	Declarations and Definitions
	Function Overloading
	Templates
	Pointers and References

	Appendix B. Reading C++ for JavaScript Programmers
	Types
	Arrays
	Classes
	Declarations and Definitions
	Function Overloading
	Templates
	Pointers and References

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

