
SOFTVVARE
ARCHITECTURE
FOR BUSY DEVELOPERS
Talk and act like a software architect in one weekend

by Stéphane Eyskens

SO
FTVVA

RE A
RCH

ITECTU
RE FO

R BU
SY D

EVELO
PER

S

Are you a seasoned developer who likes to add value to a project beyond just writing code? Have
you realized that good development practices are not enough to make a project successful, and you
now want to embrace the bigger picture in the IT landscape? If so, you're ready to become a software
architect; someone who can deal with any IT stakeholder as well as adding value to the numerous
dimensions of software development.

The sheer volume of content on software architecture can be overwhelming, however. Software
Architecture for Busy Developers is here to help. Written by Stéphane Eyskens, author of The Azure Cloud
Native Mapbook, this book guides you through your software architecture journey in a pragmatic way
using real-world scenarios. By drawing on over 20 years of consulting experience, Stéphane will help
you understand the role of a software architect, without the fl uff or unnecessarily complex theory.

You'll begin by understanding what non-functional requirements mean and how they concretely impact
target architecture. The book then covers diff erent frameworks used across the entire enterprise
landscape with the help of use cases and examples. Finally, you'll discover ways in which the cloud
is becoming a game changer in the world of software architecture.

By the end of this book, you'll have gained a holistic understanding of the architectural landscape,
as well as more specifi c software architecture skills. You'll also be ready to pursue your software
architecture journey on your own – and in just one weekend!

SOFTVVARE ARCHITECTURE
FOR BUSY DEVELOPERS

Things you will learn:

• Understand the roles and responsibilities of
a software architect

• Explore enterprise architecture tools and
frameworks such as The Open Group
Architecture Framework (TOGAF)
and ArchiMate

• Get to grips with key design patterns used
in software development

• Explore the widely adopted Architecture
Tradeoff Analysis Method (ATAM)

• Discover the benefi ts and drawbacks of
monoliths, service-oriented architecture
(SOA), and microservices

• Stay on top of trending architectures such
as API-driven, serverless, and cloud native

Stéphane Eyskens

Software
Architecture for
Busy Developers

Talk and act like a software architect in one weekend

Stéphane Eyskens

BIRMINGHAM—MUMBAI

Software Architecture for Busy Developers
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Kunal Chaudhari
Senior Editor: Ruvika Rao
Content Development Editor: Kinnari Chohan
Technical Editor: Pradeep Sahu
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Vinayak Purushotham
Production Designer: Aparna Bhagat

First published: August 2021

Production reference: 1170821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-159-8

www.packt.com

http://www.packt.com

Contributors

About the author
Stéphane Eyskens has a developer background and became a solution architect about a
decade ago. As a cloud subject matter expert, he contributed to many digital transformation
programs, helping organizations get better results out of their cloud investments. As
an MVP, he is an active contributor to the Microsoft Tech Community and has worked
on multiple open source projects available on GitHub. Stéphane is also a Pluralsight
assessment author as well as the author of multiple books and online recordings.

About the reviewers
Sagar Sharma is a Microsoft certified Azure architect and a solution architect with
12 years of professional experience, currently based in the Netherlands. He is also a
blogger and frequent public speaker.

Sagar helps customers from various domains by designing solution architecture based
on ArchiMate and Open Group standards. He has designed and implemented enterprise
software solutions in the fields of the cloud, app modernization, data, integration,
and IoT. He also works on defining cloud strategies and enjoys training people on the
Azure platform.

He is an Indian by nationality and married to Pragya. They have two lovely kids, Dhruv
and Dhwani. He is a movie buff, loves traveling, and is passionate about cooking.

Email: imsharmasagar@outlook.com

Thomas Browet has a passion for IT that started 20 years ago when he discovered Linux
while he was still a teenager. He was immediately hooked. After graduating, he started his
career writing software for local businesses. He had to develop/plan/configure everything
himself. After a few years, he moved to the enterprise world, where everything was more
complex, but the core was the same.

Recognized as a thought leader in automation and software development, he leverages
his one-man-shop experience to ease collaboration across IT organizations' silos. After
a decade of software development, he now works in Brussels as a freelance solution
architect where he architects/automates software for the cloud. A father of two, he enjoys
rock climbing.

Table of Contents
Preface

Section 1: Introduction

1
Introducing Software Architecture

Software architecture in a
nutshell 4
A software architect's duties 5
Introducing the different
architecture disciplines 6
EA 7

Positioning software
architecture within the global
architecture landscape 10
Summary 11

Section 2: The Broader Architecture
Landscape

2
Exploring Architecture Frameworks and Methodologies

Introducing frameworks and
methodologies 16
Delving into TOGAF, ArchiMate,
and related tools – EA 17
Introducing TOGAF's ADM 18
Building blocks 19
Architecture patterns 20
EA wrap-up 22

Introducing security frameworks 22
COBIT for risk 23
NIST 28

ITIL in a nutshell 28
Summary 29

vi Table of Contents

3
Understanding ATAM and the Software Quality Attributes

Introducing ATAM 32
Understanding sensitivity
points, trade-off points, risks,
and non-risks 33
Exploring quality attributes 35
Getting started with quality-
attribute scenarios 37

Practical use case 38
Utility trees 39
Quality-attribute scenarios 41
Identified sensitivity points 44
Architectural approaches 44

ATAM and agile at scale 48
Summary 48

Section 3: Software Design Patterns and
Architecture Models

4
Reviewing the Historical Architecture Styles

Introducing architecture styles 52
Starting with monoliths 53
Benefits of monoliths 55
Challenges of monoliths 55

Continuing with service-
oriented architecture (SOA) 56
Benefits of SOA 58

Challenges of SOA 59

Microservices 59
Benefits of microservices 61
Challenges of microservices 62
Hosting microservices 63
Microservices in action 64

Summary 64

5
Design Patterns and Clean Architecture

Technical requirements 66
Understanding design patterns
and their purpose 66
Reviewing the GoF 68

Delving into the most recurrent
patterns and applying them to
a use-case scenario 69
Understanding the DI pattern 70
Exploring the singleton design pattern 76

Table of Contents vii

Factory method 80
Lazy loading/initialization pattern 84
Strategy pattern 87
Mediator pattern 90
Facade design pattern 94

Repository design pattern 94
Design patterns use case 98

Looking at clean architecture 100
My top 10 code smells 102
Summary 104

Section 4: Impact of the Cloud on Software
Architecture Practices

6
Impact of the Cloud on the Software Architecture Practice

Technical requirements 108
Introducing cloud service
models, the cloud, and cloud-
native systems 108
Software as a Service (SaaS) 109
Function as a Service (FaaS) 110
Platform as a Service (PaaS) 111
Containers as a Service (CaaS) 112
Infrastructure as a Service (IaaS) 113
Anything as a Service (XaaS or *aaS) 113
Service models and software quality
attributes 114
Cloud versus cloud native 114

Mapping cloud services
to architecture styles
and patterns 117
Reviewing cloud and cloud-
native patterns 120
The Cache-Aside pattern 120
Understanding the SAGA pattern 121
Command Query Request Segregation
(CQRS) 123
Event sourcing 126

Summary 127

Section 5: Architectural Trends and
Summary

7
Trendy Architectures and Global Summary

Technical requirements 132
API-driven architectures 132

Hands-on with a microservice
architecture example 133
Service discovery and communication 135

viii Table of Contents

Exploring the essential parts of the
code 136
Deploying the application 138
Testing the application 139

Hands-on with a serverless
architecture example 141
Event publisher code 142

Deploying the required infrastructure 143
Testing the application 146

Summary 148
Postface 149

Other Books You May Enjoy
Index

Preface
Software architecture is a broad topic and there is not one single definition of it. In this
book, I will try to share my experience in the field, with various customers within different
industries. I will take a pragmatic approach to fulfill this book's tagline: Talk and act
like a software architect in a weekend. That's all it takes to grasp most concepts and to
get started. Of course, you will need to look more deeply into some topics on your own,
and this might take a little longer than a weekend. The book will take you on a software
architecture journey as practiced in the real world: no fluff and actionable reading.

Who this book is for
This book is for developers who wish to move up the organizational ladder to become
software architects. It will help them understand the broader application landscape
and how large enterprises deal with software architecture practices. Prior knowledge
of software development is required to get the most out of this book.

What this book covers
Chapter 1, Introducing Software Architecture, introduces software architecture and how it
is reflected in the real world.

Chapter 2, Exploring Architecture Frameworks and Methodologies, analyzes further the
frameworks that we briefly introduced in the previous chapter, through actionable examples.

Chapter 3, Understanding ATAM and the Software Quality Attributes, introduces ATAM,
a methodology that you can use to find the most suitable architecture for software.

Chapter 4, Reviewing the Historical Architectural Styles, revisits the history of monoliths,
service-oriented architecture, and microservices. It's important to know what has
happened over the past decade because architects often need to refactor/migrate
existing solutions.

Chapter 5, Design Patterns and Clean Architecture, explores software development patterns
and the latest trends with regard to structuring and designing applications.

x Preface

Chapter 6, Impact of the Cloud on the Software Architecture Practices, walks you through the
most important aspects to grasp when dealing with the cloud and cloud-native applications.

Chapter 7, Architectural Trends and Global Summary, focuses on the most in-demand
software architectures and summarizes what we have learned in this book.

To get the most out of this book
Prior knowledge of software development is expected to have the best reading
experience. Since the software architecture topic itself is technology-agnostic, you do
not need language-specific skills nor language-specific tools. However, for the sake of
demonstration, some examples are based on .NET, Azure, and Kubernetes. If you want
to reproduce them in your own environment, you will need the following:

Rest assured that you will be able to fully grasp the concepts discussed in this book even
if you decide not to replay the examples by yourself.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Software-Architecture-for-Busy-
Developers. If there's an update to the code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071598_ColorImages.pdf.

https://github.com/PacktPublishing/Software-Architecture-for-Busy-Developers
https://github.com/PacktPublishing/Software-Architecture-for-Busy-Developers
https://github.com/PacktPublishing/Software-Architecture-for-Busy-Developers
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801071598_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071598_ColorImages.pdf

Preface xi

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Let's say that we have a Rectangle base class with two separate
SetWitdh and SetHeight methods."

A block of code is set as follows:

Rectangle rect = new Square();
rect.setWidth(10);
rect.setHeight(5);
Assert.Equal(50, CalculateArea(rect));

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "I defined
the MessageBroker as an ABB, and the three rectangles on the right are solutions that
fulfil this need."

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise
in and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com

xii Preface

Share Your Thoughts
Once you've read Software Architecture for Busy Developers, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book and
share your feedback.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

https://packt.link/r/1801071594

Section 1:
Introduction

In this part, I'll introduce software architecture, what we are talking about and how it is
reflected in the real world. I'll also explain what is in scope for the book and what's not.

This section comprises the following chapter:

• Chapter 1, Introducing Software Architecture

1
Introducing

Software
Architecture

In this chapter, I will introduce the subject of software architecture. My purpose is to
help you understand my vision of software architecture and how I will tackle this topic
throughout the book.

 More specifically, this chapter covers the following topics:

• Software architecture in a nutshell

• A software architect's duties

• Introducing the different architecture disciplines

• Positioning software architecture within the global architecture landscape

By the end of the chapter, you should have a better grip on software architecture and a
better idea of how this book will walk you through your software architecture journey.

4 Introducing Software Architecture

Software architecture in a nutshell
However rich the literature is on the topic, it's not so easy to find a common definition of
software architecture. We as architects like to decouple things, so let's decouple the words
software and architecture. Starting with software, we can give this broad definition:
computer programs. Our second word, architecture, can be defined as the art of designing
buildings, houses, and the like. If we extrapolate a bit, we could define software architecture
as the art of designing computer programs. This definition sounds very broad.

Rest assured, we can evacuate hardware from the equation because it represents the
machines themselves. Phew—this should make our task easier, although we are left
with everything that runs on a piece of hardware, which remains extremely vast.

Searching for software architecture on Google reveals about 262,000 results, which is
very impressive. So many results probably mean a lot of different definitions and a lack
of a common understanding of what software architecture is all about. The same query
on Google Images does not bring up a single diagram that could help up figure out
what software architecture is.

Given the diversity of definitions, I will provide my own, although I don't claim to have
the absolute truth. I will start by tying software architecture to the Architecture Tradeoff
Analysis Method (ATAM), which we will see in Chapter 3, Understanding ATAM and the
Software Quality Attributes. In a nutshell, ATAM consists of evaluating different quality
attributes—such as performance, availability, reliability, and so on—of a piece of software.
Some of these attributes are code-related, whereas some are infrastructure- or
security-related.

Although there is no single definition of software architecture, one thing is absolutely
certain: a software architect should be acquainted with ATAM. Another thing that appears
as an emerging consensus is that the role of a software architect is tightly coupled with the
actual development of an application, and I share this viewpoint. This is how Wikipedia
(https://en.wikipedia.org/wiki/Software_architect) defines software
architecture, but for me, software architecture goes far beyond mere coding, and that
is what you will find out while reading this book. Let's now look at what a software
architect's job description might look like.

https://en.wikipedia.org/wiki/Software_architect

A software architect's duties 5

A software architect's duties
Sometimes, a good job description helps understand the tasks and duties pertaining to a
given position. Here again, looking for such descriptions on the web gives many different
results, but this is what I think are the responsibilities of a software architect:

• Addressing both functional requirements (FRs) and non-functional
requirements (NFRs): As you know, FRs are the primary trigger to design a
solution. Whether the solution/service is designed for the business or for the
Information Technology (IT) department itself, you make your business case
and then start the design work. NFRs (availability, security, disaster recovery (DR),
and so on) are not always expressed but are also particularly important and are
often the most challenging part.

This book will help you address these requirements in a structured way. Addressing
both FRs and NFRs is also the duty of a solution architect, so it can be debated
whether this should fall under the duties of a software architect or not. I think that
a good software architect is able to address FRs. An excellent software architect can
address both while addressing FRs in a more in-depth way than a solution architect.

• Providing technical standards, coding guidelines, and design patterns to
developers: Functional features are an integral part of the code base. It's a no-brainer
that good design patterns usually improve the resulting quality of a solution.
As a software architect, you must understand them and you must be able to sense
which pattern is valuable in your own context. We will dive into design patterns in
Chapter 5, Design Patterns and Clean Architecture, as well as in Chapter 6, Impact
of the Cloud on the Software Architecture Practice, where we will explore cloud and
cloud-native patterns.

• Interacting with stakeholders to ensure developed applications land smoothly in
the company's landscape: A successful software architect understands multilateral
concerns. They are able to interact with security, infrastructure, solution, and
enterprise architects, as well as with developers.

This book will give you the essential keys to achieve T-shaped skills, which means
being an expert in a given field (the base of the T) but also knowledgeable across
disciplines (the top of the T). To reinforce your T top bar, we will explore some
fundamentals of enterprise architecture (EA), which is a common practice in
large organizations, and we will touch on some infrastructure and security typical
frameworks. However, I have to manage your expectations here, as the book will
only introduce these topics.

6 Introducing Software Architecture

• Performing an active role in the solution delivery process: A close follow-up
with the development teams and a good understanding of waterfall and agile
methodologies will undoubtedly lead to a smoother delivery.

• Proactive technology watching to identify new trends and paradigm shifts:
Technology is an enabler. Most digital native companies managed to leverage
technology wisely and they became Netflix, Facebook, and the like. A good software
architect must permanently keep an eye on the ever-evolving technology landscape.

More importantly, a good software architect must exercise good judgment. They should
not blindly apply framework x or y, nor pattern a or b. They must contextualize and apply
their skills wisely. Let's now discover the various architecture disciplines.

Introducing the different architecture
disciplines
There are so many types of architects that we can quickly get lost and wonder who does
what in an enterprise. Because this understanding is an essential asset, let's start by
reviewing the different disciplines, and I will position software architecture in the mix in
the next section. The following diagram shows some of the most common architecture
disciplines and their main duties:

Figure 1.1 – Architecture disciplines: main duties

Introducing the different architecture disciplines 7

From top to bottom of the preceding diagram, you can find the main duties by order of
priority. Not every discipline is represented, but the main ones are. A noticeable exception,
however, is cloud architecture, which we will talk about later. We will discuss some of the
related frameworks in our next chapter. Let's now focus on the scope of each discipline.

EA
Enterprise architects oversee the IT and business strategies, and they make sure every IT
initiative is in line with the enterprise business goals. They directly report to IT leadership
and are sometimes scattered across business lines. They are also the guardians of building
coherent and consistent overall IT landscapes for their respective companies.

Most of the time, enterprise architects have a holistic view of the IT landscape and are
not concerned with technicalities. Their primary focus is to identify and design business
capabilities. They are helped by business architects, who are usually also a part of the EA
function. Their role consists of defining the strategic orientations and making sure their
standards percolate across teams. They usually work with The Open Group Architecture
Framework (TOGAF) to define the processes and with ArchiMate to build visual models
of the different domains. In some organizations, the EA function can assign a dedicated
enterprise architect for large projects or programs.

Solution architecture (SolAr)
Solution architects help different teams to build solutions. They have so-called T-shaped
skills because they oversee the design of a solution end to end (E2E). They mostly focus
on NFRs to ensure a solution is fit for use. As with software architects, they also look
at FRs (ensuring that they are fit for purpose), but they are not involved in the actual
development of the features.

Infrastructure architecture (IA)
Infrastructure architects focus on building and operating specific application
infrastructures and platforms that are shared across workloads. One of their duties is to
keep the lights on, to ensure commodity services such as mail systems and workplace-
related services are up and running. Infrastructure is organized around IT Service
Management (ITSM), which most of the time is based on the IT Infrastructure Library
(ITIL). The infrastructure department also provides a service-desk function. Many
organizations have started to move (or have moved already) to ServiceNow, a more
modern way to handle ITSM.

8 Introducing Software Architecture

Security architecture (SA)
In this hyper-connected world, the importance of cybersecurity has grown a lot. SA deals
with regulatory or in-house compliance requirements. In these modern times, more and
more workloads are deployed to the cloud, which often emphasizes security concerns
because many organizations are still in the middle of their cloud journey, or on the verge
of starting it.

The security field is split into different sub-disciplines such as security operations centers
(SOCs), the management of specialized security hardware and software, Identity and
Access Management (IAM), and overall security governance, also known as the security
posture. In medium-to-large organizations, you can find blue (defend) and red (attack)
teams, composed of technical security experts. Together with the SOC, they evaluate the
robustness of a business's overall resilience. The SA practice is usually managed by a chief
information security officer (CISO), although the role is sometimes also carried out by
a chief information officer (CIO).

Depending on the industry you are in, security is typically one of the lesser-known NFRs,
not well understood by business, which leads to a complete lack of business requirements
in that matter. Security-awareness programs are often required to alert businesses about
the importance of security. In a nutshell, the way the security practice is conducted heavily
depends on the culture, the risk appetite, and the organization's DNA.

Data architecture (DA)
Data architects oversee the entire data landscape. They mostly focus on designing data
platforms for storage, insights, and advanced analytics. They deal with data modeling, data
quality, and business intelligence (BI), which consists of extracting valuable insights from
the data to realize substantial business benefits. A well-organized data architecture should
ultimately deliver the data-information-knowledge-wisdom (DIKW) pyramid, as shown
in the following diagram:

Introducing the different architecture disciplines 9

Figure 1.2 – DIKW pyramid

Organizations have a lot of data, from which they try to extract valuable information and
knowledge and gain wisdom over time. The more you climb the pyramid, the more value
there is. Consider the following scenario to understand the DIKW pyramid:

Figure 1.3 – DIKW pyramid example

This shows us that, among other things, the work of a data architect is to help
organizations learn from their data.

10 Introducing Software Architecture

Application architecture (AA)
Application architects focus on building features that are requested by the business. They
make sure the developed application is fit for purpose. They enforce coding patterns and
guidelines to make maintainable and readable applications. Their primary concern is to
integrate with the various frameworks and ecosystems. Their role resembles the software
architect one but is, in my opinion, more limited. Let's now position software architecture
within the various disciplines.

Positioning software architecture within the
global architecture landscape
Given the introduction outlined in the previous sections, I will position software
architecture very closely to the actual development of a solution, but I will not limit
it to only that.

The following screenshot shows how I position the software architecture practice:

Figure 1.4 – Software architecture within the architecture landscape

Summary 11

Software architects should ideally be knowledgeable in all the topics listed in the shapes
with a dark background in Figure 1.4. As stated before, software architects will be less
focused on NFRs (the shape with dotted lines in Figure 1.4) than a solution architect but
should still know the basics. The same consideration applies to an EA practice. Let's now
recap on this first chapter.

Summary
In this chapter, I set the scene by explaining my understanding of software architecture,
which is based on real-world experience within different companies and industries. We
reviewed the different architecture disciplines when positioning software architecture, and
I wanted you to realize that you need to know a little bit of all the other disciplines to be
a successful software architect. I hope that you understand the value proposition of this
book and that you are ready to embark on this software architecture adventure.

In the next chapter, I will slightly touch on some of the typical frameworks used in the
different disciplines. This will help you speak the vocabulary of your stakeholders to
become an even better software architect.

Section 2:
The Broader
Architecture

Landscape

In this part, we will focus on the broader architecture landscape and make sure you
understand that software architecture is only a subset of it. As part of its activities, the
software architect will interact in one way or another with many other types of architects.
Each stakeholder has its own vocabulary and its own specific set of frameworks. I
want to ensure that you are adequately equipped when interacting with your peers and
stakeholders. I also want to introduce a generic methodology (ATAM) that is heavily
used in the enterprise world and across different industries.

This section comprises the following chapters:

• Chapter 2, Exploring Architecture Frameworks and Methodologies

• Chapter 3, Understanding ATAM and the Software Quality Attributes

2
Exploring

Architecture
Frameworks and

Methodologies
In this chapter, we will explore the most widespread frameworks that you will typically
encounter in various organizations. Be aware that I only introduce them because most of
these frameworks deserve a dedicated book. I will try to highlight the essential parts and
the mindset behind each framework.

More specifically, this chapter covers the following topics:

• Introducing frameworks and methodologies

• Delving into The Open Group Architecture Framework (TOGAF), ArchiMate,
and related tools—enterprise architecture (EA)

• Introducing security frameworks

• The Information Technology (IT) Infrastructure Library (ITIL) in a nutshell

16 Exploring Architecture Frameworks and Methodologies

By the end of the chapter, you should be better equipped to interact with stakeholders who
contribute to the broader IT landscape. Understanding their concerns is key to growing as
an architect. I encourage you to go the extra mile on your own, to brush up your skills in
some of the matters we will touch on in this chapter.

Introducing frameworks and methodologies
There are many frameworks, standards, and architecture tools in the IT industry.
Frameworks are essentially a set of best practices that should be inspirational for an
enterprise's users. They differ from standards in that they are not prescriptive. Conversely,
standards are prescriptive, in that you must adhere to all their rules to get certified.
The following screenshot shows some of the recurring frameworks, standards, and tools,
as per the architecture discipline:

Figure 2.1 – Frameworks and tools

Delving into TOGAF, ArchiMate, and related tools – EA 17

Starting from the left, we have the EA practice, which is mostly conducted using
TOGAF and the ArchiMate modeling language. Sparx Systems Enterprise Architect
is a widespread tool suite that helps you build both ArchiMate viewpoints and Unified
Modeling Language (UML) diagrams. ArchiMate is used to draw high-level types of
viewpoints, while UML can be used to draw both high- and low-level types of views.
If you stick to ArchiMate and have low requirements, you may consider using Archi
(https://www.archimatetool.com/), a free open source software.

Control Objectives for Information and Related Technologies (COBIT) can be
used to supplement the other frameworks, depending on whether the EA function
encompasses the governance body or not. COBIT is mostly used to establish and enforce
proper governance within an organization. COBIT also has a specific security-related
counterpart—namely, COBIT for Risk.

Talking of security, the National Institute of Standards and Technology (NIST) and
Center for Internet Security (CIS) are well known and followed by security architects.
There are a plethora of security-related International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) standards for which you can
get certified. From an infrastructure perspective, the historical leader has always been
ITIL, which can be de facto implemented by leveraging the ServiceNow IT Service
Management (ITSM) platform. Let's now have a closer look at EA.

Delving into TOGAF, ArchiMate, and related
tools – EA
As explained in the first chapter, the main purpose of the EA function is to connect the IT
department to different business lines and to make sure that IT investments and initiatives
ultimately create business value. Most EA organizations are based on TOGAF.

https://www.archimatetool.com/

18 Exploring Architecture Frameworks and Methodologies

Introducing TOGAF's ADM
The purpose of the Architecture Development Method (ADM) is to manage the
development life cycle of the EA practice. The following screenshot shows the ADM
proposed by TOGAF:

Figure 2.2 – TOGAF ADM

You can follow this to cover the entire spectrum of EA in a series of logical steps. However,
because TOGAF is only a framework, you can perfectly decide to work only with some of
the steps of that development cycle. The extent to which you apply TOGAF will be better
understood once you have completed the preliminary steps and the architecture vision
(Step A in Figure 2.2). If there were only one required step, it would be that step, because
it will help you shape your EA practice and decide which other steps you will consider
using. However, because this book is not about EA, I will only explain a few important
concepts that you are more likely to encounter in your day-to-day work as a software
architect. Let's start with the building blocks.

Delving into TOGAF, ArchiMate, and related tools – EA 19

Building blocks
A building block is a business or IT component that can be assembled with other blocks
to deliver solutions. You are likely to encounter architecture building blocks (ABBs)
and solution building blocks (SBBs).

As per the TOGAF specification, ABBs and SBBs are technology-aware, especially when
they are used to describe the application landscape. The following screenshot shows an
example of ABB and SBB modeling:

Figure 2.3 – ABB and SBB

An ABB is agnostic to specific implementations. SBBs correspond to the implementation of
an ABB, but they represent the actual solution(s). In Figure 2.3, I defined MessageBroker
as an ABB, and the three rectangles on the right are solutions that fulfill this need. When
used in a business context, an ABB depicts a business function and an SBB designates one
or more solutions that serve this business function.

20 Exploring Architecture Frameworks and Methodologies

Our purpose is not to list all possible SBBs but what has been chosen and validated by the
enterprise, unlike those shown in the following screenshot:

Figure 2.4 – ABBs and SBBs in a business context

I simply did not want to be partial or give you the impression that you should go for x or
y to fulfill such a business need (customer management). The purpose of building blocks
is to represent both business and technical needs and their associated solutions. They will
help you make consistent choices and prevent acquiring (or building) redundant solutions
to serve the same needs.

All the ArchiMate diagrams and viewpoints are high-level and can be presented to
any stakeholder (management, IT, and so on). Let's now explore the notion of
architecture patterns.

Architecture patterns
Architecture patterns are still high-level but already lower-level diagrams and are closer
to the technical implementation of a solution. They are called patterns because they
can be reused across applications and solutions. They have proven to be valuable on
several occasions. As a software architect, you might have to model a few patterns using
ArchiMate or UML. The following screenshot shows an example of a microservice pattern:

Delving into TOGAF, ArchiMate, and related tools – EA 21

Figure 2.5 – Microservice pattern

ArchiMate has a ton of symbols that represent an object type and the relationships
between components. It is far beyond the scope of this book to explain all of them. In
a nutshell, Figure 2.5 shows that the microservice pattern is made of a web application
component that encompasses the business logic (application function). That web
application is itself composed of web service, REpresentational State Transfer (REST),
and messaging interfaces. ArchiMate interface objects are easily recognizable thanks to
their lollipop type of bar. The web application talks to a microservice-specific data store.
The REST interface is itself associated with an application programming interface (API)
gateway for client consumption.

Here again, you can assemble validated patterns to build a new solution, which will
ultimately help you gain time. By validated patterns, I mean patterns that have been
assessed from a non-functional requirements (NFR) perspective (security, scalability,
and so on). If you want to build yet lower-level diagrams such as class diagrams, you
should consider UML.

22 Exploring Architecture Frameworks and Methodologies

EA wrap-up
The EA practice is not always well understood by other stakeholders. It is often perceived
as bringing low-to-no value, by both businesses and other IT teams. EA architects are
sometimes ivory-tower architects, thinking a lot but not contributing effectively (or
efficiently) to the concrete implementation of a solution. To prevent such a situation, you
must work hard on the architecture vision piece and make sure it is suited for the size and
type of organization you work in.

As a software architect, you should be confronted with EA artifacts if the EA practice
is properly conducted because a well-driven practice must percolate across layers. If
you want to read more about TOGAF and ArchiMate, I encourage you to look at the
ArchiSurance Case Study (https://publications.opengroup.org/y163),
published by the Open Group Library. If you want to get started for free with ArchiMate,
you can download the free Archi tool (https://www.archimatetool.com/
download/). Let's now look at some security frameworks.

Introducing security frameworks
Before exploring security frameworks, let me describe the typical duties of a security
architect. One of the best ways to identify them is to look at Certified Information
Systems Security Professional (CISSP) certification, which is the most wanted
certification for security professionals. The CISSP exam covers the following topics:

• Security and Risk Management

• Asset Security

• Security Architecture and Engineering

• Communication and Network Security

• Identity and Access Management (IAM)

• Security Assessment and Testing

• Security Operations Center (SOC)

• Software Development Security

The list is composed of both IT and technical security topics. I don't know about you, but
as a cloud architect I am heavily exposed to security demands, and I consider that being
able to talk the language of a security architect is a key asset to overcome some hurdles.

https://publications.opengroup.org/y163

Introducing security frameworks 23

A properly driven security organization revolves around the risk management function.
Being able to assess the risk related to a business asset will allow you to understand
which security controls and processes should be applied accordingly. It is also important
to understand the risk appetite of an organization. Some are risk-averse (typically the
banking sector) while some are risk-friendly (typically start-ups). Many industries are also
subject to specific regulations (compliance). Software architects must be able to evaluate
the security culture of the organization they work for, to tackle security more efficiently.

The shift-left paradigm, which means integrating security from the ground up, is not
yet mainstream. As a software architect, you will primarily be confronted with software
development security. Instead of trying to become a security expert yourself, you should
advocate for a strong continuous integration/continuous delivery (CI/CD) factory that
encompasses static-code security scanners and uses them as quality gates to promote a
developed component from a development environment to another environment that is
closer to production.

This first step can already reassure a security organization that you are seriously
considering security. The factory is part of the development-operations (DevOps)
toolchain, which is sometimes even called development-security-operations
(DevSecOps) or GitOps, or even GitSecOps. When adding Sec in the middle, you clearly
emphasize the security concern. Make sure you get familiar with this way of working if
you are not already aware of it.

Because this book is not about security, I will not cover all the topics. However, I promised
I would tackle a few frameworks, so let me start with COBIT 5 for risk.

COBIT for risk
COBIT is maintained by the Information Systems Audit and Control Association
(ISACA) organization (https://www.isaca.org/). What I like about the COBIT
framework in general is its proximity to the business sphere. COBIT strives to create
business value. There is nothing worse than doing things for the sake of it and forgetting
who you work for (the business). People who forget these things are not value enablers
but the exact opposite.

https://www.isaca.org/

24 Exploring Architecture Frameworks and Methodologies

Everything in COBIT reminds you who you work for and why you do it, and that is why I
like it. COBIT for Risk is an addition to COBIT and is meant to be used together with the
generic COBIT framework. The following screenshot illustrates one of the essential parts
of COBIT and COBIT for Risk—namely, the seven enablers:

Figure 2.6 – COBIT's seven enablers

These seven enablers are organizational pillars that you should leverage whenever you
need to find a solution for ruling things efficiently. Note that you are free to add your
own enablers.

Let's go through a short description of each of the seven enablers, as follows:

• Principles, Policies, and Frameworks: This could be summarized as what is clearly
thought is clearly expressed. You should identify your core principles and policies
that are in line with the risk appetite of your organization. These will be later shared
and reused among all involved parties.

• Processes: These represent the actual means to execute policies and transform
principles into tangible outcomes—for example, the MEA03.01 process (where
MEA stands for Monitor, Evaluate, and Assess) helps you tackle changing
compliance requirements. COBIT comes with many processes, giving you
a strong structural approach.

• Organizational Structures: These are key enablers to putting an organization's
business and IT goals and risk management practices in motion—for example,
hiring a data privacy officer (DPO) is a direct enabler to manage General Data
Protection Regulation (GDPR)-related concerns. The DPO could rely on a few
built-in COBIT processes or add their own to get GDPR concerns under control.

Introducing security frameworks 25

• Culture, Ethics, and Behavior: The DNA of a company is often embodied within
its employees and collaborators, which is good and bad at the same time. It is
good because people who share the DNA of the company should strive toward
the company's goals. It is bad because if the DNA changes, the same people might
become an impediment to driving that change further—for example, switching
from a risk-averse culture to a risk-friendly one or the other way around is not
easy. People might just keep working the way they have worked for the past decade,
which would slow down your change ambitions. Any big change requires a proper
change management program next to it. A company should create risk-awareness
campaigns to distill a certain mindset within their troops because they are the first
line of defense. As a software architect, it is important to understand the company
culture to optimize your interactions with peers and managers.

• Information: This enabler leverages existing information—for example, you may
create a risk register and keep it up to date. This should help you keep good control
and oversight of overall risks.

• Services, Infrastructure, and Applications: This enabler will simply support the
information enabler.

• People, Skills, and Competencies: You cannot achieve anything without the right
people and the right competencies. When you decide to use a risk management
framework, make sure people get to learn it.

The power of COBIT is that you can apply the preceding seven enablers to any topic, from
global governance to a scoped risk management function.

In the next sections, I will only highlight the COBIT potential, scoped to the risk function,
but I strongly advise you to have a deeper look at it, especially if you are involved in any
governance exercise.

Understanding risks
Back on topic, what is a risk? A risk is the probability of an adverse event to occur and
have a negative impact on an asset or a company. A risk can, most of the time, be avoided
or mitigated. Residual risk is the remaining level of risk once all mitigations are in place.
The purpose of a risk assessment is to ultimately evaluate what residual risk remains and
let the business make an informed decision about it. A well-conducted security practice
aims to inform the business about risks, not imposing anything.

To take an extreme example, a business might consciously decide to violate a regulation if
the cost to comply with it is higher than the fine (and other impacts) the company would
get when not complying.

26 Exploring Architecture Frameworks and Methodologies

Risk management is about identifying, quantifying, and managing risks. It is not restricted
to security risks. COBIT 5 comes with a few tools to manage risks, outlined as follows:

• Risk management processes, which help you tackle risk management in a
structured way

• Risk taxonomy, which is a tool to evaluate possible risk impacts and their frequency

• Risk scenarios, which are used to analyze risks and propose possible risk responses

Risk-scenario example
A good example is always better than lengthy explanations. COBIT comes with 20 risk
categories. Let me use two very different risk-scenario examples, one technical and one
non-technical, to show that COBIT can be used to manage any type of risk. Let's start with
the non-technical example. The following screenshot depicts a risk scenario about possible
sourcing issues regarding a program (group of projects):

Figure 2.7 – Non-technical risk scenario

Introducing security frameworks 27

The risk scenario depicted in Figure 2.7 is part of the Portfolio establishment and
maintenance category, and the scenario depicts an issue with resource allocation. As you
can see, this risk is not security-related. Conversely, the following screenshot shows the
same risk-scenario structure applied to a technical topic:

Figure 2.8 – Technical risk scenario

The risk scenario depicted in Figure 2.8 describes the possible malicious usage of a
service bus symmetric key, which is used to authenticate against the bus. Parameters
such as duration, detection, and lag help qualify the risk and identify the time between
its occurrence and its consequences. These two very different examples show how you
can use COBIT to your advantage for risk management. Both risks refer to COBIT's
predefined categories and processes. You can extend COBIT within your categories and
processes. Combining risk scenarios with the other COBIT tools, such as leveraging
COBIT enablers, represents a powerful toolbox.

28 Exploring Architecture Frameworks and Methodologies

COBIT wrap-up
As a software architect, you might be confronted with highly sensitive applications and
systems. You could use risk scenarios since they are straightforward and nice to formally
describe and respond to risk. We have not seen the other COBIT tools, but feel free to
explore these further on our own. Now that I have briefly introduced COBIT, let's look
at NIST.

NIST
NIST is a well-known United States (US) framework (https://www.nist.gov/)
that you can leverage for any technology-related topic. It ships with a cybersecurity-
specific framework—namely, NIST Cyber Security Framework (NIST CSF) (https://
www.nist.gov/cyberframework). NIST CSF covers all the duties I introduced
earlier when describing the CISSP certification. As with COBIT for Risk, NIST CSF also
handles risk management, but both frameworks can be used together. We will not look at
NIST any further, but I wanted to make sure you keep it on your radar because the NIST
organization publishes articles, reference architectures, and so on that might be useful for
a software architect. I personally used such publications for cloud-related topics in the
context of a cloud strategy exercise. To complete our framework journey, let's look at the
indestructible ITIL framework.

ITIL in a nutshell
ITIL is a United Kingdom (UK)-born framework. Back in the 1980s, the UK
administration realized that its internal IT service management was rather chaotic. They
decided to clean the house and build a framework that would assemble best practices
from all over the place when it came to service management. Since then, ITIL, currently at
version 4 (v4), is a world-leading IT service management framework. Infrastructure and
operations teams around the world use ITIL, consciously or unconsciously.

ITIL primarily focuses on internal customers. For example, when you, as an employee
or collaborator, request a corporate laptop to work with or when you need to access a
certain system, you resort to ITSM. ITSM encompasses the organizational capabilities that
deliver value to a customer (internal, in this case). The infrastructure department and the
service-desk function are the back offices of a company. They keep the lights on and make
sure everyone has the necessary tools and access to work. This is often thankless work but
is necessary for a company to operate.

In 2018, ITIL v4 superseded the long-lived ITIL v3, which many organizations are
still using today. ITIL v4 has changed a few concepts and extended the ITIL practices
beyond ITSM capabilities. However, typical capabilities (request management, problem
management, incident management, and so on) that all organizations need are still in scope.

https://www.nist.gov/cyberframework
https://www.nist.gov/cyberframework

Summary 29

As a software architect, you are more likely to contribute to application development
to respond to functional requirements (FRs). You should also be partially involved in
NFRs (the subject of our next chapter), which include typical topics such as scalability,
high availability (HA), and so on. Many NFRs are not only code-related but also
infrastructure-related, so you will need to collaborate with infrastructure architects.
You might have experienced some mindset clashes and siloes between development
and infrastructure teams. This is partly due to the way these teams are organized. Most
development teams have adopted agile for a long time already, while infrastructure teams
remain organized around ITIL. In ITIL, nothing is improvised; everything is thought
through upfront and follows a clear life cycle and clear processes.

As a software architect, you should grasp the essential parts of ITIL to better interact with
infrastructure architects. ITIL makes you understand that infrastructure teams deliver
transversal services (mail, document management, network, corporate devices, and so on)
that are scoped to the level of the organization, while most applications have a narrower
scope. The scale of magnitude of these services partially explains why they rely on robust
service management principles because they simply cannot afford an outage. In essence,
ITIL is about service design and service operations. ITIL is about measuring and managing
your IT services.

ITIL remains a fundamental pillar of the IT landscape, but DevOps and DevSecOps try
to claim some space to make collaboration and toolchains more efficient across teams.
ITIL promotes customer satisfaction, but real-world implementations are (too) often very
IT-centric, while agile is more business-centric. The goal of DevOps and DevSecOps is
to bridge these views, both of which are necessary.

Summary
In this chapter, we browsed through some of the most widespread frameworks in the
IT industry. You learned that TOGAF and ArchiMate are the languages of enterprise
architects. As a software architect, you might be brought in to draw architectural patterns
and some EA building blocks. We then reviewed NIST and COBIT for Risk, which
come in handy to drive a security practice. We finally explored ITIL, the de facto ITSM
framework used by most organizations. By understanding the essential parts of these
frameworks, you should be able to optimize your interactions with other stakeholders.
These extra skills might become a differentiation factor between you and an average
software architect. Of course, I encourage you to explore some of the frameworks further,
as these were only introduced in this chapter.

In the next chapter, I will introduce a software architecture methodology that I have been
using at different places and that you will undoubtedly encounter sooner or later.

3
Understanding
ATAM and the

Software Quality
Attributes

This chapter will provide you with an overview of the Architecture Tradeoff Analysis
Method (ATAM), which is a widely adopted architectural analysis method used in
organizations. As explained in the introductory chapter, software architecture practice
may vary from one corporation to another or from one industry to another, but you
should encounter ATAM on your way sooner or later. In this chapter, we want to make
you understand ATAM's essentials.

We will more specifically cover the following topics in this chapter:

• Introducing ATAM

• Understanding sensitivity points, trade-off points, risks, and non-risks

• Exploring quality attributes

32 Understanding ATAM and the Software Quality Attributes

• Getting started with quality-attribute scenarios

• Practical use case

• ATAM and agile at scale

Introducing ATAM
Design choices are all about trade-offs. In many enterprises and for many projects, we
usually aim to design and develop top-notch software but may end up with unexpected
outcomes. These deviations from initial expectations could be due to shortcuts we were
forced to take, budget restrictions, a permanent scope change, a lack of proper analysis,
a lack of a well-thought-through architecture, and so on. All these reasons may lead to
some design choices that in turn lead to trade-offs. Without a formal way of identifying
these trade-offs, organizations lack the ability to make informed decisions or even to
conduct root cause analysis (RCA) when problems occur in production.

An example of a shortcut could be that there is no budget left to fine-tune some security
aspects, but in omitting this, you will potentially increase your exposure to malicious
users. For an asset that deals with public data, this would be less risky than for an asset
dealing with personally identifiable information (PII) data. Similarly, if the number-one
requirement of a system is to be portable, you would likely envision a containerization
platform instead of writing a plain .NET application leveraging Windows-specific features.

As you can see, it's all about exercising good judgment over a specific context, and in
essence, that is what ATAM is all about. ATAM helps software architects assess both
some generic and specific concerns by assessing design choices against software quality
attributes to meet some quality goals.

This may sound obvious, but quality, often defined as a combination of fit for purpose and
fit for use, is sometimes an absolute requirement for software to function correctly or to
adhere to high industry standards. While a slow report may irritate an end user, in a true
real-time system, not being able to handle an event within 3 milliseconds would just not
be acceptable.

Let's come back to the fit-for-use and fit-for-purpose notions. Fit for purpose means that
what was developed corresponds to the functional requirements, while fit for use means
that what was developed works reliably. A typical example to illustrate these notions is
given here: What do you expect from a washing machine? You expect it to clean your
clothes and to function reliably. Indeed, a machine that would clean optimally but would
encounter breakdowns every 2 weeks would be disappointing. That is why quality is the
combination of these two notions.

Understanding sensitivity points, trade-off points, risks, and non-risks 33

The beauty of ATAM is that it forces you to think about fit for use and fit for purpose,
which influences the resulting quality of a product.

ATAM will help you define your quality goals and make design decisions accordingly.
It makes it possible to detect whether a quality attribute of interest is affected by one or
more design decisions, enabling you to set priorities and focus on the most important
factors that will be key to the success of the product you are building. ATAM should
ideally be performed prior to the actual implementation, but you can also use it in
brownfield scenarios to assess the adequacy of an as-is architecture. ATAM should be used
as an inspirational source and in a pragmatic way. You do not need to apply it by the book.

Let's now explain the heart of ATAM.

Understanding sensitivity points, trade-off
points, risks, and non-risks
As stated in the previous section, making a design choice often has a positive or negative
impact on one or more quality attributes. The two most important concepts to grasp are
sensitivity points and trade-off points, and, to a lesser extent, risks and non-risks. Let's
have a quick definition of these before going into more elaborate scenarios, as follows:

• Sensitivity points represent architectural choices that can importantly impact
a single quality attribute—for example, maintenance activities could impact the
availability of a quality attribute.

• Trade-off points are architectural decisions that may impact at least two sensitivity
points, hence the trade-off, meaning that you might be obliged to sacrifice one
quality attribute in favor of another one. For example, doing client-side encryption
will impact security in a positive way but performance in a negative way. You may
opt for better security but inferior performance.

• Risks are the consequences of some architectural decisions. You and the business
might accept a certain level of residual risk—for example, you may decide to host
your asset in a single data center. The residual risk is that you may experience an
entire outage, should the data center suffer from a major disaster.

• Non-risks are opportunities brought by good architectural decisions—for example,
using a certain technology may bring you additional security features out of the box.

34 Understanding ATAM and the Software Quality Attributes

Sensitivity points and trade-off points tell software architects where to focus their
attention. They help identify what is important to achieve quality goals. Remember
that these goals should be derived from business goals. Here are a few examples of
sensitivity points:

• Scalability: The level of parallelism might be sensitive to the number of queues
and/or partitions defined in the message broker.

• Performance: Latency might be sensitive to the application protocol we choose
(for example, HyperText Transfer Protocol 1 (HTTP/1) or HTTP/2).

• Security: The risk of data leakage might be sensitive to the level of encryption
applied to data at rest.

It is good to use the might be sensitive or is sensitive phrase construct when
expressing sensitivity points, to emphasize the relationship between the
consequence and the cause. Once defined, sensitivity points act as a baseline of
factors that could impact the resulting quality. So, for instance, when taking the
second item in the preceding list, there is a world of difference when working with
HTTP/1 or HTTP/2 in terms of latency (better performance). However, although
latency is primarily concerned by the protocol in use, other items, such as load
balancing, could also be affected. Let's add an extra sensitivity point to illustrate
our purpose, as follows:

• Availability: Backends might be sensitive to the application protocol we choose
(for example, HTTP/1 or HTTP/2).

With the preceding sensitivity point added, we have two different quality attributes
(performance and availability) that could be significantly impacted by the choice of
protocol we make. That is a trade-off point because opting for HTTP/2 has a positive
impact on performance (improved latency) but a potentially negative one on availability.
The rationale behind this is that most load balancers are still layer-4 (Transmission
Control Protocol/Internet Protocol (TCP/IP)) and do not understand layer-7
(in our case, HTTP/1 or HTTP/2), meaning that they will fail to properly load-balance
HTTP/2 (used under the hood by the popular Google remote procedure call (gRPC))
because existing clients will keep sending their requests to the same backend, irrespective
of whether that backend is healthy or on the verge of becoming unhealthy.

So, to make a proper design decision in this case, we would need to also consider our
load balancers and make sure they are compatible with such a decision. If they are not,
we might reconsider the protocol we want to use. If we keep using HTTP/2 despite our
old-school load balancers, we end up with a risk. ATAM defines risks as potentially
problematic design decisions or decisions that have not been made yet. On the contrary,
a non-risk is based on some assumptions.

Exploring quality attributes 35

For example, on the same topic, an example of a non-risk would be this: Assuming a
concurrent user base of 10 users per minute, our backend systems should still be able to
deal with the load, despite our layer-4 load balancers' lack of proper understanding of
layer-7 protocols. This non-risk is, therefore, valid while the assumption remains valid.
Should the expected user base grow significantly, this non-risk will not be valid anymore
or must be revalidated.

Another possible non-risk could be implied by some architectural styles; for instance, the
system will always talk to the most responsive backend service because our service mesh
technologies are layer-4 and layer-7 aware, under normal or high load.

If you have understood this section, then you have understood the essence of ATAM.
It is a method that enables you to identify the key quality goals and success factors of
well-crafted software architecture that is fit for purpose and fit for use. Let's now explore
the quality attributes.

Exploring quality attributes
When building an application or a system, you are always confronted with both
functional requirements (FRs) and non-functional requirements (NFRs). FRs are
emitted by business users and business analysts, and they describe the features that must
be developed or made available. NFRs are most of the time expected, but not directly
expressed by the business. Indeed, every user wants to have a performant, reliable, and
always available application. Similarly, every user assumes that the application/system is
safe and respects their privacy, but all of this comes at a price, and the extent to which you
want to respond to these NFRs will impact the cost and time dimensions. The systems you
integrate with, the hosting platform you choose to host the asset, and many other factors
could make it hard to achieve the NFRs.

The purpose of quality attributes is to express the NFRs and define expectations
accordingly. The list of software quality attributes is broad; on its https://
en.wikipedia.org/wiki/List_of_system_quality_attributes web page,
Wikipedia regroups about 80 attributes. It is, therefore, crucial to refine them and pick the
ones that make the most sense to you and your specific business scenario or industry.

Indeed, in some industries, you might have some common ground across assets from
which you can extract a quality attribute baseline. In any case, whether you have
a baseline or not, a good starting point is to request the service-level agreement (SLA)
expected by the business. In large organizations, such SLAs are mainstream, even for
internal customers.

https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/List_of_system_quality_attributes

36 Understanding ATAM and the Software Quality Attributes

As part of the SLA, there is usually the notion of a Recovery Time Objective (RTO) and
a Recovery Point Objective (RPO). In a nutshell, these two objectives say a lot about the
expected availability and level of resilience. With an RTO of 2 business days, we clearly
understand that the business is not too concerned by a system outage. Conversely,
an RTO of 30 minutes directly sets a high priority to the availability quality attribute.
The same applies to RPO, where the business could afford to lose some data—
for example, when data is being replicated from a master system. With low RPO
requirements, you already know that you don't especially need to invest in an always-on
Structured Query Language (SQL) cluster or in a data service that offers point-in-time
restore (PITR) capabilities. RTO and RPO are very structured questions.

On top of RTO, RPO, and an SLA, you should also try to anticipate business growth, time
to market (TTM), the total cost of ownership (TCO), and so on to refine and prioritize
the quality attributes for your product. Note that cost concerns are not a part of ATAM,
but we all know that budget is key in every project.

Over the 80 identified quality attributes on Wikipedia, the following are very
commonly seen:

• Usability: You can see usability as a way to evaluate whether the application/system
is fit for purpose. This is one of the rare quality attributes that focus on functionality.

• Availability and reliability: Both attributes are somewhat related. The availability
of a system is expressed in the number of nines—for example, the highest SLA for
availability is 99.999, meaning that the system is available 99.999% of the time. No
one is foolish enough to commit to 100% availability. Most of the time, having 99%
or 99.9% availability is already very good. That said, 99.9% availability means that
you can afford downtime of about 8 hours 45 minutes per year, but it does not mean
that you can be out for 8 hours 45 minutes in a row. That is where the RTO comes
into play. Reliability reflects the capacity of a system to operate as defined. You
should not observe different behaviors when performing the same action. A lack
of availability has an intense impact on reliability.

• Responsiveness: This attribute relates to performance. A pragmatic way to evaluate
the responsiveness of a system is to measure its latency.

• Maintainability: This attribute reflects the capacity of a system to absorb bug fixes
as well as change requests.

Getting started with quality-attribute scenarios 37

• Scalability: This attribute reflects the capacity of the system to handle extra load. Note
that in most modern applications and systems, they are often expected to have at least
an on-demand scaling rather than a pre-scale up/out. Scaling out means adding extra
instances of a service/component, while scaling up means allocating more memory
and central processing unit (CPU) power to each instance. In serverless architectures,
you would even refer to elasticity, which means that the system dynamically scales
out/in automatically, so as to pay for the exact resource consumption and without
having to even worry about it (except for the cost, of course).

• Testability and deployability: Nowadays, many enterprises have adopted, or are
on the verge of adopting, agile methodologies (agile at scale). This change in the
way projects are conducted has an impact on the pace at which new features are
developed and released to production. Because of this, it is usually required to
have solid foundations (continuous integration/continuous delivery) (CI/CD)
platforms) that make this possible. The higher the number of releases, the more tests
must be performed. Thus, the testability of the system becomes very important too.

• Portability: This attribute requires that the system should be able to work in
different environments.

• Security: This attribute is not part of Wikipedia's list but is definitely important,
especially in our hyper-connected world and the ever-expanding cloud footprint
encountered in many enterprises. The purpose of the security attribute is to
make sure the system is not vulnerable to both internal and external malicious
or accidental actions.

ATAM is not prescriptive in terms of which quality attributes you should or should not
use. The chosen quality attributes will vary according to your use case and your priorities.
Let's now explore quality-attribute scenarios.

Getting started with quality-attribute
scenarios
Once you have identified a list of quality attributes applicable to your system, you
are ready to define quality-attribute scenarios. The purpose of these scenarios is to
connect the dots between the events, their outcome, and the expected answer from
the architecture. ATAM describes the following three types of scenarios:

• Use case

• Growth

• Exploratory scenarios

38 Understanding ATAM and the Software Quality Attributes

Most of the time, only use case scenarios are considered. They intend to describe possible
use cases and the expected response from the architecture. Growth and exploratory
scenarios aim to anticipate what could come next. The selection of the appropriate
scenario should be done in agreement with the relevant stakeholders, including product
owners and project managers. While ATAM provides tools such as utility trees to
translate business goals into quality attributes, the reality shows that we often end up with
an Excel sheet (or Word document) regrouping all scenarios and discussed mostly within
an architecture. Nevertheless, we will see an example of a utility tree in our next section.

Practical use case
In this section, we will go through a very simplified use case for the sake of brevity. Here is
the business scenario:

Contoso needs to provide a data upload channel for its customers. Uploaded
data files may contain errors and must go through a data-cleansing and

data-wrangling phase. If errors cannot be automatically fixed, an error file
should be returned to the sender through a callback notification. After this
first data-check and transformation phase, the resulting validated data is
routed to the relevant systems for further handling. In addition, customers
require that data can only be processed in Europe for sovereignty reasons,

and they are used to File Transfer Protocol (FTP) systems.

The upload channel should always be available, while the actual handling
of the data might be deferred in case of a system outage. It is expected by

Contoso's customers to be notified back within 24 hours. The total volume
of data uploaded by customers is about 1 terabyte (TB) per month and,
during peak times, up to 250 customers may upload data at the same

time. For regulatory reasons, the retention time of original files sent by the
customers is 5 years.

From this simplified use case, the business has already provided a few important things,
outlined as follows:

• The upload channel should always be available.

• Up to 250 customers may upload data at the same time.

• Data should be ingested and processed in Europe. It should also be stored
for 5 years.

• The end-to-end (E2E) file treatment time should not exceed 24 hours.

Let's now derive a utility tree out of our findings.

Practical use case 39

Utility trees
For the sake of brevity, we will skip the typical quality attributes, such as usability,
deployability, and maintainability, that would normally be part of the exercise, whether
explicitly expressed or not by the business.

Let's focus on what was explicitly expressed, and craft the following utility tree:

Figure 3.1 – Utility tree

Figure 3.1 represents a simplified view of what we could capture out of our business
scenario. Each leaf of the tree represents an architecture significant requirement
(ASR). We decided to focus on availability, scalability, performance, and interoperability.
Regarding availability, we focused on both the upload channel and the data services.
As you can see, the upload channel is marked with a (H/H) annotation, where H stands
for High; possible values are Low, Medium, and High. This quantification represents the
impact on the business (left side) and on the architecture (right side).

This concretely means that this requirement is highly important for the business and
is considered high-risk for the architecture. To put this differently, this will not be our
low-hanging fruit and we will have to pay close attention because it will not be easy
to achieve.

40 Understanding ATAM and the Software Quality Attributes

Conversely, we find the E2E file-handling underperformance and we consider it low-risk.
We also retained scalability because we already know that the system will be confined to
peak times. Performance is a part of the mix because we have a time expectation from
the customer. Finally, interoperability highlights the fact that all the components must
be located in Europe. In normal circumstances, the utility tree would be much richer
than what is illustrated in Figure 3.1.

Nevertheless, following the utility-tree generation, we identified a few quality attributes
as being the main business drivers for our architecture—namely, availability, scalability,
interoperability, usability, and (to a lower extent) performance. What is key to remember
is that all stakeholders should share a common understanding of the quality attributes
that were chosen. For example, some stakeholders might be tempted to categorize data
sovereignty somewhere under security and that's all fine, as long as everybody is on the
same page.

In other words, the following conclusions can already be made:

• The system is at least partially working if the upload channel is available.

• The system is partially working if the upload channel is available and the data
services are down.

• The system is fully working if both the upload and data services are available.

• The system is performing correctly if the data sender receives an answer within
24 hours.

• The hosting platforms for our components must be located in Europe.

• Most customers traditionally send files through FTP.

The interesting piece in the preceding observations is that we have identified our
mission-critical service: the upload channel. It is always important to identify such
services because we cannot reasonably think that we will be offering 99.999% for every
service/component of a solution. Aiming at such availability would undoubtedly cost
a fortune, which most projects cannot afford; although cost per se is not considered by
ATAM, we all know that in the real world, it is a very important factor. Now we have
our main drivers, let's try to identify some scenarios.

Practical use case 41

Quality-attribute scenarios
In some organizations, you might see that some architectural approaches are already
on the table before the scenarios are known. While it is, of course, possible to identify
scenarios later, this might result in biased scenarios. It is up to you to decide in which
order you want to roll that sequence out, but going for the first run of scenarios is
probably a better approach.

A quality-attribute scenario has the following properties:

• A description

• A quality attribute

• An environment that represents the context

• A source of stimulus, which is the trigger for an event (stimulus)

• A stimulus, which is the event itself

• An artifact, which is the concerned component

• A response, which is the expected system behavior

• A response measure, which is the measured behavior

You are likely to see the source of stimulus and the stimulus consolidated, as well as a
response and response measures. The environment is also often skipped. The reason for
this is sometimes a lack of time. Most quality scenarios are depicted in Excel sheets or
Word documents. Sometimes, you may even end up with the following structure:

• A description

• A quality attribute

• Sensitivity points and trade-off points

• An architectural approach

• Risks and non-risks

The preceding structure combines both the questions, sensitivity points, and trade-off
points, as well as potential solutions/mitigations in one shot. This could be perceived as
some sort of ATAM express. Remember that what is important is to identify sensitivity
points, trade-off points, and risks.

42 Understanding ATAM and the Software Quality Attributes

Let's go through some quality-attribute scenarios for our use case. We will infer them
from our utility tree created in the previous section, but for the sake of brevity, we will
limit ourselves to six scenarios, as follows:

Table 3.1 – First scenario

Table 3.2 – Second scenario

Table 3.3 – Third scenario

Practical use case 43

Table 3.4 – Fourth scenario

Table 3.5 – Fifth scenario

Table 3.6 – Sixth scenario

44 Understanding ATAM and the Software Quality Attributes

Many other scenarios could be crafted, but the preceding six scenarios are among the
most relevant. We skipped the performance aspect since there is no real hard constraint
on that one, and we left out security.

Identified sensitivity points
Out of the scenarios listed in the previous section, we can infer a few sensitivity points,
as follows:

• SP1: The availability of the upload channel is sensitive to the amount and duration
of operational maintenance.

• SP2: The availability of the upload channel is extremely sensitive to the level
of redundancy.

• SP3: The scalability and, especially, the maximum ingress throughput is sensitive to
the number of concurrent upload channels.

• SP4: The usability is sensitive to the upload method.

• SP5: The interoperability is sensitive to the hosting platform location.

Now we have our list of scenarios and a few sensitivity points, let's try to respond with
some architectural approaches and evaluate their impact. We should see trade-off points
emerging after a first analysis of the proposed architectures.

Architectural approaches
Before diving into different approaches, let's look at the following simplified diagram
showing the different components and the flow:

Figure 3.2 – Our simplified component diagram

From left to right, the client system sends data files to the upload channel. Files are picked
up by our data services for data cleansing and data wrangling. The resulting data is routed
to different systems according to the nature of the input data. Note that we completely left
out the integration with the other systems, which, in reality, would certainly have a big
impact on the architecture. Let's focus on the data ingestion and data handling aspects.

Practical use case 45

Approach A – On-premises infrastructure
Contoso already has some on-premises SFTP servers that could be used to ingest the
customer data. Contoso is a US-based company and has one data center in Europe. The
Contoso team brainstorms and comes back with the following proposal:

Figure 3.3 – High-level architecture proposal: first option

On top of having SFTP capacity, they also have on-premises Databricks clusters that could
handle the data-cleansing and data-wrangling operations. Reviewing the quality-attribute
scenarios, they realize a few potential impacts over the previously identified sensitivity
points, as follows:

• SP1: The maintenance window to patch the SFTP servers is very short, and it will
be challenging for Contoso to find a path and operate this potentially large number
of servers.

• SP2: Because Contoso has only one data center in Europe, they are not able to
mitigate a disaster recovery (DR) should a major data center incident occur.
Availability is therefore at risk because there will be no redundancy in another
data center.

• SP3: They still need to do their math, but they find it challenging to be able to
accommodate an ingress of 5 MB/second and 50 MB/second during peak times. On
top of this, they realized that 1 TB per month over 5 years (retention) means 60 TB
of storage. They have to double-check with the storage team, but it sounds huge at
first sight.

A trade-off point (TP1) is identified: they could achieve SP1 and SP2 if they could also
rely on their US data center. Unfortunately, this has a negative impact on SP5.

After having checked with their legal department, it appears clear that SP5 is an absolute
requirement, so TP1 is not allowed. Thus, they came up with approach B.

46 Understanding ATAM and the Software Quality Attributes

Approach B – Cloud-based architecture
Because Contoso's capacity with only one data center in Europe is compromised,
they started to envision a cloud-based (Azure) architecture and came up with the
following proposal:

Figure 3.4 – High-level architecture proposal: second option

This time, they leverage two different data centers in Europe. They realize that this proposal
is in line with most sensitivity points. While reviewing, they realized the following:

• SP1: Using fully managed storage accounts is a non-risk because the maintenance
is completely transparent and performed by the cloud provider. Moreover, thanks
to the activation of read-access geo-redundant storage (RA-GRS), the data is
replicated to the secondary region and a failover could be initiated should a regional
outage (a rare event) occur. However, RA-GRS-enabled accounts still offer an
availability of 99.99%, not 99.999% as expected, so we have a risk here.

• SP2: A storage account would represent a single upload channel with high support
of concurrent uploads. The redundancy is baked into the service.

Practical use case 47

• SP3: Documentation reports that a single storage account may handle a throughput
of 10 gigabytes per second (GBps), meaning about 1.25 GB/second largely above
the required throughput.

• SP5: They are in line with the obligation to process everything within the European
Union (EU) boundaries.

Although the solution seems more appropriate, they identified a trade-off point (TP1):
while the upload channel approach has a positive impact over several sensitivity points,
it has a negative impact on the usability quality attribute (SP4) because customers
traditionally use SFTP or FTPS to transfer files.

So, here again, we end up with a trade-off. In reality, you are likely to end up with several
trade-off points and residual risks.

Let's now wrap up the use case.

Use case wrap-up
We have to wrap up our use case here, but as you can imagine, similar yet different
approaches should go through an analysis, and once all the trade-off points are identified
and evaluated, the best approach should be chosen. Possible alternative approaches could
have been these:

• A combination of a cloud-based data center and an on-premises data center

• An active-active cloud-based setup with different storage accounts and different
Databricks clusters

• Launching a request for proposal (RFP) to let suppliers submit proposals

We hope that you understood the different mechanisms consisting of analyzing the
business requirements, identifying some quality goals, writing business scenarios, and
extracting sensitivity points, trade-off points, risks, and non-risks. The objective is to
iterate a few times and review multiple options before choosing the target solution. You
are likely to end up with residual risks that should be reported to the business.

We have not focused on code-related NFRs such as maintainability, readability, and
upgradability because most critical NFRs lie within infrastructure and security and because
we will focus only on the code in Chapter 5, Design Patterns and Clean Architecture.

Let's now see how to deal with ATAM in an agile-driven organization.

48 Understanding ATAM and the Software Quality Attributes

ATAM and agile at scale
As stated earlier, many corporations tend to adopt agile methodologies as part of
their digital transformation journey. You may wonder if ATAM is adequate in agile
organizations. This question deserves to be asked and probably has no definitive answer.

However, let me try to share my opinion about this. Agile methodologies, in general, aim
to deliver incremental business value in a timely and cost-efficient fashion. The important
keyword here is incremental. Agile embraces the concept of a minimum viable product
(MVP), which, in a nutshell, is a production-grade application with a minimal number
of functionalities that are enough to be considered viable by the business to attract early
adopters and launch a product on the market before the competitors. This definition of
an MVP clearly targets functional features, not really NFRs. While this incremental way
of working is perfectly possible with features that are yet to be developed, it is hardly
applicable to NFRs such as the overall security of a system.

For example, encryption in transit is enabled or is not; data at rest is encrypted or is not. It
is hard to find something in the middle that would be considered minimal and acceptable.
Security aside, a way out is probably to also apply the MVP concept to the RTO and RPO
depicted before. If you manage to lower your expectations, then you can already use
ATAM in parallel to craft a more future-proof architecture, to meet the requirements of
the full-blown product. That said, agile methodologies often have a very positive impact
on code-related quality attributes, such as maintainability, testability, and deployability,
because they often rely on strong CI/CD platforms where code scanning and automated
testing are first-class citizens.

It is, however, your responsibility as a software architect to tell the business that they will
most likely not benefit from a highly resilient architecture at the stage of the MVP. In other
words, the target architecture will unlikely be available as of day 1 in a fully agile-driven
project/program. You should also aim to increment the maturity level of the architecture.

Summary
After reading this chapter, you should have grasped the essentials of ATAM and its main
purpose: discovering sensitivity points, trade-off points, risks, and impactful quality
attributes to help you make informed decisions. I strongly encourage you to have a
pragmatic (not dogmatic) approach to ATAM because not every asset requires the same
level of attention. However, in mission-critical projects, ATAM proves to be efficient and
can be credited with raising the right questions at the right time. Flaws resulting from
incorrect architectural decisions are very hard to fix and adjust at a later stage. Note
that I refer to flaws, not to maturity levels. You can work in an incremental way but you
should make sure not to end up with true design flaws in your architecture. ATAM should
safeguard you against such adverse situations. In our next chapter, we will review the
different architectural styles, from decades ago up to today.

Section 3:
Software Design

Patterns and
Architecture Models

In this section, we will revisit monoliths, service-oriented architecture, and microservices.
I will shed some light on the benefits and drawbacks of each architectural style. You will
learn why there is a natural evolution toward microservices, but also why you should not
bury monoliths too quickly. Although design patterns are not new, a book on software
architecture cannot do without them, so I will cover what I think are the most important
patterns to master as a software architect.

This section comprises the following chapters:

• Chapter 4, Reviewing the Historical Architectural Styles

• Chapter 5, Design Patterns and Clean Architecture

4
Reviewing

the Historical
Architecture Styles

In this chapter, we will review some of the existing architecture styles. I decided to focus
on only a few, in chronological order, from monoliths to microservices, but the list of
architecture styles does not stop there. There are many more styles and patterns, but
the ones I chose represent both legacy and modern systems, which you will definitely
encounter in your software architect career.

Here are the topics we are going to focus on:

• Introducing architecture styles

• Starting with monoliths

• Continuing with service-oriented architecture (SOA)

• Finishing with microservices

By the end of this chapter, you should be able to understand the benefits and drawbacks
of monoliths, SOA, and microservices. You should be familiar enough to recognize the
style of the architecture you are confronted with and apply the skills you've gained in
your own context.

52 Reviewing the Historical Architecture Styles

Introducing architecture styles
Architecture styles are high-level design choices that influence the way applications
are designed, built, and hosted. Making such a choice forces you to obey the standard
practices that ship with the style in question. Some architecture styles act at a higher
level than others.

For example, the three-tier architecture is based on three different layers – presentation,
business, and data – all of which are physically separated. In a three-tier architecture,
the presentation layer cannot talk directly to the data layer. Network policies should be
enforced to prevent such occurrences. As you can see, this type of architecture has an
impact, not only on the hosting piece but also on the way you organize the development
of the different components. Conversely, the Model View Controller (MVC) pattern is
also based on three layers, but all the layers can be deployed to a single server. Here, the
physical split is not required. However, going for MVC will force you to split your code
accordingly, and it will probably push you to use one of the MVC frameworks.

In the same vein, the Event-Driven Architecture (EDA) and Publish/Subscribe models
will make you adhere to concepts that are specific to message-driven architectures, such
as the queue-based load leveling pattern, the claim check pattern, and the competing
consumer pattern, to name a few.

To connect the dots with ATAM, which we discussed in the previous chapter, some
architecture styles have a direct influence on quality attributes. They might come with
inherent risks and non-risks, which, in turn, may impact the quality attributes positively
or negatively. I will highlight this in the following sections, using words in italics.

To know whether a given architecture style makes sense in your own context, you must
understand the benefits and drawbacks of each. You must also evaluate the capabilities of
your organization (or customer) to adopt a certain style, as well as to see how disruptive
this style is toward the existing landscape.

The reason why I decided to focus on monoliths, SOA, and microservices is because these
styles are still alive today and you are very likely to stumble upon one of these in your
day-to-day software architecture practices. Another reason is that they are tightly linked
and reflect some sort of chronological evolution of the IT industry. We started, probably
unconsciously, with monoliths, then tried to fix monolith-related issues with SOA, to
ultimately fix SOA's issues with microservices. What is also remarkable is their related
scope. With monoliths, the application is king because you tend to ignore everything
that is around it. With SOA, the enterprise is king, and the application must comply with
what has been defined at the enterprise level. With microservices, we come back to the
application again but refine it as domains and sub-domains.

Starting with monoliths 53

As you will see in the upcoming sections, each architectural style has a series of
advantages and disadvantages. Each style will probably remain in the IT landscape for
quite a while, even the so-called monoliths, as we will see in the next section.

Starting with monoliths
I guess that you must already be familiar with monoliths, as it seems they have become the
pure evil ones. However, at the risk of shocking you, monoliths will probably be around
forever and have some interesting benefits. Before we look at their benefits and drawbacks,
let's see what a monolith looks like:

Figure 4.1 – Literal meaning of a monolith

54 Reviewing the Historical Architecture Styles

The preceding image shows what a monolith truly is. It is some sort of single-block-rock,
from which you cannot extract a single piece, at least not with your hand. It is something
that cannot be manipulated easily, something that will have a certain resistance to changes.
However, while it seems hard to manipulate the monolith shown in the preceding image,
it looks much easier to do with the ones shown in the following image:

Figure 4.2 – Small monoliths

Yes, you got it: with monoliths, size does matter! The problem with monoliths is when they
grow over time. When you start with a tiny application, it remains possible to adjust it in
a timely fashion, without taking on much risk. As time passes by, this little monolith tends
to grow and becomes the monolith shown in Figure 4.1, which is hardly manipulable.
So, how did you get there? Probably because you did not choose an appropriate architecture
style, or maybe because you did not follow some basic development principles, or maybe
because you did not consider the quality attributes we discussed in the previous chapter.

If you do not enforce layers in your software, or if your layers are tightly coupled with each
other, you will inevitably end up with a monolith. That being said, not every application
grows over time, and this is why going consciously for a monolith could still be acceptable
in some situations. For example, if you have a one-shot job-like program, you may decide
to develop it in a monolithic way. This is because you know it will not evolve over time
and because it might be the most straightforward way for you to develop it.

Starting with monoliths 55

At a micro level, from a single application perspective, a monolith somehow promotes
agility because it tends to ignore whatever exists in the enterprise landscape. A team
developing a monolith does not care at all about what is around; they just do what they
need. They do not hesitate to make point-to-point connections with other applications or
databases if needed, to achieve project-specific goals. This makes the team gain speed and
autonomy, with the risk of becoming the big monolith shown in Figure 5.1, should the
application grow over time.

At a macro level, multiplying smaller monoliths may result in an enterprise-level
monolith, which is way more problematic. If the whole enterprise landscape has become a
plate of spaghetti, no one will ever dare to change any of the micro applications anymore,
because of an increased risk of cascading side effects. So, as you have probably guessed
already, monoliths should be avoided as much as possible. Nevertheless, let's see what
benefits they offer.

Benefits of monoliths
It might be hard to believe but monoliths also have benefits. Here are a few of them:

• Developing a monolith is easy. You do not need to learn any software architecture
methodology. Their simplicity is probably why we have so many of them.

• They are simple to deploy. Since they are, most of the time, packaged as a single
package, redeploying the application is just about deploying a single package.

• They are simple to monitor. Again, monolithic applications are usually deployed on
a single machine with a database server next to it. In some cases, you might have
multiple frontend/application servers, but there are not too many places to look
when you're troubleshooting a problem.

The keyword is simplicity, at least as long as the application remains lightweight. Now, let's
look at some of the drawbacks.

Challenges of monoliths
Admittedly, monoliths have more drawbacks than advantages:

• Adding new features and fixing bugs becomes complicated. As stated in the
previous section, most of the monoliths are packaged as a single package. While this
can be considered an easy way to deploy the application, every single feature or bug
fix will cause you to redeploy the entire application, which will cause a temporary
(hopefully) outage and require many regression tests. This harms testability, and
ultimately the deployability quality attribute. Over time, the team will lack agility,
which impacts upgradability.

56 Reviewing the Historical Architecture Styles

• The code is often tightly coupled. Most of the big monoliths have intermingled
classes and subcomponents, which violate the single responsibility principle. This
harms the maintainability and readability quality attributes.

• Lack of granular scalability. Because the monolith is a single-block-rock, it must be
scaled up/out as one block, although not every part of the application will be used
with the same intensity. This causes a waste of infrastructure resources over time.

• Availability is at risk. Because the application is atomic, any problem in a specific
module could cause an outage of the entire application.

• Higher risk of technical debt. Because changes become problematic over time,
teams are hesitant to upgrade to the latest frameworks and technologies. This digs
the technical debt deeper and exposes the application to be out-of-support and to
security vulnerabilities. The consequence of using monoliths is that they typically
have a negative impact on supportability and security.

The preceding list is not exhaustive, but it gives you a good idea of the risks you take when
writing monoliths. However, as we mentioned previously, they could still be a perfect fit
for programs/applications that are not intended to grow. Now, let's see how SOA tries to
prevent enterprise-level monoliths.

Continuing with service-oriented architecture
(SOA)
SOA promotes reusability across the entire enterprise landscape by exposing business
capabilities in the form of services. SOA emerged in the last decade of the previous
century, with the aim of decoupling applications. Before SOA, it was very common to have
client applications directly connect to each other, or to a shared database with read/write
permissions. This led to big issues and to the formation of an enterprise-level monolith,
as described in the previous section, to the extent that changing anything could pose
problems to many applications, leading to a lack of agility and an ever-increasing amount
of time required to make small changes.

Continuing with service-oriented architecture (SOA) 57

The following diagram shows a typical SOA implementation:

Figure 4.3 – Typical SOA implementation

The component in the middle is the Enterprise Service Bus (ESB), which plays a
central role in SOA. The ESB interconnects different services. Although we can craft the
ESB component ourselves, many large enterprises rely on proprietary software such as
webMethods and Microsoft BizTalk. The ESB encompasses duties such as routing and
data transformation and holds some business logic. The following diagram is a zoomed-in
depiction of the ESB:

Figure 4.4 – Typical ESB duties

As you can see, an ESB deals with more than just web services. It is used to interconnect
every kind of component. The ESB is scaled for the enterprise, which is both a strength
and a weakness. Thanks to the ESB, you avoid a chaotic IT landscape with many
point-to-point connections, and you ensure proper governance when managing business
assets. On the other hand, because it is defined at the enterprise level, it lacks some agility.
In some organizations, the ESB itself has become a bottleneck.

58 Reviewing the Historical Architecture Styles

Something that eventually played against SOA is Simple Object Access Protocol (SOAP)
for its initial version, then simply SOAP, which was very dominant at the rise of SOA.
SOAP was used to exchange data in a structured way. It was supported by Extended
Markup Language (XML), and a web service contract was defined in the form of the
Web Services Description Language (WSDL). While SOAP was initially designed for
stateless services, it turned out to be used most of the time for stateful communications
when exchanging data. SOAP was also a rather heavy protocol. Its metadata envelopes were
consuming a lot of bandwidth, making it the de facto standard, as well as inappropriate in
some situations. Soon after SOAP came Representational State Transfer (REST), which
went back to the roots of HTTP, to alleviate most of SOAP's issues. However, REST was not
designed for SOA, although it is possible to combine RESTful services with legacy SOA.

REST became very popular, while, at the same time, web-based applications and
lightweight web APIs became mainstream and even dominant. This rising interest in
REST sounded the death knell for SOA. However, SOA is not totally dead yet because
companies have invested so much into it, which means it will remain in the air for a while.

Let's take a look at the advantages and disadvantages of SOA.

Benefits of SOA
SOA comes with the following benefits:

• Helps decouple applications and services, which allows for greater interoperability.

• Better governance around IT and business assets. Somehow, SOA aims to provide
a single source of truth.

• Promotes reusability across the enterprise.

• Helps identify enterprise-grade business assets.

• Technology agnostic, although the systematic use of a proprietary ESB still leads
to some vendor locking.

• Improved scalability since services are independent and can be scaled according
to their own needs.

The preceding list of benefits is not exhaustive, but it is essentially what you gain by
implementing SOA. Now, let's review some of the challenges of SOA.

Microservices 59

Challenges of SOA
The biggest challenges of SOA are as follows:

• Lack of agility. Because SOA tends to govern the enterprise landscape, and because
the ESB is used as its cornerstone, every team and project must integrate/comply
with the ESB.

• Increased complexity.

• Increased costs, especially to set up and configure the ESB.

• Availability could be at risk. The ESB is a single point of failure. Any outage of the
ESB cascades down to all the connected services and applications.

• SOA did not reinvent itself.

Note that these disadvantages are not especially inherent to SOA itself but to the way it is
often implemented. Most large enterprises have adopted a top-down SOA approach. Most
large enterprises have bought proprietary software from big vendors at a very high cost.
Because of this, SOA often leads to a one size fits all approach, which is never a good idea,
and kills agility. Another factor that plays against SOA is the rise of cloud platforms. SOA
is not incompatible with the cloud, but cloud and cloud-native platforms form a paradigm
shift, which strongly promotes agility, and that is not completely SOA-friendly. Now, let's
explore microservices.

Microservices
Microservices have become popular over the past few years, but it is still not so easy to
find a common definition of what they are. In my opinion, microservices can be seen as
SOA on steroids, scoped to a single application. Microservice architectures are entirely
based on services, but the biggest difference compared to SOA is their level of granularity,
their level of decomposition, and their scope. While SOA maximizes reusability across the
enterprise landscape, microservices focus on bounded contexts, which may vary from one
application to another.

60 Reviewing the Historical Architecture Styles

The following is a high-level diagram of what a microservice architecture looks like:

Figure 4.5 – Microservice architecture

Each outer circle in the preceding diagram represents an independent bounded context
formed by a microservice. Within a microservice, you may have one or more components
and a dedicated data store. Communication across microservices is done asynchronously
through the publish/subscribe mechanism. Each microservice potentially exposes a public
API to be consumed by clients or other services. Synchronous communication across
microservices is discouraged because it may lead to chatty systems, which are less scalable
and performant. Synchronous communication should only be used from client apps such
as a user interface or a mobile app, or from a backend for frontend (BFF) because they
are user-facing components that are based on a request/response model. Finally, gRPC
should be preferred for synchronous communication because it is more performant than
traditional REST over HTTP/1 communication. Note that REST over HTTP/2 is as fast as
gRPC but still less performant in terms of data serialization, which is based on protocol
buffers (https://developers.google.com/protocol-buffers).

Contrary to the preconceived idea, the size of individual services does not matter. They
tend to be small because they have a single responsibility, but a nano service could
perfectly violate the microservice principle, should it hold too many responsibilities
or deal with matters that belong to another domain.

https://developers.google.com/protocol-buffers

Microservices 61

The term bounded context comes from domain-driven design (DDD) and is an explicit
boundary of a microservice. This boundary is part of the application where every entity
and model is commonly understood by every team member and by the business. This
notion of a bounded context is, by the way, the reason why microservices are scoped to
a single application: because the same entity might be perceived differently according to
a specific application domain. For example, the notion of a customer varies according
to whether you are in a business to consumer (B2C), business to business (B2B), or
business to enterprise (B2E) context, and the same company might be active in all these
contexts at the same time. In my opinion, you can do DDD without microservices, but
you cannot do microservices without DDD. Doing microservices without DDD will lead
you to design a distributed monolith, which is already better than a monolith. Now, let's
see what the benefits and drawbacks of microservices are.

Benefits of microservices
Because a microservice should be seen as an independent unit of work, the following
benefits emerge:

• Greater deployability. One of the top benefits of using microservices is that you can
deploy them independently, which makes it easy to release them while minimizing
potential impacts on other services.

• Greater autonomy. Because microservices have their own databases and their
bounded contexts, they benefit from certain isolation. Services that offer an API
must remain backward compatible.

• Greater usability. When microservices are used together with DDD, the business
and the developers work hand in hand to define the domain and sub-domains of
the application. The resulting application is often fit for purpose.

• Greater resilience. Because business activities are scattered across services, an outage
of a given service should not hinder other services, or to a lesser extent.

• Greater scalability. Thanks to the granularity that's obtained in microservice
architectures, we can easily scale out/in services independently from each other,
which is cost-effective. You can consider microservice architectures as a non-risk
from a scalability perspective.

• Greater technology landscape. Microservices are polyglot, meaning that every
service may decide to use its own set of technologies and data stores. However,
I would advise you to keep this to a manageable level, from an enterprise viewpoint.
Microservices based on containers positively impact the portability quality attribute.

• Work can be distributed in a more granular way. Each microservice can have its
own team.

62 Reviewing the Historical Architecture Styles

While the list of benefits is great, microservices also come with numerous challenges.

Challenges of microservices
On the flip side, microservices come with some serious challenges:

• Identifying the appropriate bounded context is probably the most challenging part
of microservices. Having a context that's too small may result in anemic services
with no business value. Having a bounded context that's too broad may result in
encompassing too much business logic and too many concepts into a single context,
thereby increasing the risk of it becoming a monolith.

• Due to the distributed nature of microservices, a single transaction often involves
multiple services, leading to orchestrator-based or choreography-based sagas
(a sequence of actions), which increases complexity.

• Because microservices hold their own databases, you might have to react to data
events occurring in other bounded contexts in order to replicate what you are
interested in locally. This leads to eventual consistency, which means that the data
will only become consistent after a certain period. Eventually, consistency systems
are often built to optimize read operations at the cost of accuracy. This is not the
time to replicate some data changes from one bounded context to another since this
leads to an eventually consistent system. This may not be suitable in every situation.
For instance, if you want to know the balance of a bank account, you want to make
sure you get it right the first time. Conversely, the number of likes you received
for your last blog post does not matter too much, so you do not need to have the
absolute truth when you refresh your blog post page.

• Potential performance impacts due to distribution tax. While in the monolith world,
a single call is enough to do the entire job, in a microservices world, you often
end up with multiple calls, potentially leading to network exhaustion, or at least
deteriorated performance. Patterns such as the circuit breaker help prevent such
network saturation. The best is option, of course, to rely on asynchronous patterns
as much as possible.

• Loss of complete oversight. Due to the dilution of responsibilities and ownership,
it becomes harder to grasp which service does what as an application grows.

• Harder to monitor. Again, because services may use different technologies and data
stores, it is often more challenging to monitor them consistently and coherently.
Moreover, because different teams work on different services, they may lack a
common way of handling and logging exceptions.

Microservices 63

• Harder to secure. Again, this is mostly because different teams might use different
technologies, tools, and frameworks, which may ship with different types of
vulnerabilities. A good CI/CD factory helps alleviate some of these issues by
statically scanning your code, as well as the open source libraries you rely on.

• Integration in the existing landscape is made harder because most enterprises have
a broad set of legacy systems that cannot be migrated to microservices in the blink
of an eye. This may force microservice designers to build anti-corruption layers to
make their bounded context immune to what is happening in the legacy systems.

As you can see, microservices are complex and you should certainly not default to them.
You should resort to microservices for complex domains and fast-moving businesses. On
the other hand, should you build distributed monoliths instead of true microservices, the
resulting complexity will still be higher, but you will automatically gain agility, scalability,
and resilience. The bottom line is that a distributed monolith is more complex but still
better than a monolith in terms of non-functional requirements. You will maximize these
changes to have a system that is fit for use. Now, let's find out what hosting options we
have for microservices.

Hosting microservices
Microservices are cloud native par excellence. However, you can host a microservice
architecture on-premises because although it might sound contradictory, cloud native does
not require cloud infrastructure. We will come back to this in Chapter 6, Impact of the Cloud
on the Software Architecture Practice. Most true microservice architectures are hosted on
containerization platforms. This is not an absolute requirement but it will make your life
easier. Here are a few reasons why Kubernetes (K8s) is a good fit for microservices:

• Scalability: In K8s, every microservice corresponds to a deployment. Every
deployment can specify its own scaling needs out of the box.

• Resilience: As we mentioned previously, using microservices increases the
application's resilience because the failure of a single service should not affect all the
others. With K8s, you can leverage self-healing, meaning that K8s will try to restart
your failed containers.

• Deployability: Each microservice can be deployed independently using deployment
techniques such as canary, blue/green, rolling updates, and so on.

64 Reviewing the Historical Architecture Styles

• Availability: Because each microservice is separate from the others, we can easily
identify mission-critical services and work with the PodDisruptionBudget resource
type, which prevents unexpected outages, including during planned maintenance.

• Support for polyglot architecture: As we mentioned previously, microservices are
polyglot because different teams can work with different technologies, providing the
underlying hosting platform supports it. This is the case for container orchestrators.

To supplement K8s, you can also rely on service meshes such as Linkerd, Istio, and
Open Service Mesh as they improve global oversight, ship with smarter load balancers
(which are layer-7 protocol-aware), and come with mTLS, thus providing some sort of
consistency across the different microservices.

Microservices in action
If you want to see microservices in action, I recommend that you look at the open
source sample application at https://github.com/dotnet-architecture/
eShopOnContainers or its variant at https://github.com/dotnet-
architecture/eShopOnDapr, which simulates an online eShop. The second link
also introduces distributed application runtime (Dapr), which facilitates service
discovery and communication with underlying data stores. Dapr is vendor-neutral and
has connectors to dozens of systems. I am convinced that Dapr will be part of most
microservice architectures in the next 5 years, but of course, I do not have a crystal ball.

Now, let's summarize this chapter.

Summary
I hope that you feel more comfortable now that you know about the three architecture
styles we discussed in this chapter. As a software architect, you will often be able to choose
either monolith or microservices. You will unlikely be entitled to go for SOA on your
own because SOA is an enterprise-level effort, not a one man/woman show. However, you
should have understood by now that going for non-SOA in an SOA-driven enterprise will
be quite challenging.

Although architecture styles are high level, they have a significant impact, positive or
negative, on software quality attributes.

In the next chapter, we are going to consider lower-level design choices and dive deeper
into the code design patterns that are implemented by software developers.

https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnContainers
https://github.com/dotnet-architecture/eShopOnDapr
https://github.com/dotnet-architecture/eShopOnDapr

5
Design Patterns and

Clean Architecture
Although software architecture is not only about coding, a software architect is still
required to have a vast knowledge about development in general and about design
patterns in particular. In this chapter, we will explore some of the most frequent design
patterns. We will be looking closely at code-related concerns.

We will more specifically cover the following topics:

• Understanding design patterns and their purpose

• Reviewing the Gang of Four (GoF)

• Delving into the most recurrent patterns and applying them to a use-case scenario

• Looking at clean architecture

• My top 10 code smells

This chapter should help you grasp the most recurrent design patterns and how to make
use of them in your software architecture practice. These patterns must be well understood
because they impact quality attributes such as modifiability, extensibility, reliability,
maintainability, testability, scalability, and everything that relates to performance, as we
have seen in Chapter 3, Understanding ATAM and the Software Quality Attributes.

Let's now review the technical requirements.

66 Design Patterns and Clean Architecture

Technical requirements
To make some abstract concepts more concrete, some design patterns will be illustrated
with .NET code samples. If you want to test the code locally, you will need Visual Studio or
Visual Studio Code (VS Code). Both can be downloaded for free from Microsoft websites.

Note that the code is provided for illustration purposes only. All the code samples and
diagrams are available at https://github.com/PacktPublishing/Software-
Architecture-for-Humans.

Let's start with a definition and the rationale behind design patterns.

Understanding design patterns and their
purpose
A design pattern is an admitted best practice to tackle a common problem.
Many applications face the same challenges, as follows:

• They must be performant.

• They must be testable.

• They must be maintainable and should be able to grow over time.

• They must be portable to some extent.

• They must manage memory and the central processing unit (CPU) efficiently.

• They must be able to scale.

• They must support concurrency (thread safety).

The preceding list is only a subset of typical cross-cutting concerns. The purpose of a design
pattern is to find the best approach to handle a common problem, regardless of whichever
programming language is used.

Design patterns are inspirational and are not especially prescriptive about how the
detailed implementation should be done. Design patterns remain high-level, and they
aim to improve code quality as well as to ultimately adhere to the SOLID principles,
a widely adopted set of principles crafted by Robert C. Martin.

SOLID stands for the following terms:

• Single-responsibility principle (SRP): This principle aims to master the scope of
a given class and ensure a separation of concerns (SoC).

https://github.com/PacktPublishing/Software-Architecture-for-Humans
https://github.com/PacktPublishing/Software-Architecture-for-Humans

Understanding design patterns and their purpose 67

• Open-closed principle (OCP): The idea behind this principle is to promote code
extension while preventing changes to the current code. This can be achieved by
using a certain level of abstraction through interfaces and abstract classes.

• Liskov substitution principle (LSP): You can find plenty of definitions for this
principle. One of the best ways to grasp it is through the rectangle-and-square
example. As you know, in math, a square is also a rectangle. Let's say that we have
a Rectangle base class with two separate SetWidth and SetHeight methods.
Now, we implement a Square class that is a subclass of Rectangle, which seems
to be a good fit since a square is a rectangle. But because we know a square must
have an equal height and width, we override the base class methods to adjust the
height whenever the width is set and vice versa. Doing so, the following construct
will lead to an issue:

Rectangle rect = new Square();

rect.setWidth(10);

rect.setHeight(5);

Assert.Equal(50, CalculateArea(rect));

This is because when a square is passed, the resulting area will in this case be
25 instead of 50. In this case, we cannot substitute the rectangle with a square
anymore because the square is unable to behave as a rectangle. More generally,
the risk of breaking the LSP principle rises when the base and child classes have
contradicting constraints. In this case, it might be better to simply split Square and
Rectangle. The most recurrent, and often involuntary, observable manifestation
of a broken LSP is the famous not implemented exception, which de facto
prevents any substitution of the base class by a derived one.

• Interface segregation principle (ISP): The purpose of this principle is to control
the scope of an interface and make sure interface clients implement only what is
necessary for their needs. You should therefore try to maximize the granularity of
your interfaces.

• Dependency inversion principle (DIP): The purpose of DIP is to make sure classes
only depend on abstractions, not concrete classes. We will largely explore this
principle later in this chapter.

Note
Design patterns already existed long before the creation of SOLID. They were
therefore not created to adhere to SOLID, but because best practices are
baked into these patterns, using them increases the chances of being
SOLID-compliant by design.

68 Design Patterns and Clean Architecture

The role of a software architect is to evaluate which patterns make more sense for a given
situation. You should always try to keep the Architecture Tradeoff Analysis Method
(ATAM) sensitivity and trade-off points in mind when choosing and applying these
patterns in your development. You should not be dogmatic and blindly apply some
patterns just for the sake of it. Doing so is called cargo cult programming, which consists
of the ritual inclusion of patterns that serve no real purpose in the context of your asset.
This is often a sign of a misunderstanding of these patterns, or, at best, it reflects an
inadequate attitude.

A software architect is there to make sure every pattern is used in the interest of the asset
and serves a real purpose. Software architects should try, more than anyone else, to build
value for the business. One way to achieve this goal, in a timely and cost-efficient fashion,
is to rely on well-proven existing solutions/frameworks whenever applicable. Crafting
homemade frameworks and showing off how you can build complex things will make you
virtually irreplaceable but not necessarily a good software architect. This is often the sign
of an immature attitude. You must be in the skin of the business that pays for your work.

If you allow me a metaphor, you would not want to pay for a skyscraper if you initially asked
for a house, even if the skyscraper was built with state-of-the-art and top-notch features.
Similarly, you would not need the foundations of a skyscraper for a mere house. The message
I want to convey here is that you should favor efficiency over effectiveness. Killing a fly with
a hammer is effective but not efficient. This may sound obvious, but I have met countless
developers who were very proud of themselves because they had built something that others
did not understand well, and that is not a path you should take. Do not overengineer just for
the sake of being proud of yourself! Let's now review the famous GoF.

Reviewing the GoF
The GoF originated from the unforgettable book, Design Patterns: Elements of Reusable
Object-Oriented Software, published in 1994 and written by four authors— hence the
name. This book popularized the notion of design patterns and proposed 23 of them.
Many other patterns have been added since then. A good source to check most of the
available patterns is this Wikipedia page: https://en.wikipedia.org/wiki/
Software_design_pattern. Here, you can find the original patterns proposed by the
GoF as well as more recently added ones. The first thing to know as a software architect is
the different categories of design patterns, outlined as follows:

• Creational: Patterns in this category relate to the instantiation of objects. They
mostly impact performance and scalability. They help prevent the waste of
computing resources. Creational patterns, especially the dependency injection (DI)
pattern, also improve the testability and maintainability of your code.

https://en.wikipedia.org/wiki/Software_design_pattern
https://en.wikipedia.org/wiki/Software_design_pattern

Delving into the most recurrent patterns and applying them to a use-case scenario 69

• Structural: Patterns in this category mostly focus on the composition of objects and
classes. They mostly act upon the readability and maintainability of the code.

• Behavioral: The focus of behavioral design patterns is to handle the communication
across objects. These patterns rule how objects interact with each other. Behavioral
patterns have a strong impact on the modifiability of your code.

Note that I already made some links between the pattern categories and their impact on
some quality attributes important in ATAM. If I had to rank these categories by priority
during a code review or prior to developing anything, I would focus first on creational,
then on behavioral, and finally on structural patterns.

The rationale is that, even if you write poor code in terms of readability and maintainability,
this code might still do the expected job and be in line with non-functional requirements
(NFRs) such as scalability and performance. In such a situation, the business is happy
because the application is fit for purpose and fit for use. Conversely, if you write very nice
code but you overlooked the performance and scalability aspects, the application might
be fit for purpose but certainly not fit for use. Remember that the definition of quality is to
satisfy both notions. I strongly encourage you to think about that whenever you review or
are on the verge of designing a solution. Needless to say that a common objective among all
design patterns is, of course, to increase reusability and aim for loosely coupled objects.

On its page, Wikipedia also proposes other categories, but there is no consensus about
them. The preceding three categories are commonly adopted and understood. The
Wikipedia page also covers some architectural patterns, which we talked about in the
previous chapter. Let's now delve into the most recurrent patterns.

Delving into the most recurrent patterns and
applying them to a use-case scenario
Admittedly, I have not performed any scientific research to assess which patterns are
the most used ones. This is based on empirical observations in the field. In this section,
we will focus on the most frequently used patterns, whichever type of application is built.
In Chapter 6, Impact of the Cloud on the Software Architecture Practices, and Chapter 7,
Architectural Trends and Global Summary, we will review patterns that are inherent to
cloud-native and newer architectural trends, while the current section focuses on
more traditional patterns.

70 Design Patterns and Clean Architecture

The following diagram shows some of the patterns we are going to focus on:

Figure 5.1 – Design patterns we will focus on

In case you are wondering, the repository pattern has a dark background because its
exact positioning is subject to debate. There is no real consensus about which category
it belongs to. The pattern is itself often subject to controversy, but I will come back to
that later in this section. I will not touch all the details of every pattern but rather try
to highlight the essential parts and make sure you grasp what is key to remember.

Let's start with a pattern every software architect should undoubtedly know
about – namely, DI.

Understanding the DI pattern
The purpose of DI, part of the creational category, is to decouple classes by linking
through contracts, materialized by interfaces. Concrete classes implement the interfaces,
and a concrete implementation of a given interface will be injected into the client class
whenever that interface is encountered in the consumer class. There are multiple benefits
to this approach, as outlined here:

• Testability is improved because we can easily replace a concrete implementation
with a corresponding test class.

• The code is more maintainable because multiple concrete classes can implement
the same interface differently, which increases the field of possibilities.

Delving into the most recurrent patterns and applying them to a use-case scenario 71

The following diagram illustrates DI:

Figure 5.2 – DI diagram

Figure 5.2 shows that IEventPublisher is our contract—that is, our interface. Our
Client class consumes this interface. BrokerPublisher and EvGridPublisher
are both concrete implementations of IEventPublisher. The DI mechanism consists
of injecting a concrete implementation of a given contract to a consumer class. This allows
the consumer class to be unaware of the implementation details.

Figure 5.2 also shows that we could seamlessly inject BrokerPublisher or
EvGridPublisher to the consumer. The only certainty the consumer has is that the
injected concrete object (the dependency) implements the IEventPublisher contract.
This allows for greater flexibility and extensibility. In the preceding example, we could
extend our list of message publishers and have different implementations while not
impacting the consumer side. This technique also greatly improves testability because
we can easily inject a mocked object into a unit test. The injection can be achieved in the
following two ways:

• Direct: This type of injection is typically done from a unit test.

• Indirect: This type of injection is done using a DI container. The role of the DI
container is to resolve the concrete implementation of a given contract whenever an
instance of that contract is encountered by the consumer class. Outside unit tests,
this type of injection is the preferred way to go.

72 Design Patterns and Clean Architecture

Let's see some code samples that illustrate the two modes. They are written in .NET,
meaning that the specific implementation details may vary compared to another language.
Even if you do not know .NET, just try to grasp the underlying concepts.

DI code – indirect mode
Indirect injection is provided by a DI container. There are numerous container
frameworks available. By default, ASP.NET Core comes with its own default
implementation. ASP.NET Core's startup class, and—more specifically—the
ConfigureServices method, is where most of the DI plumbing happens.
Here is an extract of that class:

Figure 5.3 – ConfigureServices

We can clearly see that the IEventPublisher contract is mapped to a concrete
implementation represented by BrokerPublisher. In the case of ASP.NET Core, the
built-in DI container is in charge of injecting consumers with a concrete implementation of
the contract whenever an instance of a given contract is encountered. Here is our contract:

Figure 5.4 – IEventPublisher contract

Our BrokerPublisher class is shown here:

Figure 5.5 – BrokerPublisher class

Delving into the most recurrent patterns and applying them to a use-case scenario 73

We pretend to send a message to a bus in the actual implementation of the
SendMessage method, which is part of our contract. Similarly, another implementation
of IEventPublisher could be this:

Figure 5.6 – Another implementation of IEventPublisher

This time, we pretend to send a message to an event manager. The two implementations
show how flexible it is to work with interfaces. Now, in our application programming
interface (API) controller, we let the DI container inject the relevant mapped concrete
classes, as follows:

Figure 5.7 – DI container injecting classes

74 Design Patterns and Clean Architecture

The constructor gets an instance of IEventPublisher as an argument, which in this
case is replaced by an instance of BrokerPublisher, as defined in the startup class. It
is possible to have multiple concrete classes implementing the same contract at the same
time and add them to collections. What is key to remember in this example is that the
controller is unaware of the implementation details. It will receive a concrete instance
of an object that implements a certain contract. This makes it easier to write unit tests,
as we will see in our next section.

DI code – direct mode
One of the biggest advantages of DI is its positive impact on the testability quality
attribute. Let's see two different ways of testing the controller shown in the previous
section. Still in ASP.NET Core, the following method makes use of a mocking framework:

Figure 5.8 – Mocking framework

As you can see, we directly instantiate DemoController with a mocked representation
of our IEventPublisher contract. This allows us to inject a fake object instead of the
actual BrokerPublisher class we used previously. The reason you want to do this is
that you do not want the actual actions to be taken during a unit test. Note that the usage
of a mocking framework is not required, but it just makes your life easier. Here is an
alternative implementation:

Figure 5.9 – Alternative mocking framework

Delving into the most recurrent patterns and applying them to a use-case scenario 75

This time, we inject an instance of TestPublisher, whose implementation is shown here:

Figure 5.10 – TestPublisher instance

This is just another variant of IEventPublisher, and this is where we can simulate
whatever we want, thanks to the DI pattern. As you can see, in the preceding example, we
performed a direct injection of the dependency via the constructor injection technique.

DI pattern wrap-up
Although we have seen a certain type of implementation, remember the following:

• The detailed implementation of DI is not prescriptive. Every implementation is OK
as long as you make sure that an object gets its dependencies through one of the
injection techniques.

• We only touched on constructor injection, but other possibilities exist, such as
method injection and property injection, and these offer more granularity than
constructor injection.

• DI plays a key role in abstracting away concrete classes from their consumers.
You should, however, keep the number of abstraction layers low to avoid extra
complexity and a negative impact on the readability.

• We used a mocking framework in one of our tests, but it is entirely up to you to see
what you want to work with.

Usually, there are pros and cons for everything we do, but this does not apply to DI.
It is a no-brainer that DI is strongly encouraged in every project. For this one, I authorize
you to be the cargo cult developer. Let's now explore another well-known (anti-)pattern—
namely, the singleton pattern.

76 Design Patterns and Clean Architecture

Exploring the singleton design pattern
The singleton pattern, part of the creational category, is often subject to controversy
because it is not always used appropriately. It is even considered an anti-pattern by many.
However, this pattern is sometimes necessary for heavy objects. By heavy, I mean objects
that take a long time to initialize or consume a lot of resources when being initialized.

The purpose of the singleton pattern is to instantiate a given object only once per
application domain. This means that the object will be created once and shared for the
entire lifetime of the application, which is why it is important to use it wisely because
it also comes with a whole bunch of drawbacks. The following diagram shows a single
instance that is shared across consumers:

Figure 5.11 – Singleton design pattern

In the case of a web application, every separate HyperText Transfer Protocol (HTTP)
request hits the same instance of a given singleton. Let's now see the singleton pattern
in action.

Delving into the most recurrent patterns and applying them to a use-case scenario 77

Singleton pattern in action
The following code is the default startup method of a console application:

Figure 5.12 – Singleton main method

As you can see from the preceding code snippet, I use a parallel for loop to simulate a
high concurrency. In the loop, I get an instance of ThreadSafeSingletonExample
and NotThreadSafeSingletonExample objects. Here is the implementation of
NotThreadSafeSingletonExample:

Figure 5.13 – Non-thread-safe singleton implementation

78 Design Patterns and Clean Architecture

As their names indicate, one implementation is thread-safe while the other is not. With
this example, I want to illustrate one of the major drawbacks of singletons—namely,
thread safety. Under a high load, you may end up with multiple instances of a singleton
if you do not pay attention to concurrency, which leads to unexpected outcomes because
the main purpose of a singleton is to have a single instance in all circumstances. Moreover,
such beginner errors may not be visible directly and might show up later once an
application is already in production. This is not that easy to troubleshoot, so you'd better
flush such issues out soon enough.

Coming back to the example, let's first start with the non-thread-safe implementation,
the NotThreadSafeSingletonExample class. First, we see that _instance is a
private class member, which is set when the private constructor is kicked off by the public
instance property. In the get accessor, we set the value of _instance if it is null,
and then we return it.

I have added a sleep statement to simulate a slow-initializing object. This code is
supposed to create a single instance in all circumstances. The problem is that multiple
threads can access the same resource at the same time. Under a race condition, when
there is no synchronization mechanism in place, multiple threads could resolve the if
statement to true at the same time and create an instance that results in breaking the
concept of a singleton. A singleton is, by the way, not the only thing that is subject to
concurrency issues. Every built-in collection may be subject to thread-safety issues as well.

To prevent concurrency issues, you must ensure multiple threads cannot create an
instance at the same time. The way you achieve this is often specific to the programming
language you work with. Some manual locking techniques are possible (single locking and
double locking) but they come with their own caveats, such as having a negative impact
on performance. In C# (specific to C# here), there is an easy way to overcome this issue,
as shown in the following example:

Delving into the most recurrent patterns and applying them to a use-case scenario 79

Figure 5.14 – Thread-safe singleton implementation

At first glance, this code looks very similar to that shown in Figure 5.13, except for one
noticeable difference: the constructor is not only private, but it has also become static. C#
ensures that static constructors are only called once per application domain. This small
change makes a hell of a difference.

The following screenshot shows the output of the console program when executed:

Figure 5.15 – Singleton and concurrency

80 Design Patterns and Clean Architecture

You can count if you do not believe it, but there are exactly 10 lines reporting the
fc71afb7-604d-4cbd-9b20-0c604565ed9a globally unique identifier (GUID),
which corresponds to our thread-safe implementation. For the non-thread-safe
implementation, we count two different GUIDs: one starting with 60fe4df0 and another
one starting with f6189dd1. This means that we indeed got two different instances out of
our poor implementation.

Singleton pattern wrap-up
The singleton pattern comes with the following benefits and drawbacks:

• Enhanced performance, especially for slow-initializing and heavy objects, which is
a valid use case.

• Reduced usage of memory, because a single instance will of course consume less
memory than multiple instances of the same object.

• Thread safety is not guaranteed by default, as we saw in the previous section.

• It can be harder to react to ecosystem changes such as underlying resource
exhaustion, security token expiration, loss of network connectivity, and so on.

• It violates the SRP because it deals with both its own instantiation and some
business logic.

Use the singleton pattern with caution and only when required. Valid use cases include
cross-cutting concerns such as loggers, object-relational models (ORMs) when they
remain thread-safe, third-party factories, and so on. Remember that singleton drawbacks
are as important as their benefits and you should always double-check the concurrency
aspects, as well as how you can detect/react to ecosystem changes. When working with
rich frameworks such as .NET, you can also rely on the built-in DI container to assign a
singleton behavior to a class that is not itself developed as such, while ensuring that only
one single instance will ever be created.

Factory method
The factory method pattern, part of the creational category, is also part of a larger factory
family of patterns such as static factory and abstract factory. Factory patterns, in general,
are somewhat similar in their purpose to DI: decoupling concrete classes from client
consumer classes. There is sometimes a bit of confusion between DI and factory patterns,
precisely because they are both creational and pursue the same goals.

Delving into the most recurrent patterns and applying them to a use-case scenario 81

However, there's a noticeable difference between DI and factory patterns. On the one
hand, with factory patterns, the consumer class is still triggering the creation process
itself, even though it is delegated to other classes. On the other hand, with DI, client
classes benefit from the inversion of control (IoC) principle and receive concrete
implementations on the fly.

The following diagram illustrates the factory method pattern:

Figure 5.16 – Factory method pattern

On the left side of Figure 5.16, you can see concrete implementations of
MessagePublisher, which is nothing other than our contract from the previous
example, with the form of an abstract class instead of an interface.

Let's see the factory method in action.

Factory method in action
To illustrate the factory method pattern, we will reuse the message publishers of the
previous section. Remember that we had two different concrete implementations that
were implementing the same contract in a different way. This time, our contract is
represented by the following abstract class:

Figure 5.17 – The factory contract

82 Design Patterns and Clean Architecture

This abstract class declares two abstract members: PublishMessage and
ProviderName. Here are the concrete implementations of that abstract class:

Figure 5.18 – Concrete implementations of the MessagePublisher class

This is very similar to what we did in the DI example. The difference lies in how these
concrete classes get indirectly used by the consumer class. This is done by declaring
a few extra classes. The first one is the abstract creator class, which is illustrated here:

Figure 5.19 – Factory abstract creator class

The MessageFactory abstract class forces any inheriting class to implement the
GetPublisher method, which returns a type of MessagePublisher, our contract.
GetPublisher is our factory method. Now come the concrete creator classes that
implement MessageFactory, as illustrated here:

Delving into the most recurrent patterns and applying them to a use-case scenario 83

Figure 5.20 – Concrete creator classes

As you might have guessed, these concrete creator classes are the ones used by our
consumer class, which in this case is a console program, as illustrated here:

Figure 5.21 – Factory consumer program

We prompt the user to choose between options 1 and 2. Option 1 causes the client class
to get an instance of MessagePublisher using BrokerMessageFactory. The
following screenshot shows the output of the program when executed:

Figure 5.22 – Factory method program output

84 Design Patterns and Clean Architecture

Because we took option 1, the returned concrete implementation of the
MessagePublisher contract is an instance of BrokerMessage. Let's now
wrap up the section.

Factory method wrap-up
In the previous example, the benefit of using the factory method pattern was that the
client (in this case, the console program itself) is not aware of the implementation details
of the message publishers; it only needs to specify the factory to use. The client is immune
from the changes happening in the creational process. Also, should a new message
publisher type be needed, the only thing the client needs to do is to start using it.

The factory family patterns have the following advantages and drawbacks:

• They help decouple consumer and concrete classes.

• They help delegate the creation of complex objects to other classes.

• They increase complexity. As you probably noticed, the factory method example
looks rather more complex than the DI one, and yet it is somewhat simpler than
an abstract factory pattern. Do not abuse factory patterns.

• Factories can be combined with DI.

Let's now discuss our last creational pattern—namely, the lazy loading/initialization pattern.

Lazy loading/initialization pattern
The lazy loading/initialization pattern (both names are accepted) is pretty easy and very
handy. As the name indicates, it will lazily initialize an object of a given type only when an
explicit call is performed by the code. The purpose of the lazy pattern is to avoid a waste of
resources and defer these until the application really requires an instance of a given object
to function.

Delving into the most recurrent patterns and applying them to a use-case scenario 85

Lazy loading in action
Here is a very simple example of the lazy loading pattern in a C# console program:

Figure 5.23 – Lazy loading in action

In our DemoClass object, we simulate a slow initialization by adding a Thread.Sleep
statement. In the Main method of the console program, we make use of a Stopwatch
object to calculate the elapsed time between the different instructions. The output of the
preceding program looks like this:

Figure 5.24 – Lazy loading in action (continued)

86 Design Patterns and Clean Architecture

As you can see from Figure 5.24, no time elapsed between the start of our Stopwatch
object and the creation of our lazy object. The lazy behavior is ensured by the Lazy
keyword, which is a built-in C# instruction. However, when calling explicitly the property
of our DemoClass object through _lazy.Value.DemoProperty, we can see that our
second printout of the elapsed time shows 5060 milliseconds. This proves that the actual
initialization of the DemoClass object was delayed until we called one of its properties
(it is the same with methods, of course). The same program without the lazy pattern looks
like this:

Figure 5.25 – Non-lazy initialization

Now, we instantiate the same DemoClass object the normal way. The following
screenshot shows the outcome:

Figure 5.26 – Non-lazy DemoClass object

Lazy loading wrap-up
The direct instantiation causes the program to take about 5 seconds before it prompts the
user for a key entry. Because the lazy pattern is very simple, there is no real need to add a
wrap-up section, but let's still see some of its benefits and drawbacks, as follows:

• The major benefit of the lazy pattern is to prevent a waste of resources when the
concrete instances of a given object are not needed.

• This major benefit might also be its main drawback. If you were to use lazy loading
for everything, you would not have a clear picture of the actual resources your
application needs to fully function. Make sure to evaluate this when testing the
application.

Let's now go through some of the behavioral patterns.

Delving into the most recurrent patterns and applying them to a use-case scenario 87

Strategy pattern
The strategy pattern, part of the behavioral category, is used to let consumer classes
decide on which algorithm to choose from a family of related algorithms. The purpose of
this pattern is to avoid if-else or switch constructs directly in the client, to handle
different implementations, and let it pick the right strategy instead. Here is a class diagram
of the sample that comes next:

Figure 5.27 – Strategy pattern

The Program class is our consumer. FormatMessageStrategy is our
context class, which lets the consumer specify at runtime which strategy to use.
IMessageFormatter is our strategy contract, while EvGridMessageFormatter
and BrokerMessageFormatter are different implementations of that strategy. This is
comparable to what we have seen before, but I added some validation bits to the picture.
Here, we have two different concrete strategies to format messages according to their
target recipient. Let's see the strategy pattern in code.

Strategy pattern in action
The strategy pattern helps prevent the following code constructs in the consumer class:

Figure 5.28 – Strategy pattern prevents inline decisions

88 Design Patterns and Clean Architecture

Here, you would add some formatting logic directly into the client. The goal of the
strategy pattern is instead to delegate this logic to dedicated strategies and choose the
appropriate one at runtime. Here is the code of the strategy contract:

Figure 5.29 – Strategy contract

This is a very simple contract that specifies that every strategy should implement the
FormatMessage method. Here, we can see two strategies that implement our contract:

Figure 5.30 – Concrete strategies

We pretend to format the message differently according to the strategy. Now comes our
context class, the one that is used by our consumer class, as follows:

Figure 5.31 – Context class

Delving into the most recurrent patterns and applying them to a use-case scenario 89

The context class has a private member of the IMessageFormatter type. Its
constructor takes a strategy as input and assigns it to the private member. This lets the
consumer class specify which strategy to use at runtime. The Format method can be
called by the consumer class and, in turn, calls the FormatMessage method of the
strategy that was passed in. Now, the next code block shows how that context class can be
used from within the consumer class:

Figure 5.32 – Strategy consumer code

We subsequently call both strategies. The following screenshot shows the output of the
console program when executed:

Figure 5.33 – Strategy pattern console output

Strategy pattern wrap-up
You might be wondering how the DI method differs from the strategy pattern, and you
would be right to do so. Both patterns enable us to pass concrete objects to client classes
through method injection. A big difference between the strategy pattern and DI is the
category to which they belong. Remember that DI is a part of the creational patterns
and, as such, they enter into play at the time objects get created.

The strategy pattern is a part of the behavioral category, and as such, it is intended to
implement multiple behaviors to react to application events, such as user inputs or
button clicks. When you use the strategy pattern, it is systematically with the intention
of implementing multiple concrete classes of a given contract, while this is not especially
the case (other than in unit tests) with DI only.

90 Design Patterns and Clean Architecture

Another difference lies in the fact that with the strategy pattern, the consumer class must be
aware of the concrete strategy classes, while DI only requires knowledge of the contract.

To wrap up the strategy pattern, let's review some of its benefits and drawbacks, as follows:

• It helps you delegate the business logic to strategies, instead of writing it directly in
client classes. This satisfies the single responsibility principle of SOLID.

• Should the business logic change for a given strategy, changes will be automatically
reflected in the client consumer classes.

• It is fairly easy to get started and improves readability, maintainability, and
extensibility.

• Unlike DI, the client needs to be aware of the concrete strategies, which is not ideal.

Let's now explore the mediator pattern.

Mediator pattern
The mediator pattern, part of the behavioral category, facilitates the communication
between objects. You can see it as a man in the middle, as a dispatcher. Typical examples
are a chat room that dispatches messages between senders and receivers, a notification
engine, publish/subscribe (pub/sub) architectures, and so on. The following diagram
shows a depiction of the mediator pattern:

Figure 5.34 – Mediator pattern diagram

The Mediator class defines the communication contract and the ConcreteMediator
class holds the communication logic, while all the other classes talk to each other through
the concrete mediator.

Delving into the most recurrent patterns and applying them to a use-case scenario 91

Classes that participate in the communication all inherit from Person, which in turn
holds a reference to the concrete mediator. Most examples that illustrate this design
pattern look alike. I tried to innovate a little bit, but we will see another example in
Chapter 7, Architectural Trends and Global Summary, about using the mediator pattern
together with Command Query Request Segregation (CQRS).

Mediator in action
As always, we start by defining our contract, as follows:

Figure 5.35 – Mediator contract

The contract is an interface or an abstract class. We then implement the concrete mediator,
as illustrated here:

Figure 5.36 – Concrete mediator

92 Design Patterns and Clean Architecture

In the Register method of the concrete mediator, we add the person to our dictionary
or replace them. In the Send method, we handle the business logic to forward messages
to the relevant recipients. Admittedly, the filtering logic is not robust since the name is not
a good ID, but this is irrelevant for the pattern demonstration. We also pass the current
concrete mediator to the Person object, as follows:

Figure 5.37 – Person object

The important bits of the preceding code block are in the Send method, where the
Person class calls back the concrete mediator to handle the sending of messages. The
Send method also has an optional audience parameter, which allows us to filter out
target recipients when sending messages. The following code shows two persons' flavors:

Figure 5.38 – Person variants

Delving into the most recurrent patterns and applying them to a use-case scenario 93

Now, from the main program, we can start using our classes, as follows:

Figure 5.39 – Consumer code

Notice how we register all person instances to the concrete mediator. Here is the
program's output when executed:

Figure 5.40 – Mediator pattern program output

Figure 5.40 shows that only adult 2 received the message from adult 1 because they
explicitly targeted adults. Their second message is for everyone, hence the reason why
child 1 also received it.

Mediator pattern wrap-up
The mediator has some advantages and drawbacks, outlined as follows:

• It ensures one-to-one and one-to-many communication processes.

• It decouples the objects that communicate with each other.

• It isolates the communication logic in the concrete mediator.

• As a disadvantage, the SRP might be compromised should the concrete mediator
implementation become complex over time.

Let's now tackle structural design patterns.

94 Design Patterns and Clean Architecture

Facade design pattern
The facade pattern, part of the structural category, helps hide the complexity of concrete
classes by exposing a simple and clean interface to consumer classes. It acts as a proxy
between consumers and concrete implementations. We will come back to the facade design
pattern in our final chapter, to see a code-free approach to apply it. In the meantime, let's see
the repository design pattern, which is a data-specific facade implementation.

Repository design pattern
The repository design pattern is a data-specific implementation of the facade design
pattern. You use it as a mechanism between your API controllers and your data transfer
object (DTO) that is used by the ORM. The repository is an abstraction of a collection
of objects. Although there is some controversy about the added value brought by the
repository pattern, its main purpose is to decouple the data and the business-domain
worlds. The debate about the usefulness of the repository pattern lies in the fact that it
is sometimes considered redundant with the ORM.

In the .NET world, the main ORM is Entity Framework, which ships with built-in
repositories. Adding your own repository to the mix is considered overkill by some and
indispensable by others. I am not going to make a decision in this debate, but the main
argument of using repositories is to improve testability and use them to hold the business
logic. You can see a diagram of the repository pattern diagram here:

Figure 5.41 – Repository pattern diagram

Delving into the most recurrent patterns and applying them to a use-case scenario 95

On the left-hand side of Figure 5.41, you can see a generic repository represented by
IAsyncRepository and a business-specific one represented by IDemoRepository.
The DemoController class gets an instance of IDemoRepository through DI,
for which the concrete class is DemoRepository, which in turn inherits from the
BaseRepository class.

Both BaseRepository and DemoRepository leverage DemoContext (ORM) to
interact with the underlying data store. Finally, DemoEntity is simply a representation
of a data entity. Since we have already touched on DI and controllers before, I will only list
the most important code blocks in our next section. You can find all the code on GitHub,
as explained in the Technical requirements section of this chapter.

Repository pattern in action
Let's first start with our generic repository, as follows:

Figure 5.42 – Generic repository

The repository is generic because it takes an input of T, which is the .NET way to handle
generics. All the methods declared in the interface are also generic because they do
not serve any specific business purpose. They simply represent the typical create, read,
update, and delete (CRUD) operations.

This generic repository is particularly the reason why the repository pattern is subject
to controversy. If you only stick to this implementation, you simply add redundant code
because, by default, ORMs also come with such default CRUD operations over collections
of objects.

96 Design Patterns and Clean Architecture

Some may argue that a generic repository also gives you an opportunity to abstract
away the ORM, should you change it in the future. Such levels of abstraction are also
recommended by clean architecture, which we will talk about in our next section. This is
where you must exercise good judgment and identify trade-offs to make sure you do not
overengineer the solution and that it makes sense in your own context.

But of course, there's more to it, and that is the specific business domain repository, whose
contract is listed here:

Figure 5.43 – Domain-level repository

The reason why it is business-specific is that it specifies an extra non-generic method
looking like a specific query. This type of repository starts to bring value because it holds
business logic. Let's now see a truncated (for brevity) version of the BaseRepository
class, as follows:

Figure 5.44 – Base repository class

Our BaseRepository class is also generic and can take any entity. It implements
IAsyncRepository<T>, our generic repository contract. As you can see, it takes an
instance of the DemoContext object, which is nothing other than our ORM's entry
point. Now comes our tailor-made repository, as follows:

Delving into the most recurrent patterns and applying them to a use-case scenario 97

Figure 5.45 – Tailor-made repository

DemoRepository derives from BaseRepository and passes in the DemoEntity
type. It also implements IDemoRepository through the concrete implementation of the
ListOnlyOddEntities method. If you know a little bit about .NET, you have probably
identified a code smell here. The odd/even check is done in memory and causes the ORM
to produce a SELECT * FROM … statement, which is never good performance-wise.
I did this on purpose to show you how easy it is to write very extendable code but leave
such poor constructs in it. By the end of this chapter, I will let you know what I consider
to be the most important things to catch in a code-review round.

Repository pattern wrap-up
Here are a few things to consider when using the repository pattern:

• Do not stick to the generic repository only. You should aim to encapsulate the
business logic into more specific repositories.

• Do not abstract away the ORM, which is itself an abstraction of the underlying
data store. Probably 99.99% of the time, you will only stick to a single ORM for
the lifetime of the application.

• Repositories help improve testability.

• Keep the number of abstraction layers manageable. I'll leave it to you to evaluate
what manageable means.

Let's now go through a small use case to see if you can apply what you have just learned
about design patterns.

98 Design Patterns and Clean Architecture

Design patterns use case
Let's go through the same scenario as the one we used for ATAM in Chapter 3,
Understanding ATAM and the Software Quality Attributes, but this time, don't focus
on the NFRs. Try to evaluate which code design patterns might be in scope for the
following scenario:

Contoso needs to provide a data upload channel for its customers. Uploaded
data files may contain errors and must go through a data-cleansing and

data-wrangling phase. If errors cannot be automatically fixed, an error file
should be returned to the sender through a callback notification. After this
first data-check and transformation phase, the resulting validated data is
routed to the relevant systems for further handling. In addition, customers
require that data can only be processed in Europe for sovereignty reasons,

and they are used to File Transfer Protocol (FTP) systems.

The upload channel should always be available, while the actual handling
of the data might be deferred in case of a system outage. It is expected by

Contoso's customers to be notified back within 24 hours. The total volume
of data uploaded by customers is about 1 terabyte (TB) per month and,
during peak times, up to 250 customers may upload data at the same

time. For regulatory reasons, the retention time of original files sent by the
customers is 5 years.

I did not change a single comma. To be honest, if I were confronted with this scenario,
I would directly try to rely on a specialized data service for the data-cleansing and
data-wrangling activities, but for the sake of this exercise, let's consider that Contoso
does not have any of these tools. Contoso can only rely on a software architect and a few
developers to implement the solution. Before reading the next paragraph, try to think
about which patterns could play a role in that scenario. Limit yourself to the patterns
discussed in this chapter.

OK—let's try to find answers. If we exclude the NFRs from the equation, here are a few
elements that we can consider:

• The input data must be validated. Because there will be probably different
types of validation, it might make sense to use validation strategies using the
strategy pattern.

• Because every use case must deal with dependencies, you must of course consider
using the DI pattern. As stated before, DI is a no-brainer and should always be used.

Delving into the most recurrent patterns and applying them to a use-case scenario 99

• Because you want to simplify the lives of Contoso customers, you might want to
provide them with a single endpoint to upload files. If that is the case, you will
probably rely on the facade design pattern. I have not elaborated much on this in
this chapter, but the definition I made is enough to think it could be a useful pattern
for this scenario.

• Many files must be processed. You should therefore consider handling them in
an asynchronous way. A mediator or some variant could be used to decouple the
receiving process from the handling process.

Let's see why I did not yet select the other patterns, as follows:

• Repository: It is not clear whether we only process data and route it or whether we
need to persist anything in a data store. It might be necessary to persist some audit
trail information, but this is not explicit yet.

• Singleton, lazy, and factory: At this stage, there is no indication yet that singletons
or factories would be required or useful. We would need to investigate more deeply
to decide.

Of course, we all know that the devil is in the detail, but if I had only one piece of advice to
give you, it would be to approach things from a high level first before diving into in-depth
implementation considerations. Let's wrap up the design patterns section.

Design patterns wrap-up
In this chapter, we only touched upon a few design patterns, but you might have noticed
yourself that they all bring a certain level of abstraction to an application, to promote
extensibility, maintainability, and testability. If you had to remember only one pattern,
you should undoubtedly go for DI because this is, in my opinion, one of the most
important concepts.

Note that while abstraction is good for extensibility, it may sometimes also bring its own
caveats, such as increased complexity, should the number of abstraction layers become too
high. Another aspect to consider when implementing patterns is the number of resulting
objects that are created in the application because it may as well have a negative impact on
system performance.

The message I want to convey here is that you should always balance extensibility,
readability, maintainability, and testability with performance and efficiency. Do not be the
cargo cult developer. Think, and do not obey blunt rules that may not be adequate for your
context! Let's now look at clean architecture.

100 Design Patterns and Clean Architecture

Looking at clean architecture
Beyond code design patterns themselves, you can also rely on more structural foundations.
Clean architecture (https://blog.cleancoder.com/uncle-bob/2012/08/13/
the-clean-architecture.html), proposed by Robert C. Martin, also known as
Uncle Bob, questions the prevalence of frameworks and technical choices over the pursued
business intent. Clean architecture regroups the best of hexagonal architecture (https://
en.wikipedia.org/wiki/Hexagonal_architecture_(software)) and
onion architecture (https://jeffreypalermo.com/2008/07/the-onion-
architecture-part-1/). In essence, clean architecture decouples the business logic
from all the rest and adds more layers to an application. The goal of clean architecture
is to make the business layer immune from changes happening anywhere else in the
application. The business layer should only change if there is a real business need to cover.
A clean architecture ensures that the business layer remains in sustainable homeostasis.
The following diagram shows the structure of a clean architecture (Uncle Bob's original
drawing is available on his website at https://blog.cleancoder.com/uncle-
bob/2012/08/13/the-clean-architecture.html):

Figure 5.46 – Clean architecture

Only outer borders should know about inner borders, not the other way around. Inner
borders host the core business logic, while outer borders are facilities and implementation
details. When this rule is respected, inner borders cannot be impacted by a change
occurring in the outer borders because they know nothing about them. Inter-border
communication is mostly ensured by DI and IoC, which we have seen previously.

https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Looking at clean architecture 101

Conceptually, clean architecture is a domain-centric software architecture. This type
of architecture grants a high (too high?) importance to the fit-for-purpose question.
Frameworks, database engines, tooling, and the like are considered to be implementation
details. However, while I understand the ambition, some push it too far by simply ignoring
the so-called details and focusing only on the business logic.

Remember that the definition of quality is fit for purpose and fit for use. Some clean
architecture aficionados consider that, in a house, the only thing that matters is space,
usability, comfort, and so on, while the materials used for building it (bricks, tiles, and
more) are just implementation details. I could not disagree more with that statement.

Uncle Bob himself states that the database engine you work with is a detail and that the web
itself is a detail, and that basically everything that is not directly serving the business logic
itself is a detail. While he is right from a business perspective, these details are our
day-to-day reality, and we cannot get rid of them just like that. On the contrary—these
details sometimes help boost productivity, and yes: we might consciously tightly couple
ourselves to specific technical frameworks and tools because they also bring us something
back. We evolve in a highly technical industry. If every tool, every framework, every
database engine were only a detail, anyone could deal with them. You would not need
to hire developers, Information Technology (IT) pros, and so on. Perhaps, the business
folks would design and develop solutions themselves.

To come back to the house metaphor, in our fit-for-use quest, the house must be
resistant to storms, heavy rain, humidity, and the like, else you might end up with a very
comfortable house but be forced to move a few years later because it became inhabitable
in the meantime. Of course, these factors depend on the context, as always. You will not
invest in the most resistant tiles if you live in a region where it never rains. Similarly, you
are unlikely to pay for specific skiing insurance if you never go skiing. Well, all of this
seems to be common sense, but that is not especially what I notice in the field.

This trend toward domain-centric architectures and conceptual approaches such
as domain-driven design (DDD) is certainly a good thing, provided you do your
homework, which consists of conducting proper business analysis (together with business
analysts and business architects) to grasp the business domain you are building a solution
for. And even then, you should still not neglect the details.

These domain-centric architectures only prove their value if that prerequisite is respected,
and they are only worthwhile with fast-changing business needs. I have seen countless times
teams rushing to clean architecture and/or DDD, regardless of what they had to do, while
not having a single clue of what really matters for their business. In such situations, these
patterns are abused and tend to create confusion instead of bringing solutions to the fore. To
be clear, we should not go from one extreme to the other. We should not start neglecting our
technical foundations as we have sometimes neglected or limited the pursued business value
by technicalities. By the way, we should not oppose technicalities and business value.

102 Design Patterns and Clean Architecture

Let's remember that the digital natives took advantage of technology as an enabler for new
business perspectives. What makes a developer and a software architect different from a
business analyst are precisely these technicalities. Let's also remember that code is not the
only thing to be considered. Cloud-native apps are a true example of this—they leverage
containers (a pure infrastructure thing) and orchestrators to build resilient solutions by
leveraging those system capabilities.

In one of his talks (https://www.youtube.com/watch?v=yPvef9R3k-M), Eric
Evans, who came up with the DDD concept, admitted that microservices could represent
the physical boundary of a bounded context. Here again, container platforms are heavily
supporting microservice architectures, although they are not the only option. I am
convinced that the ecosystem takes a very important place in software architecture, while
the code you develop yourself tends to become tinier. Whether you should use clean
architecture or not depends on the asset you build and on the ATAM round you had
about that asset.

If you identify that some quality attributes such as usability, upgradability, and
maintainability prevail over security, scalability, and so on, you may indeed find it
appropriate to go for clean architecture, else you might as well consider it overkill for
your use case. Let's now see what I consider important in a code-review exercise.

My top 10 code smells
A code smell is a code construct that could lead an application to crash or encounter
unexpected issues. As I showed in the repository pattern section, it is very easy to leave
rubbish inside well-implemented design patterns. Admittedly, most modern continuous
integration/continuous delivery (CI/CD) factories ship with code-analysis tools such
as SonarQube that analyze code and detect code smells automatically. Nevertheless, here
are the top 10 things I consider when reviewing code or assessing the results produced by
such a tool:

1. Memory leaks will for sure lead to process crashes: The sooner you detect them,
the better.

2. Improperly disposed objects: While memory leaks are annoying, they are easy to
troubleshoot. Conversely, disposed objects that are still used somewhere are harder
to find and often lead to erratic behaviors.

3. ORM usage: It is great to abstract away the underlying data store but, in some
situations (input/output (I/O)-intensive use cases, and so on), it is better to skip
ORMs completely, or at least to double-check queries/commands that are produced.
The poor code construct that I included in the repository sample is a good
illustration of such a waste of resources.

https://www.youtube.com/watch?v=yPvef9R3k-M

My top 10 code smells 103

4. Security flaws: In our API-driven world, it is not uncommon to find endpoints that
are unexpectedly opened to the entire world simply because developers forgot to
enforce authorization.

5. Thread-safety: As we saw earlier with the singleton example, we can quickly end
up in a situation where thread safety is not guaranteed. It is important to track this
down early in the life cycle of the application because it can be hell to troubleshoot
later in production.

6. Object lifetime: It is important to check that objects are scoped correctly. New
instantiations of objects that could be shared undoubtedly lead to increased CPU
and memory usage. Conversely, objects that should not be shared should of course
not be used as singletons (or static objects).

7. SOLID compliance: This means checking if the code is following the SOLID
principles, among which is making sure that dependencies are handled properly.
Whether you do clean architecture or not, dependencies should always be
handled gracefully.

8. Proper exception handling: Although none of the code samples proposed in this
book have proper exception handling, this is key to manage exceptions correctly. In
the same vein, it is important to follow conventions such as returning an adequate
HTTP code when developing an API.

9. Scalability: There are multiple ways to handle scalability but one of them is
certainly using mechanisms such as pub/sub and leveraging asynchronous patterns
whenever possible. This is mostly applicable to business assets where high load/
volume is anticipated.

10. In-memory caching, session state, and more: I try to avoid these like the plague
because they do not fit well with a scale-out story. We will see in our next chapter
how cloud and cloud-native apps are a game-changer from that perspective.

As you can see, I focus more on the performance/security/reliability aspects than on
readability and extensibility. The reason why I focus on this first is that the visible
observations of such issues do often appear in production or when the system is under
high load, which makes it trickier to troubleshoot. This top 10 list is not written in stone
and may vary according to the solution.

104 Design Patterns and Clean Architecture

Summary
It is a no-brainer that design patterns must be mastered by software architects because
they are part of their toolbox. However, I also tried to stress the fact that you should
always exercise your own judgment in your own specific context. I advocate for a
pragmatic software architecture practice. Remember that, contrary to some of the clean
architecture rantings, the code is not the only place to look. A good software architect
aims to achieve both fit for purpose (where clean architecture can certainly play a role),
and fit for use, which is most of the time ensured by non-code layers.

In our next chapter, we will see that most modern applications are often heavily
distributed and rely on existing components. This is what I call the growing importance
of the ecosystem.

Section 4:
Impact of the

Cloud on Software
Architecture Practices

Getting older is never fun, but I started my career long before the cloud era and I have
transitioned to a cloud architect in the meantime. What I have learned for sure is that the
cloud is a game-changer in software architecture because it is often the enabler of a larger
digital transformation. The cloud revamped how infrastructures get provisioned and how
to address non-functional requirements in general. In this section, I propose that you
review some popular architectural patterns through the prism of AWS and Azure, the
biggest public cloud providers in 2021.

This section comprises the following chapter:

• Chapter 6, Impact of the Cloud on the Software Architecture Practices

6
Impact of the Cloud

on the Software
Architecture

Practice
In this chapter, we will focus on one of the most recurrent topilcs of the last decade – the
cloud. The cloud is a game-changer in the IT landscape and is an enabler of a larger digital
transformation, which often hits organizations like a storm. Beyond technology, the cloud
and cloud-native approaches require organizational changes and a proper culture to
leverage all their benefits. But this goes far beyond the scope of this chapter, in which
we will limit ourselves to evaluating the cloud's impact on software architecture.

108 Impact of the Cloud on the Software Architecture Practice

More specifically, we will cover the following topics:

• Introducing cloud service models, the cloud, and cloud-native systems

• Mapping cloud services to architecture styles and patterns

• Reviewing cloud-native patterns

By the end of this chapter, you should have a better understanding of cloud and cloud-
native approaches, which gain in popularity year after year. It has become essential for
a software architect to jump on the bandwagon and grasp the importance of the ever-
growing ecosystem.

Technical requirements
If you want to practice implementing the explanations provided in this chapter, you will
need Visual Studio 2019 to open the solution provided on GitHub.

All the code samples and diagrams for this chapter are available at https://github.
com/PacktPublishing/Software-Architecture-for-Humans/tree/
master/CHAPTER%206/.

Introducing cloud service models, the cloud,
and cloud-native systems
The prevalence of cloud ecosystems is a game-changer, and you should take this into
account from the start when you design applications, should you envision the cloud as
a hosting platform. As per my real-world observations, this fact is often misunderstood
or overlooked by software architects, who tend to neglect the ecosystem their code is
running in and focus too much on the code itself. The reason why it is important to grasp
the ecosystem is that it comes with pre-built services and functionalities, which can boost
your productivity. The type of service model you work with tends to steer your design
choices. The following diagram shows the most important service models:

https://github.com/PacktPublishing/Software-Architecture-for-Humans/tree/master/CHAPTER%206/
https://github.com/PacktPublishing/Software-Architecture-for-Humans/tree/master/CHAPTER%206/
https://github.com/PacktPublishing/Software-Architecture-for-Humans/tree/master/CHAPTER%206/

Introducing cloud service models, the cloud, and cloud-native systems 109

Figure 6.1 – Cloud service models

In the preceding diagram, from left to right, the level of operations increases. For example,
the Software as a Service (SaaS) model is a fully managed off-the-shelf software offering,
with embedded functional features, and comes with very low operating costs. On the
opposite side, you can find Infrastructure as a Service (IaaS), which is what I call business
as usual, in the cloud, where the level of operations is almost equivalent to on-premises
systems. The same applies to cost efficiency (TCO) but in the opposite direction, from
right to left, where IaaS is not especially cost-friendly, while SaaS is the most cost-effective
way to fulfill transversal (commodity) enterprise needs. Now, let's review the different
models from a technical perspective.

Software as a Service (SaaS)
SaaS platforms come with many APIs that facilitate integration scenarios. Office 365,
Salesforce, and so on all ship with rich APIs. SaaS often answers the buy versus build
question, where it is almost always better to buy SaaS than trying to build something
equivalent in-house. The level of operations is almost zero, except for the SOC, which
actively monitors the usage of SaaS platforms and works on preventing data leakage.

110 Impact of the Cloud on the Software Architecture Practice

Many organizations invest in a Cloud Access Security Broker (CASB) to struggle
against SaaS proliferation and control user behavior regarding SaaS platforms. With SaaS
systems, the challenge resides in organizing proper change management and making
sure employees and collaborators do not disclose company information unexpectedly. A
software architect may leverage SaaS platforms by reusing them as application building
blocks whenever possible. For example, Office 365's Teams channels can be used as
an entry point by end users, while Office 365's Graph API can be leveraged by custom
components. The goal is to integrate and reuse some SaaS components in a larger solution.

Function as a Service (FaaS)
FaaS is also known as serverless, which we will tackle in more depth in the next chapter.
FaaS initially started with stateless functions (Azure Functions, AWS Lambda, and so on)
that were executed on shared multi-tenant infrastructures. Nowadays, FaaS has expanded
to much more than just functions, and it is the most elastic flavor of cloud computing.
While the infrastructure is completely outsourced to the cloud provider, the associated
costs are calculated based on the actual resource consumption. FaaS is ideal in numerous
scenarios:

• Event-driven architectures: Subscribe to event publishers and trigger activities
accordingly. For example, having a function be triggered by the arrival of a message
on a message broker, parsing it, and notifying other processes about how that
message should be handled if needed.

• Batch jobs: You might trigger one-shot containers in a serverless way, to handle
recurring activities. Once the containers have been completed, they can be fully
destroyed by the underlying serverless service.

• Asynchronous scenarios of all kinds: FaaS is particularly suited for asynchronous
activities because they do not require very low latency. Indeed, one downside of
FaaS is that the cloud provider must dynamically allocate the necessary compute
resources when needed, which may cause a short initialization delay. Higher
latency is usually well tolerated in asynchronous scenarios, so we can live with
this downside.

• Unpredictable system resource growth: When you do not know in advance what
the usage of your application is, but you do not want to invest too much in the
underlying infrastructure, FaaS helps absorb this sudden resource growth in a
costly fashion. This is what I mean when I say that FaaS is fully elastic: you scale
from 0 to what is necessary, then back to 0 again.

Introducing cloud service models, the cloud, and cloud-native systems 111

FaaS allows cloud consumers to focus on building their applications without having
to worry about system capacity. Therefore, developers and software architects can focus
more on the actual business value they produce. The price to pay for the flexibility and
elasticity of FaaS is its disruptiveness toward traditional IT practices. Because FaaS is fully
dynamic, you have low, and sometimes no, control over the network perimeter (impacting
the security NFRs), which is abstracted away by the cloud provider. FaaS is therefore a
source of tension for traditional IT practitioners, who are still legion.

Platform as a Service (PaaS)
PaaS is a fully managed service model and has much broader coverage than FaaS,
which helps you build new solutions (or refactor existing ones) much faster. PaaS reuses
off-the-shelf services that already come with built-in functionalities and whose underlying
infrastructure is fully outsourced to the cloud provider. PaaS is also quite disruptive
toward traditional IT, but less than FaaS. The reason why PaaS is a little less disruptive
is that you pre-pay for the compute, giving you more control over it. It can also often be
dedicated (non-multi-tenant), which gives you even more control. PaaS gives you more
configuration options than FaaS. PaaS is semi-elastic (not fully) because you pay for
pre-allocated compute. Auto-scaling plans can be defined but often remain the duty
of the cloud consumer, where you do not even have to worry in the FaaS world.

Multi-tenant offerings remain more cost-friendly than dedicated ones because you can
leverage economies of scale.

PaaS is suitable for many scenarios, including the following:

• Greenfield projects: Because PaaS is also disruptive, it is always a good idea to start
with a brand-new project.

• Internet-facing workloads: Public cloud providers are the ideal partners when it
comes to building and hosting internet-facing assets. They compare favorably with
the old-school but never-dying on-premises Demilitarized Zone (DMZ), which is
the traditional way of exposing workloads to the internet.

• Modernization of existing workloads.

• API-driven architectures: We will look at these in the next chapter, but PaaS
providers all ship with API management solutions, which greatly facilitate the
development and deployment of APIs. An excellent use case for API-driven
architectures is when you build your own SaaS platform to sell to other companies.
We will tackle API architectures in the next chapter.

112 Impact of the Cloud on the Software Architecture Practice

• Anytime, anywhere, and any device scenarios: Cloud providers usually offer high
SLAs and many different flavors, which accommodate any device at any time from
anywhere, out of the box.

PaaS also boosts productivity and time-to-market because developers and architects
can reuse existing building blocks, which they can assemble and incorporate into
their applications.

Containers as a Service (CaaS)
Containerization has become mainstream, and cloud providers could not miss that train.
CaaS consists of making orchestrator platforms such as K8s and Red Hat OpenShift
available to cloud consumers. In addition, cloud providers ship with proprietary offerings
such as Azure Container Instances (ACI) and AWS Elastic Container Service (ECS).

CaaS is suitable for the following scenarios:

• Lift-and-shift: While transitioning to the cloud, a company might want to simply
lift and shift its assets, which means migrating them as containers. Most assets can
be packaged as containers, without us having to refactor them.

• Cloud-native workloads: You can leverage the latest cutting-edge and top-notch
K8s features and add-ons. We will look at cloud native in the next section.

• Batch, asynchronous, or compute-intensive tasks: For example, ACI and ECS can
both accommodate batch jobs.

• Portability: CaaS offers greater portability than anything else, and it helps reduce
the vendor lock-in risk to some extent.

• Service meshes: Most microservice architectures rely on service meshes, which,
in turn, rely on containerization platforms, in their modern form.

• Modern deployment: CaaS offers modern deployment techniques, such as A/B
testing, canary releases, and blue-green deployment. These techniques prevent
and reduce downtime in general.

CaaS is closer to the infrastructure and is often less managed than FaaS and CaaS.
The cloud consumer does more operational work, such as upgrading cluster versions,
patching nodes, and so on. This varies from one cloud provider to another.

Introducing cloud service models, the cloud, and cloud-native systems 113

Infrastructure as a Service (IaaS)
IaaS is the least disruptive service model. It is the process of renting a data center to
a cloud provider. It is business as usual in the cloud. IaaS is not the service model of
choice to accomplish a digital transformation, but nevertheless, it can be useful in
numerous scenarios:

• Lift-and-shift: Because on-premises systems also use virtualization everywhere,
it is very easy to deploy existing applications to the cloud, while not modifying
anything in the applications themselves.

• High-performance computing (HPC): Most cloud providers have impressive HPC
capabilities that can be made available immediately and at a much higher scale than
what most companies can afford on-premises.

• Small companies with high compliance requirements: IaaS can be a good
alternative for smaller companies that do not want to invest in their own data
centers, and if they have high compliance requirements that could not be fulfilled
by other service models.

• Disaster recovery: IaaS is very suitable for disaster recovery purposes because cloud
providers come with tooling that facilitates such scenarios.

• Compute shortage or end-of-life hardware: When you are short on compute in
your own data center(s) or are confronted with end-of-life hardware, it may be
easier and faster to take the IaaS path.

• New geography: If your business spans new geography, it could be faster to
start it in the cloud while inheriting from the cloud provider's compliance with
local regulations.

With regard to costs and operations, IaaS is almost equivalent to on-premises, although
it is very hard to compare the TCO of IaaS and on-premises.

Of course, facilities, physical access to the data center, and more are all managed by the
cloud provider. It is not necessary to buy and manage the hardware yourself anymore.

Anything as a Service (XaaS or *aaS)
Other service models exist, such as Identity as a Service (IDaaS) and Database as a
Service (DBaaS), to such an extent that the acronym XaaS, or *aaS, was born around
2016, to designate all the possible service models. It is important for a software architect
to grasp these different models as they serve different purposes, require different skills,
and directly impact the application you build. These service models are also likely to
impact some software quality attributes, as we will see in the next section.

114 Impact of the Cloud on the Software Architecture Practice

Service models and software quality attributes
Choosing a service model is not neutral. As we saw in the preceding sections, it has an
impact on costs, operations, required skills, and enabling (or not) some technical patterns.
It also impacts software quality attributes. The following table shows how FaaS, PaaS, and
CaaS impact some recurring attributes:

Figure 6.2 – Impact of service models on quality attributes

We probably don't need to mention that a + sign represents a positive impact and a – sign
represents a negative one. Admittedly, this list of attributes is not exhaustive and the scores
are subject to debate, but this is, in any case, not neutral. You may refine or augment this
list for your own context. You must balance this with the level of operations and costs that
pertain to each service model. Now that we have reviewed the most important service
models, let's look at what cloud and cloud native mean.

Cloud versus cloud native
Let's start by introducing the notion of cloud and cloud-native development, which
you might not be familiar with. The cloud is a particular ecosystem that has unique
capabilities. If we want to leverage these capabilities, we must rethink the way we design
applications and the types of frameworks we should consider.

Let me directly evacuate IaaS from the equation because as we stated previously, IaaS
is business as usual in the cloud. It is a replication of your on-premises systems in the
cloud. Many on-premises applications are restricted to an N-tier architecture, with a
frontend, backend, and database, living on a few servers. We control the entire code base
and underlying systems because we do everything ourselves. We write custom in-house
frameworks to deal with cross-cutting concerns, such as logging, exception handling, and
so on. Our in-house frameworks become monoliths after a while. From that perspective,
IaaS is fine but is by no means cloud or cloud native. You can design an application for
IaaS the same way you design applications on-premises. IaaS does not come with any
specific constraints or pre-built functionality, which is why it has no impact on software
architecture. Cloud and cloud-native approaches imply a mindset shift, which is not
required nor even facilitated by IaaS.

Introducing cloud service models, the cloud, and cloud-native systems 115

Clarification made, one of the biggest challenges when starting to work with cloud and
cloud-native approaches is that applications are distributed and rely on existing services.
In traditional IT, we still have many monoliths, or in the best case, we work with service-
oriented architecture (SOA), which we talked about in Chapter 4, Reviewing the
Historical Architecture Styles. SOA has proven its value and is certainly still future-proof,
but as always, the IT world has evolved, and newer paradigms have emerged.

With cloud and cloud-native applications, we tend to rely more on off-the-shelf
frameworks, services, and ecosystems. We assemble existing cloud services and add our
code on top. Some services come with a lot of built-in functionality. For example, many
mainstream artificial intelligence services exist that can be used in applications to perform
image recognition, text extraction, and so on. Other services also come with more
technical features. For example, API Management solutions ship with API throttling,
JWT token validation, and many other features out of the box. Moreover, such services
are designed with resilience and robustness from the ground up. You should, at best,
create a pale copy, should you stubbornly develop it yourself.

To adopt a cloud or cloud-native approach, you need to modernize/refactor the assets
or start from a greenfield situation. As a software architect, you must look at how the
ecosystem can help you achieve more faster and in a better way. As a software architect,
you must offload the reusability quality attribute to the provider. You must pay particular
attention so that you don't reinvent the wheel.

Although there is probably not a single definition for cloud and cloud-native development,
let me share my definitions. A cloud development approach looks as follows:

Figure 6.3 – Cloud development approach

116 Impact of the Cloud on the Software Architecture Practice

Cloud development relies on three pillars:

• DevOps: This is the way we organize teams to collaborate on a product. Beyond
technicalities, it touches organizational aspects, such as the notion of virtual teams,
the product owner, minimum viable product (MVP), user stories, sprints, and
so on. The purpose of DevOps is to enhance collaboration and align the different
stakeholders. There is a famous saying that reflects this mindset: you build it, you
run it!

• CI/CD: The automation toolchain plays a crucial role in setting things to music. The
Infrastructure as Code (IaC) approach is an integral part of cloud and cloud-native
development. Software architects must grasp the capabilities of IaC and make sure
infrastructure architects grasp it too.

• PaaS/FaaS: I explained these hosting models in the previous section. They allow
us to leverage IaC to boost our productivity. With a proper automation toolchain,
we can easily create new environments or delete them. We do not need to rely on
the traditional Development Test Acceptance Production (DTAP) anymore. We
can spin up and delete environments as needed. Mindset-wise, you must accept
that you cannot control everything. As a software architect, you analyze the
ecosystem and try to leverage it as much as possible. You can, of course, try to add
some abstraction layers to your code to prevent vendor locking, but you should
not abuse them. When it comes to cloud and cloud native, leveraging is better than
abstracting away.

A cloud-native development approach looks as follows:

Figure 6.4 – Cloud-native development

Mapping cloud services to architecture styles and patterns 117

At first glance, it looks very similar because it is very similar:

• DevOps/GitOps: The cultural aspects remain the same, but the tooling differs.
Most cloud-native factories rely on GitOps instead of DevOps. GitOps revamps the
way infrastructures and applications are deployed. It targets container platforms
such as Kubernetes.

• CaaS/Containers: They represent the main difference between cloud and cloud-
native approaches. Strangely, you can work in a cloud-native way on-premises,
should you have your own K8s or OpenShift clusters, and if the clusters themselves
can be fully deployed and configured automatically.

• Microservices: In Chapter 4, Reviewing the Historical Architectural Styles –
Monoliths, SOA, and Microservices, we explained that microservices are often based
on container platforms because they offer the best possible support. This does not
mean that non-microservice applications cannot be cloud native, but microservices
leveraging container platforms are cloud native by design.

Containers and tooling are the biggest differences between cloud and cloud-native
approaches. However, they share the same DNA. They both aim at deploying faster,
gaining agility, and gaining autonomy while optimizing costs. They both require a mindset
shift, especially if you run them at scale. They are both very disruptive toward traditional
IT practices and software architecture. They both force the software architect to consider
the ecosystem as an enabler to achieve faster and better results. Finally, they both have
a positive impact on many quality attributes. Now, let's map some cloud services to
architecture styles and patterns.

Mapping cloud services to architecture styles
and patterns
To make sure you realize the importance of the ecosystem, I have mapped a few typical
cloud architecture styles and design patterns to some cloud services. These services help
you achieve results faster and better. You can rely on them to boost your productivity
and comply with many NFRs out of the box. This does not mean that you cannot work
with similar patterns on-premises, nor that you are restricted to the services depicted in
Figures 6.5 and 6.6, but this should give you a solid overview.

118 Impact of the Cloud on the Software Architecture Practice

To illustrate the mapping between the patterns and the services, I considered Microsoft
Azure and Amazon Web Services (AWS) because they are the two leading cloud
providers at the time of writing:

Figure 6.5 – Azure services mapped to patterns

Mapping cloud services to architecture styles and patterns 119

The circles with a thick border are the patterns, while the other circles represent the cloud
services. For example, if you must build a SAGA (which I will explain in the next section)
in choreography mode, you can rely on Azure Service Bus and/or Azure Event Grid to
handle the communication between the different SAGA participants. If you understood
this, you should be able to read the preceding diagram easily. I did the same exercise with
AWS, as illustrated in the following diagram:

Figure 6.6 – AWS services mapped to patterns

120 Impact of the Cloud on the Software Architecture Practice

The preceding diagram is built on the same principles as Figure 6.5. As you can see, cloud
services facilitate many design patterns. Now, let's review some of the patterns depicted in
the two preceding diagrams in more detail.

Reviewing cloud and cloud-native patterns
Now that you have more clarity on the service models and their high-level impact, let's
explore some patterns in more depth.

The Cache-Aside pattern
With cloud and cloud-native patterns, scaling a component is a scale-out/in story, not
a scale-up/down one. This means that we multiply the number of instances, instead of
adding more compute to a single instance. Scaling up/down is, of course, still possible,
but scaling out/in is by design. Multiplying instances is not a neutral thing because
it may disturb every in-process thing. Therefore, it has an impact on how we can
handle data caching, user sessions, and so on. When considering a scale-out story, you
should try to avoid in-process caching/sessions. Therefore, the Cache-Aside pattern
should be implemented with an external cache system, such as Azure Redis Cache
or AWS ElastiCache. The goal is to share cached data across instances and to prevent
inconsistencies. The following is a representation of the Cache-Aside pattern:

Figure 6.7 – Cache-Aside pattern

Reviewing cloud and cloud-native patterns 121

The code checks whether a given value is in the cache or not. If it's not in the cache, it goes
to the data store and updates the cache for future use. If the item is already in the cache, it
does not reach out to the data store. The Cache-Aside pattern also improves performance.
In the preceding diagram, we have a data store, but you can also use the cache store alone.
Now, let's look at another frequent pattern in the cloud, namely the SAGA pattern.

Understanding the SAGA pattern
The SAGA pattern deals with distributed transactions. This means that there are
multiple participants involved when considering a transaction as completed. In the
Atomicity Consistency Isolation Durability (ACID) world, a transaction is an atomic
group of operations. They all succeed, or they all fail, at once. This works well with
monoliths when a single backend writes to a SQL database, but this is not applicable to
distributed applications, which involve more components to consider a transaction as
complete. With microservices, the segmentation and segregation of duties across services
themselves cause the transactions to be distributed by design. Also, most of the time, each
microservice has its own data store, which can even be based on different engines. In such
an architecture, it is impossible to rely on ACID anymore.

Additionally, cloud and cloud-native implementations often rely on FaaS and PaaS services,
which sometimes do not even encompass the transaction concept. So, if you cannot use
database-level transactions, you must rely on a different mechanism, such as the SAGA
pattern. Unlike ACID, SAGA cannot simply roll back the whole transaction because of
one failed operation; instead, it brings the concept of compensating transactions. Local
transactions that have been committed by local services are already persisted to their own
data store. If one of the participants fails, the mechanism of compensating transactions
should make them invalidate what was committed, or resume to a certain sequence item.

122 Impact of the Cloud on the Software Architecture Practice

SAGA is an orchestrator-based or choreography-based pattern. The following diagram
represents the orchestrator pattern:

Figure 6.8 – SAGA orchestrator-based pattern

The orchestrator is in the driving seat and orchestrates the different participants that are
part of a transaction. Each service is unaware of what other services do, and only the
orchestrator knows the actual state of the ongoing transaction. If one of the local steps
fails, the orchestrator will trigger one or more compensating transactions to invalidate the
preceding steps when required.

In a choreography-based pattern, as shown in the following diagram, services are bridged
together with a pub/sub mechanism, where each service publishes its outcomes (success
or failure) that one or more subscribers capture, and, in turn, publish events about their
own outcome:

Reviewing cloud and cloud-native patterns 123

Figure 6.9 – SAGA choreography-based pattern

If one of the participants fails, it will publish its failure event, which will be captured
by the others to invalidate their local transaction. However, the choreography pattern
makes it harder to understand the full picture when a single transaction involves many
participants. You can see an example of SAGA using Azure services at https://
github.com/Azure-Samples/saga-orchestration-serverless. Now,
let's look at CQRS.

Command Query Request Segregation (CQRS)
In a nutshell, CQRS is a pattern that segregates commands (something that mutates
state) and queries (something that returns data without mutating state). CQRS is often
confused with Command Query Segregation (CQS). The latter is the strict definition of
the preceding definition. This is because you can segregate queries and commands even
when targeting the same data store. True CQRS implies request segregation, which means
that very different systems and data stores can handle requests and commands. This gives
you the ability to increase the speed of both write and read operations and be able to
scale them independently. By splitting the data stores (or having read-only and write-only
partitions), heavy read operations do not impact the write performance and vice versa.

https://github.com/Azure-Samples/saga-orchestration-serverless
https://github.com/Azure-Samples/saga-orchestration-serverless

124 Impact of the Cloud on the Software Architecture Practice

As you might have guessed already, working with different data stores automatically
implies eventual consistency, hence true CQRS is not suitable for every application
because not every application supports eventual consistency. I see many developers and
software architects replace the plain Create Read Update Delete (CRUD) pattern with
CQS (although they think they're using CQRS), but this brings lower value and is often
overkill since mere CRUD APIs do the job perfectly fine most of the time. Yet, both the
CQS and CQRS approaches force you to think about your command and query needs
upfront, which then helps you engineer your database(s) appropriately. This statement is
particularly true for NoSQL stores, which are often more challenging to engineer properly.
The following diagram shows a simplified CQRS implementation:

Figure 6.10 – The CQRS pattern

Reviewing cloud and cloud-native patterns 125

Here, you have a command and a read model, both relying on their own data stores.
The client application talks to different channels when querying data or mutating state.
A synchronization process happens between the command model and the read one and
varies according to the needs. In very basic scenarios where you simply want to split
reads and writes, you may use database read-only replicas and let the database engine
synchronize the data for you. In more advanced scenarios, the read model is composed
of materialized views, which are pre-built query results that are computed by the
synchronization process. Queries are very fast because results are tailor-made for query-
specific requirements. When applied this way, the CQRS pattern shows its value. As I
mentioned previously, cloud apps are distributed by nature, and that is why CQRS is more
commonly used in the cloud than on-premises.

A single application may ship with read-only APIs and command-only APIs. You can
regroup both requests and commands under the same API, but this will require splitting
commands and queries through a CQS approach first, and then letting each mode talk
to its own data store, which converts CQS into CQRS. In Chapter 5, Design Patterns and
Clean Architecture, we learned how to use a repository together with an ORM. When
applying CQRS to a single API, you may combine the mediator and repository patterns.
The following diagram shows the different components assembled:

Figure 6.11 – Mediator combined with repositories to achieve CQS or CQRS served by a single API

126 Impact of the Cloud on the Software Architecture Practice

If your query-related repositories talk to a read model and your command-related
repositories to a write model, then you have achieved CQRS. Of course, your read
model should also be updated whenever data is mutated. Refer to the service mappings
(Figures 6.5 and 6.6) depicted in the previous section to figure out which services can help
you build the CQRS pattern. You can also visit the GitHub repository mentioned in the
Technical requirements section to see a fully working CQS implementation.

Event sourcing
Event sourcing is always used in conjunction with CQRS because every implementation
makes use of materialized views for the read model. So, again, writes and reads are
separated, but the pursued objective differs, since the primary purpose of event sourcing
is to provide an audit trail and extreme scalability. Since events are immutable, we can
understand the full history of the data at any point in time. Even better, we can rebuild the
actual data state by replaying events from the event store. The following is a simple event
sourcing diagram:

Figure 6.12 – Event sourcing diagram

Summary 127

The event store holds the entire history of the events that occurred during the life of an
application. Once validated, every event is published to a message broker (or event bus)
to build materialized views. External systems can also subscribe to the published events to
handle them in their own context. With event sourcing, the event store is the single source
of truth, which can be used for audit purposes as well as to rebuild a new instance of the
app at any point in time by replaying the events. Event sourcing is an extremely complex
pattern that should only be used when it adds value to your business case.

Summary
The message I wanted to convey in this chapter is that cloud and cloud-native applications
are very disruptive with regard to traditional IT practices and design patterns. Cloud
service models and container platforms, such as Kubernetes, are broad ecosystems that
you should leverage in your application and solution designs. As we saw in the Service
models and software quality attributes section, the cloud service models have a positive
impact on many attributes, by design. We also saw that concrete pattern implementations
can be achieved faster and better, thanks to cloud services. Finally, we delved into some
recurrent cloud and cloud-native patterns that are inherent to distributed applications.

In the next chapter, we will focus on API-driven architectures, both serverless and
microservices-based, which are often built using the cloud and cloud-native systems.

Section 5:
Architectural Trends

and Summary

Theory is good, but sometimes a little bit of practice helps digest the theoretical concepts.
In this last section, I want to give you a more concrete technical experience of trendy
architectures by going through a microservice and a serverless use case. Although I had
to choose some technologies to build a concrete example, be sure that the principles
explained throughout the book go beyond that choice.

This section comprises the following chapter:

• Chapter 7, Architectural Trends and Global Summary

7
Trendy

Architectures and
Global Summary

This chapter is the continuation of the previous one since trendy architectures are often
cloud-based. In this chapter, we are going to focus on the main architectural trends that
every software architect should master.

More specifically, we will cover the following topics:

• API-driven architectures

• Hands-on with a microservice architecture example

• Hands-on with a serverless architecture example

Because I have already introduced the theoretical aspects of serverless and microservices,
I wanted to satisfy the developer in you, and walk you through more concrete examples,
at the risk of being less technology agnostic. By the end of this chapter, you should have
grasped the basics about API-driven architectures and get started with serverless and
microservices.

132 Trendy Architectures and Global Summary

Technical requirements
If you want to practice implementing the explanations provided in this chapter, you will
need the following:

• Visual Studio 2019: To open the solution provided on GitHub.

• Kubernetes: You will need a vanilla cluster such as MiniKube or Docker Desktop
with K8s embedded. You can also use any cloud-provided cluster (Azure, AWS,
or GCP). I used Azure Kubernetes Service to host my demo solution. Whatever
solution you choose, make sure that the cluster has access to the internet so that
it can pull the Docker images that I published to Docker Hub.

• An Azure subscription: I used Azure for the serverless sample application. To
create your own free Azure account, follow the steps explained at https://
azure.microsoft.com/free/.

All the code samples and diagrams for this chapter are available at https://github.
com/PacktPublishing/Software-Architecture-for-Humans/tree/
master/CHAPTER%207/.

API-driven architectures
Modern assets ship with APIs, but the notion of an API itself has changed over time.
In the nineties, an API was some sort of client library you could use to interact with an
application. In 2021, an API is a physical endpoint acting as a client interface that allows
clients to interact with backend services. The form has changed but the purpose is the
same. Both forms aim at facilitating integration scenarios and exposing application
features to client programs. Yet, I have noticed that although developers are usually aware
of how to develop backend services, they often lack skills in API management solutions
that can be used for both internal and internet-facing APIs. API management solutions
accommodate a few design patterns out of the box:

• Backend for frontends (BFF): The purpose of a BFF is to propose an API that is
tailor-made to a given consuming channel, such as a mobile application. The purpose
is to satisfy the specific requirements of a given client. A mobile app is often (less than
before) limited in bandwidth and has smaller screens, so you may not want to return
the same amount of information than what you would for a regular website. Similarly,
you may want to filter out a few API operations, depending on the client consumer.
API management solutions also offer response transformation mechanisms.

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://github.com/PacktPublishing/Software-Architecture-for-Humans/tree/master/CHAPTER%207/
https://github.com/PacktPublishing/Software-Architecture-for-Humans/tree/master/CHAPTER%207/
https://github.com/PacktPublishing/Software-Architecture-for-Humans/tree/master/CHAPTER%207/

Hands-on with a microservice architecture example 133

• Gateway aggregation: This pattern is quite close to the facade pattern but instead
of doing things in code, you rely on API gateway policies to do the heavy lifting.
Note that this pattern can also be easily tackled with code-based technologies
such as GraphQL (https://graphql.org/).

• Gateway offloading: The purpose of this pattern is to offload cross-cutting concerns
such as mutual authentication, JWT token validation, TLS termination, throttling,
data caching, and so on to an API gateway. This prevents you from writing code
for such activities and making sure requests that reach your backend services have
gone through a series of verifications first. Every illegal request gets discarded by the
gateway. This not only makes your life easier as a developer, but it also makes your
application more robust and secure. Cloud-based API gateways have Denial
of Service (DOS)/Distributed Denial of Service (DDOS) mitigations built in.

• Gateway routing: API gateways make it possible to route incoming requests
dynamically to different backend services according to the input request and
context variables. Most cloud-based gateways can route a request to the closest
region (closest to the client app) and/or fastest backend service.

API management solutions help you tackle the preceding list of patterns, but there
is more to this. They effectively allow you to manage the life cycle of your APIs and
expose them to your internal and external customers. There are many off-the-shelf
solutions, such as Azure API Management, AWS API Gateway, and MuleSoft Anypoint
API Manager, to name a few. As a software architect, you cannot miss out on these
types of solutions. Microservice architectures, as we'll see in the next section, are typical
API-driven architectures.

Hands-on with a microservice architecture
example
I introduced microservices in Chapter 4, Reviewing the Historical Architecture Styles, at a
high-level. Going through a full explanation is beyond the scope of this book. However,
because microservices have become a serious trend, I wanted to dive a little deeper
with a concrete example. The objective is to focus on the communication aspects, both
synchronous and asynchronous, of the different services.

https://graphql.org/

134 Trendy Architectures and Global Summary

The following diagram illustrates a small application I built for you to taste the flavor
of microservices:

Figure 7.1 – Microservice application example

In this example, we have three services:

• The order processing service, which is called by the client app that places orders.
This client app could be a mobile app, a web app, or another API. In theory, you
would put a BFF between the client and the order processing service, but I wanted
to keep things as simple as possible.

Once the order processing service has created an order, it publishes an event
to a RabbitMQ broker, to notify the shipping service (and potentially others)
asynchronously about the newly created order.

Hands-on with a microservice architecture example 135

• The order shipping service picks up every incoming order event to start the
shipping process. First, it performs a synchronous query to the order query service
to retrieve extra details about the order and starts the shipping process accordingly.

• The entire communication's plumbing (synchronous and asynchronous) is ensured
by Distributed Application Runtime (Dapr), which is a technology-agnostic
runtime.

All three services are hosted in a K8s cluster. You can find the full sample in this book's
GitHub repository, and the required steps to run this sample app in the .README file.
For your convenience, I have published the service container images to the public Docker
Hub so that you do not have to worry about having your own container registry.

Now, let's focus on the essential parts of this sample application.

Service discovery and communication
As stated in the preceding paragraph, Dapr (https://dapr.io/) is used to ensure
both synchronous and asynchronous service communication. I do not have a crystal ball,
but I am quite sure that Dapr will become a first-class citizen in the microservices world
soon. In a nutshell, it allows you to handle very common cross-cutting concerns such as
pub/sub, state management, bindings, and so on.

Dapr is technology- and cloud-agnostic. You can bind dozens of cloud services (AWS,
GCP, Azure, Alibaba, and so on) seamlessly, without reinventing the wheel in code
yourself. Dapr illustrates the growing importance of the ecosystem, and, as a software
architect, you must evaluate how such frameworks can be used as architectural building
blocks. Once you have downloaded the Dapr CLI tool (https://docs.dapr.io/
getting-started/install-dapr-cli/), installing Dapr is a one-liner command:

dapr init --runtime-version 1.0.1 -k -

The -k option will target the Kubernetes cluster you're currently working with.

https://dapr.io/
https://docs.dapr.io/getting-started/install-dapr-cli/)
https://docs.dapr.io/getting-started/install-dapr-cli/)

136 Trendy Architectures and Global Summary

Exploring the essential parts of the code
Now, let's explore the essential parts of the code to make sure you understand the process.
The order processing service is shown in the following screenshot:

Figure 7.2 – Order processing backend service

First, we get a DaprClient instance through DI. We expose the order endpoint
through an HTTP post. We pretend to create an order and then we publish the order
created event through Dapr, which links to our RabbitMQ broker through a component
file that I will show later.

Hands-on with a microservice architecture example 137

The shipping service's implementation looks as follows:

Figure 7.3 – Shipping service implementation

The ProcessOrderEvent method is decorated with a few attributes. The most
important one is the first line, Topic("bus","order"), which subscribes the shipping
service to the order topic. Then, the GetOrder method is used to make a synchronous
call to the order query service to retrieve extra details about the order. This method relies
on Dapr's built-in service discovery to find the query service. The only thing you need to
know as a service client is the application identifier, which, in this case, is orderquery.
Of course, the code shown in the preceding screenshot is not production-ready –
because you would need to handle unhappy cases – but it is enough to demonstrate the
communication plumbing, which is very important in microservice architectures.

138 Trendy Architectures and Global Summary

Deploying the application
To get started, you need to have your K8s cluster ready, you must pre-deploy RabbitMQ,
and you must grab its default credentials (follow the steps on GitHub). Once done, you
can deploy the application using the YAML deployment file shown (truncated) here:

Figure 7.4 – YAML deployment file

Hands-on with a microservice architecture example 139

The interesting part is the first block, which deploys the Dapr component, which targets
RabbitMQ through its type. The host attribute corresponds to the cluster endpoint
RabbitMQ is listening to. The second block is the deployment of the order processing
service (the two other services are deployed the same way). In the annotations section,
we tell the system to enable Dapr and we give our service an application identifier.

Testing the application
Once you have deployed the app, following the prerequisites explained on GitHub, you
should be able to test it. Because I wanted to keep things as simple as possible, I have
not created an ingress rule, meaning that the deployed services cannot be accessed from
outside K8s. Follow these steps to test the app:

1. Verify that all the pods are running:

Figure 7.5 – Listing pods

2. You should see that each pod runs two containers – the service and the Dapr
sidecar. To place an order, we need to forward the order processing (or any other
Dapr-injected pod) traffic to the host:

Figure 7.6 – Forwarding traffic to the host

3. Make sure to replace the pod name with your own. Once done, we can start making
calls to our localhost endpoint.

140 Trendy Architectures and Global Summary

4. Using your preferred tool (Postman, Fiddler, or whichever you like), run the
following HTTP POST request (a request sample is also available on GitHub):

Figure 7.7 – Sample HTTP POST request against the order processing service

5. Note that we could also use gRPC but, for the sake of simplicity, I simply performed
an HTTP call.

6. To see whether the request was handled properly, inspect the service logs:

Figure 7.8 – Inspecting the order processing logs

7. The last line shows that the order was created. It's now time to look at the shipping
service to see if it pulled the order created event from the RabbitMQ broker:

Hands-on with a serverless architecture example 141

Figure 7.9 – Inspecting shipping logs

The last line also shows that the shipping process was started and that the order could be
retrieved correctly from the order query service, because it found that two products were
attached to it.

I hope that this small sample app can help you get started with microservices. Now,
let's look at yet another trendy architecture style, namely serverless architecture.

Hands-on with a serverless architecture
example
I introduced serverless architectures in Chapter 6, Impact of the Cloud on the Software
Architecture Practice, so it is time to go through a small example to let you taste
the serverless flavor. Remember that true serverless is based on fully delegating the
infrastructure to the cloud provider, and costs are consumption-based. Therefore, it is
hard to be cloud-agnostic, so I had to choose a cloud vendor for this example. Due to
this, I went for Azure. The following diagram shows our very simple application:

Figure 7.10 – Diagram of the serverless sample application

142 Trendy Architectures and Global Summary

We are going to reuse the same K8s cluster to host the event publisher, which publishes
events to a custom event grid topic. An Azure function, represented by the event handler
in the preceding diagram, subscribed to our topic and gets triggered by the event grid
whenever a new event is being pushed. As I explained earlier, serverless architectures are
particularly suited for event-driven and asynchronous scenarios. The beauty of serverless
is that you can immediately deploy your code and you do not especially need to worry too
much about scalability, high availability, and so on. Since we're talking about code, let's see
what the event publisher looks like.

Event publisher code
The event publisher is a simple console program that sends events to our event grid topic,
which we will deploy in the next section. The program, shown in the following screenshot,
takes the topic endpoint and the access key (to authenticate) as input, and then simply
sends events every 100 milliseconds:

Figure 7.11 – Event publisher code

I could have used Dapr to push messages to the event grid, but the configuration of the
Dapr component is not that straightforward, so I made it as simple as possible for you.
I published this small console app on Docker Hub.

Hands-on with a serverless architecture example 143

Deploying the required infrastructure
The time has come to deploy the Azure infrastructure and our event publisher within
K8s. To deploy the Azure infrastructure, make sure to use an account that is at least
a contributor to the subscription that will host the Azure resources. For your convenience,
I have prepared a few IaC script templates, which are available in this book's GitHub
repository. Let's go through the deployment steps.

1. First, you must log into https://shell.azure.com/ using your trial
or paid subscription.

2. Download the IaC files and the .zip package that contains the function code.
Alternatively, you can clone the repository. Once downloaded, upload the files
to Cloud Shell:

Figure 7.12 – Uploading files to Cloud Shell

3. You will have to upload files one by one.
4. Next, type the following command to create the resource group that will host

the resources:

az group create -l westeurope -n packtserverless

5. Now, it is time to deploy the different services. Run the following command to
deploy the first template:

az deployment group create --template-file serverless1.
json --resource-group packtserverless --parameters
appName="YOURVALUE"

https://shell.azure.com/

144 Trendy Architectures and Global Summary

6. Make sure you replace YOURVALUE with something unique. This will be used by
Azure to connect to the function. In my case, I used packtsrvlessarch. Make
sure not to use any fancy characters. At this stage, you should find the following
resources in your resource group:

Figure 7.13 – Checking the deployed resources

7. Azure functions require a Storage Account and an App Service Plan (bound
to the dynamic pricing tier for serverless functions) to function. There is also
an Application Insights instance that is used to monitor the function.

8. Now, you can deploy the function code that sits in the .zip file:

az webapp deployment source config-zip --resource-group
packtserverless --name YOURVALUE --src event-consumer.zip

9. Now comes the last part of the deployment, which is creating the event grid's topic
and subscription. This last part will subscribe the previously deployed function to
the topic:

az deployment group create --template-file
serverless2.json --resource-group packtserverless
--parameters eventGridTopicName='YOURVALUEtp'
eventGridSubscriptionName='YOURVALUEtpsub'
functionAppName='YOURVALUE'

10. Note that YOURVALUE still represents the name of your function. At this stage,
you should have all resources deployed and linked together:

Hands-on with a serverless architecture example 145

Figure 7.14 – Checking if all the resources were deployed

11. The last item is the event grid topic. Upon clicking on it, you should see that
a subscription for the Azure function was indeed created:

Figure 7.15 – The Azure function subscription

12. The name will be YOURVALUEtpsub. While you are looking at your event grid
topic, take note of the topic's endpoint and access keys. The topic endpoint can
be grabbed from the overview page, and the access keys (two keys) are accessible
through the left menu. Copy only one of the keys. We need both the endpoint and
one of the keys for our event publisher.

The Azure infrastructure has been completely deployed. However, we still need to deploy
the event publisher to our K8s cluster before we can test the application. So, we are almost
done. Let's go through the final remaining steps:

1. Edit serverless.yml (available on GitHub) and replace YOURENDPOINT and
YOURKEY with your own values, taken from the preceding step:

Figure 7.16 – YAML spec of the event publisher container

146 Trendy Architectures and Global Summary

2. Deploy the YML file to your cluster:

kubectl apply -f .\serverless.yml

Congratulations, you are done!

Testing the application
Now that everything has been deployed, you should have at least one instance of the event
publisher pod running. You can verify this as follows:

Figure 7.17 – Checking that the event publisher pod is running

This should already publish events to our grid, and notifications should be pushed to our
function. Before we scale out to more instances, navigate to your Application Insights
resource and click on the live metrics menu on the left. Once the metrics start showing
up, scale out the event publisher, as shown in the following screenshot:

Figure 7.18 – Scaling out the event publisher

Hands-on with a serverless architecture example 147

I scaled the event publisher for 50 instances. This may or may not work in your own
environment, depending on your cluster capacity. If 50 is too much, just reduce it to 5.
The goal is to create more events and see how Azure functions scale accordingly. The live
metrics screen should show something similar to the following:

Figure 7.19 – Live metrics showing the request rate and duration

No matter how you scaled the event publisher, leave it running for about a minute and
then scale the deployment back to zero.

As shown in the preceding screenshot, at peak time, the system was handling about 525
requests per second and most executions took less than 20 milliseconds. We did not
have to configure anything; we just let the cloud provider adjust the computing power
according to the demand. The following screenshot shows that the system scaled out,
up to five instances:

Figure 7.20 – Azure function max instance count

148 Trendy Architectures and Global Summary

Running the same query after stopping the event publisher returns no results, meaning
that an instance is no longer running. You do not need to run the query yourself. So,
this very small serverless application is indeed based on a system that scales in and out
according to demand. The cherry on the cake is that in Azure, you can have 1 million
executions per month for free. You could force Azure functions to scale even more, should
you have a powerful cluster or if you can run the event publisher from different systems
at the same time. In my case, I simply used a single-node lab cluster, which is, by itself,
a limiting factor, to really produce a high workload.

I hope that you enjoyed this short journey into the magical world of serverless
architecture. Now, let's recap this chapter.

Summary
In this chapter, I tried to give you more concrete examples of trendy architecture styles,
because I already introduced the theoretical part in the previous chapter. The purpose
of the two examples provided in this chapter was to demonstrate how quickly you can get
started with cloud and cloud-native applications. Both examples relied on Infrastructure
as Code. The remaining manual steps were there to keep things simple but rest assured
that this can be fully automated in the real world.

Both examples showed that the ecosystem plays an important role when building new
solutions. For the serverless application, we relied on Azure Functions and Azure Event
Grid, and we leveraged K8s's built-in scaling capabilities to load test our function handler.
In the microservices example, we used Dapr, yet another great framework that comes
from the K8s ecosystem. Both demos were intended to highlight the importance of this
ecosystem, which you should never neglect as a software architect. The times where
we were building everything from scratch are definitely gone. Studying and keeping in
touch with the ever-growing ecosystem is entirely part of the software architect's duty.

Postface 149

Postface
I hope that you enjoyed your software architecture journey. As you understood from
the initial chapter, there is no single vision of software architecture. I think that a good
software architect must specialize in application development and architecture, as well
as understand the bigger picture. A good software architect must be able to interact with
every type of stakeholder. This is why I took you through the discovery of a few popular
frameworks, such as TOGAF, ITIL, and NIST, as well as the ATAM methodology. These
skills (even partially) are a must-have to grow as an architect. The frameworks help you
structure and organize your work. The extent to which you apply them depends on the
organization you are working for.

I could not bypass design patterns because they are an integral part of the software
architect's job, but there are tons of books about them, so I did not want to write yet
another book on design patterns. Our last two chapters showed how the cloud and
related ecosystems are game-changers in terms of designing applications. This fact is
often overlooked by many developers and architects, but do not fall into the same trap if
you do not want to miss the bandwagon. It is clear that the cloud and what I would call
the globalization of containerization are here to stay, so you'd better look at them. More
importantly, I hope that you got the message I conveyed throughout the entire book:
always exercise good judgment over things. Whether you are working with frameworks
or design patterns, do not blindly apply things to the letter. Make sure you do not come
with a one size fits all approach, which never works in practice, or at best generates much
frustration. Be pragmatic, not dogmatic!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

152 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Software Architecture Patterns for Serverless Systems

John Gilbert

ISBN: 978-1-80020-703-5

• Explore architectural patterns to create anti-fragile systems that thrive with change
• Focus on DevOps practices that empower self-sufficient, full-stack teams
• Build enterprise-scale serverless systems
• Apply microservices principles to the frontend
• Discover how SOLID principles apply to software and database architecture
• Create event stream processors that power the event sourcing and CQRS pattern
• Deploy a multi-regional system, including regional health checks, latency-based routing,

and replication
• Explore the Strangler pattern for migrating legacy systems

https://www.packtpub.com/product/software-architecture-patterns-for-serverless-systems/9781800207035

Other Books You May Enjoy 153

The Azure Cloud Native Architecture Mapbook

Stéphane Eyskens, Ed Price

ISBN: 978-1-80056-232-5

• Gain overarching architectural knowledge of the Microsoft Azure cloud platform

• Explore the possibilities of building a full Azure solution by considering different
architectural perspectives

• Implement best practices for architecting and deploying Azure infrastructure

• Review different patterns for building a distributed application with ecosystem frameworks
and solutions

• Get to grips with cloud-native concepts using containerized workloads

• Work with AKS (Azure Kubernetes Service) and use it with service mesh technologies to
design a microservices hosting platform

https://www.packtpub.com/product/the-azure-cloud-native-architecture-mapbook/9781800562325

154

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Software Architecture for Busy Developers, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1801071594
https://packt.link/r/1801071594

Index

A
abstract factory 80
always-on Structured Query

Language (SQL) cluster 36
Amazon Web Services (AWS) 118
Anything as a Service (XaaS or *aaS) 113
API-driven architectures 132, 133
API management solutions

accommodating, design patterns 132
application architecture (AA) 10
Application Insights 144
application programming

interface (API) 21, 73
App Service Plan 144
ArchiMate

reference link 17
ArchiSurance Case Study

reference link 22
architectural approaches, ATAM

use-case scenarios
about 44
cloud-based architecture 46, 47
on-premises infrastructure 45

architectural patterns 69
architecture building blocks (ABBs) 19

Architecture Development
Method (ADM) 18

architecture patterns 20
architecture significant

requirement (ASR) 39
architecture styles 52
Architecture Tradeoff Analysis

Method (ATAM)
about 4, 32, 68
in agile-driven organization 48
non-risk 35
risk 34
sensitivity points 33, 34
trade-off points 33, 34

Archi tool
reference link 22

ATAM, use-case scenarios
about 38
architectural approaches 44
identified sensitivity points 44
quality-attribute scenarios 41-44
utility trees 39, 40
wrapping up 47

Atomicity Consistency Isolation
Durability (ACID) 121

156 Index

availability 39
AWS ElastiCache 120
AWS Elastic Container Service (ECS) 112
Azure Container Instances (ACI) 112
Azure infrastructure

deploying 143-145
Azure Redis Cache 120

B
backend for frontend (BFF) 60, 132
building blocks 19
business intelligence (BI) 8
business to business (B2B) 61
business to consumer (B2C) 61
business to enterprise (B2E) 61

C
Cache-Aside pattern 120, 121
cargo cult programming 68
Center for Internet Security (CIS) 17
Certified Information Systems Security

Professional (CISSP) 22
chief information officer (CIO) 8
chief information security

officer (CISO) 8
claim check pattern 52
clean architecture 100-102
cloud

about 108
versus cloud native 114

Cloud Access Security Broker (CASB) 110
cloud development approach 115
cloud-native development approach

CaaS/Containers 117
DevOps/GitOps 117
microservices 117

cloud-native patterns
reviewing 120

cloud-native systems 108
cloud service models 108
cloud services

mapping, to architecture styles
and patterns 117-120

COBIT for Risk 24
code smell 102, 103
Command Query Request Segregation

(CQRS) 91, 123-126
Command Query Segregation (CQS) 123
competing consumer pattern 52
Containers as a Service (CaaS)

about 112
using, scenarios 112

continuous integration/continuous
delivery (CI/CD) 23, 37, 102

Control Objectives for Information and
Related Technologies (COBIT)

about 17, 23
enablers 24, 25

Create Read Update Delete
(CRUD) 95 , 124

D
Dapr CLI tool

download and installation link 135
data architecture (DA) 8, 9
data-information-knowledge-

wisdom (DIKW) 8
data privacy officer (DPO) 24
data transfer object (DTO) 94
Demilitarized Zone (DMZ) 111
Denial of Service (DOS)/Distributed

Denial of Service (DDOS) 133

Index 157

dependency injection (DI) 68
dependency inversion principle (DIP) 67
design pattern

about 66
advantages 99
DI pattern 70-72
facade design pattern 94
factory method pattern 80, 81
lazy loading/initialization pattern 84
mediator pattern 90
purpose 67, 68
repository design pattern 94, 95
singleton design pattern 76
strategy pattern 87
use case 98, 99

design patterns, types
behavioral 69
creational 68
structural 69

development-operations (DevOps) 23
development-security-operations

(DevSecOps) 23
Development Test Acceptance

Production (DTAP) 116
DI code

direct mode 74, 75
indirect mode 72-74

DI container 71
DI pattern

about 70-72
advantages 70, 75
disadvantages 75

disaster recovery (DR) 45
Distributed Application Runtime (Dapr)

about 64, 135
reference link 135

domain-driven design (DDD) 61, 101

E
EA practice 22
enterprise architects, duties

about 7
application architecture (AA) 10
data architecture (DA) 8, 9
infrastructure architecture (IA) 7
security architecture (SA) 8
solution architecture (SolAr) 7

Enterprise Service Bus (ESB) 57
Entity Framework 94
Event-Driven Architecture (EDA) 52
event publisher code 142
event sourcing 126, 127
eventual consistency 62
Extended Markup Language (XML) 58

F
facade design pattern 94
factory method pattern

about 80, 81
advantages 84
disadvantages 84
working 81-84

frameworks 16
functional requirements (FRs) 29, 35
Function as a Service (FaaS)

about 110, 111
using, scenarios 110

G
Gang of Four (GoF)

reviewing 68, 69
gateway aggregation 133
gateway offloading 133

158 Index

gateway routing 133
General Data Protection

Regulation (GDPR) 24
GitOps 23
GitSecOps 23
globally unique identifier (GUID) 80
Google remote procedure

call (gRPC) 34, 60
GraphQL 133

H
hexagonal architecture

reference link 100
HyperText Transfer Protocol

1 (HTTP/1) 34
HyperText Transfer Protocol (HTTP) 76

I
Identity and Access Management

(IAM) 8, 22
incremental 48
Information Systems Audit and Control

Association (ISACA) 23
infrastructure architecture (IA) 7
Infrastructure as a Service (IaaS)

about 109, 113
using, scenarios 113

interface segregation principle (ISP) 67
International Electrotechnical

Commission (IEC) 17
International Organization for

Standardization (ISO) 17
interoperability 40
inversion of control (IoC) 81
Istio 64

IT Infrastructure Library (ITIL) 7, 28
IT Service Management (ITSM) 7, 17

K
Kubernetes (K8s)

reasons, fitting for microservices 63

L
lazy loading/initialization pattern

about 84
advantages 86
disadvantages 86
working 85, 86

Linkerd 64
Liskov substitution principle (LSP) 67

M
materialized views 125
mediator pattern

about 90
advantages 93
disadvantages 93
working 91-93

microservice architecture, example
about 133
application, deploying 138, 139
application, testing 139-141
parts of code, exploring 136, 137
service communication 135
service discovery 135
services 134, 135

microservice pattern 21
microservices

about 59, 60
benefits 61

Index 159

challenges 62
hosting 63
working with 64

Microsoft Azure 118
Microsoft BizTalk 57
minimum viable product (MVP) 48, 116
Model View Controller (MVC) 52
Monitor, Evaluate, and Assess (MEA) 24
monoliths

about 53, 54
benefits 55
challenges 55
macro level 55
micro level 55

mTLS 64

N
National Institute of Standards and

Technology (NIST) 17, 28
NIST Cyber Security Framework

(NIST CSF)
reference link 28

non-functional requirements
(NFRs) 21, 69

non-technical risk scenario 27

O
object-relational models (ORMs) 80
Office 365 109
onion architecture

reference link 100
open-closed principle (OCP) 67
Open Service Mesh 64
order processing service 134

P
performance 40
personally identifiable

information (PII) 32
pillars, for cloud development

CI/CD 116
DevOps 116
PaaS/FaaS 116

Platform as a Service (PaaS)
about 111
using, scenarios 111

PodDisruptionBudget resource type 64
point-in-time restore (PITR) 36
protocol buffers

reference link 60
Publish/Subscribe models 52
publish/subscribe (pub/sub)

architectures 90

Q
quality attributes

exploring 35-37
scenarios 37, 38

queue-based load leveling pattern 52

R
RabbitMQ broker 134
read-access geo-redundant

storage (RA-GRS) 46
Recovery Point Objective (RPO) 36
Recovery Time Objective (RTO) 36
recurrent patterns

applying, to use-case scenario 69, 70

160 Index

repository design pattern
about 94, 95
usage scenarios 97
working 95-97

repository pattern 70
REpresentational State Transfer

(REST) 21, 58
request for proposal (RFP) 47
residual risk 25
risk

about 25
non-technical scenario 26, 27
technical scenario 27

risk management 26
root cause analysis (RCA) 32

S
SAGA pattern 121, 122
Salesforce 109
scalability 40
security architecture (SA) 8
security frameworks 22
security operations centers (SOCs) 8
security posture 8
sensitivity points, ATAM

about 33, 34
examples 34

separation of concerns (SoC) 66
serverless architecture, example

about 141, 142
application, testing 146-148
event publisher code 142
infrastructure, deploying 143-145

service communication 135
service discovery 135

service-level agreement (SLA) 35
service models

selecting 114
service-oriented architecture (SOA)

about 56, 57, 115
benefits 58
challenges 59

shipping service 135
Simple Object Access Protocol (SOAP) 58
single-responsibility principle (SRP) 66
singleton design pattern

about 76
advantages 80
disadvantages 80
working 77-80

software architect's
duties 5, 6

software architecture
about 4
positioning, within global

architecture landscape 10
software architecture, disciplines

about 6, 7
enterprise architects 7

Software as a Service (SaaS) 109
software quality attributes 114
SOLID principles 66
solution architecture (SolAr) 7
solution building blocks (SBBs) 19, 20
Sparx Systems Enterprise Architect 17
static factory 80
Storage Account 144
strategy pattern

about 87
advantages 89, 90
disadvantages 90
working 87-89

Index 161

T
technical risk scenario 27
The Open Group Architecture

Framework (TOGAF)
about 7
Architecture Development

Method (ADM) 18
three-tier architecture 52
time to market (TTM) 36
total cost of ownership (TCO) 36
trade-off points, ATAM 33, 34
Transmission Control Protocol/

Internet Protocol (TCP/IP) 34

U
Unified Modeling Language (UML) 17
utility trees 38-40

W
webMethods 57
Web Services Description

Language (WSDL) 58

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Introduction
	Chapter 1: Introducing Software Architecture
	Software architecture in a nutshell
	A software architect's duties
	Introducing the different architecture disciplines
	EA

	Positioning software architecture within the global architecture landscape
	Summary

	Section 2:
The Broader Architecture Landscape
	Chapter 2: Exploring Architecture Frameworks and Methodologies
	Introducing frameworks and methodologies
	Delving into TOGAF, ArchiMate, and related tools – EA
	Introducing TOGAF's ADM
	Building blocks
	Architecture patterns
	EA wrap-up

	Introducing security frameworks
	COBIT for risk
	NIST

	ITIL in a nutshell
	Summary

	Chapter 3: Understanding ATAM and the Software Quality Attributes
	Introducing ATAM
	Understanding sensitivity points, trade-off points, risks, and non-risks
	Exploring quality attributes
	Getting started with quality-attribute scenarios
	Practical use case
	Utility trees
	Quality-attribute scenarios
	Identified sensitivity points
	Architectural approaches

	ATAM and agile at scale
	Summary

	Section 3:
Software Design Patterns and Architecture Models
	Chapter 4: Reviewing the Historical Architecture Styles
	Introducing architecture styles
	Starting with monoliths
	Benefits of monoliths
	Challenges of monoliths

	Continuing with service-oriented architecture (SOA)
	Benefits of SOA
	Challenges of SOA

	Microservices
	Benefits of microservices
	Challenges of microservices
	Hosting microservices
	Microservices in action

	Summary

	Chapter 5: Design Patterns and Clean Architecture
	Technical requirements
	Understanding design patterns and their purpose
	Reviewing the GoF
	Delving into the most recurrent patterns and applying them to a use-case scenario
	Understanding the DI pattern
	Exploring the singleton design pattern
	Factory method
	Lazy loading/initialization pattern
	Strategy pattern
	Mediator pattern
	Facade design pattern
	Repository design pattern
	Design patterns use case

	Looking at clean architecture
	My top 10 code smells
	Summary

	Section 4:
Impact of the Cloud on Software Architecture Practices
	Chapter 6: Impact of the Cloud on the Software Architecture Practice
	Technical requirements
	Introducing cloud service models, the cloud, and cloud-native systems
	Software as a Service (SaaS)
	Function as a Service (FaaS)
	Platform as a Service (PaaS)
	Containers as a Service (CaaS)
	Infrastructure as a Service (IaaS)
	Anything as a Service (XaaS or *aaS)
	Service models and software quality attributes
	Cloud versus cloud native

	Mapping cloud services to architecture styles and patterns
	Reviewing cloud and cloud-native patterns
	The Cache-Aside pattern
	Understanding the SAGA pattern
	Command Query Request Segregation (CQRS)
	Event sourcing

	Summary

	Section 5:
Architectural Trends and Summary
	Chapter 7: Trendy Architectures and Global Summary
	Technical requirements
	API-driven architectures
	Hands-on with a microservice architecture example
	Service discovery and communication
	Exploring the essential parts of the code
	Deploying the application
	Testing the application

	Hands-on with a serverless architecture example
	Event publisher code
	Deploying the required infrastructure
	Testing the application

	Summary
	Postface

	Other Books You May Enjoy
	Index

