
Clean Code
Principles and

Patterns

	 A Software Practitioner’s
Handbook

PETRI SILÉN

Copyright © 2023 Petri Silén

All rights reserved.

ISBN: 9798373835732

ii

Table of Contents

Table of Contents	
1
About the Author	
9
Introduction	
11
Architectural Principles	
15

Software Hierarchy	
16
Single Responsibility Principle	
17
Uniform Naming Principle	
19
Encapsulation Principle	
20
Service Aggregation Principle	
21
High Cohesion, Low Coupling Principle	
34
Library Composition Principle	
35
Avoid Duplication Principle	
36
Externalized Service Configuration Principle	
37

Environment Variables	
38
Kubernetes ConfigMaps	
39
Kubernetes Secrets	
40

Service Substitution Principle	
42
Inter-Service Communication Methods	
42

Synchronous Communication Method	
42
Asynchronous Communication Method	
43
Shared Data Communication Method	
44

Domain-Driven Architectural Design Principle	
45
Design Example 1: Mobile Telecom Network Analytics Software System	
46
Design Example 2: Banking Software System	
52

Autopilot Microservices Principle	
54
Stateless Microservices Principle	
54
Resilient Microservices Principle	
54
Horizontally Autoscaling Microservices Principle	
56

1

Highly-Available Microservices Principle	
57
Observable Microservices Principle	
58

Software Versioning Principles	
59
Use Semantic Versioning Principle	
59
Avoid Using 0.x Versions Principle	
59
Don't Increase Major Version Principle	
60
Implement Security Patches and Bug Corrections to All Major Versions Principle	
60
Avoid Using Non-LTS Versions in Production Principle	
61

Git Version Control Principle	
61
Feature Branch	
61
Feature Toggle	
62

Architectural Patterns	
62
Event Sourcing Pattern	
62
Command Query Responsibility Segregation (CQRS) Pattern	
63
Distributed Transaction Patterns	
64

Saga Orchestration Pattern	
65
Saga Choreography Pattern	
67

Preferred Technology Stacks Principle	
69
Object-Oriented Design Principles	
73

SOLID Principles	
73
Single Responsibility Principle	
74
Open-Closed Principle	
78
Liskov's Substitution Principle	
82
Interface Segregation and Multiple Inheritance Principle	
85
Program Against Interfaces Principle (Generalized Dependency Inversion Principle)	
91

Clean Microservice Design Principle	
99
Uniform Naming Principle	
104

Naming Interfaces and Classes	
104
Naming Functions	
105

Preposition in Function Name	
108
Example 1: Renaming JavaScript Array Methods	
109
Example 2: Renaming C++ Casting Expressions	
110
Naming Method Pairs	
111
Naming Boolean Functions (Predicates)	
112
Naming Builder Methods	
115
Naming Methods with Implicit Verbs	
116
Naming Property Getter Functions	
116
Naming Lifecycle Methods	
117
Naming Function Parameters	
117

Encapsulation Principle	
118
Immutable Objects	
118
Don't Leak Modifiable Internal State Outside an Object Principle	
119

2

Don't Assign From a Method Parameter to a Modifiable Field	
120
Real-life Example of Encapsulation Violation: React Class Component's State	
121

Object Composition Principle	
123
Domain-Driven Design Principle	
130

Domain-Driven Design Example 1: Data Exporter Microservice	
131
Domain-Driven Design Example 2: Anomaly Detection Microservice	
137

Design Patterns	
139
Design Patterns for Creating Objects	
139

Factory Pattern	
139
Abstract Factory Pattern	
140
Factory Method Pattern	
142
Builder Pattern	
144
Singleton Pattern	
146
Prototype Pattern	
148
Object Pool Pattern	
150

Structural Design Patterns	
154
Composite Pattern	
154
Facade Pattern	
156
Bridge Pattern	
158
Strategy Pattern	
162
Adapter Pattern	
162
Proxy Pattern	
166
Decorator Pattern	
167
Flyweight Pattern	
169

Behavioral Design Patterns	
170
Chain of Responsibility Pattern	
171
Observer Pattern	
175
Command/Action Pattern	
177
Iterator Pattern	
184
State Pattern	
185
Mediator Pattern	
187
Template Method Pattern	
204
Memento Pattern	
206
Visitor Pattern	
207
Null Object Pattern	
211

Don't Ask, Tell Principle	
211
Law of Demeter	
214
Avoid Primitive Type Obsession Principle	
215
Dependency Injection (DI) Principle	
223
Avoid Code Duplication Principle	
229
Inheritance in Cascading Style Sheets (CSS)	
232

Coding Principles	
235

3

Uniform Variable Naming Principle	
235
Naming Integer Variables	
236
Naming Floating-Point Number Variables	
236
Naming Boolean Variables	
237
Naming String Variables	
238
Naming Enum Variables	
238
Naming Collection (Array, List, and Set) Variables	
239
Naming Map Variables	
239
Naming Pair and Tuple Variables	
240
Naming Object Variables	
240
Naming Optional Variables	
241
Naming Function Variables (Callbacks)	
241
Naming Class Properties	
243
General Naming Rules	
243

Use Short, Common Names	
243
Pick One Name And Use It Consistently	
243
Avoid Obscure Abbreviations	
244
Avoid Too Short Or Meaningless Names	
244

Uniform Source Code Repository Structure Principle	
244
Java Source Code Repository Structure	
245
C++ Source Code Repository Structure	
245
JavaScript/TypeScript Source Code Repository Structure	
246

Domain-Based Source Code Structure Principle	
247
Avoid Comments Principle	
255

Name Things Properly	
255
Single Return Of Named Value At The End Of Function	
257
Return Type Aliasing	
258
Extract Constant for Boolean Expression	
260
Extract Named Constant or Enumerated Type	
261
Extract Function	
261
Name Anonymous Function	
263
Avoiding Comments in Bash Shell Scripts	
264

Function Single Return Principle	
265
Prefer a Statically Typed Language for Production Code Principle	
269

Function Arguments Might Be Given in Wrong Order	
269
Function Argument Might Be Given with Wrong Type	
269
Not All Function Arguments Are Given	
269
Function Return Value Type Might Be Misunderstood	
270
Forced to Write Public API Comments	
270
Type Errors Are Not Found in Testing	
270

Refactoring Principle	
270
Rename	
271

4

Extract Method	
272
Extract Constant	
272
Replace Conditionals with Polymorphism	
274
Introduce Parameter Object	
275
Invert If Statement	
276

Static Code Analysis Principle	
277
Common Static Code Analysis Issues	
278

Error/Exception Handling Principle	
280
Handling Checked Exceptions in Java	
287
Returning Errors	
288

Returning Failure Indicator	
288
Returning an Optional Value	
289
Returning an Error Object	
289
Adapt to Wanted Error Handling Mechanism	
291
Asynchronous Function Error Handling	
293
Functional Exception Handling	
294
Stream Error Handling	
297

Don't Pass or Return Null Principle	
298
Avoid Off-By-One Errors Principle	
299
Be Critical When Googling Principle	
300
Optimization Principle	
300

Optimization Patterns	
301
Optimize Busy Loops Only Pattern	
301
Remove Unnecessary Functionality Pattern	
302
Copy Memory in Chunks Pattern (C++)	
302
Object Pool Pattern	
302
Replace Virtual Methods with Non-Virtual Methods Pattern (C++)	
303
Inline Methods Pattern (C++)	
303
Use Unique Pointer Pattern (C++)	
303
Share Identical Objects a.k.a Flyweight Pattern	
304

Testing Principles	
305
Functional Testing Principles	
305

Unit Testing Principle	
306
Test-Driven Development (TDD)	
308
Naming Conventions	
312
Mocking	
313
UI Component Unit Testing	
329

Software Component Integration Testing Principle	
330
UI Integration Testing	
339
Setting Up Integration Testing Environment	
340

End-to-End (E2E) Testing Principle	
343
Non-Functional Testing Principle	
346

5

Performance Testing	
346
Data Volume Testing	
347
Stability Testing	
348
Reliability Testing	
348
Stress and Scalability Testing	
349
Security Testing	
350
Other Non-Functional Testing	
350

Visual Testing	
351
Security First Principle	
353

Threat Modelling	
353
Decompose Application	
353
Determine and Rank Threats	
354
Determine Countermeasures and Mitigation	
355

Security Features	
355
Authentication and Authorization	
355

OpenID Connect Authentication and Authorization in Frontend	
355
OAuth2 Authorization in Backend	
367

Password Policy	
371
Cryptography	
372
Denial-of-service (DoS) Prevention	
373
SQL Injection Prevention	
373
Security Configuration	
373
Automatic Vulnerability Scanning	
374
Integrity	
374
Error Handling	
374
Audit Logging	
374
Input Validation	
374

Validating Numbers	
375
Validating Strings	
375
Validating Arrays	
375
Validating Objects	
375
Validation Library Example	
376

API Design Principles	
377
Frontend Facing API Design Principles	
377

JSON-RPC API Design Principle	
377
REST API Design Principle	
379

Creating a Resource	
379
Reading Resources	
381
Updating Resources	
384
Deleting Resources	
385
Executing Non-CRUD Actions on Resources	
386
Resource Composition	
386

6

HTTP Status Codes	
387
HATEOAS and HAL	
388
Versioning	
389
Documentation	
389
Implementation Example	
390

GraphQL API Design	
392
Subscription-Based API Design	
400

Server-Sent Events (SSE)	
400
GraphQL Subscriptions	
403
WebSocket Example	
404

Inter-Microservice API Design Principles	
416
Synchronous API Design Principle	
416

gRPC-Based API Design Example	
416
Asynchronous API Design Principle	
419

Request-Only Asynchronous API Design	
419
Request-Response Asynchronous API Design	
420

Databases And Database Principles	
423
Relational Databases	
423

Structure of Relational Database	
424
Use Object Relational Mapper (ORM) Principle	
424
Entity/Table Relationships	
427

One-To-One/Many Relationships	
427
Many-To-Many Relationships	
429

Use Parameterized SQL Statements Principle	
430
Normalization Rules	
432

First Normal Form (1NF)	
433
Second Normal Form (2NF)	
433
Third Normal Form (3NF)	
433

Document Database Principle	
434
Key-Value Database Principle	
436
Wide-Column Database Principle	
437
Search Engine Principle	
442

Concurrent Programming Principles	
443
Threading Principle	
443

Parallel Algorithms	
444
Thread Safety Principle	
445

Synchronization Directive	
446
Atomic Variables	
446
Concurrent Collections	
447
Mutexes	
448
Spinlocks	
449

Teamwork Principles	
453

7

Use Agile Framework Principle	
453
Define the Done Principle	
454
You Write Code for Other People Principle	
455
Avoid Technical Debt Principle	
455
Software Component Documentation Principle	
457
Code Review Principle	
458

Focus on Object-Oriented Design	
458
Focus on Proper and Uniform Naming	
458
Don't Focus on Premature Optimization	
458
Detect Possible Malicious Code	
458

Uniform Code Formatting Principle	
459
Highly Concurrent Development Principle	
459

Dedicated Microservices and Microlibraries	
459
Dedicated Domains	
459
Follow Open-Closed Principle	
460

Pair Programming Principle	
460
Well-Defined Development Team Roles Principle	
461

Product Owner	
461
Scrum Master	
461
Software Developer	
462
Test Automation Developer	
462
DevOps Engineer	
463
UI Designer	
463

DevSecOps	
465
SecOps Lifecycle	
466
DevOps Lifecycle	
466

Plan	
467
Code	
467
Build and Test	
467
Release	
468

Example Dockerfile	
468
Example Kubernetes Deployment	
469
Example CI/CD Pipeline	
473

Deploy	
477
Operate	
478
Monitor	
478

Logging	
480
OpenTelemetry Log Data Model	
480
PrometheusRule Example	
482

Appendix A	 483

8

About the Author

Petri Silén is a seasoned software developer working at Nokia Networks in Finland with industry
experience of almost 30 years.He has done both frontend and backend development with a solid
competence in multiple programming languages, including C++, Java, and JavaScript/TypeScript.
He started his career at Nokia Telecommunications in 1995. During his first years, he developed a
real-time mobile networks analytics product called "Traffica" in C++ for major telecom customers
worldwide, including companies like T-Mobile, Orange, Vodafone, and Claro. The initial product
was for monitoring a 2G circuit-switched core network and GPRS packet-switched core network.
Later, functionality to Traffica was added to cover new network technologies, like 3G circuit-
switched and packet core networks, 3G radio networks, and 4G/LTE. He later developed new
functionality for Traffica using Java and web technologies, including jQuery and React. During the
last few years, he has developed cloud-native containerized microservices with Java and C++ for
the next-generation Customer and Networks Insights (CNI) product used by major
communications service providers like Verizon, AT&T, USCC, and KDDI. The main application
areas he has contributed during the last years include KPI-based real-time alerting, anomaly
detection for KPIs, and configurable real-time data exporting.

During his free time, he has developed a data visualization application using React, Redux,
TypeScript, and Jakarta EE. He has also developed a security-first cloud-native microservice
framework for Node.js in TypeScript. He likes to take care of his Kaapo cat, take walks, play tennis
and badminton, ski in the winter, and watch soccer and ice hockey on TV.

9

10

Introduction

This book teaches you how to write clean code. It presents software design and development
principles and patterns in a very practical manner. This book is suitable for both junior and senior
developers. Basic understanding and knowledge of object-oriented programming in one language,
like C++, Java, JavaScript/TypeScript, Python or C# is required. Examples in this book are
presented in Java, JavaScript/TypeScript, or C++. Most examples are in Java or JavaScript/
TypeScript and are adaptable to other programming languages, too. The content of this book is
divided into eleven chapters.

The second chapter is about architectural design principles that enable the development of true
cloud-native microservices. The first architectural design principle described is the single
responsibility principle which defines that a piece of software should be responsible for one thing at
its abstraction level. Then a uniform naming principle for microservices, clients, APIs, and libraries
is presented. The encapsulation principle defines how each software component should hide the
internal state behind a public API. The service aggregation principle is introduced with a detailed
explanation of how a higher-level microservice can aggregate lower-level microservices.
Architectural patterns, like event sourcing, command query responsibility segregation (CQRS), and
distributed transactions, are discussed. Distributed transactions are covered with examples using
both the saga orchestration pattern and the saga choreography pattern. You get answers on how to
avoid code duplication at the architectural level. Externalized configuration principle describes how
service configuration should be handled in modern environments. We discuss the service
substitution principle, which states that dependent services a microservice uses should be easily
substitutable. The importance of autopilot microservices is discussed from statelessness, resiliency,
high availability, observability, and automatic scaling point of view. Towards the end of the chapter,
there is a discussion about different ways microservices can communicate with each other. Several
rules are presented on how to version software components. And the chapter ends with a discussion
of why it is helpful to limit the number of technologies used in a software system.

The third chapter presents object-oriented design principles. We start the chapter by describing all
the SOLID principles: Single responsibility principle, open-closed principle, Liskov's substitution

11

principle, interface segregation principle, and dependency inversion principle. Each SOLID
principle is presented with realistic but simple examples. The uniform naming principle defines a
uniform way to name interfaces, classes, functions, function pairs, boolean functions (predicates),
builder, factory, conversion, and lifecycle methods. The encapsulation principle describes that a
class should encapsulate its internal state and how immutability helps ensure state encapsulation.
The encapsulation principle also discusses the importance of not leaking an object's internal state
out. The object composition principle defines that composition should be preferred over
inheritance. Domain-driven design (DDD) is presented with two real-world examples. All the
design patterns from GoF's Design Patterns book are presented with realistic yet simple examples.
The don't ask, tell principle is presented as a way to avoid the feature envy design smell. The
chapter also discusses avoiding primitive-type obsession and the benefits of using semantically
validated function arguments. The chapter ends by presenting the dependency injection principle
and avoiding code duplication principle, also known as the don't repeat yourself (DRY) principle

The fourth chapter is about coding principles. The chapter starts with a principle for uniformly
naming variables in code. A uniform naming convention is presented for integer, floating-point,
boolean, string, enum, and collection variables. Also, a naming convention is defined for maps,
pairs, tuples, objects, optionals, and callback functions. The uniform source code repository
structure principle is presented with examples for C++, Java, and JavaScript/TypeScript. Next, the
avoid comments principle defines concrete ways to remove unnecessary comments from the code.
The following concrete actions are presented: naming things correctly, returning a named value,
return-type aliasing, extracting a constant for a boolean expression, extracting a constant for a
complex expression, extracting enumerated values, and extracting a function. The chapter discusses
the benefits of using a statically typed language. We discuss the most common refactoring
techniques: renaming, extracting a method, extracting a variable, replacing conditionals with
polymorphism, and introducing a parameter object. The importance of static code analysis is
described, and the most popular static code analysis tools for C++, Java, and JavaScript/TypeScript
are listed. The most common static code analysis issues are listed with the preferred way to correct
them. Handling errors and exceptions correctly in code is fundamental and can be easily forgotten
or done wrong. This chapter instructs how to handle errors and exceptions, how to handle Java's
checked exceptions, and how to return errors by returning a boolean failure indicator, an optional
value, or an error object. The chapter instructs how to adapt code to a wanted error-handling
mechanism, handle errors in asynchronous code, handle stream errors, and handle errors
functionally. The null value handling is discussed. The ways to avoid off-by-one errors are
presented. Readers are instructed on handling situations where some code is copied from a web
page found by googling. The chapter ends with a discussion about code optimization: when and
how to optimize.

The fifth chapter is dedicated to testing principles. We start with the introduction of the functional
testing pyramid. Then we present unit testing and instruct how to use test-driven development
(TDD). We give unit test examples with mocking in Java, JavaScript, and C++. When introducing
software component integration testing, we discuss behavior-driven development (BDD) and the
Gherkin language to describe features. Integration test examples are given using Cucumber for Java

12

and Postman API development platform. The chapter also discusses the integration testing of UI
software components. We end the integration testing section with an example of setting up an
integration testing environment using Docker Compose. Lastly, the purpose of end-to-end (E2E)
testing is discussed with some examples. The chapter ends with a discussion about non-functional
testing. The following categories of non-functional testing are covered in more detail: performance
testing, stability testing, reliability testing, security testing, stress, and scalability testing.

The sixth chapter handles security principles. The threat modeling process is introduced. A full-
blown OpenID Connect/OAuth 2.0 authentication and authorization example with TypeScript,
Vue.js, and Keycloak is implemented. Then we discuss how authorization by validating a JWT
should be handled in the backend. Examples are presented with Node.js, Express, Java, and Spring
Boot. The chapter ends with a discussion of the most important security features: password policy,
cryptography, denial-of-service prevention, SQL injection prevention, security configuration,
automatic vulnerability scanning, integrity, error handling, audit logging, and input validation.

The seventh chapter is about API design principles. First, we tackle design principles for frontend
facing APIs. We discuss how to design JSON-RPC, REST, and GraphQL APIs. Also, subscription-
based and real-time APIs are presented with realistic examples using Server-Sent Events (SSE) and
the WebSocket protocol. The last part of the chapter discusses inter-microservice API design and
event-driven architecture. gRPC is introduced as a synchronous inter-microservice communication
method, and examples of request-only and request-response asynchronous APIs are presented.

The 8th chapter discusses databases and related principles. We cover the following types of

databases: relational databases, document databases (MongoDB), key-value databases (Redis),
wide-column databases (Cassandra), and search engines. For relational databases, we present how
to use object-relational mapping (ORM), one-to-one, one-to-many and many-to-many
relationships, and parameterized SQL queries. Finally, we present three normalization rules for
relational databases.

The 9th chapter presents concurrent programming principles regarding threading, parallel
algorithms, and thread safety. For thread safety, we present several ways to achieve thread
synchronization: synchronization directives, atomic variables, mutexes, and spinlocks.

The 10th chapter discusses teamwork principles. We explain the importance of using an agile
framework and discuss the fact that a developer usually never works alone and what that entails.
We discuss how to document a software component so that onboarding new developers is easy and
quick. Technical debt in software is something that each team should avoid. Some concrete actions
to prevent technical debt are presented. Code reviews are something teams should do, and this
chapter gives guidance on what to focus on in code reviews. The chapter ends with a discussion of
developer roles each team should have and provides hints on enabling a team to develop software
as concurrently as possible.

The 11th chapter is dedicated to DevSecOps. DevOps describes practices that integrate software
development (Dev) and software operations (Ops). It aims to shorten the software development life

13

cycle through parallelization and automation and provides continuous delivery with high software
quality. DevSecOps is a DevOps augmentation where security practices are integrated into the
DevOps practices. This chapter presents the phases of the DevOps lifecycle: plan, code, build and
test, release, deploy, operate and monitor. The chapter gives an example of creating a microservice
container image and how to specify the deployment of a microservice to a Kubernetes cluster. Also,
a complete example of a CI/CD pipeline using GitHub Actions is provided.

14

Architectural Principles

This chapter describes architectural principles for designing clean, modern cloud-native software
systems and applications. Cloud-native software is built of loosely coupled scalable, resilient and
observable services that can run in public, private, or hybrid clouds. Cloud-native software utilizes
technologies like containers (e.g., Docker), microservices, serverless functions, and container
orchestration (e.g., Kubernetes), and it can be automatically deployed using declarative code.

This chapter discusses the following architectural principles and patterns:

• Single responsibility principle

• Uniform naming principle

• Encapsulation principle

• Service aggregation principle

• High cohesion, low coupling principle

• Library composition principle

• Avoid duplication principle

• Externalized service configuration principle

• Service substitution principle

• Autopilot microservices principle

• Stateless microservices principle

• Resilient microservices principle

• Horizontally autoscaling microservices principle

• Highly-available microservices principle

• Observable services principle

• Inter-service communication patterns

• Domain-driven architectural design principle

• Software versioning principles

• Git Version control principle

15

• Architectural patterns

• Preferred technology stacks principle

Software Hierarchy

A software system consists of multiple computer programs and anything related to those programs
to make them operable, including but not limited to configuration, deployment code, and
documentation. A software system is divided into two parts: the backend and the frontend.
Backend software runs on servers, and frontend software runs on client devices like PCs, tablets,
and phones. Backend software consists of services. Frontend software consist of clients that use
backend services and standalone applications that do not use any backend services. An example of
a standalone application is a calculator or a simple text editor.

The term application is often used to describe a single program designated for a specific purpose.
In general, a software application is some software applied to solve a specific problem. From an end
user's point of view, all clients are applications. But from a developer’s point of view, an application
needs both a client and backend service(s) to be functional unless the application is a standalone

application. In this book, I will use the term application to designate a logical grouping of
program(s) and related artifacts, like configuration, to form a functional piece of the software

16

Fig 2.1 Software Hierarchy

system dedicated to a specific purpose. In my definition, a non-standalone application consists of
one or more services and possibly a client or clients to fulfill an end user's need. Let's say we have a
software system for telecom network analytics. That system provides data visualization
functionality. We can call the data visualization part of the software system a data visualization
application. That application consists of, for example, a web client and two services, one for
fetching data and one for configuration. Suppose we also have a generic data ingester microservice
in the system. That generic data ingester is not an application without some configuration that
makes it a specific service that we can call an application. For example, the generic data ingester
can have a configuration to ingest raw data from a radio network. The generic data ingester and the
configuration together form an application: a radio network data ingester.

Computer programs and libraries are software components. A software component is something
that can be individually packaged, tested, and delivered. It consists of one or more classes, and a
class consists of one or more functions (class methods). (There are no traditional classes in purely
functional languages, but software components consist only of functions.) A computer program can
also be composed of one or more libraries, and a library can be composed of other libraries.

Single Responsibility Principle

A software entity should have only single responsibility at its abstraction level.

A software system is at the highest level in the software hierarchy and should have a single
dedicated purpose. For example, there can be an e-commerce or payroll software system. But there
should not be a software system that handles both e-commerce and payroll-related activities. If you
were a software vendor and had made an e-commerce software system, selling that to clients
wanting an e-commerce solution would be easy. But if you had made a software system that

17

Fig 2.2 Software Components

encompasses both e-commerce and payroll functionality, it would be hard to sell that to customers
wanting only an e-commerce solution because they might already have a payroll software system
and, of course, don't want another one.

Let's consider the application level in the software hierarchy. Suppose we have designed a software
system for telecom network analytics. This software system is divided into four different
applications: Radio network data ingestion, core network data ingestion, data aggregation, and data
visualization. Each of these applications has a single dedicated purpose. Suppose we had coupled
the data aggregation and visualization applications into a single application. In that case, replacing
the data visualization part with a 3rd party application could be difficult. But when they are
separate applications with a well-defined interface, it would be much easier to replace the data
visualization application with a 3rd party application, if needed.

A software component should also have a single dedicated purpose. A service type of software
component with a single responsibility is called a microservice. For example, one microservice
could be responsible for handling orders and another for handling sales items. Both of those
microservices are responsible for one thing only. We should not have a microservice responsible for
both orders and sales items. That would be against the single responsibility principle because order
and sales item handling are two different functionalities at the same level of abstraction.

There are many advantages to microservices:

• Improved productivity

• You can choose the best-suited programming language and technology stack

• Microservices are easy to develop in parallel because there will be fewer merge conflicts

• Developing a monolith can result in more frequent merge conflicts

• Improved resiliency and fault isolation

• A fault in a single microservice does not bring other microservices down

• A bug in a monolith can bring the whole monolith down

• Better scalability

• Stateless microservices can be automatically horizontally scalable

• Horizontal scaling of a monolith is complicated or impossible

• Better data security and compliance

• Each microservice encapsulates its data, which can be accessed via a public API only

• Faster and easier upgrades

• Upgrading only the changed microservice(s) is enough. No need to update the whole

monolith every time

• Faster release cycle

• Build the changed microservice only. No need to build the whole monolith when
something changes

• Fewer dependencies

18

• Lower probability for dependency conflicts

• Enables open-closed architecture, meaning architecture that is open for extension and closed for

modification

• New functionality not related to any existing microservice can be put into a new

microservice instead of modifying the current codebase.

The main drawback of microservices is the complexity that a distributed architecture brings.
Operating and monitoring a microservice-based software system is complicated. Also, testing a
distributed system is more challenging than testing a monolith. Development teams should put
focus on these areas by hiring DevOps and test automation specialists.

A library type of software component should also have a single responsibility. Like calling single-
responsibility services microservices, we can call a single-responsibility library a microlibrary. For
example, there could be a library for handling YAML-format content and another for handling
XML-format content. We shouldn't try to bundle the handling of both formats into a single library.
If we did and needed only the YAML-related functionality, we would also always get the XML-
related functionality. Our code would always ship with the XML-related code, even if it is never
used. This can introduce unnecessary code bloat. We would also have to take any security patch for
the library into use, even if the patch was only for the XML-related functionality we don't use.

Uniform Naming Principle

Name microservices with a service or api postfix, clients with a client postfix, and
libraries with a library postfix.

When developing software, you should establish a naming convention for microservices, clients,
and libraries. The preferred naming convention for microservices is <service's purpose>-service.
For example: data-aggregation-service or email-sending-service. Use the microservice name
systematically in different places. For example, use it as the Kubernetes Deployment name and the
source code repository name (or directory name in case of a monorepo). It is enough to name your
microservices with the service postfix instead of a microservice postfix because each service should
be a microservice by default. So, there would not be any real benefit in naming microservices with
the microservice postfix. That would just make the microservice name longer without any added
value.

If you want to be more specific in naming microservices, you can name API microservices with an
api postfix instead of the more generic service postfix, for example, sales-item-api. In this book, I
am not using the api postfix but always use the service postfix only.

The preferred naming convention for clients is <client's purpose>-<client type>-client. For

19

example: data-visualization-web-client, data-visualization-mobile-client, data-visualization-
android-client or data-visualization-ios-client.

The preferred naming convention for libraries is <library's purpose>-library. For example:
common-utils-library or common-ui-components-library.

When using these naming conventions, a clear distinction between a microservice, client, and
library-type software component can be made only by looking at the name. Also, it is easy to
recognize if a source code repository contains a microservice, client, or library.

Encapsulation Principle

Microservice must encapsulate its internal state behind a public API. Anything behind the
public API is considered private to the microservice and cannot be accessed directly by other
microservices.

Microservices should define a public API that other microservices use for interfacing. Anything
behind the public API is private and inaccessible from other microservices.

While microservices should be made stateless (the stateless services principle is discussed later in
this chapter), a stateless microservice needs a place to store its state outside the microservice.
Typically, the state is stored in a database. The database is the microservice's internal dependency
and should be made private to the microservice, meaning that no other microservice can directly
access the database. Access to the database happens indirectly using the microservice's public API.

It is discouraged to allow multiple microservices to share a single database because then there is no
control how each microservice will use the database, and what requirements each microservice has
for the database.

Sometimes it is possible to share a physical database with several microservices if each
microservice uses its own logical database. This requires that a specific database user is created for
each microservice. Each database user can access only one logical database dedicated to a particular
microservice. In this way, no microservice can directly access another microservice's database. This
approach can still pose some problems because the dimensioning requirements of all microservices
for the shared physical database must be considered. Also, the deployment responsibility of the
shared database must be decided. The shared database could be deployed as a platform or common
service as part of the platform or common services deployment, for example.

20

Service Aggregation Principle

Service on a higher level of abstraction aggregates services on a lower level of abstraction.

Service aggregation happens when one service on a higher level of abstraction aggregates services
on a lower level of abstraction.

Let's have a service aggregation example with an e-commerce software system that allows people to
sell second-hand products online.

The problem domain of the e-commerce service consists of the following subdomains:

• User account domain

• Create, modify, and delete a user account

• View user account with sales items and orders

• Sales item domain

• Add new sales items, modify, view, and delete sales items

• Shopping cart domain

• Add/remove sales items to/from a shopping cart, empty a shopping cart

• View shopping cart with sales item details

• Order domain

• Placing orders

• Ensure payment

• Create order

• Remove ordered items from the shopping cart

• Mark ordered sales items sold

21

Fig 2.3 Architecture Without and With Service Aggregation

• Send order confirmation by email

• View orders with sales item details

• Update and delete orders

We should not implement all the subdomains in a single ecommerce-service microservice because
then we would not be following the single responsibility principle. We should use service
aggregation. We create a separate lower-level microservice for each subdomain. Then we create a
higher-level ecommerce-service microservice that aggregates those lower-level microservices.

We can define that our ecommerce-service aggregates the following lower-level microservices:

• user-account-service

• Create/Read/Update/Delete user accounts

• sales-item-service

• Create/Read/Update/Delete sales items

• shopping-cart-service

• View a shopping cart, add/remove sales items from a shopping cart or empty a shopping

cart

• order-service

• Create/Read/Update/Delete orders

• email-notification-service

• Send email notifications

Most of the microservices described above can be implemented as REST APIs because they mainly
contain basic CRUD (create, read, update and delete) operations for which a REST API is a good
match. We will handle API design in more detail in a later chapter. Let's implement the sales-item-

22

Fig 2.4 Service Aggregation in E-Commerce Software System

service as a REST API using Java and Spring Boot. We wil l implement the
SalesItemController class first. It defines API endpoints for creating, getting, updating, and
deleting sales items:

SalesItemController.java

import io.swagger.v3.oas.annotations.Operation;

import io.swagger.v3.oas.annotations.tags.Tag;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.http.HttpStatus;

import org.springframework.web.bind.annotation.DeleteMapping;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.PostMapping;

import org.springframework.web.bind.annotation.PutMapping;

import org.springframework.web.bind.annotation.RequestBody;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RequestParam;

import org.springframework.web.bind.annotation.ResponseStatus;

import org.springframework.web.bind.annotation.RestController;

@RestController

@RequestMapping(SalesItemController.API_ENDPOINT)

@Tag(

 name = "Sales item API",

 description = "Manages sales items"

)

public class SalesItemController {

 public static final String API_ENDPOINT = "/sales-items";

 @Autowired

 private SalesItemService salesItemService;

 @PostMapping

 @ResponseStatus(HttpStatus.CREATED)

 @Operation(summary = "Creates new sales item")

 public final SalesItem createSalesItem(

 @RequestBody final SalesItemArg salesItemArg

) {

 return salesItemService.createSalesItem(salesItemArg);

 }

 @GetMapping

 @ResponseStatus(HttpStatus.OK)

 @Operation(summary = "Gets sales items")

 public final Iterable<SalesItem> getSalesItems() {

 return salesItemService.getSalesItems();

 }

 @GetMapping("/{id}")

 @ResponseStatus(HttpStatus.OK)

 @Operation(summary = "Gets sales item by id")

 public final SalesItem getSalesItemById(

 @PathVariable("id") final Long id

) {

 return salesItemService.getSalesItemById(id);

 }

 @GetMapping(params = "userAccountId")

 @ResponseStatus(HttpStatus.OK)

 @Operation(summary = "Gets sales items by user account id")

 public final Iterable<SalesItem> getSalesItemsByUserAccountId(

23

 @RequestParam("userAccountId") final Long userAccountId

) {

 return salesItemService

 .getSalesItemsByUserAccountId(userAccountId);

 }

 @PutMapping("/{id}")

 @ResponseStatus(HttpStatus.NO_CONTENT)

 @Operation(summary = "Updates a sales item")

 public final void updateSalesItem(

 @PathVariable final Long id,

 @RequestBody final SalesItemArg salesItemArg

) {

 salesItemService.updateSalesItem(id, salesItemArg);

 }

 @DeleteMapping("/{id}")

 @ResponseStatus(HttpStatus.NO_CONTENT)

 @Operation(summary = "Deletes a sales item by id")

 public final void deleteSalesItemById(

 @PathVariable final Long id

) {

 salesItemService.deleteSalesItemById(id);

 }

 @DeleteMapping

 @ResponseStatus(HttpStatus.NO_CONTENT)

 @Operation(summary = "Deletes all sales items")

 public final void deleteSalesItems() {

 salesItemService.deleteSalesItems();

 }

}

As we can notice from the above code, the SalesItemController class delegates the actual work
to an instance of a class that implements the SalesItemService interface. This is an example of
using the bridge pattern which is discussed, along with other design patterns, in the next chapter.
In the bridge pattern, the controller is just an abstraction of the service, and a class implementing
the SalesItemService interface provides a concrete implementation. We can change the service
implementation without changing the controller or introduce a different controller, e.g., a GraphQL
controller, using the same SalesItemService interface. Only by changing the used controller
class could we change the API from a REST API to a GraphQL API. Below is the definition of the
SalesItemService interface:

SalesItemService.java

public interface SalesItemService {

 SalesItem createSalesItem(SalesItemArg salesItemArg);

 SalesItem getSalesItemById(Long id);

 Iterable<SalesItem> getSalesItemsByUserAccountId(

 Long userAccountId

);

 Iterable<SalesItem> getSalesItems();

 void updateSalesItem(Long id, SalesItemArg salesItemArg);

 void deleteSalesItemById(Long id);

 void deleteSalesItems();

}

24

The below SalesItemServiceImpl class implements the SalesItemService interface. It will
interact with a sales item repository to persist, fetch and delete data to/from a database.

SalesItemServiceImpl.java

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

public class SalesItemServiceImpl implements SalesItemService {

 private static final String SALES_ITEM = "Sales item";

 @Autowired

 private SalesItemRepository salesItemRepository;

 @Override

 public final SalesItem createSalesItem(

 final SalesItemArg salesItemArg

) {

 final var salesItem = SalesItem.from(salesItemArg);

 return salesItemRepository.save(salesItem);

 }

 @Override

 public final SalesItem getSalesItemById(final Long id) {

 return salesItemRepository.findById(id)

 .orElseThrow(() ->

 new EntityNotFoundError(SALES_ITEM, id));

 }

 @Override

 public final Iterable<SalesItem> getSalesItemsByUserAccountId(

 final Long userAccountId

) {

 return salesItemRepository

 .findByUserAccountId(userAccountId);

 }

 @Override

 public final Iterable<SalesItem> getSalesItems() {

 return salesItemRepository.findAll();

 }

 @Override

 public final void updateSalesItem(

 final Long id,

 final SalesItemArg salesItemArg

) {

 if (salesItemRepository.existsById(id)) {

 final var salesItem =

 SalesItem.from(salesItemArg, id);

 salesItemRepository.save(salesItem);

 } else {

 throw new EntityNotFoundError(SALES_ITEM, id);

 }

 }

 @Override

 public final void deleteSalesItemById(final Long id) {

 if (salesItemRepository.existsById(id)) {

 salesItemRepository.deleteById(id);

25

 }

 }

 @Override

 public final void deleteSalesItems() {

 salesItemRepository.deleteAll();

 }

}

EntityNotFoundError.java

import org.springframework.http.HttpStatus;

import org.springframework.web.bind.annotation.ResponseStatus;

@ResponseStatus(HttpStatus.NOT_FOUND)

public class EntityNotFoundError extends RuntimeException {

 EntityNotFoundError(final String entityType, final long id) {

 super(entityType +

 " entity not found with id " +

 String.valueOf(id));

 }

}

The SalesItemRepository interface is defined below. Spring will create an instance of a class
implementing that interface and inject it into an instance of the SalesItemServiceImpl class.
The SalesItemRepository interface extends Spring's CrudRepository interface, which
provides many database access methods by default. It provides the following and more methods:
findAll, findById, save, existsById, deleteAll, and deleteById. We need to
add only one method to the SalesItemRepository interface: findByUserAccountId. Spring
will automatically generate an implementation for the findByUserAccountId method because
the method name follows certain conventions of the Spring Data (https://docs.spring.io/spring-
data/jpa/docs/current/reference/html) framework. We just need to add the method to the
interface, and that's it. We don't have to provide an implementation for the method because Spring
will do it for us.

SalesItemRepository.java

import org.springframework.data.repository.CrudRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface SalesItemRepository extends

 CrudRepository<SalesItem, Long>

{

 Iterable<SalesItem> findByUserAccountId(Long userAccountId);

}

Next, we define the SalesItem entity class, which contains properties like name and price. It
also includes two methods to convert an instance of the SalesItemArg Data Transfer Object
(DTO) class to an instance of the SalesItem class. A DTO is an object that transfers data between
a server and a client. I have used the class name SalesItemArg instead of SalesItemDto to
describe that a SalesItemArg DTO is an argument for an API endpoint. If some API endpoint

26

returned a special sales item DTO instead of a sales item entity, I would name that DTO class
SalesItemResponse instead of SalesItemDto. The terms Arg and Response better describe the
direction in which a DTO transfers data. You could also use the following DTO names:
InputSalesItem and OutputSalesItem to describe an incoming and outgoing DTO (from the
server's point of view).

SalesItem.java

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import org.modelmapper.ModelMapper;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

import javax.validation.constraints.Max;

import javax.validation.constraints.Min;

import javax.validation.constraints.NotNull;

@Entity

@Data

@NoArgsConstructor

@AllArgsConstructor

public class SalesItem {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private Long userAccountId;

 @NotNull

 private String name;

 @Min(value = 0, message = "Price must be greater than 0")

 @Max(

 value = Integer.MAX_VALUE,

 message = "Price must be <= " + Integer.MAX_VALUE

)

 private Integer price;

 static SalesItem from(final SalesItemArg salesItemArg) {

 return new ModelMapper()

 .map(salesItemArg, SalesItem.class);

 }

 static SalesItem from(

 final SalesItemArg salesItemArg,

 final Long id

) {

 final var salesItem =

 new ModelMapper().map(salesItemArg, SalesItem.class);

 salesItem.setId(id);

 return salesItem;

 }

}

27

The below SalesItemArg class contains the same properties as the SalesItem entity class,
except the id property. The SalesItemArg DTO class is used when creating a new sales item or
updating an existing sales item. When creating a new sales item, the id property should not be
given by the client because the microservice will automatically generate it (or the database will,
actually, in this case).

SalesItemArg.java

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

@Data

@NoArgsConstructor

@AllArgsConstructor

public class SalesItemArg {

 private Long userAccountId;

 private String name;

 private Integer price;

}

Below is defined how the ecommerce-service will orchestrate the use of the aggregated lower-level
microservices:

• User account domain

• Delegates CRUD operations to user-account-service

• Delegates to sales-item-service to fetch information about user's sales items

• Delegates to order-service to fetch information about user's orders

• Sales item domain

• Delegates CRUD operations to sales-item-service

• Shopping cart domain

• Delegates read/add/remove/empty operations to shopping-cart-service

• Delegates to sales-item-service to fetch information about the sales items in the shopping

cart

• Order domain

• Ensures that payment is confirmed by the payment gateway

• Delegates CRUD operations to order-service

• Delegates to shopping-cart-service to remove bought items from the shopping cart

• Delegates to sales-item-service for marking sales items bought

• Delegates to email-notification-service for sending order confirmation email

• Delegates to sales-item-service to fetch information about order's sales items

The ecommerce-service is meant to be used by frontend clients, like a web client, for example.
Backend for Frontend (BFF) term is often used to describe a microservice designed to provide an
API for frontend clients. Compared to the BFF term, service aggregation is a generic term, and

28

there need not be a frontend involved. You can use service aggregation to create an aggregated
microservice used by another microservice or microservices. There can even be multiple levels of
service aggregation if you have a large and complex software system.

Clients can have different needs regarding what information they want from an API. For example, a
mobile client might be limited to exposing only a subset of all information available from an API. In
contrast, a web client can fetch all information, or it can be customized what information a client
retrieves from the API.

All of the above requirements are something that a GraphQL-based API can fulfill. For that reason,
it would be wise to implement the ecommerce-service using GraphQL. I have chosen JavaScript,
Node.js, and Express as technologies to implement a single GraphQL query in the ecommerce-
service. Below is the implementation of a user query, which fetches data from three microservices.
It fetches user account information from the user-account-service, the user's sales items from the
sales-item-service, and finally, the user's orders from the order-service.

server.js

const express = require('express');

const { graphqlHTTP } = require('express-graphql');

const { buildSchema, GraphQLError } = require('graphql');

const axios = require('axios').default;

const schema = buildSchema(`

 type UserAccount {

 id: ID!,

 userName: String!

 # Define additional properties...

 }

 type SalesItem {

 id: ID!,

 name: String!

 # Define additional properties...

 }

 type Order {

 id: ID!,

 userId: ID!

 # Define additional properties...

 }

 type User {

 userAccount: UserAccount!

 salesItems: [SalesItem!]!

 orders: [Order!]!

 }

 type Query {

 user(id: ID!): User!

 }

`);

const {

 ORDER_SERVICE_URL,

 SALES_ITEM_SERVICE_URL,

 USER_ACCOUNT_SERVICE_URL

29

} = process.env;

const rootValue = {

 user: async ({ id }) => {

 try {

 const [

 { data: userAccount },

 { data: salesItems },

 { data: orders }

] = await Promise.all([

 axios.get(`${USER_ACCOUNT_SERVICE_URL}/user-accounts/${id}`),

 axios.get(

 `${SALES_ITEM_SERVICE_URL}/sales-items?userAccountId=${id}`

),

 axios.get(`${ORDER_SERVICE_URL}/orders?userAccountId=${id}`)

]);

 return {

 userAccount,

 salesItems,

 orders

 };

 } catch (error) {

 throw new GraphQLError(error.message);

 }

 },

};

const app = express();

app.use('/graphql', graphqlHTTP({

 schema,

 rootValue,

 graphiql: true,

}));

app.listen(4000);

After you have started the above program with the node server.js command, you can access
the GraphiQL endpoint with a browser at http://localhost:4000/graphql

On the left-hand side pane, you can specify a GraphQL query. For example, to query the user
identified with id 2:

{

 user(id: 2) {

 userAccount {

 id

 userName

 }

 salesItems {

 id

 name

 }

 orders {

 id

 userId

 }

 }

}

30

Because we haven't implemented the lower-level microservices, let's modify the part of the server.js
where lower level microservices are accessed to return dummy static results instead of accessing the
real lower-level microservices:

const [

 { data: userAccount },

 { data: salesItems },

 { data: orders }

] = await Promise.all([

 Promise.resolve({

 data: {

 id,

 userName: 'pksilen'

 }

 }),

 Promise.resolve({

 data: [

 {

 id: 1,

 name: 'sales item 1'

 }

]

 }),

 Promise.resolve({

 data: [

 {

 id: 1,

 userId: id

 }

]

 })

]);

If we now execute the previously specified query, we should see the following query result:

{

 "data": {

 "user": {

 "userAccount": {

 "id": "2",

 "userName": "pksilen"

 },

 "salesItems": [

 {

 "id": "1",

 "name": "sales item 1"

 }

],

 "orders": [

 {

 "id": "1",

 "userId": "2"

 }

]

 }

 }

}

We can simulate a failure by modifying the server.js to contain the following code:

31

const [

 { data: userAccount },

 { data: salesItems },

 { data: orders }

] = await Promise.all([

 axios.get(`http://localhost:3000/user-accounts/${id}`),

 Promise.resolve({

 data: [

 {

 id: 1,

 name: 'sales item 1'

 }

]

 }),

 Promise.resolve({

 data: [

 {

 id: 1,

 userId: id

 }

]

 })

]);

Now, if we execute the query again, we will get the below error response because the server cannot
connect to a service at the local host on port 3000 because there is no service running at
localhost:3000.

{

 "errors": [

 {

 "message": "connect ECONNREFUSED 127.0.0.1:3000",

 "locations": [

 {

 "line": 2,

 "column": 3

 }

],

 "path": [

 "user"

],

 "extensions": {}

 }

],

 "data": null

}

You can also query a user and specify the query to return only a subset of fields. The below query
does not return ids and does not return orders. The server-side GraphQL library automatically
includes only requested fields in the response. You, as a developer, do not have to do anything. You
can, of course, optimize your microservice to fetch only the requested fields from the database if
you desire.

{

 user(id: 2) {

 userAccount {

 userName

32

 }

 salesItems {

 name

 }

 }

}

The result for the above query will be the following:

{

 "data": {

 "user": {

 "userAccount": {

 "userName": "pksilen"

 },

 "salesItems": [

 {

 "name": "sales item 1"

 }

]

 }

 }

}

The above example lacks some features like authorization that is needed for production.
Authorization should check that a user can only execute the user query to fetch his/hers resources.
The authorization should fail if a user tries to execute the user query using someone else's id.
Security is discussed more in the coming security principles chapter.

The user query in the previous example spanned over multiple lower-level microservices: user-
account-service, sales-item-service, and order-service. Because the query is not mutating anything,
it can be executed without a distributed transaction. A distributed transaction is similar to a regular
(database) transaction, with the difference that it spans multiple remote services.

The API endpoint for placing an order in the ecommerce-service needs to create a new order using
the order-service, mark purchased sales items as bought using the sales-item-service, empty the
shopping cart using the shopping-cart-service, and finally send order confirmation email using the
email-notification-service. These actions need to be wrapped inside a distributed transaction
because we want to be able to roll back the transaction if any of these operations fail. Guidance on
how to implement a distributed transaction is given later in this chapter.

Service aggregation utilizes the facade pattern. The facade pattern allows hiding individual lower-
level microservices behind a facade (the higher-level microservice). The clients of the software
system access the system through the facade. They don't directly contact the individual lower-level
microservices behind the facade because it breaks the encapsulation of the lower-level
microservices inside the higher-level microservice. A client accessing the lower-level microservices
directly creates unwanted coupling between the client and the lower-level microservices, which
makes changing the lower-level microservices hard without affecting the client.

Think about a post office counter as an example of a real-world facade. It serves as a facade for the

33

post office and when you need to receive a package, you communicate with that facade (the post
office clerk at the counter). You have a simple interface of just telling the package code, and the
clerk will find the package from the correct shelf and bring it to you. If you hadn't that facade, it
would mean that you would have to do lower-level work by yourself. Instead of just telling the
package code, you must walk to the shelves and try to find the proper shelf where your package is
located, make sure that you pick the correct package, and then carry the package by yourself. In
addition to requiring more work, this approach is more error-prone. You can accidentally pick
someone else's package if you are not pedantic enough. And think about the case when you go to
the post office next time and find out that all the shelves have been rearranged. This wouldn't be a
problem if you used the facade.

Service aggregation, where a higher-level microservice delegates to lower-level microservices, also
implements the bridge pattern. A higher-level microservice provides only some high-level control
and relies on the lower-level microservices to do the actual work.

Service aggregation allows using more design patterns from the object-oriented design world. The
most useful design patterns in the context of service aggregation are:

• Decorator pattern

• Proxy pattern

• Adapter pattern

Decorator pattern can be used to add functionality in a higher-level microservice for lower-level
microservices. One example is adding audit logging in a higher-level microservice. For example,
you can add audit logging to be performed for requests in the ecommerce-service. You don't need to
implement the audit logging separately in all the lower-level microservices.

Proxy pattern can be used to control the access from a higher-level microservice to lower-level
microservices. Typical examples of the proxy pattern are authorization and caching. For example,
you can add authorization and caching to be performed for requests in the ecommerce-service.
Only after successful authorization will the requests be delivered to the lower-level microservices.
And if a request's response is not found in the cache, the request will be forwarded to the
appropriate lower-level microservice. You don’t need to implement authorization and caching
separately in all the lower-level microservices.

Adapter pattern allows a higher-level microservice to adapt to different versions of the lower-level
microservices while maintaining the API towards clients unchanged.

High Cohesion, Low Coupling Principle

A software system should consist of services with high cohesion and low coupling.

34

Cohesion refers to the degree to which classes inside a service belong together. Coupling refers to
how many other services a service is interacting with.

When following the single responsibility principle, it is possible to implement services as
microservices with high cohesion. Service aggregation adds low coupling. Microservices and service
aggregation together enable high cohesion and low coupling, which is the target of good
architecture. If there were no service aggregation, lower-level microservices would need to
communicate with each other, creating high coupling in the architecture. Also, clients would be
coupled with the lower-level microservices. For example, in the e-commerce example, the order-
service would be coupled with almost all the other microservices. And if the sales-item-service API
changed, in the worst case, there would be a change needed in three other microservices. When
using service aggregation, lower-level microservices are coupled only to the higher-level
microservice.

High cohesion and low coupling mean that the development of services can be highly parallelized.
In the e-commerce example, the five lower-level microservices don't have coupling with each other.
The development of each of those microservices can be isolated and assigned to a single team
member or a group of team members. The development of the lower-level microservices can
proceed in parallel, and the development of the higher-level microservice can start when the APIs of
the lower-level microservices become stable enough. The target is to design the lower-level
microservices APIs early on to enable the development of the higher-level microservice.

Library Composition Principle

Higher-level libraries should be composed of lower-level libraries.

Suppose you need a library for parsing configuration files (in particular syntax) in YAML or JSON

35

Fig 2.5 E-Commerce Software System With High Coupling

format. In that case, you can first create the needed YAML and JSON parsing libraries (or use
existing ones). Then you can create the configuration file parsing library, composed of the YAML
and JSON parsing libraries. You would then have three different libraries: one higher-level library
and two lower-level libraries. Each library has a single responsibility: one for parsing JSON, one for
parsing YAML, and one for parsing configuration files with a specific syntax, either in JSON or
YAML. Software components can now use the higher-level library for parsing configuration files,
and they need not be aware of the JSON/YAML parsing libraries at all.

Avoid Duplication Principle

Avoid software duplication at the software system and service level.

Duplication at the software system level happens when two or more software systems use the same
services. For example, two different software systems can both have a message broker, API
gateway, identity and access management (IAM) application, and log and metrics collection
services. You could continue this list even further. The goal of duplication-free architecture is to
have only one deployment of these services. Public cloud providers offer these services for your use.
If you have a Kubernetes cluster, an alternative solution is to deploy your software systems in
different Kubernetes namespaces and deploy the common services to a shared Kubernetes
namespace, which can be called the platform or common-services, for example.

Duplication at the service level happens when two or more services have common functionality that
could be extracted to a separate new microservice. For example, consider a case where both a user-
account-service and order-service have the functionality to send notification messages by email to
a user. This email-sending functionality is duplicated in both microservices. Duplication can be
avoided by extracting the email-sending functionality to a separate new microservice. The single
responsibility of the microservices becomes more evident when the email-sending functionality is
extracted to its own microservice. One might think another alternative is extracting the common
functionality to a library. This is not a solution that is as good because microservices become
dependent on the library. When changes to the library are needed (e.g., security updates), you must
change the library version in all the microservices using the library and then test all the affected
microservices.

When a company develops multiple software systems in several departments, the software
development typically happens in silos. The departments are not necessarily aware of what the
other departments are doing. For example, it might be possible that two departments have both
developed a microservice for sending emails. There is now software duplication that none is aware
of. This is not an optimal situation. A software development company should do something to
enable collaboration between the departments and break the silos. One good way to share software
is to establish shared folders or organizations in the source code repository hosting service that the
company uses. For example, in GitHub, you could create an organization for sharing source code

36

repositories for common libraries and another for sharing common services. Each software
development department has access to those common organizations and can still develop its
software inside its own GitHub organization. In this way, the company can enforce proper access
control for the source code of different departments, if needed. When a team needs to develop
something new, it can first consult the common source code repositories to find out if something is
already available that can be reused as such or extended.

Externalized Service Configuration Principle

Service configuration means any data that varies between service deployments (different
environments, different customers, etc.).

The configuration of a service should be externalized. It should be stored in the environment
where the service is running, not in the source code. Externalized configuration makes the
service adaptable to different environments and needs.

The following are typical places where externalized configuration can be stored when software is
running in a Kubernetes cluster:

• Environment variables

• Kubernetes ConfigMaps

• Kubernetes Secrets

In the following sections, let's discuss these three configuration storage options.

37

Fig 2.6 Configuration Storage Options

Environment Variables

Environment variables can be used to store configuration as simple key-value pairs. They are
typically used to store information like how to connect to dependent services, like a database or a
message broker, or a microservice's logging level. Environment variables are available for the
running process of a microservice, which can access the environment variable values by their names
(keys).

You should not hardcode the default values for environment variables in the source code. This is
because the default values are typically not for a production environment but for a development
environment. Suppose you deploy a service to a production environment and forget to set all the
needed environment variables. In that case, your service will have some environment variables with
default values unsuitable for a production environment.

You can supply environment variables for a microservice in environment-specific .env files. For
example, you can have an .env.dev file for storing environment variable values for a development
environment and an .env.ci file for storing environment variable values used in the microservice's
continuous integration (CI) pipeline. The syntax of .env files is straightforward. There is one
environment variable defined per line:

.env.dev

NODE_ENV=development

HTTP_SERVER_PORT=3001

LOG_LEVEL=INFO

MONGODB_HOST=localhost

MONGODB_PORT=27017

MONGODB_USER=

MONGODB_PASSWORD=

.env.ci

NODE_ENV=integration

HTTP_SERVER_PORT=3001

LOG_LEVEL=INFO

MONGODB_HOST=localhost

MONGODB_PORT=27017

MONGODB_USER=

MONGODB_PASSWORD=

When a software component is deployed to a Kubernetes cluster using Helm, environment variable
values should be defined in the Helm chart's values.yaml file:

values.yaml

nodeEnv: production

httpServer:

 port: 8080

database:

 mongoDb:

 host: my-service-mongodb

 port: 27017

38

The values in the above values.yaml file can be used to define environment variables in a
Kubernetes Deployment using the following Helm chart template:

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-service

spec:

 template:

 spec:

 containers:

 - name: my-service

 env:

 - name: NODE_ENV

 value: {{ .Values.nodeEnv }}

 - name: HTTP_SERVER_PORT

 value: "{{ .Values.httpServer.port }}"

 - name: MONGODB_HOST

 value: {{ .Values.database.mongoDb.host }}

 - name: MONGODB_PORT

 value: {{ .Values.database.mongoDb.port }}

When Kubernetes starts a microservice pod, the following environment variables will be made
available for the running container:

NODE_ENV=production

HTTP_SERVER_PORT=8080

MONGODB_HOST=my-service-mongodb

MONGODB_PORT=27017

Kubernetes ConfigMaps

A Kubernetes ConfigMap can store a configuration file or files in various formats, like JSON or
YAML. These files can be mounted to the filesystem of a microservice's running container. The
container can then read the configuration files from the mounted directory in its filesystem.

For example, you can have a ConfigMap for defining the logging level of a my-service microservice:

configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-service

data:

 LOG_LEVEL: INFO

The below Kubernetes Deployment descriptor defines that the content of the my-service
ConfigMap's key LOG_LEVEL will be stored in a volume named config-volume, and the value of
the LOG_LEVEL key will be stored in a file named LOG_LEVEL. After mounting the config-

39

volume to the /etc/config directory in a my-service container, it is possible to read the contents of
the /etc/config/LOG_LEVEL file, which contains the text: INFO.

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-service

spec:

 template:

 spec:

 containers:

 - name: my-service

 volumeMounts:

 - name: config-volume

 mountPath: "/etc/config"

 readOnly: true

 volumes:

 - name: config-volume

 configMap:

 name: my-service

 items:

 - key: "LOG_LEVEL"

 path: "LOG_LEVEL"

In Kubernetes, the editing of a ConfigMap is reflected in the respective mounted file. This means
that you can listen to changes in the /etc/config/LOG_LEVEL file. Below is shown how to do it in
JavaScript:

fs.watchFile('/etc/config/LOG_LEVEL', () => {

 try {

 const newLogLevel = fs.readFileSync(

 '/etc/config/LOG_LEVEL', 'utf-8'

).trim();

 // Check here that 'newLogLevel' contains a valid log level

 updateLogLevel(newLogLevel);

 } catch (error) {

 // Handle error

 }

});

Kubernetes Secrets

Kubernetes Secrets are similar to ConfigMaps except that they are used to store sensitive
information, like passwords and encryption keys.

Below is an example of values.yaml file and a Helm chart template for creating a Kubernetes
Secret. The Secret will contain two key-value pairs: the database username and password. The
Secret’s data needs to be Base64-encoded. In the below example, the Base64 encoding is done using
the Helm template function b64enc.

40

values.yaml

database:

 mongoDb:

 host: my-service-mongodb

 port: 27017

 user: my-service-user

 password: Ak9(lKt41uF==%lLO&21mA#gL0!"Dps2

secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: my-service

type: Opaque

data:

 mongoDbUser: {{ .Values.database.mongoDb.user | b64enc }}

 mongoDbPassword: {{ .Values.database.mongoDb.password | b64enc }}

After being created, secrets can be mapped to environment variables in a Deployment descriptor for
a microservice. In the below example, we map the value of the secret key mongoDbUser from the
my-service secret to an environment variable named MONGODB_USER and the value of the secret
key mongoDbPassword to an environment variable named MONGODB_PASSWORD.

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-service

spec:

 template:

 spec:

 containers:

 - name: my-service

 env:

 - name: MONGODB_USER

 valueFrom:

 secretKeyRef:

 name: my-service

 key: mongoDbUser

 - name: MONGODB_PASSWORD

 valueFrom:

 secretKeyRef:

 name: my-service

 key: mongoDbPassword

When a my-service pod is started, the following environment variables are made available for the
running container:

MONGODB_USER=my-service-user

MONGODB_PASSWORD=Ak9(lKt41uF==%lLO&21mA#gL0!”Dps2

41

Service Substitution Principle

Make substituting a service's service dependency for another service easy by making the
dependencies transparent. A transparent service is exposed to other services by defining a
host and port. Use externalized service configuration principle (e.g., environment variables)
in your microservice to define the host and port (and possibly other needed parameters like a
database username/password) for a dependent service.

Let's have an example where a microservice depends on a MongoDB service. The MongoDB service
should expose itself by defining a host and port combination. For the microservice, you can specify
the following environment variables for connecting to a localhost MongoDB service:

.env.dev

MONGODB_HOST=localhost

MONGODB_PORT=27017

Suppose that in a Kubernetes-based production environment, you have a MongoDB service in the
cluster accessible via a Kubernetes Service named my-service-mongodb. In that case, you should
have the environment variables for the MongoDB service defined as follows:

MONGODB_HOST=my-service-mongodb.default.svc.cluster.local

MONGODB_PORT=8080

Alternatively, a MongoDB service can run in the MongoDB Atlas cloud. Then the MongoDB service
could be connected to using the following kind of environment variable values:

MONGODB_HOST=my-service.tjdze.mongodb.net

MONGODB_PORT=27017

As shown with the above examples, you can easily substitute a different MongoDB service
depending on your microservice's environment. If you want to use a different MongoDB service,
you don't need to modify the microservice's source code but only change the configuration.

Inter-Service Communication Methods

Services communicate with each other using the following communication methods: synchronous,
asynchronous, and shared data.

Synchronous Communication Method

A synchronous communication method should be used when a service communicates with another

42

service and wants an immediate response. Synchronous communication can be implemented using
protocols like HTTP or gRPC (which uses HTTP under the hood).

In case of a failure when processing a request, the request processing microservice sends an error
response to the requestor microservice. The requestor microservice can cascade the error up in the
synchronous request stack until the initial request maker is reached. Often, that initial request
maker is a client, like a web or mobile client. The initial request maker can then decide what to do.
Usually, it will attempt to send the request again after a while (we are assuming here that the error
is a transient server error, not a client error, like a bad request, for example)

Asynchronous Communication Method

When a service wants to deliver a request to another service, but does not expect a response or at
least not an immediate response, then an asynchronous communication method should be used.
Some communication between services is asynchronous by nature. For example, a service might
want to instruct an email notification service to email an end-user or to send an audit log entry to

an audit logging service. Both examples can be implemented using an asynchronous

43

Figure 2.7 Synchronous Communication Method

Figure 2.8 Request-Only Asynchronous
Communication Method

communication method because no response for the operations is expected. 
 
Asynchronous communication can be implemented using a message broker. Services can produce
messages to the message broker and consume messages from the message broker. There are several
message broker implementations available like Apache Kafka, RabbitMQ, Apache ActiveMQ and
Redis. When a microservice produces a request to a message broker's topic, the producing

microservice must wait for an acknowledgment from the message broker indicating that the request
was successfully stored to multiple, or preferably all, replicas of the topic. Otherwise, there is no
100% guarantee that the request was successfully delivered in some message broker failure
scenarios.

When an asynchronous request is of type fire-and-forget (i.e., no response is expected), the request
processing microservice must ensure that the request will eventually get processed. If the request
processing fails, the request processing microservice must reattempt the processing after a while. If
a termination signal is received, the request processing microservice instance must produce the
request back to the message broker and allow some other instance of the microservice to fulfill the
request. The rare possibility exists that the production of the request back to the message broker
fails. You could then try to save the request to a persistent volume, for instance, but also that can
fail. The likelihood of such a situation is very low.

Designing APIs for inter-service communication is described in more detail in the API design
principles chapter.

Shared Data Communication Method

Sometimes communication between services can happen via shared data (e.g., using a shared
database). This method is useful with data-oriented services when storing the same data twice is
not meaningful. Typically, one or more microservices produce the shared data, and other

44

Figure 2.9 Request-Response Asynchronous
Communication Method / Event Driven Architecture

microservice(s) consume that data. The interface between these microservices is defined by the
schema of the shared data, e.g., by the schemas of database tables. To secure the shared data, only
the producing microservice(s) should have write access to the shared data, and the consuming
microservice(s) should only have read access to the shared data.

Domain-Driven Architectural Design Principle

Design architecture by conducting domain-driven design (DDD) starting from the top of the
software hierarchy (software system) and ending at the service level.

I often compare software system architectural design to the architectural design of a house. The
house represents a software system. The facade of the house represents the external interfaces of
the software system. The rooms in the house are the microservices of the software system. Like a
microservice, a single room usually has a dedicated purpose. The architectural design of a software
system encompasses the definition of external interfaces, microservices, and their interfaces to
other microservices.

The result of the architectural design phase is a ground plan for the software system. After the
architectural design, you have the facade designed, and all the rooms are specified: the purpose of
each room and how rooms interface with other rooms.

Designing an individual microservice is no more architectural design it is like the interior design of
a single room. The design of microservices is handled using object-oriented design principles,
presented in the next chapter.

Domain-driven design (DDD) is a software design approach where software is modeled to match a
problem/business domain according to input from the domain experts. Usually, these experts come
from the business and specifically from product management. The idea of DDD is to transfer the
domain knowledge from the domain experts to individual software developers so that everyone
participating in software development can share a common language that describes the domain.

45

Figure 2.10 Shared Data
Communication Method

The idea of the common language

is that people can understand each other, and no multiple terms are used to describe a single thing.
This common language is also called the ubiquitous language.

The domain knowledge is transferred from product managers and architects to lead developers and
product owners (POs) in development teams. The team's lead developer and PO share the domain
knowledge with the rest of the team. This usually happens when the team processes epics and
features and splits them into user stories in planning sessions. A software development team can
also have a dedicated domain expert or experts.

DDD starts from the top business/problem domain. The top domain is split into multiple
subdomains on the same abstraction level: one level lower than the top domain. A domain should
be divided into subdomains so that there is minimal overlap between subdomains. Subdomains will
be interfacing with other subdomains using well-defined interfaces. Subdomains are also called
bounded contexts, and technically they represent an application or a microservice. For example, a
banking software system can have a subdomain or bounded context for loan applications and
another for making payments.

Design Example 1: Mobile Telecom Network Analytics Software
System

Suppose an architecture team is assigned to design a mobile telecom network analytics software
system. The team starts by defining the problem domain of the software system in more detail.
When thinking about the system in more detail, they end up figuring out at least the following
subdomains:

1. Ingesting raw data from various sources of the mobile telecom network

2. Transforming the ingested raw data into meaningful insights

3. Proper ways of presenting the insights to software system users

Let's pick up some keywords from the above definitions and formulate short names for the
subdomains:

1. Ingesting raw data

2. Transforming raw data into insights

3. Presenting insights

Let's consider each of these three subdomains separately.

We know that a mobile telecom network is divided into core and radio networks. From that, we can
conclude that Ingesting raw data domain can be divided into further subdomains: Ingesting radio

46

network raw data and Ingesting core network raw data. We can turn these two subdomains into
applications for our software system: Radio network data ingester and Core network data
ingester.

The Transforming raw data to insights domain should at least consist of an application
aggregating the received raw data to counters and key performance indicators (KPIs). We can call
that application Data aggregator.

The Presenting insights domain should contain a web application that can present insights in
various ways, like using dashboards containing charts presenting aggregated counters and
calculated KPIs. We can call this application Insights visualizer.

Now we have the following applications for the software system defined:

• Radio network data ingester

• Core network data ingester

• Data aggregator

• Insights visualizer

Next, we continue architectural design by splitting each application into one or more software

47

Figure 2.11 Subdomains

Figure 2.12 Applications

components. (services, clients, and libraries). When defining the software components, we must
remember to follow the single responsibility principle, avoid duplication principle and
externalized service configuration principle.

When considering the Radio network data ingester and Core network data ingester applications,
we can notice that we can implement them both using a single microservice, data-ingester-service,
with different configurations for radio and core network. This is because the protocol for ingesting
the data is the same for radio and core networks. The two networks differ in the schema of the
ingested data. Using a single configurable microservice, we can avoid code duplication by using
externalized configuration.

The Data aggregator application can be implemented using a single data-aggregator-service
microservice. We can use externalized configuration to define what counters and KPIs the
microservice should aggregate and calculate.

The Insights visualizer application consists of three different software components:

• A web client

• A service for fetching aggregated and calculated data (counters and KPIs)

• A service for storing the dynamic configuration of the web client

The dynamic configuration service stores information about what insights to visualize and how in
the web client. Microservices in the Insights visualizer application are:

• insights-visualizer-web-client

• insights-visualizer-data-service

• insights-visualizer-configuration-service

Now we are ready with the microservice-level architectural design for the software system.

48

49

Figure 2.13 Microservices

The last part of architectural design is to define the inter-service communication methods. The
data-ingester-service needs to send raw data to data-aggregator-service. The sending of data is
done using asynchronous fire-and-forget requests and is implemented using a message broker. The
communication between the data-aggregator-service and the insights-visualizer-data-service
should use the shared data communication method because the data-aggregator-service
generates aggregated data that the insights-visualizer-data-service uses. The communication
between the insights-visualizer-web-client in the frontend and the insights-visualizer-data-service
and insights-visualizer-configuration-service in the backend is synchronous communication that
can be implemented using an HTTP-based JSON-RPC, REST, or GraphQL API.

 

50

51

Figure 2.14 Inter-Microservice
Communication

Next, design continues in development teams. Teams will specify the APIs between the
microservices and conduct object oriented design for the microservices. API design is covered in a
later chapter, and object-oriented design is covered in the next chapter.

Design Example 2: Banking Software System

Let's design a partial banking software system. The banking software system should be able to
handle customers’ loan applications and payments. The banking system problem domain can be
divided into two subdomains or bounded contexts:

• Loan applications

• Making payments

In the loan applications domain, a customer can submit a loan application. The eligibility for the
loan will be assessed, and the bank can either accept the loan application and pay the loan or reject
the loan application. In the making payments domain, a customer can make payments. Making a
payment will withdraw money from the customer's account. It is also a transaction that should be
recorded.

52

Figure 2.15 Banking Software System Bounded Contexts

Let's add a feature that a payment can be made to a recipient in another bank:

Let's add another feature: money can be transferred from external banks to a customer's account.

53

Figure 2.16 Banking Software System Bounded Contexts

Figure 2.17 Banking Software System Bounded Contexts

As can be noticed from the above pictures, the architecture of the banking software system evolved
when new features were introduced. For example, two new subdomains (or bounded contexts) were
created: money transfer and external money transfer. There was not so much change in the
microservices themselves, but how they are grouped logically to bounded contexts was altered.

Autopilot Microservices Principle

Microservices should be architected to run on autopilot in their deployment environment.

An autopilot microservice means a microservice that runs in a deployment environment without
human interaction, except in abnormal situations when the microservice should generate an alert
to indicate that human intervention is required.

Autopilot microservices principle requires that the following sub-principles are followed:

• Stateless microservices principle

• Resilient microservices principle

• Horizontally autoscaling microservices principle

• Highly-available microservices principle

• Observable microservices principle

These principles are discussed in more detail next.

 Stateless Microservices Principle

Microservices should be stateless to enable resiliency, horizontal scalability, and high
availability.

A microservice can be made stateless by storing its state outside itself. The state can be stored in a
data store that microservice instances share. Typically, the data store is a database or an in-
memory cache (like Redis, for example).

Resilient Microservices Principle

Microservices should be resilient, i.e., quickly recover from failures automatically.

In a Kubernetes cluster, the resiliency of a microservice is handled by the Kubernetes control plane.
If a computing node where a microservice instance is located needs to be decommissioned,
Kubernetes will create a new instance of the microservice on another computing node and then

54

evict the microservice from the node to be decommissioned.

What needs to be done in a microservice is to make it listen to Linux termination signals, especially
the SIGTERM signal, which is sent to a microservice instance to indicate that it should terminate.
Upon receiving a SIGTERM signal, the microservice instance should initiate a graceful shutdown. If
the microservice instance does not shut down gracefully, Kubernetes will eventually issue a
SIGKILL signal to terminate the microservice instance forcefully. The SIGKILL signal is sent after a
termination grace period has elapsed. This period is, by default, 30 seconds, but it is configurable.

There are other reasons a microservice instance might be evicted from a computing node. One such
reason is that Kubernetes must assign (for some reason which can be related to CPU/memory
requests, for instance) another microservice to be run on that particular computing node, and your
microservice won't fit there anymore and must be moved to another computing node.

If a microservice pod crashes, Kubernetes will notice that and start a new pod so that there are
always the wanted number of microservice replicas (pods/instances) running. The replica count can
be defined in the Kubernetes Deployment for the microservice.

But what if a microservice pod enters a deadlock and cannot serve requests? This situation can be
remediated with the help of a liveness probe. You should always specify a liveness probe for each
microservice Deployment. Below is an example of a microservice Deployment where an HTTP GET
type liveness probe is defined:

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: {{ include "microservice.fullname" . }}

spec:

 replicas: 1

 selector:

 matchLabels:

 {{- include "microservice.selectorLabels" . | nindent 6 }}

 template:

 spec:

 containers:

 - name: {{ .Chart.Name }}

 image: "{{ .Values.imageRegistry }}/{{ .Values.imageRepository }}:
{{ .Values.imageTag }}"

 livenessProbe:

 httpGet:

 path: /isMicroserviceAlive

 port: 8080

 initialDelaySeconds: 30

 failureThreshold: 3

 periodSeconds: 3

Kubernetes will poll the /isMicroserviceAlive HTTP endpoints of the microservice instances every
three seconds (after the initial delay of 30 seconds reserved for the microservice instance startup).
The HTTP endpoint should return the HTTP status code 200 OK. Suppose requests to that
endpoint fail (e.g., due to a deadlock) three times in a row (defined by the failureThreshold

55

property) for a particular microservice instance. In that case, the microservice instance is
considered dead, and Kubernetes will terminate the pod and launch a new pod automatically.

When upgrading a microservice to a newer version, the Kubernetes Deployment should be
modified. A new container image tag should be specified in the image property of the Deployment.
This change will trigger an update procedure for the Deployment. By default, Kubernetes performs
a rolling update, which means your microservice can serve requests during the update procedure
without downtime.

Suppose you had defined one replica in the microservice Deployment (as above replicas: 1),
and performed a Deployment upgrade (change the image to a newer version). In that case,
Kubernetes would create a new pod using the new image tag, and only after the new pod is ready to
serve requests will Kubernetes delete the pod running the old version. So there is no downtime, and
the microservice can serve requests during the upgrade procedure.

If your microservice deployment had more replicas, e.g., 10, by default, Kubernetes would
terminate max 25% of the running pods and start max 25% of the replica count new pods. The
rolling update means that updating pods happens in chunks, 25% of the pods at a time. The
percentage value is configurable.

Horizontally Autoscaling Microservices Principle

Microservices should automatically scale horizontally to be able to serve more requests.

Horizontal scaling means adding new instances or removing instances of a microservice. Horizontal
scaling of a microservice requires statelessness. Stateful services are usually implemented using
sticky sessions so that requests from a particular client go to the same service instance. The
horizontal scaling of stateful services is complicated because a client's state is stored on a single
service instance. In the cloud-native world, we want to ensure even load distribution between
microservice instances and target a request to any available microservice instance for processing.

Initially, a microservice can have one instance only. When the microservice gets more load, one
instance cannot necessarily handle all the work. In that case, the microservice must be scaled
horizontally (scaled out) by adding one or more new instances. When several microservice
instances are running, the state cannot be stored inside the instances anymore because different
client requests can be directed to different microservice instances. A stateless microservice must
store its state outside the microservice in an in-memory cache or a database shared by all the
microservice instances.

Microservices can be scaled manually, but that is rarely desired. Manual scaling requires someone
to constantly monitor the software system and make the needed scaling actions manually.
Microservices should scale horizontally automatically. There are two requirements for a
microservice to be horizontally auto-scalable:

56

• Microservice must be stateless

• There must be one or more metrics that define the scaling behavior

Typical metrics for horizontal autoscaling are CPU utilization and memory consumption. In many
cases, using the CPU utilization metric alone can be enough. It is also possible to use a custom or
external metric. For example, the Kafka consumer lag metric can indicate if the consumer lag is
increasing and if a new microservice instance should be spawned to reduce the consumer lag.

In Kubernetes, you can specify horizontal autoscaling using the HorizontalPodAutoscaler (HPA):

hpa.yaml

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: my-service

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: my-service

 minReplicas: 1

 maxReplicas: 99

 metrics:

 - type: Resource

 resource:

 name: cpu

 targetAverageUtilization: 75

 - type: Resource

 resource:

 name: memory

 targetAverageUtilization: 75

In the above example, the my-service microservice is horizontally auto-scaled so that there is
always at least one instance of the microservice running. There can be a maximum of 99 instances
of the microservice running. The microservice is scaled out if CPU or memory utilization is over
75%, and it is scaled in (the number of microservice instances is reduced) when both CPU and
memory utilization falls below 75%.

Highly-Available Microservices Principle

Business-critical microservices must be highly-available.

If only one microservice instance runs in an environment, it does not make the microservice highly
available. If something happens to that one instance, the microservice becomes temporarily
unavailable until a new instance has been started and is ready to serve requests. For this reason,
you should run at least two or more instances for all business-critical microservices. You should
also ensure that these two instances don't run on the same computing node. The instances should
run in different availability zones of the cloud provider. Then a catastrophe in availability zone 1

57

won't necessarily affect microservices running in availability zone 2.

You can ensure that no two microservice instances run on the same computing node by defining an
anti-affinity rule in the microservice Deployment:

deployment.yaml

.

.

.

affinity:

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchLabels:

 app.kubernetes.io/name: {{ include "microservice.name" . }}

 topologyKey: "kubernetes.io/hostname"

.

.

.

For a business-critical microservice, we need to modify the horizontal autoscaling example from the
previous section: The minReplicas property should be increased to 2:

hpa.yaml

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: my-service

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: my-service

 minReplicas: 2

 maxReplicas: 99

 .

 .

 .

Observable Microservices Principle

It should be possible to detect any abnormal behavior in deployed microservices as soon as
possible. Abnormal behavior should trigger an alert. The deployment environment should
offer aids for troubleshooting abnormal behavior.

A modern cloud-native software system consists of multiple microservices running simultaneously.
No one can manually check the logs of tens or hundreds of microservice instances. The key to
monitoring microservices is automation. Everything starts with collecting relevant metrics from
microservices and their execution environment. These metrics are used to define automatic alerting
of abnormal conditions. Metrics are also used to create monitoring and troubleshooting
dashboards, which can be used to analyze the state of the software system and its microservices

58

after an alert is triggered.

In addition to metrics, to enable drill-down to a problem's root cause, distributed tracing should be
implemented to log the communication between different microservices to troubleshoot inter-
service communication problems. Each microservice must also log at least all errors and warnings.
These logs should be fed to a centralized log collection system where querying the logs is made easy.

Software Versioning Principles

In this section, the following principles related to software versioning will be presented:

• Use semantic versioning

• Avoid using 0.x versions

• Don't increase major versions

• Implement security patches and bug corrections to all major versions

• Avoid using non-LTS (Long Term Support) versions in production

Use Semantic Versioning Principle

Use semantic versioning for software components.

S e m a n t i c v e r s i o n i n g m e a n s t h a t g i v e n a v e r s i o n n u m b e r i n t h e f o r m a t :
<MAJOR>.<MINOR>.<PATCH>, increment the:

• MAJOR value when you make incompatible API changes

• MINOR value when you add functionality in a backward-compatible manner

• PATCH value when you make backward-compatible bug fixes or security patches

Avoid Using 0.x Versions Principle

If you are using 3rd party components, avoid using 0.x versioned components.

In semantic versioning, major version zero (0.x.y) is for initial development. Anything can change
at any time. The public API should not be considered stable. Typically, software components with
zero major versions are still in a proof of concept phase, and anything can change. If you want or
need to take a newer version into use, you must be prepared for changes, and sometimes these
changes can be considerable, resulting in a lot of refactoring.

59

Don't Increase Major Version Principle

When making backward-incompatible public API changes, you need to increase the major version.
I advise not to make backward-incompatible changes, thus no major version increases.

If you need to make a backward-incompatible public API change, you should create a totally new
software component with a different name. For example, suppose you have a common-ui-library
and need to make backward-incompatible changes. In that case, it is recommended to add the new
major version number to the library name and publish a new library, common-ui-library-2. This
protects developers from accidentally using a more recent non-compatible version when changing
the used library version number. Library users don't necessarily know if a library uses semantic
versioning properly or not. This information is not usually told in the library documentation, but it
is a good practice to communicate that in the library documentation.

If a software component is using the common-ui-library, it can safely always take the latest version
of the library into use which contains all the needed bug fixes and security updates. If you were
using Node.js and NPM, this would be safe:

npm install --save common-ui-library@latest

And when you are ready to migrate to the new major version of the library, you can uninstall the old
version and install the new major version in the following way:

npm uninstall common-ui-library

npm install --save common-ui-library-2

Consider when to create a new major version of a library. When you created the first library
version, you probably did not get everything right in the public API. That is normal. It is almost
impossible to create a perfect API the first time. Before releasing the second major version of the
library, I suggest reviewing the new API with a team, collecting user feedback, and waiting long
enough to get the API "close to perfect" the second time. No one wants to use a library with
frequent backward-incompatible major version changes.

Implement Security Patches and Bug Corrections to All Major
Versions Principle

If you have authored a library for others to use, do not force the users to take a new major version
of the library into use just because it contains some bug corrections or security patches that are not
available for the older major version(s). You should have a comprehensive set of automated tests to
ensure that a bug fix or security patch doesn't break anything. Thus, making a security patch or bug
fix in multiple branches or source code repositories should be easy.

Requiring library users to upgrade to a new major version to get some security patch or a bug

60

correction can create a maintenance hell where the library users must refactor all software
components using the library just to get a security patch or bug correction.

Avoid Using Non-LTS Versions in Production Principle

Some software is available as Long Term Support (LTS) and non-LTS versions. Always use only an
LTS version in production. You are guaranteed long-term support through bug corrections and
security patches. You can use a non-LTS version for proof of concept projects where you want to use
some new features unavailable in an LTS version. But you must remember that if the PoC succeeds,
you can't just throw it into production. You need to productize it first, i.e., replace the non-LTS
software with LTS software.

Git Version Control Principle

Develop software in feature branches that are merged into the main branch. Use feature
toggles when needed.

When you need to develop a new feature, it can be done using either of the following ways:

1. Using a feature branch

2. Using multiple feature branches and a feature toggle

Feature Branch

The feature branch approach is enough for simple features encompassing a single program
increment, team, and microservice. A new feature is developed in a feature branch created from the
main branch, and when the feature is ready, the feature branch is merged back into the main
branch, and the feature branch can be deleted if wanted. The feature branch should be merged
using a merge or pull request that triggers a CI pipeline run that must succeed before the merge/
pull request can be completed. The merge or pull request should also take care of the code review.
There should also be a manual way to trigger a CI/CD pipeline run for a feature branch so that
developers can test an unfinished feature in a test environment during the development phase.

Below a sample workflow of creating and using a feature branch is depicted:

git clone <repository-url>

git checkout main

git pull origin main

Create and checkout a feature branch named "feature-id"

git checkout -b <feature-id>

61

First commit

git commit -a -m "Commit message"

More commits...

Push feature branch

git push origin <feature-id>

Other developers can now also use the feature branch

because it is pushed to origin

When the feature is ready, you can create a pull or merge request from the feature branch to the
main branch.

 Feature Toggle

A feature toggle is similar to a feature license. In the case of a feature license, the feature is available
only when a user has the respective license activated in their environment. A toggleable feature is
available only when the feature toggle is switched on. Feature toggles should be used for complex
features spanning multiple program increments, microservices, or teams. Feature toggles are part
of the configuration of an environment. For example, feature toggles can be stored in a Kubernetes
ConfigMap that any microservice can access. When using a feature toggle, the toggle is initially
switched off. Development of the feature happens in multiple feature branches in different teams.
Teams merge their part of the feature to the main branch. When all feature branches are merged
into the main branch, the feature toggle can be switched on to activate the feature.

Architectural Patterns

Event Sourcing Pattern

Use event sourcing to capture state changes as a sequence of events.

Event sourcing ensures that all changes to the state of a service are stored as an ordered sequence of
events. Event sourcing makes it possible to query state changes. Also, the state change events act as
an audit log. It is possible to reconstruct past states and rewind the current state to some earlier
state. Unlike CRUD actions on resources, event sourcing utilizes only CR (create and read) actions.
It is only possible to create new events and read events. It is not possible to update an existing event
or delete an event.

Let's have an example of using event sourcing to store orders in an e-commerce software system.
The order-service should be able to store the following events:

62

• AbstractOrderEvent

• Abstract base event for other concrete events containing timestamp and order id

properties

• OrderCreatedEvent

• Contains basic information about the order

• OrderPaymentEvent

• Contains information about the order payment

• OrderModificationEvent

• Contains information about modifications made by the customer to the order before
packaging

• OrderPackagedEvent

• Contains information about who collected and packaged the order

• OrderCanceledEvent

• Describes that the customer has canceled the order and the order should not be shipped

• OrderShippedEvent

• Contains information about the logistics partner and the tracking id of the order shipment

• OrderDeliveredEvent

• Contains information about the pick-up point of the delivered order

• OrderShipmentReceivedEvent

• Informs that the customer has received the shipment

• OrderReturnedEvent

• Contains information about the returned order or order item(s)

• OrderReturnShippedEvent

• Contains information about the logistics partner and the tracking id of the return

shipment

• OrderReturnReceivedEvent

• Contains information about who handled the order return and the status of returned
items

• OrderReimbursedEvent

• Contains information about the reimbursement for the returned order item(s) to the

customer

Command Query Responsibility Segregation (CQRS) Pattern

Use the CQRS pattern if you want to use a different model for create/update (= command)
operations compared to the model you want to use to query information.

Let's consider the previous order-service example that used event sourcing. In the order-service,

63

all the commands are events. We want users to be able to query orders efficiently. We should have
an additional representation of an order in addition to events because it is inefficient to always
generate the current state of an order by replaying all the related events. For this reason, our
architecture should utilize the CQRS pattern and divide the order-service into two different
services: order-command-service and order-query-service.

The order-command-service is the same as the original order-service that uses event sourcing, and
the order-query-service is a new service. The order-query-service has a database where it holds a
materialized view of orders. The two services are connected with a message broker. The order-
command-service sends events to a topic in the message broker. The order-query-service reads
events from the topic and applies changes to the materialized view. The materialized view is
optimized to contain basic information about each order, including its current state, to be
consumed by the e-commerce company staff and customers. Because customers query orders, the
materialized view should be indexed by the customer id column to enable fast retrieval. Suppose
that, in some special case, a customer needs more details about an order that is available in the
materialized view. In that case, the order-command-service can be used to query the events of the
order for additional information.

Distributed Transaction Patterns

A distributed transaction is a transaction that spans multiple microservices. A distributed
transaction consists of one or more remote requests. Distributed transactions can be implemented
using the saga pattern. In the saga pattern, each request in a distributed transaction should have a
respective compensating action defined. If one request in the distributed transaction fails,
compensating requests should be executed for the already successfully executed requests. The idea
of executing the compensating requests is to bring the system back to the state where it was before
the distributed transaction was started. So, the rollback of a distributed transaction is done via

64

Fig 2.14 Order Services using CQRS

executing the compensating actions.

A failed request in a distributed transaction must be conditionally compensated if we cannot be
sure whether the server successfully executed the request. This can happen when a request
timeouts and we don't receive a response to indicate the request status.

Also, executing a compensating request can fail. For this reason, a microservice must persist
compensating requests so they can be retried later until they all succeed. Persistence is needed
because the microservice instance can be terminated before it has completed all the compensating
requests successfully. Another microservice instance can continue the work left by the terminated
microservice instance.

Some requests in a distributed transaction can be such that they cannot be compensated. One
typical example is sending an email. You can't get it unsent once it has been sent. There are at least
two approaches to dealing with requests that cannot be compensated. The first one is to delay the
execution of the request so that it can be made compensable. For example, an email-sending
microservice can, instead of immediately sending an email, store the email in a queue for later
sending. Now email-sending microservice can accept a compensating request to remove the email
from the sending queue.

Another approach is to execute non-compensable requests in the latest possible phase of the
distributed transaction. You can, for example, issue the email-sending request as the last request of
the distributed transaction. Then the likelihood of needing to compensate for the email sending is
lower than if the email was sent as the first request in the distributed transaction. You can also
combine these two approaches. Sometimes a request can be compensable even if you first think it is
not. If we think about sending an email, it could be compensated by sending another email, where
you state that the earlier sent email should be disregarded for a specific reason.

Saga Orchestration Pattern

Orchestrator or controller microservice orchestrates the execution of a distributed
transaction.

Let's have an example of a distributed transaction using the saga orchestration pattern with an
online banking system where users can transfer money from their accounts. We have a higher-level
microservice called money-transfer-service, which is used to make money transfers. The banking
system has also two lower-level microservices called account-balance-service and account-
transaction-service. The account-balance-service holds accounts’ balance information while the
account-transaction-service keeps track of all transactions on the accounts. The money-transfer-
service acts as a saga orchestrator and utilizes both of the lower-level microservices to make a
money transfer to happen.

Let's consider a distributed transaction executed by the money-transfer-service when a user makes
a withdrawal of $25,10:

65

1) The money-transfer-service tries to withdraw the amount from the user's account by sending the
following request to the account-balance-service:

POST /account-balance-service/accounts/123456789012/withdraw

{

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34",

 "amountInCents": 2510

}

The sagaUuid is a universally unique identifier (UUID) generated by the saga orchestrator before
the saga begins. If there are not enough funds to withdraw the given amount, the request fails with
the HTTP status code 400 Bad Request. If the request is successfully executed, the account-
balance-service should store the saga UUID to a database table temporarily. This table should be
cleaned up regularly by deleting old enough saga UUIDs.

2) The money-transfer-service will create a new account transaction for the user's account by
sending the following request to the account-transaction-service:

POST /account-transaction-service/accounts/123456789012/transactions

{

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34",

 // Additional transaction information here...

}

The above-described distributed transaction has two requests, each of which can fail. Let's consider
the scenario where the first request to the account-balance-service fails. If the first request fails due
to a request timeout, we don't know if the request was successfully processed by the recipient
microservice. We don't know because we did not get the response and status code. For that reason,
we need to perform a compensating action by issuing the following compensating request:

POST /account-balance-service/accounts/123456789012/undo-withdraw

{

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34",

 "amountInCents": 2510

}

The account-balance-service will perform the undo-withdraw action only if a withdrawal with
the given saga UUID was earlier made and that withdrawal has not been undone yet. Upon
successful undoing, the account-balance-service will delete the row for the given saga UUID from
the database table where the saga UUID was earlier temporarily stored. Further undo-withdraw
actions with the same saga UUID will be no-op actions making the undo-withdraw action
idempotent.

Next, let's consider the scenario where the first request succeeds and the second request fails. Now
we have to compensate for both requests. First, we compensate for the first request as described
earlier. Then we will compensate for the second request by deleting the account transaction
identified with the sagaUuid:

66

DELETE /account-transaction-service/accounts/123456789012/transactions?
sagaUuid=e8ab60b5-3053-46e7-b8da-87b1f46edf34

If a compensating request fails, it must be repeated until it succeeds. Notice that the above
compensating requests are both idempotent, i.e., they can be executed multiple times with the same
result. Idempotency is a requirement for a compensating request because it can be possible that a
compensating request fails after the compensation was already performed. That compensation
request failure will cause the compensating request to be attempted again. The distributed
transaction manager in the money-transfer-service should ensure that a distributed transaction is
successfully completed or roll-backed by the instances of the money-transfer-service. You should
implement a single distributed transaction manager library per programming language or
technology stack and use that in all microservices that need to orchestrate distributed transactions.
Alternatively, use a 3rd party library.

Let's have another short example with the ecommerce-service presented earlier in this chapter. The
order-placing endpoint of the ecommerce-service should make the following requests in a
distributed transaction:

1. Ensure payment

2. Create an order

3. Remove the ordered sales items from the shopping cart

4. Mark the ordered sales items sold

5. Enqueue an order confirmation email for sending

The respective compensating requests are the following:

1. Reimburse the payment

2. Delete the order using the saga UUID

3. Add the ordered sales items back to the shopping cart. (The shopping cart service must ensure

that a sales item can be added only once to a shopping cart)

4. Mark the ordered sales items for sale

5. Dequeue the order confirmation email

Saga Choreography Pattern

Microservices perform a distributed transaction in a choreography where a client
microservice initiates a distributed transaction, and the last microservice involved completes
the distributed transaction by sending a completion message to the client microservice.

The saga choreography pattern utilizes asynchronous communication between microservices.
Involved microservices send messages to each other in a choreography to achieve saga completion.

The saga choreography pattern has a couple of drawbacks:

67

• The execution of a distributed transaction is not centralized like in the saga orchestration pattern,
and it can be hard to figure out how a distributed transaction is actually performed.

• It creates coupling between microservices, while microservices should be as loosely coupled as
possible.

The saga choreography pattern works best in cases where the number of participating
microservices is low. Then the coupling between services is low, and it is easier to reason how a
distributed transaction is performed.

Let's have the same money transfer example as earlier, but now using the saga choreography
pattern instead of the saga orchestration pattern.

1) The money-transfer-service initiates the saga by sending the following event to the message
broker's account-balance-service topic:

{

 "event": "Withdraw",

 "data": {

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34",

 "amountInCents": 2510,

 // Additional transaction information here...

 }

}

2) The account-balance-service will consume the Withdraw event from the message broker,
perform a withdrawal, and if successful, send the same event to the message broker's account-
transaction-service topic.

3) The account-transaction-service will consume the Withdraw event from the message broker,
persist an account transaction, and if successful, send the following event to the message broker's
money-transfer-service topic:

{

 "event": "WithdrawComplete",

 "data": {

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34"

 }

}

If either step 2) or 3) fails, the account-balance-service or account-transaction-service will send
the following event to message broker’s money-transfer-service topic:

{

 "event": "WithdrawFailure",

 "data": {

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34"

 }

}

68

If the money-transfer-service receives a WithdrawFailure event or does not receive a
WithdrawComplete event during some timeout period, the money-transfer-service will initiate a
distributed transaction rollback sequence by sending the following event to the message broker's
account-balance-service topic:

{

 "event": "WithdrawRollback",

 "data": {

 "sagaUuid": "e8ab60b5-3053-46e7-b8da-87b1f46edf34",

 "amountInCents": 2510,

 // Additional transaction information here...

 }

}

Once the rollback in the account-balance-service is done, the rollback event will be produced to the
account-transaction-service topic in the message broker. After the account-transaction-service has
successfully performed the rollback, it sends a WithdrawRollbackComplete event to the
money-transfer-service topic. Once the money-transfer-service consumes that message, the
withdrawal event is successfully rolled back. Suppose the money-transfer-service does not receive
the WithdrawRollbackComplete event during some timeout period. In that case, it will restart
the rollback choreography by resending the WithdrawRollback event to the account-balance-
service.

Preferred Technology Stacks Principle

 Define preferred technology stacks for different purposes.

The microservice architecture enables using the most suitable technology stack to develop each
microservice. For example, some microservices require high performance and controlled memory
allocation, and other microservices don't need such things. You can choose the used technology
stack based on the needs of a microservice. For a real-time data processing microservice, you might
pick C++ or Rust, and for a simple REST API, you might choose Node.js and Express, Java and
Spring Boot, or Python and Django.

Even if the microservice architecture allows different teams and developers to decide what
programming languages and technologies to use when implementing a microservice, defining
preferred technology stacks for different purposes is still a good practice. Otherwise, you might find
yourself in a situation where numerous programming languages and technologies are used in a
software system. Some programming languages and technologies like Clojure, Scala, or Haskell can
be relatively niche. When software developers in the organization come and go, you might end up in
situations where you don't have anyone who knows about some specific niche programming
language or technology. In the worst case, a microservice needs to be reimplemented from scratch
using some more mainstream technologies. For this reason, you should specify technology stacks

69

that teams should use. These technology stacks should contain as much as possible mainstream
programming languages and technologies.

For example, an architecture team might decide the following:

• Web clients should be developed using TypeScript, React, and Redux

• Non-API backend services should be developed in C++ for performance reasons

• APIs should be developed with TypeScript, Node.js, and Nest.js or with Java and Spring Boot

• Integration tests should be implemented with Cucumber using the same language as is used for

the implementation or, alternatively, with Python and Behave

• E2E tests should be implemented with Python and Behave

• Scripts should be implemented using Bash for small scripts and Python for larger scripts

The above technology stacks are mainstream. Recruiting talent with needed knowledge and
competencies should be effortless.

After you have defined the preferred technology stacks, you should create a utility or utilities that
can be used to kick-start a new project using a particular technology stack quickly. This utility or
utilities should generate the initial source code repository content for a new microservice, client, or
library. The initial source code repository should contain at least the following items for a new
microservice:

• Source code folder

• Unit test folder

• Integration test folder

• Build tools, like Gradle Wrapper for Java, for example

• Initial build definition file(s), like build.gradle for Java, CMakeLists.txt for C++ or package.json

for Node.js

• Initial dependencies defined in the build definition file

• .env file(s) to store environment variables for different environments (dev, CI)

• .gitignore

• README.MD template

• Linting rules (e.g., .eslintrc.json)

• Code formatting rules (e.g., .prettier.rc)

• Initial code for integration tests, e.g., docker-compose.yml file for spinning up an integration

testing environment

• Infrastructure code for the chosen cloud provider, e.g., code to deploy a managed SQL database in

the cloud

• Code (e.g., Dockerfile) for building the microservice container image

• Deployment code (e.g., a Helm chart)

70

• CI/CD pipeline definition code

The utility should ask the following questions from the developer before creating the initial source
code repository content for a microservice:

• What is the name of the microservice?

• To what cloud environment will microservice be deployed? (AWS, Azure, Google Cloud, etc.)

• What are the used inter-service communication methods? Based on the answer, the utility can

add dependencies, e.g., a Kafka client dependency

• Should microservice have a database, and what database?

• What are the other dependent microservices?

Of course, decisions about the preferred technology stacks are not engraved in stone. They are not
static. As time passes, new technologies arise, and new programming languages gain popularity. At
some point, a decision could be made that a new technology stack should replace an existing
preferred technology stack. Then all new projects should use the new stack, and old software
components will be gradually migrated to use the new technology stack.

Many developers are keen on learning new things on a regular basis. They should be encouraged to
work on hobby projects with technologies of their choice, and they should be able to utilize new
programming languages and frameworks in selected new projects.

71

72

Object-Oriented Design Principles

This chapter describes principles related to object-oriented design. The following principles are
discussed:

• SOLID principles

• Uniform naming principle

• Encapsulation principle

• Composition principle

• Domain-driven design principle

• Use the design patterns principle

• Don't ask, tell principle

• Law of Demeter

• Avoid primitive type obsession principle

• Dependency injection principle

• Avoid duplication principle

SOLID Principles

All five SOLID principles (https://en.wikipedia.org/wiki/SOLID) are covered in this section. The
dependency inversion principle is generalized as a program against interfaces principle. The five
SOLID principles are the following:

• Single responsibility principle

• Open-closed principle

• Liskov's substitution principle

• Interface segregation principle

73

• Dependency inversion principle (Generalization: program against interfaces principle)

Single Responsibility Principle

Classes should have one responsibility, representing a thing or providing a single
functionality. Functions should do one thing only.

Each class should have a single dedicated purpose. A class can represent a single thing, like a bank
account (Account class) or an employee (Employee class), or provide a single functionality like
parsing a configuration file (ConfigFileParser class) or calculating tax (TaxCalculator
class).

We should not create a class representing a bank account and an employee. It is simply wrong. Of
course, an employee can have a bank account. But that is a different thing. It is called object
composition. In object composition, an Employee class object contains an Account class object.
The Employee class still represents one thing: An employee (who can have a bank account). Object
composition is covered later in this chapter in more detail.

At the function level, each function should perform a single task. The function name should
describe what task the function performs, meaning each function name should contain a verb. The
function name should not contain the word and because it can mean that the function is doing
more than one thing or you haven't named the function on a correct abstraction level. You should
not name a function according to the steps it performs (e.g., doThisAndThatAndThenThirdThing)
but instead, use wording on a higher level of abstraction.

When a class represents something, it can contain multiple methods. For example, in the Account
class, there can be methods like deposit and withdraw. It is still a single responsibility if these
methods are simple enough and if there are not too many methods in the class.

Below is a real-life code example where the and word is used in the function name:

void deletePageAndAllReferences(Page page) {

 deletePage(page);

 registry.deleteReference(page.name);

 configKeys.deleteKey(page.name.makeKey());

}

In the above example, the function seems to do two things: deleting a page and removing all the
references to that page. But if we look at the code inside the function, we can realize that it is doing
a third thing also: deleting a page key from configuration keys. So should the function be named
deletePageAndAllReferencesAndConfigKey? It does not sound reasonable. The problem
with the function name is that it is at the same level of abstraction as the function statements. The
function name should be at a higher level of abstraction than the statements inside the function.

74

How should we then name the function? I cannot say for sure because I don't know the context of
the function. We could name the function just delete. This would tell the function caller that a
page will be deleted. The caller does not need to know all the actions related to deleting a page. The
caller just wants a page to be deleted. The function implementation should fulfill that request and
do the needed housekeeping actions, like removing all the references to the page being deleted and
so on.

Another example of a function doing multiple things is JavaScript's splice method in the Array
class. The function name should describe what it does (more about that in the uniform naming
principle section). But nobody would know what a splice function does if they just heard the
name for the first time. If the function name cannot tell what the function does, the function might
do more than one thing. The description of the splice method tells the following:

The splice() method changes the contents of an array by removing or replacing existing
elements and/or adding new elements in place.

The above description indicates that the splice method does multiple things: removing, replacing,
and adding. This method should be split into multiple methods, each having a single responsibility
of removing, replacing, or adding.

Let's consider another example with React Hooks. React Hooks have a function named useEffect
which can be used to enqueue functions to be run after component rendering. The useEffect
function can be used to run some code after the initial render (after the component mount), after
every render, or conditionally. This is quite much responsibility for a single function. Also, the
function's quite strange name does not reveal its purpose. The word effect comes from the fact that
this function is used to enqueue other functions with side effects to be run. The term side effect
might be familiar to functional language programmers. It indicates that a function is not pure (has
side effects).

Below is an example React functional component:

MyComponent.jsx

import { useEffect } from "react";

export default function MyComponent() {

 useEffect(() => {

 function startFetchData() {

 // ...

 }

 function subscribeToDataUpdates() {

 // ...

 }

 function unsubscribeFromDataUpdates() {

 // ...

 }

 startFetchData();

75

 subscribeToDataUpdates();

 return function cleanup() { unsubscribeFromDataUpdates() };

 }, []);

 // JSX to render

 return ...;

}

In the above example, the useEffect call makes calls to functions startFetchData and
subscribeToDataUpdates to happen after the initial render because of the supplied empty array
for dependencies (the second parameter to the useEffect function). The cleanup function
returned from the function supplied to useEffect will be called before the effect will be run again
or when the component is unmounted and in this case, only on unmount because the effect will
only run once after the initial render.

Let's imagine how we could improve the useEffect function. We could separate the functionality
related to mounting and unmounting into two different functions: afterMount and
beforeUnmount. Then we could change the above example to the following piece of code:

export default function MyComponent() {

 function startFetchData() {

 // ...

 }

 function subscribeToDataUpdate() {

 // ...

 }

 function unsubscribeFromDataUpdate() {

 // ...

 }

 afterMount(startFetchData, subscribeToDataUpdates);

 beforeUnmount(unsubscribeFromDataUpdates)

 // JSX to render

 return ...;

}

The above example is cleaner and much easier for a reader to understand than the original
example. There are no multiple levels of nested functions. You don't have to return a function to be
executed on component unmount, and you don’t have to supply an array of dependencies.

Let's have another example of a React functional component:

import { useEffect, useState } from "react";

export default function ButtonClickCounter() {

 const [clickCount, setClickCount] = useState(0);

 useEffect(() => {

 function updateClickCountInDocumentTitle() {

 document.title = `Click count: ${clickCount}`;

 }

76

 updateClickCountInDocumentTitle();

 });

}

In the above example, the effect is called after every render (because no dependencies array is
supplied for the useEffect function). Nothing in the above code clearly states what will be
executed and when. We still use the same useEffect function, but now it behaves differently
compared to the previous example. It seems like the useEffect function is doing multiple things.
How to solve this? Let's think hypothetically again. We could introduce yet another new function
that can be called when we want something to happen after every render:

export default function ButtonClickCounter() {

 const [clickCount, setClickCount] = useState(0);

 afterEveryRender(function updateClickCountInDocumentTitle() {

 document.title = `Click count: ${clickCount}`;

 });

}

The intentions of the above React functional component are pretty clear: It will update the click
count in the document title after every render.

Let's optimize our example so that the click count update happens only if the click count has
changed:

import { useEffect, useState } from "react";

export default function ButtonClickCounter() {

 const [clickCount, setClickCount] = useState(0);

 useEffect(() => {

 function updateClickCountInDocumentTitle() {

 document.title = `Click count: ${clickCount}`;

 }

 updateClickCountInDocumentTitle();

 }, [clickCount]);

}

Notice how clickCount is now added to the dependencies array of the useEffect function. This
means the effect is not executed after every render but only when the click count is changed.

Let's imagine how we could improve the above example. We could introduce a new function that
handles dependencies: afterEveryRenderIfChanged. Our hypothetical example would now
look like this:

export default function ButtonClickCounter() {

 const [clickCount, setClickCount] = useState(0);

 afterEveryRenderIfChanged(

 [clickCount],

77

 function updateClickCountInDocumentTitle() {

 document.title = `Click count: ${clickCount}`;

 });

}

Making functions do a single thing also helped make the code more readable. Regarding the
original examples, a reader must look at the end of the useEffect function call to figure out in
what circumstances the effect function will be called. And it is cognitively challenging to understand
and remember the difference between a missing and empty dependencies array. Good code is such
that it does not make the code reader think. At best, code should read like prose: after every render
if changed "clickCount", update click count in document title.

One idea behind the single responsibility principle is that it enables software development using the
open-closed principle described in the next section. When you follow the single responsibility
principle and need to add functionality, you add it to a new class, which means you don't need to
modify an existing class. You should avoid modifying existing code but extend it by adding new
classes, each with a single responsibility.

Open-Closed Principle

Software code should be open for extension and closed for modification. Functionality in
existing classes should not be modified, but new classes should be introduced that either
implement a new or existing interface or extend an existing class.

Any time you find yourself modifying some method in an existing class, you should first consider if
this principle could be followed and if the modification could be avoided. Every time you modify an
existing class, you can introduce a bug in the working code. The idea of this principle is to leave the
working code untouched, so it does not get accidentally broken.

Let's have an example where this principle is not followed. We have the following existing and
working code:

public interface Shape {

}

public class RectangleShape implements Shape {

 private int width;

 private int height;

 public RectangleShape(final int width, final int height) {

 this.width = width;

 this.height = height;

 }

 public int getWidth() {

 return width;

 }

 public int getHeight() {

78

 return height;

 }

 public void setWidth(final int newWidth) {

 width = newWidth;

 }

 public void setHeight(final int newHeight) {

 height = newHeight;

 }

}

Suppose we get an assignment to introduce support for square shapes. Let's try to modify the
existing RectangleShape class, because a square is also a rectangle:

public class RectangleShape implements Shape {

 private int width;

 private int height;

 // Rectangle constructor

 public RectangleShape(final int width, final int height) {

 this.width = width;

 this.height = height;

 }

 // Square constructor

 public RectangleShape(final int sideLength) {

 this.width = sideLength;

 this.height = sideLength;

 }

 public int getWidth() {

 return width;

 }

 public int getHeight() {

 return height;

 }

 public void setWidth(final int newWidth) {

 if (height == width) {

 //noinspection SuspiciousNameCombination

 height = newWidth;

 }

 width = newWidth;

 }

 public void setHeight(final int newHeight) {

 if (height == width) {

 //noinspection SuspiciousNameCombination

 width = newHeight;

 }

 height = newHeight;

 }

}

We needed to add a new constructor and modify two methods in the class. Everything works okay
when we run tests. But we have introduced a subtle bug in the code: If we create a rectangle with an

79

equal height and width, the rectangle becomes a square, which is probably not what is wanted. This
is a bug that can be hard to find in unit tests. This example showed that modifying an existing class
can be problematic. We modified an existing class and accidentally broke it.

A better solution to introduce support for square shapes is to use the open-closed principle and
create a new class that implements the Shape interface. Then we don't have to modify any existing
class, and there is no risk of accidentally breaking something in the existing code. Below is the new
SquareShape class:

public class SquareShape implements Shape {

 private int sideLength;

 public SquareShape(final int sideLength) {

 this.sideLength = sideLength;

 }

 public int getSideLength() {

 return sideLength;

 }

 public void setSideLength(final int newSideLength) {

 sideLength = newSideLength;

 }

}

An existing class can be safely modified by adding a new method in the following cases:

• The added method is a pure function, i.e., it always returns the same value for the same
arguments and does not have side effects, i.e., it does not modify the object's state.

• The added method is read-only and tread-safe, i.e., it does not modify the object's state and
accesses the object's state in a thread-safe manner in the case of multithreaded code. An example
of a read-only method in a shape class would be a method that calculates the shape's area.

• Class is immutable, i.e., the added method (or any other method) cannot modify the object's state

There are a couple of cases where the modification of existing code is needed. One example is
factories. When you introduce a new class, you need to modify the related factory to be able to
create an instance of that new class. For example, if we had a ShapeFactory class, we would need
to modify it to support the creation of SquareShape objects. Factories are discussed later in this
chapter.

Another case is adding a new enum constant. You typically need to modify existing code to handle
the new enum constant. If you forget to add the handling of the new enum constant somewhere in
the existing code, typically, a bug will arise. For this reason, you should always safeguard switch-
case statements with a default case that throws and if/else-if structures with an else branch that
throws. You can also enable your static code analysis tool to report an issue if a switch statement's
default case is missing or an else-branch is missing from an if/else-if structure. Also, some static
code analysis tools can report an issue if you miss handling an enum constant in a switch-case

80

statement.

Here is an example of safeguarding an if/else-if structure in Java:

public enum FilterType {

 INCLUDE,

 EXCLUDE

}

interface Filter {

 boolean isFilteredOut(...);

}

public class FilterImpl implements Filter {

 private final FilterType filterType;

 public FilterImpl(final FilterType filterType, ...) {

 this.filterType = filterType;

 // ...

 }

 public boolean isFilteredOut(...) {

 if (filterType == FilterType.INCLUDE) {

 // ...

 } else if (filterType == FilterType.EXCLUDE) {

 // ..

 } else {

 // Safeguarding

 throw new IllegalArgumentException("Invalid filter type");

 }

 }

}

In TypeScript, safeguarding might be needed for union types also:

type FilterType = 'include' | 'exclude';

if (filterType === 'include') {

 // ...

} else if (filterType === 'include') {

 // ...

} else {

 // Safeguarding

 throw new Error("Invalid filter type");

}

We can notice from the above examples that if/else-if structures could be avoided with a better
object-oriented design. For instance, we could create a Filter interface and two separate classes,
IncludeFilter and ExcludeFilter, that implement the Filter interface. Using object-
oriented design allows us to eliminate the FilterType enum and the if/else-if structure. This is
known as the replace conditionals with polymorphism refactoring technique. Refactoring is
discussed more in the next chapter. Below is the above Java example refactored to be more object-
oriented:

interface Filter {

 boolean isFilteredOut(...);

81

}

public class IncludeFilter implements Filter {

 // ...

 public boolean isFilteredOut(...) {

 // ...

 }

}

public class ExcludeFilter implements Filter {

 // ...

 public boolean isFilteredOut(...) {

 // ...

 }

}

Liskov's Substitution Principle

Objects of a superclass should be replaceable with objects of its subclasses without breaking
the application. I.e., objects of subclasses behave the same way as the objects of the
superclass.

Following Liskov's substitution principle guarantees semantic interoperability of types in a type
hierarchy.

Let's have an example with a RectangleShape class and a derived SquareShape class:

public interface Shape {

 void draw();

}

public class RectangleShape implements Shape {

 private int width;

 private int height;

 public RectangleShape(final int width, final int height) {

 this.width = width;

 this.height = height;

 }

 public void draw() {

 // ...

 }

 public int getWidth() {

 return this.width;

 }

 public int getHeight() {

 return this.height;

 }

 public void setWidth(final int newWidth) {

82

 width = newWidth;

 }

 public void setHeight(final int newHeight) {

 height = newHeight;

 }

}

public class SquareShape extends RectangleShape {

 public SquareShape(final int sideLength) {

 super(sideLength, sideLength);

 }

 @Override

 public void setWidth(final int newWidth) {

 super.setWidth(newWidth);

 //noinspection SuspiciousNameCombination

 super.setHeight(newWidth);

 }

 @Override

 public void setHeight(final int newHeight) {

 //noinspection SuspiciousNameCombination

 super.setWidth(newHeight);

 super.setHeight(newHeight);

 }

}

The above example does not follow Liskov's substitution principle because you cannot set a square's
width and height separately. This means that a square is not a rectangle from an object-oriented
point of view. Of course, mathematically, a square is a rectangle. But when considering the above
public API of the RectangleShape class, we can conclude that a square is not a rectangle because
a square cannot fully implement the API of the RectangleShape class. We cannot substitute a
square object for a rectangle object. What we need to do is to implement the SquareShape class
without deriving from the RectangleShape class:

public class SquareShape implements Shape {

 private int sideLength;

 public SquareShape(final int sideLength) {

 this.sideLength = sideLength;

 }

 public void draw() {

 // ...

 }

 public int getSideLength() {

 return this.sideLength;

 }

 public void setSideLength(final int newSideLength) {

 sideLength = newSideLength;

 }

}

Liskov's substitution principle requires the following:

83

• A subclass must implement the superclass API and retain (or, in some cases, replace) the
functionality of the superclass.

• A superclass should not have protected fields because it allows subclasses to modify the state of
the superclass, which can lead to incorrect behavior in the superclass

Below is an example where a subclass extends the behavior of a superclass in the doSomething
method. The functionality of the superclass is retained in the subclass making a subclass object
substitutable for a superclass object.

public class SuperClass {

 // ...

 public void doSomething() {

 // ...

 }

}

public class SubClass extends SuperClass {

 // ...

 @Override

 public void doSomething() {

 super.doSomething();

 // Some additional behaviour...

 }

}

Let's have a concrete example of using the above strategy. We have the following CircleShape
class defined:

public interface Shape {

 void draw();

}

public class CircleShape implements Shape {

 public void draw() {

 // draw the circle stroke

 }

}

Next, we introduce a class for filled circles:

public class FilledCircleShape extends CircleShape {

 @Override

 public void draw() {

 super.draw(); // draws the circle stroke

 // Fill the circle

 }

}

The FilledCircleShape class fulfills the requirements of Liskov's substitution principle. We can
use an instance of the FilledCircleShape class everywhere where an instance of the

84

CircleShape class is wanted. The FilledCircleShape class does all that the CircleShape
class does, plus adds some behavior (= filling the circle).

You can also completely replace the superclass functionality in a subclass:

public class ReverseArrayList<T> extends ArrayList<T>

{

 @Override

 public Iterator<T> iterator() {

 return new ReverseListIterator<>(this);

 }

}

The above subclass implements the superclass API and retains its behavior: The iterator method
still returns an iterator. It just returns a different iterator compared to the superclass.

Interface Segregation and Multiple Inheritance Principle

Segregate a larger interface to micro interfaces with a single capability/behavior and
construct larger interfaces by inheriting multiple micro interfaces.

Let's have an example with several automobile classes:

public interface Automobile {

 void drive(Location start, Location destination);

 void carryCargo(double volumeInCubicMeters, double weightInKgs);

}

public class PassengerCar implements Automobile {

 // Implement drive and carryCargo

}

public class Van implements Automobile {

 // Implement drive and carryCargo

}

public class Truck implements Automobile {

 // Implement drive and carryCargo

}

public interface ExcavatingAutomobile extends Automobile {

 void excavate(...);

}

public class Excavator implements ExcavatingAutomobile {

 // Implement drive, carryCargo and excavate

}

Notice how the Automobile interface has two methods declared. This can limit our software if we
later want to introduce other vehicles that could be just driven but unable to carry cargo. In an early
phase, we should segregate two micro interfaces from the Automobile interface. A micro interface
defines a single capability or behavior. After segregation, we will have the following two micro

85

interfaces:

public interface Drivable {

 void drive(Location start, Location destination);

}

public interface CargoCarriable {

 void carryCargo(double volumeInCubicMeters, double weightInKgs);

}

Now that we have two interfaces, we can use these interfaces also separately in our codebase. For
example, we can have a list of drivable objects or a list of objects that can carry cargo. We still want
to have an interface for automobiles, though. We can use interface multiple inheritance to redefine
the Automobile interface to extend the two micro interfaces:

public interface Automobile extends Drivable, CargoCarriable {

}

If we look at the ExcavatingAutomobile interface, we can notice that it extends the
Automobile interface and adds excavating behavior. Once again, we have a problem if we want to
have an excavating machine that is not auto-mobile. The excavating behavior should be segregated
into its own micro interface:

public interface Excavating {

 void excavate(...);

}

We can once again use the interface multiple inheritance to redefine the ExcavatingAutomobile
interface as follows:

public interface ExcavatingAutomobile

 extends Excavating, Automobile {

}

The ExcavatingAutomobile interface now extends three micro interfaces: Excavating,
Drivable, and CargoCarriable. Where-ever you need an excavating, drivable, or cargo
carriable object in your codebase, you can use an instance of the Excavator class there.

Let's have another example with a generic collection interface with TypeScript. We should be able
to traverse a collection and also be able to compare two collections for equality. First, we define a
generic MyIterator interface for iterators. It has two methods, as described below:

interface MyIterator<T> {

 hasNextElement(): boolean;

 getNextElement(): T;

}

Next, we can define the collection interface:

86

interface Collection<T> {

 createIterator(): MyIterator<T>;

 equals(anotherCollection: Collection<T>): boolean;

}

Collection<T> is an interface with two unrelated methods. Let's segregate those methods into
two micro interfaces: MyIterable and Equatable. The MyIterable interface is for objects that
you can iterate over. It has one method for creating new iterators. The Equatable interface's
equals method is more generic than the equals method in the Collection<T> interface. You
can equate an Equatable<T> object with another object of type T:

interface MyIterable<T> {

 createIterator(): MyIterator<T>;

}

interface Equatable<T> {

 equals(anotherObject: T): boolean;

}

We can use interface multiple inheritance to redefine the Collection<T> interface as follows:

interface Collection<T> extends MyIterable<T>,

 Equatable<Collection<T>> {

}

We can implement the equals method by iterating elements in two collections and checking if the
elements are equal:

abstract class AbstractCollection<T> implements Collection<T> {

 abstract createIterator(): MyIterator<T>;

 equals(anotherCollection: Collection<T>): boolean {

 const iterator = this.createIterator();

 const anotherIterator = anotherCollection.createIterator();

 let collectionsAreEqual =

 this.areEqual(iterator, anotherIterator);

 if (anotherIterator.hasNextElement()) {

 collectionsAreEqual = false;

 }

 return collectionsAreEqual;

 }

 private areEqual(

 iterator: MyIterator<T>,

 anotherIterator: MyIterator<T>

): boolean {

 while (iterator.hasNextElement()) {

 if (anotherIterator.hasNextElement()) {

 if (iterator.getNextElement() !==

 anotherIterator.getNextElement()) {

 return false;

 }

 } else {

 return false;

87

 }

 }

 return true;

 }

}

Collections can also be compared. Let's introduce support for such collections. First, we define a
generic Comparable<T> interface for comparing an object with another object:

type ComparisonResult = 'isLessThan' | 'areEqual' | 'isGreaterThan' | 'unspecified';

interface Comparable<T> {

 compareTo(anotherObject: T): ComparisonResult;

}

Now we can introduce a comparable collection interface that allows comparing two collections of
the same type:

interface ComparableCollection<T>

 extends Comparable<Collection<T>>, Collection<T> {

}

Let's define a generic sorting algorithm for collections whose elements are comparable:

function sort<T, U extends Comparable<T>, V extends Collection<U>>(

 collection: V

): V {

 // ...

}

Let's create two interfaces, Inserting<T> and InsertingIterable<T> for classes whose
instances elements can be inserted into:

interface Inserting<T> {

 insert(element: T): void;

}

interface InsertingIterable<T> extends Inserting<T>,

 MyIterable<T> {

}

Let's redefine the Collection interface to extend the InsertingIterable interface because a
collection is iterable, and you can insert elements into a collection.

interface Collection<T> extends InsertingIterable<T> {

}

Next, we introduce two generic algorithms for collections: map and filter. We can realize that
those algorithms work with more abstract objects than collections. We benefit from interface
segregation because instead of the Collection<T> interface, we can use the MyIterable<T>

88

and InsertingIterable<T> interfaces to create generic map and filter algorithms. Later it is
possible to introduce some additional non-collection iterable objects that can utilize the algorithms
as well. Below is the implementation of the map and filter functions:

function map<T, U>(

 source: MyIterable<T>,

 mapped: (sourceElement: T) => U,

 destination: InsertingIterable<U>

): InsertingIterable<U> {

 const sourceIterator = source.createIterator();

 while(sourceIterator.hasNextElement()) {

 const sourceElement = sourceIterator.getNextElement();

 destination.insert(mapped(sourceElement));

 }

 return destination;

}

function filter<T>(

 source: MyIterable<T>,

 isIncluded: (sourceElement: T) => boolean,

 destination: InsertingIterable<T>

): InsertingIterable<T> {

 const sourceIterator = source.createIterator();

 while (sourceIterator.hasNextElement()) {

 const sourceElement = sourceIterator.getNextElement();

 if (isIncluded(sourceElement)) {

 destination.insert(sourceElement);

 }

 }

 return destination;

}

Let's define the following concrete collection classes:

class List<T> implements Collection<T> {

 constructor(...args: T[]) {

 // ...

 }

 // ...

}

class Stack<T> implements Collection<T> {

 // ...

}

class MySet<T> implements Collection<T> {

 // ...

}

Now we can use the map and filter algorithms with the above-defined collection classes:

const numbers = new List<number>(1, 2, 3, 3, 3, 50, 60);

89

const isLessThan10 = (nbr: number) => nbr < 10;

const uniqueLessThan10Numbers =

 filter(numbers, isLessThan10, new MySet());

const doubled = (nbr: number) => 2 * nbr;

const stackOfDoubledNumbers = map(numbers, doubled, new Stack());

Let's create asynchronous version of the map algorithms:

interface MaybeCloseable {

 tryClose(): Promise<void>;

}

interface MaybeInserting<T> {

 tryInsert(value: T): Promise<void>;

}

interface MaybeCloseableInserting<T>

 extends MaybeCloseable, MaybeInserting<T> {

}

class MapError extends Error {

 // ...

}

async function tryMap<T, U>(

 source: MyIterable<T>,

 mapped: (sourceElement: T) => U,

 destination: MaybeCloseableInserting<U>

): Promise<void> {

 const sourceIterator = source.createIterator();

 try {

 while (sourceIterator.hasNextElement()) {

 const sourceElement = sourceIterator.getNextElement();

 await destination.tryInsert(mapped(sourceElement));

 }

 await destination.tryClose();

 } catch (error: any) {

 throw new MapError(error.message);

 }

}

Let's create a FileLineInserter class that implements the MaybeCloseableInserting
interface:

const fs = require('fs');

class FileLineInserter<T extends { toString(): string }>

 implements MaybeCloseableInserting<T> {

 private writeStream: FS.WriteStream;

 constructor(private readonly filePathName: string) {

 this.writeStream =

 fs.createWriteStream(this.filePathName, { flags: 'a' });

 }

 async tryInsert(value: T): Promise<void> {

90

 try {

 const writePromise = new Promise((resolve, reject) => {

 const line = value.toString() + '\n';

 this.writeStream.write(line, (error: any) => {

 if (error) {

 reject(error);

 } else {

 resolve(undefined);

 }

 });

 });

 await writePromise;

 } catch (error: any) {

 throw new Error(error.message);

 }

 }

 tryClose(): Promise<void> {

 this.writeStream.close();

 return Promise.resolve();

 }

}

Let's use the above-defined tryMap algorithm and the FileLineInserter class to write doubled
numbers (one number per line) to a file named file.txt:

const numbers = new List<number>(1, 2, 3, 2, 1, 50, 60);

const doubled = (nbr: number) => 2 * nbr;

try {

 await tryMap(numbers, doubled, new FileLineInserter('file.txt'));

} catch(error: any) { // error will be always MapError type.

 console.log(error.message);

}

Program Against Interfaces Principle (Generalized Dependency
Inversion Principle)

Do not write programs where internal dependencies are concrete object types—instead,
program against interfaces. An exception to this rule is data classes with no behavior (not
counting simple getters/setters).

An interface is used to define an abstract base type. Various implementations can be introduced
that implement the interface. When you want to change the behavior of a program, you create a
new class that implements an interface and then use an instance of that class. In this way, you can
practice the open-closed principle. You can think of this principle as a prerequisite for using the
open-closed principle effectively. The program against interfaces principle is a generalization of
the dependency inversion principle from the SOLID principles:

The dependency inversion principle is a methodology for loosely coupling software classes.

91

When following the principle, the conventional dependency relationships from high-level
classes to low-level classes are reversed, thus making the high-level classes independent of
the low-level implementation details.

The dependency inversion principle states:

• High-level classes should not import anything from low-level classes

• Abstractions (= interfaces) should not depend on concrete implementations (classes)

• Concrete implementations (classes) should depend on abstractions (= interfaces)

An interface is always an abstract type and cannot be instantiated. Below is an example of an
interface:

public interface Shape {

 void draw();

 double calculateArea();

}

The name of an interface describes something abstract, which you cannot create an object of. In the
above example, Shape is clearly something abstract. You cannot create an instance of Shape and
then draw it or calculate its area because you don't know what shape it is. But when a class
implements an interface, a concrete object of the class representing the interface can be created.
Below is an example of three different classes that implement the Shape interface:

public class CircleShape implements Shape {

 private final int radius;

 public CircleShape(final int radius) {

 this.radius = radius;

 }

 public void draw() {

 // ...

 }

 public double calculateArea() {

92

Fig 3.1 Dependency Inversion Principle

 return Math.PI * radius * radius;

 }

}

public class RectangleShape implements Shape {

 private final int width;

 private final int height;

 public RectangleShape(final int width, final int height) {

 this.width = width;

 this.height = height;

 }

 public void draw() {

 // ...

 }

 public double calculateArea() {

 return width * height;

 }

}

public class SquareShape extends RectangleShape {

 public SquareShape(final int sideLength) {

 super(sideLength, sideLength);

 }

}

When using shapes in code, we should program against the Shape interface. In the below example,
we make a high-level class Canvas dependent on the Shape interface, not on any of the low-level
classes (CircleShape, RectangleShape or SquareShape). Now both the high-level Canvas
class and all the low-level shape classes depend on abstraction only, the Shape interface. We can
also notice that the high-level class Canvas does not import anything from the low-level classes.
Also, the abstraction Shape does not depend on concrete implementations (classes).

public class Canvas {

 private final List<Shape> shapes = new ArrayList<>(10);

 public Canvas() {

 }

 public void add(final Shape shape) {

 shapes.add(shape);

 }

 public void drawShapes() {

 for(final var shape : shapes) {

 shape.draw();

 }

 }

}

A Canvas object can contain any shape and draw any shape. It can handle any of the currently
defined concrete shapes and any new shape defined in the future.

If you did not program against an interface and did not use the dependency inversion principle,

93

your Canvas class would look like the following:

public class Circle {

 public void draw() {

 // ...

 }

}

public class Rectangle {

 public void draw() {

 // ...

 }

}

public class Square {

 public void draw() {

 // ...

 }

}

public class Canvas {

 private final List<Circle> circles = new ArrayList<>(10);

 private final List<Rectangle> rectangles = new ArrayList<>(10);

 private final List<Square> squares = new ArrayList<>(10);

 public Canvas() {

 }

 public void addCircle(final Circle circle) {

 circles.add(circle);

 }

 public void addRectangle(final Rectangle rectangle) {

 rectangles.add(rectangle);

 }

 public void addSquare(final Square square) {

 squares.add(square);

 }

 public void drawShapes() {

 for(final var circle : circles) {

 circle.draw();

 }

 for(final var rectangle : rectangles) {

 rectangle.draw();

 }

 for(final var square : squares) {

 square.draw();

 }

 }

}

The above high-level Canvas class is coupled with all the low-level classes (Circle, Rectangle,
and Square). The Canvas class must be modified if a new shape type is needed. If something
changes in the public API of any low-level class, the Canvas class needs to be modified accordingly.

94

Let's have another example. If you have read books or articles about object-oriented design, you
may have encountered something similar as is presented in the below example:

public class Dog {

 public void walk() {

 // ...

 }

 public void bark() {

 // ...

 }

}

public class Fish {

 public void swim() {

 // ...

 }

}

public class Bird {

 public void fly() {

 // ...

 }

 public void sing() {

 // ...

 }

}

Three concrete implementations are defined above, but no interface is defined. Let's say we are
making a game that has different animals. The first thing to do when coding the game is to
remember to program against interfaces and thus introduce an Animal interface that we can use as
an abstract base type. Let's try to create the Animal interface based on the above concrete
implementations:

public interface Animal {

 void walk();

 void bark();

 void swim();

 void fly();

 void sing();

}

public class Dog implements Animal {

 public void walk() {

 // ...

 }

 public void bark() {

 // ...

 }

 public void swim() {

 throw new RuntimeException("Illegal operation");

 }

 public void fly() {

 throw new RuntimeException("Illegal operation");

95

 }

 public void sing() {

 throw new RuntimeException("Illegal operation");

 }

}

The above approach is wrong. We declare that the Dog class implements the Animal interface, but
it does not do that. It implements only methods walk and bark while other methods throw an
exception. We should be able to substitute any concrete animal implementation where an animal is
required. But it is impossible because if we have a Dog object, we cannot safely call swim, fly, or
sing methods because they will always throw.

The problem is that we defined the concrete classes before defining the interface. That approach is
wrong. We should specify the interface first and then the concrete implementations. What we did
above was the other way around.

When defining an interface, we should remember that we are defining an abstract base type, so we
must think in abstract terms. We must consider what we want the animals to do in the game. If we
look at the methods walk, fly, and swim, they are all concrete actions. But what is the abstract
action common to these three concrete actions? It is move. And walking, flying, and swimming are
all ways of moving. Similarly, if we look at the bark and sing methods, they are also concrete
actions. What is the abstract action common to these two concrete actions? It is makeSound. And
barking and singing are both ways to make a sound. If we use these abstract actions, our Animal
interface looks like the following:

public interface Animal {

 void move();

 void makeSound();

}

We can now redefine the animal classes to implement the new Animal interface:

public class Dog implements Animal {

 public void move() {

 // walk

 }

 public void makeSound() {

 // bark

 }

}

public class Fish implements Animal {

 public void move() {

 // swim

 }

 public void makeSound() {

 // Intentionally no operation

 // (Fishes typically don't make sounds)

 }

96

}

public class Bird implements Animal {

 public void move() {

 // fly

 }

 public void makeSound() {

 // sing

 }

}

Now we have a correct object-oriented design and can program against the Animal interface. We
can call the move method when we want an animal to move and the makeSound method when we
want an animal to make a sound.

After realizing that some birds don't fly at all, we can easily enhance our design. We can introduce
two different implementations:

public abstract class AbstractBird implements Animal {

 public abstract void move();

 public void makeSound() {

 // sing

 }

}

public class FlyingBird extends AbstractBird {

 public void move() {

 // fly

 }

}

public class NonFlyingBird extends AbstractBird {

 public void move() {

 // walk

 }

}

We might also later realize that not all birds sing but make different sounds. Ducks quack, for
example. Instead of using inheritance as was done above, an even better alternative is to use object
composition. We compose the Bird class of behavioral classes for moving and making sounds:

public interface Mover {

 void move();

}

public interface SoundMaker {

 void makeSound();

}

public class Bird implements Animal {

 private final Mover mover;

 private final SoundMaker soundMaker;

 public Bird(

 final Mover mover,

97

 final SoundMaker soundMaker

) {

 this.mover = mover;

 this.soundMaker = soundMaker;

 }

 public void move() {

 mover.move();

 }

 public void makeSound() {

 soundMaker.makeSound();

 }

}

Now we can create birds with various behaviors for moving and making sounds. We can use the
factory pattern to create different birds. The factory pattern is described in more detail later in this
chapter. Let's introduce three different moving and sound-making behaviors and a factory to make
three kinds of birds: goldfinches, ostriches, and domestic ducks.

public class Flyer implements Mover {

 public void move() {

 // fly

 }

}

public class Runner implements Mover {

 public void move() {

 // run

 }

}

public class Walker implements Mover {

 public void move() {

 // walk

 }

}

public class GoldfinchSoundMaker implements SoundMaker {

 public void makeSound() {

 // Sing goldfinch specific songs

 }

}

public class OstrichSoundMaker implements SoundMaker {

 public void makeSound() {

 // Make ostrich specific sounds like whistles,

 // hoots, hisses, growls, and deep booming growls

 // that sound like the roar of a lion

 }

}

public class Quacker implements SoundMaker {

 public void makeSound() {

 // quack

 }

}

public enum BirdType {

 GOLDFINCH,

98

 OSTRICH,

 DOMESTIC_DUCK

}

public class BirdFactory {

 public Bird createBird(final BirdType birdType) {

 return switch(birdType) {

 case GOLDFINCH ->

 new Bird(new Flyer(),

 new GoldfinchSoundMaker());

 case OSTRICH ->

 new Bird(new Runner(),

 new OstrichSoundMaker());

 case DOMESTIC_DUCK ->

 new Bird(new Walker(),

 new Quacker());

 default ->

 throw new IllegalArgumentException("Unsupported type");

 };

 }

}

Clean Microservice Design Principle

The clean microservice design promotes object-oriented design with separation of concerns
achieved by dividing software into layers using the dependency inversion principle
(programming against interfaces).

Clean microservice design comes with the following benefits:

• Not tied to any single framework

• Not tied to any single API technology like REST or GraphQL

• Unit testable

• Not tied to a specific client (works with web, desktop, console, and mobile clients)

• Not tied to a specific database

• Not dependent on any specific external service implementation

A clean API microservice design consists of the following layers:

• Controller, Interface adapters

• Use cases

• (Business) Entities

Uses cases and entities together form the model of the service, also called the business logic.

99

The direction of dependencies in the above diagrams is shown with arrows. We can see that the
microservice API depends on the controller we create. The controller depends on the use cases. The
use case layer depends on entities. The purpose of the use case layer is to orchestrate operations on
the entities.

Let's have a real-life example of creating an API microservice called order-service, which handles
orders in an e-commerce software system. First, we define a REST API controller using Java and
Spring Boot:

@RestController

@RequestMapping("/orders")

public class RestOrderController {

 @Autowired

 private OrderService orderService;

 @PostMapping

 @ResponseStatus(HttpStatus.CREATED)

 public final Order createOrder(

 @RequestBody final OrderArg orderArg

) {

 return orderService.createOrder(orderArg);

 }

 // Other API methods...

}

The API offered by the microservice depends on the controller, as seen in the above diagram. The
API is currently a REST API, but we could create and use a GraphQL controller. Then our API,
which depends on the controller, is a GraphQL API. Below is a partial implementation of a
GraphQL controller with Java and Spring Boot:

@Controller

public class GraphQlOrderController {

 @Autowired

 private OrderService orderService;

100

Fig 3.2 Clean Microservice Design

 @MutationMapping

 public final Order createOrder(

 @Argument final OrderArg orderArg

) {

 return orderService.createOrder(orderArg);

 }

 // Other API methods...

}

The RestOrderController and GraphQlOrderController classes depend on the
OrderService interface, which is part of the use case layer. Notice that the controllers do not rely
on a concrete implementation of the use cases but depend on an interface according to the
dependency inversion principle. Below is the definition for the OrderService interface:

public interface OrderService {

 Order createOrder(OrderArg orderArg);

 Order getOrderById(Long id);

 Iterable<Order> getOrderByUserAccountId(Long userAccountId);

 void updateOrder(Long id, OrderArg orderArg);

 void deleteOrderById(Long id);

}

The below OrderServiceImpl class implements the OrderService interface:

@Service

public class OrderServiceImpl implements OrderService {

 private static final String ORDER = "Order";

 @Autowired

 private OrderRepository orderRepository;

 @Override

 public final Order createOrder(

 final OrderArg orderArg

) {

 final var order = Order.from(orderArg);

 return orderRepository.save(order);

 }

 @Override

 public final Order getOrderById(final Long id) {

 return orderRepository.findById(id)

 .orElseThrow(() ->

 new EntityNotFoundError(ORDER, id));

 }

 // Rest of the methods...

}

The OrderServiceImpl class has a dependency on an order repository. This dependency is also
inverted. The OrderServiceImpl class depends only on the OrderRepository interface. The
order repository is used to orchestrate the persistence of order entities. Note that there is not any
direct dependency on a database.

101

Below is the OrderRepository interface:

public interface OrderRepository {

 Order save(Order order);

 Order findById(Long id);

 // ...

}

The OrderRepository interface depends only on the Order entity class. You can introduce a
class called an interface adapter that implements the OrderRepository interface. A database
interface adapter adapts a particular concrete database to the OrderRepository interface. Entity
classes do not depend on anything except other entities to create hierarchical entities. For example,
the Order entity consists of OrderItem entities.

When implementing a clean microservice design, everything is wired together using configuration
and dependency injection. For example, an instance implementing the OrderRepository
interface is created according to configuration and injected into an OrderServiceImpl instance
by the Spring framework. In the case of Spring, the dependency injector is configured using a
configuration file and annotations. The configuration file can be used to configure what database is
used. Additionally, the Spring dependency injector creates an instance of the OrderServiceImpl
class and injects it where an OrderService object is wanted.

102

Fig 3.3 Clean Microservice Design for Order Service

The dependency injector is the only place in a microservice that contains references to concrete
implementations. In many frameworks, the dependency injector is not a visible component, but its
usage is configured using a configuration file and annotations. For example, in Spring, the
@Autowired annotation tells the dependency injector to inject a concrete implementation into the
annotated class field or constructor parameter. The dependency injection principle is discussed
more in a later section of this chapter. The dependency inversion principle and dependency
injection principle usually go hand in hand. Dependency injection is used for wiring interface
dependencies so that those become dependencies on concrete implementations, as seen in the
figure below.

Let's add a feature where the shopping cart is emptied when an order is created:

@Service

public class OrderServiceImpl implements OrderService {

 @Autowired

 private OrderRepository orderRepository;

 @Autowired

 private ShoppingCartService shoppingCartService;

 @Override

 public final Order createOrder(

 final OrderArg orderArg

) {

 final var order = Order.from(orderArg);

 final var savedOrder = orderRepository.save(order);

 shoppingCartService.emptyCart(order.userAccountId);

 return savedOrder;

 }

}

103

Fig 3.4 Dependency Injection

As you can see from the above code, the OrderServiceImpl class is not depending on any
concrete implementation of the shopping cart service. We can create an interface adapter class that
is a concrete implementation of the ShoppingCartService interface. That interface adapter
class connects to a particular external shopping cart service, for example, via REST API. Once
again, the dependency injector will inject a concrete ShoppingCartService implementation to
an instance of the OrderServiceImpl class.

Note that the above createOrder method is not production quality because it lacks a transaction.

Uniform Naming Principle

Use a uniform way to name interfaces, classes, and functions.

This section presents conventions for uniformly naming interfaces, classes, and functions.

Naming Interfaces and Classes

Classes represent a thing or an actor. They should be named consistently so that the class
name ends with a noun. An interface represents an abstract thing, actor, or capability.
Interfaces representing a thing or an actor should be named like classes but using an
abstract noun. Interfaces representing a capability should be named according to the
capability.

When an interface represents an abstract thing, name it according to that abstract thing. For
example, if you have a drawing application with various geometrical objects, name the geometrical
object interface Shape. It is a simple abstract noun. Names should always be the shortest, most
descriptive ones. There is no reason to name the geometrical object interface as
GeometricalObject or GeometricalShape, if we can use simply Shape.

When an interface represents an abstract actor, name it according to that abstract actor. The name
of an interface should be derived from the functionality it provides. For example, if there is a
parseConfig method in the interface, the interface should be named ConfigParser, and if an
interface has a validateObject method, the interface should be named ObjectValidator.
Don't use mismatching name combinations like a ConfigReader interface with a parseConfig
method or an ObjectValidator interface with a validateData method.

When an interface represents a capability, name it according to that capability. Capability is
something that a concrete class is capable of doing. For example, a class could be sortable, iterable,
comparable, equitable, etc. Name the respective interfaces according to the capability: Sortable,
Iterable, Comparable, and Equitable. The name of an interface representing a capability

104

usually ends with able or ing.

Don't name interfaces starting with an I. Instead, use an Impl postfix for class names to distinguish
a class from an interface when needed. You should be programming against interfaces, and if every
interface has its name prefixed with I, it just adds unnecessary noise to the code. Use the I prefix
only if it is a programming language convention.

Some examples of class names representing a thing are: Account, Order, RectangleShape, and
CircleShape. In a class inheritance hierarchy, the names of classes usually refine the interface
name or the base class name. For example, if there is an InputMessage interface, then there can
be different concrete implementations (= classes) of the InputMessage interface. They can
represent an input message from different sources, like KafkaInputMessage and
HttpInputMessage. And there could be different subclasses for different data formats:
AvroBinaryKafkaInputMessage or JsonHttpInputMessage.

The interface or base class name should be retained in the class or subclass name. Class names
should follow the pattern: <class-purpose> + <interface-name> or <sub-class-purpose> + <super-
class-name>, e.g., Kafka + InputMessage = KafkaInputMessage and AvroBinary +
KafkaInputMessage = AvroBinaryKafkaInputMessage. Name abstract classes with the
prefix Abstract.

Don't add a design pattern name to a class name if it does not bring any real benefit. For example,
suppose we have a DataStore interface, a DataStoreImpl class, and a class that is wrapping a
DataStore instance and uses the proxy pattern to add caching functionality to the wrapped data
s tore . We should not name the caching c lass CachingProxyDataStore or
CachingDataStoreProxy . The word proxy does not add significant value, so the class should be
named simply CachingDataStore.

Naming Functions

Functions should do one thing, and the name of a function should describe what the function
does. The function name must contain a verb that indicates what the function does. The
function name should usually start with a verb, but exceptions exist. If a function returns a
value, try to name the function so that the function name describes what it returns.

The general rule is to name a function so that the purpose of the function is clear. A good function
name should not make you think.

Below is an example of an interface containing two methods named with simple verbs only. It is not
necessary to name the methods as startThread and stopThread because the methods are
already part of the Thread interface, and it is self-evident what the start method starts and what
the end method ends.

105

public interface Thread {

 void start();

 void stop();

}

Let's have another Java example:

grpcChannel.shutdown().awaitTermination(30, TimeUnit.SECONDS);

The above example has two issues with the shutdown function. Most people probably assume that
calling the shutdown function will shut down the channel and return after the channel is shut
down without any return value. But now the shutdown function is returning something. It is not
necessarily self-evident what it returns. But we can notice that the shutdown function does not
wait for the channel termination.

It would be better to rename the shutdown function as requestShutdown because it better
describes what the function does. Also, we should name the awaitTermination to
awaitShutdown because we should not use two different terms shutdown and termination to
denote a single thing.

final var shutdownPromise = grpcChannel.requestShutdown();

shutdownPromise.awaitShutdown(30, TimeUnit.SECONDS);

Let's have an example in JavaScript:

fetch(url).then(response => response.json()).then(...);

In the above example, we have the following issue: the fetch function does not properly describe
what it does. According to the documentation, it fetches a resource. But it does not return a
resource. It returns a response object. Whenever possible, the function name should indicate what
the function returns. The fetch performs an action on a resource and does not always return a
resource. The action is specified by giving an HTTP verb as a parameter to the function (GET is the
default HTTP verb). The most common actions are GET, POST, PUT and DELETE. If you issue a
PUT request for a REST API, you don't usually get the resource back. The same is, of course, valid
for a DELETE request. You cannot get the resource back because it was just deleted.

We could name the function performActionOnResource, but that is a pretty long name and
does not communicate the return value type. We should name the fetch function
makeHttpRequest (or sendHttpRequest) to indicate that it is making an HTTP request. The
new function name also communicates that it returns an HTTP response. Another possibility is
introducing an actor class with static methods for different HTTP methods, for example:
HttpClient.makeGetRequest(url).

In the above example, the json function name is missing a verb. It should contain the verb parse
because that is what it is doing. The function name should also tell what it parses: the response

106

body. We should also add a try prefix to indicate that the function can throw (more about the try
prefix and error handling in general in the next chapter). Below is the example with renamed
functions:

makeHttpRequest(url).then(response =>

 response.tryParseBodyJson()).then(...);

Many languages offer streams that can be written to, like the standard output stream. Streams are
usually buffered, and the actual writing to the stream does not happen immediately. For example,
the below statement does not necessarily write to the standard output stream immediately. It
buffers the text to be written later when the buffer is flushed to the stream. This can happen when
the buffer is full, when some time has elapsed since the last flush or when the stream is closed.

stdOutStream.write(...);

The above statement is misleading and could be corrected by renaming the function to describe
what it actually does:

stdOutStream.writeOnFlush(...);

The above function name immediately tells a developer that writing happens only on flush, and the
developer can consult the function documentation to determine when the flushing happens. You
can introduce a convenience method to perform a write with an immediate flush:

// Instead of this:

stdOutStream.writeOnFlush(...);

stdOutStream.flush();

// User can do this:

stdOutStream.writeWithFlush(...);

Many times function's action is associated with a target, for example:

public interface ConfigParser {

 Configuration tryParseConfig(...);

}

When a function's action has a target, it is useful to name the function using the following pattern:
<action-verb> + <action-target>, for example, parse + config = parseConfig.

We can drop the action target from the function name if the function's first parameter describes the
action target. It is not wrong to keep the action target in the function name, though. But if it can be
dropped, it usually makes the function call statements read better. In the below example, the word
"config" appears repeated: tryParseConfig(configJson), which makes the function call
statement read a bit clumsy.

final var configuration = configParser.tryParseConfig(configJson);

107

We can drop the action target from the function name:

public interface ConfigParser {

 Configuration tryParse(final String configJson);

}

As shown below, this change makes the code read better, presuming we use a descriptive variable
name. And we should, of course, always use a descriptive variable name.

final var configuration = configParser.tryParse(configJson);

Here is another example:

public class Vector<T> {

 void pushBack(final T value); // OK

 void pushBackValue(final T value); // Not ideal,

 // word "value" repeated

}

Let's imagine we have the following function:

public class KafkaAdminClient {

 void create(final String topic);

}

The above function name should be used only when a topic is the only thing a Kafka admin client
can create. We cannot call the above function in the following way:

kafkaAdminClient.create("xyz");

We need to introduce a properly named variable:

final var topic = "xyz";

kafkaAdminClient.create(topic);

In languages where you can use named function parameters, the following is possible:

// Python

kafkaAdminClient.create(topic = "xyz");

// Swift

kafkaAdminClient.create(topic: "xyz");

Preposition in Function Name

Use a preposition in a function name when needed to clarify the function's purpose.

You don't need to add a preposition to a function name if the preposition can be assumed (i.e., the
preposition is implicit). In many cases, only one preposition can be assumed. If you have a function
named wait, the preposition for can be assumed, and if you have a function named subscribe,

108

the preposition to can be assumed. We don't need to use function names waitFor and
subscribeTo.

Suppose a function is named laugh(person: Person). Now we have to add a preposition
because none can be assumed. We should name the function either laughWith(person:
Person) or laughAt(person: Person).

The following two sections present examples of better naming some existing functions in
programming languages.

Example 1: Renaming JavaScript Array Methods

Adding elements to a JavaScript array is done with the push method. Where does it push the
elements? The method name does not say anything. There are three possibilities:

1. At the beginning

2. Somewhere in the middle

3. At the end

Most definitely, it is not the second one, but it still leaves two possibilities. Most people correctly
guess that it pushes elements to the end. To make it 100% clear where the elements are pushed, this
function should be named pushBack. Then it does not make anybody think where the elements are
pushed. Remember that a good function name does not make you think.

Popping an element from an array is done with the pop method. But where does it pop from? If you
read the method description, it tells that the element is popped at the back. To make it 100% clear,
this method should be named popBack.

The Array class also contains methods shift and unshift. They are like push and pop but
operate at the beginning of an array. Those method names are extremely non-descriptive and
should be named popFront and pushFront.

There are several methods in the JavaScript Array class for finding elements in an array. Here is
the list of those methods:

• find (finds the first element where the given predicate is true)

• findIndex (find the index of the first element where the given predicate is true)

• includes (returns true or false based on if the given element is found in the array)

• indexOf (returns the first index where the given element is found)

• lastIndexOf (returns the last index where the given element is found)

109

Here are the suggested new names for the above functions:

• find ==> findFirstWhere

• findIndex ==> findFirstIndexWhere

• includes ==> include

• indexOf ==> findFirstIndexOf

• lastIndexOf ==> findLastIndexOf

Below are examples of these new function names in use:

const numbers = [1, 2, 3, 4, 5, 5];

const numberIsEven = nbr => (nbr % 2) === 0;

const firstEvenNumber = numbers.findFirstWhere(numberIsEven);

const firstEvenNumberIndex = numbers.findFirstIndexWhere(numberIsEven);

const numbersIncludeFour = numbers.include(4);

const firstIndexOfFive = numbers.findFirstIndexOf(5);

const lastIndexOfFive = numbers.findLastIndexOf(5);

Example 2: Renaming C++ Casting Expressions

C++ contains several casting expressions. They are not functions per se, but they act and look a lot
like functions. Below is a list of C++ cast operations for which I am going to present some
alternative names:

• const_cast

• reinterpret_cast

• static_cast

• dynamic_cast

The first cast, const_cast, performs possibly multiple things like adding/removing const-ness
and/or volatility. The const_cast is often used to add or remove a single const. It would be
better to define separate operations for all the different cases: remove_const, add_const,
add_volatile, and remove_volatile.

The second cast, reinterpret_cast, converts between types by reinterpreting the underlying bit
pattern. What it does is that it forces the cast and could be named force_cast.

The third cast, static_cast, is a standard cast performed during the compilation phase. A
compilation error will be given if the cast cannot be performed. We could name this cast with an
even simpler name: cast.

The fourth cast, dynamic_cast, does two different things: upcasting and down-casting in the class
inheritance hierarchy. We could name these operations: try_cast_to_base_class and
try_cast_to_derived_class. A cast to a base class is always successful if the given argument

110

is an object of the derived class. I prefixed the operations with try to tell that they can throw.
Alternative operations cast_to_base_class and cast_to_derived_class that return
optional values could be introduced.

Naming Method Pairs

Methods in a class can come in pairs. A typical example is a pair of getter and setter methods. When
you define a method pair in a class, name the methods logically. The methods in a method pair
often do two opposite things, like getting or setting a value. If you are unsure how to name one of
the methods, try to find an antonym for a word. For example, if you have a method whose name
starts with "create" and are unsure how to name the method for the opposite action, try a Google
search: "create antonym”.

Here is a non-comprehensive list of some method names that come in pairs:

• get/set (getters and setters)

• Name a boolean getter with the same name as the respective field, e.g., boolean
isDone()

• Name a boolean setter with set + <boolean f ie ld name> , e .g . , void
setIsDone(boolean isDone)

• get/put (especially when accessing a collection)

• read/write

• add/remove

• store/retrieve

• open/close

• load/save

• initialize/destroy

• create/destroy

• insert/delete

• start/stop

• pause/resume

• start/finish

• increase/decrease

• increment/decrement

• construct/destruct

• obtain/relinquish

• acquire/release

• reserve/release

• startup/shutdown

111

• login/logout

• begin/end

• launch/terminate

• publish/subscribe

• join/detach

• <something>/un<something>, e.g. assign/unassign, install/uninstall, subscribe/unsubscribe,

follow/unfollow

• <something>/de<something>, e.g. serialize/deserialize, allocate/deallocate, encode/decode,

encrypt/decrypt

• something/dis<something>, e.g. connect/disconnect, associate/disassociate

The apt tool in Debian/Ubuntu-based Linux has an install command to install a package, but
the command for uninstalling a package is remove. It should be uninstall. The Kubernetes
package manager Helm has this correct. It has an install command to install a Helm release and
an uninstall command to uninstall it.

Naming Boolean Functions (Predicates)

The naming of boolean functions (predicates) should be such that when reading the function
call statement, it reads as a boolean statement that can be true or false.

In this section, we consider naming functions that are predicates and return a boolean value. Here I
don't mean functions that return true or false based on the success of the executed action, but cases
where the function call is used to evaluate a statement as true or false. The naming of boolean
functions should be such that when reading the function call statement, it makes a statement that
can be true or false. Below are some examples:

public class Response {

 public boolean hasError() {

 // ...

 }

}

public class String {

 public boolean isEmpty() {

 //...

 }

 public boolean startsWith(final String anotherString) {

 //...

 }

 public boolean endsWith(final String anotherString) {

 // ...

 }

 public boolean contains(final String anotherString) {

 // ...

112

 }

}

// Here we have a statement: response has error? true or false?

if (response.hasError()) {

 // ...

}

// Here we have a statement: line is empty? true or false?

final String line = fileReader.readLine();

if (line.isEmpty()) {

 // ...

}

// Here we have statement: line starts with a space character?

// true or false?

if (line.startsWith(" ")) {

 // ...

}

// Here we have statement: line ends with a semicolon?

// true or false?

if (line.endsWith(";")) {

 // ...

}

public class Thread {

 public boolean shouldTerminate() {

 // ...

 }

 public boolean isPaused() {

 // ...

 }

 public boolean canResumeExecution() {

 // ...

 }

 public void run() {

 // ...

 // Here we have statement: [this] should terminate?

 // true or false?

 if (shouldTerminate()) {

 return;

 }

 // Here we have statement: [this] is paused and

 // [this] can resume execution? true or false?

 if (isPaused() && canResumeExecution()) {

 // ...

 }

 // ...

 }

}

A boolean returning function is correctly named when you call the function in code and can read
that function call statement in plain English. Below is an example of incorrect and correct naming:

113

public class Thread {

 public boolean stopped() { // Incorrect naming

 // ...

 }

 public boolean isStopped() { // Correct naming

 // ...

 }

}

if (thread.stopped()) {

 // Here we have: if thread stopped

 // This is not a statement with a true or false answer

 // It is a second conditional form,

 // asking what would happen if thread stopped.

 // ...

}

// Here we have statement: if thread is stopped

// true or false?

if (thread.isStopped()) {

 // ...

}

From the above examples, we can notice that many names of boolean-returning functions start with
either is or has and follows the below pattern:

• is + <adjective>, e.g. isOpen, isRunning or isPaused

• has + <noun>

Also, these two forms can be relatively common:

• should + <verb>

• can + <verb>

But as we saw with the startsWith, endsWith and contains functions, a boolean returning
function name can start with any verb in third-person singular form (i.e., ending with an s). If you
have a collection class, its boolean method names should have a verb in the plural form, for
example: numbers.include(...) instead of numbers.includes(...). Name your collection
variables always in plural form (e.g., numbers instead of numberList). We will discuss the
uniform naming principles for variables in the next chapter.

Do not include the does word in a function name, like doesStartWith, doesEndWith, or
doesContain. Adding the does word doesn't add any real value to the name, and such function
names are awkward to read when used in code, for example:

final String line = textFileReader.readLine();

// "If line does start with" sound awkward

if (!line.doesStartWith(" ")) {

 // ...

114

}

When you want to use the past tense in a function name, use a did prefix in the function name, for
example:

public class DatabaseOperation {

 public void execute() {

 // ...

 }

 // Method name not OK. This is a second conditional form

 // if (dbOperation.startedTransaction())...

 public boolean startedTransaction() {

 // ...

 }

 // Method name OK, no confusion possible

 public boolean didStartTransaction() {

 // ...

 }

}

Naming Builder Methods

A builder class is used to create builder objects that build a new object of a particular type. If you
wanted to construct a URL, a UrlBuilder class could be used for that purpose. Builder class
methods add properties to the built object. For this reason, it is recommended to name builder class
methods starting with the verb add. The method that finally builds the wanted object should be
named simply build or build + <build-target>, for example, buildUrl. I prefer the longer form to
remind the reader what is being built. Below is an example of naming the methods in a builder
class:

public class UrlBuilder {

 public UrlBuilder() {

 // ...

 }

 public UrlBuilder addScheme(final String scheme) {

 // ...

 return this;

 }

 public UrlBuilder addHost(final String host) {

 // ...

 return this;

 }

 public UrlBuilder addPort(final int port) {

 // ...

 return this;

 }

 public UrlBuilder addPath(final String path) {

 // ...

 return this;

 }

115

 public UrlBuilder addQuery(final String query) {

 // ...

 return this;

 }

 public Url buildUrl() {

 // ...

 }

};

final var url = new UrlBuilder()

 .addScheme("https://")

 .addHost("google.com")

 .buildUrl();

Naming Methods with Implicit Verbs

Factory method names usually start with the verb create. Factory methods can be named so that
the create verb is implicit, for example:

Optional.of(final T value)

Optional.empty() // Not optimal, 'empty' can be confused as a verb

Either.withLeft(final L value)

Either.withRight(final L value)

SalesItem.from(final SalesItemArg salesItemArg)

The explicit versions of the above method names would be:

Optional.createOf(final T value)

Optional.createEmpty()

Either.createWithLeft(final L value)

Either.createWithRight(final L value)

SalesItem.createFrom(final SalesItemArg salesItemArg)

Similarly, conversion methods can be named so that the convert verb is implicit. Conversion
methods without a verb usually start with the to preposition, for example:

value.toString();

object.toJson();

The explicitly named versions of the above methods would be:

value.convertToString();

object.convertToJson();

You can access a collection element in some languages using the method at(index). Here the
implicit verb is get. I recommend using method names with implicit verbs sparingly and only in
circumstances where the implicit verb is self-evident and does not force a developer to think.

Naming Property Getter Functions

116

Property getter functions are usually named get + <property-name>. It is also possible to name a
property getter that does not have a respective setter using just the property name. This is
acceptable in cases where the property name cannot be confused with a verb. Below is an example
of property getters:

final var list = new MyList();

list.size(); // OK

list.length(); // OK

list.empty(); // NOT OK, empty can be a verb.

list.isEmpty(); // OK

Naming Lifecycle Methods

Lifecycle methods are called on certain occasions only. Lifecycle method names should answer the
question: When or "on what occasion" will this method be called? Examples of good names for
lifecycle methods are: onInit, onError, onSuccess, afterMount and beforeUnmount. In
React, there are lifecycle methods in class components called componentDidMount,
componentDidUpdate and componentWillUnmount. There is no reason to repeat the class
name in the lifecycle method names. Better names would have been: afterMount, afterUpdate,
and beforeUnmount.

Naming Function Parameters

Naming rules for function parameters are mostly the same as for variables. Uniform naming
principle for variables is described in the next chapter in more detail.

There are some exceptions, like naming object parameters. When a function parameter is an object,
the name of the object class can be left out from the parameter name when the parameter name and
the function name implicitly describe the class of the parameter. This exception is acceptable
because the function parameter type can always be easily checked by looking at the function
signature. And this should be easily done with a glance because a function should be short (a
maximum of 5-7 statements). Below is an example of naming object type parameters:

// Word 'Location' repeated, not optimal, but allowed

drive(startLocation: Location, destinationLocation: Location): void

// Better way

// When we think about 'drive' and 'start' or 'destination',

// we can assume that 'start' and 'destination' mean locations

drive(start: Location, destination: Location): void

Some programming languages like Swift allow adding so-called external names to function
parameters. Using external names can make a function call statement read better, as shown below:

func drive(from start: Location, to destination: Location) {

 // ...

}

117

func send(

 message: String,

 from sender: Person,

 to recipient: Person

) {

 // ...

}

let startLocation = new Location(...);

let destLocation = new Location(...);

drive(from: startLocation, to: destLocation);

let message = "Some message";

let person = new Person(...);

let anotherPerson = new Person(...);

send(message, from: person, to: anotherPerson);

Encapsulation Principle

A class should encapsulate its state so that access to the state happens only via public class
methods.

Encapsulation is achieved by declaring class fields private. You can create getter and setter methods
if you need the state to be modifiable outside the class. However, encapsulation is best ensured if
you don't need to create getter and setter methods for the class fields. Do not automatically
implement getter and setter methods for every class. Only create those accessor methods if needed,
like when the class represents a modifiable data structure. And only generate setter methods for
class fields that need to be modified outside the class.

Immutable Objects

The best way to ensure the encapsulation of an object's state is to make the object immutable. This
means that once the object is created, its state cannot be modified afterward. Immutability ensures
you cannot accidentally or intentionally modify the object's state. Modifying the object's state
outside the object can be a source of bugs.

When creating an immutable object, you give the needed properties for the object in the
constructor, and after that, those properties cannot be modified. An immutable class has fields
marked as final, const, or readonly (depending on the programming language), meaning no
setter methods can be created for the class.

If you need to modify an immutable object, the only way is to create a new object with different
values given to the constructor. The drawback of this approach is that a performance penalty is
introduced when creating new objects as compared to modifying existing objects' properties only.

118

But in many cases, this penalty is negligible compared to the benefits of immutability. For example,
strings are immutable in many languages, like Java and JavaScript. Once you create a string, you
cannot modify it. You can only create new strings.

Immutability also requires that getters and other methods returning a value may not return a
modifiable class field, like an array. If you returned such an array from a method, that array could
be modified by adding or removing elements without the "owning" object being aware of that.

Don't Leak Modifiable Internal State Outside an Object Principle

Beware when you return values from your class methods. It is possible that a method accidentally
returns some internal state of the object that can be modified later by the method caller. Returning
modifiable state from a class method breaks the encapsulation. Static code analyzers for some
languages, like Java, can warn you about situations where internal state leaks outside the object.

You can safely return primitive or so-called value types from class methods. Those types include
types like Java boolean, int, and long. You can also safely return an immutable object, like a Java
string. But you cannot safely return a mutable collection, for example.

There are two ways how to protect against leaking internal state outside an object:

1. Return a copy of the modifiable internal state

2. Return an unmodifiable version of the modifiable internal state

Regarding the first approach, when a copy is returned, the caller can use it as they like. Changes
made to the copied object don't affect the original object. I am primarily talking about making a
shallow copy. In many cases, a shallow copy is enough. For example, a list of primitive values,
immutable strings, or immutable objects does not require a deep copy of the list. But you should
make a deep copy when needed.

The copying approach can cause a performance penalty, but in many cases, that penalty is
insignificant. In JavaScript, you can easily create a copy of an array:

const values = [1, 2, 3, 4, 5];

const copyOfValues = [...values];

The second approach requires you to create an unmodifiable version of a modifiable object and
return that unmodifiable object. Some languages offer an easy way to create unmodifiable versions
of certain objects. In Java, you can create an unmodifiable version of a List, Map, or Set using
Collections.unmodifiableList , Collections.unmodifiableMap , o r
Collections.unmodifiableSet factory method, respectively.

You can also create an unmodifiable version of a class by yourself. Below is an example in Java:

119

public interface MyList<T> {

 void addToEnd(T item);

 Optional<T> getItem(int index);

}

public class UnmodifiableMyList<T> implements MyList<T> {

 private final MyList<T> list;

 public UnmodifiableMyList(final MyList<T> list) {

 this.list = list;

 }

 public void addToEnd(final T item) {

 throw new UnsupportedOperationException(...);

 }

 public Optional<T> getItem(final int index) {

 return list.getItem(index);

 }

}

In the above example, the unmodifiable list class takes another list (a modifiable list) as a
constructor argument. It only implements the MyList interface methods that don't attempt to
modify the wrapped list. In this case, it implements only the getItem method that delegates to the
respective method in the MyList class. The UnmodifiableMyList class methods that attempt to
modify the wrapped list should throw an error. The UnmodifiableMyList class utilizes the proxy
pattern by wrapping an object of the MyList class and partially allowing access to the MyList
class methods.

In C++, you can return an unmodifiable version by declaring the return type as const, for
example:

std::shared_ptr<const std::vector<std::string>>

getStringValues() const;

Now callers of the getStringValues method cannot modify the returned vector of strings
because it is declared const.

Unmodifiable and immutable objects are slightly different. No one can modify an immutable object,
but when you return an unmodifiable object from a class method, that object can still be modified
by the owning class, and modifications are visible to everyone that has received an unmodifiable
version of the object. If this is something undesirable, you should use a copy instead.

Don't Assign From a Method Parameter to a Modifiable Field

If a class receives modifiable objects as constructor or method arguments, it is typically best
practice not to assign those arguments to the internal state directly. If they are assigned directly,
the class can, on purpose or accidentally modify those argument objects, which is probably not
what the constructor or method caller expects.

120

There are two ways to handle this situation:

1. Store a copy of the modifiable argument object to the class's internal state

2. Store an unmodifiable version of the modifiable argument object to the class's internal state

Below is an example of the second approach:

public class MyClass {

 private final List<Integer> values;

 public MyClass(final List<Integer> values) {

 this.values = Collections.unmodifiableList(values);

 }

}

Real-life Example of Encapsulation Violation: React Class
Component's State

React class component's state is not properly encapsulated. React documentation instructs that the
state property should be modified directly using this.state in a Component subclass
constructor. For example:

import { Component } from 'react';

class ButtonClickCounter extends Component {

 constructor(props) {

 super(props);

 this.state = {

 clickCount: 0

 };

 }

}

It is not good object-oriented design that the state property is public or protected in the
Component class. You should not modify the base class's state property in the
ButtonClickCounter subclass. The proper way to initialize the state in an object-oriented
manner would be to give the initial state as a parameter to the Component class constructor using
super. However, the following is not supported by React:

import { Component } from 'react';

export default class ButtonClickCounter extends Component {

 constructor(props) {

 // This is not possible in real life

 super(props, {

 clickCount: 0

 });

 }

}

121

Setting the state is done with the setState method defined in the Component class, but accessing
the state happens directly through the state property. This leads to a problem where you cannot
use this.state when calling the setState method because that can lead to erroneous behavior,
according to the React documentation. So the following is not allowed:

incrementClickCount = () =>

 this.setState({

 clickCount: this.state.clickCount + 1

 });

Below is an example of using the setState method correctly in a React class component:

import { Component } from 'react';

export default class ButtonClickCounter extends Component {

 constructor(props) {

 super(props);

 this.state = {

 clickCount: 0

 };

 }

 incrementClickCount = () =>

 this.setState(({ clickCount }) => ({

 clickCount: clickCount + 1

 }));

 render() {

 return (

 <>

 Click count: {this.state.clickCount}

 <button onClick={this.incrementClickCount} />

 </>

);

 }

}

Accessing the state in the Component subclasses should be done using a getter getState, not
directly accessing the state property. Below is the above example modified to use the imaginary
getState method:

import { Component, Fragment } from 'react';

export default class ButtonClickCounter extends Component {

 constructor(props) {

 super(props, {

 clickCount: 0

 });

 }

 incrementClickCount = () =>

 this.setState({

 clickCount: this.getState().clickCount + 1

 });

122

 render() {

 return (

 <>

 Click count: {this.getState().clickCount}

 <button onClick={this.incrementClickCount} />

 </>

);

 }

}

Object Composition Principle

In object-oriented design, like in real life, objects are constructed by constructing larger
objects from smaller objects. This is called object composition. Prefer object composition over
inheritance.

For example, a car object can be composed of an engine and transmission object (to name a few).
Objects are rarely "composed" by deriving from another object, i.e., using inheritance. But first, let's
try to specify classes that implement the below Car interface using inheritance:

public interface Car {

 void drive(

 Location start,

 Location destination

);

}

public class CombustionEngineCar implements Car {

 public void drive(

 final Location start,

 final Location destination

) {

 // ...

 }

}

public class ElectricEngineCar implements Car {

 public void drive(

 final Location start,

 final Location destination

) {

 // ...

 }

}

public class ManualTransmissionCombustionEngineCar

 extends CombustionEngineCar {

 public void drive(

 final Location start,

 final Location destination

) {

 // ...

 }

}

123

public class AutomaticTransmissionCombustionEngineCar

 extends CombustionEngineCar {

 public void drive(

 final Location start,

 final Location destination

) {

 // ...

 }

}

If we wanted to add other components to a car, like a two or four-wheel drive, the number of classes
needed would increase by three. If we wanted to add a design property (sedan, hatchback, wagon,
or SUV) to a car, the number of needed classes would explode, and the class names would become
ridiculously long. We can notice that inheritance is not the correct way to build more complex
classes.

Class inheritance creates an is-a relationship between a superclass and its subclasses. Object
c o m p o s i t i o n c r e a t e s a h a s - a r e l a t i o n s h i p . W e c a n c l a i m t h a t
ManualTransmissionCombustionEngineCar is a kind of CombustionEngineCar, so
basically, we are not doing anything wrong here, one might think. But when designing classes, you
should first determine if object composition could be used: is there a has-a relationship? Can you
declare a class as a property of another class? If the answer is yes, then composition should be used
instead of inheritance.

All the above things related to a car are actually properties of a car. A car has an engine. A car has a
transmission. It has a two or four-wheel drive and design. We can turn the inheritance-based
solution into a composition-based solution:

public interface Drivable {

 void drive(

 Location start,

 Location destination

);

}

public interface Engine {

 // Methods like start, stop ...

}

public class CombustionEngine implements Engine {

 // Methods like start, stop ...

}

public class ElectricEngine implements Engine {

 // Methods like start, stop ...

}

public interface Transmission {

 // Methods like changeGear ...

}

public class AutomaticTransmission implements Transmission {

 // Methods like changeGear ...

}

124

public class ManualTransmission implements Transmission {

 // Methods like changeGear ...

}

// Define DriveType here...

// Define Design here...

public class Car implements Drivable {

 private final Engine engine;

 private final Transmission transmission;

 private final DriveType driveType;

 private final Design design;

 public Car(

 final Engine engine,

 final Transmission transmission,

 final DriveType driveType,

 final Design design

) {

 this.engine = engine;

 this.transmission = transmission;

 this.driveType = driveType;

 this.design = design;

 }

 public void drive(

 final Location start,

 final Location destination

) {

 // To implement functionality, delegate to

 // component classes, for example:

 // engine.start();

 // transmission.shiftGear(...);

 // ...

 // engine.stop();

 }

}

Let's have a more realistic example with different chart types in TypeScript. At first, this sounds like
a case where inheritance could be used: We have some abstract base charts that different concrete
charts extend, for example:

interface Chart {

 renderView(): JSX.Element;

 updateData(...): void;

}

abstract class AbstractChart implements Chart {

 abstract renderView(): JSX.Element;

 abstract updateData(...): void;

 // Implement some common functionality

 // shared by all chart types

}

abstract class XAxisChart extends AbstractChart {

 abstract renderView(): JSX.Element;

 updateData(...): void {

 // This is common for all x-axis charts,

125

 // like ColumnChart, LineChart and AreaChart

 }

}

class ColumnChart extends XAxisChart {

 renderView(): JSX.Element {

 // ...

 return (

 <XYZChart

 type="column"

 data={data}

 options={options}...

 />;

);

 }

}

// LineChart class definition here...

// AreaChart class definition here...

abstract class NonAxisChart extends AbstractChart {

 abstract renderView(): JSX.Element;

 updateData(...): void {

 // This is common for all non-x-axis charts,

 // like PieChart and DonutChart

 }

}

class PieChart extends NonAxisChart {

 renderView(): JSX.Element {

 // ...

 return (

 <XYZChart

 type="pie"

 data={data}

 options={options}...

 />;

);

 }

}

class DonutChart extends PieChart {

 renderView(): JSX.Element {

 // ...

 return (

 <XYZChart

 type="donut"

 data={data}

 options={options}...

 />;

);

 }

}

The above class hierarchy looks manageable: there should not be too many subclasses that need to
be defined. We can, of course, think of new chart types, like a geographical map or data table for
which we could add subclasses. One problem with a deep class hierarchy arises when you need to

126

change or correct something related to a particular chart type. Let's say you want to change or
correct some behavior related to a pie chart. You will first check the PieChart class if the behavior
is defined there. If you can't find what you are looking for, you need to navigate to the base class of
the PieChart class (NonAxisChart) and look there. And you might need to continue this
navigation until you reach the base class where the behavior you want to change or correct is
located. Of course, if you are incredibly familiar with the codebase, you might be able to locate the
correct subclass on the first try. But in general, this is not a straightforward task.

Using class inheritance can introduce class hierarchies where some classes have significantly more
methods than other classes. For example, in the chart inheritance chain, the AbstractChart class
probably has significantly more methods than classes at the end of the inheritance chain. This class
size difference creates an imbalance between classes making it hard to reason about what
functionality each class provides.

Even if the above class hierarchy might look okay at first sight, currently, there lies one problem.
We have hardcoded what kind of chart view we are rendering. We are using the XYZ chart library
and rendering XYZChart views. Let's say we would like to introduce another chart library called
ABC. We want to use both chart libraries in parallel so that the open-source version of our data
visualization application uses the XYZ chart library, which is open source. The paid version of our
application uses the commercial ABC chart library. When using class inheritance, we must create
new classes for each concrete chart type for the ABC chart library. So, we would have two classes for
each concrete chart type, like here for the pie chart:

class XYZPieChart extends XyzNonAxisChart {

 renderView(): JSX.Element {

 // ...

 return (

 <XYZChart

 type="pie"

 data={data}

 options={options}...

 />;

);

 }

}

class ABCPieChart extends AbcNonAxisChart {

 renderView(): JSX.Element {

 // ...

 return (

 <ABCPieChart

 dataSeries={dataSeries}

 chartOptions={chartOptions}...

 />;

);

 }

}

Implementing the above functionality using composition instead of inheritance has several

127

benefits:

• It is more apparent what behavior each class contains

• There is no significant size imbalance between classes, where some classes are huge and others

relatively small

• You can split chart behaviors into classes as you find fit, and is in accordance with the single

responsibility principle

In the below example, we have split some chart behavior into two types of classes: chart view
renderers and chart data factories:

interface Chart {

 renderView(): JSX.Element;

 updateData(...): void;

}

interface ChartViewRenderer {

 renderView(data: ChartData, options: ChartOptions): JSX.Element;

}

interface ChartDataFactory {

 createData(...): ChartData

}

// ChartData...

// ChartOptions...

class ChartImpl implements Chart {

 private data: ChartData;

 private options: ChartOptions;

 constructor(

 private readonly viewRenderer: ChartViewRenderer,

 private readonly dataFactory: ChartDataFactory

) {

 // ...

 }

 renderView(): JSX.Element {

 return this.viewRenderer.renderView(this.data, this.options);

 }

 updateData(...): void {

 this.data = this.dataFactory.createData(...);

 }

}

class XYZPieChartViewRenderer implements ChartViewRenderer {

 renderView(data: ChartData, options: ChartOptions): JSX.Element {

 // ...

 return (

 <XYZPieChart

 data={dataInXyzChartLibFormat}

 options={optionsInXyzChartLibFormat}...

 />;

);

128

 }

}

class ABCPieChartViewRenderer implements ChartViewRenderer {

 renderView(data: ChartData, options: ChartOptions): JSX.Element {

 // ...

 return (

 <ABCPieChart

 dataSeries={dataInAbcChartLibFormat}

 chartOptions={optionsInAbcChartLibFormat}...

 />;

);

 }

}

// ABCColumnChartViewRenderer...

// XYZColumnChartViewRenderer...

type ChartType = 'column' | 'pie';

interface ChartFactory {

 createChart(chartType: ChartType): Chart;

}

class ABCChartFactory implements ChartFactory {

 createChart(chartType: ChartType): Chart {

 switch(chartType) {

 case 'column':

 return new ChartImpl(new ABCColumnChartViewRenderer,

 new XAxisChartDataFactory());

 case 'pie':

 return new ChartImpl(new ABCPieChartViewRenderer,

 new NonAxisChartDataFactory());

 default:

 throw new Error('Invalid chart type');

 }

 }

}

class XYZChartFactory implements ChartFactory {

 createChart(chartType: ChartType): Chart {

 switch(chartType) {

 case 'column':

 return new ChartImpl(new XYZColumnChartViewRenderer,

 new XAxisChartDataFactory());

 case 'pie':

 return new ChartImpl(new XYZPieChartViewRenderer,

 new NonAxisChartDataFactory());

 default:

 throw new Error('Invalid chart type');

 }

 }

}

The XYZPieChartViewRenderer and ABCPieChartViewRenderer classes use the adapter
pattern as they convert the supplied data and options to an implementation (ABC or XYZ chart
library) specific interface.

129

We can easily add more functionality by composing the ChartImpl class of more classes. There
could be, for example, a title formatter, tooltip formatter class, y/x-axis label formatter, and event
handler classes.

class ChartImpl implements Chart {

 private data: ChartData;

 private options: ChartOptions;

 constructor(

 private readonly viewRenderer: ChartViewRenderer,

 private readonly dataFactory: ChartDataFactory,

 private readonly titleFormatter: ChartTitleFormatter,

 private readonly tooltipFormatter: ChartTooltipFormatter,

 private readonly xAxisLabelFormatter: ChartXAxisLabelFormatter,

 private readonly eventHandler: ChartEventHandler

) {

 // ...

 }

 renderView(): JSX.Element {

 return this.viewRenderer.renderView(this.data, this.options);

 }

 updateData(...): void {

 this.data = this.dataFactory.createData(...);

 }

}

class ABCChartFactory implements ChartFactory {

 createChart(chartType: ChartType): Chart {

 switch(chartType) {

 case 'column':

 return new ChartImpl(new ABCColumnChartViewRenderer,

 new XAxisChartDataFactory(),

 new ChartTitleFormatterImpl(),

 new XAxisChartTooltipFormatter(),

 new ChartXAxisLabelFormatterImpl(),

 new ColumnChartEventHandler());

 case 'pie':

 return new ChartImpl(new ABCColumnChartViewRenderer,

 new NonAxisChartDataFactory(),

 new ChartTitleFormatterImpl(),

 new NonAxisChartTooltipFormatter(),

 new NullXAxisLabelFormatter(),

 new NonAxisChartEventHandler());

 default:

 throw new Error('Invalid chart type');

 }

 }

}

Domain-Driven Design Principle

Domain-driven design (DDD) is a software design approach where software is modeled to

130

match the language of the problem domain that the software tries to solve. DDD is
hierarchical. The top-level domain can be divided into subdomains which can be further
divided into subdomains.

DDD means that the structure of software, and the names appearing in the code (interface, class,
function, and variable names) should match the domain. For example, in a banking software
system, names like Account, withdraw, deposit, makePayment and LoanApplication should be
used. The top-level domain of a software system should be divided into smaller subdomains. And
each subdomain should be implemented as a separate application or software component. For
example, a development team can be dedicated to the loan applications subdomain and another
team to payments. Developers in a team need to know about their team's subdomain. And when
interfacing with other domains, they need to know enough about the other domains to understand
the interfaces. In this way, a single team will have a smaller set of concepts to comprehend and
remember. Product managers and the chief architect should have a good grasp of the top-level
domain, i.e., they should understand the big picture.

Domain-Driven Design Example 1: Data Exporter Microservice

Let's have a DDD example with a microservice for exporting data. Data exporting will be our top-
level domain. The development team should participate in the DDD and object-oriented design
(OOD) process. It is very likely that an expert-level software developer, e.g., the team tech lead,
could do the DDD and OOD alone, but it is not how it should be done. Other team members,
especially the junior ones, should be involved to learn and develop their skills further.

The DDD process is started by first defining the big picture (top-level domain) based on
requirements from the product management and the architecture team:

Data exporter handles data that consists of messages that contain multiple fields. Data
exporting should happen from an input system to an output system. During the export,
various transformations to the data can be made, and the data formats in the input and
output systems can differ.

We can specify four subdomains for the data exporter microservice based on the requirements
above:

• Consume messages from the input system and decode them into an internal message

• Internal message

• Transform internal messages

• Encode transformed messages to a wanted format and produce them to the output system

We can name the subdomains as shown in the below picture:

131

When considering the Input domain in more detail, we can figure out that it consists of the
following subdomains, interfaces and classes:

• Input message

• Contains the message consumed from the input data source

• InputMessage is an interface that can have several concrete implementations, like
KafkaInputMessage representing an input message consumed from a Kafka data
source

• Input message consumer

• Consumes messages from the input data source and creates InputMessage instances

• InputMessageConsumer is an interface that can have several concrete
implementations, like KafkaInputMessageConsumer for consuming messages from a
Kafka data source

• Input Message decoder

• Decodes input messages into internal messages

• InputMessageDecoder is an interface that can have several concrete implementations,

like AvroBinaryInputMessageDecoder, which decodes input messages encoded in
Avro binary format

• Input configuration

• Input configuration reader

• Reads the domain's configuration

• InputConfigReader is an interface that can have several concrete

implementations, l ike LocalFileSystemInputConfigReader or

132

Figure 3.4 Data Exporter
Subdomains

HttpRemoteInputConfigReader

• Input configuration parser

• Parses the read configuration to produce an InputConfig

• InputConfigParser is an interface that can have several concrete
implementations, like JsonInputConfigParser or YamlInputConfigParser

• InputConfig instance contains parsed configuration for the domain, like the input data
source type, host, port, and input data format.

When considering the Internal Message domain in more detail, we can figure out that it consists of
the following interfaces and classes:

• Internal Message

• Internal message consists of one or more internal message fields

• InternalMessage is an interface for a class that provides an internal representation of

an input message

• Internal Message Field

• InternalMessageField is an interface for classes representing a single field of an
internal message

133

Figure 3.5 Input Subdomain

When considering the Transformer domain in more detail, we can figure out that it consists of the
following subdomains, interfaces, and classes:

• Field transformer

• FieldTransformers is a collection of FieldTransformer objects

• A Field transformer transforms the value of an input message field into a value of an
output message field

• FieldTransformer is an interface that can have several concrete implementations, like
F i l t e r F i e l d T r a n s f o r e r , C o p y F i e l d T r a n s f o r m e r ,
TypeConversionFieldTransformer and ExpressionTransformer

• Message Transformer

• MessageTransformer takes an internal message and transforms it using field

transformers

• Transformer configuration

• Transformer configuration reader

• Reads the domain's configuration

• TransformerConfigReader is an interface that can have several concrete

implementations, like LocalFileSystemTransformerConfigReader

• Transformer configuration parser

• Parses read configuration to produce a TransformerConfig

• TransformerConfigParser is an interface that can have several concrete
implementations, like JsonTransformerConfigParser

• TransformerConfig instance contains parsed configuration for the Transformer
domain

134

Figure 3.6 Internal Message
Subdomain

When considering the Output domain in more detail, we can figure out that it consists of the
following subdomains, interfaces and classes:

• Output Message encoder

• Encodes transformed message to an output message with a specific data format

• OutputMessageEncoder is an interface that can have several concrete

implementations, like CsvOutputMessageEncoder, JsonOutputMessageEncoder,
AvroBinaryOutputMessageEncoder

• Output message

• OutputMessage is an interface for container objects to hold output messages as a byte

sequence

• Output message producer

• Produces output messages to the output destination

• OutputMessageProducer is an interface that can have several concrete

implementations, like KafkaMessageProducer

• Output configuration

• Output configuration reader

• Reads the domain's configuration

• OutputConfigReader is an interface that can have several concrete

implementations, like LocalFileSystemOutputConfigReader

• Output configuration parser

• Parse the read configuration to an OutputConfig

• OutputConfigParser is an interface that can have several concrete
implementations, like JsonOutputConfigParser

135

Figure 3.7 Transformer Subdomain

• OutputConfig instance contains parsed configuration for the domain, like output
destination type, host, port, and the output data format

If you combine the above design diagrams, they form a data processing pipeline that can be
implemented in the following way:

void DataExporterApp::run()

{

 while(m_isRunning)

 {

 const auto inputMessage =

 m_inputMessageConsumer.consumeInputMessage();

 const auto internalMessage =

 m_inputMessageDecoder.decodeToInternalMessage(inputMessage);

 const auto transformedMessage =

 m_messageTransformer.transform(*internalMessage);

 const auto outputMessage =

 m_outputMessageEncoder.encode(transformedMessage);

 m_outputMessageProducer.produce(outputMessage);

 }

}

And the MessageTransformer::transform method can be implemented in the following way:

std::unique_ptr<InternalMessage> MessageTrasformer::transform(

 const InternalMessage& internalMessage

)

{

 const auto transformedMessage =

136

Figure 3.8 Output Subdomain

 std::make_unique<InternalMessageImpl>();

 std::ranges::for_each(m_fieldTransformers,

 [&internalMessage, &transformedMessage]

 (const auto& fieldTransformer) {

 fieldTransformer.transform(internalMessage,

 transformedMessage);

 });

 return transformedMessage;

}

Domain-Driven Design Example 2: Anomaly Detection
Microservice

Let's have another DDD example with an anomaly detection microservice. The purpose of the
microservice is to detect anomalies in measurement data. This concise description of the
microservice's purpose reveals the two subdomains of the microservice:

• Anomaly

• Measurement

Let's first analyze the Measurement subdomain in more detail. We can identify the following
subdomains for it:

• Measurement configuration

• Loads and parses the following configuration

• Measurement data sources

• Measurements

• Measurement query

• Represents a query for fetching measurement data

• Measurement data source

• Represents a data source against which measurement queries can be executed

• Measurement data

• Represents a result of an executed measurement query

• Measurement data scaler

• Scales the measurement data using a particular technique

• Measurement

• Represents a measurement (contains properties like name, measurement query, etc.)

The Anomaly subdomain contains the following subdomains:

137

• Anomaly detection

• Anomaly detection configuration

• Loads and parses anomaly detection rules

• Anomaly detection rule

• Specifies how anomalies should be detected for a measurement

• Anomaly detector

• Detects anomalies in a measurement according to the anomaly detection rule
using a trained anomaly model

• Anomaly detection engine

• A thread for detecting anomalies for the given anomaly detection configuration

• Anomaly model

• Trained anomaly model

• Anomaly model trainer

• Trains an anomaly model using a specific AI technique, like self-organizing maps

• Anomaly model training engine

• A thread for training an anomaly model

• Anomaly indicator

• Anomaly indicator representation

• Anomaly indicator serializer

• Serializes an anomaly indicator representation

• Different serializers can be implemented, like JSON

• Anomaly indicator publisher

• Publishes a serialized anomaly indicator

• Different publishers can be implemented, like Kafka or REST API

The two domains, anomaly and measurement, can be developed in parallel. The anomaly domain
interfaces with the measurement domain to fetch data for a particular measurement from a
particular data source. The development effort of both the anomaly and measurement domains can
be further split to achieve even more development parallelization. For example, one developer
could work with anomaly detection, another with anomaly model training, and the third with
anomaly indicators.

138

Design Patterns

The following sections present 25 design patterns, most of which are made famous by the Gang of
Four and their book Design Patterns. Design patterns are divided into creational, structural, and
behavioral patterns.

Design Patterns for Creating Objects

This section describes design patterns for creating objects. The following design patterns will be
presented:

• Factory pattern

• Abstract factory pattern

• Factory method pattern

• Builder pattern

• Singleton pattern

• Prototype pattern

• Object pool pattern

 Factory Pattern

Factory pattern allows deferring what kind of object will be created to the point of calling the
create method of the factory.

A factory typically consists of precisely one or several methods for creating objects of a particular
type.

Below is an example ConfigParserFactory that has a single create method for creating
different kinds of ConfigParser objects. In the case of a single create method, the method usually
contains a switch-case statement or an if/else-if structure. Factories are the only place where
extensive switch-case statements or if/else-if structures are allowed in object-oriented
programming. If you have a lengthy switch-case statement or long if/else-if structure somewhere
else in code, that is typically a sign of a non-object-oriented design.

public interface ConfigParser {

 // ...

}

public class JsonConfigParser implements ConfigParser {

 // ...

}

139

public class YamlConfigParser implements ConfigParser {

 // ...

}

public enum ConfigFormat {

 JSON,

 YAML

}

public final class ConfigParserFactory {

 public static ConfigParser createConfigParser(

 final ConfigFormat configFormat

) {

 return switch(configFormat) {

 case JSON -> new JsonConfigParser();

 case YAML -> new YamlConfigParser();

 default ->

 throw new IllegalArgumentException(

 "Unsupported config format"

);

 };

 }

}

Below is an example of a factory with multiple create methods:

public final class ShapeFactory {

 public static Shape createCircleShape(final int radius) {

 return new CircleShape(radius);

 }

 public static Shape createRectangleShape(

 final int width,

 final int height

) {

 return new RectangleShape(width, height);

 }

 public static Shape createSquareShape(final int sideLength) {

 return new SquareShape(sideLength);

 }

}

Abstract Factory Pattern

In the abstract factory pattern, there is an abstract factor (= factory interface) and one or
more concrete factories (factory classes that implement the factory interface).

The abstract factory pattern is an extension of the earlier described factory pattern. Usually, the
abstract factory pattern should be used instead of the plain factory pattern. Below is an example of
an abstract ConfigParserFactory with one concrete implementation:

public interface ConfigParserFactory {

 ConfigParser createConfigParser(ConfigFormat configFormat);

}

public class ConfigParserFactoryImpl implements

140

 ConfigParserFactory {

 public final ConfigParser createConfigParser(

 final ConfigFormat configFormat

) {

 return switch(configFormat) {

 case JSON -> new JsonConfigParser();

 case YAML -> new YamlConfigParser();

 default ->

 throw new IllegalArgumentException(

 "Unsupported config format"

);

 };

 }

}

You should follow the program against interfaces principle and use the abstract
ConfigParserFactory in your code instead of a concrete factory. Then using the dependency
inject ion principle , you can in ject the wanted factory implementat ion, l ike
ConfigParserFactoryImpl.

When unit testing code, you should create mock objects instead of real ones with a factory. The
abstract factory pattern comes to your help because you can inject a mock instance of the
ConfigParserFactory in the tested code. Then you can expect the mocked
createConfigParser method to be called and return a mock instance of the ConfigParser
interface. And then, you can expect the parse method to be called on the ConfigParser mock
and return a mocked configuration. Below is an example unit test that uses JUnit5 and JMockit
library. We test the initialize method in an Application class containing a
ConfigParserFactory field. The Application class uses the ConfigParserFactory
instance to create a ConfigParser to parse the application configuration. In the below test, we
inject a ConfigParserFactory mock to an Application instance using the @Injectable
annotation from JMockit. Unit testing and mocking are better described later in the testing
principles chapter.

public class Application {

 private ConfigParserFactory configParserFactory;

 private Config config;

 public Application(final ConfigParserFactory configParserFactory) {

 this.configParserFactory = configParserFactory;

 }

 public void initialize() {

 // ...

 final var configParser = configParserFactory.createConfigParser(...);

 config = configParser.parse(...);

 // ...

 }

 public Config getConfig() {

 return config;

 }

141

}

public class ApplicationTests {

 @Tested

 Application application;

 @Injectable

 ConfigParserFactory configParserFactoryMock;

 @Mocked

 ConfigParser configParserMock;

 @Mocked

 Config configMock;

 @Test

 public void testInitialize() {

 // GIVEN

 new Expectations() {{

 configParserFactoryMock.createConfigParser(...);

 result = configParserMock;

 configParserMock.parse(...);

 result = configMock;

 }};

 // WHEN

 application.initialize();

 // THEN

 assertEquals(application.getConfig(), configMock);

 }

}

Factory Method Pattern

In the factory method pattern, objects are created using one or more static factory methods
in a class, and the class constructor is made private.

If you want to validate parameters in a constructor, the constructor may throw. You cannot return
an error value from a constructor unless you use an out parameter, but that pattern is generally
discouraged. Creating constructors that cannot throw is recommended because it is relatively easy
to forget to catch errors thrown from a constructor if nothing in the constructor signature tells it
can throw. Java is an exception to this rule when you throw a checked exception from a constructor.
It is impossible to forget to handle checked exceptions. See the next chapter for a discussion about
the error/exception handling principle.

Below is an example of a constructor that can throw:

class Url {

 constructor(

 scheme: string,

 port: number,

 host: string,

 path: string,

 query: string

) {

142

 // Validate the arguments and throw if invalid

 }

}

You can use the factory method pattern to overcome the problem of throwing an error from a
constructor. You can make a factory method to return an optional value (if you don't need to return
an error cause) or make the factory method throw. We can add a try prefix to the factory method
name to signify that it can throw. Then, the function signature (function name) communicates to
readers that the function can throw.

Below is an example class with two factory methods and a private constructor:

Url.ts

class Url {

 private constructor(

 scheme: string,

 port: number,

 host: string,

 path: string,

 query: string

) {

 // ...

 }

 static createUrl(

 scheme: string,

 port: number,

 host: string,

 path: string,

 query: string

): Url | null {

 // Validate the arguments and return 'null' if invalid

 }

 static tryCreateUrl(

 scheme: string,

 port: number,

 host: string,

 path: string,

 query: string

): Url {

 // Validate the arguments and throw if invalid

 }

}

Returning an optional value from a factory method allows utilizing functional programming
techniques. Here is an example in Java:

public class Url {

 private Url(

 final String scheme,

 final String host,

 final int port,

 final String path,

 final String query

) {

 // ...

143

 }

 public static Optional<Url> createUrl(

 final String scheme,

 final String host,

 final int port,

 final String path,

 final String query

) {

 // ...

 }

}

final var maybeUrl = Url.createUrl(...);

maybeUrl.ifPresent(url -> {

 // Do something with the validated and correct 'url'

});

Builder Pattern

 Builder pattern allows you to construct objects piece by piece.

In the builder pattern, you add properties to the built object with addXXX methods of the builder
class. After adding all the needed properties, you can build the final object using the build or
buildXXX method of the builder class.

For example, you can construct a URL from the parts of the URL. Below is a Java example of using
a UrlBuilder class:

final Optional<Url> url = new UrlBuilder()

 .addScheme("https")

 .addHost("www.google.com")

 .buildUrl();

The builder pattern has the benefit that properties given for the builder can be validated in the
build method. You can make the builder's build method return an optional indicating whether the
building was successful. Or, you can make the build method throw if you need to return an error.
Then you should name the build method using a try prefix, for example, tryBuildUrl. The
builder pattern also has the benefit of not needing to add default properties to the builder. For
example, https could be the default scheme, and if you are building an HTTPS URL, the
addScheme is not needed to be called. The only problem is that you must consult the builder
documentation to determine the default values.

One drawback with the builder pattern is that you can give the parameters logically in the wrong
order like this:

final Optional<Url> url = new UrlBuilder()

 .addHost("www.google.com")

 .addScheme("https")

 .buildUrl();

144

It works but does not look so nice. So if you are using a builder, always try to give the parameters
for the builder in a logically correct order if such order exists. The builder pattern works well when
there isn't any inherent order among the parameters. Below is an example of such a case: A house
built with a HouseBuilder class.

final House house = new HouseBuilder()

 .addKitchen()

 .addLivingRoom()

 .addBedrooms(3)

 .addBathRooms(2)

 .addGarage()

 .buildHouse();

You can achieve functionality similar to a builder with a factory method with default parameters:

Url.ts

class Url {

 private constructor(

 host: string,

 path?: string,

 query?: string,

 scheme = 'https',

 port = 443

) {

 // ...

 }

 static createUrl(

 host: string,

 path?: string,

 query?: string,

 scheme = 'https',

 port = 443

): Url | null {

 // Validate the arguments and return 'null' if invalid

 }

}

In the factory method above, there is clear visibility of what the default values are. Of course, you
cannot now give the parameters in a logical order. There is also a greater possibility that you
accidentally provide some parameters in the wrong order because many of them are of the same
type (string). This won't be a potential issue with a builder where you use a method with a specific
name to give a specific parameter. In modern development environments, giving parameters in the
wrong order is less probable because IDEs offer inlay parameter hints. It is easy to see if you
provide a particular parameter in the wrong position. As shown below, giving parameters in the
wrong order can also be avoided using semantically validated function parameter types.
Semantically validated function parameters will be discussed later in this chapter.

Url.ts

class Url {

 static createUrl(

 host: Host,

 path?: Path,

145

 query?: Query,

 scheme = Scheme.createScheme('https'),

 port = Port.createPort(443)

): Url | null {

 // ...

 }

}

You can also use factory method overloading in languages like Java, where default parameters are
not supported. But that solution, for example, in the Url class case, can not be easily implemented
and requires quite many overloaded methods to be introduced, which can be overwhelming for a
developer.

You can always use a parameter object, not only in Java but in many other languages, too. Below is
an example in Java:

import lombok.Getter;

import lombok.Setter;

@Getter

@Setter

public class UrlParams {

 private String scheme = "https";

 private String host;

 private int port = 443;

 private String path = "";

 private String query = "";

 UrlParams(final String host) {

 this.host = host;

 }

}

public class Url {

 private Url(final UrlParams urlParams) {

 // ...

 }

 public static Optional<Url> createUrl(

 final UrlParams urlParams

) {

 // ...

 }

}

final var urlParams = new UrlParams("www.google.com");

urlParams.setQuery("query=design+patterns");

final var maybeUrl = Url.createUrl(urlParams);

The above solution is quite similar to using a builder, only slightly more verbose, of course.

Singleton Pattern

Singleton pattern defines that a class can have only one instance.

146

Singletons are very common in pure object-oriented languages like Java. In many cases, a singleton
class can be identified as not having any state. And this is why only one instance of the class is
needed. There is no point in creating multiple instances that are the same. In some non-pure
object-oriented languages, singletons are not as common as in pure object-oriented languages and
can often be replaced by just defining functions.

In JavaScript/TypeScript, a singleton instance can be created in a module and exported. When you
import the instance from the module in other modules, the other modules will always get the same
exported instance, not a new instance every time. Below is an example of such a singleton:

myClassSingleton.ts

class MyClass {

 // ...

}

export const myClassSingleton = new MyClass();

otherModule.ts

import { myClassSingleton } from 'myClassSingleton';

// ...

The singleton pattern can be implemented using a static class because it cannot be instantiated. The
problem with a static class is that the singleton class is then hardcoded, and static classes can be
hard or impossible to mock in unit testing. We should remember to program against interfaces.
The best way to implement the singleton pattern is by using the dependency inversion principle
and the dependency injection principle. Below is an example in Java using the Google Guice library
for handling dependency injection. The constructor of the FileConfigReader class expects a
ConfigParser. We annotate the constructor with the @Inject annotation to inject an instance
implementing the ConfigParser interface:

import com.google.inject.Inject;

public interface ConfigReader {

 Configuration tryRead(...);

}

public class FileConfigReader

 implements ConfigReader {

 private ConfigParser configParser;

 @Inject

 public FileConfigReader(

 final ConfigParser configParser

) {

 this.configParser = configParser;

 }

 public Configuration tryRead(

 final String configFilePathName

) {

 final String configFileContents = // Read configuration file

147

 final var configuration =

 configParser.tryParse(configFileContents);

 return configuration;

 }

}

In the below DI module, we configure a singleton with a lazy binding. In the lazy binding, the
JsonConfigParser class is only created when needed to be used.

DiModule.java

import com.google.inject.AbstractModule;

public class DiModule extends AbstractModule {

 @Override

 protected void configure() {

 bind(ConfigParser.class)

 .to(JsonConfigParser.class)

 .in(Scopes.SINGLETON);

 }

}

Alternatively, we can define an eager singleton:

DiModule.java

import com.google.inject.AbstractModule;

public class DiModule extends AbstractModule {

 @Override

 protected void configure() {

 bind(ConfigParser.class)

 .to(JsonConfigParser.class)

 .asEagerSingleton();

 }

}

Prototype Pattern

The prototype pattern lets you create a new object using an existing object as a prototype.

Let's have an example with a DrawnShape class:

public interface Shape {

 // ...

}

// Implement concrete shapes...

public interface Position {

 int getX();

 int getY();

}

public class DrawnShape {

148

 private final Position position;

 private final Shape shape;

 public DrawnShape(

 final Position position,

 final Shape shape

) {

 this.position = position;

 this.shape = shape;

 }

 public DrawnShape(

 final Position position,

 final DrawnShape drawnShape

) {

 this.position = position;

 shape = drawnShape.getShape();

 }

 public DrawnShape cloneTo(

 final Position position

) {

 return new DrawnShape(position, this);

 }

 public Shape getShape() {

 return this.shape;

 }

}

In the second constructor, we are using the prototype pattern. A new DrawnShape object is created
from an existing DrawnShape object. An alternative way to use the prototype pattern is to call the
cloneTo method on a prototype object and give the position parameter to specify where the new
shape should be positioned.

The prototype pattern is also used in JavaScript to implement prototypal inheritance. Since
ECMAScript version 6, class-based inheritance has been available, and prototypal inheritance is not
needed to be used.

The idea of prototypal inheritance is that the common parts for the same class objects are stored in
a prototype instance. These common parts typically mean the shared methods. There is no sense in
storing the methods multiple times in each object. That would be a waste of resources because
Javascript functions are objects themselves.

When you create a new object with the Object.create method, you give the prototype as a
parameter. After that, you can set properties for the newly created object. When you call a method
on the created object, and if that method is not found in the object's properties, the prototype object
will be looked up for the method. Prototypes can be chained so that a prototype object contains
another prototype object. This chaining is used to implement an inheritance chain.

Below is a simple example of prototypal inheritance:

149

const pet = {

 name: '',

 getName: function() { return this.name; }

};

// Creates a new object with 'pet' object as a prototype

const petNamedBella = Object.create(pet);

petNamedBella.name = 'Bella';

console.log(petNamedBella.getName()); // Prints 'Bella'

// Prototype of a dog which contains 'pet' as nested prototype

const dog = {

 bark: function() { console.log('bark'); },

 __proto__: pet

}

// Creates a new object with 'dog' object as prototype

const dogNamedLuna = Object.create(dog);

dogNamedLuna.name = 'Luna';

console.log(dogNamedLuna.getName()); // Prints 'Luna'

dogNamedLuna.bark(); // Prints 'bark'

Object Pool Pattern

In the object pool pattern, created objects are stored in a pool where objects can be acquired
from and returned for reuse. The object pool pattern is an optimization pattern because it
allows the reuse of created objects.

If you need to create many short-lived objects, you should utilize an object pool and reduce the
need for memory allocation and de-allocation, which takes time. In garbage-collected languages,
frequent object creation and deletion cause extra work for the garbage collector, which consumes
CPU time.

Below is an example object pool implementation in C++. The below LimitedSizeObjectPool
class implementation uses a spin lock in its methods to achieve thread safety. More about thread
safety in the coming concurrent programming principles chapter.

ObjectPool.h

#include <memory>

template <typename T>

class ObjectPool

{

public:

 virtual ~ObjectPool() = default;

 virtual std::shared_ptr<T> acquireObject() = 0;

 virtual void returnObject(std::shared_ptr<T> object) = 0;

};

150

LimitedSizeObjectPool.h

#include <deque>

#include "ScopedSpinlock.h"

#include "Spinlock.h"

#include "ObjectPool.h"

template <typename T>

class LimitedSizeObjectPool : public ObjectPool<T>

{

public:

 explicit LimitedSizeObjectPool(const size_t maxPoolSize):

 m_maxPoolSize(maxPoolSize)

 {}

 std::shared_ptr<T> acquireObject()

 {

 std::shared_ptr<T> object;

 const ScopedSpinlock scopedLock{m_lock};

 if (m_pooledObjects.empty())

 {

 object = std::make_shared<T>();

 }

 else

 {

 object = m_pooledObjects.front();

 m_pooledObjects.pop_front();

 }

 return object;

 }

 void returnObject(std::shared_ptr<T> object)

 {

 const ScopedSpinlock scopedLock{m_lock};

 const bool poolIsFull =

 m_pooledObjects.size() >= m_maxPoolSize;

 if (poolIsFull)

 {

 object.reset();

 }

 else

 {

 m_pooledObjects.push_back(object);

 }

 }

private:

 Spinlock m_lock;

 size_t m_maxPoolSize;

 std::deque<std::shared_ptr<T>> m_pooledObjects;

};

Below is a slightly different implementation of an object pool. The below implementation accepts
clearable objects, meaning objects returned to the pool are cleared before reusing. The below
implementation allows you to define whether the allocated objects are wrapped inside a shared or
unique pointer. You can also supply parameters used when constructing an object.

151

ObjectPool.h

#include <concepts>

#include <deque>

#include <memory>

template<typename T>

concept ClearableObject =

requires(T object)

{

 { object.clear() } -> std::convertible_to<void>;

};

template<typename T, typename U>

concept Pointer = std::derived_from<T, std::shared_ptr<U>> ||

 std::derived_from<T, std::unique_ptr<U>>;

template<

 ClearableObject O,

 typename ObjectInterface,

 Pointer<ObjectInterface> OP,

 typename ...Args

>

class ObjectPool

{

public:

 virtual ~ObjectPool() = default;

 virtual OP acquireObject(Args&& ...args) = 0;

 virtual void acquireObjects(

 std::deque<OP>& objects,

 size_t objectCount,

 Args&& ...args

) = 0;

 virtual void returnObject(OP object) = 0;

 virtual void returnObjects(std::deque<OP>& objects) = 0;

};

LimitedSizeObjectPool.h

#include "ScopedLock.h"

#include "Spinlock.h"

#include "ObjectPool.h"

template<

 ClearableObject O,

 typename ObjectInterface,

 Pointer<ObjectInterface> OP,

 typename ...Args

>

class LimitedSizeObjectPool :

 public ObjectPool<O, ObjectInterface, OP, Args...>

{

public:

 explicit LimitedSizeObjectPool(const size_t maxPoolSize) :

 m_maxPoolSize(maxPoolSize)

 {}

 OP acquireObject(Args&& ...args) override

 {

 const ScopedLock scopedLock(m_lock);

152

 OP acquiredObject;

 if (const bool poolIsEmpty = m_pooledObjects.empty();

 poolIsEmpty)

 {

 acquiredObject = OP{new O{std::forward<Args>(args)...}};

 }

 else

 {

 acquiredObject = m_pooledObjects.front();

 m_pooledObjects.pop_front();

 }

 return acquiredObject;

 }

 void acquireObjects(

 std::deque<OP>& objects,

 const size_t objectCount,

 Args&& ...args

) override

 {

 for (size_t n{1U}; n <= objectCount; ++n)

 {

 objects.push_back(acquireObject(std::forward<Args>(args)...));

 }

 }

 void returnObject(OP object) override

 {

 const ScopedLock scopedLock(m_lock);

 if (const bool poolIsFull = m_pooledObjects.size() >=

 m_maxPoolSize;

 poolIsFull)

 {

 object.reset();

 }

 else

 {

 object->clear();

 m_pooledObjects.push_back(object);

 }

 }

 void returnObjects(std::deque<OP>& objects) override

 {

 while (!objects.empty())

 {

 returnObject(objects.front());

 objects.pop_front();

 }

 }

private:

 size_t m_maxPoolSize;

 Spinlock m_lock;

 std::deque<OP> m_pooled

In the below example, we create a message pool for a maximum of 5000 output messages. We get a
shared pointer to an output message from the pool. The pool's concrete class to create new objects

153

is OutputMessageImpl. When we acquire an output message from the pool, we provide a size_t
type value (= output message length) to the constructor of the OutputMessageImpl class. The
OutputMessageImpl class must be clearable, i.e., it must have a clear method returning void.

LimitedSizeObjectPool<

 OutputMessageImpl,

 OutputMessage,

 std::shared_ptr<OutputMessage>,

 size_t

> outputMessagePool{5000U};

// Acquire an output message of 1024 bytes from the pool.

const auto outputMessage = outputMessagePool.acquireObject(1024U);

Structural Design Patterns

This section describes structural design patterns. Most patterns use object composition as the
primary method to achieve a particular design. The following design patterns are presented:

• Composite pattern

• Facade pattern

• Bridge pattern

• Strategy pattern

• Adapter pattern

• Proxy pattern

• Decorator pattern

• Flyweight pattern

Composite Pattern

In the composite pattern, a class can be composed of itself, i.e., the composition is recursive.

Recursive object composition can be depicted by how a user interface can be composed of different
widgets. In the example below, we have a Pane class that is a Widget. A Pane object can contain
several other Widget objects, meaning a Pane object can contain other Pane objects.

interface Widget {

 void render();

}

public class Pane implements Widget {

 private final List<Widget> widgets;

 public void render() {

 // Render each widget inside pane

 }

}

154

public class StaticText implements Widget {

 public void render() {

 // Render static text widget

 }

 // ...

}

public class TextInput implements Widget {

 public void render() {

 // Render text input widget

 }

}

public class Button implements Widget {

 public void render() {

 // Render button widget

 }

}

public class UIWindow {

 private final List<Widget> widgets = new ArrayList<>(10);

 public void render() {

 widgets.forEach(Widget::render);

 }

}

Objects that form a tree structure are composed of themselves recursively. Below is an Avro record
field schema with a nested record field:

{

 "type": "record",

 "name": "sampleMessage",

 "fields": [

 {

 "name": "field1",

 "type": "string"

 },

 {

 "name": "nestedRecordField",

 "namespace": "nestedRecordField",

 "type": "record",

 "fields": [

 {

 "name": "nestedField1",

 "type": "int",

 "signed": "false"

 }

]

 }

]

}

For parsing an Avro schema, we could define classes for different sub-schemas by the field type.
When analyzing the below example, we can notice that the RecordAvroFieldSchema class can
contain any AvroFieldSchema object, also other RecordAvroFieldSchema objects, making a

155

RecordAvroFieldSchema object a composite object.

public interface AvroFieldSchema {

 // ...

}

public class RecordAvroFieldSchema implements AvroFieldSchema {

 private final List<AvroFieldSchema> subFieldSchemas;

 // ...

}

public class StringAvroFieldSchema implements AvroFieldSchema {

 // ...

}

public class IntAvroFieldSchema implements AvroFieldSchema {

 // ...

}

Facade Pattern

In the facade pattern, an object on a higher level of abstraction is composed of objects on a
lower level of abstraction. The higher-level object acts as a facade in front of the lower-level
objects. Lower-level objects behind the facade are either only or mainly only accessible by the
facade.

Let's use the data exporter microservice as an example. For that microservice, we could create a
Configuration interface that can be used to obtain configuration for the different parts (input,
transformer, and output) of the data exporter microservice. The Configuration interface acts as
a facade. Users of the facade need not see behind the facade. They don't know what happens behind
the facade. And they shouldn't care because they are just using the interface provided by the facade.

There can be various classes doing the actual work behind the facade. In the below example, there is
a ConfigReader that reads configuration from possibly different sources (from a local file or a
remote service, for example) and there are configuration parsers that can parse a specific part of the
configuration, possibly in different data formats like JSON or YAML. None of these
implementations and details are visible to the user of the facade. Any of these implementations
behind the facade can change at any time without affecting the users of the facade because facade
users are not coupled to the lower-level implementations.

Below is the implementation of the Configuration facade in Java:

import com.google.inject.Inject;

public interface Configuration {

 InputConfig tryGetInputConfig();

 TransformerConfig tryGetTransformerConfig();

 OutputConfig tryGetOutputConfig();

}

156

public class ConfigurationImpl implements Configuration {

 private final ConfigReader configReader;

 private final InputConfigParser inputConfigParser;

 private final TransformerConfigParser transformerConfigParser;

 private final OutputConfigParser outputConfigParser;

 private String configString = "";

 private Optional<InputConfig> inputConfig = Optional.empty();

 private Optional<OutputConfig> outputConfig = Optional.empty();

 private Optional<TransformerConfig> transformerConfig =

 Optional.empty();

 @Inject

 public ConfigurationImpl(

 final ConfigReader configReader,

 final InputConfigParser inputConfigParser,

 final TransformerConfigParser transformerConfigParser,

 final OutputConfigParser outputConfigParser

) {

 // ...

 }

 public InputConfig tryGetInputConfig() {

 return inputConfig.orElseGet(() -> {

 tryReadConfigIfNeeded();

 inputConfig =

 inputConfigParser.tryParseInputConfig(configString);

 return inputConfig;

 });

 }

 public TransformerConfig tryGetTransformerConfig() {

 // ...

 }

 public OutputConfig tryGetOutputConfig() {

 // ...

 }

 private void tryReadConfigIfNeeded() {

 if (configString.isEmpty()) {

 configString =

 configReader.tryRead(...);

 }

 }

}

There is a unique alternative available when implementing the above facade in Java: only the
Configuration interface and the ConfigurationImpl class could be made public, and all the
configuration reading and parsing related interfaces and classes could be package-private. This
would make the usage of the facade mandatory. No one else except the ConfigurationImpl class
could use the lower-level implementation classes related to configuration reading and parsing.

157

Bridge Pattern

In the bridge pattern, the implementation of a class is delegated to another class. The
original class is "abstract" in the sense that it does not have any behavior except the
delegation to another class, or it can have some higher level control logic on how it delegates
to another class.

Don't confuse the word "abstract" here with an abstract class. In an abstract class, some behavior is
not implemented at all, but the implementation is deferred to subclasses of the abstract class. Here,
instead of the term "abstraction class", we could use the term delegating class instead.

Let's have an example with shapes and drawings capable of drawing different shapes:

public interface Shape {

 void render(final ShapeRenderer renderer);

}

public class RectangleShape implements Shape {

 private final Point upperLeftCorner;

 private final int width;

 private final int height;

 public RectangleShape(

 final Point upperLeftCorner,

 final int width,

 final int height

) {

 this.upperLeftCorner = upperLeftCorner;

 this.width = width;

 this.height = height;

 }

 public void render(final ShapeRenderer renderer) {

 renderer.renderRectangleShape(upperLeftCorner, width, height);

 }

}

public class CircleShape implements Shape {

 private final Point center;

 private final int radius;

 public CircleShape(final Point center, final int radius) {

 this.center = center;

 this.radius = radius;

 }

158

Fig 3.5 Bridge Pattern

 public void render(final ShapeRenderer renderer) {

 renderer.renderCircleShape(center, radius);

 }

}

The above RectangleShape and CircleShape classes are abstractions because they delegate
their functionality (rendering) to an external class (implementation class) of the ShapeRenderer
type. We can provide different rendering implementations for the shape classes. Let's define two
shape renderers, one for rendering raster shapes and another for rendering vector shapes:

public interface ShapeRenderer {

 void renderCircleShape(final Point center, final int radius);

 void renderRectangleShape(

 final Point upperLeftCorner,

 final int width,

 final int height

);

 // Methods for rendering other shapes...

}

public class RasterShapeRenderer implements ShapeRenderer {

 private final Canvas canvas;

 public RasterShapeRenderer(final Canvas canvas) {

 this.canvas = canvas;

 }

 public void renderCircleShape(

 final Point center,

 final int radius

) {

 // Renders circle to canvas

 }

 public void renderRectangleShape(

 final Point upperLeftCorner,

 final int width,

 final int height

) {

 // Renders a rectangle to canvas

 }

 // Methods for rendering other shapes to the canvas

}

public class VectorShapeRenderer implements ShapeRenderer {

 private final SvgElement svgRoot;

 public VectorShapeRenderer(final SvgElement svgRoot) {

 this.svgRoot = svgRoot;

 }

 public void renderCircleShape(

 final Point center,

 final int radius

) {

 // Render circle as SVG element and attach as child to SVG root

159

 }

 public void renderRectangleShape(

 final Point upperLeftCorner,

 final int width,

 final int height

) {

 // Render rectangle as SVG element

 // and attach as child to SVG root

 }

 // Methods for rendering other shapes

}

Let's implement two different drawings, a raster, and a vector drawing:

public interface Drawing {

 ShapeRenderer getShapeRenderer();

 void draw();

 void save();

}

public abstract class AbstractDrawing implements Drawing {

 private final String name;

 public AbstractDrawing(final String name) {

 this.name = name;

 }

 public abstract ShapeRenderer getShapeRenderer();

 public abstract String getFileExtension();

 public abstract byte[] getData();

 public void save() {

 final var fileName = name + getFileExtension();

 final var data = getData();

 // Save the 'data' to 'fileName'

 }

 public void draw(final List<Shape> shapes) {

 for (final var shape: shapes) {

 shape.render(getShapeRenderer());

 }

 }

}

public class RasterDrawing extends AbstractDrawing {

 private final Canvas canvas = new Canvas();

 private final RasterShapeRenderer shapeRenderer =

 new RasterShapeRenderer(canvas);

 public RasterDrawing(final String name) {

 super(name);

 }

 public ShapeRenderer getShapeRenderer() {

 return shapeRenderer;

 }

 public String getFileExtension() {

160

 return ".png";

 }

 public byte[] getData() {

 // get data from the 'canvas' object

 }

}

public class VectorDrawing extends AbstractDrawing {

 private final SvgElement svgRoot = new SvgElement();

 private final VectorShapeRenderer shapeRenderer =

 new VectorShapeRenderer(svgRoot);

 public VectorDrawing(final String name) {

 super(name);

 }

 public ShapeRenderer getShapeRenderer() {

 return shapeRenderer;

 }

 public String getFileExtension() {

 return ".svg";

 }

 public byte[] getData() {

 // get data from the 'svgRoot' object

 }

}

In the above example, we have delegated the rendering behavior of the shape classes to concrete
classes implementing the ShapeRenderer interface. The Shape classes only represent a shape but
don't render the shape. They have a single responsibility of representing a shape. Regarding
rendering, the shape classes are "abstractions" because they delegate the rendering to other classes
responsible for rendering different shapes.

Now we can have a list of shapes and render them differently. We can do this as shown below
because we did not couple the shape classes with any specific rendering behavior.

final List<Shape> shapes = new ArrayList<>(50);

// Add various shapes to 'shapes' list here...

final var rasterDrawing = new RasterDrawing("raster-drawing-1");

rasterDrawing.draw(shapes);

rasterDrawing.save();

final var vectorDrawing = new VectorDrawing("vector-drawing-1");

vectorDrawing.draw(shapes);

vectorDrawing.save();

161

Strategy Pattern

In the strategy pattern, the functionality of an object can be changed by changing an
instance of a composed type to a different instance of that type.

Below is an example where the behavior of a ConfigReader class can be changed by changing the
value of the configParser field to an instance of a different class. The default behavior is to parse
the configuration in JSON format, which can be achieved using the default constructor.

public class ConfigReader {

 private final ConfigParser configParser;

 public ConfigReader() {

 configParser = new JsonConfigParser();

 }

 public ConfigReader(final ConfigParser configParser) {

 this.configParser = configParser;

 }

 public Configuration tryRead(final String configFilePathName) {

 // Try read the configuration file contents to a string

 // variable named 'configFileContents'

 final Configuration configuration =

 configParser.tryParse(configFileContents);

 return configuration;

 }

}

Using the strategy pattern, we can change the functionality of a ConfigReader class object by
changing the configParser field value. For example, there could be the following classes
available that implement the ConfigParser interface:

• JsonConfigParser

• YamlConfigParser

• TomlConfigParser

We can dynamically change the behavior of the ConfigReader class to use a YAML parsing
strategy by giving an instance of the YamlConfigParser class as a parameter for the
ConfigReader constructor.

Adapter Pattern

The adapter pattern changes one interface to another interface. The adapter pattern allows
you to adapt different interfaces to a single interface.

162

In the below example, we have defined a Message interface for messages that can be consumed
from a data source using a MessageConsumer.

Message.h

#include <cstdint>

class Message

{

public:

 Message() = default;

 virtual ~Message() = default;

 virtual uint8_t* getData() const = 0;

 virtual std::size_t getDataLengthInBytes() const = 0;

};

MessageConsumer.h

#include <memory>

#include "Message.h"

class MessageConsumer

{

public:

 MessageConsumer() = default;

 virtual ~MessageConsumer() = default;

 virtual std::shared_ptr<Message> consumeMessage() = 0;

};

Next, we can define the message and message consumer adapter classes for Apache Kafka and
Apache Pulsar:

KafkaMessageConsumer.h

#include "MessageConsumer.h"

class KafkaMessageConsumer : public MessageConsumer

{

public:

 KafkaMessageConsumer(...);

 ~KafkaMessageConsumer() override;

 std::shared_ptr<Message> consumeMessage() override {

 // Consume a message from Kafka using a 3rd party

 // Kafka library, e.g. LibRdKafka

 // Wrap the consumed LibRdKafka message inside an instance

 // of KafkaMessage class

 // Return the KafkaMessage instance

 }

};

KafkaMessage.h

#include <bit>

#include <librdkafka/rdkafkacpp.h>

#include "Message.h"

163

class KafkaMessage : public Message

{

public:

 explicit KafkaMessage(RdKafka::Message* const message):

 m_message(message)

 {}

 ~KafkaMessage() override

 {

 delete m_message;

 }

 uint8_t* getData() const override

 {

 return std::bit_cast<uint8_t*>(m_message->payload());

 }

 std::size_t getDataLengthInBytes() const override

 {

 return m_message->len();

 }

private:

 RdKafka::Message* m_message;

};

PulsarMessageConsumer.h

#include "MessageConsumer.h"

class PulsarMessageConsumer : public MessageConsumer

{

public:

 PulsarMessageConsumer(...);

 ~PulsarMessageConsumer() override;

 std::shared_ptr<Message> consumeMessage() override {

 // Consume a message from Pulsar using the Pulsar C++ client

 // Wrap the consumed Pulsar message inside an instance

 // of PulsarMessage

 // Return the PulsarMessage instance

 }

};

PulsarMessage.h

#include "Message.h"

class PulsarMessage : public Message

{

public:

 // ...

};

Now we can use Kafka or Pulsar data sources with identical consumer and message interfaces. In
the future, it will be easy to integrate a new data source into the system. We only need to implement
appropriate adapter classes (message and consumer classes) for the new data source. No other code
changes are required. Thus, we would be following the open-closed principle correctly.

164

Let's imagine that the API of the used LibRdKafka library changed. We don't need to make changes
in many places in the code. We need to create new adapter classes (message and consumer classes)
for the new LibRdKafka API and use those new adapter classes in place of the old adapter classes.
All this work is again following the open-closed principle.

Consider using the adapter pattern even if there is nothing to adapt to, especially when working
with 3rd party libraries. Because then you will be prepared for the future when changes can come. It
might be possible that a 3rd party library interface changes or there is a need to take a different
library into use. If you have not used the adapter pattern, taking a new library or library version
into use could mean that you must make many small changes in several places in the codebase,
which is error-prone and against the open-closed principle.

Let's have an example of using a 3rd party logging library. Initially, our adapter for the abc-
logging-library is just a wrapper around the abcLogger instance from the library. There is not
any actual adapting done.

logger.ts

import abcLogger from 'abc-logging-library';

import { LogLevel } from 'LogLevel';

interface Logger {

 log(logLevel: LogLevel, logMessage: string): void;

}

class AbcLogger implements Logger {

 log(logLevel: LogLevel, logMessage: string): void {

 abcLogger.log(logLevel, logMessage);

 }

}

export default new AbcLogger();

Suppose that in the future, a better logging library is available called xyz-logging-library, and we
would like to take that into use, but it has a bit different interface. Its logging instance is called
xyzLogWriter, the logging method is named differently, and the parameters are given in different
order compared to the abc-logging-library. We can create an adapter for the new logging library,
and no other code changes are required elsewhere in the codebase:

logger.ts

import xyzLogWriter from 'xyz-logging-library';

import { LogLevel } from 'LogLevel';

interface Logger {

 log(logLevel: LogLevel, logMessage: string): void;

}

class XyzLogger implements Logger {

 log(logLevel: LogLevel, logMessage: string): void {

 xyzLogWriter.writeLogEntry(logMessage, logLevel);

 }

}

165

export default new XyzLogger();

We don't have to modify all the places in the code where logging is used. And usually, logging is
used in many places. We have saved ourselves from a lot of error-prone and unnecessary work, and
once again, we have followed the open-closed principle.

Proxy Pattern

The proxy pattern enables conditionally modifying or augmenting the behavior of an object.

When using the proxy pattern, you define a proxy class that wraps another class (the proxied class).
The proxy class conditionally delegates to the wrapped class. The proxy class implements the
interface of the wrapped class and is used in place of the wrapped class in the code.

Below is an example of a TypeScript proxy class, CachingEntityStore, that caches the results of
entity store operations:

class MemoryCache<K, V> {

 // ...

 retrieveBy(key: K): V {

 // ...

 }

 store(key: K, value: V, timeToLiveInSecs?: number): void {

 // ...

 }

}

interface EntityStore<T> {

 getEntityById(id: number): Promise<T>;

}

class DbEntityStore<T> implements EntityStore<T> {

 getEntityById(id: number): Promise<T> {

 // Try get entity from database

 }

}

class CachingEntityStore<T> implements EntityStore<T> {

 private readonly entityCache = new MemoryCache<number, T>();

 constructor(private readonly entityStore: EntityStore<T>)

 {}

 async getEntityById(id: number): Promise<T> {

 let entity = this.entityCache.retrieveBy(id);

 if (entity === undefined) {

 entity = await this.entityStore.getEntityById(id);

 const timeToLiveInSecs = 60;

 this.entityCache.store(id, entity, timeToLiveInSecs);

 }

 return entity;

166

 }

}

In the above example, the CachingEntityStore class is the proxy class wrapping an
EntityStore. The proxy class is modifying the wrapped class behavior by conditionally delegating
to the wrapped class. It delegates to the wrapped class only if an entity is not found in the cache.

Below is another TypeScript example of a proxy class that authorizes a user before performing a
service operation:

interface UserService {

 getUserById(id: number): Promise<User>;

}

class UserServiceImpl implements UserService {

 getUserById(id: number): Promise<User> {

 // Try get user by id

 }

}

class AuthorizingUserService implements UserService {

 constructor(

 private readonly userService: UserService,

 private readonly userAuthorizer: UserAuthorizer

) {}

 async getUserById(id: number): Promise<User> {

 try {

 await this.userAuthorizer.tryAuthorizeUser(id);

 } catch (error: any) {

 throw new UserServiceError(error.message);

 }

 return this.userService.getUserById(id);

 }

}

In the above example, the AuthorizingUserService class is a proxy class that wraps a
UserService. The proxy class is modifying the wrapped class behavior by conditionally delegating
to the wrapped class. It will delegate to the wrapped class only if authorization is successful.

Decorator Pattern

The decorator pattern enables augmenting the functionality of a class method(s) without the
need to modify the class method(s).

A decorator class wraps another class whose functionality will be augmented. The decorator class
implements the interface of the wrapped class and is used in place of the wrapped class in the code.
The decorator pattern is useful when you cannot modify an existing class, e.g., the existing class is
in a 3rd party library. The decorator pattern also helps to follow the open-closed principle because
you don't have to modify an existing method to augment its functionality. You can create a
decorator class that contains the new functionality.

167

Below is a TypeScript example of the decorator pattern. There is a standard SQL statement executor
implementation and two decorated SQL statement executor implementations: one that adds
logging functionality and one that adds SQL statement execution timing functionality. Finally, a
double-decorated SQL statement executor is created that logs an SQL statement and times its
execution.

import logger from 'logger';

import { LogLevel } from 'LogLevel';

interface SqlStatementExecutor {

 tryExecute(

 sqlStatement: string,

 parameterValues?: any[]

): Promise<any>;

}

class SqlStatementExecutorImpl implements SqlStatementExecutor {

 // Implement getConnection()

 tryExecute(

 sqlStatement: string,

 parameterValues?: any[]

): Promise<any> {

 return this.getConnection().execute(sqlStatement,

 parameterValues);

 }

}

class LoggingSqlStatementExecutor

 implements SqlStatementExecutor {

 constructor(

 private readonly sqlStatementExecutor: SqlStatementExecutor

) {}

 tryExecute(

 sqlStatement: string,

 parameterValues?: any[]

): Promise<any> {

 logger.log(LogLevel.Debug,

 `Executing SQL statement: ${sqlStatement}`);

 return this.sqlStatementExecutor

 .tryExecute(sqlStatement, parameterValues);

 }

}

class TimingSqlStatementExecutor

 implements SqlStatementExecutor {

 constructor(

 private readonly sqlStatementExecutor: SqlStatementExecutor

) {}

 async tryExecute(

 sqlStatement: string,

 parameterValues?: any[]

): Promise<any> {

 const startTimeInMs = Date.now();

 const result =

 await this.sqlStatementExecutor

168

 .tryExecute(sqlStatement, parameterValues);

 const endTimeInMs = Date.now();

 const durationInMs = endTimeInMs - startTimeInMs;

 logger.log(LogLevel.Debug,

 `SQL statement execution duration: ${durationInMs} ms`);

 return result;

 }

}

const timingAndLoggingSqlStatementExecutor =

 new LoggingSqlStatementExecutor(

 new TimedSqlStatementExecutor(

 new SqlStatementExecutorImpl()));

 Flyweight Pattern

The flyweight pattern is a memory-saving optimization pattern where flyweight objects
reuse objects.

Let's have a simple example with a game where different shapes are drawn at different positions.
Let's assume that the game draws a lot of similar shapes but in different positions so that we can
notice the difference in memory consumption after applying this pattern.

Shapes that the game draws have the following properties: size, form, fill color, stroke color, stroke
width, and stroke style.

public interface Shape {

 // ...

}

// Color...

// StrokeStyle...

public class AbstractShape implements Shape {

 private final Color fillColor;

 private final Color strokeColor;

 private final int strokeWidth;

 private final StrokeStyle strokeStyle;

 // ...

}

public class CircleShape extends AbstractShape {

 private final int radius;

 // ...

}

// LineSegment...

public class PolygonShape extends AbstractShape {

 private final List<LineSegment> lineSegments;

 // ...

}

169

When analyzing the PolygonShape class, we can notice that it contains many properties that
consume memory. Especially a polygon that has many line segments can consume a noticeable
amount of memory. If the game draws many identical polygons in different screen positions and
always creates a new PolygonShape object, there would be a lot of identical PolygonShape
objects in the memory. To remediate this, we can introduce a flyweight class, DrawnShapeImpl,
which contains the position of a shape and a reference to the actual shape. In this way, we can draw
a lot of DrawnShapeImpl objects that all contain a reference to the same PolygonShape object:

public interface DrawnShape {

 // ...

}

public class DrawnShapeImpl implements DrawnShape {

 private final Shape shape;

 private Position screenPosition;

 public DrawnShapeImpl(

 final Shape shape,

 final Position screenPosition

) {

 this.shape = shape;

 this.screenPosition = screenPosition;

 }

 // ...

}

final Shape polygon = new PolygonShape(...);

final List<Position> positions = generateLotsOfPositions();

final var drawnPolygons = positions.stream().map(position ->

 new DrawnShapeImpl(polygon, position)

);

Behavioral Design Patterns

Behavioral design patterns describe ways to implement new behavior using object-oriented design.
The following behavioral design patterns will be presented in the following sections:

• Chain of responsibility pattern

• Observer pattern

• Command/Action pattern

• Iterator pattern

• State pattern

• Mediator pattern

• Template method pattern

• Memento pattern

• Visitor pattern

170

• Null object pattern

Chain of Responsibility Pattern

The chain of responsibility pattern lets you pass requests along a chain of handlers.

When receiving a request, each handler can decide what to do:

• Process the request and then pass it to the next handler in the chain

• Process the request without passing it to the subsequent handlers (terminating the chain)

• Leave the request unprocessed and pass it to the next handler

One of the most famous implementations of this pattern is Java servlet filters. A servlet filter
processes incoming HTTP requests before passing them to the actual servlet for handling. Servlet
filters can be used to implement various functionality like logging, compression, encryption/
decryption, input validation, etc.

Let's have an example of a servlet filter that adds logging before and after each HTTP request is
processed:

LoggingFilter.java

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.annotation.WebFilter;

@WebFilter(urlPatterns = {"/*"})

public class LoggingFilter implements Filter {

 // No initialization needed, thus empty method

 public void init(final FilterConfig filterConfig)

 throws ServletException

 {}

 // No cleanup needed, thus empty method

 public void destroy()

 {}

 public void doFilter(

 final ServletRequest request,

 final ServletResponse response,

 final FilterChain filterChain

) throws IOException, ServletException

 {

 final var responseWriter = response.getWriter();

 responseWriter.print("Before response\n");

 // Sends request to the next filter

 // or when no more filters to the servlet

 filterChain.doFilter(request, response);

 responseWriter.print("\nAfter response");

 }

}

171

HelloWorldServlet.java

import java.io.IOException;

import javax.servlet.ServletException;

import javax.servlet.annotation.WebServlet;

import javax.servlet.http.*;

@WebServlet("/helloworld")

public class HelloWorldServlet extends HttpServlet {

 public void doGet(

 HttpServletRequest request,

 HttpServletResponse response

) throws ServletException, IOException {

 response.setContentType("text/plain");

 final var responseWriter = response.getWriter();

 responseWriter.print("Hello, world!");

 }

}

When we send an HTTP GET request to the /helloworld endpoint, we should get the following
response:

Before response

Hello, world!

After response

Let's implement a JWT authorization filter:

JwtAuthorizationFilter.java

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.annotation.WebFilter;

import javax.servlet.http.HttpServletResponse;

@WebFilter(urlPatterns = {"/*"})

public class AuthorizationFilter implements Filter {

 public void init(final FilterConfig filterConfig)

 throws ServletException

 {}

 public void destroy()

 {}

 public void doFilter(

 final ServletRequest request,

 final ServletResponse response,

 final FilterChain filterChain

) throws IOException, ServletException {

 // From request's 'Authorization' header,

 // extract the bearer JWT

 // Set 'tokenIsPresent' variable value

 // to true or false

 // Verify the validity of JWT and assign result

 // to 'tokenIsValid' variable

 HttpServletResponse httpResponse =

172

 (HttpServletResponse) response;

 if (tokenIsValid) {

 filterChain.doFilter(request, response);

 } else if (tokenIsPresent) {

 // NOTE! filterChain is not invoked,

 // this will terminate the request

 httpResponse.setStatus(403);

 final var responseWriter = response.getWriter();

 responseWriter.print("Unauthorized");

 responseWriter.close();

 } else {

 // NOTE! filterChain is not invoked,

 // this will terminate the request

 httpResponse.setStatus(401);

 final var responseWriter = response.getWriter();

 responseWriter.print("Unauthenticated");

 responseWriter.close();

 }

 }

}

The Express framework for Node.js utilizes the chain of responsibility pattern for handling
requests. In the Express framework, you can write pluggable behavior using middlewares, a
concept similar to servlet filters in Java. Below is the same logging and authorization example as
above, but written using JavaScript and the Express framework:

const express = require('express')

const app = express()

// Authorization middleware

function authorize(request, response, next) {

 // From request's 'Authorization' header,

 // extract the bearer JWT, if present

 // Set 'tokenIsPresent' variable value

 // Verify the validity of JWT and assign result

 // to 'tokenIsValid' variable

 if (tokenIsValid) {

 next();

 } else if (tokenIsPresent) {

 // NOTE! next is not invoked,

 // this will terminate the request

 response.writeHead(403);

 response.end('Unauthorized');

 } else {

 // NOTE! next is not invoked,

 // this will terminate the request

 response.writeHead(401);

 response.end('Unauthenticated');

 }

}

// Logging before middleware

function logBefore(request, response, next) {

 response.write('Before response\n');

 next();

}

// Use authorization and logging middlewares

173

app.use(authorize, logBefore);

app.get('/helloworld', (request, response, next) => {

 response.write('Hello World!\n');

 next();

});

// Logging after middleware

function logAfter(request, response, next) {

 response.write('After response\n');

 response.end();

 next();

}

app.use(logAfter);

app.listen(4000);

We cannot use Express middlewares as described below:

// Logging middleware

async function log(request, response, next) {

 response.write('Before response\n');

 await next();

 response.write('After response\n');

 // You cannot use response.end('After response\n')

 // because that would close the response stream

 // before Hello World! is written and the output

 // would be just:

 // Before response

 // After response

}

// Use authorization and logging middlewares

app.use(authorize, log);

app.get('/helloworld', (request, response) => {

 setTimeout(() => response.end('Hello World!\n'), 1000);

});

The reason is that the next function does not return a promise we could await. For this reason, the
output from the /helloworld endpoint would be in the wrong order:

Before response

After response

Hello World!

ESLint plugins utilize the chain of responsibility pattern, too. Below is code for defining one rule in
an ESLint plugin:

create(context) {

 return {

 NewExpression(newExpr) {

 if (

 newExpr.callee.name === "SqlFilter" &&

 newExpr.arguments &&

 newExpr.arguments[0] &&

174

 newExpr.arguments[0].type !== "Literal"

) {

 context.report(

 newExpr,

 `SqlFilter constructor's 1st parameter must be a string literal`

);

 }

 }

 };

}

ESLint plugin framework will call the create function and supply the context parameter. The
create function should return an object of functions to analyze different abstract syntax tree
(AST) nodes. In the above example, we are only interested in NewExpression nodes and analyze
the creation of a new SqlFilter object. The first parameter supplied for the SqlFilter
constructor should be a literal. If not, we report an issue using the context.report method.

When running ESLint with the above plugin and rule enabled, whenever ESLint encounters a new
expression in a code file, the above-supplied NewExpression handler function will be called to
check if the new expression in the code is valid.

The following code will pass the above ESLint rule:

const sqlFilter = new SqlFilter('field1 > 0');

And the following code won't:

const sqlExpression = 'field1 > 0';

const sqlFilter = new SqlFilter(sqlExpression);

Observer Pattern

The observer pattern lets you define an observe-notify (or publish-subscribe) mechanism to
notify one or more objects about events that happen to the observed object.

One typical example of using the observer pattern is a UI view observing a model. The UI view will
be notified whenever the model changes and can redraw itself. Let's have an example with Java:

public interface Observer {

 void notifyAboutChange();

}

public interface Observable {

 void observeBy(Observer observer);

}

public class ObservableImpl {

 private final List<Observer> observers = new ArrayList<>();

 public void observeBy(final Observer observer) {

 observers.add(observer);

175

 }

 protected void notifyObservers() {

 observers.forEach(Observer::notifyAboutChange);

 }

}

public class TodosModel extends ObservableImpl {

 private List<Todo> todos = new ArrayList<>(25);

 // ...

 public void addTodo(final Todo todo) {

 todos.add(todo);

 notifyObservers();

 }

 public void removeTodo(final Todo todo) {

 todos.remove(todo);

 notifyObservers();

 }

}

public class TodosView implements Observer {

 private final TodosModel todosModel;

 public TodosView(final TodosModel todosModel) {

 this.todosModel = todosModel;

 todosModel.observeBy(this);

 }

 public void notifyAboutChange() {

 // Will be called when todos model change

 render();

 }

 public void render() {

 // Renders todos...

 }

}

Let's have another example that utilizes the publish-subscribe pattern. Below we define a
MessageBroker class that contains the following methods: publish, subscribe, and
unsubscribe.

nterface MessagePublisher<T> {

 void publish(String topic, T message);

}

@FunctionalInterface

interface MessageHandler<T> {

 void handle(T message);

}

interface MessageSubscriber<T> {

 void subscribe(String topic,

 MessageHandler<T> messageHandler);

}

public class MessageBroker<T> implements

176

 MessagePublisher<T>, MessageSubscriber<T> {

 private final Map<String, List<MessageHandler<T>>>

 topicToMessageHandlersMap = new HashMap<>();

 public void publish(

 final String topic,

 final T message

) {

 final var messageHandlers =

 topicToMessageHandlersMap.get(topic);

 if (messageHandlers != null) {

 messageHandlers.forEach(messageHandler ->

 messageHandler.handle(message));

 }

 }

 public void subscribe(

 final String topic,

 final MessageHandler<T> messageHandler

) {

 final var messageHandlers =

 topicToMessageHandlersMap.get(topic);

 if (messageHandlers == null) {

 topicToMessageHandlersMap.put(topic,

 List.of(messageHandler));

 } else {

 messageHandlers.add(messageHandler);

 }

 }

 public void unsubscribe(

 final String topic,

 final MessageHandler<T> messageHandlerToRemove

) {

 final var messageHandlers =

 topicToMessageHandlersMap.get(topic);

 messageHandlers.removeIf(messageHandler ->

 messageHandler == messageHandlerToRemove);

 }

}

In the above example, we could have used the built-in Java Consumer<T> interface instead of the
custom MessageHandler<T> interface.

Command/Action Pattern

Command or action pattern is used to define commands or actions as objects which can be
given as parameters to other functions for later execution.

Let's have an example using the Redux library well-known by many React developers. Below is a
Redux reducer:

177

todosReducer.js

function todosReducer(state = initialState, action) {

 switch (action.type) {

 case 'ADD_TODO':

 return {

 ...state,

 todos: [...state.todos, {

 id: action.payload.id,

 name: action.payload.name,

 isDone: false

 }]

 };

 case 'MARK_TODO_DONE':

 const newTodos = state.todos.map(todo => {

 if (todo.id !== action.payload.id) {

 return todo;

 }

 return {

 ...todo,

 isDone: true

 };

 });

 return {

 ...state,

 todos: newTodos

 };

 default:

 return state;

 }

}

In the above example, we define a todosReducer which can handle two different actions:
ADD_TODO and MARK_TODO_DONE. The implementation of the actions is inlined inside the switch
statement, which makes the code somewhat hard to read. We can refactor the above code so that we
introduce two classes for action objects:

AddTodoAction.ts

export default class AddTodoAction {

 constructor(

 private readonly id: number,

 private readonly name: string

) {}

 perform(state: TodoState): TodoState {

 return {

 ...state,

 todos: [...state.todos, {

 id: this.id,

 name: this.name,

 isDone: false

 }]

 };

 }

}

178

MarkDoneTodoAction.ts

export default class MarkDoneTodoAction {

 constructor(private readonly id: number) {}

 perform(state: TodoState): TodoState {

 const newTodos = state.todos.map(todo => {

 if (todo.id !== this.id) {

 return todo;

 }

 return {

 ...todo,

 isDone: true

 };

 });

 return {

 ...state,

 todos: newTodos

 };

 }

}

Now we can redesign the todosReducer to look like the following:

todosReducer.ts

import AddTodoAction from './AddTodoAction';

import MarkDoneTodoAction from './MarkDoneTodoAction';

function todosReducer(

 state: TodoState = initialState,

 { payload: { id, name }, type }: any

) {

 switch (type) {

 case 'ADD_TODO':

 return new AddTodoAction(id, name).perform(state);

 case 'MARK_TODO_DONE':

 return new MarkDoneTodoAction(id).perform(state);

 default:

 return state;

 }

}

We have separated actions into classes, and the todosReducer function becomes simpler.
However, we should make the code object-oriented by replacing the conditionals (switch-case) with
polymorphism. Let's do the following modifications: introduce a generic base class for actions and a
base class for todo-related actions:

AbstractAction.ts

export default abstract class AbstractAction<S> {

 abstract perform(state: S): S;

}

179

AbstractTodoAction.ts

import AbstractAction from './AbstractAction';

export default abstract class AbstractTodoAction extends

 AbstractAction<TodoState> {}

The todo action classes must be modified to extend the AbstractTodoAction class:

AddTodoAction.ts

import AbstractTodoAction from './AbstractTodoAction';

export default class AddTodoAction extends AbstractTodoAction {

 // ...

}

MarkDoneTodoAction.ts

import AbstractTodoAction from './AbstractTodoAction';

export default class MarkDoneTodoAction extends AbstractTodoAction {

 // ...

}

Then we can introduce a generic function to create a reducer. This function will create a reducer
function that perform actions for a given action base class:

createReducer.ts

import AbstractAction from './AbstractAction';

export default function createReducer<S>(

 initialState: S,

 ActionBaseClass:

 abstract new (...args: any[]) => AbstractAction<S>

) {

 return function(

 state: S = initialState,

 action: { type: AbstractAction<S> }

) {

 return action.type instanceof ActionBaseClass

 ? action.type.perform(state)

 : state;

 };

}

Let's create the initial state for todos:

Todo.ts

export type Todo = {

 id: number,

 name: string,

 isDone: boolean

}

180

initialTodosState.ts

import { Todo } from './Todo';

export type TodoState = {

 todos: Todo[];

}

const initialTodosState = {

 todos: []

} as TodoState

export default initialTodosState;

Next, we can create a Redux store using the createReducer function, the initial todo state, and
the base action class for todo-related actions:

store.ts

import { combineReducers, createStore } from "redux";

import createReducer from "./createReducer";

import initialTodosState from "./initialTodoState";

import AbstractTodoAction from "./AbstractTodoAction";

const rootReducer = combineReducers({

 todoState: createReducer(initialTodosState, AbstractTodoAction)

});

export default createStore(rootReducer);

Now we have an object-oriented solution for dispatching actions in the following way:

dispatch({ type: new AddTodoAction(id, name) });

dispatch({ type: new MarkTodoDoneAction(id) });

Let's modify the AbstractAction class to support undoable actions. By default, an action is not
undoable:

AbstractAction.ts

export default abstract class AbstractAction<S> {

 abstract perform(state: S): S;

 getName(): string {

 return this.constructor.name;

 }

 isUndoable(): boolean {

 return false;

 }

}

Let's also create a new class to serve as a base class for undoable actions:

AbstractUndoableAction.ts

import AbstractAction from "./AbstractAction";

181

export default abstract class AbstractUndoableAction<S> extends

 AbstractAction<S> {

 override isUndoable(): boolean {

 return true;

 }

}

Let's define a class for undo-actions. An undo-action sets the state as it was before performing the
actual action.

UndoAction.ts

import AbstractAction from "./AbstractAction";

export default class UndoAction<S> extends AbstractAction<S> {

 constructor(

 private readonly actionName: string,

 private readonly ActionBaseClass:

 abstract new (...args: any[]) => AbstractAction<S>,

 private readonly state: S

) {

 super();

 }

 override getName(): string {

 return this.actionName;

 }

 override perform(state: S): S {

 return this.state;

 }

 getActionBaseClass():

 abstract new (...args: any[]) => AbstractAction<S>

 {

 return this.ActionBaseClass;

 }

}

Let's modify the createReducer function to create undo-actions for undoable actions and store
them in a stack named undoActions. When a user wants to perform an undo of the last action, the
topmost element from the undoActions stack can be popped and executed.

undoActions.ts

import UndoAction from "./UndoAction";

const undoActions = [] as UndoAction<any>[];

export default undoActions;

createReducer.ts

// ...

import undoActions from './undoActions';

import AbstractAction from "./AbstractAction";

import UndoAction from "./UndoAction";

182

function createReducer<S>(

 initialState: S,

 ActionBaseClass:

 abstract new (...args : any[]) => AbstractAction<S>

) {

 return function(

 state: S = initialState,

 action: { type: AbstractAction<S> }

) {

 let newState;

 if (action.type instanceof UndoAction &&

 action.type.getActionBaseClass() === ActionBaseClass) {

 newState = action.type.perform(state);

 } else if (action.type instanceof ActionBaseClass) {

 if (action.type.isUndoable()) {

 undoActions.unshift(new UndoAction(

 action.type.getName(),

 ActionBaseClass,

 state));

 }

 newState = action.type.perform(state);

 } else {

 newState = state;

 }

 return newState;

 };

}

Commands/Actions can also be defined without an object-oriented approach using a newly created
function with a closure. In the below example, the function () => toggleTodoDone(id) is
redefined for each todo. The function redefinition will always create a new closure that stores the
current id variable value. We can treat the () => toggleTodoDone(id) as an action or
command because it "encapsulates" the id value in the closure.

TodosTableView.tsx

// type Props = ...

export default function TodosTableView(

 { toggleTodoDone, todos }: Props

) {

 const todoElements = todos.map(({ id, name }) => (

 <tr>

 <td>{id}</td>

 <td>{name}</td>

 <td>

 <input

 type="checkbox"

 onChange={() => toggleTodoDone(id)}

 />

 </td>

 </tr>

));

 return <table><tbody>{todoElements}</tbody></table>;

}

183

Iterator Pattern

The iterator pattern can be used to add iteration capabilities to a sequence class.

Let's create a reverse iterator for Java's List class. We implement the Iterator interface by
supplying implementations for the hasNext and the next methods:

ReverseListIterator.java

public class ReverseListIterator<T> implements Iterator<T> {

 private final List<T> values;

 private int iteratorPosition;

 public ReverseListIterator(final List<T> values) {

 this.values = Collections.unmodifiableList(values);

 iteratorPosition = values.size() - 1;

 }

 @Override

 public boolean hasNext() {

 return iteratorPosition >= 0;

 }

 @Override

 public T next() {

 // Note! We don't check the iteratorPosition

 // validity here, it is checked in hasNext() method,

 // which must be called before calling next() method

 // and only call next() method if hasNext() method

 // returned true

 final var nextValue = values.get(iteratorPosition);

 iteratorPosition--;

 return nextValue;

 }

}

We can put the ReverseListIterator class into use in a ReverseArrayList class defined
below:

ReverseArrayList.java

public class ReverseArrayList<T> extends ArrayList<T>

{

 @Override

 public Iterator<T> iterator() {

 return new ReverseListIterator<>(this);

 }

}

Now we can use the new iterator to iterate over a list in reverse order:

final var reversedNumbers = new ReverseArrayList<Integer>();

reversedNumbers.addAll(List.of(1,2,3,4,5));

for (final var number : reversedNumbers) {

 System.out.println(number);

}

184

// Prints:

// 5

// 4

// 3

// 2

// 1

 State Pattern

The state pattern lets an object change its behavior depending on its current state.

Developers don't often treat an object's state as an object but as an enumerated value (enum), for
example. Below is an example where we have defined a UserStory class representing a user story
that can be rendered on screen. An enum value represents the state of a UserStory object.

public enum UserStoryState {

 TODO, IN_DEVELOPMENT, IN_VERIFICATION, READY_FOR_REVIEW, DONE

}

public class UserStory {

 private String name;

 private UserStoryState state = UserStoryState.TODO;

 // Other properties...

 public UserStory(final String name, ...) {

 this.name = name;

 // ...

 }

 public void setState(

 final UserStoryState newState

) {

 state = newState;

 }

 public void render() {

 final var icon = switch(state) {

 case TODO -> new TodoIcon();

 case IN_DEVELOPMENT -> new InDevelopmentIcon();

 case IN_VERIFICATION -> new InVerificationIcon();

 case READY_FOR_REVIEW -> new ReadyForReviewIcon();

 case DONE -> new DoneIcon();

 default -> throw new IllegalArgumentException(...);

 };

 // Draw a UI elements on screen representing the user story

 // using the given 'icon'

 }

}

The above solution is not an object-oriented one. We should replace the conditionals (switch-case
statement) with a polymorphic design. This can be done by introducing state objects. In the state
pattern, the state of an object is represented with an object instead of an enum value. Below is the
above code modified to use the state pattern:

public interface UserStoryState {

185

 Icon getIcon();

}

public class TodoUserStoryState implements UserStoryState {

 public Icon getIcon() {

 return new TodoIcon();

 }

}

public class InDevelopmentUserStoryState

 implements UserStoryState {

 public Icon getIcon() {

 return new InDevelopmentIcon();

 }

}

public class InVerificationUserStoryState

 implements UserStoryState {

 public Icon getIcon() {

 return new InVerificationIcon();

 }

}

public class ReadyForReviewUserStoryState

 implements UserStoryState {

 public Icon getIcon() {

 return new ReadyForReviewIcon();

 }

}

public class DoneUserStoryState

 implements UserStoryState {

 public Icon getIcon() {

 return new DoneIcon();

 }

}

public class UserStory {

 private String name;

 private UserStoryState state = new TodoUserStoryState();

 // Other properties...

 public UserStory(final String name, ...) {

 this.name = name;

 // ...

 }

 public void setState(

 final UserStoryState newState

) {

 state = newState;

 }

 public void render() {

 final Icon icon = state.getIcon();

 // Draw a UI element on screen representing

 // the user story using the given 'icon'

 }

}

Let's have another example with an Order class. An order can have a state, like paid, packaged,

186

delivered, etc. Below we implement the order states as classes:

public interface OrderState {

 String getMessage(String orderId);

}

public class PaidOrderState implements OrderState {

 public String getMessage(final String orderId) {

 return "Order " + orderId + " is successfully paid";

 }

}

public class DeliveredOrderState implements OrderState {

 public String getMessage(final String orderId) {

 return "Order " + orderId + " is delivered";

 }

}

// Implement the rest of possible order states here...

public class Order {

 private String id;

 private OrderState state;

 private Customer customer;

 // ...

 public String getCustomerEmailAddress() {

 return customer.getEmailAddress();

 }

 public String getStateMessage() {

 return state.getMessage(id);

 }

}

emailService.sendEmail(order.getCustomerEmailAddress(),

 order.getStateMessage());

Mediator Pattern

The mediator pattern lets you reduce dependencies between objects. It restricts direct
communication between two different layers of objects and forces them to collaborate only
via a mediator object or objects.

The mediator pattern eliminates the coupling of two different layers of objects. So changes to one
layer of objects can be made without the need to change the objects in the other layer.

A typical example of the mediator pattern is Model-View-Controller (MVC) pattern. In the MVC
pattern, model and view objects do not communicate directly but only via mediator objects
(controllers). Next, several different ways to use the MVC pattern in frontend clients are presented.
Traditionally MVC pattern was used in the backend when the backend also generated the view to be
shown in the client device (web browser). With the advent of single-page web clients, a modern
backend is a simple API containing only a model and controller (MC).

187

In the below picture, you can see how dependency inversion is used, and none of the
implementation classes depend on concrete implementations. You can easily change any
implementation class to a different one without the need to modify any other implementation class.
Notice how the ControllerImpl class uses the bridge pattern and implements two bridges, one
towards the model and the other towards the view.

As shown in the below picture, the controller can also be used as a bridge-adapter: The controller
can be modified to adapt to changes in the view layer (View2 instead of View) without needing to
change the model layer. The modified modules are shown with a grey background in the picture.
Similarly, the controller can be modified to adapt to changes in the model layer without needing to
change the view layer (not shown in the picture).

188

Fig 3.6 Model-View-Controller

Fig 3.7 Dependencies in MVC pattern

Fig 3.8 Adapting to Changes in MVC pattern

The following examples use a specialization of the MVC pattern called Model-View-Presenter
(MVP). In the MVP pattern, the controller is called the presenter. I use the more generic term
controller in all examples, though. A Presenter act as a middle-man between a view and a model. A
presenter-type controller object has a reference to a view object and a model object. A view object
commands the presenter to perform actions on the model. And the model object asks the presenter
to update the view object.

In the past, making desktop UI applications using Java Swing as the UI layer was popular. Let's
have a simple todo application as an example:

First, we implement the Todo class, which is part of the model.

Todo.java

public class Todo {

 private int id;

 private String name;

 private boolean isDone;

 // Constructor...

 public int getId() {

 return id;

 }

 public void setId(final int id) {

 this.id = id;

 }

 public String getName() {

 return name;

 }

 public void setName(final String name) {

 this.name = name;

 }

 public boolean isDone() {

 return isDone;

 }

 public void setIsDone(final boolean isDone) {

 this.isDone = isDone;

 }

}

Next, we implement the view layer:

TodoView.java

public interface TodoView {

 void show(List<Todo> todos);

 void show(String message);

}

TodoViewImpl.java

189

public class TodoViewImpl implements TodoView {

 private final TodoController controller;

 public TodoViewImpl(final TodoController controller) {

 this.controller = controller;

 controller.setView(this);

 controller.startFetchTodos();

 }

 public void show(final List<Todo> todos) {

 // Update the view to show the given todos

 // Add listener for each todo checkbox.

 // Listener should call: controller.toggleTodoDone(todo.id)

 }

 public void show(final String errorMessage) {

 // Update the view to show error message

 }

}

Then we implement a generic Controller class that acts as a base class for concrete controllers:

Controller.java

public class Controller<M, V> {

 private M model;

 private V view;

 public M getModel() {

 return model;

 }

 public void setModel(final M model) {

 this.model = model;

 }

 public V getView() {

 return view;

 }

 public void setView(final V view) {

 this.view = view;

 }

}

The below TodoControllerImpl class implements two actions, startFetchTodos and
toggleTodoDone, which delegate to the model layer. It also implements two actions,
updateViewWith(todos) and updateViewWith(errorMessage), that delegate to the view
l a y e r . T h e l a t t e r t w o a c t i o n s a r e e x e c u t e d i n t h e S w i n g U I t h r e a d u s i n g
SwingUtilities.invokeLater.

TodoController.java

public interface TodoController {

 void startFetchTodos();

 void toggleTodoDone(final int id);

 void updateViewWith(final List<Todo> todos);

 void updateViewWith(final String errorMessage);

190

}

TodoControllerImpl.java

public class TodoControllerImpl

 extends Controller<TodoModel, TodoView>

 implements TodoController {

 public void startFetchTodos() {

 getModel().fetchTodos();

 }

 public void toggleTodoDone(final int id) {

 getModel().toggleTodoDone(id);

 }

 public void updateViewWith(final List<Todo> todos) {

 SwingUtilities.invokeLater(() ->

 getView().show(todos));

 }

 public void updateViewWith(final String errorMessage) {

 SwingUtilities.invokeLater(() ->

 getView().show(errorMessage));

 }

}

The below TodoModelImpl class implements the fetching of todos (fetchTodos) using the
supplied todoService. The todoService accesses the backend to read todos from a database,
for example. When todos are successfully fetched, the controller is told to update the view. If
fetching of the todos fails, the view is updated to show an error. Toggling a todo done is
implemented using the todoService and its updateTodo method.

TodoService.java

public interface TodoService {

 public List<Todo> getTodos();

 public void updateTodo(Todo todo);

}

TodoModel.java

public interface TodoModel {

 public void fetchTodos();

 public void toggleTodoDone(int id);

}

TodoModelImpl.java

public class TodoModelImpl implements TodoModel {

 private final TodoController controller;

 private final TodoService todoService;

 private List<Todo> todos = new ArrayList<>();

 public TodoModelImpl(

 final TodoController controller,

 final TodoService todoService

) {

191

 this.controller = controller;

 controller.setModel(this);

 this.todoService = todoService;

 }

 public void fetchTodos() {

 CompletableFuture

 .supplyAsync(todoService::getTodos)

 .thenAccept(todos -> {

 this.todos = todos;

 controller.updateViewWith(todos);

 })

 .exceptionally((error) -> {

 controller.updateViewWith(error.getMessage());

 return null;

 });

 }

 public void toggleTodoDone(final int id) {

 todos.stream()

 .filter(todo -> todo.getId() == id)

 .findAny()

 .ifPresent(todo -> {

 todo.setIsDone(!todo.isDone());

 CompletableFuture

 .runAsync(() ->

 todoService.updateTodo(todo))

 .exceptionally((error) -> {

 controller.updateViewWith(error.getMessage());

 return null;

 });

 });

 }

}

Let's have the same example using Web Components. The web component view should extend the
HTMLElement class. The connectedCallback method of the view will be called on the
component mount. It starts fetching todos. The showTodos method renders the given todos as
HTML elements. It also adds event listeners for the Mark done buttons. The showError method
updates the inner HTML of the view to show an error message.

Todo.ts

export type Todo = {

 id: number;

 name: string;

 isDone: boolean;

};

TodoView.ts

interface TodoView {

 showTodos(todos: Todo[]): void;

 showError(errorMessage: string): void;

}

TodoViewImpl.ts

192

import controller from './todoController';

import { Todo } from './Todo';

export default class TodoViewImpl

 extends HTMLElement implements TodoView {

 constructor() {

 super();

 controller.setView(this);

 }

 connectedCallback() {

 controller.startFetchTodos();

 this.innerHTML = '<div>Loading todos...</div>';

 }

 showTodos(todos: Todo[]) {

 const todoElements = todos.map(({ id, name, isDone }) => `

 <li id="todo-${id}">

 ${id} ${name}

 ${isDone ? '' : '<button>Mark done</button>'}

 `);

 this.innerHTML = `${todoElements}`;

 todos.map(({ id }) => this

 .querySelector(`#todo-${id} button`)?

 .addEventListener('click',

 () => controller.toggleTodoDone(id)));

 }

 showError(errorMessage: string) {

 this.innerHTML = `

 <div>

 Failure: ${errorMessage}

 </div>

 `;

 }

}

We can use the same controller and model APIs for this web component example as in the Java
Swing example. We just need to convert the Java code to TypeScript code:

Controller.ts

export default class Controller<M, V> {

 private model: M | undefined;

 private view: V | undefined;

 getModel(): M | undefined {

 return this.model;

 }

 setModel(model: M): void {

 this.model = model;

 }

 getView(): V | undefined {

 return this.view;

 }

193

 setView(view: V): void {

 this.view = view;

 }

}

TodoController.ts

import { Todo } from "./Todo";

export interface TodoController {

 startFetchTodos(): void;

 toggleTodoDone(id: number): void;

 updateViewWithTodos(todos: Todo[]): void;

 updateViewWithError(message: string): void;

}

todoController.ts

import TodoView from './TodoView';

import Controller from "./Controller";

import { TodoController } from './TodoController';

import { Todo } from "./Todo";

import TodoModel from './TodoModel';

class TodoControllerImpl

 extends Controller<TodoModel, TodoView>

 implements TodoController {

 startFetchTodos(): void {

 this.getModel()?.fetchTodos();

 }

 toggleTodoDone(id: number): void {

 this.getModel()?.toggleTodoDone(id);

 }

 updateViewWithTodos(todos: Todo[]): void {

 this.getView()?.showTodos(todos);

 }

 updateViewWithError(message: string): void {

 this.getView()?.showError(message);

 }

}

const controller = new TodoControllerImpl();

export default controller;

TodoService.ts

export interface TodoService {

 getTodos(): Promise<Todo[]>;

 updateTodo(todo: Todo): Promise<void>;

}

TodoModel.ts

export interface TodoModel {

 fetchTodos(): void;

 toggleTodoDone(id: number): void;

}

194

195

Figure 3.9 Frontend MVC Architecture with Redux

Figure 3.10 Frontend MVC Architecture with Redux + Backend

TodoModelImpl.ts

import controller, { TodoController } from './todoController';

import { TodoModel } from './TodoModel';

import { Todo } from "./Todo";

export default class TodoModelImpl implements TodoModel {

 private todos: Todo[] = [];

 constructor(

 private readonly controller: TodoController,

 private readonly todoService: TodoService

) {

 controller.setModel(this);

 }

 fetchTodos(): void {

 this.todoService.getTodos()

 .then((todos) => {

 this.todos = todos;

 controller.updateViewWithTodos(todos);

 })

 .catch((error) =>

 controller.updateViewWithError(error.message));

 }

 toggleTodoDone(id: number): void {

 const foundTodo = this.todos.find(todo => todo.id === id);

 if (foundTodo) {

 foundTodo.isDone = !foundTodo.isDone;

 this.todoService

 .updateTodo(foundTodo)

 .catch((error: any) =>

 controller.updateViewWithError(error.message));

 }

 }

}

We could use the above-defined controller and model as such with a React view component:

ReactTodoView.tsx

// ...

import controller from './todoController';

// ...

export default class ReactTodoView

 extends Component<Props, State>

 implements TodoView {

 constructor(props: Props) {

 super(props);

 controller.setView(this);

 this.state = {

 todos: []

 }

 }

196

 componentDidMount() {

 controller.startFetchTodos();

 }

 showTodos(todos: Todo[]) {

 this.setState({ ...this.state, todos });

 }

 showError(errorMessage: string) {

 this.setState({ ...this.state, errorMessage });

 }

 render() {

 // Render todos from 'this.state.todos' here

 // Or show 'this.state.errorMessage' here

 }

}

If you have multiple views using the same controller, you can derive your controller from the below-
defined MultiViewController class:

MultiViewController.ts

export default class MultiViewController<M, V> {

 private model: M | undefined;

 private views: V[] = [];

 getModel(): M | undefined {

 return this.model;

 }

 setModel(model: M): void {

 this.model = model;

 }

 getViews(): V[] {

 return this.views;

 }

 addView(view: V): void {

 this.views.push(view);

 }

}

Let's say we want to have two views for todos, one for the actual todos and one viewing the todo
count. We need to modify the controller slightly to support multiple views:

todoController.ts

import TodoView from './TodoView';

import MultiViewController from './MultiViewController';

import { Todo } from "./Todo";

import { TodoController } from './TodoController';

import TodoModel from './TodoModel';

class TodoControllerImpl

 extends MultiViewController<TodoModel, TodoView>

 implement TodoController {

 startFetchTodos(): void {

197

 this.getModel()?.fetchTodos();

 }

 toggleTodoDone(id: number): void {

 this.getModel()?.toggleTodoDone(id);

 }

 updateViewsWithTodos(todos: Todo[]): void {

 this.getViews().forEach(view => view.showTodos(todos));

 }

 updateViewWithError(message: string): void {

 this.getViews().forEach(view => view.showError(message));

 }

}

const controller = new TodoController();

export default controller;

Many modern UI frameworks and state management libraries implement a specialization of the
MVC pattern called, Model-View-ViewModel (MVVM). In the MVVM pattern, the controller is
called the view model. I use the more generic term controller in the below example, though. The
main difference between the view model and the presenter in the MVP pattern is that in the MVP
pattern, the presenter has a reference to the view, but the view model does not. The view model
provides bindings between the view's events and actions in the model. This can happen so that the
view model adds action dispatcher functions as properties of the view. And in the other direction,
the view model maps the model's state to the properties of the view. When using React and Redux,
for example, you can connect the view to the model using the mapDispatchToProps function and
connect the model to the view using the mapStateToProps function. These two mapping
functions form the view model (or the controller) that binds the view and model together.

Let's first implement the todo example with React and Redux and later show how the React view
can be replaced with an Angular view without any modification to the controller or the model layer.
Note that the code for some classes is not listed below. You can assume those classes are the same
as defined in command/action pattern examples.

Let's implement a list view for todos:

TodosListView.tsx

import { connect } from 'react-redux';

import { useEffect } from "react";

import { controller, ActionDispatchers, State }

 from './todosController';

type Props = ActionDispatchers & State;

function TodosListView({

 toggleTodoDone,

 startFetchTodos,

 todos

}: Props) {

 useEffect(() => {

198

 startFetchTodos();

 }, [startFetchTodos]);

 const todoElements = todos.map(({ id, name, isDone }) => (

 <li key={id}>

 {id}

 {name}

 {isDone

 ? undefined

 : <button onClick={() => toggleTodoDone(id)}>

 Mark done

 </button>

 }

));

 return {todoElements};

}

// Here we connect the view to the model using the controller

export default connect(

 controller.getState,

 () => controller.getActionDispatchers()

)(TodosListView);

Below is the base class for controllers:

Controller.ts

import AbstractAction from "./AbstractAction";

export type Dispatch =

 (plainActionObject: { type: AbstractAction<any> }) => void;

export default class Controller {

 protected readonly dispatch:

 (action: AbstractAction<any>) => void;

 // The 'dispatch' is from Redux library

 constructor(dispatch: Dispatch) {

 this.dispatch = (action: AbstractAction<any>) =>

 dispatch({ type: action });

 }

}

Below is the controller for todos:

todosController.ts

import store from './store';

import { AppState } from "./AppState";

import ToggleDoneTodoAction from "./ToggleDoneTodoAction";

import StartFetchTodosAction from "./StartFetchTodosAction";

import Controller from "./Controller";

class TodosController extends Controller {

 getState(appState: AppState) {

 return {

 todos: appState.todosState.todos,

 }

 }

199

 getActionDispatchers() {

 return {

 toggleTodoDone: (id: number) =>

 this.dispatch(new ToggleDoneTodoAction(id)),

 startFetchTodos: () =>

 this.dispatch(new StartFetchTodosAction())

 }

 }

}

export const controller = new TodosController(store.dispatch);

export type State = ReturnType<typeof controller.getState>;

export type ActionDispatchers =

 ReturnType<typeof controller.getActionDispatchers>;

In the development phase, we can use the following temporary implementation of the
StartFetchTodosAction class:

StartFetchTodosAction.ts

import { TodoState } from "./TodoState";

import AbstractTodoAction from "./AbstractTodoAction";

export default class StartFetchTodosAction extends

 AbstractTodoAction {

 perform(state: TodoState): TodoState {

 return {

 todos: [

 {

 id: 1,

 name: "Todo 1",

 isDone: false,

 },

 {

 id: 2,

 name: "Todo 2",

 isDone: false,

 },

],

 };

 }

}

Now we can introduce a new view for todos, a TodosTableView which can utilize the same
controller as the TodosListView.

TodosTableView.tsx

import { connect } from 'react-redux';

import { useEffect } from "react";

import { controller, ActionDispatchers, State }

 from './todosController';

type Props = ActionDispatchers & State;

function TodosListView({

 toggleTodoDone,

200

 startFetchTodos,

 todos

}: Props) {

 useEffect(() => {

 startFetchTodos();

 }, [startFetchTodos]);

 const todoElements = todos.map(({ id, isDone, name }) => (

 <tr key={id}>

 <td>{id}</td>

 <td>{name}</td>

 <td>

 <input

 type="checkbox"

 checked={isDone}

 onChange={() => toggleTodoDone(id)}

 />

 </td>

 </tr>

));

 return <table><tbody>{todoElements}</tbody></table>;

}

export default connect(

 controller.getState,

 () => controller.getActionDispatchers()

)(TodosListView);

We can notice some duplication in the TodosListView and TodosTableView components. For
example, both are using the same effect. We can create a TodosView for which we can give as
parameter the type of a single todo view, either a list item or a table row view:

TodosView.tsx

import { useEffect } from "react";

import { connect } from "react-redux";

import ListItemTodoView from './ListItemTodoView';

import TableRowTodoView from './TableRowTodoView';

import { controller, ActionDispatchers, State }

 from './todosController';

type Props = ActionDispatchers & State & {

 TodoView: typeof ListItemTodoView | typeof TableRowTodoView;

};

function TodosView({

 toggleTodoDone,

 startFetchTodos,

 todos,

 TodoView

}: Props) {

 useEffect(() => {

 startFetchTodos()

 }, [startFetchTodos]);

 const todoViews = todos.map((todo) =>

 <TodoView

 key={todo.id}

 todo={todo}

 toggleTodoDone={toggleTodoDone}

201

 />

);

 return TodoView === ListItemTodoView

 ? {todoViews}

 : <table><tbody>{todoViews}</tbody></table>;

}

export default connect(

 controller.getState,

 () => controller.getActionDispatchers()

)(TodosView);

Below is the view for showing a single todo as a list item:

TodoViewProps.ts

import { Todo } from "./Todo";

export type TodoViewProps = {

 toggleTodoDone: (id: number) => void,

 todo: Todo

}

ListItemTodoView.tsx

import { TodoViewProps } from './TodoViewProps';

export default function ListItemTodoView({

 toggleTodoDone,

 todo: { id, name, isDone }

}: TodoViewProps) {

 return (

 {id}

 {name}

 { isDone ?

 undefined :

 <button onClick={() => toggleTodoDone(id)}>

 Mark done

 </button> }

);

}

Below is the view for showing a single todo as a table row:

TableRowTodoView.tsx

import { TodoViewProps } from './TodoViewProps';

export default function TableRowTodoView({

 toggleTodoDone,

 todo: { id, name, isDone }

}: TodoViewProps) {

 return (

 <tr>

 <td>{id}</td>

 <td>{name}</td>

 <td>

202

 <input

 type="checkbox"

 checked={isDone}

 onChange={() => toggleTodoDone(id)}

 />

 </td>

 </tr>);

}

In most cases, you should not store state in a view even if the state is for that particular view only.
Instead, when you store it in the model, it brings the following benefits:

• Possibility to easily persist state either in the browser or in the backend

• Possibility to easily implement undo-actions

• State can be easily shared with another view(s) later if needed

• Migrating views to use a different view technology is more straightforward

• Easier debugging of state-related problems, e.g., using the Redux DevTools browser extension

We can also change the view implementation from React to Angular without modifying the
controller or model layer. This can be done, for example, using the @angular-redux2/store library.
Below is a todos table view implemented as an Angular component:

todos-table-view.component.ts

import { Component, OnInit } from "@angular/core";

import { NgRedux, Select } from '@angular-redux2/store';

import { Observable } from "rxjs";

import { controller } from './todosController';

import { TodoState } from "./TodoState";

import { AppState } from "./AppState";

const { startFetchTodos,

 toggleTodoDone } = controller.getActionDispatchers();

@Component({

 selector: 'todos-table-view',

 template: `

 <table>

 <tr *ngFor="let todo of (todoState | async)?.todos">

 <td>{{ todo.id }}</td>

 <td>{{ todo.name }}</td>

 <td>

 <input

 type="checkbox"

 [checked]="todo.isDone"

 (change)="toggleTodoDone(todo.id)"

 />

 </td>

 </tr>

 </table>

 `

})

export class TodosTableView implements OnInit {

 @Select(controller.getState) todoState: Observable<TodoState>;

 constructor(private ngRedux: NgRedux<AppState>) {}

203

 ngOnInit(): void {

 startFetchTodos();

 }

 toggleTodoDone(id: number) {

 toggleTodoDone(id);

 }

}

app.component.ts

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <div>

 <todos-table-view></todos-table-view>

 </div>`,

 styleUrls: ['./app.component.css']

})

export class AppComponent {

 title = 'angular-test';

}

app.module.ts

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { NgReduxModule, NgRedux } from '@angular-redux2/store';

import { AppComponent } from './app.component';

import store from './store';

import { AppState } from "./AppState";

import { TodosTableView } from "./todos-table-view.component";

@NgModule({

 declarations: [

 AppComponent, TodosTableView

],

 imports: [

 BrowserModule,

 NgReduxModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule {

 constructor(ngRedux: NgRedux<AppState>) {

 ngRedux.provideStore(store);

 }

}

Template Method Pattern

Template method pattern allows you to define a template method in a base class, and
subclasses define the final implementation of that method. The template method contains one
or more calls to abstract methods implemented in the subclasses.

204

In the below example, the AbstractDrawing class contains a template method, draw. This
method includes a call to the getShapeRenderer method, an abstract method implemented in
the subclasses of the AbstractDrawing class. The draw method is a template method, and a
subclass defines how to draw a single shape.

public interface Drawing {

 ShapeRenderer getShapeRenderer();

 void draw();

}

public abstract class AbstractDrawing implements Drawing {

 private final List<Shape> shapes;

 public AbstractDrawing(final List<Shape> shapes) {

 this.shapes = shapes;

 }

 public abstract ShapeRenderer getShapeRenderer();

 public final void draw() {

 for (final Shape shape: shapes) {

 shape.render(getShapeRenderer());

 }

 }

}

We can now implement two subclasses of the AbstractDrawing class, which define the final
behavior of the templated draw method. We mark the template method draw as final because
subclasses should not override it. It is best practice to declare a template method as final. They
should only provide an implementation for the abstract getShapeRenderer method.

public class RasterDrawing extends AbstractDrawing {

 private final Canvas canvas = new Canvas();

 private final ShapeRenderer shapeRendrerer =

 new RasterShapeRenderer(canvas);

 public RasterDrawing(final List<Shape> shapes) {

 super(shapes);

 }

 public ShapeRenderer getShapeRenderer() {

 return shapeRenderer;

 }

}

public class VectorDrawing extends AbstractDrawing {

 private final SVGElement svgRoot = new SVGElement();

 private final ShapeRenderer shapeRenderer =

 new VectorShapeRenderer(svgRoot);

 public VectorDrawing(final List<Shape> shapes) {

 super(shapes);

 }

 public ShapeRenderer getShapeRenderer() {

205

 return shapeRenderer;

 }

}

Memento Pattern

The memento pattern can be used to save the internal state of an object to another object
called the memento object.

Let's have an example with a TextEditor class. First, we define a TextEditorState interface
and its implementation. Then we define a TextEditorStateMemento class for storing a
memento of the text editor's state.

public interface TextEditorState {

 TextEditorState clone();

}

public class TextEditorStateImpl implements TextEditorState {

 // Implement text editor state here

}

public class TextEditorStateMemento {

 private final TextEditorState state;

 public TextEditorStateMemento(final TextEditorState state) {

 this.state = state.clone();

 }

 public TextEditorState getState() {

 return state;

 }

}

The TextEditor class stores mementos of the text editor's state. It provides methods to save a
state, restore a state, or restore the previous state:

TextEditor.java

class TextEditor {

 private final List<TextEditorStateMemento> stateMementos =

 new ArrayList<>(20);

 private TextEditorState currentState;

 private int currentVersion = 1;

 public void saveState() {

 stateMementos.add(new TextEditorStateMemento(currentState));

 currentVersion += 1;

 }

 public void restoreState(final int version) {

 if (version >= 1 && version <= stateMementos.size()) {

 currentState = stateMementos.get(version - 1).getState();

 currentVersion += 1;

 }

 }

206

 public void restorePreviousState() {

 if (currentVersion > 1) {

 restoreState(currentVersion - 1);

 }

 }

}

In the above example, we can add a memento for the text editor's state by calling the saveState
method. We can recall the previous version of the text editor's state with the
restorePreviousState method, and we can recall any version of the text editor's state using the
restoreState method.

Visitor Pattern

Visitor pattern allows adding functionality to a class (like adding new methods) without
modifying the class. This is useful, for example, with library classes that you cannot modify.

First, let's have an example with classes that we can modify:

public interface Shape {

 void draw();

}

public class CircleShape implements Shape {

 private final int radius;

 // ...

 public void draw() {

 // ...

 }

 public int getRadius() {

 return radius;

 }

}

public class RectangleShape implements Shape {

 private final int width;

 private final int height;

 // ...

 public void draw() {

 // ...

 }

 public int getWidth() {

 return width;

 }

 public int getHeight() {

 return height;

 }

}

207

Let's assume we need to calculate the total area of shapes in a drawing. Currently, we are in a
situation where we can modify the shape classes, so let's add calculateArea methods to the
classes:

public interface Shape {

 // ...

 double calculateArea();

}

public class CircleShape implements Shape {

 // ...

 public double calculateArea() {

 return Math.PI * radius * radius;

 }

}

class RectangleShape implements Shape {

 // ...

 public double calculateArea() {

 return width * height;

 }

}

Adding a new method to an existing class may be against the open-closed principle. In the above
case, adding the calculateArea methods is safe because the shape classes are immutable. And
even if they were not, adding the calculateArea methods would be safe because they are read-
only methods, i.e., they don't modify the object's state, and we don't have to worry about thread
safety because we can agree that our example application is not multithreaded.

Now we have the area calculation methods added, and we can use a common algorithm to calculate
the total area of shapes in a drawing:

final var totalAreaOfShapes = drawing

 .getShapes()

 .stream()

 .reduce(0.0, (subTotalArea, shape) ->

 subTotalArea + shape.calculateArea(), Double::sum);

But what if the shape classes, without the area calculation capability, were in a 3rd party library that
we cannot modify? We would have to do something like this:

final var totalAreaOfShapes = drawing

 .getShapes()

 .stream()

 .reduce(0.0, (subTotalArea, shape) -> {

 double shapeArea;

 if (shape instanceof CircleShape) {

 shapeArea = Math.PI *

 Math.pow(((CircleShape)shape).getRadius(), 2);

 } else if (shape instanceof RectangleShape){

 shapeArea = ((RectangleShape)shape).getWidth() *

208

 ((RectangleShape)shape).getHeight();

 }

 else {

 throw new IllegalArgumentException("Invalid shape");

 }

 return subTotalArea + shapeArea;

 }, Double::sum);

The above solution is complicated and needs updating every time a new type of shape is introduced.
The above example does not follow object-oriented design principles: it contains an if/else-if
structure with instanceof checks.

We can use the visitor pattern to replace the above conditionals with polymorphism. First, we
introduce a visitor interface that can be used to provide additional behavior to the shape classes.
Then we introduce an execute method in the Shape interface. And in the shape classes, we
implement the execute methods so that additional behavior provided by a concrete visitor can be
executed:

// This is our visitor interface that

// provides additional behaviour to the shape classes

public interface ShapeBehavior {

 Object executeForCircle(final CircleShape circle);

 Object executeForRectangle(final RectangleShape rectangle);

 // Add methods for possible other shape classes here...

}

public interface Shape {

 // ...

 Object execute(final ShapeBehavior behavior);

}

public class CircleShape implements Shape {

 public Object execute(final ShapeBehavior behavior) {

 return behavior.executeForCircle(this);

 }

}

public class RectangleShape implements Shape {

 public Object execute(final ShapeBehavior behavior) {

 return behavior.executeForRectangle(this);

 }

}

Suppose that the shape classes were mutable and made thread-safe. We would have to define the
execute methods with appropriate synchronization to make them also thread-safe:

public class CircleShape implements Shape {

 public synchronized Object execute(

 final ShapeBehavior behavior

) {

 return behavior.executeForCircle(this);

 }

}

209

public class RectangleShape implements Shape {

 public synchronized Object execute(

 final ShapeBehavior behavior

) {

 return behavior.executeForRectangle(this);

 }

}

Let's implement a concrete visitor for calculating areas of different shapes:

public class AreaCalculationShapeBehavior implements

 ShapeBehavior {

 public Object executeForCircle(final CircleShape circle) {

 return (Double)(Math.PI *

 Math.pow(circle.getRadius(), 2));

 }

 public Object executeForRectangle(

 final RectangleShape rectangle

) {

 return (Double)(double)(rectangle.getWidth() *

 rectangle.getHeight());

 }

}

Now we can implement the calculation of shapes' total area using a common algorithm, and we get
rid of the conditionals. We execute the areaCalculation behavior for each shape and convert
the result of behavior execution to Double. Methods in a visitor usually return some common type
like Object. This enables various operations to be performed. After executing a visitor, the return
value should be cast to the right type.

final var areaCalculation = new AreaCalculationShapeBehavior();

final var totalAreaOfShapes = drawing

 .getShapes()

 .stream()

 .reduce(0.0, (subTotalArea, shape) ->

 subTotalArea + (Double)shape.execute(areaCalculation),

 Double::sum);

You can add more behavior to the shape classes by defining a new visitor. Let's define a
PerimeterCalculationShapeBehaviour class:

public class PerimeterCalculationShapeBehavior

 implements ShapeBehavior {

 public Object executeForCircle(final CircleShape circle) {

 return (Double)(2 * Math.PI * circle.getRadius());

 }

 public Object executeForRectangle(

 final RectangleShape rectangle

) {

 return (Double)(double)(2 * rectangle.getWidth() +

 2 * rectangle.getHeight());

210

 }

}

Notice that we did not need to use the visitor term in our code examples. Adding the design pattern
name to the names of software entities (class/function names, etc.) often does not bring any real
benefit but makes the names longer. However, there are some design patterns, like the factory
pattern and builder pattern where you always use the design pattern name in a class name.

If you develop a third-party library and would like the behavior of its classes to be extended by its
users, you should make your library classes accept visitors that can perform additional behavior.

Null Object Pattern

 A null object is an object that does nothing.

Use the null object pattern to implement a class for null objects that don't do anything. A null object
can be used in place of a real object that does something.

Let's have an example with a Shape interface:

Shape.java

public interface Shape {

 void draw();

}

We can easily define a class for null shape objects:

NullShape.java

public class NullShape implements Shape {

 void draw() {

 // Intentionally no operation

 }

}

We can use an instance of the NullShape class everywhere where a concrete implementation of
the Shape interface is wanted.

Don't Ask, Tell Principle

Don't ask, tell principle defines that in your object, you should tell another object what to do,
and not ask about the other object's state and then do the work by yourself in your object.

If your object asks many things from another object using, e.g., multiple getters, you might be guilty
of the feature envy design smell. Your object is envious of a feature that the other object should

211

have.

Let's have an example and define a cube shape class:

public interface ThreeDShape {

 // ...

}

public class Cube3DShape implements ThreeDShape {

 private final int width;

 private final int height;

 private final int depth;

 // Constructor...

 public int getWidth() {

 return width;

 }

 public int getHeight() {

 return height;

 }

 public int getDepth() {

 return depth;

 }

}

Next, we define another class, CubeUtils, that contains a method for calculating the total volume
of cubes:

public class CubeUtils {

 public int calculateTotalVolume(

 final List<Cube3DShape> cubes

) {

 int totalVolume = 0;

 for (final Cube3DShape cube : cubes) {

 final var width = cube.getWidth();

 final var height = cube.getHeight();

 final var depth = cube.getDepth();

 totalVolume += width * height * depth;

 }

 return totalVolume;

 }

}

In the calculateTotalVolume method, we ask three times about a cube object's state. This is
against the don't ask, tell principle. Our method is envious of the volume calculation feature and
wants to do it by itself rather than telling a Cube3DShape object to calculate its volume.

Let's correct the above code so that it follows the don't ask, tell principle:

public interface ThreeDShape {

 int calculateVolume();

}

212

public class Cube3DShape implements ThreeDShape {

 private final int width;

 private final int height;

 private final int depth;

 // Constructor

 public int calculateVolume() {

 return height * width * depth;

 }

}

public class ThreeDShapeUtils {

 public int calculateTotalVolume(

 final List<ThreeDShape> threeDShapes

) {

 int totalVolume = 0;

 for (final var threeDShape : threeDShapes) {

 totalVolume += threeDShape.calculateVolume();

 }

 return totalVolume;

 }

}

Now our calculateTotalVolume method is not asking anything about a cube object. It just tells
a cube object to calculate its volume. We also removed the asking methods (getters) from the
Cube3DShape class because they are no longer needed.

Below is another example of asking instead of telling:

using namespace std::chrono_literals;

using std::chrono::system_clock;

void AnomalyDetectionEngine::runEngine()

{

 while (m_isRunning)

 {

 const auto now = system_clock::now();

 if (m_anomalyDetector->shouldDetectAnomalies(now))

 {

 const auto anomalies = m_anomalyDetector->detectAnomalies();

 // Do something with the detected anomalies

 }

 std::this_thread::sleep_for(1s);

 }

}

In the above example, we ask the anomaly detector if we should detect anomalies now. Then,
depending on the result, we call another method on the anomaly detector to detect anomalies. This
could be simplified by making the detectAnomalies method to check if anomalies should be
detected using the shouldDetectAnomalies method. Then the shouldDetectAnomalies
method can be made private, and we can simplify the above code as follows:

213

using namespace std::chrono_literals;

void AnomalyDetectionEngine::runEngine()

{

 while (m_isRunning)

 {

 const auto anomalies = m_anomalyDetector->detectAnomalies();

 // Do something with the detected anomalies

 std::this_thread::sleep_for(1s);

 }

}

Law of Demeter

A method on an object received from another object's method call should not be called.

The below statements are considered to break the law:

user.getAccount().getBalance();

user.getAccount().withdraw(...);

The above statements can be corrected either by moving functionality to a different class or by
making the second object to act as a facade between the first and the third object.

Below is an example of the latter solution, where we introduce two new methods in the User class
and remove the getAccount method:

user.getAccountBalance();

user.withdrawFromAccount(...);

In the above example, the User class is a facade in front of the Account class that we should not
access directly from our object. However, you should always check if the first solution alternative
could be used instead. It makes the code more object-oriented and does not require creating
additional methods.

Below is a Java example that uses User and SalesItem entities and is not obeying the law of
Demeter:

void purchase(final User user, final SalesItem salesItem) {

 final var account = user.getAccount();

 // Breaks the law

 final var accountBalance = account.getBalance();

 final var salesItemPrice = salesItem.getPrice();

 if (accountBalance >= salesItemPrice) {

 account.withdraw(salesItemPrice); // Breaks the law

 }

214

 // ...

}

We can resolve the problem in the above example by moving the purchase method to the correct
class, in this case, the User class:

class User {

 private Account account;

 // ...

 void purchase(final SalesItem salesItem) {

 final var accountBalance = account.getBalance();

 final var salesItemPrice = salesItem.getPrice();

 if (accountBalance >= salesItemPrice) {

 account.withdraw(salesItemPrice);

 }

 // ...

 }

}

Avoid Primitive Type Obsession Principle

Avoid primitive type obsession by defining semantic types for function parameters and
function return value.

Many of us have experienced situations where we have supplied arguments to a function in the
wrong order. This is easy if the function, for example, takes two integer parameters, but you
accidentally give those two integer parameters in the wrong order. You don't get a compilation
error.

Another problem with primitive types as function arguments is that the argument values are not
necessarily validated. You have to implement the validation logic in your function.

Suppose you accept an integer parameter for a port number in a function. In that case, you might
get any integer value as the parameter value, even though the valid port numbers are from 1 to
65535. Suppose you also had other functions in the same codebase accepting a port number as a
parameter. In that case, you could end up doing the same validation logic in multiple places and
have thus duplicate code in your codebase.

Let's have a simple example of using this principle:

RectangleShape.java

public class RectangleShape implements Shape {

 private int width;

 private int height;

215

 public RectangleShape(final int width, final int height) {

 this.width = width;

 this.height = height;

 }

}

In the above example, the constructor has two parameters with the same primitive type (int). It is
possible to give width and height in the wrong order. But if we refactor the code to use objects
instead of primitive values, we can make the likelihood of giving the arguments in the wrong order
much smaller:

public class Value<T> {

 private final T value;

 public Value(final T value) {

 this.value = checkNotNull(value);

 }

 T get() {

 return value;

 }

}

public class Width extends Value<Integer> {

 public Width(final int width) {

 super(width);

 }

}

public class Height extends Value<Integer> {

 public Height(final int height) {

 super(height);

 }

}

public class RectangleShape implements Shape {

 private final int width;

 private final int height;

 public RectangleShape(final Width width, final Height height) {

 this.width = width.get();

 this.height = height.get();

 }

}

final var width = new Width(20);

final var height = new Height(50);

// OK

final Shape rectangle = new RectangleShape(width, height);

// Does not compile, parameters are in wrong order

final Shape rectangle2 = new RectangleShape(height, width);

// Does not compile, first parameter is not a width

final Shape rectangle3 = new RectangleShape(height, height);

// Does not compile, second parameter is not a height

final Shape rectangle4 = new RectangleShape(width, width);

216

// Does not compile, Width and Height objects must be used

// instead of primitive types

final Shape rectangle5 = new RectangleShape(20, 50);

In the above example, Width and Height are simple data classes. They don't contain any behavior.
You can use concrete data classes as function parameter types. There is no need to create an
interface for a data class. So, the program against interfaces principle does not apply here.

Let's have another simple example where we have the following function signature:

public void doSomething(final String namespacedName, ...) {

 // ...

}

The above function signature allows function callers to supply a non-namespaced name
accidentally. By using a custom type for the namespaced name, we can formulate the above
function signature to the following:

public class NamespacedName {

 private final String namespacedName;

 public NamespacedName(

 final String namespace,

 final String name

) {

 this.namespacedName = namespace.isEmpty()

 ? name

 : (namespace + '.' + name);

 }

 public String get() {

 return this.namespacedName;

 }

}

public void doSomething(final NamespacedName namespacedName, ...) {

 // ...

}

Let's have a more comprehensive example with an HttpUrl class. The class constructor has several
parameters that should be validated upon creating an HTTP URL:

HttpUrl.java

public class HttpUrl {

 private final String httpUrl;

 public HttpUrl(

 final String scheme,

 final String host,

 final int port,

 final String path,

 final String query

) {

 httpUrl = scheme +

217

 "://" +

 host +

 ":" +

 port +

 path +

 "?" +

 query;

 }

}

Let's introduce an abstract class for validated values:

AbstractValidatedValue.java

public abstract class AbstractValidatedValue<T> {

 protected final T value;

 public AbstractValidatableValue(final T value) {

 this.value = checkNotNull(value);

 }

 abstract boolean valueIsValid();

 Optional<T> get() {

 return valueIsValid()

 ? Optional.of(value)

 : Optional.empty();

 }

 T tryGet() {

 if (valueIsValid()) {

 return value;

 } else {

 throw new ValidatedValueGetError(...);

 }

 }

}

Let's create a class for validated HTTP scheme objects:

HttpScheme.java

public class HttpScheme extends AbstractValidatedValue<String> {

 public HttpScheme(String value) {

 super(value);

 }

 public boolean valueIsValid() {

 // Because the AbstractValidatedValue<String> is immutable,

 // if you had complex validation logic, you could cache

 // the validation result and store it to a class attribute.

 return "https".equals(value.toLowerCase()) ||

 "http".equals(value.toLowerCase());

 }

}

Let's create a Port class (and similar classes for the host, path, and query should be created):

218

public class Port extends AbstractValidatedValue<Integer> {

 public Port(Integer value) {

 super(value);

 }

 public boolean valueIsValid() {

 return value >= 1 && value <= 65535;

 }

}

// public class Host ...

// public class Path ...

// public class Query ...

Let's create a utility class, OptionalUtils, with a method for mapping a result for five optional
values:

@FunctionalInterface

public interface Mapper<T, U, V, X, Y, R> {

 R map(T value,

 U value2,

 V value3,

 X value4,

 Y value5);

}

public final class OptionalUtils {

 public static <T, U, V, X, Y, R> Optional<R>

 mapAll(

 final Optional<T> opt1,

 final Optional<U> opt2,

 final Optional<V> opt3,

 final Optional<X> opt4,

 final Optional<Y> opt5,

 final Mapper<T, U, V, X, Y, R> mapper

) {

 if (opt1.isPresent() &&

 opt2.isPresent() &&

 opt3.isPresent() &&

 opt4.isPresent() &&

 opt5.isPresent()

) {

 return Optional.of(mapper.map(opt1.get(),

 opt2.get(),

 opt3.get(),

 opt4.get(),

 opt5.get()));

 } else {

 return Optional.empty();

 }

 }

}

Next, we can reimplement the HttpUrl class to contain two alternative factory methods for
creating an HTTP URL:

HttpUrl.java

public class HttpUrl {

219

 private final String httpUrl;

 // Constructor is private because factory methods

 // should be used to create instances of this class

 private HttpUrl(final String httpUrl) {

 this.httpUrl = httpUrl;

 }

 // Factory method that returns an optional HttpUrl

 public static Optional<HttpUrl> create(

 final HttpScheme scheme,

 final Host host,

 final Port port,

 final Path path,

 final Query query

) {

 return OptionalUtils.mapAll(scheme.get(),

 host.get(),

 port.get(),

 path.get(),

 query.get(),

 (schemeValue,

 hostValue,

 portValue,

 pathValue,

 queryValue) ->

 new HttpUrl(schemeValue +

 "://" +

 hostValue +

 ":" +

 portValue +

 pathValue +

 "?" +

 queryValue));

 }

 // Factory method that returns a valid HttpUrl or

 // throws an error

 public static HttpUrl tryCreate(

 final HttpScheme scheme,

 final Host host,

 final Port port,

 final Path path,

 final Query query

) {

 try {

 return new HttpUrl(scheme.tryGet() +

 "://" +

 host.tryGet() +

 ":" +

 port.tryGet() +

 path.tryGet() +

 "?" +

 query.tryGet());

 } catch (final ValidatedValueGetError error) {

 throw new HttpUrlCreateError(error);

 }

 }

}

Notice how we did not hardcode the URL validation inside the HttpUrl class, but we created small

220

validated value classes: HttpScheme, Host, Port, Path, and Query. These classes can be further
utilized in other parts of the codebase if needed and can even be put into a common validation
library for broader usage.

For TypeScript, I have created a library called validated-types for easily creating and using
semantically validated types. The library is available at https://github.com/pksilen/validated-
types. The library's idea is to validate data when the data is received from the input. You can then
pass already validated, strongly typed data to the rest of the functions in your software component.

An application typically receives unvalidated input data from external sources in the following
ways:

• Reading command line arguments

• Reading environment variables

• Reading standard input

• Reading files from the file system

• Reading data from a socket (network input)

• Receiving input from a user interface (UI)

Below is an example of using the validated-types library to create a validated integer type that
allows values between 1 and 10. The VInt generic type takes a type argument of string type, which
defines the allowed value range in the following format: <min-value>,<max-value>

import { VInt } from 'validated-types';

function useInt(int: VInt<'1,10'>) {

 // The wrapped integer value can be accessed

 // through the 'value' property

 console.log(int.value);

}

const int: VInt<'1,10'> = VInt.tryCreate('1,10', 5);

useInt(int); // prints to console: 5

// Returns null, because 12 is not between 1 and 10

const maybeInt: VInt<'1,10'> | null = VInt.create('1,10', 12);

// Prints to console: 10

useInt(maybeInt ?? VInt.tryCreate('1,10', 10));

// Throws, because 500 is not between 1 and 10

const int2: VInt<'1,10'> = VInt.tryCreate('1,10', 500);

The below example defines a Url type which contains six validations that validate a string
matching the following criteria:

• is at least one character long

• is at most 1024 characters long

221

• is a lowercase string

• is a valid URL

• URL starts with 'https'

• URL ends with ‘.html'

import { SpecOf, VString } from 'validated-types';

// First element in the VString type parameter array validates

// a lowercase string between 1-1024 characters long

// Second element in the VString type parameter array validates

// an URL

// Third element in the VString type parameter array validates

// a string that starts with "https"

// Fourth element in the VString type parameter array validates

// a string that ends with ".html"

type Url = VString<['1,1024,lowercase',

 'url',

 'startsWith,https',

 'endsWith,.html']>;

const urlVSpec: VSpecOf<Url> = ['1,1024,lowercase',

 'url',

 'startsWith,https',

 'endsWith,.html'];

function useUrl(url: Url) {

 console.log(url.value);

}

const url: Url = VString.tryCreate(

 urlVSpec,

 'https://server.domain.com:8080/index.html'

);

// Prints to console: https://server.domain.com:8080/index.html

useUrl(url);

// 'maybeUrl' will be null

const maybeUrl: Url | null = VString.create(urlVSpec,

 'invalid URL');

const defaultUrl: Url = VString.tryCreate(

 urlVSpec,

 'https://default.domain.com:8080/index.html'

);

// Prints to console: https://default.domain.com:8080/index.html

useUrl(maybeUrl ?? defaultUrl);

If you don't need validation but would like to create a semantic type, you can use the SemType class
from the validated-types library:

import { SemType } from 'validated-types';

222

// Defines a semantic boolean type with name 'isRecursiveCall'

type IsRecursiveCall = SemType<boolean, 'isRecursiveCall'>

// Defines a semantic boolean type with name 'isInternalCall'

type IsInternalCall = SemType<boolean, 'isInternalCall'>;

function myFunc(isRecursiveCall: IsRecursiveCall,

 isInternalCall: IsInternalCall) {

 // The value of a semantic type variable

 // can be obtained from the 'value' property

 console.log(isRecursiveCall.value);

 console.log(isInternalCall.value);

}

const isRecursiveCall = false;

const isInternalCall = true;

// This will succeed

myFunc(new SemType({ isRecursiveCall }),

 new SemType({ isInternalCall }));

// All the below myFunc calls will fail during

// the compilation

myFunc(new SemType({ isInternalCall }),

 new SemType({ isRecursiveCall }));

myFunc(true, true);

myFunc(new SemType('isSomethingElse', true),

 new SemType('isInternalCall', true));

myFunc(new SemType('isRecursiveCall', false),

 new SemType('isSomethingElse', true));

myFunc(new SemType('isSomethingElse', true),

 new SemType('isSomethingElse', true));

Dependency Injection (DI) Principle

Dependency injection (DI) allows changing the behavior of an application based on static or
dynamic configuration. When using dependency injection, the dependencies are injected only
upon the application startup. The application can first read its configuration and then decide
what objects are created for the application. In many languages, dependency injection is
crucial for unit tests also. When executing a unit test using DI, you can inject mock
dependencies into the tested code instead of using the standard dependencies of the
application.

Below is a C++ example of using the singleton pattern without dependency injection:

main.cpp

int main()

{

 Logger::initialize("Exporter");

223

 Logger::writeLogEntry(LogLevel::Info,

 std::source_location::current(),

 "Starting application");

 // ...

}

A developer must remember to call the initialize method before calling any other method on
the Logger class. This kind of coupling between methods should be avoided. Also, it is hard to unit
test the static methods of the Logger class.

We should refactor the above code to use dependency injection:

main.cpp

int main()

{

 DependencyInjectorFactory::createDependencyInjector(...)

 ->injectDependencies();

 Logger::getInstance()->writeLogEntry(

 LogLevel::Info,

 std::source_location::current(),

 "Starting application"

);

 // ...

}

Singleton.h

template<typename T>

class Singleton

{

public:

 Singleton() = default;

 virtual ~Singleton()

 {

 m_instance.reset();

 };

 static inline std::shared_ptr<T>& getInstance()

 {

 return m_instance;

 }

 static void setInstance(const std::shared_ptr<T>& instance)

 {

 m_instance = instance;

 }

private:

 static inline std::shared_ptr<T> m_instance;

};

Logger.h

224

class Logger : public Singleton<Logger>

{

public:

 virtual void writeLogEntry(...) = 0;

};

StdOutSyslogLogger.h

class StdOutSyslogLogger : public Logger

{

public:

 void writeLogEntry(...) override

 {

 // Write the log entry

 // in Syslog format to the standard output

 }

};

DependencyInjectorFactory.h

class DependencyInjectorFactory {

public:

 static std::shared_ptr<DependencyInjector>

 createDependencyInjector(...)

 {

 // You can use a switch-case here to create

 // different kinds of dependency injectors

 // that inject different kinds of dependencies

 return std::make_shared<DefaultDependencyInjector>();

 }

}

DependencyInjector.h

class DependencyInjector {

public:

 virtual ~DependencyInjector = default;

 virtual void injectDependencies() = 0;

}

DefaultDependencyInjector.h

class DefaultDependencyInjector : public DependencyInjector {

public:

 void injectDependencies() override;

}

DefaultDependencyInjector.cpp

void DefaultDependencyInjector::injectDependencies()

{

 // Inject other dependencies...

 Logger::setInstance(

 std::make_shared<StdOutSyslogLogger>("Exporter")

);

}

Below is an example of a data-visualization-web-client where the noicejs NPM library is used for

225

dependency injection. This library is similar to the Google Guice library. Below is a
FakeServicesModule class that configures dependencies for different backend services that the
web client uses. As you can notice, all the services are configured to use fake implementations
because this DI module is used when the backend services are not yet available. A
RealServicesModule class can be implemented and used when the backend services become
available. In the RealServicesModule class, the services are bound to their actual
implementation classes instead of fake implementations.

FakeServicesModule.ts

import { Module } from 'noicejs';

import FakeDataSourceService from ...;

import FakeMeasureService from ...;

import FakeDimensionService from ...;

import FakeChartDataService from ...;

export default class FakeServicesModule extends Module {

 override async configure(): Promise<void> {

 this.bind('dataSourceService')

 .toInstance(new FakeDataSourceService());

 this.bind('measureService')

 .toInstance(new FakeMeasureService());

 this.bind('dimensionService')

 .toInstance(new FakeDimensionService());

 this.bind('chartDataService')

 .toInstance(new FakeChartDataService());

);

 }

}

With the noicejs library, you can configure several DI modules and create a DI container from the
wanted modules. The module approach lets you divide dependencies into multiple modules, so you
don't have a single big module. It also lets you instantiate a different module or modules based on
the application configuration.

In the below example, the DI container is created from a single module, an instance of the
FakeServicesModule class:

diContainer.ts

import { Container } from 'noicejs';

import FakeServicesModule from './FakeServicesModule';

const diContainer = Container.from(new FakeServicesModule());

export default diContainer;

In the development phase, we could create two separate modules, one for fake services and another
one for real services, and control the application behavior based on the web page's URL query
parameter:

226

diContainer.ts

import { Container } from 'noicejs';

import FakeServicesModule from './FakeServicesModule';

import RealServicesModule from './RealServicesModule';

const diContainer = (() => {

 if (location.href.includes('useFakeServices=true')) {

 // Use fake services if web page URL

 // contains 'useFakeServices=true'

 return Container.from(new FakeServiceModule());

 } else {

 // Otherwise use real services

 return Container.from(new RealServicesModule());

 }

})();

export default diContainer;

Then you must configure the diContainer before dependency injection can be used. In the below
example, the diContainer is configured before a React application is rendered:

index.tsx

import React from 'react';

import ReactDOM from 'react-dom';

import diContainer from './diContainer';

import AppView from './app/view/AppView';

diContainer.configure().then(() => {

 ReactDOM.render(<AppView />, document.getElementById('root'));

});

Then, in Redux actions, where you need a service, you can inject the required service with the
@Inject decorator. You specify the name of the service you want to inject. The service will be
injected as the class constructor argument's property (with the same name).

StartFetchChartDataAction.ts

// Imports ...

type ConstructorArgs = {

 chartDataService: ChartDataService,

 chart: Chart,

 dispatch: Dispatch;

};

export default

@Inject('chartDataService')

class StartFetchChartDataAction extends AbstractChartAreaAction {

 private readonly chartDataService: ChartDataService;

 private readonly chart: Chart;

 constructor({ chart,

 chartDataService,

 dispatch }: ConstructorArgs) {

 super(dispatch);

 this.chartDataService = chartDataService;

 this.chart = chart;

227

 }

 perform(currentState: ChartAreaState): ChartAreaState {

 this.chartDataService

 .fetchChartData(

 this.chart.dataSource,

 this.chart.getColumns(),

 this.chart.getSelectedFilters(),

 this.chart.getSelectedSortBys()

)

 .then((columnNameToValuesMap: ColumnNameToValuesMap) => {

 this.dispatch(

 new FinishFetchChartDataAction(columnNameToValuesMap,

 this.chart.id)

);

 })

 .catch((error) => {

 // Handle error

 });

 this.chart.isFetchingChartData = true;

 return ChartAreaStateUpdater

 .getNewStateForChangedChart(currentState, this.chart);

 }

}

And to be able to dispatch the above action, a controller should be implemented:

ChartAreaController.ts

import diContainer from './diContainer';

import StartFetchChartDataAction from './StartFetchChartDataAction';

import Controller, { Dispatch } from './Controller';

class ChartAreaController extends Controller {

 constructor(dispatch: Dispatch) {

 super(dispatch)

 }

 getActionDispatchers() {

 return {

 startFetchChartData: (chart: Chart) =>

 // the 'chart' is given as a property to

 // StartFetchChartDataAction class constructor

 this.dispatchWithDi(diContainer,

 StartFetchChartDataAction,

 { chart });

 }

 }

}

The following base classes are also defined:

AbstractAction.ts

export default abstract class AbstractAction<S> {

 abstract perform(state: S): S;

}

AbstractDispatchingAction.ts

228

// Imports...

export default abstract class AbstractDispatchingAction<S>

 extends AbstractAction<S> {

 constructor(protected readonly dispatch: Dispatch) {}

}

AbstractChartAreaAction.ts

// Imports...

export default abstract class AbstractChartAreaAction

 extends AbstractDispatchingAction<ChartAreaState> {

}

Controller.ts

export type Dispatch =

 (plainActionObject: { type: AbstractAction<any> }) => void;

export default class Controller {

 protected readonly dispatch:

 (action: AbstractAction<any>) => void;

 // The 'dispatch' is from Redux library

 constructor(dispatch: Dispatch) {

 this.dispatch = (action: AbstractAction<any>) =>

 dispatch({ type: action });

 }

 dispatchWithDi(

 diContainer: { create: (...args: any[]) => Promise<any> },

 ActionClass:

 abstract new (...args: any[]) => AbstractAction<any>,

 otherArgs: {}

) {

 // diContainer.create will create a new object of

 // class ActionClass.

 // The second parameter of the create function defines

 // additional properties supplied to ActionClass constructor.

 // The create method is asynchronous. When it succeeds,

 // the created action object is available in the 'then'

 // function and it can be now dispatched

 diContainer

 .create(ActionClass, {

 dispatch: this.dispatch,

 ...otherArgs

 })

 .then((action: any) => this.dispatch(action));

 }

}

 Avoid Code Duplication Principle

At the class level, when you spot duplicated code in two different classes implementing the
same interface, you should create a new base class to accommodate the common

229

functionality and make the classes extend the new base class.

Below is an AvroBinaryKafkaInputMessage class that implements the InputMessage
interface:

InputMessage.h

class InputMessage

{

public:

 virtual ~InputMessage() = default;

 virtual uint32_t tryDecodeSchemaId() const = 0;

 virtual std::shared_ptr<DecodedMessage>

 tryDecodeMessage(const std::shared_ptr<Schema>& schema)

 const = 0;

};

AvroBinaryKafkaInputMessage.h

class AvroBinaryKafkaInputMessage : public InputMessage

{

public:

 AvroBinaryKafkaInputMessage(

 std::unique_ptr<RdKafka::Message> kafkaMessage

) : m_kafkaMessage(std::move(kafkaMessage))

 {}

 uint32_t tryDecodeSchemaId() const override;

 std::shared_ptr<DecodedMessage>

 tryDecodeMessage(const std::shared_ptr<Schema>& schema)

 const override;

private:

 std::unique_ptr<RdKafka::Message> m_kafkaMessage;

};

uint32_t AvroBinaryKafkaInputMessage::tryDecodeSchemaId() const

{

 // Try decode schema id from the beginning of

 // the Avro binary Kafka message

}

std::shared_ptr<DecodedMessage>

AvroBinaryKafkaInputMessage::tryDecodeMessage(

 const std::shared_ptr<Schema>& schema

) const

{

 return schema->tryDecodeMessage(m_kafkaMessage->payload(),

 m_kafkaMessage->len());

}

If we wanted to introduce a new Kafka input message class for JSON, CSV, or XML format, we
could create a class like the AvroBinaryKafkaInputMessage class. But then we can notice the
duplication of code in the tryDecodeMessage method. We can notice that the
tryDecodeMessage method is the same regardless of the input message source and format.

230

According to this principle, we should move the duplicate code to a common base class,
BaseInputMessage. We could make the tryDecodeMessage method a template method
according to the template method pattern and create abstract methods for getting the message data
and its length:

BaseInputMessage.h

class BaseInputMessage : public InputMessage

{

public:

 std::shared_ptr<DecodedMessage>

 tryDecodeMessage(const std::shared_ptr<Schema>& schema)

 const final;

protected:

 // Abstract methods

 virtual uint8_t* getData() const = 0;

 virtual size_t getLengthInBytes() const = 0;

};

// This is a template method

// 'getData' and 'getLengthInBytes' will be

// implemented in subclasses

std::shared_ptr<DecodedMessage>

BaseInputMessage::tryDecodeMessage(

 const std::shared_ptr<Schema>& schema

) const

{

 return schema->tryDecodeMessage(getData(), getLengthInBytes());

}

Next, we should refactor the AvroBinaryKafkaInputMessage class to extend the new
BaseInputMessage class and implement the getData and getLengthInBytes methods. But
we can realize these two methods are the same for all Kafka input message data formats. We should
not implement those two methods in the AvroBinaryKafkaInputMessage class because we
would need to implement them as duplicates if we needed to add a Kafka input message class for
another data format. Once again, we can utilize this principle and create a new base class for Kafka
input messages:

KafkaInputMessage.h

class KafkaInputMessage : public BaseInputMessage

{

public:

 KafkaInputMessage(

 std::unique_ptr<RdKafka::Message> kafkaMessage

) : m_kafkaMessage(std::move(kafkaMessage))

 {}

protected:

 uint8_t* getData() const final;

 size_t getLengthInBytes() const final;

private:

 std::unique_ptr<RdKafka::Message> m_kafkaMessage;

};

231

uint8_t* KafkaInputMessage::getData() const

{

 return std::bit_cast<uint8_t*>(m_kafkaMessage->payload());

}

size_t KafkaInputMessage::getLengthInBytes() const

{

 return m_kafkaMessage->len();

}

Finally, we can refactor the AvroBinaryKafkaInputMessage class to contain no duplicated
code:

AvroBinaryKafkaInputMessage.h

class AvroBinaryKafkaInputMessage : public KafkaInputMessage

{

public:

 uint32_t tryDecodeSchemaId() const final;

};

uint32_t AvroBinaryKafkaInputMessage::tryDecodeSchemaId() const

{

 // Try decode the schema id from the beginning of

 // the Avro binary Kafka message

 // Use base class getData() and getDataLengthInBytes()

 // methods to achieve that

}

Inheritance in Cascading Style Sheets (CSS)

In HTML, you can define classes (class names) for HTML elements:

...

In a CSS file, you define CSS properties for CSS classes, for example:

.icon {

 background-repeat: no-repeat;

 background-size: 1.9rem 1.9rem;

 display: inline-block;

 height: 2rem;

 margin-bottom: 0.2rem;

 margin-right: 0.2rem;

 width: 2rem;

}

.pie-chart-icon {

 background-image: url('pie_chart_icon.svg');

}

The problem with the above approach is that it is not correctly object-oriented. In the HTML code,
you must list all the class names to achieve a mixin of all the needed CSS properties. It is easy to

232

forget to add a class name. For example, you could specify pie-chart-icon only and forget to
specify the icon.

It is also difficult to change the inheritance hierarchy afterward. Suppose you wanted to add a new
class chart-icon for all the chart icons:

.chart-icon {

 // Define properties here...

}

You would have to remember to add the chart-icon class name to all places in the HTML code
where you are rendering chart icons:

...

The above-described approach is very error-prone. What you should do is introduce proper object-
oriented design. You need a CSS preprocessor that makes extending CSS classes possible. In the
below example, I am using SCSS:

...

.icon {

 background-repeat: no-repeat;

 background-size: 1.9rem 1.9rem;

 display: inline-block;

 height: 2rem;

 margin-bottom: 0.2rem;

 margin-right: 0.2rem;

 width: 2rem;

}

.chartIcon {

 @extend .icon;

 // Other chart icon related properties...

}

.pieChartIcon {

 @extend .chartIcon;

 background-image: url('../../../../../assets/images/icons/chart/pie_chart_icon.svg');

}

In the above example, we define only one class for the HTML element. The inheritance hierarchy is
defined in the SCSS file using the @extend directive. We are now free to change the inheritance
hierarchy in the future without any modification needed in the HTML code.

233

234

Coding Principles

This chapter presents principles for coding. The following principles are presented:

• Uniform variable naming principle

• Uniform source code repository structure principle

• Source code directory tree structure principle

• Avoid comments principle

• Function single return statement principle

• Prefer statically typed language principle

• Refactoring principle

• Static code analysis principle

• Error/Exception handling principle

• Don't pass or return null principle

• Avoid off-by-one errors principle

• Be critical when googling principle

• Optimization principle

Uniform Variable Naming Principle

A good variable name should describe the variable's purpose and its type.

At best, having your code written with great names makes it read like prose. And remember that
code is more often read than written, so code must be easy to read and understand.

Naming variables with names that also convey information about the variable's type is crucial in
untyped languages and beneficial in typed languages, too, because modern typed languages use
automatic type deduction, and you won't always see the actual type of a variable. But when the

235

variable's name tells its type, it does not matter if the type name is not visible.

In the following sections, naming conventions for different types of variables are proposed.

Naming Integer Variables

Some variables are intrinsically integers, like age or year. Everybody understands immediately that
the type of an age or year variable is a number and, to be more specific, an integer. So you don't
have to add anything to the variable’s name to indicate its type. It already tells you its type.

One of the most used categories of integer variables is a count or number of something. You see
those kinds of variables in every piece of code. I recommend using the following convention for
naming those variables: numberOf<something> or alternatively <something>Count. For example,
numberOfFailures or failureCount. You should not use a variable name failures to designate a
failure count. The problem with that variable name is it does not clearly specify the type of the
variable and thus can cause some confusion. This is because a variable named failures can be
misunderstood as a collection variable (e.g., a list of failures).

If the unit of a variable is not self-evident, always add information about the unit to the end of the
variable name. For example, instead of naming a variable tooltipShowDelay, you should name it
tooltipShowDelayInMillis or tooltipShowDelayInMillisecs. If you have a variable whose unit is self-
evident, unit information is not needed. So, there is no need to name an age variable as
ageInYears. But if you are measuring age in months, you must name the respective variable as
ageInMonths so that people don't assume that age is measured in years.

Naming Floating-Point Number Variables

Floating-point numbers are not as common as integers, but sometimes you need them too. Some
values are intrinsically floating-point numbers, like most un-rounded measures (e.g., price, height,
width, or weight). If you need to store a measured value, it would be a safe bet to have a floating-
point variable.

If you need to store an amount of something that is not an integer, use a variable named
<something>Amount, like rainfallAmount. When you see “amount of something” in code, you can
automatically think it is a floating-point number. If you need to use a number in arithmetic,
depending on the application, you might want to use either floating-point or integer arithmetic. In
the case of money, you should use integer arithmetic to avoid rounding errors. Instead of a floating-
point moneyAmount variable, you should have an integer variable, like moneyInCents, for
example.

If the unit of a variable is not self-evident, add information about the unit to the end of the variable
name, like rainfallAmountInMillimeters, widthInInches, angleInDegrees (values 0-360),

236

failurePercent (values 0-100), or failureRatio (values 0-1).

Naming Boolean Variables

Boolean variables can have only one of two values: true or false. The name of a boolean variable
should form a statement where the answer is true or false, or yes or no. Typical boolean variable
naming patterns are: is<something>, has<something>, did<something>, should<something>,
can<something>, or will<something>. Some examples of variable names following the above
patterns are isDisabled, hasErrors, didUpdate, shouldUpdate, and willUpdate.

The verb in the boolean variable name does not have to be at the beginning. It can and should be in
the middle if it makes the code read better. Boolean variables are often used in if-statements where
changing the word order in the variable name can make the code read better. Remember that, at
best, code reads like beautiful prose, and code is read more often than written.

Below is a code snippet where we have a boolean variable named isPoolFull:

if (const bool isPoolFull = m_pooledMessages.size() >= 200U;

 isPoolFull)

{

 // ...

}

else

{

 // ...

}

We can change the variable name to poolIsFull to make the if-statement read more fluently. In
the below example, the if-statements reads "if pollIsFull" instead of "if isPoolFull”:

if (const bool poolIsFull = m_pooledMessages.size() >= 200U;

 poolIsFull)

{

 // ...

Don't use boolean variable names in the form of <passive-verb><Something>, like insertedField,
because this can confuse the reader. It is unclear if the variable name is a noun that names an object
or a boolean statement. Instead, use either didInsertField or fieldWasInserted.

Below is a Go language example of the incorrect naming of a variable used to store a function return
value. Someone might think that tablesDropped means a list of dropped table names. So, the
name of the variable is obscure and should be changed.

	

237

tablesDropped := dropRedundantTables(prefix,

 vmsdata,

 cfg.HiveDatabase,

 hiveClient,

 logger)

if tablesDropped {

 // ...

}

Below is the above example modified so that the variable name is changed to indicate a boolean
statement:

tablesWereDropped := dropRedundantTables(prefix,

 vmsdata,

 cfg.HiveDatabase,

 hiveClient,

 logger)

if tablesWereDropped {

 // ...

}

You could have used a variable named didDropTables, but the tablesWereDropped makes the
if-statement more readable.

Naming String Variables

String variables are prevalent, and many things are intrinsically strings, like name, title, city,
country, or topic. When you need to store numerical data in a string variable, tell the code reader
clearly that it is a question about a number in string format, and use a variable name in the
following format: <someValue>String or <someValue>AsString. It makes the code more
prominent and easier to understand. For example:

const year = parseInt(yearAsString, 10);

Naming Enum Variables

Name enum variables with the same name as the enum type. E.g., a CarType enum variable should
be named carType. If the name of an enum type is very generic, like Result, you might benefit
from declaring an enum variable with some detail added to the variable name. Below is an example
of a very generic enum type name:

PulsarProducer.cpp

// Returns enum type 'Result'

const auto result = pulsar::createProducer(...);

if (result == Result.Ok) {

 // ...

}

238

Let's add some detail and context to the result variable name:

PulsarProducer.cpp

const auto producerCreationResult = pulsar::createProducer(...);

if (producerCreationResult == Result.Ok) {

 // ...

}

Naming Collection (Array, List, and Set) Variables

When naming arrays, lists, and sets, you should use the plural form of a noun, like customers,
errors, or tasks. In most cases, this is enough because you don't necessarily need to know the
underlying collection implementation. Using this naming convention allows you to change the type
of a collection variable without needing to change the variable name. If you are iterating over a
collection, it does not matter if it is an array, list, or set. Thus, it does not bring any benefit if you
add the collection type name to the variable name, for example, customerList or taskSet. Those
names are just longer. You might want to specify the collection type in some special cases. Then,
you can use the following kind of variable names: queueOfTasks, stackOfCards, or
orderedSetOfTimestamps.

Below is an example in Go language, where the function is named correctly to return a collection (of
categories), but the variable receiving the return value is not named according to the collection
variable naming convention:

vmsdata, error = vmsClient.GetCategories(vmsUrl, logger)

Correct naming would be:

vmsCategories, error = vmsClient.GetCategories(vmsUrl, logger)

Naming Map Variables

Maps are accessed by requesting a value for a certain key. This is why I recommend naming maps
using the pattern <key>To<Value>Map. Let’s say we have a map containing order counts for
customer ids. This map should be named customerIdToOrderCountMap. Or if we have a list of
suppliers for product names, the map variable should be named productNameToSuppliersMap.
Below is an example of accessing maps in Java:

final var orderCount = customerIdToOrderCountMap.get(customerId);

final var suppliers = productNameToSuppliersMap.get(productName);

239

Below is an example of iterating over a map in JavaScript:

Object.entries(customerIdToOrderCountMap)

 .map(([customerId, orderCount]) => ...);

Naming Pair and Tuple Variables

A variable containing a pair should be named using the pattern variable1AndVariable2. For
example: heightAndWidth. And for tuples, the recommended naming pattern is
variable1Variable2...andVariableN. For instance: heightWidthAndDepth.

Below is an example of using pairs and tuples in JavaScript:

const heightAndWidth = [100, 200];

const heightWidthAndDepth = [100, 200, 40];

const [height, , depth] = heightWidthAndDepth;

Naming Object Variables

Object variables refer to an instance of a class. Class names are nouns written with the first letter
capitalized, like Person, Account, or Task. Object variable names should contain the related class
name: a person object of the Person class, an account object of the Account class, etc. You can
freely decorate the object’s name, for example, with an adjective: completedTask. It is important to
include the class name or at least some significant part of it at the end of the variable name. Then
looking at the end of the variable name tells what kind of object is in question.

Sometimes you might want to name an object variable so that the name of its class is implicit, for
example:

// The class of the function parameters, 'Location', is implicit

drive(home, destination);

In the above example, the classes of home and destination objects are not explicit. In most
cases, it is preferable to make the class name explicit in the variable name when it does not make
the variable name too long. This is because of the variable type deduction. The types of variables are
not necessarily visible in the code, so the type of a variable should be communicated by the variable
name. Below is an example where the types of function parameters are explicit.

// The class of the function parameters, 'Location', is now explicit

drive(homeLocation, destLocation);

240

Naming Optional Variables

How to name optional variables depends on the programming language and how the optional types
are implemented. An optional variable name should be prefixed with maybe in languages where
you need to unwrap the possible value from an optional object.

In Java, when using Optional<T>, name variables of this type using the following pattern:
maybe<Something>:

maybeLoggedInUser.ifPresent(loggedInUser -> loggedInUser.logout());

final User currentUser = maybeLoggedInUser.orElse(guestUser);

In TypeScript and other languages where optional types are created using type unions, you don’t
need any prefixes in optional variable names. In the below example, the discount parameter is
optional, and its type is number | undefined:

function addTax(

 price: number,

 discount?: number

): number {

 return 1.2 * (price — (discount ?? 0));

}

const priceWithTax = addTax(priceWithoutTax);

Naming Function Variables (Callbacks)

Callback functions are functions supplied to other functions to be called at some point. If a callback
function returns a value, it can be named according to the returned value, but it should still contain
a verb. If the callback function does not return a value, you should name the callback function like
any other function: Indicating what the function does. Suppose you have a variable storing a
function object, like a Java Function instance. In that case, you need to name the variable
according to the rules for an object variable, i.e., the variable name should be a noun. For example,
if you have a Java Function object currently named map, you should correct the name to be a
noun, like mapper.

const doubledValue = value => 2 * value;

const squaredValue = value => value * value;

const valueIsEven = nbr => (nbr % 2) === 0;

const values = [1, 2, 3, 4, 5]

const doubledValues = values.map(doubledValue);

const squaredValues = values.map(squaredValue);

const evenValues = values.filter(valueIsEven);

const strings = [" string1", "string2 "];

const trimmedString = str => str.trim();

const trimmedStrings = strings.map(trimmedString);

const sumOfValues = (sum, value) => sum + value;

241

values.reduce(sumOfValues, 0);

The above example would be even more apparent if the map function was renamed to mapEach and
the reduce function was renamed to reduceTo:

const doubledValues = values.mapEach(doubledValue);

const trimmedStrings = strings.mapEach(trimmedString);

values.reduceTo(sumOfValues, 0);

Let's have an example written in Clojure:

(defn print-first-n-doubled-integers [n]

 (println (take n (map (fn [x] (* 2 x)) (range)))))

To understand what happens in the above code, you should start reading from the innermost
function call and proceed toward the outermost function call. When traversing the function call
hierarchy, the difficulty lies in storing and retaining information about all the nested function calls
in short-term memory.

We could simplify reading the above example by giving a name to the anonymous function and
introducing variables (constants) for intermediate function call results. Of course, our code
becomes more prolonged, but coding is not a competition to write the shortest possible code but to
write the shortest, most readable, and understandable code for other people and your future self. It
is a compiler's job to compile the below longer code into as efficient code as the above shorter code.

Below is the above code refactored:

(defn print-first-n-doubled-integers [n]

 (let [doubled (fn [x] (* 2 x))

 doubled-integers (map doubled (range))

 first-n-doubled-integers (take n doubled-integers)]

 (println first-n-doubled-integers)))

Let's think hypothetically: if Clojure's map function took parameters in a different order and the
range function was named integers (to better describe what it returns) and the take function
was named take-first (like take-last), we would have an even more explicit version of the
original code:

(defn print-first-n-doubled-integers [n]

 (let [doubled (fn [x] (* 2 x))

 doubled-integers (map (integers) doubled)

 first-n-doubled-integers (take-first n doubled-integers)]

 (println first-n-doubled-integers)))

242

Naming Class Properties

Class properties (i.e., class attributes, fields, or member variables) should be named so that the
class name is not repeated in the property names. Below is an example of incorrect naming:

public class Order {

 private long orderId;

 private OrderState orderState;

}

Below is the above code with corrected names:

public class Order {

 private long id;

 private OrderState state;

}

If you have a class property to store a callback function (e.g., event handler or lifecycle callback),
you should name it so that it tells on what occasion the stored callback function is called. Name
properties storing event handlers using the following pattern: on + <event-type>, e.g., onClick or
onSubmit. Name properties storing lifecycle callbacks in a similar way you would name a lifecycle
method, for example: onInit, afterMount, or beforeMount.

General Naming Rules

Use Short, Common Names

When picking a name for something, use the most common shortest name. If you have a function
named relinquishSomething, consider a shorter and more common name for the function. You
could rename the function to releaseSomething, for example. The word "release" is shorter and
more common than the "relinquish" word. Use Google to search for word synonyms, e.g.,
"relinquish synonym", to find the shortest and most common similar term.

Pick One Name And Use It Consistently

Let's assume that you are building a data exporter microservice and you are currently using the
following terms in the code: message, report, record and data. Instead of using four different terms
to describe the same thing, you should pick just one term, like message, for example, and use it
consistently throughout the microservice code.

Suppose you need to figure out a term to indicate a property of a class. You should pick just one
term, like property, and use it consistently everywhere. You should not use multiple terms like
attribute, field, and member to describe a property of a class.

243

Avoid Obscure Abbreviations

Many abbreviations are commonly used, like str for a string, num/nbr for a number, prop for a
property, or val for a value. Most programmers use these, and I use them to make long names
shorter. If a variable name is short, the full name should be used instead, like numberOfItems
instead of nbrOfItems. Use abbreviations in cases where the variable name otherwise becomes too
long. What I especially try to avoid is using uncommon abbreviations. For example, I would never
abbreviate amount to amnt or discount to dscnt because I haven't seen those abbreviations used
much in real life.

Avoid Too Short Or Meaningless Names

Names that are too short do not communicate what the variable is about. As loop counters, use a
variable name like index or <something>Index if the loop variable is used to index something, like
an array, for example. An indexing variable should start from zero. If the loop variable is counting
the number of things, use number or <something>Number as the variable name, and start the loop
counter from value one instead of zero. For example, a loop to start five threads should be written
in C++ in the following way:

for (size_t threadNumber{1U}; threadNumber <= 5U; ++threadNumber)

{

 startThread(threadNumber);

}

If you don't need to use the loop counter value inside the loop, you can use a loop variable named
count:

for (size_t count{1U}; count <= objectCount; ++count)

{

 objects.push_back(acquireObject(std::forward<Args>(args)...));

}

Uniform Source Code Repository Structure
Principle

Structuring code in a source code repository systematically in a certain way makes it easy
for other developers to discover wanted information quickly.

Below are examples of ways to structure source code repositories for Java, C++, and JavaScript/
TypeScript microservices. In the below examples, a containerized (Docker) microservice deployed
to a Kubernetes cluster is assumed. Your CI tool might require that the CI/CD pipeline code must
reside in a specific directory. But if not, place the CI/CD pipeline code in a ci-cd directory.

244

Java Source Code Repository Structure

Below is the proposed source code repository structure for a Java microservice (Gradle build tool is
used):

java-service

├── ci-cd

│ └── Jenkinsfile

├── docker

│ ├── Dockerfile

│ └── docker-compose.yml

├── docs

├── env

│ ├── .env.dev

│ └── .env.ci

├── gradle

│ └── wrapper

│ └── ...

├── helm

│ └── java-service

│ ├── templates

│ ├── .helmignore

│ ├── Chart.yaml

│ ├── values.schema.json

│ └── values.yaml

├── integration-tests

│ ├── features

│ │ └── feature1.feature

│ └── steps

├── scripts

│ └── // Bash scripts here...

├── src

│ ├── main

│ │ ├── java

│ │ │ └── com.domain.java-service

│ │ │ └── // source code

│ │ └── resources

│ └── test

│ ├── java

│ │ └── com.domain.java-service

│ │ └── // unit test code

│ └── resources

├── .gitignore

├── build.gradle

├── gradlew

├── gradlew.bat

├── README.MD

└── settings.gradle

 C++ Source Code Repository Structure

Below is the proposed source code repository structure for a C++ microservice (CMake build tool is
used):

245

cpp-service

├── ci-cd

│ └── Jenkinsfile

├── docker

│ ├── Dockerfile

│ └── docker-compose.yml

├── docs

├── env

│ ├── .env.dev

│ └── .env.ci

├── helm

│ └── cpp-service

│ ├── templates

│ ├── .helmignore

│ ├── Chart.yaml

│ ├── values.schema.json

│ └── values.yaml

├── integration-tests

│ ├── features

│ │ └── feature1.feature

│ └── steps

├── scripts

│ └── // Bash scripts here...

├── src

│ ├── // source code here

│ │ main.cpp

│ └── CMakeLists.txt

├── test

│ ├── // unit test code

│ │ main.cpp

│ └── CMakeLists.txt

├── .gitignore

├── CMakeLists.txt

└── README.MD

JavaScript/TypeScript Source Code Repository Structure

Below is the proposed source code repository structure for a JavaScript/TypeScript microservice:

ts-service

├── ci-cd

│ └── Jenkinsfile

├── docker

│ ├── Dockerfile

│ └── docker-compose.yml

├── docs

├── env

│ ├── .env.dev

│ └── .env.ci

├── helm

│ └── ts-service

│ ├── templates

│ ├── .helmignore

│ ├── Chart.yaml

│ ├── values.schema.json

│ └── values.yaml

├── integration-tests

│ ├── features

│ │ └── feature1.feature

│ └── steps

246

├── scripts

│ └── // Bash scripts here...

├── src

│ └── // source code here

├── test

│ └── // unit test code here

├── .gitignore

├── .eslintrc.json

├── .prettier.rc

├── package.json

├── package-lock.json

├── README.MD

└── tsconfig.json

Domain-Based Source Code Structure Principle

Structure source code tree primarily by domains, not by technical details. Each source code
directory should have a single responsibility at its abstraction level.

Below is an example of a Spring Boot microservice's src directory that is not organized by domains
but is incorrectly organized according to technical details:

spring-example-service/

└── src/

 └── java/

 └── com.silensoft.springexampleservice/

 ├── controllers/

 │ ├── AController.java

 │ └── BController.java

 ├── entities/

 │ ├── AEntity.java

 │ └── BEntity.java

 ├── errors/

 │ ├── AError.java

 │ └── BError.java

 ├── dtos/

 │ ├── ADto.java

 │ └── BDto.java

 ├── repositories/

 │ ├── ARepository.java

 │ └── BRepository.java

 └── services/

 ├── AService.java

 └── BService.java

Below is the above example modified so that directories are organized by domains:

spring-example-service/

└── src/

 └── java/

 └── com.silensoft.springexampleservice/

 ├── domainA/

 │ ├── AController.java

 │ ├── ADto.java

 │ ├── AEntity.java

247

 │ ├── AError.java

 │ ├── ARepository.java

 │ └── AService.java

 └── domainB/

 ├── BController.java

 ├── BDto.java

 ├── BEntity.java

 ├── BError.java

 ├── BRepository.java

 └── BService.java

You can have several levels of nested domains:

spring-example-service/

└── src/

 └── java/

 └── com.silensoft.springexampleservice/

 ├── domainA/

 │ ├── domainA-1/

 │ │ ├── A1Controller.java

 │ │ └── ...

 │ └── domainA-2/

 │ ├── A2Controller.java

 │ └── ...

 └── domainB/

 └── BController.java

If you want, you can create subdirectories for technical details inside a domain directory. This is the
recommended approach if, otherwise, the domain directory would contain more than 5 to 7 files.
Below is an example of the salesitem domain:

sales-item-service

└── src

 └── java

 └── com.silensoft.salesitemservice

 └── salesitem

 ├── dtos

 │ ├── SalesItemArg.java

 │ └── SalesItemResponse.java

 ├── entities

 │ └── SalesItem.java

 ├── errors

 │ └── SalesItemRelatedError.java

 │ └── SalesItemRelatedError2.java

 ├── repository

 │ └── SalesItemRepository.java

 ├── service

 │ ├── SalesItemService.java

 │ └── SalesItemServiceImpl.java

 └── SalesItemController.java

Below is the source code directory structure for the data exporter microservice designed in the
previous chapter. There are subdirectories for the four subdomains: input, internal message,
transformer, and output. There is a subdirectory created for each common nominator in the class
names. It is effortless to navigate the directory tree when locating a particular file. Also, the number
of source code files in each directory is low. You can grasp the contents of a directory with a glance.

248

The problem with directories containing many files is that it is not easy to find the wanted file. For
this reason, a single directory should ideally have 2-4 files. The absolute maximum is 5-7 files.

Note that below, a couple of directories are left unexpanded to shorten the example. It should be
easy for the reader to infer the contents of the unexpanded directories.

src

├── common

├── input

│ ├── config

│ │ ├── parser

│ │ │ ├── json

│ │ │ │ ├── JsonInputConfigParser.cpp

│ │ │ │ └── JsonInputConfigParser.h

│ │ │ └── InputConfigParser.h

│ │ ├── reader

│ │ │ ├── localfilesystem

│ │ │ │ ├── LocalFileSystemInputConfigReader.cpp

│ │ │ │ └── LocalFileSystemInputConfigReader.h

│ │ │ └── InputConfigReader.h

│ │ ├── InputConfig.h

│ │ ├── InputConfigImpl.cpp

│ │ └── InputConfigImpl.h

│ │

│ └── message

│ ├── consumer

│ │ ├── kafka

│ │ │ ├── KafkaInputMessageConsumer.cpp

│ │ │ └── KafkaInputMessageConsumer.h

│ │ └── InputMessageConsumer.h

│ ├── decoder

│ │ ├── avrobinary

│ │ │ ├── AvroBinaryInputMessageDecoder.cpp

│ │ │ └── AvroBinaryInputMessageDecoder.h

│ │ └── InputMessageDecoder.h

│ ├── kafka

│ │ ├── KafkaInputMessage.cpp

│ │ └── KafkaInputMessage.h

│ │

│ └── InputMessage.h

├── internalmessage

 ├── field

│ ├── InternalMessage.h

│ ├── InternalMessageImpl.cpp

│ └── InternalMessageImpl.h

├── transformer

│ ├── config

│ │ ├── parser

│ │ ├── reader

│ │ ├── TransformerConfig.h

│ │ ├── TransformerConfigImpl.cpp

│ │ └── TransformerConfigImpl.h

│ ├── field

│ │ ├── copy

│ │ │ ├── CopyFieldTransformer.cpp

│ │ │ └── CopyFieldTransformer.h

│ │ ├── expression

│ │ ├── filter

│ │ ├── typeconversion

│ │ ├── FieldTransformer.h

│ │ ├── FieldTransformers.h

249

│ │ ├── FieldTransformaresImpl.cpp

│ │ └── FieldTransformersImpl.h

│ └── message

│ ├── MessageTransformer.h

│ ├── MessageTransformerImpl.cpp

│ └── MessageTransformerImpl.h

└── output

 ├── config

 │ ├── parser

 │ ├── reader

 │ ├── OutputConfig.h

 │ ├── OutputConfigImpl.cpp

 │ └── OutputConfigImpl.h

 └── message

 ├── encoder

 │ ├── avrobinary

 │ └── OutputMessageEncoder.h

 ├── producer

 │ ├── pulsar

 │ └── OutputMessageProducer.h

 ├── OutputMessage.h

 ├── OutputMessageImpl.cpp

 └── OutputMessageImpl.h

Below is the Java version of the above directory structure:

src

├── common

├── input

│ ├── config

│ │ ├── parser

│ │ │ ├── InputConfigParser.java

│ │ │ └── JsonInputConfigParser.java

│ │ ├── reader

│ │ │ ├── InputConfigReader.java

│ │ │ └── LocalFileSystemInputConfigReader.java

│ │ ├── InputConfig.java

│ │ └── InputConfigImpl.java

│ └── message

│ ├── consumer

│ │ ├── InputMessageConsumer.java

│ │ └── KafkaInputMessageConsumer.java

│ ├── decoder

│ │ ├── InputMessageDecoder.java

│ │ └── AvroBinaryInputMessageDecoder.java

│ ├── InputMessage.java

│ └── KafkaInputMessage.java

├── internalmessage

│ ├── field

│ ├── InternalMessage.java

│ └── InternalMessageImpl.java

├── transformer

│ ├── config

│ ├── field

│ │ ├── impl

│ │ │ ├── CopyFieldTransformer.java

│ │ │ ├── ExpressionFieldTransformer.java

│ │ │ ├── FilterFieldTransformer.java

│ │ │ └── TypeConversionFieldTransformer.java

│ │ ├── FieldTransformer.java

│ │ ├── FieldTransformers.java

│ │ └── FieldTransformersImpl.java

250

│ └── message

│ ├── MessageTransformer.java

│ └── MessageTransformerImpl.java

└── output

 ├── config

 └── message

Below is the source code directory structure for the anomaly detection microservice designed in the
previous chapter. The anomaly directory is expanded. We can see that our implementation is using
JSON for various parsing activities and self-organizing maps (SOM) is used for anomaly detection.
JSON and Kafka are used to publish anomaly indicators outside the microservice. Adding new
concrete implementations to the below directory structure is straightforward. For example, if we
wanted to add YAML support for configuration files, we could create yaml subdirectories where we
could place YAML-specific implementation classes.

src

├── anomaly

│ ├── detection

│ │ ├── configuration

│ │ │ ├── parser

│ │ │ │ ├── json

│ │ │ │ │ ├── JsonAnomalyDetectionConfigParser.cpp

│ │ │ │ │ └── JsonAnomalyDetectionConfigParser.h

│ │ │ │ └── AnomalyDetectionConfigParser.h

│ │ │ ├── AnomalyDetectionConfig.h

│ │ │ ├── AnomalyDetectionConfigFactory.h

│ │ │ ├── AnomalyDetectionConfigFactoryImpl.h

│ │ │ ├── AnomalyDetectionConfigImpl.cpp

│ │ │ └── AnomalyDetectionConfigImpl.h

│ │ ├── engine

│ │ │ ├── AnomalyDetectionEngine.h

│ │ │ ├── AnomalyDetectionEngineImpl.cpp

│ │ │ └── AnomalyDetectionEngineImpl.h

│ │ ├── rule

│ │ │ ├── parser

│ │ │ │ ├── json

│ │ │ │ │ ├── JsonAnomalyDetectionRuleParser.cpp

│ │ │ │ │ └── JsonAnomalyDetectionRuleParser.h

│ │ │ │ └── AnomalyDetectionRuleParser.h

│ │ │ ├── AnomalyDetectionRule.h

│ │ │ ├── AnomalyDetectionRuleFactory.h

│ │ │ ├── AnomalyDetectionRuleFactoryImpl.h

│ │ │ ├── AnomalyDetectionRuleImpl.cpp

│ │ │ └── AnomalyDetectionRuleImpl.h

│ │ ├── AnomalyDetector.h

│ │ ├── AnomalyDetectorImpl.cpp

│ │ └── AnomalyDetectorImpl.h

│ ├── indicator

│ │ ├── publisher

│ │ │ ├── kafka

│ │ │ │ ├── KafkaAnomalyIndicatorPublisher.cpp

│ │ │ │ └── KafkaAnomalyIndicatorPublisher.h

│ │ │ └── AnomalyIndicatorPublisher

│ │ ├── serializer

│ │ │ ├── json

│ │ │ │ ├── JsonAnomalyIndicatorSerializer.cpp

│ │ │ │ └── JsonAnomalyIndicatorSerializer.h

│ │ │ └── AnomalyIndicatorSerializer.h

│ │ ├── AnomalyIndicator.h

251

│ │ ├── AnomalyIndicatorFactory.h

│ │ ├── AnomalyIndicatorFactoryImpl.h

│ │ ├── AnomalyIndicatorImpl.cpp

│ │ └── AnomalyIndicatorImpl.h

│ └── model

│ ├── som

│ │ ├── SomAnomalyModel.cpp

│ │ ├── SomAnomalyModel.h

│ │ └── SomAnomalyModelFactory.h

│ ├── training

│ │ ├── engine

│ │ │ ├── AnomalyModelTrainingEngine.h

│ │ │ ├── AnomalyModelTrainingEngineImpl.cpp

│ │ │ └── AnomalyModelTrainingEngineImpl.h

│ │ ├── som

│ │ │ ├── SomAnomalyModelTrainer.cpp

│ │ │ └── SomAnomalyModelTrainer.h

│ │ └── AnomalyModelTrainer.h

│ ├── AnomalyModel.h

│ └── AnomalyModelFactory.h

├── common

├── measurement

├── Application.h

├── Application.cpp

├── DependencyInjector.h

└── main.cpp

Let's have one more example with a data-visualization-web-client.

This web client's UI consists of the following pages, which all include a common header:

• Dashboards

• Data Explorer

• Alerts

252
Figure 5.1. Dashboards Page

The Dashboards page contains a dashboard group selector, dashboard selector, and chart area to
display the selected dashboard's charts. You can select the shown dashboard by first selecting a
dashboard group and then a dashboard from that group.

The Data Explorer page contains selectors for choosing a data source, measure(s), and
dimension(s). The page also contains a chart area to display charts. Using the selectors, a user can
change the shown measure(s) and dimension(s) for the currently selected chart in the chart area.

Based on the above design, the web client can be divided into the following subdomains:

• Common UI components

• Chart Area

• Chart

• Header

• Pages

• Alerts

• Dashboards

• Data Explorer

253

Figure 5.2. Data Explorer Page

The source code tree should look like the following:

src

├── app

│ ├── common

│ │ └── chartarea

│ │ └── chart

│ ├── header

│ └── pages

│ ├── alerts

│ ├── dashboards

│ │ └── selectors

│ │ ├── dashboardgroup

│ │ └── dashboard

│ └── dataexplorer

│ └── selectors

│ ├── datasource

│ ├── dimension

│ └── measure

├── index.ts

└── store.ts

Below is an example of what a single subdomain directory can look like when using React, Redux
and SCSS modules:

src

├── app

│ └── header

│ ├── model

│ │ ├── actions

│ │ │ ├── AbstractHeaderAction.ts

│ │ │ └── NavigateToPageAction.ts

│ │ ├── services

│ │ └── state

│ │ ├── types

│ │ ├── HeaderState.ts

│ │ └── initialHeaderState.ts

│ ├── view

│ │ ├── navigation

│ │ │ ├── NavigationView.module.scss

│ │ │ └── NavigationView.tsx

│ │ ├── HeaderView.module.scss

│ │ └── HeaderView.tsx

│ └── headerController.ts

├── index.ts

└── store.ts

In the above example, we have created two directories for the technical details of the header
domain: model and view directories. The model directory contains actions, services, and the state,
and the view directory contains the view component, its possible subcomponents and CSS
definitions. The model's state directory can contain a subdirectory for types used in the subdomain
state. The state directory should always contain the type definition for the subdomain's state and
the initial state. The services directory contains a service or services that use backend services to
control the backend model.

254

Avoid Comments Principle

Avoid comments in code. The only exception is when documenting the public API of a library.

Comments can be problematic. You cannot trust them 100% because they can be misleading,
outdated, or downright wrong. You can only trust the source code itself. Comments are often
entirely unnecessary and only make the code more verbose. The following sections describe several
ways to avoid writing comments and still keep your code understandable.

Name Things Properly

When you name things like a function poorly, you might end up attaching a comment to the
function. To avoid writing comments, it is imperative to focus on naming things correctly. When
following the single responsibility principle and the uniform naming principle, it should be easier
to name things correctly and avoid comments. Below is an example of a function with a comment:

MessageBuffer.h

class MessageBuffer

{

public:

 // Return false if buffer full,

 // true if message written to buffer

 bool write(const std::shared_ptr<Message>& message);

}

If we drop the comment, we will have the following code:

MessageBuffer.h

class MessageBuffer

{

public:

 bool write(const std::shared_ptr<Message>& message);

}

Dropping the comment alone is not the best solution because some crucial information is now
missing. What does that boolean return value mean? It is not 100% clear. We can assume that
returning true means that message was successfully written, but nothing is communicated about
returning false. We can only assume it is some error, but not sure what error.

In addition to removing the comment, we should give a better name for the function and rename it
as follows:

MessageBuffer.h

class MessageBuffer

{

public:

255

 bool writeIfBufferNotFull(

 const std::shared_ptr<Message>& message

);

}

Now the purpose of the function is clear, and we can be sure what the boolean return value means.
It means whether the message was written to the buffer. Now we also know why the writing of a
message can fail: the buffer is full. This will give the function caller sufficient information about
what to do next. It should probably wait a while so that the buffer reader has enough time to read
messages from the buffer and free up some space.

Below is a real-life example from a book that I once read:

public interface Mediator {

 // To register an employee

 void register(Person person);

 // To send a message from one employee to another employee

 void connectEmployees(Person fromPerson,

 Person toPerson,

 String msg);

 // To display currently registered members

 void displayDetail();

}

There are three functions in the above example, each of which has a problem. The first function is
registering a person, but the comment says it is registering an employee. So, there is a mismatch
between the comment and the code. In this case, I trust the code over the comment. The correction
is to remove the comment because it does not bring any value. It only causes confusion.

The second function says in the comment that it sends a message from one employee to another.
The function name tells about connecting employees, but the parameters are persons. I assume that
a part of the comment is correct: to send a message from someone to someone else. But once again,
I trust the code more over the comment and assume the message is sent from one person to
another. We should remove the comment and rename the function.

In the third function, the comment adds information missing from the function name. The
comment also discusses members, as other parts of the code speak about employees and persons.
There are three different terms used: employee, person, and member. Just one term should be
picked. Let's choose the term person and use it systematically.

Below is the refactored version without the comments:

public interface Mediator {

 void register(Person person);

 void send(String message,

 Person sender,

 Person recipient);

256

 void displayDetailsOfRegisteredPersons();

}

Single Return Of Named Value At The End Of Function

A function should have a single return statement and return a named value at the end of the
function. Then the code reader can infer the return value meaning by looking at the end of
the function.

Consider the following example:

Metrics.h

class Metrics

{

public:

 // ...

 static uint32_t addCounter(

 CounterFamily counterFamily,

 const std::map<std::string, std::string>& labels

);

 static void incrementCounter(uint32_t counterIndex,

 size_t incrementAmount);

 // addGauge...

 // setGaugeValue...

}

What is the return value of the addCounter function? Someone might think a comment is needed
to describe the return value because it is unclear what uint32_t means. Instead of writing a
comment, we can introduce a named value (= variable/constant) to be returned from the function.
The idea behind the named return value is that it communicates the semantics of the return value
without the need for a comment. In C++, you jump from the function declaration to the function
definition to see what the function returns. Below is the implementation for the addCounter
function:

Metrics.cpp

uint32_t Metrics::addCounter(

 const CounterFamily counterFamily,

 const std::map<std::string, std::string>& labels)

{

 uint32_t counterIndex;

 // Perform adding a counter here and

 // set value for the 'counterIndex'

 return counterIndex;

}

In the above implementation, we have a single return of a named value at the end of the function.

257

All we have to do is to look at the end of the function and spot the return statement, which should
tell us the meaning of the mysterious uint32_t typed return value: It is a counter index. And we
can spot that the increaseCounter function requires a counterIndex argument and this
establishes a connection between calling the addCounter function first, storing the returned
counter index, and later using that stored counter index in calls to the increaseCounter
function.

Return Type Aliasing

In the previous example, there was the mysterious return value of type uint32_t in the
addCounter function. We learned how introducing a named value returned at the end of the
function helped to communicate the semantics of the return value. But there is an even better way
to communicate the semantics of a return value. Many languages like C++ and TypeScript offer
type aliasing that can be used to communicate the return value semantics. Below is an example
where we introduce a CounterIndex type alias for the uint32_t type:

Metrics.h

class Metrics

{

public:

 using CounterIndex = uint32_t;

 // ...

 static CounterIndex addCounter(

 CounterFamily counterFamily,

 const std::map<std::string, std::string>& labels

);

 static void incrementCounter(CounterIndex counterIndex,

 size_t incrementAmount);

}

And here is the same example in TypeScript:

Metrics.ts

export type CounterIndex = number;

export default class Metrics {

 // ...

 static addCounter(

 counterFamily: CounterFamily,

 labels: Record<string, string>

): CounterIndex;

 static incrementCounter(counterIndex: CounterIndex,

 incrementAmount: number): void;

}

258

Some languages, like Java, don't have type aliases. Then you can introduce a wrapper class for the
returned value. Here is the same example in Java:

CounterIndex.java

public class CounterIndex {

 private final int value;

 public CounterIndex(final int value) {

 this.value = value;

 }

 public int get() {

 return value;

 }

}

Metrics.java

public final class Metrics {

 // ...

 public static CounterIndex addCounter(

 final CounterFamily counterFamily,

 final Map<String, String> labels

) {

 // ...

 }

 public static void incrementCounter(

 CounterIndex counterIndex,

 double incrementAmount

) {

 // ...

 }

}

We can improve the above example. The CounterIndex class could be derived from a generic
Value class:

public class Value<T> {

 private final T value;

 public Value(final T value) {

 this.value = value;

 }

 public T get() {

 return value;

 }

}

public class CounterIndex extends Value<Integer> {

 // ...

}

We can improve the above metrics example a lot. First, we should avoid the primitive type
obsession. We should not be returning an index from the addCounter method, but we should

259

rename the method as createCounter and return an instance of a Counter class from the
method. Then we should make the example more object-oriented by moving the
incrementCounter method to the Counter class and naming it just increment. Also, the name
of the Metrics class should be changed to MetricFactory. And finally, we should make the
MetricFactory class a singleton instead of containing static methods.

Extract Constant for Boolean Expression

By extracting a constant for a boolean expression, we can eliminate comments. Below is an example
where a comment is written below an if-statement and its boolean expression:

MessageBuffer.cpp

bool MessageBuffer::writeIfBufferNotFull(

 const std::shared_ptr<Message>& message

) {

 bool messageWasWritten{false};

 if (m_messages.size() < m_maxBufferSize)

 {

 // Buffer is not full

 m_messages.push_back(message);

 messageWasWritten = true;

 }

 return messageWasWritten;

}

By introducing a constant to be used in the "buffer is full" check, we can get rid of the "Buffer is not
full" comment:

MessageBuffer.cpp

bool MessageBuffer::writeIfBufferNotFull(

 const std::shared_ptr<Message> message

) {

 bool messageWasWritten{false};

 const bool bufferIsNotFull =

 m_messages.size() < m_maxBufferSize;

 if (bufferIsNotFull)

 {

 m_messages.push_back(message);

 messageWasWritten = true;

 }

 return messageWasWritten;

}

260

Extract Named Constant or Enumerated Type

If you encounter a magic number in your code, you should introduce either a named constant or an
enumerated type (enum) for that value. In the below example, we are returning two magic
numbers, 0 and 1:

main.cpp

int main()

{

 Application application;

 if (application.run())

 {

 // Application was run successfully

 return 0;

 }

 // Exit code: failure

 return 1;

}

Let's introduce an enumerated type, ExitCode, and use it instead of magic numbers:

main.cpp

enum class ExitCode

{

 Success = 0,

 Failure = 1

};

int main()

{

 ExitCode exitCode;

 Application application;

 const bool appWasSuccessfullyRun = application.run();

 if (appWasSuccessfullyRun)

 {

 exitCode = ExitCode::Success;

 }

 else

 {

 exitCode = ExitCode::Failure;

 }

 return static_cast<int>(exitCode);

}

It is now easy to add more exit codes with descriptive names later if needed.

Extract Function

If you are planning to write a comment above a piece of code, you should extract that piece of code

261

to a new function. When you extract a well-named function, you don't need to write that comment.
The name of the newly extracted function serves as documentation. Below is an example with some
commented code:

MessageBuffer.cpp

void MessageBuffer::writeFitting(

 std::deque<std::shared_ptr<Message>>& messages

) {

 if (m_messages.size() + messages.size() <= m_maxBufferSize)

 {

 // All messages fit in buffer

 m_messages.insert(m_messages.end(),

 messages.begin(),

 messages.end());

 messages.clear();

 }

 else

 {

 // All messages do not fit, write only messages that fit

 const auto messagesEnd = messages.begin() +

 m_maxBufferSize -

 m_messages.size();

 m_messages.insert(m_messages.end(),

 messages.begin(),

 messagesEnd);

 messages.erase(messages.begin(), messagesEnd);

 }

}

Here is the same code with comments refactored out by extracting two new methods:

MessageBuffer.cpp

void MessageBuffer::writeFitting(

 std::deque<std::shared_ptr<Message>>& messages

) {

 const bool allMessagesFit = m_messages.size() +

 messages.size() <= m_maxBufferSize;

 if (allMessagesFit)

 {

 writeAll(messages)

 }

 else

 {

 writeOnlyFitting(messages);

 }

}

void MessageBuffer::writeAll(

 std::deque<std::shared_ptr<Message>>& messages

) {

 m_messages.insert(m_messages.end(),

 messages.begin(),

 messages.end());

 messages.clear();

262

}

void MessageBuffer::writeOnlyFitting(

 std::deque<std::shared_ptr<Message>>& messages

) {

 const auto messageCountThatFit = m_maxBufferSize -

 m_messages.size();

 const auto messagesEnd = messages.begin() +

 messageCountThatFit;

 m_messages.insert(m_messages.end(),

 messages.begin(),

 messagesEnd);

 messages.erase(messages.begin(), messagesEnd);

}

Name Anonymous Function

Anonymous functions are common in functional programming, e.g., when using algorithms like
forEach, map, filter, and reduce. When an anonymous function is long or complex, you should give
it a descriptive name and split it into multiple functions if it is too long. This way, you can eliminate
comments.

In the below TypeScript example, we have an anonymous function with a comment:

// ...

fs.watchFile('/etc/config/LOG_LEVEL', () => {

 // Update new log level

 try {

 const newLogLevel = fs.readFileSync('/etc/config/LOG_LEVEL',

 'utf-8'}).trim();

 tryValidateLogLevel(newLogLevel);

 process.env.LOG_LEVEL = newLogLevel;

 } catch (error) {

 // ...

 }

});

We can refactor the above example so that the comment is removed and the anonymous function is
given a name:

function updateNewLogLevel() {

 try {

 const newLogLevel = fs.readFileSync('/etc/config/LOG_LEVEL',

 'utf-8'}).trim();

 tryValidateLogLevel(newLogLevel);

 process.env.LOG_LEVEL = newLogLevel;

 } catch (error) {

 // ...

 }

}

263

fs.watchFile('/etc/config/LOG_LEVEL', updateNewLogLevel);

Avoiding Comments in Bash Shell Scripts

Many programmers, myself included, don't enjoy the mysterious syntax of Linux shell commands
and scripts. Even the syntax of the simplest expressions can be hard to understand and remember if
you don't work with scripts regularly. Of course, the best thing is to avoid writing complex Linux
shell scripts and use a proper programming language like Python instead. But sometimes,
performing some actions using a shell script is easier. Because the syntax and commands in shell
scripts can be hard to understand, many developers tend to solve the problem by adding comments
to scripts.

Next, alternative ways to make scripts more understandable without comments are presented. Let's
consider the below example from one real-life script I have bumped into:

create_network() {

 #create only if not existing yet

 if [[-z "$(docker network ls | grep $DOCKER_NETWORK_NAME)"]];

 then

 echo Creating $DOCKER_NETWORK_NAME

 docker network create $DOCKER_NETWORK_NAME

 else

 echo Network $DOCKER_NETWORK_NAME already exists

 fi

}

Below is the same example with the following changes:

• The comment was removed, and the earlier commented expression was moved to a well-named
function

• The negation in the expression was removed, and the contents of the then and else-branches were
swapped

• Variable names were made camel case to enhance readability

dockerNetworkExists() { [[-n "$(docker network ls | grep $1)"]]; }

createDockerNetwork() {

 if dockerNetworkExists $networkName; then

 echo Docker network $networkName already exists

 else

 echo Creating Docker network $networkName

 docker network create $networkName

 fi

}

If your script accepts arguments, give the arguments proper names, for example:

dataFilePathName=$1

schemaFilePathName=$2

264

The script reader does not have to remember what $1 or $2 means, and you don't have to insert
any comments to clarify the meaning of the arguments.

If you have a complex command in a Bash shell script, you should not attach a comment to it but
extract a function with a proper name to describe the command.

The below example contains a comment:

Update version in Helm Chart.yaml file

sed -i "s/^version:.*/version: $VERSION/g" helm/service/Chart.yaml

Here is the above example refactored to contain a function

updateHelmChartVersionInChartYamlFile() {

 sed -i "s/^version:.*/version: $1/g" helm/service/Chart.yaml

}

updateHelmChartVersionInChartYamlFile $version

Here is another example:

getFileLongestLineLength() {

 echo $(awk '{ if (length($0) > max) max = length($0) } END { print max }' $1)

}

configFileLongestLineLength = $(getFileLongestLineLength $configFilePathName)

Function Single Return Principle

Prefer a single return statement at the end of a function to clearly communicate the return
value's meaning and make refactoring the function easier.

A single return statement with a named value at the end of a function clearly communicates the
return value semantics if the return value type does not directly communicate it. For example, if
you return a value of a primitive type like an integer or boolean from a function, it is not necessarily
100% clear what the return value means. But when you return a named value at the end of the
function, the name of the returned variable communicates the semantics.

You might think that being unable to return a value in the middle of a function would make the
function less readable because of lots of nested if-statements. This is possible, but one should
remember that a function should be small. Aim to have a maximum of 5-9 lines of statements in a
single function. Following that rule, you never have a hell of nested if-statements inside a single
function.

Having a single return statement at the end of a function makes refactoring the function easier. You

265

can use automated refactoring tools provided by your IDE. It is always harder to extract a new
function from code containing a return statement. The same is true for loops with a break or
continue statement. It is easier to refactor code inside a loop that does not contain a break or
continue statement.

In some cases, returning a single value at the end of a function makes the code more
straightforward and requires fewer lines of code.

Below is an example of a function with two return locations:

TransformThread.cpp

bool TransformThread::transform(

 const std::shared_ptr<InputMessage>& inputMessage

) {

 auto outputMessage = m_outputMessagePool->acquireMessage();

 bool messageIsFilteredIn;

 const bool messageWasTransformed =

 m_messageTranformer->transform(inputMessage,

 outputMessage,

 messageIsFilteredIn);

 if (messageWasTransformed && messageIsFilteredIn)

 {

 m_outputMessages.push_back(outputMessage);

 }

 else

 {

 m_outputMessagePool->returnMessage(outputMessage);

 if (!messageWasTransformed)

 {

 return false;

 }

 }

 return true;

}

When analyzing the above function, we notice that it transforms an input message into an output
message. We can conclude that the function returns true on successful message transformation. We
can shorten the function by refactoring it to contain only one return statement. After refactoring, it
is 100% clear what the function return value means.

TransformThread.cpp

bool TransformThread::transforme(

 const std::shared_ptr<InputMessage>& inputMessage

) {

 auto outputMessage = m_outputMessagePool->acquireMessage();

 bool messageIsFilteredIn;

 const bool messageWasTransformed =

 m_messageTransformer->transform(inputMessage,

 outputMessage,

 messageIsFilteredIn);

266

 if (messageWasTransformed && messageIsFilteredIn)

 {

 m_outputMessages.push_back(outputMessage);

 }

 else

 {

 m_outputMessagePool->return(outputMessage);

 }

 return messageWasTransformed;

}

As an exception to this rule, you can have multiple return statements in a function when the
function has optimal length and would become too long if it is refactored to contain a single return
statement. Additionally, it is required that the semantic meaning of the return value is clear from
the function name or the return type. Below is an example of a function with multiple return
statements. It is also clear from the function name what the return value means. Also, the length of
the function is optimal: seven statements.

private areEqual(

 iterator: MyIterator<T>,

 anotherIterator: MyIterator<T>

): boolean {

 while (iterator.hasNextElement()) {

 if (anotherCollectionIterator.hasNextElement()) {

 if (iterator.getNextElement() !==

 anotherCollectionIterator.getNextElement()) {

 return false;

 }

 } else {

 return false;

 }

 }

 return true;

}

If we refactored the above code to contain a single return statement, the code would become too
long (10 statements) to fit in one function, as shown below. In this case, we should prefer the above
code over the below code.

private areEqual(

 iterator: MyIterator<T>,

 anotherIterator: MyIterator<T>

): boolean {

 let areEqual = true;

 while (iterator.hasNextElement()) {

 if (anotherCollectionIterator.hasNextElement()) {

 if (iterator.getNextElement() !==

 anotherCollectionIterator.getNextElement()) {

 areEqual = false;

 break;

 }

 } else {

 areEqual = false;

267

 break;

 }

 }

 return areEqual;

}

As the second exception to this rule, you can use multiple return locations in a factory because you
know from the factory name what type of objects it creates. Below is an example factory with
multiple return statements:

enum class CarType

{

 Audi,

 Bmw,

 MercedesBenz

};

class Car

{

 // ...

};

class Audi : public Car

{

 // ...

};

class Bmw : public Car

{

 // ...

};

class MercedesBenz : public Car

{

 // ...

};

class CarFactory

{

public:

 std::shared_ptr<Car> createCar(const CarType carType)

 {

 switch(carType)

 {

 case CarType::Audi:

 return std::make_shared<Audi>();

 case CarType::Bmw:

 return std::make_shared<Bmw>();

 case CarType::MercedesBenz:

 return std::make_shared<MercedesBenz>();

 default:

 throw std::invalid_argument("Unknown car type");

 }

 }

};

268

Prefer a Statically Typed Language for Production
Code Principle

Prefer a statically typed language when implementing production software. You can use an
untyped language like Python for non-production code like integration, end-to-end and
automated non-functional tests. And you can use Bash shell scripting for small scripts.

You can manage with a small software component without types, but when it grows bigger and
more people are working with it, the benefits of static typing become evident.

Let's analyze what potential problems using an untyped language might incur:

• Function arguments might be given in the wrong order

• Function argument might be given with the wrong type

• Not all function arguments are given (applicable in some languages)

• Function return value type might be misunderstood

• Forced to write public API comments to describe function signatures

• Type errors are not necessarily found in testing

Function Arguments Might Be Given in Wrong Order

When using an untyped language, you can give arguments to a function in the wrong order if the
arguments are of the same type. You won't get a compilation error from this mistake. Modern IDEs
can display inlay parameter hints for a function call. This is a feature you should consider enabling
in your IDE. Those parameter hints might reveal cases where arguments for a function are not
given in the correct order.

Function Argument Might Be Given with Wrong Type

When using an untyped language, you can give a function argument with the wrong type. For
example, a function requires a string representation of a number, but you provide a number.
Properly naming function arguments can help. Instead of naming a string argument, amount, the
argument should be named as amountString or amountAsString.

Not All Function Arguments Are Given

In some languages, like JavaScript, you can give fewer arguments than expected to a function when
you call it. This results in having undefined values for the arguments not given in the function call.
You don't get an error from calling a function with too few arguments.

269

Function Return Value Type Might Be Misunderstood

Determining the function return value type can be difficult. It is not necessarily 100% clear from the
name of the function. For example, if you have a function named getValue, it is not 100% clear
what the return value type is. It might be apparent only if you know the context of the function well.
As an improvement, the function should be appropriately named, for example:
getValueAsString(), if the returned value is always a string. If the return value type is unclear
from the function name, you must analyze the function's source code to determine the return value
type. That is unnecessary and error-prone manual work that can be avoided using a typed language.

Forced to Write Public API Comments

When using an untyped language, you might be forced to document a public API using comments.
This is additional work that could be avoided by using static types. Writing API documentation with
comments is error-prone. You can accidentally write wrong information in the API documentation
or forget to update the documentation when you make changes to the API. Similarly, the API
documentation readers can make mistakes. They might not read the API documentation at all. Or
they have read it earlier but later misremember it.

Type Errors Are Not Found in Testing

This is the biggest problem. You might think that if you have mistakes in your code related to
having correct function arguments with the correct types, testing will reveal those mistakes. This is
typically a wrong assumption. Unit testing won't find the issues because you mock other classes.
You can only find the issues in integration testing when you integrate the software component (i.e.,
test functions calling other real functions instead of mocks). According to the testing pyramid,
integration tests only cover a subset of the codebase, less than unit tests. And depending on the
integration testing code coverage, some function argument order or argument/return value type
correctness issues may be left untested and escape to production.

Refactoring Principle

You cannot write the perfect code on the first try, so you should always reserve some time for
future refactoring.

You need to refactor even if you are writing code for a new software component. Refactoring is not
related to legacy codebases only. If you don't refactor, you let technical debt grow in the software.
The main idea behind refactoring is that no one can write the perfect code on the first try.
Refactoring means that you change code without changing the actual functionality. After

270

refactoring, most of the tests should still pass, the code is organized differently, and you have a
better object-oriented design and improved naming of things. Refactoring does not usually affect
integration tests but can affect unit tests depending on the type and scale of refactoring. Keep this
in mind when estimating refactoring effort.

We don't necessarily reserve any or enough time for refactoring when we plan things. When we
provide work estimates for epics, features, and user stories, we should be conscious of the need to
refactor and add some extra time to our initial work estimates (which don't include refactoring).
Refactoring is work that is not necessarily understood clearly by the management. The
management should support the need to refactor even if it does not bring clear added value to an
end user. But it brings value by not letting the codebase rot and removing technical debt. If you
have software with lots of accumulated technical debt, it is costly to develop new features and
maintain the software. Also, the quality of the software is lower, which can manifest in many bugs
and lowered customer satisfaction.

Below is a list of the most common code smells and refactoring techniques to solve them:

Rename

This is probably the single most used refactoring technique. You often don't get the names right on
the first try and need to do renaming. Modern IDEs offer tools that help rename things in the code:
interfaces, classes, functions, and variables. The IDE's renaming functionality is always better than
the plain old search-and-replace method. If using the search-and-replace method, you can
accidentally rename something that is not wanted to be renamed or don't rename something that
should have been renamed.

Code Smell Refactoring Solution

Non-descriptive name Rename

Long method Extract method

Complex expression Extract constant

Long switch-case or if-then-else statement Replace conditionals with polymorphism

 Long parameter list Introduce parameter object

Shotgun surgery Replace conditionals with polymorphism

Negated boolean condition Invert If statement

271

Extract Method

This is probably the second most used refactoring technique. When you implement a public method
of a class, the method quickly grows in the number of code lines. A function should contain a
maximum of 5-9 statements to keep it readable and understandable. When a public method is too
long, you should extract one or more private methods and call these private methods from the
public method. Every modern IDE has an extract method refactoring tool that allows you to extract
private methods easily. Select the code lines you want to extract to a new method and press the
IDE's shortcut key for the extract method functionality. Then give a descriptive name for the
extracted method, and you are done. In some cases, the refactoring is not automatic. For example,
if the code to be extracted contains a return, break, or continue statement that affects the execution
flow of the function (causing multiple return points). If you want to keep your code refactorable,
avoid using break, and continue statements and have only a single return statement at the end of
the function. You can organize the arguments of the extracted method in better order before
completing the extraction in the IDE.

Extract Constant

If you have a complex expression (boolean or numeric), assign the value of the expression to a
constant. The name of the constant conveys information about the expression. Below is an example
where we make the if-statements read better by extracting expressions to constants:

// ...

if (dataSourceSelectorIsOpen &&

 measureSelectorIsOpen &&

 dimensionSelectorIsOpen

) {

 dataSourceSelectorContentElem.style.height =

 `${0.2 * availableHeight}px`;

 measureSelectorContentElem.style.height =

 `${0.4 * availableHeight}px`;

 dimensionSelectorContentElem.style.height =

 `${0.4 * availableHeight}px`;

} else if (!dataSourceSelectorIsOpen &&

 !measureSelectorIsOpen &&

 dimensionSelectorIsOpen

) {

 dimensionSelectorContentElem.style.height

 = `${availableHeight}px`;

}

Let's extract constants:

// ...

const allSelectorsAreOpen = dataSourceSelectorIsOpen &&

 measureSelectorIsOpen &&

272

 dimensionSelectorIsOpen;

const onlyDimensionSelectorIsOpen =

 !dataSourceSelectorIsOpen &&

 !measureSelectorIsOpen &&

 dimensionSelectorIsOpen;

if (allSelectorsAreOpen) {

 dataSourceSelectorContentElem.style.height =

 `${0.2 * availableHeight}px`;

 measureSelectorContentElem.style.height =

 `${0.4 * availableHeight}px`;

 dimensionSelectorContentElem.style.height =

 `${0.4 * availableHeight}px`;

} else if (onlyDimensionSelectorIsOpen) {

 dimensionSelectorContentElem.style.height =

 `${availableHeight}px`;

}

Below is an example in C++ where we return a boolean expression:

bool AvroFieldSchema::equals(

 const std::shared_ptr<AvroFieldSchema>& otherAvroFieldSchema

) const

{

 return m_type == otherAvroFieldSchema->getType() &&

 m_name.substr(m_name.find_first_of('.') + 1U) ==

 otherField->getName().substr(

 otherField->getName().find_first_of('.') + 1U);

}

It can be challenging to understand what the boolean expression means. We could improve the
function by adding a comment: (We assume that each field name has a root namespace that cannot
contain a dot character)

bool AvroFieldSchema::equals(

 const std::shared_ptr<AvroFieldSchema>& otherAvroFieldSchema

) const

{

 // Field schemas are equal if field types are equal and

 // field names without the root namespace are equal

 return m_type == otherAvroFieldSchema->getType() &&

 m_name.substr(m_name.find_first_of('.') + 1U) ==

 otherField->getName().substr(

 otherField->getName().find_first_of('.') + 1U);

}

But we should not write comments because comments are never 100% trustworthy. It is possible
that a comment and the related code are not in synchrony: someone has changed the function
without updating the comment or modified only the comment but did not change the function.
Let's refactor the above example by removing the comment and extracting multiple constants. The
below function is longer than the original, but it is, of course, more readable. If you look at the last
two statements of the method, you can understand in what case two field schemas are equal. It

273

should be the compiler's job to make the below longer version of the function as performant as the
original function.

bool AvroFieldSchema::equals(

 const std::shared_ptr<AvroFieldSchema>& otherAvroFieldSchema

) const

{

 const auto fieldNameWithoutRootNamespace =

 m_name.substr(m_name.find_first_of('.') + 1U);

 const auto otherFieldName = otherAvroFieldSchema->getName();

 const auto otherFieldNameWithoutRootNamespace =

 otherFieldName.substr(otherFieldName.find_first_of('.') + 1U);

 const bool fieldTypesAndNamesWithoutRootNsAreEqual =

 m_type == otherAvroFieldSchema->getType() &&

 fieldNameWithoutRootNamespace == otherFieldNameWithoutRootNamespace;

 const bool fieldSchemasAreEqual =

 fieldTypesAndNamesWithoutRootNsAreEqual;

 return fieldSchemasAreEqual;

}

Replace Conditionals with Polymorphism

Suppose you encounter a large switch-case statement or if/else-if structure in your code (not
considering code in factories). It means your software component does not have a proper object-
oriented design. You should replace the conditionals with polymorphism. When you introduce
proper OOD in your software component, you move the functionality from a switch statement's
case branches to different classes that implement a particular interface. And similarly, you move
the code from if and else-if statements to different classes that implement a certain interface. This
way, you can eliminate the switch-case and if/else-if statements and replace them with a
polymorphic method call.

Below is a TypeScript example of non-object-oriented design:

function doSomethingWith(chart: Chart) {

 if (chart.getType() === 'column') {

 // do this

 } else if (chart.getType() === 'pie') {

 // do that

 } else if (chart.getType() === 'geographic-map') {

 // do a third thing

 }

}

Let's replace the above conditionals with polymorphism:

interface Chart {

 doSomething(...): void;

}

274

class ColumnChart implements Chart {

 doSomething(...): void {

 // do this

 }

}

class PieChart implements Chart {

 doSomething(...): void {

 // do that

 }

}

class GeographicMapChart implements Chart {

 doSomething(...): void {

 // do a third thing

 }

}

function doSomethingWith(chart: Chart) {

 chart.doSomething();

}

Suppose you are implementing a data visualization application and have many places in your code
where you check the chart type and need to introduce a new chart type. It could mean you must add
a new case or else-if-statement in many places in the code. This approach is very error-prone and is
called shotgun surgery because you need to find all the places in the codebase where code needs to
be modified. What you should do is conduct proper object-oriented design and introduce a new
chart class containing the new functionality instead of introducing that new functionality by
modifying code in multiple places.

Introduce Parameter Object

If you have more than 5-7 parameters for a function, you should introduce a parameter object to
reduce the number of parameters to keep the function signature more readable. Below is an
example constructor with too many parameters:

KafkaConsumer.java

public class KafkaConsumer {

 public KafkaConsumer(

 final List<String> brokers,

 final List<String> topics,

 final List<String> extraConfigEntries,

 final boolean tlsIsUsed,

 final boolean certShouldBeVerified,

 final String caFilePathName,

 final String certFilePathName,

 final String keyFilePathName)

 {

 // ...

 }

}

275

Let's group the Transport Layer Security (TLS) related parameters to a parameter class named
TlsOptions:

TlsOptions.java

public class TlsOptions {

 public TlsOptions(

 final boolean tlsIsUsed,

 final boolean certShouldBeVerified,

 final String caFilePathName,

 final String certFilePathName,

 final String keyFilePathName

) {

 // ...

 }

}

Now we can modify the KafkaConsumer constructor to utilize the TlsOptions parameter class:

KafkaConsumer.java

public class KafkaConsumer {

 public KafkaConsumer(

 final List<String> brokers,

 final List<String> topics,

 final List<String> extraConfigEntries,

 final TlsOptions tlsOptions

) {

 // ...

 }

}

Invert If Statement

This is a refactoring that a modern IDE can do for you.

Below is a Python example with a negated boolean expression in the if-statement condition. Notice
how difficult the boolean expression reads: "hostMountFolder is not None". It is a double-negative
statement and thus difficult to read.

def getBehaveTestFolder(relativeTestFolder = ''):

 hostMountFolder = os.environ.get("HOST_MOUNT_FOLDER")

 if hostMountFolder is not None:

 finalHostMountFolder = hostMountFolder

 if hostMountFolder.startswith("/mnt/c/"):

 finalHostMountFolder = hostMountFolder.replace("/mnt/c/", \

 "/c/", 1)

 behaveTestFolder = finalHostMountFolder + '/' + \

 relativeTestFolder

 else:

 behaveTestFolder = os.getcwd()

 return behaveTestFolder

276

Let's refactor the above code so that the if and else statements are inverted:

def getBehaveTestFolder(relativeTestFolder = ''):

 hostMountFolder = os.environ.get("HOST_MOUNT_FOLDER")

 if hostMountFolder is None:

 behaveTestFolder = os.getcwd()

 else:

 finalHostMountFolder = hostMountFolder

 if hostMountFolder.startswith("/mnt/c/"):

 finalHostMountFolder = hostMountFolder.replace("/mnt/c/", \

 "/c/", 1)

 behaveTestFolder = finalHostMountFolder + '/' + \

 relativeTestFolder

 return behaveTestFolder

Below is another example in C++:

if (somePointer != nullptr)

{

 // Do thing 1

}

else

{

 // Do thing 2

}

We should not have a negation in the if-statement's condition. Let's refactor the above example:

if (somePointer == nullptr)

{

 // Do thing 2

}

else

{

 // Do thing 1

}

Static Code Analysis Principle

Let the computer find bugs and issues in the code for you.

Static code analysis tools find bugs and design-related issues on your behalf. Use multiple static
code analysis tools to get the full benefit. Different tools might detect different issues. Using static
code analysis tools frees people's time in code reviews to focus on things that automation cannot
tackle.

Below is a list of some common static code analysis tools for different languages:

277

• Java

• Jetbrains IntelliJ IDEA IDE inspections

• SonarLint

• SonarQube/SonarCloud

• C++

• Jetbrains CLion IDE inspections

• Clang-Tidy

• MISRA C++ 2008 guidelines

• CppCheck

• SonarLint

• SonarQube/SonarCloud

• TypeScript

• Jetbrains WebStorm IDE inspections

• ESLint (+ various plugins, like TypeScript plugin)

• SonarLint

• SonarQube/SonarCloud

Infrastructure and deployment code should be treated the same way as source code. Remember to
run static code analysis tools on your infrastructure and deployment code, too. Several tools are
available for analyzing infrastructure and deployment code, like Checkcov, which can be used for
analyzing Terraform, Kubernetes, and Helm code. Helm tool contains a linting command to analyze
Helm chart files, and Hadolint is a tool for analyzing Dockerfiles statically.

Common Static Code Analysis Issues

Issue Description/Solution

 Chain of instance of checks

This issue indicates a chain of conditionals in favor
of object-oriented design. Use the replace
conditionals with polymorphism refactoring
technique to solve this issue.

Feature envy Use the don't ask, tell principle from the previous
chapter to solve this issue.

Use of concrete classes Use the program against interfaces principle from
the previous chapter to solve this issue.

Assignment to a function argument
Don't modify function arguments but introduce a
new variable. You can avoid this issue in Java by
declaring function parameters as final.

278

 Commented-out code
Remove the commented-out code. If you need that
piece of code in the future, it is available in the
version control system forever.

Const correctness
Make variables and parameters const or final
whenever possible to achieve immutability and
avoid accidental modifications.

Nested switch statement Use switch statements mainly only in factories. Do
not nest them.

Nested conditional expression Conditional expression (?:) should not be nested
because it greatly hinders the code readability.

Overly complex boolean expression
Split the boolean expression into parts and
introduce constants to store the parts and the final
expression.

Expression can be simplified This can be refactored automatically by the IDE.

Switch statement without default branch

Always introduce a default branch and throw an
exception from there. Otherwise, when you are using
a switch statement with an enum, you might
encounter strange problems after adding a new
enum value that is not handled by the switch
statement.

Law of Demeter

The object knows too much. It is coupled to the
dependencies of another object, which creates
additional coupling and makes code harder to
change.

Reuse of local variable
Instead of reusing a variable for a different purpose,
introduce a new variable. That new variable can be
named appropriately to describe its purpose.

Scope of variable is too broad Introduce a variable only just before it is needed.

Protected field

Subclasses can modify the protected state of the
superclass without the superclass being able to
control that. This is an indication of breaking the
encapsulation and should be avoided.

Breaking the encapsulation: Return of modifiable/
mutable field

Use the Don't leak modifiable internal state outside
an object principle from the previous chapter to
solve this issue.

Breaking the encapsulation: Assignment from a
method parameter to a modifiable/mutable field

Use the Don't assign from a method parameter to a
modifiable field principle from the previous chapter
to solve this issue.

Non-constant public field Anyone can modify a public field. This breaks the
encapsulation and should be avoided.

Issue Description/Solution

279

Error/Exception Handling Principle

Many languages like C++, Java, and TypeScript have an exception-handling mechanism that can
handle errors and exceptional situations. First of all, I want to make a clear distinction between
these two words:

An error is something that can happen, and one should be prepared for it. An exception is
something that should never happen.

You define errors in your code and raise them in your functions. For example, if you try to write to a
file, you must be prepared for the error that the disk is full, or if you are reading a file, you must be
prepared for the error that the file does not exist (anymore).

Many errors are recoverable. You can delete files from the disk to free up some space to write to a
file. Or, in case a file is not found, you can give a "file not found" error to the user, who can then
retry the operation using a different file name, for example. Exceptions are something you don't
usually define in your application, but the system raises them in exceptional situations, like when a
programming error is encountered.

An exception can be raised, for example, when memory is low, and memory allocation cannot be
performed, or when a programming error results in an array index out of bounds or null pointer.
When an exception is thrown, the program cannot continue executing normally and might need to
terminate. This is why many exceptions can be categorized as unrecoverable errors. In some cases,
it is possible to recover from exceptions. Suppose a web service encounters a null pointer exception
while handling an HTTP request. In that case, you can terminate the handling of the current
request, return an error response to the client, and continue handling further requests normally. It
depends on the software component how it should handle exceptional situations.

Do not confuse errors here with Java errors (inherited from the Error class). They are fatal errors
that indicate a severe problem, a panic situation. As the Java documentation says, you should not
catch these fatal errors in your code. Using the word "Error" in the class name to indicate a fatal
situation is a wrong design decision made by the Java creators. A better name would have been a
FatalException, for example.

Overly broad catch-block

This can indicate a wrong design. Don't catch the
language's base exception class if you should only
catch your application's base error class, for
example. Read more about handling exceptions in
the next section.

Issue Description/Solution

280

Errors define situations where the execution of a function fails for some reason. Typical examples of
errors are a file not found error, an error in sending an HTTP request to a remote service, or failing
to parse a configuration file. Suppose a function can throw an error. Depending on the error, the
function caller can decide how to handle the error. In case of transient errors, like a failing network
request, the function caller can wait a while and call the function again. Or, the function caller can
use a default value. For example, if a function tries to load a configuration file that does not exist, it
can use some default configuration instead. And in some cases, the function caller cannot do
anything but leave the error unhandled or catch the error but throw another error at a higher level
of abstraction. Suppose a function tries to load a configuration file, but the loading fails, and no
default configuration exists. In that case, the function cannot do anything but pass the error to its
caller. Eventually, this error bubbles up in the call stack, and the whole process is terminated due to
the inability to load the configuration. This is because the configuration is needed to run the
application. Without configuration, the application cannot do anything but exit.

When defining error classes, define a base error class for your software component. For example,
for the data exporter microservice, define a DataExporterError base error class. For each
function that can throw, define a base error class at the same abstraction level as the function. That
error class should extend the software component's base error class. For example, if you have a
parse(configStr) function in the ConfigParser class, define a base error class for the
function with the name ConfigParseError. If you have a readFile function, define a base error
class with the name FileReadError. If you have a class where all methods can throw an error, it
might be better to define a base error class at the class level. For example, if you have a
UserService class with throwing methods, you can specify a UserServiceError class and
throw an error of that class from the UserService class methods.

Below is an example of errors defined for the data exporter microservice:

public class DataExporterError extends RuntimeException {

 public DataExporterError(final String message) {

 super(message);

 }

}

public class FileReadError extends DataExporterError {

 public FileReadError(final String message) {

 super(message);

 }

}

public class ConfigParseError extends DataExporterError {

 public ConfigParseError(final String message) {

 super(message);

 }

}

Following the previous rules makes it easy to catch errors in the code because you can infer the
error class name from the called method (or class) name. In the below example, we can infer the
FileReadError error class name from the readFile method name:

281

try {

 final String fileContents = fileReader.readFile(...);

} catch (final FileReadError error) {

 // Handle error

}

You can also catch all user-defined errors using the software component's base error class in the
catch clause. The below two examples have the same effect.

try {

 final String configFileContents = fileReader.readFile(...);

 return configParser.parse(configFileContents);

} catch (final FileReadError | ConfigParseError error) {

 // Handle error situation

}

try {

 final String configFileContents = fileReader.readFile(...);

 return configParser.parse(configFileContents);

} catch (final DataExporterError error) {

 // Handle error situation

}

Don't catch the language's base exception class or some other too-generic exception class because
that will catch, in addition to all user-defined errors, exceptions, like null pointer exceptions, which
is probably not what you want. So, do not catch a too-generic exception class like this:

try {

 final String configFileContents = fileReader.readFile(...);

 return configParser.parse(configFileContents);

} catch (final Exception exception) {

 // Do not use! Catches all exceptions

}

Also, do not catch the Throwable class in Java because it will also catch any fatal errors that are
not meant to be caught:

try {

 final String configFileContents = fileReader.readFile(...);

 return configParser.parse(configFileContents);

} catch (final Throwable throwable) {

 // Do not use! Catches everything including

 // all exceptions and fatal errors

}

Catch all exceptions only in special places in your code, like in the main function or the main loop,
like the loop in a web service processing HTTP requests or the main loop of a thread. Below is an
example of correctly catching the language's base exception class in the main function. When you
catch an unrecoverable exception in the main function, log it and exit the process with an
appropriate error code. When you catch an unrecoverable error in a main loop, log it and continue
the loop if possible.

282

public static void main(final String[] args) {

 // ...

 try {

 dataExporter.run(...);

 } catch (final Exception exception) {

 logger.log(exception);

 System.exit(1);

 }

}

You can also make your software component throw exceptions if needed. In the below example, we
have created a base exception class for the data exporter microservice and derived one specific
exception from it:

public class DataExporterException extends RuntimeException {

 public DataExporterException(final String message) {

 super(message);

 }

}

public class MySpecificException extends DataExporterException {

 public MySpecificException(final String message) {

 super(message);

 }

}

Using the above-described rules, you can make your code future-proof or forward-compatible so
that adding new errors to be thrown from a function in the future is possible. Let's say that you are
using a fetchConfig function like this:

try {

 final var configuration = configFetcher.fetchConfig(configUrl);

} catch (final ConfigFetchError error) {

 // Handle error

}

Your code should still work if a new type of error is thrown from the fetchConfig function. Let's
say that the following new errors could be thrown from the fetchConfig function:

• Malformed URL error

• Server not found error

• Connection timeout error

When classes for these new errors are implemented, they must extend the function's base error
class, in this case, the ConfigFetchError class. Below are the new error classes defined:

public class MalformedConfigUrlError extends ConfigFetchError {

 public MalformedConfigUrlError(final String message) {

 super(message);

 }

}

283

public class ConfigServerNotFoundError extends ConfigFetchError {

 public ConfigServerNotFoundError(final String message) {

 super(message);

 }

}

public class ConfigFetchTimeoutError extends ConfigFetchError {

 public ConfigFetchTimeoutError(final String message) {

 super(message);

 }

}

You can later enhance your code and handle different errors thrown from the fetchConfig
differently. For example, you might want to handle a ConfigFetchTimeoutError so that the
function will wait a while and then retry the operation because the error can be transient:

try {

 final var configuration = configFetcher.fetchConfig(configUrl);

} catch (final ConfigFetchTimeoutError error) {

 // Retry after a while

} catch (final MalformedConfigUrlError error) {

 // Inform caller that URL should be checked

} catch (final ConfigServerNotFoundError error) {

 // Inform caller that URL host/port cannot be reached

} catch (final ConfigFetchError error) {

 // Handle possible other error situations

 // This will catch any new exception that could be thrown

 // from the 'fetchConfig' function in the future

}

In the above examples, we handled thrown errors correctly, but you can easily forget to handle a
thrown error. This is because nothing in the function signature tells you whether the function can
throw or not. The only way to find out is to check the documentation (if available) or investigate the
source code (if available). This is one of the biggest problems regarding error handling because you
must know and remember that a function can throw, and you must remember to catch and handle
errors. You don't always want to handle an error immediately, but still, you must be aware that the
error will bubble up in the call stack and should be dealt with eventually somewhere in the code.

The solution to this problem is to make throwing errors more explicit:

Use a try prefix in the function name if the function can throw an error.

This is a straightforward rule. If a function can throw an error, name the function so that its name
starts with try. This makes it clear to every caller that the function can throw an error, and the
caller should be prepared for that. For the caller of the function, there are three alternatives to deal
with a thrown error:

1. Catch the base error class of the called function (or class or software component) and handle the
error, e.g., catch DataFetchError if you are calling a function named tryFetchData.

2. Catch the base error class of the called function (or class or software component) and throw a

284

new error on a higher level of abstraction. Now you also have to name the calling function with a
try prefix.

3. Don't catch errors. Let them propagate upwards in the call stack. Now you also have to name the
calling function with a try prefix.

Here is an example of alternative 1:

public class ConfigFetcher {

 public Configuration fetchConfig(final String configUrl) {

 try {

 final var configDataStr = dataFetcher.tryFetchData(configUrl);

 return configParser.tryParse(configDataStr);

 } catch (final DataFetchError | ConfigParseError error) {

 // You could also catch DataFetchError and

 // ConfigParseError in different catch clauses

 // if their handling differs

 // You could also catch the base error class DataExporterError

 // of the software component

 }

 }

}

And here is an example of alternative 2:

public class ConfigFetcher {

 public Configuration tryFetchConfig(final String configUrl) {

 try {

 final var configDataStr = dataFetcher.tryFetchData(configUrl);

 return configParser.tryParse(configDataStr);

 } catch (final DataFetchError | ConfigParseError error) {

 // Error on higher level of abstraction is thrown

 // This function must be named with the 'try' prefix

 // to indicate that it can throw

 throw new ConfigFetchError(...);

 }

 }

}

public class DataExporter {

 public void initialize(...) {

 try {

 final var configuration = configFetcher.tryFetchConfig(...);

 } catch (final ConfigFetchError error) {

 // Handle error

 }

 }

}

And here is an example of alternative 3:

public class ConfigFetcher {

 public Configuration tryFetchConfig(final String configUrl) {

 final var configDataStr = dataFetcher.tryFetchData(configUrl);

 return configParser.tryParse(configDataStr);

 // No try-catch, all thrown errors from both tryFetchData

285

 // and tryParseConfiguration function calls propagate

 // to the caller and

 // this function must be named with the 'try' prefix

 // to indicate that it can throw

 }

}

public class DataExporter {

 public void initialize(...) {

 try {

 final var configuration = configFetcher.tryFetchConfig(...);

 } catch (final DataExporterError error) {

 // In this case you must catch the base error class of

 // the software component (DataExporterError), because

 // you don't know what errors tryFetchConfig can

 // throw, because no ConfigFetchError class

 // has been defined

 }

 }

}

As a side note, a linting rule that enforces the correct naming of throwing functions could be
developed. The rule should force the function name to have a try prefix if the function throws or
propagates errors. A function propagates errors when it calls a throwing (try-prefixed) method
outside a try-catch block.

You can also create a library that has try-prefixed functions that wrap throwing functions that don't
follow the try-prefix rule:

JsonParser.js

export default class JsonParser {

 static tryParse(json, reviver) {

 return JSON.parse(json, reviver);

 }

}

When using a web framework, the framework usually provides an error-handling mechanism. The
framework catches an error and maps it to an HTTP response with an HTTP status code indicating
a failure. Typically the default status code is 500 Internal Server Error. For example, when using
Spring Boot, you can mark your custom error classes with a @ResponseStatus annotation:

@ResponseStatus(HttpStatus.BAD_REQUEST)

class MyError extends RuntimeException {

 // ...

}

There are also alternative ways to map errors to HTTP responses in the Spring framework.

When you utilize a web framework's error-handling mechanism, there is no benefit in naming
throwing functions with the try-prefix. You can opt out of the try-prefix rule.

It is usually a good practice to document the used error handling mechanism in the software

286

component documentation.

Handling Checked Exceptions in Java

You can use checked exceptions in Java when defining your software component's errors. Using
checked exceptions helps you to remember to handle errors or let them propagate upwards in the
call stack.

When using Java's checked exceptions, define the software component's base error class to extend
the Exception class instead of the RuntimeException class. When a function throws a checked
exception, it is unnecessary to prefix the function name with the try prefix. Below is an example of
defining checked exceptions:

public class DataExporterError extends Exception {

 public DataExporterError(final String message) {

 super(message);

 }

}

public class DataFetchError extends DataExporterError {

 public DataFetchError(final String message) {

 super(message);

 }

}

public class ConfigParseError extends DataExporterError {

 public ConfigParseError(final String message) {

 super(message);

 }

}

public class InitializationError extends DataExporterError {

 public InitializationError(final String message) {

 super(message);

 }

}

public class DataFetcher {

 public String fetchData(...)

 throws DataFetchError {

 // ...

 }

}

public class ConfigParser {

 public Configuration parse(...)

 throws ConfigParseError {

 // ...

 }

}

public class DataExporter {

 public void initialize(...) throws InitializationError {

 try {

 final var configDataStr = dataFetcher.fetchData(configUrl);

287

 final var configuration = configParser.parse(configDataStr);

 // ...

 } catch (final DataFetchError | ConfigParseError error) {

 throw new InitializationError(error);

 }

 }

}

Later, it is possible to modify the implementation of the parse function to throw other errors that
derive from the ConfigParseError class. This kind of change does not require modifications to
other parts of the codebase.

On higher levels of the software component code, you can also use the base error class of the
software component in the throws clause to propagate errors upwards in the call stack:

public class DataExporter {

 public void initialize(...) throws DataExporterError {

 final var configDataStr = dataFetcher.fetchData(configUrl);

 final var configuration = configParser.parse(configDataStr);

 // ...

 }

}

Returning Errors

As an alternative to throwing errors, it is possible to communicate erroneous behavior to the
function caller using a return value. Using an exception-handling mechanism provides some
advantages over returning errors. When a function can return an error, you must always check for
the error right after the function call. This can cause the code to contain nested if-statements, which
hinders code readability. The exception-handling mechanism allows you to propagate an error to a
higher level in the call stack. You can also execute multiple function calls that can fail inside a single
try block and provide a single error handler in the catch block. Some languages do not provide an
exception-handling mechanism meaning you must return errors from functions. In languages like
C++, you can optimize mission-critical code by returning error values or indicators instead of
throwing exceptions.

Returning Failure Indicator

You can return a failure indicator from a failable function when the function does not need to
return any additional value. It is enough to return a failure indicator from the function when there
is no need to return any specific error code or message. This can be because there is only one reason
the function can fail, or function callers are not interested in error details. To return a failure
indicator, return a boolean value from the function: true means a successful operation, and false
indicates a failure:

288

bool performTask(...)

{

 bool taskWasPerformed;

 // Perform the task and set the value of 'taskWasPerformed'

 return taskWasPerformed;

}

Returning an Optional Value

Suppose a function should return a value, but the function call can fail, and there is precisely one
cause why the function call can fail. In this case, return an optional value from the function. In the
below example, getting a value from the cache can only fail when no value for a specific key is
stored in the cache. We don't need to return any error code or message.

Cache.java

public interface Cache<K, V> {

 void add(K key, V value);

 Optional<V> get(K key);

}

Returning an Error Object

When you need to provide details about an error to a function caller, you can return an error object
from the function:

BackendError.ts

export type BackendError = {

 statusCode: number;

 errorCode: number;

 message: string;

};

If a function does not return any value but can produce an error, you can return either an error
object or null in languages that have null defined as a distinct type and the language supports
type unions (e.g., TypeScript):

DataStore.ts

export interface DataStore {

 updateEntity<T extends Entity>(...):

 Promise<BackendError | null>;

}

Alternatively, return an optional error. Below is an example in Java:

import lombok.experimental.Value;

@Value

public class BackendError {

289

 int statusCode;

 int errorCode;

 String message;

}

public interface DataStore {

 <T extends Entity> Optional<BackendError> updateEntity(...);

}

Suppose a function needs to return a value or an error. In that case, you can use a 2-tuple (i.e., a
pair) type, where the first value in the tuple is the actual value or null in case of an error and the
second value in the tuple is an error object or null value in case of a successful operation. Below
are examples in TypeScript and Java. In the Java example, you, of course, need to return optionals
instead of nulls.

DataStore.ts

export class DataStore {

 createEntity<T extends Entity>(...):

 Promise<[T, null] | [null, BackendError]>;

}

DataStore.java

import org.javatuples.Pair;

public interface DataStore {

 <T extends Entity> Pair<Optional<T>, Optional<BackendError>>

 createEntity(...);

}

The above Java example is cumbersome to use, and the type definition looks long. We should use
an Either type here, but Java does not have that. Either type contains one of two values, either a
left value or a right value. The left value is the value returned by the function when the operation is
successful, and the right value is an error. The Either type can be defined as follows:

Either.java

public class Either<L, R>

{

 private final Optional<L> maybeLeftValue;

 private final Optional<R> maybeRightValue;

 private Either(

 final Optional<L> maybeLeftValue,

 final Optional<R> maybeRightValue

) {

 this.maybeLeftValue = maybeLeftValue;

 this.maybeRightValue = maybeRightValue;

 }

 public static <L, R> Either<L, R> withLeft(

 final L value

) {

 return new Either<>(Optional.of(value), Optional.empty());

 }

290

 public static <L, R> Either<L, R> withRight(

 final R value

) {

 return new Either<>(Optional.empty(), Optional.of(value));

 }

 public boolean hasLeftValue() {

 return maybeLeftValue.isPresent();

 }

 public <T> Either<T, R> mapLeft(

 Function<? super L, ? extends T> mapper

) {

 return new Either<>(maybeLeftValue.map(mapper),

 maybeRightValue);

 }

 public <T> Either<L, T> mapRight(

 Function<? super R, ? extends T> mapper)

 {

 return new Either<>(maybeLeftValue,

 maybeRightValue.map(mapper));

 }

 public <T> T map(

 Function<? super L, ? extends T> leftValueMapper,

 Function<? super R, ? extends T> rightValueMapper)

 {

 return maybeLeftValue.<T>map(leftValueMapper)

 .orElseGet(() ->

 maybeRightValue.map(rightValueMapper).get());

 }

 public void apply(

 Consumer<? super L> leftValueConsumer,

 Consumer<? super R> rightValueConsumer

) {

 maybeLeftValue.ifPresent(leftValueConsumer);

 maybeRightValue.ifPresent(rightValueConsumer);

 }

}

Now we can use the new Either type and rewrite the example as follows:

DataStore.java

public interface DataStore {

 <T extends Entity> Either<T, BackendError> createEntity(...);

}

Adapt to Wanted Error Handling Mechanism

You can adapt to a desired error-handling mechanism by creating an adapter method. For example,
if a library has a throwing method, you can create an adapter method returning an optional value or
error object. Below is a tryCreate factory method in a VInt class that can throw:

VInt.ts

class VInt {

291

 // ...

 private constructor(...) {

 // ...

 }

 // this will throw if invalid 'value' is given

 // that doesn't match the 'validationSpec'

 static tryCreate<VSpec extends string>(

 validationSpec: IntValidationSpec<VSpec>,

 value: number

): VInt<VSpec> | never {

 // constructor can throw

 return new VInt(validationSpec, value);

 }

 // ...

}

We can create a VIntFactory class with an adapter method for the tryCreate factory method in
the VInt class. The VIntFactory class offers a non-throwing create method:

VIntFactory.ts

class VIntFactory {

 static create<VSpec extends string>(

 validationSpec: IntValidationSpec<VSpec>,

 value: number

): VInt<VSpec> | null {

 try {

 return VInt.tryCreate(validationSpec, value);

 } catch {

 return null;

 }

 }

}

We can also create a method that does not throw but returns either a value or an error:

VIntFactory.ts

class VIntFactory {

 static createOrError<VSpec extends string>(

 validationSpec: IntValidationSpec<VSpec>,

 value: number

): [VInt<VSpec>, null] | [null, Error] {

 try {

 return [VInt.tryCreate(validationSpec, value), null];

 } catch (error) {

 return [null, error as Error];

 }

 }

}

We can also introduce a simplified version of the Either type for TypeScript:

Either.ts

export type Either<L, R> = [L, null] | [null, R];

292

Now we can rewrite the above example like this:

VIntFactory.ts

class VIntFactory {

 static createOrError<VSpec extends string>(

 validationSpec: IntValidationSpec<VSpec>,

 value: number

): Either<VInt<VSpec>, Error> {

 try {

 return [VInt.tryCreate(validationSpec, value), null];

 } catch (error) {

 return [null, error as Error];

 }

 }

}

Asynchronous Function Error Handling

Asynchronous functions are functions that usually can fail. They often execute I/O operations like
file or network I/O. For a failable asynchronous operation, you must remember to handle the
failure case. For this reason, it is suggested to name a failable asynchronous operation using the
same try prefix used in function names that can throw. Below are two examples of handling an
asynchronous operation failure in JavaScript/TypeScript:

tryMakeHttpRequest(url).then((value) => {

 // success

}, (error) => {

 // Handle error

});

tryMakeHttpRequest(url).then((value) => {

 // success

}).error((error) => {

 // Handle error

});

As you can see from the above examples, it is easy to forget to add the error handling. It would be
better if there was a thenOrCatch method in the Promise class that accepted the following kind
of callback:

tryMakeHttpRequest(url).thenOrCatch(([value, error]) => {

 // Now it is harder to forget to handle an error

 // Check 'error' before using the 'value'

});

You can make asynchronous function calls synchronous. In JavaScript/TypeScript, this can be done
using the async and await keywords. A failable asynchronous operation made synchronous can
throw. Below is the same example as above made synchronous:

async function fetchData() {

293

 try {

 await tryMakeHttpRequest(url);

 } catch {

 // Handle error

 }

}

Functional Exception Handling

The below Failable<T> class can be used in functional error handling. A Failable<T> object
represents either a value of type T or an instance of the RuntimeException class.

Failable.java

public class Failable<T> {

 private final Either<T, RuntimeException> valueOrError;

 private Failable(

 final Either<T, RuntimeException> valueOrError

) {

 this.valueOrError = valueOrError;

 }

 public static <T> Failable<T> withValue(

 final T value

) {

 return new Failable<>(Either.withLeft(value));

 }

 public static <T> Failable<T> withError(

 final RuntimeException error

) {

 return new Failable<>(Either.withRight(error));

 }

 public T orThrow(

 final Class<? extends RuntimeException> ErrorClass

) {

 return valueOrError.map(

 (value) -> value,

 (error) -> {

 try {

 throw (RuntimeException)ErrorClass

 .getConstructor(String.class)

 .newInstance(error.getMessage());

 } catch (InvocationTargetException |

 InstantiationException |

 IllegalAccessException |

 IllegalArgumentException |

 NoSuchMethodException exception) {

 throw new RuntimeException(exception);

 }

 });

 }

 public T orElse(final T otherValue) {

 return valueOrError.map(value -> value,

 error -> otherValue);

 }

294

 public <U> Failable<U> mapValue(

 final Function<? super T, ? extends U> mapper

) {

 return new Failable<>(valueOrError.mapLeft(mapper));

 }

 public Failable<T> mapError(

 final Function<? super RuntimeException,

 ? extends RuntimeException> mapper

) {

 if (valueOrError.hasLeftValue()) {

 final var error =

 new RuntimeException(mapper

 .apply(new RuntimeException(""))

 .getMessage());

 return Failable.withError(error);

 } else {

 return new Failable<>(valueOrError.mapRight(mapper));

 }

 }

}

In the below example, the readConfig method returns a Failable<Configuration>. The
tryInitialize function either obtains an instance of Configuration or throws an error of
type InitializationError.

public void tryInitialize() {

 final var configuration = configReader

 .readConfig(...)

 .orThrow(InitializationError.class);

}

The benefit of the above functional approach is that it is shorter than an entire try-catch block. The
above functional approach is also as understandable as a try-catch block. Remember that you
should write the shortest, most understandable code. When a method returns a failable, you don’t
have to name the method with the try prefix because the method does not throw.

You can also use other methods of the Failable class. For example, a default value can be
returned with the orElse method:

public void initialize() {

 final var configuration = configReader

 .readConfig(...)

 .orElse(new DefaultConfiguration());

}

You can also transform multiple imperative failable statements into functional failable statements.
For example, instead of writing:

public void tryInitialize() {

 try {

 final var configDataStr = dataFetcher.tryFetchData(configUrl);

 final var configuration = configParser.tryParse(configDataStr);

295

 } catch (final DataExporterError error) {

 throw new InitializationError(error.getMessage());

 }

}

You can write:

public void tryInitialize() {

 try {

 final var configuration = dataFetcher

 .fetchData(configUrl)

 .mapValue(configParser::parse)

 .orThrow(InitializationError.class);

}

It is error-prone to use failable imperative code together with functional programming constructs.
Let's assume we have the below TypeScript code that reads and parses multiple configuration files
to a single configuration object:

configFilePathNames

 .reduce((accumulatedConfig, configFilePathName) => {

 const configJson = fs.readFileSync(configFilePathName, 'utf-8');

 const configuration = JSON.parse(configJson);

 return { ...accumulatedConfig, ...configuration };

}, {});

In the above example, it is easy to forget to handle errors because the throwability of the reduce
function depends on the supplied callback function. We cannot use the try-prefix anywhere in the
above example. What we can do is the following:

function tryReadConfig(

 accumulatedConfig: Record<string, unknown>,

 configFilePathName: string

) {

 const configJson = fs.readFileSync(configFilePathName, 'utf-8');

 const configuration = JSON.parse(configJson);

 return { ...accumulatedConfig, ...configuration };

}

export function getConfig(

 configFilePathNames: string[]

): Record<string, unknown> {

 try {

 return configFilePathNames.reduce(tryReadConfig, {});

 } catch (error) {

 // ...

 }

}

We have now added the try prefix, but the code could read better. A better alternative is to use a
functional programming construct, Failable<T>, to return a failable configuration. The
Failable<T> class implementation in TypeScript is not presented here, but it can be
implemented similarly to Java. Below is an example of using the Failable<T> class:

296

function accumulatedConfigOrError(

 accumulatedConfigOrError: Failable<Record<string, unknown>>,

 configFilePathName: string

): Failable<Record<string, unknown>> {

 try {

 const configJson = fs.readFileSync(configFilePathName, 'utf-8');

 const config = JSON.parse(configJson);

 return accumulatedConfigOrError.mapValue(accumulatedConfig =>

 ({ ...accumulatedConfig, ...config }));

 } catch (error: any) {

 return accumulatedConfigOrError.mapError(accumulatedError =>

 new Error(`${accumulatedError.message}\n${error.message}`)

);

 }

}

export function getConfig(

 configFilePathNames: string[]

): Failable<Record<string, unknown>> {

 return configFilePathNames.reduce(

 accumulatedConfigOrError,

 Failable.withValue({})

);

}

Stream Error Handling

Handling errors for a stream is also something that can be easily forgotten. Streams are usually
used for I/O operations that can fail. You should be prepared for error handling when using a
stream. In JavaScript/TypeScript, an error handler for a stream can be registered using the
stream's on method in the following way: stream.on('error', () => { ... }).

Below is an example of using a stream:

// ...

const writeStream = fs.createWriteStream(filePathName);

this.writeStream.on('error', (error) => {

 // Handle errors

});

writeStream.write(...);

// More writes...

writeStream.close();

How could we improve developer experience with streams, so that error handling is not forgotten?
One solution is to add an error handler callback parameter to the stream factory method. This
callback will be called upon an error. If no error handling is needed, a null value could be given for
the callback. This way, a developer creating a stream can't forget to supply an error handler
function.

297

 Don't Pass or Return Null Principle

This principle is for languages like Java and C++ that don't implement null values as separate
types. TypeScript implements nulls as distinct types when the strictNullChecks configuration
parameter is set to true, and you should always set it to true. So, this principle does not apply to
TypeScript.

The null value is the misguided invention of British computer scientist Tony Hoare who coined his
invention of null references as a "billion-dollar mistake". The reason is quite evident because we all
have done it: forgetting to handle a null value. And when we don't handle a null value, we pass it to
other functions that never expect to be called with a null value. Eventually, this will lead to a null
value exception thrown somewhere in the code.

When you return a value from a function, never return a null value. You should return an optional
value instead. In the below example, we are returning an optional value for a key in a map because
there can be no value associated with a particular key in the map.

// BAD!

public class Map<K, V> {

 public V get(final K key) {

 if (...) {

 // ...

 } else {

 return null;

 }

 }

}

// GOOD!

public class Map<K, V> {

 public Optional<V> get(final K key) {

 // ...

 }

}

When you pass arguments to a function, never pass a null value. The called function usually never
expects to be called with null arguments. Suppose a function expects an argument that can be
missing. In that case, the function can define a default value for that argument (possible in C++ and
JavaScript/TypeScript, but not in Java), or an overloaded function can be defined where the
optional argument is not present. A function can also be defined so that an argument has an
optional type, but you should prefer an optional parameter or an overloaded version of the
function.

298

Avoid Off-By-One Errors Principle

Off-by-one errors usually result from the fact that collections in programming languages are
indexed with zero-based indexes. Zero-based indexing is unnatural for human beings but excellent
for computers. However, programming languages should be designed with humans in mind. People
never speak about getting the zeroth value of an array. We speak of getting the first value in the
array. As the null value was called a billion-dollar mistake, I would call the zero-based indexing
another billion-dollar mistake. Let's hope that someday we get a programming language with one-
based indexing! But then we must unlearn the zero-based indexing habit...and that's another
problem.

Below are two examples of programming errors in JavaScript that are easy to make if you are not
careful enough:

for (let index = 0; index <= array.length; index++) {

 // ...

}

for (let index = 0; index < array.length - 1; index++) {

 // ...

}

In the first example, there should be '<' instead of '<=', and in the latter example, there should be
'<=' instead of '<'. Fortunately, the above mistakes can be avoided using modern programming
language constructs like Java's enhanced for-loop or C++'s range-based for-loop or functional
programming.

Below are two examples of avoiding off-by-one errors in Java:

for (final var value : values) {

 // ...

}

values.stream().forEach(value -> ...);

Some languages, like JavaScript, offer a nice way to access an array's last element(s). Instead of
writing array[array.length - 1], you can write array.at(-1). And similarly,
array[array.length - 2] is the same as array.at(-2). You can think that a negative index
is a one-based index starting from the end of an array.

Let's consider the description of JavaScript's slice method:

The slice() method returns a shallow copy of a portion of an array into a new array object
selected from start index to end index (end not included).

The problem here is the 'end not included' part. Many people, by default, think that if given a range,
it is inclusive, but in the case of the slice method, it is inclusive at the beginning and exclusive at

299

the end: [start, end[. This kind of function definition that is against first assumptions can
easily cause off-by-one errors. It would be better if the slice method by default works with an
inclusive range [start, end].

Additionally, unit tests are your friend when trying to spot off-by-one errors. So remember to write
unit tests for the edge cases, too.

Be Critical When Googling Principle

You should always analyze code taken from the web to see if it meets the criteria for
production code.

We all have done it, and we have done it hundreds of times: googled for answers. Usually, you find
good resources by googling, but the problem often is that examples in the googled results are not
necessarily production quality. One specific thing missing in them is error handling. If you copy and
paste code from a website, it is possible that errors are not handled appropriately. You should
always analyze the copy-pasted code to see if error handling needs to be added.

When you provide answers for other people, try to make the code as production-like as possible. In
Stack Overflow, you find the most up-voted answer right below the question. If the answer is
missing error handling, you can comment on that and let the author improve their answer. You can
also up-vote an answer that seems the most production ready. Usually, the most up-voted answers
are pretty old. For this reason, it is useful to scroll down to see if a more modern solution fits your
need better. And you can also up-vote that more modern solution so it will become ranked higher in
the list of answers.

Regarding open source libraries, the first examples in their documentation can describe only the
"happy path" usage scenario, and error handling is described only in later parts of the
documentation. This can cause problems if you copy-paste code from the "happy path" example
and forget to add error handling. For this reason, open-source library authors should give
production-quality examples early in the documentation.

Optimization Principle

Avoid premature optimization. Premature optimization may hinder crafting a proper object-
oriented design for a software component. Measure unoptimized performance first. Then
decide if optimization is needed. Implement optimizations one by one and measure the
performance after each optimization round to determine if the optimization matters. You can
then utilize gained knowledge in future projects only to make optimizations that give a

300

significant enough performance boost. Sometimes you can make performance optimization
in an early phase of a project if you know that a particular optimization is needed (e.g., from
previous experience) and the optimization can be implemented without negatively affecting
the object-oriented design.

Optimization Patterns

The following optimization patterns are described in this section:

• Optimize busy loops only pattern

• Remove unnecessary functionality pattern

• Copy memory in chunks pattern (C++)

• Object pool pattern

• Replace virtual methods with non-virtual methods pattern (C++)

• Inline methods pattern (C++)

• Use unique pointer pattern (C++)

• Share identical objects a.k.a flyweight pattern

Optimize Busy Loops Only Pattern

Optimizations should primarily target only the busy loop or loops in a software component. Busy
loops are the loops in threads that execute over and over again, possibly thousands or more
iterations in a second. Performance optimization should not target functionality that executes only
once or a couple of times during the software component's lifetime, and running that functionality
does not take a long time. For example, an application can have configuration reading and parsing
functionality when it starts. This functionality takes a short time to execute. It is not reasonable to
optimize that functionality because it runs only once. It does not matter if you can read and parse
the configuration in 200 or 300 milliseconds, even if there is a 50% difference in performance.

Let's use the data exporter microservice as an example. Our data exporter microservice consists of
input, transformer, and output parts. The input part reads messages from a data source. We cannot
affect the message reading part if we use a 3rd party library for that purpose. Of course, if multiple
3rd party libraries are available, it is possible to craft performance tests and evaluate which 3rd
party library offers the best performance. If there are several 3rd party libraries available for the
same functionality, we tend to use the most popular library or a library we know beforehand. If
performance is an issue, we should evaluate different libraries and compare their performances.

The data exporter microservice has the following functionality in its busy loop: decode an input
message to an internal message, perform transformations, and encode an output message.
Decoding an input message requires decoding each field in the message. Let's say there are 5000
messages handled per second, and each message has 100 fields. During one second, 50000 fields

301

must be decoded. This reveals that the optimization of the decoding functionality is crucial. The
same applies to output message encoding. We at Nokia have implemented the decoding and
encoding Avro binary fields ourselves. We were able to make them faster than what was provided
by a 3rd party library.

Remove Unnecessary Functionality Pattern

Removing unnecessary functionality is something that will boost performance. You should stop to
think critically about your software component: Is my software component doing only the
necessary things considering all circumstances?

Let's consider the data exporter's functionality. It is currently decoding an input message to an
internal message. This internal message is used when making various transformations to the data.
Transformed data is encoded to a wanted output format. The contents of the final output message
can be a small subset of the original input message. This means that only a tiny part of the decoded
message is used. In that case, it is unnecessary to decode all the fields of an input message if, for
example, only 10% of the fields are used in the transformations and output messages. By removing
unnecessary decoding, we can improve the performance of the data exporter microservice.

Copy Memory in Chunks Pattern (C++)

If you have a contiguous memory chunk, copy it using memcpy. Don't copy memory byte by byte in
a for-loop. The implementation of the memcpy function is optimized by a C++ compiler to produce
machine code that optimally copies various sizes of memory chunks. Instead of copying a memory
chunk byte by byte, it can, for example, copy memory as 64-bit values in a 64-bit operating system.

In the data exporter microservice, there is the possibility that the input message format and output
message format are the same, e.g., Avro binary. We can have a situation where an Avro record field
can be copied as such from an input message to an output message without any transformation. In
that case, decoding that record field is unnecessary functionality, and we can skip that. What we
will do instead is copy a chunk of memory. An Avro record field can be relatively large, even 200
bytes consisting of 40 subfields. We can now skip the decoding and encoding of those 40 subfields.
We simply copy 200 bytes from the input message to the output message.

Object Pool Pattern

In garbage-collected languages like JavaScript and Java, the benefit of using an object pool is clear
from the garbage-collection point of view. In the object pool pattern, objects are created only once
and then reused. This will take pressure away from garbage collection. If we didn't use an object
pool, new objects could be created in a busy loop repeatedly, and soon after they were created, they
could be discarded. This would cause many objects to be made available for garbage collection in a
short period of time. Garbage collection takes processor time, and if the garbage collector has a lot

302

of garbage to collect, it can slow the application down for an unknown duration at unknown
intervals.

Replace Virtual Methods with Non-Virtual Methods Pattern (C++)

If you are using a lot of calls to virtual functions in a busy loop, there will be some overhead in
checking which virtual method to call due to dynamic dispatch. In C++, this is done using virtual
tables (vtables) which are used to check which actual method will be called. The additional vtable
check can negatively affect performance in busy loops if virtual methods are called frequently. For
example, the data exporter microservice's busy can call an Avro binary decoding and encoding
function 50000 times a second. We could optimize these calls by implementing Avro binary
decoding functions as non-virtual (if previously declared as virtual functions). Non-virtual
functions don't need to check the vtable, so the call to the function is direct.

Inline Methods Pattern (C++)

Suppose you have made the optimization of making a virtual method non-virtual. One more
optimization could still be made if the method is small: inline the method. Inlining a method means
that calls to the method are eliminated, and the code of the method is placed at the sites where the
calls to the method are made. So, the method does not need to be called at all when it has been
inlined. In the data exporter microservice, we made the Avro binary encoding and decoding
functions non-virtual, and now we can make them also inlined to speed up the microservice.
However, a C++ compiler can decide whether an inline function is really inlined or not. We cannot
be 100% sure if the function is inlined. It's up to the compiler. When we define a function as an
inline function with the C++'s inline keyword, we are just giving a hint to the compiler that the
function should be inlined. Only non-virtual methods can be inlined. Virtual methods cannot be
inlined because they require checking the vtable to decide which method should be called.

Use Unique Pointer Pattern (C++)

If you are using shared pointers, they need to keep the reference count to the shared pointer up to
date. In a busy loop, if you use a shared pointer, say a hundred thousand times a second, it starts to
show a difference whether you use a shared pointer or a unique pointer (std::unique_ptr). A
unique pointer has little to no overhead compared to a raw pointer. For this reason, there is no
need to use a raw pointer in modern C++. It would not bring much to the table performance-wise.
And if you use a raw pointer, you must remember to release the allocated memory associated with
the raw pointer by yourself. If you don't need a pointed object to be shared by multiple other
objects, you can optimize your code in busy loops by changing shared pointers to unique pointers.
Unique pointers always have only one owner, and multiple objects cannot share them.

303

Share Identical Objects a.k.a Flyweight Pattern

If your application has many objects with some identical properties, those parts of the objects with
identical properties are wasting memory. You should extract the common properties to a new class
and make the original objects reference a shared object of that new class. Now your objects share a
single common object, and possibly significantly less memory is consumed. This design pattern is
called the flyweight pattern and was described in more detail in the earlier chapter.

304

Testing Principles

Testing is traditionally divided into two categories: functional and non-functional testing. This
chapter will first describe the functional testing principles and then the non-functional testing
principles.

Functional Testing Principles

Functional testing is divided into three phases:

• Unit testing

• Integration testing

• End-to-end (E2E) testing

Functional test phases can be described with the testing pyramid:

305

Figure 5.1 Testing Pyramid

The testing pyramid depicts the relative number of tests in each phase. Most tests are unit tests.
The second most tests are integration tests, and the fewest are E2E tests. Unit tests should cover the
whole codebase of a software component. Unit testing focuses on testing individual public functions
as units (of code). Software component integration tests cover the integration of the unit-tested
functions to a complete working software component, including testing the interfaces to external
services. Examples of external services are a database, a message broker, and other microservices.
E2E testing focuses on testing the end-to-end functionality of a complete software system.

Unit Testing Principle

Unit tests should test the functionality of public functions as isolated units with as high
coverage as possible. The isolation means that dependencies (other classes/modules/
services) are mocked.

Unit tests should be written for public functions only. Do not try to test private functions
separately. They should be tested indirectly when testing public functions. Below is a JavaScript
example:

parseConfig.js

import { doSomething } from 'other-module';

function readFile(...) {

 // ...

}

export default function parseConfig(...) {

 // ...

 // readFile(...)

 // doSomething(...)

 // ...

}

In the above module, there is one public function, parseConfig, and one private function,
readFile. In unit testing, you should test the public parseConfig function in isolation and mock
the doSomething function, which is imported from another module. And you indirectly test the
private readFile function when testing the public parseConfig function.

Below is the above example written in Java. You test the Java version in a similar way as the
JavaScript version. You write unit tests for the public parseConfig method only. Those tests will
test the private readFile function indirectly. You must supply a mock instance of the
OtherClass class for the ConfigParser constructor.

306

public class OtherClass {

 // ...

 public void doSomething(...) {

 // ...

 }

}

public class ConfigParser {

 private OtherClass otherClass;

 public ConfigParser(final OtherClass otherClass) {

 this.otherClass = otherClass

 }

 // ...

 public Configuration parseConfig(...) {

 // ...

 // readFile(...)

 // otherClass.doSomething(...)

 // ...

 }

 private String readFile(...) {

 // ...

 }

}

Unit tests should test all the functionality of a public function: happy path(s), possible failure
situations, and edge cases so that each code line of the function is covered by at least one unit test.

Below are some examples of edge cases listed:

• Are the last loop counter value correct? This test should detect possible off-by-one errors

• Test with an empty array

• Test with the smallest allowed value

• Test with the biggest allowed value

• Test with a negative value

• Test with a zero value

• Test with a very long string

• Test with an empty string

• Test with floating-point values having different precisions

• Test with floating-point values that are rounded differently

• Test with a very small floating-point value

• Test with a very large floating-point value

Unit tests should not test the functionality of dependencies. That is something to be tested with
integration tests. A unit test should test a function in isolation. If a function has one or more
dependencies on other functions defined in different classes (or modules), those dependencies

307

should be mocked. A mock is something that mimics the behavior of a real object or function.
Mocking will be described in more detail later in this section.

Testing functions in isolation has two benefits. It makes tests faster. This is a real benefit because
you can have a lot of unit tests, and you run them often, so it is crucial that the execution time of the
unit tests is as short as possible. Another benefit is that you don't need to set up external
dependencies, like a database, a message broker, and other microservices, because you are mocking
the functionality of the dependencies.

Test-Driven Development (TDD)

Test-Driven Development (TDD) is a software development process in which software
requirements are formulated as test cases before the software is implemented. This is as opposed to
the practice where software is implemented first, and test cases are written only after that.

I have been in the industry for almost 30 years, and when I began coding, there were no automated
tests or test-driven development. Only starting from 2010 have I been writing automated unit tests.
Due to this background, TDD has been quite difficult for me because there is something I have
grown accustomed to: Implement the software first and then do the testing. If you have also learned
it like that, switching to TDD can be quite hard.

The pure TDD cycle consists of the following steps:

1. Add a test for a specified functionality

2. Run all the tests (The just added test should fail because the functionality it is testing is not

implemented yet)

3. Write the simplest possible code that makes the tests pass

4. Run all the tests. (They should pass now)

5. Refactor as needed (Existing tests should ensure that anything won't break)

6. Start again from the first step until all functionality is implemented, refactored, and tested

Let's continue with an example. Suppose there is the following user story in the backlog waiting to
be implemented:

Parse configuration properties from a configuration string to a configuration object.
Configuration properties can be accessed from the configuration object.

Let's first write a test for the specified functionality:

308

ConfigParserTests.java

public class ConfigParserTests {

 private final ConfigParser configParser = new ConfigParserImpl();

 @Test

 public void testParse() {

 // GIVEN

 final var configStr = "propName1=value1\npropName2=value2";

 // WHEN

 final var configuration = configParser.parse(configStr);

 // THEN

 assertEquals(configuration.getPropertyValue("propName1"),

 "value1");

 assertEquals(configuration.getPropertyValue("propName2"),

 "value2");

 }

}

Now, if we run all the tests, we get a compilation error, which means that the test case we wrote
won't pass yet. Next, we shall write the simplest possible code to make the test case both compile
and pass:

public interface Configuration {

 String getPropertyValue(String propertyName);

}

public class ConfigurationImpl implements Configuration {

 private final Properties properties;

 public ConfigurationImpl(final Properties properties) {

 this.properties = properties;

 }

 public String getPropertyValue(final String propertyName) {

 return properties.getProperty(propertyName);

 }

}

public interface ConfigParser {

 Configuration parse(String configStr);

}

public class ConfigParserImpl implements ConfigParser {

 public Configuration parse(final String configStr) {

 final Properties properties = new Properties();

 // Load properties to 'properties' variable

 // from the 'configString'

 return new ConfigurationImpl(properties);

 }

}

We can now add new functionality. Let's say the parse function should throw an error if it cannot
parse the configuration string. We can now repeat the TDD cycle from the beginning by creating a

309

failing test first:

public class ConfigParserTests {

 // ...

 @Test

 public void testParse_whenParsingFails() {

 // GIVEN

 final var configStr = "invalid";

 try {

 // WHEN

 configParser.tryParse(configStr);

 fail();

 } catch (final ConfigParseError error) {

 // THEN error was successfully thrown

 }

 }

}

Next, we should refactor the implementation to make the second test pass:

public interface ConfigParser {

 Configuration tryParse(String configStr);

}

public class ConfigParseError extends RuntimeException {

 public ConfigParseError(final String errorMessage,

 final Throwable error) {

 super(errorMessage, error);

 }

}

public class ConfigParserImpl implements ConfigParser {

 public Configuration tryParse(final String configStr) {

 final Properties properties = new Properties();

 try {

 // Try load properties from the configStr

 return new ConfigurationImpl(properties);

 } catch (...) {

 throw new ConfigParseError(...);

 }

 }

}

We also need to refactor the first unit test to call tryParse instead of parse. We can continue
adding test cases for additional functionality.

For me, the above-described TDD cycle sounds a bit cumbersome. But, there are clear benefits in
creating tests beforehand. When tests are defined first, it is usually less likely that one forgets to test
or implement something. This is because TDD better forces you to think about the function
specification: happy path(s), edge and failure cases.

If you don't practice TDD and do the implementation always first, it is more likely you might forget

310

an edge case or a particular failure scenario. And when you haven't implemented it, you don't test
it. You can have 100% unit test coverage for a function, but a particular edge case or failure scenario
is left unimplemented and untested. This is what has happened to me, also.

As an alternative to the above-described TDD cycle, you can start function implementation by first
considering the functionality the function should have. You can first think about the "happy path",
which is the most common scenario for the function. Create an empty test case that contains only a
statement that makes the test fail. You should put the fail call in the test case in order not to
forget to implement the test case. Below is an example test case:

public class ConfigParserTests {

 // Tests the "happy path":

 // successful parsing of configuration

 @Test

 public void testParse() {

 fail();

 }

}

Next, think of all the other scenarios for the function: other happy paths, edge, and failure cases.
And then create a failing test case for each of those scenarios, for example:

public class ConfigParserTests {

 @Test

 public void testParse_whenParsingFails() {

 fail();

 }

 @Test

 public void testParse_whenMandatoryPropIsMissing() {

 fail();

 }

 @Test

 public void testParse_whenOptionalPropIsMissing() {

 fail();

 }

 @Test

 public void testParse_whenPropHasInvalidName() {

 fail();

 }

 @Test

 public void testParse_whenPropHasInvalidType() {

 fail();

 }

}

Now you have a high-level specification of the function in the form of scenarios. Next, you can
continue with the function implementation. After you have completed the function implementation,
implement the test cases one by one, and remove the fail calls.

The benefit of this approach is that you don't have to switch continuously between the

311

implementation source code file and the test source code file. In each phase, you can focus on one
thing:

1. Function specification

1. Specify scenarios: What the function does, and what failures are possible? Are there

edge cases?

2. Implement scenarios as failing unit test cases

2. Function implementation

3. Implementation of unit tests

Naming Conventions

When functions to be tested are in a class, a respectively named class for unit tests should be
created. For example, if there is a ConfigParser class, the respective class for unit tests should be
ConfigParserTests. This way, it is easy to locate the file containing unit tests for a particular
implementation class.

A test method name should start with a test prefix, after which the name of the tested method
should come. For example, if the tested method is parse, the test method name should be
testParse. There are usually several tests for a single function. All test method names should
begin with test<function-name>, but the test method name should also contain a description of the
scenario the test method tests: test<function-name>_<scenario> , for example:
testParse_whenParsingFails.

When using the Jest testing library with JavaScript or TypeScript, unit tests are organized and
named in the following manner:

describe('<class-name>', () => {

 describe('<public-method-name>', () => {

 it('should do this...', () => {

 // ...

 });

 it('should do other thing when...', () => {

 // ...

 });

 // Other scenarios...

 });

});

// Example:

describe('ConfigParser', () => {

 describe('parse', () => {

 it('should parse config string successfully', () => {

 // ...

 });

 it('should throw an error if parsing fails', () => {

312

 // ...

 });

 // Other scenarios...

 });

});

Mocking

Let's have a small Spring Boot example of mocking dependencies in unit tests. We have a service
class that contains public functions for which we want to write unit tests:

SalesItemServiceImpl.java

@Service

public class SalesItemServiceImpl implements SalesItemService {

 @Autowired

 private SalesItemRepository salesItemRepository;

 @AutoWired

 private SalesItemFactory salesItemFactory;

 @Override

 public final SalesItem createSalesItem(

 final SalesItemArg salesItemArg

) {

 return salesItemRepository.save(

 salesItemFactory.createFrom(salesItemArg));

 }

 @Override

 public final Iterable<SalesItem> getSalesItems() {

 return salesItemRepository.findAll();

 }

}

In the Spring Boot project, we need to define the following dependency in the build.gradle file:

dependencies {

 // Other dependencies ...

 testImplementation 'org.springframework.boot:spring-boot-starter-test'

}

Now, we can create unit tests using JUnit, and we can use Mockito for mocking. Looking at the
above code, we can notice that the SalesItemServiceImpl service depends on a
SalesItemRepository. According to the unit testing principle, we should mock that
dependency. Similarly, we should also mock the SalesItemConverter dependency:

SalesItemServiceTests.java

import org.junit.jupiter.api.Test;

import org.mockito.InjectMocks;

import org.mockito.Mock;

import org.mockito.Mockito;

import org.springframework.boot.test.context.SpringBootTest;

313

import java.util.List;

import static org.junit.jupiter.api.Assertions.assertEquals;

import static org.mockito.ArgumentMatchers.any;

import static org.mockito.ArgumentMatchers.refEq;

@SpringBootTest

class SalesItemServiceTests {

 private static final String SALES_ITEMS_NOT_EQUAL =

 "Sales items not equal";

 private final SalesItem testSalesItem =

 new SalesItem(1L, 1L, "Test", 10);

 // Create mock implementation of

 // SalesItemRepository interface

 @Mock

 private SalesItemRepository salesItemRepositoryMock;

 // Create mock implementation of

 // SalesItemFactory interface

 @Mock

 private SalesItemFactory salesItemFactoryMock;

 // Injects the above created mocks to salesItemService

 @InjectMocks

 private SalesItemService salesItemService =

 new SalesItemServiceImpl();

 @Test

 final void testCreateSalesItem() {

 // GIVEN

 final var salesItemArg = new SalesItemArg(1L, "Test", 10);

 // Instructs to return 'testSalesItem' when

 // salesItemFactoryMock's createFrom

 // method is called with an argument that reference

 // equals 'salesItemArg'

 Mockito

 .when(salesItemFactoryMock.createFrom(refEq(salesItemArg)))

 .thenReturn(testSalesItem);

 // Instructs to return 'testSalesItem' when

 // salesItemRepositoryMock's 'save' method is called

 // with an argument that reference equals 'testSalesItem'

 Mockito

 .when(salesItemRepositoryMock

 .save(refEq(testSalesItem)))

 .thenReturn(testSalesItem);

 // WHEN

 final var createdSalesItem =

 salesItemService.createSalesItem(salesItemArg);

 // THEN

 assertEquals(createdSalesItem,

 testSalesItem,

 SALES_ITEMS_NOT_EQUAL);

 }

 @Test

 final void testGetSalesItems() {

 // GIVEN

314

 // Instructs to return a list of containing one sales item

 // 'salesItem' when salesItemRepository's 'findAll'

 // method is called

 Mockito

 .when(salesItemRepositoryMock.findAll())

 .thenReturn(List.of(testSalesItem));

 // WHEN

 final var foundSalesItems = salesItemService.getSalesItems();

 // THEN

 final var iterator = foundSalesItems.iterator();

 assertEquals(iterator.next(),

 testSalesItem,

 SALES_ITEMS_NOT_EQUAL);

 assertFalse(iterator.hasNext());

 }

}

Java has many testing frameworks and mocking libraries. Below is a small example from a
JakartaEE microservice that uses TestNG and JMockit libraries for unit testing and mocking,
respectively. In the below example, we are testing a couple of methods from a ChartStore class,
which is responsible for handling the persistence of chart entities using Java Persistence API (JPA).

ChartStoreTests.java

import com.silensoft.conflated...DuplicateEntityError;

import mockit.Expectations;

import mockit.Injectable;

import mockit.Mocked;

import mockit.Tested;

import mockit.Verifications;

import org.testng.annotations.Test;

import javax.persistence.EntityExistsException;

import javax.persistence.EntityManager;

import java.util.Collections;

import java.util.List;

import static org.testng.Assert.assertEquals;

import static org.testng.Assert.fail;

public class ChartStoreTests {

 // chartStore will contain an instance

 // of ChartStoreImpl after @Tested

 // annotation is processed

 @Tested

 private ChartStore chartStore;

 // @Injectable annotation creates a mock instance

 // of EntityManager interface and then injects

 // it where needed

 // In this case, it will be injected to 'chartStore'

 @Injectable

 private EntityManager entityManager;

 // Create a mock instance of Chart

315

 // (does not inject anywhere)

 @Mocked

 private Chart chartMock;

 @Test

 void testCreate() {

 // WHEN

 chartStore.create(chartMock);

 // THEN

 // JMockit's verification block checks

 // that below mock functions are called

 new Verifications() {{

 chartStore.getEntityManager().persist(chartMock);

 chartStore.getEntityManager().flush();

 }};

 }

 @Test

 void testCreate_whenChartAlreadyExists() {

 // GIVEN

 // JMockit's expectations block will define what mock methods

 // calls are expected and also can specify

 // the return value or result of the mock method call.

 // Below the 'persist' mock method call will throw

 // EntityExistsException

 new Expectations() {{

 chartStore.getEntityManager().persist(chartMock);

 result = new EntityExistsException();

 }};

 try {

 // WHEN

 chartStore.create(chartMock);

 fail("Expected exception, but it was not thrown");

 } catch (final DuplicateEntityError error) {

 // THEN successfully throws an error

 }

 }

 @Test

 void testGetChartById() {

 // GIVEN

 new Expectations() {{

 chartStore.getEntityManager().find(Chart.class, 1L);

 result = chartMock;

 }};

 // WHEN

 final var chart = chartStore.getById(1L);

 // THEN

 assertEquals(chart, chartMock);

 }

}

Let's have a unit testing example with JavaScript/TypeScript. We will write a unit test for the
following function using the Jest library:

fetchTodos.ts

316

import store from '../../store/store';

import todoService from '../services/todoService';

export default async function fetchTodos(): Promise<void> {

 const { todosState } = store.getState();

 todosState.isFetching = true;

 try {

 todosState.todos = await todoService.tryFetchTodos();

 todosState.fetchingHasFailed = false;

 } catch(error) {

 todosState.fetchingHasFailed = true;

 }

 todosState.isFetching = false;

}

Below is the unit test case for the happy path scenario:

fetchTodos.test.ts

import store from '../../store/store';

import todoService from '../services/todoService';

import fetchTodos from 'fetchTodos';

// ...

// Mock both 'store' and 'todoService' objects

jest.mock('../../store/store');

jest.mock('../services/todoService');

describe('fetchTodos', async () => {

 it('should fetch todos from todo service', async () => {

 // GIVEN

 const todosState = { todos: [] } as TodoState;

 store.getState.mockReturnValue({ todosState });

 const todos = [{

 id: 1,

 name: 'todo',

 isDone: false

 }];

 todoService.tryFetchTodos.mockResolvedValue(todos);

 // WHEN

 await fetchTodos();

 // THEN

 expect(todosState.isFetching).toBe(false);

 expect(todosState.fetchingHasFailed).toBe(false);

 expect(todosState.todos).toBe(todos);

 });

});

In the above example, we used the jest.mock function to create mocked versions of the store
and todoService modules. Another way to handle mocking with Jest is using jest.fn(), which
creates a mocked function. Let's assume that the fetchTodos function is changed so that it takes a
store and todoService as its arguments:

317

fetchTodos.ts

// ...

export default async function fetchTodos(

 store: Store,

 todoService: TodoService

): Promise<void> {

 // Same code here as in earlier example...

}

Now the mocking would look like the following:

fetchTodos.test.ts

import fetchTodos from 'fetchTodos';

// ...

const store = {

 getState: jest.fn()

};

const todoService = {

 tryFetchTodos: jest.fn();

}

describe('fetchTodos', async () => {

 it('should fetch todos from todo service', async () => {

 // GIVEN

 // Same code as in earlier example...

 // WHEN

 await fetchTodos(store as any, todoService as any);

 // THEN

 // Same code as in earlier example...

 });

});

Let's have an example with C++ and Google Test unit testing framework. In C++, you can define a
mock class by extending a pure virtual base class ("interface") and using Google Mock macros to
define mocked methods. Below is the definition of a detectedAnomalies method that we want to
unit test:

AnomalyDetectionEngine.h

class AnomalyDetectionEngine

{

public:

 virtual ~AnomalyDetectionEngine() = default;

 virtual void detectAnomalies() = 0;

};

AnomalyDetectionEngineImpl.h

#include <memory>

#include "AnomalyDetectionEngine.h"

#include "Configuration.h"

318

class AnomalyDetectionEngineImpl :

 public AnomalyDetectionEngine

{

public:

 explicit AnomalyDetectionEngineImpl(

 std::shared_ptr<Configuration> configuration

);

 void detectAnomalies() override;

private:

 void detectAnomalies(

 const std::shared_ptr<AnomalyDetectionRule>& anomalyDetectionRule

);

 std::shared_ptr<Configuration> m_configuration;

};

AnomalyDetectionEngineImpl.cpp

#include <algorithm>

#include <execution>

#include "AnomalyDetectionEngineImpl.h"

AnomalyDetectionEngineImpl::AnomalyDetectionEngineImpl(

 std::shared_ptr<Configuration> configuration

) : m_configuration(std::move(configuration))

{}

void AnomalyDetectionEngineImpl::detectAnomalies()

{

 const auto anomalyDetectionRules =

 m_configuration->getAnomalyDetectionRules();

 std::for_each(std::execution::par,

 anomalyDetectionRules->cbegin(),

 anomalyDetectionRules->cend(),

 [this](const auto& anomalyDetectionRule)

 {

 detectAnomalies(anomalyDetectionRule);

 });

}

void AnomalyDetectionEngineImpl::detectAnomalies(

 const std::shared_ptr<AnomalyDetectionRule>& anomalyDetectionRule

)

{

 const auto anomalyIndicators = anomalyDetectionRule->detectAnomalies();

 std::ranges::for_each(*anomalyIndicators,

 [](const auto& anomalyIndicator)

 {

 anomalyIndicator->publish();

 });

}

Let's create a Configuration class and a ConfigurationMock class for mocks:

319

Configuration.h

#include <memory>

#include <vector>

#include "AnomalyDetectionRule.h"

class Configuration

{

public:

 virtual ~Configuration() = default;

 virtual std::shared_ptr<AnomalyDetectionRules>

 getAnomalyDetectionRules() const = 0;

};

ConfigurationMock.h

#include <gmock/gmock.h>

#include "Configuration.h"

class ConfigurationMock : public Configuration

{

public:

 MOCK_METHOD(std::shared_ptr<AnomalyDetectionRules>,

 getAnomalyDetectionRules, (), (const)

);

};

Let 's create an AnomalyDetectionRule c lass and a respective mock class,
AnomalyDetectionRuleMock:

AnomalyDetectionRule.h

#include "AnomalyIndicator.h"

class AnomalyDetectionRule

{

public:

 virtual ~AnomalyDetectionRule() = default;

 virtual std::shared_ptr<AnomalyIndicators>

 detectAnomalies() = 0;

};

using AnomalyDetectionRules =

 std::vector<std::shared_ptr<AnomalyDetectionRule>>;

AnomalyDetectionRuleMock.h

#include <gmock/gmock.h>

#include "AnomalyDetectionRule.h"

class AnomalyDetectionRuleMock : public AnomalyDetectionRule

{

 public:

 MOCK_METHOD(std::shared_ptr<AnomalyIndicators>,

 detectAnomalies, ());

};

320

Let's create an AnomalyIndicator class and a mock class, AnomalyIndicatorMock:

AnomalyIndicator.h

#include <memory>

#include <vector>

class AnomalyIndicator

{

public:

 virtual ~AnomalyIndicator() = default;

 virtual void publish() = 0;

};

using AnomalyIndicators =

 std::vector<std::shared_ptr<AnomalyIndicator>>;

AnomalyIndicatorMock.h

#include <gmock/gmock.h>

#include "AnomalyIndicator.h"

class AnomalyIndicatorMock : public AnomalyIndicator

{

public:

 MOCK_METHOD(void, publish, ());

};

L e t ' s c r e a t e a u n i t t e s t f o r t h e d e t e c t A n o m a l i e s m e t h o d i n t h e
AnomalyDetectionEngineImpl class:

AnomalyDetectionEngineImplTests.h

#include <gtest/gtest.h>

#include "ConfigurationMock.h"

#include "AnomalyDetectionRuleMock.h"

#include "AnomalyIndicatorMock.h"

class AnomalyDetectionEngineImplTests : public testing::Test

{

protected:

 void SetUp() override {

 m_anomalyDetectionRules->push_back(m_anomalyDetectionRuleMock);

 m_anomalyIndicators->push_back(m_anomalyIndicatorMock);

 }

 std::shared_ptr<ConfigurationMock> m_configurationMock{

 std::make_shared<ConfigurationMock>()

 };

 std::shared_ptr<AnomalyDetectionRuleMock> m_anomalyDetectionRuleMock{

 std::make_shared<AnomalyDetectionRuleMock>()

 };

 std::shared_ptr<AnomalyDetectionRules> m_anomalyDetectionRules{

 std::make_shared<AnomalyDetectionRules>()

 };

 std::shared_ptr<AnomalyIndicatorMock> m_anomalyIndicatorMock{

321

 std::make_shared<AnomalyIndicatorMock>()

 };

 std::shared_ptr<AnomalyIndicators> m_anomalyIndicators{

 std::make_shared<AnomalyIndicators>()

 }

};

AnomalyDetectionEngineImplTests.cpp

#include "../src/AnomalyDetectionEngineImpl.h"

#include "AnomalyDetectionEngineImplTests.h"

using testing::Return;

TEST_F(AnomalyDetectionEngineImplTests, testDetectAnomalies)

{

 // GIVEN

 AnomalyDetectionEngineImpl anomalyDetectionEngine{m_configurationMock};

 // EXPECTATIONS

 EXPECT_CALL(*m_configurationMock, getAnomalyDetectionRules)

 .Times(1)

 .WillOnce(Return(m_anomalyDetectionRules));

 EXPECT_CALL(*m_anomalyDetectionRuleMock, detectAnomalies)

 .Times(1)

 .WillOnce(Return(m_anomalyIndicators));

 EXPECT_CALL(*m_anomalyIndicatorMock, publish).Times(1);

 // WHEN

 anomalyDetectionEngine.detectAnomalies();

}

The above example did not contain dependency injection, so let's have another example in C++
where dependency injection is used. First, we define a generic base class for singletons:

Singleton.h

#include <memory>

template<typename T>

class Singleton

{

public:

 Singleton() = default;

 virtual ~Singleton()

 {

 m_instance.reset();

 };

 static inline std::shared_ptr<T>& getInstance()

 {

 return m_instance;

 }

 static void setInstance(const std::shared_ptr<T>& instance)

 {

 m_instance = instance;

322

 }

private:

 static inline std::shared_ptr<T> m_instance;

};

Next, we implement a configuration parser that we will later unit test:

ConfigParserImpl.h

#include <memory>

#include "Configuration.h"

class ConfigParserImpl {

public:

 std::shared_ptr<Configuration> parse();

};

ConfigParserImpl.cpp

#include "AnomalyDetectionRulesParser.h"

#include "Configuration.h"

#include "ConfigFactory.h"

#include "ConfigParserImpl.h"

#include "MeasurementDataSourcesParser.h"

std::shared_ptr<Configuration>

ConfigParserImpl::parse(...)

{

 const auto measurementDataSources =

 MeasurementDataSourcesParser::getInstance()->parse(...);

 const auto anomalyDetectionRules =

 AnomalyDetectionRulesParser::getInstance()->parse(...);

 return ConfigFactory::getInstance()

 ->createConfig(anomalyDetectionRules);

}

Next, we define MeasurementDataSource, MeasurementDataSourcesParser, and
MeasurementDataSourcesParserImpl classes:

MeasurementDataSource.h

#include <memory>

#include <vector>

class MeasurementDataSource {

 // ...

};

using MeasurementDataSources =

 std::vector<std::shared_ptr<MeasurementDataSource>>;

MeasurementDataSourcesParser.h

#include "Singleton.h"

#include "MeasurementDataSource.h"

323

class MeasurementDataSourcesParser :

 public Singleton<MeasurementDataSourcesParser>

{

public:

 virtual std::shared_ptr<MeasurementDataSources> parse(...) = 0;

};

MeasurementDataSourcesParserImpl.h

#include "MeasurementDataSourcesParser.h"

class MeasurementDataSourcesParserImpl :

 public MeasurementDataSourcesParser

{

public:

 std::shared_ptr<MeasurementDataSources> parse(...) override {

 // ...

 }

};

N e x t , w e d e f i n e A n o m a l y D e t e c t i o n R u l e s P a r s e r a n d
AnomalyDetectionRulesParserImpl classes:

AnomalyDetectionRulesParser.h

#include "Singleton.h"

#include "AnomalyDetectionRule.h"

class AnomalyDetectionRulesParser :

 public Singleton<AnomalyDetectionRulesParser>

{

public:

 virtual std::shared_ptr<AnomalyDetectionRules> parse(...) = 0;

};

AnomalyDetectionRulesParserImpl.h

#include "AnomalyDetectionRulesParser.h"

class AnomalyDetectionRulesParserImpl :

 public AnomalyDetectionRulesParser

{

public:

 std::shared_ptr<AnomalyDetectionRules> parse(...) override {

 // ...

 }

};

Next, we define ConfigFactory and ConfigFactoryImpl classes:

ConfigFactory.h

#include "Singleton.h"

#include "Configuration.h"

class ConfigFactory :

 public Singleton<ConfigFactory>

{

public:

324

 virtual std::shared_ptr<Configuration>

 createConfig(

 const std::shared_ptr<AnomalyDetectionRules>& rules

) = 0;

};

ConfigFactoryImpl.h

#include "ConfigFactory.h"

class ConfigFactoryImpl : public ConfigFactory

{

public:

 std::shared_ptr<Configuration>

 createConfig(

 const std::shared_ptr<AnomalyDetectionRules>& rules

) override {

 // ...

 }

};

Then we define a dependency injector class:

DependencyInjector.h

#include "AnomalyDetectionRulesParserImpl.h"

#include "ConfigFactoryImpl.h"

#include "MeasurementDataSourcesParserImpl.h"

class DependencyInjector final

{

public:

 static void injectDependencies()

 {

 AnomalyDetectionRulesParser::setInstance(

 std::make_shared<AnomalyDetectionRulesParserImpl>()

);

 ConfigFactory::setInstance(

 std::make_shared<ConfigFactoryImpl>()

);

 MeasurementDataSourcesParser::setInstance(

 std::make_shared<MeasurementDataSourcesParserImpl>()

);

 }

private:

 DependencyInjector() = default;

};

We inject dependencies upon application startup using the dependency injector:

main.cpp

#include "DependencyInjector.h"

int main()

{

 DependencyInjector::injectDependencies();

325

 // Initialize and start application...

}

Let's define a unit test class for the ConfigParserImpl class:

ConfigParserImplTests.h

#include "MockDependenciesInjectedTest.h"

class ConfigParserImplTests :

 public MockDependenciesInjectedTest

{};

All unit test classes should inherit from a base class that injects mock dependencies. When tests are
completed, the mock dependencies will be removed. The Google Test framework requires this
removal because it only validates expectations on a mock upon the mock object destruction.

MockDependenciesInjectedTest.h

#include <gtest/gtest.h>

#include "MockDependencyInjector.h"

class MockDependenciesInjectedTest :

 public testing::Test

{

protected:

 void SetUp() override

 {

 m_mockDependencyInjector.injectMockDependencies();

 }

 void TearDown() override

 {

 m_mockDependencyInjector.removeMockDependencies();

 }

 MockDependencyInjector m_mockDependencyInjector;

};

Below are all the mock classes defined:

AnomalyDetectionRulesParserMock.h

#include <gmock/gmock.h>

#include "AnomalyDetectionRulesParser.h"

class AnomalyDetectionRulesParserMock :

 public AnomalyDetectionRulesParser

{

public:

 MOCK_METHOD(std::shared_ptr<AnomalyDetectionRules>, parse, (...));

};

ConfigFactoryMock.h

#include <gmock/gmock.h>

#include "ConfigFactory.h"

326

class ConfigFactoryMock : public ConfigFactory

{

public:

 MOCK_METHOD(

 std::shared_ptr<Configuration>,

 createConfig,

 (const std::shared_ptr<AnomalyDetectionRules>& rules)

);

};

MeasurementDataSourcesParserMock.h

#include <gmock/gmock.h>

#include "MeasurementDataSourcesParser.h"

class MeasurementDataSourcesParserMock :

 public MeasurementDataSourcesParser

{

public:

 MOCK_METHOD(std::shared_ptr<MeasurementDataSources>, parse, (...));

};

Below is the MockDependencyInjector class defined:

MockDependencyInjector.h

#include "AnomalyDetectionRulesParserMock.h"

#include "ConfigFactoryMock.h"

#include "MeasurementDataSourcesParserMock.h"

class MockDependencyInjector final

{

public:

 std::shared_ptr<AnomalyDetectionRulesParserMock>

 m_anomalyDetectionRulesParserMock{

 std::make_shared<AnomalyDetectionRulesParserMock>()

 };

 std::shared_ptr<ConfigFactoryMock> m_configFactoryMock{

 std::make_shared<ConfigFactoryMock>()

 };

 std::shared_ptr<MeasurementDataSourcesParserMock>

 m_measurementDataSourcesParserMock{

 std::make_shared<MeasurementDataSourcesParserMock>()

 };

 void injectMockDependencies() const

 {

 AnomalyDetectionRulesParser::setInstance(

 m_anomalyDetectionRulesParserMock

);

 ConfigFactory::setInstance(

 m_configFactoryMock

);

 MeasurementDataSourcesParser::setInstance(

 m_measurementDataSourcesParserMock

);

327

 }

 void removeMockDependencies() const {

 AnomalyDetectionRulesParser::setInstance({nullptr});

 ConfigFactory::setInstance({nullptr});

 MeasurementDataSourcesParser::setInstance({nullptr});

 }

};

Below is the unit test implementation that uses the mocks:

ConfigParserImplTests.cpp

#include "ConfigParserImplTests.h"

#include "ConfigParserImpl.h"

using testing::Eq;

using testing::Return;

TEST_F(ConfigParserImplTests, testParseConfig)

{

 // GIVEN

 ConfigParserImpl configParser;

 // EXPECTATIONS

 EXPECT_CALL(

 *m_mockDependencyInjector.m_anomalyDetectionRulesParserMock,

 parse

).Times(1)

 .WillOnce(Return(m_anomalyDetectionRules));

 EXPECT_CALL(

 *m_mockDependencyInjector.m_measurementDataSourcesParserMock,

 parse

).Times(1)

 .WillOnce(Return(m_measurementDataSources));

 EXPECT_CALL(

 *m_mockDependencyInjector.m_configFactoryMock,

 createConfig(Eq(m_anomalyDetectionRules))

).Times(1)

 .WillOnce(Return(m_configMock));

 // WHEN

 const auto configuration = configParser.parse();

 // THEN

 ASSERT_EQ(configuration, m_configMock);

}

You can also make sure that implementation class instances can be created only in the
DependencyInjector class by declaring implementation class constructors private and making
the DependencyInjector class a friend of the implementation classes. In this way, no one can
accidentally create an instance of an implementation class. Instances of implementation classes
should be created by the dependency injector only. Below is a implementation class where the
constructor is made private, and the dependency injector is made a friend of the class:

AnomalyDetectionRulesParserImpl.h

328

#include "AnomalyDetectionRulesParser.h"

class AnomalyDetectionRulesParserImpl :

 public AnomalyDetectionRulesParser

{

 friend class DependencyInjector;

public:

 std::shared_ptr<AnomalyDetectionRules> parse() override;

private:

 AnomalyDetectionRulesParserImpl() = default;

};

UI Component Unit Testing

UI component unit testing differs from regular unit testing because you cannot necessarily test the
functions of a UI component in isolation if you have, for example, a React functional component.
You must conduct UI component unit testing by mounting the component to DOM and then
perform tests by triggering events, for example. This way, you can test the event handler functions
of a UI component. The rendering part should also be tested. It can be tested by producing a
snapshot of the rendered component and storing that in version control. Further rendering tests
should compare the rendered result to the snapshot stored in the version control.

Below is an example of testing the rendering of a React component, NumberInput:

NumberInput.test.js

import renderer from 'react-test-renderer';

// ...

describe('NumberInput') () => {

 // ...

 describe('render', () => {

 it('renders with buttons on left and right"', () => {

 const numberInputAsJson =

 renderer

 .create(<NumberInput buttonPlacement="leftAndRight"/>)

 .toJSON();

 expect(numberInputAsJson).toMatchSnapshot();

 });

 it('renders with buttons on right', () => {

 const numberInputAsJson =

 renderer

 .create(<NumberInput buttonPlacement="right"/>)

 .toJSON();

 expect(numberInputAsJson).toMatchSnapshot();

 });

 });

});

Below is an example unit test for the number input's decrement button's click event handler

329

function, decrementValue:

NumberInput.test.js

import { render, fireEvent, screen } from '@testing-library/react'

// ...

describe('NumberInput') () => {

 // ...

 describe('decrementValue', () => {

 it('should decrement value by given step amount', () => {

 render(<NumberInput value="3" stepAmount={2} />);

 fireEvent.click(screen.getByText('-'));

 const numberInputElement = screen.getByDisplayValue('1');

 expect(numberInputElement).toBeTruthy();

 });

 });

});

In the above example, we used the testing-library, which has implementations for all the common
UI frameworks: React, Vue and Angular. It means you can use mostly the same testing API
regardless of your UI framework. There are tiny differences, basically only in the syntax of the
render method. If you had implemented some UI components and unit tests for them with React,
and you would like to reimplement them with Vue, you don't need to reimplement all the unit tests.
You only need to modify them slightly (e.g., make changes to the render function calls).
Otherwise, the existing unit tests should work because the behavior of the UI component did not
change, only its internal implementation from React to Vue.

Software Component Integration Testing Principle

Integration testing aims to test that a software component works against actual
dependencies and that its public methods correctly understand the purpose and signature of
other public methods they are using.

In the software component integration testing, all public functions of a software component should
be tested. Not all functionality of the public functions should be tested because that has already
been done in the unit testing phase. This is why there are fewer integration tests than unit tests. The
term integration testing sometimes refers to the integration of a complete software system or a
product. However, it should be used to describe software component integration only. When testing
a product or a software system, the term E2E testing should be used to avoid confusion and
misunderstandings.

The best way to define integration tests is by using behavior-driven development (BDD). BDD
encourages teams to use domain-driven design and concrete examples to formalize a shared
understanding of how a software component should behave. In BDD, behavioral specifications are
the root of the integration tests. A team can create behavioral specifications during the initial
domain-driven design phase. This practice will shift the integration testing to the left, meaning that

330

writing the integration tests starts early and can proceed in parallel with the actual implementation.
One widely used and recommended way to write behavioral specifications is the Gherkin language.

When using the Gherkin language, the behavior of a software component is described as features.
There should be a separate file for each feature. These files have the .feature extension. Each
feature file describes one feature and one or more scenarios for that feature. The first scenario
should be the so-called "happy path" scenario, and other possible scenarios should handle
additional happy paths, failures, and edge cases that need to be tested. Remember that you don't
have to test every failure and edge case because those were already tested in the unit testing phase.

Below is a simplified example of one feature in a data-visualization-configuration-service. The
service is a REST API. The feature is for creating a new chart. (In a real-life scenario, a chart
contains more properties like the chart's data source and what measure(s) and dimension(s) are
shown in the chart, for example)

createChart.feature

Feature: Create chart

 Creates a new chart

 Scenario: Creates a new chart successfully

 Given chart layout id is "1"

 And chart type is "line"

 And X-axis categories shown count is 10

 And fetchedRowCount is 1000

 When I create a new chart

 Then I should get the chart given above

 with response code 201 "Created"

The above example shows how the feature's name is given after the Feature keyword. You can add
free-form text below the feature's name to describe the feature in more detail. Next, a scenario is
defined after the Scenario keyword. First, the name of the scenario is given. Then comes the steps
of the scenario. Each step is defined using one of the following keywords: Given, When, Then, And,
and But. A scenario should follow this pattern:

• Steps to describe initial context/setup (Given/And steps)

• Steps to describe an event (When step)

• Steps to describe the expected outcome for the event (Then/And steps)

We can add another scenario to the above example:

createChart.feature

Feature: Create chart

 Creates a new chart

 Scenario: Creates a new chart successfully

 Given chart layout id is "1"

331

 And chart type is "line"

 And X-axis categories shown count is 10

 And fetchedRowCount is 1000

 When I create a new chart

 Then I should get the chart given above

 with status code 201 "Created"

 Scenario: Chart creation fails due to missing mandatory parameter

 When I create a new chart

 Then I should get a response with status code 400 "Bad Request"

 And response body should contain "is mandatory field" entry

 for following fields

 | layoutId |

 | fetchedRowCount |

 | xAxisCategoriesShownCount |

 | type |

Now we have one feature with two scenarios specified. Next, we shall implement the scenarios. Our
data-visualization-configuration-service is implemented in Java, and we want to implement also
the integration tests in Java. Cucumber (https://cucumber.io/docs/installation/) has BDD tools for
various programming languages. We will be using the Cucumber-JVM (https://cucumber.io/docs/
installation/java/) library.

We place integration test code into the source code repository's src/test directory. The feature files
are in the src/test/resources/features directory. Feature directories should be organized into
subdirectories in the same way source code is organized into subdirectories: using domain-driven
design and creating subdirectories for subdomains. We can put the above createChart.feature file
to the src/test/resources/features/chart directory.

Next, we need to provide an implementation for each step in the scenarios. Let's start with the first
scenario. We shall create a f i le TestContext. java for the test context and a
CreateChartStepDefs.java file for the step definitions:

TestContext.java

public class TestContext {

 public io.restassured.response.Response response;

}

CreateChartStepDefs.java

import integrationtests.TestContext;

import com.silensoft.dataviz.configuration.service.chart.Chart;

import io.cucumber.java.en.Given;

import io.cucumber.java.en.Then;

import io.cucumber.java.en.When;

import io.restassured.http.ContentType;

import io.restassured.mapper.ObjectMapperType;

import static io.restassured.RestAssured.given;

import static org.hamcrest.Matchers.equalTo;

import static org.hamcrest.Matchers.greaterThan;

332

public class CreateChartStepDefs {

 private static final String BASE_URL =

 "http://localhost:8080/data-visualization-configuration-service/";

 private final TestContext testContext;

 private final Chart chart = new Chart();

 public CreateChartStepDefs(final TestContext testContext) {

 this.testContext = testContext;

 }

 @Given("chart layout id is {string}")

 public void setChartLayoutId(final String layoutId) {

 chart.setLayoutId(layoutId);

 }

 @Given("chart type is {string}")

 public void setChartType(final String chartType) {

 chart.setType(chartType);

 }

 @Given("X-axis categories shown count is {int}")

 public void setXAxisCategoriesShownCount(

 final Integer xAxisCategoriesShownCount

) {

 chart

 .setxAxisCategoriesShownCount(xAxisCategoriesShownCount);

 }

 @Given("fetchedRowCount is {int}")

 public void setFetchedRowCount(final Integer fetchedRowCount) {

 chart.setFetchedRowCount(fetchedRowCount);

 }

 @When("I create a new chart")

 public void createNewChart() {

 testContext.response = given()

 .contentType("application/json")

 .body(chart, ObjectMapperType.GSON)

 .when()

 .post(Constants.BASE_URL + "charts");

 }

 @Then("I should get the chart given above with status code {int} {string}")

 public void iShouldGetTheChartGivenAbove(

 final int statusCode,

 final String statusCodeName

) {

 testContext.response.then()

 .assertThat()

 .statusCode(statusCode)

 .body("id", greaterThan(0))

 .body("layoutId", equalTo(chart.getLayoutId()))

 .body("type", equalTo(chart.getType()))

 .body("xAxisCategoriesShownCount",

 equalTo(chart.getXAxisCategoriesShownCount()))

 .body("fetchedRowCount",

 equalTo(chart.getFetchedRowCount()));

 }

}

333

The above implementation contains a function for each step. Each function is annotated with an
annotation for a specific Gherkin keyword: @Given, @When, and @Then. Note that a step in a
scenario can be templated. For example, the step Given chart layout id is "1" is
templated and defined in the function @Given("chart layout id is {string}") public
void setChartLayoutId(final String layoutId) where the actual layout id is given as a
parameter to the function. You can use this templated step in different scenarios that can give a
different value for the layout id, for example: Given chart layout id is “8".

The createNewChart method uses REST-assured (https://rest-assured.io/) for submitting an
HTTP POST request to the data-visualization-configuration-service . And the
iShouldGetTheChartGivenAbove function takes the HTTP POST response and validates the
status code and the properties in the response body.

The second scenario is a common failure scenario where you create something with missing
parameters. Because this scenario is common (i.e., we can use the same steps in other features), we
put the step definitions in a file named CommonStepDefs.java in the common subdirectory of the
src/test/java/integrationtests directory.

Here are the step definitions:

CommonStepDefs.java

import integrationtests.TestContext;

import io.cucumber.java.en.And;

import io.cucumber.java.en.Then;

import java.util.List;

import static org.hamcrest.Matchers.hasItems;

public class CommonStepDefs {

 private final TestContext testContext;

 public CommonStepDefs(final TestContext testContext) {

 this.testContext = testContext;

 }

 @Then("I should get a response with status code {int} {string}")

 public void iShouldGetAResponseWithResponseCode(

 final int statusCode,

 final String statusCodeName

) {

 testContext.response.then()

 .assertThat()

 .statusCode(statusCode);

 }

 @And("response body should contain {string} entry for following fields")

 public void responseBodyShouldContainEntryForFollowingFields(

 final String entry,

 final List<String> fields

) {

 testContext.response.then()

 .assertThat()

334

 .body("", hasItems(fields

 .stream()

 .map(field -> field + ' ' + entry)

 .toArray()));

 }

}

Cucumber is available in many other languages in addition to Java. It is available, for example, for
JavaScript (Cucumber.js) and Python (Behave, https://behave.readthedocs.io/en/stable/).
Integration tests can be written in a different language than the language used for implementation
and unit test code. For example, I am currently developing a microservice in C++. Our team has a
test automation developer working with integration tests using the Gherkin language for feature
definitions and Python and Behave for implementing the steps.

Some frameworks offer their way of creating integration tests. The Spring Boot framework offers
the MockMvc to test the web layer, like a REST API. Below is an example that uses the MockMvc for
testing a sales-item-service REST API:

SalesItemControllerTests.java

import com.fasterxml.jackson.databind.ObjectMapper;

import org.junit.jupiter.api.MethodOrderer;

import org.junit.jupiter.api.Order;

import org.junit.jupiter.api.Test;

import org.junit.jupiter.api.TestMethodOrder;

import org.junit.jupiter.api.extension.ExtendWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.servlet.AutoConfigureMockMvc;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.http.MediaType;

import org.springframework.test.context.junit.jupiter.SpringExtension;

import org.springframework.test.web.servlet.MockMvc;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.delete;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.post;

import static org.springframework.test.web.servlet.request.MockMvcRequestBuilders.put;

import static org.springframework.test.web.servlet.result.MockMvcResultHandlers.print;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonPath;

import static org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

@SpringBootTest

@AutoConfigureMockMvc

@ExtendWith(SpringExtension.class)

@TestMethodOrder(MethodOrderer.OrderAnnotation.class)

class SalesItemControllerTests {

 private static final long SALES_ITEM_USER_ACCOUNT_ID = 1L;

 private static final String SALES_ITEM_NAME = "Test sales item";

 private static final int SALES_ITEM_PRICE = 10;

 private static final int UPDATED_SALES_ITEM_PRICE = 20;

 private static final String UPDATED_SALES_ITEM_NAME =

 "Updated test sales item";

 @Autowired

 private MockMvc mockMvc;

 @Test

335

 @Order(1)

 final void testCreateSalesItem() throws Exception {

 // GIVEN

 final var salesItemArg =

 new SalesItemArg(SALES_ITEM_USER_ACCOUNT_ID,

 SALES_ITEM_NAME,

 SALES_ITEM_PRICE);

 final var salesItemArgJson =

 new ObjectMapper().writeValueAsString(salesItemArg);

 // WHEN

 mockMvc

 .perform(post(SalesItemController.API_ENDPOINT)

 .contentType(MediaType.APPLICATION_JSON)

 .content(salesItemArgJson))

 .andDo(print())

 // THEN

 .andExpect(jsonPath("$.id").value(1))

 .andExpect(jsonPath("$.name").value(SALES_ITEM_NAME))

 .andExpect(jsonPath("$.price").value(SALES_ITEM_PRICE))

 .andExpect(status().isCreated());

 }

 @Test

 @Order(2)

 final void testGetSalesItems() throws Exception {

 // WHEN

 mockMvc

 .perform(get(SalesItemController.API_ENDPOINT))

 .andDo(print())

 // THEN

 .andExpect(jsonPath("$[0].id").value(1))

 .andExpect(jsonPath("$[0].name").value(SALES_ITEM_NAME))

 .andExpect(status().isOk());

 }

 @Test

 @Order(3)

 final void testGetSalesItemById() throws Exception {

 // WHEN

 mockMvc

 .perform(get(SalesItemController.API_ENDPOINT + "/1"))

 .andDo(print())

 // THEN

 .andExpect(jsonPath("$.name").value(SALES_ITEM_NAME))

 .andExpect(status().isOk());

 }

 @Test

 @Order(4)

 final void testGetSalesItemsByUserAccountId() throws Exception {

 // GIVEN

 final var url = SalesItemController.API_ENDPOINT +

 "?userAccountId=" + SALES_ITEM_USER_ACCOUNT_ID;

 // WHEN

 mockMvc

 .perform(get(url))

 .andDo(print())

 // THEN

 .andExpect(jsonPath("$[0].name").value(SALES_ITEM_NAME))

 .andExpect(status().isOk());

336

 }

 @Test

 @Order(5)

 final void testUpdateSalesItem() throws Exception {

 // GIVEN

 final var salesItemArg =

 new SalesItemArg(SALES_ITEM_USER_ACCOUNT_ID,

 UPDATED_SALES_ITEM_NAME,

 UPDATED_SALES_ITEM_PRICE);

 final var salesItemArgJson =

 new ObjectMapper().writeValueAsString(salesItemArg);

 // WHEN

 mockMvc

 .perform(put(SalesItemController.API_ENDPOINT + "/1")

 .contentType(MediaType.APPLICATION_JSON)

 .content(salesItemArgJson))

 .andDo(print());

 // THEN

 mockMvc

 .perform(get(SalesItemController.API_ENDPOINT + "/1"))

 .andDo(print())

 .andExpect(jsonPath("$.name").value(UPDATED_SALES_ITEM_NAME))

 .andExpect(jsonPath("$.price").value(UPDATED_SALES_ITEM_PRICE))

 .andExpect(status().isOk());

 }

 @Test

 @Order(6)

 final void testDeleteSalesItemById() throws Exception {

 // WHEN

 mockMvc

 .perform(delete(SalesItemController.API_ENDPOINT + "/1"))

 .andDo(print());

 // THEN

 mockMvc

 .perform(get(SalesItemController.API_ENDPOINT + "/1"))

 .andDo(print())

 .andExpect(status().isNotFound());

 }

 @Test

 @Order(7)

 final void testDeleteSalesItems() throws Exception {

 // GIVEN

 final var salesItemArg =

 new SalesItemArg(SALES_ITEM_USER_ACCOUNT_ID,

 SALES_ITEM_NAME,

 SALES_ITEM_PRICE);

 final var salesItemArgJson =

 new ObjectMapper().writeValueAsString(salesItemArg);

 mockMvc

 .perform(post(SalesItemController.API_ENDPOINT)

 .contentType(MediaType.APPLICATION_JSON)

 .content(salesItemArgJson))

 .andDo(print());

337

 // WHEN

 mockMvc

 .perform(delete(SalesItemController.API_ENDPOINT))

 .andDo(print());

 // THEN

 mockMvc

 .perform(get(SalesItemController.API_ENDPOINT))

 .andDo(print())

 .andExpect(jsonPath("$").isEmpty())

 .andExpect(status().isOk());

 }

}

If you have an API microservice, one more alternative to implement integration tests is an API
development platform like Postman (https://www.postman.com/). Postman can be used to write
integration tests using JavaScript.

Below is an example API request for creating a new sales item. You can define this in Postman as a
new request:

POST http://localhost:3000/sales-item-service/sales-items

{

 "name": "Test sales item",

 "price": 10,

}

Here is a Postman test case to validate the response to the above request:

pm.test("Status code is 201 Created", function () {

 pm.response.to.have.status(201);

});

const salesItem = pm.response.json();

pm.collectionVariables.set("salesItemId", salesItem.id)

pm.test("Sales item name", function () {

 return pm.expect(salesItem.name).to.eql("Test sales item");

})

pm.test("Sales item price", function () {

 return pm.expect(salesItem.price).to.eql(10);

})

In the above test case, the response status code is verified first, and then the salesItem object is
parsed from the response body. Value for the variable salesItemId is set. This variable will be
used in subsequent test cases. Finally, the values of the name and price properties are checked.

Next, a new API request could be created in Postman to retrieve the just created sales item:

GET http://localhost:3000/sales-item-service/sales-items/{{salesItemId}}

We used the value stored in the salesItemId variable in the request URL. Variables can be used

338

in the URL and request body using the following notation: {{<variable-name>}}. Let's create a
test case for the above request:

pm.test("Status code is 200 OK", function () {

 pm.response.to.have.status(200);

});

const salesItem = pm.response.json();

pm.test("Sales item name", function () {

 return pm.expect(salesItem.name).to.eql("Test sales item");

})

pm.test("Sales item price", function () {

 return pm.expect(salesItem.price).to.eql(10);

})

API integration tests written in Postman can be utilized in a CI/CD pipeline. An easy way to do that
is to export a Postman collection to a file that contains all the API requests and related tests. A
Postman collection file is a JSON file. Postman offers a Node.js command-line utility called
Newman (https://learning.postman.com/docs/running-collections/using-newman-cli/installing-
running-newman/). It can be used to run API requests and related tests in an exported Postman
collection file.

You can run integration tests in an exported Postman collection file with the below command in a
CI/CD pipeline:

newman run integration-tests/integrationTestsPostmanCollection.json

In the above example, we assume that a file named integrationTestsPostmanCollection.json has
been exported to the integration-tests directory in the source code repository.

 UI Integration Testing

You can also use the Gherkin language when specifying UI features. For example, the TestCafe UI
testing tool can be used with the gherkin-testcafe tool to make TestCafe support the Gherkin
syntax. Let's create a simple UI feature:

greetUser.feature

Feature: Greet user

 Entering user name and clicking submit button

 displays a greeting for the user

 Scenario: Greet user successfully

 Given there is "John Doe" entered in the input field

 When I press the submit button

 Then I am greeted with text "Hello, John Doe"

Next, we can implement the above steps in JavaScript using the TestCafe testing API:

339

GreetUserSteps.js

// Imports...

// 'Before' hook runs before the first step of each scenario.

// 't' is the TestCafe test controller object

Before('Navigate to application URL', async (t) => {

 // Navigate browser to application URL

 await t.navigateTo('...');

});

Given('there is {string} entered in the input field',

 async (t, [userName]) => {

 // Finds an HTML element with CSS id selector and

 // enters text to it

 await t.typeText('#user-name', userName);

});

When('I press the submit button', async (t) => {

 // Finds an HTML element with CSS id selector and clicks it

 await t.click('#submit-button');

});

When('I am greeted with text {string}', async (t, [greeting]) => {

 // Finds an HTML element with CSS id selector

 // and compares its inner text

 await t.expect(Selector('#greeting').innerText).eql(greeting);

});

There is another similar tool to TestCafe, namely Cypress. You can also use Gherkin with Cypress
with the cypress-cucumber-preprocessor package. Then you can write your UI integration tests like
this:

visitDuckDuckGoWebSite.feature

Feature: Visit duckduckgo.com website

 Scenario: Visit duckduckgo.com website successfully

 When I visit duckduckgo.com

 Then I should see the search bar

VisitDuckDuckGoWebSiteSteps.js

import { When, Then } from

 '@badeball/cypress-cucumber-preprocessor';

When("I visit duckduckgo.com", () => {

 cy.visit("https://www.duckduckgo.com");

});

Then("I should see the search bar", () => {

 cy.get("input").should(

 "have.attr",

 "placeholder",

 "Search the web without being tracked"

);

});

Setting Up Integration Testing Environment

340

Before integration tests can be run, an integration testing environment must be set up. An
integration testing environment is where the tested microservice and all its dependencies are
running. The easiest way to set up an integration testing environment for a containerized
microservice is to use Docker Compose, a simple container orchestration tool for a single host.

Let's create a docker-compose.yml file for the sales-item-service, which has a MySQL database as a
dependency.

docker-compose.yml

version: "3.8"

services:

 wait-for-services-ready:

 image: dokku/wait

 sales-item-service:

 restart: always

 build:

 context: .

 env_file: .env.ci

 ports:

 - "3000:3000"

 depends_on:

 - mysql

 mysql:

 image: mysql:8.0.22

 command: --default-authentication-plugin=mysql_native_password

 restart: always

 cap_add:

 - SYS_NICE

 environment:

 MYSQL_ROOT_PASSWORD: ${MYSQL_PASSWORD}

 ports:

 - "3306:3306"

In the above example, we first define a service wait-for-services-ready which we will use later.
Next, we define our microservice, sales-item-service. We ask Docker Compose to build a container
image for the sales-item-service using the Dockerfile in the current directory. Then we define the
environment for the microservice to be read from an .env.ci file. We expose port 3000 and tell that
our microservice depends on the mysql service.

Next, we define the mysql service. We tell what image to use, give a command-line parameter and
define the environment and expose a port.

Before we can run the integration tests, we must spin the integration testing environment up using
the docker-compose up command:

docker-compose up --env-file .env.ci --build -d

We tell the docker-compose command to read environment variables from an .env.ci file, which
should contain an environment variable named MYSQL_PASSWORD. We ask docker-compose to
always build the sales-item-service by specifying the --build flag. The -d flag tells docker-

341

compose to run in the background.

Before we can run the integration tests, we must wait until all services defined in the docker-
compose.yml are up and running. We use the wait-for-services-ready service provided by the
dokku/wait (https://hub.docker.com/r/dokku/wait) image. We can wait for the services to be
ready by issuing the following command:

docker-compose

 --env-file .env.ci

 run wait-for-services-ready

 -c mysql:3306,sales-item-service:3000

 -t 600

The above command will finish after mysql service's port 3306 and sales-item-service's port 3000
can be connected. After the above command is finished, you can run the integration tests. In the
below example, we run the integration tests using the newman CLI tool:

newman run integration-tests/integrationTestsPostmanCollection.json

After integration tests are completed, you can shut down the integration testing environment:

docker-compose down

If you need other dependencies in your integration testing environment, you can add them to the
docker-compose.yml file. If you need to add other microservices with dependencies, you must also
add transitive dependencies. For example, if you needed to add another microservice that uses a
PostgreSQL database, you would need to add both the other microservice and PostgreSQL database
to the docker-compose.yml file.

Let's say the sales-item-service depends on Apache Kafka 2.x that depends on a Zookeeper service.
The sales-item-service's docker-compose.yml looks like the below after adding Kafka and
Zookeeper:

docker-compose.yml

version: "3.8"

services:

 wait-for-services-ready:

 image: dokku/wait

 sales-item-service:

 restart: always

 build:

 context: .

 env_file: .env.ci

 ports:

 - 3000:3000

 depends_on:

 - mysql

 - kafka

 mysql:

342

 image: mysql:8.0.22

 command: --default-authentication-plugin=mysql_native_password

 restart: always

 cap_add:

 - SYS_NICE

 environment:

 MYSQL_ROOT_PASSWORD: ${MYSQL_PASSWORD}

 ports:

 - "3306:3306"

 zookeeper:

 image: bitnami/zookeeper:3.7

 volumes:

 - "zookeeper_data:/bitnami"

 ports:

 - 2181:2181"

 environment:

 - ALLOW_ANONYMOUS_LOGIN=yes

 kafka:

 image: bitnami/kafka:2.8.1

 volumes:

 - "kafka_data:/bitnami"

 ports:

 - "9092:9092"

 environment:

 - KAFKA_CFG_ZOOKEEPER_CONNECT=zookeeper:2181

 - ALLOW_PLAINTEXT_LISTENER=yes

 depends_on:

 - zookeeper

volumes:

 zookeeper_data:

 driver: local

 kafka_data:

 driver: local

End-to-End (E2E) Testing Principle

End-to-end (E2E) testing should test a complete software system (i.e., the integration of
microservices) so that each test case is end-to-end (from the software system's south-bound
interface to the software system's north-bound interface).

As the name says, in E2E testing, test cases should be end-to-end. They should test that each
microservice is deployed correctly to the test environment and connected to its dependent services.
The idea of E2E test cases is not to test details of microservices' functionality because that has
already been tested as part of unit and software component integration testing.

Let's consider a telecom network analytics software system that consists of the following
applications:

• Data ingestion

• Data correlation

• Data aggregation

• Data exporter

343

• Data visualization

The southbound interface of the software system is the data ingestion application. The data
visualization application provides a web client as a northbound interface. Additionally, the data
exporter application provides another northbound interface for the software system.

E2E tests are designed and implemented similarly to software component integration tests. We are
just integrating different things (microservices instead of functions). E2E testing should start with
the specification of E2E features. These features can be specified using the Gherkin language and
put in .feature files.

You can start specifying and implementing E2E tests right after the architectural design for the
software system is completed. This way, you can shift the implementation of the E2E test to the left
and speed up the development phase. You should not start specifying and implementing E2E only
when the whole software system is implemented.

Our example software system should have at least two happy-path E2E features. One for testing the
data flow from data ingestion to data visualization and another feature to test the data flow from
data ingestion to data export. Below is the specification of the first E2E feature:

dataVisualization.feature

Feature: Visualize ingested, correlated and

 aggregated data in web UI's dashboard's charts

 Scenario: Data ingested, correlated and aggregated is visualized

 successfully in web UI's dashboard's charts

344

Figure 5.2 Telecom Network Analytics Software
System

 Given southbound interface simulator is configured

 to send input messages that contain data...

 And data ingester is configured to read the input messages

 from the southbound interface

 And data correlator is configured to correlate

 the input messages

 And data aggregator is configured to calculate

 the following counters...

 And data visualization is configured with a dashboard containing

 the following charts viewing the following counters/KPIs...

 When southbound interface simulator sends the input messages

 And data aggregation period is waited

 And data content of each data visualization web UI's dasboard's

 chart is exported to a CSV file

 Then the CSV export file of the first chart should

 contain following values...

 And the CSV export file of the second chart should

 contain following values...

 .

 .

 .

 And the CSV export file of the last chart should

 contain following values...

And then, we can create the other feature that tests the E2E path from data ingestion to data
export:

dataExport.feature

Feature: Export ingested, correlated and transformed data

 to Apache Pulsar

 Scenario: Data ingested, correlated and transformed is

 successfully exported to Apache Pulsar

 Given southbound interface simulator is configured to send

 input messages that contain data...

 And data ingester is configured to read the input messages

 from the southbound interface

 And data correlator is configured to correlate

 the input messages

 And data exporter is configured to export messages with

 the following transformations to Apache Pulsar...

 When southbound interface simulator sends the input messages

 And messages from Apache Pulsar are consumed

 Then first message from Apache Pulsar should have

 the following fields with following values...

 And second message from Apache Pulsar should have

 the following fields with following values...

 .

 .

 .

 And last message from Apache Pulsar should have

 the following fields with following values...

Next, E2E tests can be implemented. Any programming language and tool compatible with the
Gherkin syntax, like Behave with Python, can be used.

345

The software system we want to E2E test must reside in a production-like test environment.
Usually, E2E testing is done in both the CI and the staging environment(s). Before running the E2E
tests, software needs to be deployed to the test environment.

If we consider the first feature above, implementing the E2E test steps can be done so that the steps
in the Given part of the scenario are implemented using externalized configuration. If our software
system runs in a Kubernetes cluster, we can configure the microservices by creating the needed
ConfigMaps. The southbound interface simulator can be controlled by launching a Kubernetes Job
or, if the southbound interface simulator is a microservice with an API, commanding it via its API.
After waiting for all the ingested data to be aggregated and visualized, the E2E test can launch a test
tool suited for web UI testing (like TestCafe) to export chart data from the web UI to downloaded
files. Then the E2E test compares the content of those files with expected values.

You can run E2E tests in a CI environment after each commit to the main branch (i.e., after a
microservice CI/CD pipeline run is finished) to test that a new commit did not break any E2E tests.
Alternatively, if the E2E tests are complex and take a long time to execute, you can run the E2E
tests in the CI environment on a schedule, like hourly.

You can run E2E tests in a staging environment using a separate pipeline in your CI/CD tool.

 Non-Functional Testing Principle

In addition to multi-level functional testing, non-functional testing, as automated as possible,
should be performed for a software system.

The most important categories of non-functional testing are the following:

• Performance testing

• Data volume testing

• Stability testing

• Reliability testing

• Stress and scalability testing

• Security testing

Performance Testing

The goal of performance testing is to verify the performance of a software system. This verification
can be done on different levels and in different ways, for example, by verifying each performance-
critical microservice separately.

346

To measure the performance of a microservice, performance tests can be created to benchmark the
busy loop or loops in the microservice. If we take the data exporter microservice as an example,
there is a busy loop that performs message decoding, transformation, and encoding. We can create
a performance test using a unit testing framework for this busy loop. The performance test should
execute the code in the busy loop for a certain number of rounds and verify that the execution
duration does not exceed a specified threshold value obtained on the first run of the performance
test. The performance test aims to verify that performance remains at the same level as it has been.
If the performance has worsened, the test won't pass. In this way, you cannot accidentally introduce
changes that negatively affect the performance without noticing it. This same performance test can
also be used to measure the effects of optimizations. First, you write code for the busy loop without
optimizations, measure the performance, and use that measure as a reference point. After that, you
start introducing optimizations one by one and see if and how they affect performance.

The performance test's execution time threshold value must be separately specified for each
developer's computer. This can be achieved by having a different threshold value for each computer
hostname running the test.

You can also run the performance test in a CI/CD pipeline, but you must first measure the
performance in that pipeline and set the threshold value accordingly. Also, the computing instances
running CI/CD pipelines must be homogeneous. Otherwise, you will get different results on
different CI/CD pipeline runs.

The above-described performance test was for a unit (one public function), but performance testing
can also be done on the software component level. This is useful if the software component has
external dependencies whose performance needs to be measured. In the telecom network analytics
software system, we could introduce a performance test for the data-ingester-service to measure
how long it takes to process a certain number of messages, like one million. After executing that
test, we have a performance measurement available for reference. When we try to optimize the
microservice, we can measure the performance of the optimized microservice and compare it to the
reference value. If we make a change known to worsen the performance, we have a reference value
to which we can compare the deteriorated performance and see if it is acceptable. And, of course,
this reference value will prevent a developer from accidentally making a change that negatively
impacts the microservice's performance.

We can also measure end-to-end performance. In the telecom network analytics software system,
we could measure the performance from data ingestion to data export, for example.

Data Volume Testing

The goal of data volume testing is to measure the performance of a database compared when the
database is empty to when the database has a sizeable amount of data stored in it. With data

347

volume testing, we can measure the impact of data volume on a software component's performance.
Usually, an empty database has better performance than a database containing a high amount of
data. This, of course, depends on the database and how it scales with a large amount of data.

Stability Testing

Stability testing aims to verify that a software system remains stable when running for an extended
period of time under load. This testing is also called load, endurance, or soak testing. The term
"extended period" can be interpreted differently depending on the software system. But this period
should be many hours, preferably several days, even up to one week. Stability testing aims to
discover problems like sporadic bugs or memory leaks. A sporadic bug is a bug that occurs only in
certain conditions or at irregular intervals. A memory leak can be so small that it requires the
software component to run for tens of hours after it becomes visible. It is recommended that when
running the software system for a longer period, the induced load to the software system follows a
natural pattern (mimicking the production load), meaning that there are peaks and lows in the
load.

Stability testing can be partly automated. The load to the system can be generated using tools
created for that purpose, like Apache JMeter, for example. Each software component can measure
crash count, and those statistics can be analyzed automatically or manually after the stability
testing is completed. Analyzing memory leaks can be trickier, but crashes due to out-of-memory
should be registered, and situations where a software component is scaling out due to lack of
memory.

Reliability Testing

Reliability testing aims to verify that a software system runs reliably. The software system is reliable
when it is resilient to failures and recovers from failures automatically as fast as possible. Reliability
testing is also called availability, recovery, or resilience testing.

Reliability testing involves chaos engineering to induce various failures in the software system’s
environment. It should also ensure that the software system stays available and can automatically
recover from failures.

Suppose you have a software system deployed to a Kubernetes cluster. You can make stateless
services highly available by configuring them to run more than one pod. If one node goes down, it
will terminate one of the pods, but the service remains available and usable because at least one
other pod is still running on a different node. Also, after a short while, when Kubernetes notices
that one pod is missing, it will create a new pod on a new node, and there will be the original
number of pods running, and the recovery from the node down is successful.

348

Many parts of the reliability testing can be automated. You can use ready-made chaos engineering
tools or create your own tools. Use a tool to induce failures in the environment. Then verify that
services remain either highly available or at least swiftly recover from failures.

Considering the telecom network analytics software system, we could introduce a test case where
the message broker (e.g., Kafka) is shut down. Then we expect alerts triggered after a while by the
microservices that try to use the unavailable message broker. After the message broker is started,
the alerts should cancel automatically, and the microservices should continue normal operation.

Stress and Scalability Testing

Stress testing aims to verify that a software system runs under high load. In stress testing, the
software system is exposed to a load higher than the system's usual load. The software system
should be designed as scalable, which means that the software system should also run under high
load. Thus, stress testing should test the scalability of the software system and see that
microservices scale out when needed. At the end of stress testing, the load is returned back to the
normal level, and scaling the microservices in can also be verified.

You can specify a HorizontalPodAutoscaler (HPA) for a Kubernetes Deployment. In the HPA
manifest, you must specify the minimum number of replicas. This should be at least two if you want
to make your microservice highly available. You also need to specify the maximum number of
replicas so that your microservice does not consume too many computing resources in some weird
failure case. You can make the horizontal scaling (scaling in and out) happen by specifying a target
utilization rate for CPU and memory. Below is an example Helm chart template for defining a
Kubernetes HPA:

{{- if eq .Values.nodeEnv "production" }}

apiVersion: autoscaling/v2beta1

kind: HorizontalPodAutoscaler

metadata:

 name: {{ include "microservice.fullname" . }}

 labels:

 {{- include "microservice.labels" . | nindent 4 }}

spec:

 scaleTargetRef:

 apiVersion: apps/v1

 kind: Deployment

 name: {{ include "microservice.fullname" . }}

 minReplicas: {{ .Values.hpa.minReplicas }}

 maxReplicas: {{ .Values.hpa.maxReplicas }}

 metrics:

 {{- if .Values.hpa.targetCPUUtilizationPercentage }}

 - type: Resource

 resource:

 name: cpu

 targetAverageUtilization: {{ .Values.hpa.targetCPUUtilizationPercentage }}

 {{- end }}

 {{- if .Values.hpa.targetMemoryUtilizationPercentage }}

 - type: Resource

 resource:

349

 name: memory

 targetAverageUtilization: {{ .Values.hpa.targetMemoryUtilizationPercentage }}

 {{- end }}

{{- end }}

It is also possible to specify the autoscaling to use an external metric. An external metric could be
Kafka consumer lag, for instance. If Kafka consumer lag grows too high, the HPA can scale the
microservice out to have more processing power for the Kafka consumer group and when the Kafka
consumer lag decreases below a defined threshold, HPA can scale the microservice in to reduce the
number of pods.

Security Testing

The goal of security testing is to verify that a software system is secure and does not contain
security vulnerabilities. One part of security testing is performing vulnerability scans of the
software artifacts. Typically, this means scanning the microservice containers using an automatic
vulnerability scanning tool. Another essential part of security testing is penetration testing, which
simulates attacks by a malicious party. Penetration testing can be performed using an automated
tool like OWASP ZAP or Burp Suite.

Penetration testing tools try to find security vulnerabilities in the following categories:

• Cross-site scripting

• SQL injection

• Path disclosure

• Denial of service

• Code execution

• Memory corruption

• Cross-site request forgery (CSRF)

• Information disclosure

• Local/remote file inclusion

A complete list of possible security vulnerabilities found by the OWASP ZAP tool can be found at
https://www.zaproxy.org/docs/alerts/.

Other Non-Functional Testing

Other non-functional testing is documentation testing and several UI-related non-functional
testing, including accessibility (A11Y) testing, visual testing, usability testing, and localization and
internationalization (I18N) testing.

350

Visual Testing

I want to bring up visual testing here because it is important. Backstop.js and cypress-plugin-
snapshots test web UI's HTML and CSS using snapshot testing. Snapshots are screenshots taken of
the web UI. Snapshots are compared to ensure that the visual look of the application stays the same
and there are no bugs introduced with HTML or CSS changes.

351

352

Security First Principle

Shift security implementation to the left. Implement security-related features first, not last.

Suppose that security-related features are implemented only in a very late phase of a project. In
that case, there is a greater possibility of not finding time to implement them or forgetting to
implement them. For that reason, security-related features should be implemented first, not last.
The threat modeling process described in the next section should be used to identify the potential
threats and provide a list of security features that need to be implemented as threat
countermeasures.

Threat Modelling

The threat modeling process enables you to identify, quantify, and address security risks associated
with an application. The threat modeling process is composed of three high-level steps:

• Decompose application

• Determine and rank threats

• Determine countermeasures and mitigation

Decompose Application

The application decomposition step is to gain knowledge of what parts the application is composed
of, the external dependencies, and how they are used. This step can be performed after the
application architecture is designed. The results of this step are:

353

• Identify an attacker's entry points to the application

• Identify assets under threat. These assets are something that an attacker is interested in

• Identify trust levels, e.g., what users with different user roles can do

Determine and Rank Threats

To determine possible threats, a threat categorization methodology should be used. The STRIDE
method categorizes threats to the following categories:

The Application Security Frame (ASF) categorizes application security features into the following
categories:

Category Description

Spoofing Attacker acting as another user without real
authentication or using stolen credentials

Tampering Attacker maliciously changing data

Repudiation Attacker being able to perform prohibited operations

Information disclosure Attacker gaining access to sensitive data

Denial of service Attacker trying to make the service unusable

Elevation of privilege Attacker gaining unwanted access rights

Category Description

Audit & Logging Logging user actions to detect, e.g., repudiation
attacks

Authentication Prohibit identity spoofing attacks

Authorization Prohibit elevation of privilege attacks

Configuration Management Proper storage of secrets and configuring the system
with the least privileges

Data protection in transit and rest Using secure protocols like TLS, encrypting sensitive
information like PII in databases

Data validation Validate input data from users to prevent, e.g.,
injection and ReDoS attacks

Exception management Do not reveal implementation details in error
messages to end-users

354

When using either of the above-described threat categorization methodologies, threats in each
category should be listed based on the information about the decomposed application: what are the
application entry points and assets that need to be secured? After listing potential threats in each
category, the threats should be ranked. There are several ways to rank threats. The simplest way to
rank threats is to put them in one of the three categories based on the risk: high, medium, and low.
As a basis for the ranking, you can use information about the threat's probability and how big an
adverse effect (impact) it has. The idea of ranking is to prioritize security features. Security features
for high-risk threats should be implemented first.

Determine Countermeasures and Mitigation

Determining countermeasures step should provide a list of user stories for the needed security
features. These security features should eliminate or at least mitigate the threats. If you have a
threat that cannot be eliminated or mitigated, you can accept the risk if the threat is categorized as
a low-risk threat. A low-risk threat is a threat with a low impact on the application, and the
probability of the threat realization is low. Suppose you have found a threat with a very high risk in
your application, and you cannot eliminate or mitigate that threat. In that case, you should
eliminate the threat by completely removing the threat-related features from the application.

Security Features

 Authentication and Authorization

When implementing user authentication and authorization for an application, use a 3rd party
authorization service. Don't try to build an authorization service by yourself. You can easily make
mistakes. Also, it can be a security risk if your application handles plaint-text user credentials. It is
better to use a battle-tested solution that has the most significant bugs corrected and can store user
credentials securely. We use Keycloak as an authorization service in the coming examples.

Also, try using established 3rd party libraries as much as possible instead of writing all
authorization-related code yourself. It is also helpful to create a single frontend authentication/
authorization library and use that same library in multiple projects instead of constantly
implementing authentication and authorization-related functionality from scratch in different
projects.

OpenID Connect Authentication and Authorization in Frontend

Regarding frontend authorization, attention must be paid to the secure storage of authorization-
related secrets like code verifier and tokens. Those must be stored in a secure location in the

355

browser. Below is a list of some insecure storing mechanisms:

• Cookies

• Sent automatically, a CSRF threat

• Session/Local Storage

• Easily stolen by malicious code (XSS threat)

• Encrypted session/local storage

• Easily stolen by malicious code because the encryption key is in plain text

• Global variable

• Easily stolen by malicious code (XSS threat)

Storing secrets in closure variables is not inherently insecure, but secrets are lost on page refresh or
new page.

Below is an example that uses a service worker as a secure storage of secrets. The additional benefit
of a service worker is that it does not allow malicious 3rd party code to modify the service worker's
fetch method so that it can, for example, steal access tokens.

It is easy for malicious code to change the global fetch function:

fetch = () => console.log('hacked');

fetch() // prints 'hacked' to console

Below is a more realistic example:

originalFetch = fetch;

fetch = (url, options) => {

 // Implement malicious attack here

 // For example: change some data in the request body

 // Then call original fetch implementation

 return originalFetch(url, options);

}

Of course, one can ask: why is it possible to modify the built-in method on the global object like
that? Of course, it should not be possible, but unfortunately, it is.

Let's create a Vue.js application that performs authentication and authorization using the OpenID
Connect protocol, an extension of the OAuth2 protocol.

In the main module below, we set up the global fetch to always return an error and only allow our
tryMakeHttpRequest function to use the original global fetch method. Then we register a
service worker. If the service worker has already been registered, it is not registered again. Finally,
we create the application (App component), activate the router, activate the Pinia middleware for
state management, and mount the application to a DOM node:

356

main.ts

import { setupFetch } from "@/tryMakeHttpRequest";

setupFetch();

import { createApp } from "vue";

import { createPinia } from "pinia";

import App from "@/App.vue";

import router from "@/router";

if ("serviceWorker" in navigator) {

 await navigator.serviceWorker.register("/serviceWorker.js");

}

const app = createApp(App);

const pinia = createPinia();

app.use(pinia);

app.use(router);

app.mount("#app");

Below is the definition of the App component. After mounting, it will check whether the user is
already authorized.

If the user is authorized, his/hers authorization information will be fetched from the service
worker, and the user's first name will be updated in the authorization information store. The user
will be forwarded to the Home page.

If the user is not authorized, authorization will be performed.

App.vue

<template>

 <HeaderView />

 <router-view></router-view>

</template>

<script setup>

import { onMounted } from "vue";

import { useRouter } from "vue-router";

import authorizationService from "@/authService";

import { useAuthInfoStore } from "@/stores/authInfoStore";

import HeaderView from "@/HeaderView.vue";

import tryMakeHttpRequest from "@/tryMakeHttpRequest";

const router = useRouter();

const route = useRoute();

onMounted(async () => {

 const response = await tryMakeHttpRequest("/authorizedUserInfo");

 const responseBody = await response.text();

 if (responseBody !== "") {

 const authorizedUserInfo = JSON.parse(responseBody);

 const { setFirstName } = useAuthInfoStore();

 setFirstName(authorizedUserInfo.firstName);

 router.push({ name: "home" });

 } else if (route.path !== '/auth') {

 authorizationService

 .tryAuthorize()

 .catch(() => router.push({ name: "auth-error" }));

 }

357

});

</script>

authInfoStore.ts

import { ref } from "vue";

import { defineStore } from "pinia";

export const useAuthInfoStore =

 defineStore("authInfoStore", () => {

 const firstName = ref('');

 function setFirstName(newFirstName: string) {

 firstName.value = newFirstName;

 }

 return { firstName, setFirstName };

 });

The header of the application displays the first name of the logged-in user and a button for logging
the user out:

HeaderView.vue

<template>

 {{authInfoStore.firstName}}

 <button @click="logout">Logout</button>

</template>

<script setup>

import { useRouter } from "vue-router";

import authorizationService from "@/authService";

import { useAuthInfoStore } from "@/stores/authInfoStore";

const authInfoStore = useAuthInfoStore();

const router = useRouter();

function logout() {

 authorizationService

 .tryLogout()

 .catch(() => router.push({ name: "auth-error" }));

}

</script>

The tryMakeHttpRequest function is a wrapper around the browser's global fetch method. It
will start an authorization procedure if an HTTP request returns the HTTP status code 403
Forbidden.

tryMakeHttpRequest.ts

import authorizationService from "@/authService";

let originalFetch: typeof fetch;

export default function tryMakeHttpRequest(

 url: RequestInfo,

 options?: RequestInit

): Promise<Response> {

358

 return originalFetch(url, options).then(async (response) => {

 if (response.status === 403) {

 try {

 await authorizationService.tryAuthorize();

 } catch {

 // Handle auth error, return response with status 403

 }

 }

 return response;

 });

}

export function setupFetch() {

 originalFetch = fetch;

 // @ts-ignore

 // eslint-disable-next-line no-global-assign

 fetch = () =>

 Promise.reject(new Error('Global fetch not implemented'));

}

Below is the implementation of the service worker:

serviceWorker.js

const allowedOrigins = [

 "http://localhost:8080", // IAM in dev environment

 "http://localhost:3000", // API in dev environment

 "https://software-system-x.domain.com" // prod environment

];

const apiEndpointRegex = /\/api\//;

const tokenEndpointRegex = /\/openid-connect\/token$/;

const data = {};

// Listen to messages that contain data

// to be stored inside the service worker

addEventListener("message", (event) => {

 if (event.data) {

 data[event.data.key] = event.data.value;

 }

});

function respondWithUserInfo(event) {

 const response =

 new Response(data.authorizedUserInfo

 ? JSON.stringify(data.authorizedUserInfo)

 : '');

 event.respondWith(response);

}

function respondWithIdToken(event) {

 const response = new Response(data.idToken

 ? data.idToken

 : '');

 event.respondWith(response);

}

function respondWithTokenRequest(event) {

 let body = "grant_type=authorization_code";

 body += `&code=${data.code}`;

 body += `&client_id=app-x`;

359

 body += `&redirect_uri=${data.redirectUri}`;

 body += `&code_verifier=${data.codeVerifier}`;

 const tokenRequest = new Request(event.request, { body });

 // Verify that state received from the authorization

 // server is same as sent by this app earlier

 if (data.state === data.receivedState) {

 event.respondWith(fetch(tokenRequest));

 } else {

 // Handle error

 }

}

function respondWithApiRequest(event) {

 const headers = new Headers(event.request.headers);

 // Add Authorization header that contains the access token

 if (data.accessToken) {

 headers.append("Authorization",

 `Bearer ${data.accessToken}`);

 }

 const authorizedRequest = new Request(event.request, {

 headers

 });

 event.respondWith(fetch(authorizedRequest));

}

function fetchHandler(event) {

 const requestUrl = new URL(event.request.url);

 if (event.request.url.endsWith('/authorizedUserInfo') &&

 !apiEndpointRegex.test(requestUrl.pathname)) {

 respondWithUserInfo(event);

 } else if (event.request.url.endsWith('/idToken') &&

 !apiEndpointRegex.test(requestUrl.pathname)) {

 respondWithIdToken(event);

 } else if (allowedOrigins.includes(requestUrl.origin)) {

 if (tokenEndpointRegex.test(requestUrl.pathname)) {

 respondWithTokenRequest(event);

 } else if (apiEndpointRegex.test(requestUrl.pathname)) {

 respondWithApiRequest(event);

 }

 } else {

 event.respondWith(fetch(event.request));

 }

}

// Intercept all fetch requests and handle

// them with 'fetchHandler'

addEventListener("fetch", fetchHandler);

Authorization using the OAuth2 Authorization Code Flow is started with a browser redirect to a
URL of the following kind:

https://authorization-server.com/auth?
response_type=code&client_id=CLIENT_ID&redirect_uri=https://example-app.com/
cb&scope=photos&state=1234zyx...ghvx3&code_challenge=CODE_CHALLENGE&code_challenge_method=SHA2
56

360

The query parameters in the above URL are the following:

• response_type=code - Indicates that you expect to receive an authorization code

• client_id - The client id you used when you created the client on the authorization server

• redirect_uri - Indicates the URI to redirect the browser to after authorization is completed. You

need to define this URI also in the authorization server.

• scope - One or more scope values indicating which parts of the user's account you wish to access.

Scopes should be separated by URL-encoded space characters

• state - A random string generated by your application, which you'll verify later

• code_challenge - PKCE extension: URL-safe base64-encoded SHA256 hash of the code verifier. A

code verifier is a random string secret you generate

• code_challenge_method=S256 - PKCE extension: indicates which hashing method is used (S256

means SHA256)

We need to use the PKCE extension as an additional security measure because we perform the
Authorization Code Flow in the frontend instead of the backend.

If authorization is successful, the authorization server will redirect the browser to the above-given
redirect_uri with code and state given as URL query parameters, for example:

https://example-app.com/cb?code=AUTH_CODE_HERE&state=1234zyx...ghvx3

• code - The authorization code returned from the authorization server

• state - The same state value that you passed earlier

After the application is successfully authorized, tokens can be requested with the following kind of
HTTP POST request:

POST https://authorization-server.com/token

 grant_type=authorization_code&

 code=AUTH_CODE_HERE&

 redirect_uri=REDIRECT_URI&

 client_id=CLIENT_ID&

 code_verifier=CODE_VERIFIER

• grant_type=authorization_code - The grant type for this flow is authorization_code

• code=AUTH_CODE_HERE - This is the code you received when the browser was redirected back

to your application from the authorization server.

• redirect_uri=REDIRECT_URI - Must be identical to the redirect URI provided earlier during

authorization

• client_id=CLIENT_ID - The client id you used when you created the client on the authorization

server

361

• code_verifier=CODE_VERIFIER - The random string secret you generated earlier

Below is the implementation of an AuhtorizationService class. It provides methods for
authorization, getting tokens and logout.

AuthorizationService.ts

import pkceChallenge from "pkce-challenge";

import jwt_decode from "jwt-decode";

import tryMakeHttpRequest from "@/tryMakeHttpRequest";

import type { useAuthInfoStore } from "@/stores/authInfoStore";

interface AuthorizedUserInfo {

 readonly userName: string;

 readonly firstName: string;

 readonly lastName: string;

 readonly email: string;

}

export default class AuthorizationService {

 constructor(

 private readonly oidcConfigurationEndpoint: string,

 private readonly clientId: string,

 private readonly authRedirectUrl: string,

 private readonly loginPageUrl: string

) {}

 // Try to authorize the user using the OpenID Connect

 // Authorization Code Flow

 async tryAuthorize(): Promise<void> {

 // Store the redirect URI in service worker

 navigator.serviceWorker?.controller?.postMessage({

 key: "redirectUri",

 value: this.authRedirectUrl

 });

 // Store the state secret in service worker

 const state = crypto.randomUUID();

 navigator.serviceWorker?.controller?.postMessage({

 key: "state",

 value: state,

 });

 // Generate a PKCE challenge and store

 // the code verifier in service worker

 const challenge = pkceChallenge(128);

 navigator.serviceWorker?.controller?.postMessage({

 key: "codeVerifier",

 value: challenge.code_verifier,

 });

 const authUrl = await this.tryCreateAuthUrl(state, challenge);

 // Redirect the browser to authorization server's

 // authorization URL

 location.href = authUrl;

 }

 // Try get access, refresh and ID token from

 // the authorization server's token endpoint

 async tryGetTokens(

362

 authInfoStore: ReturnType<typeof useAuthInfoStore>

): Promise<void> {

 const oidcConfiguration = await this.getOidcConfiguration();

 const response =

 await tryMakeHttpRequest(oidcConfiguration.token_endpoint, {

 method: "post",

 mode: "cors",

 headers: {

 "Content-Type": "application/x-www-form-urlencoded",

 },

 });

 const tokens = await response.json();

 this.storeTokens(tokens);

 this.storeAuthorizedUserInfo(tokens.id_token, authInfoStore);

 }

 // Logout and redirect to login page

 async tryLogout(): Promise<void> {

 const oidcConfiguration = await this.getOidcConfiguration();

 // Clear authorized user info in service worker

 navigator.serviceWorker?.controller?.postMessage({

 key: "authorizedUserInfo",

 value: undefined

 });

 // Get ID token from service worker

 const response = await tryMakeHttpRequest("/idToken");

 const idToken = await response.text();

 // Redirect browser to authorization server's

 // logout endpoint

 if (idToken !== "") {

 location.href =

 oidcConfiguration.end_session_endpoint +

 `?post_logout_redirect_uri=${this.loginPageUrl}` +

 `&id_token_hint=${idToken}`;

 } else {

 location.href = oidcConfiguration.end_session_endpoint;

 }

 }

 private async getOidcConfiguration(): Promise<any> {

 const response =

 await tryMakeHttpRequest(this.oidcConfigurationEndpoint);

 return response.json();

 }

 private async tryCreateAuthUrl(

 state: string,

 challenge: ReturnType<typeof pkceChallenge>

) {

 const oidcConfiguration = await this.getOidcConfiguration();

 let authUrl = oidcConfiguration.authorization_endpoint;

 authUrl += "?response_type=code";

 authUrl += "&scope=openid+profile+email";

 authUrl += `&client_id=${this.clientId}`;

 authUrl += `&redirect_uri=${this.authRedirectUrl}`;

 authUrl += `&state=${state}`;

363

 authUrl += `&code_challenge=${challenge.code_challenge}`;

 authUrl += "&code_challenge_method=S256";

 return authUrl;

 }

 private storeTokens(tokens: any) {

 navigator.serviceWorker?.controller?.postMessage({

 key: "accessToken",

 value: tokens.access_token,

 });

 navigator.serviceWorker?.controller?.postMessage({

 key: "refreshToken",

 value: tokens.refresh_token,

 });

 navigator.serviceWorker?.controller?.postMessage({

 key: "idToken",

 value: tokens.id_token,

 });

 }

 private storeAuthorizedUserInfo(

 idToken: any,

 authInfoStore: ReturnType<typeof useAuthInfoStore>

) {

 const idTokenClaims: any = jwt_decode(idToken);

 const authorizedUserInfo = {

 userName: idTokenClaims.preferred_username,

 firstName: idTokenClaims.given_name,

 lastName: idTokenClaims.family_name,

 email: idTokenClaims.email,

 };

 navigator.serviceWorker?.controller?.postMessage({

 key: "authorizedUserInfo",

 value: authorizedUserInfo

 });

 authInfoStore.setFirstName(idTokenClaims.given_name);

 }

}

Below is an example response you get when you execute the tryMakeHttpRequest function in
the tryGetTokens method:

{

 "access_token": "eyJz93a...k4laUWw",

 "id_token": "UFn43f...c5vvfGF",

 "refresh_token": "GEbRxBN...edjnXbL",

 "token_type": "Bearer",

 "expires_in": 3600

}

The AuthorizationCallback component is the component that will be rendered when the
authorization server redirects the browser back to the application after successful authorization.
This component stores the authorization code and the received state in the service worker and

364

initiates a request for tokens. After receiving tokens, it will route the application to the home page.
As an additional security measure, the token request will only be performed if the original state and
received state are equal. This check is done in the service worker code.

AuthorizationCallback.vue

<template>

 <div></div>

</template>

<script setup>

import { onMounted } from "vue";

import { useRouter, useRoute } from "vue-router";

import authorizationService from "@/authService";

import { useAuthInfoStore } from "@/stores/authInfoStore";

const { query } = useRoute();

const router = useRouter();

const authInfoStore = useAuthInfoStore();

onMounted(async () => {

 // Store authorization code in service worker

 navigator.serviceWorker?.controller?.postMessage({

 key: "code",

 value: query.code,

 });

 // Store received state in service worker

 navigator.serviceWorker?.controller?.postMessage({

 key: "receivedState",

 value: query.state,

 });

 // Try fetch tokens

 try {

 await authorizationService.tryGetTokens(authInfoStore);

 router.push({ name: "home" });

 } catch (error) {

 router.push({ name: "auth-error" });

 }

});

</script>

Other UI components the application uses are defined below:

AuthorizationError.vue

<template>

 <div>Error</div>

</template>

LoginView.vue

<template>

 <div>Login</div>

</template>

365

HomeView.vue

<template>

 <div>Home</div>

</template>

The application's router is the following:

router.ts

import { createRouter, createWebHistory } from "vue-router";

import AuthorizationCallback from "@/AuthorizationCallback.vue";

import AuthorizationError from "@/AuthorizationError.vue";

import HomeView from "@/HomeView.vue";

import LoginView from "@/LoginView.vue";

const routes = [

 {

 path: "/",

 name: "login",

 component: LoginView,

 },

 {

 path: "/auth",

 name: "auth",

 component: AuthorizationCallback,

 },

 {

 path: "/auth-error",

 name: "auth-error",

 component: AuthorizationError,

 },

 {

 path: "/home",

 name: "home",

 component: HomeView,

 },

];

const router = createRouter({

 history: createWebHistory(),

 routes,

});

export default router;

The below authService module contains definitions of needed constants and creates an instance of
the AuthorizationService class. The below code contains values for a local development
environment. In real life, these values should be taken from environment variables. The below
values work if you have a Keycloak service running at localhost:8080 and the Vue app running at
localhost:5173. You must create a client in the Keycloak with the name 'app-x'. Additionally, you
must define a valid redirect URI and add an allowed web origin. Lastly, you must configure a valid
post-logout redirect URI (see the below image). The default access token lifetime in Keycloak is just
one minute. You can increase that for testing purposes in the realm settings (the token tab)

366

authService.ts

import AuthorizationService from "@/AuthorizationService";

const oidcConfigurationEndpoint =

 "http://localhost:8080/realms/master/.well-known/openid-configuration";

const clientId = "app-x";

const redirectUrl = "http://127.0.0.1:5173/auth";

const loginPageUrl = "http://127.0.0.1:5173";

const authorizationService = new AuthorizationService(

 oidcConfigurationEndpoint,

 clientId,

 redirectUrl,

 loginPageUrl

);

export default authorizationService;

OAuth2 Authorization in Backend

Only let authorized users access resources. The best way not to forget to implement authorization is
to deny access to resources by default. You can require that an authorization annotation must be
present in all controller methods. If an API endpoint does not require authorization, a special
annotation like @AllowAnyone could be used. If a controller method is missing an authorization
annotation, an exception can be thrown, for example. This way, you can never forget to add an
authorization annotation to a controller method.

Broken access control is number one in the OWASP Top 10 for 2021. Especially remember to
disallow users to create, view, edit or delete resources belonging to someone else by providing
someone else's unique identifier.

367

Fig 6.1 Keycloak Settings for the Client

Below is a JWT-based authorizer class that can be used in a backend API service implemented with
the Express framework:

JwtAuthorizer.ts

import _ from 'lodash';

import { decode, verify } from 'jsonwebtoken';

import { fetch } from 'fetch-h2';

import { Request } from 'express';

import jwks from 'jwks-rsa';

import throwException from './throwException';

export default class JwtAuthorizer implements

 Authorizer {

 private readonly oidcConfigurationEndpoint: string;

 private readonly rolesClaimPath: string;

 private readonly getUserIdBySubjectUrl: string;

 private jwksClient: any;

 constructor() {

 this.oidcConfigurationEndpoint =

 process.env.OIDC_CONFIGURATION_ENDPOINT ??

 throwException('OIDC_CONFIGURATION_ENDPOINT is not defined');

 // With Keycloak you can use e.g., realm_access.roles

 this.rolesClaimPath = process.env.JWT_ROLES_CLAIM_PATH ??

 throwException('JWT_ROLES_CLAIM_PATH is not defined')

 // This is the URL where you can fetch the user id for a

 // specific 'sub' claim value in the access token

 this.getUserIdBySubjectUrl =

 process.env.GET_USER_ID_BY_SUBJECT_URL ??

 throwException('GET_USER_ID_BY_SUBJECT_URL is not defined');

 }

 async tryAuthorize(

 request: Request

): Promise<void> {

 await this.tryGetClaims(request.headers.authorization);

 }

 // Authorize a user for his/hers own resources only

 // Note! For some IAM systems other than Keycloak,

 // you might need to use 'uid'

 // claim instead of 'sub' to get really unique user id

 async tryAuthorizeForUserOwnResourcesOnly(

 userId: number,

 request: Request

): Promise<void> {

 const claims =

 await this.tryGetClaims(request.headers.authorization);

 const response =

 await fetch(this.getUserIdBySubjectUrl +

 `?sub=${claims.sub}`);

 const userIdObject = await response.json();

 if (userId !== userIdObject.userId) {

 throw new Error('...');

 }

 }

368

 async tryAuthorizeIfUserHasOneOfRoles(

 allowedRoles: string[],

 request: Request):

 Promise<void> {

 const claims =

 await this.tryGetClaims(request.headers.authorization);

 const roles = _.get(claims, this.rolesClaimPath);

 const isAuthorized =

 allowedRoles.some((allowedRole) =>

 roles.includes(allowedRole));

 if (!isAuthorized) {

 throw new Error('...');

 }

 }

 private async tryGetClaims(

 authHeader: string | undefined

): Promise<any> {

 const response = await fetch(this.oidcConfigurationEndpoint);

 const oidcConfiguration = await response.json();

 if (!this.jwksClient) {

 this.jwksClient =

 jwks({ jwksUri: oidcConfiguration.jwks_uri });

 }

 const jwt = authHeader?.split('Bearer ').pop();

 const decodedJwt = decode(jwt ?? '', { complete: true });

 const kid = decodedJwt?.header?.kid;

 const signingKey = await this.jwksClient.getSigningKey(kid);

 return verify(jwt ?? '', signingKey.getPublicKey());

 }

}

export const authorizer = new JwtAuthorizer();

Below is an example API service that utilizes the above-defined JwtAuthorizer:

app.ts

import express, { Response, Request } from 'express';

import cors from 'cors';

import { authorizer } from './JwtAuthorizer';

const app = express();

app.use(express.json());

app.use(cors());

function sendAuthError(request: Request, response: Response) {

 if (request.headers.authorization) {

 response

 .status(403)

 .json({ error: 'Unauthorized' });

 } else {

 response

 .status(401)

 .json({ error: 'Unauthenticated' });

 }

369

}

app.get('/api/sales-items', () => {

 // No authorized needed

 // Send sales items

});

app.post('/api/messages', (request, response) => {

 authorizer.tryAuthorize(request)

 .then(() => {

 // Create a message

 }).catch(() => sendAuthError(request, response));

});

app.post('/api/orders', (request, response) => {

 authorizer

 .tryAuthorizeForUserOwnResourcesOnly(request.body.userId,

 request)

 .then(() => {

 // Create an order for the user,

 // user cannot create orders for other users

 }).catch(() => sendAuthError(request, response));

});

app.delete('/api/sales-items', (request, response) => {

 authorizer

 .tryAuthorizeIfUserHasOneOfRoles(['admin'], request)

 .then(() => {

 // Only admin user can delete all sales items

 }).catch(() => sendAuthError(request, response));

});

app.listen(3000);

Below is a simple example of implementing an OAuth2 resource server using Spring Boot. First,
you need to add the OAuth2 resource server dependency:

build.gradle

dependencies {

 implementation 'org.springframework.boot:spring-boot-starter-oauth2-resource-server'

}

Next, you need to configure a JWT issuer URL. In the below example, we use a localhost Keycloak
service.

application.yml

spring:

 security:

 oauth2:

 resourceserver:

 jwt:

 issuer-uri: http://localhost:8080/realms/master/

Then you will configure which API endpoints need to be authorized with a valid JWT. The below
example requires requests to all API endpoints to contain a valid JWT.

370

SecurityConfiguration.java

import org.springframework.context.annotation.Configuration;

import org.springframework.security.config.annotation.web.builders.HttpSecurity;

import
org.springframework.security.config.annotation.web.configuration.WebSecurityConfigurerAdapter;

@Configuration

public class SecurityConfiguration

 extends WebSecurityConfigurerAdapter {

 @Override

 protected final void configure(

 final HttpSecurity httpSecurity

) throws Exception {

 httpSecurity.authorizeRequests()

 .antMatchers("/**")

 .authenticated()

 .and()

 .oauth2ResourceServer()

 .jwt();

 }

}

In a REST controller, you can inject the JWT using the AuthenticationPrincipal annotation
to perform additional authorization in the controller methods:

SalesItemController.java

@RestController

@RequestMapping(SalesItemController.API_ENDPOINT)

@Slf4j

public class SalesItemController {

 public static final String API_ENDPOINT = "/salesitems";

 @Autowired

 private SalesItemService salesItemService;

 @PostMapping

 @ResponseStatus(HttpStatus.CREATED)

 public final SalesItem createSalesItem(

 @RequestBody final SalesItemArg salesItemArg,

 @AuthenticationPrincipal final Jwt jwt

) {

 log.info("Username: {}",

 jwt.getClaimAsString("preferred_username"));

 // You can now use the "jwt" object to get a claim about

 // user's roles and verify a needed role, for example.

 return salesItemService.createSalesItem(salesItemArg);

 }

}

Password Policy

Implement a password policy requiring strong passwords and prefer passphrases over passwords. A
passphrase is supposed to contain multiple words. Passphrases are harder to guess by attackers and

371

easier to remember by users than strong passwords. Allow passphrases to contain Unicode
characters. This allows users to create passphrases using their mother tongue.

You should require that passwords are strong and match the following criteria:

• At least 12 characters long

• At least one uppercase letter

• At least one lowercase letter

• At least one number

• At least one special character

• May not contain the username

• May not contain too many identical digits or letters, e.g., a password containing "111111",

"aaaaaa," or "1a1a1a1a1a" should be denied

• May not contain too many consecutive numbers or letters, e.g., a password containing "12345",

"56789", "abcdef", or "klmno" should be denied

• May not contain too many adjacent letters in the keyboard, e.g., a password containing "qwerty"

should be denied

• May not contain a black-listed word. Black-list all commonly used, easy-to-guess passwords.

Cryptography

The following are the key security features to implement related to cryptography:

• Do not transmit data in clear text

• You don't need to implement HTTPS in all the microservices because you can set up a

service mesh and configure it to implement mTLS between services

• Do not store sensitive information like personally identifiable information (PII) in clear text

• Encrypt sensitive data before storing it in a database and decrypt it upon fetching from the
database

• Remember to identify which data is classified as sensitive according to privacy laws,
regulatory requirements, or business needs

• Do not use legacy protocols such as FTP and SMTP for transporting sensitive data

• Discard sensitive data as soon as possible or use tokenization (e.g., PCI DSS compliant) or

even truncation

• Do not cache sensitive data

• Do not use old/weak cryptographic algorithms. Use robust algorithms like SHA-256 or AES-256

• Do not allow using default passwords or encryption keys in a production environment

• You can implement validation logic for passwords/encryption keys in microservices when
the microservices run in production. If a microservice's passwords/encryption keys are
not strong enough, the microservice should not run but exit with an error

372

Denial-of-service (DoS) Prevention

DoS prevention should happen at least in the following ways:

• Establish request rate limiting for microservices. It can be done at the API gateway level or by the
cloud provider

• Use Captcha to prevent non-human (robotic) users from performing potentially expensive
operations like creating new resources or fetching large resources, like large files, for example

SQL Injection Prevention

The following are the key features to implement to prevent SQL injection attacks:

• Use parameterized SQL statements. Do not concatenate user-supplied data directly to an SQL
statement string

• Remember that you cannot use parameterization in all parts of an SQL statement. If you must put
user-supplied data into an SQL statement without parameterization, sanitize/validate it first. For
example, for LIMIT, you must validate that the user-supplied value is an integer and in a given
range

• Migrate to use ORM (Object Relational Mapping)

• Use proper limiting on the number of fetched records within queries to prevent mass disclosure of

records

• Verify the correct shape of the first query result row. Do not send the query result to the client if

the shape of the data in the first row is wrong, e.g., it contains the wrong fields.

Security Configuration

By default, the security context for containers should be the following:

• Container should not be privileged

• All capabilities are dropped

• Container filesystem is read-only

• Only a non-root user is allowed to run inside the container

• Define the non-root user and group under which the container should run

• Disallow privilege escalation

Implement the sending of security-related HTTP response headers in the API gateway:

• X-Content-Type-Options: nosniff

• Strict-Transport-Security: max-age: ; includeSubDomains

373

• X-Frame-Options: DENY

• Content-Security-Policy: frame-ancestors 'none'

• Content-Type: application/json

• If caching is not specifically enabled and configured, the following header should be set: Cache-
Control: no-store

• Access-Control-Allow-Origin: https://your_domain_here

Automatic Vulnerability Scanning

Implement automatic vulnerability scanning in microservice CI/CD pipelines and the container
registry at regular intervals. All software components of the software system should be scanned.
Correct at least all critical and high vulnerabilities immediately.

Integrity

Use only container images with tags that have an SHA digest. If an attacker succeeds in publishing
a malicious container image with the same tag, the SHA digest prevents from taking that malicious
image into use. Ensure you use libraries and dependencies from trusted sources, like NPM or
Maven. You can also host internal mirrors of repositories to avoid accidentally using any untrusted
repository. Ensure a review process exists for all code (source, deployment, infrastructure) and
configuration changes so that no malicious code can be introduced into your software system.

Error Handling

Ensure that error messages in API responses do not contain sensitive information. Do not add stack
traces to error responses transmitted to clients in a production environment.

Audit Logging

Auditable end-user-related events, such as logins, failed logins, unauthorized or invalid requests,
and high-value transactions, should be logged and stored in an external audit logging system. The
audit logging system should automatically detect suspicious action related to an end-user and alert
about it.

Input Validation

Always validate input from untrusted sources, like from an end-user. There are many ways to
implement validation, and several libraries are available for that purpose. Let's assume you use

374

https://your_domain_here

ORM and implement entities and data transfer objects. The best way to ensure proper validation is
to require that each entity/DTO property must have a validation annotation. If a property in an
entity or DTO does not require any validation, annotate that property with a special annotation, like
@AnyValue, for example.

Remember to validate unvalidated data from all possible sources:

• Command line arguments

• Environment variables

• Standard input (stdin)

• File from the file system

• Data from a socket (network input)

• UI input

Validating Numbers

When validating numeric values, always validate that a value is in a specified range. For example, if
you use an unvalidated number to check if a loop should end and that number is very large, it can
cause a denial of service (DoS). If a number should be an integer, don't allow floating-point values.

Validating Strings

When validating a string, always validate the maximum length of the string first. Only after that
perform additional validation. Validating a long string using a regular expression can cause a
regular expression denial of service (ReDoS). You should avoid crafting your own regular
expressions for validation purposes, instead use a ready-made library that contains battle-tested
code. Consider also using the Google RE2 library (https://github.com/google/re2). It is safer than
regular expression functionality provided by many language runtimes, and your code will be less
susceptible to ReDoS.

Validating Arrays

When validating an array, you can validate the size of the array not being too small or large, and
you can validate the uniqueness of values if needed. Also, remember to validate each value in the
array separately.

Validating Objects

Validate an object by validating each property of the object separately. Remember to validate
nested objects also.

375

Validation Library Example

Check Appendix A for creating a TypeScript validation library using the validated-types NPM
library. The validation library can validate JavaScript objects, e.g., parsed JSON/YAML-format
configuration, environment variables (process.env object), and input DTOs. The validation library
accepts an object schema and validates an object according to the given schema and produces a
strongly typed validated object.

376

API Design Principles

This chapter presents design principles for both frontend facing and backend APIs. First, frontend-
facing API design is discussed, and then inter-microservice API design is covered.

Frontend Facing API Design Principles

Most frontend facing APIs should be HTTP-based JSON-RPC, REST, or GraphQL APIs. Use
GraphQL especially when the API handles heavily nested resources, or clients want to decide what
fields queries should return. For subscription-based APIs, use Server-Sent Events (SSE) or
GraphQL subscriptions, and for real-time bidirectional communication, use WebSocket.

JSON-RPC API Design Principle

Design a JSON-RPC API to perform a single action (procedure) for an API endpoint.

As the name says, JSON-RPC APIs are for executing remote procedure calls. The remote procedure
argument is a JSON object in the HTTP request body. And the remote procedure return value is a
JSON object in the HTTP response body. A client calls a remote procedure by issuing an HTTP
POST request where it specifies the name of the procedure in the URL path and gives the argument
for the remote procedure call in the request body in JSON.

Below is an example request for a translation service's translate procedure:

POST /translation-service/translate

{

 "text": "Ich liebe dich"

 "fromLanguage": "German",

 "toLanguage": "English"

}

377

The API server shall respond with an HTTP status code and include the procedure's response in the
HTTP response body in JSON.

For the above request, you get the following response:

HTTP/1.1 200 OK

{

 "translatedText": "I love you"

}

Let's have another example with a web-page-search-service:

POST /web-page-search-service/search-web-pages

{

 "containingText": "Software design patterns"

}

HTTP/1.1 200 OK

[

 {

 "url": "https://...",

 "title: "...",

 "date": "...",

 "contentExcerpt": "..."

 },

 ...

]

You can create a complete service using JSON-RPC instead of REST or GraphQL. Below are five
remote procedures defined for a sales-item-service. The benefit of using JSON-RPC instead of
REST, GraphQL, or gRPC, is that you don’t have to learn any specific technology.

POST /sales-item-service/createSalesItem

{

 "name": "Sample sales item",

 "price": 20

}

POST /sales-item-service/getSalesItems

POST /sales-item-service/getSalesItemById

{

 "id": 1

}

POST /sales-item-service/updateSalesItem

{

 "id": 1,

 "name": "Sample sales item name modified",

 "price": 30

}

POST /sales-item-service/deleteSalesItemById

{

 "id": 1

}

378

POST /sales-item-service/deleteSalesItems

You can easily create a controller for the above service. Below is an example of such a controller
with one remote procedure defined:

SalesItemController.java

@RestController

public class SalesItemController {

 @Autowired

 private SalesItemService salesItemService;

 @PostMapping("/createSalesItem")

 @ResponseStatus(HttpStatus.CREATED)

 public final SalesItem createSalesItem(

 @RequestBody final SalesItemArg salesItemArg

) {

 return salesItemService.createSalesItem(salesItemArg);

 }

 // Rest of the methods ...

}

You can version your API by adding a version number to the URL path. In the below example, the
new API version 2 allows a new procedure argument someNewParam to be supplied for the
search-web-pages procedure.

POST /web-page-search-service/v2/search-web-pages

{

 "containingText": "Software design patterns"

 "someNewParam": "..."

}

REST API Design Principle

Design a REST API for interaction with a resource (or resources) using CRUD (create, read,
update, delete) operations.

Many APIs fall into the category of performing CRUD operations on resources. Let's create an
example REST API called sales-item-service for performing CRUD operations on sales items.

Creating a Resource

Creating a new resource using a REST API is done by sending an HTTP POST request to the API's
resource endpoint. The API's resource endpoint should be named according to resources it handles.
The resource endpoint name should be a noun and always given in the plural form, for example, for
the sales-item-service, the resource endpoint should be sales-items, and for an order-service
handling orders, the resource endpoint should be called orders.

379

You give the resource to be created in the HTTP request body in JSON. To create a new sales item,
you can issue the following request:

POST /sales-item-service/sales-items

{

 "name": "Sample sales item",

 "price": 20

}

The server will respond with the HTTP status code 201 Created. The server can add fields to the
resource upon creation. Typically, the server will add an id property to the created resource, but it
can add other properties also. The server will respond with the created resource in the HTTP
response body in JSON. Below is a response to a sales item creation request. You can notice that the
server added the id property to the resource. Other properties that are usually added are the
creation timestamp and the version of the resource (the version of a newly created resource should
be one).

HTTP/1.1 201 Created

{

 "id": 1,

 "name": "Sample sales item",

 "price": 20

}

If the supplied resource to be created is somehow invalid, the server should respond with the HTTP
status code 400 Bad Request and explain the error in the response body. The response body should
be in JSON format containing information about the error, like the error code and message.

If the created resource is huge, there is no need to return the resource to the caller and waste
network bandwidth. You can return the added properties only. For example, if the server only adds
the id property, it is possible to return only the id in the response body:

HTTP/1.1 201 Created

{

 "id": 1

}

The request sender can construct the created resource by merging the sent resource object with the
received resource object.

Ensure that no duplicate resources are created.

When a client tries to create a new resource, the resource creation request may fail so that the
resource was created successfully created on the server, but the client did not receive a response on
time, and the request failed due to timeout. From the server's point of view, the request was
successful, but from the client's point of view, it was indeterminate. The client, of course, needs to
re-issue the time-outed request, and if it succeeds, the same resource is created twice on the server
side, which is probably always unwanted.

380

Suppose a resource contains a unique property, like a user's email. In that case, it is impossible to
create a duplicate resource if the server is correctly implemented (= the unique property is marked
as a unique column in the database table definition). In many cases, such a unique field does not
exist in the resource. In those cases, the client can supply a universally unique identifier (UUID),
named creationUuid, for example. The role of the server is to check if a resource with the same
creationUuid was already created and to fail the creation of a duplicate resource. As an
alternative to the UUID approach, the server can ask for verification from the client if the creation
of two identical resources is intended in case the server receives two identical resources from the
same client during a short period of time.

Reading Resources

Reading resources with a REST API is done by sending an HTTP GET request to the API's resource
endpoint. To read all sales items, you can issue the following request:

GET /sales-item-service/sales-items

The server will respond with the HTTP status code 200 OK. The server will respond with a JSON
array of resources in the response body or an empty array in case none is found. Below is an
example response to a request to get the sales items:

HTTP/1.1 200 OK

[

 {

 "id": 1,

 "name": "Sample sales item",

 "price": 20

 }

]

To read a single resource by its id, add the resource id to the request URL path as follows:

GET /sales-item-service/sales-items/<id>

The following request can be issued to read the sales item identified with id 1:

GET /sales-item-service/sales-items/1

The server responds with the HTTP status code 404 Not Found if the requested resource is not
found.

You can define parameters in the URL query string to filter what resources to read. A query string is
the last part of the URL and is separated from the URL path by a question mark (?) character. A
query string can contain one or more parameters separated by ampersand (&) characters. Each
query string parameter has the following format: <query-parameter-name>=<query-parameter-
value>. Below is an example request with two query parameters: name-contains and price-greater-

381

than.

GET /sales-item-service/sales-items?name-contains=Sample&price-greater-than=10

The above request gets sales items whose name contains the string “Sample” and whose price is
greater than 10.

To define a filter, you can specify a query parameter in the following format: <fieldName>[-
<condition>]=<value>, for example:

• price=10

• price-not-equal=10

• price-less-than=10

• price-less-than-equal=10

• price-greater-than=10

• price-greater-than-equal=10

• name-starts-with=Sample

• name-ends-with=item

• name-contains=Sample

• createdTimestamp-before=2022-08-02T05:18:00Z

• createdTimestamp-after=2022-08-02T05:18:00Z

• images.url-starts-with=https

Remember that when implementing the server side and adding the above-given parameters to an
SQL query, you must use a parameterized SQL query to prevent SQL injection attacks because an
attacker can send malicious data in the query parameters.

Other actions like projection, sorting, and pagination for the queried resources can also be defined
with query parameters in the URL:

GET /sales-item-service/sales-items?fields=id,name&sort-by=price:asc&offset=0&limit=100

The above request gets sales items sorted by price (ascending). The number of fetched sales items is
limited to 100. Sales items are fetched beginning from the offset 0, and the response only contains
fields id and name for each sales item.

The fields parameter defines what resource fields (properties) are returned in the response. The
wanted fields are defined as a comma-separated list of field names. If you want to define sub-
resource fields, those can be defined with the dot notation, for example:

fields=id,name,images.url

The sort-by query parameter defines sorting using the following format sort-by=<fieldName>:asc|

382

desc,[<fieldName>:asc|desc].

For example:

sort-by=price:asc,images.rank:asc

In the above example, the resources are returned sorted first by ascending price and secondarily by
image's rank.

The limit and offset parameters are used for pagination. The limit query parameter defines the
maximum number of resources that can be returned. The offset query parameter specifies the offset
from which resources are returned. You can also paginate sub-resources by giving the offset and
limit in the form of <sub-resource>:<number>. Below is an example of using pagination query
parameters:

offset=0&limit=50,images:5

The above query parameters define that the first page of 50 sales items is fetched, and each sales
item contains the first five images of the sales item. Instead of offset and limit parameters, you can
use page and pageSize parameters. The page parameter defines the page number, and the pageSize
defines how many resources a page should contain.

Remember to validate user-supplied data to prevent SQL injection attacks when implementing the
server side and adding data from query parameters to an SQL query. For example, field names in
the fields query parameter should only contain characters allowed in an SQL column name.
Similarly, the value of the sort-by parameter should only contain characters allowed in an SQL
column name and words asc and desc. And finally, the values of the offset and limit (or page and
pageSize) parameters must be integers. You should also validate the limit/pageSize parameter
against the maximum allowed value because you should not allow end-users to fetch too many
resources at a time.

Some HTTP servers log the URL of an HTTP GET request. For this reason, it is not recommended
to put sensitive information in the URL. Sensitive information should be put into a request body.
Also, browsers can have a limit for the maximum length of an URL. If you have a query string that
is thousands of characters long, you should give parameters in the request body instead. You should
not put a request body to an HTTP GET request. What you should do is issue the request using the
HTTP POST method instead, for example:

POST /sales-item-service/sales-items

X-HTTP-Method-Override: GET

{

 "fields": ["name"],

 "sortBy": "price:asc",

 "limit": 100

}

The server can confuse the above request with a sales item creation request because the URL and

383

the HTTP method are identical to a resource creation request. For this reason, a custom HTTP
request header X-HTTP-Method-Override has been added to the request. The server should read
the custom header and treat the above request as a GET request. The X-HTTP-Method-Override
header tells the server to override the request method with the method supplied in the header.

Updating Resources

Updating a resource with a REST API is done by sending an HTTP PUT or PATCH request to the
API's resource endpoint. To update the sales item identified with id 1, you can issue the following
request:

PUT /sales-item-service/sales-items/1

{

 "name": "Sample sales item name modified",

 "price": 30

}

The server will respond without content:

HTTP/1.1 204 No Content

The server will respond with the HTTP status code 404 Not Found if the requested resource is not
found.

If the supplied resource in the request is invalid, the server should respond with the HTTP status
code 400 Bad Request. The response body should contain an error object in JSON.

HTTP PUT request will replace the existing resource with the supplied resource. You can also
modify an existing resource partially using the HTTP PATCH method:

PATCH /sales-item-service/sales-items/1

{

 "price": 30

}

The above request only modifies the price property of the sales item identified with id 1.

You can do bulk updates by specifying a filter in the URL, for example:

PATCH /sales-item-service/sales-items?price-less-than=10

{

 "price": 10

}

The above example will update the price property of each resource where the price is less than ten
currently. On the server side, the API endpoint could use the following parameterized SQL
statement to implement the update functionality:

384

UPDATE salesitems SET price = :price WHERE price < :priceLessThan

The above SQL statement will only modify the price column, and other columns will remain intact.

Use resource versioning when needed.

When you get a resource from the server and then try to update it, it is possible that someone else
has updated it after you got it and before you try to update it. Sometimes this can be ok if you don't
care about other clients' updates. But sometimes, you want to ensure no one else has updated the
resource before you update it. In that case, you should use resource versioning. In the resource
versioning, there is a version field in the resource, which is incremented by one during each update.
If you get a resource with version x and then try to update the resource giving back the same
version x to the server, but someone else has updated the resource to version x + 1, your update will
fail because of the version mismatch (x != x + 1). The server should respond with the HTTP status
code 409 Conflict. After receiving the conflict response, you can fetch the latest version of the
resource from the server and, based on the resource's new state, decide whether your update is still
relevant or not.

The server should assign the resource version value to the HTTP response header ETag. A client
can use the received ETag value in a conditional HTTP GET request by assigning the received ETag
value to the request header If-None-Match. Now the server will return the requested resource only
if it has a newer version. Otherwise, the server returns nothing with the HTTP status code 304 Not
Modified. This has the advantage of not needing to transfer an unmodified resource from the server
to the client. This can be especially beneficial when the resource is large or the connection between
the server and the client is slow.

Deleting Resources

Deleting a resource with a REST API is done by sending an HTTP DELETE request to the API's
resource endpoint. To delete the sales item identified with id 1, you can issue the following request:

DELETE /sales-item-service/sales-items/1

The server will respond without content:

HTTP/1.1 204 No Content

If the resource requested to be deleted has already been deleted, the API should still respond with
the HTTP status code 204 No Content, meaning a successful operation. It should not respond with
the HTTP status code 404 Not Found.

To delete all sales items, you can issue the following request:

DELETE /sales-item-service/sales-items

385

To delete sales items using a filter, you can issue the following kind of request:

DELETE /sales-item-service/sales-items?price-less-than=10

On the server side, the API endpoint handler can use the following parameterized SQL query to
implement the deleting functionality:

DELETE FROM salesitems WHERE price < ?

Executing Non-CRUD Actions on Resources

Sometimes you need to perform non-CRUD actions on resources. In those cases, you can issue an
HTTP POST request and put the name of the action (a verb) after the resource name in the URL.
The below example will perform a deposit action on an account resource:

POST /account-balance-service/accounts/12345678912/deposit

{

 "amountInCents": 2510

}

Similarly, you can perform a withdrawal action:

POST /account-balance-service/accounts/12345678912/withdraw

{

 "amountInCents": 2510

}

Resource Composition

A resource can be composed of other resources. There are two ways to implement resource
composition: Nesting resources or linking resources. Let's have an example of nesting resources
first. A sales item resource can contain one or more image resources. We don't want to return all
images when a client requests a sales item because images can be large and are not necessarily used
by the client. What we could return is a set of small thumbnail images. For a client to view the
images of a sales item, we could implement an API endpoint for image resources. To get images for
a specific sales item, the following API call can be issued:

GET /sales-item-service/sales-items/<id>/images

You can also add a new image for a sales item:

POST /sales-item-service/sales-items/<id>/images

Also, other CRUD operations could be made available:

PUT /sales-item-service/sales-items/<salesItemId>/images/<imageId>

DELETE /sales-item-service/sales-items/<salesItemId>/images/<imageId>

386

The problem with this approach is that the sales-item-service will grow in size and if you need to
add more nested resources in the future, the size will grow even more, making the microservice too
complex and being responsible for too many things.

A better alternative is to create a separate microservice for the nested resources. This will enable
utilizing the best-suited technologies to implement a microservice. Regarding the sales item images,
the sales-item-image-service could employ a cloud object storage to store images, and the sales-
item-service could utilize a standard relational database for storing sales items.

When having a separate microservice for sales item images, you can get the images for a sales item
by issuing the following request:

GET /sales-item-image-service/sales-item-images?salesItemId=<salesItemId>

You can notice that the sales-item-service and sales-item-image-service are now linked by the
salesItemId.

HTTP Status Codes

HTTP Status Code When To Use

 200 OK Successful API operations with the GET method

 201 Created Successful API operations with the POST method

204 No Content Successful API operations with the PUT, PATCH, or
DELETE method

400 Bad Request Client error in API operations, e.g., invalid data
supplied by the client

401 Unauthorized Client does not provide an authorization header in
the request

403 Forbidden
Client provides an authorization header in the
request, but the user is not authorized to perform the
API operation

404 Not Found When requesting a non-existent resource with the
GET, PUT, or PATCH method

405 Method Not Allowed When a client tries to use the wrong method for an
API endpoint

406 Not Acceptable
When a client requests a response in a format that
the server cannot produce, e.g., requests XML, but
the server provides only JSON

409 Conflict When a client is trying to update a resource that has
been updated after the client got the resource

387

HATEOAS and HAL

Hypermedia as the Engine of Application State (HATEOAS) can be used to add hypermedia/
metadata to a requested resource. Hypertext Application Language (HAL) is a convention for
defining hypermedia (metadata), such as links to external resources. Below is an example response
to a request that fetches the sales item with id 1234. The sales item is owned by the user with id
5678. The response provides a link to the fetched resource itself and another link to fetch the user
(account) that owns the sales item:

{

 "_links": {

 "self": {

 "href": "https://.../sales-item-service/sales-items/1234"

 },

 "userAccount": {

 "href": "https://.../user-account-service/user-accounts/5678"

 }

 },

 "id": 1234,

 "name": "Sales item xyz"

 "userAccountId": 5678

}

When fetching a collection of sales items for page 3 using HAL, we can get the following kind of
response:

{

 "_links": {

 "self": {

 "href": "https://.../sales-items?page=3"

 },

 "first": {

 "href": "https://...sales-items"

 },

 "prev": {

 "href": "https://.../sales-items?page=2"

 },

 "next": {

 413 Payload Too Large
When a client tries to supply a too large payload in a
request. To prevent DoS attacks, do not accept
arbitrarily large payloads from clients

429 Too Many Requests Configure rate limiting in your API gateway to send
this status code when the request rate is exceeded

500 Internal Server Error When a server error occurs, for example, an
exception is thrown

503 Service Unavailable
Server's connections to dependent services fail. This
indicates that clients should retry the request after a
while because this issue is usually temporary.

HTTP Status Code When To Use

388

 "href": "https://.../sales-items?page=4"

 },

 },

 "count": 25,

 "total": 1500,

 "_embedded": {

 "salesItems": [

 {

 "_links": {

 "self": {

 "href": "https://.../sales-items/123"

 }

 },

 "id": 123,

 "name": "Sales item 123"

 },

 {

 "_links": {

 "self": {

 "href": "https://.../sales-items/124"

 }

 },

 "id": 124,

 "name": "Sales item 124"

 },

 .

 .

 .

]

 }

}

Versioning

You can introduce a new version of an API using a versioning URL path segment. Below are
example endpoints for API version 2:

GET /sales-item-service/v2/sales-items

POST /sales-item-service/v2/sales-items

...

Documentation

If you need to document or provide interactive online documentation for a REST API, there are two
ways:

1. First, create a specification for the API and then generate code from the specification

2. First, implement the API and then generate the API specification from the code

Tools like Swagger and Postman can generate both static and interactive documentation for your
API based on the API specification. You should specify APIs using the OpenAPI specification
(https://swagger.io/specification/).

389

When using the first alternative, you can specify your API using the OpenAPI specification
language. You can use tools like SwaggerHub or Postman to write the API spec. Swagger offers
code-generation tools for multiple languages. Code generators generate code based on the OpenAPI
spec.

When using the second alternative, you can use a web framework-specific way to build the API spec
from the API implementation. For example, if you are using Spring Boot, you can use the
springdoc-openapi-ui library, and with Nest.js, you can use the @nestjs/swagger library.

Implementation Example

Let's implement the API endpoints for the sales-item-service using Typescript and Nest.js and its
Controller decorator:

SalesItemController.ts

import {

 Controller,

 Get,

 Query,

 Post,

 Body,

 Put,

 Param,

 Delete

} from '@nestjs/common';

// ...

@Controller('sales-items')

export class SalesItemController {

 constructor(private readonly salesItemService: SalesItemService) {}

 @Post()

 create(@Body() salesItemArg: SalesItemArg): Promise<SalesItem> {

 return this.salesItemService

 .createSalesItem(salesItemArg);

 }

 @Get()

 getSalesItems(

 @Query('userAccountId') userAccountId: string,

): Promise<SalesItem[]> {

 if (userAccountId) {

 return this.salesItemService.getSalesItemsByUserAccountId(

 parseInt(userAccountId, 10),

);

 } else {

 return this.salesItemService.getSalesItems();

 }

 }

 @Get('/:id')

 getSalesItemById()(@Param('id') id: string): Promise<SalesItem> {

 return this.salesItemService

 .getSalesItemById(parseInt(id, 10));

 }

390

 @Put('/:id')

 @HttpCode(204)

 updateSalesItem(

 @Param('id') id: string,

 @Body() salesItemArg: SalesItemArg

):Promise<void> {

 return this.salesItemService

 .updateSalesItem(parseInt(id, 10), salesItemArg);

 }

 @Delete('/:id')

 @HttpCode(204)

 deleteSalesItemById(@Param('id') id: string): Promise<void> {

 return this.salesItemService

 .deleteSalesItemById(parseInt(id, 10));

 }

 @Delete()

 @HttpCode(204)

 deleteSalesItems(): Promise<void> {

 return this.salesItemService.deleteSalesItems();

 }

}

Next, we create the SalesItemService class, which will be injected into the controller by the
Nest.js framework. To make it an injectable dependency, we decorate the SaleItemService class
with the @Injectable decorator. We list the SaleItemService class in the application module's
providers to allow an instance of the SalesItemService class to be injected where needed, e.g.,
into an instance of the SalesItemController class.

SalesItemService.ts

import { Injectable } from '@nestjs/common';

// ...

@Injectable()

export class SalesItemService {

 // Implement service methods...

}

AppModule.ts

import { Module } from '@nestjs/common';

// ...

@Module({

 controllers: [SalesItemController],

 providers: [SalesItemService],

})

export class AppModule {}

Regarding errors, Nest.js instructs to throw an instance of its HttpException class or an instance
of a HttpException subclass. This is not the correct way to handle errors. Errors should not be
tied to a specific web framework. You should throw business errors from your business logic and
use

391

your web framework's error mapping/handling/filtering functionality to map business errors to
HTTP responses. The best way to achieve this is to create a base error class that can store an HTTP
status code, possibly an error code, and, of course, the error message itself.

ApiError.ts

export class ApiError extends Error {

 getStatusCode(): number {

 return 500;

 }

 getErrorCode(): string {

 return "UNSPECIFIED";

 }

}

EntityNotFoundError.ts

export class EntityNotFoundError extends ApiError {

 constructor(entityType: string, id: number) {

 super(`${entityType} entity not found with id ${id}`);

 }

 override getStatusCode(): number {

 return 404;

 }

}

GraphQL API Design

Divide API endpoints into queries and mutations. Compared to REST, REST GET requests
are GraphQL queries, and REST POST/PUT/PATCH/DELETE requests are GraphQL
mutations. With GraphQL, you can name your queries and mutations with descriptive
names.

Let's create a GraphQL schema that defines needed types and API endpoints for the sales-item-
service:

schema.graphql

type Image {

 id: ID!

 rank: Int!

 url: String!

}

type SalesItem {

 id: ID!

 createdAtTimestampInMillis: String!

 name: String!

 price: Float!

 images(

 sortByField: String = "rank",

 sortDirection: SortDirection = ASC,

 offset: Int = 0,

392

 limit: Int = 5

): [Image!]!

}

input InputImage {

 id: ID!

 rank: Int!

 url: String!

}

input NewSalesItem {

 name: String!

 price: Float!

 images: [InputImage!]!

}

input UpdatedSalesItem {

 name: String

 price: Float

 images: [InputImage!]

}

enum SortDirection {

 ASC,

 DESC

}

type IdResponse {

 id: ID!

}

type Query {

 salesItems(

 sortByField: String = "createdAtTimestamp",

 sortDirection: SortDirection = DESC,

 offset: Int = 0,

 limit: Int = 50

): [SalesItem!]!

 salesItem(id: ID!): SalesItem!

 salesItemsByFilters(

 nameContains: String,

 priceGreaterThan: Float

): [SalesItem!]!

}

type Mutation {

 createSalesItem(salesItem: NewSalesItem!): SalesItem!

 updateSalesItem(

 id: ID!,

 updatedSalesItem: UpdatedSalesItem

): IdResponse!

 deleteSalesItem(id: ID!): IdResponse!

}

In the above GraphQL schema, we define several types used in API requests and responses. A
GraphQL type specifies what properties the type has and the types of those properties. A type
specified with the input keyword is an input-only type (input DTO type). GraphQL defines the

393

following primitive (scalar) types: Int (32-bit), Float, String, Boolean, and ID. You can define
an array type with the notation: [<Type>]. By default, types are nullable. If you want a non-
nullable type, you must add an exclamation mark (!) after the type name. You can define an
enumerated type with the enum keyword. The Query and Mutation types are special GraphQL
types used to define queries and mutations. The above example defines three queries and four
mutations that clients can execute. You can add parameters for a type property. We have added
parameters for all the queries (queries are properties of the Query type), mutations (mutations are
properties of the Mutation type), and the images property of the SalesItem type.

In the above example, I have named all the queries with names that describe the values they return,
i.e., there are no verbs in the query names. It is possible to name queries starting with a verb (like
the mutations). For example, you could add get to the names of the above-defined queries if you
wanted.

The Apollo server below implements some GraphQL type resolvers returning static responses. After
starting the server with the node server.js command, you can browse to http://localhost:4000
and try to execute some of the implemented queries or mutations.

server.js

import { ApolloServer } from '@apollo/server';

import { startStandaloneServer } from '@apollo/server/standalone';

const typeDefs = readFileSync('./schema.graphql',

 { encoding: 'utf8' });

const resolvers = {

 Query: {

 salesItems: (_, { sortByField,

 sortDirection,

 offset,

 limit }) =>

 [{

 id: 1,

 createdAtTimestampInMillis: '12345678999877',

 name: 'sales item',

 price: 10.95

 }],

 salesItem: (_, { id }) => ({

 id,

 createdAtTimestampInMillis: '12345678999877',

 name: 'sales item',

 price: 10.95

 })

 },

 Mutation: {

 createSalesItem: (_, { newSalesItem }) => {

 return {

 id: 100,

 createdAtTimestampInMillis: Date.now().toString(),

 ...newSalesItem

 };

 },

 deleteSalesItem: (_, { id }) => {

 return {

394

 id

 };

 }

 },

 SalesItem: {

 images: (parent) => {

 return [{

 id: 1,

 rank: 1,

 url: 'url'

 }];

 }

 }

};

const server = new ApolloServer({

 typeDefs,

 resolvers

});

startStandaloneServer(server, {

 listen: { port: 4000 }

});

GraphQL error handling differs from REST API error handling. A GraphQL API does not provide
different HTTP response status codes. When an error happens while processing a GraphQL API
request, the response body object will include an errors array. In your GraphQL type resolvers,
you should throw a GraphQLError object when a query or mutation fails. By supplying an
extensions object, you can supply custom error properties when throwing a GraphQLError
object. In the below example, we supply an errorCode property in the extensions object.

import { GraphQLError } from 'graphql';

throw new GraphQLError(message, {

 extensions: { errorCode: 'YOUR_ERROR_CODE' }

});

If you want, you can supply an HTTP status code in the extensions object, too:

import { GraphQLError } from 'graphql';

throw new GraphQLError(message, {

 extensions: {

 statusCode: 500,

 status: 'Internal Server Error',

 errorCode: 'YOUR_ERROR_CODE'

 }

});

Remember to follow the clean microservice design principle when implementing production code.
Use controllers, services, repositories, DTOs, and entities. Below is an example of a GraphQL
controller:

395

GraphQlSalesItemController.js

export default class GraphQlSalesItemController {

 salesItemService;

 salesItemImageService;

 // ...

 getSalesItems(...) {

 return this.salesItemService.getSalesItems(...);

 }

 getSalesItem({ id }) {

 return this.salesItemService.getSalesItem(id);

 }

 getSalesItemImages({ id }) {

 return this.salesItemImageService.getSalesItemImages(id);

 }

 createSalesItem({ newSalesItem }) {

 return this.salesItemService.createSalesItem(newSalesItem);

 }

 deleteSalesItem({ id }) {

 this.salesItemService.deleteSalesItem(id);

 return { id };

 }

 getResolvers() {

 return {

 Query: {

 salesItems: this.getSalesItems,

 salesItem: this.getSalesItem

 },

 Mutation: {

 createSalesItem: this.createSalesItem,

 deleteSalesItem: this.deleteSalesItem

 },

 SalesItem: {

 images: this.getSalesItemImages

 }

 }

 }

}

You can use the above controller (and other possible controllers) to bootstrap your GraphQL server:

server.js

import { merge } from 'lodash';

import { ApolloServer } from '@apollo/server';

import { startStandaloneServer } from '@apollo/server/standalone';

import GraphQlSalesItemController

 from './GraphQlSalesItemController.js';

// ...

const typeDefs = readFileSync('./schema.graphql',

 { encoding: 'utf8' });

const resolvers = merge(

 {},

396

 [

 new GraphQlSalesItemController(),

 new GraphQlUserController(),

 new GraphQlOrderController()

].map(controller => controller.getResolvers())

);

const server = new ApolloServer({

 typeDefs,

 resolvers

});

startStandaloneServer(server, {

 listen: { port: 4000 }

});

In a GraphQL schema, you can add parameters for a primitive (scalar) property, also. That is useful
for implementing conversions.

For example, we could define the SalesItem type with a parameterized price property:

enum Currency {

 USD,

 GBP,

 EUR,

 JPY

}

type SalesItem {

 id: ID!

 createdAtTimestampInMillis: String!

 name: String!

 price(currency: Currency = USD): Float!

 images(

 sortByField: String = "rank",

 sortDirection: SortDirection = ASC,

 offset: Int = 0,

 limit: Int = 5

): [Image!]!

}

Now clients can supply a currency parameter for the price property in their queries to get the
price in different currencies. The default currency is USD if no currency parameter is supplied.

Below are two example queries that a client could perform against the earlier defined GraphQL
schema:

{

 # gets the name, price in euros and the first 5 images

 # for the sales item with id "1"

 salesItem(id: "1") {

 name

 price(currency: EUR)

 images

 }

 # gets the next 5 images for the sales item 1

397

 salesItem(id: "1") {

 images(offset: 5)

 }

}

In real life, consider limiting the fetching of resources only to the previous or the next page (or the
next page only if you are implementing infinite scrolling on the client side). Then, clients cannot
fetch random pages. This prevents attacks where a malicious user tries to fetch pages with huge
page numbers (like 10,000, for example) which can cause extra load for the server or, at the
extreme, a denial of service.

Below is an example where clients can only query the first, next, or previous page. When a client
requests the first page, the page cursor can be empty, but when the client requests the previous or
the next page, it must give the current page cursor as a query parameter.

type PageOfSalesItems {

 # Contains the page number encrypted and

 # encoded as a Base64 value.

 pageCursor: String!

 salesItems: [SalesItem!]!

}

enum Page {

 FIRST,

 NEXT,

 PREVIOUS

}

type Query {

 pageOfSalesItems(

 page: Page = FIRST,

 pageCursor: String = ""

): PageOfSalesItems!

}

In the above GraphQL examples, we did not implement user input validation. Validation is required
in production code. You can manually add validation logic to each resolver function, and if input
parameters are not valid, you can throw a validation error from the resolver.

One major shortcoming in the GraphQL schema language is that you cannot define validation. Even
though validation is always needed for input types. Consider implementing a GraphQL API with
TypeScript instead of JavaScript. Then you can use the type-graphql NPM library that allows you
to write a GraphQL schema using TypeScript classes with decorator-based validation. Below is the
NewSalesItem input type from the earlier GraphQL schema represented as a TypeScript class
with validation decorators from the class-validator library. When using the type-graphql library,
you don't have to write validation logic to each resolver function separately. Validation is handled
by the class-validator library transparently, and your code will be cleaner. The type-graphql library
works with most GraphQL server implementations, like express-graphql or apollo-server.

398

NewSalesItem.ts

import { Field, InputType } from 'type-graphql';

import { Max, MaxLength, Min } from "class-validator";

import InputImage from './InputImage';

@InputType()

export default class NewSalesItem {

 @Field()

 @MaxLength(256)

 title: name;

 @Field()

 @Min(0)

 @Max(100000000)

 price: number;

 @Field(type => [InputImage])

 images: InputImage[];

}

Instead of type-graphql, you can use the Nest.js web framework. It also allows you to define a
GraphQL schema using TypeScript classes and validation decorators. The above and below
examples are identical, except that some decorators are imported from a different library.

NewSalesItem.ts

import { Field, Int, InputType } from '@nestjs/graphql';

import { Max, MaxLength, Min } from "class-validator";

import InputImage from './InputImage';

@InputType()

export class NewSalesItem {

 @Field()

 @MaxLength(256)

 title: name;

 @Field()

 @Min(0)

 @Max(100000000)

 price: number;

 @Field(type => [InputImage])

 images: InputImage[];

}

Both with type-graphql and Nest.js, you don't specify a controller for GraphQL queries and
mutations. You specify resolver classes that are used to compose the final root resolver for the
GraphQL API. Below is an example Nest.js resolver:

SalesItemResolver.ts

import {

 Args,

 Int,

 Parent,

 Query,

 ResolveField,

 Resolver,

399

} from '@nestjs/graphql';

// ...

@Resolver(of => SalesItem)

export class SalesItemResolver {

 constructor(

 private salesItemService: SalesItemService,

 private salesItemImageService: SalesItemImageService

) {}

 @Query(returns => SalesItem)

 async salesitem(@Args('id', { type: () => Int }) id: number) {

 return this.salesItemService.getSalesItem(id);

 }

 @ResolveField()

 async images(@Parent() salesItem: SalesItem) {

 return this.salesItemImageService

 .getSalesItemImages(salesItem.id);

 }

}

Subscription-Based API Design

Design a subscription-based API when you want clients to be able to subscribe to small,
incremental changes to large objects or when clients want to receive low-latency real-time updates.

Server-Sent Events (SSE)

Server-Sent Events (SSE) is a uni-directional push technology enabling a client to receive updates
from a server via an HTTP connection.

Let's showcase the SSE capabilities with a real-life example. The below example defines a
subscribe-to-loan-application-summaries API endpoint for clients to subscribe to loan application
summaries. A client will show loan application summaries in a list view in its UI. Whenever there is
a new summary for a loan application available, the server will send a loan application summary
event to clients that will update their UIs by adding a new loan application summary.

server.js

import express from 'express';

import bodyParser from 'body-parser';

import loanApplicationSummariesSubscriptionHandler

 from './loanApplicationSummariesSubscriptionHandler.js';

const app = express();

app.use(bodyParser.json());

app.use(bodyParser.urlencoded({extended: false}));

app.get('/subscribe-to-loan-application-summaries',

 loanApplicationSummariesSubscriptionHandler);

app.listen(3001);

400

subscribers.js

import { v4 as uuidv4 } from 'uuid';

export let subscribers = [];

export function addSubscriber(response) {

 const id = uuidv4();

 const subscriber = {

 id,

 response

 };

 subscribers.push(subscriber);

 return id;

}

export function removeSubscriber(id) {

 subscribers = subscribers.filter((subscriber) =>

 subscriber.id !== id);

}

loanApplicationSummariesSubscriptionHandler.js

import {

 addSubscriber,

 removeSubscriber

} from './subscribers.js';

export default function

loanApplicationSummariesSubscriptionHandler(request, response) {

 // Response headers needed for SSE:

 // - Server sent events are identified with

 // content type 'text/event-stream'

 // - The connection must be kept alive so that server

 // can send continuously data to client

 // - Server sent events should not be cached

 const headers = {

 'Content-Type': 'text/event-stream',

 'Connection': 'keep-alive',

 'Cache-Control': 'no-cache'

 // For dev environment you can add CORS header:

 'Access-Control-Allow-Origin': '*'

 };

 response.writeHead(200, headers);

 // Server sent event must be a string beginning with 'data: '

 // and ending with two newline characters

 // First event is empty

 const data = 'data: \n\n';

 response.write(data);

 const subscriberId = addSubscriber(response);

 request.on('close', () => removeSubscriber(subscriberId));

}

The below publishLoanApplicationSummary function is called whenever the server receives a
new loan application summary. The server can receive loan application summaries as messages
consumed from a message broker's topic. (This message consumption part is not implemented

401

here, but there is another example later in this chapter demonstrating how messages can be
consumed from a Kafka topic.)

publishLoanApplicationSummary.js

import { subscribers } from './subscribers.js';

export default function publishLoanApplicationSummary(

 loanApplicationSummary

) {

 // Send an event to each subscriber

 // Loan application summary data is converted to JSON

 // before sending the event

 // Server sent event must be a string beginning with 'data: '

 // and ending with two newline characters

 const data = JSON.stringify(loanApplicationSummary);

 subscribers.forEach(({ response }) =>

 response.write(`data: ${data}\n\n`));

}

Next, we can implement the web client and define the following React functional component:

LoanApplicationSummaries.jsx

import React, { useEffect, useState } from 'react';

export default function LoanApplicationSummaries() {

 const [loanApplicationSummaries,

 setLoanApplicationSummaries] = useState([]);

 // Define an effect to be executed on component mount

 useEffect(() => {

 // Create new event source

 // Hardcoded dev environment URL is used here for demonstration

 // purposes

 const eventSource =

 new EventSource('http://localhost:3001/subscribe-to-loan-application-summaries');

 // Listen to server sent events and add a new

 // loan application summary to the head of

 // loanApplicationSummaries array

 eventSource.addEventListener('message', (messageEvent) => {

 try {

 const loanApplicationSummary =

 JSON.parse(messageEvent.data);

 if (loanApplicationSummary) {

 setLoanApplicationSummaries([loanApplicationSummary,

 ...loanApplicationSummaries]);

 }

 } catch {

 // Handle error

 }

 });

 eventSource.addEventListener('error', (errorEvent) => {

 // Handle error

 });

 // Close the event source on component unmount

402

 return function cleanup() { eventSource.close(); }

 }, [loanApplicationSummaries]);

 // Render loan application summary list items

 const loanApplicationSummaryListItems =

 loanApplicationSummaries.map(({ ... }) =>

 (<li key={key here...}>render here...));

 return (

 {loanApplicationSummaryListItems}

);

}

GraphQL Subscriptions

Let's have an example of a GraphQL subscription. The below GraphQL schema defines one
subscription for a post's comments. It is not relevant what a post is. It can be a blog post or social
media post, for example. We want a client to be able to subscribe to a post's comments.

type PostComment {

 id: ID!,

 text: String!

}

type Subscription {

 postComment(postId: ID!): PostComment

}

On the client side, we can define a subscription named postCommentText that subscribes to a
post's comments and returns the text property of comments:

import { gql } from '@apollo/client';

const POST_COMMENT_SUBSCRIPTION = gql`

 subscription postCommentText($postId: ID!) {

 postComment(postID: $postId) {

 text

 }

 }

`;

If a client executes the above query for a particular post (defined with the postId parameter), the
following kind of response can be expected:

{

 "data": {

 "postComment": {

 "text": "Nice post!"

 }

 }

}

To be able to use GraphQL subscriptions, you must implement support for them both on the server
and client side. For the server side, you can find instructions for the Apollo server: https://

403

www.apollographql.com/docs/apollo-server/data/subscriptions/#enabling-subscriptions. And for
the client side, you can find instructions for the Apollo client here: https://
www.apollographql.com/docs/react/data/subscriptions/#setting-up-the-transport.

After the server and client-side support for subscriptions are implemented, you can use the
subscription in your React component:

SubscribedPostCommentsView.jsx

import { useState } from 'react';

import { gql, useSubscription } from '@apollo/client';

const POST_COMMENT_SUBSCRIPTION = gql`

 subscription subscribeToPostComment($postId: ID!) {

 postComment(postID: $postId) {

 id

 text

 }

 }

`;

export default function SubscribedPostCommentsView({ postId }) {

 const [postComments, setPostComments] = useState([]);

 const { data } = useSubscription(POST_COMMENT_SUBSCRIPTION,

 { variables: { postId } });

 if (data?.postComment) {

 setPostComments([...postComments, data.postComment]);

 }

 const postCommentListItems =

 postComments.map(({ id, text }) =>

 (<li key={id}>{text}));

 return {postCommentListItems};

}

WebSocket Example

Below is a chat messaging application consisting of a WebSocket server implemented with Node.js
and the ws NPM library, and a WebSocket client implemented with React. There can be multiple
instances of the server running. These instances are stateless except for storing WebSocket
connections for locally connected clients. First, we list the source code files for the server side.

A new Kafka client is created using the kafkajs NPM library:

kafkaClient.js

import { Kafka } from 'kafkajs';

const kafkaClient = new Kafka({

 clientId: 'app-y',

 brokers: [process.env.KAFKA_BROKER],

});

export default kafkaClient;

404

A new Redis client is created using the ioredis NPM library:

redisClient.js

import Redis from 'ioredis';

const redisClient = new Redis({

 port: parseInt(process.env.REDIS_PORT, 10),

 host: process.env.REDIS_HOST,

 username: process.env.REDIS_USERNAME,

 password: process.env.REDIS_PASSWORD

});

export default redisClient;

The below KafkaMessageBrokerAdminClient class is used to create topics in Kafka:

KafkaMessageBrokerAdminClient.js

export default class KafkaMessageBrokerAdminClient {

 kafkaAdminClient;

 constructor(kafkaClient) {

 this.kafkaAdminClient = kafkaClient.admin();

 }

 async create(topic) {

 try {

 await this.kafkaAdminClient.connect();

 await this.kafkaAdminClient.createTopics({

 topics: [{ topic }]

 });

 await this.kafkaAdminClient.disconnect();

 } catch {

 // Handle error

 }

 }

}

Users of the chat messaging application are identified with phone numbers. On the server side, we
store the WebSocket connection for each user in the phoneNbrToWsConnectionMap:

phoneNbrToWsConnectionMap.js

const phoneNbrToWsConnectionMap = new Map();

export default phoneNbrToWsConnectionMap;

The below WebSocketChatMessagingServer class handles the construction of a WebSocket
server. The server accepts connections from clients. When it receives a chat message from a client,
it will first parse and validate it. If the received chat message is a special online indication message,
the server will register a new user. For an actual chat message, the server will store the message in
persistent storage (using a separate chat-message-service REST API, not implemented here). The
server gets the recipient's server information from a Redis cache and sends the chat message to the
recipient's WebSocket connection or produces the chat message to a Kafka topic where

405

another server instance can consume the chat message and send it to the recipient's WebSocket
connection. The Redis cache stores a hash map where the users' phone numbers are mapped to the
server instance they are currently connected. A UUID identifies a server instance.

WebSocketChatMessagingServer.js

import { WebSocketServer } from 'ws';

import kafkaClient from './kafkaClient.js';

import redisClient from './redisClient.js';

import phoneNbrToWsConnectionMap

 from './phoneNbrToWsConnectionMap.js';

import KafkaMessageBrokerProducer

 from './KafkaMessageBrokerProducer.js';

export default class WebSocketChatMessagingServer {

 wsServer;

 serverUuid;

 messageBrokerProducer;

 wsConnectionToPhoneNbrMap = new Map();

 constructor(serverInstanceUuid) {

 this.serverUuid = serverUuid;

 this.messageBrokerProducer =

 new KafkaMessageBrokerProducer(kafkaClient);

 this.wsServer = new WebSocketServer({ port: 8080 });

 this.wsServer.on('connection', wsConnection => {

 wsConnection.on('message', async (chatMessageJson) => {

 const chatMessage = this.parse(chatMessageJson);

 if (chatMessage) {

 const messageIsOnlineIndicator =

 chatMessage.message === 'online' &&

 !chatMessage.recipientPhoneNbr;

 if (messageIsOnlineIndicator) {

 await this.handleOnlineIndication(

 wsConnection,

 chatMessage.senderPhoneNbr

);

 } else {

 this.store(chatMessage);

 const recipientServerUuid =

 await this.getServerUuid(

 chatMessage.recipientPhoneNbr

);

 this.send(chatMessage, recipientServerUuid);

 }

 }

 });

 wsConnection.on('close', () => {

 this.close(wsConnection);

 });

 });

 }

406

 closeServer() {

 this.wsServer.close();

 this.wsServer.clients.forEach(client => client.close());

 this.messageBrokerProducer.close();

 }

 parse(chatMessageJson) {

 return (() => {

 try {

 const chatMessage = JSON.parse(chatMessageJson);

 // Validate chatMessage properties here

 return chatMessage;

 } catch {

 return '';

 }

 })();

 }

 async handleOnlineIndication(

 wsConnection,

 senderPhoneNbr

) {

 phoneNbrToWsConnectionMap.set(

 senderPhoneNbr,

 wsConnection

);

 this.wsConnectionToPhoneNbrMap.set(

 wsConnection,

 senderPhoneNbr

);

 try {

 await redisClient.hset(

 'phoneNbrToServerUuidMap',

 senderPhoneNbr,

 this.serverUuid

);

 } catch {

 // Handle error

 }

 }

 store(chatMessage) {

 fetch('http://.../chat-message-service/chat-messages',

 { method: 'post',

 body: JSON.stringify(chatMessage)

 })

 .catch(() => {

 // Handle error

 });

 }

 async getServerUuid(phoneNbr) {

 try {

 return

 await redisClient.hget(

 'phoneNbrToServerUuidMap',

 phoneNbr

);

 } catch {

 return undefined;

407

 }

 }

 send(chatMessage, serverUuid) {

 if (serverUuid === this.serverUuid) {

 // Recipient has active connection on

 // the same server instance as sender

 const recipientWsConnection =

 phoneNbrToWsConnectionMap

 .get(chatMessage.recipientPhoneNbr);

 recipientWsConnection?

 .send(JSON.stringify(chatMessage));

 } else if (serverUuid) {

 // Recipient has active connection on different

 // server instance compared to sender

 const serverTopic = serverUuid;

 this.messageBrokerProducer

 .produce(chatMessage, serverTopic);

 }

 }

 async close(wsConnection) {

 const phoneNbr =

 this.wsConnectionToPhoneNbrMap

 .get(wsConnection);

 phoneNbrToWsConnectionMap.delete(phoneNbr);

 this.wsConnectionToPhoneNbrMap.delete(wsConnection);

 try {

 await redisClient.hdel('phoneNbrToServerUuidMap',

 phoneNbr);

 } catch {

 // Handle error

 }

 }

}

KafkaMessageBrokerProducer.js

export default class KafkaMessageBrokerProducer {

 kafkaProducer;

 constructor(kafkaClient) {

 this.kafkaProducer = kafkaClient.producer();

 }

 async produce(chatMessage, topic) {

 try {

 await this.kafkaProducer.connect();

 await this.kafkaProducer.send({

 topic,

 messages: [{ value: JSON.stringify(chatMessage) }],

 });

 } catch {

 // Handle error

 }

 }

 async close() {

408

 try {

 this.isTerminating = true;

 await this.kafkaProducer.disconnect();

 } catch {

 }

 }

}

The KafkaMessageBrokerConsumer class defines a Kafka consumer that consumes chat
messages from a particular Kafka topic and sends them to the recipient's WebSocket connection:

KafkaMessageBrokerConsumer.js

import phoneNbrToWsConnectionMap

 from './phoneNbrToWsConnectionMap.js';

export default class KafkaMessageBrokerConsumer {

 kafkaConsumer;

 constructor(kafkaClient) {

 this.kafkaConsumer =

 kafkaClient.consumer({ groupId: 'app-y' });

 }

 async consumeChatMessages(topic) {

 await this.kafkaConsumer.connect();

 await this.kafkaConsumer.subscribe({

 topic,

 fromBeginning: true

 });

 this.kafkaConsumer.run({

 eachMessage: async ({ message }) => {

 try {

 const chatMessage =

 JSON.parse(message.value.toString());

 const recipientWsConnection =

 phoneNbrToWsConnectionMap

 .get(chatMessage.recipientPhoneNbr);

 recipientWsConnection?

 .send(JSON.stringify(chatMessage));

 } catch {

 // Handle error

 }

 },

 });

 }

 async close() {

 try {

 await this.kafkaConsumer.disconnect();

 } catch

 {}

 }

}

Finally, we put it all together in the index.js file:

409

index.js

import { v4 as uuidv4 } from 'uuid';

import kafkaClient from './kafkaClient.js';

import KafkaMessageBrokerAdminClient

 from './KafkaMessageBrokerAdminClient.js';

import KafkaMessageBrokerConsumer

 from './KafkaMessageBrokerConsumer.js';

import WebSocketChatMessagingServer

 from './WebSocketChatMessagingServer.js';

// Generate a unique id for this particular server instance

const serverUuid = uuidv4();

const serverTopic = serverUuid;

// Create a Kafka topic for this particular microservice instance

await new KafkaMessageBrokerAdminClient(kafkaClient)

 .create(serverTopic);

// Create the chat messaging service for

// handling WebSocket connections

const chatMessagingServer =

 new WebSocketChatMessagingServer(serverUuid);

// Create and start a Kafka consumer to consume and send

// chat messages for recipients that are connected to

// this microservice instance

const messageBrokerConsumer =

 new KafkaMessageBrokerConsumer(kafkaClient);

messageBrokerConsumer.consumeChatMessages(serverTopic);

// Close the Web Socket server and Kafka consumer before exiting

function prepareExit() {

 chatMessagingServer.closeServer();

 messageBrokerConsumer.close();

}

// Handle signals and prepare for the process exit

process.once('SIGINT', prepareExit);

process.once('SIGQUIT', prepareExit);

process.once('SIGTERM', prepareExit);

For the web client, we have the below code. An instance of the ChatMessagingService class
connects to a chat messaging server via WebSocket. It listens to messages received from the server
and dispatches an action upon receiving a chat message. The class also offers a method for sending
a chat message to the server.

ChatMessagingService.js

import store from "./store";

class ChatMessagingService {

 wsConnection;

 connectionIsOpen = false;

 lastChatMessage;

 constructor(dispatch, userPhoneNbr) {

410

 this.wsConnection = new WebSocket('ws://localhost:8080');

 this.wsConnection.addEventListener('open', () => {

 this.connectionIsOpen = true;

 const onlineMessage = {

 message: 'online',

 senderPhoneNbr: userPhoneNbr

 };

 this.wsConnection.send(JSON.stringify(onlineMessage));

 });

 this.wsConnection.addEventListener('error', () => {

 this.lastChatMessage = null;

 });

 this.wsConnection.addEventListener(

 'message',

 ({ data: chatMessageJson }) => {

 const chatMessage = JSON.parse(chatMessageJson);

 store.dispatch({

 type: 'receivedChatMessageAction',

 chatMessage

 });

 });

 this.wsConnection.addEventListener('close', () => {

 this.connectionIsOpen = false;

 });

 }

 send(chatMessage) {

 this.lastChatMessage = chatMessage;

 if (this.connectionIsOpen) {

 this.wsConnection.send(JSON.stringify(chatMessage));

 } else {

 // Send message to REST API

 }

 }

 close() {

 this.connectionIsOpen = false;

 this.wsConnection.close();

 }

}

export let chatMessagingService;

export default function createChatMessagingService(

 userPhoneNbr

) {

 chatMessagingService =

 new ChatMessagingService(store.dispatch, userPhoneNbr);

 return chatMessagingService;

}

411

index.jsx

import React from 'react';

import ReactDOM from 'react-dom/client';

import { Provider } from 'react-redux'

import ChatApp from './ChatApp';

import store from './store'

import './index.css';

const root = ReactDOM.createRoot(document.getElementById('root'));

root.render(

 <Provider store={store}>

 <ChatApp/>

 </Provider>

);

The chat application parses the user's and contact's phone numbers from the URL and then renders
a chat view between the user and the contact:

ChatApp.jsx

import React, { useEffect } from 'react';

import queryString from "query-string";

import ContactChatView from "./ContactChatView";

import createChatMessagingService from "./ChatMessagingService";

const { userPhoneNbr, contactPhoneNbr } =

 queryString.parse(window.location.search);

export default function ChatApp() {

 useEffect(() => {

 const chatMessagingService =

 createChatMessagingService(userPhoneNbr);

 return function cleanup() {

 chatMessagingService.close();

 }

 }, []);

 return (

 <div>

 User: {userPhoneNbr}

 <ContactChatView

 userPhoneNbr={userPhoneNbr}

 contactPhoneNbr={contactPhoneNbr}

 />

 </div>

);

}

The ContactChatView component renders chat messages between a user and a contact:

412

ContactChatView.jsx

import React, { useEffect, useRef } from 'react';

import { connect } from "react-redux";

import store from './store';

function ContactChatView({

 userPhoneNbr,

 contactPhoneNbr,

 chatMessages,

 fetchLatestChatMessages

}) {

 const inputElement = useRef(null);

 useEffect(() => {

 fetchLatestChatMessages(userPhoneNbr, contactPhoneNbr);

 }, [contactPhoneNbr,

 fetchLatestChatMessages,

 userPhoneNbr]

);

 function sendChatMessage() {

 if (inputElement?.current.value) {

 store.dispatch({

 type: 'sendChatMessageAction',

 chatMessage: {

 senderPhoneNbr: userPhoneNbr,

 recipientPhoneNbr: contactPhoneNbr,

 message: inputElement.current.value

 }

 });

 }

 }

 const chatMessageElements = chatMessages

 .map(({ message, senderPhoneNbr }, index) => {

 const messageIsReceived =

 senderPhoneNbr === contactPhoneNbr;

 return (

 <li

 key={index}

 className={messageIsReceived ? 'received' : 'sent'}>

 {message}

);

 });

 return (

 <div className="contactChatView">

 Contact: {contactPhoneNbr}

 {chatMessageElements}

 <input ref={inputElement}/>

 <button onClick={sendChatMessage}>Send</button>

 </div>

);

}

function mapStateToProps(state) {

 return {

 chatMessages: state

 };

}

413

export default connect(mapStateToProps)(ContactChatView);

store.js

import { createStore } from 'redux';

import { chatMessagingService } from "./ChatMessagingService";

function chatMessagesReducer(state = [], { type, chatMessage }) {

 switch (type) {

 case 'receivedChatMessageAction':

 return state.concat([chatMessage]);

 case 'sendChatMessageAction':

 chatMessagingService.send(chatMessage);

 return state.concat([chatMessage]);

 default:

 return state;

 }

}

const store = createStore(chatMessagesReducer)

export default store;

index.css

.contactChatView {

 width: 420px;

}

.contactChatView ul {

 padding-inline-start: 0;

 list-style-type: none;

}

.contactChatView li {

 margin-top: 15px;

 width: fit-content;

 max-width: 180px;

 padding: 10px;

 border: 1px solid #888;

 border-radius: 20px;

}

.contactChatView li.received {

 margin-right: auto;

}

.contactChatView li.sent {

 margin-left: auto;

}

414

415

Fig 7.1 Chat Messaging Application Views for
Two Users

Inter-Microservice API Design Principles

Inter-microservice APIs can be divided into two categories based on the type of communication:
synchronous and asynchronous. Synchronous communication should be used when an immediate
response to an issued request is expected. Asynchronous communication should be used when no
response to a request is expected, or the response is not immediately required.

Synchronous API Design Principle

Use HTTP-based RPC, REST, or GraphQL APIs with JSON data encoding, preferably with
HTTP/2 or HTTP/3 transport when requests and responses are not very large and do not
contain much binary data. If you have large requests or responses or a lot of binary data,
you are better off encoding the data in Avro binary format (Content-Type: avro/binary)
instead of JSON or using a gRPC-based API. gRPC always encodes data in a binary format
(Protocol Buffers).

gRPC-Based API Design Example

Let's have an example of a gRPC-based API. First, we must define the needed Protocol Buffers
types. They are defined in a file named with the extension .proto. The syntax of .proto files is pretty
simple. We define the service by listing the remote procedures. A remote procedure is defined with
the following syntax: rpc <procedure-name> (<argument-type>) returns (<return-
type>) {}. A type is defined with the below syntax:

message <type-name> {

 <field-type> <field-name> [= <field-index>];

 ...

}

salesItemService.proto

syntax = "proto3";

option java_multiple_files = true;

option java_package = "com.silensoft.salesitemservice";

option java_outer_classname = "SalesItemServiceProto";

option objc_class_prefix = "SIS";

package salesitemservice;

service SalesItemService {

 rpc createSalesItem (NewSalesItem) returns (SalesItem) {}

 rpc getSalesItems(Nothing) returns (SalesItems) {}

 rpc getSalesItem (Id) returns (SalesItem) {}

}

message Nothing {}

416

message NewSalesItem {

 string name = 1;

 float price = 2;

}

message SalesItem {

 uint64 id = 1;

 uint64 createdAtTimestampInMillis = 2;

 string name = 3;

 float price = 4;

}

message Id {

 uint64 id = 1;

}

message SalesItems {

 repeated SalesItem salesItem = 1;

}

Below is a partial implementation of the gRPC server. We have only implemented the
createSalesItem procedure.

SalesItemServiceServer.java

package com.silensoft.salesitemservice;

import io.grpc.Server;

import io.grpc.ServerBuilder;

import io.grpc.stub.StreamObserver;

import java.io.IOException;

import java.util.concurrent.TimeUnit;

import lombok.Log;

@Log

public class SalesItemServiceServer {

 private Optional<Server> maybeGrpcServer;

 private void start() throws IOException {

 maybeGrpcServer = Optional.of(ServerBuilder.forPort(50051)

 .addService(new SalesItemServiceImpl())

 .build());

 maybeGrpcServer.get().start();

 logger.info("Server started, listening on port: " + port);

 Runtime.getRuntime().addShutdownHook(new Thread() {

 @Override

 public void run() {

 try {

 stop();

 } catch (final InterruptedException exception) {

 exception.printStackTrace(System.err);

 }

 System.err.println("Server shut down");

 }

 });

 }

 private void stop() throws InterruptedException {

417

 maybeGrpcServer

 .ifPresent(grpcServer ->

 grpcServer

 .shutdown()

 .awaitTermination(30, TimeUnit.SECONDS));

 }

 private void waitUntilTerminated() throws InterruptedException {

 maybeGrpcServer.ifPresent(Server::awaitTermination);

 }

 public static void main(

 final String[] args

) throws IOException, InterruptedException {

 final var server = new SalesItemServiceServer();

 server.start();

 server.waitUntilTerminated();

 }

 static class SalesItemServiceImpl

 extends SalesItemServiceGrpc.ImplBase {

 @Override

 public void createSalesItem(

 final NewSalesItem salesItem,

 final StreamObserver<SalesItem> responseObserver

) {

 // Set createdAtTimestamp value on salesItem to be now

 // Insert sales item to database and return 'id'

 salesItem.id = id;

 responseObserver.onNext(salesItem);

 responseObserver.onCompleted();

 }

 }

}

Below is the gRPC client implementation for the above gRPC server:

SalesItemServiceClient.java

package com.silensoft.salesitemservice;

import io.grpc.Channel;

import io.grpc.ManagedChannel;

import io.grpc.ManagedChannelBuilder;

import io.grpc.StatusRuntimeException;

import java.util.concurrent.TimeUnit;

import java.util.logging.Level;

import java.util.logging.Logger;

import lombok.Log;

@Log

public class SalesItemServiceClient {

 private final SalesItemServiceGrpc.SalesItemServiceBlockingStub salesItemService;

 public SalesItemServiceClient(final Channel channel) {

 salesItemService =

 SalesItemServiceGrpc.newBlockingStub(channel);

 }

 public SalesItem createSalesItem(final NewSalesItem salesItem) {

 try {

418

 return salesItemService.createSalesItem(salesItem);

 } catch (final StatusRuntimeException exception) {

 logger.log(Level.ERROR,

 "CreateSalesItem failed: {0}",

 exception.getStatus());

 }

 }

 public static void main(final String[] args) throws Exception {

 final var channel = ManagedChannelBuilder

 .forTarget("localhost:50051")

 .usePlaintext()

 .build();

 try {

 SalesItemServiceClient client =

 new SalesItemServiceClient(channel);

 client.createSalesItem(...);

 } finally {

 channel.shutdownNow().awaitTermination(5, TimeUnit.SECONDS);

 }

 }

}

Asynchronous API Design Principle

Use asynchronous APIs when requests are request-only (fire-and-forget, i.e., no response is
expected) or when the response is not immediately expected.

Request-Only Asynchronous API Design

In request-only asynchronous APIs, the request sender does not expect a response. Such APIs are
typically implemented using a message broker. The request sender will send a JSON format request
to a topic in the message broker, where the request recipient consumes the request asynchronously.

Different API endpoints can be specified in a request using a procedure property, for example.
You can name the procedure property as you wish, e.g. action, operation, apiEndpoint etc.
Parameters for the procedure can be supplied in a parameters property. Below is an example
request in JSON:

{

 "procedure": "<procedure name>",

 "parameters": {

 "parameterName1": <parameter value>,

 "parameterName2": <parameter value>,

 // ...

 }

}

Let's have an example with an email-sending microservice that implements a request-only
asynchronous API and handles sending of emails. We start by defining a message broker topic for

419

the microservice. The topic should be named after the microservice, for example: email-sending-
service.

In the email-sending-service, we define the following request schema for an API endpoint that
sends an email:

{

 "procedure": "sendEmailMessage",

 "parameters": {

 "fromEmailAddress": "...",

 "toEmailAddresses": ["...", "...", ...],

 "subject": "...",

 "message": "..."

 }

}

Below is an example request that some other microservice can produce to the email-sending-
service topic in the message broker:

{

 "procedure": "sendEmailMessage",

 "parameters": {

 "fromEmailAddress": "sender@domain.com",

 "toEmailAddresses": ["receiver@domain.com"],

 "subject": "Status update",

 "message": "Hi, Here is my status update ..."

 }

}

Request-Response Asynchronous API Design

A request-response asynchronous API microservice receives requests from other microservices and
then produces responses asynchronously. Request-response asynchronous APIs are typically
implemented using a message broker. The request sender will send a request to a topic where the
request recipient consumes the request asynchronously and then produces a response or responses
to a message broker topic or topics. Each participating microservice should have a topic named
after the microservice in the message broker.

The request format is the same as defined earlier, but the response has a response property
instead of the parameters property. Thus, responses have the following format:

{

 "procedure": "<procedure name>",

 "response": {

 "propertyName1": <property value>,

 "propertyName2": <property value>,

 // ...

 }

}

Below is an example where a loan-application-service requests a loan-eligibility-assessment-

420

service to assess loan eligibility. The loan-application-service sends the following JSON-format
request to the message broker's loan-eligibility-assessment-service topic:

{

 "procedure": "assessLoanEligibility",

 "parameters": {

 "userId": 123456789012,

 "loanApplicationId": 5888482223,

 // Other parameters...

 }

}

The loan-eligibility-assessment-service responds to the above request by sending the following
JSON-format response to the message broker's loan-application-service topic:

{

 "procedure": "assessLoanEligibility",

 "response": {

 "loanApplicationId": 5888482223,

 "isEligible": true,

 "amountInDollars": 10000,

 "interestRate": 9.75,

 "termInMonths": 120

 }

}

Below is an example response when the loan application is rejected:

{

 "procedure": "assessLoanEligibility",

 "response": {

 "loanApplicationId": 5888482223,

 "isEligible": false

 }

}

Alternatively, request and response messages can be treated as events with some data. When we
send events between microservices, we have an event-driven architecture. Below are the earlier
request and response messages written as events:

{

 "event": "assessLoanEligibility",

 "data": {

 "userId": 123456789012,

 "loanApplicationId": 5888482223,

 // ...

 }

}

{

 "event": "LoanApproved",

 "data": {

 "loanApplicationId": 5888482223,

 "isEligible": true,

 "amountInDollars": 10000,

 "interestRate": 9.75,

421

 "termInMonths": 120

 }

}

{

 "procedure": "LoanRejected",

 "response": {

 "loanApplicationId": 5888482223,

 "isEligible": false

 }

}

422

Databases And Database Principles

This chapter presents principles for selecting and using databases. Principles are presented for the
following database types:

• Relational databases

• Document databases

• Key-value databases

• Wide column databases

• Search engines

Relational databases are also called SQL databases because accessing a relational database happens
via issuing SQL statements. Databases of the other database types are called NoSQL databases
because they either don't support SQL at all or they support only a subset of SQL, possibly with
some additions and modifications.

Relational Databases

Relational databases are multipurpose databases that suit many needs. Choose a relational
database if you are not aware of all the needs you have for a database.

For example, if you don't know what kind of database queries you need now or will need in the
future, you should consider using a relational database that is well-suited for different kinds of
queries.

423

Structure of Relational Database

Data in a relational database is organized in the following hierarchy:

• Logical databases/schemas

• Tables

• Columns

A table consists of columns and rows. Data in a database is stored as rows in the tables. Each row
has a value for each column in the table. If a row does not have a value for a particular column, then
a special NULL value is used. You can specify if null values are allowed for a column or not.

A microservice should have a single logical database (or schema). Some relational databases have
one logical database (or schema) available by default, and in other databases, you must create a
logical database (or schema) by yourself.

Use Object Relational Mapper (ORM) Principle

Use an object-relational mapper (ORM) to avoid the need to write SQL and to avoid making
your microservice potentially vulnerable to SQL injection attacks. Use an ORM to get the
database rows automatically mapped to objects that can be serialized to JSON.

Many languages have ORM frameworks. Java has Java Persistence API (JPA, the most famous
implementation of which is Hibernate), JavaScript/TypeScript has TypeORM, and Python has the
Django framework, for example.

An ORM uses entities as building blocks for the database schema. Each entity class in a
microservice is reflected as a table in the database. Use the same name for an entity and the
database table, except the table name should be plural. Below is an example of a SalesItem entity
class:

SalesItem.java

@Entity

public class SalesItem {

 private Long id;

 private String name;

 private Integer price;

}

Store SalesItem entities in a table named salesitems. In this book, I use case-insensitive
database identifiers and write all identifiers in lowercase. The case sensitivity of a database depends
on the database and the operating system it is running on. For example, MySQL is case-sensitive
only on Linux systems.

424

The properties of an entity map to columns of the entity table, meaning that the salesitems table
has the following columns:

- id

- name

- price

Each entity table must have a primary key defined. The primary key must be unique for each row in
the table. In the below example, we are using the @Id annotation to define the id column as the
primary key containing a unique value for each row. The @GeneratedValue annotation defines
that the database should automatically generate a value for the id column using the supplied
strategy.

SalesItem.java

@Entity

@Table(name = "salesitems")

public class SalesItem {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String name;

 private Integer price;

}

ORM can create database tables according to entity specifications in code. Below is an example SQL
statement for PostgreSQL that an ORM generates to create a table for storing SalesItem entities:

CREATE TABLE salesitems (

 id BIGINT GENERATED ALWAYS AS IDENTITY,

 name TEXT,

 price INTEGER,

 PRIMARY KEY (id)

);

Columns of a table can be specified as unique and not nullable. By default, a column is nullable and
is not unique. Below is an example where we define that the name column in the salesitems table
cannot have null values, and values must be unique. We don't want to store sales items with null
names, and we want to store sales items having unique names.

SalesItem.java

@Entity

@Table(name = "salesitems")

public class SalesItem {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @Column(unique=true, nullable=false)

 private String name;

425

 private Integer price;

}

When you have a SalesItem entity, you can persist it with an instance of JPA's EntityManager:

entityManager.persist(salesItem);

JPA will generate the needed SQL statement on your behalf and execute it. Below is an example
SQL statement generated by the ORM to persist a sales item (Remember that the database
autogenerates the id column).

INSERT INTO salesitems (name, price)

VALUES ('Sample sales item', 10);

You can search for the created sales item in the database (assuming here that we have a getId
getter defined):

entityManager.find(SalesItem.class, salesItem.getId());

For the above operation, the ORM will generate the following SQL query:

SELECT id, name, price FROM salesitems WHERE id = 1;

Then you can modify the entity and merge it with the entity manager to update the database:

salesItem.setPrice(20);

entityManager.merge(salesItem);

Finally, you can delete the sales item with the entity manager:

entityManager.remove(salesItem);

The ORM will execute the following SQL statement:

DELETE FROM salesitems WHERE id = 1;

Suppose your microservice executes SQL queries that do not include the primary key column in the
query's WHERE clause. In that case, the database engine must perform a full table scan to find the
wanted rows. Let's say you want to query sales items, the price of which is less than 10. This can be
achieved with the below query:

426

// final var price = ...

final TypedQuery<SalesItem> salesItemsQuery = entityManager

 .createQuery("SELECT s FROM salesitems s WHERE s.price < :price",

 SalesItem.class);

usersSalesItemsQuery.setParameter("price", price);

final List<SalesItem> salesItems = salesItemsQuery.getResultList();

The database engine must perform a full table scan to find all the sales items where the price
column has a value below the price variable's value. If the database is large, this can be slow. If
you perform the above query often, you should optimize those queries by creating an index. For the
above query to be fast, we must create an index for the price column using the @Index annotation
inside the @Table annotation:

SalesItem.java

@Entity

@Table(

 name = "salesitems",

 indexes = @Index(columnList = "price")

)

public class SalesItem {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @Column(unique=true, nullable=false)

 private String name;

 private Integer price;

}

Entity/Table Relationships

Tables in a relational database can have relationships with other tables. There are three types of
relationships:

• One-to-one

• One-to-many

• Many-to-many

One-To-One/Many Relationships

In this section, we focus on one-to-one and one-to-many relationships. In a one-to-one
relationship, a single row in a table can have a relationship with another row in another table. In a
one-to-many relationship, a single row in a table can have a relationship with multiple rows in
another table.

427

Let's have an example with an order-service that can store orders in a database. Each order consists
of one or more order items. An order item contains information about the bought sales item.

@Entity

@Table(name = "orders")

public class Order {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 // Other order fields ...

 @OneToMany(mappedBy="order")

 private List<OrderItem> orderItems;

}

@Entity

@Table(name = "orderitems")

public class OrderItem {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 @OneToOne

 @JoinColumn(name = "salesitemid")

 private SalesItem salesItem;

 @ManyToOne

 @JoinColumn(name = "orderid", nullable = false)

 private Order order;

}

Orders are stored in the orders table, and order items are stored in the orderitems table, which
contains a join column named orderid. Using this join column, we can map a particular order
item to a specific order. Each order item maps to exactly one sales item. For this reason, the
orderitems table also contains a join column named salesitemid. Using this join column, we
can map an order item to a sales item.

Below is the SQL statement generated by the ORM for creating the orderitems table. The one-to-
one and one-to-many relationships are reflected in the foreign key constraints:

• fksalesitem: a salesitemid column value in the orderitems table references an id
column value in the salesitems table

• fkorder: an orderid column value in the orderitems table references an id column value in
the orders table

CREATE TABLE orderitems (

 id BIGINT GENERATED ALWAYS AS IDENTITY,

 salesitemid BIGINT,

 orderid BIGINT,

 CONSTRAINT fksalesitem FOREIGN KEY (salesitemid)

 REFERENCES salesitems(id),

 CONSTRAINT fkorder FOREIGN KEY (orderid)

 REFERENCES orders(id)

428

);

The following SQL query is executed by the ORM to fetch the order with id 123 and its order items:

SELECT o.id, s.name, ...

FROM orders o

LEFT JOIN orderitems oi ON o.id = oi.orderid

LEFT JOIN salesitems s ON s.id = oi.salesitemid

WHERE o.id = 123;

Many-To-Many Relationships

In a many-to-many relationship, one entity has a relationship with many entities of another type,
and those entities have a relationship with many entities of the first entity type. For example, a
student can attend many courses, and a course can have numerous students attending it.

Suppose we have a service that stores student and course entities in a database. Each student entity
contains the courses the student has attended. Similarly, each course entity contains a list of
students that have attended the course. We have a many-to-many relationship where one student
can attend multiple courses, and multiple students can attend one course. This means an additional
mapping table, studentcourse, must be created. This new table maps a particular student to a
particular course. Below is the many-to-many relationship implemented with JPA:

@Entity

@Table(name = "students")

class Student {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 // Other Student fields...

 @JoinTable(

 name = "studentcourse",

 joinColumns = @JoinColumn(name = "studentid"),

 inverseJoinColumns = @JoinColumn(name = "courseid")

)

 @ManyToMany

 private List<Course> attendedCourses;

}

@Entity

@Table(name = "courses")

class Course {

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 // Other Course fields...

 @ManyToMany(mappedBy = "attendedCourses")

 private List<Student> students;

}

429

The ORM creates the students and courses tables in addition to the studentcourse mapping
table:

CREATE TABLE studentcourse (

 studentid BIGINT,

 courseid BIGINT,

 CONSTRAINT fkstudent FOREIGN KEY (studentid)

 REFERENCES students(id),

 CONSTRAINT fkorder FOREIGN KEY (courseid)

 REFERENCES courses(id)

);

Below is an example SQL query that the ORM executes to fetch attended courses for the user
identified with id 123:

SELECT s.id, c.id, ...

FROM students s

LEFT JOIN studentcourse sc ON s.id = sc.studentid

LEFT JOIN courses c ON c.id = sc.courseid

WHERE s.id = 123;

Below is an example SQL query that the ORM executes to fetch students for the course identified
with id 123:

SELECT c.id, s.id

FROM courses c

LEFT JOIN studentcourse sc ON c.id = sc.courseid

LEFT JOIN students s ON s.id = sc.studentid

WHERE c.id = 123;

In real-life scenarios, we don't necessarily have to or should implement many-to-many database
relations inside a single microservice. For example, the above service that handles students and
courses is against the single responsibility principle. We should create a separate microservice for
students and a separate microservice for courses. Then there won't be many-to-many relationships
between database tables in a single microservice.

Use Parameterized SQL Statements Principle

If you are not using an ORM for database access, use parameterized SQL statements to
prevent potential SQL injection attacks.

Let's use Node.js and the mysql NPM library for parameterized SQL examples. First, let's insert
data to the salesitems table:

430

// Create a connection...

connection.query(

 `INSERT INTO salesitems (name, price)

 VALUES (?, ?)`,

 ['Sample sales item', 10]

);

The question marks (?) are placeholders for parameters in a parameterized SQL query. The second
argument to the query method contains the parameter values. When a database engine receives a
parameterized query, it will replace the placeholders in the query with the supplied parameter
values.

Next, we can update a row in the salesitems table. The below example changes the price of the
sales item with id 123 to 20:

connection.query('UPDATE salesitems SET price = ? WHERE id = ?',

 [20, 123]);

Let's execute a SELECT statement to get sales items with their price over 20:

connection.query(

 'SELECT id, name, price FROM salesitems WHERE price >= ?',

 [20]

);

In an SQL SELECT statement, you cannot use parameters everywhere. You can use them as value
placeholders in the WHERE clause. If you want to use user-supplied data in other parts of an SQL
SELECT statement, you need to use string concatenation. You should not concatenate user-
supplied data without sanitation because that would open up possibilities for SQL injection attacks.
Let's say you allow the microservice client to specify a sorting column:

const sortColumn = // Unvalidated data got from client

const sqlQuery =

 'SELECT id, name, price FROM salesitems ORDER BY ' +

 connection.escapeId(sortColumn);

connection.query(sqlQuery);

As shown above, you need to escape the sortColumn value so that it contains only valid characters
for a MySQL column name. If you need to get the sorting direction from the client, you should
validate that value to be either ASC or DESC. In the below example, we assume that a
validateSortDirection function exists:

431

const sortColumn = // Unvalidated data got from client

const sortDirection = // Unvalidated data got from client

// throws if invalid sorting direction

const validatedSortDirection =

 validateSortDirection(sortDirection);

const sqlQuery = `

 SELECT id, name, price

 FROM salesitems

 ORDER BY

 ${connection.escapeId(sortColumn)}

 ${validatedSortDirection}

`;

connection.query(sqlQuery);

When you get values for a MySQL query's LIMIT clause from a client, you must validate that those
values are integers and in a valid range. Don't allow the client to supply random, very large values.
In the example below, we assume that two validation functions exist: validateRowOffset and
validateRowCount. The validation functions will throw if validation fails.

const rowOffset = // Unvalidated data got from client

const rowCount = // Unvalidated data got from client

const validatedRowOffset = validateRowOffset(rowOffset);

const validatedRowCount = validateRowCount(rowCount);

const sqlQuery = `

 SELECT id, name, price

 FROM salesitems

 LIMIT ${validatedRowOffset}, ${validatedRowCount}

`;

connection.query(sqlQuery);

When you get a list of wanted column names from a client, you must validate that each of them is a
valid column identifier:

const columnNames = // Unvalidated data got from client

const escapedColumnNames =

 columnNames.map(columnName => connection.escapedId(columnName));

const sqlQuery =

 `SELECT ${escapedColumnNames.join(', ')} FROM salesitems`;

connection.query(sqlQuery);

Normalization Rules

Apply normalization rules to your database design.

Below are listed the three most basic normalization rules:

432

• First normal form (1NF)

• Second normal form (2NF)

• Third normal form (3NF)

A database relation is often described as "normalized" if it meets the first, second, and third normal
forms.

 First Normal Form (1NF)

The first normal form requires that at every intersection of a row and column, a single value exists
and never a list of values. When considering a sales item, the first normal form states that there
cannot be two different price values in the price column or more than one name for the sales item
in the name column. If you need multiple names for a sales item, you must establish a one-to-many
relationship between a SalesItem entity and SalesItemName entities. What this means in
practice is that you remove the name property from the SalesItem entity class and create a new
SalesItemName entity class used to store sales items' names. Then you create a one-to-many
mapping between a SalesItem entity and SalesItemName entities.

Second Normal Form (2NF)

The second normal form requires that each non-key column entirely depends on the primary key.
Let's assume that we have the following columns in an orderitems table:

• orderid (primary key)

• productid (primary key)

• orderstate

The orderstate column only depends on the orderid column, not the entire primary key. The
orderstate column is in the wrong table. It should, of course, be in the orders table.

Third Normal Form (3NF)

The third normal form requires that non-key columns are independent of each other.

Let's assume that we have the following columns in a salesitems table:

• id (primary key)

• name

• price

• category

433

• discount

Let's assume that the discount depends on the category. This table violates the third normal form
because a non-key column, discount, depends on another non-key column, category. Column
independence means that you can change any non-key column value without affecting any other
column. If you changed the category, the discount would need to be changed accordingly,

thus violating the third normal form rule.

The discount column should be moved to a new categories table with the following columns:

• id (primary key)

• name

• discount

Then we should update the salesitems table to contain the following columns:

• id (primary key)

• name

• price

• categoryid (a foreign key that references the id column in the categories table)

Document Database Principle

Use a document database in cases where complete documents (e.g., JSON objects) are
typically stored and retrieved as a whole.

Document databases, like MongoDB, are useful for storing complete documents. A document is
usually a JSON object containing information in arrays and nested objects. Documents are stored
as such, and a whole document will be fetched when queried.

Let's consider a microservice for sales items. Each sales item contains an id, name, price, image
URLs, and user reviews.

Below is an example sales item as a JSON object:

{

 "id": "507f191e810c19729de860ea",

 "category": "Power tools",

 "name": "Sample sales item",

 "price": 10,

 "imageUrls": ["https://url-to-image-1...",

 "https://url-to-image-2..."],

434

 "averageRatingInStars": 5,

 "reviews": [

 {

 "reviewerName": "John Doe",

 "date": "2022-09-01",

 "ratingInStars": 5,

 "text": "Such a great product!"

 }

]

}

A document database usually has a size limit for a single document. Therefore, the above example
does not store sales item images directly inside the document but only URLs to the images. Actual
images are stored in another data store more suitable for storing images, like Amazon S3.

When creating a microservice for sales items, we can choose a document database because we
usually store and access whole documents. When sales items are created, they are created as JSON
objects of the above shape with the reviews array being empty. When a sales item is fetched, the
whole document is retrieved from the database. When a client adds a review for a sales item, the
sales item is fetched from the database. The new review is appended to the reviews array, a new
average rating is calculated, and finally, the document is persisted with the modifications.

Below is an example of inserting one sales item to a MongoDB collection named salesItems.
MongoDB uses the term collection instead of table. A MongoDB collection can store multiple
documents.

db.salesItems.insertOne({

 category: "Power tools",

 name: "Sample sales item",

 price: 10,

 images: ["https://url-to-image-1...",

 "https://url-to-image-2..."],

 averageRatingInStars: null,

 reviews: []

})

You can find sales items for the Power tools category with the following query:

db.salesItems.find({ category: "Power tools" })

If clients are usually querying sales items by category, it is wise to create an index for that field:

// 1 means ascending index, -1 means descending index

db.salesItems.createIndex({ category: 1 })

When a client wants to add a new review for a sales item, you first fetch the document for the sales
item:

db.salesItems.find({ _id: ObjectId("507f191e810c19729de860ea") })

435

Then you calculate a new value for the averageRatingInStars field using the existing ratings
and the new rating

and add the new review to the reviews array and then update the document with the following
command:

db.salesItems.updateOne(

 { _id: ObjectId("507f191e810c19729de860ea") },

 { averageRatingInStars: 5,

 $push: { reviews: {

 reviewerName: "John Doe",

 date: "2022-09-01",

 ratingInStars: 5,

 text: "Such a great product!"

 }}

)

Clients may want to retrieve sales items sorted descending by the average rating. For this reason,
you might want to change the indexing to be the following:

db.salesItems.createIndex({ category: 1, averageStarCount: -1 })

A client can issue, for example, a request to get the best-rated sales items in the Power tools
category. This request can be fulfilled with the following query that utilizes the above-created index:

db.salesItems

 .find({ category: "Power tools" })

 .sort({ averageStarCount: -1 })

Key-Value Database Principle

Use a key-value database for fast real-time access to data stored by a key. Key-value stores
usually store data in memory with a possibility for persistence.

A simple use case for a key-value database is to use it as a cache for a relational database. For
example, a microservice can store SQL query results from a relational database in the cache. Redis
is a popular open-source key-value store. Let's have an example with JavaScript and Redis to cache
an SQL query result. In the below example, we assume that the SQL query result is available as a
JavaScript object:

redisClient.set(sqlQueryStatement,

 JSON.stringify(sqlQueryResult));

The cached SQL query result can be fetched from Redis:

const sqlQueryResultJson = redisClient.get(sqlQueryStatement);

436

With Redis, you can create key-value pairs that expire automatically after a specific time. This is a
useful feature if you are using the key-value database as a cache. You may want the cached items to
expire after a while.

In addition to plain strings, Redis also supports other data structures. For example, you can store a
list, queue, or hash map for a key. If you store a queue in Redis, you can use it as a simple single-
consumer message broker. Below is an example of producing a message to a topic in the message
broker:

// RPUSH command (= right push) pushes a new message

// to the end of the list identified by key _topic_.

redisClient.rpush(topic, message);

Below is an example of consuming a message from a topic in the message broker:

// LPOP command (= left pop) pops a message from

// the beginning of the list identified by key _topic_

// The LPOP command removes the value from the list

const message = redisClient.lpop(topic);

Wide-Column Database Principle

Use a wide-column database when you know what queries you need to execute, and you
want these queries to be fast.

Table structures of a wide-column database are optimized for specific queries. With a wide-column
database, storing duplicate data is okay to make the queries faster. Wide-column databases also
scale horizontally well.

In this section, we use Apache Cassandra as an example wide-column database. Cassandra is a
scalable multi-node database engine. In Cassandra, the data of a table is divided into partitions
according to the table's partition key. A partition key is composed of one or more columns. Each
partition is stored on a single Cassandra node. You can think that Cassandra is a key-value store
where the key is the partition key, and the value is another "nested" table. The rows in the "nested"
table are uniquely identified by clustering columns sorted by default in ascending order. The sort
order can be changed to descending if wanted.

The partition key and the clustering columns form the table's primary key. The primary key
uniquely identifies a row. Let's have an example table that is used to store hotels near a particular
point of interest (POI):

CREATE TABLE hotels_by_poi (

 poi_name text,

 hotel_distance_in_meters_from_poi int,

 hotel_id uuid,

 hotel_name text,

437

 hotel_address text,

 PRIMARY KEY (poi_name, hotel_distance_in_metersfrom_poi, hotel_id)

);

In the above example, the primary key consists of three columns. The first column (poi_name) is
always the partition key. The partition key must be given in a query. Otherwise, the query will be
slow because Cassandra must perform a full table scan because it does not know which node data is
located. When the partition key is given in a SELECT statement's WHERE clause, Cassandra can
find the appropriate node where the data for that particular partition resides. The two other
primary key columns, hotel_distance_in_meters_from_poi and hotel_id are the
clustering columns. They define the order and uniqueness of the rows in the "nested" table.

The above figure shows that when you give a partition key value (poi_name) you have access to the
r e s p e c t i v e " n e s t e d " t a b l e w h e r e r o w s a r e o r d e r e d f i r s t b y t h e
hotel_distance_in_meters_from_poi (ascending) and second by the hotel_id
(ascending).

Now it is easy for a hotel room booking client to ask the server to execute a query to find hotels near
a POI given by a user. The following query will return the first 15 hotels nearest to Piccadilly Circus
POI:

SELECT

 hotel_distance_in_meters_from_poi,

 hotel_id,

 hotel_name,

 hotel_address

FROM hotels_by_poi

WHERE poi_name = 'Piccadilly Circus'

LIMIT 15

438

Figure 8.1 hotels_by_poi Table

When a user selects a particular hotel from the result of the above query, the client can request the
execution of another query to fetch information about the selected hotel. The user wants to see
other POIs near the selected hotel. For that query, we should create another table:

CREATE TABLE pois_by_hotel_id (

 hotel_id uuid,

 poi_distance_in_meters_from_hotel int,

 poi_id uuid,

 poi_name text,

 poi_address text,

 PRIMARY KEY (hotel_id, poi_distance_in_meters_from_hotel, poi_id)

);

Now a client can request the server to execute a query to fetch the nearest 20 POIs for a selected
hotel. (hotel with id c5a49cb0-8d98-47e3-8767-c30bc075e529):

SELECT

 poi_distance_in_meters_from_hotel,

 poi_id,

 poi_name,

 poi_address

FROM pois_by_hotel_id

WHERE hotel_id = c5a49cb0-8d98-47e3-8767-c30bc075e529

LIMIT 20

In a real-life scenario, a user wants to search for hotels near a particular POI for a selected period of
time. The server should respond with the nearest hotels having free rooms for the selected period.
For that kind of query, we create an additional table for storing hotel room availability:

CREATE TABLE availability_by_hotel_id (

 hotel_id uuid,

 accommodation_date date,

 available_room_count counter,

 PRIMARY KEY (hotel_id, accommodation_date)

);

The above table is updated whenever a room for a specific day is booked or a booking for a room is
canceled. The available_room_count column value is either decremented or incremented by
one in the update procedure.

Let's say that the following query has been executed:

SELECT

 hotel_distance_in_meters_from_poi,

 hotel_id,

 hotel_name,

 hotel_address

FROM hotels_by_poi

WHERE poi_name = 'Piccadilly Circus'

LIMIT 30

Next, we should find hotels from the result of 30 hotels that have available rooms between the 1st of
September 2022 and 3rd of September 2022. We cannot use joins in Cassandra, but we can execute

439

the following query where we specifically list the hotel ids returned by the above query:

SELECT hotel_id, MIN(available_room_count)

FROM availability_by_hotel_id

WHERE hotel_id IN (List the 30 hotel_ids here...) AND

 accommodation_date >= '2022-09-01' AND

 accommodation_date <= '2022-09-03'

GROUP BY hotel_id

LIMIT 15

As a result of the above query, we have a list of a maximum of 15 hotels for which the minimum
available room count is listed. We can return a list of those max 15 hotels where the minimum
available room count is one or more to the user.

If Cassandra's CQL language supported the HAVING clause, which it does not currently support,
we could have issued the following query to get what we wanted:

SELECT hotel_id, MIN(available_room_count)

FROM availability_by_hotel_id

WHERE hotel_id IN (List the 30 hotel_ids here...) AND

 accommodation_date >= '2022-09-01' AND

 accommodation_date <= '2022-09-03'

GROUP BY hotel_id

HAVING MIN(available_room_count) >= 1

LIMIT 15

A wide-column database is also useful in storing time-series data from IoT devices and sensors.
Below is a table definition for storing measurement data in a telecom network analytics system:

CREATE TABLE measurements (

 measure_name text,

 dimension_name text,

 aggregation_period text,

 measure_timestamp timestamp,

 measure_value double,

 dimension_value text,

 PRIMARY KEY ((measure_name, dimension_name, aggregation_period),

 measure_timestamp,

 measure_value,

 dimension_value)

) WITH CLUSTERING ORDER BY (

 measure_timestamp DESC,

 measure_value DESC

 dimension_value ASC

);

In the above table, we have defined a compound partition key containing three columns:
measure_name, dimension_name, and aggregation_period. Columns for a compound
partition key are given in parentheses.

Suppose we have implemented a client that visualizes measurements. In the client, a user can first

440

choose what counter/KPI (= measure name) to visualize, then select a dimension and aggregation
period. Let's say that the user wants to see dropped_call_percentage for cells calculated for a one-
minute period at 2022-02-03 16:00. The following kind of

query can be executed:

SELECT measure_value, dimension_value

FROM measurements

WHERE measure_name = 'dropped_call_percentage' AND

 dimension_name = 'cell' AND

 aggregation_period = '1min' AND

 measureTimestamp = '2022-02-03T16:00+0000'

LIMIT 50;

The above query returns the top 50 cells where the dropped call percentage is highest for the given
minute.

We can create another table to hold measurements for a selected dimension value, e.g., for a
particular cell id. This table can be used to drill down to a particular dimension and see measure
values in the history.

CREATE TABLE measurements_by_dimension (

 measure_name text,

 dimension_name text,

 aggregation_period text,

 dimension_value text,

 measure_timestamp timestamp,

 measure_value double,

 PRIMARY KEY ((measure_name,

 dimension_name,

 aggregation_period,

 dimension_value), measure_timestamp)

) WITH CLUSTERING ORDER BY (measureTimestamp DESC);

The below query will return dropped call percentage values for the last 30 minutes for the cell
identified by cell id 3000:

SELECT measure_value, measureTimestamp

FROM measurements_by_dimension

WHERE measure_name = 'dropped_call_percentage' AND

 dimension_name = 'cell' AND

 aggregation_period = '1min' AND

 dimension_value = '3000'

LIMIT 30;

441

Search Engine Principle

Use a search engine if you have free-form text data that users should be able to query.

A search engine (like Elasticsearch, for example) is useful for storing information like log entries
collected from microservices. You typically want to search the collected log data by the text in the
log messages.

It is not necessary to use a search engine when you need to search for text data. Other databases,
both document and relational, have a special index type that can index free-form text data in a
column. Considering the earlier example with MongoDB, we might want a client to be able to
search sales items by the text in the sales item's name. We don't need to store sales items in a
search engine database. We can continue storing them in a document database (MongoDB) and
introduce a text type index for the name field. That index can be created with the following
MongoDB command:

db.salesItems.createIndex({ name: "text" })

442

Concurrent Programming Principles

This chapter presents the following concurrent programming principles:

• Threading principle

• Thread safety principle

Threading Principle

Modern cloud-native microservices should primarily scale out by adding more processes, not
scale up by adding more threads. Use threading only when it is needed or is a good
optimization.

When developing modern cloud-native software, microservices should be stateless and
automatically scale horizontally (scaling out and in via adding and removing processes). The role of
threading in modern cloud-native microservices is not as prominent as it was earlier when software
consisted of monoliths running on bare metal servers, mainly capable of scaling up or down.
Nowadays, you should use threading if it is a good optimization or otherwise needed.

Suppose we have a software system with an event-driven architecture. Multiple microservices
communicate with each other using asynchronous messaging. Each microservice instance has only
a single thread that consumes messages from a message broker and then processes them. If the
message broker's message queue for a microservice starts growing too long, the microservice should
scale out by adding a new instance. When the load for the microservice diminishes, it can scale in
by removing an instance. There is no need to use threading at all.

We could use threading in the data exporter microservice if the input consumer and the output
producer were synchronous. The reason for threading is optimization. If we had everything in a
single thread and the microservice was performing network I/O (either input or output-related),

443

the microservice would have nothing to execute because it is waiting for some network I/O to
complete. Using threads, we can optimize the execution of the microservice so that it potentially has
something to do when waiting for an I/O operation to complete.

Many modern input consumers and output producers are available as asynchronous
implementations. If we use an asynchronous consumer and producer in the data exporter
microservice, we can eliminate threading because network I/O will not block the execution of the
main thread anymore. As a rule of thumb, consider using asynchronous code first, and if it is not
possible or feasible, only then consider threading.

You might need a microservice to execute housekeeping tasks on a specific schedule in the
background. Instead of using threading and implementing the housekeeping functionality in the
microservice, consider implementing it in a separate microservice to ensure that the single
responsibility principle is followed. You can configure the housekeeping microservice to be run at
regular intervals using a Kubernetes CronJob, for example.

Threading also brings complexity to a microservice because the microservice must ensure thread
safety. You will be in big trouble if you forget to implement thread safety. Threading and
synchronization-related bugs are hard to find. Thread safety is a topic that is discussed later in this
chapter. Threading also brings complexity to deploying a microservice because the number of
vCPUs requested by the microservice can depend on the thread count.

Parallel Algorithms

Parallel algorithms are similar to threading. With parallel algorithms, it is a question about implicit
threading instead of explicit threading. Threads are created behind the scenes to enable an
algorithm to execute in parallel on some data set. A parallel algorithm is usually something you
don't necessarily need in a cloud-native microservice. You can often run algorithms without
parallelization and instead scale out on demand.

Many languages offer parallel algorithms. In Java, you can perform parallel operations with a
parallel stream created with the parallelStream method:

final var numbers = List.of(1, 2, 3, 4);

numbers.parallelStream().forEach(number ->

 System.out.println(number + " " +

 Thread.currentThread().getName())

);

The output of the above code could be, for example:

3 ForkJoinPool.commonPool-worker-2

2 ForkJoinPool.commonPool-worker-1

1 ForkJoinPool.commonPool-worker-3

4 main

444

The output will differ on each run. Usually, the parallel executor creates the same amount of
threads as there are CPU cores available. This means that you can scale your microservice up by
requesting more CPU cores. In many languages, you can control how many CPU cores the parallel
algorithm should use. You can, for example, configure that a parallel algorithm should use the
number of available CPU cores minus two if you have two threads dedicated to some other
processing. In C++20, you cannot control the number of threads for a parallel algorithm, but an
improvement is coming in a future C++ release.

Below is the same example as above written in C++:

#include <algorithm>

#include <execution>

#include <thread>

#include <iostream>

std::vector<int> numbers{1, 2, 4, 5};

std::for_each(std::execution::par,

 numbers.cbegin(),

 numbers.cend(),

 [](const auto number)

 {

 std::cout << number

 << " "

 << std::this_thread::get_id()

 << "\n";

 });

Thread Safety Principle

If you are using threads, you must ensure thread safety. Thread safety means that only one
thread can access shared data simultaneously to avoid race conditions.

Do not assume thread safety if you use a data structure or library. You must consult the
documentation to see whether thread safety is guaranteed. If thread safety is not mentioned in the
documentation, it can't be assumed. The best way to communicate thread safety to developers is to
name things so that thread safety is explicit. For example, you could create a thread-safe collection
library and have a class named ThreadSafeLinkedList to indicate the class is thread-safe.
Another common word used to indicate thread safety is concurrent , e.g., the
ConcurrentHashMap class in Java.

445

There are several ways to ensure thread safety:

• Synchronization directive

• Atomic variables

• Concurrent collections

• Mutexes

• Spin locks

The subsequent sections describe each of the above techniques in more detail.

Synchronization Directive

In some languages, you can use a specific directive to indicate that a particular piece of code is
synchronized, meaning that only one thread can execute that piece of code at a time.

Java offers the synchronized keyword that can be used in the following ways:

• Synchronized instance method

• Synchronized static method

• Synchronized code block

public synchronized void doSomething() {

 // Only one thread can execute this at the same time

}

public static synchronized void doSomething() {

 // Only one thread can execute this at the same time

}

public void doSomething() {

 // ...

 synchronized (this) {

 // Only one thread can execute this at the same time

 }

 // ...

}

Atomic Variables

If you have some data shared between threads and that data is just a simple primitive variable, like
a boolean or integer, you can use an atomic variable to guarantee thread safety and don't need to
use any additional synchronization technique. Atomic variable reads and updates

446

are guaranteed to be atomic, so there is no possibility for a race condition between two threads.
Some atomic variable implementations use locks. Consult the language's documentation to see if a
certain atomic type is guaranteed to be lock-free.

In C++, you can create a thread-safe counter using an atomic variable:

ThreadSafeCounter.h

#include <atomic>

class ThreadSafeCounter

{

public:

 ThreadSafeCounter() = default;

 void increment()

 {

 ++m_counter;

 }

 uint32_t getValue() const

 {

 return m_counter.load();

 }

private:

 std::atomic<uint64_t> m_counter{0U};

}

Concurrent Collections

Concurrent collections can be used by multiple threads without any additional synchronization.
Java offers several concurrent collections in the java.util.concurrent package.

C++ does not offer concurrent collections in its standard library. You can create a concurrent, i.e., a
thread-safe collection using the decorator pattern by adding needed synchronization (locking) to
an existing collection class. Below is a partial example of a thread-safe vector created in C++:

ThreadSafeVector.h

#include <vector>

template <typename T>

class ThreadSafeVector

{

public:

 explicit ThreadSafeVector(std::vector<T>&& vector):

 m_vector{std::move(vector)}

 {}

 void pushBack(const T& value)

 {

 // Lock using a mutex or spin lock

 m_vector.push_back(value);

447

 // Unlock

 }

 // Implement other methods with locking...

private:

 std::vector<T> m_vector;

};

Mutexes

A mutex is a synchronization primitive that can protect shared data from being simultaneously
accessed by multiple threads. A mutex is usually implemented as a class with lock and unlock
methods. The locking only succeeds by one thread at a time. Another thread can lock the mutex
only after the previous thread has unlocked the mutex. The lock method waits until the mutex
becomes available for locking.

Let's implement the pushBack method using a mutex:

ThreadSafeVector.h

#include <mutex>

#include <vector>

template <typename T>

class ThreadSafeVector

{

public:

 explicit ThreadSafeVector(std::vector<T>&& vector):

 m_vector{std::move(vector)}

 {}

 void pushBack(const T& value)

 {

 m_mutex.lock();

 m_vector.push_back(value);

 m_mutex.unlock();

 }

 // Implement other methods ...

private:

 std::vector<T> m_vector;

 std::mutex m_mutex;

};

Mutexes are not usually used directly because there exists the risk that a mutex is forgotten to be
unlocked. Instead of using the plain std::mutex class, you can use a mutex with the
std::scoped_lock class. The std::scoped_lock class wraps a mutex instance. It will lock the
wrapped mutex on construction and unlock the mutex on destruction. In this way, you cannot
forget to unlock a locked mutex. The mutex will be locked for the scope of the scoped lock variable.
Below is the above example modified to use a scoped lock:

448

ThreadSafeVector.h

#include <mutex>

#include <vector>

template <typename T>

class ThreadSafeVector

{

public:

 explicit ThreadSafeVector(std::vector<T>&& vector):

 m_vector{std::move(vector)}

 {}

 void pushBack(const T& value)

 {

 const std::scoped_lock scopedLock{m_mutex};

 m_vector.push_back(value);

 }

 // Implement other methods ...

private:

 std::vector<T> m_vector;

 std::mutex m_mutex;

};

Spinlocks

A spinlock is a lock that causes a thread trying to acquire it to simply wait in a loop (spinning the
loop) while repeatedly checking whether the lock has become available. Since the thread remains
active but is not performing a useful task, using a spinlock is busy waiting. You can avoid some of
the overhead of thread context switches using a spinlock. Spinlocks are an effective way of locking if
the locking periods are short.

Let's implement a spinlock using C++:

Spinlock.h

#include <atomic>

#include <thread>

#include <boost/core/noncopyable.hpp>

class Spinlock : public boost::noncopyable

{

public:

 void lock()

 {

 while (true) {

 const bool wasLocked =

 m_isLocked.test_and_set(std::memory_order_acquire);

 if (!wasLocked) {

 // Is now locked

 return;

 }

449

 // Wait for the lock to be released

 while (m_isLocked.test(std::memory_order_relaxed)) {

 // Prioritize other threads

 std::this_thread::yield();

 }

 }

 }

 void unlock()

 {

 m_isLocked.clear(std::memory_order_release);

 }

private:

 std::atomic_flag m_isLocked = ATOMIC_FLAG_INIT;

};

In the above implementation, we use the std::atomic_flag class because it guarantees a lock-
free implementation across all C++ compilers. We also use a non-default memory ordering to allow
the compiler to emit more efficient code.

Now we can re-implement the ThreadSafeVector class using a spinlock instead of a mutex:

ThreadSafeVector.h

#include <vector>

#include "Spinlock.h"

template <typename T>

class ThreadSafeVector

{

public:

 explicit ThreadSafeVector(std::vector<T>&& vector):

 m_vector{std::move(vector)}

 {}

 void pushBack(const T& value)

 {

 m_spinlock.lock();

 m_vector.push_back(value);

 m_spinlock.unlock();

 }

 // Implement other methods ...

private:

 std::vector<T> m_vector;

 Spinlock m_spinlock;

};

Similar to mutexes, we should not use raw spinlocks in our code but use a scoped lock. Below is an
implementation of a generic ScopedLock class that handles the locking and unlocking of a
lockable object:

450

ScopedLock.h

#include <concepts>

#include <boost/core/noncopyable.hpp>

template<typename T>

concept Lockable = requires(T a)

{

 { a.lock() } -> std::convertible_to<void>;

 { a.unlock() } -> std::convertible_to<void>;

};

template <Lockable L>

class ScopedLock : public boost::noncopyable

{

public:

 explicit ScopedLock(L& lockable):

 m_lockable{lockable}

 {

 m_lockable.lock();

 }

 ~ScopedLock()

 {

 m_lockable.unlock();

 }

private:

 L& m_lockable;

};

Let's change the ThreadSafeVector class to use a scoped lock:

ThreadSafeVector.h

#include <vector>

#include "Scopedlock.h"

#include "Spinlock.h"

template <typename T>

class ThreadSafeVector

{

public:

 explicit ThreadSafeVector(std::vector<T>&& vector):

 m_vector{std::move(vector)}

 {}

 void pushBack(const T& value)

 {

 const ScopedLock scopedLock{m_spinlock};

 m_vector.push_back(value);

 }

 // Implement other methods ...

private:

 std::vector<T> m_vector;

 Spinlock m_spinlock;

};

451

452

Teamwork Principles

This chapter presents teamwork principles. The following principles are described:

• Use an agile framework principle

• Define the done principle

• You write code for other people principle

• Avoid technical debt principle

• Software component documentation principle

• Code review principle

• Uniform code formatting principle

• Highly concurrent development principle

• Pair programming principle

• Well-defined development team roles principle

Use Agile Framework Principle

Using an agile framework can bring numerous benefits to an organization, including an
increase in productivity, improvements in quality, faster time-to-market, and better
employee satisfaction.

The above statements come from customer stories https://scaledagile.com/insights-customer-
stories of some companies having adopted Scaled Agile Framework (SAFe) (https://
www.scaledagileframework.com/).

An agile framework describes a standardized way of developing software, which is essential,
especially in large organizations. In today's work environments, people change jobs frequently, and
teams tend to change often, which can lead to a situation where there is no common understanding

453

of the way of working unless a particular agile framework is used. An agile framework establishes a
clear division of responsibilities, and everyone can focus on what they do best.

In the SAFe, for example, during a program increment (PI) planning, development teams plan
features for the next PI (consisting of 4 iterations, two weeks per iteration, a total of 8 weeks). In
the PI planning, teams split features into user stories and see which features fit in the PI. Planned
user stories will be assigned story points (measured in person days, for example), and stories will be
placed into iterations. This planning phase results in a plan the team should follow in the PI. Junior
SAFe practitioners can make mistakes like underestimating the work needed to complete a user
story. But this is a self-correcting issue. When teams and individuals develop, they will better
estimate the needed work amount, and plans become more solid. Teams and developers learn that
they must make all work visible. For example, reserve time to learn new things, like a programming
language or framework, and reserve time for refactoring. It is very satisfying to keep the planned
schedule and sometimes even complete work early. This will make you feel like a true professional
and is a boost to self-esteem.

Define the Done Principle

For user stories and features, define what done means.

In the most optimal situation, development teams have a shared understanding of what is needed
to declare a user story or feature done. When having a common definition of done, each
development team can ensure consistent results and quality.

When considering a user story, at least the following requirements for a done user story can be
defined:

• Source code is committed to a source code repository

• Source code is reviewed

• Static code analysis is performed (No blocker/critical/major issues)

• Unit test coverage is at least X%

• CI/CD pipeline is passing

• No 3rd party software vulnerabilities

The product owner's (PO) role in a team is to accept a user story as done. Some of the above-
mentioned requirements can be automatically checked. For example, the static code analysis should
be part of every CI/CD pipeline and can also check the unit test coverage automatically. If static
code analysis does not pass or the unit test coverage is not acceptable, the CI/CD pipeline does not
pass.

454

Some additional requirements for done-ness should be defined when considering a feature because
features can be delivered to customers. Below is a list of some requirements for a done feature:

• Architectural design documentation is updated

• Integration tests are added/updated

• End-to-end tests are added/updated if needed

• Non-functional testing is done

• User documentation is ready

• Threat modeling is done, and threat countermeasures (security features) are implemented

To complete all the needed done-ness requirements, development teams can use tooling that helps
them remember what needs to be done. For example, when creating a new user story in a tool like
Jira, an existing prototype story could be cloned (or a template used). The prototype or template
story should contain tasks that must be completed before a user story can be approved.

You Write Code for Other People Principle

You write code for other people and your future self.

Situations where you work alone with a piece of software are relatively rare. You cannot predict
what will happen in the future. There might be someone else responsible for the code you once
wrote. And there are cases when you work with some code for some time and then, maybe after
several years, need to return to that code. For these reasons, writing clean code that is easy to read
and understand by others and yourself in the future is essential. Remember that code is not written
for a computer only but also for people. People should be able to read and comprehend code easily.
Remember that at its best, code reads like beautiful prose!

Avoid Technical Debt Principle

The most common practices for avoiding technical debt are the following:

• The architecture team should design the high-level architecture (Each team should have a
representative in the architecture team. Usually, it is the technical lead of the team)

• Development teams should perform object-oriented design first, and only after that proceed with
implementation

• Conduct object-oriented design within the team with relevant senior and junior developers
involved

455

• Don't take the newest 3rd party software immediately into use, instead use mature 3rd party
software that has an established position in the market

• Design for easily replacing a 3rd party software component with another 3rd party component.

• Design for scalability (for future load)

• Design for extension: new functionality is placed in new classes instead of modifying existing

classes

• Utilize a plugin architecture (possibility to create plugins to add new functionality later)

• Reserve time for refactoring

The top reasons for technical debt are the following:

• Using niche technologies or brand-new technologies that are immature

• Not making software scalable for future processing needs

• When it is not relatively easy to replace a 3rd party software component (E.g., using custom SQL

syntax does not allow changing the database, not using the adapter pattern with 3rd party
libraries)

• Not reviewing the architecture

• Not doing any object-oriented design before starting coding

• Not engaging senior enough developers in the OOD phase

• Not understanding and using relevant design principles and patterns

• Not programming against interfaces

• Not easy to change a dependency (DI missing)

• No facades

• Not reviewing code changes

• Not reserving time for refactoring

• Too small work effort estimates

• Time pressure from management

• Management does not understand the value of refactoring

• Postponing refactoring to a time point that never comes

• Forgetting to refactor (at least store the needed refactoring work items in a TODO.MD file in the

source code repository)

• No unit tests, harder to refactor

• Duplicate code

• Not conducting the boy scout rule

• Laziness (using what comes first in mind or constantly trying to find the easiest and quickest way

to do things)

456

Software Component Documentation Principle

Each software component needs to be documented. The main idea behind documenting is
quickly onboarding new people to development work.

It is crucial that setting up a development environment for a software component is well-
documented and as easy as possible. Another important thing is to let people easily understand the
problem domain the software component tries to solve. Also, the object-oriented design of the
software component should be documented.

Software component documentation should reside in the same source code repository where the
source code is. The recommended way is to use a README.MD file in the root directory of the
source code repository for documentation in Markdown format. You can split the documentation
into multiple files and store additional files in the docs directory of the source code repository.

Below is an example table of contents that can be used when documenting a software component:

• Short description of the software component and its purpose

• Feature list

• OOD diagrams describing different subdomains and classes in each subdomain

• Explanation of the design (if needed)

• API documentation (for libraries)

• Implementation-related documentation

• Error handling mechanism

• Special algorithms used

• Performance considerations

• Instructions for setting up a development environment

• The easiest way to set up a development environment is to use a development container, a

concept supported by the Visual Studio Code editor. The benefit of using a development
container is that you don't have to install development tools locally, and there is no risk of
using the wrong versions of the development tools

• Instructions for building the software locally

• Instructions for running unit tests locally

• Instructions for running integration tests locally

• Instructions for deploying to a test environment

• Configuration

• Environment variables

• Configuration files

• Secrets

457

Code Review Principle

In a code review, focus on issues a machine cannot find for you.

Before reviewing code, a static code analysis should be performed to find any issues a machine can
find. The actual code review should focus on issues that static code analyzers cannot find. You
cannot review your own code. At least one of the reviewers should be in a senior or lead role. Things
to focus on in a code review are presented in the subsequent sections.

Focus on Object-Oriented Design

Before starting coding, it is recommended to design the software: define subdomains, needed
interfaces, and classes. The product of this initial design phase should be committed to the source
code repository and reviewed before starting coding. In this way, it is easier to correct design flaws
early. Fixing design flaws in a later phase might require significant effort or even a rewrite of the
existing code. At least one senior developer should participate in the design.

If a design flaw or flaws are encountered in a review, but there is no time for an immediate fix. A
refactoring user story or stories should be added to the team's backlog.

Focus on Proper and Uniform Naming

One thing that static code analysis tools can only partially do is ensure proper and uniform naming
of things, like classes, functions, and variables. Naming is where the focus should be put in a code
review. Renaming things is a very straightforward and fast refactoring task that can be performed
automatically by modern IDEs.

Don't Focus on Premature Optimization

Do not focus on optimization in regular code reviews. Optimization is usually performed on a need
basis after the code is ready and the performance is first measured. Focus on optimization-related
issues only when the commit you are reviewing is dedicated to optimizing something.

Detect Possible Malicious Code

Code reviewers must verify that the committed code does not contain malicious code.

458

Uniform Code Formatting Principle

In a software development team, you must decide on common rules for formatting source
code.

Consistent code formatting is vital because if team members have different source code formatting
rules, one team member's small change to a file can reformat the whole file using his/hers
formatting rules, which can cause another developer to face a major merge conflict that slows down
the development process. Always agree on common source code formatting rules and preferably use
a tool like Prettier to enforce the formatting rules. If no automatic formatting tool is available, you
can create source code formatting rules for IDEs used by team members and store those rules in the
source code repository.

Highly Concurrent Development Principle

Each team member can work with some piece of code. No one should be waiting long for
someone else's work to finish.

Concurrent development is enabled when different people modify different source code files. When
several people need to alter the same files, it can cause merge conflicts. These merge conflicts cause
extra work because they often must be resolved manually. This manual work can be slow, and it is
error-prone. The best thing is to avoid merge conflicts as much as possible. This can be achieved in
the ways described in the following sections.

Dedicated Microservices and Microlibraries

Microservices are small by nature, and it is possible to assign the responsibility of a microservice to
a single team member. This team member can proceed with the microservice with full velocity, and
rest assured that no one else is modifying the codebase. The same goes for libraries. You should
create small microlibraries (= libraries with a single responsibility) and assign the responsibility of
developing a microlibrary to a single person.

Dedicated Domains

Sometimes it is impossible to assign a single microservice or library to a single developer. It could
be because the microservice or library is relatively large and it is not feasible to split it into multiple
microservices or libraries. In those cases, the microservice or library should be divided into several
subdomains by conducting domain-driven design. Each source code directory reflects a different

459

subdomain. It is then possible to assign the responsibility of a single subdomain to a single person.
The assignment of subdomains should not be fixed but can and should change as time goes by. To
distribute the knowledge of different domains, it is advisable to rotate the responsibilities amongst
the team members. Let's say you have a team of three developers developing a data exporter
microservice consisting of three subdomains: input, transformer, and output. The team can
implement the microservice by assigning the responsibility of a single domain to a single developer.
Now all developers can proceed highly independently and concurrently with the implementation. In
the early phase, they must define interfacing between the different subdomains.

In the future, when new features are developed, team members can take responsibility for other
domains to spread knowledge about the microservice in the team.

Follow Open-Closed Principle

Sometimes you might face a situation where a single subdomain is so large that you need multiple
developers. This, of course, should be a relatively rare case. When several developers modify source
code files belonging to the same subdomain (i.e., in the same directory), merge conflicts may arise.
This is the case, especially when existing source code files are modified. But when developers follow
the open-closed principle, they should not change existing classes (source code files) but rather
implement new functionality in new classes (source code files). Using the open-closed principle
enables developers to develop more concurrently because they primarily work with different source
code files, making merge conflicts rare or at least less frequent.

Pair Programming Principle

Pair programming helps produce better quality software with better design, less technical
debt, better tests, and fewer bugs.

Pair programming is something some developers like, and other developers hate. So it is not a one-
fits-all solution. It is not take it or leave it, either. You can have a team where some developers
program in pairs and others don’t. Also, people's opinions about pair programming can be
prejudiced. Perhaps, they have never done pair programming, so how do they know if they like it or
not? It is also true that choosing the right partner to pair with can mean a lot. Some pairs have
better chemistry than other pairs.

Does pair programming just increase development costs? What benefits pair programming brings?

I see pair programming as valuable, especially in situations where a junior developer pairs with a
more senior developer, and in this way, the junior developer is onboarded much faster. He can
"learn from the best". Pair programming can improve software design because there is always at

460

least two persons' view of the design. Bugs can be found easier and usually in an earlier phase (four
eyes compared to two eyes only). So, even if pair programming can add some cost, it usually results
in software with better quality: better design, less technical debt, better tests, and fewer bugs.

Well-Defined Development Team Roles Principle

 A software development team should have a well-defined role for each team member.

A software development team does not function optimally if everyone is doing everything or if it is
expected that anyone can do anything. No one is a jack of all trades. A team achieves the best
results when it has specialists targeted for different tasks. Team members need to have focus areas
they like to work with and where they can excel. When you are a specialist in some area, you can
complete tasks belonging to that area faster and with better quality.

Below is a list of needed roles for a development team:

• Product owner (PO)

• Scrum master (SM)

• Software developer (junior/senior/lead)

• Test automation developer

• DevOps engineer

• UI designer (if the team develops UI software components)

Let's discuss each role's responsibilities in detail in the following sections.

Product Owner

The product owner (PO) acts as an interface between the development team and the business,
which usually means product management. The PO is responsible for defining user stories and
prioritizing the team backlog together with the team. The PO role is not usually a full-time role.

Scrum Master

A scrum master (SM) is a servant leader and a coach for the development team. The scrum master
ensures that relevant agile practices and the agile process are followed. They educate the team in
agile practices. If the team has a line manager, the line manager can serve as the scrum master, but
any team member can be the scrum master.

461

Software Developer

A software developer is responsible for designing, implementing, and testing software (including
unit and, in most cases, integration testing). A software developer is usually focused on one or two
programming languages and a couple of technical frameworks. Typically, software developers are
divided into the following categories:

• Backend developers

• Frontend developers

• Full-stack developers

• Mobile developers

• Embedded developers

A backend developer develops microservices, like APIs, running in the backend. A frontend
developer develops web clients. Typically, a frontend developer uses JavaScript or TypeScript,
React/Angular/Vue, HTML and CSS. A full-stack developer is a combination of a backend and
frontend developer capable of developing backend microservices and frontend clients. A mobile
developer develops software for mobile devices, like phones and tablets.

A team should have software developers at various seniority levels. Each team should have a lead
developer with the best experience in the used technologies and the domain. The lead developer
typically belongs to the virtual architectural team led by the system architect. There is no point in
having a team with just junior developers or just senior developers. The idea is to transfer skills and
knowledge from senior developers to junior developers. This also works the other way around.
Junior developers can have knowledge of some of the latest technologies and practices that senior
developers are missing. So overall, the best team is a team consisting of a good mix of both junior
and senior developers.

Test Automation Developer

A test automation developer is responsible for developing different kinds of automated tests.
Typically, test automation developers develop integration, E2E, and automated non-functional
tests. A test automation developer must have good proficiency in at least one programming
language, like Python, that is used to develop automated tests. Test automation developers must
have a good command of BDD and some common testing frameworks, like Cucumber-JVM or
Behave. Knowledge of some testing tools, like Apache JMeter, is appreciated. Test automation
developers can also develop internal testing tools, like interface simulators and data generators.
Test automation developers should form a virtual team to facilitate the development of E2E and
automated non-functional tests.

462

DevOps Engineer

A DevOps engineer acts as an interface between the software development team and the software
operations. A DevOps engineer usually creates CI/CD pipelines for microservices and crafts
infrastructure and deployment-related code. DevOps engineers also define alerting rules and
metrics visualization dashboards that can be used when monitoring the software in production.
DevOps engineers help operations personnel to monitor software in production. They can help
troubleshoot problems that the technical support organization cannot solve. DevOps engineer
knows the environment (=infrastructure and platform) where the software is deployed, meaning
that basic knowledge of at least one cloud provider (AWS/Azure/Google Cloud, etc.) and perhaps
Kubernetes is required. DevOps engineers should form a virtual team to facilitate specifying
DevOps-related practices and guidelines.

UI Designer

A UI designer is responsible for designing the final UIs based on higher-level UX/UI designs/
wireframes. The UI designer will also conduct usability testing of the software.

463

464

DevSecOps

DevOps describes practices that integrate software development (Dev) and software operations
(Ops). It aims to shorten the software development lifecycle through development parallelization
and automation and provides continuous delivery of high-quality software. DevSecOps enhances
DevOps by adding security aspects to the software lifecycle.

A software development organization is responsible for planning, designing, and implementing
software deliverables. Software operations deploy software to IT infrastructure and platforms. They
monitor the deployed software to ensure it runs without problems. Software operations also
provide feedback to the software development organization through bug reports and enhancement
ideas.

465

Fig 11.1 DevSecOps Diagram

SecOps Lifecycle

The SecOps lifecycle is divided into the following phases:

• Threat modeling

• To find out what kind of security features and tests are needed

• Implementation of threat countermeasures and mitigation. This aspect was covered in

more detail in the earlier security principles chapter

• Scan

• Static security analysis (also known as SAST = Static Application Security Testing)

• Security testing (also known as DAST = Dynamic Application Security Testing)

• Container vulnerability scanning

• Analyze

• Analyze the results of the scanning phase, detect and remove false positives and prioritize

corrections of vulnerabilities

• Remediate

• Fix the found vulnerabilities according to prioritization

• Monitor

• Define SecOps-related metrics and monitor them

DevOps Lifecycle

The DevOps lifecycle is divided into the following phases:

• Plan

• Code

• Build

• Test

• Release

• Deploy

• Operate

• Monitor

Subsequent sections describe each of the phases in more detail.

466

Plan

Plan is the first phase in the DevOps lifecycle. In this phase, software features are planned, and
high-level architecture and UX are designed. This phase involves business (product management)
and software development organizations.

Code

Code is the software implementation phase. It consists of software components' design and
implementation, writing unit tests, integration tests, E2E tests, and other automated tests. This
phase also includes all other coding needed to make the software deployable. Most of the work is
done in this phase, so it should be streamlined as much as possible.

The key to shortening this phase is to parallelize everything to the maximum possible extent. In the
Plan phase, the software was architecturally split into smaller pieces (microservices) that different
teams could develop in parallel. Regarding developing a single microservice, there should also be as
much parallelization as possible. This means that if a microservice can be split into multiple
subdomains, the development of these subdomains can be done very much in parallel. If we think
about the data exporter microservice, we identified several subdomains: input, decoding,
transformations, encoding, and output. If you can parallelize the development of these five
subdomains, you can significantly shorten the time needed to complete the implementation of the
microservice.

To shorten this phase even more, a team should have a dedicated test automation developer who
can start developing automated tests in an early phase parallel to the implementation.

Providing high-quality software relies on high-quality design, implementation with little technical
debt, and comprehensive functional and non-functional testing. All of these aspects were already
handled in the earlier chapters.

Build and Test

The Build and Test phase should be automated and run as continuous integration (CI) pipelines.
Each software component in a software system should have its own CI pipeline. A CI pipeline is run
by a CI tool like Jenkins or Github Actions. A CI pipeline is defined using declarative code stored in
the software component's source code repository. Every time a commit is made to the main branch
in the source code repository, it should trigger a CI pipeline run.

The CI pipeline for a software component should perform at least the following tasks:

467

• Checkout the latest source code from the source code repository

• Build the software

• Perform static code analysis. A tool like SonarQube/SonarCloud can be used

• Perform static application security testing (SAST).

• Execute unit tests

• Execute integration tests

• Perform dynamic application security testing (DAST). A tool like OWASP ZAP can be used

• Verify 3rd party license compliance and provide a bill of materials (BOM). A tool like Fossa can be

used

Release

In the Release phase, built and tested software is released automatically. After a software
component's CI pipeline is successfully executed, the software component can be automatically
released. This is called continuous delivery (CD). Continuous delivery is often combined with the CI
pipeline to create a CI/CD pipeline for a software component. Continuous delivery means that the
software component's artifacts are delivered to artifact repositories, like Artifactory, Docker Hub, or
a Helm chart repository.

A CD pipeline should perform the following tasks:

• Perform static code analysis for the code that builds a container image (e.g., Dockerfile). A tool
like Hadolint can be used for Dockerfiles.

• Build a container image for the software component

• Publish the container image to a container registry (e.g., Docker Hub, Artifactory, or a registry

provided by your cloud provider)

• Perform a container image vulnerability scan

• Remember to enable container vulnerability scanning at regular intervals in your
container registry, also

• Perform static code analysis for deployment code. Tools like Helm's lint command, Kubesec and
Checkov can be used

• Package and publish the deployment code (for example, package a Helm chart and publish it to a
Helm chart repository)

Example Dockerfile

Below is an example Dockerfile for a microservice written in TypeScript for Node.js. The Dockerfile
uses Docker's multi-stage feature. First (at the builder stage), it builds the source code, i.e.,
transpiles TypeScript source code files to JavaScript source code files. Then (at the intermediate
stage), it creates an intermediate image that copies the built source code from the builder stage and

468

installs only the production dependencies. The last stage (final) copies files from the intermediate
stage to a distroless Node.js base image. You should use a distroless base image to make the image
size and the attack surface smaller. A distroless image does not contain any Linux distribution
inside it.

Dockerfile

syntax=docker/dockerfile:1

FROM node:18 as builder

WORKDIR /microservice

COPY package*.json ./

RUN npm ci

COPY tsconfig*.json ./

COPY src ./src

RUN npm run build

FROM node:18 as intermediate

WORKDIR /microservice

COPY package*.json ./

RUN npm ci --only=production

COPY --from=builder /microservice/build ./build

FROM gcr.io/distroless/nodejs:18 as final

WORKDIR /microservice

USER nonroot:nonroot

COPY --from=intermediate --chown=nonroot:nonroot /microservice ./

CMD ["build/main"]

Example Kubernetes Deployment

deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: {{ include "microservice.fullname" . }}

 labels:

 {{- include "microservice.labels" . | nindent 4 }}

spec:

 {{- if ne .Values.nodeEnv "production" }}

 replicas: 1

 {{- end }}

 selector:

 matchLabels:

 {{- include "microservice.selectorLabels" . | nindent 6 }}

 template:

 metadata:

 {{- with .Values.deployment.pod.annotations }}

 annotations:

 {{- toYaml . | nindent 8 }}

 {{- end }}

 labels:

 {{- include "microservice.selectorLabels" . | nindent 8 }}

 spec:

 {{- with .Values.deployment.pod.imagePullSecrets }}

 imagePullSecrets:

 {{- toYaml . | nindent 8 }}

 {{- end }}

 serviceAccountName: {{ include "microservice.serviceAccountName" . }}

469

 containers:

 - name: {{ .Chart.Name }}

 image: "{{ .Values.imageRegistry }}/{{ .Values.imageRepository }}:
{{ .Values.imageTag }}"

 imagePullPolicy: {{ .Values.deployment.pod.container.imagePullPolicy }}

 securityContext:

 {{- toYaml .Values.deployment.pod.container.securityContext | nindent 12 }}

 {{- if .Values.httpServer.port }}

 ports:

 - name: http

 containerPort: {{ .Values.httpServer.port }}

 protocol: TCP

 {{- end }}

 env:

 - name: NODE_ENV

 value: {{ .Values.nodeEnv }}

 - name: ENCRYPTION_KEY

 valueFrom:

 secretKeyRef:

 name: {{ include "microservice.fullname" . }}

 key: encryptionKey

 - name: MICROSERVICE_NAME

 value: {{ include "microservice.fullname" . }}

 - name: MICROSERVICE_NAMESPACE

 valueFrom:

 fieldRef:

 fieldPath: metadata.namespace

 - name: MICROSERVICE_INSTANCE_ID

 valueFrom:

 fieldRef:

 fieldPath: metadata.name

 - name: NODE_NAME

 valueFrom:

 fieldRef:

 fieldPath: spec.nodeName

 - name: MYSQL_HOST

 value: {{ .Values.database.mySql.host }}

 - name: MYSQL_PORT

 value: "{{ .Values.database.mySql.port }}"

 - name: MYSQL_USER

 valueFrom:

 secretKeyRef:

 name: {{ include "microservice.fullname" . }}

 key: mySqlUser

 - name: MYSQL_PASSWORD

 valueFrom:

 secretKeyRef:

 name: {{ include "microservice.fullname" . }}

 key: mySqlPassword

 livenessProbe:

 httpGet:

 path: /isMicroserviceAlive

 port: http

 failureThreshold: 3

 periodSeconds: 10

 readinessProbe:

 httpGet:

 path: /isMicroserviceReady

 port: http

 failureThreshold: 3

 periodSeconds: 5

 startupProbe:

 httpGet:

470

 path: /isMicroserviceStarted

 port: http

 failureThreshold:
{{ .Values.deployment.pod.container.startupProbe.failureThreshold }}

 periodSeconds: 10

 resources:

 {{- if eq .Values.nodeEnv "development" }}

 {{- toYaml .Values.deployment.pod.container.resources.development | nindent 12 }}

 {{- else if eq .Values.nodeEnv "integration" }}

 {{- toYaml .Values.deployment.pod.container.resources.integration | nindent 12 }}

 {{- else }}

 {{- toYaml .Values.deployment.pod.container.resources.production | nindent 12 }}

 {{- end}}

 {{- with .Values.deployment.pod.nodeSelector }}

 nodeSelector:

 {{- toYaml . | nindent 8 }}

 {{- end }}

 {{- with .Values.deployment.pod.affinity }}

 affinity:

 podAntiAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchLabels:

 app.kubernetes.io/name: {{ include "microservice.name" . }}

 topologyKey: "kubernetes.io/hostname"

 {{- toYaml . | nindent 8 }}

 {{- end }}

 {{- with .Values.deployment.pod.tolerations }}

 tolerations:

 {{- toYaml . | nindent 8 }}

 {{- end }}

The values (indicated by .Values.<something>) in the above template come from a values.yaml
file. Below is an example values.yaml file to be used with the above Helm chart template.

values.yaml

imageRegistry: docker.io

imageRepository: pksilen2/backk-example-microservice

imageTag:

nodeEnv: production

auth:

 # Authorization Server Issuer URL

 # For example

 # http://keycloak.platform.svc.cluster.local:8080/auth/realms/<my-realm>

 issuerUrl:

 # JWT path where for user's roles,

 # for example 'realm_access.roles'

 jwtRolesClaimPath:

secrets:

 encryptionKey:

database:

 mySql:

 # For example:

 # my-microservice-mysql.default.svc.cluster.local or

 # cloud database host

 host:

 port: 3306

 user:

 password: &mySqlPassword ""

471

mysql:

 auth:

 rootPassword: *mySqlPassword

deployment:

 pod:

 annotations: {}

 imagePullSecrets: []

 container:

 imagePullPolicy: Always

 securityContext:

 privileged: false

 capabilities:

 drop:

 - ALL

 readOnlyRootFilesystem: true

 runAsNonRoot: true

 runAsUser: 65532

 runAsGroup: 65532

 allowPrivilegeEscalation: false

 env:

 startupProbe:

 failureThreshold: 30

 resources:

 development:

 limits:

 cpu: '1'

 memory: 768Mi

 requests:

 cpu: '1'

 memory: 384Mi

 integration:

 limits:

 cpu: '1'

 memory: 768Mi

 requests:

 cpu: '1'

 memory: 384Mi

 production:

 limits:

 cpu: 1

 memory: 768Mi

 requests:

 cpu: 1

 memory: 384Mi

 nodeSelector: {}

 tolerations: []

 affinity: {}

Especially notice the deployment.pod.container.securityContext object in the above file.
It is used to define the security context for a microservice container.

By default, the security context should be the following:

• Container should not be privileged

• All capabilities are dropped

• Container filesystem is read-only

• Only a non-root user is allowed to run inside the container

472

• Define the non-root user and group under which the container should run

• Disallow privilege escalation

You can remove things from the above list only if it is mandatory for a microservice. For example, if
a microservice must write to the filesystem for some valid reason, then the filesystem should not be
defined as read-only.

Example CI/CD Pipeline

Below is a GitHub Actions CI/CD workflow for a Node.js microservice. The declarative workflow is
written in YAML. The workflow file should be located in the microservice's source code repository
in the .github/workflows directory. Steps in the workflow are described in more detail after the
example.

name: CI/CD workflow

on:

 workflow_dispatch: {}

 push:

 branches:

 - main

 tags-ignore:

 - '**'

jobs:

 build:

 runs-on: ubuntu-latest

 name: Build with Node version 18

 steps:

 - name: Checkout Git repo

 uses: actions/checkout@v2

 - name: Setup Node.js

 uses: actions/setup-node@v2

 with:

 node-version: '18'

 cache: 'npm'

 - name: Install NPM dependencies

 run: npm ci

 - name: Lint source code

 run: npm run lint

 - name: Run unit tests with coverage

 run: npm run test:coverage

 - name: Setup integration testing environment

 run: docker-compose --env-file .env.ci up --build -d

 - name: Run integration tests

 run: scripts/run-integration-tests-in-ci.sh

 - name: OWASP ZAP API scan

 uses: zaproxy/action-api-scan@v0.1.0

 with:

 target: generated/openapi/openApiPublicSpec.yaml

 fail_action: true

473

 cmd_options: -I -z "-config replacer.full_list(0).description=auth1

 -config replacer.full_list(0).enabled=true

 -config replacer.full_list(0).matchtype=REQ_HEADER

 -config replacer.full_list(0).matchstr=Authorization

 -config replacer.full_list(0).regex=false

 -config 'replacer.full_list(0).replacement=Bearer
ZXlK...aGJHZ='"

 - name: Tear down integration testing environment

 run: docker-compose --env-file .env.ci down -v

 - name: Static code analysis with SonarCloud scan

 uses: sonarsource/sonarcloud-github-action@v1.6

 env:

 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}

 SONAR_TOKEN: ${{ secrets.SONAR_TOKEN }}

 - name: 3rd party software license compliance analysis with FOSSA

 uses: fossas/fossa-action@v1

 with:

 api-key: ${{ secrets.FOSSA_API_KEY }}

 run-tests: false

 - name: Lint Dockerfile

 uses: hadolint/hadolint-action@v1.6.0

 - name: Log in to Docker registry

 uses: docker/login-action@v1

 with:

 registry: docker.io

 username: ${{ secrets.DOCKER_REGISTRY_USERNAME }}

 password: ${{ secrets.DOCKER_REGISTRY_PASSWORD }}

 - name: Extract latest Git tag

 uses: actions-ecosystem/action-get-latest-tag@v1

 id: extractLatestGitTag

 - name: Set up Docker Buildx

 id: setupBuildx

 uses: docker/setup-buildx-action@v1

 - name: Cache Docker layers

 uses: actions/cache@v2

 with:

 path: /tmp/.buildx-cache

 key: ${{ runner.os }}-buildx-${{ github.sha }}

 restore-keys: |

 ${{ runner.os }}-buildx-

 - name: Extract metadata for building and pushing Docker image

 id: dockerImageMetadata

 uses: docker/metadata-action@v3

 with:

 images: ${{ secrets.DOCKER_REGISTRY_USERNAME }}/example-microservice

 tags: |

 type=semver,pattern={{version}},value=$
{{ steps.extractLatestGitTag.outputs.value }}

 - name: Build and push Docker image

 id: dockerImageBuildAndPush

 uses: docker/build-push-action@v2

 with:

 context: .

474

 builder: ${{ steps.setupBuildx.outputs.name }}

 push: true

 cache-from: type=local,src=/tmp/.buildx-cache

 cache-to: type=local,dest=/tmp/.buildx-cache

 tags: ${{ steps.dockerImageMetadata.outputs.tags }}

 labels: ${{ steps.dockerImageMetadata.outputs.labels }}

 - name: Docker image vulnerability scan with Anchore

 id: anchoreScan

 uses: anchore/scan-action@v3

 with:

 image: ${{ secrets.DOCKER_REGISTRY_USERNAME }}/example-microservice:latest

 fail-build: false

 severity-cutoff: high

 - name: Upload Anchore scan SARIF report

 uses: github/codeql-action/upload-sarif@v1

 with:

 sarif_file: ${{ steps.anchoreScan.outputs.sarif }}

 - name: Install Helm

 uses: azure/setup-helm@v1

 with:

 version: v3.7.2

 - name: Extract microservice version from Git tag

 id: extractMicroserviceVersionFromGitTag

 run: |

 value="${{ steps.extractLatestGitTag.outputs.value }}"

 value=${value:1}

 echo "::set-output name=value::$value"

 - name: Update Helm chart versions in Chart.yaml

 run: |

 sed -i "s/^version:.*/version: $
{{ steps.extractMicroserviceVersionFromGitTag.outputs.value }}/g" helm/example-microservice/
Chart.yaml

 sed -i "s/^appVersion:.*/appVersion: $
{{ steps.extractMicroserviceVersionFromGitTag.outputs.value }}/g" helm/example-microservice/
Chart.yaml

 - name: Update Docker image tag in values.yaml

 run: |

 sed -i "s/^imageTag:.*/imageTag:
{{ steps.extractMicroserviceVersionFromGitTag.outputs.value }}@$
{{ steps.dockerImageBuildAndPush.outputs.digest }}/g" helm/example-microservice/values.yaml

 - name: Lint Helm chart

 run: helm lint -f helm/values/values-minikube.yaml helm/example-microservice

 - name: Static code analysis for Helm chart with Checkov

 uses: bridgecrewio/checkov-action@master

 with:

 directory: helm/example-microservice

 quiet: false

 framework: helm

 soft_fail: false

 - name: Upload Checkov SARIF report

 uses: github/codeql-action/upload-sarif@v1

 with:

 sarif_file: results.sarif

 category: checkov-iac-sca

475

 - name: Configure Git user

 run: |

 git config user.name "$GITHUB_ACTOR"

 git config user.email "$GITHUB_ACTOR@users.noreply.github.com"

 - name: Package and publish Helm chart

 uses: helm/chart-releaser-action@v1.2.1

 with:

 charts_dir: helm

 env:

 CR_TOKEN: "${{ secrets.GITHUB_TOKEN }}"

1. Checkout the microservice's Git repository

2. Setup Node.js 18

3. Install NPM dependencies

4. Lint source code using the npm run lint command, which uses ESLint

5. Execute unit tests and report coverage

6. Set up an integration testing environment using Docker's docker-compose up command.

After executing the command the microservice is built, and all the dependencies in separate
containers are started. These dependencies can include other microservices and, for example, a
database and a message broker, like Apache Kafka

7. Execute integration tests. This script will first wait until all dependencies are up and ready. This
waiting is done running a container using the dokku/wait (https://hub.docker.com/r/dokku/
wait) image.

8. Perform DAST with OWASP ZAP API scan. For the scan, we define the location of the OpenAPI
3.0 specification file against which the scan will be made. We also give command options to set
a valid Authorization header for the HTTP requests made by the scan

9. Tear down the integration testing environment

10. Perform static code analysis using SonarCloud

11. Check 3rd party software license compliance using FOSSA

12. Lint Dockerfile

13. Log in to Docker Hub

14. Extract the latest Git tag for further use

15. Setup Docker Buildx and cache Docker layers

16. Extract metadata, like the tag and labels for building and pushing a Docker image

17. Build and push a Docker image

18. Perform a Docker image vulnerability scan with Anchore

19. Upload the Anchore scan report to the GitHub repository

20. Install Helm

21. Extract the microservice version from the Git tag (remove the 'v' letter before the version

number)

22. Replace Helm chart versions in the Helm chart's Chart.yaml file using the sed command

476

23. Update the Docker image tag in the values.yaml file

24. Lint the Helm chart and perform static code analysis for it

25. Upload the static code analysis report to the GitHub repository and perform git user

configuration for the next step

26. Package the Helm chart and publish it to GitHub Pages

Some of the above steps are parallelizable, but a GitHub Actions workflow does not currently
support parallel steps in a job. In Jenkins, you can easily parallelize stages using a parallel block.

You could also execute the unit tests and linting when building a Docker image by adding the
following steps to the builder stage in the Dockerfile:

RUN npm run lint

RUN npm run test:coverage

The problem with the above solution is that you don't get a clear indication of what failed in a build.
You must examine the output of the Docker build command to see if linting or unit tests failed.
Also, you cannot use the SonarCloud GitHub Action anymore. You must implement SonarCloud
reporting in the builder stage of the Dockerfile (after completing the unit testing to report the unit
test coverage to SonarCloud).

Deploy

In the Deploy phase, released software is deployed automatically. After a successful CI/CD pipeline
run, a software component can be automatically deployed. This is called continuous deployment
(CD). Notice that both continuous delivery and continuous deployment are abbreviated as CD. This
can cause unfortunate misunderstandings. Continuous delivery is about releasing software
automatically, and continuous deployment is about automatically deploying released software to
one or more environments. These environments include, for example, a CI/CD environment,
staging environment(s) and finally, production environment(s). There are different ways to
automate software deployment. One modern and popular way is to use GitOps, which uses a Git
repository or repositories to define automatic deployments to different environments using a
declarative approach. GitOps can be configured to update an environment automatically when new
software is released. This is typically done for the CI/CD environment, which should always be kept
up-to-date and contain the latest software component versions.

GitOps can also be configured to deploy automatically and regularly to a staging environment. A
staging environment replicates a production environment. It is an environment where end-to-end
functional and non-functional tests are executed before the software is deployed to production. You
can use multiple staging environments to speed up the continuous deployment to production. It is
vital that all needed testing is completed before deploying to production. Testing can take a couple
of days to validate the stability of the software. If testing in a staging environment requires three

477

days and you set up three staging environments, you can deploy to production every day. On the
other hand, if testing in a staging environment takes one week and you have only one staging
environment, you can deploy to production only once a week (Assuming here that all tests execute
successfully) Deployment to a production environment can also be automated. Or it can be
triggered manually after successfully completing all testing in a staging environment.

Operate

Operate is the phase when the software runs in production. In this phase, it needs to be secured
that software updates (like security patches) are timely deployed. Also, the production
environment's infrastructure and platform should be kept up-to-date and secure.

 Monitor

Monitor is the phase when a deployed software system is monitored to detect any possible
problems. Monitoring should be automated as much as possible. It can be automated by defining
rules for alerts triggered when the software system operation requires human intervention. These
alerts are typically based on various metrics collected from the microservices, infrastructure, and
platform. Prometheus is a popular system for collecting metrics, visualizing them, and triggering
alerts.

The basic monitoring workflow follows the below path:

1. Monitor alerts

2. If an alert is triggered, investigate metrics in relevant dashboards

3. Check logs for errors in relevant services

4. Distributed tracing can help to visualize if and how requests between different microservices are

failing

The following needs to be done to make monitoring possible and easy:

• Each service must log to the standard output

• If your microservice is using a 3rd party library that logs to the standard output, choose a

library that allows you to configure the logging format or request the log format
configurability as an enhancement to the library

• Choose a standardized log format and use it in all microservices, e.g., Syslog format or
OpenTelemetry Logs Data Model (https://github.com/open-telemetry/opentelemetry-
specification/blob/main/specification/logs/data-model.md)

• Collect logs from each microservice to a centralized location, like an ElasticSearch
database

478

• Integrate microservices to a distributed tracing tool, like Jaeger

• A distributed tracing tool collects information about network requests microservices make

• Define what metrics are needed to be collected from each microservice

• Collect metrics that are needed to calculate the most important service level indicators

(SLIs):

• Availability

• Error rate

• Latency

• Throughput

• Instrument your microservice with the necessary code to collect the metrics. This can be
done using a metrics collection library, like Prometheus

• Define how to visualize metrics

• Create a main dashboard for each microservice to present the SLIs. You must also present

service level objectives (SLOs).

• When all SLOs are met, the dashboard should show SLI values in green. If an SLO is not

met, the corresponding SLI value should be shown in red. You can also use yellow and
orange colors to indicate that an SLO is still met, but the SLI value is no more optimal.

• Create troubleshooting dashboards, if needed.

• Use a visualization tool that integrates with the metrics collection tool, like Grafana with

Prometheus.

• You can usually deploy metric dashboards as part of the microservice deployment. If you

are using Kubernetes, Prometheus and Grafana, you can create Grafana dashboards as
custom resources (CRs) when using the Grafana Operator (https://github.com/grafana-
operator/grafana-operator)

• Define alerting rules

• First, define the service level objectives (SLOs) and base the alerting rules on them

• An example of an SLO: "service error rate must be less than x percent"

• If an SLO cannot be met, an alert should be triggered

• If you are using Kubernetes and Prometheus, you can define alerts using the Prometheus

Operator and PrometheusRule CRs.

Software operations staff connects back to the software development side of the DevOps lifecycle in
the following ways:

• Ask for technical support

• File a bug report

• File an improvement idea

The first one will result in a solved case or bug report. The latter two will reach the Plan phase of

479

the DevOps lifecycle. Bug reports usually enter the Code phase immediately, depending on the fault
severity.

Logging

Implement logging in software components using the following logging severities:

• (CRITICAL/FATAL)

• ERROR

• WARNING

• INFO

• DEBUG

• TRACE

I don't usually use the CRITICAL/FATAL severity at all. It is better to report all errors with the
ERROR severity because then it is easy to query logs for errors using a single keyword, for example:

kubectl logs <pod-name> | grep ERROR

You can add information to the log message itself about the criticality/fatality of an error. When
you log an error for which there is a solution available, you should inform the user about the
solution in the log message, e.g., provide a link to a troubleshooting guide or give an error code that
can be used to search the troubleshooting guide.

Do not log too much information using the INFO severity because the logs might be difficult to read
when there is too much noise. Consider carefully what should be logged with the INFO severity and
what can be logged with the DEBUG severity instead. The default logging level of a microservice
should be WARNING or INFO.

Use the TRACE severity to log only tracing information, e.g., detailed information related to
processing a single request, event, or message.

OpenTelemetry Log Data Model

This section describes the essence of the OpenTelemetry log data model version 1.12.0 (Please
check https://github.com/open-telemetry/opentelemetry-specification for possible updates).

A log entry is a JSON object containing the following properties:

480

https://github.com/open-telemetry/opentelemetry-specification

Below is an example log entry according to the OpenTelemetry log data model.

{

 "Timestamp": "1586960586000000000",

 "TraceId": "f4dbb3edd765f620",

 "SpanId": "43222c2d51a7abe3",

 "SeverityText": "ERROR",

 "SeverityNumber": 9,

 "Body": "20200415T072306-0700 ERROR Error message comes here",

 "Resource": {

 "service.namespace": "default",

 "service.name": "my-microservice",

 "service.version": "1.1.1",

 "service.instance.id": "my-microservice-34fggd-56faae"

 },

 "Attributes": {

 "http.status_code": 500,

 "http.url": "http://example.com",

 "myCustomAttributeKey": "myCustomAttributeValue"

 }

}

The above JSON-format log entries might be hard to read as plain text on the console, for example,
when viewing a pod's logs with the kubectl logs command in a Kubernetes cluster. You can
create a small script that extracts only the Body property value from each log entry.

Property Name Description

Timestamp Time when the event occurred. Nanoseconds since
Unix epoch

TraceId Request trace id

SpanId Request span id

SeverityText The severity text (also known as log level)

SeverityNumber Numerical value of the severity

Body
The body of the log entry. You can include ISO 8601
timestamp and the severity/log level before the
actual log message

Resource Describes the source of the log entry

Attributes Additional information about the log event. This is a
JSON object where custom attributes can be given

481

PrometheusRule Example

PrometheusRule custom resources (CRs) can be used to define rules for triggering alerts. In the
below example, an example-microservice-high-request-latency alert will be triggered with a major
s e v e r i t y w h e n t h e m e d i a n r e q u e s t l a t e n c y i n s e c o n d s i s g r e a t e r t h a n o n e
(request_latencies_in_seconds{quantile="0.5"} > 1).

apiVersion: monitoring.coreos.com/v1

kind: PrometheusRule

metadata:

 name: example-microservice-rules

spec:

 groups:

 - name: example-microservice-rules

 rules:

 - alert: example-microservice-high-request-latency

 expr: request_latencies_in_seconds{quantile="0.5"} > 1

 for: 10m

 labels:

 application: example-microservice

 severity: major

 class: latency

 annotations:

 summary: "High request latency on {{ $labels.instance }}"

 description: "{{ $labels.instance }} has a median request latency above 1s (current
value: {{ $value }}s)"

482

Appendix A

This appendix presents the implementation of an object validation library in TypeScript (version
4.7.4 used). This library uses the validated-types NPM library as a basis.

This object validation library will be able to validate a JSON object whose schema is given in the
below format. The schema object lists the properties of the object to be validated. The value of each
property is the schema for that property in the object to be validated. In this example, we
implement support for validating integers, strings, and nested objects. Validation of other types
(e.g., floats and arrays) could also be added.

The schema of an integer property is defined as follows:

['int' | 'int?', 'min-value,max-value']

The schema of a string property is defined using one of the three syntaxes as shown below:

['string' | 'string?', 'min-length,max-length,validator']

['string' | 'string?', ['min-length,max-length,validator',

 'validator']]

['string' | 'string?', ['min-length,max-length,validator',

 'validator',

 'validator']]

Below is an example schema object:

const schema = {

 inputUrl: ['string', ['1,1024,url',

 'startsWith,https',

 'endsWith,com']] as const,

 outputPort: ['int?', '1,65535'] as const,

 mongoDb: {

 user: ['string?', '1,512'] as const

483

 },

 transformations: [

 {

 outputFieldName: ['string', '1,512'] as const,

 inputFieldName: ['string', '1,512'] as const

 }

] as const

};

const defaultValues = {

 outputPort: 8080

};

Explanations for individual property schemas from above:

• inputUrl

• Mandatory string property

• Length must be between 1-1024 characters

• Value must be an URL and start with 'https' and end with 'com'

• outputPort

• Optional integer property

• Value must be between 1-65535

• mongoDb.user

• Optional string property

• Length must be between 1-512 characters

• transformations[*].outputFieldName

• Mandatory string property

• Length must be between 1-512 characters

• transformations[*].inputFieldName

• Mandatory string property

• Length must be between 1-512 characters

Below are the definitions of TypeScript types needed for the library:

ValidatedObject.ts

import { VInt, VString } from 'validated-types';

type Type = string;

type ValidationSpec = string | [string, string] | [string, string, string];

type ValidationClass<T extends Type, V extends ValidationSpec> = T extends `${infer
NullableType}?`

 ? NullableType extends 'string'

 ? VString<V> | null

 : NullableType extends 'int'

 ? V extends string

 ? VInt<V> | null

 : never

484

 : never

 : T extends `${infer T}`

 ? T extends 'string'

 ? VString<V>

 : T extends 'int'

 ? V extends string

 ? VInt<V>

 : never

 : never

 : never;

type PropertySchema = [Type, ValidationSpec];

export type ObjectSchema = { [propertyName: string]: PropertySchema | ObjectSchema |
[ObjectSchema] };

export type ValidatedObject<S extends ObjectSchema> = {

 [P in keyof S]: S[P] extends [ObjectSchema]

 ? Array<ValidatedObject<S[P][0]>>

 : S[P] extends ObjectSchema

 ? ValidatedObject<S[P]>

 : S[P] extends PropertySchema

 ? ValidationClass<S[P][0], S[P][1]>

 : never;

};

The below tryCreateValidateObject function tries to create a validated version of a given
object:

tryCreateValidateObject.ts

import { VInt, VString } from 'validated-types';

import { DeepWritable, Writable } from 'ts-essentials';

import { ObjectSchema, ValidatedObject } from './ValidatedObject';

function tryCreateValidatedObject<S extends ObjectSchema>(

 object: Record<string, any>,

 objectSchema: OS,

 defaultValuesObject?: Record<string, any>

): ValidatedObject<S> {

 const validatedObject = {};

 Object.entries(objectSchema as Writable<S>).forEach(([propertyName,

 objectOrPropertySchema]) => {

 const isPropertySchema = Array.isArray(objectOrPropertySchema) &&

 typeof objectOrPropertySchema[0] === 'string';

 if (isPropertySchema) {

 const [propertyType, propertySchema] = objectOrPropertySchema;

 if (propertyType.startsWith('string')) {

 (validatedObject as any)[propertyName] = propertyType.endsWith('?')

 ? VString.create(propertySchema, object[propertyName] ??

 defaultValuesObject?.[propertyName])

 : VString.tryCreate(propertySchema, object[propertyName]);

 } else if (propertyType.startsWith('int') && !Array.isArray(propertySchema)) {

 (validatedObject as any)[propertyName] = propertyType.endsWith('?')

 ? VInt.create<typeof propertySchema>(

 propertySchema,

 object[propertyName] ?? defaultValuesObject?.[propertyName]

)

 : VInt.tryCreate<typeof propertySchema>(propertySchema, object[propertyName]);

 }

485

 } else {

 if (Array.isArray(objectOrPropertySchema)) {

 (object[propertyName] ?? []).forEach((subObject: any) => {

 (validatedObject as any)[propertyName] = [

 ...((validatedObject as any)[propertyName] ?? []),

 tryCreateValidatedObject(subObject ?? {},

 objectOrPropertySchema[0],

 defaultValuesObject?.[propertyName])

];

 });

 } else {

 (validatedObject as any)[propertyName] = tryCreateValidatedObject(

 object[propertyName] ?? {},

 objectOrPropertySchema,

 defaultValuesObject?.[propertyName]

);

 }

 }

 });

 return validatedObject as ValidatedObject<ObjSchema>;

}

Let's have the following unvalidated configuration object and create a validated version of it:

configuration.ts

const unvalidatedConfiguration = {

 inputUrl: 'https://www.google.com',

 mongoDb: {

 user: 'root'

 },

 transformations: [

 {

 outputFieldName: 'outputField',

 inputFieldName: 'inputField'

 }

]

};

// This will contain the validated configuration object with strong typing

let configuration: ValidatedObject<DeepWritable<typeof configurationSchema>>;

try {

 configuration = tryCreateValidatedObject(

 unvalidatedConfiguration,

 configurationSchema as DeepWritable<typeof configurationSchema>,

 configurationDefaultValues

);

 console.log(validatedConfiguration.inputUrl.value);

 console.log(validatedConfiguration.outputPort?.value);

 console.log(validatedConfiguration.mongoDb.user?.value);

 console.log(validatedConfiguration.transformations[0].inputFieldName.value);

 console.log(validatedConfiguration.transformations[0].outputFieldName.value);

} catch (error) {

 // Handle error...

}

// We export the validated configuration object with strong typing

// to be used in other parts of the application

export default configuration;

486

Below is an example schema for a Node.js process.env object:

environmentSchema.ts

export const environmentSchema = {

 NODE_ENV: ['string', '1,32,isOneOf,["development","integration","production"]'],

 LOGGING_LEVEL: ['string?', '1,32,isOneOf,["DEBUG","INFO","WARN","ERROR"]'],

 MONGODB_PORT: ['string?', '1,5,numericRange,1-65535'],

 MONGODB_USER: [string?, '1,512']

}

export const environmentDefaultValues = {

 LOGGING_LEVEL: 'INFO',

 MONGODB_PORT: '27017'

}

We can create a validated environment from the process.env:

import { environmentDefaultValue, environmentSchema } from './environmentSchema';

let environment: ValidatedObject<DeepWritable<typeof environmentSchema>>;

try {

 environment = tryCreateValidatedObject(

 process.env,

 environmentSchema as DeepWritable<typeof environmentSchema>,

 environmentDefaultValues

);

} catch (error) {

 // Handle error...

}

export default environment;

487

	Table of Contents
	About the Author
	Introduction
	Architectural Principles
	Object-Oriented Design Principles
	Coding Principles
	Testing Principles
	Security First Principle
	API Design Principles
	Databases And Database Principles
	Concurrent Programming Principles
	Teamwork Principles
	DevSecOps
	Appendix A

