

A Textbook of Data Structures and Algorithms 1

One of the greatest lessons I have learnt in my life is
to pay as much attention to the means of work as to its end…

I have been always learning great lessons from that one principle,
and it appears to me that all the secret of success is there;

to pay as much attention to the means as to the end….
 Let us perfect the means; the end will take care of itself.

– Swami Vivekananda

(Lecture Delivered at Los Angeles, California, January 4, 1900)

A Textbook of Data
Structures and Algorithms 1

Mastering Linear Data Structures

G A Vijayalakshmi Pai

First published 2022 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Previous edition published in 2008 as “Data Structures and Algorithms: Concepts, Techniques and
Applications” by McGraw Hill Education (India) Pvt Ltd. © McGraw Hill Education (India) Pvt Ltd. 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2022
The rights of G A Vijayalakshmi Pai to be identified as the author of this work have been asserted by her
in accordance with the Copyright, Designs and Patents Act 1988.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s), contributor(s) or editor(s) and do not necessarily reflect the views of ISTE Group.

Library of Congress Control Number: 2022945771

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-869-6

Contents

Preface . ix

Acknowledgments . xv

Chapter 1. Introduction . 1

1.1. History of algorithms . 3
1.2. Definition, structure and properties of algorithms 4

1.2.1. Definition . 4
1.2.2. Structure and properties . 4

1.3. Development of an algorithm . 5
1.4. Data structures and algorithms . 6
1.5. Data structures – definition and classification 7

1.5.1. Abstract data types . 7
1.5.2. Classification . 9

1.6. Algorithm design techniques . 9
1.7. Organization of the book . 11

Chapter 2. Analysis of Algorithms . 13

2.1. Efficiency of algorithms . 13
2.2. Apriori analysis . 15
2.3. Asymptotic notations . 17
2.4. Time complexity of an algorithm using the O notation 19
2.5. Polynomial time versus exponential time algorithms 20
2.6. Average, best and worst case complexities 21

vi A Textbook of Data Structures and Algorithms 1

2.7. Analyzing recursive programs . 23
2.7.1. Recursive procedures . 23
2.7.2. Apriori analysis of recursive functions 27

2.8. Illustrative problems . 31

Chapter 3. Arrays . 45

3.1. Introduction . 45
3.2. Array operations . 46
3.3. Number of elements in an array . 46

3.3.1. One-dimensional array . 46
3.3.2. Two-dimensional array . 47
3.3.3. Multidimensional array . 47

3.4. Representation of arrays in memory . 48
3.4.1. One-dimensional array . 49
3.4.2. Two-dimensional arrays . 51
3.4.3. Three-dimensional arrays . 52
3.4.4. N-dimensional array . 53

3.5. Applications . 54
3.5.1. Sparse matrix . 54
3.5.2. Ordered lists . 55
3.5.3. Strings . 56
3.5.4. Bit array . 58

3.6. Illustrative problems . 60

Chapter 4. Stacks . 71

4.1. Introduction . 71
4.2. Stack operations . 72

4.2.1. Stack implementation . 73
4.2.2. Implementation of push and pop operations 74

4.3. Applications . 76
4.3.1. Recursive programming . 76
4.3.2. Evaluation of expressions . 79

4.4. Illustrative problems . 83

Chapter 5. Queues . 101

5.1. Introduction . 101
5.2. Operations on queues . 102

5.2.1. Queue implementation . 102
5.2.2. Implementation of insert and delete operations on a queue 103

Contents vii

5.2.3. Limitations of linear queues. 105
5.3. Circular queues. 106

5.3.1. Operations on a circular queue . 106
5.3.2. Implementation of insertion and deletion operations in
circular queue . 109

5.4. Other types of queues . 112
5.4.1. Priority queues . 112
5.4.2. Deques . 117

5.5. Applications . 119
5.5.1. Application of a linear queue . 119
5.5.2. Application of priority queues . 120

5.6. Illustrative problems . 125

Chapter 6. Linked Lists . 143

6.1. Introduction . 143
6.1.1. Drawbacks of sequential data structures 143
6.1.2. Merits of linked data structures . 145
6.1.3. Linked lists – structure and implementation 145

6.2. Singly linked lists . 147
6.2.1. Representation of a singly linked list 147
6.2.2. Insertion and deletion in a singly linked list 149

6.3. Circularly linked lists . 155
6.3.1. Representation . 155
6.3.2. Advantages of circularly linked lists over singly linked lists 155
6.3.3. Disadvantages of circularly linked lists 156
6.3.4. Primitive operations on circularly linked lists 158
6.3.5. Other operations on circularly linked lists 159

6.4. Doubly linked lists. 160
6.4.1. Representation of a doubly linked list 161
6.4.2. Advantages and disadvantages of a doubly linked list 162
6.4.3. Operations on doubly linked lists . 163

6.5. Multiply linked lists . 166
6.6. Unrolled linked lists . 171

6.6.1. Retrieval of an element . 172
6.6.2. Insert an element . 172
6.6.3. Delete an element . 173

6.7. Self-organizing lists . 175
6.8. Applications . 175

6.8.1. Addition of polynomials . 176
6.8.2. Sparse matrix representation . 178

6.9. Illustrative problems . 182

viii A Textbook of Data Structures and Algorithms 1

Chapter 7. Linked Stacks and Linked Queues 201

7.1. Introduction . 201
7.1.1. Linked stack . 202
7.1.2. Linked queues . 203

7.2. Operations on linked stacks and linked queues 203
7.2.1. Linked stack operations . 203
7.2.2. Linked queue operations . 204
7.2.3. Algorithms for Push/Pop operations on a linked stack 205
7.2.4. Algorithms for insert and delete operations in a linked queue 206

7.3. Dynamic memory management and linked stacks 209
7.4. Implementation of linked representations 214
7.5. Applications . 216

7.5.1. Balancing symbols . 216
7.5.2. Polynomial representation . 218

7.6. Illustrative problems . 222

References . 241

Index . 243

Summaries of other volumes . 245

Preface

Efficient problem solving using computers, irrespective of the discipline or
application, calls for the design of efficient algorithms. The inclusion of appropriate
data structures is of critical importance to the design of efficient algorithms. In other
words, good algorithm design must go hand in hand with appropriate data
structures for an efficient program design to solve a problem.

Data structures and algorithms is a fundamental course in computer science,
which most undergraduate and graduate programs in computer science and other
allied disciplines in science and engineering offer during the early stages of the
respective programs, either as a core or as an elective course. The course enables
students to have a much-needed foundation for efficient programming, leading to
better problem solving in their respective disciplines.

Most of the well-known text books/monographs on this subject have discussed the
concepts in relation to a programming language – beginning with Pascal and spanning
a spectrum of them such as C, C++, C#, Java, Python and so on, essentially calling for
ample knowledge of the language, before one proceeds to try and understand the
data structure. There does remain a justification in this. The implementation of data
structures in the specific programming language need to be demonstrated or the
algorithms pertaining to the data structures concerned need a convenient medium of
presentation and when this is the case, why not a programming language?

Again, while some authors have insisted on using their books for an advanced
level course, there are some who insist on a working knowledge of the specific
programming language as a prerequisite to using the book. However, in the case of a
core course, as it is in most academic programs, it is not uncommon for a novice or a
sophomore to be bewildered by the “miles of code” that demonstrate or explain a
data structure, rendering the subject difficult to comprehend. In fact, the efforts that
one needs to put in to comprehend the data structure and its applications are

x A Textbook of Data Structures and Algorithms 1

distracted by the necessity to garner sufficient programming knowledge to follow
the code. It is indeed ironic that while a novice is taught data structures to appreciate
programming, in reality it turns out that one learns programming to appreciate data
structures!

In my decades-old experience of offering the course to graduate programs, which
admits students from diverse undergraduate disciplines, with little to no strong
knowledge of programming, I had several occasions to observe this malady. In fact,
it is not uncommon in some academic programs, especially graduate programs
which, due to their shorter duration, have a course in programming and data
structures running in parallel in the same semester, much to the chagrin of the
novice learner! That a novice is forced to learn data structures through their
implementation (in a specific programming language), when in reality it ought to be
learning augmented with the implementation of the data structures, has been the
reason behind the fallout.

A solution to this problem would be to

 i) Frame the course such that the theory deals with the concepts, techniques and
applications of data structures and algorithms, not taking recourse to any specific
programming language, but instead settling for a pseudo-language, which clearly
expounds the data structure. Additionally, supplementing the course material with
illustrative problems, review questions and exercises to reinforce the students’ grasp
of the concepts would help them gain useful insights while learning.

ii) Augment the theory with laboratory sessions to enable the student to
implement the data structure in itself or as embedded in an application, in the
language of his/her own choice or as insisted upon in the curriculum. This would
enable the student who has acquired sufficient knowledge and insight into the data
structures to appreciate the beauty and merits of employing the data structure by
programming it themself, rather than “look” for the data structure in a prewritten
code.

This means that text books catering to the fundamental understanding of the data
structure concepts for use as course material in the classroom are as much needed as
the books that cater to the implementation of data structures in a programming
language for use in the laboratory sessions. While most books in the market conform
to the latter, bringing out a book to be classroom course material and used by
instructors handling a course on data structures and algorithms, comprehensive
enough for the novice students to benefit from, has been the main motivation in
writing this book.

As such, the book details concepts, techniques and applications pertaining to data
structures and algorithms, independent of any programming language, discusses

Preface xi

several examples and illustrative problems, poses review questions to reinforce the
understanding of the theory, and presents a suggestive list of programming
assignments to aid implementation of the data structures and algorithms learned.

In fact, the book may either be independently used as a textbook since it is self-
contained or serve as a companion for books discussing data structures and
algorithms implemented in specific programming languages such as C, C++, Java,
Python, and so on.

At this juncture, it needs to be pointed out that a plethora of programming
resources and freely downloadable implementations of the majority of the data
structures in almost all popular languages are available on the Internet, which can
undoubtedly serve as good guides for the learner. However, it has to be emphasized
that an earnest student of data structures and algorithms must invest a lot of time and
self-effort in trying to implement the data structures and algorithms learned, in a
language of one’s choice, all by oneself, in order to attain a thorough grasp of the
concepts.

About this edition

This edition is a largely revised and enlarged version of its predecessor,
published by McGraw Hill, USA. The earlier edition published in 2008 saw 15
reprints in its life span of 13 years (ending January 2022) and was recommended as
a text book for the course in several universities and colleges. It comprised 17
chapters categorized into five parts and reinforced learning through 133 illustrative
problems, 215 review questions and 74 programming assignments.

The features of this new edition are as follows:

– There are 22 chapters spread across three volumes that detail sequential linear
data structures, linked linear data structures, nonlinear data structures, advanced data
structures, searching and sorting algorithms, algorithm design techniques and NP-
completeness.

– The data structures of k-d trees and treaps have been elaborated in a newly
included chapter (Chapter 15) in Volume 3.

– The data structures of strings, bit rays, unrolled linked lists, self-organizing
linked lists, segment trees and k-ary trees have been introduced in the appropriate
sections of the existing chapters in Volumes 1 and 2.

– The concepts of counting binary search trees and Kruskal’s algorithm have
been detailed in the appropriate sections of the existing chapters in Volume 2.

xii A Textbook of Data Structures and Algorithms 1

– Skip list search, counting sort and bucket sort have been included in the
chapters on searching and sorting algorithms in Volume 3.

– The algorithm design techniques of divide and conquer, the greedy method
and dynamic programming have been elaborately discussed in Chapters 19–21 in
Volume 3.

– The concept of NP-completeness has been detailed in a newly included
chapter, Chapter 22 in Volume 3.

– Several illustrative problems, review questions and programming assignments
have been added to enrich the content and aid in understanding the concepts. The
new edition thus includes 181 illustrative problems, 276 review questions and 108
programming assignments.

Organization of the book

The book comprises three volumes, namely, Volume 1: Chapters 1–7, Volume 2:
Chapters 8–12 and Volume 3: Chapters 13–22.

Volume 1 opens with an introduction to data structures and concepts pertaining
to the analysis of algorithms, detailed in Chapters 1 and 2, which is essential to
appreciate the theories and algorithms related to data structures and their
applications.

Chapters 3–5 detail sequential linear data structures, namely, arrays, strings, bit
arrays, stacks, queues, priority queues and dequeues, and their applications.
Chapters 6 and 7 elucidate linked linear data structures, namely linked lists, linked
stacks and linked queues, and their applications.

Volume 2 details nonlinear data structures. Chapters 8 and 9 elaborate on the
nonlinear data structures of trees, binary trees and graphs, and their applications.
Chapters 10–12 highlight the advanced data structures of binary search trees, AVL
trees, B trees, tries, red-black trees and splay trees, and their applications.

Volume 3 details an assortment of data structures, algorithm design strategies
and their applications.

Chapters 13–15 discuss hash tables, files, k-d trees and treaps. Chapter 16
discusses the search algorithms of linear search, transpose sequential search,
interpolation search, binary search, Fibonacci search, skip list search and other
search techniques.

Preface xiii

Chapter 17 elaborates on the internal sorting algorithms of bubble sort, insertion
sort, selection sort, merge sort, shell sort, quick sort, heap sort, radix sort, counting
sort and bucket sort, and Chapter 18 discusses the external sorting techniques of
sorting with tapes, sorting with disks, polyphase merge sort and cascade merge sort.

Chapters 19–21 detail the algorithm design strategies of divide and conquer, the
greedy method and dynamic programming and their applications.

Chapter 22 introduces the theories and concepts of NP-completeness.

For a full list of the contents of Volumes 2 and 3, see the summary at the end of
this book.

Salient features of the book

The features of the book are as follows:

– all-around emphasis on theory, problems, applications and programming
assignments;

– simple and lucid explanation of the theory;

– inclusion of several applications to illustrate the use of data structures and
algorithms;

– several worked-out examples as illustrative problems in each chapter;

– list of programming assignments at the end of each chapter;

– review questions to strengthen understanding;

– self-contained text for use as a text book for either an introductory or advanced
level course.

Target audience

The book could be used both as an introductory or an advanced-level textbook
for undergraduate, graduate and research programs, which offer data structures and
algorithms as a core course or an elective course. While the book is primarily meant
to serve as a course material for use in the classroom, it could be used as a
companion guide during the laboratory sessions to nurture better understanding of
the theoretical concepts.

An introductory level course for a duration of one semester or 60 lecture hours,
targeting an undergraduate program or first-year graduate program or a diploma

xiv A Textbook of Data Structures and Algorithms 1

program or a certificate program, could include Chapters 1–7 of Volume 1, Chapter 8
of Volume 2, Chapters 13, 16 (sections 16.1, 16.2, 16.5) and 17 (sections 17.1–17.3,
17.5, 17.7) of Volume 3 in its curriculum.

A middle-level course for a duration of one semester or 60 lecture hours
targeting senior graduate-level programs and research programs such as MS/PhD
could include Chapters 1–7 of Volume 1, Chapters 8–11 of Volume 2, Chapter 13
and selective sections of Chapters 16–17 of Volume 3.

An advanced level course that focuses on advanced data structures and algorithm
design could begin with a review of Chapter 8 and include Chapters 9–12 of Volume 2,
Chapters 14 and 15 and selective sections of Chapters 16–18, and Chapters 19–22 of
Volume 3 in its curriculum based on the level of prerequisite courses satisfied.

Chapters 8–10 and Chapter 11 (sections 11.1–11.3) of Volume 2 and Chapters 13,
14 and 18 of Volume 3 could be useful to include in a curriculum that serves as a
prerequisite for a course on database management systems.

To re-emphasize, all theory sessions must be supplemented with laboratory
sessions to encourage learners to implement the concepts learned in an appropriate
language that adheres to the curricular requirements of the programs concerned.

Acknowledgments

The author is grateful to ISTE Ltd., London, UK, for accepting to publish the
book, in collaboration with John Wiley & Sons Inc., USA. She expresses her
appreciation to the publishing team, for their professionalism and excellent
production practices, while bringing out this book in three volumes.

The author expresses her sincere thanks to the Management and Principal, PSG
College of Technology, Coimbatore, India for the support extended while writing
the book.

The author would like to place on record her immense admiration and affection
for her father, Late Professor G. A. Krishna Pai and her mother Rohini Krishna Pai
for their unbounded encouragement and support to help her follow her life lessons
and her sisters Dr. Rekha Pai and Udaya Pai, for their unstinted, anywhere-anytime-
anything kind of help and support, all of which were instrumental and inspirational
in helping this author create this work.

G. A. Vijayalakshmi Pai
August 2022

1

Introduction

While looking around and marveling at the technological advancements of this
world – both within and without, one cannot help but perceive the intense and
intrinsic association of the disciplines of science and engineering and their allied and
hybrid counterparts, with the ubiquitous machines called computers. In fact, it is
difficult to spot a discipline that has distanced itself from the discipline of computer
science. To quote a few, be it a medical surgery or diagnosis performed by robots or
doctors on patients halfway across the globe, or the launching of space crafts and
satellites into outer space, or forecasting tornadoes and cyclones, or the more
mundane needs of the online reservation of tickets or billing at supermarkets, or the
control of washing machines, etc., one cannot help but deem computers to be
omnipresent, omnipotent, why even omniscient! (Figure 1.1).

In short, any discipline that calls for problem solving using computers looks up
to the discipline of computer science for efficient and effective methods of solving
the problems in their respective fields. From the view point of problem solving, the
discipline of computer science could be naively categorized into the following four
sub areas, notwithstanding the overlaps, extensions and gray areas within
themselves:

– Machines: What machines are appropriate or available for the solution of the
problem? What is the machine configuration – its processing power, memory
capacity, etc. – that would be required for the efficient execution of the problem
solution?

– Languages: What is the language or software with which the problem solution
needs to be coded? What are the software constraints that would hamper the efficient
implementation of the solution to the problem?

2 A Textbook of Data Structures and Algorithms 1

– Foundations: What is the problem model and its solution? What methods need
to be employed for the efficient design and implementation of the solution? What is
its performance measure?

– Technologies: What are the technologies that need to be incorporated to solve
the problem? For example, does the solution call for a web-based implementation,
need activation from mobile devices, call for hand shaking broadcasting devices or
merely need to interact with high-end or low-end peripheral devices?

Figure 1.1. Omnipresence of computers. For a color version
of this figure, see www.iste.co.uk/pai/algorithms1.zip

Figure 1.2 illustrates the categorization of the discipline of computer science
from the perspective of problem solving.

One of the core fields that belongs to the foundations of computer science
addresses the design, analysis and implementation of algorithms for the efficient

Industry Transportation

Weather Space Technology Science

Agriculture Business Health care

Computer

Introduction 3

solution of the problems concerned. An algorithm may be loosely defined as a
process, procedure, method or recipe. It is a specific set of rules to obtain a definite
output from specific inputs provided to the problem.

The subject of data structures is intrinsically connected with the design and
implementation of efficient algorithms. Data structures deal with the study of
methods, techniques and tools to organize or structure data.

The history, definition, classification, structure and properties of algorithms are
discussed in the following.

Figure 1.2. Discipline of computer science from the perspective of problem
solving. For a color version of this figure, see www.iste.co.uk/pai/algorithms1.zip

1.1. History of algorithms

The word algorithm originates from the Arabic word algorism, which is linked
to the name of the Arabic mathematician Abu Jafar Mohammed Ibn Musa Al
Khwarizmi (825 CE). Al Khwarizmi is accredited as the first algorithm designer for
adding numbers represented in the Hindu numeral system. The algorithm designed
by him and followed until today calls for summing the digits occurring at a specific
position and the previous carry digit repetitively, moving from the least significant
digit to the most significant digit until the digits have been exhausted.

 Languages

Foundations
Machines

Technologies

4 A Textbook of Data Structures and Algorithms 1

EXAMPLE 1.1.–

Demonstration of Al Khwarizmi’s algorithm for the addition of 987 and 76:

 987 + 987 + 987 +

 76 76 + 76 +

 Carry 1 Carry 1

 (Carry 1) 3 (Carry 1) 63 1,063

1.2. Definition, structure and properties of algorithms

1.2.1. Definition

DEFINITION.–

An algorithm may be defined as a finite sequence of instructions, each of which
has a clear meaning and can be performed with a finite amount of effort in a finite
length of time.

1.2.2. Structure and properties

An algorithm has the following structure:

i) input step;

ii) assignment step;

iii) decision step;

iv) repetitive step;

v) output step.

EXAMPLE 1.2.–

Consider the demonstration of Al Khwarizmi’s algorithm shown on the addition
of the numbers 987 and 76 in example 1.1. In this, the input step considers the two
operands 987 and 76 for addition. The assignment step sets the pair of digits from
the two numbers and the previous carry digit if it exists, for addition. The decision
step decides at each step whether the added digits yield a value that is greater than
10 and, if so, whether an appropriate carry digit should be generated. The repetitive

Introduction 5

step repeats the process for every pair of digits beginning from the least significant
digit onward. The output step releases the output, which is 1063.

An algorithm is endowed with the following properties:

– Finiteness: an algorithm must terminate after a finite number of steps.

– Definiteness: the steps of the algorithm must be precisely defined or
unambiguously specified.

– Generality: an algorithm must be generic enough to solve all problems of a
particular class.

– Effectiveness: the operations of the algorithm must be basic enough to be put
down on pencil and paper. They should not be too complex to warrant writing
another algorithm for the operation!

– Input‒output: the algorithm must have certain initial and precise inputs, and
outputs that may be generated both at its intermediate or final steps.

An algorithm does not enforce a language or mode for its expression; it only
demands adherence to its properties. Thus, one could even write an algorithm in
one’s own expressive way to make a cup of hot coffee! However, there is this
observation that a cooking recipe that calls for instructions such as “add a pinch of
salt and pepper”, “fry until it turns golden brown” and so on, are “anti-algorithmic”
because terms such as “a pinch” and “golden brown” are subject to ambiguity and
hence violate the property of definiteness!

An algorithm may be represented using pictorial representations such as flow
charts. An algorithm encoded in a programming language for implementation on a
computer is called a program. However, there exists a school of thought that
distinguishes a program from an algorithm. The claim put forward by them is that
programs need not exhibit the property of finiteness, which algorithms insist upon
and quote an operating systems program as a counter example. An operating system
is supposed to be an “infinite” program that terminates only when the system
crashes! At all other times other than its execution, it is said to be in “wait” mode!

1.3. Development of an algorithm

The steps involved in the development of an algorithm are as follows:

i) problem statement;

ii) model formulation;

iii) algorithm design;

6 A Textbook of Data Structures and Algorithms 1

iv) algorithm correctness;

v) implementation;

vi) algorithm analysis;

vii) program testing;

viii) documentation.

Once a clear statement of the problem is made, the model for the solution of the
problem is formulated. The next step is to design the algorithm based on the solution
model formulated. It is here that one sees the role of data structures. The right choice
of the data structure needs to be made at the design stage itself since data structures
influence the efficiency of the algorithm. Once the correctness of the algorithm is
checked and the algorithm is implemented, the most important step of measuring the
performance of the algorithm is performed. This is what is termed algorithm
analysis. It can be seen how the use of appropriate data structures results in better
performance of the algorithm. Finally, the program is tested, and the development
ends with proper documentation.

1.4. Data structures and algorithms

As detailed in the previous section, the design of an efficient algorithm for the
solution of the problem calls for the inclusion of appropriate data structures. A
clear, unambiguous set of instructions following the properties of the algorithm
alone does not contribute to the efficiency of the solution. It is essential that the data
on which the problems need to work on are appropriately structured to suit the needs
of the problem, thereby contributing to the efficiency of the solution.

For example, let us rewind to the past and consider the problem of searching for a
telephone number of a person in the telephone directory book provided to the
subscribers. It is well known that searching for a phone number in the directory is an
easy task since the data are sorted according to the alphabetical order of the
subscribers’ names. All that the search calls for is to turn over the pages until one
reaches the page that is approximately closest to the subscriber’s name and undertake a
sequential search moving one’s finger down the relevant page. Now, what if the
telephone directory were to have its data arranged according to the order in which the
subscriptions for telephones were received? What a mess it would be! One may need
to go through the entire directory – name after name, page after page in a sequential
fashion until the name and the corresponding telephone number is retrieved!

This is a classic example to illustrate the significant role played by data
structures in the efficiency of algorithms. The problem was the retrieval of a

Introduction 7

telephone number. The algorithm was the simple search for the name in the
directory and the subsequent retrieval of the corresponding telephone number. In the
first case, since the data were appropriately structured (sorted according to
alphabetical order), the search algorithm undertaken turned out to be efficient.
However, in the second case, when the data were unstructured, the search algorithm
turned out to be crude and therefore inefficient.

Therefore, for the design of efficient programs for the solution of problems, it is
essential that algorithm design goes hand in hand with appropriate data structures
(Figure 1.3).

Figure 1.3. Algorithms and data structures for
efficient problem solving using computers

1.5. Data structures – definition and classification

1.5.1. Abstract data types

A data type refers to the type of values that variables in a programming language
hold. Thus, the integer, real, character and Boolean data types that are inherently
provided in programming languages are referred to as primitive data types.

A list of elements is called a data object. For example, we could have a list of
integers or a list of alphabetical strings as data objects.

8 A Textbook of Data Structures and Algorithms 1

The data objects that comprise the data structure and their fundamental
operations are known as abstract data types (ADTs). In other words, an ADT is
defined as a set of data objects D defined over a domain L and supporting a list of
operations O.

EXAMPLE 1.3.–

Consider an ADT for the data structure of positive integers called
POSITIVE_INTEGER defined over a domain of integers Z+, supporting the
operations of addition (ADD) and subtraction (MINUS) and checking if positive
(CHECK_POSITIVE). The ADT is defined as follows: 𝐿 = 𝑍ା,  𝐷 = {𝑥|𝑥 ∈ 𝐿},  𝑂 = {𝐴𝐷𝐷, 𝑀𝐼𝑁𝑈𝑆, 𝐶𝐻𝐸𝐶𝐾_𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸}.

A descriptive and clear presentation of the ADT is as follows:

An ADT promotes data abstraction and focuses on what a data structure does
rather than how it does what it does. It is easier to comprehend a data structure by
means of its ADT since it helps a designer plan the implementation of the data
objects and its supportive operations in any programming language belonging to any
paradigm, such as procedural, object oriented or functional. Quite often, it may be
essential that one data structure calls for other data structures for its implementation.
For example, the implementation of stack and queue data structures calls for their
implementation using either arrays or lists, which are themselves data structures.

ADT positive integer

Data objects:
Set of all positive integers D

 +=∈= ZLLxxD },|{

Operations:
Addition of positive integers INT1 and INT2 into RESULT

 ADD (INT1, INT2, RESULT)

Subtraction of positive integers INT1 and INT2 into
RESULT

 SUBTRACT (INT1, INT2, RESULT)

Check if a number INT1 is a positive integer

 CHECK_POSITIVE(INT1) (Boolean function)

Introduction 9

While deciding on the ADT of a data structure, a designer may decide on the set
of operations O that are to be provided, based on the application and accessibility
options provided to various users making use of the ADT implementation.

The ADTs for various data structures discussed in the book are presented in the
respective chapters.

1.5.2. Classification

Figure 1.4 illustrates the classification of data structures. The data structures are
broadly classified as linear data structures and nonlinear data structures. Linear
data structures are unidimensional in structure and represent linear lists. These are
further classified as sequential and linked representations. On the other hand,
nonlinear data structures are two-dimensional representations of data lists. The
individual data structures listed under each class are shown in the figure.

Figure 1.4. Classification of data structures

1.6. Algorithm design techniques

Algorithm design concerns strategic methods that strive to find effective
solutions or efficient solutions to large classes of problems. Given a problem, it is

10 A Textbook of Data Structures and Algorithms 1

possible to solve the problem by working over all possible combinations of input
sequences, one or more of which may lead to the solution of the problem. Such a
method of problem solving is referred to as the brute force or exhaustive search
method. Brute force methods, therefore, do not explore ways and means to
strategically solve the problem by exploiting the problem characteristics or the data
structure that describes the problem. For example, a brute force method to find an
element in a list would involve merely sequentially searching for the element, one
by one, until the element is found or not found. A strategic method, on the other
hand, would try to explore ways and means by which finding the element can be
done efficiently without searching the entire list or minimizing the number of
comparisons during the search and so on.

Several algorithm design techniques have been identified to solve various classes
of problems. The following are some of them:

– divide and conquer;

– greedy method;

– backtracking;

– dynamic programming;

– branch and bound;

– local search;

– randomized algorithms.

This book discusses the three strategies of divide and conquer, greedy method
and dynamic programming, which are popular methods and have been employed by
problems and applications discussed in the rest of the book.

However, there are also problem classes that do not yield effective solutions, no
matter which algorithm design technique is employed to tackle it. These have been
categorized into two classes, namely, NP-complete and NP-hard, where NP denotes
non-deterministic polynomial. A non-deterministic polynomial simply means that
efficient algorithms are not available to solve them. However, studies are still under
way to look for efficient ways to solve these problem classes. Considering the fact
that several of these problems are of great practical importance, a class of algorithms
known as approximation algorithms have emerged, which aim to solve specific
problem instances through heuristics that strive to deliver solutions to the problem
instances within a reasonable amount of time. Heuristics involve methods that are
intuitive and help to attain near-optimal or acceptable solutions.

The book concludes with a discussion on NP-complete and NP-hard problems.

Introduction 11

1.7. Organization of the book

The book is divided into three volumes (1–3) comprising 22 chapters covering
concepts, techniques and applications of fundamental, linear, nonlinear and
advanced data structures, including elaborating on searching and sorting algorithms
and selective algorithm design strategies and concluding with a concise discussion
on NP-completeness.

Volume 1 includes Chapters 1–7 as briefed below:

– Chapter 1 addresses an introduction to the subject of algorithms and data
structures. Chapter 2 introduces the analysis of algorithms.

– Chapters 3–5 discuss linear data structures that are sequential. Thus, the three
chapters detail the data structures of arrays, stacks and queues, respectively.

– Chapters 6 and 7 discuss linear data structures that are linked. Thus, Chapter 6
elaborates on linked lists and Chapter 7 details linked stacks and linked queues.

Volume 2 includes Chapters 8–12 as briefed below:

– Chapters 8 and 9 discuss the nonlinear data structures of trees and graphs,
respectively.

– Some of the advanced data structures such as binary search trees and AVL
trees (Chapter 10), B trees and tries (Chapter 11) and red‒black trees and splay
trees (Chapter 12), are elaborately covered in their respective chapters.

Volume 3 covers Chapters 13–22 as briefed below:

– Chapter 13 discusses hash tables. Chapter 14 describes the methods of file
organization and Chapter 15 provides details on k-d trees and treaps.

– The sorting and searching techniques are elaborated next. Chapter 16
discusses searching techniques, Chapter 17 details internal sorting methods and
Chapter 18 describes external sorting methods.

– The algorithm design strategies are examined next. Thus, the popular
algorithm design strategies of divide and conquer, greedy method and dynamic
programming are elaborately discussed over application problems in Chapters
19–21, respectively.

– Finally, the concept of NP-completeness is covered. Chapter 22 elaborates on
the P-class and NP-class of problems.

12 A Textbook of Data Structures and Algorithms 1

Summary

– Any discipline in science and engineering that calls for problem solving using
computers looks up to the discipline of computer science for its efficient solution.

– From the point of view of problem solving, computer science can be naively
categorized into the four areas of machines, languages, foundations and technologies.

– The subjects of algorithms and data structures fall under the category of foundations.
The design formulation of algorithms for the solution of the problems and the inclusion of
appropriate data structures for their efficient implementation must progress hand in hand.

– An abstract data type (ADT) describes the data objects that constitute the data
structure and the fundamental operations supported on them.

– Data structures are classified as linear and nonlinear data structures. Linear data
structures are further classified as sequential and linked data structures. While arrays,
stacks and queues are examples of sequential data structures, linked lists, linked stacks and
queues are examples of linked data structures.

– The nonlinear data structures include trees and graphs.

– The tree data structure includes variants such as binary search trees, AVL trees,
B trees, tries, red–black trees and splay trees.

– Algorithm design concerns strategic methods to solve problems efficiently.

– Divide and conquer, greedy method and dynamic programming are popular algorithm
design strategies.

2

Analysis of Algorithms

In the previous chapter, we introduced the discipline of computer science from
the perspective of problem solving. It was detailed how problem solving using
computers calls not only for good algorithm design but also for the appropriate use
of data structures to render them efficient. This chapter discusses methods and
techniques to analyze the efficiency of algorithms.

2.1. Efficiency of algorithms

When there is a problem to be solved, it is probable that several algorithms crop
up for its solution, and therefore, one is at a loss to know which one is the best. This
raises the question of how one decides which among the algorithms is preferable or
which among them is the best.

The performance of algorithms can be measured on the scales of time and space.
The former would mean looking for the fastest algorithm for the problem or that
which performs its task in the minimum possible time. In this case, the performance
measure is termed time complexity. The time complexity of an algorithm or a
program is a function of the running time of the algorithm or program. In the case
of the latter, it would mean looking for an algorithm that consumes or needs limited
memory space for its execution. The performance measure in such a case is termed
space complexity. The space complexity of an algorithm or a program is a function
of the space needed by the algorithm or program to run to completion. However, in
this book, our discussions mostly emphasize the time complexities of the algorithms
presented.

14 A Textbook of Data Structures and Algorithms 1

The time complexity of an algorithm can be computed either by an empirical or
theoretical approach.

The empirical or posteriori testing approach calls for implementing the complete
algorithms and executing them on a computer for various instances of the problem.
The time taken by the execution of the programs for various instances of the
problem are noted and compared. The algorithm whose implementation yields the
least time is considered to be the best among the candidate solutions.

The theoretical or apriori approach calls for mathematically determining the
resources such as time and space needed by the algorithm as a function of a
parameter related to the instances of the problem considered. A parameter that is
often used is the size of the input instances.

For example, for the problem of searching for a name in the telephone directory,
an apriori approach could determine the efficiency of the algorithm used in terms of
the size of the telephone directory, that is, the number of subscribers listed in the
directory. In addition, algorithms exist for various classes of problems that make use
of the number of basic operations, such as additions, multiplications or element
comparisons, as a parameter to determine their efficiency. The apriori analysis of
sorting algorithms, for example, is generally undertaken based on the basic
operation of element comparisons.

An apriori analysis of an algorithm therefore yields a mathematical function of
the parameters that describe either the problem inputs or the basic operations of the
algorithm.

The disadvantage of posteriori testing is that it is dependent on various other
factors, such as the machine on which the program is executed, the programming
language with which it is implemented and why, even on the skill of the
programmer who writes the program code! On the other hand, the advantage of
apriori analysis is that it is entirely machine, language and program independent.

The efficiency of a newly discovered algorithm over that of its predecessors can
be better assessed only when they are tested over large input instance sizes. For
smaller to moderate input instance sizes, it is highly likely that their performances
may break even. In the case of posteriori testing, practical considerations may permit
testing the efficiency of the algorithm only on input instances of moderate sizes. On
the other hand, apriori analysis permits the study of the efficiency of algorithms on
any input instance of any size.

Analysis of Algorithms 15

2.2. Apriori analysis

Let us consider a program statement, for example, x = x + 2, in a sequential
programming environment. We do not consider any parallelism in the environment.
An apriori estimation is interested in the following for the computation of efficiency:

i) the number of times the statement is executed in the program, known as the
frequency count of the statement;

ii) the time taken for a single execution of the statement.

Considering the second factor would render the estimation machine dependent
since the time taken for the execution of the statement is determined by the machine
instruction set, the machine configuration and so on. Hence, apriori analysis
considers only the first factor and computes the efficiency of the program as a
function of the total frequency count of the statements comprising the program. The
estimation of efficiency is restricted to the computation of the total frequency count
of the program.

Let us estimate the frequency count of the statement x = x + 2 occurring in
the following three program segments (A, B, C):

 Program segment A Program segment B Program segment C

The frequency count of the statement in program segment A is 1. In program
segment B, the frequency count of the statement is n, since the for loop in which
the statement is embedded executes n (n ≥ 1) times. In program segment C, the
statement is executed n2 (n ≥ 1) times since the statement is embedded in a nested
for loop, executing n times each.

In apriori analysis, the frequency count fi of each statement i of the program is
computed and summed to obtain the total frequency count T = ∑ 𝑓௜௜ .

The computation of the total frequency count of the program segments A–C is
shown in Tables 2.1–2.3. It is well known that the opening statement of a for loop
such as for i = low_index to up_index executes ((up_index –
low_index +1) +1) times and the statements within the loop are executed
((up_index-low_index)+1) times. A top tested loop such as for

…
x = x + 2;
…

…
for j = 1 to n do
 for k = 1 to n do
 x = x + 2;
 end
end
…

…
for k = 1 to n do
 x = x + 2;
end
…

16 A Textbook of Data Structures and Algorithms 1

necessitates testing the opening statement of the loop one more time before quitting
the loop, hence the extra “ +1” for the frequency count of the opening statement of
the for loop.

 Program statements Frequency count

…

x = x + 2; 1

…

Total frequency count 1

Table 2.1. Total frequency count of program segment A

Program statements Frequency count
…

for k = 1 to n do (n+1)
x = x + 2; n

end n
…

Total frequency count 3n+1

Table 2.2. Total frequency count of program segment B

Program statements Frequency count
…

for j = 1 to n do (n+1)

for k = 1 to n do ෍(𝑛 + 1)௡
௝ୀଵ = (𝑛 + 1)𝑛

x = x + 2; n2

end ෍ 𝑛௡
௝ୀଵ = 𝑛ଶ

end n
…

Total frequency count 3n2+3n+1

Table 2.3. Total frequency count of program segment C

Analysis of Algorithms 17

In the case of nested for loops, it is easier to compute the frequency counts of
the embedded statements, making judicious use of the following fundamental
mathematical formulae:

෍ 1௡
௜ୀଵ = 𝑛   ෍ 𝑖௡

௜ୀଵ = 𝑛(𝑛 + 1)2   ෍ 𝑖ଶ௡
௜ୀଵ = 𝑛(𝑛 + 1)(2𝑛 + 1)6

Observe how in Table 2.3, the frequency count of the statement for k = 1
to n do is computed as ∑ (𝑛 − 1 + 1) + 1௡௝ୀଵ = ∑ (𝑛 + 1) = (𝑛 + 1)𝑛௡௝ୀଵ .

The total frequency counts of the program segments A–C given by 1, (3n+1) and
3n2+3n+1, respectively, are expressed as O(1), O(n) and O(n2), respectively. These
notations mean that the orders of magnitude of the total frequency counts are
proportional to 1, n and n2, respectively.

The notation O has a mathematical definition, as discussed in section 2.3. These
are referred to as the time complexities of the program segments since they are
indicative of the running times of the program segments.

In a similar manner, one could also discuss the space complexities of a program,
which is the amount of memory it requires for its execution and completion. The
space complexities can also be expressed in terms of mathematical notations.

2.3. Asymptotic notations

Apriori analysis employs the following notations to express the time complexity
of algorithms. These are termed asymptotic notations since they are meaningful
approximations of functions that represent the time or space complexity of a
program.

DEFINITION 2.1.– 𝑓(𝑛) = 𝑂(𝑔(𝑛)) (read as f of n is “big oh” of g of n), iff there exists a positive
integer n0 and a positive number C such that |𝑓(𝑛)| ≤ 𝐶|𝑔(𝑛)|, for all 𝑛 ≥ 𝑛଴.

18 A Textbook of Data Structures and Algorithms 1

Example

 f(n) g(n)

3 2 3 316 78 12 () ()
34 90 () ()
56 1 () (1)

n n n n f n O n
n n f n O n

f n O

+ + =
− =

=

Here, g(n) is the upper bound of the function f(n).

DEFINITION 2.2.–

 𝑓(𝑛) = 𝛺(𝑔(𝑛)) (read as f of n is the omega of g of n), iff there exists a positive
integer n0 and a positive number C such that |𝑓(𝑛)| ≥ 𝐶|𝑔(𝑛)|, for all 𝑛 ≥ 𝑛଴.

Example

 f(n) g(n)

3 2 3 316 8 2 () ()
24 9 () ()

n n n f n n
n n f n n

+ + = Ω
+ = Ω

Here, g(n) is the lower bound of the function f(n).

DEFINITION 2.3.– 𝑓(𝑛) = 𝛩(𝑔(𝑛)) (read as f of n is theta of g of n), iff there exist two positive
constants 𝑐ଵ and 𝑐ଶ and a positive integer n0 such that 𝑐ଵ|𝑔(𝑛)| ≤ |𝑓(𝑛)| ≤ 𝑐ଶ|𝑔(𝑛)|
for all 𝑛 ≥ 𝑛଴.

Example

 f(n) g(n) 28𝑛 + 9 n f(n) = Θ(n) since f(n) > 28n and f(n) ≤ 37 n

 for 𝑛 ≥ 1 16𝑛ଶ + 30𝑛 − 90 n2 f(n) = Θ(n2) 7. 2௡ + 30𝑛 2n f(n) = Θ(2n)

Analysis of Algorithms 19

From the definition, it implies that the function g(n) is both an upper bound and a
lower bound for the function f(n) for all values of n, 𝑛 ≥ 𝑛଴. This means that f(n) is
such that 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) = 𝛺(𝑔(𝑛)).

DEFINITION 2.4.– 𝑓(𝑛) = 𝑜(𝑔(𝑛)) (read as f of n is “little oh” of g of n) iff 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) ≠ 𝛺(𝑔(𝑛)). In other words, the growth rate of f(n) cannot be the same as that
of g(n).

In mathematical terms, this is expressed as

Lim
n→∞

f (n)
g(n)

= 0

which is easier to compute when powerful calculus techniques such as L’Hôpital’s
Rule are applied.

Example

f(n) g(n) 18𝑛 + 9 n2 𝑓(𝑛) = ο(𝑛ଶ) since 𝑓(𝑛) = Ο(𝑛ଶ) and 𝑓(𝑛) ≠ Ω(𝑛ଶ)

Observe that 𝑓(𝑛) ≠ ο(𝑛).

2.4. Time complexity of an algorithm using the O notation

O notation is widely used to compute the time complexity of algorithms. It can
be gathered from its definition (Definition 2.1) that if f(n) = O(g(n)), then g(n) acts
as an upper bound for the function f(n). f(n) represents the computing time of the
algorithm. When we say the time complexity of the algorithm is O(g(n)), we mean
that its execution takes a time that is no more than constant times g(n). Here, n is a
parameter that characterizes the input and/or output instances of the algorithm.

Algorithms reporting O(1) time complexity indicate constant running time. The
time complexities of O(n), O(n2) and O(n3) are called linear, quadratic and cubic
time complexities, respectively. The O(logn) time complexity is referred to as
logarithmic. In general, the time complexities of the type O(nk) are called
polynomial time complexities. In fact, it can be shown that a polynomial

20 A Textbook of Data Structures and Algorithms 1

𝐴(𝑛) = 𝑎௠𝑛௠ + 𝑎௠ିଵ𝑛௠ିଵ+. . . +𝑎ଵ𝑛 + 𝑎଴ = 𝑂(𝑛௠) (see illustrative problem
2.2). Time complexities such as O(2n) and O(3n), in general O(kn), are called
exponential time complexities.

Algorithms that report O(log n) time complexity are faster for sufficiently large n
than if they have reported O(n). Similarly, O(n.log n) is better than O(n2) but not as
good as O(n). Some of the commonly occurring time complexities in their ascending
orders of magnitude are listed below:

O(1) ≤ O(log n) ≤ O(n) ≤ O(n.log n) ≤ O(n2) ≤ O(n3) ≤ O(2n)

2.5. Polynomial time versus exponential time algorithms

If n is the size of the input instance, the number of operations for polynomial
time algorithms are of the form P(n), where P is a polynomial. In terms of O
notation, polynomial time algorithms have time complexities of the form O(nk),
where k is a constant.

In contrast, in exponential time algorithms, the number of operations are of the
form kn. In terms of O notation, exponential time algorithms have time complexities
of the form O(kn), where k is a constant.

 Size

 Time
complexity function

10 20 50

n2 10–4 s 4 × 10–4 s 25 × 10–4 s
n3 10–3 s 8 × 10–3 s 125 × 10–3 s
2n 10–3 s 1 s 35 years
3n 6 × 10–2 s 58 min 2 × 103 centuries

Table 2.4. Comparison of polynomial time and exponential time algorithms

It is clear from the above that polynomial time algorithms are much more
efficient than exponential time algorithms. From Table 2.4, it can be seen how
exponential time algorithms can quickly surpass the capacity of any sophisticated
computer due to their rapid growth rate (refer to Figure 2.1). Here, it is assumed that
the computer takes 1 microsecond per operation. While the time complexity
functions of n2 and n3 can be executed in reasonable time, which are just fractions of

Analysis of Algorithms 21

a second, one can never hope to finish execution of exponential time algorithms
even if the fastest computers were employed. Note how for an algorithm whose time
complexity function is 2n, the running time for input size n = 20 is 1 s but when the
input size n is increased to 50, the running time is a whopping 35 years! Again, for an
algorithm whose time complexity function is 3n, for input size n = 20, the running time
is 58 min whereas for n = 50, it takes a giant leap touching 2000 centuries! Thus, if
one were to find an algorithm for a problem that reduces from exponential time to
polynomial time then that is indeed a great accomplishment!

2.6. Average, best and worst case complexities

The time complexity of an algorithm is dependent on parameters associated with
the input/output instances of the problem. Very often, the running time of the
algorithm is expressed as a function of the input size. In such a case, it is fair enough
to presume that the larger the input size of the problem instance is, the larger its
running time. However, such is not always the case. There are problems whose time
complexity is dependent not only on the size of the input but also on the nature of
the input. Example 2.1 illustrates this point.

Figure 2.1. Growth rate of some computing time functions. For a
color version of this figure, see www.iste.co.uk/pai/algorithms1.zip

0

5

100

150

1 2 3 4 5 6 7 8 9 1 1 1
Input size

O
ut

pu
t o

f t
he

 c
om

pu
tin

g
tim

e
fu

nc
tio

n

1

2

3

4

1: n2 2: 2n 3: n.log2n 4: log2n

22 A Textbook of Data Structures and Algorithms 1

EXAMPLE 2.1.–

Algorithm: To sequentially search for the first occurring even number in the list
of numbers given.

Input 1: –1, 3, 5, 7, –5, 7, 11, –13, 17, 71, 21, 9, 3, 1, 5, –23, –29, 33, 35, 37, 40.

Input 2: 6, 17, 71, 21, 9, 3, 1, 5, –23, 3, 64, 7, –5, 7, 11, 33, 35, 37, –3, –7, 11.

Input 3: 71, 21, 9, 3, 1, 5, –23, 3, 11, 33, 36, 37, –3, –7, 11, –5, 7, 11, –13, 17, 22.

Let us determine the efficiency of the algorithm for the input instances presented
in terms of the number of comparisons performed before the first occurring even
number is retrieved. All three input instances are of the same size of 21 numbers
each.

In the case of Input 1, the first occurring even number occurs as the last element
in the list. The algorithm would require 21 comparisons, equivalent to the size of the
list, before it retrieves the element. On the other hand, in the case of Input 2, the first
occurring even number appears as the very first element of the list, thereby calling
for only one comparison before it is retrieved! If Input 2 is the best possible case that
can happen for the quickest execution of the algorithm, then Input 1 is the worst
possible case that can happen when the algorithm takes the longest possible time to
complete. Generalizing, the time complexity of the algorithm in the best possible
case would be expressed as O(1), and in the worst possible case, it would be
expressed as O(n), where n is the size of the input.

This justifies the statement that the running time of algorithms is dependent not
only on the size of the input but also on its nature. That input instance (or instances)
for which the algorithm takes the maximum possible time is called the worst case,
and the time complexity in such a case is referred to as the worst case time
complexity. That input instance for which the algorithm takes the minimum possible
time is called the best case, and the time complexity in such a case is referred to as
the best case time complexity. All other input instances that are neither of the two
are categorized as average cases, and the time complexity of the algorithm in such
cases is referred to as the average case time complexity. Input 3 is an example of an
average case since it is neither the best case nor the worst case. By and large,
analyzing the average case behavior of algorithms is harder and mathematically
involved when compared to their worst case and best case counterparts.
Additionally, such an analysis can be misleading if the input instances are not
chosen at random or not chosen appropriately to cover all possible cases that may
arise when the algorithm is deployed.

Analysis of Algorithms 23

Worst case analysis is appropriate when the response time of the algorithm is
critical. For example, in the case of a nuclear power plant controller, it is critical to
know the maximum limit of the system response time regardless of the input
instance that is to be handled by the system. The algorithms designed cannot have a
running time that exceeds this response time limit.

On the other hand, in the case of applications where the input instances may be
wide and varied and there is no knowledge beforehand of the kind of input instance
that has to be worked upon, it is prudent to choose algorithms with good average
case behavior.

2.7. Analyzing recursive programs

Recursion is an important concept in computer science. Many algorithms are
best described in terms of recursion.

2.7.1. Recursive procedures

If P is a procedure containing a call statement to itself (Figure 2.2(a)) or to
another procedure that results in a call to itself (Figure 2.2(b)), then the procedure P
is said to be a recursive procedure. In the former case, it is termed direct recursion,
and in the latter case, it is termed indirect recursion.

Figure 2.2. Skeletal recursive procedures

Extending the concept to programming can yield program functions or programs
themselves that are recursively defined. In such cases, they are referred to as
recursive functions and recursive programs, respectively. Extending the concept to
mathematics would yield what are called recurrence relations.

24 A Textbook of Data Structures and Algorithms 1

To ensure that the recursively defined function may not run into an infinite loop,
it is essential that the following properties be satisfied by any recursive
procedure.

i) There must be criteria, one or more, called the base criteria or simply base
case(s), where the procedure does not call itself either directly or indirectly.

ii) Each time the procedure calls itself directly or indirectly, it must be closer to
the base criteria.

Example 2.2 illustrates a recursive procedure, and example 2.3 illustrates a
recurrence relation.

EXAMPLE 2.2.–

A recursive procedure to compute the factorial of a number n is shown as
follows:

n! = 1, if n = 1 (base criterion)

n! = n. (n – 1)!, if n > 1

Note the recursion in the definition of factorial function(!). n! calls (n – 1)! for its
definition. The pseudo-code recursive function for the computation of n! is shown as
follows:

EXAMPLE 2.3.–

A recurrence relation S(n) is defined as follows:

S(n) = 0, if n =1 (base criterion)

 = S(n/2) + 1, if n > 1.

function factorial(n)
1-2. if (n = 1) then factorial = 1
 else
3. factorial = n* factorial(n-1);
 end factorial.

Analysis of Algorithms 25

EXAMPLE 2.4. (The Tower of Hanoi Puzzle).–

The Tower of Hanoi puzzle was invented by the French mathematician Edouard
Lucas in 1883. However, there are numerous myths both ancient and mystical
surrounding this puzzle and one such traces its origins to a custom prevalent in an
ancient Hindu temple at Varanasi, India. Legend has it that there are 64 golden discs
to be shuffled over 3 age old pegs, one move a day by the temple priests, at the end
of which when the puzzle is solved, the world would come to an end! The puzzle
therefore is also known as Tower of Brahma.

 In the Tower of Hanoi puzzle, there are three pegs: source (S), intermediary (I)
and destination (D). Peg S contains a set of disks stacked to resemble a tower, with the
largest disk at the bottom and the smallest at the top. Figure 2.3 illustrates the initial
configuration of the pegs for six disks. The objective is to transfer the entire tower of
disks in Peg S to Peg D, maintaining the same order of the disks. Additionally,
only one disk can be moved at a time, and never can a larger disk be placed on a
smaller disk during the transfer. Peg I is for intermediate use during the transfer.

Figure 2.3. Tower of Hanoi puzzle (initial configuration)

A simple solution to the problem, for N = 3 disks, is given by the following
transfers of disks:

1) transfer disk from Peg S to D;

2) transfer disk from Peg S to I;

3) transfer disk from Peg D to I;

4) transfer disk from Peg S to D;

5) transfer disk from Peg I to S;

6) transfer disk from Peg I to D;

7) transfer disk from Peg S to D.

 Peg S Peg I Peg D

26 A Textbook of Data Structures and Algorithms 1

The solution to the puzzle calls for an application of recursive functions and
recurrence relations. A skeletal recursive procedure for the solution of the problem
for N number of disks is as follows:

1) move the top N-1 disks from Peg S to I (using D as an intermediary peg);

2) move the bottom disk from Peg S to D;

3) move N-1 disks from Peg I to D (using Peg S as an intermediary peg).

A pictorial representation of the skeletal recursive procedure for N = 6 disks is
shown in Figure 2.4. Function TRANSFER illustrates the recursive function for the
solution of the problem.

Figure 2.4. Pictorial representation of the skeletal
recursive procedure for the Tower of Hanoi puzzle

Analysis of Algorithms 27

2.7.2. Apriori analysis of recursive functions

The apriori analysis of recursive functions is different from that of iterative
functions. In the latter case, as was seen in section 2.2, the total frequency counts of
the programs were computed before approximating them using mathematical
functions such as O. In the case of recursive functions, we first formulate recurrence
relations that define the behavior of the function. The solution of the recurrence
relation and its approximation using the conventional O or any other notation yields
the resulting time complexity of the program.

To frame the recurrence relation, we associate an unknown time function T(n),

where n measures the size of the arguments to the procedure. We then obtain a
recurrence relation for T(n) in terms of T(k) for various values of k.

Example 2.5 illustrates how the recurrence relation for the recursive factorial
function FACTORIAL(n) shown in example 2.2 is obtained.

EXAMPLE 2.5.–

Let T(n) be the running time of the recursive function FACTORIAL(n). The
running times of lines 1 and 2 are O(1). The running time for line 3 is given by
O(1) + T(n –1). Here, T(n – 1) is the time complexity of the call to the recursive
function FACTORIAL(n-1). Thus, for some constants c, d,

function TRANSFER(N, S, I, D)

 /* N disks are to be transferred from Peg S to Peg D
 with Peg I as the intermediate peg*/
 if N is 0 then exit();

 else

 {TRANSFER(N-1, S, D, I); /* transfer N-1 disks
 from Peg S to Peg I with Peg D as the
 intermediate peg*/

 Transfer disk from S to D; /* move the disk which
 is the last and the largest disk,
 from Peg S to Peg D*/

 TRANSFER(N-1, I, S, D); /* transfer N-1 disks from
 Peg I to Peg D with Peg S as the
 intermediate peg*/
 }

 end TRANSFER.

28 A Textbook of Data Structures and Algorithms 1

T(n) = c + T(n –1), if n > 1

 = d, if n ≤ 1

Example 2.6 derives the recurrence relation for the Tower of Hanoi puzzle.

EXAMPLE 2.6.–

Let T(N) be the minimum number of transfers needed to solve the puzzle with N
disks. From the function TRANSFER, it is evident that for N = 0, no disks are
transferred. Again, for N > 0, two recursive calls each enabling the transfer of
(N – 1) disks and a single transfer of the last (largest) disk from Peg S to D are
performed. Thus, the recurrence relation is given by

T(N) = 0, if N =0

 = 2. T(N – 1) + 1, if N > 0

Now what remains to be done is to solve the recurrence relation T(n). Such a
solution where T(n) expresses itself in a form where no T occurs on the right side is
termed a closed form solution in conventional mathematics.

Despite the availability of different methods to solve recurrence relations, a
general method of solution is to repeatedly replace terms T(k) occurring on the right
side of the recurrence relation by the relation itself with appropriate change of
parameters. The substitutions continue until one reaches a formula in which T does
not appear on the right side. Quite often, at this stage, it may be essential to sum a
series that could be either an arithmetic progression or geometric progression or
some such mixed series. Even if we cannot obtain a sum exactly, we could work to
obtain at least a close upper bound on the sum, which could act as an upper bound
for T(n).

Example 2.7 illustrates the solution of the recurrence relation for the function
FACTORIAL(n), discussed in example 2.5, and example 2.8 illustrates the solution
of the recurrence relation for the Tower of Hanoi puzzle, discussed in example 2.6.

EXAMPLE 2.7.–

Solution of the recurrence relation

T(n) = c + T(n – 1), if n > 1

 = d, if n ≤ 1

Analysis of Algorithms 29

yields the following steps.

() (1)........(step 1)T n c T n= + −

2 2((2))
2 (2).........(step 2)
c c T n a b

c T n
= + + − +
= + −

2 ((3))
3 (3).........(step 3)

c c T n
c T n

= + + −
= + −

In the kth step, the recurrence relation is transformed as

() . (), if ,......... (step k)T n k c T n k n k= + − >

Finally, when (k = n – 1), we obtain

() (1). (1),(step n-1)
(1)

()

T n n c T
n c d

O n

= − +
= − +
=

Observe how the recursive terms in the recurrence relation are replaced to move
the relation closer to the base criterion, namely, T(n) = 1, n ≤ 1. The approximation
of the closed-form solution obtained, namely, T(n) = (n – 1)c +d, yields O(n).

EXAMPLE 2.8.–

Solution of the recurrence relation for the Tower of Hanoi puzzle,

T(N) = 0, if N = 0

= 2. T(N – 1) + 1, if N > 0

yields the following steps.

() 2. (1) 1.........(step 1)T N T N= − +

2

2.(2. (2) 1) 1
2 . (2) 2 1.........(step 2)

T N
T N

= − + +
= − + +

30 A Textbook of Data Structures and Algorithms 1

2

3 2

2 (2. (3) 1) 2 1
2 . (3) 2 2 1.........(step 3)

T N
T N

= − + + +
= − + + +

In the kth step, the recurrence relation is transformed as

(1) (2) 3 2() 2 () 2 22 2 2 1,(step k)k k kT N T N k − −= − + + + + + +

Finally, when (k = N), we obtain

(1) (2) 3 2() 2 (0) 2 22 2 2 1(step N)
2 .0 (2 1)
2 1

(2)

N N N

N N

N

N

T N T

O

− −= + + + + + +
= + −
= −
=

Summary

– When several algorithms can be designed for the solution of a problem, the need to
determine which among them is the best arises. The efficiency of a program or an
algorithm is measured by computing its time and/or space complexities. The time
complexity of an algorithm is a function of the running time of the algorithm and the space
complexity is a function of the space required by it to run to completion.

– The time complexity of an algorithm can be measured using apriori analysis or
posteriori testing. While the former is a theoretical approach that is general and machine
independent, the latter is completely machine dependent.

– The apriori analysis computes the time complexity as a function of the total frequency
count of the algorithm. Frequency count is the number of times a statement is executed in a
program.

– O, Ω, Θ and o are asymptotic notations that are used to express the time complexity
of algorithms. While O serves as an upper bound of the performance measure, Ω serves as
the lower bound.

– The efficiency of algorithms is not just dependent on the input size but is also
dependent on the nature of the input. This results in the categorization of worst, best and
average case complexities. Worst case complexity is that input instance(s) for which the
algorithm reports the maximum possible time and best case time complexity is that for
which it reports the minimum possible time.

Analysis of Algorithms 31

2.8. Illustrative problems

PROBLEM 2.1.–

If 𝑇ଵ(𝑛) and 𝑇ଶ(𝑛) are the time complexities of two program fragments 𝑃ଵ and 𝑃ଶ, where 𝑇ଵ(𝑛) = 𝑂(𝑓(𝑛)) and 𝑇ଶ(𝑛) = 𝑂(𝑔(𝑛)), find 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) and 𝑇ଵ(𝑛).𝑇ଶ(𝑛).

Solution:

Since 𝑇ଵ(𝑛) ≤ 𝑐. 𝑓(𝑛) for some positive number c and positive integer 𝑛ଵ such
that 𝑛 ≥ 𝑛ଵ and 𝑇ଶ(𝑛) ≤ 𝑑. 𝑔(𝑛) for some positive number d and positive integer 𝑛ଶ
such that 𝑛 ≥ 𝑛ଶ, we obtain 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) as follows: 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) ≤ c. f(n) + d. g(n), for n > n0 where 𝑛଴ = max(𝑛ଵ, 𝑛ଶ)

i.e., 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) ≤ (c +d) max (f(n), g(n)) for n > n0

Hence, 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) = 𝑂(max(𝑓(𝑛), 𝑔(𝑛))).

(This result is referred to as Rule of Sums of O notation.)

To obtain 𝑇ଵ(𝑛).𝑇ଶ(𝑛), we proceed as follows: 𝑇ଵ(𝑛).𝑇ଶ(𝑛) ≤ c. f(n). d. g(n)

≤ k. f(n). g(n)

Therefore, 𝑇ଵ(𝑛).𝑇ଶ(𝑛) = O(f(n).g(n)).

(This result is referred to as Rule of Products of O notation.)

– Polynomial time algorithms are highly efficient when compared to exponential time
algorithms. The latter can quickly get beyond the computational capacity of any
sophisticated computer due to their rapid growth rate.

– Apriori analysis of recursive algorithms calls for the formulation of recurrence
relations and obtaining their closed form solutions, before expressing them using
appropriate asymptotic notations.

32 A Textbook of Data Structures and Algorithms 1

PROBLEM 2.2.–

If 𝐴(𝑛) = 𝑎௠𝑛௠ + 𝑎௠ିଵ𝑛௠ିଵ+. . . +𝑎ଵ𝑛 + 𝑎଴, then 𝐴(𝑛) = 𝑂(𝑛௠) for 𝑛 ≥ 1.
Solution:

Let us consider |A(n)|. We have |𝐴(𝑛)| =    |𝑎௠𝑛௠ + 𝑎௠ିଵ𝑛௠ିଵ+. . . +𝑎ଵ𝑛 + 𝑎଴|    ≤   |𝑎௠𝑛௠| + |𝑎௠ିଵ𝑛௠ିଵ|+. . . . |𝑎ଵ𝑛| + |𝑎଴|    ≤ (|𝑎௠| + |𝑎௠ିଵ|+. . . . |𝑎ଵ| + |𝑎଴|). 𝑛௠    ≤ 𝑐. 𝑛௠  where 𝑐 = |𝑎௠| + |𝑎௠ିଵ|+. . . . |𝑎ଵ| + |𝑎଴|
Hence, A(n) = O(nm).

NOTE.– This result is useful when the time complexity of an algorithm in terms
of O notation is to be obtained, given the total frequency count of the algorithm,
which when computed results in a polynomial in input variable n of degree m.

PROBLEM 2.3.–

Two algorithms A and B report time complexities expressed by the functions n2
and 2n, respectively. They are to be executed on a machine M that consumes 10–6 s
to execute an instruction. What is the time taken by the algorithms to complete their
execution on machine A for an input size of 50? If another machine N that is 10
times faster than machine M is provided for the execution, what is the largest input
size that can be handled by the two algorithms on machine N? What are your
observations?

Solution:

Algorithms A and B report time complexities of n2 and 2n, respectively. In other
words, each of the algorithms execute approximately n2 and 2n instructions,
respectively. For an input size of n = 50 and with a speed of 10–6 s per instruction,
the time taken by the algorithms on machine M are as follows:

Algorithm A: 502 × 10–6 = 0.0025 s

Algorithm B: 250 × 10–6 ≅ 35 years

Analysis of Algorithms 33

If another machine N that is 10 times faster than machine M is provided, then the
number of instructions that algorithms A and B can execute on machine N would
also be 10 times more than that on M. Let x2 and 2y be the number of instructions
that algorithms A and B execute on machine N. Then, the new input size that each of
these algorithms can handle is given by

Algorithm A:

 x2 = 10 × n2

10 3.x n n∴ = × ≅

That is, algorithm A can handle three times the original input size that it could
handle on machine M.

Algorithm B:

2

2 10 2
log 10 3

y n

y n n
= ×

∴ = + ≅ +

That is, algorithm B can handle just three units more than the original input size
than it could handle on machine M.

Observations: Since algorithm A is a polynomial time algorithm, it displays a
superior performance of executing the specified input on machine M in 0.0025 s.
Additionally, when provided with a faster machine N, it is able to handle three times
the original input size that it could handle on machine M.

In contrast, algorithm B is an exponential time algorithm. While it takes 35 years
to process the specified input on machine M, despite the faster machine provided, it
is able to process just three units more over the input data size than it could handle
on machine M.

PROBLEM 2.4.–

Analyze the behavior of the following program, which computes the nth
Fibonacci number, for appropriate values of n. Obtain the frequency count of the
statements (that are given line numbers) for various cases of n.

34 A Textbook of Data Structures and Algorithms 1

Solution:

The behavior of the program for the cases concerned can be analyzed as shown
in Table P2.4.

Line number
Frequency count of the statements

n < 0 n = 0 n = 1 n > 1
1 1 1 1 1
2 1 1 1 1

3, 4 1, 1 0 0 0
5 0 1 1 1

6, 7 0 1, 1 0 0
8 0 0 1 1

9, 10 0 0 1, 1 0
11, 12 0 0 0 1, 1

13 0 0 0 (n – 2 + 1) + 1
14, 15, 16 0 0 0 (n – 1), (n – 1), (n – 1)

17 0 0 0 (n – 1)
18 0 0 0 1

Total frequency count 4 5 6 5n + 3

Table P2.4. Frequency count of the statements
in procedure Fibonacci (n)

procedure Fibonacci(n)
1. read(n);
2-4. if (n<0) then print (“error”); exit();
5-7. if (n=0) then print (“Fibonacci number is 0”);
 exit();
8-10. if (n=1) then print (“Fibonacci number is 1”);
 exit();
11-12. f1=0;
 f2=1;
13. for i = 2 to n do
14-16. f = f1 + f2;
 f1 = f2;
 f2 = f;
17. end
18. print(“Fibonacci number is”, f);
end Fibonacci

Analysis of Algorithms 35

The total frequency count is 5n + 3, and therefore, the time complexity of the
program is T(n) = O(n).

PROBLEM 2.5.–

Obtain the time complexity of the following program:

procedure whirlpool(m)

if (m ≤ 0) then print(“eddy!”); exit();
else {
 swirl = whirlpool(m-1) + whirlpool(m-1);
 print(“whirl”);
 }
end whirlpool

Solution:

We first obtain the recurrence relation for the time complexity of the procedure
whirlpool. Let T(m) be the time complexity of the procedure. The recurrence
relation is formulated as given below:

T(m) = a, if m ≤ 0

 = 2T(m – 1) + b, if m > 0.

Here, 2T(m – 1) expresses the total time complexity of the two calls to
whirlpool (m – 1). a and b indicate the constant time complexities to execute the
rest of the statements when m ≤ 0 and m > 0, respectively.

Solving for the recurrence relation yields the following steps:

T(m) = 2T(m – 1) + b ………(step 1)

 = 2(2T(m – 2)+b) + b

 = 22T(m – 2) + b (1+2)..........(step 2)

 = 22(2T(m – 3)+b) +b(1+2)

 = 23(T(m – 3) + b(1+2+22).......(step 3)

In general, in the ith step

T(m) = 2iT(m-i) + b(1 + 2+ 22 +….2i-1)……(step i)

36 A Textbook of Data Structures and Algorithms 1

 When i = m,

T(m) = 2mT(0) + b(1 + 2+ 22 +….2m-1)

 = a·2m + b(2m – 1)

 = k·2m + l where k, l are positive constants

 = O(2m)

The time complexity of the procedure whirlpool is therefore O(2m).

PROBLEM 2.6.–

The frequency count of line 3 in the following program fragment is ___. a) ସ୬మିଶ୬ଶ b) ୧మି୧ଶ c) (୧మିଷ୧)ଶ d) (ସ୬మି଺୬)ଶ

1. i = 2n
2. for j = 1 to i
3. for k = 3 to j
4. m = m+1;
5. end
6. end

Solution:

The frequency count of line 3 is given by ∑ (𝑗 − 3 + 1) + 1௜௝ୀଵ = ∑ (𝑗 − 1)ଶ௡௝ୀଵ =ସ௡మିଶ௡ଶ . Hence, the correct option is a.

PROBLEM 2.7.–

Find the frequency count and the time complexity of the following program
fragment:

1. for i = 20 to 30
2. for j = 1 to n
3. am = am+1;
4. end
5. end

Analysis of Algorithms 37

Solution:

The frequency count of the program fragment is shown in Table P2.7.

Line number Frequency count
1 12

2 ෍ (𝑛 + 1)ଷ଴
௜ୀଶ଴ = 11(𝑛 + 1)

3 n
i

n

j

111
30

20 1

=
= =

4 11n
5 11

Table P2.7. Frequency count of the statements
in the program fragment of Problem 2.7

The total frequency count is 33n + 34, and the time complexity is therefore O(n).

PROBLEM 2.8.–

State which of the following are true or false: (i) 𝑓(𝑛) = 30𝑛ଶ2௡ + 6𝑛2௡ + 8𝑛ଶ = 𝑂(2௡) (ii) 𝑔(𝑛) = 9. 2௡ + 𝑛ଶ = 𝛺(2௡) (iii) ℎ(𝑛) = 9. 2௡ + 𝑛ଶ = 𝛩(2௡)

Solution:

i) False.

For f(n) = O(2n), it is essential that |𝑓(𝑛)| ≤ 𝑐. |2௡|
 (i. e.) ቤ30𝑛ଶ2௡ + 6𝑛2௡ + 8𝑛ଶ2௡ ቤ ≤ 𝑐

38 A Textbook of Data Structures and Algorithms 1

This is not possible since the left-hand side is an increasing function.

(ii) True.

(iii) True.

PROBLEM 2.9.–

Solve the following recurrence relation assuming n = 2k:

C(n) = 2, n =2

 =2. C(n/2) + 3, n > 2

Solution:

The solution of the recurrence relation proceeds as given below:

2 2

2 3

3 3 2

() 2. (/ 2) 3.......... (step 1)
2(2 (/ 4) 3) 3
2 (/ 2) 3.(1 2)...... (step 2)
2 (2. (/ 2) 3) 3.(1 2)
2 (/ 2) 3(1 2 2)........ (step 3)

C n C n
C n

C n
C n

C n

= +
= + +

= + +
= + + +
= + + +

In the ith step,

)istep()........2....221(3)2/(2)(12 −+++++= iii nCnC

Since n = 2k, in the step when i = (k – 1),

1 1 2 2

1

() 2 (/ 2) 3(1 2 2 2)........ (step k-1)

. (2) 3(2 1)
2

.2 3(1)
2 2

5. 3
2

k k k

k

C n C n
n C

n n

n

− − −

−

= + + + + +

= + −

= + −

= −

Hence, C(n) = 5·n/2 – 3.

Analysis of Algorithms 39

PROBLEM 2.10.–

Consider the following recursive function GUESS(n, m) written in pseudo-
code. Hand trace the code to determine the output when the recursive function is
called with n = 6 and m = 3.

function GUESS(n, m)
if (m > n) then return (0);
if (m = n) then return (1);
if (n = 1) or (m = 0) then return (1);
if (m < n) then return ((n-1)*GUESS(n-1, m-1));

end GUESS

Solution:

It is convenient and effective to hand trace a recursive program or function with
the help of what is called a tree of recursive calls. The tree grows with every call to
the function and tracks the values returned when each of the functions that was
called terminates and returns the output to the function that called it.

Figure P2.10 illustrates the tree of recursive calls for GUESS (6, 3). The
solid arrows indicate the recursive calls to the function that is shown as a box. The
broken arrows indicate the return of values to the point of call when the called
functions terminate. The forward calls to the function and the return of values to the
called function have been shown separately for the sake of clarity.

Forward calls to function GUESS Returning values to called functions

 n = 6 m = 3

 GUESS(6, 3) = ?

 n = 6 m = 3
 GUESS(6, 3) =
 (6-1)*GUESS(5,2)
 = 60

 n = 5 m = 2
 GUESS(5, 2) = ?

 n = 4 m = 1
 GUESS(4, 1) = ?

 n = 5 m = 2
 GUESS(5, 2) =
 (5-1)* GUESS(4,1)
 = 12

 n = 4 m = 1
 GUESS(4, 1) =
 (4-1)*GUESS(3,0)
 = 3

40 A Textbook of Data Structures and Algorithms 1

Figure P2.10. Tree of recursive calls for the recursive function GUESS(6,3)

GUESS(3,0), where n = 3 and m = 0, triggers one of the three base case
conditions given, and hence, the function terminates returning the value 1. This
further triggers the termination of the called functions one after another until the first
call to the recursive function GUESS(6, 3) is terminated returning the output
value of 60. It can be easily seen from the number of boxes that the number of calls
made to the recursive function GUESS is 4.

PROBLEM 2.11.–

What is the time complexity of a recursive program whose recurrence relation is
as given below? Assume that the input size n of the problem is a power of 4, that is,
n = 4s.

2() 3. . , 1

4
, otherwise

nT n T c n n

a

 = + > 
 

=

Solution:

 2.
4

.3)(ncnTnT +





= ... step (1)

2
2 .

4
.

4
.3.3

2

ncncnT +















+






=







 ++






= 2

2
2

2

4
31.

4
.3 ncnT ... step (2)

 n = 3 m = 0
 GUESS(3, 0) = ?

 n = 3 m = 0
 GUESS(3, 0) = 1

Analysis of Algorithms 41











+++






= 4

2

2
2

3
3

4
3

4
31.

4
.3 ncnT ... step (3)

Generalizing, in the kth step,











+++++






= −

−

22

1

6

3

4

2

2
2

4
3...

4
3

4
3

4
31.

4
.3)(k

k

k
k ncnTnT ... step (k)

We try to obtain the sum S of the series as follows:

S = 









++++

−

−

22

1

6

3

4

2

2 4
3

...
4
3

4
3

4
3

1
k

k

()2162422222
22

1

6

3

4

2

2
22 4.3...4.34.34.34

4
3...

4
3

4
3

4
31.4.4 3 −−−−

−

−
++++=










++++= kkkkk

k

k
kk S

(1)

()kkkkkk S 3...4.34.34.34.3.4.3 82624222222 43 ++++= −−−−− … (2)

Subtracting (2) from (1) yields

2 2 2 24 . 3.4 . 4 3 ,k k k kS S−− = −

that is, 22

2

222

2

4.13
34

4.34
34

−−
−=

−
−= k

kk

kk

kk
S … (3)

Therefore, 








 −+





= −22

2
2

4.13
34.

4
.3)(k

kk

k
k ncnTnT

 … (4)

Since n is a power of 4 (n = 4s), in the sth step (putting k = s), we obtain










 −+





= −22

2
2

4.13
34.

4
.3)(s

ss

s
s ncnTnT

() 








 −+= 2

2
2

.13
316..1.3

n
nncT

s
s

42 A Textbook of Data Structures and Algorithms 1

(),3..3 2 ss nba −+= for constants a and b.

ndnb 4log2 3.. += , for some constant d.

Therefore, ()2)(nOnT = .

PROBLEM 2.12.–

 What is the total frequency count and time complexity of the following
pseudo-code, given a and n as inputs?

1. product = 1;
2. sum = 0;
3. for i =1 to n do
4. product = product *a;
5. sum = sum + a;
6. end
7. power = product;
8. summation = sum;

Solution:

The frequency counts of the individual statements and the total frequency count
of the statements in the pseudo-code are shown in the following table:

Statement label 1 2 3 4 5 6 7 8
Frequency
count 1 1 n + 1 n n n 1 1

Total frequency count 4n + 5

Hence, the time complexity of the pseudo-code program is O(n).

Review questions

1) Frequency count of the statement

“for k = 3 to (m+2) do “ is

a) (m+2) b) (m-1) c) (m+1) d) (m+5)

Analysis of Algorithms 43

2) If functions f(n) and g(n), for a positive integer n0 and a positive number C, are
such that |𝑓(𝑛)| ≥ 𝐶|𝑔(𝑛)|, for all 𝑛 ≥ 𝑛଴, then

a) 𝑓(𝑛) = 𝛺(𝑔(𝑛)) b) 𝑓(𝑛) = 𝑂(𝑔(𝑛)) c) 𝑓(𝑛) = 𝛩(𝑔(𝑛))

d) 𝑓(𝑛) = 𝜊(𝑔(𝑛))

3) For T(n) = 167 n5 + 12 n4 + 89 n3 + 9n2 +n + 1,

a) T(n) = O(n) b) T(n) = O(n5) c) T(n) = O(1)

d) T(n) = O(n2 +n)

4) State whether true or false:

(i) Exponential functions have rapid growth rates when compared to polynomial
functions.

(ii) Therefore, exponential time algorithms run faster than polynomial time
algorithms.

a) (i) true (ii) true b) (i) true (ii) false

c) (i) false (ii) false d) (i) false (ii) true

5) Find the odd one out: O(n), O(n2), O(n3), O(3n)

a) O(n) b) O(n2) c) O(n3) d) O(3n)

6) How does one measure the efficiency of algorithms?

7) Distinguish between best case, worst case and average case complexities of an
algorithm.

8) Define O and Ω notations of time complexity.

9) Compare and contrast exponential time complexity with polynomial time
complexity.

10) How are recursive programs analyzed?

44 A Textbook of Data Structures and Algorithms 1

11) Analyze the time complexity of the following program:

…
 for send = 1 to n do
 for receive = 1 to send do
 for ack = 2 to receive do

message = send –(receive + ack);
 end
 end
 end

12) Solve the recurrence relation:

S(n) = 2·S(n – 1) + b.n, if n > 1

 = a, if n =1

13) Write a pseudo-code to obtain the maximum element given a set of elements.
What is the time complexity of your program? Is it possible to discuss worst case or
best case complexities for the pseudo code that you designed?

14) Write pseudo-code procedures to (i) add two matrices and (ii) multiply two
matrices. Obtain the total frequency counts and the time complexities of the iterative
procedures.

15) What is the time complexity of a recursive program whose recurrence
relation is given as follows assuming that n is a power of (3/2):

2() 1, 1
3

, 1

nT n T n

c n

 = + > 
 

= =

3

Arrays

3.1. Introduction

In Chapter 1, an abstract data type (ADT) was defined to be a set of data objects
and the fundamental operations that can be performed on this set.

In this regard, an array is an ADT whose objects are a sequence of elements of
the same type, and the two operations performed on it are store and retrieve. Thus, if
a is an array, the operations can be represented as STORE (a, i, e) and RETRIEVE
(a, i), where i is termed the index and e is the element that is to be stored in the
array. These functions are equivalent to the programming language statements
a[i]:= e and a[i], where i is termed subscript and a is termed array variable name
in programming language parlance.

Arrays can be one-dimensional, two-dimensional, three-dimensional or in
general multidimensional. Figure 3.1 illustrates a one-dimensional and
two-dimensional array. It may be observed that while one-dimensional arrays are
mathematically likened to vectors, two-dimensional arrays are likened to matrices.
In this regard, two-dimensional arrays also have the terminologies of rows and
columns associated with them.

Figure 3.1. Examples of arrays

46 A Textbook of Data Structures and Algorithms 1

In Figure 3.1, A[1:5] refers to a one-dimensional array where 1 and 5 are
referred to as the lower and upper indexes or the lower and upper bounds of the
index range, respectively. Similarly, B[1:3, 1:2] refers to a two-dimensional array
where 1, 3 and 1, 2 are the lower and upper indexes of the rows and columns,
respectively.

Additionally, each element of the array, namely, A[i] or B[i, j], resides in a
memory location also called a cell. Here, the cell refers to a unit of memory and is
machine dependent.

3.2. Array operations

An array, when viewed as a data structure, supports only two operations, namely:

(i) storage of values, that is, writing into an array (STORE (a, i, e));

(ii) retrieval of values, that is, reading from an array (RETRIEVE (a, i)).

For example, if A is an array of five elements, then Figure 3.2 illustrates the
operations performed on A.

Figure 3.2. Array operations: store and retrieve

3.3. Number of elements in an array

In this section, the computation of the size of the array by way of the number of
elements in the array is discussed. This is important since, when arrays are declared
in a program, it is essential that the number of memory locations needed by the array
is “booked” beforehand by the compiler.

3.3.1. One-dimensional array

Let A[1:u] be a one-dimensional array. The size of the array, as is evident, is u,
and the elements are A[1], A[2], … A[u-1], and A[u]. In the case of the array A[l: u],
where l is the lower bound and u is the upper bound of the index range, the number
of elements is given by (u – l + 1).

Arrays 47

EXAMPLE 3.1.–

The number of elements in

i) A[1:26] = 26;

ii) A[5:53] = 49 (∵53 – 5+1);

iii) A[–1:26] = 28.

3.3.2. Two-dimensional array

Let A[1:u1, 1:u2] be a two-dimensional array, where u1 indicates the number of
rows and u2 the number of columns in the array.

Then, the number of elements in A is u1.u2. Generalizing, A[l1 : u1, l2:u2] has a
size of (u1-l1+1) (u2-l2+1) elements. Figure 3.3 illustrates a two-dimensional array
and its size.

Figure 3.3. Size of a two-dimensional array

EXAMPLE 3.2.–

The number of elements in

(i) A[1:10, 1:5] = 10 × 5 = 50;

(ii) A[–1:2, 2:6] = 4 × 5 = 20;

(iii) A[0:5, –1:6] = 6 × 8 = 48.

3.3.3. Multidimensional array

A multidimensional array A[1: u1, 1:u2, … 1: un] has a size of 𝑢ଵ. 𝑢ଶ. . . 𝑢௡ elements,
that is, ∏ 𝑢௜௡௜ୀଵ .

48 A Textbook of Data Structures and Algorithms 1

Figure 3.4 illustrates a three-dimensional array and its size.

Generalizing, array A [𝑙ଵ: 𝑢ଵ, 𝑙ଶ: 𝑢ଶ, 𝑙ଷ: 𝑢ଷ. . . 𝑙௡: 𝑢௡] has a size of ∏ (𝑢௜ − 𝑙௜ + 1)௡௜ୀଵ
elements.

Figure 3.4. Size of a three-dimensional array

EXAMPLE 3.3.–

The number of elements in

i) A[–1:3, 3:4, 2:6] = (3 – (–1) + 1)(4 – 3 + 1)(6 – 2 + 1) = 50;

ii) A[0:2, 1:2, 3:4, –1:2] = 3 × 2 × 2 × 4 = 48.

3.4. Representation of arrays in memory

How are arrays represented in memory? This is an important question, at least
from the compiler’s point of view. In many programming languages, the name of the
array is associated with the address of the starting memory location to facilitate
efficient storage and retrieval. Additionally, while the computer memory is
considered one dimensional (linear), it must accommodate multidimensional arrays.
Hence, address calculation to determine the appropriate locations in memory
becomes important.

In this aspect, it is convenient to imagine a two-dimensional array A[1:u1, 1:u2]
as u1 number of one-dimensional arrays whose dimension is u2. Again, in the case of
three-dimensional arrays A[1: u1, 1: u2, 1: u3] it can be viewed as u1 number of
two-dimensional arrays of size u2. u3. Figure 3.5 illustrates this idea.

In general, a multidimensional array A[1: u1, 1: u2, … 1: un] is a colony of u1
arrays, each of dimension A[1: u2, 1: u3, … 1: un].

Arrays 49

Figure 3.5. Viewing higher dimensional arrays in
terms of their lower dimensional counterparts

The arrays are stored in memory in one of the two ways, namely, row major
order or column major order. In the ensuing discussion, we assume a row major
order representation. Figure 3.6 distinguishes between the two methods of
representation.

3.4.1. One-dimensional array

Consider the array A(1:u1), and let 𝛼 be the address of the starting memory
location referred to as the base address of the array. Here, as it is evident, A[1]
occupies the memory location whose address is 𝛼, A[2] occupies 𝛼 +1 and so on. In
general, the address of A[i] is given by 𝛼 +(i – 1). Figure 3.7 illustrates the
representation of a one-dimensional array in memory.

In general, for a one-dimensional array A(l1: u1), the address of A[i] is given by 𝛼 + (i – l1), where 𝛼 is the base address.

50 A Textbook of Data Structures and Algorithms 1

Figure 3.6. Row-major order and column-major
order of a two-dimensional array

EXAMPLE 3.4.–

For the array given below with base address α = 100, the addresses of the array
elements specified are computed as given below:

Array Element Address

(i) A[1:17] A[7] 𝛼 + (7 − 1) = 100 + 6 = 106

(ii) A[–2:23] A[16] 𝛼 + (16 − (−2)) = 100 + 18 = 118

Figure 3.7. Representation of one-dimensional arrays in memory

Arrays 51

3.4.2. Two-dimensional arrays

Consider the array A[1:u1, 1:u2], which is to be stored in memory. It is helpful
to imagine this array as u1 number of one-dimensional arrays of length u2. Thus,
if A[1,1] is stored in address α, the base address, then A[i,1] has address 𝛼 + (𝑖 − 1)𝑢ଶ, and A[i, j] has address 𝛼 + (𝑖 − 1)𝑢ଶ + (𝑗 − 1).

To understand this, let us imagine the two-dimensional array A[i, j] to be a
building with i floors, each accommodating j rooms. To access room A[i, 1], the first
room on the ith floor, one has to traverse (i – 1) floors, each having u2 rooms. In
other words, (i – 1).u2 rooms have to be left behind before one knocks at the first
room on the ith floor. Since α is the base address, the address of A[i,1] would be 𝛼 + (𝑖 − 1)𝑢ଶ. Again, extending a similar argument to access A[i, j], the jth
room on the ith floor, one has to leave behind (𝑖 − 1)𝑢ଶ rooms and reach the jth
room on the ith floor. This again, as before, computes the address of A[i, j] as 𝛼 + (𝑖 − 1)𝑢ଶ + (𝑗 − 1). Figure 3.8 illustrates the representation of two-dimensional
arrays in memory.

Figure 3.8. Representation of a two-dimensional array in memory

Observe that the addresses of array elements are expressed in terms of the cells,
which hold the array elements.

In general, for a two-dimensional array 𝐴[𝑙ଵ: 𝑢ଵ, 𝑙ଶ: 𝑢ଶ], the address of A[i, j] is
given by 𝛼 + (𝑖 − 𝑙ଵ)(𝑢ଶ − 𝑙ଶ + 1) + (𝑗 − 𝑙ଶ).
EXAMPLE 3.5.–

For the arrays given below with α = 220 as the base address, the addresses of the
elements specified are computed as follows:

52 A Textbook of Data Structures and Algorithms 1

Array Element Address

]5:1,10:1[A]3,8[A 220 (8 1) . 5 (3 1)+ − + − = 257

]10:6,4:2[−−A]5,3[−A 220 (3 (2)).(10 (6) 1) (5 (6))+ − − − − + + − − − = 306

3.4.3. Three-dimensional arrays

Consider the three-dimensional array 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, 1: 𝑢ଷ]. As discussed before,
we will imagine it to be u1 number of two-dimensional arrays of dimension 𝑢ଶ. 𝑢ଷ.
Reverting to the analogy of building - floor - rooms, the three-dimensional array 𝐴[𝑖, 𝑗, 𝑘] could be viewed as a colony of i buildings, each having j floors with each
floor accommodating k rooms. To access A[i, 1,1], the first room on the first floor of
the ith building, one has to walk past (i – 1) buildings, each comprising 𝑢ଶ. 𝑢ଷ
rooms, before climbing on to the first floor of the ith building to reach the first
room! This means that the address of 𝐴[𝑖, 1,1] would be 𝛼 + (𝑖 − 1)𝑢ଶ. 𝑢ଷ.
Similarly, the address of 𝐴[𝑖, 𝑗, 1] requires the first room on the jth floor of the ith
building to be accessed, which works out to 𝛼 + (𝑖 − 1)𝑢ଶ𝑢ଷ + (𝑗 − 1)𝑢ଷ.
Proceeding on similar lines, the address of 𝐴[𝑖, 𝑗, 𝑘] is given by 𝛼 + (𝑖 − 1)𝑢ଶ𝑢ଷ +(𝑗 − 1)𝑢ଷ + (𝑘 − 1).

Figure 3.9 illustrates the representation of three-dimensional arrays in memory.

Figure 3.9. Representation of three-dimensional arrays in the memory

Arrays 53

In general, for a three-dimensional array 𝐴[𝑙ଵ: 𝑢ଵ, 𝑙ଶ: 𝑢ଶ, 𝑙ଷ: 𝑢ଷ], the address of 𝐴[𝑖, 𝑗, 𝑘] is given by 𝛼 + (𝑖 − 𝑙ଵ)(𝑢ଶ − 𝑙ଶ + 1)(𝑢ଷ − 𝑙ଷ + 1) + (𝑗 − 𝑙ଶ)(𝑢ଷ − 𝑙ଷ +1) + (𝑘 − 𝑙ଷ).
EXAMPLE 3.6.–

For the arrays given below with base address 𝛼 = 110, the addresses of the
elements specified are as follows:

 Array Element Address

[1:5, 1: 2, 1:3]A [2,1, 3]A 110 (2 1) . 6 (1 1) .3 (3 1) 118+ − + − + − =

[2 : 4, 6 :10,1:3]A − − [1, 4, 2]A − − 110 (1 (2)).17.3 (4 (6)) . 3 (2 1) 168+ − − − + − − − + − =

3.4.4. N-dimensional array

Let 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, 1: 𝑢ଷ, … 1: 𝑢ே] be an N-dimensional array. The address
calculation for the retrieval of various elements is given as follows:

Element Address

]1......,1,1,[1iA Nuuui ...)1(321 −+α

]1,...1,1,,[21 iiA NN uuuiuuui)1(...)1(432321 −+−+α

]1,...1,1,1,,,[321 iiiA NNN uuuiuuuiuuui ...)1(...)1(...)1(543432321 −+−+−+α

.

.

. 𝐴[𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . 𝑖ே] 1 2 3 2 3 4(1) ... (1) (1)N N Ni u u u i u u u iα + − + − + + −

 = 𝛼 + ∑ (𝑖௝ − 1)𝑎௝ே௝ୀଵ where 𝑎௝ = ∏ 𝑢௞ே௞ୀ௝ାଵ , 1 ≤ j < 𝑁

54 A Textbook of Data Structures and Algorithms 1

3.5. Applications

In this section, we introduce concepts that are applications of arrays and
generally found to be useful in computer science, namely, sparse matrices, ordered
lists, strings and bit arrays.

3.5.1. Sparse matrix

A matrix is a mathematical object that finds applications in various scientific
problems. A matrix is an arrangement of m.n elements arranged as m rows and n
columns. The sparse matrix is a matrix with zeros as the dominating elements.
However, there is no precise definition for a sparse matrix. The term “sparseness”,
therefore, is relatively defined. Figure 3.10 illustrates a matrix and a sparse matrix.

Figure 3.10. Matrix and a sparse matrix

A matrix consumes considerable memory space. Thus, a 1,000 × 1,000 matrix
needs 1 million storage locations in memory. Imagine the situation when the matrix
is sparse! To store a handful of non-zero elements, voluminous memory is allotted
and thereby wasted!

In such a case, to save valuable storage space, we resort to a 3-tuple
representation (i, j, value) to represent each non-zero element of the sparse matrix.
Thus, a sparse matrix A is represented by another matrix B[0:t, 1:3] with t + 1 rows
and three columns. Here, t refers to the number of non-zero elements in the sparse
matrix. While rows 1 to t record the details pertaining to the non-zero elements as
three tuples (i.e., three columns), the zeroth row, namely, B[0,1], B[0,2] and B[0,3],
records the number of rows, columns and non-zero elements of the original sparse
matrix A, respectively. Figure 3.11 illustrates a sparse matrix representation.

Arrays 55

Figure 3.11. Sparse matrix representation

A simple example of a sparse matrix can be found in the arrangement of choices
of let us say five elective courses, from the specified list of 100 elective courses, by
20,000 students of a university. The arrangement of choices would turn out to be a
matrix with 20,000 rows and 100 columns with just five non-zero entries per row,
indicative of the individual student choices. Such a matrix could definitely be
classified as sparse!

3.5.2. Ordered lists

One of the simplest and most useful data objects in computer science is an
ordered list or linear list. An ordered list can be either empty or non-empty. In the
latter case, the elements of the list are known as atoms and are chosen from a set D.
The ordered lists provide a variety of operations, such as retrieval, insertion, deletion
and update. The most common way to represent an ordered list is by using a one-
dimensional array. Such a representation is termed sequential mapping, although
better forms of representation have been presented in the literature.

EXAMPLE 3.7.–

The following are ordered lists:

i) (sun, mon, tue, wed, thu, fri, sat);

ii) (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, . . . 𝑎௡);

iii) (Unix, CP/M, Windows, Linux).

56 A Textbook of Data Structures and Algorithms 1

The ordered lists shown above have been represented as one-dimensional arrays
WEEK, VARIABLE and OS, as given below.

Below, we illustrate some of the operations performed on ordered lists, with
examples.

Operation Original ordered list Resultant ordered list after
 the operation

Insertion (𝑎ଵ, 𝑎ଶ, 𝑎଻, 𝑎ଽ) (𝑎ଵ, 𝑎ଶ, 𝑎଺, 𝑎଻, 𝑎ଽ)
(Insert a6)

Deletion (𝑎ଵ, 𝑎ଶ, 𝑎଻, 𝑎ଽ) (𝑎ଵ, 𝑎ଶ, 𝑎଻)
(Delete a9)

Update (𝑎ଵ, 𝑎ଶ, 𝑎଻, 𝑎ଽ) (𝑎ଵ, 𝑎ହ, 𝑎଻, 𝑎ଽ)
(Update 𝑎ଶ to 𝑎ହ)

3.5.3. Strings

A string is a data type used in many programming languages and represents text
rather than numbers. String represents alphanumeric data and can therefore be made
up of alphabet, numbers and spaces, in addition to other appropriate characters,
typically enclosed within quotation marks.

Arrays 57

EXAMPLE 3.8.–

The following are some examples of strings:

(i) “Newspaper”, (ii) “Coffee mug”, (iii) “New Delhi 110092”, (iv) “PARIS”.

A string is defined as an array of characters. Thus, each character comprising the
string resides in a cell belonging to the one-dimensional array. However, some
implementations of strings in programming languages insist on terminating the array
of characters belonging to a string with the special character “\0”, also known as the
null character. Figure 3.12 illustrates a one-dimensional array of characters S[1:13]
that holds the string “INDIAN OCEAN”.

 S [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
I N D I A N O C E A N \0

Figure 3.12. String as an array of characters

A collection of strings can be stored using a two-dimensional array. In other
words, an array of strings can be represented using an array of characters. Needless
to say, the maximum number of characters that comprise the string has to be the
same for all the strings. Figure 3.13 illustrates a collection of strings stored in a
two-dimensional array RIVER[1:4, 1:9].

String as a data type is built over the concept of string defined in formal
language theory. Thus, a formal string is simply defined to be a sequence of
characters or alphabet, and a formal language denotes any set of strings over some
fixed alphabet. In formal languages, strings are also referred to as words or
sentences. An empty string denoted by ε contains zero characters. Strings are
endowed to support a suite of operations such as (i) Length, (ii) concatenation,
(iii) prefix, (iv) suffix, (v) substring, (vi) equality and (vii) subsequence, to list a
few.

RIVER [1] [2] [3] [4] [5] [6] [7] [8] [9]
[1] G A N G E S \0
[2] A M A Z O N \0
[3] S E I N E \0
[4] N I L E \0

Figure 3.13. Array of strings

58 A Textbook of Data Structures and Algorithms 1

The length of a string x, denoted as |x|, computes the number of characters in the
string. Concatenation of two strings x and y, denoted x + y, yields a string in which y
is appended to x. Prefix and suffix are a consecutive set of characters that are a
leading contiguous part of a string or a trailing contiguous part of string,
respectively. A string obtained by deleting a prefix and a suffix from the original
string is called a substring. While prefixes and suffixes of a given string are
substrings of the original string, not every substring is a suffix or a prefix. Equality,
denoted by “=”, tests if two given strings are one and the same. A subsequence is
any string formed by deleting zero or more characters without changing the order of
the remaining elements in the original string.

EXAMPLE 3.9.–

Given strings x = “Deep”, y = “Learning” and an empty string ε, the following
are some operations undertaken on the strings:

i) Lengths of x, y, ε are |x| = |“Deep”| = 4, |y| = |“Learning”| = 8 and |ε| = 0.

ii) The concatenation operation applied over x, y and ε as follows yields the
resulting strings and results:

x + y = “DeepLearning” y + x = “LearningDeep” x + ε = “Deep”

ε + y = “Learning” |x + y| = 12 | ε + y| = 8

iii) “Learn” is a prefix of string y, and “Deep” is a prefix of string x + y.

iv) “earning” is a suffix of string y, and “Learning” is a suffix of string x + y.

v) “earn” is a substring of string y.

vi) x = y is false; x = x+ ε is true.

vii) “Lenin” is a subsequence of string y.

Most programming languages that have accommodated strings either as a data
type or as a character array also provide a collection of library functions that
implement a variety of useful string operations as mentioned above.

3.5.4. Bit array

A bit array, also known as bit vector, bit map, bit string or bit set, is a
one-dimensional array that compactly stores bits (0 or 1). A bit array supports the
following operations:

Arrays 59

i) NOT or Complement: This is a unary operation that performs logical negation
on each bit of the bit array, thereby transforming 1s to 0s and 0s to 1s.

ii) AND: This is a binary operation that takes two equal length bit arrays and
performs logical AND operation on each pair of the bits of the two bit arrays. A
logical AND of two input bits is 1 if both bits are 1 and 0 otherwise.

iii) OR: This is a binary operation that takes two equal length bit arrays and
performs logical OR operation on each pair of bits of the two bit arrays. A logical
OR of two input bits is 0 if both bits are 0 and 1 otherwise.

iv) XOR: This is a binary operation that takes two equal length bit arrays and
performs logical XOR operations on each pair of bits of the two bit arrays. A logical
XOR of two input bits is 1 if either of the two bits is 1 (not both) and 0 otherwise.

EXAMPLE 3.10.–

Given two bit arrays A = [0 1 0 1] and B = [1 1 0 0], the following are the
results of the bit array operations.

NOT A: [1 0 1 0], A AND B: [0 1 0 0],

A OR B: [1 1 0 1], A XOR B: [1 0 0 1]

ADT for arrays

Data objects:
A set of elements of the same type stored in a sequence.

Operations:

– Store value VAL in the ith element of the array
ARRAY

ARRAY[i] = VAL

– Retrieve the value in the ith element of array
ARRAY as VAL

VAL = ARRAY[i]

60 A Textbook of Data Structures and Algorithms 1

3.6. Illustrative problems

PROBLEM 3.1.–

The following details are available about an array RESULT. Find the address of
RESULT[17].

Base address : 520
Index range : 1:20
Array type : Real
Size of the memory location : 4 bytes

Solution:

Since RESULT[1:20] is a one-dimensional array, the address for RESULT[17] is
given by base address + (17 – lower index). However, the cell is made of 4 bytes;
hence, the address is given by base address + (17 – lower index).4 = 520 +
(17 – 1).4 = 584.

The array RESULT may be visualized as follows.

Summary

– An array as an ADT supports only two operations: STORE and RETRIEVE.

– Arrays may be one-dimensional, two-dimensional or multidimensional and stored in
memory in consecutive memory locations, either in the row major order or column major
order.

– Since memory is considered one-dimensional and arrays may be multi dimensional,
it is essential to know the representations of arrays in memory and their address
calculations, especially from the compiler’s point of view.

– Sparse matrices, ordered lists, strings and bit arrays are some significant applications
of array data structure.

Arrays 61

PROBLEM 3.2.–

For the following array B, compute:

i) the dimension of B;

ii) the space occupied by B in the memory;

iii) the address of B[7,2].

Array: B Column index: 0:5

Base address: 1003 Size of the memory location: 4 bytes

Row index: 0:15

Solution:

i) The number of elements in B is 16 × 6 = 96.

ii) The space occupied by B is 96 × 4 = 384 bytes.

iii) The address of B[7,2] is given by

1003 + [(7 – 0)·6 + (2 – 0)]·4 = 1003 + 176 = 1179.

PROBLEM 3.3.–

A programming language permits indexing of arrays with character subscripts;
for example, CHR_ARRAY[‘A’:’D’]. In such a case, the elements of the array are
CHR_ARRAY[‘A’], CHR_ARRAY[‘B’], and so on, and the ordinal number (ORD)
of the characters, namely, ORD(‘A’) = 1, ORD(‘B’) = 2, ORD(‘Z’) = 26 and so on,
is used to denote the index.

62 A Textbook of Data Structures and Algorithms 1

Now, two arrays TEMP[1:5, -1:2] and CODE[‘A’:’Z’, 1:2] are stored in
memory beginning from address 500. Additionally, CODE succeeds TEMP
in storage. Calculate the addresses of (i) TEMP[5, -1], (ii) CODE[‘N’,2] and
(iii) CODE[‘Z’,1].

Solution:

From the details given, the representation of TEMP and CODE arrays in memory
is as follows:

i) The address of TEMP[5, –1] is given by

base-address + (5 – 1)(2 – (–1) + 1) + (–1 – (–1))

= 500 + 16

= 516.

ii) To obtain the addresses of CODE elements, it is necessary to obtain the base
address, which is the immediate location after TEMP[5,2], the last element of array
TEMP.

Hence, the TEMP [5,2] is computed as

500 + (5 – 1)(2 – (–1) + 1) + (2 – (–1))

= 500 + 16 + 3

= 519.

Therefore, the base address of CODE is given by 520.

Now, the address of CODE [‘N’, 2] is given by

base address of CODE + [(𝑂𝑅𝐷(′𝑁′) − 𝑂𝑅𝐷(′𝐴′)). (2 − 1 + 1)] + (2 − 1)

= 520 + (14 – 1) 2 + 1

= 547.

Arrays 63

iii) The address of CODE[‘Z’,1] is computed as

base address of CODE + ((𝑂𝑅𝐷(′𝑍′) − 𝑂𝑅𝐷(′𝐴′)). (2 − 1 + 1)) + (1 − 1)

= 520 + (26 – 1) (2) + 0

= 570.

NOTE.– The base address of CODE may also be computed as

base address of TEMP + (number of elements in TEMP – 1) + 1

= 500 + (5.4 – 1) + 1

= 520.

PROBLEM 3.4.–

Given a = 10, b = 5, c = 3 and the array arr[1:5] = [9 6 8 5 7], what
does the following pseudo-code do to the array arr and the variables a, b, c?

for i = 1 to 5
 arr[i] = a
 a = b
 b = c
 c = arr[i]
end

Solution:

Since each step of the loop modifies the values of the variables and the array, it
is easy to track the variables and the array concerned with each step of the iteration
by constructing the following table:

Loop counter i a b c arr[1] arr[2] arr[3] arr[4] arr[5]

Initialization 10 5 3 9 6 8 5 7
1 5 3 10 10 6 8 5 7
2 3 10 5 10 5 8 5 7
3 10 5 3 10 5 3 5 7
4 5 3 10 10 5 3 10 7
5 3 10 5 10 5 3 10 5

64 A Textbook of Data Structures and Algorithms 1

Thus, at the end of the loop, the modified array and variables are, a = 3, b = 10,
c = 5 and the array arr[1:5] = [10 5 3 10 5].

PROBLEM 3.5.–

What does the following pseudo-code do to the array A[1: n, 1: n], which
is already provided as input to the code?

B = 5
for i = 1 to n
 for j = 1 to n
 temp = A[i,j] – B
 A[i, j] = A[j, i]
 A[j, i] = temp + B
 end
end

Solution:

The array A, going by the statements in the body of the innermost loop of the
code, seems to swap its ith row jth column element with the jth row ith column
element. However, since this swapping is attempted for each element of the array
(note the two for loops that work over the rows and columns of A), each element
undergoes two swaps, and therefore, array A remains the same when the loops
terminate.

PROBLEM 3.6.–

Given a bit array A = [0 0 1 1 0 1] on which the operations discussed in section
3.5.4 are workable:

i) Can you use OR to change any desired bit of A to 1?

ii) Can you use AND to change any desired bit of A to 0?

iii) Can you use XOR to invert or toggle any desired bit of A?

Arrays 65

Solution:

i) Let us suppose the fifth bit of A needs to be changed to 1. Choose a bit array
B = [0 0 0 0 1 0] of the same length as A, with the fifth bit set to 1 and all else set to
0. A OR B yields

[0 0 1 1 0 1] OR [0 0 0 0 1 0] = [0 0 1 1 1 1], which is the desired result.

ii) Let us suppose the third bit of A needs to be changed to 0. Choose a bit array
C = [1 1 0 1 1 1] of the same length as A, with its third bit set to 0 and all else set to
1. A AND B yields

[0 0 1 1 0 1] AND [1 1 0 1 1 1] = [0 0 0 1 0 1], which is the desired result.

iii) Let us suppose the fourth bit of A needs to be toggled. Choose a bit array

D = [0 0 0 1 0 0] of the same length as A and with the fourth bit set to 1 and all
else set to 0. A XOR B yields

[0 0 1 1 0 1] XOR [0 0 0 1 0 0] = [0 0 1 0 0 1], which is the desired result.

PROBLEM 3.7.–

Here is a pseudo-code that works over two strings, STRING1 and STRING2,
represented as an array of characters with sufficient sizes. length is a function that
computes the length of a string. What does the code do to the input strings?

1. LENGTH1 = length(STRING1);
2. LENGTH2 = length(STRING2);
3. for POSITION = 1 to LENGTH2
4. LENGTH1 = LENGTH1+1;
5. STRING1[LENGTH1]=STRING2[POSITION];
6. end

Solution:

The pseudo-code performs a concatenation operation over STRING1 and
STRING2. STRING1 holds the concatenated string, while STRING2 remains the

66 A Textbook of Data Structures and Algorithms 1

same. LENGTH1 holds the length of the concatenated string and LENGTH2 the
same for STRING2.

Review questions

1) Which of the following pairs of operations is supported by an array
ADT?

i) Store and retrieve.

ii) Insert and delete.

iii) Copy and delete.

iv) Append and copy.

a) (i) b) (ii) c) (iii) d) (iv)

2) The number of elements in an array ARRAY[l1 : u1, l2:u2] is given by

a) (u1-l1-1) (u2-l2-1) b) (u1.u2) c) (u1-l1) (u2-l2)

d) (u1-l1+1) (u2-l2+1)

3) A multidimensional array OPEN[0:2, 10:20, 3:4, -10:2] contains ____
elements.

a) 240 b) 858 c) 390 d) 160

4) For array A[1:u1, 1:u2], where α is the base address, A[i,1] has its address
given by

a) (𝑖 − 1)𝑢ଶ b) 𝛼 + (𝑖 − 1)𝑢ଶ c) 𝛼 + 𝑖. 𝑢ଶ d) 𝛼 + (𝑖 − 1). 𝑢ଵ

5) For the array 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, 1: 𝑢ଷ], where α is the base address, the address of 𝐴[𝑖, 𝑗, 1] is given by

a) 𝛼 + (𝑖 − 1)𝑢ଶ𝑢ଷ + (𝑗 − 1)𝑢ଷ b) 𝛼 + 𝑖. 𝑢ଶ𝑢ଷ + 𝑗. 𝑢ଷ

c) 𝛼 + (𝑖 − 1)𝑢ଵ𝑢ଶ + (𝑗 − 1)𝑢ଶ d) 𝛼 + 𝑖. 𝑢ଵ𝑢ଶ + 𝑗. 𝑢ଶ

6) Distinguish between the row major and column major ordering of an array.

Arrays 67

7) For an n-dimensional array 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, . . .1: 𝑢ே], obtain the address of the
element 𝐴[𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . 𝑖ே] given β as the home address.

8) For the following sparse matrix, obtain an array representation.

⎣⎢⎢
⎢⎢⎢
⎡0 0 0 −7 00 −5 0 0 03 0 6 0 −10 0 0 0 05 0 0 0 00 0 0 0 09 0 0 4 0 ⎦⎥⎥

⎥⎥⎥
⎤

9) For a string STRNG whose length |STRNG| = 11 and is stored as an array of
characters STRNG[1:12], where STRNG[12] = “\0”, the null character can be
ignored for this problem, match the following:

STRNG[1:5]
STRNG[9:11]
STRNG[3:7]

Subsequence
Substring

Prefix
Suffix

10) What are the operations that when undertaken on a bit array can (i) toggle or
invert a specific bit and (ii) toggle or invert all the bits in the bit array?

Programming assignments

1) Declare a one-dimensional, two-dimensional and a three-dimensional array in
a programming language (C, for example) that has the capability to display the
addresses of array elements. Verify the various address calculation formulae that
you have learnt in this chapter against the arrays that you have declared in the
program.

2) For the matrix A given below, obtain a sparse matrix representation B. Write a
program to

i) obtain B given matrix A as input;

ii) obtain the transpose of A using matrix B.

68 A Textbook of Data Structures and Algorithms 1

3) Open an ordered list 𝐿 = (𝑑ଵ, 𝑑ଶ, . . . 𝑑௡), where each di is the name of a
peripheral device, and the list is maintained in alphabetical order.

Write a program to

i) insert a device dk into the list L;

ii) delete an existing device di from L. In this case, the new ordered list should be 𝐿௡௘௪ = (𝑑ଵ, 𝑑ଶ, . . . 𝑑௜ିଵ, 𝑑௜ାଵ, . . . 𝑑௡) with (n-1) elements;

iii) find the length of L;

iv) update device dj to dl and print the new list.

4) If an element in the array is greater than all the elements to its right, then such
an element is designated as a leader. Given an array of elements, find all the leaders.

Example: For the array A = [1 8 6 7 3 1 5 2], 8, 7 and 5 are leaders.

5) Given an array, find the next greater element for each element in the array, if
available. If not available, print the element itself. The next greater element y for an
element x in the array is the first element that is greater than x and occurs on its right
side. The next greater element of the right most element in an array is the element
itself.

Example: Given A = [6 8 4 3 9] the next greater element list

B = [8 9 9 9 9].

6) Given an array, arrange the elements in an array in such a way that the first
maximum element is succeeded by the first minimum element, the second maximum
element is succeeded by the second minimum element and so on.

Arrays 69

Example: Given A = [8 5 1 3 9 7 6] the rearranged array

B = [9 1 8 3 7 5 6].

7) Implement the string operations of length, concatenation and equality
illustrated in example 3.9 as functions, using a programming language that allows
you to declare a string as a character array.

8) Given a string s that is input as a character array, (i) reverse the string and
(ii) check if it is a palindrome. A palindrome is a string that reads the same forward
and backward, for example, “MADAM”.

9) Implement a library of bit array functions that will perform the operations of
AND, OR, NOT and XOR on a given set of bit arrays.

4

Stacks

In this chapter, we introduce the stack data structure, the operations supported by
it and their implementations. Additionally, we illustrate two of its useful
applications in computer science, namely, recursive programming and evaluation of
expressions, among the innumerable available.

4.1. Introduction

A stack is an ordered list with the restriction that elements are added or deleted
from only one end of the list termed the top of stack. The other end of the list that
lies “inactive” is termed the bottom of stack.

Thus, if S is a stack with three elements a, b, c where c occupies the top of stack
position, and if d were to be added, the resultant stack contents would be a, b, c, d.
Note that d occupies the top of stack position. Again, initiating a delete or remove
operation would automatically throw out the element occupying the top of the stack,
namely, d. Figure 4.1 illustrates this functionality of the stack data structure.

Figure 4.1. Stack and its functionality

72 A Textbook of Data Structures and Algorithms 1

It needs to be observed that during the insertion of elements into the stack, it is
essential that their identities be specified, whereas for removal, no identity needs to
be specified, since by virtue of its functionality, the element that occupies the top of
the stack position is automatically removed.

The stack data structure therefore obeys the principle of Last In First Out
(LIFO). In other words, elements inserted or added into the stack join last, and those
that joined last are the first to be removed.

Some common examples of a stack occur during the serving of slices of bread
arranged as a pile on a platter or during the usage of an elevator (see Figure 4.2). It
is obvious that when a slice is added to a pile or removed when serving, it is the top
of the pile that is affected. Similarly, in the case of an elevator, the last person to
board the cabin must be the first person to alight from it (at least to make room for
the others to alight!).

Figure 4.2. Common examples of a stack

4.2. Stack operations

The two operations that support the stack data structure are

i) insertion or addition of elements known as Push;

ii) deletion or removal of elements known as Pop.

Before we discuss the operations supported by the stack in detail, it is essential to
know how stacks are implemented.

Stacks 73

4.2.1. Stack implementation

A common and basic method of implementing stacks is to make use of another
fundamental data structure, namely, arrays. While arrays are sequential data
structures, the other alternative of employing linked data structures has been
successfully attempted and applied. We discuss this elaborately in Chapter 7. In this
chapter, we confine our discussion to the implementation of stacks using arrays.

Figure 4.3 illustrates an array-based implementation of stacks. This is fairly
convenient considering the fact that stacks are one-dimensional ordered lists and so
are arrays, which, despite their multidimensional structure, are inherently associated
with a one-dimensional consecutive set of memory locations (Chapter 3).

Figure 4.3 shows a stack of four elements R, S, V, and G represented by an array
STACK[1:7]. In general, if a stack is represented as an array STACK[1:n], then n
elements and not one more can be stored in the stack. It therefore becomes essential
to issue a signal or warning termed STACK_FULL when elements whose number
is over and above n are pushed into the stack.

Again, during a pop operation, it is essential to ensure that one does not delete an
empty stack! Hence, the necessity for a signal or a warning termed
STACK_EMPTY during the implementation of the pop operation. While
implementation of stacks using arrays necessitates checking for STACK_FULL/
STACK_EMPTY conditions during push/pop operations, the implementation of
stacks with linked data structures dispenses with these testing conditions.

Figure 4.3. Array implementation of stacks

74 A Textbook of Data Structures and Algorithms 1

4.2.2. Implementation of push and pop operations

Let STACK[1:n] be an array implementation of a stack and top be a variable
recording the current top of the stack position. top is initialized to 0. item is the
element to be pushed into the stack. n is the maximum capacity of the stack.

Algorithm 4.1 illustrates the push operation in pseudo-code.

Algorithm 4.1. Implementation of push operation on a stack

In the case of the pop operation, as previously mentioned, no element identity
needs to be specified since, by default, the element occupying the top of the stack
position is deleted. Algorithm 4.2 illustrates the pop operation in pseudo-code. Note
that in Algorithm 4.2, item is used as an output variable only to store a copy of the
element removed.

Algorithm 4.2. Implementation of pop operation on a stack

It is evident from the algorithms that to perform a single push/pop operation, the
time complexity is O(1).

procedure POP(STACK, top, item)
 if (top = 0) then STACK_EMPTY;

 else

 { item = STACK[top];

 top = top - 1;

 }

end POP

procedure PUSH(STACK, n, top, item)
 if (top = n) then STACK_FULL;
 else
 { top = top + 1;
 STACK[top] = item; /* store item as top
 element of STACK */
 }
end PUSH

Stacks 75

EXAMPLE 4.1.–

Consider a stack DEVICE[1:3] of peripheral devices. The insertion of the four
items PEN, PLOTTER, JOY STICK and PRINTER into DEVICE and a deletion are
illustrated in Table 4.1.

Table 4.1. Push/pop operations on stack DEVICE[1:3]

76 A Textbook of Data Structures and Algorithms 1

Note that in operation 5, which is a pop operation, the top pointer is merely
decremented as a mark of deletion. No physical erasure of data is carried out.

4.3. Applications

Stacks have found innumerable applications in computer science and other allied
areas. In this section, we introduce two applications of stacks that are useful in
computer science, namely,

i) recursive programming;

ii) evaluation of expressions.

4.3.1. Recursive programming

The concepts of recursion and recursive programming are introduced in
Chapter 2. In this section, we demonstrate through a sample recursive program how
stacks are helpful in handling recursion.

Consider the recursive pseudo-code for factorial computation shown in Figure
4.4. Observe the recursive call in Step 3. It is essential that during the computation
of n!, the procedure does not lead to an endless series of calls to itself! Hence, the
need for a base case, 0! = 1, which is written in Step 1.

The spate of calls made by procedure FACTORIAL() to itself based on the
value of n can be viewed as FACTORIAL() replicating itself as many times as it
calls itself with varying values of n. Additionally, all of these procedures await
normal termination before the final output of n! is completed and displayed by the
very first call made to FACTORIAL(). A procedural call would have a normal
termination only when either the base case is executed (Step 1) or the recursive case
has successfully ended, that is, Steps 2–5 have completed their execution.

During the execution, to keep track of the calls made to itself and to record the
status of the parameters at the time of the call, a stack data structure is used. Figure
4.5 illustrates the various snap shots of the stack during the execution of
FACTORIAL(5). Observe how the values of the three parameters of the procedure
FACTORIAL(), namely, n, x and y, are kept track of in the stack data
structure.

Stacks 77

Figure 4.4. Recursive procedure to compute n!

When the procedure FACTORIAL(5) is initiated (see Figure 4.5(a)) and
executed (see Figure 4.5(b)), x obtains the value 4, and the control flow moves to
Step 3 in the procedure FACTORIAL(5). This initiates the next call to the
procedure as FACTORIAL(4). Observe that the first call (FACTORIAL(5)) has
not yet finished its execution when the next call (FACTORIAL(4)) to the procedure
has been issued. Therefore, there is a need to preserve the values of the variables
used, namely, n, x and y, in the preceding calls. Hence, there is a need for a
stack data structure.

Every new procedure call pushes the current values of the parameters involved
into the stack, thereby preserving the values used by the earlier calls. Figures 4.5(c)
and (d) illustrate the contents of the stack during the execution of FACTORIAL(4)
and subsequent procedure calls. During the execution of FACTORIAL(0) (see
Figure 4.5(e)), Step 1 of the procedure is satisfied, and this terminates the procedure
call yielding the value FACTORIAL = 1. Since the call for FACTORIAL(0) was
initiated in Step 3 of the previous call (FACTORIAL(1)), y acquires the value of
FACTORIAL(0), that is, 1, and the execution control moves to Step 4 to compute
FACTORIAL = n ∗ y (i.e.) FACTORIAL = 1 ∗ 1 = 1. With this
computation, FACTORIAL(1) terminates its execution. As previously mentioned,
FACTORIAL(1) returns the computed value of 1 to Step 3 of the previous call
FACTORIAL(2)). Once again, it yields the result FACTORIAL = n ∗ y = 2 ∗
1 = 2, which terminates the procedure call to FACTORIAL(2) and returns the
result to Step 3 of the previous call FACTORIAL(3) and so on.

Observe that the stack data structure grows due to a series of push operations
during the procedure calls and unwinds itself by a series of pop operations until it
reaches the step associated with the first procedure call to complete its execution and
display the result.

During the execution of FACTORIAL(5), the first and oldest call to be made,
y in Step 3 computes y = FACTORIAL(4) = 24 and proceeds to obtain
FACTORIAL = n ∗ y = 5 ∗ 24 = 120, which is the desired result.

procedure FACTORIAL(n)
Step 1: if (n = 0) then FACTORIAL = 1;
Step 2: else {x = n - 1;
Step 3: y = FACTORIAL(x);
Step 4: FACTORIAL = n * y;}
Step 5: end FACTORIAL

78 A Textbook of Data Structures and Algorithms 1

Figure 4.5. Snapshots of the stack data structure
during the execution of the procedural call FACTORIAL(5)

4.3.1.1. Tail recursion

Tail recursion or tail end recursion is a special case of recursion where a
recursive call to the function turns out to be the last action in the calling function.
Note that the recursive call needs to be the last executed statement in the function
and not necessarily the last statement in the function.

Stacks 79

Generally, in a stack implementation of a recursive call, all of the local variables
of the function that are to be “remembered” are pushed into the stack when the call
is made. Upon termination of the recursive call, the local variables are popped out
and restored to their previous values. Now for tail recursion, since the recursive call
turns out to be the last executed statement, there is no need for the local variables to
be pushed into a stack for them to be “remembered” and “restored” on termination
of the recursive call. This is because when the recursive call ends, the calling
function itself terminates, at which all local variables are automatically discarded.

Tail recursion is considered important in many high-level languages, especially
functional programming languages. These languages rely on tail recursion to
implement iteration. It is known that compared to iterations, recursions need more
stack space, and tail recursions are ideal candidates for transformation into
iterations.

4.3.2. Evaluation of expressions

4.3.2.1. Infix, prefix and postfix expressions

The evaluation of expressions is an important feature of compiler design. When
we write or understand an arithmetic expression, for example, −(𝐴 + 𝐵) ↑ 𝐶 ∗ 𝐷 + 𝐸,
we do so by following the scheme of ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ (i.e. an ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ is preceded and succeeded by an ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩). Such an expression is
termed infix expression. It is already known how infix expressions used in
programming languages have been accorded rules of hierarchy, precedence and
associativity to ensure that the computer does not misinterpret the expression but
computes its value in a unique way.

In reality, the compiler reworks on the infix expression to produce an equivalent
expression that follows the scheme of ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ and is
known as the postfix expression. For example, the infix expression 𝑎 + 𝑏 would
have the equivalent postfix expression a b+.

A third category of expression follows the scheme of ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ and is known as prefix expression. For example, the equivalent prefix
expression corresponding to 𝑎 + 𝑏 is +a b.

Examples 4.2 and 4.3 illustrate the hand computation of prefix and postfix
expressions from a given infix expression.

80 A Textbook of Data Structures and Algorithms 1

EXAMPLE 4.2.–

Consider an infix expression 𝑎 + 𝑏 ∗ 𝑐 − 𝑑. The equivalent postfix expression
can be hand computed by decomposing the original expression into subexpressions
based on the usual rules of hierarchy, precedence and associativity.

Expression
Subexpression chosen

based on rules of hierarchy,
precedence and associativity

Postfix expression

 (i) 𝑏 ∗ 𝑐

 (ii)

 (iii)

Hence, 𝑎𝑏𝑐 ∗ +𝑑 − is the equivalent postfix expression of 𝑎 + 𝑏 ∗ 𝑐 − 𝑑.

EXAMPLE 4.3.–

Consider the infix expression (𝑎 ∗ 𝑏 − 𝑓 ∗ ℎ) ↑ 𝑑. The equivalent prefix
expression is hand computed as follows:

Expression
Subexpression chosen based

on rules of hierarchy,
precedence and associativity

Equivalent
prefix expression

 (i) 𝑎 ∗ 𝑏 : ∗ 𝑎𝑏

 (ii) 𝑓 ∗ ℎ
:∗ 𝑓ℎ

Stacks 81

 (iii)

 (iv)

Hence, the equivalent prefix expression of (𝑎 ∗ 𝑏 − 𝑓 ∗ ℎ) ↑ 𝑑 is ↑ − ∗ 𝑎𝑏 ∗ 𝑓ℎ𝑑.

4.3.2.2. Evaluation of postfix expressions

As discussed earlier, the compiler finds it convenient to evaluate an expression in
its postfix form. The virtues of postfix form include elimination of parentheses,
which signify priority of evaluation, and the elimination of the need to observe rules
of hierarchy, precedence and associativity during evaluation of the expression. This
implies that the evaluation of a postfix expression is done by merely undertaking a
left-to-right scan of the expression, pushing operands into a stack and evaluating the
operator with the appropriate number of operands popped out from the stack, and
finally placing the output of the evaluated expression into the stack.

Algorithm 4.3 illustrates the evaluation of a postfix expression. Here, the postfix
expression is terminated with $ to signal the end of the input.

Algorithm 4.3. Procedure to evaluate a postfix expression E

Procedure EVAL_POSTFIX(E)

 X = get_next_character(E); /* get the next
 character of expression E */

 case x of
 :x is an operand: Push x into stack S;

 :x is an operator: Pop out required number of
 operands from the stack S,
 evaluate the operator and
 push the result into the
 stack S;

 :x = “$”: Pop out the result from
 stack S;
 end case

end EVAL-POSTFIX.

82 A Textbook of Data Structures and Algorithms 1

The evaluation of a postfix expression using Algorithm EVAL_POSTFIX is
illustrated in example 4.4.

EXAMPLE 4.4.–

To evaluate the postfix expression of 𝐴 + 𝐵 ∗ 𝐶 ↑ 𝐷 for A = 2, B = –1, C = 2 and
D = 3, using Algorithm EVAL_POSTFIX the equivalent postfix expression can
be computed to be 𝐴𝐵𝐶𝐷 ↑∗ +.

The evaluation of the postfix expression using the algorithm is illustrated below.
The values of the operands pushed into stack S are given within parentheses, e.g.,
A(2), B(-1), etc.

X Stack S Action

A

Push A into S

B

Push B into S

C

Push C into S

D

Push D into S

↑

Pop out two operands from stack S,
namely C(2) and D(3). Compute
C↑D and push the result 𝐶 ↑ 𝐷 = 2 ↑ 3 = 8 into stack S.

∗

Pop out B(-1) and 8 from stack S.
Compute 𝐵 ∗ 8 = −1 ∗ 8 = −8 and

push the result into stack S.

+

Pop out A(2), –8 from stack S.
Compute 𝐴 − 8 = 2 − 8 = −6 and

push the result into stack S

𝑆̸

Pop out –6 from stack S and output

the same as the result.

Stacks 83

4.4. Illustrative problems

PROBLEM 4.1.–

The following is a pseudo-code of a series of operations on a stack S. PUSH(S,
X) pushes an element X into S, POP(S,X) pops out an element from stack S as X,
PRINT(X) displays the variable X and EMPTYSTACK(S) is a Boolean function
that returns true if S is empty and false otherwise. What is the output of the code?

Summary

– A stack data structure is an ordered list with insertions and deletions done at one end
of the list known as top of stack.

– An insert operation is called a push operation and a delete operation is called a pop
operation.

– A stack can be commonly implemented using the array data structure. However, in
such a case it is essential to take note of stack full/stack empty conditions during the
implementation of push and pop operations, respectively.

– Handling recursive programming and evaluation of postfix expressions are
applications of stack data structure.

 ADT for stacks

Data objects:
A finite set of elements of the same type.

Operations:
 Create an empty stack and initialize top of stack
 CREATE(STACK)
 Check if stack is empty
 CHK_STACK_EMPTY(STACK) (Boolean function)
 Check if stack is full
 CHK_STACK_FULL(STACK) (Boolean function)
 Push ITEM into stack STACK
 PUSH(STACK, ITEM)
Pop element from stack STACK and output the element
popped in ITEM

 POP(STACK, ITEM)

84 A Textbook of Data Structures and Algorithms 1

1. X:=30;
2. Y:=15;
3. Z:=20;
4. PUSH(S, X);
5. PUSH(S, 40);
6. POP(S, Z);
7. PUSH(S, Y);
8. PUSH(S, 30);
9. PUSH(S, Z);
10. POP(S, X);
11. PUSH(S, 20);
12. PUSH(S, X);
13. while not EMPTYSTACK(S) do
14. POP(S, X);
15. PRINT(X);
16. end

Solution:

We track the contents of the stack S and the values of the variables X, Y, Z as
follows:

Steps Stack S Variables
 X Y Z

1 – 3 30 15 20

4 30 15 20

5 30 15 20

6 30 15 40

7 30 15 40

8 30 15 40

Stacks 85

9 30 15 40

10 40 15 40

11 40 15 40

12 40 15 40

The execution of Steps 13–16 repeatedly pops out the elements from S
displaying each element. The output would therefore be

 40 20 30 15 30

with the stack S empty.

PROBLEM 4.2.–

Use procedures PUSH(S,X), POP(S,X), PRINT(X) and
EMPTY_STACK(S) (as described in illustrative problem 4.1) and
TOP_OF_STACK(S), which returns the top element of stack S, to write pseudo
codes to

i) assign X to the bottom element of stack S, leaving the stack empty;

ii) assign X to the bottom element of the stack, leaving the stack unchanged;

iii) assign X to the nth element in the stack (from the top), leaving the stack
unchanged.

Solution:

(i) while not EMPTYSTACK(S) do

POP(S,X)
 end
 PRINT(X);

 X holds the element at the bottom of stack.

(ii) Since the stack S has to be left unchanged, we make use of another stack T to
temporarily hold the contents of S.

86 A Textbook of Data Structures and Algorithms 1

while not EMPTYSTACK(S) do
POP(S,X)
PUSH(T,X)

end /* empty contents of S into T */

PRINT(X); /* output X */

while not EMPTYSTACK(T) do
 POP(T, Y)
 PUSH(S, Y)
end /* empty contents of T back into S */

(iii) We make use of a stack T to remember the top n elements of stack S before
replacing them back into S.

for i:=1 to n do
 POP(S,X)
 PUSH(T,X)
end /* Push top n elements of S into T */
PRINT(X); /* display X */
for i = 1 to n do
 POP (T, Y);
 PUSH(S,Y);
end /* Replace back the top n elements
 available in T into S */

PROBLEM 4.3.–

What is the output produced by the following segment of code, where for a
stack S, PUSH(S,X), POP(S, X), PRINT(X), EMPTY_STACK(S) are
procedures as described in illustrative problem 4.1 and CLEAR(S) is a procedure
that empties the contents of the stack S?

1. TERM = 3;
2. CLEAR(STACK);
3. repeat
4. if TERM <=12 then {PUSH(STACK, TERM);
5. TERM = 2 * TERM;}
6. else
7. {POP(STACK, TERM);
8. PRINT(TERM);
9. TERM = 3 * TERM + 2;}
10. until EMPTY_STACK(STACK) and TERM > 15.

Stacks 87

Solution:

Let us keep track of the stack contents and the variable TERM as follows:

Steps Stack STACK TERM
Output

displayed

1-2 3

3, 4, 5, 10

6

3, 4, 5, 10

12

3, 4, 5, 10

24

3, 6, 7

12

8

12 12

9, 10

38

3, 6, 7

6

8

6 6

9, 10

20

3, 6, 7

3

88 A Textbook of Data Structures and Algorithms 1

8

3 3

9, 10

11

3, 4, 5, 10

22

3, 6, 7

11

8

11 11

9, 10

35

The output is 12, 6, 3 and 11.

PROBLEM 4.4.–

For the following pseudo-code of a recursive program mod that computes a mod
b given a, b as inputs, trace the stack contents during the execution of the call
mod (23, 7).

 procedure mod (a, b)
 if (a < b) then mod := a
 else

 { bax −=:1

),mod(: 11 bxy =

 mod:= 1y

 }
 end mod

Stacks 89

Solution:

We open a stack structure to track the variables a, b, 𝑥ଵ and 𝑦ଵ as shown
below. The snap shots of the stack during recursion are shown.

 a b 𝑥ଵ 𝑦ଵ a b 𝑥ଵ 𝑦ଵ a b 𝑥ଵ 𝑦ଵ a b 𝑥ଵ 𝑦ଵ
 (a) call mod(23,7) (b) call mod(16,7) (c) call mod(9,7) (d) call mod(2,7)

 a b 𝑥ଵ 𝑦ଵ a b 𝑥ଵ 𝑦ଵ Output: 2
 (e) After termination (f) After termination (g) After termination
 of mod(2,7) of mod(9,7)and mod(16,7) of mod (23,7)

PROBLEM 4.5.–

For the infix expression given below, obtain (i) the equivalent postfix expression,
(ii) the equivalent prefix expression and (iii) evaluate the equivalent postfix
expression obtained in (i) using the Algorithm EVAL_POSTFIX() (Algorithm 4.3),
with A = 1, B = 10, C = 1, D = 2, G = –1 and H = 6. (−(𝐴 + 𝐵 + 𝐶) ↑ 𝐷) ∗ (𝐺 + 𝐻)

Solution:

(i) and (ii): We demonstrate the steps to compute the prefix expression and
postfix expression in parallel in the following table:

90 A Textbook of Data Structures and Algorithms 1

Expression

Subexpression
chosen based on

rules of hierarchy,
precedence and

associativity

Equivalent
postfix expression

Equivalent
prefix

expression

(𝐴 + 𝐵 + 𝐶)
Note: (𝐴 + 𝐵 + 𝐶) is
equivalent to the two

sub expressions

]

①: AB+C+

①: ++ABC

②: AB+C+-

②: -++ABC

 𝐺𝐻 +

④:+𝐺𝐻

⑤:
AB+C+-D↑GH+*

⑤:
*↑-++ABCD+GH

The equivalent postfix and prefix expressions are 𝐴𝐵 + 𝐶 + −𝐷 ↑ 𝐺𝐻 +∗ and ∗↑ − + +𝐴𝐵𝐶𝐷 + 𝐺𝐻, respectively.

(iii) To evaluate 𝐴𝐵 + 𝐶 + −𝐷 ↑ 𝐺𝐻 +∗ $ for A = 1, B = 10, C = 1, D = 2,
G = -1 and H = 6, using Algorithm EVAL_POSTFIX(), the steps are listed in the
following table:

Stacks 91

x Stack S Action
A

B

+

C

+

 – ##

D

 ↑

G

H

+

 ∗

$

Push A into S

Push B into S

Evaluate A+B and push result into
S

Push C into S

Evaluate 11+C and push result into
S

Evaluate (unary minus) –12 and
push result into S

Push D into S

Evaluate (−12) ↑ 𝐷 and push
result into S

Push G into S

Push H into S

Evaluate G+H and push result into
S

Evaluate 144 ∗ 5 and push result
into S

Output 720

A compiler basically distinguishes between a unary “–” and a binary “−” by generating
different tokens. Hence, there is no ambiguity regarding the number of operands to be popped
out from the stack when the operator is “−”. In the case of a unary “−”, a single operand is
popped out, and in the case of binary “−”, two operands are popped out from the stack.

92 A Textbook of Data Structures and Algorithms 1

PROBLEM 4.6.–

Two stacks S1 and S2 are to be stored in a single array A[1:n], with
PushS1(x) and PushS2(x) handling their respective push operations with
regard to element x and PopS1(x) and PopS2(x) handling their respective pop
operations, with the output variable x indicating the element popped out from the
stack. Let TopS1 and TopS2 be their respective top-of-stack variables. The stacks
share their storage space in such a way that their respective bottom of stacks are
positioned in the middle of the array, as shown in Figure P4.1, and the stacks grow
in the opposite directions.

Figure P4.1. Two stacks are stored in a single array A with
the bottom of stacks positioned in the middle of the array

i) For n = 5, if S1 = {a, b} and S2 = {m, n}, how would array A look after all of
the elements of stacks S1 and S2 were pushed into it invoking PushS1(x) and
PushS2(x)?

ii) How would array A look if the following operations were carried out in a
sequence? What values do the variables w and y represent at the end of the
operations?

PopS1(w)

PopS2(y)

PushS1(y)

PushS2(w)

PopS2(y)

PopS2(w)

Stacks 93

iii) For n = 5, if S1 = {a, b, c, d} and S2 = {m}, what are your observations
regarding the representation of stacks in the array?

iv) What are the stack full conditions for the two stacks?

v) Is such a method of storing two stacks in a single array efficient?

Solution:

i) Array A would look as shown in Figure P4.2(a) after elements of S1 and S2
were pushed into the respective stacks stored in array A.

ii) Figure P4.2(b) illustrates array A after the operations have been performed.
The values of the variables are w = “m” and y = “b”.

iii) From Figure P4.2(c), it can be seen that stack S1 reports stack overflow, and
therefore element “d” could not find a place in stack S1, although array A had one
memory location free.

iv) The stack full condition for stack S1 is (TopS1 = 1), and the condition for
stack S2 is (TopS2 = n).

v) No. As illustrated in illustrative problem 4.6(ii), there is the possibility of one
stack signaling overflow when there are free memory locations available in array A
that could have accommodated the elements concerned. Hence, this method is not
storage efficient.

(a) Array A after the operations mentioned
in illustrative problem 4.6(i) are executed.

94 A Textbook of Data Structures and Algorithms 1

(b) Array A after the specific operations mentioned

in illustrative problem 4.6(ii) are executed.

(c) Array A after the specific operations mentioned

in illustrative problem 4.6 (iii) are executed.

Figure P4.2. Snapshots of array A in illustrative problem 4.6

PROBLEM 4.7.–

If the stacks S1 and S2 discussed in illustrative problem 4.6, with their respective
push and pop procedures, were stored with their respective bottom of stacks positioned
on the left and right extreme of the array, respectively, and with the stacks growing
toward the middle of the array, as shown in Figure P4.3, redo questions (i)–(v)
of illustrative problem 4.6 over the new configuration of stacks in array A(1:n).

Solution:

i) See Figure P4.4(a).

ii) See Figure P4.4(b). The values of the variables are w = b and y = m.

iii) See Figure P4.4(c). Unlike the configuration shown in Figure P4.2(c), no
stack over flow is reported by S1 since element “d” finds a place in the stack making
use of the memory space available.

Stacks 95

iv) The stack overflow conditions are (TopS1+1) = TopS2 for stacks S1 and S2.

v) Yes. It is a space-efficient method when compared to the one discussed in
illustrative problem 4.6, since it is possible to avoid stack full conditions of the kind
illustrated in illustrative problem 4.6(iii) and elements can be pushed into the stacks
as long as the memory locations are free in array A.

Figure P4.3. Two stacks stored in a single array A with
their bottom of stacks positioned at the extreme ends of the array

(a) Array A after the operations mentioned
in illustrative problem 4.7(i) are executed.

(b) Array A after the specific operations mentioned

in illustrative problem 4.7(ii) are executed.

96 A Textbook of Data Structures and Algorithms 1

(c) Array A after the specific operations mentioned

in illustrative problem 4.7(iii) are executed.

Figure P4.4. Snapshots of array A in illustrative problem 4.7

PROBLEM 4.8.–

You are allowed to operate on a stack WORK and a temporary stack TEMP (if
needed) supporting their ADT operations of PUSH (S,X), POP (S, X) and
EMPTYSTACK (S) only, where X represents an element/variable to be pushed in or
popped out of the stack and S represents a stack. You are also permitted to use one
variable if needed to carry out the operations.

i) Given n distinct random numbers that are to be pushed into WORK, how can
you find the minimum element that was pushed into it? You are permitted to use a
lone variable.

ii) Given n distinct random numbers that are to be pushed into WORK, how can
you find the maximum element that was pushed into it, all the while ensuring that
the elements stored in WORK are in their descending order with the maximum
element beginning at the bottom of stack? You are permitted to use a lone variable
and a temporary stack TEMP.

iii) Given an array A[1: n] of distinct random numbers how can you obtain the
sorted list in the array, making use of stacks alone?

Solution:

i) Let x1, x2, … xn be the n distinct random numbers to be pushed into WORK,
and let MIN be the variable that will record the minimum number. Set MIN = x1 and
execute PUSH (WORK, x1). Next, consider x2; if x2 is greater than MIN, simply
execute PUSH (WORK, x2). On the other hand, if x2 is less than MIN, set MIN = x2
and PUSH (WORK x2).

Stacks 97

In general, if the current element xi to be pushed into WORK is less than MIN,
set MIN = xi and PUSH (WORK, xi); otherwise, simply execute PUSH (WORK, xi).
After all the elements have been pushed into WORK, MIN records the minimum
element in the input list.

ii) Let x1, x2, …xn be the n distinct random numbers to be pushed into WORK,
and let MAX be the variable that will record the maximum element. Set MAX = x1
and execute PUSH (WORK, x1). Now consider x2; if x2 is less than MAX, PUSH
(WORK, x2) and move on to the next element in the input list. If x2 is larger than
MAX, then set MAX = x2, POP (WORK, X) where X = x1, PUSH (TEMP, X),
PUSH (WORK, x2), POP (TEMP, X), PUSH (WORK, X). The set of operations
puts the elements in WORK in descending order, making use of the stack TEMP
while preserving the maximum element in MAX.

In general, if the current input element xi is greater than MAX, then set MAX =
xi, and repeatedly execute POP (WORK, X) and PUSH (TEMP, X) for every
element X in WORK until EMPTYSTACK (WORK) is true. Now do PUSH
(WORK, xi) and repeatedly POP (TEMP, X), PUSH (WORK, X) until
EMPTYSTACK (TEMP) is true. TEMP serves to hold the elements in WORK so
that the elements in WORK are put in descending order after the current maximum
element has been input into WORK as the bottom most element in WORK.

If the current input element xi is less than MAX but greater than the top element
of WORK, then pop out elements from WORK that are less than xi, push them into
TEMP to hold them, PUSH (xi, WORK) and pop out all elements from TEMP until
EMPTYSTACK (TEMP) is true and push them back into WORK.

Thus, the elements in WORK arrange themselves in descending order with the
help of stack TEMP, while MAX reports the maximum element in the stack WORK.

iii) This only requires a minor refinement of the process discussed in illustrative
problem 4.8(ii) to obtain the sorted list of elements in WORK. After the sorted list
of elements is available in WORK, pop out the elements in WORK and store them
in array A. Storing it from the first memory location will yield an ascending order of
array elements, and storing it from the last memory location will yield a descending
order of array elements in A[1:n].

Review questions

1) Which among the following properties does not hold true in a stack?

(i) A stack supports the principle of Last In First Out.

98 A Textbook of Data Structures and Algorithms 1

(ii) A push operation decrements the top pointer.

(iii) A pop operation deletes an item from the stack.

(iv) A linear stack has limited capacity.

a) (i) b) (ii) c) (iii) d) (iv)

2) A linear stack S is implemented using an array as shown below. The TOP
pointer that points to the top most element of the stack is set as shown.

X Y A Z F

 [1] [2] [3] [4] [5]

 Bottom of stack TOP

Execution of the operation PUSH(S, “W”) would result in

a) TOP = 4 b) TOP = 5 c) Stack full condition d) TOP = 3

3) For the linear stack shown in review question 2, execution of the operations
POP (S), POP(S), PUSH(S, “U”), and POP(S) in a sequential fashion would leave
the element ––––––––––on top of the stack with the TOP pointer set to the value ––
–––-.

a) Y, 2 b) U, 3 c) U, 1 d) U, 4

4) The equivalent post fix expression for the infix expression a + b + c is

a) a b c + + b) a b + c + c) a b + + c d) a + + b c

5) The equivalent postfix expression for the infix expression a↑b ↑c ↑d is

a) ab↑cd↑↑ b) abc↑↑↑d c) ab↑c↑d↑ d) abcd↑↑↑

6) How are insert operations carried out in a stack?

7) What are the demerits of a linear stack?

8) If a stack S[1:n] was to be implemented with the bottom of the stack at S[n],
write a procedure to undertake the push operation on S.

9) For stack S[1:n] introduced in review question 8, write a procedure to
undertake the pop operation on S.

10) For the following logical expression

(a and b and c) or d or e or (not h)

Stacks 99

i) obtain the equivalent postfix expression;

ii) evaluate the postfix expression for a = true, b = false, c = true, d = true,
e = true, h = false.

11) Multiple stacks: A single one-dimensional array A[1:n] can accommodate
multiple stacks. If m stacks are to be accommodated in the array, then the array can be
equally segmented to hold the m stacks sequentially, each with its bottom of stack and
top of stack variables. The size of each stack could then approximately be m / n .

Design a multiple stack scheme over an array A[1:10] with three stacks S1, S2
and S3. Assume that S1 = { a, h, y, m}, S2 = { b, j, l, s, z} and S3 = { k, c}. Attempt
to store the stacks in array A. What are their individual bottom of stack and top of
stack variables? What are the stack full and stack empty conditions for each of the
stacks? Demonstrate push and pop operations on these stacks and show how the top
of stack variables are manipulated to accommodate these operations.

Programming assignments

1) Implement a stack S of n elements using arrays. Write functions to perform
PUSH and POP operations. Implement queries, using the push and pop functions to

i) Retrieve the mth element of the stack S from the top (m < n), leaving the
stack without its top m-1 elements.

ii) Retain only the elements in the odd position of the stack and pop out all
even positioned elements. For example,

 Stack S Output stack S

Elements:

Position:

2) Write a recursive program to obtain the nth order Fibonacci sequence number.
Include appropriate input/output statements to track the variables participating in
recursion. Do you observe the “invisible” stack at work? Record your observations.

3) Implement a program to evaluate any given postfix expression. Test your
program for the evaluation of the equivalent postfix form of the expression (−(𝐴 ∗ 𝐵)/𝐷) ↑ 𝐶 + 𝐸 − 𝐹 ∗ 𝐻 ∗ 𝐼 for A = 1, B = 2, D = 3, C = 14, E = 110, F = 220,
H = 16.78, I = 364.621.

4) Write a program that inputs a list of numbers already stored in a stack STACK
and sorts them, making use of a temporary stack TEMP. The sorted list of numbers
should be made available in STACK.

100 A Textbook of Data Structures and Algorithms 1

6) S1 and S2 are two sorted stacks comprising n and m integers sorted in
descending order, respectively, with their top elements pointing to the smallest in
their lists. Create a stack MERGE that merges the elements in stacks S1 and S2 such
that at the end of the merge, all of the elements in S1 and S2 are available in
MERGE in descending order, that is, with the largest element as its top element.
Note that the number of elements in stack MERGE would be (n + m).

5

Queues

In this chapter, we discuss the queue data structure, its operations and its
variants, namely, circular queues, priority queues and deques. The application of the
data structure is demonstrated on the problem of job scheduling in a time-sharing
system environment.

5.1. Introduction

A queue is a linear list in which all insertions are made at one end of the list
known as the rear or tail of the queue, and all deletions are made at the other end
known as the front or head of the queue. An insertion operation is also referred to
as enqueuing a queue, and a deletion operation is referred to as dequeuing a queue.

Figure 5.1 illustrates a queue and its functionality. Here, Q is a queue of three
elements a, b, and c (Figure 5.1(a)). When an element d is to join the queue, it is
inserted at the rear end of the queue (Figure 5.1(b)), and when an element is to be
deleted, the element at the front end of the queue, namely, a, is deleted automatically
(Figure 5.1(c)). Thus, a queue data structure obeys the principle of First In First
Out (FIFO) or First Come First Served (FCFS).

Many examples of queues occur in everyday life. Figure 5.2(a) illustrates a
queue of customers waiting to be served by a clerk at the booking counter, and
Figure 5.2(b) illustrates a trail of components moving down an assembly line to be
processed by a robot at the end of the line. The FIFO principle of insertion at the
rear end of the queue when a new client arrives or when a new component is added,
and deletion at the front end of the queue when the service of the client or
processing of the component is complete, is evident.

102 A Textbook of Data Structures and Algorithms 1

Figure 5.1. A queue and its functionality

5.2. Operations on queues

The queue data structure supports two operations, namely,

i) insertion or addition of elements to a queue;

ii) deletion or removal of elements from a queue.

Before we proceed to discuss these operations, it is essential to know how
queues are implemented.

5.2.1. Queue implementation

As discussed for stacks, a common method of implementing a queue data
structure is to use another sequential data structure, namely, arrays. However,
queues have also been implemented using a linked data structure (Chapter 7). In this
chapter, we confine our discussion to the implementation of queues using arrays.

Figure 5.3 illustrates an array-based implementation of a queue. A queue Q of
four elements R, S, V and G is represented using an array Q [1:7]. Note how the
variables FRONT and REAR keep track of the front and rear ends of the queue to
facilitate execution of insertion and deletion operations, respectively.

However, just as in the stack data structure, the array implementation limits the
capacity of the queue. In other words, the number of elements in the queue cannot
exceed the maximum dimension of the one-dimensional array. Thus, a queue that is
accommodated in an array Q[1:n] cannot hold more than n elements. Hence, every
insertion of an element into the queue has to necessarily test for a QUEUE-FULL
condition before executing the insertion operation. Again, each deletion has to
ensure that it is not attempted on a queue that is already empty calling for the need
to test for a QUEUE-EMPTY condition before executing the deletion operation.
However, as said earlier with regard to stacks, the linked representation of queues

Queues 103

dispenses with the need for QUEUE-FULL and QUEUE-EMPTY testing conditions
and hence proves to be elegant and more efficient.

Figure 5.2. Common examples of queues

Figure 5.3. Array implementation of a queue

5.2.2. Implementation of insert and delete operations on a queue

Let Q[1:n] be an array implementation of a queue. Let FRONT and REAR be
variables recording the front and rear positions of the queue. Observe that the
FRONT variable points to a position that is physically one less than the actual front
of the queue. ITEM is the element to be inserted into the queue. n is the maximum
capacity of the queue. Both FRONT and REAR are initialized to 0.

Algorithm 5.1 illustrates the insert operation on a queue.

rearfront

(a) Queue before a booking
counter.

front rear

(b) Queue of components in
an assembly line.

104 A Textbook of Data Structures and Algorithms 1

Algorithm 5.1. Implementation of an insert operation on a queue

Algorithm 5.1 shows that the addition of every new element into the queue
increments the REAR variable. However, before insertion, the condition of whether
the queue is full (QUEUE_FULL) is checked. This ensures that there is no overflow
of elements in a queue.

The delete operation is illustrated in Algorithm 5.2. Although a deletion
operation automatically deletes the front element of the queue, the variable ITEM is
used as an output variable to store and perhaps display the value of the element
removed.

Algorithm 5.2. Implementation of a delete operation on a queue

In Algorithm 5.2, observe that to perform a delete operation, the participation of
both the FRONT and REAR variables is essential. Before deletion, the condition
(FRONT = REAR) checks for the emptiness of the queue. If the queue is non-
empty, FRONT is incremented by 1 to point to the element to be deleted, and
subsequently, the element is removed through ITEM. Note how this leaves the
FRONT variable remembering the position which is one less than the actual front of
the queue. This helps in the usage of (FRONT = REAR) as a common condition for
testing whether a queue is empty, which occurs either after its initialization or after a
sequence of insert and delete operations when the queue has just emptied itself.

procedure DELETEQ (Q, FRONT, REAR, ITEM)
 if (FRONT =REAR) then QUEUE_EMPTY;

 FRONT = FRONT +1;
 ITEM = Q[FRONT];
end DELETEQ.

procedure INSERTQ (Q, n, ITEM, REAR)

/* insert item ITEM into Q with capacity n */
 if (REAR = n) then QUEUE_FULL;

 REAR = REAR + 1; /* Increment REAR*/
 Q[REAR] = ITEM; /* Insert ITEM as the rear
 element*/
end INSERTQ

Queues 105

Soon after the queue Q has been initialized, FRONT = REAR = 0. Hence, the
condition (FRONT = REAR) ensures that the queue is empty. Again, after a
sequence of operations when Q has become partially or completely full and delete
operations are repeatedly invoked to empty the queue, it may be observed how
FRONT increments itself in steps of one with every deletion and begins moving
toward REAR. During the final deletion, which renders the queue empty, FRONT
coincides with REAR satisfying the condition (FRONT = REAR = k), k ≠ 0.
Here, k is the position of the last element that was deleted.

Hence, we observe that in an array implementation of queues, with every
insertion, REAR moves away from FRONT, and with every deletion, FRONT moves
toward REAR. When the queue is empty, FRONT = REAR is satisfied, and when
full, REAR = n (the maximum capacity of the queue) is satisfied.

Queues whose insert/deletion operations follow the procedures implemented in
Algorithms 5.1 and 5.2 are known as linear queues to distinguish them from
circular queues, which will be discussed in section 5.3.

Example 5.1 demonstrates the operation of a linear queue. The time complexity
to perform a single insert/deletion operation in a linear queue is O(1).

EXAMPLE 5.1.–

Let BIRDS [1:3] be a linear queue data structure. The working of Algorithms 5.1
and 5.2 demonstrated on the insertions and deletions performed on BIRDS is
illustrated in Table 5.1.

5.2.3. Limitations of linear queues

Example 5.1 illustrates the implementation of insert and delete operations on a
linear queue. In operation 4, when “SWAN” was inserted into BIRDS [1:3], the
insertion operation was unsuccessful since the QUEUE_FULL condition was
invoked. Additionally, one observes the queue BIRDS to be physically full,
justifying the condition. However, after operations 5 and 6 were performed, when
two elements, namely, DOVE and PEACOCK, were deleted, despite the space they
had created to accommodate two more insertions, the insertion of “SWAN”
attempted in operation 7 was rejected once again due to the invocation of the
QUEUE_FULL condition. This is a gross limitation of a linear queue since the
QUEUE_FULL condition does not check whether Q is “physically” full. It merely

106 A Textbook of Data Structures and Algorithms 1

relies on the condition (REAR = n), which may turn out to be true even for a queue
that is only partially full, as shown in operation 7 of example 5.1.

When one contrasts this implementation with the working of a queue that one
sees around in everyday life, it is easy to see that with every deletion (after
completion of service at one end of the queue), the remaining elements move
forward toward the head of the queue, leaving no gaps in between. This obviously
makes room for many insertions to be accommodated at the tail end of the queue
depending on the space available.

However, attempting to implement this strategy during every deletion of an
element is worthless since data movement is always computationally expensive and
may render the process of queue maintenance highly inefficient.

In short, when a QUEUE_FULL condition is invoked, it does not necessarily
imply that the queue is “physically” full. This leads to the limitation of rejecting
insertions despite the space available to accommodate them. The rectification of this
limitation leads to what are known as circular queues.

5.3. Circular queues

In this section, we discuss the implementation and operations on circular queues,
which serve to rectify the limitation of linear queues.

As the name indicates, a circular queue is not linear in structure but instead
circular. In other words, the FRONT and REAR variables, which displayed a linear
(left to right) movement over a queue, display a circular movement (clockwise) over
the queue data structure.

5.3.1. Operations on a circular queue

Let CIRC_Q be a circular queue with a capacity of three elements, as shown
in Figure 5.4(a). The queue is obviously full, with FRONT pointing to the element
at the head of the queue and REAR pointing to the element at the tail end of the
queue.

Let us now perform two deletions and then attempt insertions of“d” and “e” into
the queue.

Observe the circular movement of the FRONT and REAR variables. After two
deletions, FRONT moves toward REAR and points to “c” as the current front
element of CIRC_Q (Figure 5.4(b)). When “d” is inserted, unlike linear queues,

Queues 107

REAR curls back in a clockwise fashion to accommodate “d” in the vacant space
available. A similar procedure follows for the insertion of “e” as well (Figure
5.4(c)).

108 A Textbook of Data Structures and Algorithms 1

Table 5.1. Insert/delete operations on the queue BIRDS [1:3]

Figure 5.5 emphasizes this circular movement of FRONT and REAR variables
over a general circular queue during a sequence of insertions/deletions.

A circular queue, when implemented using arrays, is non-different from linear
queues in their physical storage. In other words, a linear queue is conceptually
viewed to have a circular form to understand the clockwise movement of FRONT
and REAR variables, as shown in Figure 5.6.

Figure 5.4. Working of a circular queue

 a b c

FRONT REAR

(a) Initial circular queue

c

FRONT

(b) Circular queue
after two deletions.

d c

REAR FRONT

Insert ‘d’

REAR de c

REAR FRONT

Insert ‘e’

(c) Circular queue after
insertions of d, e

CIRC_Q:

d e

Queues 109

Figure 5.5. Circular movement of FRONT and REAR variables in a circular queue

5.3.2. Implementation of insertion and deletion operations in circular
queue

Algorithms 5.3 and 5.4 illustrate the implementation of insert and delete
operations in a circular queue, respectively. The circular movement of FRONT and
REAR variables is implemented using the mod function, which is cyclical in nature.
Additionally, the array data structure CIRC_Q to implement the queue is declared to
be CIRC_Q [0: n-1] to facilitate the circular operation of FRONT and REAR
variables. As in linear queues, FRONT points to a position that is one less than the
actual front of the circular queue. Both FRONT and REAR are initialized to 0. Note

a1 …a2… ak

n (capacity)

FRONT REAR

(a) A circular queue at some instance

ak+1 ak+2 ak+l… a1 …a2 ak

(b) After insertion of ak+1, ak+2, … ak+l (k+ l<n)

REAR FRONT

 as+1 ak+l … …

FRONT REAR

(c) After s deletions (s > k)

110 A Textbook of Data Structures and Algorithms 1

that (n – 1) is the actual physical capacity of the queue despite the array declaration
as [0: n – 1].

Figure 5.6. Physical and conceptual
view of a circular queue

Algorithm 5.3. Implementation of
insert operation in a circular queue

Algorithm 5.4. Implementation of a delete operation in a circular queue

The time complexity of Algorithms 5.3 and 5.4 is O(1). The working of the
algorithms is demonstrated on an illustration given in example 5.2.

 a b c d ...

FRONT REAR

(a) Physical view

a
b c

d
FRONT REAR

(b) Conceptual view

procedure DELETE_CIRCQ(CIRC_Q, FRONT,REAR, n, ITEM)
 If (FRONT = REAR) then CIRCQ_EMPTY;
 /* CIRC_Q is physically empty*/
 FRONT = (FRONT+1) mod n;
 ITEM = CIRC_Q [FRONT];
end DELETE_CIRCQ

procedure INSERT_CIRCQ(CIRC_Q, FRONT,REAR, n, ITEM)
 REAR=(REAR + 1) mod n;
 If (FRONT = REAR) then CIRCQ_FULL; /* Here CIRCQ_FULL
 tests for the queue full condition
 and if so, retracts REAR to its
 previous value*/
 CIRC_Q [REAR]= ITEM;
end INSERT_CIRCQ.

Queues 111

EXAMPLE 5.2.–

Let COLOURS [0:3] be a circular queue data structure. Note that the actual
physical capacity of the queue is only three elements despite the declaration of the
array as [0:3]. The operations illustrated in Table 5.2 demonstrate the working of
Algorithms 5.3 and 5.4.

112 A Textbook of Data Structures and Algorithms 1

Table 5.2. Insert and delete operations
on the circular queue COLOURS [0:3]

5.4. Other types of queues

5.4.1. Priority queues

A priority queue is a queue in which insertion or deletion of items from any
position in the queue are done based on some property (such as priority of task)

For example, let P be a priority queue with three elements a, b and c whose
priority factors are 2, 1 and 1, respectively. Here, the larger the number is, the higher
the priority accorded to that element (Figure 5.7(a)). When a new element d with
higher priority, namely, 4, is inserted, d joins at the head of the queue superseding
the remaining elements (Figure 5.7(b)). When elements in the queue have the same
priority, then the priority queue behaves like an ordinary queue following the
principle of FIFO among such elements.

The working of a priority queue may be likened to a situation when a file of
patients who have fixed an appointment with the doctor wait for their turn in a
queue. All patients are accorded equal priority and follow an FCFS scheme by
the date and time of their appointments. However, when a patient with bleeding
injuries is brought in, they are accorded high priority and are immediately moved to
the head of the queue for immediate attention by the doctor. This is priority queue at
work!

Queues 113

A common method of implementing a priority queue is to open as many queues
as there are priority factors. A low priority queue will be operated for deletion only
when all its high priority predecessors are empty. In other words, deletion of an
element in a priority queue 𝑞௜ with priority 𝑝௜ is possible only when those queues 𝑞௝
with priorities 𝑝௝ ൫𝑝௝ > 𝑝௜ ൯ are empty. However, with regard to insertions, an
element 𝑒௞ with priority 𝑝௟ joins the respective queue 𝑞௟ obeying the scheme of
FIFO with regard to the queue 𝑞௟ alone.

Figure 5.7. A priority queue

Another method of implementation could be to sort the elements in the queue
according to the descending order of priorities every time an insertion takes place.
The top priority element at the head of the queue is the element to be deleted.

The choice of implementation depends on a time-space trade-off-based decision
made by the user. While the first method of implementation of a priority queue
using a cluster of queues consumes space, the time complexity of an insertion is
only O(1). In the case of deletion of an element in a specific queue with a specific
priority, it calls for the checking of all other queues preceding it in priority to be
empty.

On the other hand, the second method consumes less space since it handles just a
single queue. However, the insertion of every element calls for sorting all the queue
elements in descending order, the most efficient of which reports a time complexity
of O(n.logn). With regard to deletion, the element at the head of the queue is
automatically deleted with a time complexity of O(1).

a (2) b (1) c (1)

FRONT REAR

a (2) b (1) c (1)

FRONT REAR

d (4) a (2) b (1) c (1)

FRONT REAR

(a) Initial priority queue (b) Insert d (4) (c) Delete

x (y) : x is the element with priority y

114 A Textbook of Data Structures and Algorithms 1

The two methods of implementation of a priority queue are illustrated in
example 5.3.

EXAMPLE 5.3.–

Let JOB be a queue of jobs to be undertaken at a factory shop floor for service
by a machine. Let high (2), medium (1) and low (0) be the priorities accorded to
jobs. Let Ji(k) indicate a job Ji to be undertaken with priority k. The implementations
of a priority queue to keep track of the jobs, using the two methods of
implementation discussed above, are illustrated for a sample set of job arrivals
(insertions) and job service completions (deletion).

Opening JOB queue: J1(1) J2 (1) J3 (0)

Operations on the JOB queue in chronological order:

1) J4 (2) arrives;

2) J5 (2) arrives;

3) execute job;

4) execute job;

5) execute job.

The front and rear positions of the queues have been denoted using a solid

arrow and a dashed arrow , respectively.

A variant of the implementation of a priority queue using multiple queues is to
make use of a single two-dimensional array to represent the list of queues and their
contents. The number of rows in the array is equal to the number of priorities
accorded to the data elements, and the columns are equal to the maximum number of
elements that can be accommodated in the queues corresponding to the priority
number. Thus, if PRIO_QUE [1:m, 1:n] is an array representing a priority queue,
then the data items joining the queue may have priority numbers ranging from 1 to
m and corresponding to each queue representing a priority, and a maximum of n
elements can be accommodated. Illustrative problem 5.4 demonstrates the
implementation of a priority queue as a two-dimensional array.

Queues 115

116 A Textbook of Data Structures and Algorithms 1

Queues 117

5.4.2. Deques

A deque (double-ended queue) is a linear list in which all insertions and
deletions are made at the end of the list. A deque is pronounced as “deck” or “de
queue”.

A deque is therefore more general than a stack or queue and is a sort of FLIFLO
(First In Last In Or First Out Last Out). Thus, while one speaks of the top or
bottom of a stack, or front or rear of a queue, one refers to the right end or left end
of a deque. The fact that deque is a generalization of a stack or queue is illustrated in
Figure 5.8.

A deque has two variants, namely, input restricted deque and output restricted
deque. An input restricted deque is one where insertions are allowed at one end only
while deletions are allowed at both ends. On the other hand, an output restricted
deque allows insertions at both ends of the deque but permits deletions only at one
end.

A deque is commonly implemented as a circular array with two variables LEFT
and RIGHT taking care of the active ends of the deque. Example 5.4 illustrates the
working of a deque with insertions and deletions permitted at both ends.

Figure 5.8. A stack, queue and a deque – a comparison

118 A Textbook of Data Structures and Algorithms 1

EXAMPLE 5.4.–

Let DEQ[1:6] be a deque implemented as a circular array. The contents of DEQ
and those of LEFT and RIGHT are given below:

DEQ: LEFT: 3 RIGHT: 5

 [1] [2] [3] [4] [5] [6]

 R T S

The following operations demonstrate the working of the deque DEQ, which
supports insertions and deletions at both ends.

i) Insert X at the left end and Y at the right end

 DEQ: LEFT: 2 RIGHT: 6

 [1] [2] [3] [4] [5] [6]

 X R T S Y

ii) Delete twice from the right end

 DEQ: LEFT: 2 RIGHT: 4

 [1] [2] [3] [4] [5] [6]

 X R T

iii) Insert G, Q and M at the left end

 DEQ: LEFT: 5 RIGHT: 4

 [1] [2] [3] [4] [5] [6]

 G X R T M Q

iv) Insert J at the right end

Here, no insertion is possible since the deque is full. Observe the condition
LEFT = RIGHT+1 when the deque is full.

Queues 119

v) Delete twice from the left end

 DEQ: LEFT: 1 RIGHT: 4

 [1] [2] [3] [4] [5] [6]

 G X R T

It is easy to observe that for insertions at the left end, LEFT is decremented in
steps of 1 and for insertions at the right end RIGHT is incremented in steps of 1. For
deletions at the left end, LEFT is incremented in steps of 1, and for deletions at the
right end, RIGHT is decremented in steps of 1. Again, before performing a deletion
if LEFT = RIGHT, then it implies that there is only one element and in such a case
after deletion set LEFT = RIGHT = NIL to indicate that the deque is empty.

LEFT and RIGHT undertake anticlockwise and clockwise movements across the
circular array during insertions and deletions.

5.5. Applications

In this section, we discuss the application of a linear queue and a priority queue
in the scheduling of jobs by a processor in a time-sharing system.

5.5.1. Application of a linear queue

Figure 5.9 shows a naive diagram of a time-sharing system. A CPU (processor)
endowed with memory resources is to be shared by n number of computer users.
The sharing of the processor and memory resources is done by allotting a definite
time slice of the processor’s attention to the users and in a round robin fashion. In a
system such as this, the users are unaware of the presence of other users and are led
to believe that their job receives the undivided attention of the CPU. However, to
keep track of the jobs initiated by the users, the processor relies on a queue data
structure recording the active user-ids. Example 5.5 demonstrates the application of
a queue data structure for this job scheduling problem.

EXAMPLE 5.5.–

The following is a table of three users A, B and C with their job requests Ji(k),
where i is the job number and k is the time required to execute the job.

120 A Textbook of Data Structures and Algorithms 1

User Job requests and the execution time in µs
A
B
C

J1 (4), J2 (3)
J3 (2), J4(1), J5 (1)
J6 (6)

Thus, J1 (4), a job request initiated by A needs 4 µs for its execution before the
user initiates the next request of J2(3). Throughout the simulation, we assume a
uniform user delay period of 5 µs between any two sequential job requests initiated
by a user. Thus, B initiates J4(1), 5 µs after the completion of J3 (2) and so on.
Additionally, to simplify the simulation, we assume that the CPU gives whole
attention to the completion of a job request before moving to the next job request. In
other words, all the job requests complete their execution well within the time slice
allotted to them.

To initiate the simulation, we assume that A logged in at time 0, B at time 1 and
C at time 2. Figure 5.10 shows a graphical illustration of the simulation. Note that at
time 2 while A’s J1 (4) is being executed, B is in the wait mode with J3 (2) and C has
just logged in. The objective is to ensure the CPU’s attention to all the jobs logged
in according to the principle of FIFO.

To tackle such a complex scenario, a queue data structure is developed. As soon
as a job request is made by a user, the user id is inserted into a queue. A job that is to
be processed next would be the one at the head of the queue. A job until its
execution is complete remains at the head of the queue. Once the request has been
processed and execution is complete, the user id is deleted from the queue.

A snapshot of the queue data structure at times 5, 10 and 14 is shown in Figure
5.11. It can be observed that during the time period 16-21, the CPU is left idle.

5.5.2. Application of priority queues

Assume a time-sharing system in which job requests by users are of different
categories. For example, some requests may be real time, and the others online and
the last may be batch processing requests. It is known that real-time job requests
carry the highest priority, followed by online processing and batch processing in that
order. In such a situation, the job scheduler needs to maintain a priority queue to
execute the job requests based on their priorities. If the priority queue were to be
implemented using a cluster of queues of varying priorities, the scheduler had to
maintain one queue for real-time jobs (R), one for online processing jobs (O) and the
third for batch processing jobs (B). The CPU proceeds to execute a job request in O
only when R is empty. In other words, all real-time jobs awaiting execution in R
have to be completed and cleared before execution of a job request from O. In the

Queues 121

case of queue B, before executing a job in queue B, queues R and O should be
empty. Example 5.6 illustrates the application of a priority queue in a time-sharing
system with priority-based job requests.

Figure 5.9. A naive diagram
of a time-sharing system

Figure 5.10. Time-sharing system
simulation – non-priority-based job requests

CENTRAL
PROCESSOR

TERMINALS

USERS

.

122 A Textbook of Data Structures and Algorithms 1

Figure 5.11. Snapshot of the queue at time 5, 10 and 14

EXAMPLE 5.6.–

The following is a table of three users A, B and C with their job requests. Ri (k)
indicates a real-time job Ri whose execution time is k µs. Similarly, Bi(k) and Oi(k)
indicate batch processing and online processing jobs, respectively.

User Job requests and their execution time in µs

A

B

C

R1 (4) B1 (1)

O1 (2) O2 (3) B2 (3)

R2 (1) B3 (2) O3 (3)

As before, we assume a user delay of 5 µs between any two sequential job
requests by the user and assume that the CPU gives undivided attention to a job
request until its completion. Additionally, A, B and C login at times 0, 1 and 2,
respectively.

Figure 5.12 illustrates the simulation of the job scheduler for priority-based
job requests. Figure 5.13 shows a snapshot of the priority queue at times 4, 8 and

(J6 (6))(J3 (2)) Time 5

Time 10

Time 14

B C

(J2 (3))(J6 (6))
C A

(J4 (1))(J2 (3))
A B

Job Queue

Queues 123

12. Observe that the processor while scheduling jobs and executing them falls into
idle modes during time periods 7–9 and 15–17.

Figure 5.12. Simulation of the time-sharing
system for priority-based jobs

Figure 5.13. Snapshots of the
priority queue at times 4, 8 and 12

B3
(2)

O2
(3) O1

(2)

R2
(1) R1

(4)

At time 4

R

O

B

At time 8

R

O

B

At time 12

R

O

B

B: Batch Processing Queue R: Real Time Queue O: On-line Priority Queue

124 A Textbook of Data Structures and Algorithms 1

Summary

– A queue data structure is a linear list in which all insertions are made at the rear end
of the list and deletions are made at the front end of the list.

– A queue follows the principle of FIFO or FCFS and is commonly implemented using
arrays. It therefore calls for the testing of QUEUE_FULL/QUEUE_EMPTY conditions
during insert/delete operations, respectively.

– A linear queue suffers from the drawback of QUEUE_FULL condition invocation
even when the queue in not physically full to its capacity. This limitation is over come to an
extent in a circular queue.

– Priority queue is a queue structure in which elements are inserted or deleted from a
queue based on some property known as priority.

– A deque is a double ended queue with insertions and deletions done at either ends or
may be appropriately restricted at one of the two ends.

– Job scheduling in time-sharing system environments is an application of queues and
priority queues.

ADT for queues
Data objects:

A finite set of elements of the same type.

Operations:

– Create an empty queue and initialize front and
rear variables of the queue

CREATE (QUEUE, FRONT, REAR)

– Check if queue QUEUE is empty

 CHK_QUEUE_EMPTY (QUEUE) (Boolean function)

– Check if queue QUEUE is full

 CHK_QUEUE_FULL (QUEUE) (Boolean function)

– Insert ITEM into rear of queue QUEUE

 ENQUEUE (QUEUE, ITEM)

– Delete element from the front of queue QUEUE and
output the element deleted in ITEM

 DEQUEUE (QUEUE, ITEM)

Queues 125

5.6. Illustrative problems

PROBLEM 5.1.–

Let INITIALISE (Q) be an operation that initializes a linear queue Q to be
empty. Let ENQUEUE (Q, ITEM) insert an ITEM into Q and DEQUEUE (Q,
ITEM) delete an element from Q through ITEM. EMPTY_QUEUE (Q) is a Boolean
function that is true if Q is empty and false otherwise, and PRINT (ITEM) is a
function that displays the value of ITEM.

What is the output of the following pseudo-code?

1. X = Y = Z = 0;
2. INITIALISE (Q)
3. ENQUEUE (Q,10)
4. ENQUEUE (Q, 70)
5. ENQUEUE (Q, 88)
6. DEQUEUE (Q, X)
7. DEQUEUE (Q, Z)
8. ENQUEUE (Q, X)
9. ENQUEUE (Q, Y+18)
10. DEQUEUE (Q, X)
11. DEQUEUE (Q, Y)
12. while not EMPTY_QUEUE (Q) do
13. DEQUEUE (Q, X)
14. PRINT (X)
15. end

Solution:

The contents of the queue Q and the values of the variables X, Y, Z are tabulated
as follows:

Steps Queue Q
Variables

X Y Z

1 - 2

0 0 0

126 A Textbook of Data Structures and Algorithms 1

3

0 0 0

4

0 0 0

5

0 0 0

6

10 0 0

7

10 0 70

8

10 0 70

9

10 0 70

10

88 0 70

11

88 10 70

12–14

18 10 70

The output of the program code is: 18

18

1810

181088

1088

88

8870

8870 10

70 10

10

Queues 127

PROBLEM 5.2.–

Given Q’ to be a circular queue implemented as an array Q’[0:4] and using
procedures declared in illustrative problem 5.1, but suitable for implementation on
Q’, what is the output of the following code?

[NOTE.– The procedures ENQUEUE (Q’, X) and DEQUEUE (Q’, X) may be
assumed to be implementation of Algorithms 5.3 and 5.4.]

1. INITIALISE (Q’)
2. X: = 56
3. Y: = 77
4. ENQUEUE (Q’, X)
5. ENQUEUE (Q’, 50)
6. ENQUEUE (Q’, Y)
7. DEQUEUE (Q’, Y)
8. ENQUEUE (Q’, 22)
9. ENQUEUE (Q’, X)
10. ENQUEUE (Q’, Y)
11. Z = X – Y
12. if (Z = 0)
13. then { while not EMPTY_QUEUE(Q’)
14. DEQUEUE (Q’, X)
15. PRINT (X)
16. end }
17. else PRINT (“Process Complete”);

Solution:

The contents of the circular queue Q’[0:4] and the values of the variables X, Y, Z
are illustrated below.

Steps Queue Q’ Variables
X Y Z

1 – – –

2,3 56 77 –
[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4]

128 A Textbook of Data Structures and Algorithms 1

4 56 77 –

5 56 77 –

6 56 77 –

7 56 56 –

8 56 56 –

9 56 56 –

10
56 56 –

Queue full.
ENQUEUE(Q’, Y) fails.

11 56 56 0

12 - 16

50 56 0
77 56 0
22 56 0
56 56 0

Output of the program code: 50 77 22 56

[0] [1] [2] [3] [4]

56 50 77 22

[0] [1] [2] [3] [4]

56 50 77 22

[0] [1] [2] [3] [4]

[0]

56 50 77 22

[1] [2] [3] [4]

[0]

50 77 22

[1] [2] [3] [4]

[0]

50 77

[1] [2] [3] [4]

[0]

56 50 77

[1] [2] [3] [4]

[0]

56 50

[1] [2] [3] [4]

[0]

56

[1] [2] [3] [4]

Queues 129

PROBLEM 5.3.–

S and Q are a stack and a priority queue of integers, respectively. The priority of
an element C joining the priority queue Q is computed as C mod 3. In other words,
the priority numbers of the elements are either 0 or 1 or 2. Given A, B, and C to be
integer variables, what is the output of the following code? The procedures are
similar to those used in illustrative problems 5.1 and 5.2. However, the queue
procedures are modified to appropriately work on a priority queue.

1.A = 10
2.B = 11
3.C = A+B
4.while (C < 110) do
5. if (C mod 3) = 0 then PUSH (S,C)
6. else ENQUEUE (Q,C)
7. A = B
8. B = C
9. C = A + B
10.end
11.while not EMPTY_STACK (S) do
12. POP (S,C)
13. PRINT (C)
14.end
15.while not EMPTY_QUEUE (Q) do
16. DEQUEUE (Q, C)
17. PRINT (C)
18.end

Solution:

Steps Stack S Queue Q A B C

1–3

10 11 21

4–6

10 11 21

7–10

11 21 32 21

21

21

130 A Textbook of Data Structures and Algorithms 1

4–6 11 21 32

7–10 21 32 53

4–6 21 32 53

7–10 32 53 85

4–6 32 53 85

7–10 53 85 138

11–14

53 85 21

Output: 21

15–18

53 85 32
53 85 53
53 85 85

Output: 32 53 85

The final output is: 21 32 53 85

PROBLEM 5.4.–

TOKEN is a priority queue for organizing n data items with m priority numbers.
TOKEN is implemented as a two-dimensional array TOKEN[1:m, 1:p], where p is

85 (1)53 (2)32 (2)

85 (1)53 (2)32 (2)21

85 (1)53 (2)32 (2)21

53 (2)32 (2)21

53 (2)32 (2)21

32 (2)21

32 (2)21

Queues 131

the maximum number of elements with a given priority. Execute the following
operations on TOKEN [1:3, 1:2]. Here, INSERT(“xxx”, m) indicates the insertion of
item “xxx” with priority number m, and DELETE() indicates the deletion of the first
among the high priority items.

i) INSERT(“not”, 1)

ii) INSERT(“and”, 2)

iii) INSERT(“or”, 2)

iv) DELETE()

v) INSERT (“equ”, 3)

Solution:

The two-dimensional array TOKEN[1:3, 1:2] before the execution of operations
is given as follows:

TOKEN: [1] [2]

 123 ቈ− −− −− −቉

After the execution of operations, TOKEN[1:3, 1:2] is as shown as follows:

i) INSERT(“not”, 1)

ii) INSERT(“and”, 2)

iii) INSERT(“or”, 2)

[1] [2] 123 ൥ ′𝑛𝑜𝑡′ −
′𝑎𝑛𝑑′ ′𝑜𝑟′− − ൩

iv) DELETE()

[1] [2] 123 ቈ − −
′𝑎𝑛𝑑′ ′𝑜𝑟′− − ቉

Note how “not” which is the first among the
elements with the highest priority is deleted

v) INSERT(“equ”, 3)

[1] [2] 123 ቈ − −′𝑎𝑛𝑑′ ′𝑜𝑟′′𝑒𝑞𝑢′ − ቉

132 A Textbook of Data Structures and Algorithms 1

PROBLEM 5.5.–

DEQ[0:4] is an output restricted deque implemented as a circular array, and
LEFT and RIGHT indicate the ends of the deque, as shown below. INSERT(“xx”,
[LEFT | RIGHT]) indicates the insertion of the data item at the left or right end as
the case may be, and DELETE() deletes the item from the left end only.

DEQ: LEFT: 2 RIGHT: 5

 [1] [2] [3] [4] [5] [6]

 C1 A4 Y7 N6

Execute the following insertions and deletions on DEQ:

i) INSERT(“S5”, LEFT)

ii) INSERT(“K9”, RIGHT)

iii) DELETE()

iv) INSERT(“V7”, LEFT)

v) INSERT(“T5”, LEFT)

Solution:

– DEQ after the execution of operations

i) INSERT(“S5”, LEFT)

ii) INSERT(“K9”, RIGHT)

DEQ: LEFT: 1 RIGHT: 6

 [1] [2] [3] [4] [5] [6]

 S5 C1 A4 Y7 N6 K9

DEQ after the execution of iii) DELETE()

DEQ: LEFT: 2 RIGHT: 6

 [1] [2] [3] [4] [5] [6]

 C1 A4 Y7 N6 K9

Queues 133

– DEQ after the execution of operations

iv) INSERT(“V7”, LEFT)

v) INSERT(“T5”, LEFT)

 DEQ: LEFT: 1 RIGHT: 6

 [1] [2] [3] [4] [5] [6]

 V7 C1 A4 Y7 N6 K9

After the execution of operation INSERT(“V7”, LEFT), the deque is full. Hence,
“T5” is not inserted into the deque.

PROBLEM 5.6.–

Implement a queue Q using two stacks S1 and S2 such that operations
ENQUEUE(Q, X) and DEQUEUE(Q, Y), where Q is supposedly a queue and X is
the element to be inserted into Q and Y the element deleted from Q, are worked
upon by the stacks that operate together as a queue. Assume that the ADT operations
of PUSH, POP and EMPTYSTACK are only available for the stacks.

Demonstrate the working of your method on a list {a, b, c}, which is to be
operated upon as a queue by the stacks S1 and S2.

Solution:

For the two stacks S1 and S2 to work as a queue, every time the ENQUEUE (Q,
X) operation is invoked, the element X should join the rear of the queue, and every
time DEQUEUE(Q, Y) is invoked, the first element in the queue should be deleted.
One method to do this is to ensure that elements are stored in stack S1 in such a way
that the top element of S1 is the first element of the queue. This can be
accomplished by using stack S2.

Consider the list {a, b, c} to be stored as a queue. The operations undertaken by
the stacks to accomplish this are shown in the following table:

134 A Textbook of Data Structures and Algorithms 1

Queue operation Operations on stacks S1 and S2

Snapshots of the stacks S1
and S2 and their top of stack

variables, TOP(S1) and
TOP(S2) (“[” denotes bottom

of stack)

ENQUEUE(Q, “a”) PUSH(S1, “a”) S1:[a

 TOP (S1) = “a”

S2:[

 TOP (S2) = Nil

ENQUEUE(Q, “b”) POP(S1, Y)

 where {Y = “a”}

PUSH(S2, Y)

PUSH(S1, “b”)

POP(S2, Y)

PUSH(S1, Y)

 S1: [b, a

 TOP (S1) = “a”

S2:[

 TOP (S2) = Nil

ENQUEUE(Q, “c”) while not EMPTYSTACK(S1)
do
 POP(S1, Z)

 PUSH(S2, Z)

end
PUSH(S1, “c”)

while not EMPTYSTACK(S2)
do
 POP(S2, X)

 PUSH(S1, X)

end

S1:[c

 TOP (S1) = “c”

S2: [a, b

 TOP (S2) = “b”

S1: [c, b, a

 TOP (S1) = “a”

S2: [

 TOP (S2) = Nil

The invocation of delete operations on the queue Q and the same executed by the
stacks are shown in the following table:

Queues 135

Queue operation Operations on stacks S1 and S2

Snapshots of the stacks S1
and S2 and their top of

stack variables, TOP(S1)
and TOP(S2) (“[” denotes

the bottom of stack)
DEQUEUE(Q, X) POP(S1, X)

Output:
X = {a}

S1: [c, b
TOP (S1) = “b”

S2: [
TOP (S2) = Nil

DEQUEUE(Q, X) POP(S1, X)

Output:
X = {b}

S1: [c

TOP (S1) = “c”
S2: [

TOP (S2) = Nil

PROBLEM 5.7.–

Implement a stack S using two queues Q1 and Q2 so that operations PUSH (S,
X) and POP(S, Y), where S is supposedly a stack and X is the element to be inserted
into S and Y the element deleted from S, are worked upon by the queues that operate
together as a stack. Assume that the ADT operations of ENQUEUE, DEQUEUE and
EMPTYQUEUE are only available for the queues.

Demonstrate the working of your method on a list {a, b, c}, which is to be
operated upon as a stack by the queues Q1 and Q2.

Solution:

For the two queues Q1 and Q2 to work as a stack, every time PUSH(S, X) is
invoked, element X should be stored as the front element in the queue so that when a
POP(S, Y) operation is executed, the front element of the queue that is deleted
stands for the last element to be popped out from the stack. A method to do this
would be to delete all the existing elements in Q1 and insert them into Q2 in their
respective order before inserting X as the front element of Q1. This is followed by
deleting all elements from Q2 and inserting them into Q1 in their respective order,
following the element X in Q1. Q1 now “behaves” like a stack when a pop operation
on stack S is ordered by deleting X, which is the front element in queue Q1.

Consider the list {a, b, c} to be stored as a stack. The operations undertaken by
the queues to accomplish this are shown in the following table:

136 A Textbook of Data Structures and Algorithms 1

Stack operation on S Operations on queues Q1 and Q2

Snapshots of the queues
Q1 and Q2 and the front
and rear elements of the
queues, FRONT() and

REAR()
PUSH(S, “a”) ENQUEUE(Q1, “a”) Q1:[a]

 FRONT(Q1) = “a”
 REAR(Q1) = ”a”

 Q2:[]
 FRONT(Q2) = Nil
 REAR(Q2) = Nil

PUSH(S, “b”) DEQUEUE(Q1, Y)

 where {Y = “a”}
ENQUEUE(Q2,Y)

 ENQUEUE(Q1, “b”)
DEQUEUE(Q2, Y)
ENQUEUE(Q1, Y)

 Q1: [b, a]

 FRONT(Q1) = “b”
 REAR(Q1) = ”a”

 Q2:[]

 FRONT(Q2) = Nil
 REAR(Q2) = Nil

PUSH(S, “c”) while not EMPTYQUEUE(Q1) do

 DEQUEUE(Q1, Z)
 ENQUEUE(Q2, Z)
 end
 ENQUEUE(Q1, “c”)

while not EMPTYQUEUE(Q2) do
 DEQUEUE(Q2, Y)
 ENQUEUE(Q1, Y)

 end

Q1:[c]
 FRONT(Q1) = “c”
 REAR(Q1) = ”c”

Q2: [b, a]
 FRONT(Q1) = “b”
 REAR(Q1) = ”a”

Q1: [c, b, a]
 FRONT(Q1) = “c”
 REAR(Q1) = ”a”

Q2: []
 FRONT(Q2) = Nil
 REAR(Q2) = Nil

The invocation of delete operations on stack S and the same executed by the
queues are shown in the following table:

Queues 137

Stack operation Operations on stacks S1 and S2

Snapshots of the queues Q1
and Q2 and the front and

rear elements of the
queues, FRONT() and

REAR()

POP(S, X) DEQUEUE (Q1, X)
Output:
X = {c}

Q1: [b, a]
 FRONT(Q1) = “b”
 REAR(Q1) = ”a”

Q2: []
 FRONT(Q2) = Nil
 REAR(Q2) = Nil

POP(S, X) DEQUEUE (Q1, X)
Output:
X = {b}

Q1: [a]
 FRONT(Q1) = “a”
 REAR(Q1) = ”a”

Q2: []
 FRONT(Q2) = Nil
 REAR(Q2) = Nil

Review questions

1) Which among the following properties does not hold good in a queue?

i) A queue supports the principle of first come first served.

ii) An enqueuing operation shrinks the queue length.

iii) A dequeuing operation affects the front end of the queue.

iv) An enqueuing operation affects the rear end of the queue

a) (i) b) (ii) c) (iii) d) (iv)

2) A linear queue Q is implemented using an array as shown below. The FRONT
and REAR pointers, which point to the physical front and rear of the queue, are also
shown.

138 A Textbook of Data Structures and Algorithms 1

FRONT: 2 REAR: 3

X Y A Z S

 [1] [2] [3] [4] [5]

Execution of the operation ENQUEUE(Q, “W”) would yield the FRONT and
REAR pointers to carry the values shown in

a) 2 and 4 b) 3 and 3 c) 3 and 4 d) 2 and 3

3) For the linear queue shown in review question 2, execution of the operation
DEQUEUE(Q, M), where M is an output variable, would yield M, FRONT and
REAR to, respectively, carry the values

a) Z, 2, 3 b) A, 2, 2 c) Y, 3, 3 d) A, 2, 3

4) Given the following array implementation of a circular queue, with FRONT
and REAR pointing to the physical front and rear of the queue,

FRONT: 3 REAR: 4

X Y A Z S

[1] [2] [3] [4] [5]

Execution of the operations ENQUEUE(Q, “H”), ENQUEUE(Q, “T”) done in a
sequence would result in

i) invoking queue full condition soon after ENQUEUE(Q, ‘H’) operation;

ii) aborting the ENQUEUE(Q, “T”) operation;

iii) yielding FRONT = 1 and REAR = 4 after the operations;

iv) Yielding FRONT = 3 and REAR =1 after the operations.

a) (i) b) (ii) c) (iii) d) (iv)

5) State whether true or false:

For the following implementation of a queue, where FRONT and REAR point to
the physical front and rear of the queue,

FRONT: 3 REAR: 5

X Y A Z S

[1] [2] [3] [4] [5]

Queues 139

Execution of the operation ENQUEUE(Q, “C”),

i) if Q is a linear queue, it would invoke the queue full condition;

ii) if Q is a circular queue, it would abort the enqueuing operation.

a) (i) true (ii) true b) (i) true (ii) false

c) (i) false (ii) false d) (i) false (ii) true

6) What are the disadvantages of linear queues?

7) How do circular queues help overcome the disadvantages of linear queues?

8) If FRONT and REAR were pointers to the physical front and rear of a linear
queue, comment on the condition, FRONT = REAR.

9) If FRONT and REAR were pointers to the physical front and rear of a circular
queue, comment on the condition, FRONT = REAR.

10) How are priority queues implemented using a single queue?

11) The following is a table of five users Tim, Shiv, Kali, Musa and Lobo, with
their job requests Ji(k), where i is the job number and k is the time required to
execute the job. The time at which the users logged in is also shown in the following
table.

User Job requests and
the execution time in µs Login time

Tim
Shiv
Kali
Musa
Lobo

J1 (5), J2 (4)
J3 (3), J4(5), J5 (1)

J6 (6), J7 (3),
J8(5), J9 (1)

J9 (3), J10 (3), J11 (6)

0
1
2
3
4

Throughout the simulation, assume a uniform user delay period of 4 µs between
any two sequential job requests initiated by a user. Additionally, to simplify the
simulation, assume that the CPU gives whole attention to the completion of a job
request before moving to the next job request. Trace a graphical illustration of the
simulation to demonstrate a time-sharing system at work. Show snapshots of the
linear queue used by the system to implement the FIFO principle of attending to jobs
by the CPU.

12) For the time-sharing system discussed in review question 11, trace a
graphical illustration of the simulation assuming that all job requests Ji(k) where i is
even numbered have higher priority than those jobs Ji(k) where i is odd numbered.
Show snapshots of the priority queue implementation.

140 A Textbook of Data Structures and Algorithms 1

Programming assignments

1) Waiting line simulation in an Indian post office:

In an Indian post office that not only delivers mail but also functions as a savings
bank carrying out specific transactions, a lone postal worker serves a single queue of
customers. Every customer receives a token # (serial number) as soon as they enter
the queue. After service, the token is returned to the postal worker, and the customer
leaves the queue. At any point in time, the worker may want to know how many
customers are yet to be served.

i) Implement the system using an appropriate queue data structure, simulating a
random arrival and departure of customers after service completion.

ii) If a customer arrives to operate their savings account at the post office, then
they are attended to first by permitting them to join a special queue. In such a case,
the postal worker attends to them immediately before resuming their normal service
of mail delivery. Modify the system to implement this addition in service.

2) Write a program to maintain a list of items as a circular queue, which is
implemented using an array. Simulate insertions and deletions to the queue and
display a graphical representation of the queue after every operation.

3) Let PQUE be a priority queue data structure and 𝑎ଵሺ௣భሻ, 𝑎ଶሺ௣మሻ, … 𝑎௡ሺ௣೙ሻ be n
elements with priorities 𝑝௜ ሺ0 ≤ 𝑝௜ ≤ 𝑚 − 1ሻ.

i) Implement PQUE using multiple circular queues one for each priority number.

ii) Implement PQUE as a two-dimensional array ARR_PQUE[1:m,1:d], where m
is the number of priority values and d is the maximum number of data items with a
given priority.

iii) Execute insertions and deletions presented in a random sequence.

4) A deque DQUE is to be implemented using a circular one-dimensional array
of size N. Execute procedures to:

i) insert and delete elements from DQUE at either end;

ii) implement DQUE as an output restricted deque;

iii) implement DQUE as an input restricted deque;

iv) for the procedures, what are the conditions used for testing whether DQUE is
full (DQUE_FULL) and empty (DQUE_EMPTY)?

5) Execute a general data structure that is a deque supporting insertions and
deletions at both ends but, depending on the choice input by the user, functions as a
stack or a queue.

Queues 141

6) Write a program that checks if a string is a palindrome by making use of a
single stack and a single queue. (Hint: Stack helps to read the string in its reverse
order and a queue the same in the forward direction.)

6

Linked Lists

In Chapters 3-5 we dealt with arrays, stacks and queues, which are linear
sequential data structures (among the three, stacks and queues have a linked
representation as well, which will be discussed in Chapter 7).

In this chapter, we detail linear data structures with a linked representation. We
first list the demerits of the sequential data structure before introducing the need for
a linked representation. Next, the linked data structures of singly linked list,
circularly linked list, doubly linked list, multiply linked list, unrolled linked list and
self-organizing linked list are elaborately presented. Finally, two problems, namely,
polynomial addition and sparse matrix representation, demonstrating the application
of linked lists are discussed.

6.1. Introduction

6.1.1. Drawbacks of sequential data structures

Arrays are fundamental sequential data structures. Even stacks and queues rely
on arrays for their representation and implementation. However, arrays or sequential
data structures in general suffer from the following drawbacks:

i) inefficient implementation of insertion and deletion operations;

ii) inefficient use of storage memory.

Let us consider an array A[1: 20]. This means a contiguous set of 20 memory
locations have been made available to accommodate the data elements of A. As
shown in Figure 6.1(a), let us suppose the array is partially full. Now, to insert a new
element 108 in the position indicated, it is not possible to do so without affecting the
neighboring data elements. Methods such as making use of a temporary array (B) to

144 A Textbook of Data Structures and Algorithms 1

hold the data elements of A with 108 inserted at the appropriate position, or making
use of B to hold the data elements of A that follow 108 before copying B into A, call
for extensive data movement, which is computationally expensive. Again,
attempting to delete 217 from A calls for the use of a temporary array B to hold the
elements with 217 excluded before copying B to A (see Figure 6.1(b)).

Figure 6.1. Drawbacks of sequential data structures –
inefficient implementation of insertion/deletion operations

With regard to the second drawback of inefficient storage memory management,
the need to allott contiguous memory locations for every array declaration is bound
to leave fragments of free memory space unworthy of allotment for future requests.
This may eventually lead to inefficient storage management. In fact, fragmentation
of memory is a significant problem to be considered in computer science. Several
methods have been proposed to counteract this problem.

Figure 6.2 shows a naïve diagram of a storage memory with fragmentation of
free space.

Figure 6.2. Drawbacks of sequential data structures –
inefficient storage memory management

Linked Lists 145

Note how fragments of free memory space, which when put together could be a
huge chunk of free space, are rendered unworthy of accommodating sequential data
structures due to lack of contiguity.

6.1.2. Merits of linked data structures

A linked representation serves to counteract the drawbacks of sequential
representation by exhibiting the following merits:

i) Efficient implementation of insertion and deletion operations: Unlike
sequential data structures, there is a complete absence of data movement of
neighboring elements during the execution of these operations.

ii) Efficient use of storage memory: The operation and management of linked
data structures are less prone to instigate memory fragmentation.

6.1.3. Linked lists – structure and implementation

A linked representation of a data structure known as a linked list is a collection
of nodes. Each node is a collection of fields categorized as data items and links. The
data item fields hold the information content or data to be represented by the node.
The link fields hold the addresses of the neighboring nodes or of those nodes that are
associated with the given node as dictated by the application.

Figure 6.3 illustrates the general node structure of a linked list. A node is
represented by a rectangular box, and the fields are shown by partitions in the box.
Link fields are shown to carry arrows to indicate the nodes to which the given node
is linked or connected.

Figure 6.3. A general structure of a node in a linked list

This implies that unlike arrays, no two nodes in a linked list need to be
physically contiguous. All the nodes in a linked list data structure may in fact be
strewn across the storage memory, making effective use of what little space is
available to represent a node. However, the link fields carry on the onerous

146 A Textbook of Data Structures and Algorithms 1

responsibility of remembering the addresses of the other neighboring or associated
nodes themselves to keep track of the data elements in the list.

In the programming language parlance, the link fields are referred to as pointers.
In this book, pointers and link fields will be interchangeably used in several
contexts.

To implement linked lists, the following mechanisms are essential:

i) A mechanism to frame chunks of memory into nodes with the desired number
of data items and fields. In most programming languages, this mechanism is
implemented by making use of a “record” or “structure” or their look-alikes or even
associated structures to represent the node and its fields.

ii) A mechanism to determine which nodes are free and which have been allotted
for use.

iii) A mechanism to obtain nodes from the free storage area or storage pool for
use. These are wholly provided and managed by the system. There is very little that
an end user or a programmer can do to handle this mechanism themselves. This is
made possible in many programming languages by the provision of inbuilt functions
that help execute requests for a node with the specific fields. In this book, we make
use of a function GETNODE (X) to implement this mechanism. The GETNODE
(X) function allots a node of the desired structure and the address of
the node, namely, X, is returned. In other words, X is an output parameter of the
function GETNODE (X), whose value is determined and returned by the system.

iv) A mechanism to return or dispose nodes from the reserved area or pool to the
free area after use. This is also made possible in many programming languages by
providing an in-built function that helps return or dispose the node after use. In this
book, we make use of the function RETURN (X) to implement this mechanism.
The RETURN (X) function returns a node with address X from the reserved area of
the pool to the free area of the pool. In other words, X is an input parameter of the
function, the value of which is to be provided by the user.

Irrespective of the number of data item fields, a linked list is categorized as a
singly linked list, a doubly linked list, a circularly linked list and a multiply linked
list based on the number of link fields it owns and/or its intrinsic nature. Thus, a
linked list with a single link field is known as a singly linked list, and the list with
circular connectivity is known as a circularly linked list. On the other hand, a linked
list with two links each pointing to the predecessor and successor of a node is
known as a doubly linked list, and the same with multiple links is known as a
multiply linked list. The following sections discuss these categories of linked lists in
detail.

Linked Lists 147

6.2. Singly linked lists

6.2.1. Representation of a singly linked list

A singly linked list is a linear data structure, each node of which has one or more
data item fields (DATA), but only a single link field (LINK).

Figure 6.4 illustrates an example singly linked list and its node structure.
Observe that the node in the list carries a single link that points to the node
representing its immediate successor in the list of data elements.

Figure 6.4. A singly linked list and its node structure

Every node that is basically a chunk of memory carries an address. When a set of
data elements to be used by an application are represented using a linked list, each
data element is represented by a node. Depending on the information content of the
data element, one or more data items may be opened in the node.

However, in a singly linked list, only a single link field is used to point to the
node that represents its neighboring element in the list. The last node in the linked
list has its link field empty. The empty link field is also referred to as null link or in
programming language parlance – null pointer. The notation NIL, a ground symbol
() or a zero (0) are commonly used to indicate null links.

 The entire linked list is kept track of by remembering the address of the start
node. This is indicated by START in the figure. Obviously, it is essential that the
START pointer is carefully handled, otherwise it may result in losing the entire list.

EXAMPLE 6.1.–

Consider a list SPACE-MISSION of four data elements, as shown in Figure
6.5(a). This logical representation of the list has each node carrying three DATA
fields, namely, name of the space mission, country of origin, the current status of the
mission and a single link pointing to the next node. Let us suppose the nodes that
house “Chandra”, “INSAT-3A”, “Mir” and “Planck” have addresses 1001, 16002,

148 A Textbook of Data Structures and Algorithms 1

0026 and 8456, respectively. Figure 6.5(b) shows the physical representation of the
linked list. Note how the nodes are distributed all over the storage memory and not
physically contiguous. Additionally, we observe how the LINK field of each node
remembers the address of the node of its logical neighbor. The LINK field of the last
node is NIL. The arrows in the logical representation represent the addresses of the
neighboring nodes in its physical representation.

Figure 6.5. A singly linked list – its logical and physical representation

Linked Lists 149

6.2.2. Insertion and deletion in a singly linked list

To implement insertion and deletion in a singly linked list, we need the two
functions introduced in section 6.1.3, namely, GETNODE (X) and RETURN (X),
respectively.

6.2.2.1. Insert operation

Given a singly linked list START, to insert a data element ITEM into the list to
the right of node NODE (ITEM is to be inserted as the successor of the data element
represented by node NODE), the steps to be undertaken are given below. Figure 6.6
illustrates the logical representation of the insert operation.

i) Call GETNODE(X) to obtain a node to accommodate ITEM. Node has
address X.

ii) Set the DATA field of node X to ITEM, that is, DATA (X) = ITEM.

iii) Set the LINK field of node X to point to the original right neighbor of node
NODE, that is, LINK(X) = LINK(NODE).

iv) Set LINK field of NODE to point to X, that is, LINK (NODE) = X. The
resetting of the link is denoted by the rightwards arrow with stroke (→) representing
the removal of the old link and the rightwards arrow (→) showing the new/active
link.

Algorithm 6.1 illustrates a pseudo-code procedure for insertion in a singly linked
list that is non-empty.

Figure 6.6. Logical representation of insertion in a singly linked list

150 A Textbook of Data Structures and Algorithms 1

Algorithm 6.1. To insert a data element ITEM in a non-empty
singly liked list START to the right of node NODE

However, during the insert operation in a list, it is advisable to test whether the
START pointer is null or non-null. If the START pointer is null (START = NIL), then
the singly linked list is empty, and hence, the insert operation prepares to insert the
data as the first node in the list. On the other hand, if the START pointer is non-null
(START ≠ NIL), then the singly linked list is non-empty, and hence, the insert
operation prepares to insert the data at an appropriate position in the list as specified by
the application. Algorithm 6.1 works on a non-empty list. To handle empty lists, the
algorithm must be appropriately modified, as illustrated in Algorithm 6.2.

In sheer contrast to an insert operation in a sequential data structure, observe the
total absence of data movement in the list during insertion of ITEM. The insert
operation merely calls for the update of two links in the case of a non-empty list.

Algorithm 6.2. To insert ITEM after node NODE in a singly linked list START

procedure INSERT_SL_GEN(START, NODE, ITEM)
/* Insert ITEM as the first node in the list if START
is NIL. Otherwise insert ITEM after node NODE */
 Call GETNODE(X);
 DATA(X) = ITEM; /* Create node for ITEM */
 if (START = NIL) then
 {LINK(X) = NIL; /* List is empty*/
 START = X;}/*Insert ITEM as the first node */
 else
 {LINK(X) = LINK(NODE);
 LINK(NODE) = X;} /∗ List is non empty. Insert
 ITEM to the right of node NODE */
end INSERT_SL_GEN.

procedure INSERT_SL(START, ITEM, NODE)
/* Insert ITEM to the right of node NODE in the list
START */
 Call GETNODE(X);
 DATA(X) = ITEM;
 LINK(X) = LINK(NODE); /∗ Node X points to the
 original right neighbour of node NODE */
 LINK(NODE) = X;
end INSERT_SL.

Linked Lists 151

EXAMPLE 6.2.–

In the singly linked list SPACE-MISSION illustrated in Figures 6.5(a) and (b),
insert the following data elements:

i) APPOLLO USA Landed
ii) SOYUZ 4 USSR Landed

152 A Textbook of Data Structures and Algorithms 1

Figure 6.7. Insertion of APPOLLO and SOYUZ 4 in the
SPACE_MISSION list shown in Figures 6.5(a) and (b)

Let us suppose the GETNODE(X) function releases nodes with addresses
X = 646 and X = 1187 to accommodate APPOLLO and SOYUZ 4 details,
respectively. The insertion of APPOLLO is illustrated in Figures 6.7(a) and (b), and
the insertion of SOYUZ 4 is illustrated in Figures 6.7(c) and (d).

6.2.2.2. Delete operation

Given a singly linked list START, the delete operation can acquire various
forms, such as deletion of a node NODEY next to that of a specific node NODEX
or, more commonly, deletion of a particular element in a list. We now illustrate the
deletion of a node that is the successor of node NODEX.

The steps for the deletion of a node next to that of NODEX in a singly linked
START are given below. Figure 6.8 illustrates the logical representation of the
delete operation. The dashed rightward arrows with strokes () in the figure
denote deleted links.

i) Set TEMP a temporary variable to point to the right neighbor of NODEX, that
is, TEMP = LINK (NODEX). The node pointed to by TEMP is to be deleted.

ii) Set the LINK field of node NODEX to point to the right neighbor of TEMP,
that is, LINK (NODEX) = LINK (TEMP).

iii) Dispose of node TEMP, that is, RETURN (TEMP).

Algorithm 6.3 illustrates a pseudo-code procedure for the deletion of a node that
occurs to the right of a node NODEX in a singly linked list START. However, as

Linked Lists 153

always, it must be ensured that the delete operation is not undertaken over an empty
list. Hence, it is essential to check if START is empty.

Algorithm 6.3. Deletion of a node to the right
of node NODEX in a singly linked list START

Observe how in contrast to deletion in a sequential data structure, which involves
data movement, the deletion of a node in a linked list merely calls for the update of a
single link.

Example 6.3 illustrates the deletion of a node in a singly linked list.

EXAMPLE 6.3.–

The SPACE-MISSION list shown in Figures 6.5(a) and (b) undertakes the
following deletions:

i) delete CHANDRA;

ii) delete PLANCK.

Figure 6.8. Logical representation of deletion in a singly linked list

procedure DELETE_SL(START, NODEX)
 if (START = NIL) then
 Call ABANDON_DELETE;/*ABANDON_DELETE terminates
 the delete operation */
 else
 {TEMP = LINK(NODEX);
 LINK(NODEX) = LINK(TEMP);
 Call RETURN(TEMP);}

end DELETE_SL.

154 A Textbook of Data Structures and Algorithms 1

The deletion of CHANDRA is illustrated in Figures 6.9(a) and (b), and the
deletion of PLANCK is illustrated in Figures 6.9(c) and (d).

Figure 6.9. Deletion of CHANDRA and PLANCK from the SPACE-MISSION list

Linked Lists 155

6.3. Circularly linked lists

6.3.1. Representation

A normal singly linked list has its last node carrying a null pointer. For further
improvement in processing, we may replace the null pointer in the last node with the
address of the first node in the list. Such a list is called a circularly linked list, a
circular linked list or simply a circular list. Figure 6.10 illustrates the representation
of a circular list.

Figure 6.10. Representation of a circular list

6.3.2. Advantages of circularly linked lists over singly linked lists

i) The most important advantage pertains to the accessibility of a node. We can
access any node from a given node due to the circular movement permitted by the
links. We merely have to loop through the links to reach a specific node from a
given node.

ii) The second advantage pertains to delete operations. Recall that for deletion of
a node X in a singly linked list, the address of the preceding node (e.g. node Y) is
essential to enable updating the LINK field of Y to point to the successor of node X.
This necessity arises from the fact that in a singly linked list, we cannot access a
node’s predecessor due to the “forward” movement of the links. In other words,
LINK fields in a singly linked list point to successors and not predecessors.

However, in the case of a circular list, to delete node X, we do not need to
specify the predecessor. It can be easily determined by a simple “circular” search
through the list before the deletion of node X.

iii) The third advantage is the relative efficiency in the implementation of
list-based operations, such as concatenation of two lists, erasing a whole list,
splitting a list into parts and so on.

156 A Textbook of Data Structures and Algorithms 1

6.3.3. Disadvantages of circularly linked lists

The only disadvantage of circularly linked lists is that during processing, we
have to make sure that we do not enter an infinite loop owing to the circular nature
of pointers in the list. This is liable to occur owing to the absence of a node that can
help point out the end of the list and thereby terminate processing.

A solution to this problem is to designate a special node to act as the head of the
list. This node, known as the list head or head node, has advantages other than
pointing to the beginning of a list. The list can never be empty and represented by a
“hanging” pointer (START = NIL), as was the case with empty singly linked lists.
The condition for an empty circular list becomes (LINK (HEAD) = HEAD), where
HEAD points to the head node of the list. Such a circular list is known as a headed
circularly linked list or simply circularly linked list with head node. Figure 6.11
illustrates the representation of a headed circularly linked list.

Figure 6.11. A headed circularly linked list

Although the head node has the same structure as the other nodes in the list, the
DATA field of the node is unused and is indicated as a shaded field in the pictorial
representation. However, in practical applications, these fields may be utilized to
represent any useful information about the list relevant to the application, provided
they are deftly handled and do not create confusion during the processing of the
nodes.

Example 6.4 illustrates the functioning of circularly linked lists.

EXAMPLE 6.4.–

Let CARS be a headed circularly linked list of four data elements, as shown in
Figure 6.12(a). To insert MARUTI into the list CARS, the sequence of steps to be
undertaken are as shown in Figures 6.12(b–d). To delete FORD from the list CARS
shown in Figure 6.13(a), the sequence of steps to be undertaken is shown in Figures
6.13(b–d).

Linked Lists 157

Figure 6.12. Insertion of MARUTI into the headed circularly linked list CARS

Figure 6.13. Deletion of FORD from the headed circularly linked list CARS

158 A Textbook of Data Structures and Algorithms 1

6.3.4. Primitive operations on circularly linked lists

Some of the important primitive operations executed on a circularly linked list
are detailed below. Here, P is a circularly linked list as illustrated in Figure 6.14(a).

i) Insert an element A as the left most element in the list represented by P.

The sequence of operations to execute the insertion is given as

Call GETNODE(X);

DATA(X) = A;
LINK(X) = LINK(P);
LINK(P) = X;

Figure 6.14(b) illustrates the insertion of A as the left most element in the
circular list P.

ii) Insert an element A as the right most element in the list represented by P.

The sequence of operations to execute the insertion is the same as that of
inserting A as the left most element in the list followed by the instruction.

P = X

Figure 6.14(c) illustrates the insertion of A as the right most element in list P.

iii) Set Y to the data of the left most node in list P and delete the node.

The sequence of operations to execute the deletion is given as

PTR = LINK(P);
Y = DATA(PTR);
LINK(P) = LINK(PTR);
Call RETURN(PTR);

Here, PTR is a temporary pointer variable. Figure 6.14(d) illustrates the deletion
of the left most node in list P, setting Y to its data.

Observe that the primitive operations (i) and (iii), when combined, result in the
circularly linked list working as a stack, and operations (ii) and (iii), when
combined, result in the circularly linked list working as a queue.

Linked Lists 159

Figure 6.14. Some primitive operations on a circularly linked list P

6.3.5. Other operations on circularly linked lists

The concatenation of two circularly linked lists L1 and L2, as illustrated in
Figure 6.15, has the following sequence of instructions.

160 A Textbook of Data Structures and Algorithms 1

Figure 6.15. Concatenation of two circularly linked lists

The other operations are, splitting a list into two parts (see programming
assignment 2) and erasing a list.

6.4. Doubly linked lists

In sections 6.2 and 6.3, we discussed two types of linked representations,
namely, singly linked list and circularly linked list, both making use of a single link.
Additionally, the circularly linked list served to rectify the drawbacks of the singly
linked list. To enhance greater flexibility of movement, the linked representation
could include two links in every node, each of which points to the nodes on either
side of the given node. Such a linked representation known as a doubly linked list is
discussed in this section.

if L1 ≠ NIL then
 { if L2 ≠ NIL then
 {TEMP = LINK (L1)
 LINK(L1) = LINK(L2)
 LINK(L2) = TEMP
 L1 = L2
 }
 }

Linked Lists 161

6.4.1. Representation of a doubly linked list

A doubly linked list is a linked linear data structure, each node of which has one
or more data fields, but only two link fields termed the left link (LLINK) and right
link (RLINK). The LLINK field of a given node points to the node on its left, and its
RLINK field points to the node on its right. A doubly linked list may or may not
have a head node. Again, it may or may not be circular.

Figure 6.16 illustrates the structure of a node in a doubly linked list and the
various types of lists.

Figure 6.16. Node structure of a doubly linked list and the various list types

Example 6.5 illustrates a doubly linked list and its logical and physical
representations.

162 A Textbook of Data Structures and Algorithms 1

EXAMPLE 6.5.–

Consider a list FLOWERS of four data elements LOTUS,
CHRYSANTHEMUM, LILY and TULIP stored as a circular doubly linked list with
a head node. The logical and physical representation of FLOWERS is illustrated in
Figures 6.17(a) and (b). Observe how the LLINK and RLINK fields store the
addresses of the predecessors and successors of the given node, respectively. In the
case of FLOWERS being an empty list, the representation is shown in Figures
6.17(c) and (d).

6.4.2. Advantages and disadvantages of a doubly linked list

Doubly linked lists have the following advantages:

Figure 6.17. The logical and physical representation of
a circular doubly linked list with a head node, FLOWERS

Linked Lists 163

i) The availability of two links, LLINK and RLINK, permits forward and
backward movement during the processing of the list.

ii) The deletion of a node X from the list calls only for the value X to be known.
Note how in the case of a singly linked or circularly linked list, the delete operation
necessarily needs to know the predecessor of the node to be deleted. While a singly
linked list expects the predecessor of the node to be deleted to be explicitly known, a
circularly linked list is endowed with the capability to move around the list to find
the predecessor node. However, in the latter case, if the list is too long, it may render
the delete operation inefficient.

The only disadvantage of the doubly linked list is its memory requirement. Each
node needs two links, which could be considered expensive storagewise when
compared to singly linked lists or circular lists. Nevertheless, the efficiency of
operations due to the availability of two links more than compensates for the extra
space requirement.

6.4.3. Operations on doubly linked lists

An insert and delete operation on a doubly linked list are detailed here.

6.4.3.1. Insert operation

Let P be a headed circular doubly linked list that is non-empty. Algorithm 6.4
illustrates the insertion of a node X to the right of node Y. Figure 6.18(a) shows the
logical representation of list P before and after insertion.

Algorithm 6.4. To insert node X to the right
of node Y in a headed circular doubly linked list P

Note how the four instructions in Algorithm 6.4 correspond to the
setting/resetting of the four link fields, namely, links pertaining to node Y, its
original right neighbor (RLINK(Y)) and node X.

procedure INSERT_DL(X, Y)
 LLINK(X) = Y;
 RLINK(X) = RLINK(Y);
 LLINK(RLINK(Y)) = X;
 RLINK(Y) = X;
end INSERT_DL.

164 A Textbook of Data Structures and Algorithms 1

6.4.3.2. Delete operation

Let P be a headed, circular doubly linked list. Algorithm 6.5 illustrates the
deletion of a node X from P. The condition (X = P) that is checked ensures that the
head node P is not deleted. Figure 6.18(b) shows the logical representation of list P
before and after the deletion of node X from list P.

Algorithm 6.5. Delete node X from a headed circular doubly linked list P

Note how the two instructions pertaining to links, in Algorithm 6.5, correspond
to the setting/resetting of link fields of the two nodes, namely, the predecessor
(LLINK(X)) and successor (RLINK(X)) of node X.

Example 6.6 illustrates the insert/delete operation on a doubly linked list
PLANET.

procedure DELETE_DL(P, X)
 if (X = P) then ABANDON_DELETE;
 else
 {RLINK(LLINK(X)) = RLINK(X);
 LLINK(RLINK(X)) = LLINK(X);
 Call RETURN(X); }
end DELETE_DL.

Linked Lists 165

Figure 6.18. Insertion/deletion in a headed circular doubly linked list

EXAMPLE 6.6.–

Let PLANET be a headed circular doubly linked list with three data elements,
namely, MARS, PLUTO and URANUS. Figure 6.19 illustrates the logical and
physical representation of the list PLANET. Figure 6.20(a) illustrates the logical and
physical representation of list PLANET after the deletion of PLUTO, and Figure
6.20(b) shows the same after the insertion of JUPITER.

Figure 6.19. Logical and physical representation of list PLANET

166 A Textbook of Data Structures and Algorithms 1

Figure 6.20. Deletion of PLUTO and insertion of JUPITER in list PLANET

6.5. Multiply linked lists

A multiply linked list, as its name suggests, is a linked representation with
multiple data and link fields. A general node structure of a multiply linked list is
shown in Figure 6.21.

Since each link field connects a group of nodes representing the data elements of
a global list L, the multiply linked representation of the list L is a network of nodes

Linked Lists 167

that are connected to one another based on some association. The link fields may or
may not render their respective lists to be circular, or may or may not possess a head
node.

Figure 6.21. The node structure of a multiply linked list

Example 6.7 illustrates an example of multiple linked list.

EXAMPLE 6.7.–

Let STUDENT be a multiply linked list representation whose node structure is as
shown in Figure 6.22. Here, the SPORTS-CLUB-MEM link field links all student
nodes who are members of the sports club, DEPT-ENROLL links all students
enrolled with a given department and DAY-STUDENT links all students enrolled as
day students.

Consider Table 6.1, which illustrates details pertaining to six students.

Figure 6.22. Node structure of
the multiply linked list STUDENT

168 A Textbook of Data Structures and Algorithms 1

Name of
the student Roll #

Number of
credits

registered
Sports club
membership

Day
student Department

AKBAR CS02 200 Yes Yes Computer science

RAM ME426 210 No Yes Mechanical
sciences

SINGH ME927 210 Yes No Mechanical
sciences

YASSER CE467 190 Yes No Civil engineering

SITA CE544 190 No Yes Civil engineering

REBECCA EC424 220 Yes No
Electronics and
communication

engineering

Table 6.1. Student details for
representation as a multiply linked list

The multiply linked structure of the data elements in Table 6.1 is shown in
Figure 6.23. Here, S is a singly linked list of all sports club members, and DS is the
singly linked list of all day students. Note how the DEPT-ENROLL link field
maintains individual singly linked lists COMP-SC, MECH-SC, CIVIL ENGG and
ECE to keep track of the students enrolled with the respective departments.

To insert a new node with the following details,

ALI CS108 200 Yes Yes Computer Science

into the list STUDENTS, the procedure is similar to that of insertion in singly linked
lists. The point of insertion is to be determined by the user. The resultant list is
shown in Figure 6.24. Here, we have inserted ALI in the alphabetical order of
students enrolled with the computer science department.

Linked Lists 169

To delete REBECCA from the list of sports club members of the multiply linked
list STUDENT, we undertake a sequence of operations, as shown in Figure 6.25.
Observe how the node for REBECCA continues to participate in the other lists
despite its deletion from the list S.

A multiply linked list can be designed to accommodate much flexibility with
respect to its links, depending on the needs and suitability of the application.

Figure 6.23. Multiply linked list structure of list STUDENT

170 A Textbook of Data Structures and Algorithms 1

Figure 6.24. Insert ALI into the multiply linked list STUDENT

Figure 6.25. Delete REBECCA from the sports club
membership list of the multiply linked list STUDENTS

Linked Lists 171

6.6. Unrolled linked lists

Unrolled linked lists are “hybrid” data structures in that they combine the
benefits of using an array data structure with those of the linked list data structure.
As a result, they display the dual merits of small memory overheads of arrays
coupled with efficient insert/delete operations of linked lists.

Unrolled linked lists are therefore variants of linked lists considering the fact that
the nodes of an unrolled linked list hold an array of elements in addition to a link that
helps to point to its neighboring node. The size of the array can even be large enough
to fill a single cache line or its multiples thereof; therefore, unrolled linked lists can
serve to improve cache performance while decreasing the memory overheads.

Since the operations of insert/delete undertaken on an unrolled linked list are
sensitive to the number of elements stored in the array, it would be prudent to open
an extra field in the node that keeps count of the number of elements currently
stored in the node’s array. Additionally, for efficient storage management, it is
mandatory that each node in an unrolled linked list must have satisfied a minimum
level of storage utilization. Thus, for example, at any point in time, a node in an
unrolled linked list must be at least half full if the minimum storage utilization is set
to 50%. In this discussion, we use half-full as the storage utilization factor.

Figure 6.26 shows the structure of a node in an unrolled linked list. An example
unrolled linked list is shown in example 6.8.

Figure 6.26. Structure of a node in an unrolled linked list

EXAMPLE 6.8.–

T is an unrolled linked list with three nodes, NODE1, NODE2 and NODE3, and
with each node storing an array of size 5. The field LINK points to the next node in

172 A Textbook of Data Structures and Algorithms 1

the list, and the field NUMBER_OF_ELEMENTS stores the number of
elements currently stored in the array. Figure 6.27 illustrates an example unrolled
linked list T.

Figure 6.27. An example unrolled linked list

6.6.1. Retrieval of an element

To retrieve an element from an unrolled linked list, it is essential that the address
of the node and the index of the array element, which determine the position of the
element, are known. Thus, to retrieve an element, it may be essential to move down
the list with the help of the link field to spot the node concerned and then retrieve
the element from the array. For example, to retrieve element k whose address is
(NODE 3 – [1]), we have to move down the list tracking NODE 3 and then access
the element stored in index [1] of the array in the node concerned.

6.6.2. Insert an element

Given the position of insertion, the insertion operation in an unrolled linked list
proceeds as if we are trying to retrieve the element from the list at the given
position, but instead insert the element in the node at the position concerned.
However, the following cases need to be considered during insertion.

If the node is half full, then simply store the element in the array in the first
available empty cell available and increase the count in NUMBER_OF_
ELEMENTS.

If the node is full and there is no space to insert the element, create a new node
NEW_NODE that precedes or succeeds the node and move the appropriate half
(lower half or upper half) of the elements in the current node to NEW_NODE before
inserting the new element. Assuming that NEW_NODE was inserted as a successor
to the current node, the upper half of the elements in the current node are first
moved to NEW_NODE, and the new element to be inserted is stored in the first
available empty cell of the array in NEW_NODE. The NUMBER_OF_ELEMENTS

NODE 1 NODE 2 NODE 3

NUMBER_OF_ELEMENTS

Linked Lists 173

field in the current node is reset to NUMBER_OF_ELEMENTS/2, and the same in
NEW_NODE is reset to (NUMBER_OF_ELEMENTS/2 +1).

EXAMPLE 6.9.–

The insertion of elements p, q, r in NODE 3 of the unrolled linked list T shown
in Figure 6.27 is demonstrated in Figure 6.28. The minimum level of storage
utilization is fixed as ⌊5/2⌋=2, where the maximum size of the array in the node is 5.
It can be seen that during the insertion of r, since NODE 3 is already full, the
elements in the array of NODE 3 are split and accommodated in a new node
NEW_NODE. Element r is inserted into NEW_NODE.

(a) Initial list with minimum level of storage utilization as 2

(b) Insert ‘p’

(c) Insert ‘q’

(d) Insert ‘r’

Figure 6.28. Insertions in an unrolled linked list

6.6.3. Delete an element

To delete an element, we proceed as if we were trying to retrieve the element, and
once the location is reached, which is the node and the array cell concerned, the element
is deleted. However, considering the minimum level of storage utilization insisted upon
by unrolled linked lists, the following cases need to be considered for deletion:

i) if after deletion of the element from the node concerned, the minimum level of
storage utilization does not fall below its stipulated level, then the deletion is done.
Decrement the NUMBER_OF_ELEMENTS field in the node by 1;

NODE 1 NODE 2 NODE 3

NODE 1 NODE 2 NODE 3

NODE 1 NODE 2 NODE 3

NODE 1 NODE 2 NODE 3 NEW_NODE T

174 A Textbook of Data Structures and Algorithms 1

ii) if after deletion of an element from the node concerned, the minimum level of
storage utilization falls below its stipulated level, then the elements are transferred
from its successor node NEXT_NODE to the current node until the minimum level
of storage utilization is met. If this transfer, however, leaves NEXT_NODE short of
its minimum level of storage utilization, then NEXT_NODE is merged with the
current node. In both cases, the NUMBER_OF_ELEMENTS field is updated
appropriately.

EXAMPLE 6.10.–

The deletion of elements i and h demonstrated over the unrolled linked list
shown in Figure 6.28(c) are shown in Figure 6.29. Observe how deletion of element
h results in NODE 2 falling below its minimum level and transferring element k
from NODE 3 to NODE 2 results in NODE 3 falling below its minimum level.
Therefore, deletion of h calls for the merging of the elements in the two nodes,
namely, NODE 2 and NODE 3. The elements have been merged in NODE 2 and
NODE 3 has been deleted.

It needs to be noted that while the generic retrieve, insert and delete operations on
an unrolled linked list are as explained above, these operations could be fine-tuned to
suit the application for which the data structure is used. Thus, the position that
determines the point of insertion, the way elements are stored in the array and
maintained during insertion/deletion of elements or the way the elements in the node
are split or merged can all be determined based on the application or the user’s needs.

(a) Initial list with minimum level of storage utilization as 2

(b) Delete ‘c’

(c) Delete ‘h’

Figure 6.29. Deletions in an unrolled linked list

However, when compared to a singly linked list, the storage overheads for an
unrolled linked list are undoubtedly higher. The time complexity of a retrieve or

NODE 1 NODE 2 NODE 3 NEW_NODE

NODE 1 NODE 2 NODE 3 NEW_NODE

NODE 1 NODE 2 NEW_NODE

Linked Lists 175

insert or delete operation turns out to be O(n), where n is the number of elements in
the unrolled linked list, since all the operations involve moving down the list to spot
their positions of execution, which in the worst case turns out to be O(n). This
includes the overheads of maintaining the array of elements in the node or splitting
or merging nodes, as the case may be.

6.7. Self-organizing lists

In applications where frequent retrievals of data stored as a singly linked list are
common, it pays well to organize the list in such a way that frequent data retrievals
are efficiently handled. Maintaining the singly linked list as a sorted list yields a
time complexity of O(n) in the worst case, and the repeated retrievals of data only
worsen the time complexity.

A prudent solution to this problem could be to adopt self-organizing lists that
simply put, shift frequently accessed nodes to the beginning of the list. However,
there needs to be a mechanism to prioritize nodes with frequent retrievals. The
following are some methods that can be adopted to implement self-organizing lists.

i) Count method: Open a field COUNT in each node of the list. Every time a
node is retrieved increment COUNT by 1. Reorganize the list according to the
descending order of COUNT. However, this method incurs a storage overhead of an
extra field in each node of the list and may involve frequent reorganization of the
list.

ii) Move to front method: Every time a node is accessed move it to the front of
the list, in the hope that further retrievals of the node would prove less expensive.
The method does not require any extra storage and can be easily implemented.
However, in the case of infrequently retrieved nodes, overrewarding such nodes by
pushing them to the beginning of the list can severely affect the overall efficiency of
retrievals in the list.

iii) Transpose method: Any node that is retrieved is swapped with its preceding
node. The objective is to increase the priority of such nodes and keep them in the
front portion of the list.

6.8. Applications

In this section, we discuss two applications of linked lists, namely,

i) addition of polynomials;

ii) representation of a sparse matrix.

176 A Textbook of Data Structures and Algorithms 1

The addition of polynomials is illustrative of the application of singly linked lists
and sparse matrix representation is illustrative of the application of multiply linked
lists.

6.8.1. Addition of polynomials

The objective of this application is to perform a symbolic addition of two
polynomials, as illustrated below:

Let P1: 2x6 + x3 + 5x + 4;

P2: 7x6 + 8x5 – 9x3 + 10x2 + 14

be two polynomials over a variable x. The objective is to obtain the algebraic sum of
P1 and P2, that is, P1 + P2 as,

P1 + P2 = 9x6 + 8x5 – 8x3 + 10x2 + 5x + 18

To perform this symbolic manipulation of the polynomials, we make use of a
singly linked list to represent each polynomial. The node structure and the singly
linked list representation for the two polynomials are given in Figure 6.30. Here,
each node in the singly linked list represents a term of the polynomial.

Figure 6.30. Addition of polynomials – node structure
and singly linked list representation of polynomials

Linked Lists 177

To add the two polynomials, we presume that the singly linked lists have their
nodes arranged in decreasing order of the exponents of the variable x.

The objective is to create a new list of nodes representing the sum P1 + P2. This
is achieved by adding the COEFF fields of the nodes of similar powers of variable x
in lists P1 and P2 and adding a new node reflecting this operation in the resultant list
P1 + P2. We present below the crux of the procedure.

Here, P1 and P2 are the starting pointers of the singly linked lists representing
polynomials P1 and P2. Additionally, PTR1 and PTR2 are two temporary pointers
initially set to P1 and P2, respectively.

if (EXPONENT(PTR1) = EXPONENT(PTR2)) then
 /* PTR1 and PTR2 point to like terms */

if (COEFF(PTR1) + COEFF(PTR2)) ≠ 0 then
 {Call GETNODE(X);

 /* Perform the addition of terms and include the
 result node as the last node of list P1 + P2*/

 COEFF(X) = COEFF(PTR1) + COEFF(PTR2);
 EXPONENT(X)=EXPONENT(PTR1);
 /*or EXPONENT(PTR2)*/
 LINK(X) = NIL;

 Add node X as the last node of the list P1 + P2
;

 }

if (EXPONENT(PTR1) < EXPONENT(PTR2)) then
 /* PTR1 and PTR2 do not point to like terms */

 /* Duplicate the node representing the
highest power(i.e.) EXPONENT (PTR2) and

 insert it as the last node in P1 + P2*/

 {Call GETNODE(X);
 COEFF(X) = COEFF(PTR2);
 EXPONENT(X) = EXPONENT(PTR2);
 LINK(X) = NIL;
 Add node X as the last node of list P1 + P2;
 }

178 A Textbook of Data Structures and Algorithms 1

If any one of the lists during the course of the addition of terms has exhausted its
nodes earlier than the other list, then the nodes of the other list are simply appended
to list P1 + P2 in the order of their occurrence in their original list.

In the case of polynomials of two variables x and y or three variables x, y, and z,
the node structures are as shown in Figure 6.31.

Figure 6.31. Node structures of polynomials in two/three variables

Here, COEFFICIENT refers to the coefficient of the term in the polynomial
represented by the node. EXPONENT X, EXPONENT Y and EXPONENT Z are
the exponents of variables x, y and z, respectively.

6.8.2. Sparse matrix representation

The concept of sparse matrices is discussed in Chapter 3. An array representation
for the efficient representation and manipulation of sparse matrices is discussed in
section 3.5.1. In this section, we present a linked representation for the sparse matrix
as an illustration of a multiply linked list.

if (EXPONENT (PTR1) > EXPONENT (PTR2)) then
/* PTR1 and PTR2 do not point to like terms. Hence
duplicate the node representing the highest power
(i.e.) EXPONENT(PTR1) and insert it as the last node of
P1 + P2*/
 { Call GETNODE(X);
 COEFF(X) = COEFF(PTR1);
 EXPONENT(X) = EXPONENT(PTR1);
 LINK(X) = NIL;
 Add node X as the last node of list P1 + P2;
 }

Linked Lists 179

Figure 6.32. A sparse matrix and the node
structure for its representation as a multiply linked list

Figure 6.33. Multiply linked representation of
the sparse matrix shown in Figure 6.32(a)

Consider the sparse matrix shown in Figure 6.32(a). The node structure for the
linked representation of the sparse matrix is shown in Figure 6.32(b). Each non-zero
element of the matrix is represented using the node structure. Here, the ROW, COL
and DATA fields record the row, column and value of the non-zero element in the
matrix. The RIGHT link points to the node holding the next non-zero value in the

180 A Textbook of Data Structures and Algorithms 1

same row of the matrix. DOWN link points to the node holding the next non-zero
value in the same column of the matrix. Thus, each non-zero value is linked to its
rowwise and columnwise non-zero neighbors. The linked representation therefore
ignores representing the zeros in the matrix.

Now, each of the fields connects together to form a singly linked list with a head
node. Thus, all the nodes representing non-zero elements of a row in the matrix link
themselves (through RIGHT LINK) to form a singly linked list with a head node.
The number of such lists is equal to the number of rows in the matrix that contain at
least one non-zero element. Similarly, all the nodes representing the non-zero
elements of a column in the matrix link themselves (through the DOWN link) to
form a singly linked list with a head node. The number of such lists is equal to the
number of columns in the matrix that contain at least one non-zero element.

All the head nodes are also linked together to form a singly linked list. The head
nodes of the row lists have their COL fields as zero, and the head nodes of the
column lists have their ROW fields as zero. The head node of all head nodes,
indicated by START, stores the dimension of the original matrix in its ROW and
COL fields. Figure 6.29 shows the multiply linked list representation of the sparse
matrix shown in Figure 6.28(a).

ADT for links

Data objects:
 Addresses of the nodes holding data and links

Operations:

− Allocate node (address X) from Available Space to
accommodate data
GETNODE (X)

− Return node (address X) after use to Available
Space
RETURN(X)

− Store a value of one link variable LINK1 to
another link variable LINK2
STORE_LINK (LINK1, LINK2)

− Store ITEM into a node whose address is X
STORE_DATA (X, ITEM)

− Retrieve ITEM from a node whose address is X
RETRIEVE_DATA (X, ITEM)

Linked Lists 181

ADT for Singly Linked Lists

Data objects:
 A list of nodes each holding one (or more) data
field(s) DATA and a single link field LINK. LIST points
to the start node of the list.

Operations:
– Check if list LIST is empty
 CHECK_LIST_EMPTY (LIST) (Boolean function)
– Insert ITEM into the list LIST as the first

 element
 INSERT_FIRST (LIST, ITEM)

– Insert ITEM into the list LIST as the last element
 INSERT_LAST (LIST, ITEM)

– Insert ITEM into the list LIST in order
 INSERT_ORDER (LIST, ITEM)

– Delete the first node from the list LIST
 DELETE_FIRST(LIST)

– Delete the last node from the list LIST
 DELETE_LAST(LIST)

– Delete ITEM from the list LIST
 DELETE_ELEMENT (LIST, ITEM)

– Advance Link to traverse down the list
 ADVANCE_LINK (LINK)

– Store ITEM into a node whose address is X
 STORE_DATA(X, ITEM)

– Retrieve data of a node whose address is X and
return it in ITEM

 RETRIEVE_DATA(X, ITEM)
– Retrieve link of a node whose address is X and

return the value in LINK1
 RETRIEVE_LINK (X, LINK1)

182 A Textbook of Data Structures and Algorithms 1

6.9. Illustrative problems

PROBLEM 6.1.–

Write a pseudo-code procedure to insert NEW_DATA as the first element in a
singly linked list T.

Summary

– Sequential data structures suffer from the drawbacks of inefficient implementation of
insert/delete operations and inefficient use of memory.

– A linked representation serves to rectify these drawbacks. However, it calls for the
implementation of mechanisms such as GETNODE(X) and RETURN(X) to reserve a node
for use and return the same to the free pool after use, respectively.

– A singly linked list is the simplest of a linked representation with one or more data
fields, but with a single link field in its node structure that points to its successor.
However, such a list has lesser flexibility and does not aid in an elegant performance of
operation such as deletion.

– A circularly linked list is an enhancement of the singly linked list representation, in
that the nodes are circularly linked. This not only provides better flexibility, but also results
in a better rendering of the delete operation.

– A doubly linked list has one or more data items fields, but two links LLINK and
RLINK pointing to the predecessor and successor of the node, respectively. Though the list
exhibits the advantages of greater flexibility and efficient delete operation, it suffers from
the drawback of increased storage requirement for the node structure in comparison to
other linked representations.

– A multiply linked list is a linked representation with one or more data item fields and
multiple link fields. A multiply linked list in its simplest form may represent a cluster of
singly linked lists networked together.

– Unrolled linked lists are variants of linked lists that combine the best features of the
array data structure with those of the linked list data structure.

– Self-organizing lists favor efficient handling of frequent data retrievals.

– The addition of polynomials and linked representation of a sparse matrix are two
applications of linked lists.

Linked Lists 183

Solution:

We shall write a general procedure that will take care of the cases:

i) T is initially empty;

ii) T is non-empty.

The logical representation of list T before and after the insertion of NEW_DATA
for the two cases listed above is shown in Figure P6.1.

Figure P6.1. Insertion of NEW_DATA as the first element in a singly linked list T

The general procedure in pseudo-code:

 procedure INSERT_SL_FIRST(T, NEW-DATA)
 Call GETNODE(X);
 DATA(X) = NEW_DATA;
 if (T = NIL) then { LINK(X) = NIL; }
 else {LINK(X) = T;}
 T:= X;
 end INSERT_SL_FIRST.

PROBLEM 6.2.–

Write a pseudo-code procedure to insert NEW_DATA as the k𝑡ℎ element in a
non-empty singly linked list T.

Solution:

The logical representation of list T before and after the insertion of NEW_DATA
as the kth element in the list is shown in Figure P6.2.

184 A Textbook of Data Structures and Algorithms 1

Figure P6.2. Insertion of NEW_DATA as the kth
element in a non-empty singly linked list T

The pseudo-code procedure is as follows:

 procedure INSERT_SL_K (T, k, NEW_DATA)
 Call GETNODE(X);
 DATA(X) = NEW_DATA;
 COUNT = 1;
 TEMP = T;
 while (COUNT ≠ k) do
 PREVIOUS_PTR = TEMP;/* Remember the address of
 the predecessor node */
 TEMP = LINK(TEMP); /* TEMP slides down
 the list */
 COUNT = COUNT + 1;
 endwhile
 LINK(PREVIOUS_PTR) = X;
 LINK(X)= TEMP;
 end INSERT_SL_K

PROBLEM 6.3.–

Write a pseudo-code procedure to delete the last element of a singly linked list T.

Solution:

The logical representation of list T before and after deletion of the last element is
shown in Figure P6.3.

Linked Lists 185

Figure P6.3. Deletion of last element in a singly linked list T

The pseudo-code procedure is given as

procedure DELETE_LAST(T)
 if (T = NIL) then {call ABANDON_DELETE;}
 else
 { TEMP = T
 while (LINK(TEMP) ≠ NIL)
 PREVIOUS_PTR = TEMP; /*slide down the list in
 search of the last node */
 TEMP = LINK(TEMP);
 endwhile
 LINK(PREVIOUS_PTR) = NIL;
 call RETURN(TEMP);
 }
end DELETE_LAST.

PROBLEM 6.4.–

Write a pseudo-code procedure to count the number of nodes in a circularly
linked list with a head node, representing a list of positive integers. Store the count
of nodes as a negative number in the head node.

Solution:

Let T be a circularly linked list with a head node, representing a list of positive
integers. The logical representation of an example list T after execution of the
pseudo-code procedure is shown in Figure P6.4.

186 A Textbook of Data Structures and Algorithms 1

Figure P6.4. Calculation of length of a circularly linked list T with a head node

The pseudo-code procedure is as follows:

 procedure LENGTH_CLL(T)
 COUNT = 0;
 TEMP = T;
 while (LINK(TEMP) ≠ T)
 TEMP = LINK(TEMP);
 COUNT = COUNT + 1;
 endwhile
 DATA(T) = - COUNT;
 end LENGTH_CLL.

PROBLEM 6.5.–

For the circular doubly linked list T with a head node shown in Figure P6.5 with
pointers X, Y, Z as illustrated, write a pseudo-code instruction to

i) express the DATA field of NODE 5;

ii) express the DATA field of NODE 1 referenced from head node T;

iii) express the left link of NODE 1 as referenced from NODE 2;

iv) express the right link of NODE 4 as referenced from NODE 5.

Linked Lists 187

Figure P6.5. A circular doubly linked list T with a head node

Solution:

i) DATA (Z);

ii) DATA (RLINK(T));

iii) LLINK(LLINK(X));

iv) RLINK(LLINK(Z)).

PROBLEM 6.6.–

Given the circular doubly linked list of Figure P6.6(a), fill up the missing values
in the DATA fields marked “?” using the clues given.

Figure P6.6(a) A circular doubly linked list T with missing DATA field values

i) DATA(B) = DATA(LLINK(RLINK(A)) + DATA(LLINK(RLINK(T)));

ii) DATA(LLINK(B)) = DATA(B) + 10;

iii) DATA (RLINK(RLINK(B)) = DATA(LLINK(LLINK(B))).

188 A Textbook of Data Structures and Algorithms 1

Solution:

i) DATA(B) = DATA(A) + DATA(T)

(LLINK(RLINK(A)) = A and LLINK(RLINK(T))= T)

= 24 + 46

= 70

ii) DATA (LLINK(B)) = DATA(B) + 10

= 70 + 10

= 80

iii) DATA (RLINK(RLINK(B))) = DATA(A)

= 24

(LLINK(LLINK(B)) = A)

The updated list T is shown in Figure P6.6(b).

Figure P6.6(b) Updated circular doubly linked list T

PROBLEM 6.7.–

In a programming language (Pascal), the declaration of a node in a singly linked
list is shown in Figure P6.7(a). The list referred to for the problem is shown in
Figure P6.7(b). Given P to be a pointer to a node, the instructions DATA(P) and
LINK(P) referring to the DATA and LINK fields, respectively, of node P are
equivalently represented by P↑. DATA and P↑. LINK in the programming language.

What do the following commands do to the logical representation of the list T?

Linked Lists 189

 TYPE
 POINTER = ↑NODE;
 NODE = RECORD
 DATA: integer;
 LINK: POINTER
 END;
 VAR P, Q R: POINTER

(a) Declaration of a node in a singly linked list T

(b) A singly linked list T

Figure P6.7. (a and b) Declaration of a node in a programming
language and the logical representation of a singly linked list T

i) P↑.DATA:= Q↑.DATA + R↑.DATA
ii) Q: = P

iii) R↑.LINK: = Q
iv) R↑.DATA:= Q↑.LINK↑.DATA + 10

Solution:

The logical representation of list T after every command is shown in Figures
P6.7(c–f).

i) P↑.DATA:= Q↑.DATA + R↑.DATA

P↑.DATA:= 57 + 91 = 148

ii) Q:=P

Here, Q is reset to point to the node pointed to by P.

iii) R↑.LINK:= Q

190 A Textbook of Data Structures and Algorithms 1

The link field of node R is reset to point to Q. In other words, the list T turns into
a circularly linked list!

iv) R↑.DATA:= Q↑.LINK.DATA + 10

: = 57 + 10

:= 67

Figure P6.7. (c–f) Logical representation of list T after
execution of commands (i)–(iv) of illustrative problem 6.7

PROBLEM 6.8.–

Given the logical representations of a list T and the update in its links as shown
in Figures P6.8(i)–(iii), write a one-line instruction that will affect the change
indicated. The solid lines in the figures indicate the existing pointers, and the broken
lines indicate the updated links.

Linked Lists 191

Figure P6.8. Logical representations of a list T and the updated links

Solution:

i) RLINK (RLINK(X)) = NIL

or

 RLINK(LLINK(T)) = NIL

ii) LINK(LINK(Y)) = T

iii) RLINK(T) = RLINK(RLINK(T))

PROBLEM 6.9.–

Reverse a singly linked list by changing the pointers of the nodes. The data
represented by the list should continue to remain in the same nodes of the original
list.

For example, given a singly linked list START, as shown in Figure P6.9(a), the list
needs to be reversed, as shown in Figure P6.9(b), by manipulating the links alone.

192 A Textbook of Data Structures and Algorithms 1

(a) Original singly linked with ai indicating address of node

(b) Reversed singly linked list

Figure P6.9. Reversing a singly linked list by manipulating links

Solution:

We make use of three link variables, namely, PREVIOUS, CURRENT and
NEXT, to manipulate the links. The following pseudo-code undertakes the reversal
of the list by working on the links of the nodes with the help of the three variables
that traverse down the list while chasing one another and remembering/manipulating
links in the process.

PREVIOUS = NIL
CURRENT = START
NEXT = LINK(CURRENT)
LINK(CURRENT) = NIL
while (NEXT ≠ NIL)

PREVIOUS = CURRENT
CURRENT = NEXT
NEXT = LINK (NEXT)
LINK(CURRENT) = PREVIOUS

end while
START = CURRENT

PROBLEM 6.10.–

Given a singly linked list L, where x and y are two data elements that occupy the
nodes NODEX and NODEY with PREVIOUSX as the node, which is the previous
node of NODEX, write a pseudo-code to swap the date x and y in list L by
manipulating the links only (data swapping is not allowed). Assume that x and y are
available in the list and are neither neighbors nor the end nodes of list L.

START

START

A

Linked Lists 193

For example, given the list L shown in Figure P6.10(a), with L, NODEX,
NODEY and PREVIOUSX marked on it, the swapping should yield the list shown
in Figure P6.10(b). NODEX and NODEY are neither immediate neighbors nor the
end nodes of list L.

(a) Before swapping g and x

(b) After swapping g and x

Figure P6.10. Swapping of elements in
a singly linked list by manipulating links

Solution:

The following pseudo-code effects the swapping of x and y without undertaking
data swapping and only manipulating the links.

TEMP = NODEX
NEXTX = LINK(NODEX)
while (TEMP ≠ NODEY)

PREVIOUSY = TEMP
TEMP=LINK(TEMP)

end while
NEXTY = LINK(NODEY)
LINK(PREVIOUSX) = NODEY
LINK(NODEY) = NEXTX
LINK(PREVIOUSY) = NODEX
LINK(NODEX) = NEXTY

PROBLEM 6.11.–

Given a singly linked list L, devise a method to signal true if list L has a cycle
and false otherwise. A cycle is spotted when the link of a node points to a node that

PREVIOUS X NODE X NODE Y

PREVIOUS X NODE Y NODE X

194 A Textbook of Data Structures and Algorithms 1

was already visited while traversing down the list from its start node. Figure P6.11
shows an example list L with a cycle.

Figure P6.11. A singly linked list with a cycle

Solution:

One method to spot a cycle in a list is to maintain an array VISITED, initialized
to 0 for the nodes in the list. Every time a new node is encountered during the
traversal, whose VISITED flag is 0, the VISITED flag for the node is set to 1. If at
any point, the LINK of a node leads to a node whose VISITED flag is already set to
1, then it means the list L has a cycle. In such a case, the check terminates with a
true signal. On the other hand, if the VISITED flag checking/resetting to 1 proceeds
smoothly until the end of the list is reached, then there is no cycle, and hence, the
signal is set to false.

PROBLEM 6.12.–

Create an unrolled linked list with the minimum level of storage utilization fixed
to 2 and the size of the array in the node to be 4, using the data elements 56, 65, 76,
79, 84. Demonstrate the following operations: Insert 95, 98. Delete 79.

Solution:

Figure P6.12 illustrates the creation of the unrolled linked list and the execution
of the insert and delete operations listed.

Linked Lists 195

(a) Creation of the unrolled linked list for [56, 65, 76, 79, 84]

(b) Insert 95, 98

(c) Delete 79

Figure P6.12. Creation of an unrolled linked
list and demonstration of insert/delete operations

Review questions

The following is a snap shot of a memory that stores a circular doubly linked list
TENNIS_STARS that is head node free. Answer questions 1–3 with regard to the
list.

 LLINK DATA RLINK

1 9 Sabatini 4
2 6 Graf 5
3 2 Navaratilova 8
4 1 Mirza 7
5 2 Nirupama 6
6 5 Chris 2
7 9 Myskina 3
8 8 Hingis 1
9 1 Mandlikova 9

TENNIS_STARS 2

T

196 A Textbook of Data Structures and Algorithms 1

1) The number of data elements in the list TENNIS_STARS is

a) 3 b) 2 c) 5 d) 9

2) The successor of “Graf” in the list TENNIS_STARS is

a) Navaratilova b) Sabatini c) Nirupama d) Chris

3) In the list TENNIS_STARS, DATA(RLINK(LLINK(5))) = --------

a) Mirza b) Graf c) Nirupama d) Chris

4) Given the singly linked list T shown in the illustration below, the following
code inserts the node containing the data “where_am_i”

 T = LINK(T)
 P = LINK(LINK(T))
 GETNODE(X)
 DATA(X) = “where_am_i”
 LINK(X) = P
 LINK(LINK(T))= X

a) Between NODE 1 and NODE 2 b) Between NODE 2 and NODE 3

c) Between NODE 3 and NODE 4 d) After NODE 4

5) For the singly linked list T shown above, after deletion of NODE 3,
DATA(LINK(LINK(T))) = ––––––––––-

a) I b) AM c) HERE d) ALWAYS

6) What is the need for linked representations of lists?

7) What are the advantages of circular lists over singly linked lists?

8) What are the advantages and disadvantages of doubly linked lists over singly
linked lists?

9) What is the use of a head node in a linked list?

Linked Lists 197

10) What are the conditions for testing whether a linked list T is empty, if T is a
(i) simple singly linked list, (ii) headed singly linked list, (iii) simple circularly
linked list or (iv) headed circularly linked list?

11) Sketch a multiply linked list representation for the following sparse matrix:

൦−9 0 0 00 0 0 00 5 0 20 7 0 5൪

12) Demonstrate the application of singly linked lists for the addition of the
polynomials P1 and P2 given below:

P1: 19𝑥଺ + 78𝑥ସ + 6𝑥ଷ − 23𝑥ଶ − 34

P2: 67𝑥଺ + 89𝑥ହ − 23𝑥ଷ − 75𝑥ଶ − 89𝑥 − 21

13) Modify the pseudo-code shown in illustrative problem 6.10, wherever
needed, to handle the cases (i) NODEX and NODEY are immediate neighbors, and
(ii) NODEX and NODEY are not immediate neighbors, but are end nodes of list L.

14) Write a pseudo-code that will perform insert/deletion operations on an
unrolled linked list, as explained in sections 6.6.2 and 6.6.3.

15) Demonstrate a self-organizing list on the following keywords of a
programming language stored as a doubly linked list, when the given list of
retrievals is undertaken over the list.

Show how the list reorganizes itself when (i) count, (ii) move to front and (iii)
transpose methods are employed. Tabulate the comparisons undertaken for the three
methods, while retrieving the keyword if, every time it is called in the order given.

List: exit and for while if repeat else

Retrievals: if if if if else repeat while if if if

Programming assignments

1) Let X = (𝑥ଵ, 𝑥ଶ, … 𝑥௡), Y = (𝑦ଵ, 𝑦ଶ, … 𝑦௡) be two lists with a sorted
sequence of elements. Execute a program to merge the two lists together as a list Z
with m + n elements. Implement the lists using singly linked list representations.

198 A Textbook of Data Structures and Algorithms 1

2) Execute a program that will split a circularly linked list P with n nodes into
two circularly linked lists P1, P2 with the first n/2 and the last n – n/2 nodes of
the list P in them.

3) Write a menu driven program which will maintain a list of car models, their
price, name of the manufacturer, engine capacity, etc., as a doubly linked list. The
menu should make provisions for inserting information pertaining to new car
models, delete obsolete models, update data such as price, in addition to answering
queries such as listing all car models within a price range specified by the client and
listing all details, given a car model.

4) Students enrolled for a diploma course in computer science opt for two
theory courses, an elective course and two laboratory courses, from a list of courses
offered for the programme. Design a multiply linked list with the following node
structure:

ROLLNO NAME THEORY1 THEORY2 LABORATORY1 ELECTIVE

LABORATORY2

A student may change their elective course within a week of enrollment.
At the end of the period, the department takes into account the number of students
who have enrolled for a specific course in the theory, laboratory and elective
options.

Execute a program to implement the multiply linked list with provisions to insert
nodes, update information, and generate reports as needed by the department.

5) [Topological Sorting] The problem of topological sorting is to arrange a set
of objects {𝑂ଵ, 𝑂ଶ, … 𝑂௡ } obeying rules of precedence into a linear sequence such
that whenever Oi precedes Oj, we have i < j. The sorting procedure has wide
applications in PERT, linguistics, network theory, etc. Thus, when a project
comprises a group of activities observing precedence relations among themselves, it
is convenient to arrange the activities in a linear sequence to effectively execute the
project.

Again, as another example, while designing a glossary for a book, it is essential
that the terms Wi are listed in a linear sequence such that no term is used before
it has been defined. The illustration below shows the topological sorting of a
network.

Linked Lists 199

A simple way to perform topological sorting is to look for objects that are not
preceded by any other objects and release them into the output linear sequence.
Remove these objects and continue the same with other objects of the network until
the entire set of objects have been released into the linear sequence. However,
topological sorting fails when the network has a cycle. In other words, if Oi precedes
Oj and Oj precedes Oi, the procedure is stalled.

Design and implement an algorithm to perform topological sorting of a sequence
of objects using a linked list data structure.

6) Write a program FRONTBACK that splits a doubly linked list START with n
nodes into two sublists FRONT and BACK, where FRONT points to the ቒ௡ଶቓ nodes

200 A Textbook of Data Structures and Algorithms 1

occupying the front of the original list and BACK points to the remaining nodes at
the back end of START, but points to the node that is the last in the list.

7) Write a program REMOVE_DUPLICATES that will remove duplicate
elements in a list L that occur consecutively. The program should return the list with
its elements in the same order of their appearance in the original list, but with the
consecutive duplicate elements removed.

For example, for a list with elements {A, B, C, C, C, C, D, D, E, F, F}, the
output list produced by REMOVE_DUPLICATES should be {A, B, C, D, E, F}.

8) Write a menu-driven program to create an unrolled linked list and retrieve,
insert and delete an element from it. You may take liberties with the operations
while implementing them.

9) Implement a self-organizing list by creating a singly linked list of nodes and
undertaking frequent retrievals of data in the list repeatedly and at random. Show
how the list restructures itself when (i) count, (ii) move to front and (iii) transpose
methods are used for the same set of frequent retrievals.

7

Linked Stacks and Linked Queues

In Chapters 4 and 5, we discussed a sequential representation of the stack and
queue data structures. Stacks and queues were implemented using arrays and hence
inherited all the drawbacks of the sequential data structure.

In this chapter, we discuss the representation of stacks and queues using a
linked representation, namely, singly linked lists. The inherent merits of the linked
representation render an efficient implementation of the linked stack and linked
queue.

We first define a linked representation of the two data structures and discuss the
insert/delete operations performed on them. The role played by the linked stack in
the management of the free storage pool is detailed. The applications of linked
stacks and linked queues in the problems of balancing symbols and polynomial
representation, respectively, are discussed later.

7.1. Introduction

To review, a stack is an ordered list with the restriction that elements are added
or deleted from only one end of the stack termed the top of stack with the “inactive”
end known as the bottom of stack. A stack observes the Last-In-First-Out (LIFO)
principle and has its insert and delete operations referred to as Push and Pop,
respectively.

The drawbacks of a sequential representation of a stack data structure are as
follows:

i) finite capacity of the stack;

202 A Textbook of Data Structures and Algorithms 1

ii) check for the STACK_FULL condition every time a Push operation is
effected.

A queue, on the other hand, is a linear list in which all insertions are made at one
end of the list known as the rear end and all deletions are made at the opposite end
known as the front end. The queue observes a First-In-First-Out (FIFO) principle,
and the insert and delete operations are known as enqueuing and dequeuing,
respectively.

The drawbacks of a sequential representation of a queue are as follows:

i) finite capacity of the queue; and

ii) checking for the QUEUE_FULL condition before every insert operation is
executed, both in the case of a liner queue and a circular queue.

We now discuss linked representations of a stack and a queue.

7.1.1. Linked stack

A linked stack is a linear list of elements commonly implemented as a singly
linked list whose start pointer performs the role of the top pointer of a stack. Let
a, b, c be a list of elements. Figures 7.1(a–c) show the conventional, sequential and
linked representations of the stack.

Figure 7.1. Stack and queue representations
(conventional, sequential and linked)

Top

Top

Top

a
b
c

(a) Conventional representation of stack

a b c

(b) Sequential representation of stack

c b a

(c) Linked representation of stack

a b c

Front Rear

(d) Conventional representation of a queue

Rear

a b c

Front

(e) Sequential representation of a queue

Front
a b c

Rear

(f) Linked representation of a queue

Linked Stacks and Linked Queues 203

Here, the start pointer of the linked list is appropriately renamed Top to suit the
context.

7.1.2. Linked queues

A linked queue is also a linear list of elements commonly implemented as a
singly linked list but with two pointers, namely, front and rear. The start pointer of
the singly linked list plays the role of front, while the pointer to the last node is set to
play the role of rear.

Let a, b and c be a list of three elements to be represented as a linked queue.
Figures 7.1(d–f) show the conventional, sequential and linked representations of the
queue.

7.2. Operations on linked stacks and linked queues

In this section, we discuss the insert and delete operations performed on the
linked stack and linked queue data structures and present algorithms for the same.

7.2.1. Linked stack operations

(a) Push operation (b) Pop operation

Figure 7.2. Push and pop
operations on a linked stack S

Top
c b a

Linked stack S

Push ‘d’ into S

Top
c b a

Linked stack S

Top
c b a

Top

c b ad

Top Top

Pop from S

Linked Stack S after ‘d’ is
pushed into it

Linked Stack S after ‘c’ is
popped out from it

204 A Textbook of Data Structures and Algorithms 1

To push an element into the linked stack, we insert the node representing the
element as the first node in the singly linked list. The Top pointer, which points to
the first element in the singly linked list, is automatically updated to point to the new
top element. In the case of a pop operation, the node pointed to by the Top pointer
is deleted, and Top is updated to point to the next node as the top element.
Figures 7.2(a) and (b) illustrate the push and pop operation on a linked stack S,
respectively.

Observe how during the push operation, unlike sequential stack structures, there
is no need to check for the STACK-FULL condition due to the unlimited capacity of
the data structure.

7.2.2. Linked queue operations

To insert an element into the queue, we insert the node representing the element
as the last node in the singly linked list for which the REAR pointer is reset to point
to the new node as the rear element of the queue. To delete an element from the
queue, we remove the first node of the list for which the FRONT pointer is reset to
point to the next node as the front element of the queue. Figures 7.3(a) and (b)
illustrate the insert and delete operations on a linked queue, respectively.

(a) Insert operation (b) Delete operation

Figure 7.3. Insert and delete operations on the linked queue Q

The insert operation, unlike insertion in sequential queues, does not exhibit the
need to check for the QUEUE_FULL condition due to the unlimited capacity of the
data structure. The introduction of circular queues to annul the drawbacks of the
linear queues now appears superfluous in light of the linked representation of
queues.

Rear Rear

a b c

Linked queue Q

Insert ‘d’ into Q

b c da

Front

Front

Rear

a b c

Front
Rear

Linked queue Q

Delete from Q

a b c

Front
Rear Front

Linked Stacks and Linked Queues 205

Both linked stacks and queues could be represented using a singly linked list
with a head node. Additionally, they could be represented as a circularly linked list
provided that the fundamental principles of LIFO and FIFO are strictly maintained.

We now present the algorithms for the operations discussed in linked stacks and
linked queues.

7.2.3. Algorithms for Push/Pop operations on a linked stack

Let S be a linked stack. Algorithms 7.1 and 7.2 illustrate the push and pop
operations to be carried out on stack S.

Algorithm 7.1. Push item ITEM into a linked stack S with top pointer TOP

Note the absence of the STACK_FULL condition. The time complexity of a
push operation is 𝑂(1).

Algorithm 7.2. Pop from a linked stack S and output the element through ITEM

procedure POP_LINKSTACK(TOP, ITEM)
/* pop element from stack and set ITEM to the element */

 if (TOP = 0) then call LINKSTACK_EMPTY
 /* check if linked stack is empty */
 else { TEMP = TOP
 ITEM = DATA(TOP)
 TOP = LINK(TOP)
 }
 call RETURN(TEMP) ;

end POP_LINKSTACK.

procedure PUSH_LINKSTACK (TOP, ITEM)
/* Insert ITEM into stack */

 Call GETNODE(X)

 DATA(X) = ITEM /*frame node for ITEM */
 LINK(X) = TOP /* insert node X into stack */
 TOP = X /* reset TOP pointer */

end PUSH_LINKSTACK.

206 A Textbook of Data Structures and Algorithms 1

The time complexity of a pop operation is 𝑂(1). Example 7.1 illustrates the push
and pop operation on a linked stack.

EXAMPLE 7.1.–

Consider the stack DEVICE of peripheral devices illustrated in example 4.1.
We implement the same as a linked stack. The insertion of PEN, PLOTTER,
JOYSTICK and PRINTER and a deletion operation are illustrated in
Table 7.1. We assume the list to be initially empty and Top to be the top pointer of
the stack.

7.2.4. Algorithms for insert and delete operations in a linked queue

Let Q be a linked queue. Algorithms 7.3 and 7.4 illustrate the insert and delete
operations on the queue Q.

Algorithm 7.3. Insert item ITEM into a linear queue Q with
FRONT and REAR as the front and rear pointers to the queue

Observe the absence of the QUEUE_ FULL condition in the insert procedure.
The time complexity of an insert operation is 𝑂(1).

procedure INSERT_LINKQUEUE(FRONT,REAR,ITEM)
 Call GETNODE (X);

 DATA(X)= ITEM;
 LINK(X)= NIL; /* Node with ITEM is ready to

 be inserted into Q */
 if (FRONT = 0) then FRONT = REAR = X;

 /* If Q is empty then ITEM is the first
 element in the queue Q */
 else {LINK(REAR) = X;

 REAR = X
 }

end INSERT_LINKQUEUE.

Stack operation Stack DEVICE before operation Algorithm invocation Stack DEVICE after operation Remarks

1) Push ‘PEN’
into DEVICE

PUSH_LINKSTACK
(Top, ‘PEN’)

Set Top to point to
the first node.

2) Push
‘PLOTTER’
into DEVICE

PUSH_LINKSTACK
(Top, ‘PLOTTER’)

Insert PLOTTER as
the first node and

reset Top.

3) Push
‘JOYSTICK’
into DEVICE

PUSH_LINKSTACK
(Top, ‘JOYSTICK’)

Insert JOYSTICK
as the first node and

reset Top.

4) Pop from
DEVICE

POP_LINKSTACK
(Top, ITEM)

Return the first node
and reset Top.

5) Push
‘PRINTER’
into DEVICE

POP_LINKSTACK
(Top, ‘PRINTER’)

Insert PRINTER as
the first node and

reset Top.

Table 7.1. Insert and delete operations on linked stack DEVICE

‘PLOTTER’

‘PRINTER’

‘PEN’

Top

‘PEN’

‘PLOTTER’

Top

‘PEN’

‘PLOTTER’

ITEM = ’JOYSTICK’

‘JOYSTICK’
Top

‘PLOTTER’

‘PEN’

‘JOYSTICK’
Top

‘PLOTTER’

‘PEN’

Top

‘PEN’

‘PLOTTER’

Top

‘PEN’

‘PLOTTER’Top

‘PEN’

Top
‘PEN’

Top

Top

Linked Stacks and Linked Queues 207

Algorithm 7.4. Delete element from the linked queue Q through
ITEM with FRONT and REAR as the front and rear pointers

The time complexity of a delete operation is 𝑂(1). Example 7.2 illustrates the
insert and delete operations on a linked queue.

EXAMPLE 7.2.–

Consider the queue BIRDS illustrated in example 5.1. The insertion of DOVE,
PEACOCK, PIGEON and SWAN, and two deletions are shown in Table 7.2.

Owing to the linked representation, there is no limitation on the capacity of
the stack or queue. In fact, the stack or queue can hold as many elements as the
storage memory can accommodate! This dispenses with the need to check for
STACK_FULL or QUEUE_FULL conditions during push or insert operations,
respectively.

The merits of linked stacks and linked queues are therefore:

i) the conceptual and computational simplicity of the operations;

ii) nonfinite capacity.

The only demerit, if at all, is the requirement of additional space that is needed to
accommodate the link fields.

procedure DELETE_LINKQUEUE (FRONT,ITEM)

 if (FRONT = 0) then call LINKQUEUE_EMPTY;

 /* Test condition to avoid deletion in an empty
 queue */
 else {TEMP = FRONT;

 ITEM = DATA (TEMP);
 FRONT = LINK (TEMP);
 }
 call RETURN (TEMP); /* return the node TEMP to

 the free pool */
end DELETE_LINKQUEUE.

208 A Textbook of Data Structures and Algorithms 1

Linked Stacks and Linked Queues 209

7.3. Dynamic memory management and linked stacks

Dynamic memory management addresses methods of allocating storage and
recycling unused space for future use. The automatic recycling of dynamically
allocated memory is also known as garbage collection.

If the memory storage pool is thought of as a repository of nodes, then dynamic
memory management primarily revolves around the two actions of allocating nodes
(for use by the application) and liberating nodes (after their release by the
application). Several intelligent strategies for the efficient allocation and liberation
of nodes have been discussed in the literature. However, we have chosen to discuss
this topic from the perspective of a linked stack application.

 Every linked representation, which makes use of nodes to accommodate data
elements, executes procedure GETNODE() to obtain the desired node from the
free storage pool and procedure RETURN() to dispose of the node into the
storage pool. The free storage pool is also referred to as Available Space
(AVAIL_SPACE).

When the application invokes GETNODE(), a node from the available space data
structure is deleted to be handed over for use by the program, and when RETURN()
is invoked, the node disposed of by the application is inserted into the available
space for future use.

The most commonly used data structure for the management of AVAIL_SPACE
and its insert/delete operation is the linked stack. The list of free nodes in
AVAIL_SPACE are all linked together and maintained as a linked stack with a top
pointer (AV_SP). When GETNODE() is invoked, a pop operation of the linked stack
is performed, releasing a node for use by the application, and when RETURN() is
invoked, a push operation of the linked stack is performed. Figure 7.4 illustrates the
association between the GETNODE() and RETURN() procedures and
AVAIL_SPACE maintained as a linked stack.

We now implement the GETNODE() and RETURN() procedures, which in fact
are nothing but the POP and PUSH operations on the linked stack AVAIL_SPACE.
Algorithms 7.5 and 7.6 illustrate the implementation of the procedures.

Linked queue

operation Linked queue before operation Algorithm invocation Linked queue after operation Remarks

1) Insert ‘DOVE’
into BIRDS.

INSERT_LINKQUEUE
(Front, Rear, ‘DOVE’)

Since the queue
BIRDS is empty,
insert DOVE as the
first node. Front and
rear point to the
node.

2) Insert
‘PEACOCK’ into
BIRDS.

INSERT_LINKQUEUE
(Front, Rear,
‘PEACOCK’)

Insert PEACOCK as
the last node. Reset
rear pointer.

3) Insert
‘PIGEON’ into
BIRDS.

INSERT_LINKQUEUE
(Front, Rear, ‘PIGEON’)

Insert PIGEON as
the last node. Reset
rear pointer.

‘DOVE’
Front

‘PEACOCK’

‘PIGEON’
Rear

Front

‘PEACOCK’

‘DOVE’

Rear

Front

‘PEACOCK’

‘DOVE’
Front

‘DOVE’

Rear

Front

‘DOVE’

Rear

Rear Front

Rear

210 A Textbook of Data Structures and Algorithms 1

Linked Stacks and Linked Queues 211

4) Delete from
BIRDS.

DELETE_LINKQUEUE
(Front, Rear, ITEM)

Delete node pointed
to by front. Reset
front.

5) Insert ‘SWAN’
into BIRDS.

INSERT_LINKQUEUE
(Front, Rear, ‘SWAN’)

Insert SWAN as the
last node. Reset rear.

6) Delete from
BIRDS.

DELETE_LINKQUEUE
(Front, Rear, ITEM)

Delete node pointed
to by Front. Reset
front.

Table 7.2. Insert and delete operations on a linked queue BIRDS

Rear

Front

‘SWAN’

‘PIGEON’

ITEM = ‘PEACOCK’

‘PEACOCK’
Front

‘PIGEON’

‘SWAN’
Rear

‘PEACOCK’
Front

‘PIGEON’

‘SWAN’
Rear Rear

Front

‘PIGEON’

‘PEACOCK’

Rear

Front

‘PIGEON’

‘PEACOCK’

ITEM=’DOVE’

‘DOVE’
Front

‘PEACOCK’

‘PIGEON’
Rear

Linked Stacks and Linked Queues 211

AVAIL_SPACE

. . .

GETNODE(X)

X

Application
Available space

(a) Available space before execution of GETNODE () procedure

. . . .

Y

Application

Available space

(b) Available space after execution of GETNODE () procedure

X

Pop from
AVAIL_SPACE!

. . . .

Y

Application

Available space

(c) Available space before execution of RETURN () procedure.

X

RETURN(X)

AVAIL_SPACE

AVAIL_SPACE

Y

212 A Textbook of Data Structures and Algorithms 1

Linked Stacks and Linked Queues 213

Figure 7.4. Association between GETNODE () and
RETURN () procedures and AVAIL _SPACE

Algorithm 7.5. Implementation of procedure GETNODE (X), where
AV is the pointer to the linked stack implementation of AVAIL_SPACE

Algorithm 7.6. Implementation of procedure RETURN (X), where
AV is the pointer to the linked stack implementation of AVAIL_SPACE

AVAIL_SPACE

. . . .

X Y

Application

Push NodeX
into AVAIL_SPACE!

(d) Available space after execution of RETURN () procedure.

Available space

procedure RETURN(X)

 LINK (X)= AV; /*Push node X into AVAIL_SPACE
and reset AV */

 AV = X;
end RETURN.

procedure GETNODE(X)

 if (AV = 0) then call NO_FREE_NODES;
 /* AVAIL_SPACE has no free nodes to allocate * /
 else
 { X = AV;
 AV = LINK (AV); /* Return the address X of the
 } top node in AVAIL_SPACE */
end GETNODE.

214 A Textbook of Data Structures and Algorithms 1

It is obvious that at a given instance, the adjacent or other nodes in
AVAIL_SPACE are neighbors that are physically contiguous in the memory but lie
scattered in the list. This may eventually lead to holes in the memory, leading to
inefficient use of memory. When variable size nodes are in use, it is desirable to
compact memory so that all free nodes form a contiguous block of memory. Such a
thing is termed memory compaction.

It now becomes essential that the storage manager, for the efficient management
of memory, every time a node is returned to the free pool, ensures that the
neighboring blocks of memory that are free are coalesced into a simple block of
memory to satisfy large requests for memory. This is, however, easier said than
done. To look for neighboring nodes that are free, a “brute force approach” calls for
a complete search through the AVAIL_SPACE list before collapsing the adjacent
free nodes into a single block.

Allocation strategies, such as the boundary tag method and buddy system
method (Knuth 1973), with efficient reservation and liberation of nodes have been
proposed in the literature.

7.4. Implementation of linked representations

It is emphasized here that nodes belonging to the reserved pool, that is, nodes
that are currently in use, coexist with the nodes of the free pool in the same storage
area. It is therefore not uncommon to have a reserved node having a free node as its
physically contiguous neighbor. While the link fields of the free nodes, which in its
simplest form is a linked stack, keep track of the free nodes in the list, the link fields
of the reserved pool similarly keep track of the reserved nodes in the list. Figure 7.5
illustrates a naïve scheme of the reserved pool intertwined with the free pool in
memory storage.

Figure 7.5. The scheme of reserved storage
pool and free storage pool in the memory storage

AV START

: Reserved Storage pool

: Free Storage pool

AV: Pointer to AVAIL_SPACE

START: Pointer to a linked
reserved pool of an application

Linked Stacks and Linked Queues 215

Example 7.3 illustrates the implementation of a linked representation. For
simplicity, we consider a singly linked list occupying the reserved pool.

EXAMPLE 7.3.–

A snapshot of the memory storage is shown in Figure 7.6. The reserved pool
accommodates a singly linked list (START). The free storage pool of used and
disposed nodes is maintained as a linked stack with top pointer AV.

Figure 7.6. A snapshot of the memory accommodating a
singly linked list in its reserved pool and the free storage pool

Figure 7.7. Logical representation of the singly linked
list and available space shown in Figure 7.6

22 9

DATA LINK

1

29 82

-14 73

36 14

144 105

-3 26

116 07

43 3 8

56 59

34 010

AV: 6

START: 4

6 2 8 3 7

36

START

22

4 1

56 144

9 5

34

10

-3

AV

29 43 -14 116

216 A Textbook of Data Structures and Algorithms 1

Note the memory locations AV and START. AV records the address of the first
node in the free storage pool, and START records the address of the singly linked
list in the reserved pool. The logical representation of the singly linked list and the
available space are illustrated in Figure 7.7.

7.5. Applications

All applications of linear queues and linear stacks can be implemented as linked
stacks and linked queues. In this section, we discuss the following problems:

i) balancing symbols,

ii) polynomial representation,

as application of linked stacks and linked queues, respectively.

7.5.1. Balancing symbols

An important activity performed by compilers is to check for syntax errors in the
program code. One such error checking mechanism is the balancing of symbols or,
specifically, the balancing of parentheses in the context of expressions, which is
exclusive to this discussion.

For the balancing of parentheses, every left parenthesis or brace or bracket as
allowed by the language syntax must have a closing or matching right parenthesis,
brace or bracket, respectively. Thus, the usage of (), or { } or [] are correct, whereas
(, [, } are incorrect, the former indicative of a balanced occurrence and the latter of
an imbalanced occurrence in an expression.

The arithmetic expressions shown in example 7.4 are balanced in parentheses,
while those listed in example 7.5 are imbalanced forcing the compiler to report
errors.

EXAMPLE 7.4.–

Balanced arithmetic expressions are given as

i) ((A+B)↑ C – D) + E – F

ii) (– (A+B) * (C – D)) ↑F

Linked Stacks and Linked Queues 217

EXAMPLE 7.5.–

Imbalanced arithmetic expressions are given as

i) (A+B) * – (C+D+F

ii) – ((A+B+C) * – (E+F)))

The solution to the problem is an easy but elegant use of a stack to check for
mismatched parentheses. The general pseudo-code procedure for the problem is
illustrated in Algorithm 7.7.

Algorithm 7.7. To check for the balance of parentheses in a string

Appropriate to the discussion, we choose a linked representation for the stack in
the algorithm. Examples 7.6 and 7.7 illustrate the working of the algorithm on two
expressions with balanced and unbalanced symbols, respectively.

procedure BALANCE_ EXPR(E)
/*E is the expression padded with a $ to indicate end of
input*/

 clear stack;
 while not end_of_string(E) do

 read character;/* read a character from string E*/
 if the character is an open symbol
 then push character in to stack;
 if the character is a close symbol
 then
 if stack is empty then ERROR ()
 else {pop the stack;
 if the character popped is not the

 matching symbol
 then ERROR();

 }
 endwhile
 if stack not empty then ERROR();

end BALANCE_EXPR.

218 A Textbook of Data Structures and Algorithms 1

EXAMPLE 7.6.–

Consider the arithmetic expression ((A+B)* C) – D, which has balanced
parentheses. Table 7.3 illustrates the working of the algorithm on the expression.

EXAMPLE 7.7.–

Consider the expression ((A + B) C + G), which has imbalanced parentheses.
Table 7.4 illustrates the working of the algorithm on the expression.

7.5.2. Polynomial representation

In Chapter 6, section 6.8.1, we discussed the problem of the addition of
polynomials as an application of linked lists. In this section, we highlight the
representation of polynomials as an application of linear queues.

Consider a polynomial 9x6 – 2x4 + 3x2 + 4. Adopting the node structure shown in
Figure 7.8(a) (reproduction of Figure 6.26(a)), the linked list for the polynomial is as
shown in Figure 7.8(b).

Input string (E) Stack (S) Remarks

Initialization. Note E
is padded with $ as
end of input symbol

Push ‘(’ into S

Push ‘(’ into S

Ignore character ‘A’

Ignore character ‘+’

Ignore character ‘B’ (

S
(

)* C) – D $

(
S

(
B)* C) – D $

(
S

(
+B)* C) – D $

(
S

(
A+B)* C) – D $

(
S (A+B)* C) – D $

S ((A+B)* C) – D $

Linked Stacks and Linked Queues 219

Pop symbol from S.
Matching symbol to
“)” found. Proceed.

Ignore character ‘*’

Ignore character ‘C’

Pop symbol from S.
Matching symbol to
‘)’ found. Proceed.

Ignore character ‘–’

 $

Ignore character ‘D’

 $

End of input
encountered.

Stack is empty.
Success!

Table 7.3. Working of algorithm BALANCE_EXPR ()
on the expression (A+B)* C

Input string (E) Stack (S) Remarks

Initialization.
E is padded with a $

as end of input
character.

Push ‘(’ into S

Push ‘(’ into S

Ignore character ‘A’

(

S
(

+B)*C ↑ G $

(
S

(
A+B)*C ↑ G $

(
S (A+B)*C ↑ G $

S ((A+B)*C ↑ G $

S

S

S D $

S – D $

(
S) – D $

(S C) – D $

(
S * C) – D $

220 A Textbook of Data Structures and Algorithms 1

Ignore character ‘+’

Ignore character ‘B’

Pop symbol from S.
Matching symbol

to “)” found. Proceed.

Ignore character ‘*’

Ignore character ‘C’

Ignore character ‘↑’

 $ Ignore character ‘G’

 $

End of input
encountered.

Stack is not empty.
Error!

Table 7.4. Working of the algorithm BALANCE_EXPR ()
on the expression ((A+B) *C↑G)

Figure 7.8. Linked list representation of a polynomial

For easy manipulation of the linked list, we represent the polynomial in its
decreasing order of exponents of the variable (in the case of univariable
polynomials). It would therefore be easy for the function handling the reading of the

COEFF EXP LINK

COEFF: Coefficient of the term

EXP: Exponent of the variable

 (a) Node structure

9 6

3 2 4 0

(b) Linked list representation of the
polynomial 9x6 -2x4 + 3x2 + 4.

-2 4

(
S

(
S

(
S G $

(
S ↑ G $

(
S C↑ G $

(
S *C ↑ G $

(
S

(
)*C ↑ G $

(
S

(
B)*C ↑ G $

Linked Stacks and Linked Queues 221

polynomial to implement the linked list as a linear queue, since this would entail an
elegant construction of the list from the symbolic representation of the polynomial
by enqueuing the linear queue with the next highest exponent term. The linear queue
representation for the polynomial 9x6 – 2x4 + 3x2 + 4 is shown in Figure 7.9.

Additionally, after the manipulation of the polynomials (addition, subtraction,
etc.) the resulting polynomial can also be elegantly represented as a linear queue.
This merely calls for enqueueing the linear queue with the just manipulated term.
Recall the problem of the addition of polynomials discussed in section 6.8.1.
Maintaining the added polynomial as a linear queue would only call for “appending”
the added terms (coefficients of terms with like exponents) to the rear of the list.
However, during the manipulation, the linear queue representations of the
polynomials are treated as traversable queues. A traversable queue while retaining
the operations of enqueuing and dequeuing permits traversal of the list in which
nodes may be examined.

Figure 7.9. Linear queue representation
of the polynomial 9x6 – 2x4 + 3x2 + 4

9 6 -2 4 3 2 4 0

Front
Rear

Summary

– Sequential representations of stacks and queues suffer from the limitation of finite
capacity besides checking for the STACK_FULL and QUEUE_ FULL conditions, each time
a push or insert operation is executed, respectively.

– Linked stacks and linked queues are singly linked list implementations of stacks and
queues, though a circularly linked list representation can also be attempted without
hampering the LIFO or FIFO principle of the respective data structures.

– Linked stacks and linked queues display the merits of conceptual and computational
simplicity of insert and delete operations besides the absence of limited capacity. However, the
requirement of additional space to accommodate the link fields can be viewed as a demerit.

– The maintenance of available space list calls for the application of linked stacks.

– The problems of balancing of symbols and polynomial representation demonstrate the
application of linked stack and linked queue, respectively.

222 A Textbook of Data Structures and Algorithms 1

7.6. Illustrative problems

PROBLEM 7.1.–

Given the following memory snapshot where START and AV_ SP store the start
pointers of the linked list and the available space, respectively:

i) identify the linked list;

ii) show how the linked list and the available space list are affected when the
following operations are carried out:

a) insert 116 at the end of the list,

b) delete 243,

c) obtain the memory snapshot after the execution of operations listed in (a)
and (b).

114 0

DATA LINK

 1

176 6 2

243 9

94 5 4

346 7 5

879 8 6

344 1 7

465 3 8

191 109

564 0 10

AV_SP: 4 START: 2

3

Linked Stacks and Linked Queues 223

Solution:

i) Since the linked list starts at a node whose address is 2, the logical
representation of the list is as given below:

The available space list, which functions as a linked stack and starts from a node
whose address is 4, is given by:

ii) (a) To insert 116 at the end of the list START, we obtain a node from the
available space list (invoke GETNODE ()). The node released has address 4. The
resultant list and the available space list are as follows:

ii) (b) To delete 243, the node holding the element has to be returned to the
available space list (invoke (RETURN ()). The resultant list and the available space
list are as follows:

564 191243
Start

176

2

879

6

465

8 3 9

10

11434494 346

4 5 7 1AV_SP

116

4

564

191243
START

176

2

879

6

465

8 3 9

10

114346 344

5 7 1 AV_SP

191 116 564
START

176

2

879

6

465

8 9 10

4

114346 344

5 7 1 AV_SP
243

3

224 A Textbook of Data Structures and Algorithms 1

ii) (c) The memory snapshot after the execution of (a) and (b) is as given below:

PROBLEM 7.2.–

Given the above memory snapshot, which stores a linked stack L_S and a linked
queue L_Q beginning at the respective addresses, obtain the resulting memory
snapshot after the following operations are carried out sequentially.

114 0

DATA LINK

1

176 6 2

243 5 3

116 0 4

346 7 5

879 8 6

344 1 7

465 9 8

191 109

564 4 10

AV_SP: 3 START: 2

AMTRACK 7

DATA LINK

 1

FALCON 5 2
BOMBAY_MAIL 6 3

EUROSTAR 9 4

DUTCHFLYER 4 5

RAJDHANI 0 6
FAST_WIND 8 7

DEVILS_EYE 0 8

ORIENT EXPRESS 0 9

BLUE MOUNT 3 10

AV_SP: 2 L_Q: 1 L_S: 10

(FRONT)

L_Q: 8

(REAR)

Linked Stacks and Linked Queues 225

i) Enqueue CONCORDE into L_Q.

ii) Pop from L_S.

iii) Dequeue from L_Q.

iv) Push “PALACE _ON _WHEELS” into L-S.

Solution:

It is easier to perform the operations on the logical representations of the lists
and available space extracted from the memory before obtaining the final memory
snapshot.

The lists are as follows:

i) Enqueue CONCORDE into L_Q yields:

Here, node 2 is popped from AVAIL-SPACE to accommodate CONCORDE,
which is inserted at the rear of L_Q.

AMTRACK

1
L_Q

FAST_WIND

7

DEVILS_EYE

8

(Front)

(Rear)

BLUE MOUNT

10
L_S

BOMBAY_MAIL

3

RAJDHANI

6

FALCON

2
AV_SP

DUTCHFLYER

5

EUROSTAR

4

ORIENT EXPRESS

9

EUROSTAR

AMTRACK

1
L_Q

FAST_WIND

7

DEVILS_EYE

8

(Front)
CONCORDE

2
(Rear)

DUTCHFLYER

5 4

ORIENT EXPRESS
AV_SP 9

226 A Textbook of Data Structures and Algorithms 1

ii) Pop from L_S yields:

Here, node 10 from L-S is deleted and pushed into AVAIL_SPACE.

iii) Dequeue from L_Q yields:

Here, node 1 from L_Q is deleted and pushed into AVAIL_SPACE.

iv) Push “PALACE_ON_WHEELS” into L_S yields:

Here, node 1 from AVAIL_SPACE is popped to accommodate

“PALACE_ON_WHEELS” before pushing the node into L_S.

9

RAJDHANI

BLUE MOUNT

10
AV_SP

DUTCHFLYER

5

EUROSTAR

4

ORIENT EXPRESS

BOMBAY MAIL

3 6
L_S

FAST_WIND

7

DEVILS_EYE

8

CONCORDE

2
(Rear)

L_Q

(Front)

9

BLUE MOUNT

10
AV_SP

DUTCHFLYER

5

EUROSTAR

4

ORIENT EXPRESS

AMTRACK

1

BLUE MOUNT

9

RAJDHANI

10
AV_SP

DUTCHFLYER

5

EUROSTAR

4

ORIENT EXPRESS

BOMBAY MAIL

3 6
L_S

PALACE_ON_WHEELS

1

Linked Stacks and Linked Queues 227

The final lists are as follows:

The memory snapshot is given by:

PROBLEM 7.3.–

Implement an abstract data type STAQUE, which is a combination of a linked
stack and a linked queue. Develop procedures to perform an insert and delete
operation, termed PUSHINS and POPDEL, respectively, on a non-empty STAQUE.
PUSHINS inserts an element at the top or rear of the STAQUE based on an indication
given to the procedure, and POPDEL deletes elements from the top/front of the list.

Solution:

The procedure PUSHINS performs the insertion of an element in the top or rear
of the list based on whether the STAQUE is viewed as a stack or queue,

FAST_WIND

7

DEVILS_EYE

8

CONCORDE

2
(Rear)

L_Q

(Front)

RAJDHANI BOMBAY MAIL

3

6
L_S

PALACE_ON_WHEELS

1

PALACE ON
WHEELS

3

DATA LINK

1

CONCORDE 0 2

BOMBAY MAIL 6 3
EUROSTAR 9 4

DUTCHFLYER 4 5

RAJDHANI 0 6

FAST_WIND 8 7

DEVILS_EYE 2 8

ORIENT EXPRESS 0 9

BLUE MOUNT 5 10

AV_SP: 10 L_Q: 7 L_S: 1

(Front)

L_Q: 2

(Rear)

228 A Textbook of Data Structures and Algorithms 1

respectively. On the other hand, the procedure POPDEL, which performs a pop or
deletion of element, is common to a STAQUE, since in both cases, the first element
in the list alone is deleted.

procedure PUSHINS(WHERE, TOP,
REAR, ITEM)

/* WHERE indicates whether the
insertion of ITEM is to be done
as on a stack or as on a queue*/

 Call GETNODE(X);

 DATA(X) = ITEM;

 if (WHERE = ’Stack’)

 then {LINK(X)= TOP;

 TOP = X;

 }

 else

 {LINK(REAR) = X;

 LINK(X)=Nil;

 REAR=X;

 }

end PUSHINS

procedure POPDEL(TOP, ITEM)

 TEMP = TOP;

 ITEM = DATA(TEMP);

 /* delete top element

 of the list through

 ITEM*/

 TOP = LINK(TEMP);

 RETURN(TEMP);

end POPDEL

PROBLEM 7.4.–

Write a procedure to convert a linked stack into a linked queue.

Solution:

An elegant and easy solution to the problem is to undertake the conversion by
returning the addresses of the first and last nodes of the linked stack as FRONT and
REAR, thereby turning the linked stack into a linked queue.

procedure CONVERT_LINKSTACK(TOP, FRONT, REAR)
/* FRONT and REAR are the variables which return the
addresses of the first and last node of the list
converting the linked stack into a linked queue*/

Linked Stacks and Linked Queues 229

if (TOP= Nil)then print(“Conversion not possible”);
else {FRONT = TOP;
TEMP = TOP;
while (LINK(TEMP) ≠ Nil)do

TEMP = LINK(TEMP);
REAR = TEMP;

endwhile
 }

end CONVERT_LINKSTACK.

PROBLEM 7.5.–

An Abstract Data Type STACKLIST is a list of linked stacks stored according to
a priority factor, namely, A, B, C, and so on, where A means highest priority, B the
next and so on. Elements having the same priority are stored as a linked stack. The
following is a structure of the STACKLIST S.

Create a STACKLIST for the following application of process scheduling with
the processes having two priorities, namely, R (Real time) and O (On line) listed
within brackets.

 A B C

S Priority A Priority B Priority C

Top (Stack A) Top (Stack C)

Head Node

230 A Textbook of Data Structures and Algorithms 1

1. Initiate process P1 (R) 5. Initiate process P5(O)
2. Initiate process P2 (O) 6. Initiate process P6 (R)
3. Initiate process P3 (O) 7. Terminate process in linked stack O
4. Terminate process in linked stack R 8. Initiate process P7 (R)

Solution:

The STACKLIST at the end of Schedules 1–3 is shown below:

The STACKLIST at the end of Schedule 4 is given as follows:

 R O

 P1 P3

 P2

S Priority R Priority O

Top (Stack R) Top (Stack O)

Head Node

 R O

 P3

 P2

S Priority R Priority O

Top (Stack R)
Top (Stack O)

Head Node

Linked Stacks and Linked Queues 231

The STACKLIST at the end of Schedules 5–8 is as follows:

PROBLEM 7.6.–

Write a procedure to reverse a linked stack implemented as a doubly linked list,
with the original top and bottom positions of the stack reversed as bottom and top,
respectively.

For example, a linked stack S and its reversed version Srev are shown as follows:

Solution:

An elegant solution would be to merely swap the LLINK and RLINK pointers of
each of the doubly linked lists to reverse the list and remember the address of the
last node in the original stack S as the TOP pointer. The procedure is given as
follows:

 R O

 P7

 P6

 P3

 P2

S
Priority R Priority O

Top (Stack R)
Top (Stack O)

Head Node

232 A Textbook of Data Structures and Algorithms 1

procedure REVERSE_STACK(TOP)

/* TEMP and HOLD are temporary variables to hold the
addresses of nodes*/

 TEMP = TOP;
 repeat

 HOLD = LLINK(TEMP);
 LLINK(TEMP)= RLINK(TEMP);
 RLINK(TEMP)= HOLD;/*Swap left and right links for
 each node*/
 TEMP = LLINK(TEMP);/* Move to the next node*/
 until (TEMP = TOP)

 TOP = RLINK(TEMP);

end REVERSE_STACK.

PROBLEM 7.7.–

What does the following pseudo-code do to the linked queue Q with the
addresses of nodes, as shown below:

procedure WHAT_DO_I_DO(FRONT, REAR)
/* HAVE, HOLD and HUG are temporary variables to hold
the link or data fields of the nodes as the case may
be*/

 HAVE = FRONT;
 HOLD = DATA(HAVE);

 while LINK(HAVE) ≠ Nil do
 HUG = DATA(LINK(HAVE));
 DATA(LINK(HAVE))= HOLD;
 HOLD = HUG;
 HAVE = LINK(HAVE);
 endwhile
 DATA(FRONT)= HOLD;

end WHAT_DO_I_DO

124844914 366

Q

REAR FRONT

a1 a2 a3 a4

Linked Stacks and Linked Queues 233

Solution:

The procedure WHAT_DO_I_DO rotates the data items of the linked queue Q to
obtain the resultant list given below:

PROBLEM 7.8.–

Write a procedure to remove the nth element (from the top) of a linked stack
with the rest of the elements unchanged. Contrast this with a sequential stack
implementation for the same problem (illustrative problem 4.2(iii) of Chapter 4).

Solution:

To remove the nth element leaving the other elements unchanged, a linked
implementation of the stack merely calls for sliding down the list, which is easily
done, and for a reset of a link to remove the node concerned. The procedure is given
below. In contrast, a sequential implementation as described in illustrative problem
4.2(iii) calls for the use of another temporary stack to hold the elements popped out
from the original stack before pushing them back into it.

procedure REMOVE(TOP, ITEM, n)
/* The nth element is removed through
ITEM*/
 TEMP = TOP;
 COUNT = 1;
 while (COUNT≠ n) do
 PREVIOUS = TEMP;
 TEMP = LINK(TEMP);
 COUNT = COUNT+1;
 endwhile
 LINK(PREVIOUS)= LINK(TEMP);
 ITEM = DATA(TEMP);
 RETURN(TEMP);

end REMOVE

844366124 914
Q

REAR

FRONT

a1 a2 a3

234 A Textbook of Data Structures and Algorithms 1

PROBLEM 7.9.–

Given a linked stack L_S and a linked queue L_Q with equal length, what do the
following procedures to do the lists? Here, TOP is the top pointer of L_S, and
FRONT and REAR are the front and rear of L_Q. What are your observations
regarding the functionality of the two procedures?

procedure
WHAT_IS_COOKING1(TOP, FRONT,
REAR)
/* TEMP, TEMP1, TEMP2 and
TEMP3 are temporary
variables*/
 TEMP1 = FRONT;
 TEMP2 = TOP;
 while (TEMP1≠ Nil AND
 TEMP2≠ Nil) do
 TEMP3 = DATA(FRONT);
 DATA(FRONT)= DATA(TOP);
 DATA(TOP)= TEMP3;
 TEMP1 = LINK(TEMP1);
 PREVIOUS = TEMP2;
 TEMP2 = LINK(TEMP2);
 endwhile
 TEMP = TOP;
 TOP = FRONT;
 FRONT = TEMP;
 REAR = PREVIOUS;
end WHAT_IS_COOKING 1

procedure
WHAT_IS_COOKING2(TOP,
FRONT, REAR)
/* TEMP, TEMP1, TEMP2 and
TEMP3 are temporary
variables*/
 TEMP = TOP;
 while (LINK(TEMP)≠ Nil)
 do
 TEMP = LINK(TEMP);
 endwhile
 TEMP1 = TOP;
 REAR = TEMP;
 TOP = FRONT;
 FRONT = TEMP1;
end WHAT_IS_COOKING2

Solution:

Both procedures swap the contents of the linked stack L_S and linked queue
L_Q. While WHAT_IS_COOKING1 does it by exchanging the data items of the
lists, WHAT_IS_COOKING2 does it by merely manipulating the pointers and hence
looks elegant.

PROBLEM 7.10.–

A queue list Q is a list of linked queues stored according to orders of priority,
namely, A, B, C and so on, with A accorded the highest priority, B the next highest
priority and so on. The LEAD nodes serve as head nodes for each of the priority-

Linked Stacks and Linked Queues 235

based queues. Elements with the same priority are stored as a normal linked queue.
Figures P7.10(a) and (b) illustrate the node structure and an example queue list,
respectively.

The FOLLOW link links together the head nodes of the queues, and the DOWN
link connects it to the first node in the respective queue. The LEAD DATA field
may be used to store the priority factor of the queue.

Here is a QUEUE LIST Q stored in the memory, a snapshot of which is shown
as follows:

(a) Structure of the nodes in a queue list

(b) An example Queue list

 M1

 N2

 H5

 V3

 W4

Q
 Priority A Priority B Priority C

Front (Queue A)

Rear (Queue A)

Front (Queue C)

Rear (Queue C)

Head Node

|––––––––Lead Nodes–––––––––-|

DOWN LEAD DATA FOLLOW

LEAD Node Structure Queue Node Structure

DATA LINK

236 A Textbook of Data Structures and Algorithms 1

(c) A snapshot of the queue list

Figure P7.10. Queue list: node structure,
example and memory snapshot

There are three queues Q1, Q2 and Q3 with priorities of 1, 2 and 3. The head
node of QUEUELIST stores the number of queues in the list as a negative number.
The LEAD DATA field stores the priority factor of each of the three queues.
START points to the head node of the QUEUELIST and AVAILABLE SPACE the
pointer to the free storage pool.

Obtain the QUEUELIST by tracing the lead nodes and nodes of the linked
queues.

Solution:

The structure of the QUEUELIST is shown as follows:

 DOWN LEAD
DATA

FOLLOW

10 604 5 7
11 26 -4 561
12 566 1 13
13 0 2 15
14 3 4 591
15 573 3 0
16 0 -3 12

 DATA LINK
564 g 0
565 k 571
566 a 572
567 l 384
568 v 0
569 m 570
570 n 0
571 u 568
572 x 564
573 h 565

START
16

AVAILABLE SPACE
 10

Linked Stacks and Linked Queues 237

Review questions

The following is a snapshot of a memory that stores a linked stack
VEGETABLES and a linked queue FRUITS beginning at the respective addresses.
Answer the following questions with regard to operations on the linked stack and
queue, each of which is assumed to be independently performed on the original
linked stack and queue.

 -3 1 2 3

 a

 x

 g

 h

 k

Q

Front (Queue 1)

Rear (Queue 1)

Front (Queue 3)

Rear (Queue 3)

Head Node

 u

 v

 12 13 15

566

572

564

573

565

571

568

CABBAGE 7

DATA LINK

 1

CUCUMBER 5 2

PEAR 6 3

ONION 9 4

ORANGE 4 5

PEACH 0 6

CELERY 8 7

CARROTS 0 8

LEMON 0 9

PLUM 310

AV_SP

2

VEGETABLES

10

FRUITS

1FRONT:

6REAR:

TOP:

238 A Textbook of Data Structures and Algorithms 1

1) Inserting PAPAYA into the linked queue FRUITS results in the following
changes to the FRONT, REAR and AV_SP pointers, respectively, as given in:

a) 10 2 2 b) 2 6 2 c) 2 6 5 d) 10 2 5

2) Undertaking pop operation on VEGETABLES results in the following
changes to the TOP and AV_SP pointers, respectively, as given in:

a) 7 1 b) 7 2 c) 8 2 d) 8 1

3) Undertaking the delete operation on FRUITS results in the following changes
to the FRONT, REAR and AV_SP pointers, respectively, as given in:

a) 3 6 2 b) 10 3 6 c) 3 6 10 d) 10 3 2

4) Pushing TURNIPS into VEGETABLES results in the following changes to
the TOP and AV_SP pointers, respectively, as given in:

a) 2 5 b) 2 9 c) 1 5 d) 1 9

5) After the push operation of TURNIPS into VEGETABLES (undertaken in
review question 4 above),

DATA(2) = ------------- and DATA(LINK(2)) = -------------

a) TURNIPS and CABBAGE b) CUCUMBER and CABBAGE

c) TURNIPS and CUCUMBER d) CUCUMBER and ORANGE

6) What are the merits of linked stacks and queues over their sequential
counterparts?

7) How is the memory storage pool associated with a linked stack data structure
for its operations?

8) How are push and pop operations implemented on a linked stack?

9) What are traversable queues?

10) Outline the node structure and a linked queue to represent the polynomial:
17x5 + 18 x2 + 9x + 89.

11) Trace procedure BALANCE_EXPR(E) (Algorithm 7.7) on the
following expression to check whether parentheses are balanced:

((X + Y + Z) * H) + (D * T)) – 2

12) Design a stack MAXSTACK, which functions like an ordinary linked stack
supporting the ADT operations of PUSH, POP and EMPTYSTACK, besides

Linked Stacks and Linked Queues 239

GETMAX. GETMAX is an operation that records the maximum element in the
stack. Can you design the stack in such a way that GETMAX merely consumes O(1)
time complexity.

13) The evaluation of postfix expressions using stacks is discussed in Algorithm
4.3 of Chapter 4. Can a similar procedure be evolved to evaluate prefix expressions
using a linked stack?

Hint: Read the prefix expression from right to left, unlike a postfix expression
that was read left to right.

Programming assignments

1) Execute a program to implement a linked stack to check for the balancing of
the following pairs of symbols in a Pascal program. The name of the source Pascal
program is the sole input to the program.

Symbols: begin end, (), [], { }.

(i) Output errors encountered during mismatch of symbols.

(ii) Modify the program to set right the errors.

2) Evaluate a postfix expression using a linked stack implementation.

3) Implement the simulation of a time sharing system discussed in Chapter 5,
section 5.5, using linked queues.

4) Develop a program to implement a queue list (illustrative problem 7.10),
which is a list of linked queues stored according to an order of priority.

Test for the insertion and deletion of the following jobs with their priorities listed
within brackets on a queue list JOB_MANAGER with three queues A, B and C
listed according to their order of priorities:

1. Insert Job J1 (A) 6. Insert Job J5 (C)
2. Insert Job J2 (B) 7. Insert Job J6 (C)
3. Insert Job J3 (A) 8. Insert Job J7 (A)
4. Insert Job J4 (B) 9. Delete Queue C
5. Delete Queue B 10. Insert Job J8 (A)

5) Develop a program to simulate a calculator that performs the addition,
subtraction, multiplication and division of polynomials.

References

Aragon, C.R. and Seidel, R. (1989). Randomized search trees. In Proc. 30th Symp.
Foundations of Computer Science (FOCS 1989). IEEE Computer Society Press,
Washington, DC.

Donald, K. (1998). Art of Computer Programming, Vol. III. 2nd edition. Addison-Wesley
Professional, Reading, MA.

Garey, M.R. and David, S.J. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, New York.

Hoare, C.A.R. (1962). Quick sort. The Computer Journal, 5(1), 10–16.

Knuth, D.E. (1973). The Art of Computer Programming, Volume 1: Fundamental Algorithms.
2nd edition. Addison-Wesley, Reading, MA.

Malik, S. and Lintao, Z. (2009). Boolean satisfiability, from theoretical hardness to practical
success. Communications of the ACM, 52(8), 76–82.

Perlis, A.J. and Thornton, C. (1960). Symbol manipulation by threaded lists.
 Communications of the ACM, 3(4), 195–204.

Pugh, W. (1990). Skip lists: A probabilistic alternative to balanced trees. Communications of
the ACM, 33(6), 668–676.

Shell, D.L. (1959). A high-speed sorting procedure. Communications of the ACM, 2(7),
30–32.

Index

A
Abstract Data Types (ADT), 8, 12,

45, 227, 229
algorithm

analysis of, 11, 13
design techniques, 9, 10
development of an, 5

apriori analysis, 14, 15, 17, 27, 30, 31
array

bit, 54, 58, 59, 64, 65, 67, 69
number of elements, 46–48, 61, 63,

66, 100, 102, 114, 131, 171,
172, 175

one-dimensional, 45, 46, 48–51,
55–58, 60, 99, 102, 140

operations, 46, 59
three-dimensional, 48, 52, 53, 67
two-dimensional, 45–48, 50–52,

57, 114, 130, 131, 140
asymptotic notations, 17, 30, 31
available space, 209, 215, 216,

221–223, 225

B, C
balancing symbols, 201, 216
base address, 49–51, 53, 60, 62, 63,

66
big oh, 17
circular queue, 101, 105, 106,

108–112, 124, 127, 138–140,
202, 204

circularly linked lists
advantages of, 155
disadvantages of, 156

complexity
space, 13, 17, 30
time, 13, 17, 19–22, 27, 30–32,

35–37, 40, 42–44, 74, 105,
110, 113, 174, 175, 205, 206,
208, 239
average case, 22
best case, 22
exponential, 20, 43
polynomial, 19, 43
worst case, 22

244 A Textbook of Data Structures and Algorithms 1

D
data abstraction, 8
data structures

classification, 9
linear, 9, 11, 12, 143, 147, 161
nonlinear, 9, 11, 12

deque, 101, 117–119, 124, 132, 133,
137, 140, 202, 221

doubly linked lists, 143, 146, 160–165,
182, 186–188, 195–199, 231
operations on, 163

dynamic memory management, 209

E, F
expression

infix, 79, 80, 89, 98
postfix, 79–83, 89, 90, 98, 99, 239
prefix, 79–81, 89, 90, 239

First Come First Served (FCFS), 101
First In First Out (FIFO), 101
frequency count, 15–17, 27, 30,

32–37, 42, 44

J, L, M, O
job scheduling, 101, 119, 120, 122,

124
Last In First Out (LIFO), 72, 97
linear queue, 105, 106, 108, 109, 119,

124, 125, 137–139, 204, 206, 216,
218, 221

little oh, 19
multiply linked list, 143, 146, 166–170,

176, 178–180, 182, 197, 198
omega, 18
ordered list, 54–56, 60, 68, 71, 73,

83, 201

P, Q
polynomials

addition of, 175, 176, 182, 218, 221
representation, 178, 201, 216, 218,

221
posteriori testing, 14, 30
priority queue, 101, 112–114, 119–224,

129, 130, 139, 140
queues

implementation of, 102, 105

R, S
recurrence relation, 24, 26–30, 35,

38, 40, 44
recursion, 23, 24, 76, 78, 79, 89, 99
recursive

functions, 24, 26, 27, 39, 40
programming, 23, 24, 39, 40, 43,

44, 71, 76, 83, 88, 99
self-organizing lists, 175, 182, 197,

200
singly linked list

insertion and deletion in a, 149
sparse matrix, 54, 55, 67, 143, 175,

176, 178–180, 182, 197
stack implementation, 73, 79, 213,

231, 233, 239
string, 7, 54, 56–58, 65–67, 69, 141,

217–219

T, U
theta, 18
Tower of Hanoi puzzle, 25, 26, 28, 29
unrolled linked list, 143, 171–175,

194, 195, 197, 200

Summary of Volume 2

Preface

Acknowledgments

Chapter 8. Trees and Binary Trees

8.1. Introduction
8.2. Trees: definition and basic terminologies

8.2.1. Definition of trees
8.2.2. Basic terminologies of trees

8.3. Representation of trees
8.4. Binary trees: basic terminologies and types

8.4.1. Basic terminologies
8.4.2. Types of binary trees

8.5. Representation of binary trees
8.5.1. Array representation of binary trees
8.5.2. Linked representation of binary trees

8.6. Binary tree traversals
8.6.1. Inorder traversal
8.6.2. Postorder traversal
8.6.3. Preorder traversal

8.7. Threaded binary trees
8.7.1. Linked representation of a threaded binary tree
8.7.2. Growing threaded binary trees

A Textbook of Data Structures and Algorithms

8.8. Applications
8.8.1. Expression trees
8.8.2. Traversals of an expression tree
8.8.3. Conversion of infix expression to postfix expression
8.8.4. Segment trees

8.9. Illustrative problems

Chapter 9. Graphs

9.1. Introduction
9.2. Definitions and basic terminologies
9.3. Representations of graphs

9.3.1. Sequential representation of graphs
9.3.2. Linked representation of graphs

9.4. Graph traversals
9.4.1. Breadth first traversal
9.4.2. Depth first traversal

9.5. Applications
9.5.1. Single source shortest path problem
9.5.2. Minimum cost spanning trees

9.6. Illustrative problems

Chapter 10. Binary Search Trees and AVL Trees

10.1. Introduction
10.2. Binary search trees: definition and operations

10.2.1. Definition
10.2.2. Representation of a binary search tree
10.2.3. Retrieval from a binary search tree
10.2.4. Why are binary search tree retrievals more efficient
than sequential list retrievals?
10.2.5. Insertion into a binary search tree
10.2.6. Deletion from a binary search tree
10.2.7. Drawbacks of a binary search tree
10.2.8. Counting binary search trees

10.3. AVL trees: definition and operations
10.3.1. Definition
10.3.2. Retrieval from an AVL search tree
10.3.3. Insertion into an AVL search tree
10.3.4. Deletion from an AVL search tree
10.3.5. R category rotations associated with the delete operation
10.3.6. L category rotations associated with the delete operation

Summary of Volume 2

10.4. Applications
10.4.1. Representation of symbol tables in compiler design

10.5. Illustrative problems

Chapter 11. B Trees and Tries

11.1. Introduction
11.2. m-way search trees: definition and operations

11.2.1. Definition
11.2.2. Node structure and representation
11.2.3. Searching an m-way search tree
11.2.4. Inserting into an m-way search tree
11.2.5. Deleting from an m-way search tree
11.2.6. Drawbacks of m-way search trees

11.3. B trees: definition and operations
11.3.1. Definition
11.3.2. Searching a B tree of order m
11.3.3. Inserting into a B tree of order m
11.3.4. Deletion from a B tree of order m
11.3.5. Height of a B tree of order m

11.4. Tries: definition and operations
11.4.1. Definition and representation
11.4.2. Searching a trie
11.4.3. Insertion into a trie
11.4.4. Deletion from a trie
11.4.5. Some remarks on tries

11.5. Applications
11.5.1. File indexing
11.5.2. Spell checker

11.6. Illustrative problems

Chapter 12. Red-Black Trees and Splay Trees

12.1. Red-black trees
12.1.1. Introduction to red-black trees
12.1.2. Definition
12.1.3. Representation of a red-black tree
12.1.4. Searching a red-black tree
12.1.5. Inserting into a red-black tree
12.1.6. Deleting from a red-black tree
12.1.7. Time complexity of search, insert and delete operations
on a red-black tree

A Textbook of Data Structures and Algorithms

12.2. Splay trees
12.2.1. Introduction to splay trees
12.2.2. Splay rotations
12.2.3. Some remarks on amortized analysis of splay trees

12.3. Applications
12.4. Illustrative problems

References

Index

Summary of Volume 3

Preface

Acknowledgments

Chapter 13. Hash Tables

13.1. Introduction
13.1.1. Dictionaries

13.2. Hash table structure
13.3. Hash functions

13.3.1. Building hash functions
13.4. Linear open addressing

13.4.1. Operations on linear open addressed hash tables
13.4.2. Performance analysis
13.4.3. Other collision resolution techniques with open addressing

13.5. Chaining
13.5.1. Operations on chained hash tables
13.5.2. Performance analysis

13.6. Applications
13.6.1. Representation of a keyword table in a compiler
13.6.2. Hash tables in the evaluation of a join operation on
relational databases
13.6.3. Hash tables in a direct file organization

13.7. Illustrative problems

A Textbook of Data Structures and Algorithms

Chapter 14. File Organizations

14.1. Introduction
14.2. Files
14.3. Keys
14.4. Basic file operations
14.5. Heap or pile organization

14.5.1. Insert, delete and update operations
14.6. Sequential file organization

14.6.1. Insert, delete and update operations
14.6.2. Making use of overflow blocks

14.7. Indexed sequential file organization
14.7.1. Structure of the ISAM files
14.7.2. Insert, delete and update operations for a naïve ISAM file
14.7.3. Types of indexing

14.8. Direct file organization
14.9. Illustrative problems

Chapter 15. k-d Trees and Treaps

15.1. Introduction
15.2. k-d trees: structure and operations

15.2.1. Construction of a k-d tree
15.2.2. Insert operation on k-d trees
15.2.3. Find minimum operation on k-d trees
15.2.4. Delete operation on k-d trees
15.2.5. Complexity analysis and applications of k-d trees

15.3. Treaps: structure and operations
15.3.1. Treap structure
15.3.2. Operations on treaps
15.3.3. Complexity analysis and applications of treaps

15.4. Illustrative problems

Chapter 16. Searching

16.1. Introduction
16.2. Linear search

16.2.1. Ordered linear search
16.2.2. Unordered linear search

16.3. Transpose sequential search
16.4. Interpolation search
16.5. Binary search

16.5.1. Decision tree for binary search

Summary of Volume 3

16.6. Fibonacci search
16.6.1. Decision tree for Fibonacci search

16.7. Skip list search
16.7.1. Implementing skip lists
16.7.2. Insert operation in a skip list
16.7.3. Delete operation in a skip list

16.8. Other search techniques
16.8.1. Tree search
16.8.2. Graph search
16.8.3. Indexed sequential search

16.9. Illustrative problems

Chapter 17. Internal Sorting

17.1. Introduction
17.2. Bubble sort

17.2.1. Stability and performance analysis
17.3. Insertion sort

17.3.1. Stability and performance analysis
17.4. Selection sort

17.4.1. Stability and performance analysis
17.5. Merge sort

17.5.1. Two-way merging
17.5.2. k-way merging
17.5.3. Non-recursive merge sort procedure
17.5.4. Recursive merge sort procedure

17.6. Shell sort
17.6.1. Analysis of shell sort

17.7. Quick sort
17.7.1. Partitioning
17.7.2. Quick sort procedure
17.7.3. Stability and performance analysis

17.8. Heap sort
17.8.1. Heap
17.8.2. Construction of heap
17.8.3. Heap sort procedure
17.8.4. Stability and performance analysis

17.9. Radix sort
17.9.1. Radix sort method
17.9.2. Most significant digit first sort
17.9.3. Performance analysis

17.10. Counting sort

A Textbook of Data Structures and Algorithms

17.10.1. Performance analysis
17.11. Bucket sort

17.11.1. Performance analysis
17.12. Illustrative problems

Chapter 18. External Sorting

18.1. Introduction
18.1.1. The principle behind external sorting

18.2. External storage devices
18.2.1. Magnetic tapes
18.2.2. Magnetic disks

18.3. Sorting with tapes: balanced merge
18.3.1. Buffer handling
18.3.2. Balanced P-way merging on tapes

18.4. Sorting with disks: balanced merge
18.4.1. Balanced k-way merging on disks
18.4.2. Selection tree

18.5. Polyphase merge sort
18.6. Cascade merge sort
18.7. Illustrative problems

Chapter 19. Divide and Conquer

19.1. Introduction
19.2. Principle and abstraction
19.3. Finding maximum and minimum

19.3.1. Time complexity analysis
19.4. Merge sort

19.4.1. Time complexity analysis
19.5. Matrix multiplication

19.5.1. Divide and Conquer-based approach to “high school”
method of matrix multiplication
19.5.2. Strassen’s matrix multiplication algorithm

19.6. Illustrative problems

Chapter 20. Greedy Method

20.1. Introduction
20.2. Abstraction
20.3. Knapsack problem

20.3.1. Greedy solution to the knapsack problem

Summary of Volume 3

20.4. Minimum cost spanning tree algorithms
20.4.1. Prim’s algorithm as a greedy method
20.4.2. Kruskal’s algorithm as a greedy method

20.5. Dijkstra’s algorithm
20.6. Illustrative problems

Chapter 21. Dynamic Programming

21.1. Introduction
21.2. 0/1 knapsack problem

21.2.1. Dynamic programming-based solution
21.3. Traveling salesperson problem

21.3.1. Dynamic programming-based solution
21.3.2. Time complexity analysis and applications of traveling
salesperson problem

21.4. All-pairs shortest path problem
21.4.1. Dynamic programming-based solution
21.4.2. Time complexity analysis

21.5. Optimal binary search trees
21.5.1. Dynamic programming-based solution
21.5.2. Construction of the optimal binary search tree
21.5.3. Time complexity analysis

21.6. Illustrative problems

Chapter 22. P and NP Class of Problems

22.1. Introduction
22.2. Deterministic and nondeterministic algorithms
22.3. Satisfiability problem

22.3.1. Conjunctive normal form and Disjunctive normal form
22.3.2. Definition of the satisfiability problem
22.3.3. Construction of CNF and DNF from a logical formula
22.3.4. Transformation of a CNF into a 3-CNF
22.3.5. Deterministic algorithm for the satisfiability problem
22.3.6. Nondeterministic algorithm for the satisfiability problem

22.4. NP-complete and NP-hard problems
22.4.1. Definitions

22.5. Examples of NP-hard and NP-complete problems
22.6. Cook’s theorem
22.7. The unsolved problem 𝑃 ୀ ? 𝑁𝑃
22.8. Illustrative problems

A Textbook of Data Structures and Algorithms

References

Index

Other titles from

in

Computer Engineering

2022
MEHTA Shikha, TIWARI Sanju, SIARRY Patrick, JABBAR M.A.
Tools, Languages, Methodologies for Representing Semantics on the Web of
Things

SIDHOM Sahbi, KADDOUR Amira
Systems and Uses of Digital Sciences for Knowledge Organization (Digital
Tools and Uses Set – Volume 9)

ZAIDOUN Ameur Salem
Computer Science Security: Concepts and Tools

2021
DELHAYE Jean-Loic
Inside the World of Computing: Technologies, Uses, Challenges

DUVAUT Patrick, DALLOZ Xavier, MENGA David, KOEHL François,
CHRIQUI Vidal, BRILL Joerg
Internet of Augmented Me, I.AM: Empowering Innovation for a New
Sustainable Future

HARDIN Thérèse, JAUME Mathieu, PESSAUX François,
VIGUIÉ DONZEAU-GOUGE Véronique
Concepts and Semantics of Programming Languages 1: A Semantical
Approach with OCaml and Python
Concepts and Semantics of Programming Languages 2: Modular and
Object-oriented Constructs with OCaml, Python, C++, Ada and Java

MKADMI Abderrazak
Archives in The Digital Age: Preservation and the Right to be Forgotten
(Digital Tools and Uses Set – Volume 8)

TOKLU Yusuf Cengiz, BEKDAS Gebrail, NIGDELI Sinan Melih
Metaheuristics for Structural Design and Analysis (Optimization Heuristics
Set – Volume 3)

2020
DARCHE Philippe
Microprocessor 1: Prolegomena – Calculation and Storage Functions –
Models of Computation and Computer Architecture
Microprocessor 2: Core Concepts – Communication in a Digital System
Microprocessor 3: Core Concepts – Hardware Aspects
Microprocessor 4: Core Concepts – Software Aspects
Microprocessor 5: Software and Hardware Aspects of Development,
Debugging and Testing – The Microcomputer

LAFFLY Dominique
TORUS 1 – Toward an Open Resource Using Services: Cloud Computing
for Environmental Data
TORUS 2 – Toward an Open Resource Using Services: Cloud Computing
 for Environmental Data
TORUS 3 – Toward an Open Resource Using Services: Cloud Computing
 for Environmental Data

LAURENT Anne, LAURENT Dominique, MADERA Cédrine
Data Lakes
(Databases and Big Data Set – Volume 2)

OULHADJ Hamouche, DAACHI Boubaker, MENASRI Riad
Metaheuristics for Robotics
(Optimization Heuristics Set – Volume 2)

SADIQUI Ali
Computer Network Security

VENTRE Daniel
Artificial Intelligence, Cybersecurity and Cyber Defense

2019
BESBES Walid, DHOUIB Diala, WASSAN Niaz, MARREKCHI Emna
Solving Transport Problems: Towards Green Logistics

CLERC Maurice
Iterative Optimizers: Difficulty Measures and Benchmarks

GHLALA Riadh
Analytic SQL in SQL Server 2014/2016

TOUNSI Wiem
Cyber-Vigilance and Digital Trust: Cyber Security in the Era of Cloud
Computing and IoT

2018
ANDRO Mathieu
Digital Libraries and Crowdsourcing
(Digital Tools and Uses Set – Volume 5)

ARNALDI Bruno, GUITTON Pascal, MOREAU Guillaume
Virtual Reality and Augmented Reality: Myths and Realities

BERTHIER Thierry, TEBOUL Bruno
From Digital Traces to Algorithmic Projections

CARDON Alain
Beyond Artificial Intelligence: From Human Consciousness to Artificial
Consciousness

HOMAYOUNI S. Mahdi, FONTES Dalila B.M.M.
Metaheuristics for Maritime Operations
(Optimization Heuristics Set – Volume 1)

JEANSOULIN Robert
JavaScript and Open Data

PIVERT Olivier
NoSQL Data Models: Trends and Challenges
(Databases and Big Data Set – Volume 1)

SEDKAOUI Soraya
Data Analytics and Big Data

SALEH Imad, AMMI Mehdi, SZONIECKY Samuel
Challenges of the Internet of Things: Technology, Use, Ethics
(Digital Tools and Uses Set – Volume 7)

SZONIECKY Samuel
Ecosystems Knowledge: Modeling and Analysis Method for Information and
Communication
(Digital Tools and Uses Set – Volume 6)

2017
BENMAMMAR Badr
Concurrent, Real-Time and Distributed Programming in Java

HÉLIODORE Frédéric, NAKIB Amir, ISMAIL Boussaad, OUCHRAA Salma,
SCHMITT Laurent
Metaheuristics for Intelligent Electrical Networks
(Metaheuristics Set – Volume 10)

MA Haiping, SIMON Dan
Evolutionary Computation with Biogeography-based Optimization
(Metaheuristics Set – Volume 8)

PÉTROWSKI Alain, BEN-HAMIDA Sana
Evolutionary Algorithms
(Metaheuristics Set – Volume 9)

PAI G A Vijayalakshmi
Metaheuristics for Portfolio Optimization
(Metaheuristics Set – Volume 11)

2016
BLUM Christian, FESTA Paola
Metaheuristics for String Problems in Bio-informatics
(Metaheuristics Set – Volume 6)

DEROUSSI Laurent
Metaheuristics for Logistics
(Metaheuristics Set – Volume 4)

DHAENENS Clarisse and JOURDAN Laetitia
Metaheuristics for Big Data
(Metaheuristics Set – Volume 5)

LABADIE Nacima, PRINS Christian, PRODHON Caroline
Metaheuristics for Vehicle Routing Problems
(Metaheuristics Set – Volume 3)

LEROY Laure
Eyestrain Reduction in Stereoscopy

LUTTON Evelyne, PERROT Nathalie, TONDA Albert
Evolutionary Algorithms for Food Science and Technology
(Metaheuristics Set – Volume 7)

MAGOULÈS Frédéric, ZHAO Hai-Xiang
Data Mining and Machine Learning in Building Energy Analysis

RIGO Michel
Advanced Graph Theory and Combinatorics

2015
BARBIER Franck, RECOUSSINE Jean-Luc
COBOL Software Modernization: From Principles to Implementation with
the BLU AGE® Method

CHEN Ken
Performance Evaluation by Simulation and Analysis with Applications to
Computer Networks

CLERC Maurice
Guided Randomness in Optimization
(Metaheuristics Set – Volume 1)

DURAND Nicolas, GIANAZZA David, GOTTELAND Jean-Baptiste,
ALLIOT Jean-Marc
Metaheuristics for Air Traffic Management
(Metaheuristics Set – Volume 2)

MAGOULÈS Frédéric, ROUX François-Xavier, HOUZEAUX Guillaume
Parallel Scientific Computing

MUNEESAWANG Paisarn, YAMMEN Suchart
Visual Inspection Technology in the Hard Disk Drive Industry

2014
BOULANGER Jean-Louis
Formal Methods Applied to Industrial Complex Systems

BOULANGER Jean-Louis
Formal Methods Applied to Complex Systems:Implementation of the B
Method

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand,
MEGEL Romain
Mathematical Programming Solver based on Local Search

KRICHEN Saoussen, CHAOUACHI Jouhaina
Graph-related Optimization and Decision Support Systems

LARRIEU Nicolas, VARET Antoine
Rapid Prototyping of Software for Avionics Systems: Model-oriented
Approaches for Complex Systems Certification

OUSSALAH Mourad Chabane
Software Architecture 1
Software Architecture 2

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series, 2nd Edition
Concepts of Combinatorial Optimization – Volume 1, 2nd Edition
Problems and New Approaches – Volume 2, 2nd Edition
Applications of Combinatorial Optimization – Volume 3, 2nd Edition

QUESNEL Flavien
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative
Management

RIGO Michel
Formal Languages, Automata and Numeration Systems 1:
Introduction to Combinatorics on Words
Formal Languages, Automata and Numeration Systems 2:
Applications to Recognizability and Decidability

SAINT-DIZIER Patrick
Musical Rhetoric: Foundations and Annotation Schemes

TOUATI Sid, DE DINECHIN Benoit
Advanced Backend Optimization

2013
ANDRÉ Etienne, SOULAT Romain
The Inverse Method: Parametric Verification of Real-time Embedded
Systems

BOULANGER Jean-Louis
Safety Management for Software-based Equipment

DELAHAYE Daniel, PUECHMOREL Stéphane
Modeling and Optimization of Air Traffic

FRANCOPOULO Gil
LMF — Lexical Markup Framework

GHÉDIRA Khaled
Constraint Satisfaction Problems

ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal
Time-Predictable Architectures

WAHBI Mohamed
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems

ZELM Martin et al.
Enterprise Interoperability

2012
ARBOLEDA Hugo, ROYER Jean-Claude
Model-Driven and Software Product Line Engineering

BLANCHET Gérard, DUPOUY Bertrand
Computer Architecture

BOULANGER Jean-Louis
Industrial Use of Formal Methods: Formal Verification

BOULANGER Jean-Louis
Formal Method: Industrial Use from Model to the Code

CALVARY Gaëlle, DELOT Thierry, SÈDES Florence, TIGLI Jean-Yves
Computer Science and Ambient Intelligence

MAHOUT Vincent
Assembly Language Programming: ARM Cortex-M3 2.0: Organization,
Innovation and Territory

MARLET Renaud
Program Specialization

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann
Memory Allocation Problems in Embedded Systems: Optimization Methods

2011
BICHOT Charles-Edmond, SIARRY Patrick
Graph Partitioning

BOULANGER Jean-Louis
Static Analysis of Software: The Abstract Interpretation

CAFERRA Ricardo
Logic for Computer Science and Artificial Intelligence

HOMÈS Bernard
Fundamentals of Software Testing

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Distributed Systems: Design and Algorithms

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Models and Analysis in Distributed Systems

LORCA Xavier
Tree-based Graph Partitioning Constraint

TRUCHET Charlotte, ASSAYAG Gerard
Constraint Programming in Music

VICAT-BLANC PRIMET Pascale et al.
Computing Networks: From Cluster to Cloud Computing

2010
AUDIBERT Pierre
Mathematics for Informatics and Computer Science

BABAU Jean-Philippe et al.
Model Driven Engineering for Distributed Real-Time Embedded Systems

BOULANGER Jean-Louis
Safety of Computer Architectures

MONMARCHÉ Nicolas et al.
Artificial Ants

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2010

SIGAUD Olivier et al.
Markov Decision Processes in Artificial Intelligence

SOLNON Christine
Ant Colony Optimization and Constraint Programming

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al.
Co-design Approaches for Dependable Networked Control Systems

2009
FOURNIER Jean-Claude
Graph Theory and Applications

GUÉDON Jeanpierre
The Mojette Transform / Theory and Applications

JARD Claude, ROUX Olivier
Communicating Embedded Systems / Software and Design

LECOUTRE Christophe
Constraint Networks / Targeting Simplicity for Techniques and Algorithms

2008
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam
Cooperating Embedded Systems and Wireless Sensor Networks

MERZ Stephan, NAVET Nicolas
Modeling and Verification of Real-time Systems

PASCHOS Vangelis Th
Combinatorial Optimization and Theoretical Computer Science: Interfaces
and Perspectives

WALDNER Jean-Baptiste
Nanocomputers and Swarm Intelligence

2007
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry
Trends in Constraint Programming

JUSSIEN Narendra
A TO Z OF SUDOKU

2006
BABAU Jean-Philippe et al.
From MDD Concepts to Experiments and Illustrations – DRES 2006

HABRIAS Henri, FRAPPIER Marc
Software Specification Methods

MURAT Cecile, PASCHOS Vangelis Th
Probabilistic Combinatorial Optimization on Graphs

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP
I-ESA’2006

2005
GÉRARD Sébastien et al.
Model Driven Engineering for Distributed Real Time Embedded Systems

PANETTO Hervé
Interoperability of Enterprise Software and Applications 2005

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Cover
	Title Page
	Copyright Page
	Contents
	Preface��������������
	Acknowledgments����������������������
	Chapter 1. Introduction������������������������������
	1.1. History of algorithms���������������������������������
	1.2. Definition, structure and properties of algorithms��
	1.2.1. Definition������������������������
	1.2.2. Structure and properties��������������������������������������

	1.3. Development of an algorithm���������������������������������������
	1.4. Data structures and algorithms��
	1.5. Data structures – definition and classification���
	1.5.1. Abstract data types���������������������������������
	1.5.2. Classification����������������������������

	1.6. Algorithm design techniques���������������������������������������
	1.7. Organization of the book������������������������������������

	Chapter 2. Analysis of Algorithms��
	2.1. Efficiency of algorithms������������������������������������
	2.2. Apriori analysis����������������������������
	2.3. Asymptotic notations��������������������������������
	2.4. Time complexity of an algorithm using the O notation��
	2.5. Polynomial time versus exponential time algorithms��
	2.6. Average, best and worst case complexities���
	2.7. Analyzing recursive programs��
	2.7.1. Recursive procedures����������������������������������
	2.7.2. Apriori analysis of recursive functions���

	2.8. Illustrative problems���������������������������������

	Chapter 3. Arrays������������������������
	3.1. Introduction������������������������
	3.2. Array operations����������������������������
	3.3. Number of elements in an array��
	3.3.1. One-dimensional array�����������������������������������
	3.3.2. Two-dimensional array�����������������������������������
	3.3.3. Multidimensional array������������������������������������

	3.4. Representation of arrays in memory��
	3.4.1. One-dimensional array�����������������������������������
	3.4.2. Two-dimensional arrays������������������������������������
	3.4.3. Three-dimensional arrays��������������������������������������
	3.4.4. N-dimensional array���������������������������������

	3.5. Applications������������������������
	3.5.1. Sparse matrix���������������������������
	3.5.2. Ordered lists���������������������������
	3.5.3. Strings���������������������
	3.5.4. Bit array�����������������������

	3.6. Illustrative problems���������������������������������

	Chapter 4. Stacks������������������������
	4.1. Introduction������������������������
	4.2. Stack operations����������������������������
	4.2.1. Stack implementation����������������������������������
	4.2.2. Implementation of push and pop operations���

	4.3. Applications������������������������
	4.3.1. Recursive programming�����������������������������������
	4.3.2. Evaluation of expressions���������������������������������������

	4.4. Illustrative problems���������������������������������

	Chapter 5. Queues������������������������
	5.1. Introduction������������������������
	5.2. Operations on queues��������������������������������
	5.2.1. Queue implementation����������������������������������
	5.2.2. Implementation of insert and delete operations on a queue���
	5.2.3. Limitations of linear queues��

	5.3. Circular queues���������������������������
	5.3.1. Operations on a circular queue��
	5.3.2. Implementation of insertion and deletion operations in circular queue���

	5.4. Other types of queues���������������������������������
	5.4.1. Priority queues�����������������������������
	5.4.2. Deques��������������������

	5.5. Applications������������������������
	5.5.1. Application of a linear queue���
	5.5.2. Application of priority queues��

	5.6. Illustrative problems���������������������������������

	Chapter 6. Linked Lists������������������������������
	6.1. Introduction������������������������
	6.1.1. Drawbacks of sequential data structures���
	6.1.2. Merits of linked data structures��
	6.1.3. Linked lists – structure and implementation���

	6.2. Singly linked lists�������������������������������
	6.2.1. Representation of a singly linked list��
	6.2.2. Insertion and deletion in a singly linked list��

	6.3. Circularly linked lists�����������������������������������
	6.3.1. Representation����������������������������
	6.3.2. Advantages of circularly linked lists over singly linked lists��
	6.3.3. Disadvantages of circularly linked lists��
	6.3.4. Primitive operations on circularly linked lists���
	6.3.5. Other operations on circularly linked lists���

	6.4. Doubly linked lists�������������������������������
	6.4.1. Representation of a doubly linked list��
	6.4.2. Advantages and disadvantages of a doubly linked list��
	6.4.3. Operations on doubly linked lists���

	6.5. Multiply linked lists���������������������������������
	6.6. Unrolled linked lists���������������������������������
	6.6.1. Retrieval of an element�������������������������������������
	6.6.2. Insert an element�������������������������������
	6.6.3. Delete an element�������������������������������

	6.7. Self-organizing lists���������������������������������
	6.8. Applications������������������������
	6.8.1. Addition of polynomials�������������������������������������
	6.8.2. Sparse matrix representation��

	6.9. Illustrative problems���������������������������������

	Chapter 7. Linked Stacks and Linked Queues���
	7.1. Introduction������������������������
	7.1.1. Linked stack��������������������������
	7.1.2. Linked queues���������������������������

	7.2. Operations on linked stacks and linked queues���
	7.2.1. Linked stack operations�������������������������������������
	7.2.2. Linked queue operations�������������������������������������
	7.2.3. Algorithms for Push/Pop operations on a linked stack��
	7.2.4. Algorithms for insert and delete operations in a linked queue���

	7.3. Dynamic memory management and linked stacks���
	7.4. Implementation of linked representations��
	7.5. Applications������������������������
	7.5.1. Balancing symbols�������������������������������
	7.5.2. Polynomial representation���������������������������������������

	7.6. Illustrative problems���������������������������������

	References�����������������
	Index������������
	Summaries of other volumes���������������������������������
	EULA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 350
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 350
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 350
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENG ()
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

