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One of the greatest lessons I have learnt in my life is  
to pay as much attention to the means of work as to its end… 

I have been always learning great lessons from that one principle,  
and it appears to me that all the secret of success is there;  

to pay as much attention to the means as to the end…. 
 Let us perfect the means; the end will take care of itself. 

 
– Swami Vivekananda 

(Lecture Delivered at Los Angeles, California, January 4, 1900)
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Preface 

Efficient problem solving using computers, irrespective of the discipline or 
application, calls for the design of efficient algorithms. The inclusion of appropriate 
data structures is of critical importance to the design of efficient algorithms. In other 
words, good algorithm design must go hand in hand with appropriate data 
structures for an efficient program design to solve a problem. 

Data structures and algorithms is a fundamental course in computer science, 
which most undergraduate and graduate programs in computer science and other 
allied disciplines in science and engineering offer during the early stages of the 
respective programs, either as a core or as an elective course. The course enables 
students to have a much-needed foundation for efficient programming, leading to 
better problem solving in their respective disciplines. 

Most of the well-known text books/monographs on this subject have discussed the 
concepts in relation to a programming language – beginning with Pascal and spanning 
a spectrum of them such as C, C++, C#, Java, Python and so on, essentially calling for 
ample knowledge of the language, before one proceeds to try and understand the  
data structure. There does remain a justification in this. The implementation of data 
structures in the specific programming language need to be demonstrated or the 
algorithms pertaining to the data structures concerned need a convenient medium of 
presentation and when this is the case, why not a programming language? 

Again, while some authors have insisted on using their books for an advanced 
level course, there are some who insist on a working knowledge of the specific 
programming language as a prerequisite to using the book. However, in the case of a 
core course, as it is in most academic programs, it is not uncommon for a novice or a 
sophomore to be bewildered by the “miles of code” that demonstrate or explain a 
data structure, rendering the subject difficult to comprehend. In fact, the efforts that 
one needs to put in to comprehend the data structure and its applications are 



x     A Textbook of Data Structures and Algorithms 1 

distracted by the necessity to garner sufficient programming knowledge to follow 
the code. It is indeed ironic that while a novice is taught data structures to appreciate 
programming, in reality it turns out that one learns programming to appreciate data 
structures! 

In my decades-old experience of offering the course to graduate programs, which 
admits students from diverse undergraduate disciplines, with little to no strong 
knowledge of programming, I had several occasions to observe this malady. In fact, 
it is not uncommon in some academic programs, especially graduate programs 
which, due to their shorter duration, have a course in programming and data 
structures running in parallel in the same semester, much to the chagrin of the 
novice learner! That a novice is forced to learn data structures through their 
implementation (in a specific programming language), when in reality it ought to be 
learning augmented with the implementation of the data structures, has been the 
reason behind the fallout. 

A solution to this problem would be to 

 i) Frame the course such that the theory deals with the concepts, techniques and 
applications of data structures and algorithms, not taking recourse to any specific 
programming language, but instead settling for a pseudo-language, which clearly 
expounds the data structure. Additionally, supplementing the course material with 
illustrative problems, review questions and exercises to reinforce the students’ grasp 
of the concepts would help them gain useful insights while learning. 

ii) Augment the theory with laboratory sessions to enable the student to 
implement the data structure in itself or as embedded in an application, in the 
language of his/her own choice or as insisted upon in the curriculum. This would 
enable the student who has acquired sufficient knowledge and insight into the data 
structures to appreciate the beauty and merits of employing the data structure by 
programming it themself, rather than “look” for the data structure in a prewritten 
code. 

This means that text books catering to the fundamental understanding of the data 
structure concepts for use as course material in the classroom are as much needed as 
the books that cater to the implementation of data structures in a programming 
language for use in the laboratory sessions. While most books in the market conform 
to the latter, bringing out a book to be classroom course material and used by 
instructors handling a course on data structures and algorithms, comprehensive 
enough for the novice students to benefit from, has been the main motivation in 
writing this book. 

As such, the book details concepts, techniques and applications pertaining to data 
structures and algorithms, independent of any programming language, discusses 
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several examples and illustrative problems, poses review questions to reinforce the 
understanding of the theory, and presents a suggestive list of programming 
assignments to aid implementation of the data structures and algorithms learned. 

In fact, the book may either be independently used as a textbook since it is self-
contained or serve as a companion for books discussing data structures and 
algorithms implemented in specific programming languages such as C, C++, Java, 
Python, and so on. 

At this juncture, it needs to be pointed out that a plethora of programming 
resources and freely downloadable implementations of the majority of the data 
structures in almost all popular languages are available on the Internet, which can 
undoubtedly serve as good guides for the learner. However, it has to be emphasized 
that an earnest student of data structures and algorithms must invest a lot of time and 
self-effort in trying to implement the data structures and algorithms learned, in a 
language of one’s choice, all by oneself, in order to attain a thorough grasp of the 
concepts. 

About this edition 

This edition is a largely revised and enlarged version of its predecessor, 
published by McGraw Hill, USA. The earlier edition published in 2008 saw 15 
reprints in its life span of 13 years (ending January 2022) and was recommended as 
a text book for the course in several universities and colleges. It comprised 17 
chapters categorized into five parts and reinforced learning through 133 illustrative 
problems, 215 review questions and 74 programming assignments. 

The features of this new edition are as follows: 

– There are 22 chapters spread across three volumes that detail sequential linear 
data structures, linked linear data structures, nonlinear data structures, advanced data 
structures, searching and sorting algorithms, algorithm design techniques and NP-
completeness. 

– The data structures of k-d trees and treaps have been elaborated in a newly 
included chapter (Chapter 15) in Volume 3. 

– The data structures of strings, bit rays, unrolled linked lists, self-organizing 
linked lists, segment trees and k-ary trees have been introduced in the appropriate 
sections of the existing chapters in Volumes 1 and 2. 

– The concepts of counting binary search trees and Kruskal’s algorithm have 
been detailed in the appropriate sections of the existing chapters in Volume 2. 
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– Skip list search, counting sort and bucket sort have been included in the 
chapters on searching and sorting algorithms in Volume 3. 

– The algorithm design techniques of divide and conquer, the greedy method  
and dynamic programming have been elaborately discussed in Chapters 19–21 in 
Volume 3. 

– The concept of NP-completeness has been detailed in a newly included 
chapter, Chapter 22 in Volume 3. 

– Several illustrative problems, review questions and programming assignments 
have been added to enrich the content and aid in understanding the concepts. The 
new edition thus includes 181 illustrative problems, 276 review questions and 108 
programming assignments. 

Organization of the book 

The book comprises three volumes, namely, Volume 1: Chapters 1–7, Volume 2: 
Chapters 8–12 and Volume 3: Chapters 13–22. 

Volume 1 opens with an introduction to data structures and concepts pertaining 
to the analysis of algorithms, detailed in Chapters 1 and 2, which is essential to 
appreciate the theories and algorithms related to data structures and their 
applications. 

Chapters 3–5 detail sequential linear data structures, namely, arrays, strings, bit 
arrays, stacks, queues, priority queues and dequeues, and their applications. 
Chapters 6 and 7 elucidate linked linear data structures, namely linked lists, linked 
stacks and linked queues, and their applications. 

Volume 2 details nonlinear data structures. Chapters 8 and 9 elaborate on the 
nonlinear data structures of trees, binary trees and graphs, and their applications. 
Chapters 10–12 highlight the advanced data structures of binary search trees, AVL 
trees, B trees, tries, red-black trees and splay trees, and their applications. 

Volume 3 details an assortment of data structures, algorithm design strategies 
and their applications. 

Chapters 13–15 discuss hash tables, files, k-d trees and treaps. Chapter 16 
discusses the search algorithms of linear search, transpose sequential search, 
interpolation search, binary search, Fibonacci search, skip list search and other 
search techniques. 
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Chapter 17 elaborates on the internal sorting algorithms of bubble sort, insertion 
sort, selection sort, merge sort, shell sort, quick sort, heap sort, radix sort, counting 
sort and bucket sort, and Chapter 18 discusses the external sorting techniques of 
sorting with tapes, sorting with disks, polyphase merge sort and cascade merge sort. 

Chapters 19–21 detail the algorithm design strategies of divide and conquer, the 
greedy method and dynamic programming and their applications. 

Chapter 22 introduces the theories and concepts of NP-completeness. 

For a full list of the contents of Volumes 2 and 3, see the summary at the end of 
this book. 

Salient features of the book 

The features of the book are as follows:  

– all-around emphasis on theory, problems, applications and programming 
assignments; 

– simple and lucid explanation of the theory; 

– inclusion of several applications to illustrate the use of data structures and 
algorithms; 

– several worked-out examples as illustrative problems in each chapter; 

– list of programming assignments at the end of each chapter; 

– review questions to strengthen understanding; 

– self-contained text for use as a text book for either an introductory or advanced 
level course. 

Target audience 

The book could be used both as an introductory or an advanced-level textbook 
for undergraduate, graduate and research programs, which offer data structures and 
algorithms as a core course or an elective course. While the book is primarily meant 
to serve as a course material for use in the classroom, it could be used as a 
companion guide during the laboratory sessions to nurture better understanding of 
the theoretical concepts. 

An introductory level course for a duration of one semester or 60 lecture hours, 
targeting an undergraduate program or first-year graduate program or a diploma 
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program or a certificate program, could include Chapters 1–7 of Volume 1, Chapter 8 
of Volume 2, Chapters 13, 16 (sections 16.1, 16.2, 16.5) and 17 (sections 17.1–17.3, 
17.5, 17.7) of Volume 3 in its curriculum. 

A middle-level course for a duration of one semester or 60 lecture hours 
targeting senior graduate-level programs and research programs such as MS/PhD 
could include Chapters 1–7 of Volume 1, Chapters 8–11 of Volume 2, Chapter 13 
and selective sections of Chapters 16–17 of Volume 3. 

An advanced level course that focuses on advanced data structures and algorithm 
design could begin with a review of Chapter 8 and include Chapters 9–12 of Volume 2, 
Chapters 14 and 15 and selective sections of Chapters 16–18, and Chapters 19–22 of 
Volume 3 in its curriculum based on the level of prerequisite courses satisfied. 

Chapters 8–10 and Chapter 11 (sections 11.1–11.3) of Volume 2 and Chapters 13, 
14 and 18 of Volume 3 could be useful to include in a curriculum that serves as a 
prerequisite for a course on database management systems. 

To re-emphasize, all theory sessions must be supplemented with laboratory 
sessions to encourage learners to implement the concepts learned in an appropriate 
language that adheres to the curricular requirements of the programs concerned. 
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1 

Introduction 

While looking around and marveling at the technological advancements of this 
world – both within and without, one cannot help but perceive the intense and 
intrinsic association of the disciplines of science and engineering and their allied and 
hybrid counterparts, with the ubiquitous machines called computers. In fact, it is 
difficult to spot a discipline that has distanced itself from the discipline of computer 
science. To quote a few, be it a medical surgery or diagnosis performed by robots or 
doctors on patients halfway across the globe, or the launching of space crafts and 
satellites into outer space, or forecasting tornadoes and cyclones, or the more 
mundane needs of the online reservation of tickets or billing at supermarkets, or the 
control of washing machines, etc., one cannot help but deem computers to be 
omnipresent, omnipotent, why even omniscient! (Figure 1.1). 

In short, any discipline that calls for problem solving using computers looks up 
to the discipline of computer science for efficient and effective methods of solving 
the problems in their respective fields. From the view point of problem solving, the 
discipline of computer science could be naively categorized into the following four 
sub areas, notwithstanding the overlaps, extensions and gray areas within 
themselves: 

– Machines: What machines are appropriate or available for the solution of the 
problem? What is the machine configuration – its processing power, memory 
capacity, etc. – that would be required for the efficient execution of the problem 
solution? 

– Languages: What is the language or software with which the problem solution 
needs to be coded? What are the software constraints that would hamper the efficient 
implementation of the solution to the problem? 
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– Foundations: What is the problem model and its solution? What methods need 
to be employed for the efficient design and implementation of the solution? What is 
its performance measure? 

– Technologies: What are the technologies that need to be incorporated to solve 
the problem? For example, does the solution call for a web-based implementation, 
need activation from mobile devices, call for hand shaking broadcasting devices or 
merely need to interact with high-end or low-end peripheral devices? 

 

                                                            
 

 
 

                                                                  

 
 

                                                  
 

Figure 1.1. Omnipresence of computers. For a color version  
of this figure, see www.iste.co.uk/pai/algorithms1.zip 

Figure 1.2 illustrates the categorization of the discipline of computer science 
from the perspective of problem solving. 

One of the core fields that belongs to the foundations of computer science 
addresses the design, analysis and implementation of algorithms for the efficient 

Industry Transportation 

Weather Space Technology Science 

Agriculture Business Health care 

Computer
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solution of the problems concerned. An algorithm may be loosely defined as a 
process, procedure, method or recipe. It is a specific set of rules to obtain a definite 
output from specific inputs provided to the problem. 

The subject of data structures is intrinsically connected with the design and 
implementation of efficient algorithms. Data structures deal with the study of 
methods, techniques and tools to organize or structure data. 

The history, definition, classification, structure and properties of algorithms are 
discussed in the following. 

 

Figure 1.2. Discipline of computer science from the perspective of problem  
solving. For a color version of this figure, see www.iste.co.uk/pai/algorithms1.zip 

1.1. History of algorithms 

The word algorithm originates from the Arabic word algorism, which is linked 
to the name of the Arabic mathematician Abu Jafar Mohammed Ibn Musa Al 
Khwarizmi (825 CE). Al Khwarizmi is accredited as the first algorithm designer for 
adding numbers represented in the Hindu numeral system. The algorithm designed 
by him and followed until today calls for summing the digits occurring at a specific 
position and the previous carry digit repetitively, moving from the least significant 
digit to the most significant digit until the digits have been exhausted. 

     

    Languages 

Foundations 
Machines

Technologies 
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EXAMPLE 1.1.–  

Demonstration of Al Khwarizmi’s algorithm for the addition of 987 and 76: 

          987 +           987 +      987 + 

            76             76 +        76 + 

         Carry 1      Carry 1 

   (Carry 1)    3                   (Carry 1)   63                                           1,063 

1.2. Definition, structure and properties of algorithms 

1.2.1. Definition 

DEFINITION.– 

An algorithm may be defined as a finite sequence of instructions, each of which 
has a clear meaning and can be performed with a finite amount of effort in a finite 
length of time. 

1.2.2. Structure and properties 

An algorithm has the following structure: 

i) input step; 

ii) assignment step; 

iii) decision step; 

iv) repetitive step; 

v) output step. 

EXAMPLE 1.2.– 

Consider the demonstration of Al Khwarizmi’s algorithm shown on the addition 
of the numbers 987 and 76 in example 1.1. In this, the input step considers the two 
operands 987 and 76 for addition. The assignment step sets the pair of digits from 
the two numbers and the previous carry digit if it exists, for addition. The decision 
step decides at each step whether the added digits yield a value that is greater than 
10 and, if so, whether an appropriate carry digit should be generated. The repetitive 
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step repeats the process for every pair of digits beginning from the least significant 
digit onward. The output step releases the output, which is 1063. 

An algorithm is endowed with the following properties: 

– Finiteness: an algorithm must terminate after a finite number of steps. 

– Definiteness: the steps of the algorithm must be precisely defined or 
unambiguously specified. 

– Generality: an algorithm must be generic enough to solve all problems of a 
particular class. 

– Effectiveness: the operations of the algorithm must be basic enough to be put 
down on pencil and paper. They should not be too complex to warrant writing 
another algorithm for the operation! 

– Input‒output: the algorithm must have certain initial and precise inputs, and 
outputs that may be generated both at its intermediate or final steps. 

An algorithm does not enforce a language or mode for its expression; it only 
demands adherence to its properties. Thus, one could even write an algorithm in 
one’s own expressive way to make a cup of hot coffee! However, there is this 
observation that a cooking recipe that calls for instructions such as “add a pinch of 
salt and pepper”, “fry until it turns golden brown” and so on, are “anti-algorithmic” 
because terms such as “a pinch” and “golden brown” are subject to ambiguity and 
hence violate the property of definiteness! 

An algorithm may be represented using pictorial representations such as flow 
charts. An algorithm encoded in a programming language for implementation on a 
computer is called a program. However, there exists a school of thought that 
distinguishes a program from an algorithm. The claim put forward by them is that 
programs need not exhibit the property of finiteness, which algorithms insist upon 
and quote an operating systems program as a counter example. An operating system 
is supposed to be an “infinite” program that terminates only when the system 
crashes! At all other times other than its execution, it is said to be in “wait” mode! 

1.3. Development of an algorithm 

The steps involved in the development of an algorithm are as follows: 

i) problem statement; 

ii) model formulation; 

iii) algorithm design; 
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iv) algorithm correctness; 

v) implementation; 

vi) algorithm analysis; 

vii) program testing; 

viii) documentation. 

Once a clear statement of the problem is made, the model for the solution of the 
problem is formulated. The next step is to design the algorithm based on the solution 
model formulated. It is here that one sees the role of data structures. The right choice 
of the data structure needs to be made at the design stage itself since data structures 
influence the efficiency of the algorithm. Once the correctness of the algorithm is 
checked and the algorithm is implemented, the most important step of measuring the 
performance of the algorithm is performed. This is what is termed algorithm 
analysis. It can be seen how the use of appropriate data structures results in better 
performance of the algorithm. Finally, the program is tested, and the development 
ends with proper documentation. 

1.4. Data structures and algorithms 

As detailed in the previous section, the design of an efficient algorithm for the 
solution of the problem calls for the inclusion of appropriate data structures. A 
clear, unambiguous set of instructions following the properties of the algorithm 
alone does not contribute to the efficiency of the solution. It is essential that the data 
on which the problems need to work on are appropriately structured to suit the needs 
of the problem, thereby contributing to the efficiency of the solution. 

For example, let us rewind to the past and consider the problem of searching for a 
telephone number of a person in the telephone directory book provided to the 
subscribers. It is well known that searching for a phone number in the directory is an 
easy task since the data are sorted according to the alphabetical order of the 
subscribers’ names. All that the search calls for is to turn over the pages until one 
reaches the page that is approximately closest to the subscriber’s name and undertake a 
sequential search moving one’s finger down the relevant page. Now, what if the 
telephone directory were to have its data arranged according to the order in which the 
subscriptions for telephones were received? What a mess it would be! One may need 
to go through the entire directory – name after name, page after page in a sequential 
fashion until the name and the corresponding telephone number is retrieved! 

This is a classic example to illustrate the significant role played by data 
structures in the efficiency of algorithms. The problem was the retrieval of a 
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telephone number. The algorithm was the simple search for the name in the 
directory and the subsequent retrieval of the corresponding telephone number. In the 
first case, since the data were appropriately structured (sorted according to 
alphabetical order), the search algorithm undertaken turned out to be efficient. 
However, in the second case, when the data were unstructured, the search algorithm 
turned out to be crude and therefore inefficient. 

Therefore, for the design of efficient programs for the solution of problems, it is 
essential that algorithm design goes hand in hand with appropriate data structures 
(Figure 1.3). 

 

Figure 1.3. Algorithms and data structures for  
efficient problem solving using computers 

1.5. Data structures – definition and classification 

1.5.1. Abstract data types 

A data type refers to the type of values that variables in a programming language 
hold. Thus, the integer, real, character and Boolean data types that are inherently 
provided in programming languages are referred to as primitive data types. 

A list of elements is called a data object. For example, we could have a list of 
integers or a list of alphabetical strings as data objects. 
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The data objects that comprise the data structure and their fundamental 
operations are known as abstract data types (ADTs). In other words, an ADT is 
defined as a set of data objects D defined over a domain L and supporting a list of 
operations O. 

EXAMPLE 1.3.–  

Consider an ADT for the data structure of positive integers called 
POSITIVE_INTEGER defined over a domain of integers Z+, supporting the 
operations of addition (ADD) and subtraction (MINUS) and checking if positive 
(CHECK_POSITIVE). The ADT is defined as follows: 𝐿 = 𝑍ା,  𝐷 = {𝑥|𝑥 ∈ 𝐿},  𝑂 = {𝐴𝐷𝐷, 𝑀𝐼𝑁𝑈𝑆, 𝐶𝐻𝐸𝐶𝐾_𝑃𝑂𝑆𝐼𝑇𝐼𝑉𝐸}. 

A descriptive and clear presentation of the ADT is as follows: 

 

An ADT promotes data abstraction and focuses on what a data structure does 
rather than how it does what it does. It is easier to comprehend a data structure by 
means of its ADT since it helps a designer plan the implementation of the data 
objects and its supportive operations in any programming language belonging to any 
paradigm, such as procedural, object oriented or functional. Quite often, it may be 
essential that one data structure calls for other data structures for its implementation. 
For example, the implementation of stack and queue data structures calls for their 
implementation using either arrays or lists, which are themselves data structures. 

ADT positive integer

Data objects: 
Set of all positive integers D 

  +=∈= ZLLxxD },|{  

Operations: 
Addition of positive integers INT1 and INT2 into RESULT 

  ADD (INT1, INT2, RESULT) 

Subtraction of positive integers INT1 and INT2 into
RESULT 

  SUBTRACT (INT1, INT2, RESULT) 

Check if a number INT1 is a positive integer 

  CHECK_POSITIVE(INT1)  (Boolean function) 
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While deciding on the ADT of a data structure, a designer may decide on the set 
of operations O that are to be provided, based on the application and accessibility 
options provided to various users making use of the ADT implementation. 

The ADTs for various data structures discussed in the book are presented in the 
respective chapters. 

1.5.2. Classification 

Figure 1.4 illustrates the classification of data structures. The data structures are 
broadly classified as linear data structures and nonlinear data structures. Linear 
data structures are unidimensional in structure and represent linear lists. These are 
further classified as sequential and linked representations. On the other hand, 
nonlinear data structures are two-dimensional representations of data lists. The 
individual data structures listed under each class are shown in the figure. 

 

Figure 1.4. Classification of data structures 

1.6. Algorithm design techniques 

Algorithm design concerns strategic methods that strive to find effective 
solutions or efficient solutions to large classes of problems. Given a problem, it is 
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possible to solve the problem by working over all possible combinations of input 
sequences, one or more of which may lead to the solution of the problem. Such a 
method of problem solving is referred to as the brute force or exhaustive search 
method. Brute force methods, therefore, do not explore ways and means to 
strategically solve the problem by exploiting the problem characteristics or the data 
structure that describes the problem. For example, a brute force method to find an 
element in a list would involve merely sequentially searching for the element, one 
by one, until the element is found or not found. A strategic method, on the other 
hand, would try to explore ways and means by which finding the element can be 
done efficiently without searching the entire list or minimizing the number of 
comparisons during the search and so on. 

Several algorithm design techniques have been identified to solve various classes 
of problems. The following are some of them: 

– divide and conquer; 

– greedy method; 

– backtracking; 

– dynamic programming; 

– branch and bound; 

– local search; 

– randomized algorithms. 

This book discusses the three strategies of divide and conquer, greedy method 
and dynamic programming, which are popular methods and have been employed by 
problems and applications discussed in the rest of the book. 

However, there are also problem classes that do not yield effective solutions, no 
matter which algorithm design technique is employed to tackle it. These have been 
categorized into two classes, namely, NP-complete and NP-hard, where NP denotes 
non-deterministic polynomial. A non-deterministic polynomial simply means that 
efficient algorithms are not available to solve them. However, studies are still under 
way to look for efficient ways to solve these problem classes. Considering the fact 
that several of these problems are of great practical importance, a class of algorithms 
known as approximation algorithms have emerged, which aim to solve specific 
problem instances through heuristics that strive to deliver solutions to the problem 
instances within a reasonable amount of time. Heuristics involve methods that are 
intuitive and help to attain near-optimal or acceptable solutions. 

The book concludes with a discussion on NP-complete and NP-hard problems. 
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1.7. Organization of the book 

The book is divided into three volumes (1–3) comprising 22 chapters covering 
concepts, techniques and applications of fundamental, linear, nonlinear and 
advanced data structures, including elaborating on searching and sorting algorithms 
and selective algorithm design strategies and concluding with a concise discussion 
on NP-completeness. 

Volume 1 includes Chapters 1–7 as briefed below: 

– Chapter 1 addresses an introduction to the subject of algorithms and data 
structures. Chapter 2 introduces the analysis of algorithms. 

– Chapters 3–5 discuss linear data structures that are sequential. Thus, the three 
chapters detail the data structures of arrays, stacks and queues, respectively. 

– Chapters 6 and 7 discuss linear data structures that are linked. Thus, Chapter 6 
elaborates on linked lists and Chapter 7 details linked stacks and linked queues. 

Volume 2 includes Chapters 8–12 as briefed below: 

– Chapters 8 and 9 discuss the nonlinear data structures of trees and graphs, 
respectively. 

– Some of the advanced data structures such as binary search trees and AVL 
trees (Chapter 10), B trees and tries (Chapter 11) and red‒black trees and splay 
trees (Chapter 12), are elaborately covered in their respective chapters. 

Volume 3 covers Chapters 13–22 as briefed below: 

– Chapter 13 discusses hash tables. Chapter 14 describes the methods of file 
organization and Chapter 15 provides details on k-d trees and treaps. 

– The sorting and searching techniques are elaborated next. Chapter 16 
discusses searching techniques, Chapter 17 details internal sorting methods and 
Chapter 18 describes external sorting methods. 

– The algorithm design strategies are examined next. Thus, the popular  
algorithm design strategies of divide and conquer, greedy method and dynamic 
programming are elaborately discussed over application problems in Chapters  
19–21, respectively.  

– Finally, the concept of NP-completeness is covered. Chapter 22 elaborates on 
the P-class and NP-class of problems. 
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Summary 

– Any discipline in science and engineering that calls for problem solving using 
computers looks up to the discipline of computer science for its efficient solution. 

– From the point of view of problem solving, computer science can be naively 
categorized into the four areas of machines, languages, foundations and technologies. 

– The subjects of algorithms and data structures fall under the category of foundations. 
The design formulation of algorithms for the solution of the problems and the inclusion of 
appropriate data structures for their efficient implementation must progress hand in hand. 

– An abstract data type (ADT) describes the data objects that constitute the data 
structure and the fundamental operations supported on them. 

– Data structures are classified as linear and nonlinear data structures. Linear data 
structures are further classified as sequential and linked data structures. While arrays, 
stacks and queues are examples of sequential data structures, linked lists, linked stacks and 
queues are examples of linked data structures. 

– The nonlinear data structures include trees and graphs. 

– The tree data structure includes variants such as binary search trees, AVL trees,  
B trees, tries, red–black trees and splay trees. 

– Algorithm design concerns strategic methods to solve problems efficiently. 

– Divide and conquer, greedy method and dynamic programming are popular algorithm 
design strategies. 



2 

Analysis of Algorithms 

In the previous chapter, we introduced the discipline of computer science from 
the perspective of problem solving. It was detailed how problem solving using 
computers calls not only for good algorithm design but also for the appropriate use 
of data structures to render them efficient. This chapter discusses methods and 
techniques to analyze the efficiency of algorithms. 

2.1. Efficiency of algorithms 

When there is a problem to be solved, it is probable that several algorithms crop 
up for its solution, and therefore, one is at a loss to know which one is the best. This 
raises the question of how one decides which among the algorithms is preferable or 
which among them is the best. 

The performance of algorithms can be measured on the scales of time and space. 
The former would mean looking for the fastest algorithm for the problem or that 
which performs its task in the minimum possible time. In this case, the performance 
measure is termed time complexity. The time complexity of an algorithm or a 
program is a function of the running time of the algorithm or program. In the case 
of the latter, it would mean looking for an algorithm that consumes or needs limited 
memory space for its execution. The performance measure in such a case is termed 
space complexity. The space complexity of an algorithm or a program is a function 
of the space needed by the algorithm or program to run to completion. However, in 
this book, our discussions mostly emphasize the time complexities of the algorithms 
presented. 
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The time complexity of an algorithm can be computed either by an empirical or 
theoretical approach. 

The empirical or posteriori testing approach calls for implementing the complete 
algorithms and executing them on a computer for various instances of the problem. 
The time taken by the execution of the programs for various instances of the 
problem are noted and compared. The algorithm whose implementation yields the 
least time is considered to be the best among the candidate solutions. 

The theoretical or apriori approach calls for mathematically determining the 
resources such as time and space needed by the algorithm as a function of a 
parameter related to the instances of the problem considered. A parameter that is 
often used is the size of the input instances. 

For example, for the problem of searching for a name in the telephone directory, 
an apriori approach could determine the efficiency of the algorithm used in terms of 
the size of the telephone directory, that is, the number of subscribers listed in the 
directory. In addition, algorithms exist for various classes of problems that make use 
of the number of basic operations, such as additions, multiplications or element 
comparisons, as a parameter to determine their efficiency. The apriori analysis of 
sorting algorithms, for example, is generally undertaken based on the basic 
operation of element comparisons. 

An apriori analysis of an algorithm therefore yields a mathematical function of 
the parameters that describe either the problem inputs or the basic operations of the 
algorithm. 

The disadvantage of posteriori testing is that it is dependent on various other 
factors, such as the machine on which the program is executed, the programming 
language with which it is implemented and why, even on the skill of the 
programmer who writes the program code! On the other hand, the advantage of 
apriori analysis is that it is entirely machine, language and program independent. 

The efficiency of a newly discovered algorithm over that of its predecessors can 
be better assessed only when they are tested over large input instance sizes. For 
smaller to moderate input instance sizes, it is highly likely that their performances 
may break even. In the case of posteriori testing, practical considerations may permit 
testing the efficiency of the algorithm only on input instances of moderate sizes. On 
the other hand, apriori analysis permits the study of the efficiency of algorithms on 
any input instance of any size. 
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2.2. Apriori analysis 

Let us consider a program statement, for example, x = x + 2, in a sequential 
programming environment. We do not consider any parallelism in the environment. 
An apriori estimation is interested in the following for the computation of efficiency: 

i) the number of times the statement is executed in the program, known as the 
frequency count of the statement; 

ii) the time taken for a single execution of the statement. 

Considering the second factor would render the estimation machine dependent 
since the time taken for the execution of the statement is determined by the machine 
instruction set, the machine configuration and so on. Hence, apriori analysis 
considers only the first factor and computes the efficiency of the program as a 
function of the total frequency count of the statements comprising the program. The 
estimation of efficiency is restricted to the computation of the total frequency count 
of the program. 

Let us estimate the frequency count of the statement x = x + 2 occurring in 
the following three program segments (A, B, C): 

 Program segment A           Program segment B                      Program segment C 

 

 

 

The frequency count of the statement in program segment A is 1. In program 
segment B, the frequency count of the statement is n, since the for loop in which 
the statement is embedded executes n (n ≥ 1) times. In program segment C, the 
statement is executed n2 (n ≥ 1) times since the statement is embedded in a nested 
for loop, executing n times each. 

In apriori analysis, the frequency count fi of each statement i of the program is 
computed and summed to obtain the total frequency count T = ∑ 𝑓௜௜ . 

The computation of the total frequency count of the program segments A–C is 
shown in Tables 2.1–2.3. It is well known that the opening statement of a for loop 
such as for i = low_index to up_index executes ((up_index –
low_index +1) +1) times and the statements within the loop are executed 
((up_index-low_index)+1) times. A top tested loop such as for 

… 
x = x + 2; 
… 

… 
for j = 1 to n do 
 for  k = 1 to n do 
  x = x  + 2; 
 end 
end 
… 

… 
for  k = 1 to n do
 x = x + 2; 
end 
… 
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necessitates testing the opening statement of the loop one more time before quitting 
the loop, hence the extra “ +1” for the frequency count of the opening statement of 
the for loop. 

 Program statements Frequency count 

…  

x = x + 2; 1 

…  

Total frequency count 1 

Table 2.1. Total frequency count of program segment A 

Program statements Frequency count 
…  

for k = 1 to n do (n+1) 
x = x + 2; n 

end n 
…  

Total frequency count 3n+1 

Table 2.2. Total frequency count of program segment B 

Program statements Frequency count 
…  

for j = 1 to n do (n+1) 

for k = 1 to n do ෍(𝑛 + 1)௡
௝ୀଵ = (𝑛 + 1)𝑛 

x = x + 2; n2 

end ෍ 𝑛௡
௝ୀଵ = 𝑛ଶ 

end n 
…  

Total frequency count 3n2+3n+1 

Table 2.3. Total frequency count of program segment C 
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In the case of nested for loops, it is easier to compute the frequency counts of 
the embedded statements, making judicious use of the following fundamental 
mathematical formulae: 

෍ 1௡
௜ୀଵ = 𝑛   ෍ 𝑖௡

௜ୀଵ = 𝑛(𝑛 + 1)2   ෍ 𝑖ଶ௡
௜ୀଵ = 𝑛(𝑛 + 1)(2𝑛 + 1)6  

Observe how in Table 2.3, the frequency count of the statement for k = 1 
to n do is computed as ∑ (𝑛 − 1 + 1) + 1௡௝ୀଵ = ∑ (𝑛 + 1) = (𝑛 + 1)𝑛௡௝ୀଵ . 

The total frequency counts of the program segments A–C given by 1, (3n+1) and 
3n2+3n+1, respectively, are expressed as O(1), O(n) and O(n2), respectively. These 
notations mean that the orders of magnitude of the total frequency counts are 
proportional to 1, n and n2, respectively. 

The notation O has a mathematical definition, as discussed in section 2.3. These 
are referred to as the time complexities of the program segments since they are 
indicative of the running times of the program segments. 

In a similar manner, one could also discuss the space complexities of a program, 
which is the amount of memory it requires for its execution and completion. The 
space complexities can also be expressed in terms of mathematical notations. 

2.3. Asymptotic notations 

Apriori analysis employs the following notations to express the time complexity 
of algorithms. These are termed asymptotic notations since they are meaningful 
approximations of functions that represent the time or space complexity of a 
program. 

DEFINITION 2.1.– 𝑓(𝑛) = 𝑂(𝑔(𝑛)) (read as f of n is “big oh” of g of n), iff there exists a positive 
integer n0 and a positive number C such that |𝑓(𝑛)| ≤ 𝐶|𝑔(𝑛)|, for all 𝑛 ≥ 𝑛଴. 
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Example 

        f(n)                    g(n) 

3 2 3 316 78 12 ( ) ( )
34 90 ( ) ( )
56 1 ( ) (1)

n n n n f n O n
n n f n O n

f n O

+ + =
− =

=
 

Here, g(n) is the upper bound of the function f(n). 

DEFINITION 2.2.– 

 𝑓(𝑛) = 𝛺(𝑔(𝑛)) (read as f of n is the omega of g of n), iff there exists a positive 
integer n0 and a positive number C such that |𝑓(𝑛)| ≥ 𝐶|𝑔(𝑛)|, for all 𝑛 ≥ 𝑛଴. 

Example 

        f(n)                     g(n) 

3 2 3 316 8 2 ( ) ( )
24 9 ( ) ( )

n n n f n n
n n f n n

+ + = Ω
+ = Ω

 

Here, g(n) is the lower bound of the function f(n). 

DEFINITION 2.3.– 𝑓(𝑛) = 𝛩(𝑔(𝑛)) (read as f of n is theta of g of n), iff there exist two positive 
constants 𝑐ଵ and 𝑐ଶ and a positive integer n0 such that 𝑐ଵ|𝑔(𝑛)| ≤ |𝑓(𝑛)| ≤ 𝑐ଶ|𝑔(𝑛)| 
for all 𝑛 ≥ 𝑛଴. 

Example 

    f(n)                     g(n) 28𝑛 + 9                     n              f(n) = Θ(n)   since f(n) > 28n and  f(n) ≤ 37 n 

                                                  for  𝑛 ≥ 1 16𝑛ଶ + 30𝑛 − 90     n2             f(n) = Θ(n2) 7. 2௡ + 30𝑛               2n            f(n) = Θ(2n) 
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From the definition, it implies that the function g(n) is both an upper bound and a 
lower bound for the function f(n) for all values of n, 𝑛 ≥ 𝑛଴. This means that f(n) is 
such that 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) = 𝛺(𝑔(𝑛)). 

DEFINITION 2.4.– 𝑓(𝑛) = 𝑜(𝑔(𝑛)) (read as f of n is “little oh” of g of n) iff 𝑓(𝑛) = 𝑂(𝑔(𝑛)) and 𝑓(𝑛) ≠ 𝛺(𝑔(𝑛)). In other words, the growth rate of f(n) cannot be the same as that 
of g(n). 

In mathematical terms, this is expressed as 

Lim
n→∞

f (n)
g(n)

= 0
 

which is easier to compute when powerful calculus techniques such as L’Hôpital’s 
Rule are applied. 

Example 

f(n)                  g(n) 18𝑛 + 9            n2        𝑓(𝑛) = ο(𝑛ଶ) since 𝑓(𝑛) = Ο(𝑛ଶ) and 𝑓(𝑛) ≠ Ω(𝑛ଶ) 

Observe that 𝑓(𝑛) ≠ ο(𝑛). 

2.4. Time complexity of an algorithm using the O notation 

O notation is widely used to compute the time complexity of algorithms. It can 
be gathered from its definition (Definition 2.1) that if f(n) = O(g(n)), then g(n) acts 
as an upper bound for the function f(n). f(n) represents the computing time of the 
algorithm. When we say the time complexity of the algorithm is O(g(n)), we mean 
that its execution takes a time that is no more than constant times g(n). Here, n is a 
parameter that characterizes the input and/or output instances of the algorithm. 

Algorithms reporting O(1) time complexity indicate constant running time. The 
time complexities of O(n), O(n2) and O(n3) are called linear, quadratic and cubic 
time complexities, respectively. The O(logn) time complexity is referred to as 
logarithmic. In general, the time complexities of the type O(nk) are called 
polynomial time complexities. In fact, it can be shown that a polynomial  
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𝐴(𝑛) = 𝑎௠𝑛௠ + 𝑎௠ିଵ𝑛௠ିଵ+. . . +𝑎ଵ𝑛 + 𝑎଴ = 𝑂(𝑛௠) (see illustrative problem 
2.2). Time complexities such as O(2n) and O(3n), in general O(kn), are called 
exponential time complexities. 

Algorithms that report O(log n) time complexity are faster for sufficiently large n 
than if they have reported O(n). Similarly, O(n.log n) is better than O(n2) but not as 
good as O(n). Some of the commonly occurring time complexities in their ascending 
orders of magnitude are listed below: 

O(1) ≤  O(log n) ≤  O(n) ≤  O(n.log n) ≤  O(n2)  ≤  O(n3)  ≤  O(2n) 

2.5. Polynomial time versus exponential time algorithms 

If n is the size of the input instance, the number of operations for polynomial 
time algorithms are of the form P(n), where P is a polynomial. In terms of O 
notation, polynomial time algorithms have time complexities of the form O(nk), 
where k is a constant. 

In contrast, in exponential time algorithms, the number of operations are of the 
form kn. In terms of O notation, exponential time algorithms have time complexities 
of the form O(kn), where k is a constant. 

 
                 Size 

 
             Time 
complexity function 

10 20 50 

n2 10–4 s 4 × 10–4 s 25 × 10–4 s 
n3 10–3 s 8 × 10–3 s 125 × 10–3 s 
2n 10–3 s 1 s 35 years 
3n 6 × 10–2 s 58 min 2 × 103 centuries 

Table 2.4. Comparison of polynomial time and exponential time algorithms 

It is clear from the above that polynomial time algorithms are much more 
efficient than exponential time algorithms. From Table 2.4, it can be seen how 
exponential time algorithms can quickly surpass the capacity of any sophisticated 
computer due to their rapid growth rate (refer to Figure 2.1). Here, it is assumed that 
the computer takes 1 microsecond per operation. While the time complexity 
functions of n2 and n3 can be executed in reasonable time, which are just fractions of 
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a second, one can never hope to finish execution of exponential time algorithms 
even if the fastest computers were employed. Note how for an algorithm whose time 
complexity function is 2n, the running time for input size n = 20 is 1 s but when the 
input size n is increased to 50, the running time is a whopping 35 years! Again, for an 
algorithm whose time complexity function is 3n, for input size n = 20, the running time 
is 58 min whereas for n = 50, it takes a giant leap touching 2000 centuries! Thus, if 
one were to find an algorithm for a problem that reduces from exponential time to 
polynomial time then that is indeed a great accomplishment! 

2.6. Average, best and worst case complexities 

The time complexity of an algorithm is dependent on parameters associated with 
the input/output instances of the problem. Very often, the running time of the 
algorithm is expressed as a function of the input size. In such a case, it is fair enough 
to presume that the larger the input size of the problem instance is, the larger its 
running time. However, such is not always the case. There are problems whose time 
complexity is dependent not only on the size of the input but also on the nature of 
the input. Example 2.1 illustrates this point. 

 

Figure 2.1. Growth rate of some computing time functions. For a  
color version of this figure, see www.iste.co.uk/pai/algorithms1.zip 
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EXAMPLE 2.1.– 

Algorithm: To sequentially search for the first occurring even number in the list 
of numbers given. 

Input 1: –1, 3, 5, 7, –5, 7, 11, –13, 17, 71, 21, 9, 3, 1, 5, –23, –29, 33, 35, 37, 40. 

Input 2: 6, 17, 71, 21, 9, 3, 1, 5, –23, 3, 64, 7, –5, 7, 11, 33, 35, 37, –3, –7, 11. 

Input 3: 71, 21, 9, 3,  1,   5, –23, 3,  11, 33, 36, 37, –3, –7, 11, –5, 7, 11, –13, 17, 22. 

Let us determine the efficiency of the algorithm for the input instances presented 
in terms of the number of comparisons performed before the first occurring even 
number is retrieved. All three input instances are of the same size of 21 numbers 
each. 

In the case of Input 1, the first occurring even number occurs as the last element 
in the list. The algorithm would require 21 comparisons, equivalent to the size of the 
list, before it retrieves the element. On the other hand, in the case of Input 2, the first 
occurring even number appears as the very first element of the list, thereby calling 
for only one comparison before it is retrieved! If Input 2 is the best possible case that 
can happen for the quickest execution of the algorithm, then Input 1 is the worst 
possible case that can happen when the algorithm takes the longest possible time to 
complete. Generalizing, the time complexity of the algorithm in the best possible 
case would be expressed as O(1), and in the worst possible case, it would be 
expressed as O(n), where n is the size of the input. 

This justifies the statement that the running time of algorithms is dependent not 
only on the size of the input but also on its nature. That input instance (or instances) 
for which the algorithm takes the maximum possible time is called the worst case, 
and the time complexity in such a case is referred to as the worst case time 
complexity. That input instance for which the algorithm takes the minimum possible 
time is called the best case, and the time complexity in such a case is referred to as 
the best case time complexity. All other input instances that are neither of the two 
are categorized as average cases, and the time complexity of the algorithm in such 
cases is referred to as the average case time complexity. Input 3 is an example of an 
average case since it is neither the best case nor the worst case. By and large, 
analyzing the average case behavior of algorithms is harder and mathematically 
involved when compared to their worst case and best case counterparts. 
Additionally, such an analysis can be misleading if the input instances are not 
chosen at random or not chosen appropriately to cover all possible cases that may 
arise when the algorithm is deployed. 
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Worst case analysis is appropriate when the response time of the algorithm is 
critical. For example, in the case of a nuclear power plant controller, it is critical to 
know the maximum limit of the system response time regardless of the input 
instance that is to be handled by the system. The algorithms designed cannot have a 
running time that exceeds this response time limit. 

On the other hand, in the case of applications where the input instances may be 
wide and varied and there is no knowledge beforehand of the kind of input instance 
that has to be worked upon, it is prudent to choose algorithms with good average 
case behavior. 

2.7. Analyzing recursive programs 

Recursion is an important concept in computer science. Many algorithms are 
best described in terms of recursion. 

2.7.1. Recursive procedures 

If P is a procedure containing a call statement to itself (Figure 2.2(a)) or to 
another procedure that results in a call to itself (Figure 2.2(b)), then the procedure P 
is said to be a recursive procedure. In the former case, it is termed direct recursion, 
and in the latter case, it is termed indirect recursion. 

 

Figure 2.2. Skeletal recursive procedures 

Extending the concept to programming can yield program functions or programs 
themselves that are recursively defined. In such cases, they are referred to as 
recursive functions and recursive programs, respectively. Extending the concept to 
mathematics would yield what are called recurrence relations. 
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To ensure that the recursively defined function may not run into an infinite loop, 
it is essential that the following properties be satisfied by any recursive  
procedure. 

i) There must be criteria, one or more, called the base criteria or simply base 
case(s), where the procedure does not call itself either directly or indirectly. 

ii) Each time the procedure calls itself directly or indirectly, it must be closer to 
the base criteria. 

Example 2.2 illustrates a recursive procedure, and example 2.3 illustrates a 
recurrence relation. 

EXAMPLE 2.2.– 

A recursive procedure to compute the factorial of a number n is shown as 
follows: 

n! = 1,     if n = 1 (base criterion) 

n! = n. (n – 1)!,    if n > 1 

Note the recursion in the definition of factorial function(!). n! calls (n – 1)! for its 
definition. The pseudo-code recursive function for the computation of n! is shown as 
follows: 

 

EXAMPLE 2.3.– 

A recurrence relation S(n) is defined as follows: 

S(n) = 0, if n =1 (base criterion) 

       = S(n/2) + 1, if n > 1. 

function factorial(n) 
1-2. if  (n = 1) then factorial = 1 
 else 
3.      factorial = n* factorial(n-1);
 end factorial. 
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EXAMPLE 2.4. (The Tower of Hanoi Puzzle).– 

The Tower of Hanoi puzzle was invented by the French mathematician Edouard 
Lucas in 1883. However, there are numerous myths both ancient and mystical 
surrounding this puzzle and one such traces its origins to a custom prevalent in an 
ancient Hindu temple at Varanasi, India. Legend has it that there are 64 golden discs 
to be shuffled over 3 age old pegs, one move a day by the temple priests, at the end 
of which when the puzzle is solved, the world would come to an end! The puzzle 
therefore is also known as Tower of Brahma. 

 In the Tower of Hanoi puzzle, there are three pegs: source (S), intermediary (I) 
and destination (D). Peg S contains a set of disks stacked to resemble a tower, with the 
largest disk at the bottom and the smallest at the top. Figure 2.3 illustrates the initial 
configuration of the pegs for six disks. The objective is to transfer the entire tower of 
disks in Peg S to Peg D, maintaining the same order of the disks. Additionally,  
only one disk can be moved at a time, and never can a larger disk be placed on a 
smaller disk during the transfer. Peg I is for intermediate use during the transfer. 

 
 

Figure 2.3. Tower of Hanoi puzzle (initial configuration) 

A simple solution to the problem, for N = 3 disks, is given by the following 
transfers of disks: 

1) transfer disk from Peg S to D; 

2) transfer disk from Peg S to I; 

3) transfer disk from Peg D to I; 

4) transfer disk from Peg S to D; 

5) transfer disk from Peg I to S; 

6) transfer disk from Peg I to D; 

7) transfer disk from Peg S to D. 

             Peg S                                      Peg I                               Peg D 
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The solution to the puzzle calls for an application of recursive functions and 
recurrence relations. A skeletal recursive procedure for the solution of the problem 
for N number of disks is as follows: 

1) move the top N-1 disks from Peg S to I (using D as an intermediary peg); 

2) move the bottom disk from Peg S to D; 

3) move N-1 disks from Peg I to D (using Peg S as an intermediary peg). 

A pictorial representation of the skeletal recursive procedure for N = 6 disks is 
shown in Figure 2.4. Function TRANSFER illustrates the recursive function for the 
solution of the problem. 

 

Figure 2.4. Pictorial representation of the skeletal  
recursive procedure for the Tower of Hanoi puzzle 
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2.7.2. Apriori analysis of recursive functions 

The apriori analysis of recursive functions is different from that of iterative 
functions. In the latter case, as was seen in section 2.2, the total frequency counts of 
the programs were computed before approximating them using mathematical 
functions such as O. In the case of recursive functions, we first formulate recurrence 
relations that define the behavior of the function. The solution of the recurrence 
relation and its approximation using the conventional O or any other notation yields 
the resulting time complexity of the program. 

 
To frame the recurrence relation, we associate an unknown time function T(n), 

where n measures the size of the arguments to the procedure. We then obtain a 
recurrence relation for T(n) in terms of T(k) for various values of k. 

Example 2.5 illustrates how the recurrence relation for the recursive factorial 
function FACTORIAL(n) shown in example 2.2 is obtained. 

EXAMPLE 2.5.– 

Let T(n) be the running time of the recursive function FACTORIAL(n). The 
running times of lines 1 and 2 are O(1). The running time for line 3 is given by  
O(1) + T(n –1). Here, T(n – 1) is the time complexity of the call to the recursive 
function FACTORIAL(n-1). Thus, for some constants c, d, 

function TRANSFER(N, S, I, D) 

 /* N disks are to be transferred from Peg S to Peg D 
    with Peg I as the intermediate peg*/ 
 if  N is 0 then exit(); 

 else 

      {TRANSFER(N-1, S, D, I); /* transfer N-1 disks 
                      from Peg S to Peg I with Peg D as the 
                      intermediate peg*/ 
  

       Transfer disk from S to D; /* move the disk which 
                      is the last and the largest disk, 
                      from Peg S to Peg D*/ 
  

      TRANSFER(N-1, I, S, D); /* transfer N-1 disks from 
                      Peg I to Peg D with Peg S as the 
                      intermediate peg*/ 
      } 

 end TRANSFER. 
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T(n) = c + T(n –1), if n > 1 

       = d, if n ≤ 1 

Example 2.6 derives the recurrence relation for the Tower of Hanoi puzzle. 

EXAMPLE 2.6.– 

Let T(N) be the minimum number of transfers needed to solve the puzzle with N 
disks. From the function TRANSFER, it is evident that for N = 0, no disks are 
transferred. Again, for N > 0, two recursive calls each enabling the transfer of  
(N – 1) disks and a single transfer of the last (largest) disk from Peg S to  D are 
performed. Thus, the recurrence relation is given by 

T(N) = 0, if N =0 

       = 2. T(N – 1) + 1, if  N > 0 

Now what remains to be done is to solve the recurrence relation T(n). Such a 
solution where T(n) expresses itself in a form where no T occurs on the right side is 
termed a closed form solution in conventional mathematics. 

Despite the availability of different methods to solve recurrence relations, a 
general method of solution is to repeatedly replace terms T(k) occurring on the right 
side of the recurrence relation by the relation itself with appropriate change of 
parameters. The substitutions continue until one reaches a formula in which T does 
not appear on the right side. Quite often, at this stage, it may be essential to sum a 
series that could be either an arithmetic progression or geometric progression or 
some such mixed series. Even if we cannot obtain a sum exactly, we could work to 
obtain at least a close upper bound on the sum, which could act as an upper bound 
for T(n). 

Example 2.7 illustrates the solution of the recurrence relation for the function 
FACTORIAL(n), discussed in example 2.5, and example 2.8 illustrates the solution 
of the recurrence relation for the Tower of Hanoi puzzle, discussed in example 2.6. 

EXAMPLE 2.7.– 

Solution of the recurrence relation 

T(n) = c + T(n – 1), if n > 1 

        = d, if n ≤ 1 
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yields the following steps. 

( ) ( 1)........(step 1)T n c T n= + −  

2 2( ( 2))
2 ( 2).........(step 2)
c c T n a b

c T n
= + + − +
= + −

 

2 ( ( 3))
3 ( 3).........(step 3)

c c T n
c T n

= + + −
= + −

 

In the kth step, the recurrence relation is transformed as 

( ) . ( ), if ,......... (step k)T n k c T n k n k= + − >  

Finally, when (k = n – 1), we obtain 

( ) ( 1). (1), .........( step n-1)
( 1)

( )

T n n c T
n c d

O n

= − +
= − +
=

 

Observe how the recursive terms in the recurrence relation are replaced to move 
the relation closer to the base criterion, namely, T(n) = 1, n ≤ 1. The approximation 
of the closed-form solution obtained, namely, T(n) = (n – 1)c +d, yields O(n). 

EXAMPLE 2.8.– 

Solution of the recurrence relation for the Tower of Hanoi puzzle, 

T(N) = 0, if N = 0 

= 2. T(N – 1) + 1, if  N > 0 

yields the following steps. 

( ) 2. ( 1) 1.........(step 1)T N T N= − +  

2

2.(2. ( 2) 1) 1
2 . ( 2) 2 1.........(step 2)

T N
T N

= − + +
= − + +
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2

3 2

2 (2. ( 3) 1) 2 1
2 . ( 3) 2 2 1.........(step 3)

T N
T N

= − + + +
= − + + +

 

In the kth step, the recurrence relation is transformed as 

( 1) ( 2) 3 2( ) 2 ( ) 2 2 ........2 2 2 1, ........(step k)k k kT N T N k − −= − + + + + + +  

Finally, when (k = N), we obtain 

( 1) ( 2) 3 2( ) 2 (0) 2 2 .............2 2 2 1 .........(step N)
2 .0 (2 1)
2 1

(2 )

N N N

N N

N

N

T N T

O

− −= + + + + + +
= + −
= −
=

 

 

 

Summary 

– When several algorithms can be designed for the solution of a problem, the need to 
determine which among them is the best arises. The efficiency of a program or an 
algorithm is measured by computing its time and/or space complexities. The time 
complexity of an algorithm is a function of the running time of the algorithm and the space 
complexity is a function of the space required by it to run to completion. 

– The time complexity of an algorithm can be measured using apriori analysis or 
posteriori testing. While the former is a theoretical approach that is general and machine 
independent, the latter is completely machine dependent. 

– The apriori analysis computes the time complexity as a function of the total frequency 
count of the algorithm. Frequency count is the number of times a statement is executed in a 
program. 

– O, Ω, Θ and o are asymptotic notations that are used to express the time complexity 
of algorithms. While O serves as an upper bound of the performance measure, Ω serves as 
the lower bound. 

– The efficiency of algorithms is not just dependent on the input size but is also 
dependent on the nature of the input. This results in the categorization of worst, best and 
average case complexities. Worst case complexity is that input instance(s) for which the 
algorithm reports the maximum possible time and best case time complexity is that for 
which it reports the minimum possible time. 
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2.8. Illustrative problems 

PROBLEM 2.1.– 

If 𝑇ଵ(𝑛) and 𝑇ଶ(𝑛) are the time complexities of two program fragments 𝑃ଵ and 𝑃ଶ, where 𝑇ଵ(𝑛) = 𝑂(𝑓(𝑛)) and 𝑇ଶ(𝑛) = 𝑂(𝑔(𝑛)), find 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) and 𝑇ଵ(𝑛).𝑇ଶ(𝑛). 

Solution: 

Since 𝑇ଵ(𝑛) ≤ 𝑐. 𝑓(𝑛) for some positive number c and positive integer 𝑛ଵ such 
that 𝑛 ≥ 𝑛ଵ and 𝑇ଶ(𝑛) ≤ 𝑑. 𝑔(𝑛) for some positive number d and positive integer 𝑛ଶ 
such that 𝑛 ≥ 𝑛ଶ, we obtain 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) as follows: 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) ≤ c. f(n) + d. g(n), for n > n0  where 𝑛଴ = max( 𝑛ଵ, 𝑛ଶ) 

i.e., 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) ≤ (c +d) max (f(n), g(n)) for n > n0 

Hence, 𝑇ଵ(𝑛) +𝑇ଶ(𝑛) = 𝑂(max( 𝑓(𝑛), 𝑔(𝑛))). 

(This result is referred to as Rule of Sums of O notation.) 

To obtain 𝑇ଵ(𝑛).𝑇ଶ(𝑛), we proceed as follows: 𝑇ଵ(𝑛).𝑇ଶ(𝑛) ≤   c. f(n). d. g(n) 

   
≤ k.  f(n). g(n) 

Therefore, 𝑇ଵ(𝑛).𝑇ଶ(𝑛) = O(f(n).g(n)). 

(This result is referred to as Rule of Products of O notation.) 

– Polynomial time algorithms are highly efficient when compared to exponential time 
algorithms. The latter can quickly get beyond the computational capacity of any 
sophisticated computer due to their rapid growth rate. 

– Apriori analysis of recursive algorithms calls for the formulation of recurrence 
relations and obtaining their closed form solutions, before expressing them using 
appropriate asymptotic notations. 
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PROBLEM 2.2.– 

If 𝐴(𝑛) = 𝑎௠𝑛௠ + 𝑎௠ିଵ𝑛௠ିଵ+. . . +𝑎ଵ𝑛 + 𝑎଴, then 𝐴(𝑛) = 𝑂(𝑛௠) for  𝑛 ≥ 1. 
Solution: 

Let us consider |A(n)|. We have |𝐴(𝑛)| =    |𝑎௠𝑛௠ + 𝑎௠ିଵ𝑛௠ିଵ+. . . +𝑎ଵ𝑛 + 𝑎଴|    ≤   |𝑎௠𝑛௠| + |𝑎௠ିଵ𝑛௠ିଵ|+. . . . |𝑎ଵ𝑛| + |𝑎଴|    ≤ (|𝑎௠| + |𝑎௠ିଵ|+. . . . |𝑎ଵ| + |𝑎଴|). 𝑛௠    ≤ 𝑐. 𝑛௠  where 𝑐 = |𝑎௠| + |𝑎௠ିଵ|+. . . . |𝑎ଵ| + |𝑎଴| 
Hence, A(n) = O(nm). 

NOTE.– This result is useful when the time complexity of an algorithm in terms 
of O notation is to be obtained, given the total frequency count of the algorithm, 
which when computed results in a polynomial in input variable n of degree m. 

PROBLEM 2.3.– 

Two algorithms A and B report time complexities expressed by the functions n2 
and 2n, respectively. They are to be executed on a machine M that consumes 10–6 s 
to execute an instruction. What is the time taken by the algorithms to complete their 
execution on machine A for an input size of 50? If another machine N that is 10 
times faster than machine M is provided for the execution, what is the largest input 
size that can be handled by the two algorithms on machine N? What are your 
observations? 

Solution: 

Algorithms A and B report time complexities of n2 and 2n, respectively. In other 
words, each of the algorithms execute approximately n2 and 2n instructions, 
respectively. For an input size of n = 50 and with a speed of 10–6 s per instruction, 
the time taken by the algorithms on machine M are as follows: 

Algorithm A: 502 × 10–6 = 0.0025 s 

Algorithm B: 250  × 10–6  ≅ 35 years 
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If another machine N that is 10 times faster than machine M is provided, then the 
number of instructions that algorithms A and B can execute on machine N would 
also be 10 times more than that on M. Let x2 and 2y be the number of instructions 
that algorithms A and B execute on machine N. Then, the new input size that each of 
these algorithms can handle is given by 

Algorithm A:  

      x2 = 10 × n2 

10 3.x n n∴ = × ≅  

That is, algorithm A can handle three times the original input size that it could 
handle on machine M. 

Algorithm B: 

2

2 10 2
log 10 3

y n

y n n
= ×

∴ = + ≅ +
 

That is, algorithm B can handle just three units more than the original input size 
than it could handle on machine M. 

Observations: Since algorithm A is a polynomial time algorithm, it displays a 
superior performance of executing the specified input on machine M in 0.0025 s. 
Additionally, when provided with a faster machine N, it is able to handle three times 
the original input size that it could handle on machine M. 

In contrast, algorithm B is an exponential time algorithm. While it takes 35 years 
to process the specified input on machine M, despite the faster machine provided, it 
is able to process just three units more over the input data size than it could handle 
on machine M. 

PROBLEM 2.4.– 

Analyze the behavior of the following program, which computes the nth 
Fibonacci number, for appropriate values of n. Obtain the frequency count of the 
statements (that are given line numbers) for various cases of n. 
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Solution: 

The behavior of the program for the cases concerned can be analyzed as shown 
in Table P2.4. 

Line number 
Frequency count of the statements 

n < 0 n =  0 n = 1 n > 1 
1 1 1 1 1 
2 1 1 1 1 

3, 4 1, 1 0 0 0 
5 0 1 1 1 

6, 7 0 1, 1 0 0 
8 0 0 1 1 

9, 10 0 0 1, 1 0 
11, 12 0 0 0 1, 1 

13 0 0 0 (n – 2 + 1) + 1 
14, 15, 16 0 0 0 (n – 1), (n – 1), (n – 1) 

17 0 0 0 (n – 1) 
18 0 0 0 1 

Total frequency count 4 5 6 5n + 3 

Table P2.4. Frequency count of the statements  
in procedure Fibonacci (n) 

procedure Fibonacci(n) 
1.  read(n); 
2-4.  if (n<0) then print (“error”); exit(); 
5-7.  if (n=0) then print (“Fibonacci number is 0”); 
                     exit(); 
8-10.  if (n=1) then print (“Fibonacci number is 1”); 
                     exit(); 
11-12. f1=0; 
       f2=1; 
13.  for i = 2 to n do 
14-16.    f  = f1 + f2; 
    f1 = f2; 
    f2 = f; 
17.  end 
18.  print(“Fibonacci number is”, f); 
end Fibonacci 



Analysis of Algorithms     35 

The total frequency count is 5n + 3, and therefore, the time complexity of the 
program is T(n) = O(n). 

PROBLEM 2.5.– 

Obtain the time complexity of the following program: 

procedure whirlpool(m) 
 
if (m ≤ 0) then print(“eddy!”); exit(); 
else { 
           swirl = whirlpool(m-1) + whirlpool(m-1); 
           print(“whirl”); 
     } 
end whirlpool 

Solution: 

We first obtain the recurrence relation for the time complexity of the procedure 
whirlpool. Let T(m) be the time complexity of the procedure. The recurrence 
relation is formulated as given below: 

T(m) =  a, if m ≤ 0 

         = 2T(m – 1) + b, if m > 0. 

Here, 2T(m – 1) expresses the total time complexity of the two calls to 
whirlpool (m – 1). a and b indicate the constant time complexities to execute the 
rest of the statements when m ≤ 0 and m > 0, respectively. 

Solving for the recurrence relation yields the following steps: 

T(m) = 2T(m – 1) + b ………(step 1) 

         = 2(2T(m – 2)+b) + b 

         = 22T(m – 2) + b (1+2)..........(step 2) 

         = 22(2T(m – 3)+b) +b(1+2) 

         = 23(T(m – 3) + b(1+2+22).......(step 3) 

In general, in the ith step 

T(m) = 2iT(m-i) + b(1 + 2+  22 +….2i-1)……(step i) 
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 When i =  m, 

T(m) = 2mT(0) + b(1 + 2+  22 +….2m-1) 

         = a·2m + b(2m – 1) 

         =  k·2m + l where k, l are positive constants 

         =  O(2m) 

The time complexity of the procedure whirlpool is therefore O(2m). 

PROBLEM 2.6.– 

The frequency count of line 3 in the following program fragment is ___. a) ସ୬మିଶ୬ଶ    b) ୧మି୧ଶ    c) (୧మିଷ୧)ଶ     d) (ସ୬మି଺୬)ଶ   

1. i = 2n 
2. for j = 1 to i 
3.   for k = 3 to j 
4.     m = m+1; 
5.    end 
6. end 

Solution: 

The frequency count of line 3 is given by ∑ (𝑗 − 3 + 1) + 1௜௝ୀଵ = ∑ (𝑗 − 1)ଶ௡௝ୀଵ =ସ௡మିଶ௡ଶ . Hence, the correct option is a.  

PROBLEM 2.7.– 

Find the frequency count and the time complexity of the following program 
fragment: 

1. for i = 20 to 30 
2.   for j = 1 to n 
3.     am = am+1; 
4.    end 
5. end 
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Solution: 

The frequency count of the program fragment is shown in Table P2.7. 

Line number Frequency count 
1 12 

2 ෍ (𝑛 + 1)ଷ଴
௜ୀଶ଴ = 11(𝑛 + 1) 

3 n
i

n

j

111
30

20 1

=
= =

 

4 11n 
5 11 

Table P2.7. Frequency count of the statements  
in the program fragment of Problem 2.7 

The total frequency count is 33n + 34, and the time complexity is therefore O(n). 

PROBLEM 2.8.– 

State which of the following are true or false: (i) 𝑓(𝑛) = 30𝑛ଶ2௡ + 6𝑛2௡ + 8𝑛ଶ = 𝑂(2௡) (ii) 𝑔(𝑛) = 9. 2௡ + 𝑛ଶ = 𝛺(2௡) (iii) ℎ(𝑛) = 9. 2௡ + 𝑛ଶ = 𝛩(2௡) 

Solution: 

i) False. 

For f(n) = O(2n), it is essential that |𝑓(𝑛)| ≤ 𝑐. |2௡| 
 (i. e. ) ቤ30𝑛ଶ2௡ + 6𝑛2௡ + 8𝑛ଶ2௡ ቤ ≤ 𝑐 
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This is not possible since the left-hand side is an increasing function. 

(ii) True. 

(iii) True. 

PROBLEM 2.9.– 

Solve the following recurrence relation assuming n = 2k: 

C(n) = 2,                       n =2 

     =2. C(n/2) + 3,     n > 2 

Solution: 

The solution of the recurrence relation proceeds as given below: 

2 2

2 3

3 3 2

( ) 2. ( / 2) 3.......... (step 1)
2(2 ( / 4) 3) 3
2 ( / 2 ) 3.(1 2)...... (step 2)
2 (2. ( / 2 ) 3) 3.(1 2)
2 ( / 2 ) 3(1 2 2 )........ (step 3)

C n C n
C n

C n
C n

C n

= +
= + +

= + +
= + + +
= + + +

 

In the ith step, 

)istep()........2....221(3)2/(2)( 12 −+++++= iii nCnC  

Since n = 2k, in the step when i = (k – 1), 

1 1 2 2

1

( ) 2 ( / 2 ) 3(1 2 2 .... 2 )........ (step k-1)

. (2) 3(2 1)
2

.2 3( 1)
2 2

5. 3
2

k k k

k

C n C n
n C

n n

n

− − −

−

= + + + + +

= + −

= + −

= −

 

Hence, C(n) = 5·n/2 – 3. 
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PROBLEM 2.10.– 

Consider the following recursive function GUESS(n, m) written in pseudo-
code. Hand trace the code to determine the output when the recursive function is 
called with n = 6 and m = 3. 

function GUESS(n, m) 
if (m > n) then return (0); 
if (m = n) then return (1); 
if (n = 1) or (m = 0) then return (1); 
if (m < n) then return ((n-1)*GUESS(n-1, m-1)); 

end GUESS 

Solution: 

It is convenient and effective to hand trace a recursive program or function with 
the help of what is called a tree of recursive calls. The tree grows with every call to 
the function and tracks the values returned when each of the functions that was 
called terminates and returns the output to the function that called it. 

Figure P2.10 illustrates the tree of recursive calls for GUESS (6, 3). The 
solid arrows indicate the recursive calls to the function that is shown as a box. The 
broken arrows indicate the return of values to the point of call when the called 
functions terminate. The forward calls to the function and the return of values to the 
called function have been shown separately for the sake of clarity. 

Forward calls to function GUESS         Returning values to called functions 

 

 

 

 

 

 

 

    n = 6   m = 3 

   GUESS(6, 3)  = ? 

  n = 6   m = 3 
  GUESS(6, 3)  = 
           (6-1)*GUESS(5,2) 
              = 60 

    n = 5   m = 2 
   GUESS(5, 2)  = ? 

    n = 4   m = 1 
   GUESS(4, 1)  = ? 

  n = 5   m = 2 
  GUESS(5, 2)  = 
          (5-1)* GUESS(4,1) 
               =  12 

 n = 4   m = 1 
  GUESS(4, 1)  = 
          (4-1)*GUESS(3,0) 
           = 3 
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Figure P2.10. Tree of recursive calls for the recursive function GUESS(6,3) 

GUESS(3,0), where n = 3 and m = 0, triggers one of the three base case 
conditions given, and hence, the function terminates returning the value 1. This 
further triggers the termination of the called functions one after another until the first 
call to the recursive function GUESS(6, 3) is terminated returning the output 
value of 60. It can be easily seen from the number of boxes that the number of calls 
made to the recursive function GUESS is 4. 

PROBLEM 2.11.– 

What is the time complexity of a recursive program whose recurrence relation is 
as given below? Assume that the input size n of the problem is a power of 4, that is,  
n = 4s. 

 
2( ) 3. . , 1

4
, otherwise

nT n T c n n

a

 = + > 
 

=
 

Solution: 
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



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2
2

2

4
31.

4
.3 ncnT ... step (2) 

    n = 3   m = 0 
   GUESS(3, 0)  = ? 

    n = 3   m = 0 
   GUESS(3, 0)  = 1 
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




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
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
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4
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Generalizing, in the kth step, 




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We try to obtain the sum S of the series as follows: 

S = 


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
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Subtracting (2) from (1) yields 
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            … (4) 

Since n is a power of 4 (n = 4s), in the sth step (putting k = s), we obtain 
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( ),3..3 2 ss nba −+=  for constants a and b. 

ndnb 4log2 3.. += , for some constant d. 

Therefore, ( )2)( nOnT = . 

PROBLEM 2.12.– 

   What is the total frequency count and time complexity of the following 
pseudo-code, given a and n as inputs? 

1. product = 1; 
2. sum = 0; 
3. for i =1 to n do 
4.     product = product *a; 
5.     sum = sum + a; 
6. end 
7. power = product; 
8. summation = sum; 

Solution: 

The frequency counts of the individual statements and the total frequency count 
of the statements in the pseudo-code are shown in the following table: 

Statement label 1 2 3 4 5 6 7 8 
Frequency 
count 1 1 n + 1 n n n 1 1 

Total frequency count 4n + 5 

Hence, the time complexity of the pseudo-code program is O(n). 

Review questions 

1) Frequency count of the statement 

“for k = 3 to (m+2) do “  is 

a)    (m+2)     b) (m-1)            c)   (m+1)     d)  (m+5) 
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2) If functions f(n) and g(n), for a positive integer n0 and a positive number C, are 
such that  |𝑓(𝑛)| ≥ 𝐶|𝑔(𝑛)|, for all 𝑛 ≥ 𝑛଴, then 

a)   𝑓(𝑛) = 𝛺(𝑔(𝑛))   b)   𝑓(𝑛) = 𝑂(𝑔(𝑛))     c) 𝑓(𝑛) = 𝛩(𝑔(𝑛)) 

d)  𝑓(𝑛) = 𝜊(𝑔(𝑛)) 

3) For T(n) = 167 n5 + 12 n4 + 89 n3 + 9n2 +n + 1, 

a) T(n) = O(n)     b)  T(n) = O(n5)       c)  T(n) = O(1) 

d) T(n) = O(n2 +n) 

4) State whether true or false: 

(i) Exponential functions have rapid growth rates when compared to polynomial 
functions. 

(ii) Therefore, exponential time algorithms run faster than polynomial time 
algorithms. 

a)  (i) true (ii) true    b)  (i) true  (ii) false 

c) (i) false (ii) false  d) (i) false (ii) true 

5) Find the odd one out:      O(n), O(n2), O(n3), O(3n) 

a) O(n)    b) O(n2)      c) O(n3)        d) O(3n) 

6) How does one measure the efficiency of algorithms? 

7) Distinguish between best case, worst case and average case complexities of an 
algorithm. 

8) Define O and Ω notations of time complexity. 

9) Compare and contrast exponential time complexity with polynomial time 
complexity. 

10) How are recursive programs analyzed? 
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11) Analyze the time complexity of the following program: 

… 
  for send =  1 to n do 
    for receive = 1 to send do 
      for ack = 2 to receive do 

message = send –(receive + ack); 
      end 
    end 
  end 

12) Solve the recurrence relation: 

S(n) = 2·S(n – 1) + b.n, if n > 1 

       = a,                if n =1 

13) Write a pseudo-code to obtain the maximum element given a set of elements. 
What is the time complexity of your program? Is it possible to discuss worst case or 
best case complexities for the pseudo code that you designed? 

14) Write pseudo-code procedures to (i) add two matrices and (ii) multiply two 
matrices. Obtain the total frequency counts and the time complexities of the iterative 
procedures. 

15) What is the time complexity of a recursive program whose recurrence 
relation is given as follows assuming that n is a power of (3/2): 

2( ) 1, 1
3

, 1

nT n T n

c n

 = + > 
 

= =
 



3 

Arrays 

3.1. Introduction 

In Chapter 1, an abstract data type (ADT) was defined to be a set of data objects 
and the fundamental operations that can be performed on this set. 

In this regard, an array is an ADT whose objects are a sequence of elements of 
the same type, and the two operations performed on it are store and retrieve. Thus, if 
a is an array, the operations can be represented as STORE (a, i, e) and RETRIEVE 
(a, i), where i is termed the index and e is the element that is to be stored in the 
array. These functions are equivalent to the programming language statements  
a[i ]:= e and a[i], where i is termed subscript and a is termed array variable name 
in programming language parlance. 

Arrays can be one-dimensional, two-dimensional, three-dimensional or in 
general multidimensional. Figure 3.1 illustrates a one-dimensional and  
two-dimensional array. It may be observed that while one-dimensional arrays are 
mathematically likened to vectors, two-dimensional arrays are likened to matrices. 
In this regard, two-dimensional arrays also have the terminologies of rows and 
columns associated with them. 

 

Figure 3.1. Examples of arrays 
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In Figure 3.1, A[1:5] refers to a one-dimensional array where 1 and 5 are 
referred to as the lower and upper indexes or the lower and upper bounds of the 
index range, respectively. Similarly, B[1:3, 1:2] refers to a two-dimensional array 
where 1, 3 and 1, 2 are the lower and upper indexes of the rows and columns, 
respectively. 

Additionally, each element of the array, namely, A[i] or B[i, j], resides in a 
memory location also called a cell. Here, the cell refers to a unit of memory and is 
machine dependent. 

3.2. Array operations 

An array, when viewed as a data structure, supports only two operations, namely: 

(i) storage of values, that is, writing into an array (STORE (a, i, e)); 

(ii) retrieval of values, that is, reading from an array (RETRIEVE (a, i)). 

For example, if A is an array of five elements, then Figure 3.2 illustrates the 
operations performed on A. 

 

Figure 3.2. Array operations: store and retrieve 

3.3. Number of elements in an array 

In this section, the computation of the size of the array by way of the number of 
elements in the array is discussed. This is important since, when arrays are declared 
in a program, it is essential that the number of memory locations needed by the array 
is “booked” beforehand by the compiler. 

3.3.1. One-dimensional array 

Let A[1:u] be a one-dimensional array. The size of the array, as is evident, is u,  
and the elements are A[1], A[2], … A[u-1], and A[u]. In the case of the array A[l: u],  
where l is the lower bound and u is the upper bound of the index range, the number 
of elements is given by (u – l + 1). 
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EXAMPLE 3.1.– 

The number of elements in 

i) A[1:26] = 26; 

ii) A[5:53] = 49 (∵53 – 5+1); 

iii) A[–1:26] = 28. 

3.3.2. Two-dimensional array 

Let A[1:u1, 1:u2] be a two-dimensional array, where u1 indicates the number of 
rows and u2 the number of columns in the array. 

Then, the number of elements in A is u1.u2. Generalizing, A[l1 : u1, l2:u2] has a 
size of  (u1-l1+1) (u2-l2+1) elements. Figure 3.3 illustrates a two-dimensional array 
and its size. 

 

Figure 3.3. Size of a two-dimensional array 

EXAMPLE 3.2.– 

The number of elements in 

(i) A[1:10, 1:5] = 10 × 5 = 50; 

(ii) A[–1:2, 2:6] = 4 × 5 = 20; 

(iii) A[0:5, –1:6] = 6 × 8 = 48. 

3.3.3. Multidimensional array 

A multidimensional array A[1: u1, 1:u2, … 1: un] has a size of 𝑢ଵ. 𝑢ଶ. . . 𝑢௡ elements, 
that is, ∏ 𝑢௜௡௜ୀଵ . 
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Figure 3.4 illustrates a three-dimensional array and its size. 

Generalizing, array A [𝑙ଵ: 𝑢ଵ, 𝑙ଶ: 𝑢ଶ, 𝑙ଷ: 𝑢ଷ. . . 𝑙௡: 𝑢௡] has a size of ∏ (𝑢௜ − 𝑙௜ + 1)௡௜ୀଵ  
elements. 

 

Figure 3.4. Size of a three-dimensional array 

EXAMPLE 3.3.– 

The number of elements in 

i) A[–1:3, 3:4, 2:6] = (3 – (–1) + 1)(4 – 3 + 1)(6 – 2 + 1) = 50; 

ii) A[0:2, 1:2, 3:4, –1:2] = 3 × 2 × 2 × 4 = 48. 

3.4. Representation of arrays in memory 

How are arrays represented in memory? This is an important question, at least 
from the compiler’s point of view. In many programming languages, the name of the 
array is associated with the address of the starting memory location to facilitate 
efficient storage and retrieval. Additionally, while the computer memory is 
considered one dimensional (linear), it must accommodate multidimensional arrays. 
Hence, address calculation to determine the appropriate locations in memory 
becomes important. 

In this aspect, it is convenient to imagine a two-dimensional array A[1:u1, 1:u2] 
as u1 number of one-dimensional arrays whose dimension is u2. Again, in the case of 
three-dimensional arrays A[1: u1, 1: u2, 1: u3] it can be viewed as u1 number of  
two-dimensional arrays of size u2. u3. Figure 3.5 illustrates this idea. 

In general, a multidimensional array A[1: u1, 1: u2, … 1: un ] is a colony of u1 
arrays, each of dimension A[ 1: u2, 1: u3, … 1: un ]. 
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Figure 3.5. Viewing higher dimensional arrays in  
terms of their lower dimensional counterparts 

The arrays are stored in memory in one of the two ways, namely, row major 
order or column major order. In the ensuing discussion, we assume a row major 
order representation. Figure 3.6 distinguishes between the two methods of 
representation. 

3.4.1. One-dimensional array 

Consider the array A(1:u1), and let 𝛼 be the address of the starting memory 
location referred to as the base address of the array. Here, as it is evident, A[1] 
occupies the memory location whose address is 𝛼, A[2] occupies 𝛼 +1 and so on. In 
general, the address of A[i] is given by 𝛼 +(i – 1). Figure 3.7 illustrates the 
representation of a one-dimensional array in memory. 

In general, for a one-dimensional array A(l1: u1), the address of A[i] is given by    𝛼 + (i – l1), where 𝛼 is the base address. 
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Figure 3.6. Row-major order and column-major  
order of a two-dimensional array 

EXAMPLE 3.4.– 

For the array given below with base address α = 100, the addresses of the array 
elements specified are computed as given below: 

Array     Element  Address 

(i) A[1:17]    A[7]  𝛼 + (7 − 1) = 100 + 6 = 106 

(ii) A[–2:23]    A[16]               𝛼 + (16 − (−2)) = 100 + 18 = 118 

 

Figure 3.7. Representation of one-dimensional arrays in memory 
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3.4.2. Two-dimensional arrays 

Consider the array A[1:u1, 1:u2], which is to be stored in memory. It is helpful  
to imagine this array as u1 number of one-dimensional arrays of length u2. Thus,  
if A[1,1] is stored in address α, the base address, then A[i,1] has address  𝛼 + (𝑖 − 1)𝑢ଶ, and A[i, j] has address 𝛼 + (𝑖 − 1)𝑢ଶ + (𝑗 − 1). 

To understand this, let us imagine the two-dimensional array A[i, j] to be a 
building with i floors, each accommodating j rooms. To access room A[i, 1], the first 
room on the ith floor, one has to traverse (i – 1) floors, each having u2 rooms. In 
other words, (i – 1).u2 rooms have to be left behind before one knocks at the first 
room on the ith floor. Since α is the base address, the address of A[i,1] would be 𝛼 + (𝑖 − 1)𝑢ଶ. Again, extending a similar argument to access A[i, j], the jth  
room on the ith floor, one has to leave behind (𝑖 − 1)𝑢ଶ rooms and reach the jth 
room on the ith floor. This again, as before, computes the address of A[i, j] as 𝛼 + (𝑖 − 1)𝑢ଶ + (𝑗 − 1). Figure 3.8 illustrates the representation of two-dimensional 
arrays in memory. 

 

Figure 3.8. Representation of a two-dimensional array in memory 

Observe that the addresses of array elements are expressed in terms of the cells, 
which hold the array elements. 

In general, for a two-dimensional array 𝐴[𝑙ଵ: 𝑢ଵ, 𝑙ଶ: 𝑢ଶ], the address of A[i, j] is 
given by 𝛼 + (𝑖 − 𝑙ଵ)(𝑢ଶ − 𝑙ଶ + 1) + (𝑗 − 𝑙ଶ). 
EXAMPLE 3.5.– 

For the arrays given below with α = 220 as the base address, the addresses of the 
elements specified are computed as follows: 
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Array                Element       Address 

]5:1,10:1[A           ]3,8[A         220 (8 1) . 5 (3 1)+ − + −  = 257 

]10:6,4:2[ −−A      ]5,3[ −A      220 (3 ( 2)).(10 ( 6) 1) ( 5 ( 6))+ − − − − + + − − −  = 306 

3.4.3. Three-dimensional arrays 

Consider the three-dimensional array 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, 1: 𝑢ଷ]. As discussed before, 
we will imagine it to be u1 number of two-dimensional arrays of dimension 𝑢ଶ. 𝑢ଷ. 
Reverting to the analogy of building - floor - rooms, the three-dimensional array 𝐴[𝑖, 𝑗, 𝑘] could be viewed as a colony of i buildings, each having j floors with each 
floor accommodating k rooms. To access A[i, 1,1], the first room on the first floor of 
the ith building, one has to walk past (i – 1) buildings, each comprising 𝑢ଶ. 𝑢ଷ 
rooms, before climbing on to the first floor of the ith building to reach the first 
room! This means that the address of 𝐴[𝑖, 1,1] would be 𝛼 + (𝑖 − 1)𝑢ଶ. 𝑢ଷ. 
Similarly, the address of 𝐴[𝑖, 𝑗, 1] requires the first room on the jth floor of the ith 
building to be accessed, which works out to 𝛼 + (𝑖 − 1)𝑢ଶ𝑢ଷ + (𝑗 − 1)𝑢ଷ. 
Proceeding on similar lines, the address of 𝐴[𝑖, 𝑗, 𝑘] is given by 𝛼 + (𝑖 − 1)𝑢ଶ𝑢ଷ +(𝑗 − 1)𝑢ଷ + (𝑘 − 1). 

Figure 3.9 illustrates the representation of three-dimensional arrays in memory. 

 

Figure 3.9. Representation of three-dimensional arrays in the memory 
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In general, for a three-dimensional array 𝐴[𝑙ଵ: 𝑢ଵ, 𝑙ଶ: 𝑢ଶ, 𝑙ଷ: 𝑢ଷ], the address of 𝐴[𝑖, 𝑗, 𝑘] is given by 𝛼 + (𝑖 − 𝑙ଵ)(𝑢ଶ − 𝑙ଶ + 1)(𝑢ଷ − 𝑙ଷ + 1) + (𝑗 − 𝑙ଶ)(𝑢ଷ − 𝑙ଷ +1) + (𝑘 − 𝑙ଷ). 
EXAMPLE 3.6.– 

For the arrays given below with base address 𝛼 = 110, the addresses of the 
elements specified are as follows: 

       Array                  Element       Address 

[1:5, 1: 2, 1:3]A        [2,1, 3]A        110 (2 1) . 6 (1 1) .3 (3 1) 118+ − + − + − =  

[ 2 : 4, 6 :10,1:3]A − −  [ 1, 4, 2]A − −   110 ( 1 ( 2)).17.3 ( 4 ( 6)) . 3 (2 1) 168+ − − − + − − − + − =  

3.4.4. N-dimensional array 

Let 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, 1: 𝑢ଷ, … 1: 𝑢ே] be an N-dimensional array. The address 
calculation for the retrieval of various elements is given as follows: 

Element                        Address 

]1......,1,1,[ 1iA              Nuuui ...)1( 321 −+α  

]1,...1,1,,[ 21 iiA            NN uuuiuuui ....)1(...)1( 432321 −+−+α  

]1,...1,1,1,,,[ 321 iiiA     NNN uuuiuuuiuuui ...)1(...)1(...)1( 543432321 −+−+−+α  

. 

. 

. 𝐴[𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . 𝑖ே]        1 2 3 2 3 4( 1) ... ( 1) ... ... ( 1)N N Ni u u u i u u u iα + − + − + + −  

                              = 𝛼 + ∑ (𝑖௝ − 1)𝑎௝ே௝ୀଵ  where  𝑎௝ = ∏ 𝑢௞ே௞ୀ௝ାଵ , 1 ≤ j < 𝑁 
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3.5. Applications 

In this section, we introduce concepts that are applications of arrays and 
generally found to be useful in computer science, namely, sparse matrices, ordered 
lists, strings and bit arrays. 

3.5.1. Sparse matrix 

A matrix is a mathematical object that finds applications in various scientific 
problems. A matrix is an arrangement of m.n elements arranged as m rows and n 
columns. The sparse matrix is a matrix with zeros as the dominating elements. 
However, there is no precise definition for a sparse matrix. The term “sparseness”, 
therefore, is relatively defined. Figure 3.10 illustrates a matrix and a sparse matrix. 

 

Figure 3.10. Matrix and a sparse matrix 

A matrix consumes considerable memory space. Thus, a 1,000 × 1,000 matrix 
needs 1 million storage locations in memory. Imagine the situation when the matrix 
is sparse! To store a handful of non-zero elements, voluminous memory is allotted 
and thereby wasted! 

In such a case, to save valuable storage space, we resort to a 3-tuple 
representation (i, j, value) to represent each non-zero element of the sparse matrix. 
Thus, a sparse matrix A is represented by another matrix B[0:t, 1:3] with t + 1 rows 
and three columns. Here, t refers to the number of non-zero elements in the sparse 
matrix. While rows 1 to t record the details pertaining to the non-zero elements as 
three tuples (i.e., three columns), the zeroth row, namely, B[0,1], B[0,2] and B[0,3], 
records the number of rows, columns and non-zero elements of the original sparse 
matrix A, respectively. Figure 3.11 illustrates a sparse matrix representation. 
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Figure 3.11. Sparse matrix representation 

A simple example of a sparse matrix can be found in the arrangement of choices 
of let us say five elective courses, from the specified list of 100 elective courses, by 
20,000 students of a university. The arrangement of choices would turn out to be a 
matrix with 20,000 rows and 100 columns with just five non-zero entries per row, 
indicative of the individual student choices. Such a matrix could definitely be 
classified as sparse! 

3.5.2. Ordered lists 

One of the simplest and most useful data objects in computer science is an 
ordered list or linear list. An ordered list can be either empty or non-empty. In the 
latter case, the elements of the list are known as atoms and are chosen from a set D. 
The ordered lists provide a variety of operations, such as retrieval, insertion, deletion 
and update. The most common way to represent an ordered list is by using a one-
dimensional array. Such a representation is termed sequential mapping, although 
better forms of representation have been presented in the literature. 

EXAMPLE 3.7.– 

The following are ordered lists: 

i) (sun, mon, tue, wed, thu, fri, sat); 

ii) (𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସ, . . . 𝑎௡); 

iii) (Unix, CP/M, Windows, Linux). 
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The ordered lists shown above have been represented as one-dimensional arrays 
WEEK, VARIABLE and OS, as given below. 

 

Below, we illustrate some of the operations performed on ordered lists, with 
examples. 

Operation               Original ordered list           Resultant ordered list after  
                                                                                          the operation 

Insertion  (𝑎ଵ, 𝑎ଶ, 𝑎଻, 𝑎ଽ)                           (𝑎ଵ, 𝑎ଶ, 𝑎଺, 𝑎଻, 𝑎ଽ) 
(Insert a6) 

Deletion  (𝑎ଵ, 𝑎ଶ, 𝑎଻, 𝑎ଽ)                           (𝑎ଵ, 𝑎ଶ, 𝑎଻) 
(Delete a9) 

Update  (𝑎ଵ, 𝑎ଶ, 𝑎଻, 𝑎ଽ)                           (𝑎ଵ, 𝑎ହ, 𝑎଻, 𝑎ଽ) 
(Update 𝑎ଶ to 𝑎ହ) 

3.5.3. Strings 

A string is a data type used in many programming languages and represents text 
rather than numbers. String represents alphanumeric data and can therefore be made 
up of alphabet, numbers and spaces, in addition to other appropriate characters, 
typically enclosed within quotation marks. 
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EXAMPLE 3.8.– 

The following are some examples of strings: 

(i) “Newspaper”,  (ii) “Coffee mug”, (iii) “New Delhi 110092”, (iv) “PARIS”. 

A string is defined as an array of characters. Thus, each character comprising the 
string resides in a cell belonging to the one-dimensional array. However, some 
implementations of strings in programming languages insist on terminating the array 
of characters belonging to a string with the special character “\0”, also known as the 
null character. Figure 3.12 illustrates a one-dimensional array of characters S[1:13] 
that holds the string “INDIAN OCEAN”. 

        S     [1]    [2]    [3]    [4]    [5]   [6]    [7]    [8]    [9]  [10] [11] [12] [13] 
I N D I A N  O C E A N \0 

Figure 3.12. String as an array of characters 

A collection of strings can be stored using a two-dimensional array. In other 
words, an array of strings can be represented using an array of characters. Needless 
to say, the maximum number of characters that comprise the string has to be the 
same for all the strings. Figure 3.13 illustrates a collection of strings stored in a  
two-dimensional array RIVER[1:4, 1:9]. 

String as a data type is built over the concept of string defined in formal 
language theory. Thus, a formal string is simply defined to be a sequence of 
characters or alphabet, and a formal language denotes any set of strings over some 
fixed alphabet. In formal languages, strings are also referred to as words or 
sentences. An empty string denoted by ε contains zero characters. Strings are 
endowed to support a suite of operations such as (i) Length, (ii) concatenation,  
(iii) prefix, (iv) suffix, (v) substring, (vi) equality and (vii) subsequence, to list a 
few. 

RIVER [1] [2] [3] [4] [5] [6] [7] [8] [9] 
[1] G A N G E S \0   
[2] A M A Z O N \0   
[3] S E I N E \0    
[4] N I L E \0     

Figure 3.13. Array of strings 
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The length of a string x, denoted as |x|, computes the number of characters in the 
string. Concatenation of two strings x and y, denoted x + y, yields a string in which y 
is appended to x. Prefix and suffix are a consecutive set of characters that are a 
leading contiguous part of a string or a trailing contiguous part of string, 
respectively. A string obtained by deleting a prefix and a suffix from the original 
string is called a substring. While prefixes and suffixes of a given string are 
substrings of the original string, not every substring is a suffix or a prefix. Equality, 
denoted by “=”, tests if two given strings are one and the same. A subsequence is 
any string formed by deleting zero or more characters without changing the order of 
the remaining elements in the original string. 

EXAMPLE 3.9.– 

Given strings x = “Deep”, y = “Learning” and an empty string ε, the following 
are some operations undertaken on the strings: 

i) Lengths of x, y, ε are |x| = |“Deep”| = 4, |y| = |“Learning”| = 8 and |ε| = 0. 

ii) The concatenation operation applied over x, y and ε as follows yields the 
resulting strings and results: 

x + y = “DeepLearning”   y + x = “LearningDeep”   x + ε = “Deep” 

ε + y = “Learning”    |x + y| = 12     | ε + y| = 8 

iii) “Learn” is a prefix of string y, and “Deep” is a prefix of string x + y. 

iv) “earning” is a suffix of string y, and “Learning” is a suffix of string x + y. 

v) “earn” is a substring of string y. 

vi) x = y is false; x = x+ ε is true. 

vii) “Lenin” is a subsequence of string y. 

Most programming languages that have accommodated strings either as a data 
type or as a character array also provide a collection of library functions that 
implement a variety of useful string operations as mentioned above. 

3.5.4. Bit array 

A bit array, also known as bit vector, bit map, bit string or bit set, is a  
one-dimensional array that compactly stores bits (0 or 1). A bit array supports the 
following operations: 
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i) NOT or Complement: This is a unary operation that performs logical negation 
on each bit of the bit array, thereby transforming 1s to 0s and 0s to 1s. 

ii) AND: This is a binary operation that takes two equal length bit arrays and 
performs logical AND operation on each pair of the bits of the two bit arrays. A 
logical AND of two input bits is 1 if both bits are 1 and 0 otherwise. 

iii) OR: This is a binary operation that takes two equal length bit arrays and 
performs logical OR operation on each pair of bits of the two bit arrays. A logical 
OR of two input bits is 0 if both bits are 0 and 1 otherwise. 

iv) XOR: This is a binary operation that takes two equal length bit arrays and 
performs logical XOR operations on each pair of bits of the two bit arrays. A logical 
XOR of two input bits is 1 if either of the two bits is 1 (not both) and 0 otherwise. 

EXAMPLE 3.10.– 

Given two bit arrays A = [ 0 1 0 1] and B = [ 1 1 0 0], the following are the 
results of the bit array operations. 

NOT A: [1 0 1 0],            A AND B: [0 1 0 0], 

A OR B: [1 1 0 1],           A XOR B: [1 0 0 1] 

 
 

ADT for arrays 
 

Data objects: 
A set of elements of the same type stored in a sequence. 
 
Operations: 

– Store value VAL  in the ith element of the array
ARRAY 

ARRAY[i] = VAL 

– Retrieve the value in the ith element of array
ARRAY as VAL 

VAL = ARRAY[i] 
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3.6. Illustrative problems 

PROBLEM 3.1.– 

The following details are available about an array RESULT. Find the address of 
RESULT[17]. 

Base address    : 520 
Index range   : 1:20 
Array type   : Real 
Size of the memory location  : 4 bytes 

Solution: 

Since RESULT[1:20] is a one-dimensional array, the address for RESULT[17] is 
given by base address + (17 – lower index). However, the cell is made of 4 bytes; 
hence, the address is given by base address + (17 – lower index).4  = 520 +  
(17 – 1).4 = 584. 

The array RESULT may be visualized as follows. 

Summary 

– An array as an ADT supports only two operations: STORE and RETRIEVE. 

– Arrays may be one-dimensional, two-dimensional or multidimensional and stored in 
memory in consecutive memory locations, either in the row major order or column major 
order. 

– Since memory is considered one-dimensional and arrays may be multi dimensional, 
it is essential to know the representations of arrays in memory and their address 
calculations, especially from the compiler’s point of view. 

– Sparse matrices, ordered lists, strings and bit arrays are some significant applications 
of  array data structure. 
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PROBLEM 3.2.– 

For the following array B, compute: 

i) the dimension of B; 

ii) the space occupied by B in the memory; 

iii) the address of B[7,2]. 

Array: B   Column index:   0:5 

Base address: 1003  Size of the memory location: 4 bytes 

Row index: 0:15   

Solution: 

i) The number of elements in B is 16 × 6 = 96. 

ii) The space occupied by B is 96 × 4 = 384 bytes. 

iii) The address of B[7,2] is given by 

1003 + [(7 – 0)·6 + (2 – 0)]·4 = 1003 + 176 = 1179. 

PROBLEM 3.3.– 

A programming language permits indexing of arrays with character subscripts; 
for example, CHR_ARRAY[‘A’:’D’]. In such a case, the elements of the array are 
CHR_ARRAY[‘A’], CHR_ARRAY[‘B’], and so on, and the ordinal number (ORD) 
of the characters, namely, ORD(‘A’) = 1, ORD(‘B’) = 2, ORD(‘Z’) = 26 and so on, 
is used to denote the index. 
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Now, two arrays TEMP[1:5, -1:2] and CODE[‘A’:’Z’, 1:2] are stored in  
memory beginning from address 500. Additionally, CODE succeeds TEMP  
in storage. Calculate the addresses of (i) TEMP[5, -1], (ii) CODE[‘N’,2] and  
(iii) CODE[‘Z’,1]. 

Solution: 

From the details given, the representation of TEMP and CODE arrays in memory 
is as follows: 

 

i) The address of TEMP[5, –1] is given by 

base-address + (5 – 1)(2 – (–1) + 1) + (–1 – (–1)) 

= 500 + 16 

= 516. 

ii) To obtain the addresses of CODE elements, it is necessary to obtain the base 
address, which is the immediate location after TEMP[5,2], the last element of array 
TEMP. 

Hence, the TEMP [5,2] is computed as 

500 + (5 – 1)(2 – (–1) + 1) + (2 – (–1)) 

= 500 + 16 + 3 

= 519. 

Therefore, the base address of CODE is given by 520. 

Now, the address of CODE [‘N’, 2] is given by 

base address of CODE + [(𝑂𝑅𝐷(′𝑁′) − 𝑂𝑅𝐷(′𝐴′)). (2 − 1 + 1)] + (2 − 1) 

= 520 + (14 – 1) 2 + 1 

= 547. 
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iii) The address of CODE[‘Z’,1] is computed as 

base address of CODE + ((𝑂𝑅𝐷(′𝑍′) − 𝑂𝑅𝐷(′𝐴′)). (2 − 1 + 1)) + (1 − 1) 

= 520 + (26 – 1) (2) + 0 

= 570. 

NOTE.– The base address of CODE may also be computed as 

base address of TEMP + (number of elements in TEMP – 1) + 1 

= 500 + (5.4 – 1) + 1 

= 520. 

PROBLEM 3.4.– 

Given a = 10, b = 5, c = 3 and the array arr[1:5] = [ 9 6 8 5 7], what 
does the following pseudo-code do to the array arr and the variables a, b, c? 

for i = 1 to 5 
 arr[i] = a 
 a = b 
 b = c 
 c = arr[i] 
end 

Solution: 

Since each step of the loop modifies the values of the variables and the array, it 
is easy to track the variables and the array concerned with each step of the iteration 
by constructing the following table: 

Loop counter i a b c arr[1] arr[2] arr[3] arr[4] arr[5] 

Initialization 10 5 3 9 6 8 5 7 
1 5 3 10 10 6 8 5 7 
2 3 10 5 10 5 8 5 7 
3 10 5 3 10 5 3 5 7 
4 5 3 10 10 5 3 10 7 
5 3 10 5 10 5 3 10 5 
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Thus, at the end of the loop, the modified array and variables are, a = 3, b = 10, 
c = 5 and the array arr[1:5] = [ 10 5 3 10 5]. 

PROBLEM 3.5.– 

What does the following pseudo-code do to the array A[1: n, 1: n], which 
is already provided as input to the code? 

B = 5 
for i = 1 to n 
  for j = 1 to n 
    temp = A[i,j] – B 
    A[i, j] = A[j, i] 
    A[j, i] = temp + B 
  end 
end 

Solution: 

The array A, going by the statements in the body of the innermost loop of the 
code, seems to swap its ith row jth column element with the jth row ith column 
element. However, since this swapping is attempted for each element of the array 
(note the two for loops that work over the rows and columns of A), each element 
undergoes two swaps, and therefore, array A remains the same when the loops 
terminate. 

PROBLEM 3.6.– 

Given a bit array A = [ 0 0 1 1 0 1] on which the operations discussed in section 
3.5.4 are workable: 

i) Can you use OR to change any desired bit of A to 1? 

ii) Can you use AND to change any desired bit of A to 0? 

iii) Can you use XOR to invert or toggle any desired bit of A? 
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Solution: 

i) Let us suppose the fifth bit of A needs to be changed to 1. Choose a bit array    
B = [0 0 0 0 1 0] of the same length as A, with the fifth bit set to 1 and all else set to 
0. A OR B yields 

[0 0 1 1 0 1] OR [0 0 0 0 1 0] = [0 0 1 1 1 1], which is the desired result. 

ii) Let us suppose the third bit of A needs to be changed to 0. Choose a bit array      
C = [1 1 0 1 1 1] of the same length as A, with its third bit set to 0 and all else set to 
1. A AND B yields 

[0 0 1 1 0 1] AND [1 1 0 1 1 1] = [0 0 0 1 0 1], which is the desired result. 

iii) Let us suppose the fourth bit of A needs to be toggled. Choose a bit array 

D = [0 0 0 1 0 0] of the same length as A and with the fourth bit set to 1 and all 
else set to 0. A XOR B yields 

[ 0 0 1 1 0 1] XOR [0 0 0 1 0 0] = [0 0 1 0 0 1 ], which is the desired result. 

PROBLEM 3.7.– 

Here is a pseudo-code that works over two strings, STRING1 and STRING2, 
represented as an array of characters with sufficient sizes. length is a function that 
computes the length of a string. What does the code do to the input strings? 

1. LENGTH1 = length(STRING1); 
2. LENGTH2 = length(STRING2); 
3. for POSITION = 1 to LENGTH2 
4.   LENGTH1 = LENGTH1+1; 
5.   STRING1[LENGTH1]=STRING2[POSITION]; 
6. end 

Solution: 

The pseudo-code performs a concatenation operation over STRING1 and 
STRING2. STRING1 holds the concatenated string, while STRING2 remains the  
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same. LENGTH1 holds the length of the concatenated string and LENGTH2 the 
same for STRING2. 

Review questions 

1) Which of the following pairs of operations is supported by an array  
ADT? 

i) Store and retrieve. 

ii) Insert and delete. 

iii) Copy and delete. 

iv) Append and copy. 

a) (i)  b) (ii)  c) (iii)  d) (iv) 

2) The number of elements in an array ARRAY[l1 : u1, l2:u2] is given by 

a) (u1-l1-1) (u2-l2-1)  b) (u1.u2) c)  (u1-l1) (u2-l2) 

d) (u1-l1+1) (u2-l2+1) 

3) A multidimensional array OPEN[0:2, 10:20, 3:4, -10:2] contains ____ 
elements. 

a) 240  b) 858  c) 390  d) 160 

4) For array A[1:u1, 1:u2], where α is the base address, A[i,1] has its address  
given by 

a) (𝑖 − 1)𝑢ଶ         b) 𝛼 + (𝑖 − 1)𝑢ଶ         c) 𝛼 + 𝑖. 𝑢ଶ         d) 𝛼 + (𝑖 − 1). 𝑢ଵ 

5) For the array 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, 1: 𝑢ଷ], where α is the base address, the address of 𝐴[𝑖, 𝑗, 1] is given by 

a) 𝛼 + (𝑖 − 1)𝑢ଶ𝑢ଷ + (𝑗 − 1)𝑢ଷ b) 𝛼 + 𝑖. 𝑢ଶ𝑢ଷ + 𝑗. 𝑢ଷ 

c) 𝛼 + (𝑖 − 1)𝑢ଵ𝑢ଶ + (𝑗 − 1)𝑢ଶ  d) 𝛼 + 𝑖. 𝑢ଵ𝑢ଶ + 𝑗. 𝑢ଶ 

6) Distinguish between the row major and column major ordering of an array. 
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7) For an n-dimensional array 𝐴[1: 𝑢ଵ, 1: 𝑢ଶ, . . .1: 𝑢ே], obtain the address of the 
element 𝐴[𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . 𝑖ே] given β as the home address. 

8) For the following sparse matrix, obtain an array representation. 

⎣⎢⎢
⎢⎢⎢
⎡0 0 0 −7 00 −5 0 0 03 0 6 0 −10 0 0 0 05 0 0 0 00 0 0 0 09 0 0 4 0 ⎦⎥⎥

⎥⎥⎥
⎤
  

9) For a string STRNG whose length |STRNG| = 11 and is stored as an array of 
characters STRNG[1:12], where STRNG[12] = “\0”, the null character can be 
ignored for this problem, match the following: 

STRNG[1:5] 
STRNG[9:11]
STRNG[3:7] 

Subsequence
Substring 

Prefix 
Suffix 

10) What are the operations that when undertaken on a bit array can (i) toggle or 
invert a specific bit and (ii) toggle or invert all the bits in the bit array? 

Programming assignments 

1) Declare a one-dimensional, two-dimensional and a three-dimensional array in 
a programming language (C, for example) that has the capability to display the 
addresses of array elements. Verify the various address calculation formulae that 
you have learnt in this chapter against the arrays that you have declared in the 
program. 

2) For the matrix A given below, obtain a sparse matrix representation B. Write a 
program to 

i) obtain B given matrix A as input; 

ii) obtain the transpose of A using matrix B. 
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3) Open an ordered list 𝐿 = (𝑑ଵ, 𝑑ଶ, . . . 𝑑௡), where each di is the name of a 
peripheral device, and the list is maintained in alphabetical order. 

Write a program to 

i) insert a device dk into the list L; 

ii) delete an existing device di from L. In this case, the new ordered list should be 𝐿௡௘௪ = (𝑑ଵ, 𝑑ଶ, . . . 𝑑௜ିଵ, 𝑑௜ାଵ, . . . 𝑑௡) with (n-1) elements; 

iii) find the length of L; 

iv) update device dj to dl and print the new list. 

4) If an element in the array is greater than all the elements to its right, then such 
an element is designated as a leader. Given an array of elements, find all the leaders. 

Example: For the array A = [ 1 8 6 7 3 1 5 2], 8, 7 and 5 are leaders. 

5) Given an array, find the next greater element for each element in the array, if 
available. If not available, print the element itself. The next greater element y for an 
element x in the array is the first element that is greater than x and occurs on its right 
side. The next greater element of the right most element in an array is the element 
itself. 

Example:  Given A = [ 6 8 4 3 9] the next greater element list 

B = [8 9 9 9 9]. 

6) Given an array, arrange the elements in an array in such a way that the first 
maximum element is succeeded by the first minimum element, the second maximum 
element is succeeded by the second minimum element and so on. 
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Example: Given A = [ 8 5 1 3 9 7 6] the rearranged array 

B = [ 9 1 8 3 7 5 6]. 

7) Implement the string operations of length, concatenation and equality 
illustrated in example 3.9 as functions, using a programming language that allows 
you to declare a string as a character array. 

8) Given a string s that is input as a character array, (i) reverse the string and  
(ii) check if it is a palindrome. A palindrome is a string that reads the same forward 
and backward, for example, “MADAM”. 

9) Implement a library of bit array functions that will perform the operations of 
AND, OR, NOT and XOR on a given set of bit arrays. 



 



4 

Stacks 

In this chapter, we introduce the stack data structure, the operations supported by 
it and their implementations. Additionally, we illustrate two of its useful 
applications in computer science, namely, recursive programming and evaluation of 
expressions, among the innumerable available. 

4.1. Introduction 

A stack is an ordered list with the restriction that elements are added or deleted 
from only one end of the list termed the top of stack. The other end of the list that 
lies “inactive” is termed the bottom of stack. 

Thus, if S is a stack with three elements a, b, c where c occupies the top of stack 
position, and if d were to be added, the resultant stack contents would be a, b, c, d. 
Note that d occupies the top of stack position. Again, initiating a delete or remove 
operation would automatically throw out the element occupying the top of the stack, 
namely, d. Figure 4.1 illustrates this functionality of the stack data structure. 

 

Figure 4.1. Stack and its functionality 
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It needs to be observed that during the insertion of elements into the stack, it is 
essential that their identities be specified, whereas for removal, no identity needs to 
be specified, since by virtue of its functionality, the element that occupies the top of 
the stack position is automatically removed. 

The stack data structure therefore obeys the principle of Last In First Out 
(LIFO). In other words, elements inserted or added into the stack join last, and those 
that joined last are the first to be removed. 

Some common examples of a stack occur during the serving of slices of bread 
arranged as a pile on a platter or during the usage of an elevator (see Figure 4.2). It 
is obvious that when a slice is added to a pile or removed when serving, it is the top 
of the pile that is affected. Similarly, in the case of an elevator, the last person to 
board the cabin must be the first person to alight from it (at least to make room for 
the others to alight!). 

 

Figure 4.2. Common examples of a stack 

4.2. Stack operations 

The two operations that support the stack data structure are 

i) insertion or addition of elements known as Push; 

ii) deletion or removal of elements known as Pop. 

Before we discuss the operations supported by the stack in detail, it is essential to 
know how stacks are implemented. 
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4.2.1. Stack implementation 

A common and basic method of implementing stacks is to make use of another 
fundamental data structure, namely, arrays. While arrays are sequential data 
structures, the other alternative of employing linked data structures has been 
successfully attempted and applied. We discuss this elaborately in Chapter 7. In this 
chapter, we confine our discussion to the implementation of stacks using arrays. 

Figure 4.3 illustrates an array-based implementation of stacks. This is fairly 
convenient considering the fact that stacks are one-dimensional ordered lists and so 
are arrays, which, despite their multidimensional structure, are inherently associated 
with a one-dimensional consecutive set of memory locations (Chapter 3). 

Figure 4.3 shows a stack of four elements R, S, V, and G represented by an array 
STACK[1:7]. In general, if a stack is represented as an array STACK[1:n], then n 
elements and not one more can be stored in the stack. It therefore becomes essential 
to issue a signal or warning termed STACK_FULL when elements whose number 
is over and above n are pushed into the stack. 

Again, during a pop operation, it is essential to ensure that one does not delete an 
empty stack! Hence, the necessity for a signal or a warning termed 
STACK_EMPTY during the implementation of the pop operation. While 
implementation of stacks using arrays necessitates checking for STACK_FULL/ 
STACK_EMPTY conditions during push/pop operations, the implementation of 
stacks with linked data structures dispenses with these testing conditions. 

 

Figure 4.3. Array implementation of stacks 
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4.2.2. Implementation of push and pop operations 

Let STACK[1:n] be an array implementation of a stack and top be a variable 
recording the current top of the stack position. top is initialized to 0. item is the 
element to be pushed into the stack. n is the maximum capacity of the stack. 

Algorithm 4.1 illustrates the push operation in pseudo-code.  

 

Algorithm 4.1. Implementation of push operation on a stack 

In the case of the pop operation, as previously mentioned, no element identity 
needs to be specified since, by default, the element occupying the top of the stack 
position is deleted. Algorithm 4.2 illustrates the pop operation in pseudo-code. Note 
that in Algorithm 4.2, item is used as an output variable only to store a copy of the 
element removed. 

 

Algorithm 4.2. Implementation of pop operation on a stack 

It is evident from the algorithms that to perform a single push/pop operation, the 
time complexity is O(1). 

procedure  POP(STACK, top, item) 
  if (top = 0) then STACK_EMPTY; 

  else   

    { item = STACK[top]; 

      top = top - 1; 

    } 

end POP 

procedure  PUSH(STACK, n, top, item) 
   if (top = n) then STACK_FULL; 
   else 
    { top = top + 1; 
 STACK[top] = item; /* store item as top 
                            element of  STACK */ 
    } 
end PUSH 



Stacks     75 

EXAMPLE 4.1.– 

Consider a stack DEVICE[1:3] of peripheral devices. The insertion of the four 
items PEN, PLOTTER, JOY STICK and PRINTER into DEVICE and a deletion are 
illustrated in Table 4.1. 

 

Table 4.1. Push/pop operations on stack DEVICE[1:3] 
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Note that in operation 5, which is a pop operation, the top pointer is merely 
decremented as a mark of deletion. No physical erasure of data is carried out. 

4.3. Applications 

Stacks have found innumerable applications in computer science and other allied 
areas. In this section, we introduce two applications of stacks that are useful in 
computer science, namely, 

i) recursive programming; 

ii) evaluation of expressions. 

4.3.1. Recursive programming 

The concepts of recursion and recursive programming are introduced in  
Chapter 2. In this section, we demonstrate through a sample recursive program how 
stacks are helpful in handling recursion. 

Consider the recursive pseudo-code for factorial computation shown in Figure 
4.4. Observe the recursive call in Step 3. It is essential that during the computation 
of n!, the procedure does not lead to an endless series of calls to itself! Hence, the 
need for a base case, 0! = 1, which is written in Step 1. 

The spate of calls made by procedure FACTORIAL() to itself based on the 
value of n can be viewed as FACTORIAL() replicating itself as many times as it 
calls itself with varying values of n. Additionally, all of these procedures await 
normal termination before the final output of n! is completed and displayed by the 
very first call made to FACTORIAL(). A procedural call would have a normal 
termination only when either the base case is executed (Step 1) or the recursive case 
has successfully ended, that is, Steps 2–5 have completed their execution. 

During the execution, to keep track of the calls made to itself and to record the 
status of the parameters at the time of the call, a stack data structure is used. Figure 
4.5 illustrates the various snap shots of the stack during the execution of 
FACTORIAL(5). Observe how the values of the three parameters of the procedure 
FACTORIAL(), namely, n, x and y, are kept track of in the stack data 
structure. 
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Figure 4.4. Recursive procedure to compute n! 

When the procedure FACTORIAL(5) is initiated (see Figure 4.5(a)) and 
executed (see Figure 4.5(b)), x obtains the value 4, and the control flow moves to 
Step 3 in the procedure FACTORIAL(5). This initiates the next call to the 
procedure as FACTORIAL(4). Observe that the first call (FACTORIAL(5)) has 
not yet finished its execution when the next call (FACTORIAL(4)) to the procedure 
has been issued. Therefore, there is a need to preserve the values of the variables 
used, namely, n, x and y, in the preceding calls. Hence, there is a need for a 
stack data structure. 

Every new procedure call pushes the current values of the parameters involved 
into the stack, thereby preserving the values used by the earlier calls. Figures 4.5(c) 
and (d) illustrate the contents of the stack during the execution of FACTORIAL(4) 
and subsequent procedure calls. During the execution of FACTORIAL(0) (see 
Figure 4.5(e)), Step 1 of the procedure is satisfied, and this terminates the procedure 
call yielding the value FACTORIAL = 1. Since the call for FACTORIAL(0) was 
initiated in Step 3 of the previous call (FACTORIAL(1)), y acquires the value of 
FACTORIAL(0), that is, 1, and the execution control moves to Step 4 to compute 
FACTORIAL = n ∗ y (i.e.) FACTORIAL = 1 ∗ 1 = 1. With this 
computation, FACTORIAL(1) terminates its execution. As previously mentioned, 
FACTORIAL(1) returns the computed value of 1 to Step 3 of the previous call 
FACTORIAL(2)). Once again, it yields the result FACTORIAL = n ∗ y = 2 ∗ 
1 = 2, which terminates the procedure call to FACTORIAL(2) and returns the 
result to Step 3 of the previous call FACTORIAL(3) and so on. 

Observe that the stack data structure grows due to a series of push operations 
during the procedure calls and unwinds itself by a series of pop operations until it 
reaches the step associated with the first procedure call to complete its execution and 
display the result. 

During the execution of FACTORIAL(5), the first and oldest call to be made, 
y in Step 3 computes y = FACTORIAL(4) = 24 and proceeds to obtain 
FACTORIAL = n ∗ y = 5 ∗ 24 = 120, which is the desired result. 

procedure  FACTORIAL(n) 
Step 1:   if (n = 0) then FACTORIAL = 1; 
Step 2:   else {x = n - 1; 
Step 3:         y = FACTORIAL(x); 
Step 4:         FACTORIAL = n * y;} 
Step 5:   end FACTORIAL 
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Figure 4.5. Snapshots of the stack data structure  
during the execution of the procedural call FACTORIAL(5) 

4.3.1.1. Tail recursion 

Tail recursion or tail end recursion is a special case of recursion where a 
recursive call to the function turns out to be the last action in the calling function. 
Note that the recursive call needs to be the last executed statement in the function 
and not necessarily the last statement in the function. 



Stacks     79 

Generally, in a stack implementation of a recursive call, all of the local variables 
of the function that are to be “remembered” are pushed into the stack when the call 
is made. Upon termination of the recursive call, the local variables are popped out 
and restored to their previous values. Now for tail recursion, since the recursive call 
turns out to be the last executed statement, there is no need for the local variables to 
be pushed into a stack for them to be “remembered” and “restored” on termination 
of the recursive call. This is because when the recursive call ends, the calling 
function itself terminates, at which all local variables are automatically discarded. 

Tail recursion is considered important in many high-level languages, especially 
functional programming languages. These languages rely on tail recursion to 
implement iteration. It is known that compared to iterations, recursions need more 
stack space, and tail recursions are ideal candidates for transformation into 
iterations. 

4.3.2. Evaluation of expressions 

4.3.2.1. Infix, prefix and postfix expressions 

The evaluation of expressions is an important feature of compiler design. When 
we write or understand an arithmetic expression, for example, −(𝐴 + 𝐵) ↑ 𝐶 ∗ 𝐷 + 𝐸, 
we do so by following the scheme of ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ (i.e. an ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ is preceded and succeeded by an ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩). Such an expression is 
termed infix expression. It is already known how infix expressions used in 
programming languages have been accorded rules of hierarchy, precedence and 
associativity to ensure that the computer does not misinterpret the expression but 
computes its value in a unique way. 

In reality, the compiler reworks on the infix expression to produce an equivalent 
expression that follows the scheme of ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ and is 
known as the postfix expression. For example, the infix expression 𝑎 + 𝑏 would 
have the equivalent postfix expression a b+. 

A third category of expression follows the scheme of ⟨𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ ⟨𝑜𝑝𝑒𝑟𝑎𝑛𝑑⟩ and is known as prefix expression. For example, the equivalent prefix 
expression corresponding to 𝑎 + 𝑏 is +a b. 

Examples 4.2 and 4.3 illustrate the hand computation of prefix and postfix 
expressions from a given infix expression. 
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EXAMPLE 4.2.– 

Consider an infix expression 𝑎 + 𝑏 ∗ 𝑐 − 𝑑. The equivalent postfix expression 
can be hand computed by decomposing the original expression into subexpressions 
based on the usual rules of hierarchy, precedence and associativity. 

Expression 
Subexpression chosen  

based on rules of hierarchy, 
precedence and associativity

Postfix expression 

    (i)           𝑏 ∗ 𝑐 

 

    (ii)  

 

 

 

    (iii)  

 

 

Hence, 𝑎𝑏𝑐 ∗ +𝑑 − is the equivalent postfix expression of 𝑎 + 𝑏 ∗ 𝑐 − 𝑑. 

EXAMPLE 4.3.– 

Consider the infix expression (𝑎 ∗ 𝑏 − 𝑓 ∗ ℎ) ↑ 𝑑. The equivalent prefix 
expression is hand computed as follows: 

Expression 
Subexpression chosen based 

on rules of hierarchy, 
precedence and associativity

Equivalent  
prefix expression 

    (i) 𝑎 ∗ 𝑏 : ∗ 𝑎𝑏 

    (ii) 𝑓 ∗ ℎ 
:∗ 𝑓ℎ 
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    (iii)  
 

    (iv)   

Hence, the equivalent prefix expression of (𝑎 ∗ 𝑏 − 𝑓 ∗ ℎ) ↑ 𝑑 is ↑ − ∗ 𝑎𝑏 ∗ 𝑓ℎ𝑑. 

4.3.2.2. Evaluation of postfix expressions 

As discussed earlier, the compiler finds it convenient to evaluate an expression in 
its postfix form. The virtues of postfix form include elimination of parentheses, 
which signify priority of evaluation, and the elimination of the need to observe rules 
of hierarchy, precedence and associativity during evaluation of the expression. This 
implies that the evaluation of a postfix expression is done by merely undertaking a 
left-to-right scan of the expression, pushing operands into a stack and evaluating the 
operator with the appropriate number of operands popped out from the stack, and 
finally placing the output of the evaluated expression into the stack. 

Algorithm 4.3 illustrates the evaluation of a postfix expression. Here, the postfix 
expression is terminated with $ to signal the end of the input. 

 

Algorithm 4.3. Procedure to evaluate a postfix expression E 

Procedure  EVAL_POSTFIX(E) 
  
       X = get_next_character(E);     /* get the next 
                               character of expression E */ 

    case x of 
    :x is an operand:  Push x into stack S; 
 
    :x is an operator: Pop out required number of 
                       operands from the stack S, 
                       evaluate the operator and 
                       push the result into the 
                       stack S; 
 
    :x = “$”:          Pop out the result from 
                       stack S; 
   end case 

 
end EVAL-POSTFIX. 
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The evaluation of a postfix expression using Algorithm EVAL_POSTFIX is 
illustrated in example 4.4. 

EXAMPLE 4.4.– 

To evaluate the postfix expression of 𝐴 + 𝐵 ∗ 𝐶 ↑ 𝐷 for A = 2, B = –1, C = 2 and 
D = 3, using Algorithm EVAL_POSTFIX the equivalent postfix expression can 
be computed to be 𝐴𝐵𝐶𝐷 ↑∗ +. 

The evaluation of the postfix expression using the algorithm is illustrated below. 
The values of the operands pushed into stack S are given within parentheses, e.g., 
A(2), B(-1), etc. 

X Stack S Action 

A 
 

 
Push A into S 

B 
 

 
Push B into S 

C 
 

 
Push C into S 

D 
 

 
Push D into S 

↑ 
 

 

Pop out two operands from stack S, 
namely C(2) and D(3). Compute 
C↑D and push the result 𝐶 ↑ 𝐷 = 2 ↑ 3 = 8 into stack S. 

∗ 
 

 

Pop out B(-1) and 8 from stack S. 
Compute 𝐵 ∗ 8 = −1 ∗ 8 = −8 and 

push the result into stack S. 

+ 
 

 

Pop out A(2), –8 from stack S. 
Compute 𝐴 − 8 = 2 − 8 = −6 and 

push the result into stack S 

𝑆̸ 
 

 
Pop out –6 from stack S and output 

the same as the result. 
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4.4. Illustrative problems 

PROBLEM 4.1.–   

The following is a pseudo-code of a series of operations on a stack S. PUSH(S, 
X) pushes an element X into S, POP(S,X) pops out an element from stack S as X, 
PRINT(X) displays the variable X and EMPTYSTACK(S) is a Boolean function 
that returns true if S is empty and false otherwise. What is the output of the code? 

 

Summary 

– A stack data structure is an ordered list with insertions and deletions done at one end 
of the list known as top of stack. 

– An insert operation is called a push operation and a delete operation is called a pop 
operation. 

– A stack can be commonly implemented using the array data structure. However, in 
such a case it is essential to take note of stack full/stack empty conditions during the 
implementation of push and pop operations, respectively. 

– Handling recursive programming and evaluation of postfix expressions are 
applications of stack data structure.  

   ADT for stacks 
 
Data objects: 
A finite set of elements of the same type. 
 
Operations: 
 Create an empty stack and initialize top of stack 
      CREATE(STACK) 
 Check if stack is empty 
           CHK_STACK_EMPTY(STACK) (Boolean function) 
 Check if stack is full 
           CHK_STACK_FULL(STACK) (Boolean function) 
 Push ITEM into stack STACK 
           PUSH(STACK, ITEM) 
Pop element from stack STACK and output the element
popped in ITEM 

           POP(STACK, ITEM) 
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1. X:=30; 
2. Y:=15; 
3. Z:=20; 
4. PUSH(S, X); 
5. PUSH(S, 40); 
6. POP(S, Z); 
7. PUSH(S, Y); 
8. PUSH(S, 30); 
9. PUSH(S, Z); 
10. POP(S, X); 
11. PUSH(S, 20); 
12. PUSH(S, X); 
13. while not EMPTYSTACK(S) do 
14.   POP(S, X); 
15.   PRINT(X); 
16. end 

Solution: 

We track the contents of the stack S and the values of the variables X, Y, Z as 
follows: 

 
Steps        Stack S       Variables 
                                                                                                X Y Z 
 

1 – 3                                             30       15       20 

 

4                                                                                       30        15      20 

 

5                                                                                       30        15      20 

 

6                                                                                       30       15      40 

 

7                                                                                       30       15      40 

 

8                                                                               30       15      40 
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9                                                                                       30       15      40 

 

10                                                                                        40        15     40 

 

11                                                                                        40        15     40 

 

12                                                                                        40        15     40 

The execution of Steps 13–16 repeatedly pops out the elements from S 
displaying each element. The output would therefore be 

   40   20   30   15   30 

with the stack S empty. 

PROBLEM 4.2.– 

Use procedures PUSH(S,X), POP(S,X), PRINT(X) and 
EMPTY_STACK(S) (as described in illustrative problem 4.1) and 
TOP_OF_STACK(S), which returns the top element of stack S, to write pseudo 
codes to 

i) assign X to the bottom element of stack S, leaving the stack empty; 

ii) assign X to the bottom element of the stack, leaving the stack unchanged; 

iii) assign X to the nth element in the stack (from the top), leaving the stack 
unchanged. 

Solution: 

(i)         while not EMPTYSTACK(S) do 

POP(S,X) 
    end  
    PRINT(X); 
 
                    X holds the element at the bottom of stack. 

(ii) Since the stack S has to be left unchanged, we make use of another stack T to 
temporarily hold the contents of S. 
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while not EMPTYSTACK(S) do 
POP(S,X) 
PUSH(T,X) 

end        /* empty contents of S into T */
  
PRINT(X);      /* output X */ 
 
 
while not EMPTYSTACK(T) do 
   POP(T, Y) 
   PUSH(S, Y) 
end  /* empty contents of T back into S */ 

(iii) We make use of a stack T to remember the top n elements of stack S before   
replacing them back into S. 

for i:=1 to n do 
 POP(S,X) 
 PUSH(T,X) 
end  /* Push top n elements of S into T */ 
PRINT(X); /* display X */ 
for i = 1 to n do 
 POP (T, Y); 
 PUSH(S,Y); 
end /* Replace back the top n elements  
          available in T into  S */ 

PROBLEM 4.3.– 

What is the output produced by the following segment of code, where for a  
stack S, PUSH(S,X), POP(S, X), PRINT(X), EMPTY_STACK(S) are 
procedures as described in illustrative problem 4.1 and CLEAR(S) is a procedure 
that empties the contents of the stack S? 

1. TERM = 3; 
2. CLEAR(STACK); 
3. repeat 
4.   if TERM <=12 then {PUSH(STACK, TERM); 
5.                      TERM = 2 * TERM;} 
6.   else 
7.     {POP(STACK, TERM); 
8.      PRINT(TERM); 
9.      TERM = 3 * TERM + 2;} 
10. until EMPTY_STACK(STACK) and TERM > 15. 
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Solution: 

Let us keep track of the stack contents and the variable TERM as follows: 

Steps Stack STACK TERM 
Output 

displayed 

1-2  3  

3, 4, 5, 10 
 

 
6  

3, 4, 5, 10 
 

 
12  

3, 4, 5, 10 
 

 
24  

3, 6, 7 
 

 
12  

8 
 

 
12 12 

9, 10 
 

 
38  

3, 6, 7 
 

 
6  

8 
 

 
6 6 

9, 10 
 

 
20  

3, 6, 7 
 

 
3  
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8 
 

 
3 3 

9, 10 
 

 
11  

3, 4, 5, 10 
 

 
22  

3, 6, 7 
 

 
11  

8 
 

 
11 11 

9, 10 
 

 
35  

The output is 12, 6, 3 and 11. 

PROBLEM 4.4.– 

For the following pseudo-code of a recursive program mod that computes a mod 
b given a, b as inputs, trace the stack contents during the execution of the call           
mod (23, 7). 

 

 

  procedure mod (a, b) 
  if (a < b) then mod := a 
  else 

        { bax −=:1   

          ),mod(: 11 bxy =   

          mod:= 1y  

        } 
  end mod 
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Solution: 

We open a stack structure to track the variables a, b, 𝑥ଵ and 𝑦ଵ as shown 
below. The snap shots of the stack during recursion are shown. 

    
   a  b 𝑥ଵ 𝑦ଵ     a  b 𝑥ଵ 𝑦ଵ    a b 𝑥ଵ 𝑦ଵ    a  b 𝑥ଵ    𝑦ଵ 
   (a) call mod(23,7)    (b) call mod(16,7)     (c) call mod(9,7)    (d) call mod(2,7) 

   
         a b 𝑥ଵ 𝑦ଵ     a  b 𝑥ଵ 𝑦ଵ       Output: 2 
              (e) After termination            (f) After termination            (g) After termination 
                     of mod(2,7)       of mod(9,7)and mod(16,7)  of mod (23,7) 

PROBLEM 4.5.–   

For the infix expression given below, obtain (i) the equivalent postfix expression, 
(ii) the equivalent prefix expression and (iii) evaluate the equivalent postfix 
expression obtained in (i) using the Algorithm EVAL_POSTFIX() (Algorithm 4.3), 
with A = 1, B = 10, C = 1, D = 2, G = –1 and H = 6. (−(𝐴 + 𝐵 + 𝐶) ↑ 𝐷) ∗ (𝐺 + 𝐻)  

Solution: 

(i) and (ii): We demonstrate the steps to compute the prefix expression and 
postfix expression in parallel in the following table: 
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Expression 

Subexpression 
chosen based on 

rules of hierarchy, 
precedence and 

associativity 

Equivalent 
postfix expression 

Equivalent 
prefix 

expression 

 
 
 

(𝐴 + 𝐵 + 𝐶) 
Note: (𝐴 + 𝐵 + 𝐶) is 
equivalent to the two 

sub expressions 
 
 
 
 
] 

 
 
 

①: AB+C+ 

 
 
 

①:  ++ABC 

 
 

  

②:  AB+C+- 

 

②:  -++ABC 
 

 

 

 

 

 
 

 
 
 

 
 
 

  𝐺𝐻 + 
 

④:+𝐺𝐻 

 
 
 

  

⑤: 
AB+C+-D↑GH+* 

 

⑤: 
*↑-++ABCD+GH 

 

The equivalent postfix and prefix expressions are 𝐴𝐵 + 𝐶 + −𝐷 ↑ 𝐺𝐻 +∗ and ∗↑ − + +𝐴𝐵𝐶𝐷 + 𝐺𝐻, respectively. 

(iii) To evaluate 𝐴𝐵 + 𝐶 + −𝐷 ↑ 𝐺𝐻 +∗ $ for A = 1, B = 10, C = 1, D = 2,  
G = -1 and H = 6, using Algorithm EVAL_POSTFIX(), the steps are listed in the 
following table: 
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x Stack S Action 
A 

 

B 

 

+ 

 

C 

 

+ 

 

     – ## 

 
D 

 ↑ 

 

G 

 

H 

 

+ 

 ∗ 

 

$ 

 

 

 

 

 

 

 

 

 

 

 

 

Push A into S 

 

Push B into S 
 

Evaluate A+B and push result into 
S 

 
Push C into S 
 
 
Evaluate 11+C and push result into 
S 
 

 
Evaluate (unary minus) –12 and 
push result into S 
 
Push D into S 

 

Evaluate (−12) ↑ 𝐷 and push 
result into S 
 
Push G into S 
 
 
Push H into S 
 

 
Evaluate G+H and push result into 
S 
 
Evaluate 144 ∗ 5 and push result 
into S 
 
Output 720 

                                 
## A compiler basically distinguishes between a unary “–” and a binary “−” by generating 
different tokens. Hence, there is no ambiguity regarding the number of operands to be popped 
out from the stack when the operator is “−”. In the case of a unary “−”, a single operand is 
popped out, and in the case of binary “−”, two operands are popped out from the stack. 
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PROBLEM 4.6.– 

Two stacks S1 and S2 are to be stored in a single array A[1:n], with 
PushS1(x) and PushS2(x) handling their respective push operations with 
regard to element x and PopS1(x) and PopS2(x) handling their respective pop 
operations, with the output variable x indicating the element popped out from the 
stack. Let TopS1 and TopS2 be their respective top-of-stack variables. The stacks 
share their storage space in such a way that their respective bottom of stacks are 
positioned in the middle of the array, as shown in Figure P4.1, and the stacks grow 
in the opposite directions. 

 

Figure P4.1. Two stacks are stored in a single array A with  
the bottom of stacks positioned in the middle of the array 

i) For n = 5, if S1 = {a, b} and S2 = {m, n}, how would array A look after all of 
the elements of stacks S1 and S2 were pushed into it invoking PushS1(x) and 
PushS2(x)? 

ii) How would array A look if the following operations were carried out in a 
sequence? What values do the variables w and y represent at the end of the 
operations? 

PopS1(w) 

PopS2(y) 

PushS1(y) 

PushS2(w) 

PopS2(y) 

PopS2(w) 
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iii) For n = 5, if S1 = {a, b, c, d} and S2 = {m}, what are your observations 
regarding the representation of stacks in the array? 

iv) What are the stack full conditions for the two stacks? 

v) Is such a method of storing two stacks in a single array efficient? 

Solution: 

i) Array A would look as shown in Figure P4.2(a) after elements of S1 and S2 
were pushed into the respective stacks stored in array A. 

ii) Figure P4.2(b) illustrates array A after the operations have been performed. 
The values of the variables are w = “m” and y = “b”. 

iii) From Figure P4.2(c), it can be seen that stack S1 reports stack overflow, and 
therefore element “d” could not find a place in stack S1, although array A had one 
memory location free. 

iv) The stack full condition for stack S1 is (TopS1 = 1), and the condition for 
stack S2 is (TopS2 = n). 

v) No. As illustrated in illustrative problem 4.6(ii), there is the possibility of one 
stack signaling overflow when there are free memory locations available in array A 
that could have accommodated the elements concerned. Hence, this method is not 
storage efficient. 

 
(a) Array A after the operations mentioned  
in illustrative problem 4.6(i) are executed. 
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(b) Array A after the specific operations mentioned  

in illustrative problem 4.6(ii) are executed. 

 
(c) Array A after the specific operations mentioned  

in illustrative problem 4.6 (iii) are executed. 

Figure P4.2. Snapshots of array A in illustrative problem 4.6 

PROBLEM 4.7.– 

If the stacks S1 and S2 discussed in illustrative problem 4.6, with their respective 
push and pop procedures, were stored with their respective bottom of stacks positioned 
on the left and right extreme of the array, respectively, and with the stacks growing 
toward the middle of the array, as shown in Figure P4.3, redo questions (i)–(v)  
of illustrative problem 4.6 over the new configuration of stacks in array A(1:n). 

Solution: 

i) See Figure P4.4(a). 

ii) See Figure P4.4(b). The values of the variables are w = b and y = m. 

iii) See Figure P4.4(c). Unlike the configuration shown in Figure P4.2(c), no 
stack over flow is reported by S1 since element “d” finds a place in the stack making 
use of the memory space available. 
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iv) The stack overflow conditions are (TopS1+1) = TopS2 for stacks S1 and S2. 

v) Yes. It is a space-efficient method when compared to the one discussed in 
illustrative problem 4.6, since it is possible to avoid stack full conditions of the kind 
illustrated in illustrative problem 4.6(iii) and elements can be pushed into the stacks 
as long as the memory locations are free in array A. 

 

Figure P4.3. Two stacks stored in a single array A with  
their bottom of stacks positioned at the extreme ends of the array 

 
(a) Array A after the operations mentioned  
in illustrative problem 4.7(i) are executed. 

 
(b) Array A after the specific operations mentioned  

in illustrative problem 4.7(ii) are executed. 
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(c) Array A after the specific operations mentioned  

in illustrative problem 4.7(iii) are executed. 

Figure P4.4. Snapshots of array A in illustrative problem 4.7 

PROBLEM 4.8.– 

You are allowed to operate on a stack WORK and a temporary stack TEMP (if 
needed) supporting their ADT operations of PUSH (S,X), POP (S, X) and 
EMPTYSTACK (S) only, where X represents an element/variable to be pushed in or 
popped out of the stack and S represents a stack. You are also permitted to use one 
variable if needed to carry out the operations. 

i) Given n distinct random numbers that are to be pushed into WORK, how can 
you find the minimum element that was pushed into it? You are permitted to use a 
lone variable. 

ii) Given n distinct random numbers that are to be pushed into WORK, how can 
you find the maximum element that was pushed into it, all the while ensuring that 
the elements stored in WORK are in their descending order with the maximum 
element beginning at the bottom of stack? You are permitted to use a lone variable 
and a temporary stack TEMP. 

iii) Given an array A[1: n] of distinct random numbers how can you obtain the 
sorted list in the array,  making use of stacks alone? 

Solution: 

i) Let x1, x2, … xn be the n distinct random numbers to be pushed into WORK, 
and let MIN be the variable that will record the minimum number. Set MIN = x1 and 
execute PUSH (WORK, x1). Next, consider x2; if x2 is greater than MIN, simply 
execute PUSH (WORK, x2). On the other hand, if x2 is less than MIN, set MIN = x2 
and PUSH (WORK x2). 
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In general, if the current element xi to be pushed into WORK is less than MIN, 
set MIN = xi and PUSH (WORK, xi); otherwise, simply execute PUSH (WORK, xi). 
After all the elements have been pushed into WORK, MIN records the minimum 
element in the input list. 

ii) Let x1, x2, …xn be the n distinct random numbers to be pushed into WORK, 
and let MAX be the variable that will record the maximum element. Set MAX = x1 
and execute PUSH (WORK, x1). Now consider x2; if x2 is less than MAX, PUSH 
(WORK, x2) and move on to the next element in the input list. If x2 is larger than 
MAX, then set MAX = x2, POP (WORK, X) where X = x1, PUSH (TEMP, X), 
PUSH (WORK, x2), POP (TEMP, X), PUSH (WORK, X). The set of operations 
puts the elements in WORK in descending order, making use of the stack TEMP 
while preserving the maximum element in MAX. 

In general, if the current input element xi is greater than MAX, then set MAX = 
xi, and repeatedly execute POP (WORK, X) and PUSH (TEMP, X) for every 
element X in WORK until EMPTYSTACK (WORK) is true. Now do PUSH 
(WORK, xi) and repeatedly POP (TEMP, X), PUSH (WORK, X) until 
EMPTYSTACK (TEMP) is true. TEMP serves to hold the elements in WORK so 
that the elements in WORK are put in descending order after the current maximum 
element has been input into WORK as the bottom most element in WORK. 

If the current input element xi is less than MAX but greater than the top element 
of WORK, then pop out elements from WORK that are less than xi, push them into 
TEMP to hold them, PUSH (xi, WORK) and pop out all elements from TEMP until 
EMPTYSTACK (TEMP) is true and push them back into WORK. 

Thus, the elements in WORK arrange themselves in descending order with the 
help of stack TEMP, while MAX reports the maximum element in the stack WORK. 

iii) This only requires a minor refinement of the process discussed in illustrative 
problem 4.8(ii) to obtain the sorted list of elements in WORK. After the sorted list 
of elements is available in WORK, pop out the elements in WORK and store them 
in array A. Storing it from the first memory location will yield an ascending order of 
array elements, and storing it from the last memory location will yield a descending 
order of array elements in A[1:n]. 

Review questions 

1) Which among the following properties does not hold true in a stack? 

(i) A stack supports the principle of Last In First Out. 
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(ii) A push operation decrements the top pointer. 

(iii) A pop operation deletes an item from the stack. 

(iv) A linear stack has limited capacity. 

a) (i)  b) (ii)  c) (iii)  d) (iv) 

2) A linear stack S is implemented using an array as shown below. The TOP 
pointer that points to the top most element of the stack is set as shown. 

X Y A Z F 

    [1]    [2]    [3]     [4]     [5] 

                           Bottom of stack                             TOP 

Execution of the operation PUSH(S, “W”) would result in 

a) TOP = 4 b) TOP = 5 c) Stack full condition d) TOP = 3 

3) For the linear stack shown in review question 2, execution of the operations 
POP (S), POP(S), PUSH(S, “U”), and POP(S) in a sequential fashion would leave 
the element ––––––––––on top of the stack with the TOP pointer set to the value ––
–––-. 

a) Y, 2 b) U, 3  c) U, 1   d) U, 4 

4) The equivalent post fix expression for the infix expression a + b + c is 

a) a b c + +     b) a b + c +     c) a b + + c       d) a + + b c 

5) The equivalent postfix expression for the infix expression a↑b ↑c ↑d is 

a) ab↑cd↑↑ b) abc↑↑↑d c) ab↑c↑d↑  d) abcd↑↑↑ 

6) How are insert operations carried out in a stack? 

7) What are the demerits of a linear stack? 

8) If a stack S[1:n] was to be implemented with the bottom of the stack at S[n], 
write a procedure to undertake the push operation on S. 

9) For stack S[1:n] introduced in review question 8, write a procedure to 
undertake the pop operation on S. 

10) For the following logical expression 

(a and b and c) or d or e or (not h) 
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i) obtain the equivalent postfix expression; 

ii) evaluate the postfix expression for a = true, b = false, c = true, d = true,   
e = true, h = false. 

11) Multiple stacks: A single one-dimensional array A[1:n] can accommodate 
multiple stacks. If m stacks are to be accommodated in the array, then the array can be 
equally segmented to hold the m stacks sequentially, each with its bottom of stack and 
top of stack variables. The size of each stack could then approximately be m / n . 

Design a multiple stack scheme over an array A[1:10] with three stacks S1, S2 
and S3. Assume that S1 = { a, h, y, m}, S2 = { b, j, l, s, z} and S3 = { k, c}. Attempt 
to store the stacks in array A. What are their individual bottom of stack and top of 
stack variables? What are the stack full and stack empty conditions for each of the 
stacks? Demonstrate push and pop operations on these stacks and show how the top 
of stack variables are manipulated to accommodate these operations. 

Programming assignments 

1) Implement a stack S of n elements using arrays. Write functions to perform 
PUSH and POP operations. Implement queries, using the push and pop functions to 

i) Retrieve the mth element of the stack S from the top (m < n), leaving the 
stack without its top m-1 elements. 

ii) Retain only the elements in the odd position of the stack and pop out all 
even positioned elements. For example, 

                                 Stack S                    Output stack S 

Elements: 

Position: 

2) Write a recursive program to obtain the nth order Fibonacci sequence number. 
Include appropriate input/output statements to track the variables participating in 
recursion. Do you observe the “invisible” stack at work? Record your observations. 

3) Implement a program to evaluate any given postfix expression. Test your 
program for the evaluation of the equivalent postfix form of the expression  (−(𝐴 ∗ 𝐵)/𝐷) ↑ 𝐶 + 𝐸 − 𝐹 ∗ 𝐻 ∗ 𝐼 for A = 1, B = 2, D = 3, C = 14, E = 110, F = 220, 
H = 16.78, I = 364.621. 

4) Write a program that inputs a list of numbers already stored in a stack STACK 
and sorts them, making use of a temporary stack TEMP. The sorted list of numbers 
should be made available in STACK. 
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6) S1 and S2 are two sorted stacks comprising n and m integers sorted in 
descending order, respectively, with their top elements pointing to the smallest in 
their lists. Create a stack MERGE that merges the elements in stacks S1 and S2 such 
that at the end of the merge, all of the elements in S1 and S2 are available in 
MERGE in descending order, that is, with the largest element as its top element. 
Note that the number of elements in stack MERGE would be (n + m). 



5 

Queues 

In this chapter, we discuss the queue data structure, its operations and its 
variants, namely, circular queues, priority queues and deques. The application of the 
data structure is demonstrated on the problem of job scheduling in a time-sharing 
system environment. 

5.1. Introduction 

A queue is a linear list in which all insertions are made at one end of the list 
known as the rear or tail of the queue, and all deletions are made at the other end 
known as the front or head of the queue. An insertion operation is also referred to 
as enqueuing a queue, and a deletion operation is referred to as dequeuing a queue. 

Figure 5.1 illustrates a queue and its functionality. Here, Q is a queue of three 
elements a, b, and c (Figure 5.1(a)). When an element d is to join the queue, it is 
inserted at the rear end of the queue (Figure 5.1(b)), and when an element is to be 
deleted, the element at the front end of the queue, namely, a, is deleted automatically 
(Figure 5.1(c)). Thus, a queue data structure obeys the principle of First In First 
Out (FIFO) or First Come First Served (FCFS). 

Many examples of queues occur in everyday life. Figure 5.2(a) illustrates a 
queue of customers waiting to be served by a clerk at the booking counter, and 
Figure 5.2(b) illustrates a trail of components moving down an assembly line to be 
processed by a robot at the end of the line. The FIFO principle of insertion at the 
rear end of the queue when a new client arrives or when a new component is added, 
and deletion at the front end of the queue when the service of the client or 
processing of the component is complete, is evident. 
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Figure 5.1. A queue and its functionality 

5.2. Operations on queues 

The queue data structure supports two operations, namely, 

i) insertion or addition of elements to a queue; 

ii) deletion or removal of elements from a queue. 

Before we proceed to discuss these operations, it is essential to know how 
queues are implemented. 

5.2.1. Queue implementation 

As discussed for stacks, a common method of implementing a queue data 
structure is to use another sequential data structure, namely, arrays. However, 
queues have also been implemented using a linked data structure (Chapter 7). In this 
chapter, we confine our discussion to the implementation of queues using arrays. 

Figure 5.3 illustrates an array-based implementation of a queue. A queue Q of 
four elements R, S, V and G is represented using an array Q [1:7]. Note how the 
variables FRONT and REAR keep track of the front and rear ends of the queue to 
facilitate execution of insertion and deletion operations, respectively. 

However, just as in the stack data structure, the array implementation limits the 
capacity of the queue. In other words, the number of elements in the queue cannot 
exceed the maximum dimension of the one-dimensional array. Thus, a queue that is 
accommodated in an array Q[1:n] cannot hold more than n elements. Hence, every 
insertion of an element into the queue has to necessarily test for a QUEUE-FULL 
condition before executing the insertion operation. Again, each deletion has to 
ensure that it is not attempted on a queue that is already empty calling for the need 
to test for a QUEUE-EMPTY condition before executing the deletion operation. 
However, as said earlier with regard to stacks, the linked representation of queues  
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dispenses with the need for QUEUE-FULL and QUEUE-EMPTY testing conditions 
and hence proves to be elegant and more efficient. 

 

Figure 5.2. Common examples of queues 

 

Figure 5.3. Array implementation of a queue 

5.2.2. Implementation of insert and delete operations on a queue 

Let Q[1:n] be an array implementation of a queue. Let FRONT and REAR be 
variables recording the front and rear positions of the queue. Observe that the 
FRONT variable points to a position that is physically one less than the actual front 
of the queue. ITEM is the element to be inserted into the queue. n is the maximum 
capacity of the queue. Both FRONT and REAR are initialized to 0. 

Algorithm 5.1 illustrates the insert operation on a queue. 

rearfront 

 
(a)    Queue before a booking  
counter.

front rear 

(b)     Queue of  components in 
an assembly line. 
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Algorithm 5.1. Implementation of an insert operation on a queue 

Algorithm 5.1 shows that the addition of every new element into the queue 
increments the REAR variable. However, before insertion, the condition of whether 
the queue is full (QUEUE_FULL) is checked. This ensures that there is no overflow 
of elements in a queue. 

The delete operation is illustrated in Algorithm 5.2. Although a deletion 
operation automatically deletes the front element of the queue, the variable ITEM is 
used as an output variable to store and perhaps display the value of the element 
removed. 

 

Algorithm 5.2. Implementation of a delete operation on a queue 

In Algorithm 5.2, observe that to perform a delete operation, the participation of 
both the FRONT and REAR variables is essential. Before deletion, the condition 
(FRONT = REAR) checks for the emptiness of the queue. If the queue is non-
empty, FRONT is incremented by 1 to point to the element to be deleted, and 
subsequently, the element is removed through ITEM. Note how this leaves the 
FRONT variable remembering the position which is one less than the actual front of 
the queue. This helps in the usage of (FRONT = REAR) as a common condition for 
testing whether a queue is empty, which occurs either after its initialization or after a 
sequence of insert and delete operations when the queue has just emptied itself. 

 

procedure DELETEQ (Q, FRONT, REAR, ITEM ) 
    if (FRONT =REAR) then QUEUE_EMPTY; 

        FRONT = FRONT +1; 
    ITEM = Q[FRONT]; 
end DELETEQ. 

procedure INSERTQ (Q, n, ITEM, REAR) 

/* insert item ITEM into Q with capacity n */ 
  if (REAR = n) then QUEUE_FULL; 

  REAR = REAR + 1;      /* Increment REAR*/ 
  Q[REAR] = ITEM;      /* Insert ITEM as the rear 
                        element*/ 
end INSERTQ 
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Soon after the queue Q has been initialized, FRONT = REAR = 0. Hence, the 
condition (FRONT = REAR) ensures that the queue is empty. Again, after a 
sequence of operations when Q has become partially or completely full and delete 
operations are repeatedly invoked to empty the queue, it may be observed how 
FRONT increments itself in steps of one with every deletion and begins moving 
toward REAR. During the final deletion, which renders the queue empty, FRONT 
coincides with REAR satisfying the condition (FRONT = REAR = k), k ≠ 0. 
Here, k is the position of the last element that was deleted.  

Hence, we observe that in an array implementation of queues, with every 
insertion, REAR moves away from FRONT, and with every deletion, FRONT moves 
toward REAR. When the queue is empty, FRONT = REAR is satisfied, and when 
full, REAR = n (the maximum capacity of the queue) is satisfied.  

Queues whose insert/deletion operations follow the procedures implemented in 
Algorithms 5.1 and 5.2 are known as linear queues to distinguish them from 
circular queues, which will be discussed in section 5.3. 

Example 5.1 demonstrates the operation of a linear queue. The time complexity 
to perform a single insert/deletion operation in a linear queue is O(1). 

EXAMPLE 5.1.– 

Let BIRDS [1:3] be a linear queue data structure. The working of Algorithms 5.1 
and 5.2 demonstrated on the insertions and deletions performed on BIRDS is 
illustrated in Table 5.1. 

5.2.3. Limitations of linear queues 

Example 5.1 illustrates the implementation of insert and delete operations on a 
linear queue. In operation 4, when “SWAN” was inserted into BIRDS [1:3], the 
insertion operation was unsuccessful since the QUEUE_FULL condition was 
invoked. Additionally, one observes the queue BIRDS to be physically full, 
justifying the condition. However, after operations 5 and 6 were performed, when 
two elements, namely, DOVE and PEACOCK, were deleted, despite the space they 
had created to accommodate two more insertions, the insertion of “SWAN” 
attempted in operation 7 was rejected once again due to the invocation of the 
QUEUE_FULL condition. This is a gross limitation of a linear queue since the 
QUEUE_FULL condition does not check whether Q is “physically” full. It merely  
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relies on the condition (REAR = n), which may turn out to be true even for a queue 
that is only partially full, as shown in operation 7 of example 5.1. 

When one contrasts this implementation with the working of a queue that one 
sees around in everyday life, it is easy to see that with every deletion (after 
completion of service at one end of the queue), the remaining elements move 
forward toward the head of the queue, leaving no gaps in between. This obviously 
makes room for many insertions to be accommodated at the tail end of the queue 
depending on the space available. 

However, attempting to implement this strategy during every deletion of an 
element is worthless since data movement is always computationally expensive and 
may render the process of queue maintenance highly inefficient. 

In short, when a QUEUE_FULL condition is invoked, it does not necessarily 
imply that the queue is “physically” full. This leads to the limitation of rejecting 
insertions despite the space available to accommodate them. The rectification of this 
limitation leads to what are known as circular queues. 

5.3. Circular queues 

In this section, we discuss the implementation and operations on circular queues, 
which serve to rectify the limitation of linear queues. 

As the name indicates, a circular queue is not linear in structure but instead 
circular. In other words, the FRONT and REAR variables, which displayed a linear 
(left to right) movement over a queue, display a circular movement (clockwise) over 
the queue data structure. 

5.3.1. Operations on a circular queue 

Let CIRC_Q be a circular queue with a capacity of three elements, as shown  
in Figure 5.4(a). The queue is obviously full, with FRONT pointing to the element  
at the head of the queue and REAR pointing to the element at the tail end of the 
queue. 

Let us now perform two deletions and then attempt insertions of“d” and “e” into 
the queue. 

Observe the circular movement of the FRONT and REAR variables. After two 
deletions, FRONT moves toward REAR and points to “c” as the current front 
element of CIRC_Q (Figure 5.4(b)). When “d” is inserted, unlike linear queues, 
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REAR curls back in a clockwise fashion to accommodate “d” in the vacant space 
available. A similar procedure follows for the insertion of “e” as well (Figure 
5.4(c)). 
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Table 5.1. Insert/delete operations on the queue BIRDS [1:3] 

Figure 5.5 emphasizes this circular movement of FRONT and REAR variables 
over a general circular queue during a sequence of insertions/deletions. 

A circular queue, when implemented using arrays, is non-different from linear 
queues in their physical storage. In other words, a linear queue is conceptually 
viewed to have a circular form to understand the clockwise movement of FRONT 
and REAR variables, as shown in Figure 5.6. 

 

Figure 5.4. Working of a circular queue 

 a     b      c  

FRONT REAR 

(a) Initial circular queue 

c

FRONT

(b) Circular queue  
after two deletions. 

d          c 

REAR FRONT 

Insert ‘d’

REAR de     c 

REAR FRONT 

Insert ‘e’

(c) Circular queue after 
insertions of d, e 

CIRC_Q: 

d e 
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Figure 5.5. Circular movement of FRONT and REAR variables in a circular queue 

5.3.2. Implementation of insertion and deletion operations in circular 
queue 

Algorithms 5.3 and 5.4 illustrate the implementation of insert and delete 
operations in a circular queue, respectively. The circular movement of FRONT and 
REAR variables is implemented using the mod function, which is cyclical in nature. 
Additionally, the array data structure CIRC_Q to implement the queue is declared to 
be CIRC_Q [0: n-1] to facilitate the circular operation of FRONT and REAR 
variables. As in linear queues, FRONT points to a position that is one less than the 
actual front of the circular queue. Both FRONT and REAR are initialized to 0. Note 

a1 …a2… ak

n (capacity) 

FRONT REAR

(a) A circular queue at some instance 

ak+1 ak+2 ak+l… a1 …a2 ak

(b) After insertion of ak+1, ak+2, … ak+l (k+ l<n)

REAR FRONT 

 as+1 ak+l … … 

FRONT REAR

(c) After s deletions ( s > k) 
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that (n – 1) is the actual physical capacity of the queue despite the array declaration 
as [0: n – 1]. 

 

Figure 5.6. Physical and conceptual  
view of a circular queue 

 

Algorithm 5.3. Implementation of  
insert operation in a circular queue 

 

Algorithm 5.4. Implementation of a delete operation in a circular queue 

The time complexity of Algorithms 5.3 and 5.4 is O(1). The working of the 
algorithms is demonstrated on an illustration given in example 5.2. 

   a      b      c       d    ... 

FRONT REAR 

(a) Physical view 

a
b c

d 
FRONT REAR 

(b) Conceptual view 

procedure DELETE_CIRCQ(CIRC_Q, FRONT,REAR, n, ITEM) 
  If (FRONT = REAR) then CIRCQ_EMPTY; 
                     /* CIRC_Q is physically empty*/ 
  FRONT = (FRONT+1) mod n; 
  ITEM = CIRC_Q [FRONT]; 
end DELETE_CIRCQ 

procedure INSERT_CIRCQ(CIRC_Q, FRONT,REAR, n, ITEM) 
  REAR=(REAR + 1) mod n; 
  If (FRONT = REAR) then CIRCQ_FULL; /* Here CIRCQ_FULL 
                tests for the queue full condition 
                and if so, retracts REAR to its 
                previous value*/ 
  CIRC_Q [REAR]= ITEM; 
end INSERT_CIRCQ. 
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EXAMPLE 5.2.– 

Let COLOURS [0:3] be a circular queue data structure. Note that the actual 
physical capacity of the queue is only three elements despite the declaration of the 
array as [0:3]. The operations illustrated in Table 5.2 demonstrate the working of 
Algorithms 5.3 and 5.4. 
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Table 5.2. Insert and delete operations  
on the circular queue COLOURS [0:3] 

5.4. Other types of queues 

5.4.1. Priority queues 

A priority queue is a queue in which insertion or deletion of items from any 
position in the queue are done based on some property (such as priority of task) 

For example, let P be a priority queue with three elements a, b and c whose 
priority factors are 2, 1 and 1, respectively. Here, the larger the number is, the higher 
the priority accorded to that element (Figure 5.7(a)). When a new element d with 
higher priority, namely, 4, is inserted, d joins at the head of the queue superseding 
the remaining elements (Figure 5.7(b)). When elements in the queue have the same 
priority, then the priority queue behaves like an ordinary queue following the 
principle of FIFO among such elements. 

The working of a priority queue may be likened to a situation when a file of 
patients who have fixed an appointment with the doctor wait for their turn in a 
queue. All patients are accorded equal priority and follow an FCFS scheme by  
the date and time of their appointments. However, when a patient with bleeding 
injuries is brought in, they are accorded high priority and are immediately moved to 
the head of the queue for immediate attention by the doctor. This is priority queue at 
work! 
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A common method of implementing a priority queue is to open as many queues 
as there are priority factors. A low priority queue will be operated for deletion only 
when all its high priority predecessors are empty. In other words, deletion of an 
element in a priority queue 𝑞௜ with priority 𝑝௜ is possible only when those queues 𝑞௝ 
with priorities 𝑝௝  ൫𝑝௝ >  𝑝௜ ൯ are empty. However, with regard to insertions, an 
element 𝑒௞ with priority 𝑝௟ joins the respective queue 𝑞௟ obeying the scheme of 
FIFO with regard to the queue 𝑞௟ alone. 

 

Figure 5.7. A priority queue 

Another method of implementation could be to sort the elements in the queue 
according to the descending order of priorities every time an insertion takes place. 
The top priority element at the head of the queue is the element to be deleted. 

The choice of implementation depends on a time-space trade-off-based decision 
made by the user. While the first method of implementation of a priority queue 
using a cluster of queues consumes space, the time complexity of an insertion is 
only O(1). In the case of deletion of an element in a specific queue with a specific 
priority, it calls for the checking of all other queues preceding it in priority to be 
empty. 

On the other hand, the second method consumes less space since it handles just a 
single queue. However, the insertion of every element calls for sorting all the queue 
elements in descending order, the most efficient of which reports a time complexity 
of O(n.logn). With regard to deletion, the element at the head of the queue is 
automatically deleted with a time complexity of O(1). 

 

 

 

a (2) b (1) c (1) 

FRONT REAR 

a (2) b (1) c (1) 

FRONT REAR

d (4) a (2) b (1) c (1) 

FRONT REAR 

(a) Initial priority queue (b) Insert d (4) (c) Delete 

x (y) : x is the element with priority y 
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The two methods of implementation of a priority queue are illustrated in 
example 5.3. 

EXAMPLE 5.3.– 

Let JOB be a queue of jobs to be undertaken at a factory shop floor for service 
by a machine. Let high (2), medium (1) and low (0) be the priorities accorded to 
jobs. Let Ji(k) indicate a job Ji to be undertaken with priority k. The implementations 
of a priority queue to keep track of the jobs, using the two methods of 
implementation discussed above, are illustrated for a sample set of job arrivals 
(insertions) and job service completions (deletion). 

Opening JOB queue:  J1(1)    J2 (1)     J3 (0) 

Operations on the JOB queue in chronological order: 

1) J4 (2) arrives; 

2) J5 (2) arrives; 

3) execute job; 

4) execute job; 

5) execute job. 

The front and rear positions of the queues have been denoted using a solid 
 

arrow and a dashed arrow  , respectively. 

A variant of the implementation of a priority queue using multiple queues is to 
make use of a single two-dimensional array to represent the list of queues and their 
contents. The number of rows in the array is equal to the number of priorities 
accorded to the data elements, and the columns are equal to the maximum number of 
elements that can be accommodated in the queues corresponding to the priority 
number. Thus, if PRIO_QUE [1:m, 1:n] is an array representing a priority queue, 
then the data items joining the queue may have priority numbers ranging from 1 to 
m and corresponding to each queue representing a priority, and a maximum of n 
elements can be accommodated. Illustrative problem 5.4 demonstrates the 
implementation of a priority queue as a two-dimensional array. 
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5.4.2. Deques 

A deque (double-ended queue) is a linear list in which all insertions and 
deletions are made at the end of the list. A deque is pronounced as “deck” or “de 
queue”. 

A deque is therefore more general than a stack or queue and is a sort of FLIFLO 
(First In Last In Or First Out Last Out). Thus, while one speaks of the top or 
bottom of a stack, or front or rear of a queue, one refers to the right end or left end 
of a deque. The fact that deque is a generalization of a stack or queue is illustrated in 
Figure 5.8. 

A deque has two variants, namely, input restricted deque and output restricted 
deque. An input restricted deque is one where insertions are allowed at one end only 
while deletions are allowed at both ends. On the other hand, an output restricted 
deque allows insertions at both ends of the deque but permits deletions only at one 
end. 

A deque is commonly implemented as a circular array with two variables LEFT 
and RIGHT taking care of the active ends of the deque. Example 5.4 illustrates the 
working of a deque with insertions and deletions permitted at both ends. 

 

Figure 5.8. A stack, queue and a deque – a comparison 
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EXAMPLE 5.4.– 

Let DEQ[1:6] be a deque implemented as a circular array. The contents of DEQ 
and those of LEFT and RIGHT are given below: 

DEQ:     LEFT: 3           RIGHT: 5 

        [1]      [2]     [3]     [4]      [5]     [6] 

                             R        T       S 

The following operations demonstrate the working of the deque DEQ, which 
supports insertions and deletions at both ends. 

i) Insert X at the left end and Y at the right end 

      DEQ:     LEFT:  2            RIGHT: 6 

        [1]      [2]     [3]     [4]      [5]     [6] 

                   X       R       T        S       Y 

ii) Delete twice from the right end 

      DEQ:     LEFT:  2            RIGHT: 4 

       [1]      [2]     [3]     [4]      [5]     [6] 

                  X       R       T 

iii) Insert G, Q and M at the left end 

        DEQ:     LEFT:  5            RIGHT: 4 

        [1]      [2]     [3]     [4]      [5]     [6] 

        G        X       R       T        M      Q 

iv) Insert J at the right end 

Here, no insertion is possible since the deque is full. Observe the condition  
LEFT = RIGHT+1 when the deque is full. 
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v) Delete twice from the left end 

        DEQ:     LEFT:  1            RIGHT: 4 

        [1]     [2]     [3]      [4]     [5]    [6] 

        G       X       R        T 

It is easy to observe that for insertions at the left end, LEFT is decremented in 
steps of 1 and for insertions at the right end RIGHT is incremented in steps of 1. For 
deletions at the left end, LEFT is incremented in steps of 1, and for deletions at the 
right end, RIGHT is decremented in steps of 1. Again, before performing a deletion 
if LEFT = RIGHT, then it implies that there is only one element and in such a case 
after deletion set LEFT = RIGHT = NIL to indicate that the deque is empty. 

LEFT and RIGHT undertake anticlockwise and clockwise movements across the 
circular array during insertions and deletions. 

5.5. Applications 

In this section, we discuss the application of a linear queue and a priority queue 
in the scheduling of jobs by a processor in a time-sharing system. 

5.5.1. Application of a linear queue 

Figure 5.9 shows a naive diagram of a time-sharing system. A CPU (processor) 
endowed with memory resources is to be shared by n number of computer users. 
The sharing of the processor and memory resources is done by allotting a definite 
time slice of the processor’s attention to the users and in a round robin fashion. In a 
system such as this, the users are unaware of the presence of other users and are led 
to believe that their job receives the undivided attention of the CPU. However, to 
keep track of the jobs initiated by the users, the processor relies on a queue data 
structure recording the active user-ids. Example 5.5 demonstrates the application of 
a queue data structure for this job scheduling problem. 

EXAMPLE 5.5.– 

The following is a table of three users A, B and C with their job requests Ji(k), 
where i is the job number and k is the time required to execute the job. 
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User Job requests and the execution time in µs 
A 
B 
C 

J1 (4), J2 (3) 
J3 (2), J4(1), J5 (1) 
J6 (6) 

Thus, J1 (4), a job request initiated by A needs 4 µs for its execution before the 
user initiates the next request of J2(3). Throughout the simulation, we assume a 
uniform user delay period of 5 µs between any two sequential job requests initiated 
by a user. Thus, B initiates J4(1), 5 µs after the completion of J3 (2) and so on. 
Additionally, to simplify the simulation, we assume that the CPU gives whole 
attention to the completion of a job request before moving to the next job request. In 
other words, all the job requests complete their execution well within the time slice 
allotted to them. 

To initiate the simulation, we assume that A logged in at time 0, B at time 1 and 
C at time 2. Figure 5.10 shows a graphical illustration of the simulation. Note that at 
time 2 while A’s J1 (4) is being executed, B is in the wait mode with J3 (2) and C has 
just logged in. The objective is to ensure the CPU’s attention to all the jobs logged 
in according to the principle of FIFO. 

To tackle such a complex scenario, a queue data structure is developed. As soon 
as a job request is made by a user, the user id is inserted into a queue. A job that is to 
be processed next would be the one at the head of the queue. A job until its 
execution is complete remains at the head of the queue. Once the request has been 
processed and execution is complete, the user id is deleted from the queue. 

A snapshot of the queue data structure at times 5, 10 and 14 is shown in Figure 
5.11. It can be observed that during the time period 16-21, the CPU is left idle. 

5.5.2. Application of priority queues 

Assume a time-sharing system in which job requests by users are of different 
categories. For example, some requests may be real time, and the others online and 
the last may be batch processing requests. It is known that real-time job requests 
carry the highest priority, followed by online processing and batch processing in that 
order. In such a situation, the job scheduler needs to maintain a priority queue to 
execute the job requests based on their priorities. If the priority queue were to be 
implemented using a cluster of queues of varying priorities, the scheduler had to 
maintain one queue for real-time jobs (R), one for online processing jobs (O) and the 
third for batch processing jobs (B). The CPU proceeds to execute a job request in O 
only when R is empty. In other words, all real-time jobs awaiting execution in R 
have to be completed and cleared before execution of a job request from O. In the 



Queues     121 

case of queue B, before executing a job in queue B, queues R and O should be 
empty. Example 5.6 illustrates the application of a priority queue in a time-sharing 
system with priority-based job requests. 

 

Figure 5.9. A naive diagram  
of a time-sharing system 

 

Figure 5.10. Time-sharing system  
simulation – non-priority-based job requests 

CENTRAL 
PROCESSOR 

TERMINALS 

USERS 

.
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Figure 5.11. Snapshot of the queue at time 5, 10 and 14 

EXAMPLE 5.6.– 

The following is a table of three users A, B and C with their job requests. Ri (k) 
indicates a real-time job Ri whose execution time is k µs. Similarly, Bi(k) and Oi(k) 
indicate batch processing and online processing jobs, respectively. 

User Job requests and their execution time in µs 

A 

B 

C 

R1 (4)    B1 (1) 

O1 (2)     O2 (3)     B2 (3) 

R2 (1)    B3 (2)     O3 (3) 

As before, we assume a user delay of 5 µs between any two sequential job 
requests by the user and assume that the CPU gives undivided attention to a job 
request until its completion. Additionally, A, B and C login at times 0, 1 and 2, 
respectively. 

Figure 5.12 illustrates the simulation of the job scheduler for priority-based  
job requests. Figure 5.13 shows a snapshot of the priority queue at times 4, 8 and  
 
 
 
 

(J6 (6))(J3 (2)) Time 5 

Time 10 

Time 14 

B C

(J2 (3))(J6 (6)) 
C A

(J4 (1))(J2 (3)) 
A B

Job Queue 
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12. Observe that the processor while scheduling jobs and executing them falls into 
idle modes during time periods 7–9 and 15–17. 

 

Figure 5.12. Simulation of the time-sharing  
system for priority-based jobs 

 

Figure 5.13. Snapshots of the  
priority queue at times 4, 8 and 12 
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At time 12
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B 

B: Batch Processing Queue R: Real Time Queue O: On-line Priority Queue
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Summary 

– A queue data structure is a linear list in which all insertions are made at the rear end 
of the list and deletions are made at the front end of the list. 

– A queue follows the principle of FIFO or FCFS and is commonly implemented using 
arrays. It therefore calls for the testing of QUEUE_FULL/QUEUE_EMPTY conditions 
during insert/delete operations, respectively. 

– A linear queue suffers from the drawback of QUEUE_FULL condition invocation 
even when the queue in not physically full to its capacity. This limitation is over come to an 
extent in a circular queue. 

– Priority queue is a queue structure in which elements are inserted or deleted from a 
queue based on some property known as priority. 

– A deque is a double ended queue with insertions and deletions done at either ends or 
may be appropriately restricted at one of the two ends. 

– Job scheduling in time-sharing system environments is an application of queues and 
priority queues. 

ADT for queues 
Data objects: 

A finite set of elements of the same type. 

Operations: 

– Create an empty queue  and initialize  front and
rear   variables of  the queue 

CREATE (QUEUE, FRONT, REAR) 

– Check if  queue  QUEUE is empty 

      CHK_QUEUE_EMPTY (QUEUE) (Boolean function) 

– Check if queue QUEUE  is full 

   CHK_QUEUE_FULL (QUEUE) (Boolean function) 

– Insert ITEM into  rear of queue QUEUE 

       ENQUEUE (QUEUE, ITEM) 

– Delete element from the front of queue  QUEUE  and
output the element deleted  in ITEM 

   DEQUEUE (QUEUE, ITEM) 
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5.6. Illustrative problems 

PROBLEM 5.1.– 

Let INITIALISE (Q) be an operation that initializes a linear queue Q to be 
empty. Let ENQUEUE (Q, ITEM) insert an ITEM into Q and DEQUEUE (Q, 
ITEM) delete an element from Q through ITEM. EMPTY_QUEUE (Q) is a Boolean 
function that is true if Q is empty and false otherwise, and PRINT (ITEM) is a 
function that displays the value of ITEM. 

What is the output of the following pseudo-code? 

1. X = Y = Z = 0; 
2. INITIALISE (Q) 
3. ENQUEUE (Q,10) 
4. ENQUEUE (Q, 70) 
5. ENQUEUE (Q, 88) 
6. DEQUEUE (Q, X) 
7. DEQUEUE (Q, Z) 
8. ENQUEUE (Q, X) 
9. ENQUEUE (Q, Y+18) 
10. DEQUEUE (Q, X) 
11. DEQUEUE (Q, Y) 
12. while not EMPTY_QUEUE (Q) do 
13.       DEQUEUE (Q, X) 
14.       PRINT (X) 
15. end 

Solution:  

The contents of the queue Q and the values of the variables X, Y, Z are tabulated 
as follows: 

Steps Queue Q 
Variables 

X               Y               Z 

1 - 2 
 

0               0                0 
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3 
 

0               0                0 

4 
 

0               0                0 

5 
 

0               0                0 

6 
 

10               0                0 

7 
 

10               0               70 

8 
 

10               0               70 

9 
 

10               0               70 

10 
 

88               0               70 

11 
 

88              10               70 

12–14 
 

18              10               70 

The output of the program code is:  18 

18

1810

181088

1088

88

8870 

8870 10 

70 10 

10 
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PROBLEM 5.2.– 

Given Q’ to be a circular queue implemented as an array Q’[0:4] and using 
procedures declared in illustrative problem 5.1, but suitable for implementation on 
Q’, what is the output of the following code? 

[NOTE.– The procedures ENQUEUE (Q’, X) and DEQUEUE (Q’, X) may be 
assumed to be implementation of Algorithms 5.3 and 5.4.] 

1. INITIALISE (Q’) 
2. X: = 56 
3. Y: = 77 
4. ENQUEUE (Q’, X) 
5. ENQUEUE (Q’, 50) 
6. ENQUEUE (Q’, Y) 
7. DEQUEUE (Q’, Y) 
8. ENQUEUE (Q’, 22) 
9. ENQUEUE (Q’, X) 
10. ENQUEUE (Q’, Y) 
11. Z = X – Y 
12. if (Z = 0) 
13. then { while not EMPTY_QUEUE(Q’) 
14.         DEQUEUE (Q’, X) 
15.         PRINT (X) 
16.        end } 
17. else PRINT (“Process Complete”); 

Solution: 

The contents of the circular queue Q’[0:4] and the values of the variables X, Y, Z 
are illustrated below. 

Steps Queue Q’ Variables 
X             Y              Z 

1 –               –            – 

2,3 56                77           – 
[0] [1] [2] [3] [4] 

[0] [1] [2] [3] [4] 
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4 56                77           – 

5 56                77           – 

6 56                77           – 

7 56                56           – 

8 56                56           – 

9 56                56           – 

10 
56                56           – 

Queue full. 
ENQUEUE(Q’, Y) fails. 

11 56                56           0 

12 - 16 

 

50                56             0 
77                56             0 
22                56             0 
56                56             0 

Output of the program code:  50     77     22     56 

[0] [1] [2] [3] [4] 

56 50 77 22

[0] [1] [2] [3] [4] 

56 50 77 22

[0] [1] [2] [3] [4] 

[0] 

56 50 77 22

[1] [2] [3] [4] 

[0] 

50 77 22

[1] [2] [3] [4] 

[0] 

50 77

[1] [2] [3] [4] 

[0] 

56 50 77

[1] [2] [3] [4] 

[0] 

56 50

[1] [2] [3] [4] 

[0] 

56

[1] [2] [3] [4] 
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PROBLEM 5.3.– 

S and Q are a stack and a priority queue of integers, respectively. The priority of 
an element C joining the priority queue Q is computed as C mod 3. In other words, 
the priority numbers of the elements are either 0 or 1 or 2. Given A, B, and C to be 
integer variables, what is the output of the following code? The procedures are 
similar to those used in illustrative problems 5.1 and 5.2. However, the queue 
procedures are modified to appropriately work on a priority queue. 

1.A = 10 
2.B = 11 
3.C = A+B 
4.while (C < 110) do 
5.   if (C mod 3) = 0 then PUSH (S,C) 
6.   else ENQUEUE (Q,C) 
7.   A = B 
8.   B = C 
9.   C = A + B 
10.end 
11.while not EMPTY_STACK (S) do 
12.   POP (S,C) 
13.   PRINT (C) 
14.end 
15.while not EMPTY_QUEUE (Q) do 
16.   DEQUEUE (Q, C) 
17.   PRINT (C) 
18.end 

Solution: 

Steps Stack S Queue Q A          B        C 

1–3 
  

10         11      21 

4–6 
 

10         11      21 

7–10 
  

11         21      32 21 

21 

21 
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4–6 11         21      32 

7–10 21         32      53 

4–6 21         32      53 

7–10 32         53       85 

4–6 32         53       85 

7–10 53         85      138 

11–14 

 
53         85      21 

Output: 21 

15–18 

53         85      32 
53         85      53 
53         85      85 

 
Output: 32 53 85 

 

The final output is:     21    32    53    85 

PROBLEM 5.4.– 

TOKEN is a priority queue for organizing n data items with m priority numbers. 
TOKEN is implemented as a two-dimensional array TOKEN[1:m, 1:p], where p is 

85 (1)53 (2)32 (2)

85 (1)53 (2)32 (2)21 

85 (1)53 (2)32 (2)21 

53 (2)32 (2)21 

53 (2)32 (2)21 

32 (2)21 

32 (2)21 
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the maximum number of elements with a given priority. Execute the following 
operations on TOKEN [1:3, 1:2]. Here, INSERT(“xxx”, m) indicates the insertion of 
item “xxx” with priority number m, and DELETE() indicates the deletion of the first 
among the high priority items. 

i) INSERT(“not”, 1) 

ii) INSERT(“and”, 2) 

iii) INSERT(“or”, 2) 

iv) DELETE() 

v) INSERT (“equ”, 3) 

Solution: 

The two-dimensional array TOKEN[1:3, 1:2] before the execution of operations 
is given as follows: 

TOKEN:   [1] [2] 

             123  ቈ− −− −− −቉  

After the execution of operations, TOKEN[1:3, 1:2] is as shown as follows: 

i) INSERT(“not”, 1) 

ii) INSERT(“and”, 2) 

iii) INSERT(“or”, 2) 

[1]      [2] 123 ൥ ′𝑛𝑜𝑡′ −
′𝑎𝑛𝑑′ ′𝑜𝑟′− − ൩ 

iv) DELETE() 

[1]       [2] 123 ቈ − −
′𝑎𝑛𝑑′ ′𝑜𝑟′− − ቉ 

Note how “not” which is the first among the 
elements with the highest priority  is deleted 

v) INSERT(“equ”, 3) 

[1]       [2] 123 ቈ − −′𝑎𝑛𝑑′ ′𝑜𝑟′′𝑒𝑞𝑢′ − ቉ 
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PROBLEM 5.5.– 

DEQ[0:4] is an output restricted deque implemented as a circular array, and 
LEFT and RIGHT indicate the ends of the deque, as shown below. INSERT(“xx”, 
[LEFT | RIGHT]) indicates the insertion of the data item at the left or right end as 
the case may be, and DELETE() deletes the item from the left end only. 

DEQ:                                                  LEFT:  2            RIGHT: 5 

    [1]      [2]     [3]      [4]      [5]     [6] 

               C1     A4      Y7     N6 

Execute the following insertions and deletions on DEQ: 

i) INSERT(“S5”, LEFT) 

ii) INSERT(“K9”, RIGHT) 

iii) DELETE() 

iv) INSERT(“V7”, LEFT) 

v) INSERT(“T5”, LEFT) 

Solution: 

– DEQ after the execution of operations   

i) INSERT(“S5”, LEFT) 

ii) INSERT(“K9”, RIGHT) 

DEQ:    LEFT:  1            RIGHT:  6 

                   [1]      [2]     [3]     [4]      [5]     [6] 

                    S5      C1     A4     Y7     N6     K9 

DEQ after the execution of iii) DELETE() 

DEQ:    LEFT:  2            RIGHT: 6 

             [1]      [2]       [3]      [4]      [5]      [6] 

                           C1       A4      Y7      N6     K9 
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– DEQ after the execution of operations 

iv) INSERT(“V7”, LEFT) 

v) INSERT(“T5”, LEFT) 

                     DEQ:    LEFT:  1            RIGHT: 6 

          [1]      [2]     [3]       [4]      [5]      [6] 

          V7     C1      A4      Y7      N6       K9 

After the execution of operation INSERT(“V7”, LEFT), the deque is full. Hence, 
“T5” is not inserted into the deque. 

PROBLEM 5.6.– 

Implement a queue Q using two stacks S1 and S2 such that operations 
ENQUEUE(Q, X) and DEQUEUE(Q, Y), where Q is supposedly a queue and X is 
the element to be inserted into Q and Y the element deleted from Q, are worked 
upon by the stacks that operate together as a queue. Assume that the ADT operations 
of PUSH, POP and EMPTYSTACK are only available for the stacks. 

Demonstrate the working of your method on a list {a, b, c}, which is to be 
operated upon as a queue by the stacks S1 and S2. 

Solution: 

For the two stacks S1 and S2 to work as a queue, every time the ENQUEUE (Q, 
X) operation is invoked, the element X should join the rear of the queue, and every 
time DEQUEUE(Q, Y) is invoked, the first element in the queue should be deleted. 
One method to do this is to ensure that elements are stored in stack S1 in such a way 
that the top element of S1 is the first element of the queue. This can be 
accomplished by using stack S2. 

Consider the list {a, b, c} to be stored as a queue. The operations undertaken by 
the stacks to accomplish this are shown in the following table: 
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Queue operation Operations on stacks S1 and S2

Snapshots of the stacks S1 
and S2 and their top of stack 

variables, TOP(S1) and 
TOP(S2) (“[” denotes bottom 

of stack) 

ENQUEUE(Q, “a”)      PUSH(S1, “a”) S1:[a 

       TOP (S1) = “a” 

S2:[ 

       TOP (S2) = Nil 

ENQUEUE(Q, “b”)     POP(S1, Y) 

                where {Y = “a”} 

PUSH(S2, Y) 

PUSH(S1, “b”) 

POP(S2, Y) 

PUSH(S1, Y) 

 S1: [b, a 

       TOP (S1) = “a” 

 

S2:[ 

       TOP (S2) = Nil 

ENQUEUE(Q, “c”) while not EMPTYSTACK(S1)  
do 
    POP(S1, Z) 

    PUSH(S2, Z) 

end 
PUSH(S1, “c”) 

 

while not EMPTYSTACK(S2) 
do 
     POP(S2, X) 

     PUSH(S1, X) 

end 

 

S1:[c 

       TOP (S1) = “c” 

S2: [a, b 

      TOP (S2) = “b” 

 

 

 

S1: [c, b, a 

       TOP (S1) = “a” 

S2: [ 

      TOP (S2) =  Nil 

The invocation of delete operations on the queue Q and the same executed by the 
stacks are shown in the following table: 
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Queue operation Operations on stacks S1 and S2 

Snapshots of the stacks S1 
and S2 and their top of 

stack variables, TOP(S1) 
and TOP(S2) (“[” denotes 

the bottom of stack) 
DEQUEUE(Q, X) POP(S1, X) 

 
Output: 
X = {a} 

S1: [c, b 
TOP (S1) = “b” 

S2: [ 
TOP (S2) =  Nil 

DEQUEUE(Q, X) POP(S1, X) 
  
Output: 
X = {b} 

 
S1: [c 

TOP (S1) = “c” 
S2: [ 

TOP (S2) =  Nil 

PROBLEM 5.7.– 

Implement a stack S using two queues Q1 and Q2 so that operations PUSH (S, 
X) and POP(S, Y), where S is supposedly a stack and X is the element to be inserted 
into S and Y the element deleted from S, are worked upon by the queues that operate 
together as a stack. Assume that the ADT operations of ENQUEUE, DEQUEUE and 
EMPTYQUEUE are only available for the queues. 

Demonstrate the working of your method on a list {a, b, c}, which is to be 
operated upon as a stack by the queues Q1 and Q2. 

Solution: 

For the two queues Q1 and Q2 to work as a stack, every time PUSH(S, X) is 
invoked, element X should be stored as the front element in the queue so that when a 
POP(S, Y) operation is executed, the front element of the queue that is deleted 
stands for the last element to be popped out from the stack. A method to do this 
would be to delete all the existing elements in Q1 and insert them into Q2 in their 
respective order before inserting X as the front element of Q1. This is followed by 
deleting all elements from Q2 and inserting them into Q1 in their respective order, 
following the element X in Q1. Q1 now “behaves” like a stack when a pop operation 
on stack S is ordered by deleting X, which is the front element in queue Q1. 

Consider the list {a, b, c} to be stored as a stack. The operations undertaken by 
the queues to accomplish this are shown in the following table: 
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Stack operation on S Operations on queues Q1 and Q2 

Snapshots of the queues 
Q1 and Q2 and the front 
and rear elements of the 
queues, FRONT() and 

REAR() 
PUSH(S, “a”) ENQUEUE(Q1, “a”)         Q1:[a] 

     FRONT(Q1) = “a” 
     REAR(Q1)   = ”a” 

        Q2:[ ] 
     FRONT(Q2) = Nil 
     REAR(Q2)   = Nil 

 
PUSH(S, “b”) DEQUEUE(Q1, Y) 

        where {Y = “a”} 
ENQUEUE(Q2,Y) 

   ENQUEUE(Q1, “b”) 
DEQUEUE(Q2, Y) 
ENQUEUE(Q1, Y) 

 
 

 
        Q1: [b, a ] 

     FRONT(Q1) = “b” 
     REAR(Q1)   = ”a” 

 
        Q2:[ ] 

     FRONT(Q2) = Nil 
     REAR(Q2)   = Nil 

 
PUSH(S, “c”) while not EMPTYQUEUE(Q1) do 

       DEQUEUE(Q1, Z) 
       ENQUEUE(Q2, Z) 
  end 
  ENQUEUE(Q1, “c”) 

 
 
 
 

while not EMPTYQUEUE(Q2) do 
  DEQUEUE(Q2, Y) 
  ENQUEUE(Q1, Y) 

  end 
 

 
Q1:[c] 
    FRONT(Q1) = “c” 
    REAR(Q1)  = ”c” 
  
Q2: [b, a] 
     FRONT(Q1) = “b” 
     REAR(Q1)  = ”a” 
 
 
 
Q1: [c, b, a] 
     FRONT(Q1) = “c” 
     REAR(Q1)  = ”a” 
 
Q2: [] 
     FRONT(Q2) = Nil 
     REAR(Q2)  =  Nil 

 

The invocation of delete operations on stack S and the same executed by the 
queues are shown in the following table: 
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Stack operation Operations on stacks S1 and S2 

Snapshots of the queues Q1 
and Q2 and the front and 

rear elements of the 
queues, FRONT() and 

REAR() 

POP(S, X) DEQUEUE (Q1, X) 
Output: 
X = {c} 

Q1: [b, a] 
     FRONT(Q1) = “b” 
     REAR(Q1)  = ”a” 
 
Q2: [ ] 
     FRONT(Q2) = Nil 
     REAR(Q2)  = Nil 
 

POP(S, X) DEQUEUE (Q1, X) 
Output: 
X = {b} 

 
Q1: [a] 
     FRONT(Q1) = “a” 
     REAR(Q1)  = ”a” 
 
Q2: [ ] 
     FRONT(Q2) = Nil 
     REAR(Q2)  = Nil 

Review questions 

1) Which among the following properties does not hold good in a queue? 

i) A queue supports the principle of first come first served. 

ii) An enqueuing operation shrinks the queue length. 

iii) A dequeuing operation affects the front end of the queue. 

iv) An enqueuing operation affects the rear end of the queue 

a) (i)             b) (ii)             c) (iii)             d) (iv) 

2) A linear queue Q is implemented using an array as shown below. The FRONT 
and REAR pointers, which point to the physical front and rear of the queue, are also 
shown. 
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FRONT: 2       REAR: 3 

X Y A Z S 

     [1]      [2] [3]      [4]      [5] 

Execution of the operation ENQUEUE(Q, “W”) would yield the FRONT and 
REAR pointers to carry the values shown in 

a)  2 and 4      b)   3 and 3        c)    3 and 4          d)  2 and 3 

3) For the linear queue shown in review question 2, execution of the operation 
DEQUEUE(Q, M), where M is an output variable, would yield M, FRONT and 
REAR to, respectively, carry the values 

a) Z, 2, 3       b)   A, 2, 2        c)     Y, 3, 3           d)  A, 2, 3 

4) Given the following array implementation of a circular queue, with FRONT 
and REAR pointing to the physical front and rear of the queue, 

FRONT: 3     REAR: 4 

X Y A Z S 

[1] [2]     [3]      [4]      [5] 

Execution of the operations ENQUEUE(Q, “H”), ENQUEUE(Q, “T”) done in a 
sequence would result in 

i) invoking queue full condition soon after ENQUEUE(Q, ‘H’) operation; 

ii) aborting the ENQUEUE(Q, “T”) operation; 

iii) yielding FRONT = 1 and REAR = 4 after the operations; 

iv) Yielding FRONT = 3 and REAR =1 after the operations. 

a) (i)          b) (ii)       c) (iii)   d) (iv) 

5) State whether true or false: 

For the following implementation of a queue, where FRONT and REAR point to 
the physical front and rear of the queue, 

FRONT: 3       REAR: 5 

X Y A Z S 

[1] [2]      [3]      [4]     [5] 
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Execution of the operation ENQUEUE(Q, “C”), 

i) if Q is a linear queue,  it would invoke the queue full condition; 

ii) if Q is a circular queue, it would abort the enqueuing operation. 

a) (i) true (ii) true   b) (i) true (ii) false 

c) (i) false (ii) false   d) (i) false (ii) true 

6) What are the disadvantages of linear queues? 

7) How do circular queues help overcome the disadvantages of linear queues? 

8) If FRONT and REAR were pointers to the physical front and rear of a linear 
queue, comment on the condition, FRONT = REAR. 

9) If FRONT and REAR were pointers to the physical front and rear of a circular 
queue,  comment on the condition, FRONT = REAR. 

10) How are priority queues implemented using a single queue? 

11) The following is a table of five users Tim, Shiv, Kali, Musa and Lobo, with 
their job requests Ji(k), where i is the job number and k is the time required to 
execute the job. The time at which the users logged in is also shown in the following 
table. 

User Job requests and 
the execution time in µs Login time 

Tim 
Shiv 
Kali 
Musa 
Lobo 

J1 (5), J2 (4) 
J3 (3), J4(5), J5 (1) 

J6 (6), J7 (3), 
J8(5), J9 (1) 

J9 (3), J10 (3), J11 (6) 

0 
1 
2 
3 
4 

Throughout the simulation, assume a uniform user delay period of 4 µs between 
any two sequential job requests initiated by a user. Additionally, to simplify the 
simulation, assume that the CPU gives whole attention to the completion of a job 
request before moving to the next job request. Trace a graphical illustration of the 
simulation to demonstrate a time-sharing system at work. Show snapshots of the 
linear queue used by the system to implement the FIFO principle of attending to jobs 
by the CPU. 

12) For the time-sharing system discussed in review question 11, trace a 
graphical illustration of the simulation assuming that all job requests Ji(k) where i is 
even numbered have higher priority than those jobs Ji(k) where i is odd numbered. 
Show snapshots of the priority queue implementation. 
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Programming assignments 

1) Waiting line simulation in an Indian post office: 

In an Indian post office that not only delivers mail but also functions as a savings 
bank carrying out specific transactions, a lone postal worker serves a single queue of 
customers. Every customer receives a token # (serial number) as soon as they enter 
the queue. After service, the token is returned to the postal worker, and the customer 
leaves the queue. At any point in time, the worker may want to know how many 
customers are yet to be served. 

i) Implement the system using an appropriate queue data structure, simulating a 
random arrival and departure of customers after service completion. 

ii) If a customer arrives to operate their savings account at the post office, then 
they are attended to first by permitting them to join a special queue. In such a case, 
the postal worker attends to them immediately before resuming their normal service 
of mail delivery. Modify the system to implement this addition in service. 

2) Write a program to maintain a list of items as a circular queue, which is 
implemented using an array. Simulate insertions and deletions to the queue and 
display a graphical representation of the queue after every operation. 

3) Let PQUE be a priority queue data structure and 𝑎ଵሺ௣భሻ, 𝑎ଶሺ௣మሻ, …  𝑎௡ሺ௣೙ሻ be n 
elements with priorities 𝑝௜ ሺ0 ≤ 𝑝௜ ≤ 𝑚 − 1ሻ. 

i) Implement PQUE using multiple circular queues one for each priority number. 

ii) Implement PQUE as a two-dimensional array ARR_PQUE[1:m,1:d], where m 
is the number of priority values and d is the maximum number of data items with a 
given priority. 

iii) Execute insertions and deletions presented in a random sequence. 

4) A deque DQUE is to be implemented using a circular one-dimensional array 
of size N. Execute procedures to: 

i) insert and delete elements from DQUE at either end; 

ii) implement DQUE as an output restricted deque; 

iii) implement DQUE as an input restricted deque; 

iv) for the procedures, what are the conditions used for testing whether DQUE is 
full (DQUE_FULL) and empty (DQUE_EMPTY)? 

5) Execute a general data structure that is a deque supporting insertions and 
deletions at both ends but, depending on the choice input by the user, functions as a 
stack or a queue. 
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6) Write a program that checks if a string is a palindrome by making use of a 
single stack and a single queue. (Hint: Stack helps to read the string in its reverse 
order and a queue the same in the forward direction.) 



 



6 

Linked Lists 

In Chapters 3-5 we dealt with arrays, stacks and queues, which are linear 
sequential data structures (among the three, stacks and queues have a linked 
representation as well, which will be discussed in Chapter 7). 

In this chapter, we detail linear data structures with a linked representation. We 
first list the demerits of the sequential data structure before introducing the need for 
a linked representation. Next, the linked data structures of singly linked list, 
circularly linked list, doubly linked list, multiply linked list, unrolled linked list and 
self-organizing linked list are elaborately presented. Finally, two problems, namely, 
polynomial addition and sparse matrix representation, demonstrating the application 
of linked lists are discussed. 

6.1. Introduction 

6.1.1. Drawbacks of sequential data structures 

Arrays are fundamental sequential data structures. Even stacks and queues rely 
on arrays for their representation and implementation. However, arrays or sequential 
data structures in general suffer from the following drawbacks: 

i) inefficient implementation of insertion and deletion operations; 

ii) inefficient use of storage memory. 

Let us consider an array A[1: 20]. This means a contiguous set of 20 memory 
locations have been made available to accommodate the data elements of A. As 
shown in Figure 6.1(a), let us suppose the array is partially full. Now, to insert a new 
element 108 in the position indicated, it is not possible to do so without affecting the 
neighboring data elements. Methods such as making use of a temporary array (B) to 
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hold the data elements of A with 108 inserted at the appropriate position, or making 
use of B to hold the data elements of A that follow 108 before copying B into A, call 
for extensive data movement, which is computationally expensive. Again, 
attempting to delete 217 from A calls for the use of a temporary array B to hold the 
elements with 217 excluded before copying B to A (see Figure 6.1(b)). 

 

Figure 6.1. Drawbacks of sequential data structures –  
inefficient implementation of insertion/deletion operations 

With regard to the second drawback of inefficient storage memory management, 
the need to allott contiguous memory locations for every array declaration is bound 
to leave fragments of free memory space unworthy of allotment for future requests. 
This may eventually lead to inefficient storage management. In fact, fragmentation 
of memory is a significant problem to be considered in computer science. Several 
methods have been proposed to counteract this problem. 

Figure 6.2 shows a naïve diagram of a storage memory with fragmentation of 
free space. 

 

Figure 6.2. Drawbacks of sequential data structures –  
inefficient storage memory management 



Linked Lists     145 

Note how fragments of free memory space, which when put together could be a 
huge chunk of free space, are rendered unworthy of accommodating sequential data 
structures due to lack of contiguity. 

6.1.2. Merits of linked data structures 

A linked representation serves to counteract the drawbacks of sequential 
representation by exhibiting the following merits: 

i) Efficient implementation of insertion and deletion operations: Unlike 
sequential data structures, there is a complete absence of data movement of 
neighboring elements during the execution of these operations. 

ii) Efficient use of storage memory: The operation and management of linked 
data structures are less prone to instigate memory fragmentation. 

6.1.3. Linked lists – structure and implementation 

A linked representation of a data structure known as a linked list is a collection 
of nodes. Each node is a collection of fields categorized as data items and links. The 
data item fields hold the information content or data to be represented by the node. 
The link fields hold the addresses of the neighboring nodes or of those nodes that are 
associated with the given node as dictated by the application. 

Figure 6.3 illustrates the general node structure of a linked list. A node is 
represented by a rectangular box, and the fields are shown by partitions in the box. 
Link fields are shown to carry arrows to indicate the nodes to which the given node 
is linked or connected. 

 

Figure 6.3. A general structure of a node in a linked list 

This implies that unlike arrays, no two nodes in a linked list need to be 
physically contiguous. All the nodes in a linked list data structure may in fact be 
strewn across the storage memory, making effective use of what little space is 
available to represent a node. However, the link fields carry on the onerous 
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responsibility of remembering the addresses of the other neighboring or associated 
nodes themselves to keep track of the data elements in the list. 

In the programming language parlance, the link fields are referred to as pointers. 
In this book, pointers and link fields will be interchangeably used in several 
contexts. 

To implement linked lists, the following mechanisms are essential: 

i) A mechanism to frame chunks of memory into nodes with the desired number 
of data items and fields. In most programming languages, this mechanism is 
implemented by making use of a “record” or “structure” or their look-alikes or even 
associated structures to represent the node and its fields. 

ii) A mechanism to determine which nodes are free and which have been allotted 
for use. 

iii) A mechanism to obtain nodes from the free storage area or storage pool for 
use. These are wholly provided and managed by the system. There is very little that 
an end user or a programmer can do to handle this mechanism themselves. This is 
made possible in many programming languages by the provision of inbuilt functions 
that help execute requests for a node with the specific fields. In this book, we make 
use of a function GETNODE (X) to implement this mechanism. The GETNODE 
(X) function allots a node of the desired structure and the address of  
the node, namely, X, is returned. In other words, X is an output parameter of the 
function GETNODE (X), whose value is determined and returned by the system. 

iv) A mechanism to return or dispose nodes from the reserved area or pool to the 
free area after use. This is also made possible in many programming languages by 
providing an in-built function that helps return or dispose the node after use. In this 
book, we make use of the function RETURN (X) to implement this mechanism. 
The RETURN (X) function returns a node with address X from the reserved area of 
the pool to the free area of the pool. In other words, X is an input parameter of the 
function, the value of which is to be provided by the user. 

Irrespective of the number of data item fields, a linked list is categorized as a 
singly linked list, a doubly linked list, a circularly linked list and a multiply linked 
list based on the number of link fields it owns and/or its intrinsic nature. Thus, a 
linked list with a single link field is known as a singly linked list, and the list with 
circular connectivity is known as a circularly linked list. On the other hand, a linked 
list with two links each pointing to the predecessor and successor of a node is 
known as a doubly linked list, and the same with multiple links is known as a 
multiply linked list. The following sections discuss these categories of linked lists in 
detail. 
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6.2. Singly linked lists 

6.2.1. Representation of a singly linked list 

A singly linked list is a linear data structure, each node of which has one or more 
data item fields (DATA), but only a single link field (LINK). 

Figure 6.4 illustrates an example singly linked list and its node structure. 
Observe that the node in the list carries a single link that points to the node 
representing its immediate successor in the list of data elements. 

 

Figure 6.4. A singly linked list and its node structure 

Every node that is basically a chunk of memory carries an address. When a set of 
data elements to be used by an application are represented using a linked list, each 
data element is represented by a node. Depending on the information content of the 
data element, one or more data items may be opened in the node. 

However, in a singly linked list, only a single link field is used to point to the 
node that represents its neighboring element in the list. The last node in the linked 
list has its link field empty. The empty link field is also referred to as null link or in 
programming language parlance – null pointer. The notation NIL, a ground symbol 
(     ) or a zero (0) are commonly used to indicate null links. 

 The entire linked list is kept track of by remembering the address of the start 
node. This is indicated by START in the figure. Obviously, it is essential that the 
START pointer is carefully handled, otherwise it may result in losing the entire list. 

EXAMPLE 6.1.–  

Consider a list SPACE-MISSION of four data elements, as shown in Figure 
6.5(a). This logical representation of the list has each node carrying three DATA 
fields, namely, name of the space mission, country of origin, the current status of the 
mission and a single link pointing to the next node. Let us suppose the nodes that 
house “Chandra”, “INSAT-3A”, “Mir” and “Planck” have addresses 1001, 16002, 
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0026 and 8456, respectively. Figure 6.5(b) shows the physical representation of the 
linked list. Note how the nodes are distributed all over the storage memory and not 
physically contiguous. Additionally, we observe how the LINK field of each node 
remembers the address of the node of its logical neighbor. The LINK field of the last 
node is NIL. The arrows in the logical representation represent the addresses of the 
neighboring nodes in its physical representation. 

 

Figure 6.5. A singly linked list – its logical and physical representation 
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6.2.2. Insertion and deletion in a singly linked list 

To implement insertion and deletion in a singly linked list, we need the two 
functions introduced in section 6.1.3, namely, GETNODE (X) and RETURN (X), 
respectively. 

6.2.2.1. Insert operation 

Given a singly linked list START, to insert a data element ITEM into the list to 
the right of node NODE (ITEM is to be inserted as the successor of the data element 
represented by node NODE), the steps to be undertaken are given below. Figure 6.6 
illustrates the logical representation of the insert operation. 

i) Call GETNODE(X) to obtain a node to accommodate ITEM. Node has 
address X. 

ii) Set the DATA field of node X to ITEM, that is, DATA (X) = ITEM. 

iii) Set the LINK field of node X to point to the original right neighbor of node 
NODE, that is, LINK(X) = LINK(NODE). 

iv) Set LINK field of NODE to point to X, that is, LINK (NODE) = X. The 
resetting of the link is denoted by the rightwards arrow with stroke (→) representing 
the removal of the old link and the rightwards arrow (→) showing the new/active 
link. 

Algorithm 6.1 illustrates a pseudo-code procedure for insertion in a singly linked 
list that is non-empty. 

 

Figure 6.6. Logical representation of insertion in a singly linked list 
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Algorithm 6.1. To insert a data element ITEM in a non-empty  
singly liked list START to the right of node NODE 

However, during the insert operation in a list, it is advisable to test whether the 
START pointer is null or non-null. If the START pointer is null (START = NIL), then 
the singly linked list is empty, and hence, the insert operation prepares to insert the 
data as the first node in the list. On the other hand, if the START pointer is non-null 
(START ≠ NIL), then the singly linked list is non-empty, and hence, the insert 
operation prepares to insert the data at an appropriate position in the list as specified by 
the application. Algorithm 6.1 works on a non-empty list. To handle empty lists, the 
algorithm must be appropriately modified, as illustrated in Algorithm 6.2. 

In sheer contrast to an insert operation in a sequential data structure, observe the 
total absence of data movement in the list during insertion of ITEM. The insert 
operation merely calls for the update of two links in the case of a non-empty list. 

 

Algorithm 6.2. To insert ITEM after node NODE in a singly linked list START 

procedure  INSERT_SL_GEN(START, NODE, ITEM) 
/*  Insert ITEM as the first node in the list if START
is NIL. Otherwise insert ITEM after node  NODE */ 
  Call GETNODE(X); 
  DATA(X) = ITEM;        /* Create node for ITEM */ 
  if (START = NIL) then 
     {LINK(X) = NIL;           /* List is empty*/
 START = X;}/*Insert ITEM as the first node */ 
  else 
 {LINK(X) = LINK(NODE); 
  LINK(NODE) = X;} /∗ List is non empty. Insert 
               ITEM to the right of node NODE */   
end INSERT_SL_GEN. 

procedure  INSERT_SL(START, ITEM, NODE) 
/* Insert ITEM to the right of node  NODE in the list
START */ 
  Call GETNODE(X); 
  DATA(X) = ITEM; 
  LINK(X) = LINK(NODE);   /∗ Node X points to the 
            original right neighbour of node NODE */ 
  LINK(NODE) = X; 
end INSERT_SL. 
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EXAMPLE 6.2.– 

In the singly linked list SPACE-MISSION illustrated in Figures 6.5(a) and (b), 
insert the following data elements: 

i) APPOLLO USA Landed 
ii) SOYUZ 4 USSR Landed 
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Figure 6.7. Insertion of APPOLLO and SOYUZ 4 in the  
SPACE_MISSION list  shown in Figures 6.5(a) and (b) 

Let us suppose the GETNODE(X) function releases nodes with addresses  
X = 646 and X = 1187 to accommodate APPOLLO and SOYUZ 4 details, 
respectively. The insertion of APPOLLO is illustrated in Figures 6.7(a) and (b), and 
the insertion of SOYUZ 4 is illustrated in Figures 6.7(c) and (d). 

6.2.2.2. Delete operation 

Given a singly linked list START, the delete operation can acquire various 
forms, such as deletion of a node NODEY next to that of a specific node NODEX 
or, more commonly, deletion of a particular element in a list. We now illustrate the 
deletion of a node that is the successor of node NODEX. 

The steps for the deletion of a node next to that of NODEX in a singly linked 
START are given below. Figure 6.8 illustrates the logical representation of the 
delete operation. The dashed rightward arrows with strokes ( ) in the figure 
denote deleted links. 

i) Set TEMP a temporary variable to point to the right neighbor of NODEX, that 
is, TEMP = LINK (NODEX). The node pointed to by TEMP is to be deleted. 

ii) Set the LINK field of node NODEX to point to the right neighbor of TEMP, 
that is, LINK (NODEX) = LINK (TEMP). 

iii) Dispose of node TEMP, that is, RETURN (TEMP). 

Algorithm 6.3 illustrates a pseudo-code procedure for the deletion of a node that 
occurs to the right of a node NODEX in a singly linked list START. However, as 
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always, it must be ensured that the delete operation is not undertaken over an empty 
list. Hence, it is essential to check if START is empty. 

 

Algorithm 6.3. Deletion of a node to the right  
of node NODEX in a singly linked list START 

Observe how in contrast to deletion in a sequential data structure, which involves 
data movement, the deletion of a node in a linked list merely calls for the update of a 
single link. 

Example 6.3 illustrates the deletion of a node in a singly linked list. 

EXAMPLE 6.3.– 

The SPACE-MISSION list shown in Figures 6.5(a) and (b) undertakes the 
following deletions: 

i) delete CHANDRA; 

ii) delete PLANCK. 

 

Figure 6.8. Logical representation of deletion in a singly linked list 

procedure  DELETE_SL(START, NODEX) 
  if (START = NIL) then 
     Call ABANDON_DELETE;/*ABANDON_DELETE terminates 
       the delete operation */ 
  else 
    {TEMP = LINK(NODEX); 
     LINK(NODEX) = LINK(TEMP); 
     Call RETURN(TEMP);} 

end DELETE_SL. 
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The deletion of CHANDRA is illustrated in Figures 6.9(a) and (b), and the 
deletion of PLANCK is illustrated in Figures 6.9(c) and (d). 

 

Figure 6.9. Deletion of CHANDRA and PLANCK from the SPACE-MISSION list 
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6.3. Circularly linked lists 

6.3.1. Representation 

A normal singly linked list has its last node carrying a null pointer. For further 
improvement in processing, we may replace the null pointer in the last node with the 
address of the first node in the list. Such a list is called a circularly linked list, a 
circular linked list or simply a circular list. Figure 6.10 illustrates the representation 
of a circular list. 

 

Figure 6.10. Representation of a circular list 

6.3.2. Advantages of circularly linked lists over singly linked lists 

i) The most important advantage pertains to the accessibility of a node. We can 
access any node from a given node due to the circular movement permitted by the 
links. We merely have to loop through the links to reach a specific node from a 
given node. 

ii) The second advantage pertains to delete operations. Recall that for deletion of 
a node X in a singly linked list, the address of the preceding node (e.g. node Y) is 
essential to enable updating the LINK field of Y to point to the successor of node X. 
This necessity arises from the fact that in a singly linked list, we cannot access a 
node’s predecessor due to the “forward” movement of the links. In other words, 
LINK fields in a singly linked list point to successors and not predecessors. 

However, in the case of a circular list, to delete node X, we do not need to 
specify the predecessor. It can be easily determined by a simple “circular” search 
through the list before the deletion of node X. 

iii) The third advantage is the relative efficiency in the implementation of  
list-based operations, such as concatenation of two lists, erasing a whole list, 
splitting a list into parts and so on. 
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6.3.3. Disadvantages of circularly linked lists 

The only disadvantage of circularly linked lists is that during processing, we 
have to make sure that we do not enter an infinite loop owing to the circular nature 
of pointers in the list. This is liable to occur owing to the absence of a node that can 
help point out the end of the list and thereby terminate processing. 

A solution to this problem is to designate a special node to act as the head of the 
list. This node, known as the list head or head node, has advantages other than 
pointing to the beginning of a list. The list can never be empty and represented by a 
“hanging” pointer (START = NIL), as was the case with empty singly linked lists. 
The condition for an empty circular list becomes (LINK (HEAD) = HEAD), where 
HEAD points to the head node of the list. Such a circular list is known as a headed 
circularly linked list or simply circularly linked list with head node. Figure 6.11 
illustrates the representation of a headed circularly linked list. 

 

Figure 6.11. A headed circularly linked list 

Although the head node has the same structure as the other nodes in the list, the 
DATA field of the node is unused and is indicated as a shaded field in the pictorial 
representation. However, in practical applications, these fields may be utilized to 
represent any useful information about the list relevant to the application, provided 
they are deftly handled and do not create confusion during the processing of the 
nodes. 

Example 6.4 illustrates the functioning of circularly linked lists. 

EXAMPLE 6.4.– 

Let CARS be a headed circularly linked list of four data elements, as shown in 
Figure 6.12(a). To insert MARUTI into the list CARS, the sequence of steps to be 
undertaken are as shown in Figures 6.12(b–d). To delete FORD from the list CARS 
shown in Figure 6.13(a), the sequence of steps to be undertaken is shown in Figures 
6.13(b–d). 
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Figure 6.12. Insertion of MARUTI into the headed circularly linked list CARS 

 

Figure 6.13. Deletion of FORD from the headed circularly linked list CARS 
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6.3.4. Primitive operations on circularly linked lists 

Some of the important primitive operations executed on a circularly linked list 
are detailed below. Here, P is a circularly linked list as illustrated in Figure 6.14(a). 

i) Insert an element A as the left most element in the list represented by P. 

The sequence of operations to execute the insertion is given as 

Call GETNODE(X); 

DATA(X) = A; 
LINK(X) = LINK(P); 
LINK(P) = X; 

Figure 6.14(b) illustrates the insertion of A as the left most element in the 
circular list P. 

ii) Insert an element A as the right most element in the list represented by P. 

The sequence of operations to execute the insertion is the same as that of 
inserting A as the left most element in the list followed by the instruction. 

P = X 

Figure 6.14(c) illustrates the insertion of A as the right most element in list P. 

iii) Set Y to the data of the left most node in list P and delete the node. 

The sequence of operations to execute the deletion is given as 

PTR = LINK(P); 
Y = DATA(PTR); 
LINK(P) = LINK(PTR); 
Call RETURN(PTR); 

Here, PTR is a temporary pointer variable. Figure 6.14(d) illustrates the deletion 
of the left most node in list P, setting Y to its data. 

Observe that the primitive operations (i) and (iii), when combined, result in the 
circularly linked list working as a stack, and operations (ii) and (iii), when 
combined, result in the circularly linked list working as a queue. 
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Figure 6.14. Some primitive operations on a circularly linked list P 

6.3.5. Other operations on circularly linked lists 

The concatenation of two circularly linked lists L1 and L2, as illustrated in 
Figure 6.15, has the following sequence of instructions. 
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Figure 6.15. Concatenation of two circularly linked lists 

 

The other operations are, splitting a list into two parts (see programming 
assignment 2) and erasing a list. 

6.4. Doubly linked lists 

In sections 6.2 and 6.3, we discussed two types of linked representations, 
namely, singly linked list and circularly linked list, both making use of a single link. 
Additionally, the circularly linked list served to rectify the drawbacks of the singly 
linked list. To enhance greater flexibility of movement, the linked representation 
could include two links in every node, each of which points to the nodes on either 
side of the given node. Such a linked representation known as a doubly linked list is 
discussed in this section. 

if L1 ≠  NIL then 
 { if L2 ≠  NIL then 
       {TEMP = LINK (L1) 
   LINK(L1) = LINK(L2) 
             LINK(L2) = TEMP 
   L1 = L2 
          } 
  } 
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6.4.1. Representation of a doubly linked list 

A doubly linked list is a linked linear data structure, each node of which has one 
or more data fields, but only two link fields termed the left link (LLINK) and right 
link (RLINK). The LLINK field of a given node points to the node on its left, and its 
RLINK field points to the node on its right. A doubly linked list may or may not 
have a head node. Again, it may or may not be circular. 

Figure 6.16 illustrates the structure of a node in a doubly linked list and the 
various types of lists. 

 

Figure 6.16. Node structure of a doubly linked list and the various list types 

Example 6.5 illustrates a doubly linked list and its logical and physical 
representations. 
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EXAMPLE 6.5.– 

Consider a list FLOWERS of four data elements LOTUS, 
CHRYSANTHEMUM, LILY and TULIP stored as a circular doubly linked list with 
a head node. The logical and physical representation of FLOWERS is illustrated in 
Figures 6.17(a) and (b). Observe how the LLINK and RLINK fields store the 
addresses of the predecessors and successors of the given node, respectively. In the 
case of FLOWERS being an empty list, the representation is shown in Figures 
6.17(c) and (d). 

6.4.2. Advantages and disadvantages of a doubly linked list 

Doubly linked lists have the following advantages: 

 

Figure 6.17. The logical and physical representation of  
a circular doubly linked list with a head node, FLOWERS 
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i) The availability of two links, LLINK and RLINK, permits forward and 
backward movement during the processing of the list. 

ii) The deletion of a node X from the list calls only for the value X to be known. 
Note how in the case of a singly linked or circularly linked list, the delete operation 
necessarily needs to know the predecessor of the node to be deleted. While a singly 
linked list expects the predecessor of the node to be deleted to be explicitly known, a 
circularly linked list is endowed with the capability to move around the list to find 
the predecessor node. However, in the latter case, if the list is too long, it may render 
the delete operation inefficient. 

The only disadvantage of the doubly linked list is its memory requirement. Each 
node needs two links, which could be considered expensive storagewise when 
compared to singly linked lists or circular lists. Nevertheless, the efficiency of 
operations due to the availability of two links more than compensates for the extra 
space requirement. 

6.4.3. Operations on doubly linked lists 

An insert and delete operation on a doubly linked list are detailed here. 

6.4.3.1. Insert operation 

Let P be a headed circular doubly linked list that is non-empty. Algorithm 6.4 
illustrates the insertion of a node X to the right of node Y. Figure 6.18(a) shows the 
logical representation of list P before and after insertion. 

 

Algorithm 6.4. To insert node X to the right  
of node Y in a headed circular doubly linked list P 

Note how the four instructions in Algorithm 6.4 correspond to the 
setting/resetting of the four link fields, namely, links pertaining to node Y, its 
original right neighbor (RLINK(Y)) and node X. 

procedure  INSERT_DL(X, Y) 
  LLINK(X) = Y; 
  RLINK(X) = RLINK(Y); 
  LLINK(RLINK(Y)) = X; 
  RLINK(Y) = X;  
end INSERT_DL. 
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6.4.3.2. Delete operation 

Let P be a headed, circular doubly linked list. Algorithm 6.5 illustrates the 
deletion of a node X from P. The condition (X = P) that is checked ensures that the 
head node P is not deleted. Figure 6.18(b) shows the logical representation of list P 
before and after the deletion of node X from list P. 

 

Algorithm 6.5. Delete node X from a headed circular doubly linked list P 

Note how the two instructions pertaining to links, in Algorithm 6.5, correspond 
to the setting/resetting of link fields of the two nodes, namely, the predecessor 
(LLINK(X)) and successor (RLINK(X)) of node X. 

Example 6.6 illustrates the insert/delete operation on a doubly linked list 
PLANET. 

 

 

procedure  DELETE_DL(P, X) 
  if (X = P) then  ABANDON_DELETE;  
  else 
 {RLINK(LLINK(X)) = RLINK(X); 
  LLINK(RLINK(X)) = LLINK(X); 
       Call RETURN(X); } 
end DELETE_DL. 
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Figure 6.18. Insertion/deletion in a headed circular doubly linked list 

EXAMPLE 6.6.– 

Let PLANET be a headed circular doubly linked list with three data elements, 
namely, MARS, PLUTO and URANUS. Figure 6.19 illustrates the logical and 
physical representation of the list PLANET. Figure 6.20(a) illustrates the logical and 
physical representation of list PLANET after the deletion of PLUTO, and Figure 
6.20(b) shows the same after the insertion of JUPITER. 

 

Figure 6.19. Logical and physical representation of list PLANET 
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Figure 6.20. Deletion of PLUTO and insertion of JUPITER in list PLANET 

6.5. Multiply linked lists 

A multiply linked list, as its name suggests, is a linked representation with 
multiple data and link fields. A general node structure of a multiply linked list is 
shown in Figure 6.21. 

Since each link field connects a group of nodes representing the data elements of 
a global list L, the multiply linked representation of the list L is a network of nodes  
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that are connected to one another based on some association. The link fields may or 
may not render their respective lists to be circular, or may or may not possess a head 
node. 

 

Figure 6.21. The node structure of a multiply linked list 

Example 6.7 illustrates an example of multiple linked list. 

EXAMPLE 6.7.– 

Let STUDENT be a multiply linked list representation whose node structure is as 
shown in Figure 6.22. Here, the SPORTS-CLUB-MEM link field links all student 
nodes who are members of the sports club, DEPT-ENROLL links all students 
enrolled with a given department and DAY-STUDENT links all students enrolled as 
day students. 

Consider Table 6.1, which illustrates details pertaining to six students. 

 

Figure 6.22. Node structure of  
the multiply linked list STUDENT 
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Name of 
the student Roll # 

Number of 
credits 

registered 
Sports club 
membership 

Day 
student Department 

AKBAR CS02 200 Yes Yes Computer science 

RAM ME426 210 No Yes Mechanical 
sciences 

SINGH ME927 210 Yes No Mechanical 
sciences 

YASSER CE467 190 Yes No Civil engineering 

SITA CE544 190 No Yes Civil engineering 

REBECCA EC424 220 Yes No 
Electronics and 
communication 

engineering 

Table 6.1. Student details for  
representation as a multiply linked list 

The multiply linked structure of the data elements in Table 6.1 is shown in 
Figure 6.23. Here, S is a singly linked list of all sports club members, and DS is the 
singly linked list of all day students. Note how the DEPT-ENROLL link field 
maintains individual singly linked lists COMP-SC, MECH-SC, CIVIL ENGG and 
ECE to keep track of the students enrolled with the respective departments. 

To insert a new node with the following details, 

ALI CS108 200 Yes Yes Computer Science 

into the list STUDENTS, the procedure is similar to that of insertion in singly linked 
lists. The point of insertion is to be determined by the user. The resultant list is 
shown in Figure 6.24. Here, we have inserted ALI in the alphabetical order of 
students enrolled with the computer science department. 
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To delete REBECCA from the list of sports club members of the multiply linked 
list STUDENT, we undertake a sequence of operations, as shown in Figure 6.25. 
Observe how the node for REBECCA continues to participate in the other lists 
despite its deletion from the list S. 

A multiply linked list can be designed to accommodate much flexibility with 
respect to its links, depending on the needs and suitability of the application. 

 

Figure 6.23. Multiply linked list structure of list STUDENT 
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Figure 6.24. Insert ALI into the multiply linked list STUDENT 

 

Figure 6.25. Delete REBECCA from the sports club  
membership list of the multiply linked list STUDENTS 
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6.6. Unrolled linked lists 

Unrolled linked lists are “hybrid” data structures in that they combine the 
benefits of using an array data structure with those of the linked list data structure. 
As a result, they display the dual merits of small memory overheads of arrays 
coupled with efficient insert/delete operations of linked lists. 

Unrolled linked lists are therefore variants of linked lists considering the fact that 
the nodes of an unrolled linked list hold an array of elements in addition to a link that 
helps to point to its neighboring node. The size of the array can even be large enough 
to fill a single cache line or its multiples thereof; therefore, unrolled linked lists can 
serve to improve cache performance while decreasing the memory overheads. 

Since the operations of insert/delete undertaken on an unrolled linked list are 
sensitive to the number of elements stored in the array, it would be prudent to open 
an extra field in the node that keeps count of the number of elements currently 
stored in the node’s array. Additionally, for efficient storage management, it is 
mandatory that each node in an unrolled linked list must have satisfied a minimum 
level of storage utilization. Thus, for example, at any point in time, a node in an 
unrolled linked list must be at least half full if the minimum storage utilization is set 
to 50%. In this discussion, we use half-full as the storage utilization factor. 

Figure 6.26 shows the structure of a node in an unrolled linked list. An example 
unrolled linked list is shown in example 6.8. 

 

Figure 6.26. Structure of a node in an unrolled linked list 

EXAMPLE 6.8.– 

T is an unrolled linked list with three nodes, NODE1, NODE2 and NODE3, and 
with each node storing an array of size 5. The field LINK points to the next node in  
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the list, and the field NUMBER_OF_ELEMENTS stores the number of  
elements currently stored in the array. Figure 6.27 illustrates an example unrolled 
linked list T. 

 

Figure 6.27. An example unrolled linked list 

6.6.1. Retrieval of an element 

To retrieve an element from an unrolled linked list, it is essential that the address 
of the node and the index of the array element, which determine the position of the 
element, are known. Thus, to retrieve an element, it may be essential to move down 
the list with the help of the link field to spot the node concerned and then retrieve 
the element from the array. For example, to retrieve element k whose address is 
(NODE 3 – [1]), we have to move down the list tracking NODE 3 and then access 
the element stored in index [1] of the array in the node concerned. 

6.6.2. Insert an element 

Given the position of insertion, the insertion operation in an unrolled linked list 
proceeds as if we are trying to retrieve the element from the list at the given 
position, but instead insert the element in the node at the position concerned. 
However, the following cases need to be considered during insertion. 

If the node is half full, then simply store the element in the array in the first 
available empty cell available and increase the count in NUMBER_OF_ 
ELEMENTS. 

If the node is full and there is no space to insert the element, create a new node 
NEW_NODE that precedes or succeeds the node and move the appropriate half 
(lower half or upper half) of the elements in the current node to NEW_NODE before 
inserting the new element. Assuming that NEW_NODE was inserted as a successor 
to the current node, the upper half of the elements in the current node are first 
moved to NEW_NODE, and the new element to be inserted is stored in the first 
available empty cell of the array in NEW_NODE. The NUMBER_OF_ELEMENTS  
 
 

NODE 1                                           NODE 2                                       NODE 3 

NUMBER_OF_ELEMENTS 
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field in the current node is reset to NUMBER_OF_ELEMENTS/2, and the same in 
NEW_NODE is reset to (NUMBER_OF_ELEMENTS/2 +1). 

EXAMPLE 6.9.– 

The insertion of elements p, q, r in NODE 3 of the unrolled linked list T shown 
in Figure 6.27 is demonstrated in Figure 6.28. The minimum level of storage 
utilization is fixed as ⌊5/2⌋=2, where the maximum size of the array in the node is 5. 
It can be seen that during the insertion of r, since NODE 3 is already full, the 
elements in the array of NODE 3 are split and accommodated in a new node 
NEW_NODE. Element r is inserted into NEW_NODE. 

 
(a) Initial list with minimum level of storage utilization as 2 

 
(b) Insert ‘p’ 

 
(c) Insert ‘q’ 

 
(d) Insert ‘r’ 

Figure 6.28. Insertions in an unrolled linked list 

6.6.3. Delete an element 

To delete an element, we proceed as if we were trying to retrieve the element, and 
once the location is reached, which is the node and the array cell concerned, the element 
is deleted. However, considering the minimum level of storage utilization insisted upon 
by unrolled linked lists, the following cases need to be considered for deletion: 

i) if after deletion of the element from the node concerned, the minimum level of 
storage utilization does not fall below its stipulated level, then the deletion is done. 
Decrement the NUMBER_OF_ELEMENTS field in the node by 1; 

NODE 1                                           NODE 2                                       NODE 3 

NODE 1                                           NODE 2                                       NODE 3 

NODE 1                                           NODE 2                                       NODE 3 

NODE 1                               NODE 2                                  NODE 3                             NEW_NODE T  
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ii) if after deletion of an element from the node concerned, the minimum level of 
storage utilization falls below its stipulated level, then the elements are transferred 
from its successor node NEXT_NODE to the current node until the minimum level 
of storage utilization is met. If this transfer, however, leaves NEXT_NODE short of 
its minimum level of storage utilization, then NEXT_NODE is merged with the 
current node. In both cases, the NUMBER_OF_ELEMENTS field is updated 
appropriately. 

EXAMPLE 6.10.– 

The deletion of elements i and h demonstrated over the unrolled linked list 
shown in Figure 6.28(c) are shown in Figure 6.29. Observe how deletion of element 
h results in NODE 2 falling below its minimum level and transferring element k 
from NODE 3 to NODE 2 results in NODE 3 falling below its minimum level. 
Therefore, deletion of h calls for the merging of the elements in the two nodes, 
namely, NODE 2 and NODE 3. The elements have been merged in NODE 2 and 
NODE 3 has been deleted. 

It needs to be noted that while the generic retrieve, insert and delete operations on 
an unrolled linked list are as explained above, these operations could be fine-tuned to 
suit the application for which the data structure is used. Thus, the position that 
determines the point of insertion, the way elements are stored in the array and 
maintained during insertion/deletion of elements or the way the elements in the node 
are split or merged can all be determined based on the application or the user’s needs. 

 
(a) Initial list with minimum level of storage utilization as 2 

 
(b) Delete ‘c’ 

 
(c) Delete ‘h’ 

Figure 6.29. Deletions in an unrolled linked list 

However, when compared to a singly linked list, the storage overheads for an 
unrolled linked list are undoubtedly higher. The time complexity of a retrieve or  
 

NODE 1                               NODE 2                                  NODE 3                             NEW_NODE 

NODE 1                               NODE 2                                  NODE 3                             NEW_NODE 

NODE 1                               NODE 2                                                                         NEW_NODE 
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insert or delete operation turns out to be O(n), where n is the number of elements in 
the unrolled linked list, since all the operations involve moving down the list to spot 
their positions of execution, which in the worst case turns out to be O(n). This 
includes the overheads of maintaining the array of elements in the node or splitting 
or merging nodes, as the case may be. 

6.7. Self-organizing lists 

In applications where frequent retrievals of data stored as a singly linked list are 
common, it pays well to organize the list in such a way that frequent data retrievals 
are efficiently handled. Maintaining the singly linked list as a sorted list yields a 
time complexity of O(n) in the worst case, and the repeated retrievals of data only 
worsen the time complexity. 

A prudent solution to this problem could be to adopt self-organizing lists that 
simply put, shift frequently accessed nodes to the beginning of the list. However, 
there needs to be a mechanism to prioritize nodes with frequent retrievals. The 
following are some methods that can be adopted to implement self-organizing lists. 

i) Count method: Open a field COUNT in each node of the list. Every time a 
node is retrieved increment COUNT by 1. Reorganize the list according to the 
descending order of COUNT. However, this method incurs a storage overhead of an 
extra field in each node of the list and may involve frequent reorganization of the 
list. 

ii) Move to front method: Every time a node is accessed move it to the front of 
the list, in the hope that further retrievals of the node would prove less expensive. 
The method does not require any extra storage and can be easily implemented. 
However, in the case of infrequently retrieved nodes, overrewarding such nodes by 
pushing them to the beginning of the list can severely affect the overall efficiency of 
retrievals in the list. 

iii) Transpose method: Any node that is retrieved is swapped with its preceding 
node. The objective is to increase the priority of such nodes and keep them in the 
front portion of the list. 

6.8. Applications 

In this section, we discuss two applications of linked lists, namely, 

i) addition of polynomials; 

ii) representation of a sparse matrix. 
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The addition of polynomials is illustrative of the application of singly linked lists 
and sparse matrix representation is illustrative of the application of multiply linked 
lists. 

6.8.1. Addition of polynomials 

The objective of this application is to perform a symbolic addition of two 
polynomials, as illustrated below: 

Let P1: 2x6 + x3 + 5x + 4; 

P2: 7x6 + 8x5 – 9x3 + 10x2 + 14 

be two polynomials over a variable x. The objective is to obtain the algebraic sum of 
P1 and P2, that is,  P1 +  P2 as, 

P1 + P2 = 9x6 + 8x5 – 8x3 + 10x2 + 5x + 18 

To perform this symbolic manipulation of the polynomials, we make use of a 
singly linked list to represent each polynomial. The node structure and the singly 
linked list representation for the two polynomials are given in Figure 6.30. Here, 
each node in the singly linked list represents a term of the polynomial. 

 

Figure 6.30. Addition of polynomials – node structure  
and singly linked list representation of polynomials 
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To add the two polynomials, we presume that the singly linked lists have their 
nodes arranged in decreasing order of the exponents of the variable x. 

The objective is to create a new list of nodes representing the sum P1 + P2. This 
is achieved by adding the COEFF fields of the nodes of similar powers of variable x 
in lists P1 and P2 and adding a new node reflecting this operation in the resultant list 
P1 + P2. We present below the crux of the procedure. 

Here, P1 and P2 are the starting pointers of the singly linked lists representing 
polynomials P1 and P2. Additionally, PTR1 and PTR2 are two temporary pointers 
initially set to P1 and P2, respectively. 

 
 

if (EXPONENT(PTR1) = EXPONENT(PTR2)) then  
           /*  PTR1 and PTR2 point to like terms */ 
 
if (COEFF(PTR1) + COEFF(PTR2)) ≠ 0 then 
  {Call GETNODE(X); 

   /* Perform the addition of terms and include  the 
     result node as the last  node of list P1 + P2*/ 

   COEFF(X) = COEFF(PTR1) + COEFF(PTR2); 
   EXPONENT(X)=EXPONENT(PTR1); 
                             /*or EXPONENT(PTR2)*/ 
   LINK(X) = NIL; 

   Add node X as the last node of the list P1 + P2
; 

   } 

if  (EXPONENT(PTR1) <  EXPONENT(PTR2))  then 
   /* PTR1 and PTR2 do not point to like terms */ 

       /* Duplicate  the node representing the     
highest power(i.e.) EXPONENT (PTR2) and 

          insert it as the last node in P1 + P2*/ 

    {Call GETNODE(X); 
     COEFF(X) = COEFF(PTR2); 
     EXPONENT(X) = EXPONENT(PTR2); 
     LINK(X) = NIL; 
     Add node X as the last node of list  P1 + P2; 
     } 
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If any one of the lists during the course of the addition of terms has exhausted its 
nodes earlier than the other list, then the nodes of the other list are simply appended 
to list P1 + P2 in the order of their occurrence in their original list. 

In the case of polynomials of two variables x and y or three variables x, y, and z, 
the node structures are as shown in Figure 6.31. 

 

Figure 6.31. Node structures of polynomials in two/three variables 

Here, COEFFICIENT refers to the coefficient of the term in the polynomial 
represented by the node. EXPONENT X, EXPONENT Y and EXPONENT Z are 
the exponents of variables x, y and z, respectively. 

6.8.2. Sparse matrix representation 

The concept of sparse matrices is discussed in Chapter 3. An array representation 
for the efficient representation and manipulation of sparse matrices is discussed in 
section 3.5.1. In this section, we present a linked representation for the sparse matrix 
as an illustration of a multiply linked list. 

if  (EXPONENT (PTR1) > EXPONENT (PTR2)) then 
/* PTR1 and PTR2 do not point to like terms. Hence
duplicate the node   representing the highest power
(i.e.) EXPONENT(PTR1) and insert it as the last node of
P1 + P2*/  
   { Call GETNODE(X); 
     COEFF(X) = COEFF(PTR1); 
     EXPONENT(X) = EXPONENT(PTR1); 
     LINK(X) = NIL; 
     Add node X as the last node of list P1 + P2; 
   } 
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Figure 6.32. A sparse matrix and the node  
structure for its representation as a multiply linked list 

 

Figure 6.33. Multiply linked representation of  
the sparse matrix shown in Figure 6.32(a) 

Consider the sparse matrix shown in Figure 6.32(a). The node structure for the 
linked representation of the sparse matrix is shown in Figure 6.32(b). Each non-zero 
element of the matrix is represented using the node structure. Here, the ROW, COL 
and DATA fields record the row, column and value of the non-zero element in the 
matrix. The RIGHT link points to the node holding the next non-zero value in the 
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same row of the matrix.  DOWN link points to the node holding the next non-zero 
value in the same column of the matrix. Thus, each non-zero value is linked to its 
rowwise and columnwise non-zero neighbors. The linked representation therefore 
ignores representing the zeros in the matrix. 

Now, each of the fields connects together to form a singly linked list with a head 
node. Thus, all the nodes representing non-zero elements of a row in the matrix link 
themselves (through RIGHT LINK) to form a singly linked list with a head node. 
The number of such lists is equal to the number of rows in the matrix that contain at 
least one non-zero element. Similarly, all the nodes representing the non-zero 
elements of a column in the matrix link themselves (through the DOWN link) to 
form a singly linked list with a head node. The number of such lists is equal to the 
number of columns in the matrix that contain at least one non-zero element. 

All the head nodes are also linked together to form a singly linked list. The head 
nodes of the row lists have their COL fields as zero, and the head nodes of the 
column lists have their ROW fields as zero. The head node of all head nodes, 
indicated by START, stores the dimension of the original matrix in its ROW and 
COL fields. Figure 6.29 shows the multiply linked list representation of the sparse 
matrix shown in Figure 6.28(a).  

 
 

ADT for links 

Data objects: 
 Addresses of the nodes holding data and links 
 
Operations: 

− Allocate node (address X)  from Available Space to
accommodate data 
GETNODE (X) 

− Return node (address X) after use to   Available
Space 
RETURN(X) 

− Store a  value of one link variable LINK1 to
another link variable LINK2 
STORE_LINK (LINK1, LINK2) 

− Store  ITEM into  a node whose address is X 
STORE_DATA (X, ITEM) 

− Retrieve  ITEM from  a node whose address is X 
RETRIEVE_DATA (X, ITEM) 
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ADT for Singly Linked Lists 

Data objects: 
 A list of nodes each holding  one (or more) data
field(s) DATA and a  single link field LINK. LIST points
to the start node of the list. 

Operations: 
– Check if  list LIST is empty 
  CHECK_LIST_EMPTY (LIST)  (Boolean function) 
– Insert ITEM into the list LIST as the first 

     element                                
     INSERT_FIRST (LIST, ITEM) 

– Insert ITEM into the list LIST as the last  element 
     INSERT_LAST (LIST, ITEM) 

– Insert ITEM into the list LIST in order 
     INSERT_ORDER (LIST, ITEM) 

– Delete the first node from the  list LIST 
     DELETE_FIRST(LIST) 

– Delete the last  node from the  list LIST 
     DELETE_LAST(LIST) 

– Delete ITEM from the  list LIST    
     DELETE_ELEMENT (LIST, ITEM) 

– Advance Link to traverse down the list 
     ADVANCE_LINK (LINK) 

– Store ITEM into a node whose address is X 
     STORE_DATA(X, ITEM) 

– Retrieve data of a node whose address is X  and
return it in ITEM 

     RETRIEVE_DATA(X, ITEM) 
– Retrieve link of a node whose address is X and

return the value in LINK1 
     RETRIEVE_LINK (X, LINK1) 
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6.9. Illustrative problems 

PROBLEM 6.1.– 

Write a pseudo-code procedure to insert NEW_DATA as the first element in a 
singly linked list T. 

Summary 

– Sequential data structures suffer from the drawbacks of inefficient implementation of 
insert/delete operations and inefficient use of memory. 

– A linked representation serves to rectify these drawbacks. However, it calls for the 
implementation of mechanisms such as GETNODE(X) and RETURN(X) to reserve a node 
for use and return the same to the free pool after use, respectively. 

– A singly linked list is the simplest of a linked representation with one  or more data 
fields, but with a single link field in its node structure that  points to its successor. 
However, such a list has lesser flexibility and does not aid in an elegant performance of 
operation such as deletion. 

– A circularly linked list is an enhancement of the singly linked list representation, in 
that the nodes are circularly linked. This not only provides better flexibility, but also results 
in a better rendering of the delete operation. 

– A doubly linked list has one or more data items fields, but two links LLINK and 
RLINK pointing to the predecessor and successor of the node, respectively. Though the list 
exhibits the advantages of greater flexibility and efficient delete operation, it suffers from 
the drawback of increased storage requirement for the node structure in comparison to 
other linked representations. 

– A multiply linked list is a linked representation with one or more data item fields and 
multiple link fields. A multiply linked list in its simplest form may represent a cluster of 
singly linked lists networked together. 

– Unrolled linked lists are variants of linked lists that combine the best features of the 
array data structure with those of the linked list data structure. 

– Self-organizing lists favor efficient handling of frequent data retrievals. 

– The addition of polynomials and linked representation of a sparse matrix are two 
applications of linked lists. 
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Solution: 

We shall write a general procedure that will take care of the cases: 

i) T is initially empty; 

ii) T is non-empty. 

The logical representation of list T before and after the insertion of NEW_DATA 
for the two cases listed above is shown in Figure P6.1. 

 

Figure P6.1. Insertion of NEW_DATA as the first element in a singly linked list T 

The general procedure in pseudo-code: 

       procedure INSERT_SL_FIRST(T, NEW-DATA) 
  Call GETNODE(X); 
            DATA(X) = NEW_DATA; 
  if (T = NIL) then { LINK(X) = NIL; } 
   else {LINK(X) = T;} 
       T:= X; 
       end INSERT_SL_FIRST. 

PROBLEM 6.2.– 

Write a pseudo-code procedure to insert NEW_DATA as the k𝑡ℎ element in a 
non-empty singly linked list T. 

Solution: 

The logical representation of list T before and after the insertion of NEW_DATA 
as the kth element in the list is shown in Figure P6.2. 
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Figure P6.2. Insertion of NEW_DATA as the kth  
element in a non-empty singly linked list T 

The pseudo-code procedure is as follows: 

        procedure INSERT_SL_K (T, k, NEW_DATA) 
   Call GETNODE(X); 
   DATA(X) = NEW_DATA; 
   COUNT = 1; 
        TEMP = T; 
   while (COUNT  ≠ k) do 
     PREVIOUS_PTR = TEMP;/* Remember the address of 
             the predecessor node */ 
     TEMP = LINK(TEMP); /* TEMP slides down 
                                         the list */ 
     COUNT = COUNT + 1; 
        endwhile 
   LINK(PREVIOUS_PTR) = X; 
        LINK(X)= TEMP; 
    end INSERT_SL_K 

PROBLEM 6.3.– 

Write a pseudo-code procedure to delete the last element of a singly linked list T. 

Solution: 

The logical representation of list T before and after deletion of the last element is 
shown in Figure P6.3. 
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Figure P6.3. Deletion of last element in a singly linked list T 

The pseudo-code procedure is given as 

procedure DELETE_LAST(T) 
   if (T = NIL) then   {call ABANDON_DELETE;} 
   else 
    { TEMP = T 
 while (LINK(TEMP)  ≠ NIL) 
          PREVIOUS_PTR = TEMP; /*slide down the list in 
                           search of the last node */ 
      TEMP = LINK(TEMP); 
      endwhile 
 LINK(PREVIOUS_PTR) = NIL; 
     call RETURN(TEMP); 
    } 
end DELETE_LAST. 

PROBLEM 6.4.– 

Write a pseudo-code procedure to count the number of nodes in a circularly 
linked list with a head node, representing a list of positive integers. Store the count 
of nodes as a negative number in the head node. 

Solution: 

Let T be a circularly linked list with a head node, representing a list of positive 
integers. The logical representation of an example list T after execution of the 
pseudo-code procedure is shown in Figure P6.4. 
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Figure P6.4. Calculation of length of a circularly linked list T with a head node 

The pseudo-code procedure is as follows: 

            procedure LENGTH_CLL(T) 
   COUNT = 0; 
   TEMP = T; 
   while (LINK(TEMP) ≠ T) 
  TEMP = LINK(TEMP); 
  COUNT = COUNT + 1; 
        endwhile 
   DATA(T) = - COUNT; 
     end LENGTH_CLL. 

PROBLEM 6.5.– 

For the circular doubly linked list T with a head node shown in Figure P6.5 with 
pointers X, Y, Z as illustrated, write a pseudo-code instruction to 

i) express the DATA field of NODE 5; 

ii) express the DATA field of NODE 1 referenced from head node T; 

iii) express the left link of NODE 1 as referenced from NODE 2; 

iv) express the right link of NODE 4 as referenced from NODE 5. 



Linked Lists     187 

 

Figure P6.5. A circular doubly linked list T with a head node 

Solution: 

i) DATA (Z); 

ii) DATA (RLINK(T)); 

iii) LLINK(LLINK(X)); 

iv) RLINK(LLINK(Z)). 

PROBLEM 6.6.– 

Given the circular doubly linked list of Figure P6.6(a), fill up the missing values 
in the DATA fields marked “?” using the clues given. 

 

Figure P6.6(a) A circular doubly linked list T with missing DATA field values 

i) DATA(B) = DATA(LLINK(RLINK(A)) + DATA(LLINK(RLINK(T))); 

ii) DATA(LLINK(B)) = DATA(B) + 10; 

iii) DATA (RLINK(RLINK(B)) = DATA(LLINK(LLINK(B))). 
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Solution: 

i) DATA(B) = DATA(A) + DATA(T) 

(LLINK(RLINK(A)) = A and LLINK(RLINK(T))= T) 

= 24 + 46 

= 70 

ii) DATA (LLINK(B)) = DATA(B) + 10 

= 70 + 10 

=  80 

iii) DATA (RLINK(RLINK(B))) = DATA(A) 

= 24 

(LLINK(LLINK(B)) = A) 

The updated list T is shown in Figure P6.6(b). 

 

Figure P6.6(b) Updated circular doubly linked list T 

PROBLEM 6.7.– 

In a programming language (Pascal), the declaration of a node in a singly linked 
list is shown in Figure P6.7(a). The list referred to for the problem is shown in 
Figure P6.7(b). Given P to be a pointer to a node, the instructions DATA(P) and 
LINK(P) referring to the DATA and LINK fields, respectively, of node P are 
equivalently represented by P↑. DATA and P↑. LINK in the programming language. 

What do the following commands do to the logical representation of the list T? 
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 TYPE 
  POINTER = ↑NODE; 
  NODE = RECORD 
     DATA: integer; 
     LINK: POINTER 
  END; 
 VAR P, Q R:  POINTER 

(a) Declaration of a node in a singly linked list T 

 
(b)   A singly linked list T 

Figure P6.7. (a and b) Declaration of a node in a programming  
language and the logical representation of a singly linked list T 

i)   P↑.DATA:= Q↑.DATA + R↑.DATA 
ii)  Q: = P 

iii) R↑.LINK: = Q 
iv)  R↑.DATA:=  Q↑.LINK↑.DATA + 10 

Solution: 

The logical representation of list T after every command is shown in Figures 
P6.7(c–f). 

i) P↑.DATA:=   Q↑.DATA + R↑.DATA 

P↑.DATA:=      57 + 91 = 148 

ii) Q:=P 

Here, Q is reset to point to the node pointed to by P. 

iii) R↑.LINK:= Q 
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The link field of node R is reset to point to Q. In other words, the list T turns into 
a circularly linked list! 

iv) R↑.DATA:= Q↑.LINK.DATA + 10  

: = 57 + 10  

:= 67 

 

Figure P6.7. (c–f) Logical representation of list T after  
execution of commands (i)–(iv) of illustrative problem 6.7 

PROBLEM 6.8.–  

Given the logical representations of a list T and the update in its links as shown 
in Figures P6.8(i)–(iii), write a one-line instruction that will affect the change 
indicated. The solid lines in the figures indicate the existing pointers, and the broken 
lines indicate the updated links. 
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Figure P6.8. Logical representations of a list T and the updated links  

Solution: 

i) RLINK (RLINK(X)) = NIL 

or 

 RLINK(LLINK(T)) = NIL 

ii) LINK(LINK(Y)) = T 

iii) RLINK(T) = RLINK(RLINK(T)) 

PROBLEM 6.9.– 

Reverse a singly linked list by changing the pointers of the nodes. The data 
represented by the list should continue to remain in the same nodes of the original 
list. 

For example, given a singly linked list START, as shown in Figure P6.9(a), the list 
needs to be reversed, as shown in Figure P6.9(b), by manipulating the links alone. 
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(a) Original singly linked with ai indicating address of node 

 
(b) Reversed singly linked list 

Figure P6.9. Reversing a singly linked list by manipulating links 

Solution: 

We make use of three link variables, namely, PREVIOUS, CURRENT and 
NEXT, to manipulate the links. The following pseudo-code undertakes the reversal 
of the list by working on the links of the nodes with the help of the three variables 
that traverse down the list while chasing one another and remembering/manipulating 
links in the process. 

PREVIOUS = NIL 
CURRENT = START 
NEXT = LINK(CURRENT) 
LINK(CURRENT) = NIL 
while (NEXT ≠ NIL) 

PREVIOUS = CURRENT 
CURRENT = NEXT 
NEXT = LINK (NEXT) 
LINK(CURRENT) = PREVIOUS 

end while 
START = CURRENT 

PROBLEM 6.10.– 

Given a singly linked list L, where x and y are two data elements that occupy the 
nodes NODEX and NODEY with PREVIOUSX as the node, which is the previous 
node of NODEX, write a pseudo-code to swap the date x and y in list L by 
manipulating the links only (data swapping is not allowed). Assume that x and y are 
available in the list and are neither neighbors nor the end nodes of list L. 

START 

START 

A 
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For example, given the list L shown in Figure P6.10(a), with L, NODEX, 
NODEY and PREVIOUSX marked on it, the swapping should yield the list shown 
in Figure P6.10(b). NODEX and NODEY are neither immediate neighbors nor the 
end nodes of list L. 

 

(a) Before swapping g and x 

 
(b) After swapping g and x 

Figure P6.10. Swapping of elements in  
a singly linked list by manipulating links 

Solution: 

The following pseudo-code effects the swapping of x and y without undertaking 
data swapping and only manipulating the links. 

TEMP = NODEX 
NEXTX = LINK(NODEX) 
while (TEMP ≠ NODEY) 

PREVIOUSY = TEMP 
TEMP=LINK(TEMP) 

end while 
NEXTY = LINK(NODEY) 
LINK(PREVIOUSX) = NODEY 
LINK(NODEY) = NEXTX 
LINK(PREVIOUSY) = NODEX 
LINK(NODEX) = NEXTY 

PROBLEM 6.11.– 

Given a singly linked list L, devise a method to signal true if list L has a cycle 
and false otherwise. A cycle is spotted when the link of a node points to a node that 

PREVIOUS X NODE X NODE Y 

PREVIOUS X NODE Y NODE X
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was already visited while traversing down the list from its start node. Figure P6.11 
shows an example list L with a cycle. 

 

Figure P6.11. A singly linked list with a cycle 

Solution: 

One method to spot a cycle in a list is to maintain an array VISITED, initialized 
to 0 for the nodes in the list. Every time a new node is encountered during the 
traversal, whose VISITED flag is 0, the VISITED flag for the node is set to 1. If at 
any point, the LINK of a node leads to a node whose VISITED flag is already set to 
1, then it means the list L has a cycle. In such a case, the check terminates with a 
true signal. On the other hand, if the VISITED flag checking/resetting to 1 proceeds 
smoothly until the end of the list is reached, then there is no cycle, and hence, the 
signal is set to false. 

PROBLEM 6.12.– 

Create an unrolled linked list with the minimum level of storage utilization fixed 
to 2 and the size of the array in the node to be 4, using the data elements 56, 65, 76, 
79, 84. Demonstrate the following operations: Insert 95, 98. Delete 79. 

Solution: 

Figure P6.12 illustrates the creation of the unrolled linked list and the execution 
of the insert and delete operations listed. 
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(a) Creation of the unrolled linked list for [56, 65, 76, 79, 84] 

 
(b) Insert 95, 98  

 
(c) Delete 79 

Figure P6.12. Creation of an unrolled linked  
list and demonstration of insert/delete operations 

Review questions 

The following is a snap shot of a memory that stores a circular doubly linked list 
TENNIS_STARS that is head node free. Answer questions 1–3 with regard to the 
list. 

 
 LLINK DATA RLINK 

1 9 Sabatini 4 
2 6 Graf 5 
3 2 Navaratilova 8 
4 1 Mirza 7 
5 2 Nirupama 6 
6 5 Chris 2 
7 9 Myskina 3 
8 8 Hingis 1 
9 1 Mandlikova 9 

TENNIS_STARS  2 

T  
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1) The number of data elements in the list TENNIS_STARS is 

a) 3  b) 2  c) 5  d) 9 

2) The successor of “Graf” in the list TENNIS_STARS is 

a) Navaratilova b) Sabatini c) Nirupama d) Chris 

3) In the list TENNIS_STARS, DATA( RLINK(LLINK(5))) = -------- 

a) Mirza b) Graf      c) Nirupama d) Chris 

4) Given the singly linked list T shown in the illustration below, the following 
code inserts the node containing the data “where_am_i” 

 

 T = LINK(T) 
 P = LINK(LINK(T)) 
 GETNODE(X) 
 DATA(X) = “where_am_i” 
 LINK(X) = P 
 LINK(LINK(T))= X 

a) Between NODE 1 and NODE 2 b) Between NODE 2 and NODE 3 

c) Between NODE 3 and NODE 4 d) After NODE 4 

5) For the singly linked list T shown above, after deletion of NODE 3, 
DATA(LINK(LINK(T))) = ––––––––––- 

a) I  b) AM  c) HERE d) ALWAYS 

6) What is the need for linked representations of lists? 

7) What are the advantages of circular lists over singly linked lists? 

8) What are the advantages and disadvantages of doubly linked lists over singly 
linked lists? 

9) What is the use of a head node in a linked list? 
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10) What are the conditions for testing whether a linked list T is empty, if T is a        
(i) simple singly linked list, (ii) headed singly linked list, (iii) simple circularly 
linked list or (iv) headed circularly linked list? 

11) Sketch a multiply linked list representation for the following sparse matrix: 

൦−9 0 0 00 0 0 00 5 0 20 7 0 5൪  

12) Demonstrate the application of singly linked lists for the addition of the 
polynomials P1 and P2 given below: 

P1: 19𝑥଺ + 78𝑥ସ + 6𝑥ଷ − 23𝑥ଶ − 34 

P2: 67𝑥଺ + 89𝑥ହ − 23𝑥ଷ − 75𝑥ଶ − 89𝑥 − 21 

13) Modify the pseudo-code shown in illustrative problem 6.10, wherever 
needed, to handle the cases (i) NODEX and NODEY are immediate neighbors, and 
(ii) NODEX and NODEY are not immediate neighbors, but are end nodes of list L. 

14) Write a pseudo-code that will perform insert/deletion operations on an 
unrolled linked list, as explained in sections 6.6.2 and 6.6.3. 

15) Demonstrate a self-organizing list on the following keywords of a 
programming language stored as a doubly linked list, when the given list of 
retrievals is undertaken over the list. 

Show how the list reorganizes itself when (i) count, (ii) move to front and (iii) 
transpose methods are employed. Tabulate the comparisons undertaken for the three 
methods, while retrieving the keyword if, every time it is called in the order given. 

List:  exit and for while if repeat else 

Retrievals: if if if if else repeat while if if if 

Programming assignments 

1) Let X = (𝑥ଵ, 𝑥ଶ, … 𝑥௡), Y = (𝑦ଵ, 𝑦ଶ, … 𝑦௡ ) be two lists with a sorted 
sequence of elements. Execute a program to merge the two lists together as a list Z 
with m + n elements. Implement the lists using singly linked list representations. 
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2) Execute a program that will split a circularly linked list P with n nodes into 
two circularly linked lists P1, P2 with the first n/2 and the last n – n/2  nodes of 
the list P in them. 

3) Write a menu driven program which will maintain a list of car models, their 
price, name of the manufacturer, engine capacity, etc., as a doubly linked list. The 
menu should make provisions for inserting information pertaining to new car 
models, delete obsolete models, update data such as price, in addition to answering 
queries such as listing all car models within a price range specified by the client and 
listing all details, given a car model. 

4) Students enrolled for a diploma course in computer science opt for two  
theory courses, an elective course and two laboratory courses, from a list of courses 
offered for the programme. Design a multiply linked list with the following node 
structure: 

ROLLNO NAME THEORY1 THEORY2 LABORATORY1 ELECTIVE 

LABORATORY2 

A student may change their elective course within a week of enrollment.  
At the end of the period, the department takes into account the number of students 
who have enrolled for a specific course in the theory, laboratory and elective 
options. 

Execute a program to implement the multiply linked list with provisions to insert 
nodes, update information, and generate reports as needed by the department. 

5) [Topological Sorting] The problem of topological sorting is to arrange a set 
of objects {𝑂ଵ, 𝑂ଶ, … 𝑂௡ } obeying rules of precedence into a linear sequence such 
that whenever Oi precedes Oj, we have i < j. The sorting procedure has wide 
applications in PERT, linguistics, network theory, etc. Thus, when a project 
comprises a group of activities observing precedence relations among themselves, it 
is convenient to arrange the activities in a linear sequence to effectively execute the 
project. 

Again, as another example, while designing a glossary for a book, it is essential 
that the terms Wi are listed in a linear sequence such that no term is used before  
it has been defined. The illustration below shows the topological sorting of a 
network. 
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A simple way to perform topological sorting is to look for objects that are not 
preceded by any other objects and release them into the output linear sequence. 
Remove these objects and continue the same with other objects of the network until 
the entire set of objects have been released into the linear sequence. However, 
topological sorting fails when the network has a cycle. In other words, if Oi precedes 
Oj and Oj precedes Oi, the procedure is stalled. 

Design and implement an algorithm to perform topological sorting of a sequence 
of objects using a linked list data structure. 

6) Write a program FRONTBACK that splits a doubly linked list START with n 
nodes into two sublists FRONT and BACK, where FRONT points to the ቒ௡ଶቓ nodes 
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occupying the front of the original list and BACK points to the remaining nodes at 
the back end of START, but points to the node that is the last in the list. 

7) Write a program REMOVE_DUPLICATES that will remove duplicate 
elements in a list L that occur consecutively. The program should return the list with 
its elements in the same order of their appearance in the original list, but with the 
consecutive duplicate elements removed. 

For example, for a list with elements {A, B, C, C, C, C, D, D, E, F, F}, the 
output list produced by REMOVE_DUPLICATES should be {A, B, C, D, E, F}. 

8) Write a menu-driven program to create an unrolled linked list and retrieve, 
insert and delete an element from it. You may take liberties with the operations 
while implementing them. 

9) Implement a self-organizing list by creating a singly linked list of nodes and 
undertaking frequent retrievals of data in the list repeatedly and at random. Show 
how the list restructures itself when (i) count, (ii) move to front and (iii) transpose 
methods are used for the same set of frequent retrievals. 



7 

Linked Stacks and Linked Queues 

In Chapters 4 and 5, we discussed a sequential representation of the stack and 
queue data structures. Stacks and queues were implemented using arrays and hence 
inherited all the drawbacks of the sequential data structure. 

In this chapter, we discuss the representation of stacks and queues using a  
linked representation, namely, singly linked lists. The inherent merits of the linked 
representation render an efficient implementation of the linked stack and linked 
queue. 

We first define a linked representation of the two data structures and discuss the 
insert/delete operations performed on them. The role played by the linked stack in 
the management of the free storage pool is detailed. The applications of linked 
stacks and linked queues in the problems of balancing symbols and polynomial 
representation, respectively, are discussed later. 

7.1. Introduction 

To review, a stack is an ordered list with the restriction that elements are added 
or deleted from only one end of the stack termed the top of stack with the “inactive” 
end known as the bottom of stack. A stack observes the Last-In-First-Out (LIFO) 
principle and has its insert and delete operations referred to as Push and Pop, 
respectively. 

The drawbacks of a sequential representation of a stack data structure are as 
follows: 

i) finite capacity of the stack; 
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ii) check for the STACK_FULL condition every time a Push operation is 
effected. 

A queue, on the other hand, is a linear list in which all insertions are made at one 
end of the list known as the rear end and all deletions are made at the opposite end 
known as the front end. The queue observes a First-In-First-Out (FIFO) principle, 
and the insert and delete operations are known as enqueuing and dequeuing, 
respectively. 

The drawbacks of a sequential representation of a queue are as follows: 

i) finite capacity of the queue; and 

ii) checking for the QUEUE_FULL condition before every insert operation is 
executed, both in the case of a liner queue and a circular queue. 

We now discuss linked representations of a stack and a queue. 

7.1.1. Linked stack 

A linked stack is a linear list of elements commonly implemented as a singly 
linked list whose start pointer performs the role of the top pointer of a stack. Let     
a, b, c be a list of elements. Figures 7.1(a–c) show the conventional, sequential and 
linked representations of the stack. 

 

Figure 7.1. Stack and queue representations  
(conventional, sequential and linked) 

Top

Top 

Top 

a 
b 
c 

(a) Conventional representation of stack

a b  c 

(b) Sequential representation of stack

c  b  a

(c) Linked representation of stack

a     b     c

Front Rear

(d) Conventional representation of a queue 

Rear

a b c

Front

(e) Sequential representation of a queue 

Front
a b c

Rear 

(f) Linked representation of a queue
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Here, the start pointer of the linked list is appropriately renamed Top to suit the 
context. 

7.1.2. Linked queues 

A linked queue is also a linear list of elements commonly implemented as a 
singly linked list but with two pointers, namely, front and rear. The start pointer of 
the singly linked list plays the role of front, while the pointer to the last node is set to 
play the role of rear. 

Let a, b and c be a list of three elements to be represented as a linked queue. 
Figures 7.1(d–f) show the conventional, sequential and linked representations of the 
queue. 

7.2. Operations on linked stacks and linked queues 

In this section, we discuss the insert and delete operations performed on the 
linked stack and linked queue data structures and present algorithms for the same. 

7.2.1. Linked stack operations 

 
(a) Push operation                                                                    (b) Pop operation 

Figure 7.2. Push and pop  
operations on a linked stack S 

Top 
c  b  a

Linked stack S 

Push ‘d’ into  S 

Top
c b a  

Linked stack S

Top
c b a  

Top 

c  b  ad  

Top Top

Pop from  S

Linked Stack S after ‘d’ is 
pushed into it 

Linked Stack S after ‘c’ is 
popped out  from it 
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To push an element into the linked stack, we insert the node representing the 
element as the first node in the singly linked list. The Top pointer, which points to 
the first element in the singly linked list, is automatically updated to point to the new 
top element. In the case of a pop operation, the node pointed to by the Top pointer  
is deleted, and Top is updated to point to the next node as the top element.  
Figures 7.2(a) and (b) illustrate the push and pop operation on a linked stack S, 
respectively. 

Observe how during the push operation, unlike sequential stack structures, there 
is no need to check for the STACK-FULL condition due to the unlimited capacity of 
the data structure. 

7.2.2. Linked queue operations 

To insert an element into the queue, we insert the node representing the element 
as the last node in the singly linked list for which the REAR pointer is reset to point 
to the new node as the rear element of the queue. To delete an element from the 
queue, we remove the first node of the list for which the FRONT pointer is reset to 
point to the next node as the front element of the queue. Figures 7.3(a) and (b) 
illustrate the insert and delete operations on a linked queue, respectively. 

 
(a) Insert operation                                                               (b) Delete operation 

Figure 7.3. Insert and delete operations on the linked queue Q 

The insert operation, unlike insertion in sequential queues, does not exhibit the 
need to check for the QUEUE_FULL condition due to the unlimited capacity of the 
data structure. The introduction of circular queues to annul the drawbacks of the 
linear queues now appears superfluous in light of the linked representation of 
queues. 

Rear Rear

a  b  c

Linked queue Q 

Insert ‘d’ into Q  

b  c  da  

Front 

Front 

Rear

a b c  

Front
Rear 

Linked queue Q 

Delete from Q 

a b c  

Front
Rear Front
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Both linked stacks and queues could be represented using a singly linked list 
with a head node. Additionally, they could be represented as a circularly linked list 
provided that the fundamental principles of LIFO and FIFO are strictly maintained. 

We now present the algorithms for the operations discussed in linked stacks and 
linked queues. 

7.2.3. Algorithms for Push/Pop operations on a linked stack 

Let S be a linked stack. Algorithms 7.1 and 7.2 illustrate the push and pop 
operations to be carried out on stack S. 

 

Algorithm 7.1. Push item ITEM into a linked stack S with top pointer TOP 

Note the absence of the STACK_FULL condition. The time complexity of a 
push operation is 𝑂(1). 

 

Algorithm 7.2. Pop from a linked stack S and output the element through ITEM 

procedure POP_LINKSTACK(TOP, ITEM) 
/* pop element from stack and set ITEM to the element */ 

  if (TOP = 0) then call LINKSTACK_EMPTY 
    /* check if linked stack is empty */ 
  else  { TEMP = TOP 
     ITEM = DATA(TOP) 
     TOP  = LINK(TOP) 
   } 
  call  RETURN(TEMP) ; 
 
end POP_LINKSTACK. 

procedure PUSH_LINKSTACK (TOP, ITEM) 
/* Insert ITEM into stack */ 
 
   Call GETNODE(X) 

   DATA(X) = ITEM   /*frame node for ITEM */ 
   LINK(X) = TOP   /* insert node X into stack */ 
   TOP = X         /* reset TOP pointer */  
 
end PUSH_LINKSTACK. 
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The time complexity of a pop operation is 𝑂(1). Example 7.1 illustrates the push 
and pop operation on a linked stack. 

EXAMPLE 7.1.– 

Consider the stack DEVICE of peripheral devices illustrated in example 4.1.  
We implement the same as a linked stack. The insertion of PEN, PLOTTER, 
JOYSTICK and PRINTER and a deletion operation are illustrated in  
Table 7.1. We assume the list to be initially empty and Top to be the top pointer of 
the stack. 

7.2.4. Algorithms for insert and delete operations in a linked queue 

Let Q be a linked queue. Algorithms 7.3 and 7.4 illustrate the insert and delete 
operations on the queue Q. 

 

Algorithm 7.3. Insert item ITEM into a linear queue Q with  
FRONT and REAR as the front and rear pointers to the queue 

Observe the absence of the QUEUE_ FULL condition in the insert procedure. 
The time complexity of an insert operation is 𝑂(1). 

procedure INSERT_LINKQUEUE(FRONT,REAR,ITEM) 
   Call GETNODE (X); 

   DATA(X)= ITEM; 
   LINK(X)= NIL;   /* Node with ITEM is ready to 

                      be inserted into Q */  
   if (FRONT = 0)  then FRONT = REAR = X; 

        /* If Q is empty then ITEM is the first 
                         element in the queue Q */ 
   else {LINK(REAR) = X; 

         REAR = X 
        } 

end INSERT_LINKQUEUE. 



 

Stack operation Stack DEVICE before operation Algorithm invocation Stack DEVICE after operation Remarks 

1) Push ‘PEN’ 
into DEVICE  

PUSH_LINKSTACK 
(Top, ‘PEN’) 

Set Top to point to 
the first node. 

2) Push 
‘PLOTTER’ 
into DEVICE 

PUSH_LINKSTACK 
(Top, ‘PLOTTER’) 

Insert PLOTTER as 
the first node and 

reset Top. 

3) Push 
‘JOYSTICK’ 
into DEVICE 

 

PUSH_LINKSTACK 
(Top, ‘JOYSTICK’) 

Insert JOYSTICK 
as the first node and 

reset Top. 

4) Pop from 
DEVICE 

POP_LINKSTACK 
(Top, ITEM) 

Return the first node 
and reset Top. 

5) Push 
‘PRINTER’ 
into DEVICE 

 

POP_LINKSTACK 
(Top, ‘PRINTER’) 

Insert PRINTER as 
the first node and 

reset Top. 

Table 7.1. Insert and delete operations on linked stack DEVICE

‘PLOTTER’ 

‘PRINTER’ 

‘PEN’ 

Top 

‘PEN’ 

‘PLOTTER’ 

Top 

‘PEN’

‘PLOTTER’

ITEM = ’JOYSTICK’ 

‘JOYSTICK’
Top 

‘PLOTTER’

‘PEN’ 

‘JOYSTICK’ 
Top 

‘PLOTTER’

‘PEN’

Top 

‘PEN’ 

‘PLOTTER’ 

Top 

‘PEN’ 

‘PLOTTER’Top 

‘PEN’ 

Top 
‘PEN’ 

Top 

Top 
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Algorithm 7.4. Delete element from the linked queue Q through  
ITEM with FRONT and REAR as the front and rear pointers 

The time complexity of a delete operation is 𝑂(1). Example 7.2 illustrates the 
insert and delete operations on a linked queue. 

EXAMPLE 7.2.– 

Consider the queue BIRDS illustrated in example 5.1. The insertion of DOVE, 
PEACOCK, PIGEON and SWAN, and two deletions are shown in Table 7.2. 

Owing to the linked representation, there is no limitation on the capacity of  
the stack or queue. In fact, the stack or queue can hold as many elements as the 
storage memory can accommodate! This dispenses with the need to check for 
STACK_FULL or QUEUE_FULL conditions during push or insert operations, 
respectively. 

The merits of linked stacks and linked queues are therefore: 

i) the conceptual and computational simplicity of the operations; 

ii) nonfinite capacity. 

The only demerit, if at all, is the requirement of additional space that is needed to 
accommodate the link fields. 

procedure DELETE_LINKQUEUE (FRONT,ITEM) 
 
   if (FRONT = 0) then call LINKQUEUE_EMPTY; 

   /* Test condition to avoid deletion in an empty 
      queue */ 
   else   {TEMP = FRONT; 

    ITEM = DATA (TEMP); 
    FRONT = LINK (TEMP); 
   } 
   call RETURN (TEMP);  /* return the node TEMP to 

                           the free pool */ 
end DELETE_LINKQUEUE. 
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7.3. Dynamic memory management and linked stacks 

Dynamic memory management addresses methods of allocating storage and 
recycling unused space for future use. The automatic recycling of dynamically 
allocated memory is also known as garbage collection. 

If the memory storage pool is thought of as a repository of nodes, then dynamic 
memory management primarily revolves around the two actions of allocating nodes 
(for use by the application) and liberating nodes (after their release by the 
application). Several intelligent strategies for the efficient allocation and liberation 
of nodes have been discussed in the literature. However, we have chosen to discuss 
this topic from the perspective of a linked stack application. 

 Every linked representation, which makes use of nodes to accommodate data 
elements, executes procedure GETNODE() to obtain the desired node from the  
free storage pool and procedure RETURN() to dispose of the node into the  
storage pool. The free storage pool is also referred to as Available Space 
(AVAIL_SPACE). 

When the application invokes GETNODE(), a node from the available space data 
structure is deleted to be handed over for use by the program, and when RETURN() 
is invoked, the node disposed of by the application is inserted into the available 
space for future use. 

The most commonly used data structure for the management of AVAIL_SPACE 
and its insert/delete operation is the linked stack. The list of free nodes in 
AVAIL_SPACE are all linked together and maintained as a linked stack with a top 
pointer (AV_SP). When GETNODE() is invoked, a pop operation of the linked stack 
is performed, releasing a node for use by the application, and when RETURN() is 
invoked, a push operation of the linked stack is performed. Figure 7.4 illustrates the 
association between the GETNODE() and RETURN() procedures and 
AVAIL_SPACE maintained as a linked stack. 

We now implement the GETNODE() and RETURN() procedures, which in fact 
are nothing but the POP and PUSH operations on the linked stack AVAIL_SPACE. 
Algorithms 7.5 and 7.6 illustrate the implementation of the procedures. 



 
Linked queue 

operation Linked queue before operation Algorithm invocation Linked queue after operation Remarks 

1) Insert ‘DOVE’ 
into BIRDS.  

INSERT_LINKQUEUE 
(Front, Rear, ‘DOVE’) 

 

Since the queue 
BIRDS is empty, 
insert DOVE as the 
first node. Front and 
rear point to the 
node. 

2) Insert 
‘PEACOCK’ into 
BIRDS. 

 

INSERT_LINKQUEUE 
(Front, Rear, 
‘PEACOCK’) 

 

Insert PEACOCK as 
the last node. Reset 
rear pointer. 

3) Insert 
‘PIGEON’ into 
BIRDS. 

INSERT_LINKQUEUE 
(Front, Rear, ‘PIGEON’) 

 

Insert PIGEON as 
the last node. Reset 
rear pointer. 

‘DOVE’ 
Front 

‘PEACOCK’ 

‘PIGEON’ 
Rear 

Front 

‘PEACOCK’ 

‘DOVE’ 

Rear 

Front 

‘PEACOCK’ 

‘DOVE’ 
Front

‘DOVE’ 

Rear

Front 

‘DOVE’ 

Rear 

Rear Front 

Rear 
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4) Delete from 
BIRDS. 

 

DELETE_LINKQUEUE
(Front, Rear, ITEM) 

 

 
 
 
Delete node pointed 
to by front. Reset 
front. 

5) Insert ‘SWAN’  
into BIRDS. 

INSERT_LINKQUEUE 
(Front, Rear, ‘SWAN’) 

 

Insert SWAN as the 
last node. Reset rear.

6) Delete from 
BIRDS. 

 

DELETE_LINKQUEUE
(Front, Rear, ITEM) 

 

Delete node pointed 
to by Front. Reset 
front. 

Table 7.2. Insert and delete operations on a linked queue BIRDS 

Rear 

Front 

‘SWAN’ 

‘PIGEON’ 

ITEM = ‘PEACOCK’ 

‘PEACOCK’ 
Front

‘PIGEON’ 

‘SWAN’ 
Rear 

‘PEACOCK’ 
Front 

‘PIGEON’ 

‘SWAN’ 
Rear Rear 

Front 

‘PIGEON’ 

‘PEACOCK’ 

Rear 

Front 

‘PIGEON’ 

‘PEACOCK’ 

ITEM=’DOVE’ 

‘DOVE’ 
Front

‘PEACOCK’ 

‘PIGEON’ 
Rear 
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AVAIL_SPACE

.  .  .  

GETNODE(X) 

X 

Application 
Available space

(a) Available space before execution of GETNODE () procedure 

.  .  .  .

Y 

Application 

Available space

(b) Available space after execution of GETNODE () procedure

X 

Pop from 
AVAIL_SPACE! 

.  .  .  .

Y 

Application 

Available space

(c) Available space before execution of RETURN () procedure.

X 

RETURN(X) 

AVAIL_SPACE

AVAIL_SPACE

Y
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Figure 7.4. Association between GETNODE () and  
RETURN () procedures and AVAIL _SPACE 

 

Algorithm 7.5. Implementation of procedure GETNODE (X), where  
AV is the pointer to the linked stack implementation of AVAIL_SPACE 

 

Algorithm 7.6. Implementation of procedure RETURN (X), where  
AV is the pointer to the linked stack implementation of AVAIL_SPACE 

 

AVAIL_SPACE 

.  .  .  .

X Y 

Application 

Push  NodeX  
into AVAIL_SPACE! 

(d) Available space after execution of RETURN () procedure.

Available space

procedure RETURN(X) 

   LINK (X)= AV;     /*Push node X into AVAIL_SPACE
and reset AV */ 

   AV = X;  
end RETURN. 

procedure GETNODE(X) 

  if (AV = 0) then call NO_FREE_NODES; 
  /*  AVAIL_SPACE has no free nodes to allocate * / 
  else  
     { X  = AV; 
       AV = LINK (AV); /* Return the address X of the 
     }                     top  node in AVAIL_SPACE */ 
end GETNODE. 
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It is obvious that at a given instance, the adjacent or other nodes in 
AVAIL_SPACE are neighbors that are physically contiguous in the memory but lie 
scattered in the list. This may eventually lead to holes in the memory, leading to 
inefficient use of memory. When variable size nodes are in use, it is desirable to 
compact memory so that all free nodes form a contiguous block of memory. Such a 
thing is termed memory compaction.  

It now becomes essential that the storage manager, for the efficient management 
of memory, every time a node is returned to the free pool, ensures that the 
neighboring blocks of memory that are free are coalesced into a simple block of 
memory to satisfy large requests for memory. This is, however, easier said than 
done. To look for neighboring nodes that are free, a “brute force approach” calls for 
a complete search through the AVAIL_SPACE list before collapsing the adjacent 
free nodes into a single block. 

Allocation strategies, such as the boundary tag method and buddy system 
method (Knuth 1973), with efficient reservation and liberation of nodes have been 
proposed in the literature. 

7.4. Implementation of linked representations 

It is emphasized here that nodes belonging to the reserved pool, that is, nodes 
that are currently in use, coexist with the nodes of the free pool in the same storage 
area. It is therefore not uncommon to have a reserved node having a free node as its 
physically contiguous neighbor. While the link fields of the free nodes, which in its 
simplest form is a linked stack, keep track of the free nodes in the list, the link fields 
of the reserved pool similarly keep track of the reserved nodes in the list. Figure 7.5 
illustrates a naïve scheme of the reserved pool intertwined with the free pool in 
memory storage. 

 

Figure 7.5. The scheme of reserved storage  
pool and free storage pool in the memory storage 

AV START 

:  Reserved Storage pool 

:  Free Storage pool 

AV:       Pointer to AVAIL_SPACE

START: Pointer to a linked  
reserved pool of an application 
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Example 7.3 illustrates the implementation of a linked representation. For 
simplicity, we consider a singly linked list occupying the reserved pool. 

EXAMPLE 7.3.– 

A snapshot of the memory storage is shown in Figure 7.6. The reserved pool 
accommodates a singly linked list (START). The free storage pool of used and 
disposed nodes is maintained as a linked stack with top pointer AV. 

 

Figure 7.6. A snapshot of the memory accommodating a  
singly linked list in its reserved pool and the free storage pool 

 

Figure 7.7. Logical representation of the singly linked  
list and available space shown in Figure 7.6 

22 9

DATA LINK

1 

29 82 

-14 73 
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144 105 

-3 26 

116 07 

43 3 8 

56 59 

34 010 

AV: 6

START: 4

6 2 8 3 7 

36  

START 

22

4 1 

56 144 
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34  

10 

-3  

AV 

29 43 -14 116  
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Note the memory locations AV and START. AV records the address of the first 
node in the free storage pool, and START records the address of the singly linked 
list in the reserved pool. The logical representation of the singly linked list and the 
available space are illustrated in Figure 7.7. 

7.5. Applications 

All applications of linear queues and linear stacks can be implemented as linked 
stacks and linked queues. In this section, we discuss the following problems: 

i) balancing symbols,  

ii) polynomial representation, 

as application of linked stacks and linked queues, respectively. 

7.5.1. Balancing symbols 

An important activity performed by compilers is to check for syntax errors in the 
program code. One such error checking mechanism is the balancing of symbols or, 
specifically, the balancing of parentheses in the context of expressions, which is 
exclusive to this discussion. 

For the balancing of parentheses, every left parenthesis or brace or bracket as 
allowed by the language syntax must have a closing or matching right parenthesis, 
brace or bracket, respectively. Thus, the usage of (), or { } or [ ] are correct, whereas 
(, [, } are incorrect, the former indicative of a balanced occurrence and the latter of 
an imbalanced occurrence in an expression. 

The arithmetic expressions shown in example 7.4 are balanced in parentheses, 
while those listed in example 7.5 are imbalanced forcing the compiler to report 
errors. 

EXAMPLE 7.4.– 

Balanced arithmetic expressions are given as 

i) ((A+B)↑ C – D) + E – F 

ii) (– (A+B) * (C – D)) ↑F 
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EXAMPLE 7.5.– 

Imbalanced arithmetic expressions are given as 

i) (A+B) * – (C+D+F 

ii) – ((A+B+C) * – (E+F))) 

The solution to the problem is an easy but elegant use of a stack to check for 
mismatched parentheses. The general pseudo-code procedure for the problem is 
illustrated in Algorithm 7.7. 

 

Algorithm 7.7. To check for the balance of parentheses in a string 

Appropriate to the discussion, we choose a linked representation for the stack in 
the algorithm. Examples 7.6 and 7.7 illustrate the working of the algorithm on two 
expressions with balanced and unbalanced symbols, respectively. 

procedure BALANCE_ EXPR(E) 
/*E is the expression padded with a $ to indicate end of
input*/ 

 clear stack; 
 while not end_of_string(E) do 

   read character;/* read a character from string E*/ 
   if the character is an open symbol 
   then push character in to stack; 
   if the character is a close symbol 
   then  
       if stack is empty then ERROR () 
  else {pop the stack; 
   if the character popped is not the 

                matching symbol 
             then ERROR(); 

             } 
 endwhile  
 if stack not empty then ERROR(); 
 
end BALANCE_EXPR. 
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EXAMPLE 7.6.– 

Consider the arithmetic expression ((A+B)* C) – D, which has balanced 
parentheses. Table 7.3 illustrates the working of the algorithm on the expression. 

EXAMPLE 7.7.– 

Consider the expression ((A + B) C + G), which has imbalanced parentheses. 
Table 7.4 illustrates the working of the algorithm on the expression. 

7.5.2. Polynomial representation 

In Chapter 6, section 6.8.1, we discussed the problem of the addition of 
polynomials as an application of linked lists. In this section, we highlight the 
representation of polynomials as an application of linear queues. 

Consider a polynomial 9x6 – 2x4 + 3x2 + 4. Adopting the node structure shown in 
Figure 7.8(a) (reproduction of Figure 6.26(a)), the linked list for the polynomial is as 
shown in Figure 7.8(b). 

Input string (E) Stack (S) Remarks 

  

Initialization. Note E 
is padded with $ as 
end of input symbol 

  
Push ‘(’ into S 

  
Push ‘(’ into S 

  
Ignore character ‘A’ 

  
Ignore character ‘+’ 

  
Ignore character ‘B’ (

S 
(

)* C) – D $ 

(
S 

(
B)* C) – D $ 

(
S 

(
+B)* C) – D $ 

(
S 

(
A+B)* C) – D $ 

(
S (A+B)* C) – D $ 

S ((A+B)* C) – D $ 
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Pop symbol from S. 
Matching symbol to 
“)” found. Proceed. 

  
Ignore character ‘*’ 

  
Ignore character ‘C’ 

  

Pop symbol from S. 
Matching symbol to 
‘)’ found. Proceed. 

  
Ignore character ‘–’ 

         $ 
 

Ignore character ‘D’ 

         $ 
 

End of input 
encountered.  

Stack is empty. 
Success! 

Table 7.3. Working of algorithm BALANCE_EXPR ()  
on the expression (A+B)* C 

Input string (E) Stack (S) Remarks 

  

Initialization. 
E is padded with a $ 

as end of input 
character. 

  
Push ‘(’ into S 

 
Push ‘(’ into S 

 
Ignore character ‘A’ 

 
(

S 
(

+B)*C ↑ G $ 

(
S 

(
A+B)*C ↑ G $ 

(
S (A+B)*C ↑ G $ 

S ((A+B)*C ↑ G $ 

S 

S 

S D $ 

S – D $ 

(
S ) – D $ 

(S C) – D $ 

(
S * C) – D $ 
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Ignore character ‘+’ 

 
Ignore character ‘B’ 

  

Pop symbol from S. 
Matching symbol  

to “)” found. Proceed. 

 
Ignore character ‘*’ 

 
Ignore character ‘C’ 

 
Ignore character ‘↑’ 

         $ Ignore character ‘G’ 

         $ 
 

End of input 
encountered.  

Stack is not empty. 
Error! 

Table 7.4. Working of the algorithm BALANCE_EXPR ()  
on the expression ((A+B) *C↑G) 

 

Figure 7.8. Linked list representation of a polynomial 

For easy manipulation of the linked list, we represent the polynomial in its 
decreasing order of exponents of the variable (in the case of univariable 
polynomials). It would therefore be easy for the function handling the reading of the  
 
 

COEFF EXP LINK 

COEFF: Coefficient of the term 

EXP:      Exponent of the variable

 (a) Node structure 

9 6

3 2  4 0  

(b) Linked list representation of the 
polynomial 9x6 -2x4 + 3x2 + 4. 

-2  4 

(
S 

(
S 

(
S G $ 

(
S ↑ G $ 

(
S C↑ G $ 

(
S *C ↑ G $ 

(
S 

(
)*C ↑ G $ 

(
S 

(
B)*C ↑ G $ 
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polynomial to implement the linked list as a linear queue, since this would entail an 
elegant construction of the list from the symbolic representation of the polynomial 
by enqueuing the linear queue with the next highest exponent term. The linear queue 
representation for the polynomial 9x6 – 2x4 + 3x2 + 4 is shown in Figure 7.9. 

Additionally, after the manipulation of the polynomials (addition, subtraction, 
etc.) the resulting polynomial can also be elegantly represented as a linear queue. 
This merely calls for enqueueing the linear queue with the just manipulated term. 
Recall the problem of the addition of polynomials discussed in section 6.8.1. 
Maintaining the added polynomial as a linear queue would only call for “appending” 
the added terms (coefficients of terms with like exponents) to the rear of the list. 
However, during the manipulation, the linear queue representations of the 
polynomials are treated as traversable queues. A traversable queue while retaining 
the operations of enqueuing and dequeuing permits traversal of the list in which 
nodes may be examined. 

 

Figure 7.9. Linear queue representation  
of the polynomial 9x6 – 2x4 + 3x2 + 4 

 
 

9 6  -2 4  3 2  4 0  

Front 
Rear 

Summary 

– Sequential representations of stacks and queues suffer from the limitation of finite
capacity besides checking for the STACK_FULL and QUEUE_ FULL conditions, each time
a push or insert operation is executed, respectively. 

– Linked stacks and linked queues are singly linked list implementations of stacks and
queues, though a circularly linked list representation can also be attempted without
hampering the LIFO or FIFO principle of the respective data structures. 

– Linked stacks and linked queues display the merits of conceptual and computational
simplicity of insert and delete operations besides the absence of limited capacity. However, the
requirement of additional space to accommodate the link fields can be viewed as a demerit. 

– The maintenance of available space list calls for the application of linked stacks. 

– The problems of balancing of symbols and polynomial representation demonstrate the
application of linked stack and linked queue, respectively. 
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7.6. Illustrative problems 

PROBLEM 7.1.– 

Given the following memory snapshot where START and AV_ SP store the start 
pointers of the linked list and the available space, respectively: 

i) identify the linked list; 

ii) show how the linked list and the available space list are affected when the 
following operations are carried out: 

a) insert 116 at the end of the list, 

b) delete 243, 

c) obtain the memory snapshot after the execution of operations listed in (a) 
and (b).  

 
 

 

 

114 0 

DATA LINK 

  1 

176 6  2 

243 9       

94 5 4 

346 7  5 

879 8  6 

344 1 7 

465 3 8 

191 109 

564 0  10 

AV_SP: 4 START: 2

3 
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Solution: 

i) Since the linked list starts at a node whose address is 2, the logical 
representation of the list is as given below: 

 

The available space list, which functions as a linked stack and starts from a node 
whose address is 4, is given by: 

 

ii) (a) To insert 116 at the end of the list START, we obtain a node from the 
available space list (invoke GETNODE ()). The node released has address 4. The 
resultant list and the available space list are as follows: 

 

ii) (b) To delete 243, the node holding the element has to be returned to the 
available space list (invoke (RETURN ()). The resultant list and the available space 
list are as follows: 

 
 

564 191243
Start 

176  

2 

879 

6 

465

8 3 9 

 

10 

11434494 346

4 5 7 1AV_SP 

116 

4 

564

191243
START 

176  

2 

879

6 

465

8 3 9 

10 

 

114346 344 

5 7 1 AV_SP 

191 116 564
START 

176  

2 

879

6 

465

8 9 10 

 

4 

114346 344

5 7 1 AV_SP 
243  

3 
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ii) (c) The memory snapshot after the execution of (a) and (b) is as given below: 

 

PROBLEM 7.2.– 

 

Given the above memory snapshot, which stores a linked stack L_S and a linked 
queue L_Q beginning at the respective addresses, obtain the resulting memory 
snapshot after the following operations are carried out sequentially. 

 

114 0 

DATA LINK 

1 

176 6 2 

243 5 3 

116 0 4 

346 7 5 

879 8 6 

344 1 7 

465 9 8 

191 109 

564 4 10 

AV_SP: 3 START: 2

 

AMTRACK 7 

DATA LINK 

  1 

FALCON 5 2 
BOMBAY_MAIL 6   3 

EUROSTAR 9   4 

DUTCHFLYER 4   5 

RAJDHANI 0   6 
FAST_WIND 8 7 

DEVILS_EYE 0 8 

ORIENT EXPRESS 0  9 

BLUE MOUNT 3 10 

AV_SP: 2 L_Q: 1 L_S: 10

(FRONT) 

L_Q: 8

(REAR) 
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i) Enqueue CONCORDE into L_Q. 

ii) Pop from L_S. 

iii) Dequeue from L_Q. 

iv) Push “PALACE _ON _WHEELS” into L-S. 

Solution: 

It is easier to perform the operations on the logical representations of the lists 
and available space extracted from the memory before obtaining the final memory 
snapshot. 

The lists are as follows: 

 

i) Enqueue CONCORDE into L_Q yields: 

 

Here, node 2 is popped from AVAIL-SPACE to accommodate CONCORDE, 
which is inserted at the rear of L_Q. 

 

 

AMTRACK 

1 
L_Q 

FAST_WIND 

7 

DEVILS_EYE 

8 

(Front) 

(Rear)

BLUE MOUNT 

10 
L_S 

BOMBAY_MAIL 

3 

RAJDHANI 

6 

FALCON  

2 
AV_SP 

DUTCHFLYER 

5 

EUROSTAR

4 

ORIENT EXPRESS  

9 

EUROSTAR

AMTRACK  

1 
L_Q 

FAST_WIND 

7 

DEVILS_EYE 

8 

(Front) 
CONCORDE  

2 
(Rear) 

DUTCHFLYER 

5 4 

ORIENT EXPRESS 
AV_SP 9 
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ii) Pop from L_S yields: 

 

Here, node 10 from L-S is deleted and pushed into AVAIL_SPACE. 

iii) Dequeue from L_Q yields: 

 

Here, node 1 from L_Q is deleted and pushed into AVAIL_SPACE. 

iv) Push “PALACE_ON_WHEELS” into L_S yields: 

 
Here, node 1 from AVAIL_SPACE is popped to accommodate 

“PALACE_ON_WHEELS” before pushing the node into L_S. 

 

 

9 

RAJDHANI 

BLUE MOUNT  

10 
AV_SP 

DUTCHFLYER 

5 

EUROSTAR

4 

ORIENT EXPRESS  

BOMBAY MAIL 

3 6 
L_S 

 

FAST_WIND 

7 

DEVILS_EYE 

8 

CONCORDE 

2 
(Rear) 

L_Q 

(Front) 

9 

BLUE MOUNT 

10 
AV_SP 

DUTCHFLYER 

5 

EUROSTAR

4 

ORIENT EXPRESS  

AMTRACK  

1 

BLUE MOUNT 

9 

RAJDHANI 

 

10 
AV_SP 

DUTCHFLYER 

5 

EUROSTAR

4 

ORIENT EXPRESS  

BOMBAY MAIL 

3 6 
L_S 

PALACE_ON_WHEELS 

1 



Linked Stacks and Linked Queues     227 

The final lists are as follows: 

 

The memory snapshot is given by: 

 

PROBLEM 7.3.– 

Implement an abstract data type STAQUE, which is a combination of a linked 
stack and a linked queue. Develop procedures to perform an insert and delete 
operation, termed PUSHINS and POPDEL, respectively, on a non-empty STAQUE. 
PUSHINS inserts an element at the top or rear of the STAQUE based on an indication 
given to the procedure, and POPDEL deletes elements from the top/front of the list. 

Solution: 

The procedure PUSHINS performs the insertion of an element in the top or rear 
of the list based on whether the STAQUE is viewed as a stack or queue, 
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respectively. On the other hand, the procedure POPDEL, which performs a pop or 
deletion of element, is common to a STAQUE, since in both cases, the first element 
in the list alone is deleted. 

procedure PUSHINS(WHERE, TOP, 
REAR, ITEM) 

/* WHERE indicates whether the 
insertion of ITEM is to be done 
as on a stack or as on a queue*/ 

   Call GETNODE(X); 

   DATA(X) = ITEM; 

   if (WHERE = ’Stack’) 

   then {LINK(X)= TOP; 

         TOP = X; 

        } 

   else   

        {LINK(REAR) = X; 

         LINK(X)=Nil; 

         REAR=X; 

        } 

end PUSHINS  

procedure POPDEL(TOP, ITEM) 

 

  TEMP = TOP; 

  ITEM = DATA(TEMP); 

   /* delete top element 

       of the list through 

       ITEM*/ 

   TOP = LINK(TEMP); 

   RETURN(TEMP); 

end POPDEL  

PROBLEM 7.4.– 

Write a procedure to convert a linked stack into a linked queue. 

Solution: 

An elegant and easy solution to the problem is to undertake the conversion by 
returning the addresses of the first and last nodes of the linked stack as FRONT and 
REAR, thereby turning the linked stack into a linked queue. 

procedure CONVERT_LINKSTACK(TOP, FRONT, REAR) 
/* FRONT and REAR are the variables which return the 
addresses of the first and last node of the list 
converting the linked stack into a linked queue*/ 
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if (TOP= Nil)then print(“Conversion not possible”); 
else {FRONT = TOP; 
TEMP = TOP; 
while (LINK(TEMP) ≠ Nil)do 

TEMP = LINK(TEMP); 
REAR = TEMP; 

endwhile 
      } 

end CONVERT_LINKSTACK. 

PROBLEM 7.5.–   

An Abstract Data Type STACKLIST is a list of linked stacks stored according to 
a priority factor, namely, A, B, C, and so on, where A means highest priority, B the 
next and so on. Elements having the same priority are stored as a linked stack. The 
following is a structure of the STACKLIST S. 

 

Create a STACKLIST for the following application of process scheduling with 
the processes having two priorities, namely, R (Real time) and O (On line) listed 
within brackets. 

 

        A         B        C 

 

 

 

 

 

S Priority A Priority B Priority C 

Top (Stack A) Top (Stack C) 

Head Node
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1.   Initiate process P1 (R) 5.   Initiate process P5(O) 
2.   Initiate process P2 (O) 6.   Initiate process P6 (R) 
3.   Initiate process P3 (O) 7.  Terminate process in linked stack O 
4. Terminate process in linked stack R 8.   Initiate process P7 (R) 

Solution: 

The STACKLIST at the end of Schedules 1–3 is shown below: 

 

The STACKLIST at the end of Schedule 4 is given as follows: 

 

 

 

         R          O 

   P1     P3 

    P2 

S Priority R Priority O 

Top (Stack R) Top (Stack O) 

Head Node 

          R          O 

   P3 

   P2 

S Priority R Priority O 

Top (Stack R) 
Top (Stack O) 

Head Node 
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The STACKLIST at the end of Schedules 5–8 is as follows: 

 

PROBLEM 7.6.– 

Write a procedure to reverse a linked stack implemented as a doubly linked list, 
with the original top and bottom positions of the stack reversed as bottom and top, 
respectively. 

For example, a linked stack S and its reversed version Srev are shown as follows: 

 

Solution: 

An elegant solution would be to merely swap the LLINK and RLINK pointers of 
each of the doubly linked lists to reverse the list and remember the address of the 
last node in the original stack S as the TOP pointer. The procedure is given as 
follows: 

         R         O 

    P7 

   P6 

   P3 

    P2 

S 
Priority R Priority O 

Top (Stack R) 
Top (Stack O) 

Head Node
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procedure REVERSE_STACK(TOP) 

/* TEMP and HOLD are temporary variables to hold the 
addresses of nodes*/ 

   TEMP = TOP; 
   repeat 

      HOLD = LLINK(TEMP); 
      LLINK(TEMP)= RLINK(TEMP); 
      RLINK(TEMP)= HOLD;/*Swap left and right links for 
                           each node*/ 
      TEMP = LLINK(TEMP);/* Move to the next node*/ 
   until (TEMP = TOP) 

   TOP = RLINK(TEMP); 

end REVERSE_STACK. 

PROBLEM 7.7.– 

What does the following pseudo-code do to the linked queue Q with the 
addresses of nodes, as shown below: 

 

procedure WHAT_DO_I_DO(FRONT, REAR) 
/* HAVE, HOLD and HUG are temporary variables to hold 
the link or data fields of the nodes as the case may 
be*/ 

   HAVE = FRONT; 
   HOLD = DATA(HAVE); 

   while LINK(HAVE) ≠ Nil do 
      HUG = DATA(LINK(HAVE)); 
      DATA(LINK(HAVE))= HOLD; 
      HOLD = HUG; 
      HAVE = LINK(HAVE); 
   endwhile 
   DATA(FRONT)= HOLD; 

end WHAT_DO_I_DO 
 

124844914 366 

Q 

REAR FRONT 

a1                      a2                    a3                   a4
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Solution: 

The procedure WHAT_DO_I_DO rotates the data items of the linked queue Q to 
obtain the resultant list given below: 

 

PROBLEM 7.8.– 

Write a procedure to remove the nth element (from the top) of a linked stack 
with the rest of the elements unchanged. Contrast this with a sequential stack 
implementation for the same problem (illustrative problem 4.2(iii) of Chapter 4). 

Solution: 

To remove the nth element leaving the other elements unchanged, a linked 
implementation of the stack merely calls for sliding down the list, which is easily 
done, and for a reset of a link to remove the node concerned. The procedure is given 
below. In contrast, a sequential implementation as described in illustrative problem 
4.2(iii) calls for the use of another temporary stack to hold the elements popped out 
from the original stack before pushing them back into it. 

procedure REMOVE(TOP, ITEM, n) 
/*  The nth element is removed through 
ITEM*/ 
   TEMP = TOP; 
   COUNT = 1; 
   while (COUNT≠ n) do 
      PREVIOUS = TEMP; 
      TEMP = LINK(TEMP); 
      COUNT = COUNT+1; 
   endwhile 
   LINK(PREVIOUS)= LINK(TEMP); 
   ITEM = DATA(TEMP); 
   RETURN(TEMP); 
 
end REMOVE 
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PROBLEM 7.9.– 

Given a linked stack L_S and a linked queue L_Q with equal length, what do the 
following procedures to do the lists? Here, TOP is the top pointer of L_S, and 
FRONT and REAR are the front and rear of L_Q. What are your observations 
regarding the functionality of the two procedures? 

procedure 
WHAT_IS_COOKING1(TOP, FRONT, 
REAR) 
/*  TEMP, TEMP1, TEMP2 and 
TEMP3 are temporary 
variables*/ 
  TEMP1 = FRONT; 
  TEMP2 = TOP; 
  while (TEMP1≠ Nil AND 
         TEMP2≠ Nil) do 
    TEMP3 = DATA(FRONT); 
    DATA(FRONT)= DATA(TOP); 
    DATA(TOP)= TEMP3; 
    TEMP1 = LINK(TEMP1); 
    PREVIOUS = TEMP2; 
    TEMP2 = LINK(TEMP2); 
  endwhile 
  TEMP = TOP; 
  TOP = FRONT; 
  FRONT = TEMP; 
  REAR = PREVIOUS; 
end WHAT_IS_COOKING 1 

procedure 
WHAT_IS_COOKING2(TOP, 
FRONT, REAR) 
/*  TEMP, TEMP1, TEMP2 and 
TEMP3 are temporary 
variables*/ 
  TEMP = TOP; 
  while (LINK(TEMP)≠ Nil) 
  do 
     TEMP = LINK(TEMP); 
  endwhile 
  TEMP1 = TOP; 
  REAR = TEMP; 
  TOP = FRONT; 
  FRONT = TEMP1; 
end WHAT_IS_COOKING2 

 

Solution: 

Both procedures swap the contents of the linked stack L_S and linked queue 
L_Q. While WHAT_IS_COOKING1 does it by exchanging the data items of the 
lists, WHAT_IS_COOKING2 does it by merely manipulating the pointers and hence 
looks elegant. 

PROBLEM 7.10.– 

A queue list Q is a list of linked queues stored according to orders of priority, 
namely, A, B, C and so on, with A accorded the highest priority, B the next highest 
priority and so on. The LEAD nodes serve as head nodes for each of the priority-
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based queues. Elements with the same priority are stored as a normal linked queue. 
Figures P7.10(a) and (b) illustrate the node structure and an example queue list, 
respectively. 

The FOLLOW link links together the head nodes of the queues, and the DOWN 
link connects it to the first node in the respective queue. The LEAD DATA field 
may be used to store the priority factor of the queue. 

Here is a QUEUE LIST Q stored in the memory, a snapshot of which is shown 
as follows: 

 
(a) Structure of the nodes in a queue list 

 
(b) An example Queue list 

 

    

   M1 

   N2 

   H5 

   V3 

   W4 

Q 
           Priority A Priority B Priority C 

Front (Queue A) 

Rear (Queue A) 

Front (Queue C) 

Rear (Queue C) 

Head Node 

|––––––––Lead Nodes–––––––––-| 

  

DOWN  LEAD DATA                 FOLLOW 

LEAD Node Structure  Queue Node Structure  

DATA            LINK  
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(c) A snapshot of the queue list 

Figure P7.10. Queue list: node structure,  
example and memory snapshot 

There are three queues Q1, Q2 and Q3 with priorities of 1, 2 and 3. The head 
node of QUEUELIST stores the number of queues in the list as a negative number. 
The LEAD DATA field stores the priority factor of each of the three queues. 
START points to the head node of the QUEUELIST and AVAILABLE SPACE the 
pointer to the free storage pool. 

Obtain the QUEUELIST by tracing the lead nodes and nodes of the linked 
queues. 

Solution: 

The structure of the QUEUELIST is shown as follows: 

 

 

 

 

 

 

 

 

 DOWN LEAD 
DATA 

FOLLOW 

10 604 5 7 
11 26 -4 561
12 566 1 13 
13 0 2 15 
14 3 4 591
15 573 3 0 
16 0 -3 12 

 

 DATA LINK 
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565 k 571 
566 a 572 
567 l 384 
568 v 0 
569 m 570 
570 n 0 
571 u 568 
572 x 564 
573 h 565 

START 
16

AVAILABLE SPACE 
        10 
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Review questions 

The following is a snapshot of a memory that stores a linked stack 
VEGETABLES and a linked queue FRUITS beginning at the respective addresses. 
Answer the following questions with regard to operations on the linked stack and 
queue, each of which is assumed to be independently performed on the original 
linked stack and queue. 
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1) Inserting PAPAYA into the linked queue FRUITS results in the following 
changes to the FRONT, REAR and AV_SP pointers, respectively, as given in: 

a) 10 2 2  b) 2 6 2  c)  2 6 5  d) 10 2 5 

2) Undertaking pop operation on VEGETABLES results in the following 
changes to the TOP and AV_SP pointers, respectively, as given in: 

a) 7 1 b) 7 2  c) 8 2  d) 8 1 

3) Undertaking the delete operation on FRUITS results in the following changes 
to the FRONT, REAR and AV_SP pointers, respectively, as given in: 

a) 3 6 2 b) 10 3 6  c) 3 6 10  d) 10 3 2 

4) Pushing TURNIPS into VEGETABLES results in the following changes to 
the TOP and AV_SP pointers, respectively, as given in: 

a) 2 5 b) 2 9  c) 1 5  d) 1 9 

5) After the push operation of TURNIPS into VEGETABLES (undertaken in 
review question 4 above), 

DATA(2) =  ------------- and DATA(LINK(2)) = ------------- 

a) TURNIPS and CABBAGE  b) CUCUMBER and CABBAGE 

c) TURNIPS and CUCUMBER d) CUCUMBER and ORANGE 

6) What are the merits of linked stacks and queues over their sequential 
counterparts? 

7) How is the memory storage pool associated with a linked stack data structure 
for its operations? 

8) How are push and pop operations implemented on a linked stack? 

9) What are traversable queues? 

10) Outline the node structure and a linked queue to represent the polynomial: 
17x5 + 18 x2 + 9x + 89. 

11) Trace procedure BALANCE_EXPR(E) (Algorithm 7.7) on the 
following expression to check whether parentheses are balanced: 

((X  + Y  +  Z) * H) + (D * T)) – 2 

12) Design a stack MAXSTACK, which functions like an ordinary linked stack 
supporting the ADT operations of PUSH, POP and EMPTYSTACK, besides 
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GETMAX. GETMAX is an operation that records the maximum element in the 
stack. Can you design the stack in such a way that GETMAX merely consumes O(1) 
time complexity. 

13) The evaluation of postfix expressions using stacks is discussed in Algorithm 
4.3 of Chapter 4. Can a similar procedure be evolved to evaluate prefix expressions 
using a linked stack? 

Hint: Read the prefix expression from right to left, unlike a postfix expression 
that was read left to right. 

Programming assignments 

1) Execute a program to implement a linked stack to check for the balancing of 
the following pairs of symbols in a Pascal program. The name of the source Pascal 
program is the sole input to the program. 

Symbols:  begin end, ( ), [ ], {  }. 

(i) Output errors encountered during mismatch of symbols. 

(ii) Modify the program to set right the errors. 

2) Evaluate a postfix expression using a linked stack implementation. 

3) Implement the simulation of a time sharing system discussed in Chapter 5, 
section 5.5, using linked queues. 

4) Develop a program to implement a queue list (illustrative problem 7.10), 
which is a list of linked queues stored according to an order of priority. 

Test for the insertion and deletion of the following jobs with their priorities listed 
within brackets on a queue list JOB_MANAGER with three queues A, B and C 
listed according to their order of priorities: 

1. Insert Job J1 (A) 6. Insert Job J5 (C) 
2. Insert Job J2 (B) 7. Insert Job J6 (C) 
3. Insert Job J3 (A) 8. Insert Job J7 (A) 
4. Insert Job J4 (B) 9. Delete Queue C 
5. Delete Queue B 10. Insert Job J8 (A) 

5) Develop a program to simulate a calculator that performs the addition, 
subtraction, multiplication and division of polynomials. 
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