


The Robert C.
Martin Clean

Code Collection

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City



Note from the Publisher
The Robert C. Martin Clean Code Collection consists of two bestselling eBooks:

• Clean Code:A Handbook of Agile Software Craftmanship

• The Clean Coder:A Code of Conduct for Professional Programmers

In this collection, Robert C. Martin, also known as “Uncle Bob,” provides a pragmatic
method for writing better code from the start. He reveals the disciplines, techniques,
tools, and practices that separate software craftsmen from mere “9-to-5” programmers.
Within this collection are the tools and methods you need to become a true software
professional.

To simplify access to each book, we’ve appended “A” to the pages of Clean Code:A
Handbook of Agile Software Craftmanship, and “B” to pages of The Clean Coder:A Code of
Conduct for Professional Programmers.This enabled us to produce a single, comprehensive
table of contents and dedicated indexes.

We hope you find this collection useful!

—The editorial and production teams at Prentice Hall



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks.Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America.This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibit-
ed reproduction, storage in a retrieval system, or transmission in any form or by any
means, electronic, mechanical, photocopying, recording, or likewise.To obtain permission
to use material from this work, please submit a written request to Pearson Education,
Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458,
or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-13-292847-2
ISBN-10: 0-13-292847-7 



Table of Contents

CLEAN CODE

1 Clean Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . .1A
There Will Be Code  . . . . . . . . . . . . . . . . . . . . . . . . .2A

Bad Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3A

The Total Cost of Owning a Mess  . . . . . . . . . . . . . .4A

The Grand Redesign in the Sky  . . . . . . . . . . . . . .5A

Attitude  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5A

The Primal Conundrum  . . . . . . . . . . . . . . . . . . . .6A

The Art of Clean Code?  . . . . . . . . . . . . . . . . . . .6A

What Is Clean Code?  . . . . . . . . . . . . . . . . . . . . .7A

Schools of Thought . . . . . . . . . . . . . . . . . . . . . . . .12A

We Are Authors  . . . . . . . . . . . . . . . . . . . . . . . . . .13A

The Boy Scout Rule  . . . . . . . . . . . . . . . . . . . . . . .14A

Prequel and Principles  . . . . . . . . . . . . . . . . . . . . .15A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15A

2 Meaningful Names  . . . . . . . . . . . . . . . . . . . . .17A
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17A

Use Intention-Revealing Names  . . . . . . . . . . . . . . .18A

Avoid Disinformation . . . . . . . . . . . . . . . . . . . . . . .19A

Make Meaningful Distinctions  . . . . . . . . . . . . . . . .20A

Use Pronounceable Names  . . . . . . . . . . . . . . . . . .21A

Use Searchable Names  . . . . . . . . . . . . . . . . . . . .22A

Avoid Encodings  . . . . . . . . . . . . . . . . . . . . . . . . . .23A

Hungarian Notation  . . . . . . . . . . . . . . . . . . . . .23A

Member Prefixes  . . . . . . . . . . . . . . . . . . . . . . .24A

Interfaces and Implementations  . . . . . . . . . . . .24A

Avoid Mental Mapping . . . . . . . . . . . . . . . . . . . . . .25A

Class Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . .25A

Method Names . . . . . . . . . . . . . . . . . . . . . . . . . . .25A

Don’t Be Cute  . . . . . . . . . . . . . . . . . . . . . . . . . . .26A

Pick One Word per Concept  . . . . . . . . . . . . . . . . . .26A

Don’t Pun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26A



Use Solution Domain Names . . . . . . . . . . . . . . . . .27A

Use Problem Domain Names . . . . . . . . . . . . . . . . .27A

Add Meaningful Context  . . . . . . . . . . . . . . . . . . . .27A

Don’t Add Gratuitous Context  . . . . . . . . . . . . . . . .29A

Final Words  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30A

3 Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .31A
Small!  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34A

Blocks and Indenting  . . . . . . . . . . . . . . . . . . . .35A

Do One Thing  . . . . . . . . . . . . . . . . . . . . . . . . . . . .35A

Sections within Functions  . . . . . . . . . . . . . . . . .36A

One Level of Abstraction per Function  . . . . . . . . . .36A

Reading Code from Top to Bottom: 
The Stepdown Rule  . . . . . . . . . . . . . . . . . . . .37A

Switch Statements  . . . . . . . . . . . . . . . . . . . . . . . .37A

Use Descriptive Names . . . . . . . . . . . . . . . . . . . . .39A

Function Arguments  . . . . . . . . . . . . . . . . . . . . . . .40A

Common Monadic Forms  . . . . . . . . . . . . . . . . .41A

Flag Arguments  . . . . . . . . . . . . . . . . . . . . . . . .41A

Dyadic Functions  . . . . . . . . . . . . . . . . . . . . . . .42A

Triads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42A

Argument Objects . . . . . . . . . . . . . . . . . . . . . . .43A

Argument Lists . . . . . . . . . . . . . . . . . . . . . . . . .43A

Verbs and Keywords  . . . . . . . . . . . . . . . . . . . . .43A

Have No Side Effects  . . . . . . . . . . . . . . . . . . . . . .44A

Output Arguments  . . . . . . . . . . . . . . . . . . . . . .45A

Command Query Separation  . . . . . . . . . . . . . . . . .45A

Prefer Exceptions to Returning Error Codes  . . . . . .46A

Extract Try/Catch Blocks . . . . . . . . . . . . . . . . . .46A

Error Handling Is One Thing  . . . . . . . . . . . . . . .47A

The Error.java Dependency Magnet  . . . . . .47A

Don’t Repeat Yourself  . . . . . . . . . . . . . . . . . . . . . .48A

Structured Programming  . . . . . . . . . . . . . . . . . . . .48A

How Do You Write Functions Like This?  . . . . . . . . .49A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49A

SetupTeardownIncluder  . . . . . . . . . . . . . . .50A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52A



vi Contents

4 Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . .53A
Comments Do Not Make Up for Bad Code  . . . . . . .55A

Explain Yourself in Code  . . . . . . . . . . . . . . . . . . . .55A

Good Comments  . . . . . . . . . . . . . . . . . . . . . . . . .55A

Legal Comments  . . . . . . . . . . . . . . . . . . . . . . .55A

Informative Comments  . . . . . . . . . . . . . . . . . . .56A

Explanation of Intent  . . . . . . . . . . . . . . . . . . . .56A

Clarification  . . . . . . . . . . . . . . . . . . . . . . . . . . .57A

Warning of Consequences  . . . . . . . . . . . . . . . .58A

TODO Comments  . . . . . . . . . . . . . . . . . . . . . . .58A

Amplification  . . . . . . . . . . . . . . . . . . . . . . . . . .59A

Javadocs in Public APIs  . . . . . . . . . . . . . . . . . .59A

Bad Comments  . . . . . . . . . . . . . . . . . . . . . . . . . .59A

Mumbling  . . . . . . . . . . . . . . . . . . . . . . . . . . . .59A

Redundant Comments  . . . . . . . . . . . . . . . . . . .60A

Misleading Comments  . . . . . . . . . . . . . . . . . . .63A

Mandated Comments  . . . . . . . . . . . . . . . . . . . .63A

Journal Comments  . . . . . . . . . . . . . . . . . . . . . .63A

Noise Comments  . . . . . . . . . . . . . . . . . . . . . . .64A

Scary Noise  . . . . . . . . . . . . . . . . . . . . . . . . . . .66A

Don’t Use a Comment When You Can Use a 
Function or a Variable  . . . . . . . . . . . . . . . . . .67A

Position Markers  . . . . . . . . . . . . . . . . . . . . . . .67A

Closing Brace Comments  . . . . . . . . . . . . . . . . .67A

Attributions and Bylines  . . . . . . . . . . . . . . . . . .68A

Commented-Out Code  . . . . . . . . . . . . . . . . . . .68A

HTML Comments  . . . . . . . . . . . . . . . . . . . . . . .69A

Nonlocal Information  . . . . . . . . . . . . . . . . . . . .69A

Too Much Information . . . . . . . . . . . . . . . . . . . .70A

Inobvious Connection  . . . . . . . . . . . . . . . . . . . .70A

Function Headers . . . . . . . . . . . . . . . . . . . . . . .70A

Javadocs in Nonpublic Code  . . . . . . . . . . . . . . .71A

Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74A

5 Formatting  . . . . . . . . . . . . . . . . . . . . . . . . . . .75A
The Purpose of Formatting  . . . . . . . . . . . . . . . . . .76A

Vertical Formatting  . . . . . . . . . . . . . . . . . . . . . . . .76A



viiContents

The Newspaper Metaphor  . . . . . . . . . . . . . . . . .77A

Vertical Openness Between Concepts  . . . . . . . .78A

Vertical Density  . . . . . . . . . . . . . . . . . . . . . . . .79A

Vertical Distance  . . . . . . . . . . . . . . . . . . . . . . .80A

Vertical Ordering  . . . . . . . . . . . . . . . . . . . . . . .84A

Horizontal Formatting  . . . . . . . . . . . . . . . . . . . . . .85A

Horizontal Openness and Density  . . . . . . . . . . .86A

Horizontal Alignment  . . . . . . . . . . . . . . . . . . . .87A

Indentation  . . . . . . . . . . . . . . . . . . . . . . . . . . .88A

Dummy Scopes  . . . . . . . . . . . . . . . . . . . . . . . .90A

Team Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90A

Uncle Bob’s Formatting Rules  . . . . . . . . . . . . . . . .90A

6 Objects and Data Structures  . . . . . . . . . . . . . .93A
Data Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . .93A

Data/Object Anti-Symmetry  . . . . . . . . . . . . . . . . . .95A

The Law of Demeter  . . . . . . . . . . . . . . . . . . . . . . .97A

Train Wrecks  . . . . . . . . . . . . . . . . . . . . . . . . . .98A

Hybrids  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99A

Hiding Structure  . . . . . . . . . . . . . . . . . . . . . . . .99A

Data Transfer Objects  . . . . . . . . . . . . . . . . . . . . .100A

Active Record . . . . . . . . . . . . . . . . . . . . . . . . .101A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .101A

7 Error Handling  . . . . . . . . . . . . . . . . . . . . . . . .103A
Use Exceptions Rather Than Return Codes  . . . . .104A

Write Your Try-Catch-Finally
Statement First  . . . . . . . . . . . . . . . . . . . . . . . .105A

Use Unchecked Exceptions  . . . . . . . . . . . . . . . . .106A

Provide Context with Exceptions  . . . . . . . . . . . . .107A

Define Exception Classes in Terms of a 
Caller’s Needs  . . . . . . . . . . . . . . . . . . . . . . . . .107A

Define the Normal Flow . . . . . . . . . . . . . . . . . . . .109A

Don’t Return Null  . . . . . . . . . . . . . . . . . . . . . . . .110A

Don’t Pass Null  . . . . . . . . . . . . . . . . . . . . . . . . .111A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .112A



viii Contents

8 Boundaries  . . . . . . . . . . . . . . . . . . . . . . . . . .113A
Using Third-Party Code  . . . . . . . . . . . . . . . . . . . .114A

Exploring and Learning Boundaries  . . . . . . . . . . .116A

Learning log4j . . . . . . . . . . . . . . . . . . . . . . . . .116A

Learning Tests Are Better Than Free  . . . . . . . . . .118A

Using Code That Does Not Yet Exist  . . . . . . . . . .118A

Clean Boundaries  . . . . . . . . . . . . . . . . . . . . . . . .120A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .120A

9 Unit Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . .121A
The Three Laws of TDD . . . . . . . . . . . . . . . . . . . .122A

Keeping Tests Clean  . . . . . . . . . . . . . . . . . . . . . .123A

Tests Enable the -ilities  . . . . . . . . . . . . . . . . .124A

Clean Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . .124A

Domain-Specific Testing Language . . . . . . . . . .127A

A Dual Standard . . . . . . . . . . . . . . . . . . . . . . .127A

One Assert per Test  . . . . . . . . . . . . . . . . . . . . . .130A

Single Concept per Test  . . . . . . . . . . . . . . . . .131A

F.I.R.S.T. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .133A

10 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135A
Class Organization  . . . . . . . . . . . . . . . . . . . . . . .136A

Encapsulation  . . . . . . . . . . . . . . . . . . . . . . . .136A

Classes Should Be Small! . . . . . . . . . . . . . . . . . .136A

The Single Responsibility Principle  . . . . . . . . .138A

Cohesion . . . . . . . . . . . . . . . . . . . . . . . . . . . .140A

Maintaining Cohesion Results in Many 
Small Classes  . . . . . . . . . . . . . . . . . . . . . . .141A

Organizing for Change . . . . . . . . . . . . . . . . . . . . .147A

Isolating from Change  . . . . . . . . . . . . . . . . . .149A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .151A

11 Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . .153A
How Would You Build a City?  . . . . . . . . . . . . . . . .154A

Separate Constructing a System from Using It  . . .154A

Separation of Main . . . . . . . . . . . . . . . . . . . . .155A



ixContents

Factories  . . . . . . . . . . . . . . . . . . . . . . . . . . . .155A

Dependency Injection  . . . . . . . . . . . . . . . . . . .157A

Scaling Up  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157A

Cross-Cutting Concerns  . . . . . . . . . . . . . . . . .160A

Java Proxies  . . . . . . . . . . . . . . . . . . . . . . . . . . . .161A

Pure Java AOP Frameworks  . . . . . . . . . . . . . . . . .163A

AspectJ Aspects  . . . . . . . . . . . . . . . . . . . . . . . . .166A

Test Drive the System Architecture  . . . . . . . . . . .166A

Optimize Decision Making  . . . . . . . . . . . . . . . . . .167A

Use Standards Wisely, When They Add 
Demonstrable Value  . . . . . . . . . . . . . . . . . . . . .168A

Systems Need Domain-Specific Languages  . . . . .168A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .169A

12 Emergence  . . . . . . . . . . . . . . . . . . . . . . . . . .171A
Getting Clean via Emergent Design  . . . . . . . . . . .171A

Simple Design Rule 1: Runs All the Tests . . . . . . .172A

Simple Design Rules 2–4: Refactoring  . . . . . . . . .172A

No Duplication  . . . . . . . . . . . . . . . . . . . . . . . . . .173A

Expressive  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175A

Minimal Classes and Methods  . . . . . . . . . . . . . .176A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .176A

13 Concurrency  . . . . . . . . . . . . . . . . . . . . . . . . .177A
Why Concurrency?  . . . . . . . . . . . . . . . . . . . . . . .178A

Myths and Misconceptions  . . . . . . . . . . . . . . .179A

Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180A

Concurrency Defense Principles . . . . . . . . . . . . . .180A

Single Responsibility Principle . . . . . . . . . . . . .181A

Corollary: Limit the Scope of Data . . . . . . . . . .181A

Corollary: Use Copies of Data  . . . . . . . . . . . . .181A

Corollary: Threads Should Be as Independent 
as Possible  . . . . . . . . . . . . . . . . . . . . . . . . .182A

Know Your Library  . . . . . . . . . . . . . . . . . . . . . . . .182A

Thread-Safe Collections  . . . . . . . . . . . . . . . . .182A



x Contents

Know Your Execution Models . . . . . . . . . . . . . . . .183A

Producer-Consumer  . . . . . . . . . . . . . . . . . . . .184A

Readers-Writers  . . . . . . . . . . . . . . . . . . . . . . .184A

Dining Philosophers  . . . . . . . . . . . . . . . . . . . .184A

Beware Dependencies Between Synchronized 
Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185A

Keep Synchronized Sections Small  . . . . . . . . . . .185A

Writing Correct Shut-Down Code Is Hard . . . . . . . .186A

Testing Threaded Code  . . . . . . . . . . . . . . . . . . . .186A

Treat Spurious Failures as Candidate 
Threading Issues  . . . . . . . . . . . . . . . . . . . . .187A

Get Your Nonthreaded Code Working First  . . . .187A

Make Your Threaded Code Pluggable  . . . . . . . .187A

Make Your Threaded Code Tunable  . . . . . . . . .187A

Run with More Threads Than Processors  . . . . .188A

Run on Different Platforms  . . . . . . . . . . . . . . .188A

Instrument Your Code to Try and Force 
Failures  . . . . . . . . . . . . . . . . . . . . . . . . . . . .188A

Hand-Coded . . . . . . . . . . . . . . . . . . . . . . . . . .189A

Automated . . . . . . . . . . . . . . . . . . . . . . . . . . .189A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .191A

14 Successive Refinement  . . . . . . . . . . . . . . . . .193A
Args Implementation . . . . . . . . . . . . . . . . . . . . . .194A

How Did I Do This?  . . . . . . . . . . . . . . . . . . . .200A

Args: The Rough Draft . . . . . . . . . . . . . . . . . . . . .201A

So I Stopped  . . . . . . . . . . . . . . . . . . . . . . . . .212A

On Incrementalism . . . . . . . . . . . . . . . . . . . . .212A

String Arguments  . . . . . . . . . . . . . . . . . . . . . . . .214A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . .250A

15 JUnit Internals . . . . . . . . . . . . . . . . . . . . . . . .251A
The JUnit Framework . . . . . . . . . . . . . . . . . . . . . .252A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265A

16 Refactoring SerialDate  . . . . . . . . . . . . . . . . .267A
First, Make It Work  . . . . . . . . . . . . . . . . . . . . . . .268A

Then Make It Right  . . . . . . . . . . . . . . . . . . . . . . .270A



xiContents

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .284A

17 Smells and Heuristics  . . . . . . . . . . . . . . . . . .285A
Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286A

C1: Inappropriate Information  . . . . . . . . . . . . .286A

C2: Obsolete Comment  . . . . . . . . . . . . . . . . .286A

C3: Redundant Comment  . . . . . . . . . . . . . . . .286A

C4: Poorly Written Comment  . . . . . . . . . . . . . .287A

C5: Commented-Out Code  . . . . . . . . . . . . . . .287A

Environment  . . . . . . . . . . . . . . . . . . . . . . . . . . . .287A

E1: Build Requires More Than One Step  . . . . .287A

E2: Tests Require More Than One Step  . . . . . .287A

Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288A

F1: Too Many Arguments  . . . . . . . . . . . . . . . .288A

F2: Output Arguments  . . . . . . . . . . . . . . . . . .288A

F3: Flag Arguments  . . . . . . . . . . . . . . . . . . . .288A

F4: Dead Function  . . . . . . . . . . . . . . . . . . . . .288A

General  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288A

G1: Multiple Languages in One Source File  . . .288A

G2: Obvious Behavior Is Unimplemented  . . . . .288A

G3: Incorrect Behavior at the Boundaries . . . . .289A

G4: Overridden Safeties  . . . . . . . . . . . . . . . . .289A

G5: Duplication  . . . . . . . . . . . . . . . . . . . . . . .289A

G6: Code at Wrong Level of Abstraction . . . . . .290A

G7: Base Classes Depending on Their 
Derivatives  . . . . . . . . . . . . . . . . . . . . . . . . .291A

G8: Too Much Information  . . . . . . . . . . . . . . .291A

G9: Dead Code  . . . . . . . . . . . . . . . . . . . . . . .292A

G10: Vertical Separation  . . . . . . . . . . . . . . . .292A

G11: Inconsistency  . . . . . . . . . . . . . . . . . . . .292A

G12: Clutter  . . . . . . . . . . . . . . . . . . . . . . . . .293A

G13: Artificial Coupling . . . . . . . . . . . . . . . . . .293A

G14: Feature Envy  . . . . . . . . . . . . . . . . . . . . .293A

G15: Selector Arguments  . . . . . . . . . . . . . . . .294A

G16: Obscured Intent . . . . . . . . . . . . . . . . . . .295A

G17: Misplaced Responsibility  . . . . . . . . . . . .295A

G18: Inappropriate Static  . . . . . . . . . . . . . . . .296A



xii Contents

G19: Use Explanatory Variables  . . . . . . . . . . .296A

G20: Function Names Should Say What 
They Do . . . . . . . . . . . . . . . . . . . . . . . . . . . .297A

G21: Understand the Algorithm . . . . . . . . . . . .297A

G22: Make Logical Dependencies Physical  . . .298A

G23: Prefer Polymorphism to If/Else or 
Switch/Case  . . . . . . . . . . . . . . . . . . . . . . . .299A

G24: Follow Standard Conventions  . . . . . . . . .299A

G25: Replace Magic Numbers with Named 
Constants  . . . . . . . . . . . . . . . . . . . . . . . . . .300A

G26: Be Precise . . . . . . . . . . . . . . . . . . . . . . .301A

G27: Structure over Convention  . . . . . . . . . . .301A

G28: Encapsulate Conditionals  . . . . . . . . . . . .301A

G29: Avoid Negative Conditionals  . . . . . . . . . .302A

G30: Functions Should Do One Thing  . . . . . . .302A

G31: Hidden Temporal Couplings  . . . . . . . . . .302A

G32: Don’t Be Arbitrary  . . . . . . . . . . . . . . . . .303A

G33: Encapsulate Boundary Conditions  . . . . . .304A

G34: Functions Should Descend Only One 
Level of Abstraction  . . . . . . . . . . . . . . . . . . .304A

G35: Keep Configurable Data at High Levels  . .306A

G36: Avoid Transitive Navigation  . . . . . . . . . . .306A

Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307A

J1: Avoid Long Import Lists by 
Using Wildcards . . . . . . . . . . . . . . . . . . . . . .307A

J2: Don’t Inherit Constants  . . . . . . . . . . . . . . .307A

J3: Constants versus Enums  . . . . . . . . . . . . .308A

Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309A

N1: Choose Descriptive Names . . . . . . . . . . . .309A

N2: Choose Names at the Appropriate Level 
of Abstraction  . . . . . . . . . . . . . . . . . . . . . . .311A

N3: Use Standard Nomenclature Where 
Possible  . . . . . . . . . . . . . . . . . . . . . . . . . . .311A

N4: Unambiguous Names . . . . . . . . . . . . . . . .312A

N5: Use Long Names for Long Scopes  . . . . . .312A

N6: Avoid Encodings . . . . . . . . . . . . . . . . . . . .312A

N7: Names Should Describe Side-Effects.  . . . .313A



xiiiContents

Tests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313A

T1: Insufficient Tests  . . . . . . . . . . . . . . . . . . .313A

T2: Use a Coverage Tool!  . . . . . . . . . . . . . . . .313A

T3: Don’t Skip Trivial Tests  . . . . . . . . . . . . . . .313A

T4: An Ignored Test Is a Question about an 
Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . .313A

T5: Test Boundary Conditions  . . . . . . . . . . . . .314A

T6: Exhaustively Test Near Bugs  . . . . . . . . . . .314A

T7: Patterns of Failure Are Revealing  . . . . . . . .314A

T8: Test Coverage Patterns Can Be 
Revealing  . . . . . . . . . . . . . . . . . . . . . . . . . .314A

T9: Tests Should Be Fast  . . . . . . . . . . . . . . . .314A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314A

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .315A

A Concurrency II  . . . . . . . . . . . . . . . . . . . . . . .317A
Client/Server Example  . . . . . . . . . . . . . . . . . . . .317A

The Server . . . . . . . . . . . . . . . . . . . . . . . . . . .317A

Adding Threading  . . . . . . . . . . . . . . . . . . . . . .319A

Server Observations . . . . . . . . . . . . . . . . . . . .319A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . .321A

Possible Paths of Execution  . . . . . . . . . . . . . . . .321A

Number of Paths  . . . . . . . . . . . . . . . . . . . . . .322A

Digging Deeper  . . . . . . . . . . . . . . . . . . . . . . .323A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . .326A

Knowing Your Library . . . . . . . . . . . . . . . . . . . . . .326A

Executor Framework  . . . . . . . . . . . . . . . . . . . .326A

Nonblocking Solutions  . . . . . . . . . . . . . . . . . .327A

Nonthread-Safe Classes  . . . . . . . . . . . . . . . . .328A

Dependencies Between Methods Can Break 
Concurrent Code  . . . . . . . . . . . . . . . . . . . . . . .329A

Tolerate the Failure . . . . . . . . . . . . . . . . . . . . .330A

Client-Based Locking  . . . . . . . . . . . . . . . . . . .330A

Server-Based Locking  . . . . . . . . . . . . . . . . . . .332A

Increasing Throughput . . . . . . . . . . . . . . . . . . . . .333A

Single-Thread Calculation of Throughput  . . . . .334A

Multithread Calculation of Throughput  . . . . . . .335A



xiv Contents

Deadlock  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335A

Mutual Exclusion  . . . . . . . . . . . . . . . . . . . . . .336A

Lock & Wait  . . . . . . . . . . . . . . . . . . . . . . . . . .337A

No Preemption . . . . . . . . . . . . . . . . . . . . . . . .337A

Circular Wait  . . . . . . . . . . . . . . . . . . . . . . . . .337A

Breaking Mutual Exclusion  . . . . . . . . . . . . . . .337A

Breaking Lock & Wait  . . . . . . . . . . . . . . . . . . .338A

Breaking Preemption  . . . . . . . . . . . . . . . . . . .338A

Breaking Circular Wait  . . . . . . . . . . . . . . . . . .338A

Testing Multithreaded Code . . . . . . . . . . . . . . . . .339A

Tool Support for Testing Thread-Based Code . . . . .342A

Conclusion  . . . . . . . . . . . . . . . . . . . . . . . . . .342A
Tutorial: Full Code Examples  . . . . . . . . . . . . . . . .343A

Client/Server Nonthreaded  . . . . . . . . . . . . . . .343A

Client/Server Using Threads  . . . . . . . . . . . . . .347A

B org.jfree.date.SerialDate  . . . . . . . . . . . . . . . .349A

C Cross References of Heuristics  . . . . . . . . . . .409A

Epilogue  . . . . . . . . . . . . . . . . . . . . . . . . . . . .411A

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .413A

THE CLEAN CODER

Pre-Requisite Introduction  . . . . . . . . . . . . . . . . . . . . .1B

1 Professionalism . . . . . . . . . . . . . . . . . . . . . . . . .7B
Be Careful What You Ask For . . . . . . . . . . . . . . . . . .8B

Taking Responsibility  . . . . . . . . . . . . . . . . . . . . . . .8B

First, Do No Harm  . . . . . . . . . . . . . . . . . . . . . . . .11B

Work Ethic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22B

2 Saying No  . . . . . . . . . . . . . . . . . . . . . . . . . . . .23B
Adversarial Roles  . . . . . . . . . . . . . . . . . . . . . . . . .26B

High Stakes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29B



xvContents

Being a “Team Player”  . . . . . . . . . . . . . . . . . . . . .30B

The Cost of Saying Yes  . . . . . . . . . . . . . . . . . . . . .36B

Code Impossible  . . . . . . . . . . . . . . . . . . . . . . . . .41B

3 Saying Yes  . . . . . . . . . . . . . . . . . . . . . . . . . . .45B
A Language of Commitment  . . . . . . . . . . . . . . . . .47B

Learning How to Say “Yes”  . . . . . . . . . . . . . . . . . .52B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56B

4 Coding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57B
Preparedness . . . . . . . . . . . . . . . . . . . . . . . . . . . .58B

The Flow Zone  . . . . . . . . . . . . . . . . . . . . . . . . . . .62B

Writer’s Block . . . . . . . . . . . . . . . . . . . . . . . . . . . .64B

Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66B

Pacing Yourself . . . . . . . . . . . . . . . . . . . . . . . . . . .69B

Being Late  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71B

Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76B

5 Test Driven Development . . . . . . . . . . . . . . . . .77B
The Jury Is In  . . . . . . . . . . . . . . . . . . . . . . . . . . . .79B

The Three Laws of TDD . . . . . . . . . . . . . . . . . . . . .79B

What TDD Is Not  . . . . . . . . . . . . . . . . . . . . . . . . .83B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84B

6 Practicing  . . . . . . . . . . . . . . . . . . . . . . . . . . . .85B
Some Background on Practicing  . . . . . . . . . . . . . .86B

The Coding Dojo . . . . . . . . . . . . . . . . . . . . . . . . . .89B

Broadening Your Experience  . . . . . . . . . . . . . . . . .93B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94B

7 Acceptance Testing  . . . . . . . . . . . . . . . . . . . .95B
Communicating Requirements . . . . . . . . . . . . . . . .95B

Acceptance Tests  . . . . . . . . . . . . . . . . . . . . . . . .100B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111B



xvi Contents

8 Testing Strategies . . . . . . . . . . . . . . . . . . . . .113B
QA Should Find Nothing  . . . . . . . . . . . . . . . . . . .114B

The Test Automation Pyramid  . . . . . . . . . . . . . . .115B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .119B

9 Time Management  . . . . . . . . . . . . . . . . . . . .121B
Meetings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122B

Focus-Manna  . . . . . . . . . . . . . . . . . . . . . . . . . . .127B

Time Boxing and Tomatoes  . . . . . . . . . . . . . . . . .130B

Avoidance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131B

Blind Alleys  . . . . . . . . . . . . . . . . . . . . . . . . . . . .131B

Marshes, Bogs, Swamps, and Other Messes  . . . .132B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133B

10 Estimation  . . . . . . . . . . . . . . . . . . . . . . . . . .135B
What Is an Estimate?  . . . . . . . . . . . . . . . . . . . . .138B

PERT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141B

Estimating Tasks  . . . . . . . . . . . . . . . . . . . . . . . .144B

The Law of Large Numbers  . . . . . . . . . . . . . . . . .147B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .148B

11 Pressure  . . . . . . . . . . . . . . . . . . . . . . . . . . . .149B
Avoiding Pressure . . . . . . . . . . . . . . . . . . . . . . . .151B

Handling Pressure  . . . . . . . . . . . . . . . . . . . . . . .153B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155B

12 Collaboration  . . . . . . . . . . . . . . . . . . . . . . . .157B
Programmers versus People  . . . . . . . . . . . . . . . .159B

Cerebellums  . . . . . . . . . . . . . . . . . . . . . . . . . . .164B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166B

13 Teams and Projects . . . . . . . . . . . . . . . . . . . .167B
Does It Blend?  . . . . . . . . . . . . . . . . . . . . . . . . . .168B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171B

Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . .171B



xviiContents

14 Mentoring, Apprenticeship, and Craftsmanship173B
Degrees of Failure  . . . . . . . . . . . . . . . . . . . . . . .174B

Mentoring  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174B

Apprenticeship  . . . . . . . . . . . . . . . . . . . . . . . . . .180B

Craftsmanship  . . . . . . . . . . . . . . . . . . . . . . . . . .184B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185B

A Tooling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187B
Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189B

Source Code Control  . . . . . . . . . . . . . . . . . . . . .189B

IDE/Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194B

Issue Tracking  . . . . . . . . . . . . . . . . . . . . . . . . . .196B

Continuous Build  . . . . . . . . . . . . . . . . . . . . . . . .197B

Unit Testing Tools  . . . . . . . . . . . . . . . . . . . . . . . .198B

Component Testing Tools  . . . . . . . . . . . . . . . . . .199B

Integration Testing Tools  . . . . . . . . . . . . . . . . . . .200B

UML/MDA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201B

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204B

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205B



This page intentionally left blank 



Clean Code
A Handbook of Agile 

Software Craftsmanship

The Object Mentors: 
Robert C. Martin

Michael C. Feathers   Timothy R. Ottinger 
Jeffrey J. Langr   Brett L. Schuchert 

James W. Grenning   Kevin Dean Wampler 
Object Mentor Inc. 

Writing clean code is what you must do in order to call yourself a professional.
There is no reasonable excuse for doing anything less than your best.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City



Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, 
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed 
for incidental or consequential damages in connection with or arising out of the use of the information or 
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or 
special sales, which may include electronic versions and/or custom covers and content particular to your 
business, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

Martin, Robert C.
  Clean code : a handbook of agile software craftsmanship / Robert C. Martin.
       p. cm.
  Includes bibliographical references and index.
  ISBN 0-13-235088-2 (pbk. : alk. paper)
  1.  Agile software development. 2.  Computer software—Reliability.  I. Title.
  QA76.76.D47M3652 2008
  005.1—dc22 2008024750

Copyright © 2009 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, 
and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a 
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

ISBN-13: 978-0-13-235088-4
ISBN-10:        0-13-235088-2
Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
Ninth printing April, 2011



For Ann Marie: The ever enduring love of my life.



iv

Foreword

One of our favorite candies here in Denmark is Ga-Jol, whose strong licorice vapors are a
perfect complement to our damp and often chilly weather. Part of the charm of Ga-Jol to
us Danes is the wise or witty sayings printed on the flap of every box top. I bought a two-
pack of the delicacy this morning and found that it bore this old Danish saw:

Ærlighed i små ting er ikke nogen lille ting.

“Honesty in small things is not a small thing.” It was a good omen consistent with what I
already wanted to say here. Small things matter. This is a book about humble concerns
whose value is nonetheless far from small.

God is in the details, said the architect Ludwig mies van der Rohe. This quote recalls
contemporary arguments about the role of architecture in software development, and par-
ticularly in the Agile world. Bob and I occasionally find ourselves passionately engaged in
this dialogue. And yes, mies van der Rohe was attentive to utility and to the timeless forms
of building that underlie great architecture. On the other hand, he also personally selected
every doorknob for every house he designed. Why? Because small things matter.

In our ongoing “debate” on TDD, Bob and I have discovered that we agree that soft-
ware architecture has an important place in development, though we likely have different
visions of exactly what that means. Such quibbles are relatively unimportant, however,
because we can accept for granted that responsible professionals give some time to think-
ing and planning at the outset of a project. The late-1990s notions of design driven only by
the tests and the code are long gone. Yet attentiveness to detail is an even more critical
foundation of professionalism than is any grand vision. First, it is through practice in the
small that professionals gain proficiency and trust for practice in the large. Second, the
smallest bit of sloppy construction, of the door that does not close tightly or the slightly
crooked tile on the floor, or even the messy desk, completely dispels the charm of the
larger whole. That is what clean code is about.

Still, architecture is just one metaphor for software development, and in particular for
that part of software that delivers the initial product in the same sense that an architect
delivers a pristine building. In these days of Scrum and Agile, the focus is on quickly
bringing product to market. We want the factory running at top speed to produce software.
These are human factories: thinking, feeling coders who are working from a product back-
log or user story to create product. The manufacturing metaphor looms ever strong in such
thinking. The production aspects of Japanese auto manufacturing, of an assembly-line
world, inspire much of Scrum.



vForeword

Yet even in the auto industry, the bulk of the work lies not in manufacturing but in
maintenance—or its avoidance. In software, 80% or more of what we do is quaintly called
“maintenance”: the act of repair. Rather than embracing the typical Western focus on pro-
ducing good software, we should be thinking more like home repairmen in the building
industry, or auto mechanics in the automotive field. What does Japanese management have
to say about that?

In about 1951, a quality approach called Total Productive Maintenance (TPM) came
on the Japanese scene. Its focus is on maintenance rather than on production. One of the
major pillars of TPM is the set of so-called 5S principles. 5S is a set of disciplines—and
here I use the term “discipline” instructively. These 5S principles are in fact at the founda-
tions of Lean—another buzzword on the Western scene, and an increasingly prominent
buzzword in software circles. These principles are not an option. As Uncle Bob relates in
his front matter, good software practice requires such discipline: focus, presence of mind,
and thinking. It is not always just about doing, about pushing the factory equipment to pro-
duce at the optimal velocity. The 5S philosophy comprises these concepts:

• Seiri, or organization (think “sort” in English). Knowing where things are—using 
approaches such as suitable naming—is crucial. You think naming identifiers isn’t 
important? Read on in the following chapters.

• Seiton, or tidiness (think “systematize” in English). There is an old American saying: 
A place for everything, and everything in its place. A piece of code should be where 
you expect to find it—and, if not, you should re-factor to get it there.

• Seiso, or cleaning (think “shine” in English): Keep the workplace free of hanging 
wires, grease, scraps, and waste. What do the authors here say about littering your 
code with comments and commented-out code lines that capture history or wishes for 
the future? Get rid of them.

• Seiketsu, or standardization: The group agrees about how to keep the workplace clean. 
Do you think this book says anything about having a consistent coding style and set of 
practices within the group? Where do those standards come from? Read on.

• Shutsuke, or discipline (self-discipline). This means having the discipline to follow the 
practices and to frequently reflect on one’s work and be willing to change.

If you take up the challenge—yes, the challenge—of reading and applying this book,
you’ll come to understand and appreciate the last point. Here, we are finally driving to the
roots of responsible professionalism in a profession that should be concerned with the life
cycle of a product. As we maintain automobiles and other machines under TPM, break-
down maintenance—waiting for bugs to surface—is the exception. Instead, we go up a
level: inspect the machines every day and fix wearing parts before they break, or do the
equivalent of the proverbial 10,000-mile oil change to forestall wear and tear. In code,
refactor mercilessly. You can improve yet one level further, as the TPM movement inno-
vated over 50 years ago: build machines that are more maintainable in the first place. Mak-
ing your code readable is as important as making it executable. The ultimate practice,
introduced in TPM circles around 1960, is to focus on introducing entire new machines or



vi Foreword

replacing old ones. As Fred Brooks admonishes us, we should probably re-do major soft-
ware chunks from scratch every seven years or so to sweep away creeping cruft. Perhaps
we should update Brooks’ time constant to an order of weeks, days or hours instead of
years. That’s where detail lies.

There is great power in detail, yet there is something humble and profound about this
approach to life, as we might stereotypically expect from any approach that claims Japa-
nese roots. But this is not only an Eastern outlook on life; English and American folk wis-
dom are full of such admonishments. The Seiton quote from above flowed from the pen of
an Ohio minister who literally viewed neatness “as a remedy for every degree of evil.”
How about Seiso? Cleanliness is next to godliness. As beautiful as a house is, a messy
desk robs it of its splendor. How about Shutsuke in these small matters? He who is faithful
in little is faithful in much. How about being eager to re-factor at the responsible time,
strengthening one’s position for subsequent “big” decisions, rather than putting it off? A
stitch in time saves nine. The early bird catches the worm. Don’t put off until tomorrow
what you can do today. (Such was the original sense of the phrase “the last responsible
moment” in Lean until it fell into the hands of software consultants.) How about calibrat-
ing the place of small, individual efforts in a grand whole? Mighty oaks from little acorns
grow. Or how about integrating simple preventive work into everyday life? An ounce of
prevention is worth a pound of cure. An apple a day keeps the doctor away. Clean code
honors the deep roots of wisdom beneath our broader culture, or our culture as it once was,
or should be, and can be with attentiveness to detail. 

Even in the grand architectural literature we find saws that hark back to these sup-
posed details. Think of mies van der Rohe’s doorknobs. That’s seiri. That’s being attentive
to every variable name. You should name a variable using the same care with which you
name a first-born child.

As every homeowner knows, such care and ongoing refinement never come to an end.
The architect Christopher Alexander—father of patterns and pattern languages—views
every act of design itself as a small, local act of repair. And he views the craftsmanship of
fine structure to be the sole purview of the architect; the larger forms can be left to patterns
and their application by the inhabitants. Design is ever ongoing not only as we add a new
room to a house, but as we are attentive to repainting, replacing worn carpets, or upgrad-
ing the kitchen sink. Most arts echo analogous sentiments. In our search for others who
ascribe God’s home as being in the details, we find ourselves in the good company of the
19th century French author Gustav Flaubert. The French poet Paul Valery advises us that a
poem is never done and bears continual rework, and to stop working on it is abandonment.
Such preoccupation with detail is common to all endeavors of excellence. So maybe there
is little new here, but in reading this book you will be challenged to take up good disci-
plines that you long ago surrendered to apathy or a desire for spontaneity and just
“responding to change.” 

Unfortunately, we usually don’t view such concerns as key cornerstones of the art of
programming. We abandon our code early, not because it is done, but because our value
system focuses more on outward appearance than on the substance of what we deliver.



viiForeword

This inattentiveness costs us in the end: A bad penny always shows up. Research, neither in
industry nor in academia, humbles itself to the lowly station of keeping code clean. Back
in my days working in the Bell Labs Software Production Research organization (Produc-
tion, indeed!) we had some back-of-the-envelope findings that suggested that consistent
indentation style was one of the most statistically significant indicators of low bug density.
We want it to be that architecture or programming language or some other high notion
should be the cause of quality; as people whose supposed professionalism owes to the
mastery of tools and lofty design methods, we feel insulted by the value that those factory-
floor machines, the coders, add through the simple consistent application of an indentation
style. To quote my own book of 17 years ago, such style distinguishes excellence from
mere competence. The Japanese worldview understands the crucial value of the everyday
worker and, more so, of the systems of development that owe to the simple, everyday
actions of those workers. Quality is the result of a million selfless acts of care—not just of
any great method that descends from the heavens. That these acts are simple doesn’t mean
that they are simplistic, and it hardly means that they are easy. They are nonetheless the
fabric of greatness and, more so, of beauty, in any human endeavor. To ignore them is not
yet to be fully human.

Of course, I am still an advocate of thinking at broader scope, and particularly of the
value of architectural approaches rooted in deep domain knowledge and software usability.
The book isn’t about that—or, at least, it isn’t obviously about that. This book has a subtler
message whose profoundness should not be underappreciated. It fits with the current saw
of the really code-based people like Peter Sommerlad, Kevlin Henney and Giovanni
Asproni. “The code is the design” and “Simple code” are their mantras. While we must
take care to remember that the interface is the program, and that its structures have much
to say about our program structure, it is crucial to continuously adopt the humble stance
that the design lives in the code. And while rework in the manufacturing metaphor leads to
cost, rework in design leads to value. We should view our code as the beautiful articulation
of noble efforts of design—design as a process, not a static endpoint. It’s in the code that
the architectural metrics of coupling and cohesion play out. If you listen to Larry Constan-
tine describe coupling and cohesion, he speaks in terms of code—not lofty abstract con-
cepts that one might find in UML. Richard Gabriel advises us in his essay, “Abstraction
Descant” that abstraction is evil. Code is anti-evil, and clean code is perhaps divine.

Going back to my little box of Ga-Jol, I think it’s important to note that the Danish
wisdom advises us not just to pay attention to small things, but also to be honest in small
things. This means being honest to the code, honest to our colleagues about the state of our
code and, most of all, being honest with ourselves about our code. Did we Do our Best to
“leave the campground cleaner than we found it”? Did we re-factor our code before check-
ing in? These are not peripheral concerns but concerns that lie squarely in the center of
Agile values. It is a recommended practice in Scrum that re-factoring be part of the con-
cept of “Done.” Neither architecture nor clean code insist on perfection, only on honesty
and doing the best we can. To err is human; to forgive, divine. In Scrum, we make every-
thing visible. We air our dirty laundry. We are honest about the state of our code because



viii Foreword

code is never perfect. We become more fully human, more worthy of the divine, and closer
to that greatness in the details.

In our profession, we desperately need all the help we can get. If a clean shop floor
reduces accidents, and well-organized shop tools increase productivity, then I’m all for
them. As for this book, it is the best pragmatic application of Lean principles to software I
have ever seen in print. I expected no less from this practical little group of thinking indi-
viduals that has been striving together for years not only to become better, but also to gift
their knowledge to the industry in works such as you now find in your hands. It leaves the
world a little better than I found it before Uncle Bob sent me the manuscript.

Having completed this exercise in lofty insights, I am off to clean my desk.

James O. Coplien
Mørdrup, Denmark



This page intentionally left blank 



x

Introduction

Which door represents your code? Which door represents your team or your company?
Why are we in that room? Is this just a normal code review or have we found a stream of
horrible problems shortly after going live? Are we debugging in a panic, poring over code
that we thought worked? Are customers leaving in droves and managers breathing down

Reproduced with the kind permission of Thom Holwerda. 
http://www.osnews.com/story/19266/WTFs_m

(c
) 

20
08

 F
oc

us
 S

hi
ft

http://www.osnews.com/story/19266/WTFs_m


xiIntroduction

our necks? How can we make sure we wind up behind the right door when the going gets
tough? The answer is: craftsmanship.

There are two parts to learning craftsmanship: knowledge and work. You must gain
the knowledge of principles, patterns, practices, and heuristics that a craftsman knows, and
you must also grind that knowledge into your fingers, eyes, and gut by working hard and
practicing.

I can teach you the physics of riding a bicycle. Indeed, the classical mathematics is
relatively straightforward. Gravity, friction, angular momentum, center of mass, and so
forth, can be demonstrated with less than a page full of equations. Given those formulae I
could prove to you that bicycle riding is practical and give you all the knowledge you
needed to make it work. And you’d still fall down the first time you climbed on that bike.

Coding is no different. We could write down all the “feel good” principles of clean
code and then trust you to do the work (in other words, let you fall down when you get on
the bike), but then what kind of teachers would that make us, and what kind of student
would that make you?

No. That’s not the way this book is going to work.

Learning to write clean code is hard work. It requires more than just the knowledge of
principles and patterns. You must sweat over it. You must practice it yourself, and watch
yourself fail. You must watch others practice it and fail. You must see them stumble and
retrace their steps. You must see them agonize over decisions and see the price they pay for
making those decisions the wrong way. 

Be prepared to work hard while reading this book. This is not a “feel good” book that
you can read on an airplane and finish before you land. This book will make you work, and
work hard. What kind of work will you be doing? You’ll be reading code—lots of code.
And you will be challenged to think about what’s right about that code and what’s wrong
with it. You’ll be asked to follow along as we take modules apart and put them back
together again. This will take time and effort; but we think it will be worth it.

We have divided this book into three parts. The first several chapters describe the prin-
ciples, patterns, and practices of writing clean code. There is quite a bit of code in these
chapters, and they will be challenging to read. They’ll prepare you for the second section
to come. If you put the book down after reading the first section, good luck to you!

The second part of the book is the harder work. It consists of several case studies of
ever-increasing complexity. Each case study is an exercise in cleaning up some code—of
transforming code that has some problems into code that has fewer problems. The detail in
this section is intense. You will have to flip back and forth between the narrative and the
code listings. You will have to analyze and understand the code we are working with and
walk through our reasoning for making each change we make. Set aside some time
because this should take you days. 

The third part of this book is the payoff. It is a single chapter containing a list of heu-
ristics and smells gathered while creating the case studies. As we walked through and
cleaned up the code in the case studies, we documented every reason for our actions as a



xii Introduction

heuristic or smell. We tried to understand our own reactions to the code we were reading
and changing, and worked hard to capture why we felt what we felt and did what we did.
The result is a knowledge base that desribes the way we think when we write, read, and
clean code. 

This knowledge base is of limited value if you don’t do the work of carefully reading
through the case studies in the second part of this book. In those case studies we have care-
fully annotated each change we made with forward references to the heuristics. These for-
ward references appear in square brackets like this: [H22]. This lets you see the context in
which those heuristics were applied and written! It is not the heuristics themselves that are
so valuable, it is the relationship between those heuristics and the discrete decisions we
made while cleaning up the code in the case studies.

To further help you with those relationships, we have placed a cross-reference at the end
of the book that shows the page number for every forward reference. You can use it to look
up each place where a certain heuristic was applied.

If you read the first and third sections and skip over the case studies, then you will
have read yet another “feel good” book about writing good software. But if you take the
time to work through the case studies, following every tiny step, every minute decision—if
you put yourself in our place, and force yourself to think along the same paths that we
thought, then you will gain a much richer understanding of those principles, patterns, prac-
tices, and heuristics. They won’t be “feel good” knowledge any more. They’ll have been
ground into your gut, fingers, and heart. They’ll have become part of you in the same way
that a bicycle becomes an extension of your will when you have mastered how to ride it.

Acknowledgments

Thank you to my two artists, Jeniffer Kohnke and Angela Brooks. Jennifer is responsible
for the stunning and creative pictures at the start of each chapter and also for the portraits
of Kent Beck, Ward Cunningham, Bjarne Stroustrup, Ron Jeffries, Grady Booch, Dave
Thomas, Michael Feathers, and myself. 

Angela is responsible for the clever pictures that adorn the innards of each chapter.
She has done quite a few pictures for me over the years, including many of the inside pic-
tures in Agile Software Develpment: Principles, Patterns, and Practices. She is also my
firstborn in whom I am well pleased.

A special thanks goes out to my reviewers Bob Bogetti, George Bullock, Jeffrey
Overbey, and especially Matt Heusser. They were brutal. They were cruel. They were
relentless. They pushed me hard to make necessary improvements.

Thanks to my publisher, Chris Guzikowski, for his support, encouragement, and jovial
countenance. Thanks also to the editorial staff at Pearson, including Raina Chrobak for
keeping me honest and punctual.



xiiiIntroduction

Thanks to Micah Martin, and all the guys at 8th Light (www.8thlight.com) for their
reviews and encouragement.

Thanks to all the Object Mentors, past, present, and future, including: Bob Koss,
Michael Feathers, Michael Hill, Erik Meade, Jeff Langr, Pascal Roy, David Farber, Brett
Schuchert, Dean Wampler, Tim Ottinger, Dave Thomas, James Grenning, Brian Button,
Ron Jeffries, Lowell Lindstrom, Angelique Martin, Cindy Sprague, Libby Ottinger, Joleen
Craig, Janice Brown, Susan Rosso, et al.

Thanks to Jim Newkirk, my friend and business partner, who taught me more than
I think he realizes. Thanks to Kent Beck, Martin Fowler, Ward Cunningham, Bjarne
Stroustrup, Grady Booch, and all my other mentors, compatriots, and foils. Thanks to John
Vlissides for being there when it counted. Thanks to the guys at Zebra for allowing me to
rant on about how long a function should be.

And, finally, thank you for reading these thank yous.

www.8thlight.com


xiv

On the Cover

The image on the cover is M104: The Sombrero Galaxy. M104 is located in Virgo and is
just under 30 million light-years from us. At it’s core is a supermassive black hole weigh-
ing in at about a billion solar masses.

Does the image remind you of the explosion of the Klingon power moon Praxis? I
vividly remember the scene in Star Trek VI that showed an equatorial ring of debris flying
away from that explosion. Since that scene, the equatorial ring has been a common artifact
in sci-fi movie explosions. It was even added to the explosion of Alderaan in later editions
of the first Star Wars movie.

What caused this ring to form around M104? Why does it have such a huge central
bulge and such a bright and tiny nucleus? It looks to me as though the central black hole
lost its cool and blew a 30,000 light-year hole in the middle of the galaxy. Woe befell any
civilizations that might have been in the path of that cosmic disruption.

Supermassive black holes swallow whole stars for lunch, converting a sizeable frac-
tion of their mass to energy. E = MC2 is leverage enough, but when M is a stellar mass:
Look out! How many stars fell headlong into that maw before the monster was satiated?
Could the size of the central void be a hint? 

The image of M104 on the cover is a
combination of the famous visible light pho-
tograph from Hubble (right), and the recent
infrared image from the Spitzer orbiting
observatory (below, right). It’s the infrared
image that clearly shows us the ring nature
of the galaxy. In visible light we only see the
front edge of the ring in silhouette. The cen-
tral bulge obscures the rest of the ring.

But in the infrared, the hot particles in
the ring shine through the central bulge. The
two images combined give us a view we’ve
not seen before and imply that long ago it
was a raging inferno of activity. 

Cover image: © Spitzer Space Telescope



1A

1

Clean Code

You are reading this book for two reasons. First, you are a programmer. Second, you want
to be a better programmer. Good. We need better programmers.



2A Chapter 1: Clean Code

This is a book about good programming. It is filled with code. We are going to look at
code from every different direction. We’ll look down at it from the top, up at it from the
bottom, and through it from the inside out. By the time we are done, we’re going to know a
lot about code. What’s more, we’ll be able to tell the difference between good code and bad
code. We’ll know how to write good code. And we’ll know how to transform bad code into
good code. 

There Will Be Code

One might argue that a book about code is somehow behind the times—that code is no
longer the issue; that we should be concerned about models and requirements instead.
Indeed some have suggested that we are close to the end of code. That soon all code will
be generated instead of written. That programmers simply won’t be needed because busi-
ness people will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the
requirements. At some level those details cannot be ignored or abstracted; they have to be
specified. And specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code. 

I expect that the level of abstraction of our languages will continue to increase. I
also expect that the number of domain-specific languages will continue to grow. This
will be a good thing. But it will not eliminate code. Indeed, all the specifications written
in these higher level and domain-specific language will be code! It will still need to
be rigorous, accurate, and so formal and detailed that a machine can understand and
execute it.

The folks who think that code will one day disappear are like mathematicians who
hope one day to discover a mathematics that does not have to be formal. They are hoping
that one day we will discover a way to create machines that can do what we want rather
than what we say. These machines will have to be able to understand us so well that they
can translate vaguely specified needs into perfectly executing programs that precisely meet
those needs. 

This will never happen. Not even humans, with all their intuition and creativity,
have been able to create successful systems from the vague feelings of their customers.
Indeed, if the discipline of requirements specification has taught us anything, it is that
well-specified requirements are as formal as code and can act as executable tests of that
code! 

Remember that code is really the language in which we ultimately express the require-
ments. We may create languages that are closer to the requirements. We may create tools
that help us parse and assemble those requirements into formal structures. But we will
never eliminate necessary precision—so there will always be code. 



3ABad Code

Bad Code

I was recently reading the preface to Kent Beck’s
book Implementation Patterns.1 He says, “. . . this
book is based on a rather fragile premise: that
good code matters. . . .” A fragile premise? I dis-
agree! I think that premise is one of the most
robust, supported, and overloaded of all the pre-
mises in our craft (and I think Kent knows it). We
know good code matters because we’ve had to
deal for so long with its lack.

I know of one company that, in the late 80s,
wrote a killer app. It was very popular, and lots of
professionals bought and used it. But then the
release cycles began to stretch. Bugs were not
repaired from one release to the next. Load times
grew and crashes increased. I remember the day I
shut the product down in frustration and never
used it again. The company went out of business
a short time after that.

Two decades later I met one of the early employees of that company and asked him
what had happened. The answer confirmed my fears. They had rushed the product to
market and had made a huge mess in the code. As they added more and more features, the
code got worse and worse until they simply could not manage it any longer. It was the bad
code that brought the company down.

Have you ever been significantly impeded by bad code? If you are a programmer of
any experience then you’ve felt this impediment many times. Indeed, we have a name for
it. We call it wading. We wade through bad code. We slog through a morass of tangled
brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some
clue, of what is going on; but all we see is more and more senseless code.

Of course you have been impeded by bad code. So then—why did you write it?

Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you
didn’t have time to do a good job; that your boss would be angry with you if you took the
time to clean up your code. Perhaps you were just tired of working on this program and
wanted it to be over. Or maybe you looked at the backlog of other stuff that you had prom-
ised to get done and realized that you needed to slam this module together so you could
move on to the next. We’ve all done it. 

We’ve all looked at the mess we’ve just made and then have chosen to leave it for
another day. We’ve all felt the relief of seeing our messy program work and deciding that a

1. [Beck07].



4A Chapter 1: Clean Code

working mess is better than nothing. We’ve all said we’d go back and clean it up later. Of
course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been
significantly slowed down by someone else’s messy code. If you have been a programmer
for longer than two or three years, you have probably been slowed down by messy code.
The degree of the slowdown can be significant. Over the span of a year or two, teams that
were moving very fast at the beginning of a project can find themselves moving at a snail’s
pace. Every change they make to the code breaks two or three other parts of the code. No
change is trivial. Every addition or modification to the system requires that the tangles,
twists, and knots be “understood” so that more tangles, twists, and knots can be added.
Over time the mess becomes so big and so deep and so tall, they can not clean it up. There
is no way at all.

As the mess builds, the productivity of the team continues to decrease, asymptotically
approaching zero. As productivity decreases, management does the only thing they can;
they add more staff to the project in hopes of increasing productivity. But that new staff is
not versed in the design of the system. They don’t know the difference between a change
that matches the design intent and a change that thwarts the design intent. Furthermore,
they, and everyone else on the team, are under horrific pressure to increase productivity. So
they all make more and more messes, driving the productivity ever further toward zero.
(See Figure 1-1.)

Figure 1-1
Productivity vs. time



5AThe Total Cost of Owning a Mess

The Grand Redesign in the Sky

Eventually the team rebels. They inform management that they cannot continue to develop
in this odious code base. They demand a redesign. Management does not want to expend
the resources on a whole new redesign of the project, but they cannot deny that productiv-
ity is terrible. Eventually they bend to the demands of the developers and authorize the
grand redesign in the sky.

A new tiger team is selected. Everyone wants to be on this team because it’s a green-
field project. They get to start over and create something truly beautiful. But only the best
and brightest are chosen for the tiger team. Everyone else must continue to maintain the
current system.

Now the two teams are in a race. The tiger team must build a new system that does
everything that the old system does. Not only that, they have to keep up with the changes
that are continuously being made to the old system. Management will not replace the old
system until the new system can do everything that the old system does.

This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s
done, the original members of the tiger team are long gone, and the current members are
demanding that the new system be redesigned because it’s such a mess.

If you have experienced even one small part of the story I just told, then you already
know that spending time keeping your code clean is not just cost effective; it’s a matter of
professional survival.

Attitude

Have you ever waded through a mess so grave that it took weeks to do what should have
taken hours? Have you seen what should have been a one-line change, made instead in
hundreds of different modules? These symptoms are all too common. 

Why does this happen to code? Why does good code rot so quickly into bad code? We
have lots of explanations for it. We complain that the requirements changed in ways that
thwart the original design. We bemoan the schedules that were too tight to do things right.
We blather about stupid managers and intolerant customers and useless marketing types
and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves.
We are unprofessional.

This may be a bitter pill to swallow. How could this mess be our fault? What about the
requirements? What about the schedule? What about the stupid managers and the useless
marketing types? Don’t they bear some of the blame?

No. The managers and marketers look to us for the information they need to make
promises and commitments; and even when they don’t look to us, we should not be shy
about telling them what we think. The users look to us to validate the way the requirements
will fit into the system. The project managers look to us to help work out the schedule. We



6A Chapter 1: Clean Code

are deeply complicit in the planning of the project and share a great deal of the responsi-
bility for any failures; especially if those failures have to do with bad code!

“But wait!” you say. “If I don’t do what my manager says, I’ll be fired.” Probably not.
Most managers want the truth, even when they don’t act like it. Most managers want good
code, even when they are obsessing about the schedule. They may defend the schedule and
requirements with passion; but that’s their job. It’s your job to defend the code with equal
passion.

To drive this point home, what if you were a doctor and had a patient who demanded
that you stop all the silly hand-washing in preparation for surgery because it was taking
too much time?2 Clearly the patient is the boss; and yet the doctor should absolutely refuse
to comply. Why? Because the doctor knows more than the patient about the risks of dis-
ease and infection. It would be unprofessional (never mind criminal) for the doctor to
comply with the patient.

So too it is unprofessional for programmers to bend to the will of managers who don’t
understand the risks of making messes.

The Primal Conundrum

Programmers face a conundrum of basic values. All developers with more than a few years
experience know that previous messes slow them down. And yet all developers feel
the pressure to make messes in order to meet deadlines. In short, they don’t take the time
to go fast!

True professionals know that the second part of the conundrum is wrong. You will not
make the deadline by making the mess. Indeed, the mess will slow you down instantly, and
will force you to miss the deadline. The only way to make the deadline—the only way to
go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?

Let’s say you believe that messy code is a significant impediment. Let’s say that you accept
that the only way to go fast is to keep your code clean. Then you must ask yourself: “How
do I write clean code?” It’s no good trying to write clean code if you don’t know what it
means for code to be clean! 

The bad news is that writing clean code is a lot like painting a picture. Most of us
know when a picture is painted well or badly. But being able to recognize good art from
bad does not mean that we know how to paint. So too being able to recognize clean code
from dirty code does not mean that we know how to write clean code!

2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that 
doctors were too busy and wouldn’t have time to wash their hands between patient visits.



7AThe Total Cost of Owning a Mess

Writing clean code requires the disciplined use of a myriad little techniques applied
through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key.
Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us
see whether code is good or bad, but it also shows us the strategy for applying our disci-
pline to transform bad code into clean code.

A programmer without “code-sense” can look at a messy module and recognize the
mess but will have no idea what to do about it. A programmer with “code-sense” will look
at a messy module and see options and variations. The “code-sense” will help that pro-
grammer choose the best variation and guide him or her to plot a sequence of behavior
preserving transformations to get from here to there.

In short, a programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

There are probably as many definitions as there are programmers. So I asked some very
well-known and deeply experienced programmers what they thought. 

Bjarne Stroustrup, inventor of C++ 
and author of The C++ Programming 

Language

I like my code to be elegant and efficient. The
logic should be straightforward to make it hard
for bugs to hide, the dependencies minimal to
ease maintenance, error handling complete
according to an articulated strategy, and per-
formance close to optimal so as not to tempt
people to make the code messy with unprinci-
pled optimizations. Clean code does one thing
well.

Bjarne uses the word “elegant.” That’s
quite a word! The dictionary in my MacBook®

provides the following definitions: pleasingly
graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the
emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to
read. Reading it should make you smile the way a well-crafted music box or well-designed
car would.

Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming
from the inventor of C++; but I think there’s more to it than the sheer desire for speed.
Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses



8A Chapter 1: Clean Code

to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep
truth here. Bad code tempts the mess to grow! When others change bad code, they tend to
make it worse. 

Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the meta-
phor of broken windows.3 A building with broken windows looks like nobody cares about
it. So other people stop caring. They allow more windows to become broken. Eventually
they actively break them. They despoil the facade with graffiti and allow garbage to col-
lect. One broken window starts the process toward decay.

Bjarne also mentions that error handing should be complete. This goes to the disci-
pline of paying attention to details. Abbreviated error handling is just one way that pro-
grammers gloss over details. Memory leaks are another, race conditions still another.
Inconsistent naming yet another. The upshot is that clean code exhibits close attention to
detail. 

Bjarne closes with the assertion that clean code does one thing well. It is no accident
that there are so many principles of software design that can be boiled down to this simple
admonition. Writer after writer has tried to communicate this thought. Bad code tries to do
too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each
function, each class, each module exposes a single-minded attitude that remains entirely
undistracted, and unpolluted, by the surrounding details.

Grady Booch, author of Object 

Oriented Analysis and Design with 

Applications

Clean code is simple and direct. Clean code
reads like well-written prose. Clean code never
obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines
of control.

Grady makes some of the same points as
Bjarne, but he takes a readability perspective. I
especially like his view that clean code should
read like well-written prose. Think back on a
really good book that you’ve read. Remember how the words disappeared to be replaced
by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you
heard the sounds, you experienced the pathos and the humor.

Reading clean code will never be quite like reading Lord of the Rings. Still, the liter-
ary metaphor is not a bad one. Like a good novel, clean code should clearly expose the ten-
sions in the problem to be solved. It should build those tensions to a climax and then give

3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html

http://www.pragmaticprogrammer.com/booksellers/2004-12.html


9AThe Total Cost of Owning a Mess

the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation
of an obvious solution. 

I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron!
After all the word “crisp” is nearly a synonym for “concrete.” My MacBook’s dictionary
holds the following definition of “crisp”: briskly decisive and matter-of-fact, without hesi-
tation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words
carry a powerful message. Our code should be matter-of-fact as opposed to speculative.
It should contain only what is necessary. Our readers should perceive us to have been
decisive.

“Big” Dave Thomas, founder 
of OTI, godfather of the 
Eclipse strategy 

Clean code can be read, and enhanced by a
developer other than its original author. It has
unit and acceptance tests. It has meaningful
names. It provides one way rather than many
ways for doing one thing. It has minimal depen-
dencies, which are explicitly defined, and pro-
vides a clear and minimal API. Code should be
literate since depending on the language, not all
necessary information can be expressed clearly
in code alone.

Big Dave shares Grady’s desire for readabil-
ity, but with an important twist. Dave asserts that
clean code makes it easy for other people to enhance it. This may seem obvious, but it can-
not be overemphasized. There is, after all, a difference between code that is easy to read
and code that is easy to change. 

Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows.
But the discipline of Test Driven Development has made a profound impact upon our
industry and has become one of our most fundamental disciplines. Dave is right. Code,
without tests, is not clean. No matter how elegant it is, no matter how readable and acces-
sible, if it hath not tests, it be unclean. 

Dave uses the word minimal twice. Apparently he values code that is small, rather
than code that is large. Indeed, this has been a common refrain throughout software litera-
ture since its inception. Smaller is better. 

Dave also says that code should be literate. This is a soft reference to Knuth’s literate
programming.4 The upshot is that the code should be composed in such a form as to make
it readable by humans. 

4. [Knuth92].



10A Chapter 1: Clean Code

Michael Feathers, author of Working 

Effectively with Legacy Code

I could list all of the qualities that I notice in
clean code, but there is one overarching quality
that leads to all of them. Clean code always
looks like it was written by someone who cares.
There is nothing obvious that you can do to
make it better. All of those things were thought
about by the code’s author, and if you try to
imagine improvements, you’re led back to
where you are, sitting in appreciation of the
code someone left for you—code left by some-
one who cares deeply about the craft.

One word: care. That’s really the topic of
this book. Perhaps an appropriate subtitle
would be How to Care for Code. 

Michael hit it on the head. Clean code is
code that has been taken care of. Someone has taken the time to keep it simple and orderly.
They have paid appropriate attention to details. They have cared.

Ron Jeffries, author of Extreme Programming 

Installed and Extreme Programming 

Adventures in C# 

Ron began his career programming in Fortran at
the Strategic Air Command and has written code in
almost every language and on almost every
machine. It pays to consider his words carefully.

In recent years I begin, and nearly end, with Beck’s
rules of simple code. In priority order, simple code:

• Runs all the tests;

• Contains no duplication;

• Expresses all the design ideas that are in the 
system;

• Minimizes the number of entities such as classes,
methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over,
it’s a sign that there is an idea in our mind that is not well represented in the code. I try to
figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the
names of things several times before I settle in. With modern coding tools such as Eclipse,
renaming is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes



11AThe Total Cost of Owning a Mess

beyond names, however. I also look at whether an object or method is doing more than one
thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a
method, I will always use the Extract Method refactoring on it, resulting in one method
that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean
code, and improving dirty code with just these two things in mind can make a huge differ-
ence. There is, however, one other thing that I’m aware of doing, which is a bit harder to
explain.

After years of doing this work, it seems to me that all programs are made up of very
similar elements. One example is “find things in a collection.” Whether we have a data-
base of employee records, or a hash map of keys and values, or an array of items of some
kind, we often find ourselves wanting a particular item from that collection. When I find
that happening, I will often wrap the particular implementation in a more abstract method
or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but
since now all the references to that search are covered by my little abstraction, I can
change the implementation any time I want. I can go forward quickly while preserving my
ability to change later.

In addition, the collection abstraction often calls my attention to what’s “really”
going on, and keeps me from running down the path of implementing arbitrary collection
behavior when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions.
That’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No
duplication, one thing, expressiveness, tiny abstractions. Everything is there. 

Ward Cunningham, inventor of Wiki, inventor 
of Fit, coinventor of eXtreme Programming. 
Motive force behind Design Patterns. Small-
talk and OO thought leader. The godfather of 
all those who care about code.

You know you are working on clean code when each
routine you read turns out to be pretty much what
you expected. You can call it beautiful code when
the code also makes it look like the language was
made for the problem.

Statements like this are characteristic of Ward.
You read it, nod your head, and then go on to the
next topic. It sounds so reasonable, so obvious,
that it barely registers as something profound. You might think it was pretty much what
you expected. But let’s take a closer look.



12A Chapter 1: Clean Code

“. . . pretty much what you expected.” When was the last time you saw a module that
was pretty much what you expected? Isn’t it more likely that the modules you look at will
be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing
about trying to grab and hold the threads of reasoning that spew forth from the whole sys-
tem and weave their way through the module you are reading? When was the last time you
read through some code and nodded your head the way you might have nodded your head
at Ward’s statement?

Ward expects that when you read clean code you won’t be surprised at all. Indeed, you
won’t even expend much effort. You will read it, and it will be pretty much what you
expected. It will be obvious, simple, and compelling. Each module will set the stage for
the next. Each tells you how the next will be written. Programs that are that clean are so
profoundly well written that you don’t even notice it. The designer makes it look ridicu-
lously simple like all exceptional designs.

And what about Ward’s notion of beauty? We’ve all railed against the fact that our lan-
guages weren’t designed for our problems. But Ward’s statement puts the onus back on us.
He says that beautiful code makes the language look like it was made for the problem! So
it’s our responsibility to make the language look simple! Language bigots everywhere,
beware! It is not the language that makes programs appear simple. It is the programmer
that make the language appear simple!

Schools of Thought

What about me (Uncle Bob)? What do I think
clean code is? This book will tell you, in hideous
detail, what I and my compatriots think about
clean code. We will tell you what we think makes
a clean variable name, a clean function, a clean
class, etc. We will present these opinions as abso-
lutes, and we will not apologize for our stridence.
To us, at this point in our careers, they are abso-
lutes. They are our school of thought about clean
code. 

Martial artists do not all agree about the best
martial art, or the best technique within a martial
art. Often master martial artists will form their
own schools of thought and gather students to
learn from them. So we see Gracie Jiu Jistu,
founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded
and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by
Bruce Lee in the United States.



13AWe Are Authors

Students of these approaches immerse themselves in the teachings of the founder.
They dedicate themselves to learn what that particular master teaches, often to the exclu-
sion of any other master’s teaching. Later, as the students grow in their art, they may
become the student of a different master so they can broaden their knowledge and practice.
Some eventually go on to refine their skills, discovering new techniques and founding their
own schools.

None of these different schools is absolutely right. Yet within a particular school we
act as though the teachings and techniques are right. After all, there is a right way to prac-
tice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not inval-
idate the teachings of a different school.

Consider this book a description of the Object Mentor School of Clean Code. The
techniques and teachings within are the way that we practice our art. We are willing to
claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed,
and you will learn to write code that is clean and professional. But don’t make the mistake
of thinking that we are somehow “right” in any absolute sense. There are other schools and
other masters that have just as much claim to professionalism as we. It would behoove you
to learn from them as well.

Indeed, many of the recommendations in this book are controversial. You will proba-
bly not agree with all of them. You might violently disagree with some of them. That’s fine.
We can’t claim final authority. On the other hand, the recommendations in this book are
things that we have thought long and hard about. We have learned them through decades of
experience and repeated trial and error. So whether you agree or disagree, it would be a
shame if you did not see, and respect, our point of view.

We Are Authors

The @author field of a Javadoc tells us who we are. We are authors. And one thing about
authors is that they have readers. Indeed, authors are responsible for communicating well
with their readers. The next time you write a line of code, remember you are an author,
writing for readers who will judge your effort.

You might ask: How much is code really read? Doesn’t most of the effort go into
writing it? 

Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs
that kept track of every keystroke. You could work for an hour and then play back your whole
edit session like a high-speed movie. When I did this, the results were fascinating.

The vast majority of the playback was scrolling and navigating to other modules!

Bob enters the module. 
He scrolls down to the function needing change. 
He pauses, considering his options. 
Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.



14A Chapter 1: Clean Code

Ooops, he’s erasing what he typed!
He types it again.
He erases it again!
He types half of something else but then erases that!
He scrolls down to another function that calls the function he’s changing to see how it is
called.
He scrolls back up and types the same code he just erased.
He pauses.
He erases that code again!
He pops up another window and looks at a subclass. Is that function overridden?

. . .

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1.
We are constantly reading old code as part of the effort to write new code.

Because this ratio is so high, we want the reading of code to be easy, even if it makes
the writing harder. Of course there’s no way to write code without reading it, so making it
easy to read actually makes it easier to write. 

There is no escape from this logic. You cannot write code if you cannot read the sur-
rounding code. The code you are trying to write today will be hard or easy to write
depending on how hard or easy the surrounding code is to read. So if you want to go fast,
if you want to get done quickly, if you want your code to be easy to write, make it easy to
read.

The Boy Scout Rule

It’s not enough to write the code well. The code has to be kept clean over time. We’ve all
seen code rot and degrade as time passes. So we must take an active role in preventing this
degradation.

The Boy Scouts of America have a simple rule that we can apply to our profession. 

Leave the campground cleaner than you found it.5

If we all checked-in our code a little cleaner than when we checked it out, the code
simply could not rot. The cleanup doesn’t have to be something big. Change one variable
name for the better, break up one function that’s a little too large, eliminate one small bit of
duplication, clean up one composite if statement. 

Can you imagine working on a project where the code simply got better as time
passed? Do you believe that any other option is professional? Indeed, isn’t continuous
improvement an intrinsic part of professionalism?

5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: “Try and leave this world a 
little better than you found it . . .”



15ABibliography

Prequel and Principles

In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software
Development: Principles, Patterns, and Practices (PPP). The PPP book concerns itself
with the principles of object-oriented design, and many of the practices used by profes-
sional developers. If you have not read PPP, then you may find that it continues the story
told by this book. If you have already read it, then you’ll find many of the sentiments of
that book echoed in this one at the level of code.

In this book you will find sporadic references to various principles of design. These
include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and
the Dependency Inversion Principle (DIP) among others. These principles are described in
depth in PPP. 

Conclusion

Books on art don’t promise to make you an artist. All they can do is give you some of the
tools, techniques, and thought processes that other artists have used. So too this book can-
not promise to make you a good programmer. It cannot promise to give you “code-sense.”
All it can do is show you the thought processes of good programmers and the tricks, tech-
niques, and tools that they use. 

Just like a book on art, this book will be full of details. There will be lots of code.
You’ll see good code and you’ll see bad code. You’ll see bad code transformed into good
code. You’ll see lists of heuristics, disciplines, and techniques. You’ll see example after
example. After that, it’s up to you. 

Remember the old joke about the concert violinist who got lost on his way to a perfor-
mance? He stopped an old man on the corner and asked him how to get to Carnegie Hall.
The old man looked at the violinist and the violin tucked under his arm, and said: “Prac-
tice, son. Practice!”

Bibliography

[Beck07]:  Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]:  Literate Programming, Donald E. Knuth, Center for the Study of Language
and Information, Leland Stanford Junior University, 1992.



This page intentionally left blank 



17A

2

Meaningful Names
by Tim Ottinger

Introduction

Names are everywhere in software. We name our variables, our functions, our arguments,
classes, and packages. We name our source files and the directories that contain them. We
name our jar files and war files and ear files. We name and name and name. Because we do



18A Chapter 2: Meaningful Names

so much of it, we’d better do it well. What follows are some simple rules for creating
good names.

Use Intention-Revealing Names

It is easy to say that names should reveal intent. What we want to impress upon you is that
we are serious about this. Choosing good names takes time but saves more than it takes.
So take care with your names and change them when you find better ones. Everyone who
reads your code (including you) will be happier if you do.

The name of a variable, function, or class, should answer all the big questions. It
should tell you why it exists, what it does, and how it is used. If a name requires a com-
ment, then the name does not reveal its intent. 

int d; // elapsed time in days

The name d reveals nothing. It does not evoke a sense of elapsed time, nor of days. We
should choose a name that specifies what is being measured and the unit of that measure-
ment:

int elapsedTimeInDays;
int daysSinceCreation;
int daysSinceModification;
int fileAgeInDays;

Choosing names that reveal intent can make it much easier to understand and change
code. What is the purpose of this code?

  public List<int[]> getThem() {
    List<int[]> list1 = new ArrayList<int[]>();
    for (int[] x : theList)
      if (x[0] == 4) 
        list1.add(x);
    return list1;
  }

Why is it hard to tell what this code is doing? There are no complex expressions.
Spacing and indentation are reasonable. There are only three variables and two constants
mentioned. There aren’t even any fancy classes or polymorphic methods, just a list of
arrays (or so it seems).

The problem isn’t the simplicity of the code but the implicity of the code (to coin a
phrase): the degree to which the context is not explicit in the code itself. The code implic-
itly requires that we know the answers to questions such as:

1. What kinds of things are in theList?

2. What is the significance of the zeroth subscript of an item in theList?

3. What is the significance of the value 4?

4. How would I use the list being returned?



19AAvoid Disinformation

The answers to these questions are not present in the code sample, but they could have
been. Say that we’re working in a mine sweeper game. We find that the board is a list of
cells called theList. Let’s rename that to gameBoard.

Each cell on the board is represented by a simple array. We further find that the zeroth
subscript is the location of a status value and that a status value of 4 means “flagged.” Just
by giving these concepts names we can improve the code considerably:

  public List<int[]> getFlaggedCells() {
    List<int[]> flaggedCells = new ArrayList<int[]>();
    for (int[] cell : gameBoard)
      if (cell[STATUS_VALUE] == FLAGGED)
        flaggedCells.add(cell);
    return flaggedCells;
  }

Notice that the simplicity of the code has not changed. It still has exactly the same number
of operators and constants, with exactly the same number of nesting levels. But the code
has become much more explicit.

We can go further and write a simple class for cells instead of using an array of ints.
It can include an intention-revealing function (call it isFlagged) to hide the magic num-
bers. It results in a new version of the function:

  public List<Cell> getFlaggedCells() {
    List<Cell> flaggedCells = new ArrayList<Cell>();
    for (Cell cell : gameBoard)
      if (cell.isFlagged())
        flaggedCells.add(cell);
    return flaggedCells;
  }

With these simple name changes, it’s not difficult to understand what’s going on. This is
the power of choosing good names.

Avoid Disinformation

Programmers must avoid leaving false clues that obscure the meaning of code. We should
avoid words whose entrenched meanings vary from our intended meaning. For example,
hp, aix, and sco would be poor variable names because they are the names of Unix plat-
forms or variants. Even if you are coding a hypotenuse and hp looks like a good abbrevia-
tion, it could be disinformative.

Do not refer to a grouping of accounts as an accountList unless it’s actually a List.
The word list means something specific to programmers. If the container holding the
accounts is not actually a List, it may lead to false conclusions.1 So accountGroup or
bunchOfAccounts or just plain accounts would be better.

1. As we’ll see later on, even if the container is a List, it’s probably better not to encode the container type into the name. 



20A Chapter 2: Meaningful Names

Beware of using names which vary in small ways. How long does it take to spot the
subtle difference between a XYZControllerForEfficientHandlingOfStrings in one module
and, somewhere a little more distant, XYZControllerForEfficientStorageOfStrings? The
words have frightfully similar shapes.

Spelling similar concepts similarly is information. Using inconsistent spellings is dis-
information. With modern Java environments we enjoy automatic code completion. We
write a few characters of a name and press some hotkey combination (if that) and are
rewarded with a list of possible completions for that name. It is very helpful if names for
very similar things sort together alphabetically and if the differences are very obvious,
because the developer is likely to pick an object by name without seeing your copious
comments or even the list of methods supplied by that class.

A truly awful example of disinformative names would be the use of lower-case L or
uppercase O as variable names, especially in combination. The problem, of course, is that
they look almost entirely like the constants one and zero, respectively.

int a = l;
if ( O == l )
  a = O1;
else
  l = 01;

The reader may think this a contrivance, but we have examined code where such
things were abundant. In one case the author of the code suggested using a different font
so that the differences were more obvious, a solution that would have to be passed down to
all future developers as oral tradition or in a written document. The problem is conquered
with finality and without creating new work products by a simple renaming.

Make Meaningful 
Distinctions

Programmers create problems for them-
selves when they write code solely to sat-
isfy a compiler or interpreter. For example,
because you can’t use the same name to refer
to two different things in the same scope,
you might be tempted to change one name
in an arbitrary way. Sometimes this is done by misspelling one, leading to the surprising
situation where correcting spelling errors leads to an inability to compile.2

It is not sufficient to add number series or noise words, even though the compiler is
satisfied. If names must be different, then they should also mean something different.

2. Consider, for example, the truly hideous practice of creating a variable named klass just because the name class was used 
for something else.



21AUse Pronounceable Names

Number-series naming (a1, a2, .. aN) is the opposite of intentional naming. Such
names are not disinformative—they are noninformative; they provide no clue to the
author’s intention. Consider:

  public static void copyChars(char a1[], char a2[]) {
    for (int i = 0; i < a1.length; i++) {
      a2[i] = a1[i]; 
    }
  }

This function reads much better when source and destination are used for the argument
names.

Noise words are another meaningless distinction. Imagine that you have a Product
class. If you have another called ProductInfo or ProductData, you have made the names dif-
ferent without making them mean anything different. Info and Data are indistinct noise
words like a, an, and the.

Note that there is nothing wrong with using prefix conventions like a and the so long
as they make a meaningful distinction. For example you might use a for all local variables
and the for all function arguments.3 The problem comes in when you decide to call a vari-
able theZork because you already have another variable named zork.

Noise words are redundant. The word variable should never appear in a variable
name. The word table should never appear in a table name. How is NameString better than
Name? Would a Name ever be a floating point number? If so, it breaks an earlier rule about
disinformation. Imagine finding one class named Customer and another named
CustomerObject. What should you understand as the distinction? Which one will represent
the best path to a customer’s payment history?

There is an application we know of where this is illustrated. we’ve changed the names
to protect the guilty, but here’s the exact form of the error:

getActiveAccount();
getActiveAccounts();
getActiveAccountInfo();

How are the programmers in this project supposed to know which of these functions to call?

In the absence of specific conventions, the variable moneyAmount is indistinguishable
from money, customerInfo is indistinguishable from customer, accountData is indistinguish-
able from account, and theMessage is indistinguishable from message. Distinguish names in
such a way that the reader knows what the differences offer.

Use Pronounceable Names

Humans are good at words. A significant part of our brains is dedicated to the concept of
words. And words are, by definition, pronounceable. It would be a shame not to take

3. Uncle Bob used to do this in C++ but has given up the practice because modern IDEs make it unnecessary.



22A Chapter 2: Meaningful Names

advantage of that huge portion of our brains that has evolved to deal with spoken lan-
guage. So make your names pronounceable.

If you can’t pronounce it, you can’t discuss it without sounding like an idiot. “Well,
over here on the bee cee arr three cee enn tee we have a pee ess zee kyew int, see?” This
matters because programming is a social activity.

A company I know has genymdhms (generation date, year, month, day, hour, minute,
and second) so they walked around saying “gen why emm dee aich emm ess”. I have an
annoying habit of pronouncing everything as written, so I started saying “gen-yah-mudda-
hims.” It later was being called this by a host of designers and analysts, and we still
sounded silly. But we were in on the joke, so it was fun. Fun or not, we were tolerating
poor naming. New developers had to have the variables explained to them, and then they
spoke about it in silly made-up words instead of using proper English terms. Compare

class DtaRcrd102 {
private Date genymdhms; 
private Date modymdhms;
private final String pszqint = "102";
/* ... */

};

to

class Customer {
private Date generationTimestamp; 
private Date modificationTimestamp;;
private final String recordId = "102";
/* ... */

};

Intelligent conversation is now possible: “Hey, Mikey, take a look at this record! The gen-
eration timestamp is set to tomorrow’s date! How can that be?”

Use Searchable Names

Single-letter names and numeric constants have a particular problem in that they are not
easy to locate across a body of text.

One might easily grep for MAX_CLASSES_PER_STUDENT, but the number 7 could be more
troublesome. Searches may turn up the digit as part of file names, other constant defini-
tions, and in various expressions where the value is used with different intent. It is even
worse when a constant is a long number and someone might have transposed digits,
thereby creating a bug while simultaneously evading the programmer’s search.

Likewise, the name e is a poor choice for any variable for which a programmer might
need to search. It is the most common letter in the English language and likely to show up
in every passage of text in every program. In this regard, longer names trump shorter
names, and any searchable name trumps a constant in code.

My personal preference is that single-letter names can ONLY be used as local vari-
ables inside short methods. The length of a name should correspond to the size of its scope



23AAvoid Encodings

[N5]. If a variable or constant might be seen or used in multiple places in a body of code,
it is imperative to give it a search-friendly name. Once again compare

for (int j=0; j<34; j++) {
s += (t[j]*4)/5;

}

to

int realDaysPerIdealDay = 4;
const int WORK_DAYS_PER_WEEK = 5;
int sum = 0;
for (int j=0; j < NUMBER_OF_TASKS; j++) {

int realTaskDays = taskEstimate[j] * realDaysPerIdealDay;
int realTaskWeeks = (realdays / WORK_DAYS_PER_WEEK);
sum += realTaskWeeks;

}

Note that sum, above, is not a particularly useful name but at least is searchable. The
intentionally named code makes for a longer function, but consider how much easier it
will be to find WORK_DAYS_PER_WEEK than to find all the places where 5 was used and filter
the list down to just the instances with the intended meaning.

Avoid Encodings

We have enough encodings to deal with without adding more to our burden. Encoding
type or scope information into names simply adds an extra burden of deciphering. It
hardly seems reasonable to require each new employee to learn yet another encoding “lan-
guage” in addition to learning the (usually considerable) body of code that they’ll be work-
ing in. It is an unnecessary mental burden when trying to solve a problem. Encoded names
are seldom pronounceable and are easy to mis-type.

Hungarian Notation

In days of old, when we worked in name-length-challenged languages, we violated this
rule out of necessity, and with regret. Fortran forced encodings by making the first letter a
code for the type. Early versions of BASIC allowed only a letter plus one digit. Hungarian
Notation (HN) took this to a whole new level.

HN was considered to be pretty important back in the Windows C API, when every-
thing was an integer handle or a long pointer or a void pointer, or one of several implemen-
tations of “string” (with different uses and attributes). The compiler did not check types in
those days, so the programmers needed a crutch to help them remember the types. 

In modern languages we have much richer type systems, and the compilers remember
and enforce the types. What’s more, there is a trend toward smaller classes and shorter
functions so that people can usually see the point of declaration of each variable they’re
using.



24A Chapter 2: Meaningful Names

Java programmers don’t need type encoding. Objects are strongly typed, and editing
environments have advanced such that they detect a type error long before you can run a
compile! So nowadays HN and other forms of type encoding are simply impediments.
They make it harder to change the name or type of a variable, function, or class. They
make it harder to read the code. And they create the possibility that the encoding system
will mislead the reader.

PhoneNumber phoneString; 
// name not changed when type changed!

Member Prefixes

You also don’t need to prefix member variables with m_ anymore. Your classes and func-
tions should be small enough that you don’t need them. And you should be using an edit-
ing environment that highlights or colorizes members to make them distinct.

public class Part { 
private String m_dsc; // The textual description
void setName(String name) {

m_dsc = name;
}

}
_________________________________________________

public class Part { 
String description;
void setDescription(String description) { 

this.description = description;
}

}

Besides, people quickly learn to ignore the prefix (or suffix) to see the meaningful
part of the name. The more we read the code, the less we see the prefixes. Eventually the
prefixes become unseen clutter and a marker of older code.

Interfaces and Implementations

These are sometimes a special case for encodings. For example, say you are building an
ABSTRACT FACTORY for the creation of shapes. This factory will be an interface and will
be implemented by a concrete class. What should you name them? IShapeFactory and
ShapeFactory? I prefer to leave interfaces unadorned. The preceding I, so common in
today’s legacy wads, is a distraction at best and too much information at worst. I don’t
want my users knowing that I’m handing them an interface. I just want them to know that
it’s a ShapeFactory. So if I must encode either the interface or the implementation, I choose
the implementation. Calling it ShapeFactoryImp, or even the hideous CShapeFactory, is pref-
erable to encoding the interface.



25AMethod Names

Avoid Mental Mapping

Readers shouldn’t have to mentally translate your names into other names they already
know. This problem generally arises from a choice to use neither problem domain terms
nor solution domain terms.

This is a problem with single-letter variable names. Certainly a loop counter may be
named i or j or k (though never l!) if its scope is very small and no other names can con-
flict with it. This is because those single-letter names for loop counters are traditional.
However, in most other contexts a single-letter name is a poor choice; it’s just a place
holder that the reader must mentally map to the actual concept. There can be no worse rea-
son for using the name c than because a and b were already taken.

In general programmers are pretty smart people. Smart people sometimes like to show
off their smarts by demonstrating their mental juggling abilities. After all, if you can reli-
ably remember that r is the lower-cased version of the url with the host and scheme
removed, then you must clearly be very smart.

One difference between a smart programmer and a professional programmer is that
the professional understands that clarity is king. Professionals use their powers for good
and write code that others can understand. 

Class Names

Classes and objects should have noun or noun phrase names like Customer, WikiPage,
Account, and AddressParser. Avoid words like Manager, Processor, Data, or Info in the name
of a class. A class name should not be a verb.

Method Names

Methods should have verb or verb phrase names like postPayment, deletePage, or save.
Accessors, mutators, and predicates should be named for their value and prefixed with get,
set, and is according to the javabean standard.4

string name = employee.getName();
customer.setName("mike");
if (paycheck.isPosted())...

When constructors are overloaded, use static factory methods with names that
describe the arguments. For example,

Complex fulcrumPoint = Complex.FromRealNumber(23.0);

is generally better than

Complex fulcrumPoint = new Complex(23.0);

Consider enforcing their use by making the corresponding constructors private.

4. http://java.sun.com/products/javabeans/docs/spec.html

http://java.sun.com/products/javabeans/docs/spec.html


26A Chapter 2: Meaningful Names

Don’t Be Cute

If names are too clever, they will be
memorable only to people who share the
author’s sense of humor, and only as long
as these people remember the joke. Will
they know what the function named
HolyHandGrenade is supposed to do? Sure,
it’s cute, but maybe in this case
DeleteItems might be a better name.
Choose clarity over entertainment value.

Cuteness in code often appears in the form of colloquialisms or slang. For example,
don’t use the name whack() to mean kill(). Don’t tell little culture-dependent jokes like
eatMyShorts() to mean abort(). 

Say what you mean. Mean what you say.

Pick One Word per Concept

Pick one word for one abstract concept and stick with it. For instance, it’s confusing to
have fetch, retrieve, and get as equivalent methods of different classes. How do you
remember which method name goes with which class? Sadly, you often have to remember
which company, group, or individual wrote the library or class in order to remember which
term was used. Otherwise, you spend an awful lot of time browsing through headers and
previous code samples.

Modern editing environments like Eclipse and IntelliJ-provide context-sensitive clues,
such as the list of methods you can call on a given object. But note that the list doesn’t usu-
ally give you the comments you wrote around your function names and parameter lists.
You are lucky if it gives the parameter names from function declarations. The function
names have to stand alone, and they have to be consistent in order for you to pick the cor-
rect method without any additional exploration.

Likewise, it’s confusing to have a controller and a manager and a driver in the same
code base. What is the essential difference between a DeviceManager and a Protocol-
Controller? Why are both not controllers or both not managers? Are they both Drivers
really? The name leads you to expect two objects that have very different type as well as
having different classes.

A consistent lexicon is a great boon to the programmers who must use your code. 

Don’t Pun

Avoid using the same word for two purposes. Using the same term for two different ideas
is essentially a pun.



27AAdd Meaningful Context

If you follow the “one word per concept” rule, you could end up with many classes
that have, for example, an add method. As long as the parameter lists and return values of
the various add methods are semantically equivalent, all is well.

However one might decide to use the word add for “consistency” when he or she is not
in fact adding in the same sense. Let’s say we have many classes where add will create a
new value by adding or concatenating two existing values. Now let’s say we are writing a
new class that has a method that puts its single parameter into a collection. Should we call
this method add? It might seem consistent because we have so many other add methods,
but in this case, the semantics are different, so we should use a name like insert or append
instead. To call the new method add would be a pun.

Our goal, as authors, is to make our code as easy as possible to understand. We want
our code to be a quick skim, not an intense study. We want to use the popular paperback
model whereby the author is responsible for making himself clear and not the academic
model where it is the scholar’s job to dig the meaning out of the paper.

Use Solution Domain Names

Remember that the people who read your code will be programmers. So go ahead and use
computer science (CS) terms, algorithm names, pattern names, math terms, and so forth. It
is not wise to draw every name from the problem domain because we don’t want our
coworkers to have to run back and forth to the customer asking what every name means
when they already know the concept by a different name.

The name AccountVisitor means a great deal to a programmer who is familiar with
the VISITOR pattern. What programmer would not know what a JobQueue was? There are
lots of very technical things that programmers have to do. Choosing technical names for
those things is usually the most appropriate course.

Use Problem Domain Names

When there is no “programmer-eese” for what you’re doing, use the name from the prob-
lem domain. At least the programmer who maintains your code can ask a domain expert
what it means.

Separating solution and problem domain concepts is part of the job of a good pro-
grammer and designer. The code that has more to do with problem domain concepts
should have names drawn from the problem domain.

Add Meaningful Context

There are a few names which are meaningful in and of themselves—most are not. Instead,
you need to place names in context for your reader by enclosing them in well-named
classes, functions, or namespaces. When all else fails, then prefixing the name may be nec-
essary as a last resort.



28A Chapter 2: Meaningful Names

Imagine that you have variables named firstName, lastName, street, houseNumber, city,
state, and zipcode. Taken together it’s pretty clear that they form an address. But what if
you just saw the state variable being used alone in a method? Would you automatically
infer that it was part of an address?

You can add context by using prefixes: addrFirstName, addrLastName, addrState, and so
on. At least readers will understand that these variables are part of a larger structure. Of
course, a better solution is to create a class named Address. Then, even the compiler knows
that the variables belong to a bigger concept.

Consider the method in Listing 2-1. Do the variables need a more meaningful con-
text? The function name provides only part of the context; the algorithm provides the rest.
Once you read through the function, you see that the three variables, number, verb, and
pluralModifier, are part of the “guess statistics” message. Unfortunately, the context must
be inferred. When you first look at the method, the meanings of the variables are opaque.

The function is a bit too long and the variables are used throughout. To split the func-
tion into smaller pieces we need to create a GuessStatisticsMessage class and make the
three variables fields of this class. This provides a clear context for the three variables. They
are definitively part of the GuessStatisticsMessage. The improvement of context also allows
the algorithm to be made much cleaner by breaking it into many smaller functions. (See
Listing 2-2.) 

Listing 2-1 
Variables with unclear context.
private void printGuessStatistics(char candidate, int count) {
    String number;
    String verb;
    String pluralModifier;
    if (count == 0) {
      number = "no";
      verb = "are";
      pluralModifier = "s";
    } else if (count == 1) {
      number = "1";
      verb = "is";
      pluralModifier = "";
    } else {
      number = Integer.toString(count);
      verb = "are";
      pluralModifier = "s";
    }
    String guessMessage = String.format(
      "There %s %s %s%s", verb, number, candidate, pluralModifier
    );
    print(guessMessage);
  }



29ADon’t Add Gratuitous Context

Don’t Add Gratuitous Context

In an imaginary application called “Gas Station Deluxe,” it is a bad idea to prefix every
class with GSD. Frankly, you are working against your tools. You type G and press the com-
pletion key and are rewarded with a mile-long list of every class in the system. Is that
wise? Why make it hard for the IDE to help you? 

Likewise, say you invented a MailingAddress class in GSD’s accounting module, and
you named it GSDAccountAddress. Later, you need a mailing address for your customer con-
tact application. Do you use GSDAccountAddress? Does it sound like the right name? Ten of
17 characters are redundant or irrelevant.

Listing 2-2 
Variables have a context.
public class GuessStatisticsMessage {
  private String number;
  private String verb;
  private String pluralModifier;

  public String make(char candidate, int count) {
    createPluralDependentMessageParts(count);
    return String.format(
      "There %s %s %s%s", 
       verb, number, candidate, pluralModifier );
  }

  private void createPluralDependentMessageParts(int count) {
    if (count == 0) {
      thereAreNoLetters();
    } else if (count == 1) {
      thereIsOneLetter();
    } else {
      thereAreManyLetters(count);
    }
  }

  private void thereAreManyLetters(int count) {
    number = Integer.toString(count);
    verb = "are";
    pluralModifier = "s";
  }

  private void thereIsOneLetter() {
    number = "1";
    verb = "is";
    pluralModifier = "";
  }

  private void thereAreNoLetters() {
    number = "no";
    verb = "are";
    pluralModifier = "s";
  }
}



30A Chapter 2: Meaningful Names

Shorter names are generally better than longer ones, so long as they are clear. Add no
more context to a name than is necessary.

The names accountAddress and customerAddress are fine names for instances of the
class Address but could be poor names for classes. Address is a fine name for a class. If I
need to differentiate between MAC addresses, port addresses, and Web addresses, I might
consider PostalAddress, MAC, and URI. The resulting names are more precise, which is the
point of all naming.

Final Words

The hardest thing about choosing good names is that it requires good descriptive skills and
a shared cultural background. This is a teaching issue rather than a technical, business, or
management issue. As a result many people in this field don’t learn to do it very well.

People are also afraid of renaming things for fear that some other developers will
object. We do not share that fear and find that we are actually grateful when names change
(for the better). Most of the time we don’t really memorize the names of classes and meth-
ods. We use the modern tools to deal with details like that so we can focus on whether the
code reads like paragraphs and sentences, or at least like tables and data structure (a sen-
tence isn’t always the best way to display data). You will probably end up surprising some-
one when you rename, just like you might with any other code improvement. Don’t let it
stop you in your tracks.

Follow some of these rules and see whether you don’t improve the readability of your
code. If you are maintaining someone else’s code, use refactoring tools to help resolve these
problems. It will pay off in the short term and continue to pay in the long run.



31A

3

Functions

In the early days of programming we composed our systems of routines and subroutines.
Then, in the era of Fortran and PL/1 we composed our systems of programs, subprograms,
and functions. Nowadays only the function survives from those early days. Functions are
the first line of organization in any program. Writing them well is the topic of this chapter. 



32A Chapter 3: Functions

Consider the code in Listing 3-1. It’s hard to find a long function in FitNesse,1 but
after a bit of searching I came across this one. Not only is it long, but it’s got duplicated
code, lots of odd strings, and many strange and inobvious data types and APIs. See how
much sense you can make of it in the next three minutes. 

1. An open-source testing tool. www.fitnese.org

Listing 3-1 
HtmlUtil.java (FitNesse 20070619)
  public static String testableHtml(
    PageData pageData,
    boolean includeSuiteSetup
  ) throws Exception {
    WikiPage wikiPage = pageData.getWikiPage();
    StringBuffer buffer = new StringBuffer();
    if (pageData.hasAttribute("Test")) {
      if (includeSuiteSetup) {
        WikiPage suiteSetup =
          PageCrawlerImpl.getInheritedPage(
                  SuiteResponder.SUITE_SETUP_NAME, wikiPage
          );
        if (suiteSetup != null) {
          WikiPagePath pagePath =
            suiteSetup.getPageCrawler().getFullPath(suiteSetup);
          String pagePathName = PathParser.render(pagePath);
          buffer.append("!include -setup .")
                .append(pagePathName)
                .append("\n");
        }
      }
      WikiPage setup = 
        PageCrawlerImpl.getInheritedPage("SetUp", wikiPage);
      if (setup != null) {
        WikiPagePath setupPath =
          wikiPage.getPageCrawler().getFullPath(setup);
        String setupPathName = PathParser.render(setupPath);
        buffer.append("!include -setup .")
              .append(setupPathName)
              .append("\n");
      }
    }
    buffer.append(pageData.getContent());
    if (pageData.hasAttribute("Test")) {
      WikiPage teardown = 
        PageCrawlerImpl.getInheritedPage("TearDown", wikiPage);
      if (teardown != null) {
        WikiPagePath tearDownPath =
          wikiPage.getPageCrawler().getFullPath(teardown);
        String tearDownPathName = PathParser.render(tearDownPath);
        buffer.append("\n")
              .append("!include -teardown .")
              .append(tearDownPathName)
              .append("\n");
      }

www.fitnese.org


33AFunctions

Do you understand the function after three minutes of study? Probably not. There’s
too much going on in there at too many different levels of abstraction. There are strange
strings and odd function calls mixed in with doubly nested if statements controlled by
flags.

However, with just a few simple method extractions, some renaming, and a little
restructuring, I was able to capture the intent of the function in the nine lines of Listing 3-2.
See whether you can understand that in the next 3 minutes.

      if (includeSuiteSetup) {
        WikiPage suiteTeardown =
          PageCrawlerImpl.getInheritedPage(
                  SuiteResponder.SUITE_TEARDOWN_NAME,
                  wikiPage
          );
        if (suiteTeardown != null) {
          WikiPagePath pagePath =
            suiteTeardown.getPageCrawler().getFullPath (suiteTeardown);
          String pagePathName = PathParser.render(pagePath);
          buffer.append("!include -teardown .")
                .append(pagePathName)
                .append("\n");
        }
      }
    }
    pageData.setContent(buffer.toString());
    return pageData.getHtml();
  }

Listing 3-2 
HtmlUtil.java (refactored)
  public static String renderPageWithSetupsAndTeardowns(
    PageData pageData, boolean isSuite
  ) throws Exception {
    boolean isTestPage = pageData.hasAttribute("Test");
    if (isTestPage) {
      WikiPage testPage = pageData.getWikiPage();
      StringBuffer newPageContent = new StringBuffer();
      includeSetupPages(testPage, newPageContent, isSuite);
      newPageContent.append(pageData.getContent());
      includeTeardownPages(testPage, newPageContent, isSuite);
      pageData.setContent(newPageContent.toString());
    }

    return pageData.getHtml();
  }

Listing 3-1 (continued)
HtmlUtil.java (FitNesse 20070619)



34A Chapter 3: Functions

Unless you are a student of FitNesse, you probably don’t understand all the details.
Still, you probably understand that this function performs the inclusion of some setup and
teardown pages into a test page and then renders that page into HTML. If you are familiar
with JUnit,2 you probably realize that this function belongs to some kind of Web-based
testing framework. And, of course, that is correct. Divining that information from Listing 3-2
is pretty easy, but it’s pretty well obscured by Listing 3-1. 

So what is it that makes a function like Listing 3-2 easy to read and understand? How
can we make a function communicate its intent? What attributes can we give our functions
that will allow a casual reader to intuit the kind of program they live inside?

Small!

The first rule of functions is that they should be small. The second rule of functions is that
they should be smaller than that. This is not an assertion that I can justify. I can’t provide
any references to research that shows that very small functions are better. What I can tell
you is that for nearly four decades I have written functions of all different sizes. I’ve writ-
ten several nasty 3,000-line abominations. I’ve written scads of functions in the 100 to 300
line range. And I’ve written functions that were 20 to 30 lines long. What this experience
has taught me, through long trial and error, is that functions should be very small.

In the eighties we used to say that a function should be no bigger than a screen-full.
Of course we said that at a time when VT100 screens were 24 lines by 80 columns, and
our editors used 4 lines for administrative purposes. Nowadays with a cranked-down font
and a nice big monitor, you can fit 150 characters on a line and a 100 lines or more on a
screen. Lines should not be 150 characters long. Functions should not be 100 lines long.
Functions should hardly ever be 20 lines long. 

How short should a function be? In 1999 I went to visit Kent Beck at his home in Ore-
gon. We sat down and did some programming together. At one point he showed me a cute
little Java/Swing program that he called Sparkle. It produced a visual effect on the screen
very similar to the magic wand of the fairy godmother in the movie Cinderella. As you
moved the mouse, the sparkles would drip from the cursor with a satisfying scintillation,
falling to the bottom of the window through a simulated gravitational field. When Kent
showed me the code, I was struck by how small all the functions were. I was used to func-
tions in Swing programs that took up miles of vertical space. Every function in this pro-
gram was just two, or three, or four lines long. Each was transparently obvious. Each told
a story. And each led you to the next in a compelling order. That’s how short your functions
should be!3

2. An open-source unit-testing tool for Java. www.junit.org
3. I asked Kent whether he still had a copy, but he was unable to find one. I searched all my old computers too, but to no avail. 

All that is left now is my memory of that program.

www.junit.org


35ADo One Thing

How short should your functions be? They should usually be shorter than Listing 3-2!
Indeed, Listing 3-2 should really be shortened to Listing 3-3.

Blocks and Indenting

This implies that the blocks within if statements, else statements, while statements, and
so on should be one line long. Probably that line should be a function call. Not only does
this keep the enclosing function small, but it also adds documentary value because the
function called within the block can have a nicely descriptive name.

This also implies that functions should not be large enough to hold nested structures.
Therefore, the indent level of a function should not be greater than one or two. This, of
course, makes the functions easier to read and understand.

Do One Thing

It should be very clear that Listing 3-1 is doing lots
more than one thing. It’s creating buffers, fetching
pages, searching for inherited pages, rendering paths,
appending arcane strings, and generating HTML,
among other things. Listing 3-1 is very busy doing
lots of different things. On the other hand, Listing 3-3
is doing one simple thing. It’s including setups and
teardowns into test pages. 

The following advice has appeared in one form
or another for 30 years or more.

FUNCTIONS SHOULD DO ONE THING. THEY SHOULD DO IT WELL. 

THEY SHOULD DO IT ONLY. 

The problem with this statement is that it is hard to know what “one thing” is. Does
Listing 3-3 do one thing? It’s easy to make the case that it’s doing three things: 

1. Determining whether the page is a test page. 

2. If so, including setups and teardowns. 

3. Rendering the page in HTML.

Listing 3-3 
HtmlUtil.java (re-refactored)
  public static String renderPageWithSetupsAndTeardowns(
    PageData pageData, boolean isSuite) throws Exception {
    if (isTestPage(pageData))
      includeSetupAndTeardownPages(pageData, isSuite);
    return pageData.getHtml();
  }



36A Chapter 3: Functions

So which is it? Is the function doing one thing or three things? Notice that the three
steps of the function are one level of abstraction below the stated name of the function. We
can describe the function by describing it as a brief TO4 paragraph:

TO RenderPageWithSetupsAndTeardowns, we check to see whether the page is a test page
and if so, we include the setups and teardowns. In either case we render the page in
HTML.

If a function does only those steps that are one level below the stated name of the
function, then the function is doing one thing. After all, the reason we write functions is to
decompose a larger concept (in other words, the name of the function) into a set of steps at
the next level of abstraction.

It should be very clear that Listing 3-1 contains steps at many different levels of
abstraction. So it is clearly doing more than one thing. Even Listing 3-2 has two levels of
abstraction, as proved by our ability to shrink it down. But it would be very hard to mean-
ingfully shrink Listing 3-3. We could extract the if statement into a function named
includeSetupsAndTeardownsIfTestPage, but that simply restates the code without changing
the level of abstraction.

So, another way to know that a function is doing more than “one thing” is if you can
extract another function from it with a name that is not merely a restatement of its imple-
mentation [G34].

Sections within Functions

Look at Listing 4-7 on page 71. Notice that the generatePrimes function is divided into
sections such as declarations, initializations, and sieve. This is an obvious symptom of
doing more than one thing. Functions that do one thing cannot be reasonably divided into
sections.

One Level of Abstraction per Function

In order to make sure our functions are doing “one thing,” we need to make sure that the
statements within our function are all at the same level of abstraction. It is easy to see how
Listing 3-1 violates this rule. There are concepts in there that are at a very high level of
abstraction, such as getHtml(); others that are at an intermediate level of abstraction, such
as: String pagePathName = PathParser.render(pagePath); and still others that are remark-
ably low level, such as: .append("\n"). 

Mixing levels of abstraction within a function is always confusing. Readers may not
be able to tell whether a particular expression is an essential concept or a detail. Worse,

4. The LOGO language used the keyword “TO” in the same way that Ruby and Python use “def.” So every function began with 
the word “TO.” This had an interesting effect on the way functions were designed. 



37ASwitch Statements

like broken windows, once details are mixed with essential concepts, more and more
details tend to accrete within the function.

Reading Code from Top to Bottom: The Stepdown Rule

We want the code to read like a top-down narrative.5 We want every function to be fol-
lowed by those at the next level of abstraction so that we can read the program, descending
one level of abstraction at a time as we read down the list of functions. I call this The Step-
down Rule. 

To say this differently, we want to be able to read the program as though it were a set
of TO paragraphs, each of which is describing the current level of abstraction and refer-
encing subsequent TO paragraphs at the next level down. 

To include the setups and teardowns, we include setups, then we include the test page con-
tent, and then we include the teardowns.

To include the setups, we include the suite setup if this is a suite, then we include the
regular setup.

To include the suite setup, we search the parent hierarchy for the “SuiteSetUp” page
and add an include statement with the path of that page.

To search the parent. . .

It turns out to be very difficult for programmers to learn to follow this rule and write
functions that stay at a single level of abstraction. But learning this trick is also very
important. It is the key to keeping functions short and making sure they do “one thing.”
Making the code read like a top-down set of TO paragraphs is an effective technique for
keeping the abstraction level consistent.

Take a look at Listing 3-7 at the end of this chapter. It shows the whole
testableHtml function refactored according to the principles described here. Notice
how each function introduces the next, and each function remains at a consistent level
of abstraction.

Switch Statements

It’s hard to make a small switch statement.6 Even a switch statement with only two cases is
larger than I’d like a single block or function to be. It’s also hard to make a switch state-
ment that does one thing. By their nature, switch statements always do N things. Unfortu-
nately we can’t always avoid switch statements, but we can make sure that each switch
statement is buried in a low-level class and is never repeated. We do this, of course, with
polymorphism.

5. [KP78], p. 37.
6. And, of course, I include if/else chains in this.



38A Chapter 3: Functions

Consider Listing 3-4. It shows just one of the operations that might depend on the
type of employee. 

There are several problems with this function. First, it’s large, and when new
employee types are added, it will grow. Second, it very clearly does more than one thing.
Third, it violates the Single Responsibility Principle7 (SRP) because there is more than one
reason for it to change. Fourth, it violates the Open Closed Principle8 (OCP) because it
must change whenever new types are added. But possibly the worst problem with this
function is that there are an unlimited number of other functions that will have the same
structure. For example we could have

isPayday(Employee e, Date date), 

or 

deliverPay(Employee e, Money pay), 

or a host of others. All of which would have the same deleterious structure.

The solution to this problem (see Listing 3-5) is to bury the switch statement in the
basement of an ABSTRACT FACTORY,9 and never let anyone see it. The factory will use the
switch statement to create appropriate instances of the derivatives of Employee, and the var-
ious functions, such as calculatePay, isPayday, and deliverPay, will be dispatched poly-
morphically through the Employee interface.

My general rule for switch statements is that they can be tolerated if they appear
only once, are used to create polymorphic objects, and are hidden behind an inheritance

Listing 3-4 
Payroll.java
public Money calculatePay(Employee e) 
throws InvalidEmployeeType {
    switch (e.type) {
      case COMMISSIONED:
        return calculateCommissionedPay(e);
      case HOURLY:
        return calculateHourlyPay(e);
      case SALARIED:
        return calculateSalariedPay(e);
      default:
        throw new InvalidEmployeeType(e.type);
    }
  }

7. a. http://en.wikipedia.org/wiki/Single_responsibility_principle 
b. http://www.objectmentor.com/resources/articles/srp.pdf

8. a. http://en.wikipedia.org/wiki/Open/closed_principle
b. http://www.objectmentor.com/resources/articles/ocp.pdf

9. [GOF].

http://en.wikipedia.org/wiki/Single_responsibility_principle
http://www.objectmentor.com/resources/articles/srp.pdf
http://en.wikipedia.org/wiki/Open/closed_principle
http://www.objectmentor.com/resources/articles/ocp.pdf


39AUse Descriptive Names

relationship so that the rest of the system can’t see them [G23]. Of course every circum-
stance is unique, and there are times when I violate one or more parts of that rule.

Use Descriptive Names

In Listing 3-7 I changed the name of our example function from testableHtml to
SetupTeardownIncluder.render. This is a far better name because it better describes what
the function does. I also gave each of the private methods an equally descriptive name
such as isTestable or includeSetupAndTeardownPages. It is hard to overestimate the value
of good names. Remember Ward’s principle: “You know you are working on clean code
when each routine turns out to be pretty much what you expected.” Half the battle to
achieving that principle is choosing good names for small functions that do one thing.
The smaller and more focused a function is, the easier it is to choose a descriptive
name. 

Don’t be afraid to make a name long. A long descriptive name is better than a short
enigmatic name. A long descriptive name is better than a long descriptive comment. Use
a naming convention that allows multiple words to be easily read in the function names,
and then make use of those multiple words to give the function a name that says what
it does.

Listing 3-5 
Employee and Factory
public abstract class Employee {
  public abstract boolean isPayday();
  public abstract Money calculatePay();
  public abstract void deliverPay(Money pay);
}
-----------------
public interface EmployeeFactory {
  public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType;
}
-----------------
public class EmployeeFactoryImpl implements EmployeeFactory {
  public Employee makeEmployee(EmployeeRecord r) throws InvalidEmployeeType {
    switch (r.type) {
      case COMMISSIONED:
        return new CommissionedEmployee(r) ;
      case HOURLY:
        return new HourlyEmployee(r);
      case SALARIED:
        return new SalariedEmploye(r);
      default:
        throw new InvalidEmployeeType(r.type);
    }
  }
}



40A Chapter 3: Functions

Don’t be afraid to spend time choosing a name. Indeed, you should try several differ-
ent names and read the code with each in place. Modern IDEs like Eclipse or IntelliJ make
it trivial to change names. Use one of those IDEs and experiment with different names
until you find one that is as descriptive as you can make it. 

Choosing descriptive names will clarify the design of the module in your mind and
help you to improve it. It is not at all uncommon that hunting for a good name results in a
favorable restructuring of the code. 

Be consistent in your names. Use the same phrases, nouns, and verbs in the function
names you choose for your modules. Consider, for example, the names includeSetup-
AndTeardownPages, includeSetupPages, includeSuiteSetupPage, and includeSetupPage. The
similar phraseology in those names allows the sequence to tell a story. Indeed, if I
showed you just the sequence above, you’d ask yourself: “What happened to
includeTeardownPages, includeSuiteTeardownPage, and includeTeardownPage?” How’s that
for being “. . . pretty much what you expected.”

Function Arguments

The ideal number of arguments for a function is
zero (niladic). Next comes one (monadic), followed
closely by two (dyadic). Three arguments (triadic)
should be avoided where possible. More than three
(polyadic) requires very special justification—and
then shouldn’t be used anyway.

Arguments are hard. They take a lot of con-
ceptual power. That’s why I got rid of almost all of
them from the example. Consider, for instance, the
StringBuffer in the example. We could have
passed it around as an argument rather than mak-
ing it an instance variable, but then our readers
would have had to interpret it each time they saw
it. When you are reading the story told by the
module, includeSetupPage() is easier to understand than includeSetupPageInto(newPage-
Content). The argument is at a different level of abstraction than the function name and
forces you to know a detail (in other words, StringBuffer) that isn’t particularly important
at that point. 

Arguments are even harder from a testing point of view. Imagine the difficulty of
writing all the test cases to ensure that all the various combinations of arguments work
properly. If there are no arguments, this is trivial. If there’s one argument, it’s not too hard.
With two arguments the problem gets a bit more challenging. With more than two argu-
ments, testing every combination of appropriate values can be daunting.



41AFunction Arguments

Output arguments are harder to understand than input arguments. When we read a
function, we are used to the idea of information going in to the function through arguments
and out through the return value. We don’t usually expect information to be going out
through the arguments. So output arguments often cause us to do a double-take. 

One input argument is the next best thing to no arguments. SetupTeardown-

Includer.render(pageData) is pretty easy to understand. Clearly we are going to render the
data in the pageData object. 

Common Monadic Forms

There are two very common reasons to pass a single argument into a function. You may be
asking a question about that argument, as in boolean fileExists(“MyFile”). Or you may be
operating on that argument, transforming it into something else and returning it. For
example, InputStream fileOpen(“MyFile”) transforms a file name String into an
InputStream return value. These two uses are what readers expect when they see a func-
tion. You should choose names that make the distinction clear, and always use the two
forms in a consistent context. (See Command Query Separation below.) 

A somewhat less common, but still very useful form for a single argument function,
is an event. In this form there is an input argument but no output argument. The overall
program is meant to interpret the function call as an event and use the argument to alter the
state of the system, for example, void passwordAttemptFailedNtimes(int attempts). Use
this form with care. It should be very clear to the reader that this is an event. Choose
names and contexts carefully.

Try to avoid any monadic functions that don’t follow these forms, for example, void
includeSetupPageInto(StringBuffer pageText). Using an output argument instead of a
return value for a transformation is confusing. If a function is going to transform its input
argument, the transformation should appear as the return value. Indeed, StringBuffer
transform(StringBuffer in) is better than void transform-(StringBuffer out), even if the
implementation in the first case simply returns the input argument. At least it still follows
the form of a transformation. 

Flag Arguments

Flag arguments are ugly. Passing a boolean into a function is a truly terrible practice. It
immediately complicates the signature of the method, loudly proclaiming that this function
does more than one thing. It does one thing if the flag is true and another if the flag is false!

In Listing 3-7 we had no choice because the callers were already passing that flag
in, and I wanted to limit the scope of refactoring to the function and below. Still, the
method call render(true) is just plain confusing to a poor reader. Mousing over the call
and seeing render(boolean isSuite) helps a little, but not that much. We should have
split the function into two: renderForSuite() and renderForSingleTest().



42A Chapter 3: Functions

Dyadic Functions

A function with two arguments is harder to understand than a monadic function. For exam-
ple, writeField(name) is easier to understand than writeField(output-Stream, name).10

Though the meaning of both is clear, the first glides past the eye, easily depositing its
meaning. The second requires a short pause until we learn to ignore the first parameter.
And that, of course, eventually results in problems because we should never ignore any
part of code. The parts we ignore are where the bugs will hide.

There are times, of course, where two arguments are appropriate. For example,
Point p = new Point(0,0); is perfectly reasonable. Cartesian points naturally take two
arguments. Indeed, we’d be very surprised to see new Point(0). However, the two argu-
ments in this case are ordered components of a single value! Whereas output-Stream and
name have neither a natural cohesion, nor a natural ordering. 

Even obvious dyadic functions like assertEquals(expected, actual) are problematic.
How many times have you put the actual where the expected should be? The two argu-
ments have no natural ordering. The expected, actual ordering is a convention that
requires practice to learn.

Dyads aren’t evil, and you will certainly have to write them. However, you should be
aware that they come at a cost and should take advantage of what mechanims may be
available to you to convert them into monads. For example, you might make the
writeField method a member of outputStream so that you can say outputStream.

writeField(name). Or you might make the outputStream a member variable of the current
class so that you don’t have to pass it. Or you might extract a new class like FieldWriter
that takes the outputStream in its constructor and has a write method.

Triads

Functions that take three arguments are significantly harder to understand than dyads. The
issues of ordering, pausing, and ignoring are more than doubled. I suggest you think very
carefully before creating a triad.

For example, consider the common overload of assertEquals that takes three argu-
ments: assertEquals(message, expected, actual). How many times have you read the
message and thought it was the expected? I have stumbled and paused over that particular
triad many times. In fact, every time I see it, I do a double-take and then learn to ignore the
message.

On the other hand, here is a triad that is not quite so insidious: assertEquals(1.0,
amount, .001). Although this still requires a double-take, it’s one that’s worth taking. It’s
always good to be reminded that equality of floating point values is a relative thing.

10. I just finished refactoring a module that used the dyadic form. I was able to make the outputStream a field of the class and 
convert all the writeField calls to the monadic form. The result was much cleaner.



43AFunction Arguments

Argument Objects

When a function seems to need more than two or three arguments, it is likely that some of
those arguments ought to be wrapped into a class of their own. Consider, for example, the
difference between the two following declarations:

Circle makeCircle(double x, double y, double radius);
Circle makeCircle(Point center, double radius);

Reducing the number of arguments by creating objects out of them may seem like
cheating, but it’s not. When groups of variables are passed together, the way x and
y are in the example above, they are likely part of a concept that deserves a name of its
own.

Argument Lists

Sometimes we want to pass a variable number of arguments into a function. Consider, for
example, the String.format method:

String.format("%s worked %.2f hours.", name, hours);

If the variable arguments are all treated identically, as they are in the example above, then
they are equivalent to a single argument of type List. By that reasoning, String.format is
actually dyadic. Indeed, the declaration of String.format as shown below is clearly
dyadic.

public String format(String format, Object... args)

So all the same rules apply. Functions that take variable arguments can be monads,
dyads, or even triads. But it would be a mistake to give them more arguments than
that.

void monad(Integer... args);
void dyad(String name, Integer... args);
void triad(String name, int count, Integer... args);

Verbs and Keywords

Choosing good names for a function can go a long way toward explaining the intent of
the function and the order and intent of the arguments. In the case of a monad, the
function and argument should form a very nice verb/noun pair. For example,
write(name) is very evocative. Whatever this “name” thing is, it is being “written.” An
even better name might be writeField(name), which tells us that the “name” thing is a
“field.”

This last is an example of the keyword form of a function name. Using this form we
encode the names of the arguments into the function name. For example, assertEquals
might be better written as assertExpectedEqualsActual(expected, actual). This strongly
mitigates the problem of having to remember the ordering of the arguments.



44A Chapter 3: Functions

Have No Side Effects

Side effects are lies. Your function promises to do one thing, but it also does other hidden
things. Sometimes it will make unexpected changes to the variables of its own class.
Sometimes it will make them to the parameters passed into the function or to system glo-
bals. In either case they are devious and damaging mistruths that often result in strange
temporal couplings and order dependencies. 

Consider, for example, the seemingly innocuous function in Listing 3-6. This function
uses a standard algorithm to match a userName to a password. It returns true if they match
and false if anything goes wrong. But it also has a side effect. Can you spot it?

The side effect is the call to Session.initialize(), of course. The checkPassword func-
tion, by its name, says that it checks the password. The name does not imply that it initial-
izes the session. So a caller who believes what the name of the function says runs the risk
of erasing the existing session data when he or she decides to check the validity of the
user.

This side effect creates a temporal coupling. That is, checkPassword can only be
called at certain times (in other words, when it is safe to initialize the session). If it is
called out of order, session data may be inadvertently lost. Temporal couplings are con-
fusing, especially when hidden as a side effect. If you must have a temporal coupling,
you should make it clear in the name of the function. In this case we might rename the
function checkPasswordAndInitializeSession, though that certainly violates “Do one
thing.”

Listing 3-6  
UserValidator.java
public class UserValidator {
  private Cryptographer cryptographer;

  public boolean checkPassword(String userName, String password) {
    User user = UserGateway.findByName(userName);
    if (user != User.NULL) {
      String codedPhrase = user.getPhraseEncodedByPassword();
      String phrase = cryptographer.decrypt(codedPhrase, password);
      if ("Valid Password".equals(phrase)) {
        Session.initialize();
        return true;
      }
    }
    return false;
  }
}



45ACommand Query Separation

Output Arguments

Arguments are most naturally interpreted as inputs to a function. If you have been pro-
gramming for more than a few years, I’m sure you’ve done a double-take on an argument
that was actually an output rather than an input. For example:

appendFooter(s);

Does this function append s as the footer to something? Or does it append some footer
to s? Is s an input or an output? It doesn’t take long to look at the function signature
and see:

public void appendFooter(StringBuffer report)

This clarifies the issue, but only at the expense of checking the declaration of the function.
Anything that forces you to check the function signature is equivalent to a double-take. It’s
a cognitive break and should be avoided.

In the days before object oriented programming it was sometimes necessary to have
output arguments. However, much of the need for output arguments disappears in OO lan-
guages because this is intended to act as an output argument. In other words, it would be
better for appendFooter to be invoked as

report.appendFooter();

In general output arguments should be avoided. If your function must change the state
of something, have it change the state of its owning object. 

Command Query Separation

Functions should either do something or answer something, but not both. Either your
function should change the state of an object, or it should return some information about
that object. Doing both often leads to confusion. Consider, for example, the following
function:

public boolean set(String attribute, String value);

This function sets the value of a named attribute and returns true if it is successful and
false if no such attribute exists. This leads to odd statements like this:

if (set("username", "unclebob"))...

Imagine this from the point of view of the reader. What does it mean? Is it asking whether
the “username” attribute was previously set to “unclebob”? Or is it asking whether the
“username” attribute was successfully set to “unclebob”? It’s hard to infer the meaning from
the call because it’s not clear whether the word “set” is a verb or an adjective. 

The author intended set to be a verb, but in the context of the if statement it feels like
an adjective. So the statement reads as “If the username attribute was previously set to
unclebob” and not “set the username attribute to unclebob and if that worked then. . . .” We



46A Chapter 3: Functions

could try to resolve this by renaming the set function to setAndCheckIfExists, but that
doesn’t much help the readability of the if statement. The real solution is to separate the
command from the query so that the ambiguity cannot occur.

if (attributeExists("username")) {
setAttribute("username", "unclebob");
...

}

Prefer Exceptions to Returning Error Codes

Returning error codes from command functions is a subtle violation of command query
separation. It promotes commands being used as expressions in the predicates of if state-
ments. 

if (deletePage(page) == E_OK)

This does not suffer from verb/adjective confusion but does lead to deeply nested struc-
tures. When you return an error code, you create the problem that the caller must deal with
the error immediately.

if (deletePage(page) == E_OK) {
if (registry.deleteReference(page.name) == E_OK) {

if (configKeys.deleteKey(page.name.makeKey()) == E_OK){
logger.log("page deleted");

} else {
logger.log("configKey not deleted");

}
} else {

logger.log("deleteReference from registry failed");
}

} else {
logger.log("delete failed");
return E_ERROR;

}

On the other hand, if you use exceptions instead of returned error codes, then the error
processing code can be separated from the happy path code and can be simplified:

try {
deletePage(page);
registry.deleteReference(page.name);
configKeys.deleteKey(page.name.makeKey());

} 
catch (Exception e) {

logger.log(e.getMessage());
}

Extract Try/Catch Blocks

Try/catch blocks are ugly in their own right. They confuse the structure of the code and
mix error processing with normal processing. So it is better to extract the bodies of the try
and catch blocks out into functions of their own.



47APrefer Exceptions to Returning Error Codes

  public void delete(Page page) {
    try {
      deletePageAndAllReferences(page);
    }
    catch (Exception e) {
      logError(e);
    }
  }

  private void deletePageAndAllReferences(Page page) throws Exception {
    deletePage(page);
    registry.deleteReference(page.name);
    configKeys.deleteKey(page.name.makeKey());
  }

  private void logError(Exception e) {
    logger.log(e.getMessage());
  }

In the above, the delete function is all about error processing. It is easy to understand
and then ignore. The deletePageAndAllReferences function is all about the processes of
fully deleting a page. Error handling can be ignored. This provides a nice separation that
makes the code easier to understand and modify.

Error Handling Is One Thing

Functions should do one thing. Error handing is one thing. Thus, a function that handles
errors should do nothing else. This implies (as in the example above) that if the keyword
try exists in a function, it should be the very first word in the function and that there
should be nothing after the catch/finally blocks.

The Error.java Dependency Magnet

Returning error codes usually implies that there is some class or enum in which all the
error codes are defined.

public enum Error {
OK, 
INVALID, 
NO_SUCH, 
LOCKED, 
OUT_OF_RESOURCES, 
WAITING_FOR_EVENT;

}

Classes like this are a dependency magnet; many other classes must import and use
them. Thus, when the Error enum changes, all those other classes need to be recompiled
and redeployed.11 This puts a negative pressure on the Error class. Programmers don’t want

11. Those who felt that they could get away without recompiling and redeploying have been found—and dealt with.



48A Chapter 3: Functions

to add new errors because then they have to rebuild and redeploy everything. So they reuse
old error codes instead of adding new ones.

When you use exceptions rather than error codes, then new exceptions are derivatives of
the exception class. They can be added without forcing any recompilation or redeployment.12 

Don’t Repeat Yourself13

Look back at Listing 3-1 carefully and you
will notice that there is an algorithm that
gets repeated four times, once for each of
the SetUp, SuiteSetUp, TearDown, and
SuiteTearDown cases. It’s not easy to spot
this duplication because the four instances
are intermixed with other code and aren’t
uniformly duplicated. Still, the duplication
is a problem because it bloats the code and
will require four-fold modification should the algorithm ever have to change. It is also a
four-fold opportunity for an error of omission.

This duplication was remedied by the include method in Listing 3-7. Read through
that code again and notice how the readability of the whole module is enhanced by the
reduction of that duplication.

Duplication may be the root of all evil in software. Many principles and practices have
been created for the purpose of controlling or eliminating it. Consider, for example, that
all of Codd’s database normal forms serve to eliminate duplication in data. Consider also
how object-oriented programming serves to concentrate code into base classes that would
otherwise be redundant. Structured programming, Aspect Oriented Programming, Compo-
nent Oriented Programming, are all, in part, strategies for eliminating duplication. It
would appear that since the invention of the subroutine, innovations in software develop-
ment have been an ongoing attempt to eliminate duplication from our source code. 

Structured Programming

Some programmers follow Edsger Dijkstra’s rules of structured programming.14 Dijkstra
said that every function, and every block within a function, should have one entry and one
exit. Following these rules means that there should only be one return statement in a func-
tion, no break or continue statements in a loop, and never, ever, any goto statements. 

12. This is an example of the Open Closed Principle (OCP) [PPP02].
13. The DRY principle. [PRAG].
14. [SP72].



49AConclusion

While we are sympathetic to the goals and disciplines of structured programming,
those rules serve little benefit when functions are very small. It is only in larger functions
that such rules provide significant benefit. 

So if you keep your functions small, then the occasional multiple return, break, or
continue statement does no harm and can sometimes even be more expressive than the sin-
gle-entry, single-exit rule. On the other hand, goto only makes sense in large functions, so
it should be avoided.

How Do You Write Functions Like This?

Writing software is like any other kind of writing. When you write a paper or an article,
you get your thoughts down first, then you massage it until it reads well. The first draft
might be clumsy and disorganized, so you wordsmith it and restructure it and refine it until
it reads the way you want it to read.

When I write functions, they come out long and complicated. They have lots of
indenting and nested loops. They have long argument lists. The names are arbitrary, and
there is duplicated code. But I also have a suite of unit tests that cover every one of those
clumsy lines of code. 

So then I massage and refine that code, splitting out functions, changing names, elim-
inating duplication. I shrink the methods and reorder them. Sometimes I break out whole
classes, all the while keeping the tests passing. 

In the end, I wind up with functions that follow the rules I’ve laid down in this chapter.
I don’t write them that way to start. I don’t think anyone could.

Conclusion

Every system is built from a domain-specific language designed by the programmers to
describe that system. Functions are the verbs of that language, and classes are the nouns.
This is not some throwback to the hideous old notion that the nouns and verbs in a require-
ments document are the first guess of the classes and functions of a system. Rather, this is
a much older truth. The art of programming is, and has always been, the art of language
design.

Master programmers think of systems as stories to be told rather than programs to
be written. They use the facilities of their chosen programming language to construct a
much richer and more expressive language that can be used to tell that story. Part of that
domain-specific language is the hierarchy of functions that describe all the actions that
take place within that system. In an artful act of recursion those actions are written to
use the very domain-specific language they define to tell their own small part of the
story. 

This chapter has been about the mechanics of writing functions well. If you follow
the rules herein, your functions will be short, well named, and nicely organized. But



50A Chapter 3: Functions

never forget that your real goal is to tell the story of the system, and that the functions
you write need to fit cleanly together into a clear and precise language to help you with
that telling.

SetupTeardownIncluder 

Listing 3-7 
SetupTeardownIncluder.java
package fitnesse.html;

import fitnesse.responders.run.SuiteResponder;
import fitnesse.wiki.*;

public class SetupTeardownIncluder {
  private PageData pageData;
  private boolean isSuite;
  private WikiPage testPage;
  private StringBuffer newPageContent;
  private PageCrawler pageCrawler;

  public static String render(PageData pageData) throws Exception {
    return render(pageData, false);
  }

  public static String render(PageData pageData, boolean isSuite)
    throws Exception {
    return new SetupTeardownIncluder(pageData).render(isSuite);
  }

  private SetupTeardownIncluder(PageData pageData) {
    this.pageData = pageData;
    testPage = pageData.getWikiPage();
    pageCrawler = testPage.getPageCrawler();
    newPageContent = new StringBuffer();
  }

  private String render(boolean isSuite) throws Exception {
    this.isSuite = isSuite;
    if (isTestPage())
      includeSetupAndTeardownPages();
    return pageData.getHtml();
  }

  private boolean isTestPage() throws Exception {
    return pageData.hasAttribute("Test");
  }

  private void includeSetupAndTeardownPages() throws Exception {
    includeSetupPages();
    includePageContent();
    includeTeardownPages();
    updatePageContent();
  }



51ASetupTeardownIncluder

  private void includeSetupPages() throws Exception {
    if (isSuite)
      includeSuiteSetupPage();
    includeSetupPage();
  }

  private void includeSuiteSetupPage() throws Exception {
    include(SuiteResponder.SUITE_SETUP_NAME, "-setup");
  }

  private void includeSetupPage() throws Exception {
    include("SetUp", "-setup");
  }

  private void includePageContent() throws Exception {
    newPageContent.append(pageData.getContent());
  }

  private void includeTeardownPages() throws Exception {
    includeTeardownPage();
    if (isSuite)
      includeSuiteTeardownPage();
  }

  private void includeTeardownPage() throws Exception {
    include("TearDown", "-teardown");
  }

  private void includeSuiteTeardownPage() throws Exception {
    include(SuiteResponder.SUITE_TEARDOWN_NAME, "-teardown");
  }

  private void updatePageContent() throws Exception {
    pageData.setContent(newPageContent.toString());
  }

  private void include(String pageName, String arg) throws Exception {
    WikiPage inheritedPage = findInheritedPage(pageName);
    if (inheritedPage != null) {
      String pagePathName = getPathNameForPage(inheritedPage);
      buildIncludeDirective(pagePathName, arg);
    }
  }

  private WikiPage findInheritedPage(String pageName) throws Exception {
    return PageCrawlerImpl.getInheritedPage(pageName, testPage);
  }

  private String getPathNameForPage(WikiPage page) throws Exception {
    WikiPagePath pagePath = pageCrawler.getFullPath(page);
    return PathParser.render(pagePath);
  }

  private void buildIncludeDirective(String pagePathName, String arg) {
    newPageContent
      .append("\n!include ")

Listing 3-7 (continued)
SetupTeardownIncluder.java



52A Chapter 3: Functions

Bibliography

[KP78]:  Kernighan and Plaugher, The Elements of Programming Style, 2d. ed., McGraw-
Hill, 1978.

[PPP02]:  Robert C. Martin, Agile Software Development: Principles, Patterns, and Prac-
tices, Prentice Hall, 2002.

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.

[PRAG]:  The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley,
2000.

[SP72]:  Structured Programming, O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Academic
Press, London, 1972.

      .append(arg)
      .append(" .")
      .append(pagePathName)
      .append("\n");
  }
}

Listing 3-7 (continued)
SetupTeardownIncluder.java



53A

4

Comments

“Don’t comment bad code—rewrite it.”

—Brian W. Kernighan and P. J. Plaugher1

Nothing can be quite so helpful as a well-placed comment. Nothing can clutter up a mod-
ule more than frivolous dogmatic comments. Nothing can be quite so damaging as an old
crufty comment that propagates lies and misinformation.

Comments are not like Schindler’s List. They are not “pure good.” Indeed, comments
are, at best, a necessary evil. If our programming languages were expressive enough, or if

1. [KP78], p. 144.



54A Chapter 4: Comments

we had the talent to subtly wield those languages to express our intent, we would not need
comments very much—perhaps not at all. 

The proper use of comments is to compensate for our failure to express ourself in
code. Note that I used the word failure. I meant it. Comments are always failures. We must
have them because we cannot always figure out how to express ourselves without them,
but their use is not a cause for celebration. 

So when you find yourself in a position where you need to write a comment, think it
through and see whether there isn’t some way to turn the tables and express yourself in
code. Every time you express yourself in code, you should pat yourself on the back. Every
time you write a comment, you should grimace and feel the failure of your ability of
expression.

Why am I so down on comments? Because they lie. Not always, and not intentionally,
but too often. The older a comment is, and the farther away it is from the code it describes,
the more likely it is to be just plain wrong. The reason is simple. Programmers can’t realis-
tically maintain them. 

Code changes and evolves. Chunks of it move from here to there. Those chunks bifur-
cate and reproduce and come together again to form chimeras. Unfortunately the com-
ments don’t always follow them—can’t always follow them. And all too often the
comments get separated from the code they describe and become orphaned blurbs of ever-
decreasing accuracy. For example, look what has happened to this comment and the line it
was intended to describe:

MockRequest request;
private final String HTTP_DATE_REGEXP = 

    "[SMTWF][a-z]{2}\\,\\s[0-9]{2}\\s[JFMASOND][a-z]{2}\\s"+
    "[0-9]{4}\\s[0-9]{2}\\:[0-9]{2}\\:[0-9]{2}\\sGMT";

private Response response;
private FitNesseContext context;
private FileResponder responder;
private Locale saveLocale;
// Example: "Tue, 02 Apr 2003 22:18:49 GMT"

Other instance variables that were probably added later were interposed between the
HTTP_DATE_REGEXP constant and it’s explanatory comment. 

It is possible to make the point that programmers should be disciplined enough to
keep the comments in a high state of repair, relevance, and accuracy. I agree, they should.
But I would rather that energy go toward making the code so clear and expressive that it
does not need the comments in the first place. 

Inaccurate comments are far worse than no comments at all. They delude and mislead.
They set expectations that will never be fulfilled. They lay down old rules that need not, or
should not, be followed any longer.

Truth can only be found in one place: the code. Only the code can truly tell you what
it does. It is the only source of truly accurate information. Therefore, though comments are
sometimes necessary, we will expend significant energy to minimize them.



55AGood Comments

Comments Do Not Make Up for Bad Code

One of the more common motivations for writing comments is bad code. We write a mod-
ule and we know it is confusing and disorganized. We know it’s a mess. So we say to our-
selves, “Ooh, I’d better comment that!” No! You’d better clean it! 

Clear and expressive code with few comments is far superior to cluttered and complex
code with lots of comments. Rather than spend your time writing the comments that
explain the mess you’ve made, spend it cleaning that mess.

Explain Yourself in Code

There are certainly times when code makes a poor vehicle for explanation. Unfortunately,
many programmers have taken this to mean that code is seldom, if ever, a good means for
explanation. This is patently false. Which would you rather see? This:

// Check to see if the employee is eligible for full benefits
if ((employee.flags & HOURLY_FLAG) && 
    (employee.age > 65)) 

Or this?

if (employee.isEligibleForFullBenefits())

It takes only a few seconds of thought to explain most of your intent in code. In many
cases it’s simply a matter of creating a function that says the same thing as the comment
you want to write.

Good Comments

Some comments are necessary or beneficial. We’ll look at a few that I consider worthy of
the bits they consume. Keep in mind, however, that the only truly good comment is the
comment you found a way not to write.

Legal Comments

Sometimes our corporate coding standards force us to write certain comments for legal
reasons. For example, copyright and authorship statements are necessary and reasonable
things to put into a comment at the start of each source file.

Here, for example, is the standard comment header that we put at the beginning of
every source file in FitNesse. I am happy to say that our IDE hides this comment from act-
ing as clutter by automatically collapsing it.

// Copyright (C) 2003,2004,2005 by Object Mentor, Inc. All rights reserved.
// Released under the terms of the GNU General Public License version 2 or later.



56A Chapter 4: Comments

Comments like this should not be contracts or legal tomes. Where possible, refer to a stan-
dard license or other external document rather than putting all the terms and conditions
into the comment.

Informative Comments

It is sometimes useful to provide basic information with a comment. For example, con-
sider this comment that explains the return value of an abstract method:

// Returns an instance of the Responder being tested.
protected abstract Responder responderInstance();

A comment like this can sometimes be useful, but it is better to use the name of the func-
tion to convey the information where possible. For example, in this case the comment
could be made redundant by renaming the function: responderBeingTested.

Here’s a case that’s a bit better:

// format matched kk:mm:ss EEE, MMM dd, yyyy
Pattern timeMatcher = Pattern.compile(

       "\\d*:\\d*:\\d* \\w*, \\w* \\d*, \\d*");

In this case the comment lets us know that the regular expression is intended to match a
time and date that were formatted with the SimpleDateFormat.format function using the
specified format string. Still, it might have been better, and clearer, if this code had been
moved to a special class that converted the formats of dates and times. Then the comment
would likely have been superfluous.

Explanation of Intent

Sometimes a comment goes beyond just useful information about the implementation and
provides the intent behind a decision. In the following case we see an interesting decision
documented by a comment. When comparing two objects, the author decided that he
wanted to sort objects of his class higher than objects of any other.

public int compareTo(Object o)
{

if(o instanceof WikiPagePath)
{

WikiPagePath p = (WikiPagePath) o;
String compressedName = StringUtil.join(names, "");
String compressedArgumentName = StringUtil.join(p.names, "");
return compressedName.compareTo(compressedArgumentName);

}
return 1; // we are greater because we are the right type.

}

Here’s an even better example. You might not agree with the programmer’s solution to
the problem, but at least you know what he was trying to do.

public void testConcurrentAddWidgets() throws Exception {
WidgetBuilder widgetBuilder = 

new WidgetBuilder(new Class[]{BoldWidget.class});



57AGood Comments

String text = "'''bold text'''";
ParentWidget parent = 

new BoldWidget(new MockWidgetRoot(), "'''bold text'''");
AtomicBoolean failFlag = new AtomicBoolean();
failFlag.set(false);

//This is our best attempt to get a race condition 
//by creating large number of threads.
for (int i = 0; i < 25000; i++) {

WidgetBuilderThread widgetBuilderThread = 
new WidgetBuilderThread(widgetBuilder, text, parent, failFlag);

Thread thread = new Thread(widgetBuilderThread);
thread.start();

}
assertEquals(false, failFlag.get());

}

Clarification

Sometimes it is just helpful to translate the meaning of some obscure argument or return
value into something that’s readable. In general it is better to find a way to make that argu-
ment or return value clear in its own right; but when its part of the standard library, or in
code that you cannot alter, then a helpful clarifying comment can be useful.

public void testCompareTo() throws Exception
{

WikiPagePath a = PathParser.parse("PageA");
WikiPagePath ab = PathParser.parse("PageA.PageB");
WikiPagePath b = PathParser.parse("PageB");
WikiPagePath aa = PathParser.parse("PageA.PageA");
WikiPagePath bb = PathParser.parse("PageB.PageB");
WikiPagePath ba = PathParser.parse("PageB.PageA");

assertTrue(a.compareTo(a) == 0);    // a == a
assertTrue(a.compareTo(b) != 0);    // a != b
assertTrue(ab.compareTo(ab) == 0);  // ab == ab
assertTrue(a.compareTo(b) == -1);   // a < b
assertTrue(aa.compareTo(ab) == -1); // aa < ab
assertTrue(ba.compareTo(bb) == -1); // ba < bb
assertTrue(b.compareTo(a) == 1);    // b > a
assertTrue(ab.compareTo(aa) == 1);  // ab > aa
assertTrue(bb.compareTo(ba) == 1);  // bb > ba

}

There is a substantial risk, of course, that a clarifying comment is incorrect. Go
through the previous example and see how difficult it is to verify that they are correct. This
explains both why the clarification is necessary and why it’s risky. So before writing com-
ments like this, take care that there is no better way, and then take even more care that they
are accurate.



58A Chapter 4: Comments

Warning of Consequences

Sometimes it is useful to warn other pro-
grammers about certain consequences. For
example, here is a comment that explains
why a particular test case is turned off:

// Don't run unless you 
// have some time to kill.
public void _testWithReallyBigFile()
{

writeLinesToFile(10000000);

response.setBody(testFile);
response.readyToSend(this);
String responseString = output.toString();
assertSubString("Content-Length: 1000000000", responseString);
assertTrue(bytesSent > 1000000000);

}

Nowadays, of course, we’d turn off the test case by using the @Ignore attribute with an
appropriate explanatory string. @Ignore("Takes too long to run"). But back in the days
before JUnit 4, putting an underscore in front of the method name was a common conven-
tion. The comment, while flippant, makes the point pretty well. 

Here’s another, more poignant example: 

public static SimpleDateFormat makeStandardHttpDateFormat()
{

//SimpleDateFormat is not thread safe, 
//so we need to create each instance independently.
SimpleDateFormat df = new SimpleDateFormat("EEE, dd MMM  yyyy HH:mm:ss z");
df.setTimeZone(TimeZone.getTimeZone("GMT"));
return df;

}

You might complain that there are better ways to solve this problem. I might agree with
you. But the comment, as given here, is perfectly reasonable. It will prevent some overly
eager programmer from using a static initializer in the name of efficiency. 

TODO Comments

It is sometimes reasonable to leave “To do” notes in the form of //TODO comments. In the
following case, the TODO comment explains why the function has a degenerate implementa-
tion and what that function’s future should be. 

//TODO-MdM these are not needed
// We expect this to go away when we do the checkout model
protected VersionInfo makeVersion() throws Exception
{

return null;
}



59ABad Comments

TODOs are jobs that the programmer thinks should be done, but for some reason
can’t do at the moment. It might be a reminder to delete a deprecated feature or a
plea for someone else to look at a problem. It might be a request for someone else to
think of a better name or a reminder to make a change that is dependent on a
planned event. Whatever else a TODO might be, it is not an excuse to leave bad code in
the system.

Nowadays, most good IDEs provide special gestures and features to locate all the
TODO comments, so it’s not likely that they will get lost. Still, you don’t want your code
to be littered with TODOs. So scan through them regularly and eliminate the ones you
can.

Amplification

A comment may be used to amplify the importance of something that may otherwise seem
inconsequential. 

String listItemContent = match.group(3).trim();
// the trim is real important.  It removes the starting 
// spaces that could cause the item to be recognized
// as another list.
new ListItemWidget(this, listItemContent, this.level + 1);
return buildList(text.substring(match.end()));

Javadocs in Public APIs

There is nothing quite so helpful and satisfying as a well-described public API. The java-
docs for the standard Java library are a case in point. It would be difficult, at best, to write
Java programs without them. 

If you are writing a public API, then you should certainly write good javadocs for it.
But keep in mind the rest of the advice in this chapter. Javadocs can be just as misleading,
nonlocal, and dishonest as any other kind of comment.

Bad Comments

Most comments fall into this category. Usually they are crutches or excuses for poor code
or justifications for insufficient decisions, amounting to little more than the programmer
talking to himself.

Mumbling

Plopping in a comment just because you feel you should or because the process requires it,
is a hack. If you decide to write a comment, then spend the time necessary to make sure it
is the best comment you can write. 



60A Chapter 4: Comments

Here, for example, is a case I found in FitNesse, where a comment might indeed have
been useful. But the author was in a hurry or just not paying much attention. His mum-
bling left behind an enigma:

public void loadProperties()
{

try
{

      String propertiesPath = propertiesLocation + "/" + PROPERTIES_FILE;
      FileInputStream propertiesStream = new FileInputStream(propertiesPath);
      loadedProperties.load(propertiesStream);

}
catch(IOException e)
{

// No properties files means all defaults are loaded
}

}

What does that comment in the catch block mean? Clearly it meant something to the
author, but the meaning does not come through all that well. Apparently, if we get an
IOException, it means that there was no properties file; and in that case all the defaults are
loaded. But who loads all the defaults? Were they loaded before the call to
loadProperties.load? Or did loadProperties.load catch the exception, load the defaults,
and then pass the exception on for us to ignore? Or did loadProperties.load load all the
defaults before attempting to load the file? Was the author trying to comfort himself about
the fact that he was leaving the catch block empty? Or—and this is the scary possibility—
was the author trying to tell himself to come back here later and write the code that would
load the defaults?

Our only recourse is to examine the code in other parts of the system to find out what’s
going on. Any comment that forces you to look in another module for the meaning of that
comment has failed to communicate to you and is not worth the bits it consumes. 

Redundant Comments

Listing 4-1 shows a simple function with a header comment that is completely redundant.
The comment probably takes longer to read than the code itself.

Listing 4-1 
waitForClose

// Utility method that returns when this.closed is true. Throws an exception
// if the timeout is reached.
public synchronized void waitForClose(final long timeoutMillis) 

  throws Exception
{

if(!closed)
{

wait(timeoutMillis);
if(!closed)

throw new Exception("MockResponseSender could not be closed");
}

}



61ABad Comments

What purpose does this comment serve? It’s certainly not more informative than the
code. It does not justify the code, or provide intent or rationale. It is not easier to read than
the code. Indeed, it is less precise than the code and entices the reader to accept that lack of
precision in lieu of true understanding. It is rather like a gladhanding used-car salesman
assuring you that you don’t need to look under the hood.

Now consider the legion of useless and redundant javadocs in Listing 4-2 taken from
Tomcat. These comments serve only to clutter and obscure the code. They serve no docu-
mentary purpose at all. To make matters worse, I only showed you the first few. There are
many more in this module.

Listing 4-2 
ContainerBase.java (Tomcat)
public abstract class ContainerBase
  implements Container, Lifecycle, Pipeline, 
  MBeanRegistration, Serializable {

  /**
   * The processor delay for this component.
   */
  protected int backgroundProcessorDelay = -1;

  /**
   * The lifecycle event support for this component.
   */
  protected LifecycleSupport lifecycle = 
    new LifecycleSupport(this);

  /**
   * The container event listeners for this Container.
   */
  protected ArrayList listeners = new ArrayList();

  /**
   * The Loader implementation with which this Container is
   * associated.
   */
  protected Loader loader = null;

  /**
   * The Logger implementation with which this Container is    
   * associated.
   */
  protected Log logger = null;

  /**
   * Associated logger name.
   */
  protected String logName = null;



62A Chapter 4: Comments

  /**
   * The Manager implementation with which this Container is 
   * associated.
   */
  protected Manager manager = null;

  /**
   * The cluster with which this Container is associated.
   */
  protected Cluster cluster = null;

  /**
   * The human-readable name of this Container.
   */
  protected String name = null;

  /**
   * The parent Container to which this Container is a child.
   */
  protected Container parent = null;

  /**
   * The parent class loader to be configured when we install a 
   * Loader.
   */
  protected ClassLoader parentClassLoader = null;

  /**
   * The Pipeline object with which this Container is 
   * associated.
   */
  protected Pipeline pipeline = new StandardPipeline(this);

  /**
   * The Realm with which this Container is associated.
   */
  protected Realm realm = null;

  /**
   * The resources DirContext object with which this Container 
   * is associated.
   */
  protected DirContext resources = null;

Listing 4-2 (continued)
ContainerBase.java (Tomcat)



63ABad Comments

Misleading Comments

Sometimes, with all the best intentions, a programmer makes a statement in his comments
that isn’t precise enough to be accurate. Consider for another moment the badly redundant
but also subtly misleading comment we saw in Listing 4-1.

Did you discover how the comment was misleading? The method does not return
when this.closed becomes true. It returns if this.closed is true; otherwise, it waits for a
blind time-out and then throws an exception if this.closed is still not true.

This subtle bit of misinformation, couched in a comment that is harder to read than
the body of the code, could cause another programmer to blithely call this function in the
expectation that it will return as soon as this.closed becomes true. That poor programmer
would then find himself in a debugging session trying to figure out why his code executed
so slowly.

Mandated Comments

It is just plain silly to have a rule that says that every function must have a javadoc, or
every variable must have a comment. Comments like this just clutter up the code, propa-
gate lies, and lend to general confusion and disorganization. 

For example, required javadocs for every function lead to abominations such as List-
ing 4-3. This clutter adds nothing and serves only to obfuscate the code and create the
potential for lies and misdirection.

Journal Comments

Sometimes people add a comment to the start of a module every time they edit it. These
comments accumulate as a kind of journal, or log, of every change that has ever been
made. I have seen some modules with dozens of pages of these run-on journal entries. 

Listing 4-3 
  /**
   * 
   * @param title The title of the CD
   * @param author The author of the CD
   * @param tracks The number of tracks on the CD
   * @param durationInMinutes The duration of the CD in minutes
   */
  public void addCD(String title, String author, 
                     int tracks, int durationInMinutes) {
    CD cd = new CD();
    cd.title = title;
    cd.author = author;
    cd.tracks = tracks;
    cd.duration = duration;
    cdList.add(cd);
  }



64A Chapter 4: Comments

Long ago there was a good reason to create and maintain these log entries at the start
of every module. We didn’t have source code control systems that did it for us. Nowadays,
however, these long journals are just more clutter to obfuscate the module. They should be
completely removed.

Noise Comments

Sometimes you see comments that are nothing but noise. They restate the obvious and
provide no new information.

/**
 * Default constructor.
 */
protected AnnualDateRule() {
}

No, really? Or how about this:

/** The day of the month. */
    private int dayOfMonth;

And then there’s this paragon of redundancy:

/**
 * Returns the day of the month.
 *
 * @return the day of the month.
 */
public int getDayOfMonth() {
  return dayOfMonth;
}

 * Changes (from 11-Oct-2001)
 * --------------------------
 * 11-Oct-2001 : Re-organised the class and moved it to new package 
 *               com.jrefinery.date (DG);
 * 05-Nov-2001 : Added a getDescription() method, and eliminated NotableDate 
 *               class (DG);
 * 12-Nov-2001 : IBD requires setDescription() method, now that NotableDate 
 *               class is gone (DG);  Changed getPreviousDayOfWeek(), 
 *               getFollowingDayOfWeek() and getNearestDayOfWeek() to correct 
 *               bugs (DG);
 * 05-Dec-2001 : Fixed bug in SpreadsheetDate class (DG);
 * 29-May-2002 : Moved the month constants into a separate interface 
 *               (MonthConstants) (DG);
 * 27-Aug-2002 : Fixed bug in addMonths() method, thanks to N???levka Petr (DG);
 * 03-Oct-2002 : Fixed errors reported by Checkstyle (DG);
 * 13-Mar-2003 : Implemented Serializable (DG);
 * 29-May-2003 : Fixed bug in addMonths method (DG);
 * 04-Sep-2003 : Implemented Comparable.  Updated the isInRange javadocs (DG);
 * 05-Jan-2005 : Fixed bug in addYears() method (1096282) (DG);



65ABad Comments

These comments are so noisy that we learn to ignore them. As we read through code, our
eyes simply skip over them. Eventually the comments begin to lie as the code around them
changes. 

The first comment in Listing 4-4 seems appropriate.2 It explains why the catch block
is being ignored. But the second comment is pure noise. Apparently the programmer was
just so frustrated with writing try/catch blocks in this function that he needed to vent.

Rather than venting in a worthless and noisy comment, the programmer should have
recognized that his frustration could be resolved by improving the structure of his code.
He should have redirected his energy to extracting that last try/catch block into a separate
function, as shown in Listing 4-5.

2. The current trend for IDEs to check spelling in comments will be a balm for those of us who read a lot of code.

Listing 4-4 
startSending

private void startSending()
{

try
{

doSending();
}
catch(SocketException e)
{

// normal. someone stopped the request.
}
catch(Exception e)
{

try
{

response.add(ErrorResponder.makeExceptionString(e));
response.closeAll();

}
catch(Exception e1)
{

//Give me a break!
}

}
}

Listing 4-5 
startSending (refactored)

private void startSending()
{

try
{

doSending();
}



66A Chapter 4: Comments

Replace the temptation to create noise with the determination to clean your code. You’ll
find it makes you a better and happier programmer.

Scary Noise

Javadocs can also be noisy. What purpose do the following Javadocs (from a well-known
open-source library) serve? Answer: nothing. They are just redundant noisy comments
written out of some misplaced desire to provide documentation.

/** The name. */
private String name;

/** The version. */
private String version;

/** The licenceName. */
private String licenceName;

/** The version. */
private String info;

Read these comments again more carefully. Do you see the cut-paste error? If authors
aren’t paying attention when comments are written (or pasted), why should readers be
expected to profit from them?

catch(SocketException e)
{

// normal. someone stopped the request.
}
catch(Exception e)
{

addExceptionAndCloseResponse(e);
}

}

private void addExceptionAndCloseResponse(Exception e)
{

try
{

response.add(ErrorResponder.makeExceptionString(e));
response.closeAll();

}
catch(Exception e1)
{
}

}

Listing 4-5 (continued)
startSending (refactored)



67ABad Comments

Don’t Use a Comment When You Can Use a Function or a Variable

Consider the following stretch of code:

// does the module from the global list <mod> depend on the
// subsystem we are part of?
if (smodule.getDependSubsystems().contains(subSysMod.getSubSystem()))

This could be rephrased without the comment as

ArrayList moduleDependees = smodule.getDependSubsystems();
String ourSubSystem = subSysMod.getSubSystem();
if (moduleDependees.contains(ourSubSystem))

The author of the original code may have written the comment first (unlikely) and then
written the code to fulfill the comment. However, the author should then have refactored
the code, as I did, so that the comment could be removed.

Position Markers

Sometimes programmers like to mark a particular position in a source file. For example, I
recently found this in a program I was looking through:

// Actions //////////////////////////////////

There are rare times when it makes sense to gather certain functions together beneath a
banner like this. But in general they are clutter that should be eliminated—especially the
noisy train of slashes at the end.

Think of it this way. A banner is startling and obvious if you don’t see banners very
often. So use them very sparingly, and only when the benefit is significant. If you overuse
banners, they’ll fall into the background noise and be ignored.

Closing Brace Comments

Sometimes programmers will put special comments on closing braces, as in Listing 4-6.
Although this might make sense for long functions with deeply nested structures, it serves
only to clutter the kind of small and encapsulated functions that we prefer. So if you find
yourself wanting to mark your closing braces, try to shorten your functions instead.

Listing 4-6 
wc.java
public class wc {
  public static void main(String[] args) {
    BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
    String line;
    int lineCount = 0;
    int charCount = 0;
    int wordCount = 0;
    try {



68A Chapter 4: Comments

Attributions and Bylines

/* Added by Rick */

Source code control systems are very good at remembering who added what, when.
There is no need to pollute the code with little bylines. You might think that such com-
ments would be useful in order to help others know who to talk to about the code. But the
reality is that they tend to stay around for years and years, getting less and less accurate
and relevant.

Again, the source code control system is a better place for this kind of information.

Commented-Out Code

Few practices are as odious as commenting-out code. Don’t do this!

InputStreamResponse response = new InputStreamResponse();
response.setBody(formatter.getResultStream(), formatter.getByteCount());

// InputStream resultsStream = formatter.getResultStream();
// StreamReader reader = new StreamReader(resultsStream);
// response.setContent(reader.read(formatter.getByteCount()));

Others who see that commented-out code won’t have the courage to delete it. They’ll think
it is there for a reason and is too important to delete. So commented-out code gathers like
dregs at the bottom of a bad bottle of wine.

Consider this from apache commons:

this.bytePos = writeBytes(pngIdBytes, 0);
//hdrPos = bytePos;
writeHeader();
writeResolution();
//dataPos = bytePos;
if (writeImageData()) {

writeEnd();
this.pngBytes = resizeByteArray(this.pngBytes, this.maxPos);

}

      while ((line = in.readLine()) != null) {
        lineCount++;
        charCount += line.length();
        String words[] = line.split("\\W");
        wordCount += words.length;
      } //while
      System.out.println("wordCount = " + wordCount);
      System.out.println("lineCount = " + lineCount);
      System.out.println("charCount = " + charCount);
    } // try
    catch (IOException e) {
      System.err.println("Error:" + e.getMessage());
    } //catch
  } //main
}

Listing 4-6 (continued)
wc.java



69ABad Comments

else {
this.pngBytes = null;

}
return this.pngBytes;

Why are those two lines of code commented? Are they important? Were they left as
reminders for some imminent change? Or are they just cruft that someone commented-out
years ago and has simply not bothered to clean up.

There was a time, back in the sixties, when commenting-out code might have been
useful. But we’ve had good source code control systems for a very long time now. Those
systems will remember the code for us. We don’t have to comment it out any more. Just
delete the code. We won’t lose it. Promise.

HTML Comments

HTML in source code comments is an abomination, as you can tell by reading the code
below. It makes the comments hard to read in the one place where they should be easy to
read—the editor/IDE. If comments are going to be extracted by some tool (like Javadoc) to
appear in a Web page, then it should be the responsibility of that tool, and not the program-
mer, to adorn the comments with appropriate HTML.

/**
 * Task to run fit tests. 
 * This task runs fitnesse tests and publishes the results.
 * <p/>
 * <pre>
 * Usage:
 * &lt;taskdef name=&quot;execute-fitnesse-tests&quot; 
 *     classname=&quot;fitnesse.ant.ExecuteFitnesseTestsTask&quot; 
 *     classpathref=&quot;classpath&quot; /&gt;
 * OR
 * &lt;taskdef classpathref=&quot;classpath&quot; 
 *             resource=&quot;tasks.properties&quot; /&gt;
 * <p/>
 * &lt;execute-fitnesse-tests 
 *     suitepage=&quot;FitNesse.SuiteAcceptanceTests&quot; 
 *     fitnesseport=&quot;8082&quot; 
 *     resultsdir=&quot;${results.dir}&quot; 
 *     resultshtmlpage=&quot;fit-results.html&quot; 
 *     classpathref=&quot;classpath&quot; /&gt;
 * </pre>
 */

Nonlocal Information

If you must write a comment, then make sure it describes the code it appears near. Don’t
offer systemwide information in the context of a local comment. Consider, for example,
the javadoc comment below. Aside from the fact that it is horribly redundant, it also offers
information about the default port. And yet the function has absolutely no control over
what that default is. The comment is not describing the function, but some other, far dis-
tant part of the system. Of course there is no guarantee that this comment will be changed
when the code containing the default is changed.



70A Chapter 4: Comments

/**
 * Port on which fitnesse would run. Defaults to <b>8082</b>.
 *
 * @param fitnessePort
 */
public void setFitnessePort(int fitnessePort)
{

this.fitnessePort = fitnessePort;
}

Too Much Information

Don’t put interesting historical discussions or irrelevant descriptions of details into your
comments. The comment below was extracted from a module designed to test that a func-
tion could encode and decode base64. Other than the RFC number, someone reading this
code has no need for the arcane information contained in the comment. 

/*
 RFC 2045 - Multipurpose Internet Mail Extensions (MIME) 
 Part One: Format of Internet Message Bodies
 section 6.8.  Base64 Content-Transfer-Encoding
 The encoding process represents 24-bit groups of input bits as output 
 strings of 4 encoded characters. Proceeding from left to right, a 
 24-bit input group is formed by concatenating 3 8-bit input groups. 
 These 24 bits are then treated as 4 concatenated 6-bit groups, each 
 of which is translated into a single digit in the base64 alphabet. 
 When encoding a bit stream via the base64 encoding, the bit stream 
 must be presumed to be ordered with the most-significant-bit first. 
 That is, the first bit in the stream will be the high-order bit in 
 the first 8-bit byte, and the eighth bit will be the low-order bit in 
 the first 8-bit byte, and so on.

 */

Inobvious Connection

The connection between a comment and the code it describes should be obvious. If you are
going to the trouble to write a comment, then at least you’d like the reader to be able to
look at the comment and the code and understand what the comment is talking about. 

Consider, for example, this comment drawn from apache commons:

         /*
          * start with an array that is big enough to hold all the pixels
          * (plus filter bytes), and an extra 200 bytes for header info
          */
         this.pngBytes = new byte[((this.width + 1) * this.height * 3) + 200];

What is a filter byte? Does it relate to the +1? Or to the *3? Both? Is a pixel a byte? Why
200? The purpose of a comment is to explain code that does not explain itself. It is a pity
when a comment needs its own explanation. 

Function Headers

Short functions don’t need much description. A well-chosen name for a small function that
does one thing is usually better than a comment header. 



71ABad Comments

Javadocs in Nonpublic Code

As useful as javadocs are for public APIs, they are anathema to code that is not intended
for public consumption. Generating javadoc pages for the classes and functions inside a
system is not generally useful, and the extra formality of the javadoc comments amounts
to little more than cruft and distraction. 

Example

I wrote the module in Listing 4-7 for the first XP Immersion. It was intended to be an
example of bad coding and commenting style. Kent Beck then refactored this code into a
much more pleasant form in front of several dozen enthusiastic students. Later I adapted
the example for my book Agile Software Development, Principles, Patterns, and Practices
and the first of my Craftsman articles published in Software Development magazine. 

What I find fascinating about this module is that there was a time when many of us
would have considered it “well documented.” Now we see it as a small mess. See how
many different comment problems you can find.

Listing 4-7 
GeneratePrimes.java
/**
 * This class Generates prime numbers up to a user specified
 * maximum.  The algorithm used is the Sieve of Eratosthenes.
 * <p>
 * Eratosthenes of Cyrene, b. c. 276 BC, Cyrene, Libya --
 * d. c. 194, Alexandria.  The first man to calculate the
 * circumference of the Earth.  Also known for working on
 * calendars with leap years and ran the library at Alexandria.
 * <p>
 * The algorithm is quite simple.  Given an array of integers
 * starting at 2.  Cross out all multiples of 2.  Find the next
 * uncrossed integer, and cross out all of its multiples.
 * Repeat untilyou have passed the square root of the maximum
 * value.
 *
 * @author Alphonse
 * @version 13 Feb 2002 atp
 */
import java.util.*;

public class GeneratePrimes
{
  /**
   * @param maxValue is the generation limit.
   */
  public static int[] generatePrimes(int maxValue)
  {
    if (maxValue >= 2) // the only valid case
    {
      // declarations
      int s = maxValue + 1; // size of array
      boolean[] f = new boolean[s];
      int i;



72A Chapter 4: Comments

In Listing 4-8 you can see a refactored version of the same module. Note that the use
of comments is significantly restrained. There are just two comments in the whole module.
Both comments are explanatory in nature. 

      // initialize array to true.
      for (i = 0; i < s; i++)
        f[i] = true;

      // get rid of known non-primes
      f[0] = f[1] = false;

      // sieve
      int j;
      for (i = 2; i < Math.sqrt(s) + 1; i++)
      {
        if (f[i]) // if i is uncrossed, cross its multiples.
        {
          for (j = 2 * i; j < s; j += i)
            f[j] = false; // multiple is not prime
        }
      }

      // how many primes are there?
      int count = 0;
      for (i = 0; i < s; i++)
      {
        if (f[i])
          count++; // bump count.
      }

      int[] primes = new int[count];

      // move the primes into the result
      for (i = 0, j = 0; i < s; i++)
      {
        if (f[i])             // if prime
          primes[j++] = i;
      }

      return primes;  // return the primes
    }
    else // maxValue < 2
      return new int[0]; // return null array if bad input.
  }
}

Listing 4-8 
PrimeGenerator.java (refactored)
/**
 * This class Generates prime numbers up to a user specified
 * maximum.  The algorithm used is the Sieve of Eratosthenes.
 * Given an array of integers starting at 2:
 * Find the first uncrossed integer, and cross out all its

Listing 4-7 (continued)
GeneratePrimes.java



73ABad Comments

 * multiples.  Repeat until there are no more multiples
 * in the array.
 */

public class PrimeGenerator
{
  private static boolean[] crossedOut;
  private static int[] result;

  public static int[] generatePrimes(int maxValue)
  {
    if (maxValue < 2)
      return new int[0];
    else
    {
      uncrossIntegersUpTo(maxValue);
      crossOutMultiples();
      putUncrossedIntegersIntoResult();
      return result;
    }
  }

  private static void uncrossIntegersUpTo(int maxValue)
  {
    crossedOut = new boolean[maxValue + 1];
    for (int i = 2; i < crossedOut.length; i++)
      crossedOut[i] = false;
  }

  private static void crossOutMultiples()
  {
    int limit = determineIterationLimit();
    for (int i = 2; i <= limit; i++)
      if (notCrossed(i))
        crossOutMultiplesOf(i);
  }

  private static int determineIterationLimit()
  {
    // Every multiple in the array has a prime factor that
    // is less than or equal to the root of the array size,
    // so we don't have to cross out multiples of numbers
    // larger than that root.
    double iterationLimit = Math.sqrt(crossedOut.length);
    return (int) iterationLimit;
  }

  private static void crossOutMultiplesOf(int i)
  {
    for (int multiple = 2*i;
         multiple < crossedOut.length;
         multiple += i)
      crossedOut[multiple] = true;
  }

Listing 4-8 (continued)
PrimeGenerator.java (refactored)



74A Chapter 4: Comments

It is easy to argue that the first comment is redundant because it reads very much like
the generatePrimes function itself. Still, I think the comment serves to ease the reader into
the algorithm, so I’m inclined to leave it.

The second argument is almost certainly necessary. It explains the rationale behind
the use of the square root as the loop limit. I could find no simple variable name, nor any
different coding structure that made this point clear. On the other hand, the use of the
square root might be a conceit. Am I really saving that much time by limiting the iteration
to the square root? Could the calculation of the square root take more time than I’m saving? 

It’s worth thinking about. Using the square root as the iteration limit satisfies the old C
and assembly language hacker in me, but I’m not convinced it’s worth the time and effort
that everyone else will expend to understand it.

Bibliography

[KP78]:  Kernighan and Plaugher, The Elements of Programming Style, 2d. ed., McGraw-
Hill, 1978.

  private static boolean notCrossed(int i)
  {
    return crossedOut[i] == false;
  }

  private static void putUncrossedIntegersIntoResult()
  {
    result = new int[numberOfUncrossedIntegers()];
    for (int j = 0, i = 2; i < crossedOut.length; i++)
      if (notCrossed(i))
        result[j++] = i;
  }

  private static int numberOfUncrossedIntegers()
  {
    int count = 0;
    for (int i = 2; i < crossedOut.length; i++)
      if (notCrossed(i))
        count++;

    return count;
  }
}

Listing 4-8 (continued)
PrimeGenerator.java (refactored)



75A

5

Formatting

When people look under the hood, we want them to be impressed with the neatness, con-
sistency, and attention to detail that they perceive. We want them to be struck by the
orderliness. We want their eyebrows to rise as they scroll through the modules. We want
them to perceive that professionals have been at work. If instead they see a scrambled
mass of code that looks like it was written by a bevy of drunken sailors, then they are
likely to conclude that the same inattention to detail pervades every other aspect of the
project. 



76A Chapter 5: Formatting

You should take care that your code is nicely formatted. You should choose a set of
simple rules that govern the format of your code, and then you should consistently apply
those rules. If you are working on a team, then the team should agree to a single set of
formatting rules and all members should comply. It helps to have an automated tool that
can apply those formatting rules for you.

The Purpose of Formatting

First of all, let’s be clear. Code formatting is important. It is too important to ignore and
it is too important to treat religiously. Code formatting is about communication, and
communication is the professional developer’s first order of business. 

Perhaps you thought that “getting it working” was the first order of business for a
professional developer. I hope by now, however, that this book has disabused you of that
idea. The functionality that you create today has a good chance of changing in the next
release, but the readability of your code will have a profound effect on all the changes
that will ever be made. The coding style and readability set precedents that continue to
affect maintainability and extensibility long after the original code has been changed
beyond recognition. Your style and discipline survives, even though your code does not.

So what are the formatting issues that help us to communicate best?

Vertical Formatting

Let’s start with vertical size. How big should a source file be? In Java, file size is closely
related to class size. We’ll talk about class size when we talk about classes. For the
moment let’s just consider file size.

How big are most Java source files? It turns out that there is a huge range of sizes and
some remarkable differences in style. Figure 5-1 shows some of those differences. 

Seven different projects are depicted. Junit, FitNesse, testNG, Time and Money,
JDepend, Ant, and Tomcat. The lines through the boxes show the minimum and maxi-
mum file lengths in each project. The box shows approximately one-third (one standard
deviation1) of the files. The middle of the box is the mean. So the average file size in the
FitNesse project is about 65 lines, and about one-third of the files are between 40 and
100+ lines. The largest file in FitNesse is about 400 lines and the smallest is 6 lines.
Note that this is a log scale, so the small difference in vertical position implies a very
large difference in absolute size.

1. The box shows sigma/2 above and below the mean. Yes, I know that the file length distribution is not normal, and so the stan-
dard deviation is not mathematically precise. But we’re not trying for precision here. We’re just trying to get a feel.



77AVertical Formatting

Junit, FitNesse, and Time and Money are composed of relatively small files. None
are over 500 lines and most of those files are less than 200 lines. Tomcat and Ant, on the
other hand, have some files that are several thousand lines long and close to half are over
200 lines. 

What does that mean to us? It appears to be possible to build significant systems
(FitNesse is close to 50,000 lines) out of files that are typically 200 lines long, with an
upper limit of 500. Although this should not be a hard and fast rule, it should be considered
very desirable. Small files are usually easier to understand than large files are.

The Newspaper Metaphor

Think of a well-written newspaper article. You read it vertically. At the top you expect a
headline that will tell you what the story is about and allows you to decide whether it is
something you want to read. The first paragraph gives you a synopsis of the whole story,
hiding all the details while giving you the broad-brush concepts. As you continue down-
ward, the details increase until you have all the dates, names, quotes, claims, and other
minutia.

We would like a source file to be like a newspaper article. The name should be simple
but explanatory. The name, by itself, should be sufficient to tell us whether we are in the
right module or not. The topmost parts of the source file should provide the high-level

Figure 5-1
File length distributions LOG scale (box height = sigma)



78A Chapter 5: Formatting

concepts and algorithms. Detail should increase as we move downward, until at the end
we find the lowest level functions and details in the source file.

A newspaper is composed of many articles; most are very small. Some are a bit larger.
Very few contain as much text as a page can hold. This makes the newspaper usable. If the
newspaper were just one long story containing a disorganized agglomeration of facts,
dates, and names, then we simply would not read it.

Vertical Openness Between Concepts

Nearly all code is read left to right and top to bottom. Each line represents an expression or
a clause, and each group of lines represents a complete thought. Those thoughts should be
separated from each other with blank lines. 

Consider, for example, Listing 5-1. There are blank lines that separate the package
declaration, the import(s), and each of the functions. This extremely simple rule has a pro-
found effect on the visual layout of the code. Each blank line is a visual cue that identifies
a new and separate concept. As you scan down the listing, your eye is drawn to the first
line that follows a blank line.

Taking those blank lines out, as in Listing 5-2, has a remarkably obscuring effect on the
readability of the code.

Listing 5-1 
BoldWidget.java
package fitnesse.wikitext.widgets;

import java.util.regex.*;

public class BoldWidget extends ParentWidget {
  public static final String REGEXP = "'''.+?'''";
  private static final Pattern pattern = Pattern.compile("'''(.+?)'''",
    Pattern.MULTILINE + Pattern.DOTALL
  );

  public BoldWidget(ParentWidget parent, String text) throws Exception {
    super(parent);
    Matcher match = pattern.matcher(text);
    match.find();
    addChildWidgets(match.group(1));
  }

  public String render() throws Exception {
    StringBuffer html = new StringBuffer("<b>");
    html.append(childHtml()).append("</b>");
    return html.toString();
  }
}



79AVertical Formatting

This effect is even more pronounced when you unfocus your eyes. In the first example
the different groupings of lines pop out at you, whereas the second example looks like a
muddle. The difference between these two listings is a bit of vertical openness.

Vertical Density

If openness separates concepts, then vertical density implies close association. So lines
of code that are tightly related should appear vertically dense. Notice how the useless
comments in Listing 5-3 break the close association of the two instance variables.  

Listing 5-4 is much easier to read. It fits in an “eye-full,” or at least it does for me. I
can look at it and see that this is a class with two variables and a method, without having to
move my head or eyes much. The previous listing forces me to use much more eye and
head motion to achieve the same level of comprehension. 

Listing 5-2 
BoldWidget.java
package fitnesse.wikitext.widgets;
import java.util.regex.*;
public class BoldWidget extends ParentWidget {
  public static final String REGEXP = "'''.+?'''";
  private static final Pattern pattern = Pattern.compile("'''(.+?)'''",
    Pattern.MULTILINE + Pattern.DOTALL);
  public BoldWidget(ParentWidget parent, String text) throws Exception {
    super(parent);
    Matcher match = pattern.matcher(text);
    match.find();
    addChildWidgets(match.group(1));}
  public String render() throws Exception {
    StringBuffer html = new StringBuffer("<b>");
    html.append(childHtml()).append("</b>");
    return html.toString();
  }
}

Listing 5-3 
public class ReporterConfig {

  /**
   * The class name of the reporter listener
   */
  private String m_className;

  /**
   * The properties of the reporter listener
   */
  private List<Property> m_properties = new ArrayList<Property>();

  public void addProperty(Property property) {
    m_properties.add(property);
  }



80A Chapter 5: Formatting

Vertical Distance

Have you ever chased your tail through a class, hopping from one function to the next,
scrolling up and down the source file, trying to divine how the functions relate and
operate, only to get lost in a rat’s nest of confusion? Have you ever hunted up the chain of
inheritance for the definition of a variable or function? This is frustrating because you are
trying to understand what the system does, but you are spending your time and mental
energy on trying to locate and remember where the pieces are.

Concepts that are closely related should be kept vertically close to each other [G10].
Clearly this rule doesn’t work for concepts that belong in separate files. But then closely
related concepts should not be separated into different files unless you have a very good
reason. Indeed, this is one of the reasons that protected variables should be avoided. 

For those concepts that are so closely related that they belong in the same source file,
their vertical separation should be a measure of how important each is to the understand-
ability of the other. We want to avoid forcing our readers to hop around through our source
files and classes.

Variable Declarations. Variables should be declared as close to their usage as possible.
Because our functions are very short, local variables should appear a the top of each
function, as in this longish function from Junit4.3.1. 

private static void readPreferences() {
InputStream is= null;
try {

is= new FileInputStream(getPreferencesFile());
setPreferences(new Properties(getPreferences()));
getPreferences().load(is);

} catch (IOException e) {
try {

if (is != null)
is.close();

} catch (IOException e1) {
}

}
}

Control variables for loops should usually be declared within the loop statement, as in this
cute little function from the same source.

Listing 5-4 
public class ReporterConfig {
  private String m_className;
  private List<Property> m_properties = new ArrayList<Property>();

  public void addProperty(Property property) {
    m_properties.add(property);
  }



81AVertical Formatting

public int countTestCases() {
int count= 0;
for (Test each : tests)

count += each.countTestCases();
return count;

}

In rare cases a variable might be declared at the top of a block or just before a loop in a
long-ish function. You can see such a variable in this snippet from the midst of a very long
function in TestNG.

...
for (XmlTest test : m_suite.getTests()) {
      TestRunner tr = m_runnerFactory.newTestRunner(this, test);
      tr.addListener(m_textReporter);
      m_testRunners.add(tr);

      invoker = tr.getInvoker();

      for (ITestNGMethod m : tr.getBeforeSuiteMethods()) {
        beforeSuiteMethods.put(m.getMethod(), m);
      }

      for (ITestNGMethod m : tr.getAfterSuiteMethods()) {
        afterSuiteMethods.put(m.getMethod(), m);
      }
    }
...

Instance variables,  on the other hand, should be declared at the top of the class. This
should not increase the vertical distance of these variables, because in a well-designed
class, they are used by many, if not all, of the methods of the class.

There have been many debates over where instance variables should go. In C++ we
commonly practiced the so-called scissors rule, which put all the instance variables at the
bottom. The common convention in Java, however, is to put them all at the top of the class.
I see no reason to follow any other convention. The important thing is for the instance vari-
ables to be declared in one well-known place. Everybody should know where to go to see
the declarations. 

Consider, for example, the strange case of the TestSuite class in JUnit 4.3.1. I have
greatly attenuated this class to make the point. If you look about halfway down the listing,
you will see two instance variables declared there. It would be hard to hide them in a better
place. Someone reading this code would have to stumble across the declarations by acci-
dent (as I did). 

public class TestSuite implements Test {
static public Test createTest(Class<? extends TestCase> theClass, 

                                String name) {
     ...

}



82A Chapter 5: Formatting

public static Constructor<? extends TestCase> 
  getTestConstructor(Class<? extends TestCase> theClass) 
  throws NoSuchMethodException {

...
}

public static Test warning(final String message) {
...

}

private static String exceptionToString(Throwable t) {
...

}

private String fName;

private Vector<Test> fTests= new Vector<Test>(10); 

public TestSuite() {
}

 public TestSuite(final Class<? extends TestCase> theClass) {
     ...

}

public TestSuite(Class<? extends TestCase>  theClass, String name) {
...

}
  ... ... ... ... ...
}

Dependent Functions. If one function calls another, they should be vertically close, and
the caller should be above the callee, if at all possible. This gives the program a natural
flow. If the convention is followed reliably, readers will be able to trust that function defini-
tions will follow shortly after their use. Consider, for example, the snippet from FitNesse
in Listing 5-5. Notice how the topmost function calls those below it and how they in turn
call those below them. This makes it easy to find the called functions and greatly enhances
the readability of the whole module.

Listing 5-5 
WikiPageResponder.java
public class WikiPageResponder implements SecureResponder {
  protected WikiPage page;
  protected PageData pageData;
  protected String pageTitle;
  protected Request request;
  protected PageCrawler crawler;

  public Response makeResponse(FitNesseContext context, Request request)
    throws Exception {
    String pageName = getPageNameOrDefault(request, "FrontPage");



83AVertical Formatting

As an aside, this snippet provides a nice example of keeping constants at the appropri-
ate level [G35]. The "FrontPage" constant could have been buried in the
getPageNameOrDefault function, but that would have hidden a well-known and expected
constant in an inappropriately low-level function. It was better to pass that constant down
from the place where it makes sense to know it to the place that actually uses it.

    loadPage(pageName, context);
    if (page == null)
      return notFoundResponse(context, request);
    else
      return makePageResponse(context);
  }

  private String getPageNameOrDefault(Request request, String defaultPageName)
  {
    String pageName = request.getResource();
    if (StringUtil.isBlank(pageName))
      pageName = defaultPageName;

    return pageName;
  }

  protected void loadPage(String resource, FitNesseContext context)
    throws Exception {
    WikiPagePath path = PathParser.parse(resource);
    crawler = context.root.getPageCrawler();
    crawler.setDeadEndStrategy(new VirtualEnabledPageCrawler());
    page = crawler.getPage(context.root, path);
    if (page != null)
      pageData = page.getData();
  }

  private Response notFoundResponse(FitNesseContext context, Request request)
    throws Exception {
    return new NotFoundResponder().makeResponse(context, request);
  }

  private SimpleResponse makePageResponse(FitNesseContext context)
    throws Exception {
    pageTitle = PathParser.render(crawler.getFullPath(page));
    String html = makeHtml(context);

    SimpleResponse response = new SimpleResponse();
    response.setMaxAge(0);
    response.setContent(html);
    return response;
  }
...

Listing 5-5 (continued)
WikiPageResponder.java



84A Chapter 5: Formatting

Conceptual Affinity. Certain bits of code want to
be near other bits. They have a certain conceptual
affinity. The stronger that affinity, the less vertical
distance there should be between them.

As we have seen, this affinity might be based
on a direct dependence, such as one function call-
ing another, or a function using a variable. But
there are other possible causes of affinity. Affinity
might be caused because a group of functions per-
form a similar operation. Consider this snippet of
code from Junit 4.3.1:

public class Assert {
static public void assertTrue(String 

message, boolean condition) {
if (!condition)

fail(message);
}

static public void assertTrue(boolean condition) {
assertTrue(null, condition);

}

static public void assertFalse(String message, boolean condition) {
assertTrue(message, !condition);

}

static public void assertFalse(boolean condition) {
assertFalse(null, condition);

}
...

These functions have a strong conceptual affinity because they share a common naming
scheme and perform variations of the same basic task. The fact that they call each other is
secondary. Even if they didn’t, they would still want to be close together. 

Vertical Ordering

In general we want function call dependencies to point in the downward direction. That is,
a function that is called should be below a function that does the calling.2 This creates a
nice flow down the source code module from high level to low level. 

As in newspaper articles, we expect the most important concepts to come first, and
we expect them to be expressed with the least amount of polluting detail. We expect the
low-level details to come last. This allows us to skim source files, getting the gist from the

2. This is the exact opposite of languages like Pascal, C, and C++ that enforce functions to be defined, or at least declared, 
before they are used. 



85AHorizontal Formatting

first few functions, without having to immerse ourselves in the details. Listing 5-5 is
organized this way. Perhaps even better examples are Listing 15-5 on page 263, and List-
ing 3-7 on page 50.

Horizontal Formatting

How wide should a line be? To answer that, let’s look at how wide lines are in typical pro-
grams. Again, we examine the seven different projects. Figure 5-2 shows the distribution
of line lengths of all seven projects. The regularity is impressive, especially right around
45 characters. Indeed, every size from 20 to 60 represents about 1 percent of the total
number of lines. That’s 40 percent! Perhaps another 30 percent are less than 10 characters
wide. Remember this is a log scale, so the linear appearance of the drop-off above 80 char-
acters is really very significant. Programmers clearly prefer short lines. 

This suggests that we should strive to keep our lines short. The old Hollerith limit of
80 is a bit arbitrary, and I’m not opposed to lines edging out to 100 or even 120. But
beyond that is probably just careless. 

I used to follow the rule that you should never have to scroll to the right. But monitors
are too wide for that nowadays, and younger programmers can shrink the font so small

Figure 5-2
Java line width distribution



86A Chapter 5: Formatting

that they can get 200 characters across the screen. Don’t do that. I personally set my limit
at 120.

Horizontal Openness and Density

We use horizontal white space to associate things that are strongly related and disassociate
things that are more weakly related. Consider the following function:

  private void measureLine(String line) {
    lineCount++;
    int lineSize = line.length();
    totalChars += lineSize;
    lineWidthHistogram.addLine(lineSize, lineCount);
    recordWidestLine(lineSize);
  }

I surrounded the assignment operators with white space to accentuate them. Assignment
statements have two distinct and major elements: the left side and the right side. The
spaces make that separation obvious.

On the other hand, I didn’t put spaces between the function names and the opening
parenthesis. This is because the function and its arguments are closely related. Separat-
ing them makes them appear disjoined instead of conjoined. I separate arguments within
the function call parenthesis to accentuate the comma and show that the arguments are
separate.

Another use for white space is to accentuate the precedence of operators. 

public class Quadratic {
  public static double root1(double a, double b, double c) {
    double determinant = determinant(a, b, c);
    return (-b + Math.sqrt(determinant)) / (2*a);
  }

  public static double root2(int a, int b, int c) {
    double determinant = determinant(a, b, c);
    return (-b - Math.sqrt(determinant)) / (2*a); 
  }

  private static double determinant(double a, double b, double c) {
    return b*b - 4*a*c;
  }
}

Notice how nicely the equations read. The factors have no white space between them
because they are high precedence. The terms are separated by white space because addi-
tion and subtraction are lower precedence.

Unfortunately, most tools for reformatting code are blind to the precedence of
operators and impose the same spacing throughout. So subtle spacings like those
shown above tend to get lost after you reformat the code. 



87AHorizontal Formatting

Horizontal Alignment

When I was an assembly language programmer,3 I used horizontal alignment to accentuate
certain structures. When I started coding in C, C++, and eventually Java, I continued to try
to line up all the variable names in a set of declarations, or all the rvalues in a set of assign-
ment statements. My code might have looked like this:

public class FitNesseExpediter implements ResponseSender
{

private   Socket          socket;
private   InputStream     input;
private   OutputStream    output;
private   Request         request;
private   Response        response;
private   FitNesseContext context;
protected long            requestParsingTimeLimit;
private   long            requestProgress;
private   long            requestParsingDeadline;
private   boolean         hasError;

public FitNesseExpediter(Socket          s, 
                         FitNesseContext context) throws Exception
{

this.context =            context;
socket =                  s;
input =                   s.getInputStream();
output =                  s.getOutputStream();
requestParsingTimeLimit = 10000;

}

I have found, however, that this kind of alignment is not useful. The alignment seems to
emphasize the wrong things and leads my eye away from the true intent. For example, in
the list of declarations above you are tempted to read down the list of variable names with-
out looking at their types. Likewise, in the list of assignment statements you are tempted to
look down the list of rvalues without ever seeing the assignment operator. To make matters
worse, automatic reformatting tools usually eliminate this kind of alignment. 

So, in the end, I don’t do this kind of thing anymore. Nowadays I prefer unaligned
declarations and assignments, as shown below, because they point out an important defi-
ciency. If I have long lists that need to be aligned, the problem is the length of the lists, not
the lack of alignment. The length of the list of declarations in FitNesseExpediter below
suggests that this class should be split up.

public class FitNesseExpediter implements ResponseSender
{

private Socket socket;
private InputStream input;
private OutputStream output;
private Request request;

3. Who am I kidding? I still am an assembly language programmer. You can take the boy away from the metal, but you can’t 
take the metal out of the boy!



88A Chapter 5: Formatting

private Response response;
private FitNesseContext context;
protected long requestParsingTimeLimit;
private long requestProgress;
private long requestParsingDeadline;
private boolean hasError;

public FitNesseExpediter(Socket s, FitNesseContext context) throws Exception
{

this.context = context;
socket = s;
input = s.getInputStream();
output = s.getOutputStream();
requestParsingTimeLimit = 10000;

}

Indentation

A source file is a hierarchy rather like an outline. There is information that pertains to the
file as a whole, to the individual classes within the file, to the methods within the classes,
to the blocks within the methods, and recursively to the blocks within the blocks. Each
level of this hierarchy is a scope into which names can be declared and in which declara-
tions and executable statements are interpreted. 

To make this hierarchy of scopes visible, we indent the lines of source code in pro-
portion to their position in the hiearchy. Statements at the level of the file, such as most
class declarations, are not indented at all. Methods within a class are indented one level
to the right of the class. Implementations of those methods are implemented one level to
the right of the method declaration. Block implementations are implemented one level
to the right of their containing block, and so on.

Programmers rely heavily on this indentation scheme. They visually line up lines on
the left to see what scope they appear in. This allows them to quickly hop over scopes,
such as implementations of if or while statements, that are not relevant to their current
situation. They scan the left for new method declarations, new variables, and even new
classes. Without indentation, programs would be virtually unreadable by humans. 

Consider the following programs that are syntactically and semantically identical:

public class FitNesseServer implements SocketServer { private FitNesseContext 
context; public FitNesseServer(FitNesseContext context) { this.context = 
context; } public void serve(Socket s) { serve(s, 10000); } public void 
serve(Socket s, long requestTimeout) { try { FitNesseExpediter sender = new 
FitNesseExpediter(s, context); 
sender.setRequestParsingTimeLimit(requestTimeout); sender.start(); } 
catch(Exception e) { e.printStackTrace(); } } }

-----

public class FitNesseServer implements SocketServer {
  private FitNesseContext context;



89AHorizontal Formatting

  public FitNesseServer(FitNesseContext context) {
    this.context = context;
  }

  public void serve(Socket s) {
    serve(s, 10000);
  }

  public void serve(Socket s, long requestTimeout) {
    try {
      FitNesseExpediter sender = new FitNesseExpediter(s, context);
      sender.setRequestParsingTimeLimit(requestTimeout);
      sender.start();
    }
    catch (Exception e) {
      e.printStackTrace();
    }
  }
}

Your eye can rapidly discern the structure of the indented file. You can almost instantly
spot the variables, constructors, accessors, and methods. It takes just a few seconds to real-
ize that this is some kind of simple front end to a socket, with a time-out. The unindented
version, however, is virtually impenetrable without intense study. 

Breaking Indentation. It is sometimes tempting to break the indentation rule for short if
statements, short while loops, or short functions. Whenever I have succumbed to this
temptation, I have almost always gone back and put the indentation back in. So I avoid col-
lapsing scopes down to one line like this:

public class CommentWidget extends TextWidget
{

public static final String REGEXP = "^#[^\r\n]*(?:(?:\r\n)|\n|\r)?";

public CommentWidget(ParentWidget parent, String text){super(parent, text);}
public String render() throws Exception {return ""; }

}

I prefer to expand and indent the scopes instead, like this:

public class CommentWidget extends TextWidget {
  public static final String REGEXP = "^#[^\r\n]*(?:(?:\r\n)|\n|\r)?";

  public CommentWidget(ParentWidget parent, String text) {
    super(parent, text);
  }

  public String render() throws Exception {
    return "";
  }
}



90A Chapter 5: Formatting

Dummy Scopes

Sometimes the body of a while or for statement is a dummy, as shown below. I don’t like
these kinds of structures and try to avoid them. When I can’t avoid them, I make sure that
the dummy body is properly indented and surrounded by braces. I can’t tell you how
many times I’ve been fooled by a semicolon silently sitting at the end of a while loop on
the same line. Unless you make that semicolon visible by indenting it on it’s own line, it’s
just too hard to see.

while (dis.read(buf, 0, readBufferSize) != -1) 
  ;

Team Rules

The title of this section is a play on
words. Every programmer has his own
favorite formatting rules, but if he works
in a team, then the team rules. 

A team of developers should agree
upon a single formatting style, and then
every member of that team should use
that style. We want the software to have a
consistent style. We don’t want it to appear to have been written by a bunch of disagreeing
individuals.

When I started the FitNesse project back in 2002, I sat down with the team to work
out a coding style. This took about 10 minutes. We decided where we’d put our braces,
what our indent size would be, how we would name classes, variables, and methods, and
so forth. Then we encoded those rules into the code formatter of our IDE and have stuck
with them ever since. These were not the rules that I prefer; they were rules decided by the
team. As a member of that team I followed them when writing code in the FitNesse
project.

Remember, a good software system is composed of a set of documents that read
nicely. They need to have a consistent and smooth style. The reader needs to be able to
trust that the formatting gestures he or she has seen in one source file will mean the same
thing in others. The last thing we want to do is add more complexity to the source code by
writing it in a jumble of different individual styles.

Uncle Bob’s Formatting Rules

The rules I use personally are very simple and are illustrated by the code in Listing 5-6.
Consider this an example of how code makes the best coding standard document. 



91AUncle Bob’s Formatting Rules

Listing 5-6 
CodeAnalyzer.java
public class CodeAnalyzer implements JavaFileAnalysis {
  private int lineCount;
  private int maxLineWidth;
  private int widestLineNumber;
  private LineWidthHistogram lineWidthHistogram;
  private int totalChars;

  public CodeAnalyzer() {
    lineWidthHistogram = new LineWidthHistogram();
  }

  public static List<File> findJavaFiles(File parentDirectory) {
    List<File> files = new ArrayList<File>();
    findJavaFiles(parentDirectory, files);
    return files;
  }

  private static void findJavaFiles(File parentDirectory, List<File> files) {
    for (File file : parentDirectory.listFiles()) {
      if (file.getName().endsWith(".java"))
        files.add(file);
      else if (file.isDirectory())
        findJavaFiles(file, files);
    }
  }

  public void analyzeFile(File javaFile) throws Exception {
    BufferedReader br = new BufferedReader(new FileReader(javaFile));
    String line;
    while ((line = br.readLine()) != null)
      measureLine(line);
  }

  private void measureLine(String line) {
    lineCount++;
    int lineSize = line.length();
    totalChars += lineSize;
    lineWidthHistogram.addLine(lineSize, lineCount);
    recordWidestLine(lineSize);
  }

  private void recordWidestLine(int lineSize) {
    if (lineSize > maxLineWidth) {
      maxLineWidth = lineSize;
      widestLineNumber = lineCount;
    }
  }

  public int getLineCount() {
    return lineCount;
  }

  public int getMaxLineWidth() {
    return maxLineWidth;
  }



92A Chapter 5: Formatting

  public int getWidestLineNumber() {
    return widestLineNumber;
  }

  public LineWidthHistogram getLineWidthHistogram() {
    return lineWidthHistogram;
  }

  public double getMeanLineWidth() {
    return (double)totalChars/lineCount;
  }

  public int getMedianLineWidth() {
    Integer[] sortedWidths = getSortedWidths();
    int cumulativeLineCount = 0;
    for (int width : sortedWidths) {
      cumulativeLineCount += lineCountForWidth(width);
      if (cumulativeLineCount > lineCount/2)
        return width;
    }
    throw new Error("Cannot get here");
  }

  private int lineCountForWidth(int width) {
    return lineWidthHistogram.getLinesforWidth(width).size();
  }

  private Integer[] getSortedWidths() {
    Set<Integer> widths = lineWidthHistogram.getWidths();
    Integer[] sortedWidths = (widths.toArray(new Integer[0]));
    Arrays.sort(sortedWidths);
    return sortedWidths;
  }
}

Listing 5-6 (continued)
CodeAnalyzer.java



93A

6

Objects and Data Structures

There is a reason that we keep our variables private. We don’t want anyone else to depend
on them. We want to keep the freedom to change their type or implementation on a whim
or an impulse. Why, then, do so many programmers automatically add getters and setters
to their objects, exposing their private variables as if they were public?

Data Abstraction

Consider the difference between Listing 6-1 and Listing 6-2. Both represent the data of a
point on the Cartesian plane. And yet one exposes its implementation and the other com-
pletely hides it. 



94A Chapter 6: Objects and Data Structures

The beautiful thing about Listing 6-2 is that there is no way you can tell whether the
implementation is in rectangular or polar coordinates. It might be neither! And yet the
interface still unmistakably represents a data structure.

But it represents more than just a data structure. The methods enforce an access
policy. You can read the individual coordinates independently, but you must set the coordi-
nates together as an atomic operation. 

Listing 6-1, on the other hand, is very clearly implemented in rectangular coordinates,
and it forces us to manipulate those coordinates independently. This exposes implementa-
tion. Indeed, it would expose implementation even if the variables were private and we
were using single variable getters and setters. 

Hiding implementation is not just a matter of putting a layer of functions between
the variables. Hiding implementation is about abstractions! A class does not simply
push its variables out through getters and setters. Rather it exposes abstract interfaces
that allow its users to manipulate the essence of the data, without having to know its
implementation.

Consider Listing 6-3 and Listing 6-4. The first uses concrete terms to communicate
the fuel level of a vehicle, whereas the second does so with the abstraction of percentage.
In the concrete case you can be pretty sure that these are just accessors of variables. In the
abstract case you have no clue at all about the form of the data.  

Listing 6-1
Concrete Point
public class Point {
  public double x;
  public double y;
}

Listing 6-2
Abstract Point
public interface Point {
  double getX();
  double getY();
  void setCartesian(double x, double y);
  double getR();
  double getTheta();
  void setPolar(double r, double theta);
}

Listing 6-3
Concrete Vehicle
public interface Vehicle {
  double getFuelTankCapacityInGallons();
  double getGallonsOfGasoline();
}



95AData/Object Anti-Symmetry

In both of the above cases the second option is preferable. We do not want to expose
the details of our data. Rather we want to express our data in abstract terms. This is not
merely accomplished by using interfaces and/or getters and setters. Serious thought needs
to be put into the best way to represent the data that an object contains. The worst option is
to blithely add getters and setters.

Data/Object Anti-Symmetry

These two examples show the difference between objects and data structures. Objects hide
their data behind abstractions and expose functions that operate on that data. Data struc-
ture expose their data and have no meaningful functions. Go back and read that again.
Notice the complimentary nature of the two definitions. They are virtual opposites. This
difference may seem trivial, but it has far-reaching implications.

Consider, for example, the procedural shape example in Listing 6-5. The Geometry
class operates on the three shape classes. The shape classes are simple data structures
without any behavior. All the behavior is in the Geometry class.

Listing 6-4
Abstract Vehicle
public interface Vehicle {
  double getPercentFuelRemaining();
}

Listing 6-5 
Procedural Shape
public class Square {
  public Point topLeft;
  public double side;
}

public class Rectangle {
  public Point topLeft;
  public double height;
  public double width;
}

public class Circle {
  public Point center;
  public double radius;
}

public class Geometry {
  public final double PI = 3.141592653589793;

  public double area(Object shape) throws NoSuchShapeException 
  {
    if (shape instanceof Square) {
      Square s = (Square)shape;
      return s.side * s.side;
    }



96A Chapter 6: Objects and Data Structures

Object-oriented programmers might wrinkle their noses at this and complain that it
is procedural—and they’d be right. But the sneer may not be warranted. Consider what
would happen if a perimeter() function were added to Geometry. The shape classes would
be unaffected! Any other classes that depended upon the shapes would also be unaffected!
On the other hand, if I add a new shape, I must change all the functions in Geometry to
deal with it. Again, read that over. Notice that the two conditions are diametrically
opposed.

Now consider the object-oriented solution in Listing 6-6. Here the area() method is
polymorphic. No Geometry class is necessary. So if I add a new shape, none of the existing
functions are affected, but if I add a new function all of the shapes must be changed!1

    else if (shape instanceof Rectangle) {
      Rectangle r = (Rectangle)shape;
      return r.height * r.width;
    }
    else if (shape instanceof Circle) {
      Circle c = (Circle)shape;
      return PI * c.radius * c.radius;
    }
    throw new NoSuchShapeException();
  }
}

Listing 6-6 
Polymorphic Shapes
public class Square implements Shape {
  private Point topLeft;
  private double side;

  public double area() {
    return side*side;
  }
}

public class Rectangle implements Shape {
  private Point topLeft;
  private double height;
  private double width;
  
  public double area() {
    return height * width;
  }
}

1. There are ways around this that are well known to experienced object-oriented designers: VISITOR, or dual-dispatch, for 
example. But these techniques carry costs of their own and generally return the structure to that of a procedural program.

Listing 6-5 (continued)
Procedural Shape



97AThe Law of Demeter

Again, we see the complimentary nature of these two definitions; they are virtual
opposites! This exposes the fundamental dichotomy between objects and data structures: 

Procedural code (code using data structures) makes it easy to add new functions without
changing the existing data structures. OO code, on the other hand, makes it easy to add
new classes without changing existing functions.

The complement is also true: 

Procedural code makes it hard to add new data structures because all the functions must
change. OO code makes it hard to add new functions because all the classes must change.

So, the things that are hard for OO are easy for procedures, and the things that are
hard for procedures are easy for OO!

In any complex system there are going to be times when we want to add new data
types rather than new functions. For these cases objects and OO are most appropriate. On
the other hand, there will also be times when we’ll want to add new functions as opposed
to data types. In that case procedural code and data structures will be more appropriate.

Mature programmers know that the idea that everything is an object is a myth. Some-
times you really do want simple data structures with procedures operating on them.

The Law of Demeter

There is a well-known heuristic called the Law of Demeter2 that says a module should not
know about the innards of the objects it manipulates. As we saw in the last section, objects
hide their data and expose operations. This means that an object should not expose its
internal structure through accessors because to do so is to expose, rather than to hide, its
internal structure. 

More precisely, the Law of Demeter says that a method f of a class C should only call
the methods of these:

• C

• An object created by f

public class Circle implements Shape {
  private Point center;
  private double radius;
  public final double PI = 3.141592653589793;

  public double area() {
    return PI * radius * radius;
  }
}

2. http://en.wikipedia.org/wiki/Law_of_Demeter 

Listing 6-6 (continued)
Polymorphic Shapes

http://en.wikipedia.org/wiki/Law_of_Demeter


98A Chapter 6: Objects and Data Structures

• An object passed as an argument to f

• An object held in an instance variable of C 

The method should not invoke methods on objects that are returned by any of the
allowed functions. In other words, talk to friends, not to strangers.

The following code3 appears to violate the Law of Demeter (among other things)
because it calls the getScratchDir() function on the return value of getOptions() and then
calls getAbsolutePath() on the return value of getScratchDir(). 

final String outputDir = ctxt.getOptions().getScratchDir().getAbsolutePath();

Train Wrecks

This kind of code is often called a train wreck because it look like a bunch of coupled train
cars. Chains of calls like this are generally considered to be sloppy style and should be
avoided [G36]. It is usually best to split them up as follows:

Options opts = ctxt.getOptions();
File scratchDir = opts.getScratchDir();
final String outputDir = scratchDir.getAbsolutePath();

Are these two snippets of code viola-
tions of the Law of Demeter? Certainly
the containing module knows that the
ctxt object contains options, which con-
tain a scratch directory, which has an
absolute path. That’s a lot of knowledge
for one function to know. The calling
function knows how to navigate through
a lot of different objects.

Whether this is a violation of Demeter depends on whether or not ctxt, Options, and
ScratchDir are objects or data structures. If they are objects, then their internal structure
should be hidden rather than exposed, and so knowledge of their innards is a clear viola-
tion of the Law of Demeter. On the other hand, if ctxt, Options, and ScratchDir are just
data structures with no behavior, then they naturally expose their internal structure, and so
Demeter does not apply.

The use of accessor functions confuses the issue. If the code had been written as fol-
lows, then we probably wouldn’t be asking about Demeter violations.

final String outputDir = ctxt.options.scratchDir.absolutePath;

This issue would be a lot less confusing if data structures simply had public variables
and no functions, whereas objects had private variables and public functions. However,

3. Found somewhere in the apache framework. 



99AThe Law of Demeter

there are frameworks and standards (e.g., “beans”) that demand that even simple data
structures have accessors and mutators.

Hybrids

This confusion sometimes leads to unfortunate hybrid structures that are half object and
half data structure. They have functions that do significant things, and they also have either
public variables or public accessors and mutators that, for all intents and purposes, make
the private variables public, tempting other external functions to use those variables the
way a procedural program would use a data structure.4

Such hybrids make it hard to add new functions but also make it hard to add new data
structures. They are the worst of both worlds. Avoid creating them. They are indicative of a
muddled design whose authors are unsure of—or worse, ignorant of—whether they need
protection from functions or types.

Hiding Structure

What if ctxt, options, and scratchDir are objects with real behavior? Then, because
objects are supposed to hide their internal structure, we should not be able to navigate
through them. How then would we get the absolute path of the scratch directory? 

ctxt.getAbsolutePathOfScratchDirectoryOption();

or

ctx.getScratchDirectoryOption().getAbsolutePath()

The first option could lead to an explosion of methods in the ctxt object. The second pre-
sumes that getScratchDirectoryOption() returns a data structure, not an object. Neither
option feels good.

If ctxt is an object, we should be telling it to do something; we should not be asking it
about its internals. So why did we want the absolute path of the scratch directory? What
were we going to do with it? Consider this code from (many lines farther down in) the
same module:

String outFile = outputDir + "/" + className.replace('.', '/') + ".class";
FileOutputStream fout = new FileOutputStream(outFile);
BufferedOutputStream bos = new BufferedOutputStream(fout);

The admixture of different levels of detail [G34][G6] is a bit troubling. Dots, slashes,
file extensions, and File objects should not be so carelessly mixed together, and mixed
with the enclosing code. Ignoring that, however, we see that the intent of getting the abso-
lute path of the scratch directory was to create a scratch file of a given name.

4. This is sometimes called Feature Envy from [Refactoring].



100A Chapter 6: Objects and Data Structures

So, what if we told the ctxt object to do this? 

BufferedOutputStream bos = ctxt.createScratchFileStream(classFileName);

That seems like a reasonable thing for an object to do! This allows ctxt to hide its
internals and prevents the current function from having to violate the Law of Demeter by
navigating through objects it shouldn’t know about.

Data Transfer Objects

The quintessential form of a data structure is a class with public variables and no func-
tions. This is sometimes called a data transfer object, or DTO. DTOs are very useful struc-
tures, especially when communicating with databases or parsing messages from sockets,
and so on. They often become the first in a series of translation stages that convert raw data
in a database into objects in the application code. 

Somewhat more common is the “bean” form shown in Listing 6-7. Beans have private
variables manipulated by getters and setters. The quasi-encapsulation of beans seems to
make some OO purists feel better but usually provides no other benefit.

Listing 6-7 
address.java
public class Address {
  private String street;
  private String streetExtra;
  private String city;
  private String state;
  private String zip;

  public Address(String street, String streetExtra, 
                  String city, String state, String zip) {
    this.street = street;
    this.streetExtra = streetExtra;
    this.city = city;
    this.state = state;
    this.zip = zip;
  }

  public String getStreet() {
    return street;
  }

  public String getStreetExtra() {
    return streetExtra;
  }

  public String getCity() {
    return city;
  }



101ABibliography

Active Record

Active Records are special forms of DTOs. They are data structures with public (or bean-
accessed) variables; but they typically have navigational methods like save and find. Typi-
cally these Active Records are direct translations from database tables, or other data
sources.

Unfortunately we often find that developers try to treat these data structures as though
they were objects by putting business rule methods in them. This is awkward because it
creates a hybrid between a data structure and an object. 

The solution, of course, is to treat the Active Record as a data structure and to create
separate objects that contain the business rules and that hide their internal data (which are
probably just instances of the Active Record).

Conclusion

Objects expose behavior and hide data. This makes it easy to add new kinds of objects
without changing existing behaviors. It also makes it hard to add new behaviors to existing
objects. Data structures expose data and have no significant behavior. This makes it easy to
add new behaviors to existing data structures but makes it hard to add new data structures
to existing functions.

In any given system we will sometimes want the flexibility to add new data types, and
so we prefer objects for that part of the system. Other times we will want the flexibility to
add new behaviors, and so in that part of the system we prefer data types and procedures.
Good software developers understand these issues without prejudice and choose the
approach that is best for the job at hand.

Bibliography

[Refactoring]:  Refactoring: Improving the Design of Existing Code, Martin Fowler et al.,
Addison-Wesley, 1999.

  public String getState() {
    return state;
  }

  public String getZip() {
    return zip;
  }
}

Listing 6-7 (continued)
address.java



This page intentionally left blank 



103A

7

Error Handling
by Michael Feathers

It might seem odd to have a section about error handling in a book about clean code. Error
handling is just one of those things that we all have to do when we program. Input can be
abnormal and devices can fail. In short, things can go wrong, and when they do, we as pro-
grammers are responsible for making sure that our code does what it needs to do.

The connection to clean code, however, should be clear. Many code bases are com-
pletely dominated by error handling. When I say dominated, I don’t mean that error han-
dling is all that they do. I mean that it is nearly impossible to see what the code does
because of all of the scattered error handling. Error handling is important, but if it
obscures logic, it’s wrong.

In this chapter I’ll outline a number of techniques and considerations that you can use
to write code that is both clean and robust—code that handles errors with grace and style.



104A Chapter 7: Error Handling

Use Exceptions Rather Than Return Codes

Back in the distant past there were many languages that didn’t have exceptions. In those
languages the techniques for handling and reporting errors were limited. You either set an
error flag or returned an error code that the caller could check. The code in Listing 7-1
illustrates these approaches.

The problem with these approaches is that they clutter the caller. The caller must
check for errors immediately after the call. Unfortunately, it’s easy to forget. For this rea-
son it is better to throw an exception when you encounter an error. The calling code is
cleaner. Its logic is not obscured by error handling.

Listing 7-2 shows the code after we’ve chosen to throw exceptions in methods that
can detect errors.

Listing 7-1 
DeviceController.java
public class DeviceController {
  ...
  public void sendShutDown() {
    DeviceHandle handle = getHandle(DEV1);
    // Check the state of the device
    if (handle != DeviceHandle.INVALID) {
      // Save the device status to the record field
      retrieveDeviceRecord(handle);
      // If not suspended, shut down
      if (record.getStatus() != DEVICE_SUSPENDED) {
        pauseDevice(handle);
        clearDeviceWorkQueue(handle);
        closeDevice(handle);
      } else {
        logger.log("Device suspended.  Unable to shut down");
      }
    } else {
      logger.log("Invalid handle for: " + DEV1.toString());
    }
  }
  ...
}

Listing 7-2 
DeviceController.java (with exceptions)
public class DeviceController {
  ...

  public void sendShutDown() {
    try {
      tryToShutDown();
    } catch (DeviceShutDownError e) {
      logger.log(e);
    }
  }



105AWrite Your Try-Catch-Finally Statement First

Notice how much cleaner it is. This isn’t just a matter of aesthetics. The code is better
because two concerns that were tangled, the algorithm for device shutdown and error han-
dling, are now separated. You can look at each of those concerns and understand them
independently.

Write Your Try-Catch-Finally Statement First

One of the most interesting things about exceptions is that they define a scope within your
program. When you execute code in the try portion of a try-catch-finally statement, you
are stating that execution can abort at any point and then resume at the catch. 

In a way, try blocks are like transactions. Your catch has to leave your program in a
consistent state, no matter what happens in the try. For this reason it is good practice to
start with a try-catch-finally statement when you are writing code that could throw
exceptions. This helps you define what the user of that code should expect, no matter what
goes wrong with the code that is executed in the try.

Let’s look at an example. We need to write some code that accesses a file and reads
some serialized objects.

We start with a unit test that shows that we’ll get an exception when the file doesn’t exist:

  @Test(expected = StorageException.class)
  public void retrieveSectionShouldThrowOnInvalidFileName() {
    sectionStore.retrieveSection("invalid - file");
  }

The test drives us to create this stub:

public List<RecordedGrip> retrieveSection(String sectionName) {
  // dummy return until we have a real implementation
  return new ArrayList<RecordedGrip>();
}

  private void tryToShutDown() throws DeviceShutDownError {
    DeviceHandle handle = getHandle(DEV1);
    DeviceRecord record = retrieveDeviceRecord(handle);

    pauseDevice(handle);
    clearDeviceWorkQueue(handle);
    closeDevice(handle);
  }

  private DeviceHandle getHandle(DeviceID id) {
    ...
    throw new DeviceShutDownError("Invalid handle for: " + id.toString());
    ...
  }
  
  ...
}

Listing 7-2 (continued)
DeviceController.java (with exceptions)



106A Chapter 7: Error Handling

Our test fails because it doesn’t throw an exception. Next, we change our implementa-
tion so that it attempts to access an invalid file. This operation throws an exception:

public List<RecordedGrip> retrieveSection(String sectionName) {
  try {
    FileInputStream stream = new FileInputStream(sectionName)
  } catch (Exception e) {
    throw new StorageException("retrieval error", e);
  }
  return new ArrayList<RecordedGrip>(); 
}

Our test passes now because we’ve caught the exception. At this point, we can refac-
tor. We can narrow the type of the exception we catch to match the type that is actually
thrown from the FileInputStream constructor: FileNotFoundException:

public List<RecordedGrip> retrieveSection(String sectionName) {
  try {
    FileInputStream stream = new FileInputStream(sectionName);
    stream.close();
  } catch (FileNotFoundException e) {
    throw new StorageException("retrieval error”, e);
  }
  return new ArrayList<RecordedGrip>();
}

Now that we’ve defined the scope with a try-catch structure, we can use TDD to build
up the rest of the logic that we need. That logic will be added between the creation of the
FileInputStream and the close, and can pretend that nothing goes wrong.

Try to write tests that force exceptions, and then add behavior to your handler to sat-
isfy your tests. This will cause you to build the transaction scope of the try block first and
will help you maintain the transaction nature of that scope.

Use Unchecked Exceptions

The debate is over. For years Java programmers have debated over the benefits and liabili-
ties of checked exceptions. When checked exceptions were introduced in the first version
of Java, they seemed like a great idea. The signature of every method would list all of the
exceptions that it could pass to its caller. Moreover, these exceptions were part of the type
of the method. Your code literally wouldn’t compile if the signature didn’t match what your
code could do. 

At the time, we thought that checked exceptions were a great idea; and yes, they can
yield some benefit. However, it is clear now that they aren’t necessary for the production of
robust software. C# doesn’t have checked exceptions, and despite valiant attempts, C++
doesn’t either. Neither do Python or Ruby. Yet it is possible to write robust software in all
of these languages. Because that is the case, we have to decide—really—whether checked
exceptions are worth their price.



107ADefine Exception Classes in Terms of a Caller’s Needs

What price? The price of checked exceptions is an Open/Closed Principle1 violation.
If you throw a checked exception from a method in your code and the catch is three levels
above, you must declare that exception in the signature of each method between you and
the catch. This means that a change at a low level of the software can force signature
changes on many higher levels. The changed modules must be rebuilt and redeployed,
even though nothing they care about changed. 

Consider the calling hierarchy of a large system. Functions at the top call functions
below them, which call more functions below them, ad infinitum. Now let’s say one of the
lowest level functions is modified in such a way that it must throw an exception. If that
exception is checked, then the function signature must add a throws clause. But this
means that every function that calls our modified function must also be modified either to
catch the new exception or to append the appropriate throws clause to its signature. Ad
infinitum. The net result is a cascade of changes that work their way from the lowest levels
of the software to the highest! Encapsulation is broken because all functions in the path
of a throw must know about details of that low-level exception. Given that the purpose of
exceptions is to allow you to handle errors at a distance, it is a shame that checked excep-
tions break encapsulation in this way. 

Checked exceptions can sometimes be useful if you are writing a critical library: You
must catch them. But in general application development the dependency costs outweigh
the benefits.

Provide Context with Exceptions

Each exception that you throw should provide enough context to determine the source and
location of an error. In Java, you can get a stack trace from any exception; however, a stack
trace can’t tell you the intent of the operation that failed. 

Create informative error messages and pass them along with your exceptions. Men-
tion the operation that failed and the type of failure. If you are logging in your application,
pass along enough information to be able to log the error in your catch.

Define Exception Classes in Terms of a Caller’s Needs

There are many ways to classify errors. We can classify them by their source: Did they
come from one component or another? Or their type: Are they device failures, network
failures, or programming errors? However, when we define exception classes in an appli-
cation, our most important concern should be how they are caught.

1. [Martin].



108A Chapter 7: Error Handling

Let’s look at an example of poor exception classification. Here is a try-catch-finally
statement for a third-party library call. It covers all of the exceptions that the calls can
throw:

    ACMEPort port = new ACMEPort(12);

    try {
      port.open();
    } catch (DeviceResponseException e) {
      reportPortError(e);
      logger.log("Device response exception", e);
    } catch (ATM1212UnlockedException e) {
      reportPortError(e);
      logger.log("Unlock exception", e);  
    } catch (GMXError e) {
      reportPortError(e);
      logger.log("Device response exception");  
    } finally {
      …
    }

That statement contains a lot of duplication, and we shouldn’t be surprised. In most
exception handling situations, the work that we do is relatively standard regardless of the
actual cause. We have to record an error and make sure that we can proceed.

In this case, because we know that the work that we are doing is roughly the same
regardless of the exception, we can simplify our code considerably by wrapping the API
that we are calling and making sure that it returns a common exception type:

    LocalPort port = new LocalPort(12);
    try {
      port.open();
    } catch (PortDeviceFailure e) {
      reportError(e);
      logger.log(e.getMessage(), e);
    } finally {
      …
    }

Our LocalPort class is just a simple wrapper that catches and translates exceptions
thrown by the ACMEPort class:

public class LocalPort {
  private ACMEPort innerPort;

  public LocalPort(int portNumber) {
    innerPort = new ACMEPort(portNumber);
  }

  public void open() {
    try {
      innerPort.open();
    } catch (DeviceResponseException e) {
      throw new PortDeviceFailure(e);
    } catch (ATM1212UnlockedException e) {
      throw new PortDeviceFailure(e);
    } catch (GMXError e) {



109ADefine the Normal Flow

      throw new PortDeviceFailure(e);
    }
  }
  …
}

Wrappers like the one we defined for ACMEPort can be very useful. In fact, wrapping
third-party APIs is a best practice. When you wrap a third-party API, you minimize your
dependencies upon it: You can choose to move to a different library in the future without
much penalty. Wrapping also makes it easier to mock out third-party calls when you are
testing your own code.

One final advantage of wrapping is that you aren’t tied to a particular vendor’s API
design choices. You can define an API that you feel comfortable with. In the preceding
example, we defined a single exception type for port device failure and found that we
could write much cleaner code.

Often a single exception class is fine for a particular area of code. The information
sent with the exception can distinguish the errors. Use different classes only if there are
times when you want to catch one exception and allow the other one to pass through.

Define the Normal Flow

If you follow the advice in the preceding
sections, you’ll end up with a good amount
of separation between your business logic
and your error handling. The bulk of your
code will start to look like a clean
unadorned algorithm. However, the pro-
cess of doing this pushes error detection
to the edges of your program. You wrap
external APIs so that you can throw your
own exceptions, and you define a handler above your code so that you can deal with any
aborted computation. Most of the time this is a great approach, but there are some times
when you may not want to abort.

Let’s take a look at an example. Here is some awkward code that sums expenses in a
billing application:

try {
  MealExpenses expenses = expenseReportDAO.getMeals(employee.getID());
  m_total += expenses.getTotal();
} catch(MealExpensesNotFound e) {
  m_total += getMealPerDiem();
}

In this business, if meals are expensed, they become part of the total. If they aren’t, the
employee gets a meal per diem amount for that day. The exception clutters the logic.
Wouldn’t it be better if we didn’t have to deal with the special case? If we didn’t, our code
would look much simpler. It would look like this:

MealExpenses expenses = expenseReportDAO.getMeals(employee.getID());
m_total += expenses.getTotal();



110A Chapter 7: Error Handling

Can we make the code that simple? It turns out that we can. We can change the
ExpenseReportDAO so that it always returns a MealExpense object. If there are no meal
expenses, it returns a MealExpense object that returns the per diem as its total:

public class PerDiemMealExpenses implements MealExpenses {
  public int getTotal() {
    // return the per diem default
  }
}

This is called the SPECIAL CASE PATTERN [Fowler]. You create a class or configure an
object so that it handles a special case for you. When you do, the client code doesn’t have
to deal with exceptional behavior. That behavior is encapsulated in the special case object.

Don’t Return Null

I think that any discussion about error handling should include mention of the things we
do that invite errors. The first on the list is returning null. I can’t begin to count the number
of applications I’ve seen in which nearly every other line was a check for null. Here is
some example code:

  public void registerItem(Item item) {
    if (item != null) {
      ItemRegistry registry = peristentStore.getItemRegistry();
      if (registry != null) {
        Item existing = registry.getItem(item.getID());
        if (existing.getBillingPeriod().hasRetailOwner()) {
          existing.register(item);
        }
      }
    }
  }

If you work in a code base with code like this, it might not look all that bad to you, but it is
bad! When we return null, we are essentially creating work for ourselves and foisting
problems upon our callers. All it takes is one missing null check to send an application
spinning out of control.

Did you notice the fact that there wasn’t a null check in the second line of that nested
if statement? What would have happened at runtime if persistentStore were null? We
would have had a NullPointerException at runtime, and either someone is catching
NullPointerException at the top level or they are not. Either way it’s bad. What exactly
should you do in response to a NullPointerException thrown from the depths of your appli-
cation?

It’s easy to say that the problem with the code above is that it is missing a null check,
but in actuality, the problem is that it has too many. If you are tempted to return null from
a method, consider throwing an exception or returning a SPECIAL CASE object instead. If
you are calling a null-returning method from a third-party API, consider wrapping that
method with a method that either throws an exception or returns a special case object.



111ADon’t Pass Null

In many cases, special case objects are an easy remedy. Imagine that you have code
like this:

List<Employee> employees = getEmployees();
if (employees != null) {
  for(Employee e : employees) {
    totalPay += e.getPay();
  }
}

Right now, getEmployees can return null, but does it have to? If we change getEmployee so
that it returns an empty list, we can clean up the code:

List<Employee> employees = getEmployees();
for(Employee e : employees) {
  totalPay += e.getPay();
}

Fortunately, Java has Collections.emptyList(), and it returns a predefined immutable list
that we can use for this purpose:

public List<Employee> getEmployees() {
  if( .. there are no employees .. ) 
    return Collections.emptyList();
}

If you code this way, you will minimize the chance of NullPointerExceptions and your
code will be cleaner.

Don’t Pass Null

Returning null from methods is bad, but passing null into methods is worse. Unless you
are working with an API which expects you to pass null, you should avoid passing null in
your code whenever possible.

Let’s look at an example to see why. Here is a simple method which calculates a met-
ric for two points:

public class MetricsCalculator 
{
  public double xProjection(Point p1, Point p2) {
    return (p2.x – p1.x) * 1.5;
  }
  …
}

What happens when someone passes null as an argument?

calculator.xProjection(null, new Point(12, 13));

We’ll get a NullPointerException, of course.

How can we fix it? We could create a new exception type and throw it:

public class MetricsCalculator 
{



112A Chapter 7: Error Handling

  public double xProjection(Point p1, Point p2) {
    if (p1 == null || p2 == null) {
      throw InvalidArgumentException(
        "Invalid argument for MetricsCalculator.xProjection");
    }
    return (p2.x – p1.x) * 1.5;
  }
}

Is this better? It might be a little better than a null pointer exception, but remember, we
have to define a handler for InvalidArgumentException. What should the handler do? Is
there any good course of action?

There is another alternative. We could use a set of assertions:

public class MetricsCalculator 
{
  public double xProjection(Point p1, Point p2) {
    assert p1 != null : "p1 should not be null";
    assert p2 != null : "p2 should not be null";
    return (p2.x – p1.x) * 1.5;
  }
}

It’s good documentation, but it doesn’t solve the problem. If someone passes null, we’ll
still have a runtime error. 

In most programming languages there is no good way to deal with a null that is
passed by a caller accidentally. Because this is the case, the rational approach is to forbid
passing null by default. When you do, you can code with the knowledge that a null in an
argument list is an indication of a problem, and end up with far fewer careless mistakes.

Conclusion

Clean code is readable, but it must also be robust. These are not conflicting goals. We can
write robust clean code if we see error handling as a separate concern, something that is
viewable independently of our main logic. To the degree that we are able to do that, we can
reason about it independently, and we can make great strides in the maintainability of our
code.

Bibliography

[Martin]:  Agile Software Development: Principles, Patterns, and Practices, Robert C.
Martin, Prentice Hall, 2002.



113A

8

Boundaries
by James Grenning

We seldom control all the software in our systems. Sometimes we buy third-party pack-
ages or use open source. Other times we depend on teams in our own company to produce
components or subsystems for us. Somehow we must cleanly integrate this foreign code



114A Chapter 8: Boundaries

with our own. In this chapter we look at practices and techniques to keep the boundaries of
our software clean.

Using Third-Party Code

There is a natural tension between the provider of an interface and the user of an interface.
Providers of third-party packages and frameworks strive for broad applicability so they
can work in many environments and appeal to a wide audience. Users, on the other hand,
want an interface that is focused on their particular needs. This tension can cause problems
at the boundaries of our systems.

Let’s look at java.util.Map as an example. As you can see by examining Figure 8-1,
Maps have a very broad interface with plenty of capabilities. Certainly this power and flexi-
bility is useful, but it can also be a liability. For instance, our application might build up a
Map and pass it around. Our intention might be that none of the recipients of our Map delete
anything in the map. But right there at the top of the list is the clear() method. Any user of
the Map has the power to clear it. Or maybe our design convention is that only particular
types of objects can be stored in the Map, but Maps do not reliably constrain the types of
objects placed within them. Any determined user can add items of any type to any Map. 

If our application needs a Map of Sensors, you might find the sensors set up like this:

Map sensors = new HashMap();

• clear() void – Map
• containsKey(Object key) boolean – Map
• containsValue(Object value) boolean – Map
• entrySet() Set – Map
• equals(Object o) boolean – Map
• get(Object key) Object – Map
• getClass() Class<? extends Object> – Object
• hashCode() int – Map
• isEmpty() boolean – Map
• keySet() Set – Map
• notify() void – Object
• notifyAll() void – Object
• put(Object key, Object value) Object – Map
• putAll(Map t) void – Map
• remove(Object key) Object – Map
• size() int – Map
• toString() String – Object
• values() Collection – Map
• wait() void – Object
• wait(long timeout) void – Object
• wait(long timeout, int nanos) void – Object

Figure 8-1
The methods of Map



115AUsing Third-Party Code

Then, when some other part of the code needs to access the sensor, you see this code:

Sensor s = (Sensor)sensors.get(sensorId );

We don’t just see it once, but over and over again throughout the code. The client of this
code carries the responsibility of getting an Object from the Map and casting it to the right
type. This works, but it’s not clean code. Also, this code does not tell its story as well as it
could. The readability of this code can be greatly improved by using generics, as shown
below:

Map<Sensor> sensors = new HashMap<Sensor>();
...

Sensor s = sensors.get(sensorId );

However, this doesn’t solve the problem that Map<Sensor> provides more capability than we
need or want.

Passing an instance of Map<Sensor> liberally around the system means that there will
be a lot of places to fix if the interface to Map ever changes. You might think such a change
to be unlikely, but remember that it changed when generics support was added in Java 5.
Indeed, we’ve seen systems that are inhibited from using generics because of the sheer
magnitude of changes needed to make up for the liberal use of Maps.

A cleaner way to use Map might look like the following. No user of Sensors would care
one bit if generics were used or not. That choice has become (and always should be) an
implementation detail.

public class Sensors {
private Map sensors = new HashMap();

public Sensor getById(String id) {
return (Sensor) sensors.get(id);

}

//snip
}

The interface at the boundary (Map) is hidden. It is able to evolve with very little impact on
the rest of the application. The use of generics is no longer a big issue because the casting
and type management is handled inside the Sensors class. 

This interface is also tailored and constrained to meet the needs of the application. It
results in code that is easier to understand and harder to misuse. The Sensors class can
enforce design and business rules.

We are not suggesting that every use of Map be encapsulated in this form. Rather, we
are advising you not to pass Maps (or any other interface at a boundary) around your
system. If you use a boundary interface like Map, keep it inside the class, or close family
of classes, where it is used. Avoid returning it from, or accepting it as an argument to,
public APIs.



116A Chapter 8: Boundaries

Exploring and Learning Boundaries

Third-party code helps us get more functionality delivered in less time. Where do we start
when we want to utilize some third-party package? It’s not our job to test the third-party
code, but it may be in our best interest to write tests for the third-party code we use. 

Suppose it is not clear how to use our third-party library. We might spend a day or two
(or more) reading the documentation and deciding how we are going to use it. Then we
might write our code to use the third-party code and see whether it does what we think. We
would not be surprised to find ourselves bogged down in long debugging sessions trying to
figure out whether the bugs we are experiencing are in our code or theirs. 

Learning the third-party code is hard. Integrating the third-party code is hard too.
Doing both at the same time is doubly hard. What if we took a different approach? Instead
of experimenting and trying out the new stuff in our production code, we could write some
tests to explore our understanding of the third-party code. Jim Newkirk calls such tests
learning tests.1 

In learning tests we call the third-party API, as we expect to use it in our application.
We’re essentially doing controlled experiments that check our understanding of that API.
The tests focus on what we want out of the API. 

Learning log4j

Let’s say we want to use the apache log4j package rather than our own custom-built log-
ger. We download it and open the introductory documentation page. Without too much
reading we write our first test case, expecting it to write “hello” to the console.

@Test 
public void testLogCreate() {

Logger logger = Logger.getLogger("MyLogger");
logger.info("hello");

}

When we run it, the logger produces an error that tells us we need something called an
Appender. After a little more reading we find that there is a ConsoleAppender. So we create a
ConsoleAppender and see whether we have unlocked the secrets of logging to the console.

@Test 
public void testLogAddAppender() {

Logger logger = Logger.getLogger("MyLogger");
ConsoleAppender appender = new ConsoleAppender();
logger.addAppender(appender);
logger.info("hello");

}

1. [BeckTDD], pp. 136–137.



117ALearning log4j

This time we find that the Appender has no output stream. Odd—it seems logical that it’d
have one. After a little help from Google, we try the following:

@Test 
public void testLogAddAppender() {

Logger logger = Logger.getLogger("MyLogger");
logger.removeAllAppenders();
logger.addAppender(new ConsoleAppender(

new PatternLayout("%p %t %m%n"), 
ConsoleAppender.SYSTEM_OUT));

logger.info("hello");
}

That worked; a log message that includes “hello” came out on the console! It seems odd
that we have to tell the ConsoleAppender that it writes to the console. 

Interestingly enough, when we remove the ConsoleAppender.SystemOut argument, we
see that “hello” is still printed. But when we take out the PatternLayout, it once again com-
plains about the lack of an output stream. This is very strange behavior. 

Looking a little more carefully at the documentation, we see that the default
ConsoleAppender constructor is “unconfigured,” which does not seem too obvious or useful.
This feels like a bug, or at least an inconsistency, in log4j. 

A bit more googling, reading, and testing, and we eventually wind up with Listing 8-1.
We’ve discovered a great deal about the way that log4j works, and we’ve encoded that
knowledge into a set of simple unit tests.

Listing 8-1 
LogTest.java
public class LogTest {
    private Logger logger;

    @Before
    public void initialize() {
        logger = Logger.getLogger("logger");
        logger.removeAllAppenders();
        Logger.getRootLogger().removeAllAppenders();
    }
    @Test
    public void basicLogger() {
        BasicConfigurator.configure();
        logger.info("basicLogger");
    }

    @Test
    public void addAppenderWithStream() {

logger.addAppender(new ConsoleAppender(
new PatternLayout("%p %t %m%n"),
ConsoleAppender.SYSTEM_OUT));

        logger.info("addAppenderWithStream");
    }



118A Chapter 8: Boundaries

Now we know how to get a simple console logger initialized, and we can encapsulate
that knowledge into our own logger class so that the rest of our application is isolated from
the log4j boundary interface. 

Learning Tests Are Better Than Free

The learning tests end up costing nothing. We had to learn the API anyway, and writing
those tests was an easy and isolated way to get that knowledge. The learning tests were
precise experiments that helped increase our understanding.

Not only are learning tests free, they have a positive return on investment. When there
are new releases of the third-party package, we run the learning tests to see whether there
are behavioral differences. 

Learning tests verify that the third-party packages we are using work the way we
expect them to. Once integrated, there are no guarantees that the third-party code will stay
compatible with our needs. The original authors will have pressures to change their code to
meet new needs of their own. They will fix bugs and add new capabilities. With each
release comes new risk. If the third-party package changes in some way incompatible with
our tests, we will find out right away. 

Whether you need the learning provided by the learning tests or not, a clean boundary
should be supported by a set of outbound tests that exercise the interface the same way the
production code does. Without these boundary tests to ease the migration, we might be
tempted to stay with the old version longer than we should. 

Using Code That Does Not Yet Exist

There is another kind of boundary, one that separates the known from the unknown. There
are often places in the code where our knowledge seems to drop off the edge. Sometimes
what is on the other side of the boundary is unknowable (at least right now). Sometimes
we choose to look no farther than the boundary. 

A number of years back I was part of a team developing software for a radio com-
munications system. There was a subsystem, the “Transmitter,” that we knew little
about, and the people responsible for the subsystem had not gotten to the point of defining
their interface. We did not want to be blocked, so we started our work far away from the
unknown part of the code.

    @Test
    public void addAppenderWithoutStream() {

logger.addAppender(new ConsoleAppender(
new PatternLayout("%p %t %m%n")));

        logger.info("addAppenderWithoutStream");
    }
}

Listing 8-1 (continued)
LogTest.java



119AUsing Code That Does Not Yet Exist

We had a pretty good idea of where our world ended and the new world began. As we
worked, we sometimes bumped up against this boundary. Though mists and clouds of
ignorance obscured our view beyond the boundary, our work made us aware of what we
wanted the boundary interface to be. We wanted to tell the transmitter something like this:

Key the transmitter on the provided frequency and emit an analog representation of the
data coming from this stream. 

We had no idea how that would be done because the API had not been designed yet.
So we decided to work out the details later.

To keep from being blocked, we defined our own interface. We called it something
catchy, like Transmitter. We gave it a method called transmit that took a frequency and a
data stream. This was the interface we wished we had. 

One good thing about writing the interface we wish we had is that it’s under our
control. This helps keep client code more readable and focused on what it is trying to
accomplish. 

In Figure 8-2, you can see that we insulated the CommunicationsController classes
from the transmitter API (which was out of our control and undefined). By using our own
application specific interface, we kept our CommunicationsController code clean and
expressive. Once the transmitter API was defined, we wrote the TransmitterAdapter to
bridge the gap. The ADAPTER2 encapsulated the interaction with the API and provides a
single place to change when the API evolves.

Figure 8-2
Predicting the transmitter

This design also gives us a very convenient seam3 in the code for testing. Using a
suitable FakeTransmitter, we can test the CommunicationsController classes. We can also
create boundary tests once we have the TransmitterAPI that make sure we are using the
API correctly.

2. See the Adapter pattern in [GOF].
3. See more about seams in [WELC].



120A Chapter 8: Boundaries

Clean Boundaries

Interesting things happen at boundaries. Change is one of those things. Good software
designs accommodate change without huge investments and rework. When we use code
that is out of our control, special care must be taken to protect our investment and make
sure future change is not too costly. 

Code at the boundaries needs clear separation and tests that define expectations. We
should avoid letting too much of our code know about the third-party particulars. It’s better
to depend on something you control than on something you don’t control, lest it end up
controlling you. 

We manage third-party boundaries by having very few places in the code that refer to
them. We may wrap them as we did with Map, or we may use an ADAPTER to convert from
our perfect interface to the provided interface. Either way our code speaks to us better,
promotes internally consistent usage across the boundary, and has fewer maintenance
points when the third-party code changes. 

Bibliography

[BeckTDD]:  Test Driven Development, Kent Beck, Addison-Wesley, 2003.

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.

[WELC]:  Working Effectively with Legacy Code, Addison-Wesley, 2004.



121A

9

Unit Tests

Our profession has come a long way in the last ten years. In 1997 no one had heard of
Test Driven Development. For the vast majority of us, unit tests were short bits of throw-
away code that we wrote to make sure our programs “worked.” We would painstakingly
write our classes and methods, and then we would concoct some ad hoc code to test
them. Typically this would involve some kind of simple driver program that would allow
us to manually interact with the program we had written.

I remember writing a C++ program for an embedded real-time system back in the
mid-90s. The program was a simple timer with the following signature:

void Timer::ScheduleCommand(Command* theCommand, int milliseconds) 

The idea was simple; the execute method of the Command would be executed in a new
thread after the specified number of milliseconds. The problem was, how to test it.



122A Chapter 9: Unit Tests

I cobbled together a simple driver program that listened to the keyboard. Every time a
character was typed, it would schedule a command that would type the same character five
seconds later. Then I tapped out a rhythmic melody on the keyboard and waited for that
melody to replay on the screen five seconds later. 

“I . . . want-a-girl . . . just . . . like-the-girl-who-marr . . . ied . . . dear . . . old . . . dad.”

I actually sang that melody while typing the “.” key, and then I sang it again as the
dots appeared on the screen.

That was my test! Once I saw it work and demonstrated it to my colleagues, I threw
the test code away.

As I said, our profession has come a long way. Nowadays I would write a test that made
sure that every nook and cranny of that code worked as I expected it to. I would isolate my
code from the operating system rather than just calling the standard timing functions. I
would mock out those timing functions so that I had absolute control over the time. I would
schedule commands that set boolean flags, and then I would step the time forward, watching
those flags and ensuring that they went from false to true just as I changed the time to the
right value.

Once I got a suite of tests to pass, I would make sure that those tests were convenient
to run for anyone else who needed to work with the code. I would ensure that the tests and
the code were checked in together into the same source package.

Yes, we’ve come a long way; but we have farther to go. The Agile and TDD move-
ments have encouraged many programmers to write automated unit tests, and more are
joining their ranks every day. But in the mad rush to add testing to our discipline, many
programmers have missed some of the more subtle, and important, points of writing
good tests.

The Three Laws of TDD

By now everyone knows that TDD asks us to write unit tests first, before we write produc-
tion code. But that rule is just the tip of the iceberg. Consider the following three laws:1

First Law You may not write production code until you have written a failing unit test.

Second Law You may not write more of a unit test than is sufficient to fail, and not com-
piling is failing.

Third Law You may not write more production code than is sufficient to pass the currently
failing test. 

1. Professionalism and Test-Driven Development, Robert C. Martin, Object Mentor, IEEE Software, May/June 2007 (Vol. 24, 
No. 3)   pp. 32–36
http://doi.ieeecomputersociety.org/10.1109/MS.2007.85 

http://doi.ieeecomputersociety.org/10.1109/MS.2007.85


123AKeeping Tests Clean

These three laws lock you into a cycle that is perhaps thirty seconds long. The tests
and the production code are written together, with the tests just a few seconds ahead of the
production code.

If we work this way, we will write dozens of tests every day, hundreds of tests every
month, and thousands of tests every year. If we work this way, those tests will cover virtu-
ally all of our production code. The sheer bulk of those tests, which can rival the size of the
production code itself, can present a daunting management problem.

Keeping Tests Clean

Some years back I was asked to coach a team who had explicitly decided that their test
code should not be maintained to the same standards of quality as their production code.
They gave each other license to break the rules in their unit tests. “Quick and dirty” was
the watchword. Their variables did not have to be well named, their test functions did not
need to be short and descriptive. Their test code did not need to be well designed and
thoughtfully partitioned. So long as the test code worked, and so long as it covered the pro-
duction code, it was good enough.

Some of you reading this might sympathize with that decision. Perhaps, long in the
past, you wrote tests of the kind that I wrote for that Timer class. It’s a huge step from
writing that kind of throw-away test, to writing a suite of automated unit tests. So, like the
team I was coaching, you might decide that having dirty tests is better than having no
tests.

What this team did not realize was that having dirty tests is equivalent to, if not worse
than, having no tests. The problem is that tests must change as the production code
evolves. The dirtier the tests, the harder they are to change. The more tangled the test code,
the more likely it is that you will spend more time cramming new tests into the suite than it
takes to write the new production code. As you modify the production code, old tests start
to fail, and the mess in the test code makes it hard to get those tests to pass again. So the
tests become viewed as an ever-increasing liability.

From release to release the cost of maintaining my team’s test suite rose. Eventually it
became the single biggest complaint among the developers. When managers asked why
their estimates were getting so large, the developers blamed the tests. In the end they were
forced to discard the test suite entirely.

But, without a test suite they lost the ability to make sure that changes to their code
base worked as expected. Without a test suite they could not ensure that changes to one
part of their system did not break other parts of their system. So their defect rate began to
rise. As the number of unintended defects rose, they started to fear making changes. They
stopped cleaning their production code because they feared the changes would do more
harm than good. Their production code began to rot. In the end they were left with no tests,
tangled and bug-riddled production code, frustrated customers, and the feeling that their
testing effort had failed them. 



124A Chapter 9: Unit Tests

In a way they were right. Their testing effort had failed them. But it was their decision
to allow the tests to be messy that was the seed of that failure. Had they kept their tests
clean, their testing effort would not have failed. I can say this with some certainty because
I have participated in, and coached, many teams who have been successful with clean unit
tests.

The moral of the story is simple: Test code is just as important as production code. It
is not a second-class citizen. It requires thought, design, and care. It must be kept as clean
as production code. 

Tests Enable the -ilities

If you don’t keep your tests clean, you will lose them. And without them, you lose the very
thing that keeps your production code flexible. Yes, you read that correctly. It is unit tests
that keep our code flexible, maintainable, and reusable. The reason is simple. If you have
tests, you do not fear making changes to the code! Without tests every change is a possible
bug. No matter how flexible your architecture is, no matter how nicely partitioned your
design, without tests you will be reluctant to make changes because of the fear that you
will introduce undetected bugs.

But with tests that fear virtually disappears. The higher your test coverage, the less
your fear. You can make changes with near impunity to code that has a less than stellar
architecture and a tangled and opaque design. Indeed, you can improve that architecture
and design without fear!

So having an automated suite of unit tests that cover the production code is the key to
keeping your design and architecture as clean as possible. Tests enable all the -ilities,
because tests enable change.

So if your tests are dirty, then your ability to change your code is hampered, and you
begin to lose the ability to improve the structure of that code. The dirtier your tests, the
dirtier your code becomes. Eventually you lose the tests, and your code rots.

Clean Tests

What makes a clean test? Three things. Readability, readability, and readability. Read-
ability is perhaps even more important in unit tests than it is in production code. What
makes tests readable? The same thing that makes all code readable: clarity, simplicity,
and density of expression. In a test you want to say a lot with as few expressions as
possible. 

Consider the code from FitNesse in Listing 9-1. These three tests are difficult to
understand and can certainly be improved. First, there is a terrible amount of duplicate
code [G5] in the repeated calls to addPage and assertSubString. More importantly, this
code is just loaded with details that interfere with the expressiveness of the test. 



125AClean Tests

Listing 9-1 
SerializedPageResponderTest.java

public void testGetPageHieratchyAsXml() throws Exception
{

crawler.addPage(root, PathParser.parse("PageOne"));
crawler.addPage(root, PathParser.parse("PageOne.ChildOne"));
crawler.addPage(root, PathParser.parse("PageTwo"));

request.setResource("root");
request.addInput("type", "pages");
Responder responder = new SerializedPageResponder();
SimpleResponse response = 

      (SimpleResponse) responder.makeResponse(
         new FitNesseContext(root), request);

String xml = response.getContent();

assertEquals("text/xml", response.getContentType());
assertSubString("<name>PageOne</name>", xml);
assertSubString("<name>PageTwo</name>", xml);
assertSubString("<name>ChildOne</name>", xml);

}

public void testGetPageHieratchyAsXmlDoesntContainSymbolicLinks() 
  throws Exception

{
WikiPage pageOne = crawler.addPage(root, PathParser.parse("PageOne"));
crawler.addPage(root, PathParser.parse("PageOne.ChildOne"));
crawler.addPage(root, PathParser.parse("PageTwo"));

PageData data = pageOne.getData();
WikiPageProperties properties = data.getProperties();
WikiPageProperty symLinks = properties.set(SymbolicPage.PROPERTY_NAME);
symLinks.set("SymPage", "PageTwo");
pageOne.commit(data);

request.setResource("root");
request.addInput("type", "pages");
Responder responder = new SerializedPageResponder();
SimpleResponse response = 

      (SimpleResponse) responder.makeResponse(
         new FitNesseContext(root), request);

String xml = response.getContent();

assertEquals("text/xml", response.getContentType());
assertSubString("<name>PageOne</name>", xml);
assertSubString("<name>PageTwo</name>", xml);
assertSubString("<name>ChildOne</name>", xml);
assertNotSubString("SymPage", xml);

}

public void testGetDataAsHtml() throws Exception
{

crawler.addPage(root, PathParser.parse("TestPageOne"), "test page");

request.setResource("TestPageOne");
request.addInput("type", "data");



126A Chapter 9: Unit Tests

For example, look at the PathParser calls. They transform strings into PagePath
instances used by the crawlers. This transformation is completely irrelevant to the test at
hand and serves only to obfuscate the intent. The details surrounding the creation of the
responder and the gathering and casting of the response are also just noise. Then there’s the
ham-handed way that the request URL is built from a resource and an argument. (I helped
write this code, so I feel free to roundly criticize it.)

In the end, this code was not designed to be read. The poor reader is inundated with a
swarm of details that must be understood before the tests make any real sense.

Now consider the improved tests in Listing 9-2. These tests do the exact same thing,
but they have been refactored into a much cleaner and more explanatory form.

Responder responder = new SerializedPageResponder();
SimpleResponse response = 

       (SimpleResponse) responder.makeResponse(
          new FitNesseContext(root), request);

String xml = response.getContent();

assertEquals("text/xml", response.getContentType());
assertSubString("test page", xml);
assertSubString("<Test", xml);

}

Listing 9-2 
SerializedPageResponderTest.java (refactored)
  public void testGetPageHierarchyAsXml() throws Exception {
    makePages("PageOne", "PageOne.ChildOne", "PageTwo");

    submitRequest("root", "type:pages");

    assertResponseIsXML();
    assertResponseContains(
      "<name>PageOne</name>", "<name>PageTwo</name>", "<name>ChildOne</name>"
    );
  }

  public void testSymbolicLinksAreNotInXmlPageHierarchy() throws Exception {
    WikiPage page = makePage("PageOne");
    makePages("PageOne.ChildOne", "PageTwo");

    addLinkTo(page, "PageTwo", "SymPage");

    submitRequest("root", "type:pages");

    assertResponseIsXML();
    assertResponseContains(
      "<name>PageOne</name>", "<name>PageTwo</name>", "<name>ChildOne</name>"
    );
    assertResponseDoesNotContain("SymPage");
  }

Listing 9-1 (continued)
SerializedPageResponderTest.java



127AClean Tests

The BUILD-OPERATE-CHECK2 pattern is made obvious by the structure of these tests.
Each of the tests is clearly split into three parts. The first part builds up the test data, the
second part operates on that test data, and the third part checks that the operation yielded
the expected results.

Notice that the vast majority of annoying detail has been eliminated. The tests get
right to the point and use only the data types and functions that they truly need. Anyone
who reads these tests should be able to work out what they do very quickly, without being
misled or overwhelmed by details.

Domain-Specific Testing Language

The tests in Listing 9-2 demonstrate the technique of building a domain-specific language
for your tests. Rather than using the APIs that programmers use to manipulate the sys-
tem, we build up a set of functions and utilities that make use of those APIs and that
make the tests more convenient to write and easier to read. These functions and utilities
become a specialized API used by the tests. They are a testing language that program-
mers use to help themselves to write their tests and to help those who must read those
tests later on.

This testing API is not designed up front; rather it evolves from the continued refac-
toring of test code that has gotten too tainted by obfuscating detail. Just as you saw me
refactor Listing 9-1 into Listing 9-2, so too will disciplined developers refactor their test
code into more succinct and expressive forms. 

A Dual Standard

In one sense the team I mentioned at the beginning of this chapter had things right. The
code within the testing API does have a different set of engineering standards than produc-
tion code. It must still be simple, succinct, and expressive, but it need not be as efficient as
production code. After all, it runs in a test environment, not a production environment, and
those two environment have very different needs.

  public void testGetDataAsXml() throws Exception {
    makePageWithContent("TestPageOne", "test page");

    submitRequest("TestPageOne", "type:data");

    assertResponseIsXML();
    assertResponseContains("test page", "<Test");
  }

2. http://fitnesse.org/FitNesse.AcceptanceTestPatterns

Listing 9-2 (continued)
SerializedPageResponderTest.java (refactored)

http://fitnesse.org/FitNesse.AcceptanceTestPatterns


128A Chapter 9: Unit Tests

Consider the test in Listing 9-3. I wrote this test as part of an environment control sys-
tem I was prototyping. Without going into the details you can tell that this test checks that
the low temperature alarm, the heater, and the blower are all turned on when the tempera-
ture is “way too cold.” 

There are, of course, lots of details here. For example, what is that tic function all
about? In fact, I’d rather you not worry about that while reading this test. I’d rather you just
worry about whether you agree that the end state of the system is consistent with the tem-
perature being “way too cold.”

Notice, as you read the test, that your eye needs to bounce back and forth between
the name of the state being checked, and the sense of the state being checked. You see
heaterState, and then your eyes glissade left to assertTrue. You see coolerState and your
eyes must track left to assertFalse. This is tedious and unreliable. It makes the test hard
to read.

I improved the reading of this test greatly by transforming it into Listing 9-4.

Of course I hid the detail of the tic function by creating a wayTooCold function. But the
thing to note is the strange string in the assertEquals. Upper case means “on,” lower case
means “off,” and the letters are always in the following order: {heater, blower, cooler,
hi-temp-alarm, lo-temp-alarm}.

Even though this is close to a violation of the rule about mental mapping,3 it seems
appropriate in this case. Notice, once you know the meaning, your eyes glide across

Listing 9-3 
EnvironmentControllerTest.java
@Test
  public void turnOnLoTempAlarmAtThreashold() throws Exception {
    hw.setTemp(WAY_TOO_COLD);
    controller.tic();
    assertTrue(hw.heaterState());
    assertTrue(hw.blowerState());
    assertFalse(hw.coolerState());
    assertFalse(hw.hiTempAlarm());
    assertTrue(hw.loTempAlarm());
  }

Listing 9-4 
EnvironmentControllerTest.java (refactored)
@Test
  public void turnOnLoTempAlarmAtThreshold() throws Exception {
    wayTooCold();
    assertEquals("HBchL", hw.getState());
  }

3. “Avoid Mental Mapping” on page 25.



129AClean Tests

that string and you can quickly interpret the results. Reading the test becomes almost a
pleasure. Just take a look at Listing 9-5 and see how easy it is to understand these tests.

The getState function is shown in Listing 9-6. Notice that this is not very efficient
code. To make it efficient, I probably should have used a StringBuffer. 

StringBuffers are a bit ugly. Even in production code I will avoid them if the cost is
small; and you could argue that the cost of the code in Listing 9-6 is very small. However,
this application is clearly an embedded real-time system, and it is likely that computer and
memory resources are very constrained. The test environment, however, is not likely to be
constrained at all. 

Listing 9-5 
EnvironmentControllerTest.java (bigger selection)
@Test
  public void turnOnCoolerAndBlowerIfTooHot() throws Exception {
    tooHot();
    assertEquals("hBChl", hw.getState());
  }

  @Test
  public void turnOnHeaterAndBlowerIfTooCold() throws Exception {
    tooCold();
    assertEquals("HBchl", hw.getState());
  }

  @Test
  public void turnOnHiTempAlarmAtThreshold() throws Exception {
    wayTooHot();
    assertEquals("hBCHl", hw.getState());
  }

  @Test
  public void turnOnLoTempAlarmAtThreshold() throws Exception {
    wayTooCold();
    assertEquals("HBchL", hw.getState());
  }

Listing 9-6 
MockControlHardware.java
public String getState() {
    String state = "";
    state += heater ? "H" : "h";
    state += blower ? "B" : "b";
    state += cooler ? "C" : "c";
    state += hiTempAlarm ? "H" : "h";
    state += loTempAlarm ? "L" : "l";
    return state;
  }



130A Chapter 9: Unit Tests

That is the nature of the dual standard. There are things that you might never do in a
production environment that are perfectly fine in a test environment. Usually they involve
issues of memory or CPU efficiency. But they never involve issues of cleanliness. 

One Assert per Test

There is a school of thought4 that says that every test function in a JUnit test should have one
and only one assert statement. This rule may seem draconian, but the advantage can be seen
in Listing 9-5. Those tests come to a single conclusion that is quick and easy to understand. 

But what about Listing 9-2? It seems unreasonable that we could somehow easily
merge the assertion that the output is XML and that it contains certain substrings. How-
ever, we can break the test into two separate tests, each with its own particular assertion, as
shown in Listing 9-7.

Notice that I have changed the names of the functions to use the common given-when-
then5 convention. This makes the tests even easier to read. Unfortunately, splitting the tests
as shown results in a lot of duplicate code.

We can eliminate the duplication by using the TEMPLATE METHOD6 pattern and putting
the given/when parts in the base class, and the then parts in different derivatives. Or we could
create a completely separate test class and put the given and when parts in the @Before func-
tion, and the when parts in each @Test function. But this seems like too much mechanism for
such a minor issue. In the end, I prefer the multiple asserts in Listing 9-2.

4. See Dave Astel’s blog entry: http://www.artima.com/weblogs/viewpost.jsp?thread=35578

Listing 9-7 
SerializedPageResponderTest.java (Single Assert)
public void testGetPageHierarchyAsXml() throws Exception {
    givenPages("PageOne", "PageOne.ChildOne", "PageTwo");

    whenRequestIsIssued("root", "type:pages");

    thenResponseShouldBeXML();
  }

  public void testGetPageHierarchyHasRightTags() throws Exception {
    givenPages("PageOne", "PageOne.ChildOne", "PageTwo");

    whenRequestIsIssued("root", "type:pages");

    thenResponseShouldContain(
      "<name>PageOne</name>", "<name>PageTwo</name>", "<name>ChildOne</name>"
    );
  }

5. [RSpec].
6. [GOF].

http://www.artima.com/weblogs/viewpost.jsp?thread=35578


131AOne Assert per Test

I think the single assert rule is a good guideline.7 I usually try to create a domain-
specific testing language that supports it, as in Listing 9-5. But I am not afraid to put
more than one assert in a test. I think the best thing we can say is that the number of
asserts in a test ought to be minimized.

Single Concept per Test

Perhaps a better rule is that we want to test a single concept in each test function. We don’t
want long test functions that go testing one miscellaneous thing after another. Listing 9-8
is an example of such a test. This test should be split up into three independent tests
because it tests three independent things. Merging them all together into the same function
forces the reader to figure out why each section is there and what is being tested by that
section.

The three test functions probably ought to be like this:

• Given the last day of a month with 31 days (like May):

1. When you add one month, such that the last day of that month is the 30th 
(like June), then the date should be the 30th of that month, not the 31st.

2. When you add two months to that date, such that the final month has 31 days, 
then the date should be the 31st.

7. “Keep to the code!”

Listing 9-8 
    /**
     * Miscellaneous tests for the addMonths() method.
     */
    public void testAddMonths() {
        SerialDate d1 = SerialDate.createInstance(31, 5, 2004);
        
        SerialDate d2 = SerialDate.addMonths(1, d1);
        assertEquals(30, d2.getDayOfMonth());
        assertEquals(6, d2.getMonth());
        assertEquals(2004, d2.getYYYY());
        
        SerialDate d3 = SerialDate.addMonths(2, d1);
        assertEquals(31, d3.getDayOfMonth());
        assertEquals(7, d3.getMonth());
        assertEquals(2004, d3.getYYYY());
        
        SerialDate d4 = SerialDate.addMonths(1, SerialDate.addMonths(1, d1));
        assertEquals(30, d4.getDayOfMonth());
        assertEquals(7, d4.getMonth());
        assertEquals(2004, d4.getYYYY());
    }



132A Chapter 9: Unit Tests

• Given the last day of a month with 30 days in it (like June):

1. When you add one month such that the last day of that month has 31 days, then the 
date should be the 30th, not the 31st. 

Stated like this, you can see that there is a general rule hiding amidst the miscella-
neous tests. When you increment the month, the date can be no greater than the last day of
the month. This implies that incrementing the month on February 28th should yield March
28th. That test is missing and would be a useful test to write.

So it’s not the multiple asserts in each section of Listing 9-8 that causes the problem.
Rather it is the fact that there is more than one concept being tested. So probably the best
rule is that you should minimize the number of asserts per concept and test just one con-
cept per test function.

F.I.R.S.T.8

Clean tests follow five other rules that form the above acronym:

Fast Tests should be fast. They should run quickly. When tests run slow, you won’t want to
run them frequently. If you don’t run them frequently, you won’t find problems early
enough to fix them easily. You won’t feel as free to clean up the code. Eventually the code
will begin to rot.

Independent Tests should not depend on each other. One test should not set up the condi-
tions for the next test. You should be able to run each test independently and run the tests in
any order you like. When tests depend on each other, then the first one to fail causes a cas-
cade of downstream failures, making diagnosis difficult and hiding downstream defects.

Repeatable Tests should be repeatable in any environment. You should be able to run the
tests in the production environment, in the QA environment, and on your laptop while
riding home on the train without a network. If your tests aren’t repeatable in any environ-
ment, then you’ll always have an excuse for why they fail. You’ll also find yourself unable
to run the tests when the environment isn’t available.

Self-Validating The tests should have a boolean output. Either they pass or fail. You
should not have to read through a log file to tell whether the tests pass. You should not have
to manually compare two different text files to see whether the tests pass. If the tests aren’t
self-validating, then failure can become subjective and running the tests can require a long
manual evaluation.

8. Object Mentor Training Materials.



133ABibliography

Timely The tests need to be written in a timely fashion. Unit tests should be written just
before the production code that makes them pass. If you write tests after the production
code, then you may find the production code to be hard to test. You may decide that some
production code is too hard to test. You may not design the production code to be testable.

Conclusion

We have barely scratched the surface of this topic. Indeed, I think an entire book could be
written about clean tests. Tests are as important to the health of a project as the production
code is. Perhaps they are even more important, because tests preserve and enhance the
flexibility, maintainability, and reusability of the production code. So keep your tests con-
stantly clean. Work to make them expressive and succinct. Invent testing APIs that act as
domain-specific language that helps you write the tests. 

If you let the tests rot, then your code will rot too. Keep your tests clean.

Bibliography

[RSpec]:  RSpec: Behavior Driven Development for Ruby Programmers, 
Aslak Hellesøy, David Chelimsky, Pragmatic Bookshelf, 2008.

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.



This page intentionally left blank 



135A

10

Classes
with Jeff Langr

So far in this book we have focused on how to write lines and blocks of code well. We have
delved into proper composition of functions and how they interrelate. But for all the atten-
tion to the expressiveness of code statements and the functions they comprise, we still
don’t have clean code until we’ve paid attention to higher levels of code organization. Let’s
talk about clean classes.



136A Chapter 10: Classes

Class Organization

Following the standard Java convention, a class should begin with a list of variables. Pub-
lic static constants, if any, should come first. Then private static variables, followed by pri-
vate instance variables. There is seldom a good reason to have a public variable.

Public functions should follow the list of variables. We like to put the private utilities
called by a public function right after the public function itself. This follows the stepdown
rule and helps the program read like a newspaper article. 

Encapsulation

We like to keep our variables and utility functions private, but we’re not fanatic about it.
Sometimes we need to make a variable or utility function protected so that it can be
accessed by a test. For us, tests rule. If a test in the same package needs to call a function
or access a variable, we’ll make it protected or package scope. However, we’ll first look for
a way to maintain privacy. Loosening encapsulation is always a last resort.

Classes Should Be Small!

The first rule of classes is that they should be small. The second rule of classes is that they
should be smaller than that. No, we’re not going to repeat the exact same text from the
Functions chapter. But as with functions, smaller is the primary rule when it comes to
designing classes. As with functions, our immediate question is always “How small?”

With functions we measured size by counting physical lines. With classes we use a
different measure. We count responsibilities.1 

Listing 10-1 outlines a class, SuperDashboard, that exposes about 70 public methods.
Most developers would agree that it’s a bit too super in size. Some developers might refer
to SuperDashboard as a “God class.”

1. [RDD].

Listing 10-1 
Too Many Responsibilities
public class SuperDashboard extends JFrame implements MetaDataUser 
   public String getCustomizerLanguagePath() 
   public void setSystemConfigPath(String systemConfigPath) 
   public String getSystemConfigDocument() 
   public void setSystemConfigDocument(String systemConfigDocument) 
   public boolean getGuruState() 
   public boolean getNoviceState() 
   public boolean getOpenSourceState() 
   public void showObject(MetaObject object) 
   public void showProgress(String s)



137AClasses Should Be Small!

   public boolean isMetadataDirty() 
   public void setIsMetadataDirty(boolean isMetadataDirty) 
   public Component getLastFocusedComponent() 
   public void setLastFocused(Component lastFocused) 
   public void setMouseSelectState(boolean isMouseSelected)
   public boolean isMouseSelected() 
   public LanguageManager getLanguageManager() 
   public Project getProject() 
   public Project getFirstProject() 
   public Project getLastProject() 
   public String getNewProjectName()
   public void setComponentSizes(Dimension dim)
   public String getCurrentDir() 
   public void setCurrentDir(String newDir) 
   public void updateStatus(int dotPos, int markPos) 
   public Class[] getDataBaseClasses() 
   public MetadataFeeder getMetadataFeeder() 
   public void addProject(Project project)
   public boolean setCurrentProject(Project project)
   public boolean removeProject(Project project) 
   public MetaProjectHeader getProgramMetadata()
   public void resetDashboard()  
   public Project loadProject(String fileName, String projectName)
   public void setCanSaveMetadata(boolean canSave)
   public MetaObject getSelectedObject() 
   public void deselectObjects() 
   public void setProject(Project project) 
   public void editorAction(String actionName, ActionEvent event)
   public void setMode(int mode) 
   public FileManager getFileManager() 
   public void setFileManager(FileManager fileManager) 
   public ConfigManager getConfigManager() 
   public void setConfigManager(ConfigManager configManager) 
   public ClassLoader getClassLoader() 
   public void setClassLoader(ClassLoader classLoader) 
   public Properties getProps() 
   public String getUserHome() 
   public String getBaseDir() 
   public int getMajorVersionNumber() 
   public int getMinorVersionNumber() 
   public int getBuildNumber() 
   public MetaObject pasting(
      MetaObject target, MetaObject pasted, MetaProject project)
   public void processMenuItems(MetaObject metaObject)
   public void processMenuSeparators(MetaObject metaObject)
   public void processTabPages(MetaObject metaObject)
   public void processPlacement(MetaObject object) 
   public void processCreateLayout(MetaObject object) 
   public void updateDisplayLayer(MetaObject object, int layerIndex)
   public void propertyEditedRepaint(MetaObject object) 
   public void processDeleteObject(MetaObject object) 
   public boolean getAttachedToDesigner() 
   public void processProjectChangedState(boolean hasProjectChanged)
   public void processObjectNameChanged(MetaObject object) 
   public void runProject() 

Listing 10-1 (continued)
Too Many Responsibilities



138A Chapter 10: Classes

But what if SuperDashboard contained only the methods shown in Listing 10-2?

Five methods isn’t too much, is it? In this case it is because despite its small number
of methods, SuperDashboard has too many responsibilities.

The name of a class should describe what responsibilities it fulfills. In fact, naming
is probably the first way of helping determine class size. If we cannot derive a concise
name for a class, then it’s likely too large. The more ambiguous the class name, the more
likely it has too many responsibilities. For example, class names including weasel words
like Processor or Manager or Super often hint at unfortunate aggregation of
responsibilities.

We should also be able to write a brief description of the class in about 25 words,
without using the words “if,” “and,” “or,” or “but.” How would we describe the
SuperDashboard? “The SuperDashboard provides access to the component that last held the
focus, and it also allows us to track the version and build numbers.” The first “and” is a
hint that SuperDashboard has too many responsibilities.

The Single Responsibility Principle

The Single Responsibility Principle (SRP)2 states that a class or module should have one,
and only one, reason to change. This principle gives us both a definition of responsibility,
and a guidelines for class size. Classes should have one responsibility—one reason to
change.

   public void setAçowDragging(boolean allowDragging) 
   public boolean allowDragging() 
   public boolean isCustomizing() 
   public void setTitle(String title) 
   public IdeMenuBar getIdeMenuBar() 
   public void showHelper(MetaObject metaObject, String propertyName)
   // ... many non-public methods follow ...
}

Listing 10-2 
Small Enough?
public class SuperDashboard extends JFrame implements MetaDataUser
    public Component getLastFocusedComponent() 
    public void setLastFocused(Component lastFocused) 
    public int getMajorVersionNumber() 
    public int getMinorVersionNumber() 
    public int getBuildNumber() 
}

2. You can read much more about this principle in [PPP].

Listing 10-1 (continued)
Too Many Responsibilities



139AClasses Should Be Small!

The seemingly small SuperDashboard class in Listing 10-2 has two reasons to change.
First, it tracks version information that would seemingly need to be updated every time the
software gets shipped. Second, it manages Java Swing components (it is a derivative of
JFrame, the Swing representation of a top-level GUI window). No doubt we’ll want to
update the version number if we change any of the Swing code, but the converse isn’t nec-
essarily true: We might change the version information based on changes to other code in
the system.

Trying to identify responsibilities (reasons to change) often helps us recognize and
create better abstractions in our code. We can easily extract all three SuperDashboard
methods that deal with version information into a separate class named Version. (See
Listing 10-3.) The Version class is a construct that has a high potential for reuse in other
applications!

SRP is one of the more important concept in OO design. It’s also one of the simpler
concepts to understand and adhere to. Yet oddly, SRP is often the most abused class design
principle. We regularly encounter classes that do far too many things. Why?

Getting software to work and making software clean are two very different activities.
Most of us have limited room in our heads, so we focus on getting our code to work more
than organization and cleanliness. This is wholly appropriate. Maintaining a separation of
concerns is just as important in our programming activities as it is in our programs.

The problem is that too many of us think that we are done once the program works.
We fail to switch to the other concern of organization and cleanliness. We move on to the
next problem rather than going back and breaking the overstuffed classes into decoupled
units with single responsibilities.

At the same time, many developers fear that a large number of small, single-purpose
classes makes it more difficult to understand the bigger picture. They are concerned that
they must navigate from class to class in order to figure out how a larger piece of work gets
accomplished.

However, a system with many small classes has no more moving parts than a system
with a few large classes. There is just as much to learn in the system with a few large
classes. So the question is: Do you want your tools organized into toolboxes with many
small drawers each containing well-defined and well-labeled components? Or do you want
a few drawers that you just toss everything into?

Every sizable system will contain a large amount of logic and complexity. The pri-
mary goal in managing such complexity is to organize it so that a developer knows where

Listing 10-3 
A single-responsibility class

public class Version {
    public int getMajorVersionNumber() 
    public int getMinorVersionNumber() 
    public int getBuildNumber() 
}



140A Chapter 10: Classes

to look to find things and need only understand the directly affected complexity at any
given time. In contrast, a system with larger, multipurpose classes always hampers us by
insisting we wade through lots of things we don’t need to know right now.

To restate the former points for emphasis: We want our systems to be composed of
many small classes, not a few large ones. Each small class encapsulates a single responsi-
bility, has a single reason to change, and collaborates with a few others to achieve the
desired system behaviors.

Cohesion

Classes should have a small number of instance variables. Each of the methods of a class
should manipulate one or more of those variables. In general the more variables a method
manipulates the more cohesive that method is to its class. A class in which each variable is
used by each method is maximally cohesive. 

In general it is neither advisable nor possible to create such maximally cohesive
classes; on the other hand, we would like cohesion to be high. When cohesion is high, it
means that the methods and variables of the class are co-dependent and hang together as a
logical whole.

Consider the implementation of a Stack in Listing 10-4. This is a very cohesive class.
Of the three methods only size() fails to use both the variables. 

The strategy of keeping functions small and keeping parameter lists short can some-
times lead to a proliferation of instance variables that are used by a subset of methods.
When this happens, it almost always means that there is at least one other class trying to

Listing 10-4 
Stack.java A cohesive class.
public class Stack {
  private int topOfStack = 0;
  List<Integer> elements = new LinkedList<Integer>();

  public int size() {
    return topOfStack;
  }

  public void push(int element) {
    topOfStack++;
    elements.add(element);
  }

  public int pop() throws PoppedWhenEmpty {
    if (topOfStack == 0)
      throw new PoppedWhenEmpty();
    int element = elements.get(--topOfStack);
    elements.remove(topOfStack);
    return element;
  }
}



141AClasses Should Be Small!

get out of the larger class. You should try to separate the variables and methods into two or
more classes such that the new classes are more cohesive.

Maintaining Cohesion Results in Many Small Classes

Just the act of breaking large functions into smaller functions causes a proliferation of
classes. Consider a large function with many variables declared within it. Let’s say you
want to extract one small part of that function into a separate function. However, the code
you want to extract uses four of the variables declared in the function. Must you pass all
four of those variables into the new function as arguments?

Not at all! If we promoted those four variables to instance variables of the class, then
we could extract the code without passing any variables at all. It would be easy to break
the function up into small pieces.

Unfortunately, this also means that our classes lose cohesion because they accumulate
more and more instance variables that exist solely to allow a few functions to share them.
But wait! If there are a few functions that want to share certain variables, doesn’t that
make them a class in their own right? Of course it does. When classes lose cohesion, split
them!

So breaking a large function into many smaller functions often gives us the opportu-
nity to split several smaller classes out as well. This gives our program a much better orga-
nization and a more transparent structure.

As a demonstration of what I mean, let’s use a time-honored example taken from
Knuth’s wonderful book Literate Programming.3 Listing 10-5 shows a translation into Java
of Knuth’s PrintPrimes program. To be fair to Knuth, this is not the program as he wrote it
but rather as it was output by his WEB tool. I’m using it because it makes a great starting
place for breaking up a big function into many smaller functions and classes.

3. [Knuth92].

Listing 10-5 
PrintPrimes.java
package literatePrimes;

public class PrintPrimes {
  public static void main(String[] args) {
    final int M = 1000;
    final int RR = 50;
    final int CC = 4;
    final int WW = 10;
    final int ORDMAX = 30;
    int P[] = new int[M + 1];
    int PAGENUMBER;
    int PAGEOFFSET;
    int ROWOFFSET;
    int C;



142A Chapter 10: Classes

    int J;
    int K;
    boolean JPRIME;
    int ORD;
    int SQUARE;
    int N;
    int MULT[] = new int[ORDMAX + 1];

    J = 1;
    K = 1;
    P[1] = 2;
    ORD = 2;
    SQUARE = 9;

    while (K < M) {
      do {
        J = J + 2;
        if (J == SQUARE) {
          ORD = ORD + 1;
          SQUARE = P[ORD] * P[ORD];
          MULT[ORD - 1] = J;
        }
        N = 2;
        JPRIME = true;
        while (N < ORD && JPRIME) {
          while (MULT[N] < J)
            MULT[N] = MULT[N] + P[N] + P[N];
          if (MULT[N] == J)
            JPRIME = false;
          N = N + 1;
        }
      } while (!JPRIME);
      K = K + 1;
      P[K] = J;
    }
    {
      PAGENUMBER = 1;
      PAGEOFFSET = 1;
      while (PAGEOFFSET <= M) {
        System.out.println("The First " + M + 
                             " Prime Numbers --- Page " + PAGENUMBER);
        System.out.println("");
        for (ROWOFFSET = PAGEOFFSET; ROWOFFSET < PAGEOFFSET + RR; ROWOFFSET++){
          for (C = 0; C < CC;C++)
            if (ROWOFFSET + C * RR <= M)
              System.out.format("%10d", P[ROWOFFSET + C * RR]);
          System.out.println("");
        }
        System.out.println("\f");
        PAGENUMBER = PAGENUMBER + 1;
        PAGEOFFSET = PAGEOFFSET + RR * CC;
      }
    }
  }
}

Listing 10-5 (continued)
PrintPrimes.java



143AClasses Should Be Small!

This program, written as a single function, is a mess. It has a deeply indented struc-
ture, a plethora of odd variables, and a tightly coupled structure. At the very least, the one
big function should be split up into a few smaller functions.

Listing 10-6 through Listing 10-8 show the result of splitting the code in Listing 10-5
into smaller classes and functions, and choosing meaningful names for those classes, func-
tions, and variables.   

Listing 10-6 
PrimePrinter.java (refactored)
package literatePrimes;

public class PrimePrinter {
  public static void main(String[] args) {
    final int NUMBER_OF_PRIMES = 1000;
    int[] primes = PrimeGenerator.generate(NUMBER_OF_PRIMES);

    final int ROWS_PER_PAGE = 50;
    final int COLUMNS_PER_PAGE = 4;
    RowColumnPagePrinter tablePrinter =
      new RowColumnPagePrinter(ROWS_PER_PAGE,
                               COLUMNS_PER_PAGE,
                               "The First " + NUMBER_OF_PRIMES + 
                                 " Prime Numbers");
    
    tablePrinter.print(primes);
  }

}

Listing 10-7 
RowColumnPagePrinter.java
package literatePrimes;

import java.io.PrintStream;

public class RowColumnPagePrinter {
  private int rowsPerPage;
  private int columnsPerPage;
  private int numbersPerPage;
  private String pageHeader;
  private PrintStream printStream;

  public RowColumnPagePrinter(int rowsPerPage,
                              int columnsPerPage,
                              String pageHeader) {
    this.rowsPerPage = rowsPerPage;
    this.columnsPerPage = columnsPerPage;
    this.pageHeader = pageHeader;
    numbersPerPage = rowsPerPage * columnsPerPage;
    printStream = System.out;
  }



144A Chapter 10: Classes

  public void print(int data[]) {
    int pageNumber = 1;
    for (int firstIndexOnPage = 0;
         firstIndexOnPage < data.length;
         firstIndexOnPage += numbersPerPage) {
      int lastIndexOnPage = 
        Math.min(firstIndexOnPage + numbersPerPage - 1, 
                 data.length - 1);
      printPageHeader(pageHeader, pageNumber);
      printPage(firstIndexOnPage, lastIndexOnPage, data);
      printStream.println("\f");
      pageNumber++;
    }
  }

  private void printPage(int firstIndexOnPage,
                         int lastIndexOnPage,
                         int[] data) {
    int firstIndexOfLastRowOnPage = 
      firstIndexOnPage + rowsPerPage - 1;
    for (int firstIndexInRow = firstIndexOnPage; 
         firstIndexInRow <= firstIndexOfLastRowOnPage; 
         firstIndexInRow++) {
      printRow(firstIndexInRow, lastIndexOnPage, data);
      printStream.println("");
    }
  }

  private void printRow(int firstIndexInRow, 
                        int lastIndexOnPage, 
                        int[] data) {
    for (int column = 0; column < columnsPerPage; column++) {
      int index = firstIndexInRow + column * rowsPerPage;
      if (index <= lastIndexOnPage)
        printStream.format("%10d", data[index]);
    }
  }

  private void printPageHeader(String pageHeader, 
                               int pageNumber) {
    printStream.println(pageHeader + " --- Page " + pageNumber);
    printStream.println("");
  }

  public void setOutput(PrintStream printStream) {
    this.printStream = printStream;
  }
}

Listing 10-7 (continued)
RowColumnPagePrinter.java



145AClasses Should Be Small!

Listing 10-8 
PrimeGenerator.java
package literatePrimes;

import java.util.ArrayList;

public class PrimeGenerator {
  private static int[] primes;
  private static ArrayList<Integer> multiplesOfPrimeFactors;

  protected static int[] generate(int n) {
    primes = new int[n];
    multiplesOfPrimeFactors = new ArrayList<Integer>();
    set2AsFirstPrime();
    checkOddNumbersForSubsequentPrimes();
    return primes;
  }

  private static void set2AsFirstPrime() {
    primes[0] = 2;
    multiplesOfPrimeFactors.add(2);
  }

  private static void checkOddNumbersForSubsequentPrimes() {
    int primeIndex = 1;
    for (int candidate = 3;
         primeIndex < primes.length;
         candidate += 2) {
      if (isPrime(candidate))
        primes[primeIndex++] = candidate;
    }
  }

  private static boolean isPrime(int candidate) {
    if (isLeastRelevantMultipleOfNextLargerPrimeFactor(candidate)) {
      multiplesOfPrimeFactors.add(candidate);
      return false;
    }
    return isNotMultipleOfAnyPreviousPrimeFactor(candidate);
  }

  private static boolean
  isLeastRelevantMultipleOfNextLargerPrimeFactor(int candidate) {
    int nextLargerPrimeFactor = primes[multiplesOfPrimeFactors.size()];
    int leastRelevantMultiple = nextLargerPrimeFactor * nextLargerPrimeFactor;
    return candidate == leastRelevantMultiple;
  }

  private static boolean 
  isNotMultipleOfAnyPreviousPrimeFactor(int candidate) {
    for (int n = 1; n < multiplesOfPrimeFactors.size(); n++) {
      if (isMultipleOfNthPrimeFactor(candidate, n))
        return false;
    }



146A Chapter 10: Classes

The first thing you might notice is that the program got a lot longer. It went from a
little over one page to nearly three pages in length. There are several reasons for this
growth. First, the refactored program uses longer, more descriptive variable names.
Second, the refactored program uses function and class declarations as a way to add
commentary to the code. Third, we used whitespace and formatting techniques to keep
the program readable. 

Notice how the program has been split into three main responsibilities. The main
program is contained in the PrimePrinter class all by itself. Its responsibility is to handle
the execution environment. It will change if the method of invocation changes. For
example, if this program were converted to a SOAP service, this is the class that would
be affected.

The RowColumnPagePrinter knows all about how to format a list of numbers into
pages with a certain number of rows and columns. If the formatting of the output needed
changing, then this is the class that would be affected.

The PrimeGenerator class knows how to generate a list prime numbers. Notice that it
is not meant to be instantiated as an object. The class is just a useful scope in which
its variables can be declared and kept hidden. This class will change if the algorithm for
computing prime numbers changes. 

This was not a rewrite! We did not start over from scratch and write the program over
again. Indeed, if you look closely at the two different programs, you’ll see that they use the
same algorithm and mechanics to get their work done. 

The change was made by writing a test suite that verified the precise behavior of the
first program. Then a myriad of tiny little changes were made, one at a time. After each
change the program was executed to ensure that the behavior had not changed. One tiny
step after another, the first program was cleaned up and transformed into the second.

    return true;
  }

  private static boolean 
  isMultipleOfNthPrimeFactor(int candidate, int n) {
    return 
      candidate == smallestOddNthMultipleNotLessThanCandidate(candidate, n);
  }

  private static int 
  smallestOddNthMultipleNotLessThanCandidate(int candidate, int n) {
    int multiple = multiplesOfPrimeFactors.get(n);
    while (multiple < candidate)
      multiple += 2 * primes[n];
    multiplesOfPrimeFactors.set(n, multiple);
    return multiple;
  }
}

Listing 10-8 (continued)
PrimeGenerator.java



147AOrganizing for Change

Organizing for Change

For most systems, change is continual. Every change subjects us to the risk that the
remainder of the system no longer works as intended. In a clean system we organize our
classes so as to reduce the risk of change.

The Sql class in Listing 10-9 is used to generate properly formed SQL strings given
appropriate metadata. It’s a work in progress and, as such, doesn’t yet support SQL func-
tionality like update statements. When the time comes for the Sql class to support an
update statement, we’ll have to “open up” this class to make modifications. The problem
with opening a class is that it introduces risk. Any modifications to the class have the
potential of breaking other code in the class. It must be fully retested.

The Sql class must change when we add a new type of statement. It also must change
when we alter the details of a single statement type—for example, if we need to modify
the select functionality to support subselects. These two reasons to change mean that the
Sql class violates the SRP.

We can spot this SRP violation from a simple organizational standpoint. The method
outline of Sql shows that there are private methods, such as selectWithCriteria, that
appear to relate only to select statements.

Private method behavior that applies only to a small subset of a class can be a useful
heuristic for spotting potential areas for improvement. However, the primary spur for tak-
ing action should be system change itself. If the Sql class is deemed logically complete,
then we need not worry about separating the responsibilities. If we won’t need update
functionality for the foreseeable future, then we should leave Sql alone. But as soon as we
find ourselves opening up a class, we should consider fixing our design.

What if we considered a solution like that in Listing 10-10? Each public interface
method defined in the previous Sql from Listing 10-9 is refactored out to its own derivative
of the Sql class. Note that the private methods, such as valuesList, move directly where

Listing 10-9 
A class that must be opened for change
public class Sql {
   public Sql(String table, Column[] columns)
   public String create()
   public String insert(Object[] fields)
   public String selectAll()
   public String findByKey(String keyColumn, String keyValue)
   public String select(Column column, String pattern)
   public String select(Criteria criteria)
   public String preparedInsert()
   private String columnList(Column[] columns)
   private String valuesList(Object[] fields, final Column[] columns)
   private String selectWithCriteria(String criteria)
   private String placeholderList(Column[] columns)
}



148A Chapter 10: Classes

they are needed. The common private behavior is isolated to a pair of utility classes, Where
and ColumnList.

Listing 10-10 
A set of closed classes
abstract public class Sql {
   public Sql(String table, Column[] columns)
   abstract public String generate();
}

public class CreateSql extends Sql {
   public CreateSql(String table, Column[] columns)
   @Override public String generate()
}

public class SelectSql extends Sql {
   public SelectSql(String table, Column[] columns)
   @Override public String generate()
}

public class InsertSql extends Sql {
   public InsertSql(String table, Column[] columns, Object[] fields)
   @Override public String generate()
   private String valuesList(Object[] fields, final Column[] columns)
}

public class SelectWithCriteriaSql extends Sql {
   public SelectWithCriteriaSql(
      String table, Column[] columns, Criteria criteria)
   @Override public String generate()
}

public class SelectWithMatchSql extends Sql {
   public SelectWithMatchSql(
      String table, Column[] columns, Column column, String pattern)
   @Override public String generate()
}

public class FindByKeySql extends Sql
   public FindByKeySql(
      String table, Column[] columns, String keyColumn, String keyValue)
   @Override public String generate()
}

public class PreparedInsertSql extends Sql {
   public PreparedInsertSql(String table, Column[] columns)
   @Override public String generate() {
   private String placeholderList(Column[] columns)
}

public class Where {
   public Where(String criteria)
   public String generate()
}



149AOrganizing for Change

The code in each class becomes excruciatingly simple. Our required comprehension
time to understand any class decreases to almost nothing. The risk that one function could
break another becomes vanishingly small. From a test standpoint, it becomes an easier
task to prove all bits of logic in this solution, as the classes are all isolated from one
another.

Equally important, when it’s time to add the update statements, none of the existing
classes need change! We code the logic to build update statements in a new subclass of Sql
named UpdateSql. No other code in the system will break because of this change. 

Our restructured Sql logic represents the best of all worlds. It supports the SRP. It also
supports another key OO class design principle known as the Open-Closed Principle, or
OCP:4 Classes should be open for extension but closed for modification. Our restructured
Sql class is open to allow new functionality via subclassing, but we can make this change
while keeping every other class closed. We simply drop our UpdateSql class in place.

We want to structure our systems so that we muck with as little as possible when we
update them with new or changed features. In an ideal system, we incorporate new fea-
tures by extending the system, not by making modifications to existing code. 

Isolating from Change

Needs will change, therefore code will change. We learned in OO 101 that there are con-
crete classes, which contain implementation details (code), and abstract classes, which
represent concepts only. A client class depending upon concrete details is at risk when
those details change. We can introduce interfaces and abstract classes to help isolate the
impact of those details.

Dependencies upon concrete details create challenges for testing our system. If we’re
building a Portfolio class and it depends upon an external TokyoStockExchange API to
derive the portfolio’s value, our test cases are impacted by the volatility of such a lookup.
It’s hard to write a test when we get a different answer every five minutes!

Instead of designing Portfolio so that it directly depends upon TokyoStockExchange,
we create an interface, StockExchange, that declares a single method:

public interface StockExchange {
   Money currentPrice(String symbol);
}

public class ColumnList {
   public ColumnList(Column[] columns)
   public String generate()
}

4. [PPP].

Listing 10-10 (continued)
A set of closed classes



150A Chapter 10: Classes

We design TokyoStockExchange to implement this interface. We also make sure that the
constructor of Portfolio takes a StockExchange reference as an argument:

public Portfolio {
   private StockExchange exchange;
   public Portfolio(StockExchange exchange) {
      this.exchange = exchange;
   }
   // ...
}

Now our test can create a testable implementation of the StockExchange interface that
emulates the TokyoStockExchange. This test implementation will fix the current value for
any symbol we use in testing. If our test demonstrates purchasing five shares of Microsoft
for our portfolio, we code the test implementation to always return $100 per share of
Microsoft. Our test implementation of the StockExchange interface reduces to a simple
table lookup. We can then write a test that expects $500 for our overall portfolio value.

public class PortfolioTest {
  private FixedStockExchangeStub exchange;
  private Portfolio portfolio;

  @Before
  protected void setUp() throws Exception {
    exchange = new FixedStockExchangeStub();
    exchange.fix("MSFT", 100);
    portfolio = new Portfolio(exchange);
  }
  
  @Test
  public void GivenFiveMSFTTotalShouldBe500() throws Exception {
    portfolio.add(5, "MSFT");
    Assert.assertEquals(500, portfolio.value());
  }
}

If a system is decoupled enough to be tested in this way, it will also be more flexible
and promote more reuse. The lack of coupling means that the elements of our system are
better isolated from each other and from change. This isolation makes it easier to under-
stand each element of the system.

By minimizing coupling in this way, our classes adhere to another class design princi-
ple known as the Dependency Inversion Principle (DIP).5 In essence, the DIP says that our
classes should depend upon abstractions, not on concrete details.

Instead of being dependent upon the implementation details of the TokyoStock-
Exchange class, our Portfolio class is now dependent upon the StockExchange interface.
The StockExchange interface represents the abstract concept of asking for the current price
of a symbol. This abstraction isolates all of the specific details of obtaining such a price,
including from where that price is obtained.

5. [PPP].



151ABibliography

Bibliography

[RDD]:  Object Design: Roles, Responsibilities, and Collaborations, Rebecca Wirfs-
Brock et al., Addison-Wesley, 2002.

[PPP]:  Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin,
Prentice Hall, 2002.

[Knuth92]:  Literate Programming, Donald E. Knuth, Center for the Study of language
and Information, Leland Stanford Junior University, 1992.



This page intentionally left blank 



153A

11

Systems
by Dr. Kevin Dean Wampler

“Complexity kills. It sucks the life out of developers,
it makes products difficult to plan, build, and test.”

—Ray Ozzie, CTO, Microsoft Corporation



154A Chapter 11: Systems

How Would You Build a City?

Could you manage all the details yourself? Probably not. Even managing an existing city
is too much for one person. Yet, cities work (most of the time). They work because cities
have teams of people who manage particular parts of the city, the water systems, power
systems, traffic, law enforcement, building codes, and so forth. Some of those people are
responsible for the big picture, while others focus on the details.

Cities also work because they have evolved appropriate levels of abstraction and mod-
ularity that make it possible for individuals and the “components” they manage to work
effectively, even without understanding the big picture.

Although software teams are often organized like that too, the systems they work on
often don’t have the same separation of concerns and levels of abstraction. Clean code
helps us achieve this at the lower levels of abstraction. In this chapter let us consider how
to stay clean at higher levels of abstraction, the system level.

Separate Constructing a System from Using It

First, consider that construction is a very different process from use. As I write this,
there is a new hotel under construction that I see out my window in Chicago. Today it is
a bare concrete box with a construction crane and elevator bolted to the outside. The
busy people there all wear hard hats and work clothes. In a year or so the hotel will be
finished. The crane and elevator will be gone. The building will be clean, encased in
glass window walls and attractive paint. The people working and staying there will look
a lot different too.

Software systems should separate the startup process, when the application objects are
constructed and the dependencies are “wired” together, from the runtime logic that takes
over after startup.

The startup process is a concern that any application must address. It is the first con-
cern that we will examine in this chapter. The separation of concerns is one of the oldest
and most important design techniques in our craft. 

Unfortunately, most applications don’t separate this concern. The code for the startup
process is ad hoc and it is mixed in with the runtime logic. Here is a typical example:

public Service getService() {
  if (service == null)
    service = new MyServiceImpl(...);  // Good enough default for most cases?
  return service;
}

This is the LAZY INITIALIZATION/EVALUATION idiom, and it has several merits. We
don’t incur the overhead of construction unless we actually use the object, and our startup
times can be faster as a result. We also ensure that null is never returned.



155ASeparate Constructing a System from Using It

However, we now have a hard-coded dependency on MyServiceImpl and everything its
constructor requires (which I have elided). We can’t compile without resolving these
dependencies, even if we never actually use an object of this type at runtime! 

Testing can be a problem. If MyServiceImpl is a heavyweight object, we will need to
make sure that an appropriate TEST DOUBLE1 or MOCK OBJECT gets assigned to the ser-
vice field before this method is called during unit testing. Because we have construction
logic mixed in with normal runtime processing, we should test all execution paths (for
example, the null test and its block). Having both of these responsibilities means that the
method is doing more than one thing, so we are breaking the Single Responsibility Principle
in a small way.

Perhaps worst of all, we do not know whether MyServiceImpl is the right object in all
cases. I implied as much in the comment. Why does the class with this method have to
know the global context? Can we ever really know the right object to use here? Is it even
possible for one type to be right for all possible contexts?

One occurrence of LAZY-INITIALIZATION isn’t a serious problem, of course. However,
there are normally many instances of little setup idioms like this in applications. Hence,
the global setup strategy (if there is one) is scattered across the application, with little
modularity and often significant duplication. 

If we are diligent about building well-formed and robust systems, we should never let
little, convenient idioms lead to modularity breakdown. The startup process of object con-
struction and wiring is no exception. We should modularize this process separately from
the normal runtime logic and we should make sure that we have a global, consistent strat-
egy for resolving our major dependencies.

Separation of Main

One way to separate construction from use is simply to move all aspects of construction to
main, or modules called by main, and to design the rest of the system assuming that all
objects have been constructed and wired up appropriately. (See Figure 11-1.)

The flow of control is easy to follow. The main function builds the objects necessary
for the system, then passes them to the application, which simply uses them. Notice the
direction of the dependency arrows crossing the barrier between main and the application.
They all go one direction, pointing away from main. This means that the application has no
knowledge of main or of the construction process. It simply expects that everything has
been built properly.

Factories

Sometimes, of course, we need to make the application responsible for when an object gets
created. For example, in an order processing system the application must create the

1. [Mezzaros07].



156A Chapter 11: Systems

LineItem instances to add to an Order. In this case we can use the ABSTRACT FACTORY2

pattern to give the application control of when to build the LineItems, but keep the details
of that construction separate from the application code. (See Figure 11-2.)

Again notice that all the dependencies point from main toward the OrderProcessing
application. This means that the application is decoupled from the details of how to
build a LineItem. That capability is held in the LineItemFactoryImplementation, which
is on the main side of the line. And yet the application is in complete control of when
the LineItem instances get built and can even provide application-specific constructor
arguments. 

Figure 11-1
Separating construction in main()

2. [GOF].

Figure 11-2
Separation construction with factory



157AScaling Up

Dependency Injection

A powerful mechanism for separating construction from use is Dependency Injection (DI),
the application of Inversion of Control (IoC) to dependency management.3 Inversion of
Control moves secondary responsibilities from an object to other objects that are dedicated
to the purpose, thereby supporting the Single Responsibility Principle. In the context of
dependency management, an object should not take responsibility for instantiating depen-
dencies itself. Instead, it should pass this responsibility to another “authoritative” mecha-
nism, thereby inverting the control. Because setup is a global concern, this authoritative
mechanism will usually be either the “main” routine or a special-purpose container. 

JNDI lookups are a “partial” implementation of DI, where an object asks a directory
server to provide a “service” matching a particular name. 

MyService myService = (MyService)(jndiContext.lookup(“NameOfMyService”));

The invoking object doesn’t control what kind of object is actually returned (as long it
implements the appropriate interface, of course), but the invoking object still actively
resolves the dependency.

True Dependency Injection goes one step further. The class takes no direct steps to
resolve its dependencies; it is completely passive. Instead, it provides setter methods or
constructor arguments (or both) that are used to inject the dependencies. During the con-
struction process, the DI container instantiates the required objects (usually on demand)
and uses the constructor arguments or setter methods provided to wire together the depen-
dencies. Which dependent objects are actually used is specified through a configuration
file or programmatically in a special-purpose construction module. 

The Spring Framework provides the best known DI container for Java.4 You define
which objects to wire together in an XML configuration file, then you ask for particular
objects by name in Java code. We will look at an example shortly.

But what about the virtues of LAZY-INITIALIZATION? This idiom is still sometimes
useful with DI. First, most DI containers won’t construct an object until needed. Second,
many of these containers provide mechanisms for invoking factories or for constructing
proxies, which could be used for LAZY-EVALUATION and similar optimizations.5

Scaling Up

Cities grow from towns, which grow from settlements. At first the roads are narrow and
practically nonexistent, then they are paved, then widened over time. Small buildings and

3. See, for example, [Fowler].
4. See [Spring]. There is also a Spring.NET framework.
5. Don’t forget that lazy instantiation/evaluation is just an optimization and perhaps premature!



158A Chapter 11: Systems

empty plots are filled with larger buildings, some of which will eventually be replaced
with skyscrapers.

At first there are no services like power, water, sewage, and the Internet (gasp!). These
services are also added as the population and building densities increase.

This growth is not without pain. How many times have you driven, bumper to bumper
through a road “improvement” project and asked yourself, “Why didn’t they build it wide
enough the first time!?”

But it couldn’t have happened any other way. Who can justify the expense of a six-
lane highway through the middle of a small town that anticipates growth? Who would
want such a road through their town? 

It is a myth that we can get systems “right the first time.” Instead, we should imple-
ment only today’s stories, then refactor and expand the system to implement new stories
tomorrow. This is the essence of iterative and incremental agility. Test-driven develop-
ment, refactoring, and the clean code they produce make this work at the code level.

But what about at the system level? Doesn’t the system architecture require preplan-
ning? Certainly, it can’t grow incrementally from simple to complex, can it? 

Software systems are unique compared to physical systems. Their architectures can grow
incrementally, if we maintain the proper separation of concerns.

The ephemeral nature of software systems makes this possible, as we will see. Let us first
consider a counterexample of an architecture that doesn’t separate concerns adequately.

The original EJB1 and EJB2 architectures did not separate concerns appropriately and
thereby imposed unnecessary barriers to organic growth. Consider an Entity Bean for a
persistent Bank class. An entity bean is an in-memory representation of relational data, in
other words, a table row. 

First, you had to define a local (in process) or remote (separate JVM) interface, which
clients would use. Listing 11-1 shows a possible local interface:

Listing 11-1 
An EJB2 local interface for a Bank EJB
package com.example.banking;
import java.util.Collections;
import javax.ejb.*;

public interface BankLocal extends java.ejb.EJBLocalObject {
  String getStreetAddr1() throws EJBException;
  String getStreetAddr2() throws EJBException;
  String getCity() throws EJBException;
  String getState() throws EJBException;
  String getZipCode() throws EJBException;
  void setStreetAddr1(String street1) throws EJBException;
  void setStreetAddr2(String street2) throws EJBException;
  void setCity(String city) throws EJBException;
  void setState(String state) throws EJBException;



159AScaling Up

I have shown several attributes for the Bank’s address and a collection of accounts that
the bank owns, each of which would have its data handled by a separate Account EJB.
Listing 11-2 shows the corresponding implementation class for the Bank bean.

  void setZipCode(String zip) throws EJBException;
  Collection getAccounts() throws EJBException;
  void setAccounts(Collection accounts) throws EJBException;
  void addAccount(AccountDTO accountDTO) throws EJBException;
}

Listing 11-2 
The corresponding EJB2 Entity Bean Implementation
package com.example.banking;
import java.util.Collections;
import javax.ejb.*;

public abstract class Bank implements javax.ejb.EntityBean {
  // Business logic...
  public abstract String getStreetAddr1();
  public abstract String getStreetAddr2();
  public abstract String getCity();
  public abstract String getState();
  public abstract String getZipCode();
  public abstract void setStreetAddr1(String street1);
  public abstract void setStreetAddr2(String street2);
  public abstract void setCity(String city);
  public abstract void setState(String state);
  public abstract void setZipCode(String zip);
  public abstract Collection getAccounts();
  public abstract void setAccounts(Collection accounts);
  public void addAccount(AccountDTO accountDTO) {
    InitialContext context = new InitialContext();
    AccountHomeLocal accountHome = context.lookup("AccountHomeLocal");
    AccountLocal account = accountHome.create(accountDTO);
    Collection accounts = getAccounts();
    accounts.add(account);
  }
  // EJB container logic
  public abstract void setId(Integer id);
  public abstract Integer getId();
  public Integer ejbCreate(Integer id) { ... }
  public void ejbPostCreate(Integer id) { ... }
  // The rest had to be implemented but were usually empty:
  public void setEntityContext(EntityContext ctx) {} 
  public void unsetEntityContext() {}
  public void ejbActivate() {}
  public void ejbPassivate() {}
  public void ejbLoad() {}
  public void ejbStore() {}
  public void ejbRemove() {}
}

Listing 11-1 (continued)
An EJB2 local interface for a Bank EJB



160A Chapter 11: Systems

I haven’t shown the corresponding LocalHome interface, essentially a factory used to
create objects, nor any of the possible Bank finder (query) methods you might add. 

Finally, you had to write one or more XML deployment descriptors that specify the
object-relational mapping details to a persistence store, the desired transactional behavior,
security constraints, and so on.

The business logic is tightly coupled to the EJB2 application “container.” You must
subclass container types and you must provide many lifecycle methods that are required
by the container. 

Because of this coupling to the heavyweight container, isolated unit testing is difficult.
It is necessary to mock out the container, which is hard, or waste a lot of time deploying
EJBs and tests to a real server. Reuse outside of the EJB2 architecture is effectively impos-
sible, due to the tight coupling. 

Finally, even object-oriented programming is undermined. One bean cannot inherit
from another bean. Notice the logic for adding a new account. It is common in EJB2 beans
to define “data transfer objects” (DTOs) that are essentially “structs” with no behavior.
This usually leads to redundant types holding essentially the same data, and it requires
boilerplate code to copy data from one object to another.

Cross-Cutting Concerns

The EJB2 architecture comes close to true separation of concerns in some areas. For
example, the desired transactional, security, and some of the persistence behaviors are
declared in the deployment descriptors, independently of the source code. 

Note that concerns like persistence tend to cut across the natural object boundaries of
a domain. You want to persist all your objects using generally the same strategy, for exam-
ple, using a particular DBMS6 versus flat files, following certain naming conventions for
tables and columns, using consistent transactional semantics, and so on. 

In principle, you can reason about your persistence strategy in a modular, encapsulated
way. Yet, in practice, you have to spread essentially the same code that implements the persis-
tence strategy across many objects. We use the term cross-cutting concerns for concerns like
these. Again, the persistence framework might be modular and our domain logic, in isola-
tion, might be modular. The problem is the fine-grained intersection of these domains.

In fact, the way the EJB architecture handled persistence, security, and transactions,
“anticipated” aspect-oriented programming (AOP),7 which is a general-purpose approach
to restoring modularity for cross-cutting concerns.

In AOP, modular constructs called aspects specify which points in the system should
have their behavior modified in some consistent way to support a particular concern. This
specification is done using a succinct declarative or programmatic mechanism. 

6. Database management system.
7. See [AOSD] for general information on aspects and [AspectJ]] and [Colyer] for AspectJ-specific information.



161AJava Proxies

Using persistence as an example, you would declare which objects and attributes (or
patterns thereof) should be persisted and then delegate the persistence tasks to your persis-
tence framework. The behavior modifications are made noninvasively8 to the target code
by the AOP framework. Let us look at three aspects or aspect-like mechanisms in Java.

Java Proxies

Java proxies are suitable for simple situations, such as wrapping method calls in individual
objects or classes. However, the dynamic proxies provided in the JDK only work with
interfaces. To proxy classes, you have to use a byte-code manipulation library, such as
CGLIB, ASM, or Javassist.9

Listing 11-3 shows the skeleton for a JDK proxy to provide persistence support for
our Bank application, covering only the methods for getting and setting the list of accounts.

8. Meaning no manual editing of the target source code is required.
9. See [CGLIB], [ASM], and [Javassist].

Listing 11-3 
JDK Proxy Example
// Bank.java (suppressing package names...)
import java.utils.*;

// The abstraction of a bank.
public interface Bank {
  Collection<Account> getAccounts();
  void setAccounts(Collection<Account> accounts);
}

// BankImpl.java
import java.utils.*;

// The “Plain Old Java Object” (POJO) implementing the abstraction.
public class BankImpl implements Bank {
  private List<Account> accounts;
  
  public Collection<Account> getAccounts() { 
    return accounts; 
  }
  public void setAccounts(Collection<Account> accounts) { 
    this.accounts = new ArrayList<Account>(); 
    for (Account account: accounts) {
      this.accounts.add(account);
    }
  }
}

// BankProxyHandler.java
import java.lang.reflect.*;
import java.util.*;



162A Chapter 11: Systems

We defined an interface Bank, which will be wrapped by the proxy, and a Plain-Old
Java Object (POJO), BankImpl, that implements the business logic. (We will revisit POJOs
shortly.)

The Proxy API requires an InvocationHandler object that it calls to implement any
Bank method calls made to the proxy. Our BankProxyHandler uses the Java reflection
API to map the generic method invocations to the corresponding methods in BankImpl,
and so on. 

There is a lot of code here and it is relatively complicated, even for this simple case.10

Using one of the byte-manipulation libraries is similarly challenging. This code “volume”

// “InvocationHandler” required by the proxy API.
public class BankProxyHandler implements InvocationHandler {
  private Bank bank;
  
  public BankHandler (Bank bank) {
    this.bank = bank;
  }

  // Method defined in InvocationHandler
  public Object invoke(Object proxy, Method method, Object[] args) 
      throws Throwable {
    String methodName = method.getName();
    if (methodName.equals("getAccounts")) {
      bank.setAccounts(getAccountsFromDatabase());
      return bank.getAccounts();
    } else if (methodName.equals("setAccounts")) {
      bank.setAccounts((Collection<Account>) args[0]);
      setAccountsToDatabase(bank.getAccounts());
      return null;
    } else {
      ...
    }
  }
  
  // Lots of details here:
  protected Collection<Account> getAccountsFromDatabase() { ... }
  protected void setAccountsToDatabase(Collection<Account> accounts) { ... }
}

// Somewhere else...

Bank bank = (Bank) Proxy.newProxyInstance(
  Bank.class.getClassLoader(), 
  new Class[] { Bank.class },
  new BankProxyHandler(new BankImpl()));

10. For more detailed examples of the Proxy API and examples of its use, see, for example, [Goetz].

Listing 11-3 (continued)
JDK Proxy Example



163APure Java AOP Frameworks

and complexity are two of the drawbacks of proxies. They make it hard to create clean
code! Also, proxies don’t provide a mechanism for specifying system-wide execution
“points” of interest, which is needed for a true AOP solution.11 

Pure Java AOP Frameworks

Fortunately, most of the proxy boilerplate can be handled automatically by tools. Proxies
are used internally in several Java frameworks, for example, Spring AOP and JBoss AOP,
to implement aspects in pure Java.12 In Spring, you write your business logic as Plain-Old
Java Objects. POJOs are purely focused on their domain. They have no dependencies on
enterprise frameworks (or any other domains). Hence, they are conceptually simpler and
easier to test drive. The relative simplicity makes it easier to ensure that you are imple-
menting the corresponding user stories correctly and to maintain and evolve the code for
future stories. 

You incorporate the required application infrastructure, including cross-cutting con-
cerns like persistence, transactions, security, caching, failover, and so on, using declara-
tive configuration files or APIs. In many cases, you are actually specifying Spring or
JBoss library aspects, where the framework handles the mechanics of using Java proxies
or byte-code libraries transparently to the user. These declarations drive the dependency
injection (DI) container, which instantiates the major objects and wires them together on
demand.

Listing 11-4 shows a typical fragment of a Spring V2.5 configuration file, app.xml13:

11. AOP is sometimes confused with techniques used to implement it, such as method interception and “wrapping” through 
proxies. The real value of an AOP system is the ability to specify systemic behaviors in a concise and modular way. 

12. See [Spring] and [JBoss]. “Pure Java” means without the use of AspectJ.

Listing 11-4 
Spring 2.X configuration file
<beans>
  ...
  <bean id="appDataSource"

class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close"
p:driverClassName="com.mysql.jdbc.Driver"
p:url="jdbc:mysql://localhost:3306/mydb"
p:username="me"/>

  <bean id="bankDataAccessObject"
class="com.example.banking.persistence.BankDataAccessObject"
p:dataSource-ref="appDataSource"/>

  <bean id="bank" 

13. Adapted from http://www.theserverside.com/tt/articles/article.tss?l=IntrotoSpring25

http://www.theserverside.com/tt/articles/article.tss?l=IntrotoSpring25


164A Chapter 11: Systems

Each “bean” is like one part of a nested “Russian doll,” with a domain object for a
Bank proxied (wrapped) by a data accessor object (DAO), which is itself proxied by a
JDBC driver data source. (See Figure 11-3.)

The client believes it is invoking getAccounts() on a Bank object, but it is actually talk-
ing to the outermost of a set of nested DECORATOR14 objects that extend the basic behavior
of the Bank POJO. We could add other decorators for transactions, caching, and so forth.

In the application, a few lines are needed to ask the DI container for the top-level
objects in the system, as specified in the XML file.

XmlBeanFactory bf =
new XmlBeanFactory(new ClassPathResource("app.xml", getClass()));

Bank bank = (Bank) bf.getBean("bank");

Because so few lines of Spring-specific Java code are required, the application is almost
completely decoupled from Spring, eliminating all the tight-coupling problems of systems
like EJB2.

Although XML can be verbose and hard to read,15 the “policy” specified in these con-
figuration files is simpler than the complicated proxy and aspect logic that is hidden from
view and created automatically. This type of architecture is so compelling that frame-
works like Spring led to a complete overhaul of the EJB standard for version 3. EJB3

class="com.example.banking.model.Bank"
p:dataAccessObject-ref="bankDataAccessObject"/>

  ...
</beans>

Figure 11-3
The “Russian doll” of decorators

14. [GOF].
15. The example can be simplified using mechanisms that exploit convention over configuration and Java 5 annotations to reduce 

the amount of explicit “wiring” logic required.

Listing 11-4 (continued)
Spring 2.X configuration file



165APure Java AOP Frameworks

largely follows the Spring model of declaratively supporting cross-cutting concerns using
XML configuration files and/or Java 5 annotations. 

Listing 11-5 shows our Bank object rewritten in EJB316.

Listing 11-5 
An EBJ3 Bank EJB
package com.example.banking.model;
import javax.persistence.*;
import java.util.ArrayList;
import java.util.Collection;

@Entity
@Table(name = "BANKS")
public class Bank implements java.io.Serializable {
   @Id @GeneratedValue(strategy=GenerationType.AUTO)
   private int id;

   @Embeddable // An object “inlined” in Bank’s DB row
   public class Address { 
      protected String streetAddr1; 
      protected String streetAddr2; 
      protected String city; 
      protected String state; 
      protected String zipCode; 
   }

   @Embedded
   private Address address;

   @OneToMany(cascade = CascadeType.ALL, fetch = FetchType.EAGER, 
              mappedBy="bank")
   private Collection<Account> accounts = new ArrayList<Account>();

   public int getId() {
      return id;
   }

   public void setId(int id) {
      this.id = id;
   }

   public void addAccount(Account account) {
      account.setBank(this);
      accounts.add(account);
   }

   public Collection<Account> getAccounts() {
      return accounts;
   }

16. Adapted from http://www.onjava.com/pub/a/onjava/2006/05/17/standardizing-with-ejb3-java-persistence-api.html

http://www.onjava.com/pub/a/onjava/2006/05/17/standardizing-with-ejb3-java-persistence-api.html


166A Chapter 11: Systems

This code is much cleaner than the original EJB2 code. Some of the entity details are
still here, contained in the annotations. However, because none of that information is out-
side of the annotations, the code is clean, clear, and hence easy to test drive, maintain, and
so on.

Some or all of the persistence information in the annotations can be moved to XML
deployment descriptors, if desired, leaving a truly pure POJO. If the persistence mapping
details won’t change frequently, many teams may choose to keep the annotations, but with
far fewer harmful drawbacks compared to the EJB2 invasiveness. 

AspectJ Aspects

Finally, the most full-featured tool for separating concerns through aspects is the AspectJ
language,17 an extension of Java that provides “first-class” support for aspects as modular-
ity constructs. The pure Java approaches provided by Spring AOP and JBoss AOP are suf-
ficient for 80–90 percent of the cases where aspects are most useful. However, AspectJ
provides a very rich and powerful tool set for separating concerns. The drawback of
AspectJ is the need to adopt several new tools and to learn new language constructs and
usage idioms. 

The adoption issues have been partially mitigated by a recently introduced “annota-
tion form” of AspectJ, where Java 5 annotations are used to define aspects using pure Java
code. Also, the Spring Framework has a number of features that make incorporation of
annotation-based aspects much easier for a team with limited AspectJ experience.

A full discussion of AspectJ is beyond the scope of this book. See [AspectJ], [Colyer],
and [Spring] for more information. 

Test Drive the System Architecture

The power of separating concerns through aspect-like approaches can’t be overstated. If
you can write your application’s domain logic using POJOs, decoupled from any architec-
ture concerns at the code level, then it is possible to truly test drive your architecture. You
can evolve it from simple to sophisticated, as needed, by adopting new technologies on

   public void setAccounts(Collection<Account> accounts) {
      this.accounts = accounts;
   }
}

17. See [AspectJ] and [Colyer].

Listing 11-5 (continued)
An EBJ3 Bank EJB



167AOptimize Decision Making

demand. It is not necessary to do a Big Design Up Front18 (BDUF). In fact, BDUF is even
harmful because it inhibits adapting to change, due to the psychological resistance to dis-
carding prior effort and because of the way architecture choices influence subsequent
thinking about the design. 

Building architects have to do BDUF because it is not feasible to make radical archi-
tectural changes to a large physical structure once construction is well underway.19

Although software has its own physics,20 it is economically feasible to make radical
change, if the structure of the software separates its concerns effectively. 

This means we can start a software project with a “naively simple” but nicely decou-
pled architecture, delivering working user stories quickly, then adding more infrastructure
as we scale up. Some of the world’s largest Web sites have achieved very high availability
and performance, using sophisticated data caching, security, virtualization, and so forth,
all done efficiently and flexibly because the minimally coupled designs are appropriately
simple at each level of abstraction and scope.

Of course, this does not mean that we go into a project “rudderless.” We have some
expectations of the general scope, goals, and schedule for the project, as well as the gen-
eral structure of the resulting system. However, we must maintain the ability to change
course in response to evolving circumstances.   

The early EJB architecture is but one of many well-known APIs that are over-engi-
neered and that compromise separation of concerns. Even well-designed APIs can be over-
kill when they aren’t really needed. A good API should largely disappear from view most
of the time, so the team expends the majority of its creative efforts focused on the user sto-
ries being implemented. If not, then the architectural constraints will inhibit the efficient
delivery of optimal value to the customer. 

To recap this long discussion,

An optimal system architecture consists of modularized domains of concern, each of which
is implemented with Plain Old Java (or other) Objects. The different domains are inte-
grated together with minimally invasive Aspects or Aspect-like tools. This architecture can
be test-driven, just like the code.

Optimize Decision Making

Modularity and separation of concerns make decentralized management and decision
making possible. In a sufficiently large system, whether it is a city or a software project, no
one person can make all the decisions.

18. Not to be confused with the good practice of up-front design, BDUF is the practice of designing everything up front before 
implementing anything at all. 

19. There is still a significant amount of iterative exploration and discussion of details, even after construction starts.
20. The term software physics was first used by [Kolence].



168A Chapter 11: Systems

We all know it is best to give responsibilities to the most qualified persons. We often
forget that it is also best to postpone decisions until the last possible moment. This isn’t
lazy or irresponsible; it lets us make informed choices with the best possible information.
A premature decision is a decision made with suboptimal knowledge. We will have that
much less customer feedback, mental reflection on the project, and experience with our
implementation choices if we decide too soon. 

The agility provided by a POJO system with modularized concerns allows us to make opti-
mal, just-in-time decisions, based on the most recent knowledge. The complexity of these
decisions is also reduced.

Use Standards Wisely, When They Add Demonstrable Value

Building construction is a marvel to watch because of the pace at which new buildings are
built (even in the dead of winter) and because of the extraordinary designs that are possi-
ble with today’s technology. Construction is a mature industry with highly optimized parts,
methods, and standards that have evolved under pressure for centuries. 

Many teams used the EJB2 architecture because it was a standard, even when lighter-
weight and more straightforward designs would have been sufficient. I have seen teams
become obsessed with various strongly hyped standards and lose focus on implementing
value for their customers.

Standards make it easier to reuse ideas and components, recruit people with relevant
experience, encapsulate good ideas, and wire components together. However, the process
of creating standards can sometimes take too long for industry to wait, and some stan-
dards lose touch with the real needs of the adopters they are intended to serve.

Systems Need Domain-Specific Languages

Building construction, like most domains, has developed a rich language with a vocabu-
lary, idioms, and patterns21 that convey essential information clearly and concisely. In soft-
ware, there has been renewed interest recently in creating Domain-Specific Languages
(DSLs),22 which are separate, small scripting languages or APIs in standard languages that
permit code to be written so that it reads like a structured form of prose that a domain
expert might write. 

A good DSL minimizes the “communication gap” between a domain concept and the
code that implements it, just as agile practices optimize the communications within a
team and with the project’s stakeholders. If you are implementing domain logic in the

21. The work of [Alexander] has been particularly influential on the software community.
22. See, for example, [DSL]. [JMock] is a good example of a Java API that creates a DSL.



169ABibliography

same language that a domain expert uses, there is less risk that you will incorrectly trans-
late the domain into the implementation.

DSLs, when used effectively, raise the abstraction level above code idioms and design
patterns. They allow the developer to reveal the intent of the code at the appropriate level
of abstraction. 

Domain-Specific Languages allow all levels of abstraction and all domains in the applica-
tion to be expressed as POJOs, from high-level policy to low-level details. 

Conclusion

Systems must be clean too. An invasive architecture overwhelms the domain logic and
impacts agility. When the domain logic is obscured, quality suffers because bugs find it
easier to hide and stories become harder to implement. If agility is compromised, produc-
tivity suffers and the benefits of TDD are lost. 

At all levels of abstraction, the intent should be clear. This will only happen if you
write POJOs and you use aspect-like mechanisms to incorporate other implementation
concerns noninvasively. 

Whether you are designing systems or individual modules, never forget to use the
simplest thing that can possibly work.

Bibliography

[Alexander]:  Christopher Alexander, A Timeless Way of Building, Oxford University
Press, New York, 1979.

[AOSD]:  Aspect-Oriented Software Development port, http://aosd.net

[ASM]:  ASM Home Page, http://asm.objectweb.org/

[AspectJ]:  http://eclipse.org/aspectj

[CGLIB]:  Code Generation Library, http://cglib.sourceforge.net/

[Colyer]:  Adrian Colyer, Andy Clement, George Hurley, Mathew Webster, Eclipse
AspectJ, Person Education, Inc., Upper Saddle River, NJ, 2005.

[DSL]:  Domain-specific programming language, http://en.wikipedia.org/wiki/Domain-
specific_programming_language

[Fowler]:  Inversion of Control Containers and the Dependency Injection pattern,
http://martinfowler.com/articles/injection.html

http://aosd.net
http://asm.objectweb.org/
http://eclipse.org/aspectj
http://cglib.sourceforge.net/
http://en.wikipedia.org/wiki/Domainspecific_programming_language
http://en.wikipedia.org/wiki/Domainspecific_programming_language
http://martinfowler.com/articles/injection.html


170A Chapter 11: Systems

[Goetz]:  Brian Goetz, Java Theory and Practice: Decorating with Dynamic Proxies,
http://www.ibm.com/developerworks/java/library/j-jtp08305.html

[Javassist]:  Javassist Home Page, http://www.csg.is.titech.ac.jp/~chiba/javassist/

[JBoss]:  JBoss Home Page, http://jboss.org

[JMock]:  JMock—A Lightweight Mock Object Library for Java, http://jmock.org

[Kolence]:  Kenneth W. Kolence, Software physics and computer performance measure-
ments, Proceedings of the ACM annual conference—Volume 2, Boston, Massachusetts,
pp. 1024–1040, 1972. 

[Spring]:  The Spring Framework, http://www.springframework.org

[Mezzaros07]:  XUnit Patterns, Gerard Mezzaros, Addison-Wesley, 2007.

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.

http://www.ibm.com/developerworks/java/library/j-jtp08305.html
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://jboss.org
http://jmock.org
http://www.springframework.org


171A

12

Emergence
by Jeff Langr

Getting Clean via Emergent Design

What if there were four simple rules that you could follow that would help you create good
designs as you worked? What if by following these rules you gained insights into the struc-
ture and design of your code, making it easier to apply principles such as SRP and DIP?
What if these four rules facilitated the emergence of good designs?

Many of us feel that Kent Beck’s four rules of Simple Design1 are of significant help in
creating well-designed software.

1. [XPE].



172A Chapter 12: Emergence

According to Kent, a design is “simple” if it follows these rules:

• Runs all the tests

• Contains no duplication

• Expresses the intent of the programmer

• Minimizes the number of classes and methods

The rules are given in order of importance.

Simple Design Rule 1: Runs All the Tests

First and foremost, a design must produce a system that acts as intended. A system might
have a perfect design on paper, but if there is no simple way to verify that the system actu-
ally works as intended, then all the paper effort is questionable.

A system that is comprehensively tested and passes all of its tests all of the time is a test-
able system. That’s an obvious statement, but an important one. Systems that aren’t testable
aren’t verifiable. Arguably, a system that cannot be verified should never be deployed.

Fortunately, making our systems testable pushes us toward a design where our classes
are small and single purpose. It’s just easier to test classes that conform to the SRP. The
more tests we write, the more we’ll continue to push toward things that are simpler to test.
So making sure our system is fully testable helps us create better designs.

Tight coupling makes it difficult to write tests. So, similarly, the more tests we write,
the more we use principles like DIP and tools like dependency injection, interfaces, and
abstraction to minimize coupling. Our designs improve even more.

Remarkably, following a simple and obvious rule that says we need to have tests and
run them continuously impacts our system’s adherence to the primary OO goals of low
coupling and high cohesion. Writing tests leads to better designs.

Simple Design Rules 2–4: Refactoring

Once we have tests, we are empowered to keep our code and classes clean. We do this by
incrementally refactoring the code. For each few lines of code we add, we pause and reflect
on the new design. Did we just degrade it? If so, we clean it up and run our tests to demon-
strate that we haven’t broken anything. The fact that we have these tests eliminates the fear
that cleaning up the code will break it!

During this refactoring step, we can apply anything from the entire body of knowledge
about good software design. We can increase cohesion, decrease coupling, separate con-
cerns, modularize system concerns, shrink our functions and classes, choose better names,
and so on. This is also where we apply the final three rules of simple design: Eliminate
duplication, ensure expressiveness, and minimize the number of classes and methods.



173ANo Duplication

No Duplication

Duplication is the primary enemy of a well-designed system. It represents additional
work, additional risk, and additional unnecessary complexity. Duplication manifests
itself in many forms. Lines of code that look exactly alike are, of course, duplication.
Lines of code that are similar can often be massaged to look even more alike so that
they can be more easily refactored. And duplication can exist in other forms such as
duplication of implementation. For example, we might have two methods in a collection
class:

int size() {}
boolean isEmpty() {}

We could have separate implementations for each method. The isEmpty method could track
a boolean, while size could track a counter. Or, we can eliminate this duplication by tying
isEmpty to the definition of size:

boolean isEmpty() {
   return 0 == size();
}

Creating a clean system requires the will to eliminate duplication, even in just a few
lines of code. For example, consider the following code:

    public void scaleToOneDimension(
         float desiredDimension, float imageDimension) {
      if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
         return;
      float scalingFactor = desiredDimension / imageDimension;
      scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);

      RenderedOp newImage = ImageUtilities.getScaledImage(
         image, scalingFactor, scalingFactor);
      image.dispose();
      System.gc();
      image = newImage;
   }
   public synchronized void rotate(int degrees) {
      RenderedOp newImage = ImageUtilities.getRotatedImage(
         image, degrees);
      image.dispose();
      System.gc();
      image = newImage;
   }

To keep this system clean, we should eliminate the small amount of duplication between
the scaleToOneDimension and rotate methods:

    public void scaleToOneDimension(
         float desiredDimension, float imageDimension) {
      if (Math.abs(desiredDimension - imageDimension) < errorThreshold)
         return;
      float scalingFactor = desiredDimension / imageDimension;
      scalingFactor = (float)(Math.floor(scalingFactor * 100) * 0.01f);



174A Chapter 12: Emergence

      replaceImage(ImageUtilities.getScaledImage(
         image, scalingFactor, scalingFactor));
   }

   public synchronized void rotate(int degrees) {
      replaceImage(ImageUtilities.getRotatedImage(image, degrees));
   }

   private void replaceImage(RenderedOp newImage) {
      image.dispose();
      System.gc();
      image = newImage;
   }

As we extract commonality at this very tiny level, we start to recognize violations of SRP.
So we might move a newly extracted method to another class. That elevates its visibility.
Someone else on the team may recognize the opportunity to further abstract the new
method and reuse it in a different context. This “reuse in the small” can cause system com-
plexity to shrink dramatically. Understanding how to achieve reuse in the small is essential
to achieving reuse in the large.

The TEMPLATE METHOD2 pattern is a common technique for removing higher-level
duplication. For example: 

public class VacationPolicy {
   public void accrueUSDivisionVacation() {
      // code to calculate vacation based on hours worked to date
      // ...
      // code to ensure vacation meets US minimums
      // ...
      // code to apply vaction to payroll record
      // ...
   }
   
   public void accrueEUDivisionVacation() {
      // code to calculate vacation based on hours worked to date
      // ...
      // code to ensure vacation meets EU minimums
      // ...
      // code to apply vaction to payroll record
      // ...
   }
}

The code across accrueUSDivisionVacation and accrueEuropeanDivisionVacation is largely
the same, with the exception of calculating legal minimums. That bit of the algorithm
changes based on the employee type.

We can eliminate the obvious duplication by applying the TEMPLATE METHOD pattern.

abstract public class VacationPolicy {
   public void accrueVacation() {
      calculateBaseVacationHours();

2. [GOF].



175AExpressive

      alterForLegalMinimums();
      applyToPayroll();
   }
   
   private void calculateBaseVacationHours() { /* ... */ };
   abstract protected void alterForLegalMinimums();
   private void applyToPayroll() { /* ... */ };
}

public class USVacationPolicy extends VacationPolicy {
   @Override protected void alterForLegalMinimums() {
      // US specific logic
   }
}

public class EUVacationPolicy extends VacationPolicy {
   @Override protected void alterForLegalMinimums() {
      // EU specific logic
   }
}

The subclasses fill in the “hole” in the accrueVacation algorithm, supplying the only bits of
information that are not duplicated.

Expressive

Most of us have had the experience of working on convoluted code. Many of us have pro-
duced some convoluted code ourselves. It’s easy to write code that we understand, because
at the time we write it we’re deep in an understanding of the problem we’re trying to solve.
Other maintainers of the code aren’t going to have so deep an understanding.

The majority of the cost of a software project is in long-term maintenance. In order to
minimize the potential for defects as we introduce change, it’s critical for us to be able to
understand what a system does. As systems become more complex, they take more and
more time for a developer to understand, and there is an ever greater opportunity for a mis-
understanding. Therefore, code should clearly express the intent of its author. The clearer
the author can make the code, the less time others will have to spend understanding it. This
will reduce defects and shrink the cost of maintenance.

You can express yourself by choosing good names. We want to be able to hear a class
or function name and not be surprised when we discover its responsibilities. 

You can also express yourself by keeping your functions and classes small. Small
classes and functions are usually easy to name, easy to write, and easy to understand. 

You can also express yourself by using standard nomenclature. Design patterns, for
example, are largely about communication and expressiveness. By using the standard
pattern names, such as COMMAND or VISITOR, in the names of the classes that imple-
ment those patterns, you can succinctly describe your design to other developers. 

Well-written unit tests are also expressive. A primary goal of tests is to act as docu-
mentation by example. Someone reading our tests should be able to get a quick under-
standing of what a class is all about.



176A Chapter 12: Emergence

But the most important way to be expressive is to try. All too often we get our code
working and then move on to the next problem without giving sufficient thought to making
that code easy for the next person to read. Remember, the most likely next person to read
the code will be you. 

So take a little pride in your workmanship. Spend a little time with each of your func-
tions and classes. Choose better names, split large functions into smaller functions, and
generally just take care of what you’ve created. Care is a precious resource.

Minimal Classes and Methods

Even concepts as fundamental as elimination of duplication, code expressiveness, and the
SRP can be taken too far. In an effort to make our classes and methods small, we might
create too many tiny classes and methods. So this rule suggests that we also keep our func-
tion and class counts low. 

High class and method counts are sometimes the result of pointless dogmatism. Con-
sider, for example, a coding standard that insists on creating an interface for each and
every class. Or consider developers who insist that fields and behavior must always be sep-
arated into data classes and behavior classes. Such dogma should be resisted and a more
pragmatic approach adopted. 

Our goal is to keep our overall system small while we are also keeping our functions
and classes small. Remember, however, that this rule is the lowest priority of the four rules
of Simple Design. So, although it’s important to keep class and function count low, it’s
more important to have tests, eliminate duplication, and express yourself.

Conclusion

Is there a set of simple practices that can replace experience? Clearly not. On the other
hand, the practices described in this chapter and in this book are a crystallized form of the
many decades of experience enjoyed by the authors. Following the practice of simple
design can and does encourage and enable developers to adhere to good principles and
patterns that otherwise take years to learn. 

Bibliography

[XPE]:  Extreme Programming Explained: Embrace Change, Kent Beck, Addison-
Wesley, 1999.

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.



177A

13

Concurrency
by Brett L. Schuchert

“Objects are abstractions of processing. Threads are abstractions of schedule.”

—James O. Coplien1

1. Private correspondence.



178A Chapter 13: Concurrency

Writing clean concurrent programs is hard—very hard. It is much easier to write code that
executes in a single thread. It is also easy to write multithreaded code that looks fine on the
surface but is broken at a deeper level. Such code works fine until the system is placed
under stress.

In this chapter we discuss the need for concurrent programming, and the difficulties
it presents. We then present several recommendations for dealing with those difficulties,
and writing clean concurrent code. Finally, we conclude with issues related to testing
concurrent code. 

Clean Concurrency is a complex topic, worthy of a book by itself. Our strategy in this
book is to present an overview here and provide a more detailed tutorial in “Concurrency II”
on page 317. If you are just curious about concurrency, then this chapter will suffice for you
now. If you have a need to understand concurrency at a deeper level, then you should read
through the tutorial as well. 

Why Concurrency?

Concurrency is a decoupling strategy. It helps us decouple what gets done from when it
gets done. In single-threaded applications what and when are so strongly coupled that the
state of the entire application can often be determined by looking at the stack backtrace. A
programmer who debugs such a system can set a breakpoint, or a sequence of breakpoints,
and know the state of the system by which breakpoints are hit. 

Decoupling what from when can dramatically improve both the throughput and struc-
tures of an application. From a structural point of view the application looks like many lit-
tle collaborating computers rather than one big main loop. This can make the system easier
to understand and offers some powerful ways to separate concerns. 

Consider, for example, the standard “Servlet” model of Web applications. These sys-
tems run under the umbrella of a Web or EJB container that partially manages concur-
rency for you. The servlets are executed asynchronously whenever Web requests come in.
The servlet programmer does not have to manage all the incoming requests. In principle,
each servlet execution lives in its own little world and is decoupled from all the other serv-
let executions. 

Of course if it were that easy, this chapter wouldn’t be necessary. In fact, the decou-
pling provided by Web containers is far less than perfect. Servlet programmers have to be
very aware, and very careful, to make sure their concurrent programs are correct. Still, the
structural benefits of the servlet model are significant. 

But structure is not the only motive for adopting concurrency. Some systems have
response time and throughput constraints that require hand-coded concurrent solutions.
For example, consider a single-threaded information aggregator that acquires information
from many different Web sites and merges that information into a daily summary. Because



179AWhy Concurrency?

this system is single threaded, it hits each Web site in turn, always finishing one before
starting the next. The daily run needs to execute in less than 24 hours. However, as more
and more Web sites are added, the time grows until it takes more than 24 hours to gather
all the data. The single-thread involves a lot of waiting at Web sockets for I/O to complete.
We could improve the performance by using a multithreaded algorithm that hits more than
one Web site at a time.

Or consider a system that handles one user at a time and requires only one second
of time per user. This system is fairly responsive for a few users, but as the number of
users increases, the system’s response time increases. No user wants to get in line
behind 150 others! We could improve the response time of this system by handling
many users concurrently.

Or consider a system that interprets large data sets but can only give a complete solu-
tion after processing all of them. Perhaps each data set could be processed on a different
computer, so that many data sets are being processed in parallel.

Myths and Misconceptions

And so there are compelling reasons to adopt concurrency. However, as we said before,
concurrency is hard. If you aren’t very careful, you can create some very nasty situations.
Consider these common myths and misconceptions:

• Concurrency always improves performance.
Concurrency can sometimes improve performance, but only when there is a lot of wait 
time that can be shared between multiple threads or multiple processors. Neither situ-
ation is trivial.

• Design does not change when writing concurrent programs.
In fact, the design of a concurrent algorithm can be remarkably different from the 
design of a single-threaded system. The decoupling of what from when usually has a 
huge effect on the structure of the system. 

• Understanding concurrency issues is not important when working with a container 
such as a Web or EJB container.
In fact, you’d better know just what your container is doing and how to guard against 
the issues of concurrent update and deadlock described later in this chapter. 

Here are a few more balanced sound bites regarding writing concurrent software:

• Concurrency incurs some overhead, both in performance as well as writing additional 
code.

• Correct concurrency is complex, even for simple problems.



180A Chapter 13: Concurrency

• Concurrency bugs aren’t usually repeatable, so they are often ignored as one-offs2 
instead of the true defects they are.

• Concurrency often requires a fundamental change in design strategy.

Challenges

What makes concurrent programming so difficult? Consider the following trivial class:

public class X {
   private int lastIdUsed;

   public int getNextId() {
        return ++lastIdUsed;
    }
}

Let’s say we create an instance of X, set the lastIdUsed field to 42, and then share the
instance between two threads. Now suppose that both of those threads call the method
getNextId(); there are three possible outcomes:

• Thread one gets the value 43, thread two gets the value 44, lastIdUsed is 44.

• Thread one gets the value 44, thread two gets the value 43, lastIdUsed is 44.

• Thread one gets the value 43, thread two gets the value 43, lastIdUsed is 43.

The surprising third result3 occurs when the two threads step on each other. This hap-
pens because there are many possible paths that the two threads can take through that one
line of Java code, and some of those paths generate incorrect results. How many different
paths are there? To really answer that question, we need to understand what the Just-In-
Time Compiler does with the generated byte-code, and understand what the Java memory
model considers to be atomic.

A quick answer, working with just the generated byte-code, is that there are 12,870
different possible execution paths4 for those two threads executing within the getNextId
method. If the type of lastIdUsed is changed from int to long, the number of possible
paths increases to 2,704,156. Of course most of those paths generate valid results. The
problem is that some of them don’t.

Concurrency Defense Principles

What follows is a series of principles and techniques for defending your systems from the
problems of concurrent code. 

2. Cosmic-rays, glitches, and so on.
3. See “Digging Deeper” on page 323A.
4. See “Possible Paths of Execution” on page 321A.



181AConcurrency Defense Principles

Single Responsibility Principle

The SRP5 states that a given method/class/component should have a single reason to
change. Concurrency design is complex enough to be a reason to change in it’s own right
and therefore deserves to be separated from the rest of the code. Unfortunately, it is all too
common for concurrency implementation details to be embedded directly into other pro-
duction code. Here are a few things to consider:

• Concurrency-related code has its own life cycle of development, change, and tuning.

• Concurrency-related code has its own challenges, which are different from and often 
more difficult than nonconcurrency-related code.

• The number of ways in which miswritten concurrency-based code can fail makes it 
challenging enough without the added burden of surrounding application code.

Recommendation: Keep your concurrency-related code separate from other code.6

Corollary: Limit the Scope of Data

As we saw, two threads modifying the same field of a shared object can interfere with each
other, causing unexpected behavior. One solution is to use the synchronized keyword to
protect a critical section in the code that uses the shared object. It is important to restrict
the number of such critical sections. The more places shared data can get updated, the
more likely:

• You will forget to protect one or more of those places—effectively breaking all code 
that modifies that shared data.

• There will be duplication of effort required to make sure everything is effectively 
guarded (violation of DRY7).

• It will be difficult to determine the source of failures, which are already hard enough 
to find.

Recommendation: Take data encapsulation to heart; severely limit the access of any
data that may be shared.

Corollary: Use Copies of Data

A good way to avoid shared data is to avoid sharing the data in the first place. In some sit-
uations it is possible to copy objects and treat them as read-only. In other cases it might be
possible to copy objects, collect results from multiple threads in these copies and then
merge the results in a single thread.

5. [PPP]
6. See “Client/Server Example” on page 317A.
7. [PRAG].



182A Chapter 13: Concurrency

If there is an easy way to avoid sharing objects, the resulting code will be far less likely
to cause problems. You might be concerned about the cost of all the extra object creation. It is
worth experimenting to find out if this is in fact a problem. However, if using copies of
objects allows the code to avoid synchronizing, the savings in avoiding the intrinsic lock will
likely make up for the additional creation and garbage collection overhead.

Corollary: Threads Should Be as Independent as Possible

Consider writing your threaded code such that each thread exists in its own world, sharing
no data with any other thread. Each thread processes one client request, with all of its
required data coming from an unshared source and stored as local variables. This makes
each of those threads behave as if it were the only thread in the world and there were no
synchronization requirements.

For example, classes that subclass from HttpServlet receive all of their information
as parameters passed in to the doGet and doPost methods. This makes each Servlet act
as if it has its own machine. So long as the code in the Servlet uses only local variables,
there is no chance that the Servlet will cause synchronization problems. Of course,
most applications using Servlets eventually run into shared resources such as database
connections. 

Recommendation: Attempt to partition data into independent subsets than can be
operated on by independent threads, possibly in different processors.

Know Your Library

Java 5 offers many improvements for concurrent development over previous versions. There
are several things to consider when writing threaded code in Java 5:

• Use the provided thread-safe collections.

• Use the executor framework for executing unrelated tasks.

• Use nonblocking solutions when possible.

• Several library classes are not thread safe.

Thread-Safe Collections

When Java was young, Doug Lea wrote the seminal book8 Concurrent Programming in
Java. Along with the book he developed several thread-safe collections, which later
became part of the JDK in the java.util.concurrent package. The collections in that pack-
age are safe for multithreaded situations and they perform well. In fact, the

8. [Lea99].



183AKnow Your Execution Models

ConcurrentHashMap implementation performs better than HashMap in nearly all situations. It
also allows for simultaneous concurrent reads and writes, and it has methods supporting
common composite operations that are otherwise not thread safe. If Java 5 is the deploy-
ment environment, start with ConcurrentHashMap.

There are several other kinds of classes added to support advanced concurrency
design. Here are a few examples:

Recommendation: Review the classes available to you. In the case of Java, become
familiar with java.util.concurrent, java.util.concurrent.atomic, java.util.concurrent.locks.

Know Your Execution Models

There are several different ways to partition behavior in a concurrent application. To dis-
cuss them we need to understand some basic definitions.

Given these definitions, we can now discuss the various execution models used in
concurrent programming.

ReentrantLock A lock that can be acquired in one method and released in another. 

Semaphore An implementation of the classic semaphore, a lock with a count. 

CountDownLatch A lock that waits for a number of events before releasing all
threads waiting on it. This allows all threads to have a fair chance
of starting at about the same time.

Bound Resources Resources of a fixed size or number used in a concurrent environ-
ment. Examples include database connections and fixed-size read/
write buffers.

Mutual Exclusion Only one thread can access shared data or a shared resource at a
time.

Starvation One thread or a group of threads is prohibited from proceeding
for an excessively long time or forever. For example, always let-
ting fast-running threads through first could starve out longer run-
ning threads if there is no end to the fast-running threads.

Deadlock Two or more threads waiting for each other to finish. Each thread
has a resource that the other thread requires and neither can finish
until it gets the other resource.

Livelock Threads in lockstep, each trying to do work but finding another
“in the way.” Due to resonance, threads continue trying to
make progress but are unable to for an excessively long time—
or forever.



184A Chapter 13: Concurrency

Producer-Consumer9

One or more producer threads create some work and place it in a buffer or queue. One or
more consumer threads acquire that work from the queue and complete it. The queue
between the producers and consumers is a bound resource. This means producers must
wait for free space in the queue before writing and consumers must wait until there is
something in the queue to consume. Coordination between the producers and consumers
via the queue involves producers and consumers signaling each other. The producers write
to the queue and signal that the queue is no longer empty. Consumers read from the queue
and signal that the queue is no longer full. Both potentially wait to be notified when they
can continue.

Readers-Writers10

When you have a shared resource that primarily serves as a source of information for read-
ers, but which is occasionally updated by writers, throughput is an issue. Emphasizing
throughput can cause starvation and the accumulation of stale information. Allowing
updates can impact throughput. Coordinating readers so they do not read something a
writer is updating and vice versa is a tough balancing act. Writers tend to block many read-
ers for a long period of time, thus causing throughput issues. 

The challenge is to balance the needs of both readers and writers to satisfy correct
operation, provide reasonable throughput and avoiding starvation. A simple strategy
makes writers wait until there are no readers before allowing the writer to perform an
update. If there are continuous readers, however, the writers will be starved. On the other
hand, if there are frequent writers and they are given priority, throughput will suffer. Find-
ing that balance and avoiding concurrent update issues is what the problem addresses.

Dining Philosophers11

Imagine a number of philosophers sitting around a circular table. A fork is placed to the
left of each philosopher. There is a big bowl of spaghetti in the center of the table. The
philosophers spend their time thinking unless they get hungry. Once hungry, they pick
up the forks on either side of them and eat. A philosopher cannot eat unless he is holding
two forks. If the philosopher to his right or left is already using one of the forks he
needs, he must wait until that philosopher finishes eating and puts the forks back down.
Once a philosopher eats, he puts both his forks back down on the table and waits until he
is hungry again.

Replace philosophers with threads and forks with resources and this problem is simi-
lar to many enterprise applications in which processes compete for resources. Unless care-
fully designed, systems that compete in this way can experience deadlock, livelock,
throughput, and efficiency degradation. 

9. http://en.wikipedia.org/wiki/Producer-consumer
10. http://en.wikipedia.org/wiki/Readers-writers_problem
11. http://en.wikipedia.org/wiki/Dining_philosophers_problem

http://en.wikipedia.org/wiki/Producer-consumer
http://en.wikipedia.org/wiki/Readers-writers_problem
http://en.wikipedia.org/wiki/Dining_philosophers_problem


185AKeep Synchronized Sections Small

Most concurrent problems you will likely encounter will be some variation of these
three problems. Study these algorithms and write solutions using them on your own so
that when you come across concurrent problems, you’ll be more prepared to solve the
problem.

Recommendation: Learn these basic algorithms and understand their solutions.

Beware Dependencies Between Synchronized Methods

Dependencies between synchronized methods cause subtle bugs in concurrent code. The
Java language has the notion of synchronized, which protects an individual method. How-
ever, if there is more than one synchronized method on the same shared class, then your
system may be written incorrectly.12

Recommendation: Avoid using more than one method on a shared object.

There will be times when you must use more than one method on a shared object.
When this is the case, there are three ways to make the code correct:

• Client-Based Locking—Have the client lock the server before calling the first 
method and make sure the lock’s extent includes code calling the last method.

• Server-Based Locking—Within the server create a method that locks the server, calls 
all the methods, and then unlocks. Have the client call the new method.

• Adapted Server—create an intermediary that performs the locking. This is an exam-
ple of server-based locking, where the original server cannot be changed.

Keep Synchronized Sections Small

The synchronized keyword introduces a lock. All sections of code guarded by the
same lock are guaranteed to have only one thread executing through them at any given
time. Locks are expensive because they create delays and add overhead. So we don’t
want to litter our code with synchronized statements. On the other hand, critical sec-
tions13 must be guarded. So we want to design our code with as few critical sections as
possible.

Some naive programmers try to achieve this by making their critical sections very
large. However, extending synchronization beyond the minimal critical section increases
contention and degrades performance.14 

Recommendation: Keep your synchronized sections as small as possible.

12. See “Dependencies Between Methods Can Break Concurrent Code” on page 329A.
13. A critical section is any section of code that must be protected from simultaneous use for the program to be correct.
14. See “Increasing Throughput” on page 333A.



186A Chapter 13: Concurrency

Writing Correct Shut-Down Code Is Hard

Writing a system that is meant to stay live and run forever is different from writing some-
thing that works for awhile and then shuts down gracefully.

Graceful shutdown can be hard to get correct. Common problems involve deadlock,15

with threads waiting for a signal to continue that never comes. 

For example, imagine a system with a parent thread that spawns several child threads
and then waits for them all to finish before it releases its resources and shuts down. What if
one of the spawned threads is deadlocked? The parent will wait forever, and the system
will never shut down. 

Or consider a similar system that has been instructed to shut down. The parent tells all
the spawned children to abandon their tasks and finish. But what if two of the children
were operating as a producer/consumer pair. Suppose the producer receives the signal
from the parent and quickly shuts down. The consumer might have been expecting a mes-
sage from the producer and be blocked in a state where it cannot receive the shutdown sig-
nal. It could get stuck waiting for the producer and never finish, preventing the parent from
finishing as well.

Situations like this are not at all uncommon. So if you must write concurrent code that
involves shutting down gracefully, expect to spend much of your time getting the shut-
down to happen correctly.

Recommendation: Think about shut-down early and get it working early. It’s going to
take longer than you expect. Review existing algorithms because this is probably harder
than you think.

Testing Threaded Code

Proving that code is correct is impractical. Testing does not guarantee correctness. How-
ever, good testing can minimize risk. This is all true in a single-threaded solution. As soon
as there are two or more threads using the same code and working with shared data, things
get substantially more complex.

Recommendation: Write tests that have the potential to expose problems and then
run them frequently, with different programatic configurations and system configurations
and load. If tests ever fail, track down the failure. Don’t ignore a failure just because the
tests pass on a subsequent run.

That is a whole lot to take into consideration. Here are a few more fine-grained
recommendations:

• Treat spurious failures as candidate threading issues.

• Get your nonthreaded code working first.

15. See “Deadlock” on page 335A.



187ATesting Threaded Code

• Make your threaded code pluggable.

• Make your threaded code tunable.

• Run with more threads than processors.

• Run on different platforms.

• Instrument your code to try and force failures.

Treat Spurious Failures as Candidate Threading Issues

Threaded code causes things to fail that “simply cannot fail.” Most developers do not have
an intuitive feel for how threading interacts with other code (authors included). Bugs in
threaded code might exhibit their symptoms once in a thousand, or a million, executions.
Attempts to repeat the systems can be frustratingly. This often leads developers to write off
the failure as a cosmic ray, a hardware glitch, or some other kind of “one-off.” It is best to
assume that one-offs do not exist. The longer these “one-offs” are ignored, the more code
is built on top of a potentially faulty approach.

Recommendation: Do not ignore system failures as one-offs.

Get Your Nonthreaded Code Working First

This may seem obvious, but it doesn’t hurt to reinforce it. Make sure code works outside
of its use in threads. Generally, this means creating POJOs that are called by your threads.
The POJOs are not thread aware, and can therefore be tested outside of the threaded envi-
ronment. The more of your system you can place in such POJOs, the better.

Recommendation: Do not try to chase down nonthreading bugs and threading bugs
at the same time. Make sure your code works outside of threads.

Make Your Threaded Code Pluggable

Write the concurrency-supporting code such that it can be run in several configurations:

• One thread, several threads, varied as it executes

• Threaded code interacts with something that can be both real or a test double.

• Execute with test doubles that run quickly, slowly, variable.

• Configure tests so they can run for a number of iterations.

Recommendation: Make your thread-based code especially pluggable so that you
can run it in various configurations.

Make Your Threaded Code Tunable

Getting the right balance of threads typically requires trial an error. Early on, find ways to
time the performance of your system under different configurations. Allow the number of



188A Chapter 13: Concurrency

threads to be easily tuned. Consider allowing it to change while the system is running.
Consider allowing self-tuning based on throughput and system utilization.

Run with More Threads Than Processors

Things happen when the system switches between tasks. To encourage task swapping, run
with more threads than processors or cores. The more frequently your tasks swap, the more
likely you’ll encounter code that is missing a critical section or causes deadlock.

Run on Different Platforms

In the middle of 2007 we developed a course on concurrent programming. The course
development ensued primarily under OS X. The class was presented using Windows XP
running under a VM. Tests written to demonstrate failure conditions did not fail as fre-
quently in an XP environment as they did running on OS X. 

In all cases the code under test was known to be incorrect. This just reinforced the fact
that different operating systems have different threading policies, each of which impacts
the code’s execution. Multithreaded code behaves differently in different environments.16

You should run your tests in every potential deployment environment.

Recommendation: Run your threaded code on all target platforms early and often.

Instrument Your Code to Try and Force Failures

It is normal for flaws in concurrent code to hide. Simple tests often don’t expose them.
Indeed, they often hide during normal processing. They might show up once every few
hours, or days, or weeks! 

The reason that threading bugs can be infrequent, sporadic, and hard to repeat, is that
only a very few pathways out of the many thousands of possible pathways through a vul-
nerable section actually fail. So the probability that a failing pathway is taken can be star-
tlingly low. This makes detection and debugging very difficult.

How might you increase your chances of catching such rare occurrences? You can
instrument your code and force it to run in different orderings by adding calls to methods
like Object.wait(), Object.sleep(), Object.yield() and Object.priority().

Each of these methods can affect the order of execution, thereby increasing the odds
of detecting a flaw. It’s better when broken code fails as early and as often as possible.

There are two options for code instrumentation:

• Hand-coded

• Automated

16.  Did you know that the threading model in Java does not guarantee preemptive threading? Modern OS’s support preemptive 
threading, so you get that “for free.” Even so, it not guaranteed by the JVM.



189ATesting Threaded Code

Hand-Coded

You can insert calls to wait(), sleep(), yield(), and priority() in your code by hand. It
might be just the thing to do when you’re testing a particularly thorny piece of code. 

Here is an example of doing just that:

public synchronized String nextUrlOrNull() {
    if(hasNext()) {
        String url = urlGenerator.next();
        Thread.yield(); // inserted for testing.
        updateHasNext();
        return url;
    } 
    return null;
}

The inserted call to yield() will change the execution pathways taken by the code and
possibly cause the code to fail where it did not fail before. If the code does break, it was
not because you added a call to yield().17 Rather, your code was broken and this simply
made the failure evident.

There are many problems with this approach:

• You have to manually find appropriate places to do this.

• How do you know where to put the call and what kind of call to use?

• Leaving such code in a production environment unnecessarily slows the code down.

• It’s a shotgun approach. You may or may not find flaws. Indeed, the odds aren’t with you.

What we need is a way to do this during testing but not in production. We also need to
easily mix up configurations between different runs, which results in increased chances of
finding errors in the aggregate.

Clearly, if we divide our system up into POJOs that know nothing of threading and
classes that control the threading, it will be easier to find appropriate places to instrument
the code. Moreover, we could create many different test jigs that invoke the POJOs under
different regimes of calls to sleep, yield, and so on. 

Automated

You could use tools like an Aspect-Oriented Framework, CGLIB, or ASM to programmat-
ically instrument your code. For example, you could use a class with a single method:

public class ThreadJigglePoint {
    public static void jiggle() {
    }
}

17. This is not strictly the case. Since the JVM does not guarantee preemptive threading, a particular algorithm might always 
work on an OS that does not preempt threads. The reverse is also possible but for different reasons.



190A Chapter 13: Concurrency

You can add calls to this in various places within your code:

public synchronized String nextUrlOrNull() {
    if(hasNext()) {
        ThreadJiglePoint.jiggle();
        String url = urlGenerator.next();
        ThreadJiglePoint.jiggle();
        updateHasNext();
        ThreadJiglePoint.jiggle();
        return url;
    } 
    return null;
}

Now you use a simple aspect that randomly selects among doing nothing, sleeping, or
yielding. 

Or imagine that the ThreadJigglePoint class has two implementations. The first imple-
ments jiggle to do nothing and is used in production. The second generates a random
number to choose between sleeping, yielding, or just falling through. If you run your tests
a thousand times with random jiggling, you may root out some flaws. If the tests pass, at
least you can say you’ve done due diligence. Though a bit simplistic, this could be a rea-
sonable option in lieu of a more sophisticated tool.

There is a tool called ConTest,18 developed by IBM that does something similar, but it
does so with quite a bit more sophistication.

The point is to jiggle the code so that threads run in different orderings at different
times. The combination of well-written tests and jiggling can dramatically increase the
chance finding errors.

Recommendation: Use jiggling strategies to ferret out errors.

Conclusion

Concurrent code is difficult to get right. Code that is simple to follow can become night-
marish when multiple threads and shared data get into the mix. If you are faced with writ-
ing concurrent code, you need to write clean code with rigor or else face subtle and
infrequent failures.

First and foremost, follow the Single Responsibility Principle. Break your system into
POJOs that separate thread-aware code from thread-ignorant code. Make sure when you
are testing your thread-aware code, you are only testing it and nothing else. This suggests
that your thread-aware code should be small and focused.

Know the possible sources of concurrency issues: multiple threads operating on
shared data, or using a common resource pool. Boundary cases, such as shutting down
cleanly or finishing the iteration of a loop, can be especially thorny.

18. http://www.alphaworks.ibm.com/tech/contest

http://www.alphaworks.ibm.com/tech/contest


191ABibliography

Learn your library and know the fundamental algorithms. Understand how some of
the features offered by the library support solving problems similar to the fundamental
algorithms. 

Learn how to find regions of code that must be locked and lock them. Do not lock
regions of code that do not need to be locked. Avoid calling one locked section from
another. This requires a deep understanding of whether something is or is not shared. Keep
the amount of shared objects and the scope of the sharing as narrow as possible. Change
designs of the objects with shared data to accommodate clients rather than forcing clients
to manage shared state.

Issues will crop up. The ones that do not crop up early are often written off as a one-
time occurrence. These so-called one-offs typically only happen under load or at seem-
ingly random times. Therefore, you need to be able to run your thread-related code in
many configurations on many platforms repeatedly and continuously. Testability, which
comes naturally from following the Three Laws of TDD, implies some level of plug-ability,
which offers the support necessary to run code in a wider range of configurations.

You will greatly improve your chances of finding erroneous code if you take the time
to instrument your code. You can either do so by hand or using some kind of automated
technology. Invest in this early. You want to be running your thread-based code as long as
possible before you put it into production.

If you take a clean approach, your chances of getting it right increase drastically.

Bibliography

[Lea99]:  Concurrent Programming in Java: Design Principles and Patterns, 2d. ed.,
Doug Lea, Prentice Hall, 1999.

[PPP]:  Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin,
Prentice Hall, 2002.

[PRAG]:  The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley,
2000.



This page intentionally left blank 



193A

14

Successive Refinement
Case Study of a Command-Line Argument Parser

This chapter is a case study in successive refinement. You will see a module that started
well but did not scale. Then you will see how the module was refactored and cleaned. 

Most of us have had to parse command-line arguments from time to time. If we
don’t have a convenient utility, then we simply walk the array of strings that is passed
into the main function. There are several good utilities available from various sources,



194A Chapter 14: Successive Refinement

but none of them do exactly what I want. So, of course, I decided to write my own. I call
it: Args.

Args is very simple to use. You simply construct the Args class with the input argu-
ments and a format string, and then query the Args instance for the values of the argu-
ments. Consider the following simple example:

You can see how simple this is. We just create an instance of the Args class with two
parameters. The first parameter is the format, or schema, string: "l,p#,d*." It defines three
command-line arguments. The first, –l, is a boolean argument. The second, -p, is an integer
argument. The third, -d, is a string argument. The second parameter to the Args constructor
is simply the array of command-line argument passed into main.

If the constructor returns without throwing an ArgsException, then the incoming
command-line was parsed, and the Args instance is ready to be queried. Methods like
getBoolean, getInteger, and getString allow us to access the values of the arguments by
their names.

If there is a problem, either in the format string or in the command-line arguments
themselves, an ArgsException will be thrown. A convenient description of what went
wrong can be retrieved from the errorMessage method of the exception.

Args Implementation

Listing 14-2 is the implementation of the Args class. Please read it very carefully. I worked
hard on the style and structure and hope it is worth emulating.

Listing 14-1
Simple use of Args
  public static void main(String[] args) {
    try {
      Args arg = new Args("l,p#,d*", args);
      boolean logging = arg.getBoolean('l');
      int port = arg.getInt('p');
      String directory = arg.getString('d');
      executeApplication(logging, port, directory);
    } catch (ArgsException e) {
      System.out.printf("Argument error: %s\n", e.errorMessage());
    }
  }

Listing 14-2  
Args.java
package com.objectmentor.utilities.args;

import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;
import java.util.*;

public class Args {
  private Map<Character, ArgumentMarshaler> marshalers;



195AArgs Implementation

  private Set<Character> argsFound;
  private ListIterator<String> currentArgument;

  public Args(String schema, String[] args) throws ArgsException {
    marshalers = new HashMap<Character, ArgumentMarshaler>();
    argsFound = new HashSet<Character>();
    
    parseSchema(schema);
    parseArgumentStrings(Arrays.asList(args));
  }

  private void parseSchema(String schema) throws ArgsException {
    for (String element : schema.split(","))
      if (element.length() > 0)
        parseSchemaElement(element.trim());
  }

  private void parseSchemaElement(String element) throws ArgsException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (elementTail.length() == 0)
      marshalers.put(elementId, new BooleanArgumentMarshaler());
    else if (elementTail.equals("*"))
      marshalers.put(elementId, new StringArgumentMarshaler());
    else if (elementTail.equals("#"))
      marshalers.put(elementId, new IntegerArgumentMarshaler());
    else if (elementTail.equals("##"))
      marshalers.put(elementId, new DoubleArgumentMarshaler());
    else if (elementTail.equals("[*]"))
      marshalers.put(elementId, new StringArrayArgumentMarshaler());
    else
      throw new ArgsException(INVALID_ARGUMENT_FORMAT, elementId, elementTail);
  }

  private void validateSchemaElementId(char elementId) throws ArgsException {
    if (!Character.isLetter(elementId))
      throw new ArgsException(INVALID_ARGUMENT_NAME, elementId, null);
  }

  private void parseArgumentStrings(List<String> argsList) throws ArgsException 
  {
    for (currentArgument = argsList.listIterator(); currentArgument.hasNext();) 
    {
      String argString = currentArgument.next();
      if (argString.startsWith("-")) {
        parseArgumentCharacters(argString.substring(1));
      } else {
        currentArgument.previous();
        break;
      }
    }
  }

Listing 14-2  (continued)
Args.java



196A Chapter 14: Successive Refinement

Notice that you can read this code from the top to the bottom without a lot of jumping
around or looking ahead. The one thing you may have had to look ahead for is the defini-
tion of ArgumentMarshaler, which I left out intentionally. Having read this code carefully,

  private void parseArgumentCharacters(String argChars) throws ArgsException {
    for (int i = 0; i < argChars.length(); i++)
      parseArgumentCharacter(argChars.charAt(i));
  }

  private void parseArgumentCharacter(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null) {
      throw new ArgsException(UNEXPECTED_ARGUMENT, argChar, null);
    } else {
      argsFound.add(argChar);
      try {
        m.set(currentArgument);
      } catch (ArgsException e) {
        e.setErrorArgumentId(argChar);
        throw e;
      }
    }
  }

  public boolean has(char arg) {
    return argsFound.contains(arg);
  }

  public int nextArgument() {
    return currentArgument.nextIndex();
  }

  public boolean getBoolean(char arg) {
    return BooleanArgumentMarshaler.getValue(marshalers.get(arg));
  }

  public String getString(char arg) {
    return StringArgumentMarshaler.getValue(marshalers.get(arg));
  }

  public int getInt(char arg) {
    return IntegerArgumentMarshaler.getValue(marshalers.get(arg));
  }

  public double getDouble(char arg) {
    return DoubleArgumentMarshaler.getValue(marshalers.get(arg));
  }

  public String[] getStringArray(char arg) {
    return StringArrayArgumentMarshaler.getValue(marshalers.get(arg));
  }
}

Listing 14-2  (continued)
Args.java



197AArgs Implementation

you should understand what the ArgumentMarshaler interface is and what its derivatives do.
I’ll show a few of them to you now (Listing 14-3 through Listing 14-6).

Listing 14-3 
ArgumentMarshaler.java
public interface ArgumentMarshaler {
  void set(Iterator<String> currentArgument) throws ArgsException;
}

Listing 14-4 
BooleanArgumentMarshaler.java
public class BooleanArgumentMarshaler implements ArgumentMarshaler {
  private boolean booleanValue = false;

  public void set(Iterator<String> currentArgument) throws ArgsException {
    booleanValue = true;
  }

  public static boolean getValue(ArgumentMarshaler am) {
    if (am != null && am instanceof BooleanArgumentMarshaler)
      return ((BooleanArgumentMarshaler) am).booleanValue;
    else
      return false;
  }
}

Listing 14-5 
StringArgumentMarshaler.java
import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class StringArgumentMarshaler implements ArgumentMarshaler {
  private String stringValue = "";

  public void set(Iterator<String> currentArgument) throws ArgsException {
    try {
      stringValue = currentArgument.next();
    } catch (NoSuchElementException e) {
      throw new ArgsException(MISSING_STRING);
    }
  }

  public static String getValue(ArgumentMarshaler am) {
    if (am != null && am instanceof StringArgumentMarshaler)
      return ((StringArgumentMarshaler) am).stringValue;
    else
      return "";
  }
}



198A Chapter 14: Successive Refinement

The other ArgumentMarshaler derivatives simply replicate this pattern for doubles and
String arrays and would serve to clutter this chapter. I’ll leave them to you as an exercise.

One other bit of information might be troubling you: the definition of the error code
constants. They are in the ArgsException class (Listing 14-7).

Listing 14-6 
IntegerArgumentMarshaler.java
import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class IntegerArgumentMarshaler implements ArgumentMarshaler {
  private int intValue = 0;

  public void set(Iterator<String> currentArgument) throws ArgsException {
    String parameter = null;
    try {
      parameter = currentArgument.next();
      intValue = Integer.parseInt(parameter);
    } catch (NoSuchElementException e) {
      throw new ArgsException(MISSING_INTEGER);
    } catch (NumberFormatException e) {
      throw new ArgsException(INVALID_INTEGER, parameter);
    }
  }

  public static int getValue(ArgumentMarshaler am) {
    if (am != null && am instanceof IntegerArgumentMarshaler)
      return ((IntegerArgumentMarshaler) am).intValue;
    else
      return 0;
  }
}

Listing 14-7 
ArgsException.java
import static com.objectmentor.utilities.args.ArgsException.ErrorCode.*;

public class ArgsException extends Exception {
  private char errorArgumentId = '\0';
  private String errorParameter = null;
  private ErrorCode errorCode = OK;

  public ArgsException() {}

  public ArgsException(String message) {super(message);}

  public ArgsException(ErrorCode errorCode) {
    this.errorCode = errorCode;
  }

  public ArgsException(ErrorCode errorCode, String errorParameter) {
    this.errorCode = errorCode;
    this.errorParameter = errorParameter;
  }



199AArgs Implementation

  public ArgsException(ErrorCode errorCode, 
                       char errorArgumentId, String errorParameter) {
    this.errorCode = errorCode;
    this.errorParameter = errorParameter;
    this.errorArgumentId = errorArgumentId;
  }

  public char getErrorArgumentId() {
    return errorArgumentId;
  }

  public void setErrorArgumentId(char errorArgumentId) {
    this.errorArgumentId = errorArgumentId;
  }

  public String getErrorParameter() {
    return errorParameter;
  }

  public void setErrorParameter(String errorParameter) {
    this.errorParameter = errorParameter;
  }

  public ErrorCode getErrorCode() {
    return errorCode;
  }

  public void setErrorCode(ErrorCode errorCode) {
    this.errorCode = errorCode;
  }

  public String errorMessage() {
    switch (errorCode) {
      case OK:
        return "TILT: Should not get here.";
      case UNEXPECTED_ARGUMENT:
        return String.format("Argument -%c unexpected.", errorArgumentId);
      case MISSING_STRING:
        return String.format("Could not find string parameter for -%c.", 
                             errorArgumentId);
      case INVALID_INTEGER:
        return String.format("Argument -%c expects an integer but was '%s'.", 
                             errorArgumentId, errorParameter);
      case MISSING_INTEGER:
        return String.format("Could not find integer parameter for -%c.", 
                             errorArgumentId);
      case INVALID_DOUBLE:
        return String.format("Argument -%c expects a double but was '%s'.", 
                             errorArgumentId, errorParameter);
      case MISSING_DOUBLE:
        return String.format("Could not find double parameter for -%c.", 
                             errorArgumentId);
      case INVALID_ARGUMENT_NAME:
        return String.format("'%c' is not a valid argument name.", 
                             errorArgumentId);

Listing 14-7 (continued)
ArgsException.java



200A Chapter 14: Successive Refinement

It’s remarkable how much code is required to flesh out the details of this simple con-
cept. One of the reasons for this is that we are using a particularly wordy language. Java,
being a statically typed language, requires a lot of words in order to satisfy the type sys-
tem. In a language like Ruby, Python, or Smalltalk, this program is much smaller.1

Please read the code over one more time. Pay special attention to the way things are
named, the size of the functions, and the formatting of the code. If you are an experienced
programmer, you may have some quibbles here and there with various parts of the style or
structure. Overall, however, I hope you conclude that this program is nicely written and
has a clean structure. 

For example, it should be obvious how you would add a new argument type, such as a
date argument or a complex number argument, and that such an addition would require a
trivial amount of effort. In short, it would simply require a new derivative of Argument-
Marshaler, a new getXXX function, and a new case statement in the parseSchemaElement
function. There would also probably be a new ArgsException.ErrorCode and a new error
message.

How Did I Do This?

Let me set your mind at rest. I did not simply write this program from beginning to end in
its current form. More importantly, I am not expecting you to be able to write clean and
elegant programs in one pass. If we have learned anything over the last couple of decades,
it is that programming is a craft more than it is a science. To write clean code, you must
first write dirty code and then clean it.

This should not be a surprise to you. We learned this truth in grade school when our
teachers tried (usually in vain) to get us to write rough drafts of our compositions. The pro-
cess, they told us, was that we should write a rough draft, then a second draft, then several
subsequent drafts until we had our final version. Writing clean compositions, they tried to
tell us, is a matter of successive refinement.

      case INVALID_ARGUMENT_FORMAT:
        return String.format("'%s' is not a valid argument format.", 
                             errorParameter);
    }
    return "";
  }

  public enum ErrorCode {
    OK, INVALID_ARGUMENT_FORMAT, UNEXPECTED_ARGUMENT, INVALID_ARGUMENT_NAME,
    MISSING_STRING,
    MISSING_INTEGER, INVALID_INTEGER,
    MISSING_DOUBLE, INVALID_DOUBLE}
}

1. I recently rewrote this module in Ruby. It was 1/7th the size and had a subtly better structure.

Listing 14-7 (continued)
ArgsException.java



201AArgs: The Rough Draft

Most freshman programmers (like most grade-schoolers) don’t follow this advice par-
ticularly well. They believe that the primary goal is to get the program working. Once it’s
“working,” they move on to the next task, leaving the “working” program in whatever state
they finally got it to “work.” Most seasoned programmers know that this is professional
suicide.

Args: The Rough Draft

Listing 14-8 shows an earlier version of the Args class. It “works.” And it’s messy.

Listing 14-8 
Args.java (first draft)
import java.text.ParseException;
import java.util.*;

public class Args {
  private String schema;
  private String[] args;
  private boolean valid = true;
  private Set<Character> unexpectedArguments = new TreeSet<Character>();
  private Map<Character, Boolean> booleanArgs = 
    new HashMap<Character, Boolean>();
  private Map<Character, String> stringArgs = new HashMap<Character, String>();
  private Map<Character, Integer> intArgs = new HashMap<Character, Integer>();
  private Set<Character> argsFound = new HashSet<Character>();
  private int currentArgument;
  private char errorArgumentId = '\0';
  private String errorParameter = "TILT";
  private ErrorCode errorCode = ErrorCode.OK;

  private enum ErrorCode {
    OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT}

  public Args(String schema, String[] args) throws ParseException {
    this.schema = schema;
    this.args = args;
    valid = parse();
  }

  private boolean parse() throws ParseException {
    if (schema.length() == 0 && args.length == 0)
      return true;
    parseSchema();
    try {
      parseArguments();
    } catch (ArgsException e) {
    }
    return valid;
  }

  private boolean parseSchema() throws ParseException {
    for (String element : schema.split(",")) {



202A Chapter 14: Successive Refinement

      if (element.length() > 0) {
        String trimmedElement = element.trim();
        parseSchemaElement(trimmedElement);
      }
    }
    return true;
  }

  private void parseSchemaElement(String element) throws ParseException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (isBooleanSchemaElement(elementTail))
      parseBooleanSchemaElement(elementId);
    else if (isStringSchemaElement(elementTail))
      parseStringSchemaElement(elementId);
    else if (isIntegerSchemaElement(elementTail)) {
      parseIntegerSchemaElement(elementId);
    } else {
      throw new ParseException(
        String.format("Argument: %c has invalid format: %s.", 
                      elementId, elementTail), 0);
    }
  }

  private void validateSchemaElementId(char elementId) throws ParseException {
    if (!Character.isLetter(elementId)) {
      throw new ParseException(
        "Bad character:" + elementId + "in Args format: " + schema, 0);
    }
  }

  private void parseBooleanSchemaElement(char elementId) {
    booleanArgs.put(elementId, false);
  }

  private void parseIntegerSchemaElement(char elementId) {
    intArgs.put(elementId, 0);
  }

  private void parseStringSchemaElement(char elementId) {
    stringArgs.put(elementId, "");
  }

  private boolean isStringSchemaElement(String elementTail) {
    return elementTail.equals("*");
  }

  private boolean isBooleanSchemaElement(String elementTail) {
    return elementTail.length() == 0;
  }

  private boolean isIntegerSchemaElement(String elementTail) {
    return elementTail.equals("#");
  }

Listing 14-8 (continued)
Args.java (first draft)



203AArgs: The Rough Draft

  private boolean parseArguments() throws ArgsException {
    for (currentArgument = 0; currentArgument < args.length; currentArgument++) 
    {
      String arg = args[currentArgument];
      parseArgument(arg);
    }
    return true;
  }

  private void parseArgument(String arg) throws ArgsException {
    if (arg.startsWith("-"))
      parseElements(arg);
  }

  private void parseElements(String arg) throws ArgsException {
    for (int i = 1; i < arg.length(); i++)
      parseElement(arg.charAt(i));
  }

  private void parseElement(char argChar) throws ArgsException {
    if (setArgument(argChar))
      argsFound.add(argChar);
    else {
      unexpectedArguments.add(argChar);
      errorCode = ErrorCode.UNEXPECTED_ARGUMENT;
      valid = false;
    }
  }

  private boolean setArgument(char argChar) throws ArgsException {
    if (isBooleanArg(argChar))
      setBooleanArg(argChar, true);
    else if (isStringArg(argChar))
      setStringArg(argChar);
    else if (isIntArg(argChar))
      setIntArg(argChar);
    else
      return false;

    return true;
  }

  private boolean isIntArg(char argChar) {return intArgs.containsKey(argChar);}

  private void setIntArg(char argChar) throws ArgsException {
    currentArgument++;
    String parameter = null;
    try {
      parameter = args[currentArgument];
      intArgs.put(argChar, new Integer(parameter));
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorCode = ErrorCode.MISSING_INTEGER;

Listing 14-8 (continued)
Args.java (first draft)



204A Chapter 14: Successive Refinement

      throw new ArgsException();
    } catch (NumberFormatException e) {
      valid = false;
      errorArgumentId = argChar;
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw new ArgsException();
    }
  }

  private void setStringArg(char argChar) throws ArgsException {
    currentArgument++;
    try {
      stringArgs.put(argChar, args[currentArgument]);
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorCode = ErrorCode.MISSING_STRING;
      throw new ArgsException();
    }
  }

  private boolean isStringArg(char argChar) {
    return stringArgs.containsKey(argChar);
  }

  private void setBooleanArg(char argChar, boolean value) {
    booleanArgs.put(argChar, value);
  }

  private boolean isBooleanArg(char argChar) {
    return booleanArgs.containsKey(argChar);
  }

  public int cardinality() {
    return argsFound.size();
  }

  public String usage() {
    if (schema.length() > 0)
      return "-[" + schema + "]";
    else
      return "";
  }

  public String errorMessage() throws Exception {
    switch (errorCode) {
      case OK:
        throw new Exception("TILT: Should not get here.");
      case UNEXPECTED_ARGUMENT:
        return unexpectedArgumentMessage();
      case MISSING_STRING:
        return String.format("Could not find string parameter for -%c.", 
                             errorArgumentId);

Listing 14-8 (continued)
Args.java (first draft)



205AArgs: The Rough Draft

      case INVALID_INTEGER:
        return String.format("Argument -%c expects an integer but was '%s'.", 
                             errorArgumentId, errorParameter);
      case MISSING_INTEGER:
        return String.format("Could not find integer parameter for -%c.", 
                             errorArgumentId);
    }
    return "";
  }

  private String unexpectedArgumentMessage() {
    StringBuffer message = new StringBuffer("Argument(s) -");
    for (char c : unexpectedArguments) {
      message.append(c);
    }
    message.append(" unexpected.");

    return message.toString();
  }

  private boolean falseIfNull(Boolean b) {
    return b != null && b;
  }

  private int zeroIfNull(Integer i) {
    return i == null ? 0 : i;
  }

  private String blankIfNull(String s) {
    return s == null ? "" : s;
  }

  public String getString(char arg) {
    return blankIfNull(stringArgs.get(arg));
  }

  public int getInt(char arg) {
    return zeroIfNull(intArgs.get(arg));
  }

  public boolean getBoolean(char arg) {
    return falseIfNull(booleanArgs.get(arg));
  }

  public boolean has(char arg) {
    return argsFound.contains(arg);
  }

  public boolean isValid() {
    return valid;
  }

  private class ArgsException extends Exception {
  }
}

Listing 14-8 (continued)
Args.java (first draft)



206A Chapter 14: Successive Refinement

I hope your initial reaction to this mass of code is “I’m certainly glad he didn’t leave it
like that!” If you feel like this, then remember that’s how other people are going to feel
about code that you leave in rough-draft form. 

Actually “rough draft” is probably the kindest thing you can say about this code. It’s
clearly a work in progress. The sheer number of instance variables is daunting. The odd
strings like “TILT,” the HashSets and TreeSets, and the try-catch-catch blocks all add up to
a festering pile.

I had not wanted to write a festering pile. Indeed, I was trying to keep things reason-
ably well organized. You can probably tell that from my choice of function and variable
names and the fact that there is a crude structure to the program. But, clearly, I had let the
problem get away from me. 

The mess built gradually. Earlier versions had not been nearly so nasty. For example,
Listing 14-9 shows an earlier version in which only Boolean arguments were working.

Listing 14-9 
Args.java (Boolean only)
package com.objectmentor.utilities.getopts;

import java.util.*;

public class Args {
  private String schema;
  private String[] args;
  private boolean valid;
  private Set<Character> unexpectedArguments = new TreeSet<Character>();
  private Map<Character, Boolean> booleanArgs = 
    new HashMap<Character, Boolean>();
  private int numberOfArguments = 0;

  public Args(String schema, String[] args) {
    this.schema = schema;
    this.args = args;
    valid = parse();
  }

  public boolean isValid() {
    return valid;
  }

  private boolean parse() {
    if (schema.length() == 0 && args.length == 0)
      return true;
    parseSchema();
    parseArguments();
    return unexpectedArguments.size() == 0;
  }

  private boolean parseSchema() {
    for (String element : schema.split(",")) {
      parseSchemaElement(element);
    }



207AArgs: The Rough Draft

    return true;
  }

  private void parseSchemaElement(String element) {
    if (element.length() == 1) {
      parseBooleanSchemaElement(element);
    }
  }

  private void parseBooleanSchemaElement(String element) {
    char c = element.charAt(0);
    if (Character.isLetter(c)) {
      booleanArgs.put(c, false);
    }
  }

  private boolean parseArguments() {
    for (String arg : args)
      parseArgument(arg);
    return true;
  }

  private void parseArgument(String arg) {
    if (arg.startsWith("-"))
      parseElements(arg);
  }

  private void parseElements(String arg) {
    for (int i = 1; i < arg.length(); i++)
      parseElement(arg.charAt(i));
  }

  private void parseElement(char argChar) {
    if (isBoolean(argChar)) {
      numberOfArguments++;
      setBooleanArg(argChar, true);
    } else
      unexpectedArguments.add(argChar);
  }

  private void setBooleanArg(char argChar, boolean value) {
    booleanArgs.put(argChar, value);
  }

  private boolean isBoolean(char argChar) {
    return booleanArgs.containsKey(argChar);
  }

  public int cardinality() {
    return numberOfArguments;
  }

  public String usage() {
    if (schema.length() > 0)
       return "-["+schema+"]";

Listing 14-9 (continued)
Args.java (Boolean only)



208A Chapter 14: Successive Refinement

Although you can find plenty to complain about in this code, it’s really not that bad.
It’s compact and simple and easy to understand. However, within this code it is easy to see
the seeds of the later festering pile. It’s quite clear how this grew into the latter mess.

Notice that the latter mess has only two more argument types than this: String and
integer. The addition of just two more argument types had a massively negative impact on
the code. It converted it from something that would have been reasonably maintainable
into something that I would expect to become riddled with bugs and warts. 

I added the two argument types incrementally. First, I added the String argument,
which yielded this: 

    else
      return "";
  }

  public String errorMessage() {
    if (unexpectedArguments.size() > 0) {
      return unexpectedArgumentMessage();
    } else
      return "";
  }

  private String unexpectedArgumentMessage() {
    StringBuffer message = new StringBuffer("Argument(s) -");
    for (char c : unexpectedArguments) {
      message.append(c);
    }
    message.append(" unexpected.");

    return message.toString();
  }

  public boolean getBoolean(char arg) {
    return booleanArgs.get(arg);
  }
}

Listing 14-10 
Args.java (Boolean and String)
package com.objectmentor.utilities.getopts;

import java.text.ParseException;
import java.util.*;

public class Args {
  private String schema;
  private String[] args;
  private boolean valid = true;
  private Set<Character> unexpectedArguments = new TreeSet<Character>();
  private Map<Character, Boolean> booleanArgs = 
    new HashMap<Character, Boolean>();

Listing 14-9 (continued)
Args.java (Boolean only)



209AArgs: The Rough Draft

  private Map<Character, String> stringArgs = 
    new HashMap<Character, String>();
  private Set<Character> argsFound = new HashSet<Character>();
  private int currentArgument;
  private char errorArgument = '\0';

  enum ErrorCode {
    OK, MISSING_STRING}

  private ErrorCode errorCode = ErrorCode.OK;

  public Args(String schema, String[] args) throws ParseException {
    this.schema = schema;
    this.args = args;
    valid = parse();
  }

  private boolean parse() throws ParseException {
    if (schema.length() == 0 && args.length == 0)
      return true;
    parseSchema();
    parseArguments();
    return valid;
  }

  private boolean parseSchema() throws ParseException {
    for (String element : schema.split(",")) {
      if (element.length() > 0) {
        String trimmedElement = element.trim();
        parseSchemaElement(trimmedElement);
      }
    }
    return true;
  }

  private void parseSchemaElement(String element) throws ParseException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (isBooleanSchemaElement(elementTail))
      parseBooleanSchemaElement(elementId);
    else if (isStringSchemaElement(elementTail))
      parseStringSchemaElement(elementId);
  }

  private void validateSchemaElementId(char elementId) throws ParseException {
    if (!Character.isLetter(elementId)) {
      throw new ParseException(
        "Bad character:" + elementId + "in Args format: " + schema, 0);
    }

  }

  private void parseStringSchemaElement(char elementId) {
    stringArgs.put(elementId, "");
  }

Listing 14-10 (continued)
Args.java (Boolean and String)



210A Chapter 14: Successive Refinement

  private boolean isStringSchemaElement(String elementTail) {
    return elementTail.equals("*");
  }

  private boolean isBooleanSchemaElement(String elementTail) {
    return elementTail.length() == 0;
  }

  private void parseBooleanSchemaElement(char elementId) {
    booleanArgs.put(elementId, false);
  }

  private boolean parseArguments() {
    for (currentArgument = 0; currentArgument < args.length; currentArgument++) 
    {
      String arg = args[currentArgument];
      parseArgument(arg);
    }
    return true;
  }

  private void parseArgument(String arg) {
    if (arg.startsWith("-"))
      parseElements(arg);
  }

  private void parseElements(String arg) {
    for (int i = 1; i < arg.length(); i++)
      parseElement(arg.charAt(i));
  }

  private void parseElement(char argChar) {
    if (setArgument(argChar))
      argsFound.add(argChar);
    else {
      unexpectedArguments.add(argChar);
      valid = false;
    }
  }

  private boolean setArgument(char argChar) {
    boolean set = true;
    if (isBoolean(argChar))
      setBooleanArg(argChar, true);
    else if (isString(argChar))
      setStringArg(argChar, "");
    else
      set = false;

    return set;
  }

  private void setStringArg(char argChar, String s) {
    currentArgument++;
    try {

Listing 14-10 (continued)
Args.java (Boolean and String)



211AArgs: The Rough Draft

      stringArgs.put(argChar, args[currentArgument]);
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgument = argChar;
      errorCode = ErrorCode.MISSING_STRING;
    }
  }

  private boolean isString(char argChar) {
    return stringArgs.containsKey(argChar);
  }

  private void setBooleanArg(char argChar, boolean value) {
    booleanArgs.put(argChar, value);
  }

  private boolean isBoolean(char argChar) {
    return booleanArgs.containsKey(argChar);
  }

  public int cardinality() {
    return argsFound.size();
  }

  public String usage() {
    if (schema.length() > 0)
      return "-[" + schema + "]";
    else
      return "";
  }

  public String errorMessage() throws Exception {
    if (unexpectedArguments.size() > 0) {
      return unexpectedArgumentMessage();
    } else
      switch (errorCode) {
        case MISSING_STRING:
          return String.format("Could not find string parameter for -%c.", 
                               errorArgument);
        case OK:
          throw new Exception("TILT: Should not get here.");
      }
    return "";
  }

  private String unexpectedArgumentMessage() {
    StringBuffer message = new StringBuffer("Argument(s) -");
    for (char c : unexpectedArguments) {
      message.append(c);
    }
    message.append(" unexpected.");

    return message.toString();
  }

Listing 14-10 (continued)
Args.java (Boolean and String)



212A Chapter 14: Successive Refinement

You can see that this is starting to get out of hand. It’s still not horrible, but the mess is
certainly starting to grow. It’s a pile, but it’s not festering quite yet. It took the addition of
the integer argument type to get this pile really fermenting and festering.

So I Stopped

I had at least two more argument types to add, and I could tell that they would make things
much worse. If I bulldozed my way forward, I could probably get them to work, but I’d
leave behind a mess that was too large to fix. If the structure of this code was ever going to
be maintainable, now was the time to fix it.

So I stopped adding features and started refactoring. Having just added the String and
integer arguments, I knew that each argument type required new code in three major
places. First, each argument type required some way to parse its schema element in order
to select the HashMap for that type. Next, each argument type needed to be parsed in the
command-line strings and converted to its true type. Finally, each argument type needed a
getXXX method so that it could be returned to the caller as its true type. 

Many different types, all with similar methods—that sounds like a class to me. And so
the ArgumentMarshaler concept was born.

On Incrementalism

One of the best ways to ruin a program is to make massive changes to its structure in the name of
improvement. Some programs never recover from such “improvements.” The problem is that it’s
very hard to get the program working the same way it worked before the “improvement.” 

  public boolean getBoolean(char arg) {
    return falseIfNull(booleanArgs.get(arg));
  }

  private boolean falseIfNull(Boolean b) {
    return b == null ? false : b;
  }

  public String getString(char arg) {
    return blankIfNull(stringArgs.get(arg));
  }

  private String blankIfNull(String s) {
    return s == null ? "" : s;
  }

  public boolean has(char arg) {
    return argsFound.contains(arg);
  }

  public boolean isValid() {
    return valid;
  }
}

Listing 14-10 (continued)
Args.java (Boolean and String)



213AArgs: The Rough Draft

To avoid this, I use the discipline of Test-Driven Development (TDD). One of the cen-
tral doctrines of this approach is to keep the system running at all times. In other words,
using TDD, I am not allowed to make a change to the system that breaks that system.
Every change I make must keep the system working as it worked before.

To achieve this, I need a suite of automated tests that I can run on a whim and that ver-
ifies that the behavior of the system is unchanged. For the Args class I had created a suite
of unit and acceptance tests while I was building the festering pile. The unit tests were
written in Java and administered by JUnit. The acceptance tests were written as wiki pages
in FitNesse. I could run these tests any time I wanted, and if they passed, I was confident
that the system was working as I specified.

So I proceeded to make a large number of very tiny changes. Each change moved the
structure of the system toward the ArgumentMarshaler concept. And yet each change kept
the system working. The first change I made was to add the skeleton of the
ArgumentMarshaller to the end of the festering pile (Listing 14-11).

Clearly, this wasn’t going to break anything. So then I made the simplest modification
I could, one that would break as little as possible. I changed the HashMap for the Boolean
arguments to take an ArgumentMarshaler.

private Map<Character, ArgumentMarshaler> booleanArgs = 
    new HashMap<Character, ArgumentMarshaler>();

This broke a few statements, which I quickly fixed.

...
private void parseBooleanSchemaElement(char elementId) {

    booleanArgs.put(elementId, new BooleanArgumentMarshaler());
  }
..

Listing 14-11
ArgumentMarshaller appended to Args.java
private class ArgumentMarshaler {
    private boolean booleanValue = false;

    public void setBoolean(boolean value) {
      booleanValue = value;
    }

    public boolean getBoolean() {return booleanValue;}
  }

  private class BooleanArgumentMarshaler extends ArgumentMarshaler {
  }

  private class StringArgumentMarshaler extends ArgumentMarshaler {
  }

  private class IntegerArgumentMarshaler extends ArgumentMarshaler {
  }
}



214A Chapter 14: Successive Refinement

  private void setBooleanArg(char argChar, boolean value) {
    booleanArgs.get(argChar).setBoolean(value);
  }
...
  public boolean getBoolean(char arg) {
    return falseIfNull(booleanArgs.get(arg).getBoolean());
  }

Notice how these changes are in exactly the areas that I mentioned before: the parse,
set, and get for the argument type. Unfortunately, small as this change was, some of the
tests started failing. If you look carefully at getBoolean, you’ll see that if you call it with
'y,' but there is no y argument, then booleanArgs.get('y') will return null, and the func-
tion will throw a NullPointerException. The falseIfNull function had been used to protect
against this, but the change I made caused that function to become irrelevant.

Incrementalism demanded that I get this working quickly before making any other
changes. Indeed, the fix was not too difficult. I just had to move the check for null. It was
no longer the boolean being null that I needed to check; it was the ArgumentMarshaller. 

First, I removed the falseIfNull call in the getBoolean function. It was useless now, so
I also eliminated the function itself. The tests still failed in the same way, so I was confi-
dent that I hadn’t introduced any new errors. 

public boolean getBoolean(char arg) {
    return booleanArgs.get(arg).getBoolean();
  }

Next, I split the function into two lines and put the ArgumentMarshaller into its own vari-
able named argumentMarshaller. I didn’t care for the long variable name; it was badly
redundant and cluttered up the function. So I shortened it to am [N5]. 

public boolean getBoolean(char arg) {
    Args.ArgumentMarshaler am = booleanArgs.get(arg);
    return am.getBoolean();
  }

And then I put in the null detection logic.

public boolean getBoolean(char arg) {
    Args.ArgumentMarshaler am = booleanArgs.get(arg);
    return am != null && am.getBoolean();
  }

String Arguments

Adding String arguments was very similar to adding boolean arguments. I had to change
the HashMap and get the parse, set, and get functions working. There shouldn’t be any sur-
prises in what follows except, perhaps, that I seem to be putting all the marshalling imple-
mentation in the ArgumentMarshaller base class instead of distributing it to the derivatives.

private Map<Character, ArgumentMarshaler> stringArgs = 
      new HashMap<Character, ArgumentMarshaler>();
...



215AString Arguments

  private void parseStringSchemaElement(char elementId) {
    stringArgs.put(elementId, new StringArgumentMarshaler());
  }
...
  private void setStringArg(char argChar) throws ArgsException {
    currentArgument++;
    try {
      stringArgs.get(argChar).setString(args[currentArgument]);
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorCode = ErrorCode.MISSING_STRING;
      throw new ArgsException();
    }
  }
...
  public String getString(char arg) {
    Args.ArgumentMarshaler am = stringArgs.get(arg);
    return am == null ? "" : am.getString();
  }
...
  private class ArgumentMarshaler {
    private boolean booleanValue = false;
    private String stringValue;

    public void setBoolean(boolean value) {
      booleanValue = value;
    }

    public boolean getBoolean() {
      return booleanValue;
    }

    public void setString(String s) {
      stringValue = s;
    }

    public String getString() {
      return stringValue == null ? "" : stringValue;
    }
  }

Again, these changes were made one at a time and in such a way that the tests kept
running, if not passing. When a test broke, I made sure to get it passing again before con-
tinuing with the next change. 

By now you should be able to see my intent. Once I get all the current marshalling
behavior into the ArgumentMarshaler base class, I’m going to start pushing that behavior
down into the derivatives. This will allow me to keep everything running while I gradually
change the shape of this program.

The obvious next step was to move the int argument functionality into the
ArgumentMarshaler. Again, there weren’t any surprises.

private Map<Character, ArgumentMarshaler> intArgs = 
     new HashMap<Character, ArgumentMarshaler>();
...



216A Chapter 14: Successive Refinement

  private void parseIntegerSchemaElement(char elementId) {
    intArgs.put(elementId, new IntegerArgumentMarshaler());
  }
...
  private void setIntArg(char argChar) throws ArgsException {
    currentArgument++;
    String parameter = null;
    try {
      parameter = args[currentArgument];
      intArgs.get(argChar).setInteger(Integer.parseInt(parameter));
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorCode = ErrorCode.MISSING_INTEGER;
      throw new ArgsException();
    } catch (NumberFormatException e) {
      valid = false;
      errorArgumentId = argChar;
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw new ArgsException();
    }
  }
...
  public int getInt(char arg) {
    Args.ArgumentMarshaler am = intArgs.get(arg);
    return am == null ? 0 : am.getInteger();
  }
...
  private class ArgumentMarshaler {
    private boolean booleanValue = false;
    private String stringValue;
    private int integerValue;

    public void setBoolean(boolean value) {
      booleanValue = value;
    }

    public boolean getBoolean() {
      return booleanValue;
    }

    public void setString(String s) {
      stringValue = s;
    }

    public String getString() {
      return stringValue == null ? "" : stringValue;
    }

    public void setInteger(int i) {
      integerValue = i;
    }

    public int getInteger() {
      return integerValue;
    }
  }



217AString Arguments

With all the marshalling moved to the ArgumentMarshaler, I started pushing functional-
ity into the derivatives. The first step was to move the setBoolean function into the
BooleanArgumentMarshaller and make sure it got called correctly. So I created an abstract
set method.

private abstract class ArgumentMarshaler {
    protected boolean booleanValue = false;
    private String stringValue;
    private int integerValue;

    public void setBoolean(boolean value) {
      booleanValue = value;
    }

    public boolean getBoolean() {
      return booleanValue;
    }

    public void setString(String s) {
      stringValue = s;
    }

    public String getString() {
      return stringValue == null ? "" : stringValue;
    }

    public void setInteger(int i) {
      integerValue = i;
    }

    public int getInteger() {
      return integerValue;
    }

    public abstract void set(String s);
  }

Then I implemented the set method in BooleanArgumentMarshaller.

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
    public void set(String s) {
      booleanValue = true;
    }
  }

And finally I replaced the call to setBoolean with a call to set.

private void setBooleanArg(char argChar, boolean value) {
    booleanArgs.get(argChar).set("true");
  }

The tests all still passed. Because this change caused set to be deployed to the Boolean-
ArgumentMarshaler, I removed the setBoolean method from the ArgumentMarshaler base
class. 

Notice that the abstract set function takes a String argument, but the implementation
in the BooleanArgumentMarshaller does not use it. I put that argument in there because I
knew that the StringArgumentMarshaller and IntegerArgumentMarshaller would use it. 



218A Chapter 14: Successive Refinement

Next, I wanted to deploy the get method into BooleanArgumentMarshaler. Deploying
get functions is always ugly because the return type has to be Object, and in this case
needs to be cast to a Boolean. 

public boolean getBoolean(char arg) {
    Args.ArgumentMarshaler am = booleanArgs.get(arg);
    return am != null && (Boolean)am.get();
  }

Just to get this to compile, I added the get function to the ArgumentMarshaler.

private abstract class ArgumentMarshaler {
    ...

    public Object get() {
      return null;
    }
  }

This compiled and obviously failed the tests. Getting the tests working again was simply a
matter of making get abstract and implementing it in BooleanAgumentMarshaler.

private abstract class ArgumentMarshaler {
    protected boolean booleanValue = false;
    ...

    public abstract Object get();
  }

  private class BooleanArgumentMarshaler extends ArgumentMarshaler {
    public void set(String s) {
      booleanValue = true;
    }

    public Object get() {
      return booleanValue;
    }
  }

Once again the tests passed. So both get and set deploy to the BooleanArgumentMarshaler!
This allowed me to remove the old getBoolean function from ArgumentMarshaler, move the
protected booleanValue variable down to BooleanArgumentMarshaler, and make it private.

I did the same pattern of changes for Strings. I deployed both set and get, deleted the
unused functions, and moved the variables.

private void setStringArg(char argChar) throws ArgsException {
    currentArgument++;
    try {
      stringArgs.get(argChar).set(args[currentArgument]);
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorCode = ErrorCode.MISSING_STRING;
      throw new ArgsException();
    }
  }



219AString Arguments

...
  public String getString(char arg) {
    Args.ArgumentMarshaler am = stringArgs.get(arg);
    return am == null ? "" : (String) am.get();
  }
...

private abstract class ArgumentMarshaler {
    private int integerValue;

    public void setInteger(int i) {
      integerValue = i;
    }

    public int getInteger() {
      return integerValue;
    }

    public abstract void set(String s);

    public abstract Object get();
  }

  private class BooleanArgumentMarshaler extends ArgumentMarshaler {
    private boolean booleanValue = false;

    public void set(String s) {
      booleanValue = true;
    }

    public Object get() {
      return booleanValue;
    }
  }

  private class StringArgumentMarshaler extends ArgumentMarshaler {
    private String stringValue = "";

    public void set(String s) {
      stringValue = s;
    }

    public Object get() {
      return stringValue;
    }
  }

  private class IntegerArgumentMarshaler extends ArgumentMarshaler {

    public void set(String s) {

    }

    public Object get() {
      return null;
    }
  }
}



220A Chapter 14: Successive Refinement

Finally, I repeated the process for integers. This was just a little more complicated
because integers needed to be parsed, and the parse operation can throw an exception. But
the result is better because the whole concept of NumberFormatException got buried in the
IntegerArgumentMarshaler.

private boolean isIntArg(char argChar) {return intArgs.containsKey(argChar);}

  private void setIntArg(char argChar) throws ArgsException {
    currentArgument++;
    String parameter = null;
    try {
      parameter = args[currentArgument];
      intArgs.get(argChar).set(parameter);
    } catch (ArrayIndexOutOfBoundsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorCode = ErrorCode.MISSING_INTEGER;
      throw new ArgsException();
    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw e;
    }
  }
...
  private void setBooleanArg(char argChar) {
    try {
      booleanArgs.get(argChar).set("true");
    } catch (ArgsException e) {
    }
  }
...
  public int getInt(char arg) {
    Args.ArgumentMarshaler am = intArgs.get(arg);
    return am == null ? 0 : (Integer) am.get();
  }
...
  private abstract class ArgumentMarshaler {
    public abstract void set(String s) throws ArgsException;
    public abstract Object get();
  }
...
  private class IntegerArgumentMarshaler extends ArgumentMarshaler {
    private int intValue = 0;

    public void set(String s) throws ArgsException {
      try {
        intValue = Integer.parseInt(s);
      } catch (NumberFormatException e) {
        throw new ArgsException();
      }
    }

    public Object get() {
      return intValue;
    }
  }



221AString Arguments

Of course, the tests continued to pass. Next, I got rid of the three different maps up at
the top of the algorithm. This made the whole system much more generic. However, I
couldn’t get rid of them just by deleting them because that would break the system.
Instead, I added a new Map for the ArgumentMarshaler and then one by one changed the
methods to use it instead of the three original maps.

public class Args {
...
  private Map<Character, ArgumentMarshaler> booleanArgs = 
    new HashMap<Character, ArgumentMarshaler>();
  private Map<Character, ArgumentMarshaler> stringArgs = 
    new HashMap<Character, ArgumentMarshaler>();
  private Map<Character, ArgumentMarshaler> intArgs = 
    new HashMap<Character, ArgumentMarshaler>();
  private Map<Character, ArgumentMarshaler> marshalers = 
    new HashMap<Character, ArgumentMarshaler>();
...
  private void parseBooleanSchemaElement(char elementId) {
    ArgumentMarshaler m = new BooleanArgumentMarshaler();
    booleanArgs.put(elementId, m);
    marshalers.put(elementId, m);
  }

  private void parseIntegerSchemaElement(char elementId) {
    ArgumentMarshaler m = new IntegerArgumentMarshaler();
    intArgs.put(elementId, m);
    marshalers.put(elementId, m);
  }

  private void parseStringSchemaElement(char elementId) {
    ArgumentMarshaler m = new StringArgumentMarshaler();
    stringArgs.put(elementId, m);
    marshalers.put(elementId, m);
  }

Of course the tests all still passed. Next, I changed isBooleanArg from this:

private boolean isBooleanArg(char argChar) {
    return booleanArgs.containsKey(argChar);
  }

to this:

private boolean isBooleanArg(char argChar) {
    ArgumentMarshaler m = marshalers.get(argChar);
    return m instanceof BooleanArgumentMarshaler;
  }

The tests still passed. So I made the same change to isIntArg and isStringArg.

private boolean isIntArg(char argChar) {
    ArgumentMarshaler m = marshalers.get(argChar);
    return m instanceof IntegerArgumentMarshaler;
  }

  private boolean isStringArg(char argChar) {
    ArgumentMarshaler m = marshalers.get(argChar);
    return m instanceof StringArgumentMarshaler;
  }



222A Chapter 14: Successive Refinement

The tests still passed. So I eliminated all the duplicate calls to marshalers.get as follows:

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (isBooleanArg(m))
      setBooleanArg(argChar);
    else if (isStringArg(m))
      setStringArg(argChar);
    else if (isIntArg(m))
      setIntArg(argChar);
    else
      return false;

    return true;
  }

  private boolean isIntArg(ArgumentMarshaler m) {
    return m instanceof IntegerArgumentMarshaler;
  }

  private boolean isStringArg(ArgumentMarshaler m) {
    return m instanceof StringArgumentMarshaler;
  }

  private boolean isBooleanArg(ArgumentMarshaler m) {
    return m instanceof BooleanArgumentMarshaler;
  }

This left no good reason for the three isxxxArg methods. So I inlined them:

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m instanceof BooleanArgumentMarshaler)
      setBooleanArg(argChar);
    else if (m instanceof StringArgumentMarshaler)
      setStringArg(argChar);
    else if (m instanceof IntegerArgumentMarshaler)
      setIntArg(argChar);
    else
      return false;

    return true;
  }

Next, I started using the marshalers map in the set functions, breaking the use of the other
three maps. I started with the booleans.

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m instanceof BooleanArgumentMarshaler)
      setBooleanArg(m);
    else if (m instanceof StringArgumentMarshaler)
      setStringArg(argChar);
    else if (m instanceof IntegerArgumentMarshaler)
      setIntArg(argChar);
    else
      return false;



223AString Arguments

    return true;
  }
...
  private void setBooleanArg(ArgumentMarshaler m) {
    try {
      m.set("true"); // was: booleanArgs.get(argChar).set("true");
    } catch (ArgsException e) {
    }
  }

The tests still passed, so I did the same with Strings and Integers. This allowed me to inte-
grate some of the ugly exception management code into the setArgument function.

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    try {
      if (m instanceof BooleanArgumentMarshaler)
        setBooleanArg(m);
      else if (m instanceof StringArgumentMarshaler)
        setStringArg(m);
      else if (m instanceof IntegerArgumentMarshaler)
        setIntArg(m);
      else
        return false;
    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
    return true;
  }

  private void setIntArg(ArgumentMarshaler m) throws ArgsException {
    currentArgument++;
    String parameter = null;
    try {
      parameter = args[currentArgument];
      m.set(parameter);
    } catch (ArrayIndexOutOfBoundsException e) {
      errorCode = ErrorCode.MISSING_INTEGER;
      throw new ArgsException();
    } catch (ArgsException e) {
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw e;
    }
  }

  private void setStringArg(ArgumentMarshaler m) throws ArgsException {
    currentArgument++;
    try {
      m.set(args[currentArgument]);
    } catch (ArrayIndexOutOfBoundsException e) {
      errorCode = ErrorCode.MISSING_STRING;
      throw new ArgsException();
    }
  }



224A Chapter 14: Successive Refinement

I was close to being able to remove the three old maps. First, I needed to change the
getBoolean function from this:

public boolean getBoolean(char arg) {
    Args.ArgumentMarshaler am = booleanArgs.get(arg);
    return am != null && (Boolean) am.get();
  }

to this:

public boolean getBoolean(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    boolean b = false;
    try {
      b = am != null && (Boolean) am.get();
    } catch (ClassCastException e) {
      b = false;
    }
    return b;
  }

This last change might have been a surprise. Why did I suddenly decide to deal with
the ClassCastException? The reason is that I have a set of unit tests and a separate set of
acceptance tests written in FitNesse. It turns out that the FitNesse tests made sure that if
you called getBoolean on a nonboolean argument, you got a false. The unit tests did not.
Up to this point I had only been running the unit tests.2

This last change allowed me to pull out another use of the boolean map:

private void parseBooleanSchemaElement(char elementId) {
    ArgumentMarshaler m = new BooleanArgumentMarshaler();
    booleanArgs.put(elementId, m);
    marshalers.put(elementId, m);
  }

And now we can delete the boolean map.

public class Args {
...
  private Map<Character, ArgumentMarshaler> booleanArgs = 

new HashMap<Character, ArgumentMarshaler>();
private Map<Character, ArgumentMarshaler> stringArgs = 
new HashMap<Character, ArgumentMarshaler>();

  private Map<Character, ArgumentMarshaler> intArgs = 
new HashMap<Character, ArgumentMarshaler>();

  private Map<Character, ArgumentMarshaler> marshalers = 
new HashMap<Character, ArgumentMarshaler>();

...

Next, I migrated the String and Integer arguments in the same manner and did a little
cleanup with the booleans.

private void parseBooleanSchemaElement(char elementId) {
    marshalers.put(elementId, new BooleanArgumentMarshaler());
  }

2. To prevent further surprises of this kind, I added a new unit test that invoked all the FitNesse tests.



225AString Arguments

  private void parseIntegerSchemaElement(char elementId) {
    marshalers.put(elementId, new IntegerArgumentMarshaler());
  }

  private void parseStringSchemaElement(char elementId) {
    marshalers.put(elementId, new StringArgumentMarshaler());
  }
...
  public String getString(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? "" : (String) am.get();
    } catch (ClassCastException e) {
      return "";
    }
  }

  public int getInt(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? 0 : (Integer) am.get();
    } catch (Exception e) {
      return 0;
    }
  }
...
public class Args {
...
  private Map<Character, ArgumentMarshaler> stringArgs = 

new HashMap<Character, ArgumentMarshaler>();
  private Map<Character, ArgumentMarshaler> intArgs = 

new HashMap<Character, ArgumentMarshaler>();
private Map<Character, ArgumentMarshaler> marshalers = 
new HashMap<Character, ArgumentMarshaler>();

...

Next, I inlined the three parse methods because they didn’t do much anymore:

private void parseSchemaElement(String element) throws ParseException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (isBooleanSchemaElement(elementTail))
      marshalers.put(elementId, new BooleanArgumentMarshaler());
    else if (isStringSchemaElement(elementTail))
      marshalers.put(elementId, new StringArgumentMarshaler());
    else if (isIntegerSchemaElement(elementTail)) {
      marshalers.put(elementId, new IntegerArgumentMarshaler());
    } else {
      throw new ParseException(String.format(

    "Argument: %c has invalid format: %s.", elementId, elementTail), 0);
    }
  }

Okay, so now let’s look at the whole picture again. Listing 14-12 shows the current
form of the Args class. 



226A Chapter 14: Successive Refinement

Listing 14-12 
Args.java (After first refactoring)
package com.objectmentor.utilities.getopts;

import java.text.ParseException;
import java.util.*;

public class Args {
  private String schema;
  private String[] args;
  private boolean valid = true;
  private Set<Character> unexpectedArguments = new TreeSet<Character>();
  private Map<Character, ArgumentMarshaler> marshalers = 

new HashMap<Character, ArgumentMarshaler>();
  private Set<Character> argsFound = new HashSet<Character>();
  private int currentArgument;
  private char errorArgumentId = '\0';
  private String errorParameter = "TILT";
  private ErrorCode errorCode = ErrorCode.OK;

  private enum ErrorCode {
    OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT}

  public Args(String schema, String[] args) throws ParseException {
    this.schema = schema;
    this.args = args;
    valid = parse();
  }

  private boolean parse() throws ParseException {
    if (schema.length() == 0 && args.length == 0)
      return true;
    parseSchema();
    try {
      parseArguments();
    } catch (ArgsException e) {
    }
    return valid;
  }

  private boolean parseSchema() throws ParseException {
    for (String element : schema.split(",")) {
      if (element.length() > 0) {
        String trimmedElement = element.trim();
        parseSchemaElement(trimmedElement);
      }
    }
    return true;
  }

  private void parseSchemaElement(String element) throws ParseException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (isBooleanSchemaElement(elementTail))
      marshalers.put(elementId, new BooleanArgumentMarshaler());
    else if (isStringSchemaElement(elementTail))
      marshalers.put(elementId, new StringArgumentMarshaler());



227AString Arguments

    else if (isIntegerSchemaElement(elementTail)) {
      marshalers.put(elementId, new IntegerArgumentMarshaler());
    } else {
      throw new ParseException(String.format(

    "Argument: %c has invalid format: %s.", elementId, elementTail), 0);
    }
  }

  private void validateSchemaElementId(char elementId) throws ParseException {
    if (!Character.isLetter(elementId)) {
      throw new ParseException(

    "Bad character:" + elementId + "in Args format: " + schema, 0);
    }
  }

  private boolean isStringSchemaElement(String elementTail) {
    return elementTail.equals("*");
  }

  private boolean isBooleanSchemaElement(String elementTail) {
    return elementTail.length() == 0;
  }

  private boolean isIntegerSchemaElement(String elementTail) {
    return elementTail.equals("#");
  }

  private boolean parseArguments() throws ArgsException {
    for (currentArgument=0; currentArgument<args.length; currentArgument++) {
      String arg = args[currentArgument];
      parseArgument(arg);
    }
    return true;
  }

  private void parseArgument(String arg) throws ArgsException {
    if (arg.startsWith("-"))
      parseElements(arg);
  }

  private void parseElements(String arg) throws ArgsException {
    for (int i = 1; i < arg.length(); i++)
      parseElement(arg.charAt(i));
  }

  private void parseElement(char argChar) throws ArgsException {
    if (setArgument(argChar))
      argsFound.add(argChar);
    else {
      unexpectedArguments.add(argChar);
      errorCode = ErrorCode.UNEXPECTED_ARGUMENT;
      valid = false;
    }
  }

Listing 14-12 (continued)
Args.java (After first refactoring)



228A Chapter 14: Successive Refinement

  private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    try {
      if (m instanceof BooleanArgumentMarshaler)
        setBooleanArg(m);
      else if (m instanceof StringArgumentMarshaler)
        setStringArg(m);
      else if (m instanceof IntegerArgumentMarshaler)
        setIntArg(m);
      else
        return false;
    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
    return true;
  }

  private void setIntArg(ArgumentMarshaler m) throws ArgsException {
    currentArgument++;
    String parameter = null;
    try {
      parameter = args[currentArgument];
      m.set(parameter);
    } catch (ArrayIndexOutOfBoundsException e) {
      errorCode = ErrorCode.MISSING_INTEGER;
      throw new ArgsException();
    } catch (ArgsException e) {
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw e;
    }
  }

  private void setStringArg(ArgumentMarshaler m) throws ArgsException {
    currentArgument++;
    try {
      m.set(args[currentArgument]);
    } catch (ArrayIndexOutOfBoundsException e) {
      errorCode = ErrorCode.MISSING_STRING;
      throw new ArgsException();
    }
  }

  private void setBooleanArg(ArgumentMarshaler m) {
    try {
      m.set("true");
    } catch (ArgsException e) {
    }
  }

  public int cardinality() {
    return argsFound.size();
  }

Listing 14-12 (continued)
Args.java (After first refactoring)



229AString Arguments

  public String usage() {
    if (schema.length() > 0)
      return "-[" + schema + "]";
    else
      return "";
  }

  public String errorMessage() throws Exception {
    switch (errorCode) {
      case OK:
        throw new Exception("TILT: Should not get here.");
      case UNEXPECTED_ARGUMENT:
        return unexpectedArgumentMessage();
      case MISSING_STRING:
        return String.format("Could not find string parameter for -%c.", 
                             errorArgumentId);
      case INVALID_INTEGER:
        return String.format("Argument -%c expects an integer but was '%s'.", 
                             errorArgumentId, errorParameter);
      case MISSING_INTEGER:
        return String.format("Could not find integer parameter for -%c.", 
                             errorArgumentId);
    }
    return "";
  }

  private String unexpectedArgumentMessage() {
    StringBuffer message = new StringBuffer("Argument(s) -");
    for (char c : unexpectedArguments) {
      message.append(c);
    }
    message.append(" unexpected.");

    return message.toString();
  }

  public boolean getBoolean(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    boolean b = false;
    try {
      b = am != null && (Boolean) am.get();
    } catch (ClassCastException e) {
      b = false;
    }
    return b;
  }

  public String getString(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? "" : (String) am.get();
    } catch (ClassCastException e) {
      return "";
    }
  }

Listing 14-12 (continued)
Args.java (After first refactoring)



230A Chapter 14: Successive Refinement

  public int getInt(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? 0 : (Integer) am.get();
    } catch (Exception e) {
      return 0;
    }
  }

  public boolean has(char arg) {
    return argsFound.contains(arg);
  }

  public boolean isValid() {
    return valid;
  }

  private class ArgsException extends Exception {
  }

  private abstract class ArgumentMarshaler {
    public abstract void set(String s) throws ArgsException;
    public abstract Object get();
  }

  private class BooleanArgumentMarshaler extends ArgumentMarshaler {
    private boolean booleanValue = false;

    public void set(String s) {
      booleanValue = true;
    }

    public Object get() {
      return booleanValue;
    }
  }

  private class StringArgumentMarshaler extends ArgumentMarshaler {
    private String stringValue = "";

    public void set(String s) {
      stringValue = s;
    }

    public Object get() {
      return stringValue;
    }
  }

  private class IntegerArgumentMarshaler extends ArgumentMarshaler {
    private int intValue = 0;

    public void set(String s) throws ArgsException {
      try {
        intValue = Integer.parseInt(s);

Listing 14-12 (continued)
Args.java (After first refactoring)



231AString Arguments

After all that work, this is a bit disappointing. The structure is a bit better, but we still
have all those variables up at the top; there’s still a horrible type-case in setArgument; and
all those set functions are really ugly. Not to mention all the error processing. We still have
a lot of work ahead of us.

I’d really like to get rid of that type-case up in setArgument [G23]. What I’d like in
setArgument is a single call to ArgumentMarshaler.set. This means I need to push setIntArg,
setStringArg, and setBooleanArg down into the appropriate ArgumentMarshaler derivatives.
But there is a problem.

If you look closely at setIntArg, you’ll notice that it uses two instance variables: args
and currentArg. To move setIntArg down into BooleanArgumentMarshaler, I’ll have to pass
both args and currentArgs as function arguments. That’s dirty [F1]. I’d rather pass one
argument instead of two. Fortunately, there is a simple solution. We can convert the args
array into a list and pass an Iterator down to the set functions. The following took me
ten steps, passing all the tests after each. But I’ll just show you the result. You should be
able to figure out what most of the tiny little steps were.

public class Args {
  private String schema;
  private String[] args;
  private boolean valid = true;
  private Set<Character> unexpectedArguments = new TreeSet<Character>();
  private Map<Character, ArgumentMarshaler> marshalers = 

new HashMap<Character, ArgumentMarshaler>();
  private Set<Character> argsFound = new HashSet<Character>();
  private Iterator<String> currentArgument;
  private char errorArgumentId = '\0';
  private String errorParameter = "TILT";
  private ErrorCode errorCode = ErrorCode.OK;
  private List<String> argsList;

  private enum ErrorCode {
    OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT}

  public Args(String schema, String[] args) throws ParseException {
    this.schema = schema;
    argsList = Arrays.asList(args);
    valid = parse();
  }

      } catch (NumberFormatException e) {
        throw new ArgsException();
      }
    }

    public Object get() {
      return intValue;
    }
  }
}

Listing 14-12 (continued)
Args.java (After first refactoring)



232A Chapter 14: Successive Refinement

  private boolean parse() throws ParseException {
    if (schema.length() == 0 && argsList.size() == 0)
      return true;
    parseSchema();
    try {
      parseArguments();
    } catch (ArgsException e) {
    }
    return valid;
  }
---
  private boolean parseArguments() throws ArgsException {
    for (currentArgument = argsList.iterator(); currentArgument.hasNext();) {
      String arg = currentArgument.next();
      parseArgument(arg);
    }

    return true;
  }
---
  private void setIntArg(ArgumentMarshaler m) throws ArgsException {
    String parameter = null;
    try {
      parameter = currentArgument.next();
      m.set(parameter);
    } catch (NoSuchElementException e) {
      errorCode = ErrorCode.MISSING_INTEGER;
      throw new ArgsException();
    } catch (ArgsException e) {
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw e;
    }
  }

  private void setStringArg(ArgumentMarshaler m) throws ArgsException {
    try {
      m.set(currentArgument.next());
    } catch (NoSuchElementException e) {
      errorCode = ErrorCode.MISSING_STRING;
      throw new ArgsException();
    }
  }

These were simple changes that kept all the tests passing. Now we can start moving the set
functions down into the appropriate derivatives. First, I need to make the following change
in setArgument:

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null)
      return false;
    try {
      if (m instanceof BooleanArgumentMarshaler)
        setBooleanArg(m);
      else if (m instanceof StringArgumentMarshaler)
        setStringArg(m);
      else if (m instanceof IntegerArgumentMarshaler)
        setIntArg(m);



233AString Arguments

      else
        return false;
    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
    return true;
  }

This change is important because we want to completely eliminate the if-else chain.
Therefore, we needed to get the error condition out of it. 

Now we can start to move the set functions. The setBooleanArg function is trivial, so
we’ll prepare that one first. Our goal is to change the setBooleanArg function to simply for-
ward to the BooleanArgumentMarshaler.

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null)
      return false;
    try {
      if (m instanceof BooleanArgumentMarshaler)
        setBooleanArg(m, currentArgument);
      else if (m instanceof StringArgumentMarshaler)
        setStringArg(m);
      else if (m instanceof IntegerArgumentMarshaler)
        setIntArg(m);

    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
    return true;
  }
---
  private void setBooleanArg(ArgumentMarshaler m, 
                             Iterator<String> currentArgument) 
                             throws ArgsException {

try {
      m.set("true");

catch (ArgsException e) {
   }
  }

Didn’t we just put that exception processing in? Putting things in so you can take them
out again is pretty common in refactoring. The smallness of the steps and the need to keep
the tests running means that you move things around a lot. Refactoring is a lot like solving
a Rubik’s cube. There are lots of little steps required to achieve a large goal. Each step
enables the next.

Why did we pass that iterator when setBooleanArg certainly doesn’t need it? Because
setIntArg and setStringArg will! And because I want to deploy all three of these functions
through an abstract method in ArgumentMarshaller, I need to pass it to setBooleanArg.



234A Chapter 14: Successive Refinement

So now setBooleanArg is useless. If there were a set function in ArgumentMarshaler, we
could call it directly. So it’s time to make that function! The first step is to add the new
abstract method to ArgumentMarshaler.

private abstract class ArgumentMarshaler {
    public abstract void set(Iterator<String> currentArgument) 
                         throws ArgsException;
    public abstract void set(String s) throws ArgsException;
    public abstract Object get();
  }

Of course this breaks all the derivatives. So let’s implement the new method in each.

private class BooleanArgumentMarshaler extends ArgumentMarshaler {
    private boolean booleanValue = false;

    public void set(Iterator<String> currentArgument) throws ArgsException {
      booleanValue = true;
    }

    public void set(String s) {
      booleanValue = true;
    }

    public Object get() {
      return booleanValue;
    }
  }

  private class StringArgumentMarshaler extends ArgumentMarshaler {
    private String stringValue = "";

    public void set(Iterator<String> currentArgument) throws ArgsException {
    }

    public void set(String s) {
      stringValue = s;
    }

    public Object get() {
      return stringValue;
    }
  }

  private class IntegerArgumentMarshaler extends ArgumentMarshaler {
    private int intValue = 0;

    public void set(Iterator<String> currentArgument) throws ArgsException {
    }

    public void set(String s) throws ArgsException {
      try {
        intValue = Integer.parseInt(s);
      } catch (NumberFormatException e) {
        throw new ArgsException();
      }
    }



235AString Arguments

    public Object get() {
      return intValue;
    }
  }

And now we can eliminate setBooleanArg!

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null)
      return false;
    try {
      if (m instanceof BooleanArgumentMarshaler)
        m.set(currentArgument);
      else if (m instanceof StringArgumentMarshaler)
        setStringArg(m);
      else if (m instanceof IntegerArgumentMarshaler)
        setIntArg(m);

    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
    return true;
  }

The tests all pass, and the set function is deploying to BooleanArgumentMarshaler!

Now we can do the same for Strings and Integers.

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null)
      return false;
    try {
      if (m instanceof BooleanArgumentMarshaler)
        m.set(currentArgument);
      else if (m instanceof StringArgumentMarshaler)
        m.set(currentArgument);
      else if (m instanceof IntegerArgumentMarshaler)
        m.set(currentArgument);

    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
    return true;
  }
---
  private class StringArgumentMarshaler extends ArgumentMarshaler {
    private String stringValue = "";

    public void set(Iterator<String> currentArgument) throws ArgsException {
      try {
        stringValue = currentArgument.next();
      } catch (NoSuchElementException e) {
        errorCode = ErrorCode.MISSING_STRING;



236A Chapter 14: Successive Refinement

        throw new ArgsException();
      }
    }

    public void set(String s) {
    }

    public Object get() {
      return stringValue;
    }
  }

  private class IntegerArgumentMarshaler extends ArgumentMarshaler {
    private int intValue = 0;

public void set(Iterator<String> currentArgument) throws ArgsException {
    String parameter = null;
    try {
      parameter = currentArgument.next();
      set(parameter);
    } catch (NoSuchElementException e) {
      errorCode = ErrorCode.MISSING_INTEGER;
      throw new ArgsException();
    } catch (ArgsException e) {
      errorParameter = parameter;
      errorCode = ErrorCode.INVALID_INTEGER;
      throw e;
    }

}

    public void set(String s) throws ArgsException {
      try {
        intValue = Integer.parseInt(s);
      } catch (NumberFormatException e) {
        throw new ArgsException();
      }
    }

    public Object get() {
      return intValue;
    }
  }

And so the coup de grace: The type-case can be removed! Touche!

private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null)
      return false;
    try {
      m.set(currentArgument);
      return true;
    } catch (ArgsException e) {
      valid = false;
      errorArgumentId = argChar;
      throw e;
    }
  }



237AString Arguments

Now we can get rid of some crufty functions in IntegerArgumentMarshaler and clean it up
a bit.

private class IntegerArgumentMarshaler extends ArgumentMarshaler {
    private int intValue = 0

    public void set(Iterator<String> currentArgument) throws ArgsException {
      String parameter = null;
      try {
        parameter = currentArgument.next();
        intValue = Integer.parseInt(parameter);
      } catch (NoSuchElementException e) {
        errorCode = ErrorCode.MISSING_INTEGER;
        throw new ArgsException();
      } catch (NumberFormatException e) {
        errorParameter = parameter;
        errorCode = ErrorCode.INVALID_INTEGER;
        throw new ArgsException();
      }
    }

    public Object get() {
      return intValue;
    }
  }

We can also turn ArgumentMarshaler into an interface. 

private interface ArgumentMarshaler {
    void set(Iterator<String> currentArgument) throws ArgsException;
    Object get();
  }

So now let’s see how easy it is to add a new argument type to our structure. It should
require very few changes, and those changes should be isolated. First, we begin by adding
a new test case to check that the double argument works correctly.

public void testSimpleDoublePresent() throws Exception {
    Args args = new Args("x##", new String[] {"-x","42.3"});
    assertTrue(args.isValid());
    assertEquals(1, args.cardinality());
    assertTrue(args.has('x'));
    assertEquals(42.3, args.getDouble('x'), .001);
  }

Now we clean up the schema parsing code and add the ## detection for the double
argument type.

private void parseSchemaElement(String element) throws ParseException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (elementTail.length() == 0)
      marshalers.put(elementId, new BooleanArgumentMarshaler());
    else if (elementTail.equals("*"))
      marshalers.put(elementId, new StringArgumentMarshaler());
    else if (elementTail.equals("#"))
      marshalers.put(elementId, new IntegerArgumentMarshaler());



238A Chapter 14: Successive Refinement

    else if (elementTail.equals("##"))
      marshalers.put(elementId, new DoubleArgumentMarshaler());
    else
      throw new ParseException(String.format(
        "Argument: %c has invalid format: %s.", elementId, elementTail), 0);
  }

Next, we write the DoubleArgumentMarshaler class.

private class DoubleArgumentMarshaler implements ArgumentMarshaler {
    private double doubleValue = 0;

    public void set(Iterator<String> currentArgument) throws ArgsException {
      String parameter = null;
      try {
        parameter = currentArgument.next();
        doubleValue = Double.parseDouble(parameter);
      } catch (NoSuchElementException e) {
        errorCode = ErrorCode.MISSING_DOUBLE;
        throw new ArgsException();
      } catch (NumberFormatException e) {
        errorParameter = parameter;
        errorCode = ErrorCode.INVALID_DOUBLE;
        throw new ArgsException();
      }
    }

    public Object get() {
      return doubleValue;
    }
  }

This forces us to add a new ErrorCode.

private enum ErrorCode {
    OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT, 
    MISSING_DOUBLE, INVALID_DOUBLE}

And we need a getDouble function.

public double getDouble(char arg) {
    Args.ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? 0 : (Double) am.get();
    } catch (Exception e) {
      return 0.0;
    }
  }

And all the tests pass! That was pretty painless. So now let’s make sure all the error
processing works correctly. The next test case checks that an error is declared if an
unparseable string is fed to a ## argument.

public void testInvalidDouble() throws Exception {
    Args args = new Args("x##", new String[] {"-x","Forty two"});
    assertFalse(args.isValid());
    assertEquals(0, args.cardinality());
    assertFalse(args.has('x'));
    assertEquals(0, args.getInt('x'));



239AString Arguments

    assertEquals("Argument -x expects a double but was 'Forty two'.", 
                 args.errorMessage());
  }
---
  public String errorMessage() throws Exception {
    switch (errorCode) {
      case OK:
        throw new Exception("TILT: Should not get here.");
      case UNEXPECTED_ARGUMENT:
        return unexpectedArgumentMessage();
      case MISSING_STRING:
        return String.format("Could not find string parameter for -%c.", 
                             errorArgumentId);
      case INVALID_INTEGER:
        return String.format("Argument -%c expects an integer but was '%s'.", 
                             errorArgumentId, errorParameter);
      case MISSING_INTEGER:
        return String.format("Could not find integer parameter for -%c.", 
                             errorArgumentId);
      case INVALID_DOUBLE:
        return String.format("Argument -%c expects a double but was '%s'.",    
                             errorArgumentId, errorParameter);
      case MISSING_DOUBLE:
        return String.format("Could not find double parameter for -%c.", 
                             errorArgumentId);
    }
    return "";
  }

And the tests pass. The next test makes sure we detect a missing double argument properly. 

public void testMissingDouble() throws Exception {
    Args args = new Args("x##", new String[]{"-x"});
    assertFalse(args.isValid());
    assertEquals(0, args.cardinality());
    assertFalse(args.has('x'));
    assertEquals(0.0, args.getDouble('x'), 0.01);
    assertEquals("Could not find double parameter for -x.", 
                 args.errorMessage());
  }

This passes as expected. We wrote it simply for completeness. 

The exception code is pretty ugly and doesn’t really belong in the Args class. We are
also throwing out ParseException, which doesn’t really belong to us. So let’s merge all the
exceptions into a single ArgsException class and move it into its own module.

public class ArgsException extends Exception {
  private char errorArgumentId = '\0';
  private String errorParameter = "TILT";
  private ErrorCode errorCode = ErrorCode.OK;

  public ArgsException() {}

  public ArgsException(String message) {super(message);}

  public enum ErrorCode {
    OK, MISSING_STRING, MISSING_INTEGER, INVALID_INTEGER, UNEXPECTED_ARGUMENT, 
    MISSING_DOUBLE, INVALID_DOUBLE}
}
---



240A Chapter 14: Successive Refinement

public class Args {
  ...
  private char errorArgumentId = '\0';
  private String errorParameter = "TILT";
  private ArgsException.ErrorCode errorCode = ArgsException.ErrorCode.OK;
  private List<String> argsList;

  public Args(String schema, String[] args) throws ArgsException {
    this.schema = schema;
    argsList = Arrays.asList(args);
    valid = parse();
  }

  private boolean parse() throws ArgsException {
    if (schema.length() == 0 && argsList.size() == 0)
      return true;
    parseSchema();
    try {
      parseArguments();
    } catch (ArgsException e) {
    }
    return valid;
  }

  private boolean parseSchema() throws ArgsException {
    ...
  }

  private void parseSchemaElement(String element) throws ArgsException {
    ...
    else
      throw new ArgsException(
        String.format("Argument: %c has invalid format: %s.", 
                      elementId,elementTail));
  }

  private void validateSchemaElementId(char elementId) throws ArgsException {
    if (!Character.isLetter(elementId)) {
      throw new ArgsException(
        "Bad character:" + elementId + "in Args format: " + schema);
    }
  }

  ...

  private void parseElement(char argChar) throws ArgsException {
    if (setArgument(argChar))
      argsFound.add(argChar);
    else {
      unexpectedArguments.add(argChar);
      errorCode = ArgsException.ErrorCode.UNEXPECTED_ARGUMENT;
      valid = false;
    }
  }

  ...



241AString Arguments

  private class StringArgumentMarshaler implements ArgumentMarshaler {
    private String stringValue = "";

    public void set(Iterator<String> currentArgument) throws ArgsException {
      try {
        stringValue = currentArgument.next();
      } catch (NoSuchElementException e) {
        errorCode = ArgsException.ErrorCode.MISSING_STRING;
        throw new ArgsException();
      }
    }

    public Object get() {
      return stringValue;
    }
  }

  private class IntegerArgumentMarshaler implements ArgumentMarshaler {
    private int intValue = 0;

    public void set(Iterator<String> currentArgument) throws ArgsException {
      String parameter = null;
      try {
        parameter = currentArgument.next();
        intValue = Integer.parseInt(parameter);
      } catch (NoSuchElementException e) {
        errorCode = ArgsException.ErrorCode.MISSING_INTEGER;
        throw new ArgsException();
      } catch (NumberFormatException e) {
        errorParameter = parameter;
        errorCode = ArgsException.ErrorCode.INVALID_INTEGER;
        throw new ArgsException();
      }
    }

    public Object get() {
      return intValue;
    }
  }

  private class DoubleArgumentMarshaler implements ArgumentMarshaler {
    private double doubleValue = 0;

    public void set(Iterator<String> currentArgument) throws ArgsException {
      String parameter = null;
      try {
        parameter = currentArgument.next();
        doubleValue = Double.parseDouble(parameter);
      } catch (NoSuchElementException e) {
        errorCode = ArgsException.ErrorCode.MISSING_DOUBLE;
        throw new ArgsException();
      } catch (NumberFormatException e) {
        errorParameter = parameter;
        errorCode = ArgsException.ErrorCode.INVALID_DOUBLE;
        throw new ArgsException();
      }
    }



242A Chapter 14: Successive Refinement

    public Object get() {
      return doubleValue;
    }
  }
}

This is nice. Now the only exception thrown by Args is ArgsException. Moving
ArgsException into its own module means that we can move a lot of the miscellaneous
error support code into that module and out of the Args module. It provides a natural and
obvious place to put all that code and will really help us clean up the Args module going
forward.

So now we have completely separated the exception and error code from the Args
module. (See Listing 14-13 through Listing 14-16.) This was achieved through a series of
about 30 tiny steps, keeping the tests passing between each step. 

Listing 14-13 
ArgsTest.java
package com.objectmentor.utilities.args;

import junit.framework.TestCase;

public class ArgsTest extends TestCase {
  public void testCreateWithNoSchemaOrArguments() throws Exception {
    Args args = new Args("", new String[0]);
    assertEquals(0, args.cardinality());
  }

  public void testWithNoSchemaButWithOneArgument() throws Exception {
    try {
      new Args("", new String[]{"-x"});
      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT, 
                   e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
    }
  }

  public void testWithNoSchemaButWithMultipleArguments() throws Exception {
    try {
      new Args("", new String[]{"-x", "-y"});
      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT, 
                   e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
    }

  }

  public void testNonLetterSchema() throws Exception {
    try {
      new Args("*", new String[]{});
      fail("Args constructor should have thrown exception");
    } catch (ArgsException e) {



243AString Arguments

      assertEquals(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME, 
                   e.getErrorCode());
      assertEquals('*', e.getErrorArgumentId());
    }
  }

  public void testInvalidArgumentFormat() throws Exception {
    try {
      new Args("f~", new String[]{});
      fail("Args constructor should have throws exception");
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.INVALID_FORMAT, e.getErrorCode());
      assertEquals('f', e.getErrorArgumentId());
    }
  }

  public void testSimpleBooleanPresent() throws Exception {
    Args args = new Args("x", new String[]{"-x"});
    assertEquals(1, args.cardinality());
    assertEquals(true, args.getBoolean('x'));
  }

  public void testSimpleStringPresent() throws Exception {
    Args args = new Args("x*", new String[]{"-x", "param"});
    assertEquals(1, args.cardinality());
    assertTrue(args.has('x'));
    assertEquals("param", args.getString('x'));
  }

  public void testMissingStringArgument() throws Exception {
    try {
      new Args("x*", new String[]{"-x"});
      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.MISSING_STRING, e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
    }
  }

  public void testSpacesInFormat() throws Exception {
    Args args = new Args("x, y", new String[]{"-xy"});
    assertEquals(2, args.cardinality());
    assertTrue(args.has('x'));
    assertTrue(args.has('y'));
  }

  public void testSimpleIntPresent() throws Exception {
    Args args = new Args("x#", new String[]{"-x", "42"});
    assertEquals(1, args.cardinality());
    assertTrue(args.has('x'));
    assertEquals(42, args.getInt('x'));
  }

  public void testInvalidInteger() throws Exception {
    try {
      new Args("x#", new String[]{"-x", "Forty two"});

Listing 14-13 (continued)
ArgsTest.java



244A Chapter 14: Successive Refinement

      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.INVALID_INTEGER, e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
      assertEquals("Forty two", e.getErrorParameter());
    }

  }

  public void testMissingInteger() throws Exception {
    try {
      new Args("x#", new String[]{"-x"});
      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.MISSING_INTEGER, e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
    }
  }

  public void testSimpleDoublePresent() throws Exception {
    Args args = new Args("x##", new String[]{"-x", "42.3"});
    assertEquals(1, args.cardinality());
    assertTrue(args.has('x'));
    assertEquals(42.3, args.getDouble('x'), .001);
  }

  public void testInvalidDouble() throws Exception {
    try {
      new Args("x##", new String[]{"-x", "Forty two"});
      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.INVALID_DOUBLE, e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
      assertEquals("Forty two", e.getErrorParameter());
    }
  }

  public void testMissingDouble() throws Exception {
    try {
      new Args("x##", new String[]{"-x"});
      fail();
    } catch (ArgsException e) {
      assertEquals(ArgsException.ErrorCode.MISSING_DOUBLE, e.getErrorCode());
      assertEquals('x', e.getErrorArgumentId());
    }
  }
}

Listing 14-14 
ArgsExceptionTest.java
public class ArgsExceptionTest extends TestCase {
  public void testUnexpectedMessage() throws Exception {
    ArgsException e = 

Listing 14-13 (continued)
ArgsTest.java



245AString Arguments

      new ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT, 
                        'x', null);
    assertEquals("Argument -x unexpected.", e.errorMessage());
  }

  public void testMissingStringMessage() throws Exception {
    ArgsException e = new ArgsException(ArgsException.ErrorCode.MISSING_STRING, 
                                        'x', null);
    assertEquals("Could not find string parameter for -x.", e.errorMessage());
  }

  public void testInvalidIntegerMessage() throws Exception {
    ArgsException e = 
      new ArgsException(ArgsException.ErrorCode.INVALID_INTEGER, 
                        'x', "Forty two");
    assertEquals("Argument -x expects an integer but was 'Forty two'.", 
                 e.errorMessage());
  }

  public void testMissingIntegerMessage() throws Exception {
    ArgsException e = 
      new ArgsException(ArgsException.ErrorCode.MISSING_INTEGER, 'x', null);
    assertEquals("Could not find integer parameter for -x.", e.errorMessage());
  }

  public void testInvalidDoubleMessage() throws Exception {
    ArgsException e = new ArgsException(ArgsException.ErrorCode.INVALID_DOUBLE, 
                                        'x', "Forty two");
    assertEquals("Argument -x expects a double but was 'Forty two'.", 
                 e.errorMessage());
  }

  public void testMissingDoubleMessage() throws Exception {
    ArgsException e = new ArgsException(ArgsException.ErrorCode.MISSING_DOUBLE, 
                                        'x', null);
    assertEquals("Could not find double parameter for -x.", e.errorMessage());
  }
}

Listing 14-15 
ArgsException.java
public class ArgsException extends Exception {
  private char errorArgumentId = '\0';
  private String errorParameter = "TILT";
  private ErrorCode errorCode = ErrorCode.OK;

  public ArgsException() {}

  public ArgsException(String message) {super(message);}

  public ArgsException(ErrorCode errorCode) {
    this.errorCode = errorCode;
  }

Listing 14-14 (continued)
ArgsExceptionTest.java



246A Chapter 14: Successive Refinement

  public ArgsException(ErrorCode errorCode, String errorParameter) {
    this.errorCode = errorCode;
    this.errorParameter = errorParameter;
  }

  public ArgsException(ErrorCode errorCode, char errorArgumentId, 
                       String errorParameter) {
    this.errorCode = errorCode;
    this.errorParameter = errorParameter;
    this.errorArgumentId = errorArgumentId;
  }

  public char getErrorArgumentId() {
    return errorArgumentId;
  }

  public void setErrorArgumentId(char errorArgumentId) {
    this.errorArgumentId = errorArgumentId;
  }

  public String getErrorParameter() {
    return errorParameter;
  }

  public void setErrorParameter(String errorParameter) {
    this.errorParameter = errorParameter;
  }

  public ErrorCode getErrorCode() {
    return errorCode;
  }

  public void setErrorCode(ErrorCode errorCode) {
    this.errorCode = errorCode;
  }

  public String errorMessage() throws Exception {
    switch (errorCode) {
      case OK:
        throw new Exception("TILT: Should not get here.");
      case UNEXPECTED_ARGUMENT:
        return String.format("Argument -%c unexpected.", errorArgumentId);
      case MISSING_STRING:
        return String.format("Could not find string parameter for -%c.", 
                             errorArgumentId);
      case INVALID_INTEGER:
        return String.format("Argument -%c expects an integer but was '%s'.", 
                             errorArgumentId, errorParameter);
      case MISSING_INTEGER:
        return String.format("Could not find integer parameter for -%c.", 
                             errorArgumentId);
      case INVALID_DOUBLE:
        return String.format("Argument -%c expects a double but was '%s'.", 
                             errorArgumentId, errorParameter);

Listing 14-15 (continued)
ArgsException.java



247AString Arguments

      case MISSING_DOUBLE:
        return String.format("Could not find double parameter for -%c.", 
                             errorArgumentId);
    }
    return "";
  }

  public enum ErrorCode {
    OK, INVALID_FORMAT, UNEXPECTED_ARGUMENT, INVALID_ARGUMENT_NAME,
    MISSING_STRING,
    MISSING_INTEGER, INVALID_INTEGER,
    MISSING_DOUBLE, INVALID_DOUBLE}
}

Listing 14-16 
Args.java
public class Args {
  private String schema;
  private Map<Character, ArgumentMarshaler> marshalers = 
    new HashMap<Character, ArgumentMarshaler>();
  private Set<Character> argsFound = new HashSet<Character>();
  private Iterator<String> currentArgument;
  private List<String> argsList;

  public Args(String schema, String[] args) throws ArgsException {
    this.schema = schema;
    argsList = Arrays.asList(args);
    parse();
  }

  private void parse() throws ArgsException {
    parseSchema();
    parseArguments();
  }

  private boolean parseSchema() throws ArgsException {
    for (String element : schema.split(",")) {
      if (element.length() > 0) {
        parseSchemaElement(element.trim());
      }
    }
    return true;
  }

  private void parseSchemaElement(String element) throws ArgsException {
    char elementId = element.charAt(0);
    String elementTail = element.substring(1);
    validateSchemaElementId(elementId);
    if (elementTail.length() == 0)
      marshalers.put(elementId, new BooleanArgumentMarshaler());
    else if (elementTail.equals("*"))
      marshalers.put(elementId, new StringArgumentMarshaler());

Listing 14-15 (continued)
ArgsException.java



248A Chapter 14: Successive Refinement

    else if (elementTail.equals("#"))
      marshalers.put(elementId, new IntegerArgumentMarshaler());
    else if (elementTail.equals("##"))
      marshalers.put(elementId, new DoubleArgumentMarshaler());
    else
      throw new ArgsException(ArgsException.ErrorCode.INVALID_FORMAT, 
                              elementId, elementTail);
  }

  private void validateSchemaElementId(char elementId) throws ArgsException {
    if (!Character.isLetter(elementId)) {
      throw new ArgsException(ArgsException.ErrorCode.INVALID_ARGUMENT_NAME, 
                              elementId, null);
    }
  }

  private void parseArguments() throws ArgsException {
    for (currentArgument = argsList.iterator(); currentArgument.hasNext();) {
      String arg = currentArgument.next();
      parseArgument(arg);
    }
  }

  private void parseArgument(String arg) throws ArgsException {
    if (arg.startsWith("-"))
      parseElements(arg);
  }

  private void parseElements(String arg) throws ArgsException {
    for (int i = 1; i < arg.length(); i++)
      parseElement(arg.charAt(i));
  }

  private void parseElement(char argChar) throws ArgsException {
    if (setArgument(argChar))
      argsFound.add(argChar);
    else {
      throw new ArgsException(ArgsException.ErrorCode.UNEXPECTED_ARGUMENT, 
                              argChar, null);
    }
  }

  private boolean setArgument(char argChar) throws ArgsException {
    ArgumentMarshaler m = marshalers.get(argChar);
    if (m == null)
      return false;
    try {
      m.set(currentArgument);
      return true;
    } catch (ArgsException e) {
      e.setErrorArgumentId(argChar);
      throw e;
    }
  }

Listing 14-16 (continued)
Args.java



249AString Arguments

  public int cardinality() {
    return argsFound.size();
  }

  public String usage() {
    if (schema.length() > 0)
      return "-[" + schema + "]";
    else
      return "";
  }

  public boolean getBoolean(char arg) {
    ArgumentMarshaler am = marshalers.get(arg);
    boolean b = false;
    try {
      b = am != null && (Boolean) am.get();
    } catch (ClassCastException e) {
      b = false;
    }
    return b;
  }

  public String getString(char arg) {
    ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? "" : (String) am.get();
    } catch (ClassCastException e) {
      return "";
    }
  }

  public int getInt(char arg) {
    ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? 0 : (Integer) am.get();
    } catch (Exception e) {
      return 0;
    }
  }

  public double getDouble(char arg) {
    ArgumentMarshaler am = marshalers.get(arg);
    try {
      return am == null ? 0 : (Double) am.get();
    } catch (Exception e) {
      return 0.0;
    }
  }

  public boolean has(char arg) {
    return argsFound.contains(arg);
  }
}

Listing 14-16 (continued)
Args.java



250A Chapter 14: Successive Refinement

The majority of the changes to the Args class were deletions. A lot of code just got
moved out of Args and put into ArgsException. Nice. We also moved all the
ArgumentMarshallers into their own files. Nicer!

Much of good software design is simply about partitioning—creating appropriate
places to put different kinds of code. This separation of concerns makes the code much
simpler to understand and maintain.

Of special interest is the errorMessage method of ArgsException. Clearly it was a vio-
lation of the SRP to put the error message formatting into Args. Args should be about the
processing of arguments, not about the format of the error messages. However, does it
really make sense to put the error message formatting code into ArgsException?

Frankly, it’s a compromise. Users who don’t like the error messages supplied by
ArgsException will have to write their own. But the convenience of having canned error
messages already prepared for you is not insignificant.

By now it should be clear that we are within striking distance of the final solution that
appeared at the start of this chapter. I’ll leave the final transformations to you as an exercise. 

 Conclusion

It is not enough for code to work. Code that works is often badly broken. Programmers
who satisfy themselves with merely working code are behaving unprofessionally. They
may fear that they don’t have time to improve the structure and design of their code, but I
disagree. Nothing has a more profound and long-term degrading effect upon a develop-
ment project than bad code. Bad schedules can be redone, bad requirements can be rede-
fined. Bad team dynamics can be repaired. But bad code rots and ferments, becoming an
inexorable weight that drags the team down. Time and time again I have seen teams grind
to a crawl because, in their haste, they created a malignant morass of code that forever
thereafter dominated their destiny.

Of course bad code can be cleaned up. But it’s very expensive. As code rots, the mod-
ules insinuate themselves into each other, creating lots of hidden and tangled dependen-
cies. Finding and breaking old dependencies is a long and arduous task. On the other hand,
keeping code clean is relatively easy. If you made a mess in a module in the morning, it is
easy to clean it up in the afternoon. Better yet, if you made a mess five minutes ago, it’s
very easy to clean it up right now.

So the solution is to continuously keep your code as clean and simple as it can be.
Never let the rot get started.



251A

15

JUnit Internals

JUnit is one of the most famous of all Java frameworks. As frameworks go, it is simple in
conception, precise in definition, and elegant in implementation. But what does the code
look like? In this chapter we’ll critique an example drawn from the JUnit framework. 



252A Chapter 15: JUnit Internals

The JUnit Framework

JUnit has had many authors, but it began with Kent Beck and Eric Gamma together on a
plane to Atlanta. Kent wanted to learn Java, and Eric wanted to learn about Kent’s Small-
talk testing framework. “What could be more natural to a couple of geeks in cramped
quarters than to pull out our laptops and start coding?”1 After three hours of high-altitude
work, they had written the basics of JUnit.

The module we’ll look at is the clever bit of code that helps identify string compari-
son errors. This module is called ComparisonCompactor. Given two strings that differ,
such as ABCDE and ABXDE, it will expose the difference by generating a string such as
<...B[X]D...>. 

I could explain it further, but the test cases do a better job. So take a look at Listing 15-1
and you will understand the requirements of this module in depth. While you are at it,
critique the structure of the tests. Could they be simpler or more obvious?

1. JUnit Pocket Guide, Kent Beck, O’Reilly, 2004, p. 43.

Listing 15-1 
ComparisonCompactorTest.java
package junit.tests.framework;

import junit.framework.ComparisonCompactor;
import junit.framework.TestCase;

public class ComparisonCompactorTest extends TestCase {

public void testMessage() {
String failure= new ComparisonCompactor(0, "b", "c").compact("a");
assertTrue("a expected:<[b]> but was:<[c]>".equals(failure));

}

public void testStartSame() {
String failure= new ComparisonCompactor(1, "ba", "bc").compact(null);
assertEquals("expected:<b[a]> but was:<b[c]>", failure);

}

public void testEndSame() {
String  failure= new ComparisonCompactor(1, "ab", "cb").compact(null);
assertEquals("expected:<[a]b> but was:<[c]b>", failure);

}

public void testSame() {
String failure= new ComparisonCompactor(1, "ab", "ab").compact(null);
assertEquals("expected:<ab> but was:<ab>", failure);

}

public void testNoContextStartAndEndSame() {
String failure= new ComparisonCompactor(0, "abc", "adc").compact(null);
assertEquals("expected:<...[b]...> but was:<...[d]...>", failure);

}



253AThe JUnit Framework

public void testStartAndEndContext() {
String failure= new ComparisonCompactor(1, "abc", "adc").compact(null);
assertEquals("expected:<a[b]c> but was:<a[d]c>", failure);

}

public void testStartAndEndContextWithEllipses() {
String failure= 

       new ComparisonCompactor(1, "abcde", "abfde").compact(null);
assertEquals("expected:<...b[c]d...> but was:<...b[f]d...>", failure);

}

public void testComparisonErrorStartSameComplete() {
String failure= new ComparisonCompactor(2, "ab", "abc").compact(null);
assertEquals("expected:<ab[]> but was:<ab[c]>", failure);

}

public void testComparisonErrorEndSameComplete() {
String failure= new ComparisonCompactor(0, "bc", "abc").compact(null);
assertEquals("expected:<[]...> but was:<[a]...>", failure);

}

public void testComparisonErrorEndSameCompleteContext() {
String failure= new ComparisonCompactor(2, "bc", "abc").compact(null);
assertEquals("expected:<[]bc> but was:<[a]bc>", failure);

}

public void testComparisonErrorOverlapingMatches() {
String failure= new ComparisonCompactor(0, "abc", "abbc").compact(null);
assertEquals("expected:<...[]...> but was:<...[b]...>", failure);

}

public void testComparisonErrorOverlapingMatchesContext() {
String failure= new ComparisonCompactor(2, "abc", "abbc").compact(null);
assertEquals("expected:<ab[]c> but was:<ab[b]c>", failure);

}

public void testComparisonErrorOverlapingMatches2() {
String failure= new ComparisonCompactor(0, "abcdde", 

"abcde").compact(null);
assertEquals("expected:<...[d]...> but was:<...[]...>", failure);

}

public void testComparisonErrorOverlapingMatches2Context() {
String failure= 

       new ComparisonCompactor(2, "abcdde", "abcde").compact(null);
assertEquals("expected:<...cd[d]e> but was:<...cd[]e>", failure);

}

public void testComparisonErrorWithActualNull() {
String failure= new ComparisonCompactor(0, "a", null).compact(null);
assertEquals("expected:<a> but was:<null>", failure);

}

public void testComparisonErrorWithActualNullContext() {
String failure= new ComparisonCompactor(2, "a", null).compact(null);

Listing 15-1 (continued)
ComparisonCompactorTest.java



254A Chapter 15: JUnit Internals

I ran a code coverage analysis on the ComparisonCompactor using these tests. The code
is 100 percent covered. Every line of code, every if statement and for loop, is executed by
the tests. This gives me a high degree of confidence that the code works and a high degree
of respect for the craftsmanship of the authors.

The code for ComparisonCompactor is in Listing 15-2. Take a moment to look over this
code. I think you’ll find it to be nicely partitioned, reasonably expressive, and simple in
structure. Once you are done, then we’ll pick the nits together.

assertEquals("expected:<a> but was:<null>", failure);
}

public void testComparisonErrorWithExpectedNull() {
String failure= new ComparisonCompactor(0, null, "a").compact(null);
assertEquals("expected:<null> but was:<a>", failure);

}

public void testComparisonErrorWithExpectedNullContext() {
String failure= new ComparisonCompactor(2, null, "a").compact(null);
assertEquals("expected:<null> but was:<a>", failure);

}

public void testBug609972() {
String failure= new ComparisonCompactor(10, "S&P500", "0").compact(null);
assertEquals("expected:<[S&P50]0> but was:<[]0>", failure);

}
}

Listing 15-2 
ComparisonCompactor.java (Original)
package junit.framework;

public class ComparisonCompactor {

  private static final String ELLIPSIS = "...";
  private static final String DELTA_END = "]";
  private static final String DELTA_START = "[";

  private int fContextLength;
  private String fExpected;
  private String fActual;
  private int fPrefix;
  private int fSuffix;

  public ComparisonCompactor(int contextLength, 
                             String expected, 
                               String actual) {
    fContextLength = contextLength;
    fExpected = expected;
    fActual = actual;
  }

Listing 15-1 (continued)
ComparisonCompactorTest.java



255AThe JUnit Framework

  public String compact(String message) {
    if (fExpected == null || fActual == null || areStringsEqual())
      return Assert.format(message, fExpected, fActual);

    findCommonPrefix();
    findCommonSuffix();
    String expected = compactString(fExpected);
    String actual = compactString(fActual);
    return Assert.format(message, expected, actual);
  }

  private String compactString(String source) {
    String result = DELTA_START + 
                      source.substring(fPrefix, source.length() -
                        fSuffix + 1) + DELTA_END;
    if (fPrefix > 0)
      result = computeCommonPrefix() + result;
    if (fSuffix > 0)
      result = result + computeCommonSuffix();
    return result;
  }

  private void findCommonPrefix() {
    fPrefix = 0;
    int end = Math.min(fExpected.length(), fActual.length());
    for (; fPrefix < end; fPrefix++) {
      if (fExpected.charAt(fPrefix) != fActual.charAt(fPrefix))
        break;
    }
  }

  private void findCommonSuffix() {
    int expectedSuffix = fExpected.length() - 1;
    int actualSuffix = fActual.length() - 1;
    for (; 
         actualSuffix >= fPrefix && expectedSuffix >= fPrefix; 
          actualSuffix--, expectedSuffix--) {
      if (fExpected.charAt(expectedSuffix) != fActual.charAt(actualSuffix))
        break;
    }
    fSuffix = fExpected.length() - expectedSuffix;
  }

  private String computeCommonPrefix() {
    return (fPrefix > fContextLength ? ELLIPSIS : "") + 
             fExpected.substring(Math.max(0, fPrefix - fContextLength), 
                                    fPrefix);
  }

  private String computeCommonSuffix() {
    int end = Math.min(fExpected.length() - fSuffix + 1 + fContextLength, 
                         fExpected.length());
    return fExpected.substring(fExpected.length() - fSuffix + 1, end) + 
           (fExpected.length() - fSuffix + 1 < fExpected.length() - 
            fContextLength ? ELLIPSIS : "");
  }

Listing 15-2 (continued)
ComparisonCompactor.java (Original)



256A Chapter 15: JUnit Internals

You might have a few complaints about this module. There are some long expressions
and some strange +1s and so forth. But overall this module is pretty good. After all, it
might have looked like Listing 15-3. 

  private boolean areStringsEqual() {
    return fExpected.equals(fActual);
  }
}

Listing 15-3 
ComparisonCompator.java (defactored)
package junit.framework;

public class ComparisonCompactor {
  private int ctxt;
  private String s1;
  private String s2;
  private int pfx;
  private int sfx;

  public ComparisonCompactor(int ctxt, String s1, String s2) {
    this.ctxt = ctxt;
    this.s1 = s1;
    this.s2 = s2;
  }

  public String compact(String msg) {
    if (s1 == null || s2 == null || s1.equals(s2))
      return Assert.format(msg, s1, s2);

    pfx = 0;
    for (; pfx < Math.min(s1.length(), s2.length()); pfx++) {
      if (s1.charAt(pfx) != s2.charAt(pfx))
        break;
    }
    int sfx1 = s1.length() - 1;
    int sfx2 = s2.length() - 1;
    for (; sfx2 >= pfx && sfx1 >= pfx; sfx2--, sfx1--) {
      if (s1.charAt(sfx1) != s2.charAt(sfx2))
        break;
    }
    sfx = s1.length() - sfx1;
    String cmp1 = compactString(s1);
    String cmp2 = compactString(s2);
    return Assert.format(msg, cmp1, cmp2);
  }

  private String compactString(String s) {
    String result =
      "[" + s.substring(pfx, s.length() - sfx + 1) + "]";
    if (pfx > 0)
      result = (pfx > ctxt ? "..." : "") +
        s1.substring(Math.max(0, pfx - ctxt), pfx) + result;

Listing 15-2 (continued)
ComparisonCompactor.java (Original)



257AThe JUnit Framework

Even though the authors left this module in very good shape, the Boy Scout Rule2 tells
us we should leave it cleaner than we found it. So, how can we improve on the original
code in Listing 15-2? 

The first thing I don’t care for is the f prefix for the member variables [N6]. Today’s
environments make this kind of scope encoding redundant. So let’s eliminate all the f’s. 

  private int contextLength;
  private String expected;
  private String actual;
  private int prefix;
  private int suffix;

Next, we have an unencapsulated conditional at the beginning of the compact function
[G28].

  public String compact(String message) {
    if (expected == null || actual == null || areStringsEqual())
      return Assert.format(message, expected, actual);

    findCommonPrefix();
    findCommonSuffix();
    String expected = compactString(this.expected);
    String actual = compactString(this.actual);
    return Assert.format(message, expected, actual); 
  }

This conditional should be encapsulated to make our intent clear. So let’s extract a method
that explains it.

  public String compact(String message) {
    if (shouldNotCompact())
      return Assert.format(message, expected, actual);

    findCommonPrefix();
    findCommonSuffix();
    String expected = compactString(this.expected);
    String actual = compactString(this.actual);
    return Assert.format(message, expected, actual);
  }

    if (sfx > 0) {
      int end = Math.min(s1.length() - sfx + 1 + ctxt, s1.length());
      result = result + (s1.substring(s1.length() - sfx + 1, end) +
        (s1.length() - sfx + 1 < s1.length() - ctxt ? "..." : ""));
    }
    return result;
  }

}

2. See “The Boy Scout Rule” on page 14.A

Listing 15-3 (continued)
ComparisonCompator.java (defactored)



258A Chapter 15: JUnit Internals

  private boolean shouldNotCompact() {
    return expected == null || actual == null || areStringsEqual();
  }

I don’t much care for the this.expected and this.actual notation in the compact func-
tion. This happened when we changed the name of fExpected to expected. Why are there
variables in this function that have the same names as the member variables? Don’t they
represent something else [N4]? We should make the names unambiguous.

    String compactExpected = compactString(expected);
    String compactActual = compactString(actual);

Negatives are slightly harder to understand than positives [G29]. So let’s turn that if
statement on its head and invert the sense of the conditional.

  public String compact(String message) {
    if (canBeCompacted()) {
      findCommonPrefix();
      findCommonSuffix();
      String compactExpected = compactString(expected);
      String compactActual = compactString(actual);
      return Assert.format(message, compactExpected, compactActual);
    } else {
      return Assert.format(message, expected, actual);
    }
  }

  private boolean canBeCompacted() {
    return expected != null && actual != null && !areStringsEqual();
  }

The name of the function is strange [N7]. Although it does compact the strings, it
actually might not compact the strings if canBeCompacted returns false. So naming this
function compact hides the side effect of the error check. Notice also that the function
returns a formatted message, not just the compacted strings. So the name of the function
should really be formatCompactedComparison. That makes it read a lot better when taken
with the function argument:

  public String formatCompactedComparison(String message) {

The body of the if statement is where the true compacting of the expected and actual
strings is done. We should extract that as a method named compactExpectedAndActual. How-
ever, we want the formatCompactedComparison function to do all the formatting. The
compact... function should do nothing but compacting [G30]. So let’s split it up as follows:

...
  private String compactExpected;
  private String compactActual;

...

  public String formatCompactedComparison(String message) {
    if (canBeCompacted()) {
      compactExpectedAndActual();
      return Assert.format(message, compactExpected, compactActual);
    } else {



259AThe JUnit Framework

      return Assert.format(message, expected, actual);
    }
  }

  private void compactExpectedAndActual() {
    findCommonPrefix();
    findCommonSuffix();
    compactExpected = compactString(expected);
    compactActual = compactString(actual);
  }

Notice that this required us to promote compactExpected and compactActual to member
variables. I don’t like the way that the last two lines of the new function return variables,
but the first two don’t. They aren’t using consistent conventions [G11]. So we should
change findCommonPrefix and findCommonSuffix to return the prefix and suffix values.

  private void compactExpectedAndActual() {
    prefixIndex = findCommonPrefix();
    suffixIndex = findCommonSuffix();
    compactExpected = compactString(expected);
    compactActual = compactString(actual);
  }

  private int findCommonPrefix() {
    int prefixIndex = 0;
    int end = Math.min(expected.length(), actual.length());
    for (; prefixIndex < end; prefixIndex++) {
      if (expected.charAt(prefixIndex) != actual.charAt(prefixIndex))
        break;
    }
    return prefixIndex;
  }

  private int findCommonSuffix() {
    int expectedSuffix = expected.length() - 1;
    int actualSuffix = actual.length() - 1;
    for (; actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
         actualSuffix--, expectedSuffix--) {
      if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
        break;
    }
    return expected.length() - expectedSuffix;
  }

We should also change the names of the member variables to be a little more accurate
[N1]; after all, they are both indices. 

Careful inspection of findCommonSuffix exposes a hidden temporal coupling [G31]; it
depends on the fact that prefixIndex is calculated by findCommonPrefix. If these two func-
tions were called out of order, there would be a difficult debugging session ahead. So, to
expose this temporal coupling, let’s have findCommonSuffix take the prefixIndex as an
argument.

  private void compactExpectedAndActual() {
    prefixIndex = findCommonPrefix();
    suffixIndex = findCommonSuffix(prefixIndex);



260A Chapter 15: JUnit Internals

    compactExpected = compactString(expected);
    compactActual = compactString(actual);
  }

  private int findCommonSuffix(int prefixIndex) {
    int expectedSuffix = expected.length() - 1;
    int actualSuffix = actual.length() - 1;
    for (; actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex; 
         actualSuffix--, expectedSuffix--) {
      if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
        break;
    }
    return expected.length() - expectedSuffix;
  }

I’m not really happy with this. The passing of the prefixIndex argument is a bit arbitrary
[G32]. It works to establish the ordering but does nothing to explain the need for that
ordering. Another programmer might undo what we have done because there’s no indica-
tion that the parameter is really needed. So let’s take a different tack.

  private void compactExpectedAndActual() {
    findCommonPrefixAndSuffix();
    compactExpected = compactString(expected);
    compactActual = compactString(actual);
  }

  private void findCommonPrefixAndSuffix() {
    findCommonPrefix();
    int expectedSuffix = expected.length() - 1;
    int actualSuffix = actual.length() - 1;
    for (;
         actualSuffix >= prefixIndex && expectedSuffix >= prefixIndex;
         actualSuffix--, expectedSuffix--
      ) {
      if (expected.charAt(expectedSuffix) != actual.charAt(actualSuffix))
        break;
    }
    suffixIndex = expected.length() - expectedSuffix;
  }

  private void findCommonPrefix() {
    prefixIndex = 0;
    int end = Math.min(expected.length(), actual.length());
    for (; prefixIndex < end; prefixIndex++)
      if (expected.charAt(prefixIndex) != actual.charAt(prefixIndex))
        break;
  }

We put findCommonPrefix and findCommonSuffix back the way they were, changing the
name of findCommonSuffix to findCommonPrefixAndSuffix and having it call findCommon-
Prefix before doing anything else. That establishes the temporal nature of the two func-
tions in a much more dramatic way than the previous solution. It also points out how ugly
findCommonPrefixAndSuffix is. Let’s clean it up now.

  private void findCommonPrefixAndSuffix() {
    findCommonPrefix();
    int suffixLength = 1;



261AThe JUnit Framework

    for (; !suffixOverlapsPrefix(suffixLength); suffixLength++) {
      if (charFromEnd(expected, suffixLength) != 
           charFromEnd(actual, suffixLength))
        break;
    }
    suffixIndex = suffixLength;
  }

  private char charFromEnd(String s, int i) {
    return s.charAt(s.length()-i);}

  private boolean suffixOverlapsPrefix(int suffixLength) {
    return actual.length() - suffixLength < prefixLength ||
      expected.length() - suffixLength < prefixLength;
  }

This is much better. It exposes that the suffixIndex is really the length of the suffix
and is not well named. The same is true of the prefixIndex, though in that case “index” and
“length” are synonymous. Even so, it is more consistent to use “length.” The problem is
that the suffixIndex variable is not zero based; it is 1 based and so is not a true length. This
is also the reason that there are all those +1s in computeCommonSuffix [G33]. So let’s fix that.
The result is in Listing 15-4.

Listing 15-4 
ComparisonCompactor.java (interim)
public class ComparisonCompactor {
...
  private int suffixLength;
...
  private void findCommonPrefixAndSuffix() {
    findCommonPrefix();
    suffixLength = 0;
    for (; !suffixOverlapsPrefix(suffixLength); suffixLength++) {
      if (charFromEnd(expected, suffixLength) != 
          charFromEnd(actual, suffixLength))
        break;
    }
  }

  private char charFromEnd(String s, int i) {
    return s.charAt(s.length() - i - 1);
  }

  private boolean suffixOverlapsPrefix(int suffixLength) {
    return actual.length() - suffixLength <= prefixLength ||
      expected.length() - suffixLength <= prefixLength;
  }

...
  private String compactString(String source) {
    String result = 
      DELTA_START + 
      source.substring(prefixLength, source.length() - suffixLength) + 
      DELTA_END;
    if (prefixLength > 0)
      result = computeCommonPrefix() + result;



262A Chapter 15: JUnit Internals

We replaced the +1s in computeCommonSuffix with a -1 in charFromEnd, where it makes
perfect sense, and two <= operators in suffixOverlapsPrefix, where they also make perfect
sense. This allowed us to change the name of suffixIndex to suffixLength, greatly enhanc-
ing the readability of the code.

There is a problem however. As I was eliminating the +1s, I noticed the following line
in compactString:

if (suffixLength > 0)

Take a look at it in Listing 15-4. By rights, because suffixLength is now one less than it
used to be, I should change the > operator to a >= operator. But that makes no sense. It
makes sense now! This means that it didn’t use to make sense and was probably a bug.
Well, not quite a bug. Upon further analysis we see that the if statement now prevents a
zero length suffix from being appended. Before we made the change, the if statement was
nonfunctional because suffixIndex could never be less than one!

This calls into question both if statements in compactString! It looks as though they
could both be eliminated. So let’s comment them out and run the tests. They passed! So
let’s restructure compactString to eliminate the extraneous if statements and make the
function much simpler [G9].

private String compactString(String source) {
    return
      computeCommonPrefix() +
      DELTA_START +
      source.substring(prefixLength, source.length() - suffixLength) +
      DELTA_END +
      computeCommonSuffix();
  }

This is much better! Now we see that the compactString function is simply composing the
fragments together. We can probably make this even clearer. Indeed, there are lots of little

    if (suffixLength > 0)
      result = result + computeCommonSuffix();
    return result;
  }

...
  private String computeCommonSuffix() {
    int end = Math.min(expected.length() - suffixLength +
      contextLength, expected.length()
    );
    return 
      expected.substring(expected.length() - suffixLength, end) +
      (expected.length() - suffixLength < 
        expected.length() - contextLength ? 
        ELLIPSIS : "");
  }

Listing 15-4 (continued)
ComparisonCompactor.java (interim)



263AThe JUnit Framework

cleanups we could do. But rather than drag you through the rest of the changes, I’ll just
show you the result in Listing 15-5. 

Listing 15-5 
ComparisonCompactor.java (final)
package junit.framework;

public class ComparisonCompactor {

  private static final String ELLIPSIS = "...";
  private static final String DELTA_END = "]";
  private static final String DELTA_START = "[";

  private int contextLength;
  private String expected;
  private String actual;
  private int prefixLength;
  private int suffixLength;

  public ComparisonCompactor(
    int contextLength, String expected, String actual
  ) {
    this.contextLength = contextLength;
    this.expected = expected;
    this.actual = actual;
  }

  public String formatCompactedComparison(String message) {
    String compactExpected = expected;
    String compactActual = actual;
    if (shouldBeCompacted()) {
      findCommonPrefixAndSuffix();
      compactExpected = compact(expected);
      compactActual = compact(actual);
    } 
    return Assert.format(message, compactExpected, compactActual);
  }

  private boolean shouldBeCompacted() {
    return !shouldNotBeCompacted();
  }

  private boolean shouldNotBeCompacted() {
    return expected == null ||
           actual == null ||
           expected.equals(actual);
  }

  private void findCommonPrefixAndSuffix() {
    findCommonPrefix();
    suffixLength = 0;
    for (; !suffixOverlapsPrefix(); suffixLength++) {
      if (charFromEnd(expected, suffixLength) !=
          charFromEnd(actual, suffixLength)
      )



264A Chapter 15: JUnit Internals

        break;
    }
  }

  private char charFromEnd(String s, int i) {
    return s.charAt(s.length() - i - 1);
  }

  private boolean suffixOverlapsPrefix() {
    return actual.length() - suffixLength <= prefixLength ||
      expected.length() - suffixLength <= prefixLength;
  }

  private void findCommonPrefix() {
    prefixLength = 0;
    int end = Math.min(expected.length(), actual.length());
    for (; prefixLength < end; prefixLength++)
      if (expected.charAt(prefixLength) != actual.charAt(prefixLength))
        break;
  }

  private String compact(String s) {
    return new StringBuilder()
      .append(startingEllipsis())
      .append(startingContext())
      .append(DELTA_START)
      .append(delta(s))
      .append(DELTA_END)
      .append(endingContext())
      .append(endingEllipsis())
      .toString();
  }

  private String startingEllipsis() {
    return prefixLength > contextLength ? ELLIPSIS : "";
  }

  private String startingContext() {
    int contextStart = Math.max(0, prefixLength - contextLength);
    int contextEnd = prefixLength;
    return expected.substring(contextStart, contextEnd);
  }

  private String delta(String s) {
    int deltaStart = prefixLength;
    int deltaEnd = s.length() - suffixLength;
    return s.substring(deltaStart, deltaEnd);
  }

  private String endingContext() {
    int contextStart = expected.length() - suffixLength;
    int contextEnd =
      Math.min(contextStart + contextLength, expected.length());
    return expected.substring(contextStart, contextEnd);
  }

Listing 15-5 (continued)
ComparisonCompactor.java (final)



265AConclusion

This is actually quite pretty. The module is separated into a group of analysis func-
tions and another group of synthesis functions. They are topologically sorted so that the
definition of each function appears just after it is used. All the analysis functions appear
first, and all the synthesis functions appear last.

If you look carefully, you will notice that I reversed several of the decisions I made
earlier in this chapter. For example, I inlined some extracted methods back into
formatCompactedComparison, and I changed the sense of the shouldNotBeCompacted expres-
sion. This is typical. Often one refactoring leads to another that leads to the undoing of the
first. Refactoring is an iterative process full of trial and error, inevitably converging on
something that we feel is worthy of a professional.

Conclusion

And so we have satisfied the Boy Scout Rule. We have left this module a bit cleaner than
we found it. Not that it wasn’t clean already. The authors had done an excellent job with it.
But no module is immune from improvement, and each of us has the responsibility to
leave the code a little better than we found it.

  private String endingEllipsis() {
    return (suffixLength > contextLength ? ELLIPSIS : "");
  }
}

Listing 15-5 (continued)
ComparisonCompactor.java (final)



This page intentionally left blank 



267A

16

Refactoring SerialDate

If you go to http://www.jfree.org/jcommon/index.php, you will find the JCommon library.
Deep within that library there is a package named org.jfree.date. Within that package
there is a class named SerialDate. We are going to explore that class.

The author of SerialDate is David Gilbert. David is clearly an experienced and com-
petent programmer. As we shall see, he shows a significant degree of professionalism and
discipline within his code. For all intents and purposes, this is “good code.” And I am
going to rip it to pieces.

http://www.jfree.org/jcommon/index.php


268A Chapter 16: Refactoring SerialDate

This is not an activity of malice. Nor do I think that I am so much better than David
that I somehow have a right to pass judgment on his code. Indeed, if you were to find some
of my code, I’m sure you could find plenty of things to complain about. 

No, this is not an activity of nastiness or arrogance. What I am about to do is nothing
more and nothing less than a professional review. It is something that we should all be
comfortable doing. And it is something we should welcome when it is done for us. It is
only through critiques like these that we will learn. Doctors do it. Pilots do it. Lawyers do
it. And we programmers need to learn how to do it too.

One more thing about David Gilbert: David is more than just a good programmer.
David had the courage and good will to offer his code to the community at large for free.
He placed it out in the open for all to see and invited public usage and public scrutiny. This
was well done!

SerialDate (Listing B-1, page 349) is a class that represents a date in Java. Why have
a class that represents a date, when Java already has java.util.Date and
java.util.Calendar, and others? The author wrote this class in response to a pain that I
have often felt myself. The comment in his opening Javadoc (line 67) explains it well. We
could quibble about his intention, but I have certainly had to deal with this issue, and I
welcome a class that is about dates instead of times.

First, Make It Work

There are some unit tests in a class named SerialDateTests (Listing B-2, page 366). The
tests all pass. Unfortunately a quick inspection of the tests shows that they don’t test every-
thing [T1]. For example, doing a “Find Usages” search on the method MonthCodeToQuarter
(line 334) indicates that it is not used [F4]. Therefore, the unit tests don’t test it.

So I fired up Clover to see what the unit tests covered and what they didn’t. Clover
reported that the unit tests executed only 91 of the 185 executable statements in SerialDate
(~50 percent) [T2]. The coverage map looks like a patchwork quilt, with big gobs of unex-
ecuted code littered all through the class. 

It was my goal to completely understand and also refactor this class. I couldn’t do that
without much greater test coverage. So I wrote my own suite of completely independent
unit tests (Listing B-4, page 374). 

As you look through these tests, you will note that many of them are commented out.
These tests didn’t pass. They represent behavior that I think SerialDate should have. So as
I refactor SerialDate, I’ll be working to make these tests pass too.

Even with some of the tests commented out, Clover reports that the new unit tests are
executing 170 (92 percent) out of the 185 executable statements. This is pretty good, and I
think we’ll be able to get this number higher.

The first few commented-out tests (lines 23-63) were a bit of conceit on my part. The
program was not designed to pass these tests, but the behavior seemed obvious [G2] to me.



269AFirst, Make It Work

I’m not sure why the testWeekdayCodeToString method was written in the first place, but
because it is there, it seems obvious that it should not be case sensitive. Writing these tests
was trivial [T3]. Making them pass was even easier; I just changed lines 259 and 263 to
use equalsIgnoreCase.

I left the tests at line 32 and line 45 commented out because it’s not clear to me that
the “tues” and “thurs” abbreviations ought to be supported.

The tests on line 153 and line 154 don’t pass. Clearly, they should [G2]. We can easily
fix this, and the tests on line 163 through line 213, by making the following changes to the
stringToMonthCode function.

The commented test on line 318 exposes a bug in the getFollowingDayOfWeek method
(line 672). December 25th, 2004, was a Saturday. The following Saturday was January 1st,
2005. However, when we run the test, we see that getFollowingDayOfWeek returns Decem-
ber 25th as the Saturday that follows December 25th. Clearly, this is wrong [G3],[T1]. We
see the problem in line 685. It is a typical boundary condition error [T5]. It should read as
follows:

It is interesting to note that this function was the target of an earlier repair. The change
history (line 43) shows that “bugs” were fixed in getPreviousDayOfWeek, getFollowing-
DayOfWeek, and getNearestDayOfWeek [T6]. 

The testGetNearestDayOfWeek unit test (line 329), which tests the getNearestDayOfWeek
method (line 705), did not start out as long and exhaustive as it currently is. I added a lot
of test cases to it because my initial test cases did not all pass [T6]. You can see the pattern
of failure by looking at which test cases are commented out. That pattern is revealing [T7].
It shows that the algorithm fails if the nearest day is in the future. Clearly there is some
kind of boundary condition error [T5].

The pattern of test coverage reported by Clover is also interesting [T8]. Line 719
never gets executed! This means that the if statement in line 718 is always false. Sure
enough, a look at the code shows that this must be true. The adjust variable is always neg-
ative and so cannot be greater or equal to 4. So this algorithm is just wrong.

 457         if ((result < 1) || (result > 12)) {
                 result = -1;
 458             for (int i = 0; i < monthNames.length; i++) {
 459                 if (s.equalsIgnoreCase(shortMonthNames[i])) {
 460                     result = i + 1;
 461                     break;
 462                 }
 463                 if (s.equalsIgnoreCase(monthNames[i])) {
 464                     result = i + 1;
 465                     break;
 466                 }
 467             }
 468         }

 685         if (baseDOW >= targetWeekday) {



270A Chapter 16: Refactoring SerialDate

The right algorithm is shown below:

Finally, the tests at line 417 and line 429 can be made to pass simply by throwing an
IllegalArgumentException instead of returning an error string from weekInMonthToString
and relativeToString.

With these changes all the unit tests pass, and I believe SerialDate now works. So now
it’s time to make it “right.”

Then Make It Right

We are going to walk from the top to the bottom of SerialDate, improving it as we go
along. Although you won’t see this in the discussion, I will be running all of the JCommon
unit tests, including my improved unit test for SerialDate, after every change I make. So
rest assured that every change you see here works for all of JCommon.

Starting at line 1, we see a ream of comments with license information, copyrights,
authors, and change history. I acknowledge that there are certain legalities that need to be
addressed, and so the copyrights and licenses must stay. On the other hand, the change his-
tory is a leftover from the 1960s. We have source code control tools that do this for us now.
This history should be deleted [C1].

The import list starting at line 61 could be shortened by using java.text.* and
java.util.*. [J1]

I wince at the HTML formatting in the Javadoc (line 67). Having a source file with
more than one language in it troubles me. This comment has four languages in it: Java,
English, Javadoc, and html [G1]. With that many languages in use, it’s hard to keep things
straight. For example, the nice positioning of line 71 and line 72 are lost when the Javadoc
is generated, and yet who wants to see <ul> and <li> in the source code? A better strategy
might be to just surround the whole comment with <pre> so that the formatting that is
apparent in the source code is preserved within the Javadoc.1

Line 86 is the class declaration. Why is this class named SerialDate? What is the sig-
nificance of the world “serial”? Is it because the class is derived from Serializable? That
doesn’t seem likely. 

      int delta = targetDOW - base.getDayOfWeek();
      int positiveDelta = delta + 7;
      int adjust = positiveDelta % 7;
      if (adjust > 3)
        adjust -= 7;

      return SerialDate.addDays(adjust, base);

1. An even better solution would have been for Javadoc to present all comments as preformatted, so that comments appear the 
same in both code and document. 



271AThen Make It Right

I won’t keep you guessing. I know why (or at least I think I know why) the word
“serial” was used. The clue is in the constants SERIAL_LOWER_BOUND and
SERIAL_UPPER_BOUND on line 98 and line 101. An even better clue is in the comment
that begins on line 830. This class is named SerialDate because it is implemented using a
“serial number,” which happens to be the number of days since December 30th, 1899. 

I have two problems with this. First, the term “serial number” is not really correct.
This may be a quibble, but the representation is more of a relative offset than a serial num-
ber. The term “serial number” has more to do with product identification markers than
dates. So I don’t find this name particularly descriptive [N1]. A more descriptive term
might be “ordinal.”

The second problem is more significant. The name SerialDate implies an implementa-
tion. This class is an abstract class. There is no need to imply anything at all about the
implementation. Indeed, there is good reason to hide the implementation! So I find this
name to be at the wrong level of abstraction [N2]. In my opinion, the name of this class
should simply be Date. 

Unfortunately, there are already too many classes in the Java library named Date, so
this is probably not the best name to choose. Because this class is all about days, instead of
time, I considered naming it Day, but this name is also heavily used in other places. In the
end, I chose DayDate as the best compromise.

From now on in this discussion I will use the term DayDate. I leave it to you to remem-
ber that the listings you are looking at still use SerialDate. 

I understand why DayDate inherits from Comparable and Serializable. But why does it
inherit from MonthConstants? The class MonthConstants (Listing B-3, page 372) is just a
bunch of static final constants that define the months. Inheriting from classes with con-
stants is an old trick that Java programmers used so that they could avoid using expres-
sions like MonthConstants.January, but it’s a bad idea [J2]. MonthConstants should really be
an enum.

public abstract class DayDate implements Comparable,
                                         Serializable {
  public static enum Month {
    JANUARY(1),
    FEBRUARY(2),
    MARCH(3),
    APRIL(4),
    MAY(5),
    JUNE(6),
    JULY(7),
    AUGUST(8),
    SEPTEMBER(9),
    OCTOBER(10),
    NOVEMBER(11),
    DECEMBER(12);

    Month(int index) {
      this.index = index;
    }



272A Chapter 16: Refactoring SerialDate

Changing MonthConstants to this enum forces quite a few changes to the DayDate class
and all it’s users. It took me an hour to make all the changes. However, any function that
used to take an int for a month, now takes a Month enumerator. This means we can get rid
of the isValidMonthCode method (line 326), and all the month code error checking such as
that in monthCodeToQuarter (line 356) [G5]. 

Next, we have line 91, serialVersionUID. This variable is used to control the serializer.
If we change it, then any DayDate written with an older version of the software won’t be
readable anymore and will result in an InvalidClassException. If you don’t declare the
serialVersionUID variable, then the compiler automatically generates one for you, and it
will be different every time you make a change to the module. I know that all the docu-
ments recommend manual control of this variable, but it seems to me that automatic con-
trol of serialization is a lot safer [G4]. After all, I’d much rather debug an
InvalidClassException than the odd behavior that would ensue if I forgot to change the
serialVersionUID. So I’m going to delete the variable—at least for the time being.2

I find the comment on line 93 redundant. Redundant comments are just places to col-
lect lies and misinformation [C2]. So I’m going to get rid of it and its ilk.

The comments at line 97 and line 100 talk about serial numbers, which I discussed
earlier [C1]. The variables they describe are the earliest and latest possible dates that
DayDate can describe. This can be made a bit clearer [N1].

It’s not clear to me why EARLIEST_DATE_ORDINAL is 2 instead of 0. There is a hint in the
comment on line 829 that suggests that this has something to do with the way dates are
represented in Microsoft Excel. There is a much deeper insight provided in a derivative of
DayDate called SpreadsheetDate (Listing B-5, page 382). The comment on line 71 describes
the issue nicely.

The problem I have with this is that the issue seems to be related to the implementa-
tion of SpreadsheetDate and has nothing to do with DayDate. I conclude from this that

    public static Month make(int monthIndex) {
      for (Month m : Month.values()) {
        if (m.index == monthIndex)
          return m;
      }
      throw new IllegalArgumentException("Invalid month index " + monthIndex);
    }
    public final int index;
  }

2. Several of the reviewers of this text have taken exception to this decision. They contend that in an open source framework it 
is better to assert manual control over the serial ID so that minor changes to the software don’t cause old serialized dates to be 
invalid. This is a fair point. However, at least the failure, inconvenient though it might be, has a clear-cut cause. On the other 
hand, if the author of the class forgets to update the ID, then the failure mode is undefined and might very well be silent. I 
think the real moral of this story is that you should not expect to deserialize across versions.

  public static final int EARLIEST_DATE_ORDINAL = 2;     // 1/1/1900
  public static final int LATEST_DATE_ORDINAL = 2958465; // 12/31/9999



273AThen Make It Right

EARLIEST_DATE_ORDINAL and LATEST_DATE_ORDINAL do not really belong in DayDate and
should be moved to SpreadsheetDate [G6].

Indeed, a search of the code shows that these variables are used only within
SpreadsheetDate. Nothing in DayDate, nor in any other class in the JCommon framework, uses
them. Therefore, I’ll move them down into SpreadsheetDate.

The next variables, MINIMUM_YEAR_SUPPORTED, and MAXIMUM_YEAR_SUPPORTED (line 104
and line 107), provide something of a dilemma. It seems clear that if DayDate is an abstract
class that provides no foreshadowing of implementation, then it should not inform us
about a minimum or maximum year. Again, I am tempted to move these variables down
into SpreadsheetDate [G6]. However, a quick search of the users of these variables shows
that one other class uses them: RelativeDayOfWeekRule (Listing B-6, page 390). We see that
usage at line 177 and line 178 in the getDate function, where they are used to check that
the argument to getDate is a valid year. The dilemma is that a user of an abstract class
needs information about its implementation. 

What we need to do is provide this information without polluting DayDate itself.
Usually, we would get implementation information from an instance of a derivative.
However, the getDate function is not passed an instance of a DayDate. It does, however,
return such an instance, which means that somewhere it must be creating it. Line 187
through line 205 provide the hint. The DayDate instance is being created by one of the
three functions, getPreviousDayOfWeek, getNearestDayOfWeek, or getFollowingDayOfWeek.
Looking back at the DayDate listing, we see that these functions (lines 638–724) all return
a date created by addDays (line 571), which calls createInstance (line 808), which creates
a SpreadsheetDate! [G7].

It’s generally a bad idea for base classes to know about their derivatives. To fix this, we
should use the ABSTRACT FACTORY3 pattern and create a DayDateFactory. This factory will
create the instances of DayDate that we need and can also answer questions about the
implementation, such as the maximum and minimum dates.

3. [GOF].

public abstract class DayDateFactory {
  private static DayDateFactory factory = new SpreadsheetDateFactory();
  public static void setInstance(DayDateFactory factory) {
    DayDateFactory.factory = factory;
  }

  protected abstract DayDate _makeDate(int ordinal);
  protected abstract DayDate _makeDate(int day, DayDate.Month month, int year);
  protected abstract DayDate _makeDate(int day, int month, int year);
  protected abstract DayDate _makeDate(java.util.Date date);
  protected abstract int _getMinimumYear();
  protected abstract int _getMaximumYear();

  public static DayDate makeDate(int ordinal) {
    return factory._makeDate(ordinal);
  }



274A Chapter 16: Refactoring SerialDate

This factory class replaces the createInstance methods with makeDate methods, which
improves the names quite a bit [N1]. It defaults to a SpreadsheetDateFactory but can be
changed at any time to use a different factory. The static methods that delegate to abstract
methods use a combination of the SINGLETON,4 DECORATOR,5 and ABSTRACT FACTORY

patterns that I have found to be useful.

The SpreadsheetDateFactory looks like this.

  public static DayDate makeDate(int day, DayDate.Month month, int year) {
    return factory._makeDate(day, month, year);
  }

  public static DayDate makeDate(int day, int month, int year) {
    return factory._makeDate(day, month, year);
  }

  public static DayDate makeDate(java.util.Date date) {
    return factory._makeDate(date);
  }

  public static int getMinimumYear() {
    return factory._getMinimumYear();
  }

  public static int getMaximumYear() {
    return factory._getMaximumYear();
  }
}

4. Ibid.
5. Ibid.

public class SpreadsheetDateFactory extends DayDateFactory {
  public DayDate _makeDate(int ordinal) {
    return new SpreadsheetDate(ordinal);
  }

  public DayDate _makeDate(int day, DayDate.Month month, int year) {
    return new SpreadsheetDate(day, month, year);
  }

  public DayDate _makeDate(int day, int month, int year) {
    return new SpreadsheetDate(day, month, year);
  }

  public DayDate _makeDate(Date date) {
    final GregorianCalendar calendar = new GregorianCalendar();
    calendar.setTime(date);
    return new SpreadsheetDate(
      calendar.get(Calendar.DATE),
      DayDate.Month.make(calendar.get(Calendar.MONTH) + 1),
      calendar.get(Calendar.YEAR));
  }



275AThen Make It Right

As you can see, I have already moved the MINIMUM_YEAR_SUPPORTED and
MAXIMUM_YEAR_SUPPORTED variables into SpreadsheetDate, where they belong [G6].

The next issue in DayDate are the day constants beginning at line 109. These should
really be another enum [J3]. We’ve seen this pattern before, so I won’t repeat it here. You’ll
see it in the final listings.

Next, we see a series of tables starting with LAST_DAY_OF_MONTH at line 140. My first
issue with these tables is that the comments that describe them are redundant [C3]. Their
names are sufficient. So I’m going to delete the comments.

There seems to be no good reason that this table isn’t private [G8], because there is a
static function lastDayOfMonth that provides the same data.

The next table, AGGREGATE_DAYS_TO_END_OF_MONTH, is a bit more mysterious because it is
not used anywhere in the JCommon framework [G9]. So I deleted it.

The same goes for LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.

The next table, AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH, is used only in Spread-
sheetDate (line 434 and line 473). This begs the question of whether it should be moved
to SpreadsheetDate. The argument for not moving it is that the table is not specific to any
particular implementation [G6]. On the other hand, no implementation other than
SpreadsheetDate actually exists, and so the table should be moved close to where it is
used [G10]. 

What settles the argument for me is that to be consistent [G11], we should make the
table private and expose it through a function like julianDateOfLastDayOfMonth. Nobody
seems to need a function like that. Moreover, the table can be moved back to DayDate easily
if any new implementation of DayDate needs it. So I moved it.

The same goes for the table, LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH.

Next, we see three sets of constants that can be turned into enums (lines 162–205).
The first of the three selects a week within a month. I changed it into an enum named
WeekInMonth. 

  protected int _getMinimumYear() {
    return SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;
  }

  protected int _getMaximumYear() {
    return SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;
  }
}

public enum WeekInMonth {
    FIRST(1), SECOND(2), THIRD(3), FOURTH(4), LAST(0);
    public final int index;

    WeekInMonth(int index) {
      this.index = index;
    }
  }



276A Chapter 16: Refactoring SerialDate

The second set of constants (lines 177–187) is a bit more obscure. The INCLUDE_NONE,
INCLUDE_FIRST, INCLUDE_SECOND, and INCLUDE_BOTH constants are used to describe whether
the defining end-point dates of a range should be included in that range. Mathematically,
this is described using the terms “open interval,” “half-open interval,” and “closed inter-
val.” I think it is clearer using the mathematical nomenclature [N3], so I changed it to an
enum named DateInterval with CLOSED, CLOSED_LEFT, CLOSED_RIGHT, and OPEN enumerators. 

The third set of constants (lines 18–205) describe whether a search for a particular
day of the week should result in the last, next, or nearest instance. Deciding what to call
this is difficult at best. In the end, I settled for WeekdayRange with LAST, NEXT, and NEAREST
enumerators. 

You might not agree with the names I’ve chosen. They make sense to me, but they
may not make sense to you. The point is that they are now in a form that makes them easy
to change [J3]. They aren’t passed as integers anymore; they are passed as symbols. I can
use the “change name” function of my IDE to change the names, or the types, without
worrying that I missed some -1 or 2 somewhere in the code or that some int argument dec-
laration is left poorly described.

The description field at line 208 does not seem to be used by anyone. I deleted it along
with its accessor and mutator [G9].

I also deleted the degenerate default constructor at line 213 [G12]. The compiler will
generate it for us. 

We can skip over the isValidWeekdayCode method (lines 216–238) because we deleted
it when we created the Day enumeration.

This brings us to the stringToWeekdayCode method (lines 242–270). Javadocs that
don’t add much to the method signature are just clutter [C3],[G12]. The only value this
Javadoc adds is the description of the -1 return value. However, because we changed to the
Day enumeration, the comment is actually wrong [C2]. The method now throws an
IllegalArgumentException. So I deleted the Javadoc.

I also deleted all the final keywords in arguments and variable declarations. As far as
I could tell, they added no real value but did add to the clutter [G12]. Eliminating final
flies in the face of some conventional wisdom. For example, Robert Simmons6 strongly
recommends us to “. . . spread final all over your code.” Clearly I disagree. I think that
there are a few good uses for final, such as the occasional final constant, but otherwise
the keyword adds little value and creates a lot of clutter. Perhaps I feel this way because the
kinds of errors that final might catch are already caught by the unit tests I write.

I didn’t care for the duplicate if statements [G5] inside the for loop (line 259 and
line 263), so I connected them into a single if statement using the || operator. I also used
the Day enumeration to direct the for loop and made a few other cosmetic changes.

It occurred to me that this method does not really belong in DayDate. It’s really the
parse function of Day. So I moved it into the Day enumeration. However, that made the Day

6. [Simmons04], p. 73.



277AThen Make It Right

enumeration pretty large. Because the concept of Day does not depend on DayDate, I moved
the Day enumeration outside of the DayDate class into its own source file [G13].

I also moved the next function, weekdayCodeToString (lines 272–286) into the Day
enumeration and called it toString.

There are two getMonths functions (lines 288–316). The first calls the second. The
second is never called by anyone but the first. Therefore, I collapsed the two into one and
vastly simplified them [G9],[G12],[F4]. Finally, I changed the name to be a bit more self-
descriptive [N1]. 

public enum Day {
  MONDAY(Calendar.MONDAY),
  TUESDAY(Calendar.TUESDAY),
  WEDNESDAY(Calendar.WEDNESDAY),s
  THURSDAY(Calendar.THURSDAY),
  FRIDAY(Calendar.FRIDAY),
  SATURDAY(Calendar.SATURDAY),
  SUNDAY(Calendar.SUNDAY);

  public final int index;
  private static DateFormatSymbols dateSymbols = new DateFormatSymbols();

  Day(int day) {
    index = day;
  }

  public static Day make(int index) throws IllegalArgumentException {
    for (Day d : Day.values())
      if (d.index == index)
        return d;
    throw new IllegalArgumentException(
      String.format("Illegal day index: %d.", index));
  }

  public static Day parse(String s) throws IllegalArgumentException {
    String[] shortWeekdayNames =
      dateSymbols.getShortWeekdays();
    String[] weekDayNames =
      dateSymbols.getWeekdays();

    s = s.trim();
    for (Day day : Day.values()) {
      if (s.equalsIgnoreCase(shortWeekdayNames[day.index]) ||
          s.equalsIgnoreCase(weekDayNames[day.index])) {
        return day;
      }
    }
    throw new IllegalArgumentException(
      String.format("%s is not a valid weekday string", s));
  }

  public String toString() {
    return dateSymbols.getWeekdays()[index];
  }
}



278A Chapter 16: Refactoring SerialDate

The isValidMonthCode function (lines 326–346) was made irrelevant by the Month
enum, so I deleted it [G9].

The monthCodeToQuarter function (lines 356–375) smells of FEATURE ENVY7 [G14]
and probably belongs in the Month enum as a method named quarter. So I replaced it. 

This made the Month enum big enough to be in its own class. So I moved it out of
DayDate to be consistent with the Day enum [G11],[G13].

The next two methods are named monthCodeToString (lines 377–426). Again, we see
the pattern of one method calling its twin with a flag. It is usually a bad idea to pass a flag
as an argument to a function, especially when that flag simply selects the format of the out-
put [G15]. I renamed, simplified, and restructured these functions and moved them into the
Month enum [N1],[N3],[C3],[G14].

The next method is stringToMonthCode (lines 428–472). I renamed it, moved it into the
Month enum, and simplified it [N1],[N3],[C3],[G14],[G12]. 

  public static String[] getMonthNames() {
    return dateFormatSymbols.getMonths();
  }

7. [Refactoring].

    public int quarter() {
      return 1 + (index-1)/3;
    }

  public String toString() {
    return dateFormatSymbols.getMonths()[index - 1];
  }

  public String toShortString() {
    return dateFormatSymbols.getShortMonths()[index - 1];
  }

  public static Month parse(String s) {
    s = s.trim();
    for (Month m : Month.values())
      if (m.matches(s))
        return m;

    try {
      return make(Integer.parseInt(s));
    }
    catch (NumberFormatException e) {}
    throw new IllegalArgumentException("Invalid month " + s);
  }



279AThen Make It Right

The isLeapYear method (lines 495–517) can be made a bit more expressive [G16].

The next function, leapYearCount (lines 519–536) doesn’t really belong in DayDate.
Nobody calls it except for two methods in SpreadsheetDate. So I pushed it down [G6].

The lastDayOfMonth function (lines 538–560) makes use of the LAST_DAY_OF_MONTH
array. This array really belongs in the Month enum [G17], so I moved it there. I also simpli-
fied the function and made it a bit more expressive [G16].

Now things start to get a bit more interesting. The next function is addDays (lines 562–
576). First of all, because this function operates on the variables of DayDate, it should not
be static [G18]. So I changed it to an instance method. Second, it calls the function
toSerial. This function should be renamed toOrdinal [N1]. Finally, the method can be
simplified.

The same goes for addMonths (lines 578–602). It should be an instance method [G18].
The algorithm is a bit complicated, so I used EXPLAINING TEMPORARY VARIABLES8 [G19]
to make it more transparent. I also renamed the method getYYY to getYear [N1].

  private boolean matches(String s) {
    return s.equalsIgnoreCase(toString()) ||
           s.equalsIgnoreCase(toShortString());
  }

  public static boolean isLeapYear(int year) {
    boolean fourth = year % 4 == 0;
    boolean hundredth = year % 100 == 0;
    boolean fourHundredth = year % 400 == 0;
    return fourth && (!hundredth || fourHundredth);
  }

  public static int lastDayOfMonth(Month month, int year) {
    if (month == Month.FEBRUARY && isLeapYear(year))
      return month.lastDay() + 1;
     else
      return month.lastDay();
  }

  public DayDate addDays(int days) {
    return DayDateFactory.makeDate(toOrdinal() + days);
  }

8. [Beck97].

  public DayDate addMonths(int months) {
    int thisMonthAsOrdinal = 12 * getYear() + getMonth().index - 1;
    int resultMonthAsOrdinal = thisMonthAsOrdinal + months;
    int resultYear = resultMonthAsOrdinal / 12;
    Month resultMonth = Month.make(resultMonthAsOrdinal % 12 + 1);



280A Chapter 16: Refactoring SerialDate

The addYears function (lines 604–626) provides no surprises over the others.

There is a little itch at the back of my mind that is bothering me about changing
these methods from static to instance. Does the expression date.addDays(5) make it
clear that the date object does not change and that a new instance of DayDate is returned?
Or does it erroneously imply that we are adding five days to the date object? You might
not think that is a big problem, but a bit of code that looks like the following can be very
deceiving [G20].

DayDate date = DateFactory.makeDate(5, Month.DECEMBER, 1952);
date.addDays(7); // bump date by one week.

Someone reading this code would very likely just accept that addDays is changing the
date object. So we need a name that breaks this ambiguity [N4]. So I changed the names to
plusDays and plusMonths. It seems to me that the intent of the method is captured nicely by

DayDate date = oldDate.plusDays(5);

whereas the following doesn’t read fluidly enough for a reader to simply accept that the
date object is changed:

date.plusDays(5);

The algorithms continue to get more interesting. getPreviousDayOfWeek (lines 628–
660) works but is a bit complicated. After some thought about what was really going on
[G21], I was able to simplify it and use EXPLAINING TEMPORARY VARIABLES [G19] to
make it clearer. I also changed it from a static method to an instance method [G18], and
got rid of the duplicate instance method [G5] (lines 997–1008).

The exact same analysis and result occurred for getFollowingDayOfWeek (lines 662–693).

    int lastDayOfResultMonth = lastDayOfMonth(resultMonth, resultYear);
    int resultDay = Math.min(getDayOfMonth(), lastDayOfResultMonth);
    return DayDateFactory.makeDate(resultDay, resultMonth, resultYear);
  }

  public DayDate plusYears(int years) {
    int resultYear = getYear() + years;
    int lastDayOfMonthInResultYear = lastDayOfMonth(getMonth(), resultYear);
    int resultDay = Math.min(getDayOfMonth(), lastDayOfMonthInResultYear);
    return DayDateFactory.makeDate(resultDay, getMonth(), resultYear);
  }

  public DayDate getPreviousDayOfWeek(Day targetDayOfWeek) {
    int offsetToTarget = targetDayOfWeek.index - getDayOfWeek().index;
    if (offsetToTarget >= 0)
      offsetToTarget -= 7;
    return plusDays(offsetToTarget);
  }

public DayDate getFollowingDayOfWeek(Day targetDayOfWeek) {
    int offsetToTarget = targetDayOfWeek.index - getDayOfWeek().index;
    if (offsetToTarget <= 0)



281AThen Make It Right

The next function is getNearestDayOfWeek (lines 695–726), which we corrected back
on page 270. But the changes I made back then aren’t consistent with the current pattern in
the last two functions [G11]. So I made it consistent and used some EXPLAINING TEMPO-

RARY VARIABLES [G19] to clarify the algorithm.

The getEndOfCurrentMonth method (lines 728–740) is a little strange because it is an
instance method that envies [G14] its own class by taking a DayDate argument. I made it a
true instance method and clarified a few names.

Refactoring weekInMonthToString (lines 742–761) turned out to be very interesting
indeed. Using the refactoring tools of my IDE, I first moved the method to the WeekInMonth
enum that I created back on page 275. Then I renamed the method to toString. Next, I
changed it from a static method to an instance method. All the tests still passed. (Can you
guess where I am going?) 

Next, I deleted the method entirely! Five asserts failed (lines 411–415, Listing B-4,
page 374). I changed these lines to use the names of the enumerators (FIRST,
SECOND, . . .). All the tests passed. Can you see why? Can you also see why each of these
steps was necessary? The refactoring tool made sure that all previous callers of
weekInMonthToString now called toString on the weekInMonth enumerator because all enu-
merators implement toString to simply return their names. . . .

Unfortunately, I was a bit too clever. As elegant as that wonderful chain of refactor-
ings was, I finally realized that the only users of this function were the tests I had just mod-
ified, so I deleted the tests.

Fool me once, shame on you. Fool me twice, shame on me! So after determining that
nobody other than the tests called relativeToString (lines 765–781), I simply deleted the
function and its tests. 

      offsetToTarget += 7;
    return plusDays(offsetToTarget);
  }

public DayDate getNearestDayOfWeek(final Day targetDay) {
    int offsetToThisWeeksTarget = targetDay.index - getDayOfWeek().index;
    int offsetToFutureTarget = (offsetToThisWeeksTarget + 7) % 7;
    int offsetToPreviousTarget = offsetToFutureTarget - 7;

    if (offsetToFutureTarget > 3)
      return plusDays(offsetToPreviousTarget);
    else
      return plusDays(offsetToFutureTarget);
  }

public DayDate getEndOfMonth() {
    Month month = getMonth();
    int year = getYear();
    int lastDay = lastDayOfMonth(month, year);
    return DayDateFactory.makeDate(lastDay, month, year);
  }



282A Chapter 16: Refactoring SerialDate

We have finally made it to the abstract methods of this abstract class. And the first one
is as appropriate as they come: toSerial (lines 838–844). Back on page 279 I had changed
the name to toOrdinal. Having looked at it in this context, I decided the name should be
changed to getOrdinalDay.

The next abstract method is toDate (lines 838–844). It converts a DayDate to a
java.util.Date. Why is this method abstract? If we look at its implementation in
SpreadsheetDate (lines 198–207, Listing B-5, page 382), we see that it doesn’t depend on
anything in the implementation of that class [G6]. So I pushed it up.

The getYYYY, getMonth, and getDayOfMonth methods are nicely abstract. However, the
getDayOfWeek method is another one that should be pulled up from SpreadSheetDate
because it doesn’t depend on anything that can’t be found in DayDate [G6]. Or does it?

If you look carefully (line 247, Listing B-5, page 382), you’ll see that the algorithm
implicitly depends on the origin of the ordinal day (in other words, the day of the week of
day 0). So even though this function has no physical dependencies that couldn’t be moved
to DayDate, it does have a logical dependency.

Logical dependencies like this bother me [G22]. If something logical depends on
the implementation, then something physical should too. Also, it seems to me that the
algorithm itself could be generic with a much smaller portion of it dependent on the
implementation [G6].

So I created an abstract method in DayDate named getDayOfWeekForOrdinalZero and
implemented it in SpreadsheetDate to return Day.SATURDAY. Then I moved the getDayOfWeek
method up to DayDate and changed it to call getOrdinalDay and getDayOfWeekForOrdinal-
Zero.

As a side note, look carefully at the comment on line 895 through line 899. Was this
repetition really necessary? As usual, I deleted this comment along with all the others. 

The next method is compare (lines 902–913). Again, this method is inappropriately
abstract [G6], so I pulled the implementation up into DayDate. Also, the name does not
communicate enough [N1]. This method actually returns the difference in days since the
argument. So I changed the name to daysSince. Also, I noted that there weren’t any tests
for this method, so I wrote them.

The next six functions (lines 915–980) are all abstract methods that should be imple-
mented in DayDate. So I pulled them all up from SpreadsheetDate.

The last function, isInRange (lines 982–995) also needs to be pulled up and refac-
tored. The switch statement is a bit ugly [G23] and can be replaced by moving the cases
into the DateInterval enum. 

public Day getDayOfWeek() {
    Day startingDay = getDayOfWeekForOrdinalZero();
    int startingOffset = startingDay.index - Day.SUNDAY.index;
    return Day.make((getOrdinalDay() + startingOffset) % 7 + 1);
  }



283AThen Make It Right

That brings us to the end of DayDate. So now we’ll make one more pass over the whole
class to see how well it flows.

First, the opening comment is long out of date, so I shortened and improved it [C2].

Next, I moved all the remaining enums out into their own files [G12].

Next, I moved the static variable (dateFormatSymbols) and three static methods
(getMonthNames, isLeapYear, lastDayOfMonth) into a new class named DateUtil [G6].

I moved the abstract methods up to the top where they belong [G24].

I changed Month.make to Month.fromInt [N1] and did the same for all the other enums.
I also created a toInt() accessor for all the enums and made the index field private.

There was some interesting duplication [G5] in plusYears and plusMonths that I was
able to eliminate by extracting a new method named correctLastDayOfMonth, making the
all three methods much clearer. 

I got rid of the magic number 1 [G25], replacing it with Month.JANUARY.toInt() or
Day.SUNDAY.toInt(), as appropriate. I spent a little time with SpreadsheetDate, cleaning up
the algorithms a bit. The end result is contained in Listing B-7, page 394, through
Listing B-16, page 405.

public enum DateInterval {
    OPEN {
      public boolean isIn(int d, int left, int right) {
        return d > left && d < right;
      }
    },
    CLOSED_LEFT {
      public boolean isIn(int d, int left, int right) {
        return d >= left && d < right;
      }
    },
    CLOSED_RIGHT {
      public boolean isIn(int d, int left, int right) {
        return d > left && d <= right;
      }
    },
    CLOSED {
      public boolean isIn(int d, int left, int right) {
        return d >= left && d <= right;
      }
    };

    public abstract boolean isIn(int d, int left, int right);
  }

public boolean isInRange(DayDate d1, DayDate d2, DateInterval interval) {
    int left = Math.min(d1.getOrdinalDay(), d2.getOrdinalDay());
    int right = Math.max(d1.getOrdinalDay(), d2.getOrdinalDay());
    return interval.isIn(getOrdinalDay(), left, right);
  }



284A Chapter 16: Refactoring SerialDate

Interestingly the code coverage in DayDate has decreased to 84.9 percent! This is not
because less functionality is being tested; rather it is because the class has shrunk so much
that the few uncovered lines have a greater weight. DayDate now has 45 out of 53 execut-
able statements covered by tests. The uncovered lines are so trivial that they weren’t worth
testing. 

Conclusion

So once again we’ve followed the Boy Scout Rule. We’ve checked the code in a bit cleaner
than when we checked it out. It took a little time, but it was worth it. Test coverage was
increased, some bugs were fixed, the code was clarified and shrunk. The next person to
look at this code will hopefully find it easier to deal with than we did. That person will also
probably be able to clean it up a bit more than we did. 

Bibliography

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.

[Simmons04]:  Hardcore Java, Robert Simmons, Jr., O’Reilly, 2004.

[Refactoring]:  Refactoring: Improving the Design of Existing Code, Martin Fowler et al.,
Addison-Wesley, 1999. 

[Beck97]:  Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall, 1997.



285A

17

Smells and Heuristics

In his wonderful book Refactoring,1 Martin Fowler identified many different “Code
Smells.” The list that follows includes many of Martin’s smells and adds many more of my
own. It also includes other pearls and heuristics that I use to practice my trade.

1. [Refactoring].



286A Chapter 17: Smells and Heuristics

I compiled this list by walking through several different programs and refactoring
them. As I made each change, I asked myself why I made that change and then wrote the
reason down here. The result is a rather long list of things that smell bad to me when I read
code. 

This list is meant to be read from top to bottom and also to be used as a reference.
There is a cross-reference for each heuristic that shows you where it is referenced in the
rest of the text in “Appendix C” on page 409.

Comments

C1: Inappropriate Information

It is inappropriate for a comment to hold information better held in a different kind of sys-
tem such as your source code control system, your issue tracking system, or any other
record-keeping system. Change histories, for example, just clutter up source files with
volumes of historical and uninteresting text. In general, meta-data such as authors, last-
modified-date, SPR number, and so on should not appear in comments. Comments should
be reserved for technical notes about the code and design.

C2: Obsolete Comment

A comment that has gotten old, irrelevant, and incorrect is obsolete. Comments get old
quickly. It is best not to write a comment that will become obsolete. If you find an obsolete
comment, it is best to update it or get rid of it as quickly as possible. Obsolete comments
tend to migrate away from the code they once described. They become floating islands of
irrelevance and misdirection in the code. 

C3: Redundant Comment

A comment is redundant if it describes something that adequately describes itself. For
example: 

  i++; // increment i

Another example is a Javadoc that says nothing more than (or even less than) the function
signature:

  /**
   * @param sellRequest
   * @return
   * @throws ManagedComponentException
   */
  public SellResponse beginSellItem(SellRequest sellRequest) 
    throws ManagedComponentException

Comments should say things that the code cannot say for itself.



287AEnvironment

C4: Poorly Written Comment

A comment worth writing is worth writing well. If you are going to write a comment,
take the time to make sure it is the best comment you can write. Choose your words
carefully. Use correct grammar and punctuation. Don’t ramble. Don’t state the obvious.
Be brief.

C5: Commented-Out Code

It makes me crazy to see stretches of code that are commented out. Who knows how old it
is? Who knows whether or not it’s meaningful? Yet no one will delete it because everyone
assumes someone else needs it or has plans for it.

That code sits there and rots, getting less and less relevant with every passing day. It
calls functions that no longer exist. It uses variables whose names have changed. It follows
conventions that are long obsolete. It pollutes the modules that contain it and distracts the
people who try to read it. Commented-out code is an abomination.

When you see commented-out code, delete it! Don’t worry, the source code control
system still remembers it. If anyone really needs it, he or she can go back and check out a
previous version. Don’t suffer commented-out code to survive.

Environment

E1: Build Requires More Than One Step

Building a project should be a single trivial operation. You should not have to check many
little pieces out from source code control. You should not need a sequence of arcane com-
mands or context dependent scripts in order to build the individual elements. You should
not have to search near and far for all the various little extra JARs, XML files, and other
artifacts that the system requires. You should be able to check out the system with one sim-
ple command and then issue one other simple command to build it.

svn get mySystem
cd mySystem
ant all

E2: Tests Require More Than One Step

You should be able to run all the unit tests with just one command. In the best case you
can run all the tests by clicking on one button in your IDE. In the worst case you should
be able to issue a single simple command in a shell. Being able to run all the tests is so
fundamental and so important that it should be quick, easy, and obvious to do. 



288A Chapter 17: Smells and Heuristics

Functions

F1: Too Many Arguments

Functions should have a small number of arguments. No argument is best, followed by
one, two, and three. More than three is very questionable and should be avoided with prej-
udice. (See “Function Arguments” on page 40A.)

F2: Output Arguments

Output arguments are counterintuitive. Readers expect arguments to be inputs, not out-
puts. If your function must change the state of something, have it change the state of the
object it is called on. (See “Output Arguments” on page 45A.)

F3: Flag Arguments

Boolean arguments loudly declare that the function does more than one thing. They are
confusing and should be eliminated. (See “Flag Arguments” on page 41A.)

F4: Dead Function

Methods that are never called should be discarded. Keeping dead code around is wasteful.
Don’t be afraid to delete the function. Remember, your source code control system still
remembers it.

General

G1: Multiple Languages in One Source File

Today’s modern programming environments make it possible to put many different languages
into a single source file. For example, a Java source file might contain snippets of XML,
HTML, YAML, JavaDoc, English, JavaScript, and so on. For another example, in addition to
HTML a JSP file might contain Java, a tag library syntax, English comments, Javadocs,
XML, JavaScript, and so forth. This is confusing at best and carelessly sloppy at worst. 

The ideal is for a source file to contain one, and only one, language. Realistically, we
will probably have to use more than one. But we should take pains to minimize both the
number and extent of extra languages in our source files.

G2: Obvious Behavior Is Unimplemented

Following “The Principle of Least Surprise,”2 any function or class should implement the
behaviors that another programmer could reasonably expect. For example, consider a
function that translates the name of a day to an enum that represents the day.

2. Or “The Principle of Least Astonishment”: http://en.wikipedia.org/wiki/
Principle_of_least_astonishment

http://en.wikipedia.org/wiki/Principle_of_least_astonishment
http://en.wikipedia.org/wiki/Principle_of_least_astonishment


289AGeneral

Day day = DayDate.StringToDay(String dayName);

We would expect the string "Monday" to be translated to Day.MONDAY. We would also expect
the common abbreviations to be translated, and we would expect the function to ignore
case. 

When an obvious behavior is not implemented, readers and users of the code can no
longer depend on their intuition about function names. They lose their trust in the original
author and must fall back on reading the details of the code. 

G3: Incorrect Behavior at the Boundaries

It seems obvious to say that code should behave correctly. The problem is that we seldom
realize just how complicated correct behavior is. Developers often write functions that
they think will work, and then trust their intuition rather than going to the effort to prove
that their code works in all the corner and boundary cases.

There is no replacement for due diligence. Every boundary condition, every corner
case, every quirk and exception represents something that can confound an elegant and
intuitive algorithm. Don’t rely on your intuition. Look for every boundary condition and
write a test for it.

G4: Overridden Safeties

Chernobyl melted down because the plant manager overrode each of the safety mecha-
nisms one by one. The safeties were making it inconvenient to run an experiment. The
result was that the experiment did not get run, and the world saw it’s first major civilian
nuclear catastrophe.

It is risky to override safeties. Exerting manual control over serialVersionUID may be
necessary, but it is always risky. Turning off certain compiler warnings (or all warnings!)
may help you get the build to succeed, but at the risk of endless debugging sessions. Turn-
ing off failing tests and telling yourself you’ll get them to pass later is as bad as pretending
your credit cards are free money.

G5: Duplication

This is one of the most important rules in this book, and you should take it very seriously.
Virtually every author who writes about software design mentions this rule. Dave Thomas
and Andy Hunt called it the DRY3 principle (Don’t Repeat Yourself). Kent Beck made it
one of the core principles of Extreme Programming and called it: “Once, and only once.”
Ron Jeffries ranks this rule second, just below getting all the tests to pass. 

Every time you see duplication in the code, it represents a missed opportunity for
abstraction. That duplication could probably become a subroutine or perhaps another
class outright. By folding the duplication into such an abstraction, you increase the vocab-
ulary of the language of your design. Other programmers can use the abstract facilities

3. [PRAG].



290A Chapter 17: Smells and Heuristics

you create. Coding becomes faster and less error prone because you have raised the
abstraction level.

The most obvious form of duplication is when you have clumps of identical code that
look like some programmers went wild with the mouse, pasting the same code over and
over again. These should be replaced with simple methods. 

A more subtle form is the switch/case or if/else chain that appears again and again in
various modules, always testing for the same set of conditions. These should be replaced
with polymorphism.

Still more subtle are the modules that have similar algorithms, but that don’t share
similar lines of code. This is still duplication and should be addressed by using the TEM-

PLATE METHOD,4 or STRATEGY5 pattern. 

Indeed, most of the design patterns that have appeared in the last fifteen years are sim-
ply well-known ways to eliminate duplication. So too the Codd Normal Forms are a strat-
egy for eliminating duplication in database schemae. OO itself is a strategy for organizing
modules and eliminating duplication. Not surprisingly, so is structured programming. 

I think the point has been made. Find and eliminate duplication wherever you can.

G6: Code at Wrong Level of Abstraction

It is important to create abstractions that separate higher level general concepts from lower
level detailed concepts. Sometimes we do this by creating abstract classes to hold the
higher level concepts and derivatives to hold the lower level concepts. When we do this,
we need to make sure that the separation is complete. We want all the lower level concepts
to be in the derivatives and all the higher level concepts to be in the base class.

For example, constants, variables, or utility functions that pertain only to the detailed
implementation should not be present in the base class. The base class should know noth-
ing about them. 

This rule also pertains to source files, components, and modules. Good software
design requires that we separate concepts at different levels and place them in different
containers. Sometimes these containers are base classes or derivatives and sometimes they
are source files, modules, or components. Whatever the case may be, the separation needs
to be complete. We don’t want lower and higher level concepts mixed together. 

Consider the following code:

public interface Stack {
  Object pop() throws EmptyException;
  void push(Object o) throws FullException;
  double percentFull();
  

4. [GOF].
5. [GOF].



291AGeneral

  class EmptyException extends Exception {}
  class FullException extends Exception {}
}

The percentFull function is at the wrong level of abstraction. Although there are
many implementations of Stack where the concept of fullness is reasonable, there are other
implementations that simply could not know how full they are. So the function would be
better placed in a derivative interface such as BoundedStack.

Perhaps you are thinking that the implementation could just return zero if the stack
were boundless. The problem with that is that no stack is truly boundless. You cannot
really prevent an OutOfMemoryException by checking for 

stack.percentFull() < 50.0.

Implementing the function to return 0 would be telling a lie.

The point is that you cannot lie or fake your way out of a misplaced abstraction. Iso-
lating abstractions is one of the hardest things that software developers do, and there is no
quick fix when you get it wrong.

G7: Base Classes Depending on Their Derivatives

The most common reason for partitioning concepts into base and derivative classes is so
that the higher level base class concepts can be independent of the lower level derivative
class concepts. Therefore, when we see base classes mentioning the names of their deriva-
tives, we suspect a problem. In general, base classes should know nothing about their
derivatives.

There are exceptions to this rule, of course. Sometimes the number of derivatives is
strictly fixed, and the base class has code that selects between the derivatives. We see this a
lot in finite state machine implementations. However, in that case the derivatives and base
class are strongly coupled and always deploy together in the same jar file. In the general
case we want to be able to deploy derivatives and bases in different jar files. 

Deploying derivatives and bases in different jar files and making sure the base jar files
know nothing about the contents of the derivative jar files allow us to deploy our systems
in discrete and independent components. When such components are modified, they can
be redeployed without having to redeploy the base components. This means that the
impact of a change is greatly lessened, and maintaining systems in the field is made much
simpler.

G8: Too Much Information

Well-defined modules have very small interfaces that allow you to do a lot with a little.
Poorly defined modules have wide and deep interfaces that force you to use many different
gestures to get simple things done. A well-defined interface does not offer very many func-
tions to depend upon, so coupling is low. A poorly defined interface provides lots of func-
tions that you must call, so coupling is high.



292A Chapter 17: Smells and Heuristics

Good software developers learn to limit what they expose at the interfaces of their
classes and modules. The fewer methods a class has, the better. The fewer variables a func-
tion knows about, the better. The fewer instance variables a class has, the better. 

Hide your data. Hide your utility functions. Hide your constants and your temporaries.
Don’t create classes with lots of methods or lots of instance variables. Don’t create lots of
protected variables and functions for your subclasses. Concentrate on keeping interfaces
very tight and very small. Help keep coupling low by limiting information.

G9: Dead Code

Dead code is code that isn’t executed. You find it in the body of an if statement that checks
for a condition that can’t happen. You find it in the catch block of a try that never throws.
You find it in little utility methods that are never called or switch/case conditions that
never occur. 

The problem with dead code is that after awhile it starts to smell. The older it is, the
stronger and sourer the odor becomes. This is because dead code is not completely
updated when designs change. It still compiles, but it does not follow newer conventions or
rules. It was written at a time when the system was different. When you find dead code, do
the right thing. Give it a decent burial. Delete it from the system.

G10: Vertical Separation

Variables and function should be defined close to where they are used. Local variables
should be declared just above their first usage and should have a small vertical scope. We
don’t want local variables declared hundreds of lines distant from their usages.

Private functions should be defined just below their first usage. Private functions
belong to the scope of the whole class, but we’d still like to limit the vertical distance
between the invocations and definitions. Finding a private function should just be a matter
of scanning downward from the first usage.

G11: Inconsistency

If you do something a certain way, do all similar things in the same way. This goes back
to the principle of least surprise. Be careful with the conventions you choose, and once
chosen, be careful to continue to follow them. 

If within a particular function you use a variable named response to hold an
HttpServletResponse, then use the same variable name consistently in the other functions
that use HttpServletResponse objects. If you name a method processVerificationRequest,
then use a similar name, such as processDeletionRequest, for the methods that process
other kinds of requests.

Simple consistency like this, when reliably applied, can make code much easier to
read and modify. 



293AGeneral

G12: Clutter

Of what use is a default constructor with no implementation? All it serves to do is clutter
up the code with meaningless artifacts. Variables that aren’t used, functions that are never
called, comments that add no information, and so forth. All these things are clutter and
should be removed. Keep your source files clean, well organized, and free of clutter.

G13: Artificial Coupling

Things that don’t depend upon each other should not be artificially coupled. For example,
general enums should not be contained within more specific classes because this forces the
whole application to know about these more specific classes. The same goes for general
purpose static functions being declared in specific classes.

In general an artificial coupling is a coupling between two modules that serves no
direct purpose. It is a result of putting a variable, constant, or function in a temporarily
convenient, though inappropriate, location. This is lazy and careless.

Take the time to figure out where functions, constants, and variables ought to be
declared. Don’t just toss them in the most convenient place at hand and then leave them
there.

G14: Feature Envy

This is one of Martin Fowler’s code smells.6 The methods of a class should be interested in
the variables and functions of the class they belong to, and not the variables and functions
of other classes. When a method uses accessors and mutators of some other object to
manipulate the data within that object, then it envies the scope of the class of that other
object. It wishes that it were inside that other class so that it could have direct access to the
variables it is manipulating. For example:

public class HourlyPayCalculator {
public Money calculateWeeklyPay(HourlyEmployee e) {

int tenthRate = e.getTenthRate().getPennies();
int tenthsWorked = e.getTenthsWorked();
int straightTime = Math.min(400, tenthsWorked);
int overTime = Math.max(0, tenthsWorked - straightTime);
int straightPay = straightTime * tenthRate;
int overtimePay = (int)Math.round(overTime*tenthRate*1.5); 
return new Money(straightPay + overtimePay);

  }
}

The calculateWeeklyPay method reaches into the HourlyEmployee object to get the data on
which it operates. The calculateWeeklyPay method envies the scope of HourlyEmployee. It
“wishes” that it could be inside HourlyEmployee. 

6. [Refactoring].



294A Chapter 17: Smells and Heuristics

All else being equal, we want to eliminate Feature Envy because it exposes the internals
of one class to another. Sometimes, however, Feature Envy is a necessary evil. Consider the
following:

public class HourlyEmployeeReport {
  private HourlyEmployee employee ;

  public HourlyEmployeeReport(HourlyEmployee e) {
    this.employee = e;
  }
  
  String reportHours() {
    return String.format(
      "Name: %s\tHours:%d.%1d\n",
      employee.getName(), 
      employee.getTenthsWorked()/10,
      employee.getTenthsWorked()%10);
  }
}

Clearly, the reportHours method envies the HourlyEmployee class. On the other hand, we
don’t want HourlyEmployee to have to know about the format of the report. Moving that for-
mat string into the HourlyEmployee class would violate several principles of object oriented
design.7 It would couple HourlyEmployee to the format of the report, exposing it to changes
in that format.

G15: Selector Arguments

There is hardly anything more abominable than a dangling false argument at the end of a
function call. What does it mean? What would it change if it were true? Not only is the
purpose of a selector argument difficult to remember, each selector argument combines
many functions into one. Selector arguments are just a lazy way to avoid splitting a large
function into several smaller functions. Consider:

  public int calculateWeeklyPay(boolean overtime) {
    int tenthRate = getTenthRate();
    int tenthsWorked = getTenthsWorked();
    int straightTime = Math.min(400, tenthsWorked);
    int overTime = Math.max(0, tenthsWorked - straightTime);
    int straightPay = straightTime * tenthRate;
    double overtimeRate = overtime ? 1.5 : 1.0 * tenthRate;
    int overtimePay = (int)Math.round(overTime*overtimeRate);
    return straightPay + overtimePay;
  }

You call this function with a true if overtime is paid as time and a half, and with a
false if overtime is paid as straight time. It’s bad enough that you must remember what
calculateWeeklyPay(false) means whenever you happen to stumble across it. But the

7. Specifically, the Single Responsibility Principle, the Open Closed Principle, and the Common Closure Principle. See [PPP].



295AGeneral

real shame of a function like this is that the author missed the opportunity to write the
following:

  public int straightPay() {
    return getTenthsWorked() * getTenthRate();
  }

  public int overTimePay() {
    int overTimeTenths = Math.max(0, getTenthsWorked() - 400);
    int overTimePay = overTimeBonus(overTimeTenths);
    return straightPay() + overTimePay;
  }

  private int overTimeBonus(int overTimeTenths) {
    double bonus = 0.5 * getTenthRate() * overTimeTenths;
    return (int) Math.round(bonus);
  }

Of course, selectors need not be boolean. They can be enums, integers, or any other
type of argument that is used to select the behavior of the function. In general it is better to
have many functions than to pass some code into a function to select the behavior.

G16: Obscured Intent

We want code to be as expressive as possible. Run-on expressions, Hungarian notation,
and magic numbers all obscure the author’s intent. For example, here is the overTimePay
function as it might have appeared:

  public int m_otCalc() {
    return iThsWkd * iThsRte +
      (int) Math.round(0.5 * iThsRte *
        Math.max(0, iThsWkd - 400)
      );
  }

Small and dense as this might appear, it’s also virtually impenetrable. It is worth tak-
ing the time to make the intent of our code visible to our readers.

G17: Misplaced Responsibility

One of the most important decisions a software developer can make is where to put code.
For example, where should the PI constant go? Should it be in the Math class? Perhaps it
belongs in the Trigonometry class? Or maybe in the Circle class?

The principle of least surprise comes into play here. Code should be placed where a
reader would naturally expect it to be. The PI constant should go where the trig functions
are declared. The OVERTIME_RATE constant should be declared in the HourlyPay-
Calculator class. 

Sometimes we get “clever” about where to put certain functionality. We’ll put it in a
function that’s convenient for us, but not necessarily intuitive to the reader. For example,
perhaps we need to print a report with the total of hours that an employee worked. We



296A Chapter 17: Smells and Heuristics

could sum up those hours in the code that prints the report, or we could try to keep a run-
ning total in the code that accepts time cards. 

One way to make this decision is to look at the names of the functions. Let’s say that
our report module has a function named getTotalHours. Let’s also say that the module that
accepts time cards has a saveTimeCard function. Which of these two functions, by it’s name,
implies that it calculates the total? The answer should be obvious.

Clearly, there are sometimes performance reasons why the total should be calculated
as time cards are accepted rather than when the report is printed. That’s fine, but the names
of the functions ought to reflect this. For example, there should be a computeRunning-
TotalOfHours function in the timecard module. 

G18: Inappropriate Static

Math.max(double a, double b) is a good static method. It does not operate on a single
instance; indeed, it would be silly to have to say new Math().max(a,b) or even a.max(b).
All the data that max uses comes from its two arguments, and not from any “owning”
object. More to the point, there is almost no chance that we’d want Math.max to be
polymorphic.

Sometimes, however, we write static functions that should not be static. For example,
consider: 

HourlyPayCalculator.calculatePay(employee, overtimeRate). 

Again, this seems like a reasonable static function. It doesn’t operate on any particular
object and gets all it’s data from it’s arguments. However, there is a reasonable chance that
we’ll want this function to be polymorphic. We may wish to implement several different
algorithms for calculating hourly pay, for example, OvertimeHourlyPayCalculator and
StraightTimeHourlyPayCalculator. So in this case the function should not be static. It
should be a nonstatic member function of Employee.

In general you should prefer nonstatic methods to static methods. When in doubt,
make the function nonstatic. If you really want a function to be static, make sure that there
is no chance that you’ll want it to behave polymorphically.

G19: Use Explanatory Variables

Kent Beck wrote about this in his great book Smalltalk Best Practice Patterns8 and again
more recently in his equally great book Implementation Patterns.9 One of the more power-
ful ways to make a program readable is to break the calculations up into intermediate val-
ues that are held in variables with meaningful names. 

8. [Beck97], p. 108.
9. [Beck07].



297AGeneral

Consider this example from FitNesse:

Matcher match = headerPattern.matcher(line);
if(match.find())
{
  String key = match.group(1);
  String value = match.group(2);
  headers.put(key.toLowerCase(), value);
}

The simple use of explanatory variables makes it clear that the first matched group is
the key, and the second matched group is the value. 

It is hard to overdo this. More explanatory variables are generally better than fewer. It
is remarkable how an opaque module can suddenly become transparent simply by break-
ing the calculations up into well-named intermediate values.

G20: Function Names Should Say What They Do

Look at this code:

Date newDate = date.add(5); 

Would you expect this to add five days to the date? Or is it weeks, or hours? Is the date
instance changed or does the function just return a new Date without changing the old one?
You can’t tell from the call what the function does.

If the function adds five days to the date and changes the date, then it should be called
addDaysTo or increaseByDays. If, on the other hand, the function returns a new date that is
five days later but does not change the date instance, it should be called daysLater or
daysSince. 

If you have to look at the implementation (or documentation) of the function to know
what it does, then you should work to find a better name or rearrange the functionality so
that it can be placed in functions with better names.

G21: Understand the Algorithm

Lots of very funny code is written because people don’t take the time to understand the
algorithm. They get something to work by plugging in enough if statements and flags,
without really stopping to consider what is really going on. 

Programming is often an exploration. You think you know the right algorithm for
something, but then you wind up fiddling with it, prodding and poking at it, until you get it
to “work.” How do you know it “works”? Because it passes the test cases you can think of.

There is nothing wrong with this approach. Indeed, often it is the only way to get a
function to do what you think it should. However, it is not sufficient to leave the quotation
marks around the word “work.” 



298A Chapter 17: Smells and Heuristics

Before you consider yourself to be done with a function, make sure you understand
how it works. It is not good enough that it passes all the tests. You must know10 that the
solution is correct. 

Often the best way to gain this knowledge and understanding is to refactor the func-
tion into something that is so clean and expressive that it is obvious how it works.

G22: Make Logical Dependencies Physical

If one module depends upon another, that dependency should be physical, not just logical.
The dependent module should not make assumptions (in other words, logical dependen-
cies) about the module it depends upon. Rather it should explicitly ask that module for all
the information it depends upon.

For example, imagine that you are writing a function that prints a plain text report of
hours worked by employees. One class named HourlyReporter gathers all the data into a
convenient form and then passes it to HourlyReportFormatter to print it. (See Listing 17-1.)

10. There is a difference between knowing how the code works and knowing whether the algorithm will do the job required of it. 
Being unsure that an algorithm is appropriate is often a fact of life. Being unsure what your code does is just laziness.

Listing 17-1 
HourlyReporter.java
public class HourlyReporter {
  private HourlyReportFormatter formatter;
  private List<LineItem> page;
  private final int PAGE_SIZE = 55;

  public HourlyReporter(HourlyReportFormatter formatter) {
    this.formatter = formatter;
    page = new ArrayList<LineItem>();
  }

  public void generateReport(List<HourlyEmployee> employees) {
    for (HourlyEmployee e : employees) {
      addLineItemToPage(e);
      if (page.size() == PAGE_SIZE)
        printAndClearItemList();
    }
    if (page.size() > 0)
      printAndClearItemList();
  }

  private void printAndClearItemList() {
    formatter.format(page);
    page.clear();
  }

  private void addLineItemToPage(HourlyEmployee e) {
    LineItem item = new LineItem();
    item.name = e.getName();
    item.hours = e.getTenthsWorked() / 10;



299AGeneral

This code has a logical dependency that has not been physicalized. Can you spot it? It
is the constant PAGE_SIZE. Why should the HourlyReporter know the size of the page? Page
size should be the responsibility of the HourlyReportFormatter. 

The fact that PAGE_SIZE is declared in HourlyReporter represents a misplaced
responsibility [G17] that causes HourlyReporter to assume that it knows what the page size
ought to be. Such an assumption is a logical dependency. HourlyReporter depends on the
fact that HourlyReportFormatter can deal with page sizes of 55. If some implementation of
HourlyReportFormatter could not deal with such sizes, then there would be an error.

We can physicalize this dependency by creating a new method in HourlyReport-
Formatter named getMaxPageSize(). HourlyReporter will then call that function rather than
using the PAGE_SIZE constant.

G23: Prefer Polymorphism to If/Else or Switch/Case

This might seem a strange suggestion given the topic of Chapter 6. After all, in that chapter I
make the point that switch statements are probably appropriate in the parts of the system
where adding new functions is more likely than adding new types. 

First, most people use switch statements because it’s the obvious brute force solution,
not because it’s the right solution for the situation. So this heuristic is here to remind us to
consider polymorphism before using a switch. 

Second, the cases where functions are more volatile than types are relatively rare. So
every switch statement should be suspect. 

I use the following “ONE SWITCH” rule: There may be no more than one switch state-
ment for a given type of selection. The cases in that switch statement must create polymor-
phic objects that take the place of other such switch statements in the rest of the system.

G24: Follow Standard Conventions

Every team should follow a coding standard based on common industry norms. This cod-
ing standard should specify things like where to declare instance variables; how to name
classes, methods, and variables; where to put braces; and so on. The team should not need
a document to describe these conventions because their code provides the examples.

    item.tenths = e.getTenthsWorked() % 10;
    page.add(item);
  }

  public class LineItem {
    public String name;
    public int hours;
    public int tenths;
  }
}

Listing 17-1 (continued)
HourlyReporter.java



300A Chapter 17: Smells and Heuristics

Everyone on the team should follow these conventions. This means that each team
member must be mature enough to realize that it doesn’t matter a whit where you put your
braces so long as you all agree on where to put them. 

If you would like to know what conventions I follow, you’ll see them in the refactored
code in Listing B-7 on page 394, through Listing B-14.

G25: Replace Magic Numbers with Named Constants

This is probably one of the oldest rules in software development. I remember reading it in the
late sixties in introductory COBOL, FORTRAN, and PL/1 manuals. In general it is a bad
idea to have raw numbers in your code. You should hide them behind well-named constants. 

For example, the number 86,400 should be hidden behind the constant
SECONDS_PER_DAY. If you are printing 55 lines per page, then the constant 55 should be hid-
den behind the constant LINES_PER_PAGE. 

Some constants are so easy to recognize that they don’t always need a named constant
to hide behind so long as they are used in conjunction with very self-explanatory code. For
example: 

double milesWalked = feetWalked/5280.0;
int dailyPay = hourlyRate * 8;
double circumference = radius * Math.PI * 2;

Do we really need the constants FEET_PER_MILE, WORK_HOURS_PER_DAY, and TWO in the
above examples? Clearly, the last case is absurd. There are some formulae in which con-
stants are simply better written as raw numbers. You might quibble about the
WORK_HOURS_PER_DAY case because the laws or conventions might change. On the other
hand, that formula reads so nicely with the 8 in it that I would be reluctant to add 17 extra
characters to the readers’ burden. And in the FEET_PER_MILE case, the number 5280 is so
very well known and so unique a constant that readers would recognize it even if it stood
alone on a page with no context surrounding it. 

Constants like 3.141592653589793 are also very well known and easily recognizable.
However, the chance for error is too great to leave them raw. Every time someone sees
3.1415927535890793, they know that it is π, and so they fail to scrutinize it. (Did you
catch the single-digit error?) We also don’t want people using 3.14, 3.14159, 3.142, and so
forth. Therefore, it is a good thing that Math.PI has already been defined for us. 

The term “Magic Number” does not apply only to numbers. It applies to any token
that has a value that is not self-describing. For example:

assertEquals(7777, Employee.find(“John Doe”).employeeNumber());

There are two magic numbers in this assertion. The first is obviously 7777, though
what it might mean is not obvious. The second magic number is "John Doe," and again the
intent is not clear.

It turns out that "John Doe" is the name of employee #7777 in a well-known test data-
base created by our team. Everyone in the team knows that when you connect to this



301AGeneral

database, it will have several employees already cooked into it with well-known values
and attributes. It also turns out that "John Doe" represents the sole hourly employee in
that test database. So this test should really read:

assertEquals(
  HOURLY_EMPLOYEE_ID,
  Employee.find(HOURLY_EMPLOYEE_NAME).employeeNumber());

G26: Be Precise 

Expecting the first match to be the only match to a query is probably naive. Using floating
point numbers to represent currency is almost criminal. Avoiding locks and/or transaction
management because you don’t think concurrent update is likely is lazy at best. Declaring
a variable to be an ArrayList when a List will due is overly constraining. Making all vari-
ables protected by default is not constraining enough. 

When you make a decision in your code, make sure you make it precisely. Know why
you have made it and how you will deal with any exceptions. Don’t be lazy about the pre-
cision of your decisions. If you decide to call a function that might return null, make sure
you check for null. If you query for what you think is the only record in the database,
make sure your code checks to be sure there aren’t others. If you need to deal with cur-
rency, use integers11 and deal with rounding appropriately. If there is the possibility of
concurrent update, make sure you implement some kind of locking mechanism. 

Ambiguities and imprecision in code are either a result of disagreements or laziness.
In either case they should be eliminated. 

G27: Structure over Convention

Enforce design decisions with structure over convention. Naming conventions are good,
but they are inferior to structures that force compliance. For example, switch/cases with
nicely named enumerations are inferior to base classes with abstract methods. No one is
forced to implement the switch/case statement the same way each time; but the base
classes do enforce that concrete classes have all abstract methods implemented. 

G28: Encapsulate Conditionals

Boolean logic is hard enough to understand without having to see it in the context of an if
or while statement. Extract functions that explain the intent of the conditional.

For example:

if (shouldBeDeleted(timer))

is preferable to

if (timer.hasExpired() && !timer.isRecurrent())

11. Or better yet, a Money class that uses integers.



302A Chapter 17: Smells and Heuristics

G29: Avoid Negative Conditionals

Negatives are just a bit harder to understand than positives. So, when possible, condition-
als should be expressed as positives. For example:

if (buffer.shouldCompact())

is preferable to

if (!buffer.shouldNotCompact())

G30: Functions Should Do One Thing

It is often tempting to create functions that have multiple sections that perform a series of
operations. Functions of this kind do more than one thing, and should be converted into
many smaller functions, each of which does one thing. 

For example:

  public void pay() {
    for (Employee e : employees) {
      if (e.isPayday()) {
        Money pay = e.calculatePay();
        e.deliverPay(pay);
      }
    }
  }

This bit of code does three things. It loops over all the employees, checks to see whether
each employee ought to be paid, and then pays the employee. This code would be better
written as:

  public void pay() {
    for (Employee e : employees)
      payIfNecessary(e);
  }

  private void payIfNecessary(Employee e) {
    if (e.isPayday())
      calculateAndDeliverPay(e);
  }

  private void calculateAndDeliverPay(Employee e) {
    Money pay = e.calculatePay();
    e.deliverPay(pay);
  }

Each of these functions does one thing. (See “Do One Thing” on page 35.A)

G31: Hidden Temporal Couplings

Temporal couplings are often necessary, but you should not hide the coupling. Structure
the arguments of your functions such that the order in which they should be called is obvi-
ous. Consider the following:



303AGeneral

public class MoogDiver {
  Gradient gradient;
  List<Spline> splines;
  
  public void dive(String reason) {
    saturateGradient();
    reticulateSplines();
    diveForMoog(reason);
  }
  ...
}

The order of the three functions is important. You must saturate the gradient before you
can reticulate the splines, and only then can you dive for the moog. Unfortunately, the code
does not enforce this temporal coupling. Another programmer could call reticulate-
Splines before saturateGradient was called, leading to an UnsaturatedGradientException.
A better solution is:

public class MoogDiver {
  Gradient gradient;
  List<Spline> splines;

  public void dive(String reason) {
    Gradient gradient = saturateGradient();
    List<Spline> splines = reticulateSplines(gradient);
    diveForMoog(splines, reason);
  }
  ...
}

This exposes the temporal coupling by creating a bucket brigade. Each function produces a
result that the next function needs, so there is no reasonable way to call them out of order.

You might complain that this increases the complexity of the functions, and you’d be
right. But that extra syntactic complexity exposes the true temporal complexity of the situation. 

Note that I left the instance variables in place. I presume that they are needed by pri-
vate methods in the class. Even so, I want the arguments in place to make the temporal
coupling explicit.

G32: Don’t Be Arbitrary

Have a reason for the way you structure your code, and make sure that reason is communi-
cated by the structure of the code. If a structure appears arbitrary, others will feel empowered
to change it. If a structure appears consistently throughout the system, others will use it
and preserve the convention. For example, I was recently merging changes to FitNesse and
discovered that one of our committers had done this:

public class AliasLinkWidget extends ParentWidget
{
  public static class VariableExpandingWidgetRoot {
    ...
  
  ...
}



304A Chapter 17: Smells and Heuristics

The problem with this was that VariableExpandingWidgetRoot had no need to be
inside the scope of AliasLinkWidget. Moreover, other unrelated classes made use of
AliasLinkWidget.VariableExpandingWidgetRoot. These classes had no need to know
about AliasLinkWidget.

Perhaps the programmer had plopped the VariableExpandingWidgetRoot into
AliasWidget as a matter of convenience, or perhaps he thought it really needed to be
scoped inside AliasWidget. Whatever the reason, the result wound up being arbitrary. Pub-
lic classes that are not utilities of some other class should not be scoped inside another
class. The convention is to make them public at the top level of their package.

G33: Encapsulate Boundary Conditions

Boundary conditions are hard to keep track of. Put the processing for them in one place.
Don’t let them leak all over the code. We don’t want swarms of +1s and -1s scattered hither
and yon. Consider this simple example from FIT:

if(level + 1 < tags.length)
{
  parts = new Parse(body, tags, level + 1, offset + endTag);
  body = null;
}

Notice that level+1 appears twice. This is a boundary condition that should be encapsu-
lated within a variable named something like nextLevel. 

int nextLevel = level + 1;
if(nextLevel < tags.length)
{

parts = new Parse(body, tags, nextLevel, offset + endTag);
body = null;

}

G34: Functions Should Descend Only One Level of Abstraction

The statements within a function should all be written at the same level of abstraction,
which should be one level below the operation described by the name of the function. This
may be the hardest of these heuristics to interpret and follow. Though the idea is plain
enough, humans are just far too good at seamlessly mixing levels of abstraction. Consider,
for example, the following code taken from FitNesse:

public String render() throws Exception
{

StringBuffer html = new StringBuffer("<hr");
if(size > 0)
  html.append(" size=\"").append(size + 1).append("\"");
html.append(">");

return html.toString();
}



305AGeneral

A moment’s study and you can see what’s going on. This function constructs the HTML
tag that draws a horizontal rule across the page. The height of that rule is specified in the
size variable. 

Now look again. This method is mixing at least two levels of abstraction. The first is
the notion that a horizontal rule has a size. The second is the syntax of the HR tag itself.
This code comes from the HruleWidget module in FitNesse. This module detects a row of
four or more dashes and converts it into the appropriate HR tag. The more dashes, the
larger the size.

I refactored this bit of code as follows. Note that I changed the name of the size field
to reflect its true purpose. It held the number of extra dashes.

public String render() throws Exception
{

HtmlTag hr = new HtmlTag("hr");
if (extraDashes > 0)

hr.addAttribute("size", hrSize(extraDashes));
return hr.html();

}

private String hrSize(int height)
{

int hrSize = height + 1;
return String.format("%d", hrSize);

}

This change separates the two levels of abstraction nicely. The render function simply con-
structs an HR tag, without having to know anything about the HTML syntax of that tag.
The HtmlTag module takes care of all the nasty syntax issues. 

Indeed, by making this change I caught a subtle error. The original code did not put
the closing slash on the HR tag, as the XHTML standard would have it. (In other words, it
emitted <hr> instead of <hr/>.) The HtmlTag module had been changed to conform to
XHTML long ago.

Separating levels of abstraction is one of the most important functions of refactor-
ing, and it’s one of the hardest to do well. As an example, look at the code below. This
was my first attempt at separating the abstraction levels in the HruleWidget.render
method. 

public String render() throws Exception
{

HtmlTag hr = new HtmlTag("hr");
if (size > 0) {

hr.addAttribute("size", ""+(size+1));
}
return hr.html();

}

My goal, at this point, was to create the necessary separation and get the tests to pass.
I accomplished that goal easily, but the result was a function that still had mixed levels
of abstraction. In this case the mixed levels were the construction of the HR tag and the



306A Chapter 17: Smells and Heuristics

interpretation and formatting of the size variable. This points out that when you break a
function along lines of abstraction, you often uncover new lines of abstraction that were
obscured by the previous structure. 

G35: Keep Configurable Data at High Levels

If you have a constant such as a default or configuration value that is known and expected
at a high level of abstraction, do not bury it in a low-level function. Expose it as an argu-
ment to that low-level function called from the high-level function. Consider the following
code from FitNesse:

public static void main(String[] args) throws Exception
{
  Arguments arguments = parseCommandLine(args);
  ...
}

public class Arguments
{
  public static final String DEFAULT_PATH = ".";
  public static final String DEFAULT_ROOT = "FitNesseRoot";
  public static final int DEFAULT_PORT = 80;
  public static final int DEFAULT_VERSION_DAYS = 14;
  ...
}

The command-line arguments are parsed in the very first executable line of FitNesse. The
default values of those arguments are specified at the top of the Argument class. You don’t
have to go looking in low levels of the system for statements like this one:

if (arguments.port == 0) // use 80 by default

The configuration constants reside at a very high level and are easy to change. They get
passed down to the rest of the application. The lower levels of the application do not own
the values of these constants.

G36: Avoid Transitive Navigation

In general we don’t want a single module to know much about its collaborators. More spe-
cifically, if A collaborates with B, and B collaborates with C, we don’t want modules that use
A to know about C. (For example, we don’t want a.getB().getC().doSomething();.) 

This is sometimes called the Law of Demeter. The Pragmatic Programmers call it
“Writing Shy Code.”12 In either case it comes down to making sure that modules know
only about their immediate collaborators and do not know the navigation map of the whole
system.

If many modules used some form of the statement a.getB().getC(), then it would be
difficult to change the design and architecture to interpose a Q between B and C. You’d

12. [PRAG], p. 138.



307AJava

have to find every instance of a.getB().getC() and convert it to a.getB().getQ().getC().
This is how architectures become rigid. Too many modules know too much about the
architecture.

Rather we want our immediate collaborators to offer all the services we need. We
should not have to roam through the object graph of the system, hunting for the method we
want to call. Rather we should simply be able to say:

myCollaborator.doSomething().

Java

J1: Avoid Long Import Lists by Using Wildcards

If you use two or more classes from a package, then import the whole package with

import package.*;

Long lists of imports are daunting to the reader. We don’t want to clutter up the tops of our
modules with 80 lines of imports. Rather we want the imports to be a concise statement
about which packages we collaborate with.

Specific imports are hard dependencies, whereas wildcard imports are not. If you spe-
cifically import a class, then that class must exist. But if you import a package with a wild-
card, no particular classes need to exist. The import statement simply adds the package to
the search path when hunting for names. So no true dependency is created by such
imports, and they therefore serve to keep our modules less coupled.

There are times when the long list of specific imports can be useful. For example, if
you are dealing with legacy code and you want to find out what classes you need to build
mocks and stubs for, you can walk down the list of specific imports to find out the true
qualified names of all those classes and then put the appropriate stubs in place. However,
this use for specific imports is very rare. Furthermore, most modern IDEs will allow you
to convert the wildcarded imports to a list of specific imports with a single command. So
even in the legacy case it’s better to import wildcards.

Wildcard imports can sometimes cause name conflicts and ambiguities. Two classes
with the same name, but in different packages, will need to be specifically imported, or at
least specifically qualified when used. This can be a nuisance but is rare enough that using
wildcard imports is still generally better than specific imports.

J2: Don’t Inherit Constants

I have seen this several times and it always makes me grimace. A programmer puts some
constants in an interface and then gains access to those constants by inheriting that inter-
face. Take a look at the following code:

public class HourlyEmployee extends Employee {
  private int tenthsWorked;
  private double hourlyRate;



308A Chapter 17: Smells and Heuristics

  public Money calculatePay() {
    int straightTime = Math.min(tenthsWorked, TENTHS_PER_WEEK);
    int overTime = tenthsWorked - straightTime;
    return new Money(
      hourlyRate * (tenthsWorked + OVERTIME_RATE * overTime)
    );
  }
  ...
}

Where did the constants TENTHS_PER_WEEK and OVERTIME_RATE come from? They might have
come from class Employee; so let’s take a look at that: 

public abstract class Employee implements PayrollConstants {
  public abstract boolean isPayday();
  public abstract Money calculatePay();
  public abstract void deliverPay(Money pay);
}

Nope, not there. But then where? Look closely at class Employee. It implements
PayrollConstants. 

public interface PayrollConstants {
  public static final int TENTHS_PER_WEEK = 400;
  public static final double OVERTIME_RATE = 1.5;
}

This is a hideous practice! The constants are hidden at the top of the inheritance hierarchy.
Ick! Don’t use inheritance as a way to cheat the scoping rules of the language. Use a static
import instead.

import static PayrollConstants.*;

public class HourlyEmployee extends Employee {
  private int tenthsWorked;
  private double hourlyRate;

  public Money calculatePay() {
    int straightTime = Math.min(tenthsWorked, TENTHS_PER_WEEK);
    int overTime = tenthsWorked - straightTime;
    return new Money(
      hourlyRate * (tenthsWorked + OVERTIME_RATE * overTime)
    );
  }
  ...
}

J3: Constants versus Enums

Now that enums have been added to the language (Java 5), use them! Don’t keep using the
old trick of public static final ints. The meaning of ints can get lost. The meaning of
enums cannot, because they belong to an enumeration that is named.

What’s more, study the syntax for enums carefully. They can have methods and fields.
This makes them very powerful tools that allow much more expression and flexibility than
ints. Consider this variation on the payroll code:



309ANames

public class HourlyEmployee extends Employee {
  private int tenthsWorked;
  HourlyPayGrade grade;

  public Money calculatePay() {
    int straightTime = Math.min(tenthsWorked, TENTHS_PER_WEEK);
    int overTime = tenthsWorked - straightTime;
    return new Money(
      grade.rate() * (tenthsWorked + OVERTIME_RATE * overTime)
    );
  }
  ...
}

public enum HourlyPayGrade {
  APPRENTICE {
    public double rate() {
      return 1.0;
    }
  },
  LEUTENANT_JOURNEYMAN {
    public double rate() {
      return 1.2;
    }
  },
  JOURNEYMAN {
    public double rate() {
      return 1.5;
    }
  },
  MASTER {
    public double rate() {
      return 2.0;
    }
  };

  public abstract double rate();
}

Names

N1: Choose Descriptive Names

Don’t be too quick to choose a name. Make sure the name is descriptive. Remember that
meanings tend to drift as software evolves, so frequently reevaluate the appropriateness of
the names you choose. 

This is not just a “feel-good” recommendation. Names in software are 90 percent of
what make software readable. You need to take the time to choose them wisely and keep
them relevant. Names are too important to treat carelessly.

Consider the code below. What does it do? If I show you the code with well-chosen
names, it will make perfect sense to you, but like this it’s just a hodge-podge of symbols
and magic numbers.



310A Chapter 17: Smells and Heuristics

public int x() {
    int q = 0;
    int z = 0;
    for (int kk = 0; kk < 10; kk++) {
      if (l[z] == 10)
      {
        q += 10 + (l[z + 1] + l[z + 2]);
        z += 1;
      }
      else if (l[z] + l[z + 1] == 10)
      {
        q += 10 + l[z + 2];
        z += 2;
      } else {
        q += l[z] + l[z + 1];
        z += 2;
      }
    }
    return q;
  }

Here is the code the way it should be written. This snippet is actually less complete
than the one above. Yet you can infer immediately what it is trying to do, and you could
very likely write the missing functions based on that inferred meaning. The magic num-
bers are no longer magic, and the structure of the algorithm is compellingly descriptive.

  public int score() {
    int score = 0;
    int frame = 0;
    for (int frameNumber = 0; frameNumber < 10; frameNumber++) {
      if (isStrike(frame)) {
        score += 10 + nextTwoBallsForStrike(frame);
        frame += 1;
      } else if (isSpare(frame)) {
        score += 10 + nextBallForSpare(frame);
        frame += 2;
      } else {
        score += twoBallsInFrame(frame);
        frame += 2;
      }
    }
    return score;
  }

The power of carefully chosen names is that they overload the structure of the code
with description. That overloading sets the readers’ expectations about what the other
functions in the module do. You can infer the implementation of isStrike() by looking at
the code above. When you read the isStrike method, it will be “pretty much what you
expected.”13 

  private boolean isStrike(int frame) {
    return rolls[frame] == 10;
  }

13. See Ward Cunningham’s quote on page 11A.



311ANames

N2: Choose Names at the Appropriate Level of Abstraction

Don’t pick names that communicate implementation; choose names the reflect the level of
abstraction of the class or function you are working in. This is hard to do. Again, people
are just too good at mixing levels of abstractions. Each time you make a pass over your
code, you will likely find some variable that is named at too low a level. You should take
the opportunity to change those names when you find them. Making code readable
requires a dedication to continuous improvement. Consider the Modem interface below:

public interface Modem {
  boolean dial(String phoneNumber);
  boolean disconnect();
  boolean send(char c);
  char recv();
  String getConnectedPhoneNumber();
}

At first this looks fine. The functions all seem appropriate. Indeed, for many applications
they are. But now consider an application in which some modems aren’t connected by
dialling. Rather they are connected permanently by hard wiring them together (think of the
cable modems that provide Internet access to most homes nowadays). Perhaps some are
connected by sending a port number to a switch over a USB connection. Clearly the notion
of phone numbers is at the wrong level of abstraction. A better naming strategy for this
scenario might be:

public interface Modem {
  boolean connect(String connectionLocator);
  boolean disconnect();
  boolean send(char c);
  char recv();
  String getConnectedLocator();
}

Now the names don’t make any commitments about phone numbers. They can still be used
for phone numbers, or they could be used for any other kind of connection strategy. 

N3: Use Standard Nomenclature Where Possible

Names are easier to understand if they are based on existing convention or usage. For exam-
ple, if you are using the DECORATOR pattern, you should use the word Decorator in the names
of the decorating classes. For example, AutoHangupModemDecorator might be the name of a
class that decorates a Modem with the ability to automatically hang up at the end of a session.

Patterns are just one kind of standard. In Java, for example, functions that convert
objects to string representations are often named toString. It is better to follow conven-
tions like these than to invent your own. 

Teams will often invent their own standard system of names for a particular project.
Eric Evans refers to this as a ubiquitous language for the project.14 Your code should use

14. [DDD].



312A Chapter 17: Smells and Heuristics

the terms from this language extensively. In short, the more you can use names that are
overloaded with special meanings that are relevant to your project, the easier it will be for
readers to know what your code is talking about.

N4: Unambiguous Names

Choose names that make the workings of a function or variable unambiguous. Consider
this example from FitNesse:

private String doRename() throws Exception
{
  if(refactorReferences)
    renameReferences();
  renamePage();

  pathToRename.removeNameFromEnd();
  pathToRename.addNameToEnd(newName);
  return PathParser.render(pathToRename);
}

The name of this function does not say what the function does except in broad and vague
terms. This is emphasized by the fact that there is a function named renamePage inside the
function named doRename! What do the names tell you about the difference between the
two functions? Nothing.

A better name for that function is renamePageAndOptionallyAllReferences. This may
seem long, and it is, but it’s only called from one place in the module, so it’s explanatory
value outweighs the length. 

N5: Use Long Names for Long Scopes

The length of a name should be related to the length of the scope. You can use very short
variable names for tiny scopes, but for big scopes you should use longer names.

Variable names like i and j are just fine if their scope is five lines long. Consider this
snippet from the old standard “Bowling Game”:

private void rollMany(int n, int pins)
{
  for (int i=0; i<n; i++)
    g.roll(pins);
}

This is perfectly clear and would be obfuscated if the variable i were replaced with some-
thing annoying like rollCount. On the other hand, variables and functions with short names
lose their meaning over long distances. So the longer the scope of the name, the longer and
more precise the name should be.

N6: Avoid Encodings

Names should not be encoded with type or scope information. Prefixes such as m_ or f
are useless in today’s environments. Also project and/or subsystem encodings such as



313ATests

vis_ (for visual imaging system) are distracting and redundant. Again, today’s environ-
ments provide all that information without having to mangle the names. Keep your
names free of Hungarian pollution.

N7: Names Should Describe Side-Effects

Names should describe everything that a function, variable, or class is or does. Don’t hide
side effects with a name. Don’t use a simple verb to describe a function that does more
than just that simple action. For example, consider this code from TestNG:

public ObjectOutputStream getOos() throws IOException {
if (m_oos == null) {

m_oos = new ObjectOutputStream(m_socket.getOutputStream());
}
return m_oos;

}

This function does a bit more than get an “oos”; it creates the “oos” if it hasn’t been cre-
ated already. Thus, a better name might be createOrReturnOos. 

Tests

T1: Insufficient Tests

How many tests should be in a test suite? Unfortunately, the metric many programmers use
is “That seems like enough.” A test suite should test everything that could possibly break.
The tests are insufficient so long as there are conditions that have not been explored by the
tests or calculations that have not been validated.

T2: Use a Coverage Tool!

Coverage tools reports gaps in your testing strategy. They make it easy to find modules,
classes, and functions that are insufficiently tested. Most IDEs give you a visual indication,
marking lines that are covered in green and those that are uncovered in red. This makes it
quick and easy to find if or catch statements whose bodies haven’t been checked.

T3: Don’t Skip Trivial Tests

They are easy to write and their documentary value is higher than the cost to produce
them.

T4: An Ignored Test Is a Question about an Ambiguity

Sometimes we are uncertain about a behavioral detail because the requirements are
unclear. We can express our question about the requirements as a test that is commented
out, or as a test that annotated with @Ignore. Which you choose depends upon whether the
ambiguity is about something that would compile or not.



314A Chapter 17: Smells and Heuristics

T5: Test Boundary Conditions

Take special care to test boundary conditions. We often get the middle of an algorithm
right but misjudge the boundaries.

T6: Exhaustively Test Near Bugs

Bugs tend to congregate. When you find a bug in a function, it is wise to do an exhaustive
test of that function. You’ll probably find that the bug was not alone.

T7: Patterns of Failure Are Revealing

Sometimes you can diagnose a problem by finding patterns in the way the test cases fail.
This is another argument for making the test cases as complete as possible. Complete test
cases, ordered in a reasonable way, expose patterns. 

As a simple example, suppose you noticed that all tests with an input larger than five
characters failed? Or what if any test that passed a negative number into the second argu-
ment of a function failed? Sometimes just seeing the pattern of red and green on the test
report is enough to spark the “Aha!” that leads to the solution. Look back at page 267 to
see an interesting example of this in the SerialDate example. 

T8: Test Coverage Patterns Can Be Revealing

Looking at the code that is or is not executed by the passing tests gives clues to why the
failing tests fail.

T9: Tests Should Be Fast

A slow test is a test that won’t get run. When things get tight, it’s the slow tests that will be
dropped from the suite. So do what you must to keep your tests fast.

Conclusion

This list of heuristics and smells could hardly be said to be complete. Indeed, I’m not sure
that such a list can ever be complete. But perhaps completeness should not be the goal,
because what this list does do is imply a value system. 

Indeed, that value system has been the goal, and the topic, of this book. Clean code is
not written by following a set of rules. You don’t become a software craftsman by learn-
ing a list of heuristics. Professionalism and craftsmanship come from values that drive
disciplines. 



315ABibliography

Bibliography

[Refactoring]:  Refactoring: Improving the Design of Existing Code, Martin Fowler et al.,
Addison-Wesley, 1999. 

[PRAG]:  The Pragmatic Programmer, Andrew Hunt, Dave Thomas, Addison-Wesley,
2000.

[GOF]:  Design Patterns: Elements of Reusable Object Oriented Software, Gamma et al.,
Addison-Wesley, 1996.

[Beck97]:  Smalltalk Best Practice Patterns, Kent Beck, Prentice Hall, 1997.

[Beck07]:  Implementation Patterns, Kent Beck, Addison-Wesley, 2008.

[PPP]:  Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin,
Prentice Hall, 2002.

[DDD]:  Domain Driven Design, Eric Evans, Addison-Wesley, 2003.



This page intentionally left blank 



A317

Appendix A

Concurrency II

by Brett L. Schuchert

This appendix supports and amplifies the Concurrency chapter on page 177. It is written
as a series of independent topics and you can generally read them in any order. There is
some duplication between sections to allow for such reading.

Client/Server Example

Imagine a simple client/server application. A server sits and waits listening on a socket for
a client to connect. A client connects and sends a request.

The Server

Here is a simplified version of a server application. Full source for this example is avail-
able starting on page 342, Client/Server Nonthreaded.

ServerSocket serverSocket = new ServerSocket(8009);

while (keepProcessing) {
    try {
        Socket socket = serverSocket.accept();
        process(socket);
    } catch (Exception e) {
        handle(e);
    }
}



318A Appendix A: Concurrency II

This simple application waits for a connection, processes an incoming message, and then
again waits for the next client request to come in. Here’s client code that connects to this
server:

private void connectSendReceive(int i) {
    try {
        Socket socket = new Socket("localhost", PORT);
        MessageUtils.sendMessage(socket, Integer.toString(i));
        MessageUtils.getMessage(socket);
        socket.close();
    } catch (Exception e) {
        e.printStackTrace();

    }

}

How well does this client/server pair perform? How can we formally describe that perfor-
mance? Here’s a test that asserts that the performance is “acceptable”:

@Test(timeout = 10000)
public void shouldRunInUnder10Seconds() throws Exception {
    Thread[] threads = createThreads();
    startAllThreadsw(threads);
    waitForAllThreadsToFinish(threads);
}

The setup is left out to keep the example simple (see “ClientTest.java” on page 344A). This
test asserts that it should complete within 10,000 milliseconds.

This is a classic example of validating the throughput of a system. This system should
complete a series of client requests in ten seconds. So long as the server can process each
individual client request in time, the test will pass.

What happens if the test fails? Short of developing some kind of event polling loop,
there is not much to do within a single thread that will make this code any faster. Will
using multiple threads solve the problem? It might, but we need to know where the time is
being spent. There are two possibilities:

• I/O—using a socket, connecting to a database, waiting for virtual memory swapping, 
and so on.

• Processor—numerical calculations, regular expression processing, garbage collection, 
and so on.

Systems typically have some of each, but for a given operation one tends to dominate. If
the code is processor bound, more processing hardware can improve throughput, making
our test pass. But there are only so many CPU cycles available, so adding threads to a
processor-bound problem will not make it go faster. 

On the other hand, if the process is I/O bound, then concurrency can increase effi-
ciency. When one part of the system is waiting for I/O, another part can use that wait time
to process something else, making more effective use of the available CPU.



319AClient/Server Example

Adding Threading

Assume for the moment that the performance test fails. How can we improve the through-
put so that the performance test passes? If the process method of the server is I/O bound,
then here is one way to make the server use threads (just change the processMessage):

void process(final Socket socket) {
    if (socket == null)
        return;

    Runnable clientHandler = new Runnable() {
        public void run() {
            try {
                String message = MessageUtils.getMessage(socket);
                MessageUtils.sendMessage(socket, "Processed: " + message);
                closeIgnoringException(socket);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    };

    Thread clientConnection = new Thread(clientHandler);
    clientConnection.start();
}

Assume that this change causes the test to pass;1 the code is complete, correct?

Server Observations

The updated server completes the test successfully in just over one second. Unfortunately,
this solution is a bit naive and introduces some new problems.

How many threads might our server create? The code sets no limit, so the we could
feasibly hit the limit imposed by the Java Virtual Machine (JVM). For many simple sys-
tems this may suffice. But what if the system is meant to support many users on the public
net? If too many users connect at the same time, the system might grind to a halt.

But set the behavioral problem aside for the moment. The solution shown has prob-
lems of cleanliness and structure. How many responsibilities does the server code have? 

• Socket connection management

• Client processing

• Threading policy

• Server shutdown policy

Unfortunately, all these responsibilities live in the process function. In addition, the
code crosses many different levels of abstraction. So, small as the process function is, it
needs to be repartitioned.

1. You can verify that for yourself by trying out the before and after code. Review the nonthreaded code starting on page 342. 
Review the threaded code starting on page 346A. 



320A Appendix A: Concurrency II

The server has several reasons to change; therefore it violates the Single Responsibility
Principle. To keep concurrent systems clean, thread management should be kept to a few,
well-controlled places. What’s more, any code that manages threads should do nothing
other than thread management. Why? If for no other reason than that tracking down con-
currency issues is hard enough without having to unwind other nonconcurrency issues at
the same time. 

If we create a separate class for each of the responsibilities listed above, including the
thread management responsibility, then when we change the thread management strategy,
the change will impact less overall code and will not pollute the other responsibilities. This
also makes it much easier to test all the other responsibilities without having to worry
about threading. Here is an updated version that does just that:

public void run() {
  while (keepProcessing) {
   try {
    ClientConnection clientConnection = connectionManager.awaitClient();
    ClientRequestProcessor requestProcessor 
      = new ClientRequestProcessor(clientConnection);
    clientScheduler.schedule(requestProcessor);
    } catch (Exception e) {
      e.printStackTrace();
    }

  }
  connectionManager.shutdown();

}

This now focuses all things thread-related into one place, clientScheduler. If there are concur-
rency problems, there is just one place to look:

public interface ClientScheduler {
    void schedule(ClientRequestProcessor requestProcessor);
} 

The current policy is easy to implement:

public class ThreadPerRequestScheduler implements ClientScheduler {
    public void schedule(final ClientRequestProcessor requestProcessor) {
        Runnable runnable = new Runnable() {
            public void run() {
                requestProcessor.process();
            }
        };

       Thread thread = new Thread(runnable);
       thread.start();
    }
}

Having isolated all the thread management into a single place, it is much easier to change
the way we control threads. For example, moving to the Java 5 Executor framework
involves writing a new class and plugging it in (Listing A-1).



321APossible Paths of Execution

Conclusion

Introducing concurrency in this particular example demonstrates a way to improve the
throughput of a system and one way of validating that throughput through a testing frame-
work. Focusing all concurrency code into a small number of classes is an example of
applying the Single Responsibility Principle. In the case of concurrent programming, this
becomes especially important because of its complexity.

Possible Paths of Execution

Review the method incrementValue, a one-line Java method with no looping or branching:

public class IdGenerator {
  int lastIdUsed;

  public int incrementValue() {
    return ++lastIdUsed;
  }
}

Ignore integer overflow and assume that only one thread has access to a single instance
of IdGenerator. In this case there is a single path of execution and a single guaranteed
result:

• The value returned is equal to the value of lastIdUsed, both of which are one greater than 
just before calling the method.

Listing A-1 
ExecutorClientScheduler.java
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

public class ExecutorClientScheduler implements ClientScheduler {
    Executor executor;

    public ExecutorClientScheduler(int availableThreads) {
        executor = Executors.newFixedThreadPool(availableThreads);
    }

    public void schedule(final ClientRequestProcessor requestProcessor) {
        Runnable runnable = new Runnable() {
            public void run() {
                requestProcessor.process();
            }
        };
        executor.execute(runnable);
    }
}



322A Appendix A: Concurrency II

What happens if we use two threads and leave the method unchanged? What are the
possible outcomes if each thread calls incrementValue once? How many possible paths of exe-
cution are there? First, the outcomes (assume lastIdUsed starts with a value of 93):

• Thread 1 gets the value of 94, thread 2 gets the value of 95, and lastIdUsed is now 95.

• Thread 1 gets the value of 95, thread 2 gets the value of 94, and lastIdUsed is now 95.

• Thread 1 gets the value of 94, thread 2 gets the value of 94, and lastIdUsed is now 94.

The final result, while surprising, is possible. To see how these different results are possi-
ble, we need to understand the number of possible paths of execution and how the Java
Virtual Machine executes them.

Number of Paths

To calculate the number of possible execution paths, we’ll start with the generated byte-
code. The one line of java (return ++lastIdUsed;) becomes eight byte-code instructions. It is pos-
sible for the two threads to interleave the execution of these eight instructions the way a
card dealer interleaves cards as he shuffles a deck.2 Even with only eight cards in each
hand, there are a remarkable number of shuffled outcomes.

For this simple case of N instructions in a sequence, no looping or conditionals, and T
threads, the total number of possible execution paths is equal to 

2.  This is a bit of a simplification. However, for the purpose of this discussion, we can use this simplifying model.

Calculating the Possible Orderings 

This comes from an email from Uncle Bob to Brett:
With N steps and T threads there are T * N total steps. Prior to each step

there is a context switch that chooses between the T threads. Each path can
thus be represented as a string of digits denoting the context switches.
Given steps A and B and threads 1 and 2, the six possible paths are 1122,
1212, 1221, 2112, 2121, and 2211. Or, in terms of steps it is A1B1A2B2,
A1A2B1B2, A1A2B2B1, A2A1B1B2, A2A1B2B1, and A2B2A1B1. For
three threads the sequence is 112233, 112323, 113223, 113232, 112233,
121233, 121323, 121332, 123132, 123123, . . . .

One characteristic of these strings is that there must always be N
instances of each T. So the string 111111 is invalid because it has six
instances of 1 and zero instances of 2 and 3. 

NT( )!
N!T

--------------



323APossible Paths of Execution

For our simple case of one line of Java code, which equates to eight lines of byte-code
and two threads, the total number of possible paths of execution is 12,870. If the type of
lastIdUsed is a long, then every read/write becomes two operations instead of one, and the
number of possible orderings becomes 2,704,156.

What happens if we make one change to this method?

public synchronized void incrementValue() {
    ++lastIdUsed;
}

The number of possible execution pathways becomes two for two threads and N! in the
general case. 

Digging Deeper

What about the surprising result that two threads could both call the method once (before
we added synchronized) and get the same numeric result? How is that possible? First things
first.

What is an atomic operation? We can define an atomic operation as any operation that
is uninterruptable. For example, in the following code, line 5, where 0 is assigned to lastid,
is atomic because according to the Java Memory model, assignment to a 32-bit value is
uninterruptable.

So we want the permutations of N 1’s, N 2’s, . . . and N T’s. This is
really just the permutations of N * T things taken N * T at a time, which is
(N * T )!, but with all the duplicates removed. So the trick is to count the
duplicates and subtract that from (N * T )!.

Given two steps and two threads, how many duplicates are there? Each
four-digit string has two 1s and two 2s. Each of those pairs could be
swapped without changing the sense of the string. You could swap the 1s or
the 2s both, or neither. So there are four isomorphs for each string, which
means that there are three duplicates. So three out of four of the options are
duplicates; alternatively one of four of the permutations are NOT dupli-
cates. 4! * .25 = 6.  So this reasoning seems to work.

How many duplicates are there? In the case where N = 2 and T = 2, I
could swap the 1s, the 2s, or both. In the case where N = 2 and T = 3, I
could swap the 1s, the 2s, the 3s, 1s and 2s, 1s and 3s, or 2s and 3s. Swap-
ping is just the permutations of N. Let’s say there are P permutations of N.
The number of different ways to arrange those permutations are P**T. 

So the number of possible isomorphs is N!**T. And so the number of
paths is (T*N)!/(N!**T). Again, in our T = 2, N = 2 case we get 6 (24/4).

For N = 2 and T = 3 we get 720/8 = 90.
For N = 3 and T = 3 we get 9!/6^3 = 1680.

Calculating the Possible Orderings (continued)



324A Appendix A: Concurrency II

01: public class Example {
02:    int lastId;
03:
04:    public void resetId() {
05:        value = 0;
06:    }
07: 
08:    public int getNextId() {
09:        ++value;
10:    }
11:}

What happens if we change type of lastId from int to long? Is line 5 still atomic? Not
according to the JVM specification. It could be atomic on a particular processor, but
according to the JVM specification, assignment to any 64-bit value requires two 32-bit
assignments. This means that between the first 32-bit assignment and the second 32-bit
assignment, some other thread could sneak in and change one of the values. 

What about the pre-increment operator, ++, on line 9? The pre-increment operator can
be interrupted, so it is not atomic. To understand, let’s review the byte-code of both of these
methods in detail. 

Before we go any further, here are three definitions that will be important:

• Frame—Every method invocation requires a frame. The frame includes the return 
address, any parameters passed into the method and the local variables defined in the 
method. This is a standard technique used to define a call stack, which is used by 
modern languages to allow for basic function/method invocation and to allow for 
recursive invocation.

• Local variable—Any variables defined in the scope of the method. All nonstatic meth-
ods have at least one variable, this, which represents the current object, the object that 
received the most recent message (in the current thread), which caused the method 
invocation.

• Operand stack—Many of the instructions in the Java Virtual Machine take parame-
ters. The operand stack is where those parameters are put. The stack is a standard 
last-in, first-out (LIFO) data structure.

Here is the byte-code generated for resetId():

Mnemonic Description Operand 
Stack After

ALOAD 0 Load the 0th variable onto the operand stack.
What is the 0th variable? It is this., the current
object. When the method was called, the
receiver of the message, an instance of Example,
was pushed into the local variable array of the
frame created for method invocation. This is
always the first variable put in every instance
method.

this



325APossible Paths of Execution

These three instructions are guaranteed to be atomic because, although the thread
executing them could be interrupted after any one of them, the information for the
PUTFIELD instruction (the constant value 0 on the top of the stack and the reference to
this one below the top, along with the field value) cannot be touched by another thread.
So when the assignment occurs, we are guaranteed that the value 0 will be stored in the
field value. The operation is atomic. The operands all deal with information local to the
method, so there is no interference between multiple threads. 

So if these three instructions are executed by ten threads, there are 4.38679733629e+24
possible orderings. However, there is only one possible outcome, so the different orderings
are irrelevant. It just so happens that the same outcome is guaranteed for longs in this case
as well. Why? All ten threads are assigning a constant value. Even if they interleave with
each other, the end result is the same.

With the ++ operation in the getNextId method, there are going to be problems. Assume
that lastId holds 42 at the beginning of this method. Here is the byte-code for this new
method:

ICONST_0 Put the constant value 0 onto the operand stack. this, 0

PUTFIELD lastId Store the top value on the stack (which is 0) into
the field value of the object referred to by the
object reference one away from the top of the
stack, this.

<empty>

Mnemonic Description Operand 
Stack After

ALOAD 0 Load this onto the operand stack this

DUP Copy the top of the stack. We now have two
copies of this on the operand stack.

this, this

GETFIELD lastId Retrieve the value of the field lastId from the object
pointed to on the top of the stack (this) and store
that value back on to the stack.

this, 42

ICONST_1 Push the integer constant 1 on the stack. this, 42, 1

IADD Integer add the top two values on the operand
stack and store the result back on to the operand
stack.

this, 43

DUP_X1 Duplicate the value 43 and put it before this. 43, this, 43

PUTFIELD value Store the top value on the operand stack, 43, into
the field value of the current object, represented by
the next-to-top value on the operand stack, this.

43

IRETURN return the top (and only) value on the stack. <empty>

Mnemonic Description Operand 
Stack After



326A Appendix A: Concurrency II

Imagine the case where the first thread completes the first three instructions, up to and
including GETFIELD, and then it is interrupted. A second thread takes over and performs
the entire method, incrementing lastId by one; it gets 43 back. Then the first thread picks up
where it left off; 42 is still on the operand stack because that was the value of lastId when it
executed GETFIELD. It adds one to get 43 again and stores the result. The value 43 is
returned to the first thread as well. The result is that one of the increments is lost because the
first thread stepped on the second thread after the second thread interrupted the first thread.

Making the getNexId() method synchronized fixes this problem.

Conclusion

An intimate understanding of byte-code is not necessary to understand how threads can
step on each other. If you can understand this one example, it should demonstrate the pos-
sibility of multiple threads stepping on each other, which is enough knowledge.

That being said, what this trivial example demonstrates is a need to understand the
memory model enough to know what is and is not safe. It is a common misconception that
the ++ (pre- or post-increment) operator is atomic, and it clearly is not. This means you
need to know:

• Where there are shared objects/values

• The code that can cause concurrent read/update issues

• How to guard such concurrent issues from happening

Knowing Your Library

Executor Framework

As demonstrated in the ExecutorClientScheduler.java on page 321, the Executor framework intro-
duced in Java 5 allows for sophisticated execution using thread pools. This is a class in the
java.util.concurrent package.

If you are creating threads and are not using a thread pool or are using a hand-written
one, you should consider using the Executor. It will make your code cleaner, easier to follow,
and smaller.

The Executor framework will pool threads, resize automatically, and recreate threads if
necessary. It also supports futures, a common concurrent programming construct. The
Executor framework works with classes that implement Runnable and also works with classes
that implement the Callable interface. A Callable looks like a Runnable, but it can return a result,
which is a common need in multithreaded solutions.

A future is handy when code needs to execute multiple, independent operations and
wait for both to finish:

public String processRequest(String message) throws Exception {
    Callable<String> makeExternalCall = new Callable<String>() {



327AKnowing Your Library

        public String call() throws Exception {
            String result = "";
            // make external request
            return result;
        }
    };

    Future<String> result = executorService.submit(makeExternalCall);
    String partialResult = doSomeLocalProcessing();
    return result.get() + partialResult;
}

In this example, the method starts executing the makeExternalCall object. The method contin-
ues other processing. The final line calls result.get(), which blocks until the future completes.

Nonblocking Solutions

The Java 5 VM takes advantage of modern processor design, which supports reliable,
nonblocking updates. Consider, for example, a class that uses synchronization (and there-
fore blocking) to provide a thread-safe update of a value:

public class ObjectWithValue {
    private int value;
    public void synchronized incrementValue() { ++value; }
    public int getValue() { return value; }
}

Java 5 has a series of new classes for situations like this: AtomicBoolean, AtomicInteger, and
AtomicReference are three examples; there are several more. We can rewrite the above code to
use a nonblocking approach as follows:

public class ObjectWithValue {
    private AtomicInteger value = new AtomicInteger(0);

    public void incrementValue() {
        value.incrementAndGet();
    }
    public int getValue() {
        return value.get();
    }
}

Even though this uses an object instead of a primitive and sends messages like
incrementAndGet() instead of ++, the performance of this class will nearly always beat the pre-
vious version. In some cases it will only be slightly faster, but the cases where it will be
slower are virtually nonexistent.

How is this possible? Modern processors have an operation typically called Compare
and Swap (CAS). This operation is analogous to optimistic locking in databases, whereas
the synchronized version is analogous to pessimistic locking. 

The synchronized keyword always acquires a lock, even when a second thread is not try-
ing to update the same value. Even though the performance of intrinsic locks has improved
from version to version, they are still costly. 



328A Appendix A: Concurrency II

The nonblocking version starts with the assumption that multiple threads generally do
not modify the same value often enough that a problem will arise. Instead, it efficiently
detects whether such a situation has occurred and retries until the update happens success-
fully. This detection is almost always less costly than acquiring a lock, even in moderate to
high contention situations. 

How does the Virtual Machine accomplish this? The CAS operation is atomic. Logi-
cally, the CAS operation looks something like the following:

int variableBeingSet;

void simulateNonBlockingSet(int newValue) {
    int currentValue;
    do {
        currentValue = variableBeingSet
    } while(currentValue != compareAndSwap(currentValue, newValue));
}

int synchronized compareAndSwap(int currentValue, int newValue) {
    if(variableBeingSet == currentValue) {
        variableBeingSet = newValue;
        return currentValue;
    }
    return variableBeingSet;    
}

When a method attempts to update a shared variable, the CAS operation verifies that
the variable getting set still has the last known value. If so, then the variable is changed. If
not, then the variable is not set because another thread managed to get in the way. The
method making the attempt (using the CAS operation) sees that the change was not made
and retries.

Nonthread-Safe Classes

There are some classes that are inherently not thread safe. Here are a few examples:

• SimpleDateFormat

• Database Connections

• Containers in java.util

• Servlets

Note that some collection classes have individual methods that are thread-safe. However,
any operation that involves calling more than one method is not. For example, if you do
not want to replace something in a HashTable because it is already there, you might write the
following code:

if(!hashTable.containsKey(someKey)) {
    hashTable.put(someKey, new SomeValue());
}

Each individual method is thread-safe. However, another thread might add a value in
between the containsKey and put calls. There are several options to fix this problem.



329ADependencies Between Methods Can Break Concurrent Code

• Lock the HashTable first, and make sure all other users of the HashTable do the same—cli-
ent-based locking:

synchronized(map) {
if(!map.conainsKey(key))
    map.put(key,value);
}

• Wrap the HashTable in its own object and use a different API—server-based locking 
using an ADAPTER:

public class WrappedHashtable<K, V> {
    private Map<K, V> map = new Hashtable<K, V>();

    public synchronized void putIfAbsent(K key, V value) {
        if (map.containsKey(key))
            map.put(key, value);
    }
}

• Use the thread-safe collections:

ConcurrentHashMap<Integer, String> map = new ConcurrentHashMap<Integer, String>();
map.putIfAbsent(key, value);

The collections in java.util.concurrent have operations like putIfAbsent() to accommodate such
operations.

Dependencies Between Methods 
Can Break Concurrent Code

Here is a trivial example of a way to introduce dependencies between methods:

public class IntegerIterator implements Iterator<Integer>
    private Integer nextValue = 0;

    public synchronized boolean hasNext() {
        return nextValue < 100000;
    }
    public synchronized Integer next() {
        if (nextValue == 100000) 
            throw new IteratorPastEndException();
        return nextValue++;
    }
    public synchronized Integer getNextValue() {
        return nextValue;
    }
}

Here is some code to use this IntegerIterator:

IntegerIterator iterator = new IntegerIterator();
while(iterator.hasNext()) {
    int nextValue = iterator.next();
    // do something with nextValue
}



330A Appendix A: Concurrency II

If one thread executes this code, there will be no problem. But what happens if two threads
attempt to share a single instance of IngeterIterator with the intent that each thread will pro-
cess the values it gets, but that each element of the list is processed only once? Most of the
time, nothing bad happens; the threads happily share the list, processing the elements they
are given by the iterator and stopping when the iterator is complete. However, there is a
small chance that, at the end of the iteration, the two threads will interfere with each other
and cause one thread to go beyond the end of the iterator and throw an exception.

Here’s the problem: Thread 1 asks the question hasNext(), which returns true. Thread 1
gets preempted and then Thread 2 asks the same question, which is still true. Thread 2 then
calls next(), which returns a value as expected but has a side effect of making hasNext() return
false. Thread 1 starts up again, thinking hasNext() is still true, and then calls next(). Even though
the individual methods are synchronized, the client uses two methods.

This is a real problem and an example of the kinds of problems that crop up in con-
current code. In this particular situation this problem is especially subtle because the only
time where this causes a fault is when it happens during the final iteration of the iterator.
If the threads happen to break just right, then one of the threads could go beyond the end
of the iterator. This is the kind of bug that happens long after a system has been in pro-
duction, and it is hard to track down.

You have three options:

• Tolerate the failure.

• Solve the problem by changing the client: client-based locking

• Solve the problem by changing the server, which additionally changes the client: 
server-based locking

Tolerate the Failure

Sometimes you can set things up such that the failure causes no harm. For example, the
above client could catch the exception and clean up. Frankly, this is a bit sloppy. It’s rather
like cleaning up memory leaks by rebooting at midnight. 

Client-Based Locking

To make IntegerIterator work correctly with multiple threads, change this client (and every
other client) as follows:

IntegerIterator iterator = new IntegerIterator();

    while (true) {
      int nextValue;
      synchronized (iterator) {
        if (!iterator.hasNext())
          break;
        nextValue = iterator.next();
      }



331ADependencies Between Methods Can Break Concurrent Code

      doSometingWith(nextValue);
    }

Each client introduces a lock via the synchronized keyword. This duplication violates the DRY
principle, but it might be necessary if the code uses non-thread-safe third-party tools.

This strategy is risky because all programmers who use the server must remember to
lock it before using it and unlock it when done. Many (many!) years ago I worked on a
system that employed client-based locking on a shared resource. The resource was used in
hundreds of different places throughout the code. One poor programmer forgot to lock the
resource in one of those places.

The system was a multi-terminal time-sharing system running accounting software
for Local 705 of the trucker’s union. The computer was in a raised-floor, environment-
controlled room 50 miles north of the Local 705 headquarters. At the headquarters they
had dozens of data entry clerks typing union dues postings into the terminals. The termi-
nals were connected to the computer using dedicated phone lines and 600bps half-duplex
modems. (This was a very, very long time ago.)

About once per day, one of the terminals would “lock up.” There was no rhyme or rea-
son to it. The lock up showed no preference for particular terminals or particular times. It
was as though there were someone rolling dice choosing the time and terminal to lock up.
Sometimes more than one terminal would lock up. Sometimes days would go by without
any lock-ups. 

At first the only solution was a reboot. But reboots were tough to coordinate. We had
to call the headquarters and get everyone to finish what they were doing on all the termi-
nals. Then we could shut down and restart. If someone was doing something important
that took an hour or two, the locked up terminal simply had to stay locked up. 

After a few weeks of debugging we found that the cause was a ring-buffer counter that
had gotten out of sync with its pointer. This buffer controlled output to the terminal. The
pointer value indicated that the buffer was empty, but the counter said it was full. Because
it was empty, there was nothing to display; but because it was also full, nothing could be
added to the buffer to be displayed on the screen.

So we knew why the terminals were locking, but we didn’t know why the ring buffer
was getting out of sync. So we added a hack to work around the problem. It was possible to
read the front panel switches on the computer. (This was a very, very, very long time ago.)
We wrote a little trap function that detected when one of these switches was thrown and
then looked for a ring buffer that was both empty and full. If one was found, it reset that
buffer to empty. Voila! The locked-up terminal(s) started displaying again. 

So now we didn’t have to reboot the system when a terminal locked up. The Local
would simply call us and tell us we had a lock-up, and then we just walked into the com-
puter room and flicked a switch. 

Of course sometimes they worked on the weekends, and we didn’t. So we added a
function to the scheduler that checked all the ring buffers once per minute and reset any
that were both empty and full. This caused the displays to unclog before the Local could
even get on the phone.



332A Appendix A: Concurrency II

It was several more weeks of poring over page after page of monolithic assembly lan-
guage code before we found the culprit. We had done the math and calculated that the fre-
quency of the lock-ups was consistent with a single unprotected use of the ring buffer. So
all we had to do was find that one faulty usage. Unfortunately, this was so very long ago
that we didn’t have search tools or cross references or any other kind of automated help.
We simply had to pore over listings. 

I learned an important lesson that cold Chicago winter of 1971. Client-based locking
really blows.

Server-Based Locking

The duplication can be removed by making the following changes to IntegerIterator:

public class IntegerIteratorServerLocked {
    private Integer nextValue = 0;
    public synchronized Integer getNextOrNull() {
        if (nextValue < 100000)
            return nextValue++;
        else
            return null;
    }
}

And the client code changes as well:

while (true) {
    Integer nextValue = iterator.getNextOrNull();
    if (next == null)
        break;
    // do something with nextValue
}

In this case we actually change the API of our class to be multithread aware.3 The client
needs to perform a null check instead of checking hasNext().

In general you should prefer server-based locking for these reasons:

• It reduces repeated code—Client-based locking forces each client to lock the server 
properly. By putting the locking code into the server, clients are free to use the object 
and not worry about writing additional locking code.

• It allows for better performance—You can swap out a thread-safe server for a non-
thread safe one in the case of single-threaded deployment, thereby avoiding all 
overhead.

• It reduces the possibility of error—All it takes is for one programmer to forget to lock 
properly.

3. In fact, the Iterator interface is inherently not thread-safe. It was never designed to be used by multiple threads, so this should 
come as no surprise.



333AIncreasing Throughput

• It enforces a single policy—The policy is in one place, the server, rather than many 
places, each client.

• It reduces the scope of the shared variables—The client is not aware of them or how 
they are locked. All of that is hidden in the server. When things break, the number of 
places to look is smaller.

What if you do not own the server code?

• Use an ADAPTER to change the API and add locking

public class ThreadSafeIntegerIterator {
    private IntegerIterator iterator = new IntegerIterator();

    public synchronized Integer getNextOrNull() {
        if(iterator.hasNext())
            return iterator.next();
        return null;
    }
}

• OR better yet, use the thread-safe collections with extended interfaces

Increasing Throughput

Let’s assume that we want to go out on the net and read the contents of a set of pages from
a list of URLs. As each page is read, we will parse it to accumulate some statistics. Once
all the pages are read, we will print a summary report.

The following class returns the contents of one page, given a URL.

public class PageReader {
  //...
  public String getPageFor(String url) {
    HttpMethod method = new GetMethod(url);

    try {
      httpClient.executeMethod(method);
      String response = method.getResponseBodyAsString();
      return response;
    } catch (Exception e) {
      handle(e);
    } finally {
      method.releaseConnection();
    }
  }
}

The next class is the iterator that provides the contents of the pages based on an iterator of
URLs:

public class PageIterator {
  private PageReader reader;
  private URLIterator urls;



334A Appendix A: Concurrency II

  public PageIterator(PageReader reader, URLIterator urls) {
    this.urls = urls;
    this.reader = reader;
  }

  public synchronized String getNextPageOrNull() {
    if (urls.hasNext())
      getPageFor(urls.next());
    else
      return null;
  }

  public String getPageFor(String url) {
    return reader.getPageFor(url);
  }
}

An instance of the PageIterator can be shared between many different threads, each one
using it’s own instance of the PageReader to read and parse the pages it gets from the iterator. 

Notice that we’ve kept the synchronized block very small. It contains just the critical sec-
tion deep inside the PageIterator. It is always better to synchronize as little as possible as
opposed to synchronizing as much as possible. 

Single-Thread Calculation of Throughput

Now lets do some simple calculations. For the purpose of argument, assume the following:

• I/O time to retrieve a page (average): 1 second

• Processing time to parse page (average): .5 seconds

• I/O requires 0 percent of the CPU while processing requires 100 percent. 

For N  pages being processed by a single thread, the total execution time is 1.5 sec-
onds * N. Figure A-1 shows a snapshot of 13 pages or about 19.5 seconds.

Multithread Calculation of Throughput

If it is possible to retrieve pages in any order and process the pages independently, then it
is possible to use multiple threads to increase throughput. What happens if we use three
threads? How many pages can we acquire in the same time?

Figure A-1
Single thread



335ADeadlock

As you can see in Figure A-2, the multithreaded solution allows the process-bound
parsing of the pages to overlap with the I/O-bound reading of the pages. In an idealized
world this means that the processor is fully utilized. Each one-second page read is over-
lapped with two parses. Thus, we can process two pages per second, which is three times
the throughput of the single-threaded solution. 

Deadlock

Imagine a Web application with two shared resource pools of some finite size:

• A pool of database connections for local work in process storage

• A pool of MQ connections to a master repository

Assume there are two operations in this application, create and update:

• Create—Acquire connection to master repository and database. Talk to service master 
repository and then store work in local work in process database.

• Update—Acquire connection to database and then master repository. Read from work 
in process database and then send to the master repository

What happens when there are more users than the pool sizes? Consider each pool has
a size of ten.

Figure A-2
Three concurrent threads



336A Appendix A: Concurrency II

• Ten users attempt to use create, so all ten database connections are acquired, and each 
thread is interrupted after acquiring a database connection but before acquiring a con-
nection to the master repository.

• Ten users attempt to use update, so all ten master repository connections are acquired, 
and each thread is interrupted after acquiring the master repository but before acquir-
ing a database connection.

• Now the ten “create” threads must wait to acquire a master repository connection, but 
the ten “update” threads must wait to acquire a database connection.

• Deadlock. The system never recovers.

This might sound like an unlikely situation, but who wants a system that freezes solid
every other week? Who wants to debug a system with symptoms that are so difficult to
reproduce? This is the kind of problem that happens in the field, then takes weeks to solve.

A typical “solution” is to introduce debugging statements to find out what is happen-
ing. Of course, the debug statements change the code enough so that the deadlock happens
in a different situation and takes months to again occur.4

To really solve the problem of deadlock, we need to understand what causes it. There
are four conditions required for deadlock to occur:

• Mutual exclusion

• Lock & wait

• No preemption

• Circular wait

Mutual Exclusion

Mutual exclusion occurs when multiple threads need to use the same resources and those
resources 

• Cannot be used by multiple threads at the same time.

• Are limited in number.

A common example of such a resource is a database connection, a file open for write, a
record lock, or a semaphore. 

Lock & Wait

Once a thread acquires a resource, it will not release the resource until it has acquired all
of the other resources it requires and has completed its work.

4. For example, someone adds some debugging output and the problem “disappears.” The debugging code “fixes” the problem 
so it remains in the system. 



337ADeadlock

No Preemption

One thread cannot take resources away from another thread. Once a thread holds a
resource, the only way for another thread to get it is for the holding thread to release it.

Circular Wait

This is also referred to as the deadly embrace. Imagine two threads, T1 and T2, and two
resources, R1 and R2. T1 has R1, T2 has R2. T1 also requires R2, and T2 also requires R1.
This gives something like Figure A-3:

All four of these conditions must hold for deadlock to be possible. Break any one of these
conditions and deadlock is not possible.

Breaking Mutual Exclusion

One strategy for avoiding deadlock is to sidestep the mutual exclusion condition. You
might be able to do this by

• Using resources that allow simultaneous use, for example, AtomicInteger.

• Increasing the number of resources such that it equals or exceeds the number of com-
peting threads.

• Checking that all your resources are free before seizing any.

Unfortunately, most resources are limited in number and don’t allow simultaneous
use. And it’s not uncommon for the identity of the second resource to be predicated on the
results of operating on the first. But don’t be discouraged; there are three conditions left.

Breaking Lock & Wait

You can also eliminate deadlock if you refuse to wait. Check each resource before you
seize it, and release all resources and start over if you run into one that’s busy. 

Figure A-3



338A Appendix A: Concurrency II

This approach introduces several potential problems:

• Starvation—One thread keeps being unable to acquire the resources it needs (maybe it 
has a unique combination of resources that seldom all become available).

• Livelock—Several threads might get into lockstep and all acquire one resource and 
then release one resource, over and over again. This is especially likely with simplistic 
CPU scheduling algorithms (think embedded devices or simplistic hand-written 
thread balancing algorithms).

Both of these can cause poor throughput. The first results in low CPU utilization,
whereas the second results in high and useless CPU utilization. 

As inefficient as this strategy sounds, it’s better than nothing. It has the benefit that it
can almost always be implemented if all else fails. 

Breaking Preemption

Another strategy for avoiding deadlock is to allow threads to take resources away from
other threads. This is usually done through a simple request mechanism. When a thread
discovers that a resource is busy, it asks the owner to release it. If the owner is also waiting
for some other resource, it releases them all and starts over. 

This is similar to the previous approach but has the benefit that a thread is allowed to
wait for a resource. This decreases the number of startovers. Be warned, however, that
managing all those requests can be tricky. 

Breaking Circular Wait

This is the most common approach to preventing deadlock. For most systems it requires
no more than a simple convention agreed to by all parties.

In the example above with Thread 1 wanting both Resource 1 and Resource 2 and
Thread 2 wanting both Resource 2 and then Resource 1, simply forcing both Thread 1 and
Thread 2 to allocate resources in the same order makes circular wait impossible.

More generally, if all threads can agree on a global ordering of resources and if they
all allocate resources in that order, then deadlock is impossible. Like all the other strate-
gies, this can cause problems:

• The order of acquisition might not correspond to the order of use; thus a resource 
acquired at the start might not be used until the end. This can cause resources to be 
locked longer than strictly necessary.

• Sometimes you cannot impose an order on the acquisition of resources. If the ID of 
the second resource comes from an operation performed on the first, then ordering is 
not feasible.



339ATesting Multithreaded Code

So there are many ways to avoid deadlock. Some lead to starvation, whereas others
make heavy use of the CPU and reduce responsiveness. TANSTAAFL!5

Isolating the thread-related part of your solution to allow for tuning and experimenta-
tion is a powerful way to gain the insights needed to determine the best strategies.

Testing Multithreaded Code

How can we write a test to demonstrate the following code is broken?

01: public class ClassWithThreadingProblem {
02:    int nextId;
03:
04:    public int takeNextId() {
05:        return nextId++;
06:    }
07:}

Here’s a description of a test that will prove the code is broken:

• Remember the current value of nextId.

• Create two threads, both of which call takeNextId() once.

• Verify that nextId is two more than what we started with.

• Run this until we demonstrate that nextId was only incremented by one instead of two.

Listing A-2 shows such a test:

5. There ain’t no such thing as a free lunch.

Listing A-2 
ClassWithThreadingProblemTest.java
01: package example;
02: 
03: import static org.junit.Assert.fail;
04: 
05: import org.junit.Test;
06: 
07: public class ClassWithThreadingProblemTest {
08:     @Test
09:     public void twoThreadsShouldFailEventually() throws Exception {
10:         final ClassWithThreadingProblem classWithThreadingProblem 
                = new ClassWithThreadingProblem();
11: 
12:         Runnable runnable = new Runnable() {
13:             public void run() {
14:                 classWithThreadingProblem.takeNextId();
15:             }
16:         };
17: 



340A Appendix A: Concurrency II

18:         for (int i = 0; i < 50000; ++i) {
19:             int startingId = classWithThreadingProblem.lastId;
20:             int expectedResult = 2 + startingId;
21: 
22:             Thread t1 = new Thread(runnable);
23:             Thread t2 = new Thread(runnable);
24:             t1.start();
25:             t2.start();
26:             t1.join();
27:             t2.join();
28: 
29:             int endingId = classWithThreadingProblem.lastId;
30: 
31:             if (endingId != expectedResult)
32:                 return;
33:         }
34: 
35:         fail("Should have exposed a threading issue but it did not.");
36:     }
37: }

Line Description

10 Create a single instance of ClassWithThreadingProblem. Note, we must use the
final keyword because we use it below in an anonymous inner class.

12–16 Create an anonymous inner class that uses the single instance of
ClassWithThreadingProblem.

18 Run this code “enough” times to demonstrate that the code failed, but not
so much that the test “takes too long.” This is a balancing act; we don’t
want to wait too long to demonstrate failure. Picking this number is hard—
although later we’ll see that we can greatly reduce this number.

19 Remember the starting value. This test is trying to prove that the code in
ClassWithThreadingProblem is broken. If this test passes, it proved that the code
was broken. If this test fails, the test was unable to prove that the code is
broken.

20 We expect the final value to be two more than the current value.

22–23 Create two threads, both of which use the object we created in lines 12–16.
This gives us the potential of two threads trying to use our single instance
of ClassWithThreadingProblem and interfering with each other.

24–25 Make our two threads eligible to run.

26–27 Wait for both threads to finish before we check the results.

29 Record the actual final value.

Listing A-2 (continued)
ClassWithThreadingProblemTest.java



341ATesting Multithreaded Code

This test certainly sets up the conditions for a concurrent update problem. However,
the problem occurs so infrequently that the vast majority of times this test won’t detect it.

Indeed, to truly detect the problem we need to set the number of iterations to over one
million. Even then, in ten executions with a loop count of 1,000,000, the problem occurred
only once. That means we probably ought to set the iteration count to well over one hun-
dred million to get reliable failures. How long are we prepared to wait?

Even if we tuned the test to get reliable failures on one machine, we’ll probably have
to retune the test with different values to demonstrate the failure on another machine,
operating system, or version of the JVM. 

And this is a simple problem. If we cannot demonstrate broken code easily with this
problem, how will we ever detect truly complex problems?

So what approaches can we take to demonstrate this simple failure? And, more impor-
tantly, how can we write tests that will demonstrate failures in more complex code? How
will we be able to discover if our code has failures when we do not know where to look?

Here are a few ideas:

• Monte Carlo Testing. Make tests flexible, so they can be tuned. Then run the test over 
and over—say on a test server—randomly changing the tuning values. If the tests ever 
fail, the code is broken. Make sure to start writing those tests early so a continuous 
integration server starts running them soon. By the way, make sure you carefully log 
the conditions under which the test failed.

• Run the test on every one of the target deployment platforms. Repeatedly. Continu-
ously. The longer the tests run without failure, the more likely that

– The production code is correct or

– The tests aren’t adequate to expose problems.

• Run the tests on a machine with varying loads. If you can simulate loads close to a 
production environment, do so.

Yet, even if you do all of these things, you still don’t stand a very good chance of find-
ing threading problems with your code. The most insidious problems are the ones that
have such a small cross section that they only occur once in a billion opportunities. Such
problems are the terror of complex systems. 

31–32 Did our endingId differ from what we expected? If so, return end the test—
we’ve proven that the code is broken. If not, try again.

35 If we got to here, our test was unable to prove the production code was bro-
ken in a “reasonable” amount of time; our code has failed. Either the code
is not broken or we didn’t run enough iterations to get the failure condition
to occur.

Line Description



342A Appendix A: Concurrency II

Tool Support for Testing Thread-Based Code

IBM has created a tool called ConTest.6 It instruments classes to make it more likely that
non-thread-safe code fails.

We do not have any direct relationship with IBM or the team that developed ConTest.
A colleague of ours pointed us to it. We noticed vast improvement in our ability to find
threading issues after a few minutes of using it.

Here’s an outline of how to use ConTest:

• Write tests and production code, making sure there are tests specifically designed to 
simulate multiple users under varying loads, as mentioned above.

• Instrument test and production code with ConTest.

• Run the tests.

When we instrumented code with ConTest, our success rate went from roughly one fail-
ure in ten million iterations to roughly one failure in thirty iterations. Here are the loop values
for several runs of the test after instrumentation: 13, 23, 0, 54, 16, 14, 6, 69, 107, 49, 2. So
clearly the instrumented classes failed much earlier and with much greater reliability. 

Conclusion

This chapter has been a very brief sojourn through the large and treacherous territory of
concurrent programming. We barely scratched the surface. Our emphasis here was on dis-
ciplines to help keep concurrent code clean, but there is much more you should learn if
you are going to be writing concurrent systems. We recommend you start with Doug Lea’s
wonderful book Concurrent Programming in Java: Design Principles and Patterns.7

In this chapter we talked about concurrent update, and the disciplines of clean syn-
chronization and locking that can prevent it. We talked about how threads can enhance the
throughput of an I/O-bound system and showed the clean techniques for achieving such
improvements. We talked about deadlock and the disciplines for preventing it in a clean
way. Finally, we talked about strategies for exposing concurrent problems by instrumenting
your code.

Tutorial: Full Code Examples

Client/Server Nonthreaded    

6. http://www.haifa.ibm.com/projects/verification/contest/index.html
7. See [Lea99] p. 191.

http://www.haifa.ibm.com/projects/veri.cation/contest/index.html


343ATutorial: Full Code Examples

Listing A-3 
Server.java
package com.objectmentor.clientserver.nonthreaded;

import java.io.IOException;
import java.net.ServerSocket;
import java.net.Socket;
import java.net.SocketException;

import common.MessageUtils;

public class Server implements Runnable {
    ServerSocket serverSocket;
    volatile boolean keepProcessing = true;

    public Server(int port, int millisecondsTimeout) throws IOException {
        serverSocket = new ServerSocket(port);
        serverSocket.setSoTimeout(millisecondsTimeout);
    }

    public void run() {
        System.out.printf("Server Starting\n");

        while (keepProcessing) {
            try {
                System.out.printf("accepting client\n");
                Socket socket = serverSocket.accept();
                System.out.printf("got client\n");
                process(socket);
            } catch (Exception e) {
                handle(e);
            }
        }
    }

    private void handle(Exception e) {
        if (!(e instanceof SocketException)) {
            e.printStackTrace();
        }
    }

    public void stopProcessing() {
        keepProcessing = false;
        closeIgnoringException(serverSocket);
    }

    void process(Socket socket) {
        if (socket == null)
            return;

        try {
            System.out.printf("Server: getting message\n");
            String message = MessageUtils.getMessage(socket);
            System.out.printf("Server: got message: %s\n", message);
            Thread.sleep(1000);



344A Appendix A: Concurrency II

            System.out.printf("Server: sending reply: %s\n", message);
            MessageUtils.sendMessage(socket, "Processed: " + message);
            System.out.printf("Server: sent\n");
            closeIgnoringException(socket);
        } catch (Exception e) {
            e.printStackTrace();
        }

    }

    private void closeIgnoringException(Socket socket) {
        if (socket != null)
            try {
                socket.close();
            } catch (IOException ignore) {
            }
    }

    private void closeIgnoringException(ServerSocket serverSocket) {
        if (serverSocket != null)
            try {
                serverSocket.close();
            } catch (IOException ignore) {
            }
    }
}

Listing A-4 
ClientTest.java
package com.objectmentor.clientserver.nonthreaded;

import java.io.IOException;
import java.net.Socket;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;

import common.MessageUtils;

public class ClientTest {
    private static final int PORT = 8009;
    private static final int TIMEOUT = 2000;

    Server server;
    Thread serverThread;

    @Before

Listing A-3 (continued)
Server.java



345ATutorial: Full Code Examples

    public void createServer() throws Exception {
        try {
            server = new Server(PORT, TIMEOUT);
            serverThread = new Thread(server);
            serverThread.start();
        } catch (Exception e) {
            e.printStackTrace(System.err);
            throw e;
        }
    }

    @After
    public void shutdownServer() throws InterruptedException {
        if (server != null) {
            server.stopProcessing();
            serverThread.join();
        }
    }

    class TrivialClient implements Runnable {
        int clientNumber;

        TrivialClient(int clientNumber) {
            this.clientNumber = clientNumber;
        }

        public void run() {
            try {
                connectSendReceive(clientNumber);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }
    }

    @Test(timeout = 10000)

    public void shouldRunInUnder10Seconds() throws Exception {
        Thread[] threads = new Thread[10];

        for (int i = 0; i < threads.length; ++i) {
            threads[i] = new Thread(new TrivialClient(i));
            threads[i].start();
        }

        for (int i = 0; i < threads.length; ++i) {
            threads[i].join();
        }

Listing A-4 (continued)
ClientTest.java



346A Appendix A: Concurrency II

Client/Server Using Threads

Changing the server to use threads simply requires a change to the process message (new
lines are emphasized to stand out):

void process(final Socket socket) {
    if (socket == null)
        return;

    }

    private void connectSendReceive(int i) throws IOException {
        System.out.printf("Client %2d: connecting\n", i);
        Socket socket = new Socket("localhost", PORT);
        System.out.printf("Client %2d: sending message\n", i);
        MessageUtils.sendMessage(socket, Integer.toString(i));
        System.out.printf("Client %2d: getting reply\n", i);
        MessageUtils.getMessage(socket);
        System.out.printf("Client %2d: finished\n", i);
        socket.close();
    }
}

Listing A-5 
MessageUtils.java
package common;

import java.io.IOException;
import java.io.InputStream;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.OutputStream;
import java.net.Socket;

public class MessageUtils {
    public static void sendMessage(Socket socket, String message)
            throws IOException {
        OutputStream stream = socket.getOutputStream();
        ObjectOutputStream oos = new ObjectOutputStream(stream);
        oos.writeUTF(message);
        oos.flush();
    }

    public static String getMessage(Socket socket) throws IOException {
        InputStream stream = socket.getInputStream();
        ObjectInputStream ois = new ObjectInputStream(stream);
        return ois.readUTF();
    }
}

Listing A-4 (continued)
ClientTest.java



347ATutorial: Full Code Examples

    Runnable clientHandler = new Runnable() {
        public void run() {
            try {
                System.out.printf("Server: getting message\n");
                String message = MessageUtils.getMessage(socket);
                System.out.printf("Server: got message: %s\n", message);
                Thread.sleep(1000);
                System.out.printf("Server: sending reply: %s\n", message);
                MessageUtils.sendMessage(socket, "Processed: " + message);
                System.out.printf("Server: sent\n");
                closeIgnoringException(socket);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    };

    Thread clientConnection = new Thread(clientHandler);
    clientConnection.start();
}



This page intentionally left blank 



349A

Appendix B

org.jfree.date.SerialDate
                

Listing B-1 
SerialDate.Java

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   6  * 
   7  * Project Info:  http://www.jfree.org/jcommon/index.html
   8  *
   9  * This library is free software; you can redistribute it and/or modify it 
  10  * under the terms of the GNU Lesser General Public License as published by 
  11  * the Free Software Foundation; either version 2.1 of the License, or 
  12  * (at your option) any later version.
  13  *
  14  * This library is distributed in the hope that it will be useful, but 
  15  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
  16  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 
  17  * License for more details.
  18  *
  19  * You should have received a copy of the GNU Lesser General Public
  20  * License along with this library; if not, write to the Free Software
  21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, 
  22  * USA.  
  23  *
  24  * [Java is a trademark or registered trademark of Sun Microsystems, Inc. 
  25  * in the United States and other countries.]
  26  *
  27  * ---------------
  28  * SerialDate.java
  29  * ---------------
  30  * (C) Copyright 2001-2005, by Object Refinery Limited.
  31  *
  32  * Original Author:  David Gilbert (for Object Refinery Limited);
  33  * Contributor(s):   -;
  34  *
  35  * $Id: SerialDate.java,v 1.7 2005/11/03 09:25:17 mungady Exp $
  36  *
  37  * Changes (from 11-Oct-2001)



350A Appendix B: org.jfree.date.SerialDate

  38  * --------------------------
  39  * 11-Oct-2001 : Re-organised the class and moved it to new package 
  40  *               com.jrefinery.date (DG);
  41  * 05-Nov-2001 : Added a getDescription() method, and eliminated NotableDate 
  42  *               class (DG);
  43  * 12-Nov-2001 : IBD requires setDescription() method, now that NotableDate 
  44  *               class is gone (DG);  Changed getPreviousDayOfWeek(), 
  45  *               getFollowingDayOfWeek() and getNearestDayOfWeek() to correct 
  46  *               bugs (DG);
  47  * 05-Dec-2001 : Fixed bug in SpreadsheetDate class (DG);
  48  * 29-May-2002 : Moved the month constants into a separate interface 
  49  *               (MonthConstants) (DG);
  50  * 27-Aug-2002 : Fixed bug in addMonths() method, thanks to N???levka Petr (DG);
  51  * 03-Oct-2002 : Fixed errors reported by Checkstyle (DG);
  52  * 13-Mar-2003 : Implemented Serializable (DG);
  53  * 29-May-2003 : Fixed bug in addMonths method (DG);
  54  * 04-Sep-2003 : Implemented Comparable.  Updated the isInRange javadocs (DG);
  55  * 05-Jan-2005 : Fixed bug in addYears() method (1096282) (DG);
  56  * 
  57  */
  58 
  59 package org.jfree.date;
  60 
  61 import java.io.Serializable;
  62 import java.text.DateFormatSymbols;
  63 import java.text.SimpleDateFormat;
  64 import java.util.Calendar;
  65 import java.util.GregorianCalendar;
  66 
  67 /**
  68  *  An abstract class that defines our requirements for manipulating dates,
  69  *  without tying down a particular implementation.
  70  *  <P>
  71  *  Requirement 1 : match at least what Excel does for dates;
  72  *  Requirement 2 : class is immutable;
  73  *  <P>
  74  *  Why not just use java.util.Date?  We will, when it makes sense.  At times,
  75  *  java.util.Date can be *too* precise - it represents an instant in time,
  76  *  accurate to 1/1000th of a second (with the date itself depending on the
  77  *  time-zone).  Sometimes we just want to represent a particular day (e.g. 21
  78  *  January 2015) without concerning ourselves about the time of day, or the
  79  *  time-zone, or anything else.  That's what we've defined SerialDate for.
  80  *  <P>
  81  *  You can call getInstance() to get a concrete subclass of SerialDate,
  82  *  without worrying about the exact implementation.
  83  *
  84  * @author David Gilbert
  85  */
  86 public abstract class SerialDate implements Comparable, 
  87                                             Serializable, 
  88                                             MonthConstants {
  89 
  90     /** For serialization. */
  91     private static final long serialVersionUID = -293716040467423637L;
  92     
  93     /** Date format symbols. */
  94     public static final DateFormatSymbols
  95         DATE_FORMAT_SYMBOLS = new SimpleDateFormat().getDateFormatSymbols();
  96 
  97     /** The serial number for 1 January 1900. */
  98     public static final int SERIAL_LOWER_BOUND = 2;
  99 

Listing B-1 (continued)
SerialDate.Java



351AAppendix B: org.jfree.date.SerialDate

 100     /** The serial number for 31 December 9999. */
 101     public static final int SERIAL_UPPER_BOUND = 2958465;
 102 
 103     /** The lowest year value supported by this date format. */
 104     public static final int MINIMUM_YEAR_SUPPORTED = 1900;
 105 
 106     /** The highest year value supported by this date format. */
 107     public static final int MAXIMUM_YEAR_SUPPORTED = 9999;
 108 
 109     /** Useful constant for Monday. Equivalent to java.util.Calendar.MONDAY. */
 110     public static final int MONDAY = Calendar.MONDAY;
 111 
 112     /** 
 113      * Useful constant for Tuesday. Equivalent to java.util.Calendar.TUESDAY. 
 114      */
 115     public static final int TUESDAY = Calendar.TUESDAY;
 116 
 117     /** 
 118      * Useful constant for Wednesday. Equivalent to 
 119      * java.util.Calendar.WEDNESDAY. 
 120      */
 121     public static final int WEDNESDAY = Calendar.WEDNESDAY;
 122 
 123     /** 
 124      * Useful constant for Thrusday. Equivalent to java.util.Calendar.THURSDAY. 
 125      */
 126     public static final int THURSDAY = Calendar.THURSDAY;
 127 
 128     /** Useful constant for Friday. Equivalent to java.util.Calendar.FRIDAY. */
 129     public static final int FRIDAY = Calendar.FRIDAY;
 130 
 131     /** 
 132      * Useful constant for Saturday. Equivalent to java.util.Calendar.SATURDAY.
 133      */
 134     public static final int SATURDAY = Calendar.SATURDAY;
 135 
 136     /** Useful constant for Sunday. Equivalent to java.util.Calendar.SUNDAY. */
 137     public static final int SUNDAY = Calendar.SUNDAY;
 138 
 139     /** The number of days in each month in non leap years. */
 140     static final int[] LAST_DAY_OF_MONTH =
 141         {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
 142 
 143     /** The number of days in a (non-leap) year up to the end of each month. */
 144     static final int[] AGGREGATE_DAYS_TO_END_OF_MONTH =
 145         {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};
 146 
 147     /** The number of days in a year up to the end of the preceding month. */
 148     static final int[] AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =
 149         {0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};
 150 
 151     /** The number of days in a leap year up to the end of each month. */
 152     static final int[] LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_MONTH =
 153         {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};
 154 
 155     /** 
 156      * The number of days in a leap year up to the end of the preceding month. 
 157      */
 158     static final int[] 
 159         LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =
 160             {0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};
 161 

Listing B-1 (continued)
SerialDate.Java



352A Appendix B: org.jfree.date.SerialDate

 162     /** A useful constant for referring to the first week in a month. */
 163     public static final int FIRST_WEEK_IN_MONTH = 1;
 164 
 165     /** A useful constant for referring to the second week in a month. */
 166     public static final int SECOND_WEEK_IN_MONTH = 2;
 167 
 168     /** A useful constant for referring to the third week in a month. */
 169     public static final int THIRD_WEEK_IN_MONTH = 3;
 170 
 171     /** A useful constant for referring to the fourth week in a month. */
 172     public static final int FOURTH_WEEK_IN_MONTH = 4;
 173 
 174     /** A useful constant for referring to the last week in a month. */
 175     public static final int LAST_WEEK_IN_MONTH = 0;
 176 
 177     /** Useful range constant. */
 178     public static final int INCLUDE_NONE = 0;
 179 
 180     /** Useful range constant. */
 181     public static final int INCLUDE_FIRST = 1;
 182 
 183     /** Useful range constant. */
 184     public static final int INCLUDE_SECOND = 2;
 185 
 186     /** Useful range constant. */
 187     public static final int INCLUDE_BOTH = 3;
 188 
 189     /** 
 190      * Useful constant for specifying a day of the week relative to a fixed 
 191      * date. 
 192      */
 193     public static final int PRECEDING = -1;
 194 
 195     /** 
 196      * Useful constant for specifying a day of the week relative to a fixed 
 197      * date. 
 198      */
 199     public static final int NEAREST = 0;
 200 
 201     /** 
 202      * Useful constant for specifying a day of the week relative to a fixed 
 203      * date. 
 204      */
 205     public static final int FOLLOWING = 1;
 206 
 207     /** A description for the date. */
 208     private String description;
 209 
 210     /**
 211      * Default constructor.
 212      */
 213     protected SerialDate() {
 214     }
 215 
 216     /**
 217      * Returns <code>true</code> if the supplied integer code represents a 
 218      * valid day-of-the-week, and <code>false</code> otherwise.
 219      *
 220      * @param code  the code being checked for validity.
 221      *
 222      * @return <code>true</code> if the supplied integer code represents a 
 223      *         valid day-of-the-week, and <code>false</code> otherwise.

Listing B-1 (continued)
SerialDate.Java



353AAppendix B: org.jfree.date.SerialDate

 224      */
 225     public static boolean isValidWeekdayCode(final int code) {
 226 
 227         switch(code) {
 228             case SUNDAY: 
 229             case MONDAY: 
 230             case TUESDAY: 
 231             case WEDNESDAY: 
 232             case THURSDAY: 
 233             case FRIDAY: 
 234             case SATURDAY: 
 235                 return true;
 236             default: 
 237                 return false;
 238         }
 239 
 240     }
 241 
 242     /**
 243      * Converts the supplied string to a day of the week.
 244      *
 245      * @param s  a string representing the day of the week.
 246      *
 247      * @return <code>-1</code> if the string is not convertable, the day of 
 248      *         the week otherwise.
 249      */
 250     public static int stringToWeekdayCode(String s) {
 251 
 252         final String[] shortWeekdayNames 
 253             = DATE_FORMAT_SYMBOLS.getShortWeekdays();
 254         final String[] weekDayNames = DATE_FORMAT_SYMBOLS.getWeekdays();
 255 
 256         int result = -1;
 257         s = s.trim();
 258         for (int i = 0; i < weekDayNames.length; i++) {
 259             if (s.equals(shortWeekdayNames[i])) {
 260                 result = i;
 261                 break;
 262             }
 263             if (s.equals(weekDayNames[i])) {
 264                 result = i;
 265                 break;
 266             }
 267         }
 268         return result;
 269 
 270     }
 271 
 272     /**
 273      * Returns a string representing the supplied day-of-the-week.
 274      * <P>
 275      * Need to find a better approach.
 276      *
 277      * @param weekday  the day of the week.
 278      *
 279      * @return a string representing the supplied day-of-the-week.
 280      */
 281     public static String weekdayCodeToString(final int weekday) {
 282 
 283         final String[] weekdays = DATE_FORMAT_SYMBOLS.getWeekdays();
 284         return weekdays[weekday];
 285 

Listing B-1 (continued)
SerialDate.Java



354A Appendix B: org.jfree.date.SerialDate

 286     }
 287 
 288     /**
 289      * Returns an array of month names.
 290      *
 291      * @return an array of month names.
 292      */
 293     public static String[] getMonths() {
 294 
 295         return getMonths(false);
 296 
 297     }
 298 
 299     /**
 300      * Returns an array of month names.
 301      *
 302      * @param shortened  a flag indicating that shortened month names should 
 303      *                   be returned.
 304      *
 305      * @return an array of month names.
 306      */
 307     public static String[] getMonths(final boolean shortened) {
 308 
 309         if (shortened) {
 310             return DATE_FORMAT_SYMBOLS.getShortMonths();
 311         }
 312         else {
 313             return DATE_FORMAT_SYMBOLS.getMonths();
 314         }
 315 
 316     }
 317 
 318     /**
 319      * Returns true if the supplied integer code represents a valid month.
 320      *
 321      * @param code  the code being checked for validity.
 322      *
 323      * @return <code>true</code> if the supplied integer code represents a 
 324      *         valid month.
 325      */
 326     public static boolean isValidMonthCode(final int code) {
 327 
 328         switch(code) {
 329             case JANUARY: 
 330             case FEBRUARY: 
 331             case MARCH: 
 332             case APRIL: 
 333             case MAY: 
 334             case JUNE: 
 335             case JULY: 
 336             case AUGUST: 
 337             case SEPTEMBER: 
 338             case OCTOBER: 
 339             case NOVEMBER: 
 340             case DECEMBER: 
 341                 return true;
 342             default: 
 343                 return false;
 344         }
 345 
 346     }
 347 

Listing B-1 (continued)
SerialDate.Java



355AAppendix B: org.jfree.date.SerialDate

 348     /**
 349      * Returns the quarter for the specified month.
 350      *
 351      * @param code  the month code (1-12).
 352      *
 353      * @return the quarter that the month belongs to.
 354      * @throws java.lang.IllegalArgumentException
 355      */
 356     public static int monthCodeToQuarter(final int code) {
 357 
 358         switch(code) {
 359             case JANUARY: 
 360             case FEBRUARY: 
 361             case MARCH: return 1;
 362             case APRIL: 
 363             case MAY: 
 364             case JUNE: return 2;
 365             case JULY: 
 366             case AUGUST: 
 367             case SEPTEMBER: return 3;
 368             case OCTOBER: 
 369             case NOVEMBER: 
 370             case DECEMBER: return 4;
 371             default: throw new IllegalArgumentException(
 372                 "SerialDate.monthCodeToQuarter: invalid month code.");
 373         }
 374 
 375     }
 376 
 377     /**
 378      * Returns a string representing the supplied month.
 379      * <P>
 380      * The string returned is the long form of the month name taken from the 
 381      * default locale.
 382      *
 383      * @param month  the month.
 384      *
 385      * @return a string representing the supplied month.
 386      */
 387     public static String monthCodeToString(final int month) {
 388 
 389         return monthCodeToString(month, false);
 390 
 391     }
 392 
 393     /**
 394      * Returns a string representing the supplied month.
 395      * <P>
 396      * The string returned is the long or short form of the month name taken 
 397      * from the default locale.
 398      *
 399      * @param month  the month.
 400      * @param shortened  if <code>true</code> return the abbreviation of the 
 401      *                   month.
 402      *
 403      * @return a string representing the supplied month.
 404      * @throws java.lang.IllegalArgumentException
 405      */
 406     public static String monthCodeToString(final int month, 
 407                                            final boolean shortened) {
 408 
 409         // check arguments...

Listing B-1 (continued)
SerialDate.Java



356A Appendix B: org.jfree.date.SerialDate

 410         if (!isValidMonthCode(month)) {
 411             throw new IllegalArgumentException(
 412                 "SerialDate.monthCodeToString: month outside valid range.");
 413         }
 414 
 415         final String[] months;
 416 
 417         if (shortened) {
 418             months = DATE_FORMAT_SYMBOLS.getShortMonths();
 419         }
 420         else {
 421             months = DATE_FORMAT_SYMBOLS.getMonths();
 422         }
 423 
 424         return months[month - 1];
 425 
 426     }
 427 
 428     /**
 429      * Converts a string to a month code.
 430      * <P>
 431      * This method will return one of the constants JANUARY, FEBRUARY, ..., 
 432      * DECEMBER that corresponds to the string.  If the string is not 
 433      * recognised, this method returns -1.
 434      *
 435      * @param s  the string to parse.
 436      *
 437      * @return <code>-1</code> if the string is not parseable, the month of the
 438      *         year otherwise.
 439      */
 440     public static int stringToMonthCode(String s) {
 441 
 442         final String[] shortMonthNames = DATE_FORMAT_SYMBOLS.getShortMonths();
 443         final String[] monthNames = DATE_FORMAT_SYMBOLS.getMonths();
 444 
 445         int result = -1;
 446         s = s.trim();
 447 
 448         // first try parsing the string as an integer (1-12)...
 449         try {
 450             result = Integer.parseInt(s);
 451         }
 452         catch (NumberFormatException e) {
 453             // suppress
 454         }
 455 
 456         // now search through the month names...
 457         if ((result < 1) || (result > 12)) {
 458             for (int i = 0; i < monthNames.length; i++) {
 459                 if (s.equals(shortMonthNames[i])) {
 460                     result = i + 1;
 461                     break;
 462                 }
 463                 if (s.equals(monthNames[i])) {
 464                     result = i + 1;
 465                     break;
 466                 }
 467             }
 468         }
 469 
 470         return result;
 471 

Listing B-1 (continued)
SerialDate.Java



357AAppendix B: org.jfree.date.SerialDate

 472     }
 473 
 474     /**
 475      * Returns true if the supplied integer code represents a valid 
 476      * week-in-the-month, and false otherwise.
 477      *
 478      * @param code  the code being checked for validity.
 479      * @return <code>true</code> if the supplied integer code represents a 
 480      *         valid week-in-the-month.
 481      */
 482     public static boolean isValidWeekInMonthCode(final int code) {
 483 
 484         switch(code) {
 485             case FIRST_WEEK_IN_MONTH: 
 486             case SECOND_WEEK_IN_MONTH: 
 487             case THIRD_WEEK_IN_MONTH: 
 488             case FOURTH_WEEK_IN_MONTH: 
 489             case LAST_WEEK_IN_MONTH: return true;
 490             default: return false;
 491         }
 492 
 493     }
 494 
 495     /**
 496      * Determines whether or not the specified year is a leap year.
 497      *
 498      * @param yyyy  the year (in the range 1900 to 9999).
 499      *
 500      * @return <code>true</code> if the specified year is a leap year.
 501      */
 502     public static boolean isLeapYear(final int yyyy) {
 503 
 504         if ((yyyy % 4) != 0) {
 505             return false;
 506         }
 507         else if ((yyyy % 400) == 0) {
 508             return true;
 509         }
 510         else if ((yyyy % 100) == 0) {
 511             return false;
 512         }
 513         else {
 514             return true;
 515         }
 516 
 517     }
 518 
 519     /**
 520      * Returns the number of leap years from 1900 to the specified year 
 521      * INCLUSIVE.
 522      * <P>
 523      * Note that 1900 is not a leap year.
 524      *
 525      * @param yyyy  the year (in the range 1900 to 9999).
 526      *
 527      * @return the number of leap years from 1900 to the specified year.
 528      */
 529     public static int leapYearCount(final int yyyy) {
 530 
 531         final int leap4 = (yyyy - 1896) / 4;
 532         final int leap100 = (yyyy - 1800) / 100;
 533         final int leap400 = (yyyy - 1600) / 400;

Listing B-1 (continued)
SerialDate.Java



358A Appendix B: org.jfree.date.SerialDate

 534         return leap4 - leap100 + leap400;
 535 
 536     }
 537 
 538     /**
 539      * Returns the number of the last day of the month, taking into account 
 540      * leap years.
 541      *
 542      * @param month  the month.
 543      * @param yyyy  the year (in the range 1900 to 9999).
 544      *
 545      * @return the number of the last day of the month.
 546      */
 547     public static int lastDayOfMonth(final int month, final int yyyy) {
 548 
 549         final int result = LAST_DAY_OF_MONTH[month];
 550         if (month != FEBRUARY) {
 551             return result;
 552         }
 553         else if (isLeapYear(yyyy)) {
 554             return result + 1;
 555         }
 556         else {
 557             return result;
 558         }
 559 
 560     }
 561 
 562     /**
 563      * Creates a new date by adding the specified number of days to the base 
 564      * date.
 565      *
 566      * @param days  the number of days to add (can be negative).
 567      * @param base  the base date.
 568      *
 569      * @return a new date.
 570      */
 571     public static SerialDate addDays(final int days, final SerialDate base) {
 572 
 573         final int serialDayNumber = base.toSerial() + days;
 574         return SerialDate.createInstance(serialDayNumber);
 575 
 576     }
 577 
 578     /**
 579      * Creates a new date by adding the specified number of months to the base 
 580      * date.
 581      * <P>
 582      * If the base date is close to the end of the month, the day on the result
 583      * may be adjusted slightly:  31 May + 1 month = 30 June.
 584      *
 585      * @param months  the number of months to add (can be negative).
 586      * @param base  the base date.
 587      *
 588      * @return a new date.
 589      */
 590     public static SerialDate addMonths(final int months, 
 591                                        final SerialDate base) {
 592 
 593         final int yy = (12 * base.getYYYY() + base.getMonth() + months - 1) 
 594                        / 12;
 595         final int mm = (12 * base.getYYYY() + base.getMonth() + months - 1) 

Listing B-1 (continued)
SerialDate.Java



359AAppendix B: org.jfree.date.SerialDate

 596                        % 12 + 1;
 597         final int dd = Math.min(
 598             base.getDayOfMonth(), SerialDate.lastDayOfMonth(mm, yy)
 599         );
 600         return SerialDate.createInstance(dd, mm, yy);
 601 
 602     }
 603 
 604     /**
 605      * Creates a new date by adding the specified number of years to the base 
 606      * date.
 607      *
 608      * @param years  the number of years to add (can be negative).
 609      * @param base  the base date.
 610      *
 611      * @return A new date.
 612      */
 613     public static SerialDate addYears(final int years, final SerialDate base) {
 614 
 615         final int baseY = base.getYYYY();
 616         final int baseM = base.getMonth();
 617         final int baseD = base.getDayOfMonth();
 618 
 619         final int targetY = baseY + years;
 620         final int targetD = Math.min(
 621             baseD, SerialDate.lastDayOfMonth(baseM, targetY)
 622         );
 623 
 624         return SerialDate.createInstance(targetD, baseM, targetY);
 625 
 626     }
 627 
 628     /**
 629      * Returns the latest date that falls on the specified day-of-the-week and 
 630      * is BEFORE the base date.
 631      *
 632      * @param targetWeekday  a code for the target day-of-the-week.
 633      * @param base  the base date.
 634      *
 635      * @return the latest date that falls on the specified day-of-the-week and 
 636      *         is BEFORE the base date.
 637      */
 638     public static SerialDate getPreviousDayOfWeek(final int targetWeekday, 
 639                                                   final SerialDate base) {
 640 
 641         // check arguments...
 642         if (!SerialDate.isValidWeekdayCode(targetWeekday)) {
 643             throw new IllegalArgumentException(
 644                 "Invalid day-of-the-week code."
 645             );
 646         }
 647 
 648         // find the date...
 649         final int adjust;
 650         final int baseDOW = base.getDayOfWeek();
 651         if (baseDOW > targetWeekday) {
 652             adjust = Math.min(0, targetWeekday - baseDOW);
 653         }
 654         else {
 655             adjust = -7 + Math.max(0, targetWeekday - baseDOW);
 656         }
 657 

Listing B-1 (continued)
SerialDate.Java



360A Appendix B: org.jfree.date.SerialDate

 658         return SerialDate.addDays(adjust, base);
 659 
 660     }
 661 
 662     /**
 663      * Returns the earliest date that falls on the specified day-of-the-week
 664      * and is AFTER the base date.
 665      *
 666      * @param targetWeekday  a code for the target day-of-the-week.
 667      * @param base  the base date.
 668      *
 669      * @return the earliest date that falls on the specified day-of-the-week 
 670      *         and is AFTER the base date.
 671      */
 672     public static SerialDate getFollowingDayOfWeek(final int targetWeekday, 
 673                                                    final SerialDate base) {
 674 
 675         // check arguments...
 676         if (!SerialDate.isValidWeekdayCode(targetWeekday)) {
 677             throw new IllegalArgumentException(
 678                 "Invalid day-of-the-week code."
 679             );
 680         }
 681 
 682         // find the date...
 683         final int adjust;
 684         final int baseDOW = base.getDayOfWeek();
 685         if (baseDOW > targetWeekday) {
 686             adjust = 7 + Math.min(0, targetWeekday - baseDOW);
 687         }
 688         else {
 689             adjust = Math.max(0, targetWeekday - baseDOW);
 690         }
 691 
 692         return SerialDate.addDays(adjust, base);
 693     }
 694 
 695     /**
 696      * Returns the date that falls on the specified day-of-the-week and is
 697      * CLOSEST to the base date.
 698      *
 699      * @param targetDOW  a code for the target day-of-the-week.
 700      * @param base  the base date.
 701      *
 702      * @return the date that falls on the specified day-of-the-week and is 
 703      *         CLOSEST to the base date.
 704      */
 705     public static SerialDate getNearestDayOfWeek(final int targetDOW,  
 706                                                  final SerialDate base) {
 707 
 708         // check arguments...
 709         if (!SerialDate.isValidWeekdayCode(targetDOW)) {
 710             throw new IllegalArgumentException(
 711                 "Invalid day-of-the-week code."
 712             );
 713         }
 714 
 715         // find the date...
 716         final int baseDOW = base.getDayOfWeek();
 717         int adjust = -Math.abs(targetDOW - baseDOW);
 718         if (adjust >= 4) {
 719             adjust = 7 - adjust;

Listing B-1 (continued)
SerialDate.Java



361AAppendix B: org.jfree.date.SerialDate

 720         }
 721         if (adjust <= -4) {
 722             adjust = 7 + adjust;
 723         }
 724         return SerialDate.addDays(adjust, base);
 725 
 726     }
 727 
 728     /**
 729      * Rolls the date forward to the last day of the month.
 730      *
 731      * @param base  the base date.
 732      *
 733      * @return a new serial date.
 734      */
 735     public SerialDate getEndOfCurrentMonth(final SerialDate base) {
 736         final int last = SerialDate.lastDayOfMonth(
 737             base.getMonth(), base.getYYYY()
 738         );
 739         return SerialDate.createInstance(last, base.getMonth(), base.getYYYY());
 740     }
 741 
 742     /**
 743      * Returns a string corresponding to the week-in-the-month code.
 744      * <P>
 745      * Need to find a better approach.
 746      *
 747      * @param count  an integer code representing the week-in-the-month.
 748      *
 749      * @return a string corresponding to the week-in-the-month code.
 750      */
 751     public static String weekInMonthToString(final int count) {
 752 
 753         switch (count) {
 754             case SerialDate.FIRST_WEEK_IN_MONTH : return "First";
 755             case SerialDate.SECOND_WEEK_IN_MONTH : return "Second";
 756             case SerialDate.THIRD_WEEK_IN_MONTH : return "Third";
 757             case SerialDate.FOURTH_WEEK_IN_MONTH : return "Fourth";
 758             case SerialDate.LAST_WEEK_IN_MONTH : return "Last";
 759             default :
 760                 return "SerialDate.weekInMonthToString(): invalid code.";
 761         }
 762 
 763     }
 764 
 765     /**
 766      * Returns a string representing the supplied 'relative'.
 767      * <P>
 768      * Need to find a better approach.
 769      *
 770      * @param relative  a constant representing the 'relative'.
 771      *
 772      * @return a string representing the supplied 'relative'.
 773      */
 774     public static String relativeToString(final int relative) {
 775 
 776         switch (relative) {
 777             case SerialDate.PRECEDING : return "Preceding";
 778             case SerialDate.NEAREST : return "Nearest";
 779             case SerialDate.FOLLOWING : return "Following";
 780             default : return "ERROR : Relative To String";
 781         }

Listing B-1 (continued)
SerialDate.Java



362A Appendix B: org.jfree.date.SerialDate

 782 
 783     }
 784 
 785     /**
 786      * Factory method that returns an instance of some concrete subclass of 
 787      * {@link SerialDate}.
 788      *
 789      * @param day  the day (1-31).
 790      * @param month  the month (1-12).
 791      * @param yyyy  the year (in the range 1900 to 9999).
 792      *
 793      * @return An instance of {@link SerialDate}.
 794      */
 795     public static SerialDate createInstance(final int day, final int month, 
 796                                             final int yyyy) {
 797         return new SpreadsheetDate(day, month, yyyy);
 798     }
 799 
 800     /**
 801      * Factory method that returns an instance of some concrete subclass of 
 802      * {@link SerialDate}.
 803      *
 804      * @param serial  the serial number for the day (1 January 1900 = 2).
 805      *
 806      * @return a instance of SerialDate.
 807      */
 808     public static SerialDate createInstance(final int serial) {
 809         return new SpreadsheetDate(serial);
 810     }
 811 
 812     /**
 813      * Factory method that returns an instance of a subclass of SerialDate.
 814      *
 815      * @param date  A Java date object.
 816      *
 817      * @return a instance of SerialDate.
 818      */
 819     public static SerialDate createInstance(final java.util.Date date) {
 820 
 821         final GregorianCalendar calendar = new GregorianCalendar();
 822         calendar.setTime(date);
 823         return new SpreadsheetDate(calendar.get(Calendar.DATE),
 824                                    calendar.get(Calendar.MONTH) + 1,
 825                                    calendar.get(Calendar.YEAR));
 826 
 827     }
 828 
 829     /**
 830      * Returns the serial number for the date, where 1 January 1900 = 2 (this
 831      * corresponds, almost, to the numbering system used in Microsoft Excel for
 832      * Windows and Lotus 1-2-3).
 833      *
 834      * @return the serial number for the date.
 835      */
 836     public abstract int toSerial();
 837 
 838     /**
 839      * Returns a java.util.Date.  Since java.util.Date has more precision than
 840      * SerialDate, we need to define a convention for the 'time of day'.
 841      *
 842      * @return this as <code>java.util.Date</code>.
 843      */

Listing B-1 (continued)
SerialDate.Java



363AAppendix B: org.jfree.date.SerialDate

 844     public abstract java.util.Date toDate();
 845 
 846     /**
 847      * Returns a description of the date.
 848      *
 849      * @return a description of the date.
 850      */
 851     public String getDescription() {
 852         return this.description;
 853     }
 854 
 855     /**
 856      * Sets the description for the date.
 857      *
 858      * @param description  the new description for the date.
 859      */
 860     public void setDescription(final String description) {
 861         this.description = description;
 862     }
 863 
 864     /**
 865      * Converts the date to a string.
 866      *
 867      * @return  a string representation of the date.
 868      */
 869     public String toString() {
 870         return getDayOfMonth() + "-" + SerialDate.monthCodeToString(getMonth())
 871                                + "-" + getYYYY();
 872     }
 873 
 874     /**
 875      * Returns the year (assume a valid range of 1900 to 9999).
 876      *
 877      * @return the year.
 878      */
 879     public abstract int getYYYY();
 880 
 881     /**
 882      * Returns the month (January = 1, February = 2, March = 3).
 883      *
 884      * @return the month of the year.
 885      */
 886     public abstract int getMonth();
 887 
 888     /**
 889      * Returns the day of the month.
 890      *
 891      * @return the day of the month.
 892      */
 893     public abstract int getDayOfMonth();
 894 
 895     /**
 896      * Returns the day of the week.
 897      *
 898      * @return the day of the week.
 899      */
 900     public abstract int getDayOfWeek();
 901 
 902     /**
 903      * Returns the difference (in days) between this date and the specified 
 904      * 'other' date.
 905      * <P>

Listing B-1 (continued)
SerialDate.Java



364A Appendix B: org.jfree.date.SerialDate

 906      * The result is positive if this date is after the 'other' date and
 907      * negative if it is before the 'other' date.
 908      *
 909      * @param other  the date being compared to.
 910      *
 911      * @return the difference between this and the other date.
 912      */
 913     public abstract int compare(SerialDate other);
 914 
 915     /**
 916      * Returns true if this SerialDate represents the same date as the 
 917      * specified SerialDate.
 918      *
 919      * @param other  the date being compared to.
 920      *
 921      * @return <code>true</code> if this SerialDate represents the same date as 
 922      *         the specified SerialDate.
 923      */
 924     public abstract boolean isOn(SerialDate other);
 925 
 926     /**
 927      * Returns true if this SerialDate represents an earlier date compared to
 928      * the specified SerialDate.
 929      *
 930      * @param other  The date being compared to.
 931      *
 932      * @return <code>true</code> if this SerialDate represents an earlier date 
 933      *         compared to the specified SerialDate.
 934      */
 935     public abstract boolean isBefore(SerialDate other);
 936 
 937     /**
 938      * Returns true if this SerialDate represents the same date as the 
 939      * specified SerialDate.
 940      *
 941      * @param other  the date being compared to.
 942      *
 943      * @return <code>true<code> if this SerialDate represents the same date
 944      *         as the specified SerialDate.
 945      */
 946     public abstract boolean isOnOrBefore(SerialDate other);
 947 
 948     /**
 949      * Returns true if this SerialDate represents the same date as the 
 950      * specified SerialDate.
 951      *
 952      * @param other  the date being compared to.
 953      *
 954      * @return <code>true</code> if this SerialDate represents the same date
 955      *         as the specified SerialDate.
 956      */
 957     public abstract boolean isAfter(SerialDate other);
 958 
 959     /**
 960      * Returns true if this SerialDate represents the same date as the 
 961      * specified SerialDate.
 962      *
 963      * @param other  the date being compared to.
 964      *
 965      * @return <code>true</code> if this SerialDate represents the same date
 966      *         as the specified SerialDate.
 967      */
 968     public abstract boolean isOnOrAfter(SerialDate other);
 969 

Listing B-1 (continued)
SerialDate.Java



365AAppendix B: org.jfree.date.SerialDate

 970     /**
 971      * Returns <code>true</code> if this {@link SerialDate} is within the 
 972      * specified range (INCLUSIVE).  The date order of d1 and d2 is not 
 973      * important.
 974      *
 975      * @param d1  a boundary date for the range.
 976      * @param d2  the other boundary date for the range.
 977      *
 978      * @return A boolean.
 979      */
 980     public abstract boolean isInRange(SerialDate d1, SerialDate d2);
 981 
 982     /**
 983      * Returns <code>true</code> if this {@link SerialDate} is within the 
 984      * specified range (caller specifies whether or not the end-points are 
 985      * included).  The date order of d1 and d2 is not important.
 986      *
 987      * @param d1  a boundary date for the range.
 988      * @param d2  the other boundary date for the range.
 989      * @param include  a code that controls whether or not the start and end 
 990      *                 dates are included in the range.
 991      *
 992      * @return A boolean.
 993      */
 994     public abstract boolean isInRange(SerialDate d1, SerialDate d2, 
 995                                       int include);
 996 
 997     /**
 998      * Returns the latest date that falls on the specified day-of-the-week and
 999      * is BEFORE this date.
1000      *
1001      * @param targetDOW  a code for the target day-of-the-week.
1002      *
1003      * @return the latest date that falls on the specified day-of-the-week and
1004      *         is BEFORE this date.
1005      */
1006     public SerialDate getPreviousDayOfWeek(final int targetDOW) {
1007         return getPreviousDayOfWeek(targetDOW, this);
1008     }
1009 
1010     /**
1011      * Returns the earliest date that falls on the specified day-of-the-week
1012      * and is AFTER this date.
1013      *
1014      * @param targetDOW  a code for the target day-of-the-week.
1015      *
1016      * @return the earliest date that falls on the specified day-of-the-week
1017      *         and is AFTER this date.
1018      */
1019     public SerialDate getFollowingDayOfWeek(final int targetDOW) {
1020         return getFollowingDayOfWeek(targetDOW, this);
1021     }
1022 
1023     /**
1024      * Returns the nearest date that falls on the specified day-of-the-week.
1025      *
1026      * @param targetDOW  a code for the target day-of-the-week.
1027      *
1028      * @return the nearest date that falls on the specified day-of-the-week.
1029      */
1030     public SerialDate getNearestDayOfWeek(final int targetDOW) {
1031         return getNearestDayOfWeek(targetDOW, this);
1032     }
1033 
1034 }

Listing B-1 (continued)
SerialDate.Java



366A Appendix B: org.jfree.date.SerialDate

Listing B-2 
SerialDateTest.java

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   6  * 
   7  * Project Info:  http://www.jfree.org/jcommon/index.html
   8  *
   9  * This library is free software; you can redistribute it and/or modify it 
  10  * under the terms of the GNU Lesser General Public License as published by 
  11  * the Free Software Foundation; either version 2.1 of the License, or 
  12  * (at your option) any later version.
  13  *
  14  * This library is distributed in the hope that it will be useful, but 
  15  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
  16  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 
  17  * License for more details.
  18  *
  19  * You should have received a copy of the GNU Lesser General Public
  20  * License along with this library; if not, write to the Free Software
  21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, 
  22  * USA.  
  23  *
  24  * [Java is a trademark or registered trademark of Sun Microsystems, Inc. 
  25  * in the United States and other countries.]
  26  *
  27  * --------------------
  28  * SerialDateTests.java
  29  * --------------------
  30  * (C) Copyright 2001-2005, by Object Refinery Limited.
  31  *
  32  * Original Author:  David Gilbert (for Object Refinery Limited);
  33  * Contributor(s):   -;
  34  *
  35  * $Id: SerialDateTests.java,v 1.6 2005/11/16 15:58:40 taqua Exp $
  36  *
  37  * Changes
  38  * -------
  39  * 15-Nov-2001 : Version 1 (DG);
  40  * 25-Jun-2002 : Removed unnecessary import (DG);
  41  * 24-Oct-2002 : Fixed errors reported by Checkstyle (DG);
  42  * 13-Mar-2003 : Added serialization test (DG);
  43  * 05-Jan-2005 : Added test for bug report 1096282 (DG);
  44  *
  45  */
  46 
  47 package org.jfree.date.junit;
  48 
  49 import java.io.ByteArrayInputStream;
  50 import java.io.ByteArrayOutputStream;
  51 import java.io.ObjectInput;
  52 import java.io.ObjectInputStream;
  53 import java.io.ObjectOutput;
  54 import java.io.ObjectOutputStream;
  55 
  56 import junit.framework.Test;
  57 import junit.framework.TestCase;
  58 import junit.framework.TestSuite;
  59 
  60 import org.jfree.date.MonthConstants;
  61 import org.jfree.date.SerialDate;
  62 



367AAppendix B: org.jfree.date.SerialDate

  63 /**
  64  * Some JUnit tests for the {@link SerialDate} class.
  65  */
  66 public class SerialDateTests extends TestCase {
  67 
  68     /** Date representing November 9. */
  69     private SerialDate nov9Y2001;
  70 
  71     /**
  72      * Creates a new test case.
  73      *
  74      * @param name  the name.
  75      */
  76     public SerialDateTests(final String name) {
  77         super(name);
  78     }
  79 
  80     /**
  81      * Returns a test suite for the JUnit test runner.
  82      *
  83      * @return The test suite.
  84      */
  85     public static Test suite() {
  86         return new TestSuite(SerialDateTests.class);
  87     }
  88 
  89     /**
  90      * Problem set up.
  91      */
  92     protected void setUp() {
  93         this.nov9Y2001 = SerialDate.createInstance(9, MonthConstants.NOVEMBER, 2001);
  94     }
  95 
  96     /**
  97      * 9 Nov 2001 plus two months should be 9 Jan 2002.
  98      */
  99     public void testAddMonthsTo9Nov2001() {
 100         final SerialDate jan9Y2002 = SerialDate.addMonths(2, this.nov9Y2001);
 101         final SerialDate answer = SerialDate.createInstance(9, 1, 2002);
 102         assertEquals(answer, jan9Y2002);
 103     }
 104 
 105     /**
 106      * A test case for a reported bug, now fixed.
 107      */
 108     public void testAddMonthsTo5Oct2003() {
 109         final SerialDate d1 = SerialDate.createInstance(5, MonthConstants.OCTOBER, 2003);
 110         final SerialDate d2 = SerialDate.addMonths(2, d1);
 111         assertEquals(d2, SerialDate.createInstance(5, MonthConstants.DECEMBER, 2003));
 112     }
 113 
 114     /**
 115      * A test case for a reported bug, now fixed.
 116      */
 117     public void testAddMonthsTo1Jan2003() {
 118         final SerialDate d1 = SerialDate.createInstance(1, MonthConstants.JANUARY, 2003);
 119         final SerialDate d2 = SerialDate.addMonths(0, d1);
 120         assertEquals(d2, d1);
 121     }
 122 
 123     /**
 124      * Monday preceding Friday 9 November 2001 should be 5 November.

Listing B-2 (continued)
SerialDateTest.java



368A Appendix B: org.jfree.date.SerialDate

 125      */
 126     public void testMondayPrecedingFriday9Nov2001() {
 127         SerialDate mondayBefore = SerialDate.getPreviousDayOfWeek(
 128             SerialDate.MONDAY, this.nov9Y2001
 129         );
 130         assertEquals(5, mondayBefore.getDayOfMonth());
 131     }
 132 
 133     /**
 134      * Monday following Friday 9 November 2001 should be 12 November.
 135      */
 136     public void testMondayFollowingFriday9Nov2001() {
 137         SerialDate mondayAfter = SerialDate.getFollowingDayOfWeek(
 138             SerialDate.MONDAY, this.nov9Y2001
 139         );
 140         assertEquals(12, mondayAfter.getDayOfMonth());
 141     }
 142 
 143     /**
 144      * Monday nearest Friday 9 November 2001 should be 12 November.
 145      */
 146     public void testMondayNearestFriday9Nov2001() {
 147         SerialDate mondayNearest = SerialDate.getNearestDayOfWeek(
 148             SerialDate.MONDAY, this.nov9Y2001
 149         );
 150         assertEquals(12, mondayNearest.getDayOfMonth());
 151     }
 152 
 153     /**
 154      * The Monday nearest to 22nd January 1970 falls on the 19th.
 155      */
 156     public void testMondayNearest22Jan1970() {
 157         SerialDate jan22Y1970 = SerialDate.createInstance(22, MonthConstants.JANUARY, 1970);
 158         SerialDate mondayNearest=SerialDate.getNearestDayOfWeek(SerialDate.MONDAY, jan22Y1970);
 159         assertEquals(19, mondayNearest.getDayOfMonth());
 160     }
 161 
 162     /**
 163      * Problem that the conversion of days to strings returns the right result.  Actually, this 
 164      * result depends on the Locale so this test needs to be modified.
 165      */
 166     public void testWeekdayCodeToString() {
 167 
 168         final String test = SerialDate.weekdayCodeToString(SerialDate.SATURDAY);
 169         assertEquals("Saturday", test);
 170 
 171     }
 172 
 173     /**
 174      * Test the conversion of a string to a weekday.  Note that this test will fail if the 
 175      * default locale doesn't use English weekday names...devise a better test!
 176      */
 177     public void testStringToWeekday() {
 178 
 179         int weekday = SerialDate.stringToWeekdayCode("Wednesday");
 180         assertEquals(SerialDate.WEDNESDAY, weekday);
 181 
 182         weekday = SerialDate.stringToWeekdayCode(" Wednesday ");
 183         assertEquals(SerialDate.WEDNESDAY, weekday);
 184 
 185         weekday = SerialDate.stringToWeekdayCode("Wed");
 186         assertEquals(SerialDate.WEDNESDAY, weekday);

Listing B-2 (continued)
SerialDateTest.java



369AAppendix B: org.jfree.date.SerialDate

 187 
 188     }
 189 
 190     /**
 191      * Test the conversion of a string to a month.  Note that this test will fail if the
 192      * default locale doesn't use English month names...devise a better test!
 193      */
 194     public void testStringToMonthCode() {
 195 
 196         int m = SerialDate.stringToMonthCode("January");
 197         assertEquals(MonthConstants.JANUARY, m);
 198 
 199         m = SerialDate.stringToMonthCode(" January ");
 200         assertEquals(MonthConstants.JANUARY, m);
 201 
 202         m = SerialDate.stringToMonthCode("Jan");
 203         assertEquals(MonthConstants.JANUARY, m);
 204 
 205     }
 206 
 207     /**
 208      * Tests the conversion of a month code to a string.
 209      */
 210     public void testMonthCodeToStringCode() {
 211 
 212         final String test = SerialDate.monthCodeToString(MonthConstants.DECEMBER);
 213         assertEquals("December", test);
 214 
 215     }
 216 
 217     /**
 218      * 1900 is not a leap year.
 219      */
 220     public void testIsNotLeapYear1900() {
 221         assertTrue(!SerialDate.isLeapYear(1900));
 222     }
 223 
 224     /**
 225      * 2000 is a leap year.
 226      */
 227     public void testIsLeapYear2000() {
 228         assertTrue(SerialDate.isLeapYear(2000));
 229     }
 230 
 231     /**
 232      * The number of leap years from 1900 up-to-and-including 1899 is 0.
 233      */
 234     public void testLeapYearCount1899() {
 235         assertEquals(SerialDate.leapYearCount(1899), 0);
 236     }
 237 
 238     /**
 239      * The number of leap years from 1900 up-to-and-including 1903 is 0.
 240      */
 241     public void testLeapYearCount1903() {
 242         assertEquals(SerialDate.leapYearCount(1903), 0);
 243     }
 244 
 245     /**
 246      * The number of leap years from 1900 up-to-and-including 1904 is 1.
 247      */
 248     public void testLeapYearCount1904() {
 249         assertEquals(SerialDate.leapYearCount(1904), 1);

Listing B-2 (continued)
SerialDateTest.java



370A Appendix B: org.jfree.date.SerialDate

 250     }
 251 
 252     /**
 253      * The number of leap years from 1900 up-to-and-including 1999 is 24.
 254      */
 255     public void testLeapYearCount1999() {
 256         assertEquals(SerialDate.leapYearCount(1999), 24);
 257     }
 258 
 259     /**
 260      * The number of leap years from 1900 up-to-and-including 2000 is 25.
 261      */
 262     public void testLeapYearCount2000() {
 263         assertEquals(SerialDate.leapYearCount(2000), 25);
 264     }
 265 
 266     /**
 267      * Serialize an instance, restore it, and check for equality.
 268      */
 269     public void testSerialization() {
 270 
 271         SerialDate d1 = SerialDate.createInstance(15, 4, 2000);
 272         SerialDate d2 = null;
 273 
 274         try {
 275             ByteArrayOutputStream buffer = new ByteArrayOutputStream();
 276             ObjectOutput out = new ObjectOutputStream(buffer);
 277             out.writeObject(d1);
 278             out.close();
 279 
 280             ObjectInput in = new ObjectInputStream(
                                        new ByteArrayInputStream(buffer.toByteArray()));
 281             d2 = (SerialDate) in.readObject();
 282             in.close();
 283         }
 284         catch (Exception e) {
 285             System.out.println(e.toString());
 286         }
 287         assertEquals(d1, d2);
 288 
 289     }
 290     
 291     /**
 292      * A test for bug report 1096282 (now fixed).
 293      */
 294     public void test1096282() {
 295         SerialDate d = SerialDate.createInstance(29, 2, 2004);
 296         d = SerialDate.addYears(1, d);
 297         SerialDate expected = SerialDate.createInstance(28, 2, 2005);
 298         assertTrue(d.isOn(expected));
 299     }
 300 
 301     /**
 302      * Miscellaneous tests for the addMonths() method.
 303      */
 304     public void testAddMonths() {
 305         SerialDate d1 = SerialDate.createInstance(31, 5, 2004);
 306         
 307         SerialDate d2 = SerialDate.addMonths(1, d1);
 308         assertEquals(30, d2.getDayOfMonth());
 309         assertEquals(6, d2.getMonth());
 310         assertEquals(2004, d2.getYYYY());

Listing B-2 (continued)
SerialDateTest.java



371AAppendix B: org.jfree.date.SerialDate

 311         
 312         SerialDate d3 = SerialDate.addMonths(2, d1);
 313         assertEquals(31, d3.getDayOfMonth());
 314         assertEquals(7, d3.getMonth());
 315         assertEquals(2004, d3.getYYYY());
 316         
 317         SerialDate d4 = SerialDate.addMonths(1, SerialDate.addMonths(1, d1));
 318         assertEquals(30, d4.getDayOfMonth());
 319         assertEquals(7, d4.getMonth());
 320         assertEquals(2004, d4.getYYYY());
 321     }
 322 }

Listing B-2 (continued)
SerialDateTest.java



372A Appendix B: org.jfree.date.SerialDate

Listing B-3 
MonthConstants.java

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   6  * 
   7  * Project Info:  http://www.jfree.org/jcommon/index.html
   8  *
   9  * This library is free software; you can redistribute it and/or modify it 
  10  * under the terms of the GNU Lesser General Public License as published by 
  11  * the Free Software Foundation; either version 2.1 of the License, or 
  12  * (at your option) any later version.
  13  *
  14  * This library is distributed in the hope that it will be useful, but 
  15  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY 
  16  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public 
  17  * License for more details.
  18  *
  19  * You should have received a copy of the GNU Lesser General Public
  20  * License along with this library; if not, write to the Free Software
  21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, 
  22  * USA.  
  23  *
  24  * [Java is a trademark or registered trademark of Sun Microsystems, Inc. 
  25  * in the United States and other countries.]
  26  *
  27  * -------------------
  28  * MonthConstants.java
  29  * -------------------
  30  * (C) Copyright 2002, 2003, by Object Refinery Limited.
  31  *
  32  * Original Author:  David Gilbert (for Object Refinery Limited);
  33  * Contributor(s):   -;
  34  *
  35  * $Id: MonthConstants.java,v 1.4 2005/11/16 15:58:40 taqua Exp $
  36  *
  37  * Changes
  38  * -------
  39  * 29-May-2002 : Version 1 (code moved from SerialDate class) (DG);
  40  *
  41  */
  42 
  43 package org.jfree.date;
  44 
  45 /**
  46  * Useful constants for months.  Note that these are NOT equivalent to the
  47  * constants defined by java.util.Calendar (where JANUARY=0 and DECEMBER=11).
  48  * <P>
  49  * Used by the SerialDate and RegularTimePeriod classes.
  50  *
  51  * @author David Gilbert
  52  */
  53 public interface MonthConstants {
  54 
  55     /** Constant for January. */
  56     public static final int JANUARY = 1;
  57 
  58     /** Constant for February. */
  59     public static final int FEBRUARY = 2;
  60 
  61     /** Constant for March. */



373AAppendix B: org.jfree.date.SerialDate

  62     public static final int MARCH = 3;
  63 
  64     /** Constant for April. */
  65     public static final int APRIL = 4;
  66 
  67     /** Constant for May. */
  68     public static final int MAY = 5;
  69 
  70     /** Constant for June. */
  71     public static final int JUNE = 6;
  72 
  73     /** Constant for July. */
  74     public static final int JULY = 7;
  75 
  76     /** Constant for August. */
  77     public static final int AUGUST = 8;
  78 
  79     /** Constant for September. */
  80     public static final int SEPTEMBER = 9;
  81 
  82     /** Constant for October. */
  83     public static final int OCTOBER = 10;
  84 
  85     /** Constant for November. */
  86     public static final int NOVEMBER = 11;
  87 
  88     /** Constant for December. */
  89     public static final int DECEMBER = 12;
  90 
  91 }

Listing B-3 (continued)
MonthConstants.java



374A Appendix B: org.jfree.date.SerialDate

Listing B-4 
BobsSerialDateTest.java

   1 package org.jfree.date.junit;
   2 
   3 import junit.framework.TestCase;
   4 import org.jfree.date.*;
   5 import static org.jfree.date.SerialDate.*;
   6 
   7 import java.util.*;
   8 
   9 public class BobsSerialDateTest extends TestCase {
  10 
  11   public void testIsValidWeekdayCode() throws Exception {
  12     for (int day = 1; day <= 7; day++)
  13       assertTrue(isValidWeekdayCode(day));
  14     assertFalse(isValidWeekdayCode(0));
  15     assertFalse(isValidWeekdayCode(8));
  16   }
  17 
  18   public void testStringToWeekdayCode() throws Exception {
  19 
  20     assertEquals(-1, stringToWeekdayCode("Hello"));
  21     assertEquals(MONDAY, stringToWeekdayCode("Monday"));
  22     assertEquals(MONDAY, stringToWeekdayCode("Mon"));
  23 //todo    assertEquals(MONDAY,stringToWeekdayCode("monday"));
  24 //    assertEquals(MONDAY,stringToWeekdayCode("MONDAY"));
  25 //    assertEquals(MONDAY, stringToWeekdayCode("mon"));
  26 
  27     assertEquals(TUESDAY, stringToWeekdayCode("Tuesday"));
  28     assertEquals(TUESDAY, stringToWeekdayCode("Tue"));
  29 //    assertEquals(TUESDAY,stringToWeekdayCode("tuesday"));
  30 //    assertEquals(TUESDAY,stringToWeekdayCode("TUESDAY"));
  31 //    assertEquals(TUESDAY, stringToWeekdayCode("tue"));
  32 //    assertEquals(TUESDAY, stringToWeekdayCode("tues"));
  33 
  34     assertEquals(WEDNESDAY, stringToWeekdayCode("Wednesday"));
  35     assertEquals(WEDNESDAY, stringToWeekdayCode("Wed"));
  36 //    assertEquals(WEDNESDAY,stringToWeekdayCode("wednesday"));
  37 //    assertEquals(WEDNESDAY,stringToWeekdayCode("WEDNESDAY"));
  38 //    assertEquals(WEDNESDAY, stringToWeekdayCode("wed"));
  39 
  40     assertEquals(THURSDAY, stringToWeekdayCode("Thursday"));
  41     assertEquals(THURSDAY, stringToWeekdayCode("Thu"));
  42 //    assertEquals(THURSDAY,stringToWeekdayCode("thursday"));
  43 //    assertEquals(THURSDAY,stringToWeekdayCode("THURSDAY"));
  44 //    assertEquals(THURSDAY, stringToWeekdayCode("thu"));
  45 //    assertEquals(THURSDAY, stringToWeekdayCode("thurs"));
  46 
  47     assertEquals(FRIDAY, stringToWeekdayCode("Friday"));
  48     assertEquals(FRIDAY, stringToWeekdayCode("Fri"));
  49 //    assertEquals(FRIDAY,stringToWeekdayCode("friday"));
  50 //    assertEquals(FRIDAY,stringToWeekdayCode("FRIDAY"));
  51 //    assertEquals(FRIDAY, stringToWeekdayCode("fri"));
  52 
  53     assertEquals(SATURDAY, stringToWeekdayCode("Saturday"));
  54     assertEquals(SATURDAY, stringToWeekdayCode("Sat"));
  55 //    assertEquals(SATURDAY,stringToWeekdayCode("saturday"));
  56 //    assertEquals(SATURDAY,stringToWeekdayCode("SATURDAY"));
  57 //    assertEquals(SATURDAY, stringToWeekdayCode("sat"));
  58 
  59     assertEquals(SUNDAY, stringToWeekdayCode("Sunday"));
  60     assertEquals(SUNDAY, stringToWeekdayCode("Sun"));
  61 //    assertEquals(SUNDAY,stringToWeekdayCode("sunday"));
  62 //    assertEquals(SUNDAY,stringToWeekdayCode("SUNDAY"));



375AAppendix B: org.jfree.date.SerialDate

  63 //    assertEquals(SUNDAY, stringToWeekdayCode("sun"));
  64   }
  65 
  66   public void testWeekdayCodeToString() throws Exception {
  67     assertEquals("Sunday", weekdayCodeToString(SUNDAY));
  68     assertEquals("Monday", weekdayCodeToString(MONDAY));
  69     assertEquals("Tuesday", weekdayCodeToString(TUESDAY));
  70     assertEquals("Wednesday", weekdayCodeToString(WEDNESDAY));
  71     assertEquals("Thursday", weekdayCodeToString(THURSDAY));
  72     assertEquals("Friday", weekdayCodeToString(FRIDAY));
  73     assertEquals("Saturday", weekdayCodeToString(SATURDAY));
  74   }
  75 
  76   public void testIsValidMonthCode() throws Exception {
  77     for (int i = 1; i <= 12; i++)
  78       assertTrue(isValidMonthCode(i));
  79     assertFalse(isValidMonthCode(0));
  80     assertFalse(isValidMonthCode(13));
  81   }
  82 
  83   public void testMonthToQuarter() throws Exception {
  84     assertEquals(1, monthCodeToQuarter(JANUARY));
  85     assertEquals(1, monthCodeToQuarter(FEBRUARY));
  86     assertEquals(1, monthCodeToQuarter(MARCH));
  87     assertEquals(2, monthCodeToQuarter(APRIL));
  88     assertEquals(2, monthCodeToQuarter(MAY));
  89     assertEquals(2, monthCodeToQuarter(JUNE));
  90     assertEquals(3, monthCodeToQuarter(JULY));
  91     assertEquals(3, monthCodeToQuarter(AUGUST));
  92     assertEquals(3, monthCodeToQuarter(SEPTEMBER));
  93     assertEquals(4, monthCodeToQuarter(OCTOBER));
  94     assertEquals(4, monthCodeToQuarter(NOVEMBER));
  95     assertEquals(4, monthCodeToQuarter(DECEMBER));
  96 
  97     try {
  98       monthCodeToQuarter(-1);
  99       fail("Invalid Month Code should throw exception");
 100     } catch (IllegalArgumentException e) {
 101     }
 102   }
 103 
 104   public void testMonthCodeToString() throws Exception {
 105     assertEquals("January", monthCodeToString(JANUARY));
 106     assertEquals("February", monthCodeToString(FEBRUARY));
 107     assertEquals("March", monthCodeToString(MARCH));
 108     assertEquals("April", monthCodeToString(APRIL));
 109     assertEquals("May", monthCodeToString(MAY));
 110     assertEquals("June", monthCodeToString(JUNE));
 111     assertEquals("July", monthCodeToString(JULY));
 112     assertEquals("August", monthCodeToString(AUGUST));
 113     assertEquals("September", monthCodeToString(SEPTEMBER));
 114     assertEquals("October", monthCodeToString(OCTOBER));
 115     assertEquals("November", monthCodeToString(NOVEMBER));
 116     assertEquals("December", monthCodeToString(DECEMBER));
 117 
 118     assertEquals("Jan", monthCodeToString(JANUARY, true));
 119     assertEquals("Feb", monthCodeToString(FEBRUARY, true));
 120     assertEquals("Mar", monthCodeToString(MARCH, true));
 121     assertEquals("Apr", monthCodeToString(APRIL, true));
 122     assertEquals("May", monthCodeToString(MAY, true));
 123     assertEquals("Jun", monthCodeToString(JUNE, true));
 124     assertEquals("Jul", monthCodeToString(JULY, true));

Listing B-4 (continued)
BobsSerialDateTest.java



376A Appendix B: org.jfree.date.SerialDate

 125     assertEquals("Aug", monthCodeToString(AUGUST, true));
 126     assertEquals("Sep", monthCodeToString(SEPTEMBER, true));
 127     assertEquals("Oct", monthCodeToString(OCTOBER, true));
 128     assertEquals("Nov", monthCodeToString(NOVEMBER, true));
 129     assertEquals("Dec", monthCodeToString(DECEMBER, true));
 130 
 131     try {
 132       monthCodeToString(-1);
 133       fail("Invalid month code should throw exception");
 134     } catch (IllegalArgumentException e) {
 135     }
 136 
 137   }
 138 
 139   public void testStringToMonthCode() throws Exception {
 140     assertEquals(JANUARY,stringToMonthCode("1"));
 141     assertEquals(FEBRUARY,stringToMonthCode("2"));
 142     assertEquals(MARCH,stringToMonthCode("3"));
 143     assertEquals(APRIL,stringToMonthCode("4"));
 144     assertEquals(MAY,stringToMonthCode("5"));
 145     assertEquals(JUNE,stringToMonthCode("6"));
 146     assertEquals(JULY,stringToMonthCode("7"));
 147     assertEquals(AUGUST,stringToMonthCode("8"));
 148     assertEquals(SEPTEMBER,stringToMonthCode("9"));
 149     assertEquals(OCTOBER,stringToMonthCode("10"));
 150     assertEquals(NOVEMBER, stringToMonthCode("11"));
 151     assertEquals(DECEMBER,stringToMonthCode("12"));
 152 
 153 //todo    assertEquals(-1, stringToMonthCode("0"));
 154 //    assertEquals(-1, stringToMonthCode("13"));
 155 
 156     assertEquals(-1,stringToMonthCode("Hello"));
 157 
 158     for (int m = 1; m <= 12; m++) {
 159       assertEquals(m, stringToMonthCode(monthCodeToString(m, false)));
 160       assertEquals(m, stringToMonthCode(monthCodeToString(m, true)));
 161     }
 162 
 163 //    assertEquals(1,stringToMonthCode("jan"));
 164 //    assertEquals(2,stringToMonthCode("feb"));
 165 //    assertEquals(3,stringToMonthCode("mar"));
 166 //    assertEquals(4,stringToMonthCode("apr"));
 167 //    assertEquals(5,stringToMonthCode("may"));
 168 //    assertEquals(6,stringToMonthCode("jun"));
 169 //    assertEquals(7,stringToMonthCode("jul"));
 170 //    assertEquals(8,stringToMonthCode("aug"));
 171 //    assertEquals(9,stringToMonthCode("sep"));
 172 //    assertEquals(10,stringToMonthCode("oct"));
 173 //    assertEquals(11,stringToMonthCode("nov"));
 174 //    assertEquals(12,stringToMonthCode("dec"));
 175 
 176 //    assertEquals(1,stringToMonthCode("JAN"));
 177 //    assertEquals(2,stringToMonthCode("FEB"));
 178 //    assertEquals(3,stringToMonthCode("MAR"));
 179 //    assertEquals(4,stringToMonthCode("APR"));
 180 //    assertEquals(5,stringToMonthCode("MAY"));
 181 //    assertEquals(6,stringToMonthCode("JUN"));
 182 //    assertEquals(7,stringToMonthCode("JUL"));
 183 //    assertEquals(8,stringToMonthCode("AUG"));
 184 //    assertEquals(9,stringToMonthCode("SEP"));
 185 //    assertEquals(10,stringToMonthCode("OCT"));
 186 //    assertEquals(11,stringToMonthCode("NOV"));
 187 //    assertEquals(12,stringToMonthCode("DEC"));
 188 
 189 //    assertEquals(1,stringToMonthCode("january"));

Listing B-4 (continued)
BobsSerialDateTest.java



377AAppendix B: org.jfree.date.SerialDate

 190 //    assertEquals(2,stringToMonthCode("february"));
 191 //    assertEquals(3,stringToMonthCode("march"));
 192 //    assertEquals(4,stringToMonthCode("april"));
 193 //    assertEquals(5,stringToMonthCode("may"));
 194 //    assertEquals(6,stringToMonthCode("june"));
 195 //    assertEquals(7,stringToMonthCode("july"));
 196 //    assertEquals(8,stringToMonthCode("august"));
 197 //    assertEquals(9,stringToMonthCode("september"));
 198 //    assertEquals(10,stringToMonthCode("october"));
 199 //    assertEquals(11,stringToMonthCode("november"));
 200 //    assertEquals(12,stringToMonthCode("december"));
 201 
 202 //    assertEquals(1,stringToMonthCode("JANUARY"));
 203 //    assertEquals(2,stringToMonthCode("FEBRUARY"));
 204 //    assertEquals(3,stringToMonthCode("MAR"));
 205 //    assertEquals(4,stringToMonthCode("APRIL"));
 206 //    assertEquals(5,stringToMonthCode("MAY"));
 207 //    assertEquals(6,stringToMonthCode("JUNE"));
 208 //    assertEquals(7,stringToMonthCode("JULY"));
 209 //    assertEquals(8,stringToMonthCode("AUGUST"));
 210 //    assertEquals(9,stringToMonthCode("SEPTEMBER"));
 211 //    assertEquals(10,stringToMonthCode("OCTOBER"));
 212 //    assertEquals(11,stringToMonthCode("NOVEMBER"));
 213 //    assertEquals(12,stringToMonthCode("DECEMBER"));
 214   }
 215 
 216   public void testIsValidWeekInMonthCode() throws Exception {
 217     for (int w = 0; w <= 4; w++) {
 218       assertTrue(isValidWeekInMonthCode(w));
 219     }
 220     assertFalse(isValidWeekInMonthCode(5));
 221   }
 222 
 223   public void testIsLeapYear() throws Exception {
 224     assertFalse(isLeapYear(1900));
 225     assertFalse(isLeapYear(1901));
 226     assertFalse(isLeapYear(1902));
 227     assertFalse(isLeapYear(1903));
 228     assertTrue(isLeapYear(1904));
 229     assertTrue(isLeapYear(1908));
 230     assertFalse(isLeapYear(1955));
 231     assertTrue(isLeapYear(1964));
 232     assertTrue(isLeapYear(1980));
 233     assertTrue(isLeapYear(2000));
 234     assertFalse(isLeapYear(2001));
 235     assertFalse(isLeapYear(2100));
 236   }
 237 
 238   public void testLeapYearCount() throws Exception {
 239     assertEquals(0, leapYearCount(1900));
 240     assertEquals(0, leapYearCount(1901));
 241     assertEquals(0, leapYearCount(1902));
 242     assertEquals(0, leapYearCount(1903));
 243     assertEquals(1, leapYearCount(1904));
 244     assertEquals(1, leapYearCount(1905));
 245     assertEquals(1, leapYearCount(1906));
 246     assertEquals(1, leapYearCount(1907));
 247     assertEquals(2, leapYearCount(1908));
 248     assertEquals(24, leapYearCount(1999));
 249     assertEquals(25, leapYearCount(2001));
 250     assertEquals(49, leapYearCount(2101));

Listing B-4 (continued)
BobsSerialDateTest.java



378A Appendix B: org.jfree.date.SerialDate

 251     assertEquals(73, leapYearCount(2201));
 252     assertEquals(97, leapYearCount(2301));
 253     assertEquals(122, leapYearCount(2401));
 254   }
 255 
 256   public void testLastDayOfMonth() throws Exception {
 257     assertEquals(31, lastDayOfMonth(JANUARY, 1901));
 258     assertEquals(28, lastDayOfMonth(FEBRUARY, 1901));
 259     assertEquals(31, lastDayOfMonth(MARCH, 1901));
 260     assertEquals(30, lastDayOfMonth(APRIL, 1901));
 261     assertEquals(31, lastDayOfMonth(MAY, 1901));
 262     assertEquals(30, lastDayOfMonth(JUNE, 1901));
 263     assertEquals(31, lastDayOfMonth(JULY, 1901));
 264     assertEquals(31, lastDayOfMonth(AUGUST, 1901));
 265     assertEquals(30, lastDayOfMonth(SEPTEMBER, 1901));
 266     assertEquals(31, lastDayOfMonth(OCTOBER, 1901));
 267     assertEquals(30, lastDayOfMonth(NOVEMBER, 1901));
 268     assertEquals(31, lastDayOfMonth(DECEMBER, 1901));
 269     assertEquals(29, lastDayOfMonth(FEBRUARY, 1904));
 270   }
 271 
 272   public void testAddDays() throws Exception {
 273     SerialDate newYears = d(1, JANUARY, 1900);
 274     assertEquals(d(2, JANUARY, 1900), addDays(1, newYears));
 275     assertEquals(d(1, FEBRUARY, 1900), addDays(31, newYears));
 276     assertEquals(d(1, JANUARY, 1901), addDays(365, newYears));
 277     assertEquals(d(31, DECEMBER, 1904), addDays(5 * 365, newYears));
 278   }
 279 
 280   private static SpreadsheetDate d(int day, int month, int year) {return new 
SpreadsheetDate(day, month, year);}
 281 
 282   public void testAddMonths() throws Exception {
 283     assertEquals(d(1, FEBRUARY, 1900), addMonths(1, d(1, JANUARY, 1900)));
 284     assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(31, JANUARY, 1900)));
 285     assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(30, JANUARY, 1900)));
 286     assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(29, JANUARY, 1900)));
 287     assertEquals(d(28, FEBRUARY, 1900), addMonths(1, d(28, JANUARY, 1900)));
 288     assertEquals(d(27, FEBRUARY, 1900), addMonths(1, d(27, JANUARY, 1900)));
 289 
 290     assertEquals(d(30, JUNE, 1900), addMonths(5, d(31, JANUARY, 1900)));
 291     assertEquals(d(30, JUNE, 1901), addMonths(17, d(31, JANUARY, 1900)));
 292 
 293     assertEquals(d(29, FEBRUARY, 1904), addMonths(49, d(31, JANUARY, 1900)));
 294 
 295   }
 296 
 297   public void testAddYears() throws Exception {
 298     assertEquals(d(1, JANUARY, 1901), addYears(1, d(1, JANUARY, 1900)));
 299     assertEquals(d(28, FEBRUARY, 1905), addYears(1, d(29, FEBRUARY, 1904)));
 300     assertEquals(d(28, FEBRUARY, 1905), addYears(1, d(28, FEBRUARY, 1904)));
 301     assertEquals(d(28, FEBRUARY, 1904), addYears(1, d(28, FEBRUARY, 1903)));
 302   }
 303 
 304   public void testGetPreviousDayOfWeek() throws Exception {
 305     assertEquals(d(24, FEBRUARY, 2006), getPreviousDayOfWeek(FRIDAY, d(1, MARCH, 2006)));
 306     assertEquals(d(22, FEBRUARY, 2006), getPreviousDayOfWeek(WEDNESDAY, d(1, MARCH, 2006)));
 307     assertEquals(d(29, FEBRUARY, 2004), getPreviousDayOfWeek(SUNDAY, d(3, MARCH, 2004)));
 308     assertEquals(d(29, DECEMBER, 2004), getPreviousDayOfWeek(WEDNESDAY, d(5, JANUARY, 2005)));
 309 
 310     try {
 311       getPreviousDayOfWeek(-1, d(1, JANUARY, 2006));
 312       fail("Invalid day of week code should throw exception");
 313     } catch (IllegalArgumentException e) {
 314     }

Listing B-4 (continued)
BobsSerialDateTest.java



379AAppendix B: org.jfree.date.SerialDate

 315   }
 316 
 317   public void testGetFollowingDayOfWeek() throws Exception {
 318 //    assertEquals(d(1, JANUARY, 2005),getFollowingDayOfWeek(SATURDAY, d(25, DECEMBER, 2004)));
 319     assertEquals(d(1, JANUARY, 2005), getFollowingDayOfWeek(SATURDAY, d(26, DECEMBER, 2004)));
 320     assertEquals(d(3, MARCH, 2004), getFollowingDayOfWeek(WEDNESDAY, d(28, FEBRUARY, 2004)));
 321 
 322     try {
 323       getFollowingDayOfWeek(-1, d(1, JANUARY, 2006));
 324       fail("Invalid day of week code should throw exception");
 325     } catch (IllegalArgumentException e) {
 326     }
 327   }
 328 
 329   public void testGetNearestDayOfWeek() throws Exception {
 330     assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(16, APRIL, 2006)));
 331     assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(17, APRIL, 2006)));
 332     assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(18, APRIL, 2006)));
 333     assertEquals(d(16, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(19, APRIL, 2006)));
 334     assertEquals(d(23, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(20, APRIL, 2006)));
 335     assertEquals(d(23, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(21, APRIL, 2006)));
 336     assertEquals(d(23, APRIL, 2006), getNearestDayOfWeek(SUNDAY, d(22, APRIL, 2006)));
 337 
 338 //todo    assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(16, APRIL, 2006)));
 339     assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(17, APRIL, 2006)));
 340     assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(18, APRIL, 2006)));
 341     assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(19, APRIL, 2006)));
 342     assertEquals(d(17, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(20, APRIL, 2006)));
 343     assertEquals(d(24, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(21, APRIL, 2006)));
 344     assertEquals(d(24, APRIL, 2006), getNearestDayOfWeek(MONDAY, d(22, APRIL, 2006)));
 345 
 346 //    assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(16, APRIL, 2006)));
 347 //    assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(17, APRIL, 2006)));
 348     assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(18, APRIL, 2006)));
 349     assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(19, APRIL, 2006)));
 350     assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(20, APRIL, 2006)));
 351     assertEquals(d(18, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(21, APRIL, 2006)));
 352     assertEquals(d(25, APRIL, 2006), getNearestDayOfWeek(TUESDAY, d(22, APRIL, 2006)));
 353 
 354 //    assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(16, APRIL, 2006)));
 355 //    assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(17, APRIL, 2006)));
 356 //    assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(18, APRIL, 2006)));
 357     assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(19, APRIL, 2006)));
 358     assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(20, APRIL, 2006)));
 359     assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(21, APRIL, 2006)));
 360     assertEquals(d(19, APRIL, 2006), getNearestDayOfWeek(WEDNESDAY, d(22, APRIL, 2006)));
 361 
 362 //    assertEquals(d(13, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(16, APRIL, 2006)));
 363 //    assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(17, APRIL, 2006)));
 364 //    assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(18, APRIL, 2006)));
 365 //    assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(19, APRIL, 2006)));
 366     assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(20, APRIL, 2006)));
 367     assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(21, APRIL, 2006)));
 368     assertEquals(d(20, APRIL, 2006), getNearestDayOfWeek(THURSDAY, d(22, APRIL, 2006)));
 369 
 370 //    assertEquals(d(14, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(16, APRIL, 2006)));
 371 //    assertEquals(d(14, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(17, APRIL, 2006)));
 372 //    assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(18, APRIL, 2006)));
 373 //    assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(19, APRIL, 2006)));
 374 //    assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(20, APRIL, 2006)));
 375     assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(21, APRIL, 2006)));
 376     assertEquals(d(21, APRIL, 2006), getNearestDayOfWeek(FRIDAY, d(22, APRIL, 2006)));

Listing B-4 (continued)
BobsSerialDateTest.java



380A Appendix B: org.jfree.date.SerialDate

 377 
 378 //    assertEquals(d(15, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(16, APRIL, 2006)));
 379 //    assertEquals(d(15, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(17, APRIL, 2006)));
 380 //    assertEquals(d(15, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(18, APRIL, 2006)));
 381 //    assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(19, APRIL, 2006)));
 382 //    assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(20, APRIL, 2006)));
 383 //    assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(21, APRIL, 2006)));
 384     assertEquals(d(22, APRIL, 2006), getNearestDayOfWeek(SATURDAY, d(22, APRIL, 2006)));
 385 
 386     try {
 387       getNearestDayOfWeek(-1, d(1, JANUARY, 2006));
 388       fail("Invalid day of week code should throw exception");
 389     } catch (IllegalArgumentException e) {
 390     }
 391   }
 392 
 393   public void testEndOfCurrentMonth() throws Exception {
 394     SerialDate d = SerialDate.createInstance(2);
 395     assertEquals(d(31, JANUARY, 2006), d.getEndOfCurrentMonth(d(1, JANUARY, 2006)));
 396     assertEquals(d(28, FEBRUARY, 2006), d.getEndOfCurrentMonth(d(1, FEBRUARY, 2006)));
 397     assertEquals(d(31, MARCH, 2006), d.getEndOfCurrentMonth(d(1, MARCH, 2006)));
 398     assertEquals(d(30, APRIL, 2006), d.getEndOfCurrentMonth(d(1, APRIL, 2006)));
 399     assertEquals(d(31, MAY, 2006), d.getEndOfCurrentMonth(d(1, MAY, 2006)));
 400     assertEquals(d(30, JUNE, 2006), d.getEndOfCurrentMonth(d(1, JUNE, 2006)));
 401     assertEquals(d(31, JULY, 2006), d.getEndOfCurrentMonth(d(1, JULY, 2006)));
 402     assertEquals(d(31, AUGUST, 2006), d.getEndOfCurrentMonth(d(1, AUGUST, 2006)));
 403     assertEquals(d(30, SEPTEMBER, 2006), d.getEndOfCurrentMonth(d(1, SEPTEMBER, 2006)));
 404     assertEquals(d(31, OCTOBER, 2006), d.getEndOfCurrentMonth(d(1, OCTOBER, 2006)));
 405     assertEquals(d(30, NOVEMBER, 2006), d.getEndOfCurrentMonth(d(1, NOVEMBER, 2006)));
 406     assertEquals(d(31, DECEMBER, 2006), d.getEndOfCurrentMonth(d(1, DECEMBER, 2006)));
 407     assertEquals(d(29, FEBRUARY, 2008), d.getEndOfCurrentMonth(d(1, FEBRUARY, 2008)));
 408   }
 409 
 410   public void testWeekInMonthToString() throws Exception {
 411     assertEquals("First",weekInMonthToString(FIRST_WEEK_IN_MONTH));
 412     assertEquals("Second",weekInMonthToString(SECOND_WEEK_IN_MONTH));
 413     assertEquals("Third",weekInMonthToString(THIRD_WEEK_IN_MONTH));
 414     assertEquals("Fourth",weekInMonthToString(FOURTH_WEEK_IN_MONTH));
 415     assertEquals("Last",weekInMonthToString(LAST_WEEK_IN_MONTH));
 416 
 417 //todo    try {
 418 //      weekInMonthToString(-1);
 419 //      fail("Invalid week code should throw exception");
 420 //    } catch (IllegalArgumentException e) {
 421 //    }
 422   }
 423 
 424   public void testRelativeToString() throws Exception {
 425     assertEquals("Preceding",relativeToString(PRECEDING));
 426     assertEquals("Nearest",relativeToString(NEAREST));
 427     assertEquals("Following",relativeToString(FOLLOWING));
 428 
 429 //todo    try {
 430 //      relativeToString(-1000);
 431 //      fail("Invalid relative code should throw exception");
 432 //    } catch (IllegalArgumentException e) {
 433 //    }
 434   }
 435 
 436   public void testCreateInstanceFromDDMMYYY() throws Exception {
 437     SerialDate date = createInstance(1, JANUARY, 1900);
 438     assertEquals(1,date.getDayOfMonth());

Listing B-4 (continued)
BobsSerialDateTest.java



381AAppendix B: org.jfree.date.SerialDate

 439     assertEquals(JANUARY,date.getMonth());
 440     assertEquals(1900,date.getYYYY());
 441     assertEquals(2,date.toSerial());
 442   }
 443 
 444   public void testCreateInstanceFromSerial() throws Exception {
 445     assertEquals(d(1, JANUARY, 1900),createInstance(2));
 446     assertEquals(d(1, JANUARY, 1901), createInstance(367));
 447   }
 448 
 449   public void testCreateInstanceFromJavaDate() throws Exception {
 450     assertEquals(d(1, JANUARY, 1900), 
                      createInstance(new GregorianCalendar(1900,0,1).getTime()));
 451     assertEquals(d(1, JANUARY, 2006), 
                      createInstance(new GregorianCalendar(2006,0,1).getTime()));
 452   }
 453 
 454   public static void main(String[] args) {
 455     junit.textui.TestRunner.run(BobsSerialDateTest.class);
 456   }
 457 }

Listing B-4 (continued)
BobsSerialDateTest.java



382A Appendix B: org.jfree.date.SerialDate

Listing B-5 
SpreadsheetDate.java

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   6  *
   7  * Project Info:  http://www.jfree.org/jcommon/index.html
   8  *
   9  * This library is free software; you can redistribute it and/or modify it
  10  * under the terms of the GNU Lesser General Public License as published by
  11  * the Free Software Foundation; either version 2.1 of the License, or
  12  * (at your option) any later version.
  13  *
  14  * This library is distributed in the hope that it will be useful, but
  15  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  16  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
  17  * License for more details.
  18  *
  19  * You should have received a copy of the GNU Lesser General Public
  20  * License along with this library; if not, write to the Free Software
  21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  22  * USA.
  23  *
  24  * [Java is a trademark or registered trademark of Sun Microsystems, Inc.
  25  * in the United States and other countries.]
  26  *
  27  * --------------------
  28  * SpreadsheetDate.java
  29  * --------------------
  30  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
  31  *
  32  * Original Author:  David Gilbert (for Object Refinery Limited);
  33  * Contributor(s):   -;
  34  *
  35  * $Id: SpreadsheetDate.java,v 1.8 2005/11/03 09:25:39 mungady Exp $
  36  *
  37  * Changes
  38  * -------
  39  * 11-Oct-2001 : Version 1 (DG);
  40  * 05-Nov-2001 : Added getDescription() and setDescription() methods (DG);
  41  * 12-Nov-2001 : Changed name from ExcelDate.java to SpreadsheetDate.java (DG);
  42  *               Fixed a bug in calculating day, month and year from serial
  43  *               number (DG);
  44  * 24-Jan-2002 : Fixed a bug in calculating the serial number from the day,
  45  *               month and year.  Thanks to Trevor Hills for the report (DG);
  46  * 29-May-2002 : Added equals(Object) method (SourceForge ID 558850) (DG);
  47  * 03-Oct-2002 : Fixed errors reported by Checkstyle (DG);
  48  * 13-Mar-2003 : Implemented Serializable (DG);
  49  * 04-Sep-2003 : Completed isInRange() methods (DG);
  50  * 05-Sep-2003 : Implemented Comparable (DG);
  51  * 21-Oct-2003 : Added hashCode() method (DG);
  52  *
  53  */
  54 
  55 package org.jfree.date;
  56 
  57 import java.util.Calendar;
  58 import java.util.Date;
  59 
  60 /**
  61  * Represents a date using an integer, in a similar fashion to the
  62  * implementation in Microsoft Excel.  The range of dates supported is
  63  * 1-Jan-1900 to 31-Dec-9999.
  64  * <P>



383AAppendix B: org.jfree.date.SerialDate

  65  * Be aware that there is a deliberate bug in Excel that recognises the year
  66  * 1900 as a leap year when in fact it is not a leap year. You can find more
  67  * information on the Microsoft website in article Q181370:
  68  * <P>
  69  * http://support.microsoft.com/support/kb/articles/Q181/3/70.asp
  70  * <P>
  71  * Excel uses the convention that 1-Jan-1900 = 1.  This class uses the
  72  * convention 1-Jan-1900 = 2.
  73  * The result is that the day number in this class will be different to the
  74  * Excel figure for January and February 1900...but then Excel adds in an extra
  75  * day (29-Feb-1900 which does not actually exist!) and from that point forward
  76  * the day numbers will match.
  77  *
  78  * @author David Gilbert
  79  */
  80 public class SpreadsheetDate extends SerialDate {
  81 
  82     /** For serialization. */
  83     private static final long serialVersionUID = -2039586705374454461L;
  84 
  85     /**
  86      * The day number (1-Jan-1900 = 2, 2-Jan-1900 = 3, ..., 31-Dec-9999 =
  87      * 2958465).
  88      */
  89     private int serial;
  90 
  91     /** The day of the month (1 to 28, 29, 30 or 31 depending on the month). */
  92     private int day;
  93 
  94     /** The month of the year (1 to 12). */
  95     private int month;
  96 
  97     /** The year (1900 to 9999). */
  98     private int year;
  99 
 100     /** An optional description for the date. */
 101     private String description;
 102 
 103     /**
 104      * Creates a new date instance.
 105      *
 106      * @param day  the day (in the range 1 to 28/29/30/31).
 107      * @param month  the month (in the range 1 to 12).
 108      * @param year  the year (in the range 1900 to 9999).
 109      */
 110     public SpreadsheetDate(final int day, final int month, final int year) {
 111 
 112         if ((year >= 1900) && (year <= 9999)) {
 113             this.year = year;
 114         }
 115         else {
 116             throw new IllegalArgumentException(
 117                 "The 'year' argument must be in range 1900 to 9999."
 118             );
 119         }
 120 
 121         if ((month >= MonthConstants.JANUARY)
 122                 && (month <= MonthConstants.DECEMBER)) {
 123             this.month = month;
 124         }
 125         else {
 126             throw new IllegalArgumentException(
 127                 "The 'month' argument must be in the range 1 to 12."
 128             );
 129         }

Listing B-5 (continued)
SpreadsheetDate.java



384A Appendix B: org.jfree.date.SerialDate

 130 
 131         if ((day >= 1) && (day <= SerialDate.lastDayOfMonth(month, year))) {
 132             this.day = day;
 133         }
 134         else {
 135             throw new IllegalArgumentException("Invalid 'day' argument.");
 136         }
 137 
 138         // the serial number needs to be synchronised with the day-month-year...
 139         this.serial = calcSerial(day, month, year);
 140 
 141         this.description = null;
 142 
 143     }
 144 
 145     /**
 146      * Standard constructor - creates a new date object representing the
 147      * specified day number (which should be in the range 2 to 2958465.
 148      *
 149      * @param serial  the serial number for the day (range: 2 to 2958465).
 150      */
 151     public SpreadsheetDate(final int serial) {
 152 
 153         if ((serial >= SERIAL_LOWER_BOUND) && (serial <= SERIAL_UPPER_BOUND)) {
 154             this.serial = serial;
 155         }
 156         else {
 157             throw new IllegalArgumentException(
 158                 "SpreadsheetDate: Serial must be in range 2 to 2958465.");
 159         }
 160 
 161         // the day-month-year needs to be synchronised with the serial number...
 162         calcDayMonthYear();
 163 
 164     }
 165 
 166     /**
 167      * Returns the description that is attached to the date.  It is not
 168      * required that a date have a description, but for some applications it
 169      * is useful.
 170      *
 171      * @return The description that is attached to the date.
 172      */
 173     public String getDescription() {
 174         return this.description;
 175     }
 176 
 177     /**
 178      * Sets the description for the date.
 179      *
 180      * @param description  the description for this date (<code>null</code>
 181      *                     permitted).
 182      */
 183     public void setDescription(final String description) {
 184         this.description = description;
 185     }
 186 
 187     /**
 188      * Returns the serial number for the date, where 1 January 1900 = 2
 189      * (this corresponds, almost, to the numbering system used in Microsoft
 190      * Excel for Windows and Lotus 1-2-3).
 191      *

Listing B-5 (continued)
SpreadsheetDate.java



385AAppendix B: org.jfree.date.SerialDate

 192      * @return The serial number of this date.
 193      */
 194     public int toSerial() {
 195         return this.serial;
 196     }
 197 
 198     /**
 199      * Returns a <code>java.util.Date</code> equivalent to this date.
 200      *
 201      * @return The date.
 202      */
 203     public Date toDate() {
 204         final Calendar calendar = Calendar.getInstance();
 205         calendar.set(getYYYY(), getMonth() - 1, getDayOfMonth(), 0, 0, 0);
 206         return calendar.getTime();
 207     }
 208 
 209     /**
 210      * Returns the year (assume a valid range of 1900 to 9999).
 211      *
 212      * @return The year.
 213      */
 214     public int getYYYY() {
 215         return this.year;
 216     }
 217 
 218     /**
 219      * Returns the month (January = 1, February = 2, March = 3).
 220      *
 221      * @return The month of the year.
 222      */
 223     public int getMonth() {
 224         return this.month;
 225     }
 226 
 227     /**
 228      * Returns the day of the month.
 229      *
 230      * @return The day of the month.
 231      */
 232     public int getDayOfMonth() {
 233         return this.day;
 234     }
 235 
 236     /**
 237      * Returns a code representing the day of the week.
 238      * <P>
 239      * The codes are defined in the {@link SerialDate} class as:
 240      * <code>SUNDAY</code>, <code>MONDAY</code>, <code>TUESDAY</code>,
 241      * <code>WEDNESDAY</code>, <code>THURSDAY</code>, <code>FRIDAY</code>, and
 242      * <code>SATURDAY</code>.
 243      *
 244      * @return A code representing the day of the week.
 245      */
 246     public int getDayOfWeek() {
 247         return (this.serial + 6) % 7 + 1;
 248     }
 249 
 250     /**
 251      * Tests the equality of this date with an arbitrary object.
 252      * <P>
 253      * This method will return true ONLY if the object is an instance of the

Listing B-5 (continued)
SpreadsheetDate.java



386A Appendix B: org.jfree.date.SerialDate

 254      * {@link SerialDate} base class, and it represents the same day as this
 255      * {@link SpreadsheetDate}.
 256      *
 257      * @param object  the object to compare (<code>null</code> permitted).
 258      *
 259      * @return A boolean.
 260      */
 261     public boolean equals(final Object object) {
 262 
 263         if (object instanceof SerialDate) {
 264             final SerialDate s = (SerialDate) object;
 265             return (s.toSerial() == this.toSerial());
 266         }
 267         else {
 268             return false;
 269         }
 270 
 271     }
 272 
 273     /**
 274      * Returns a hash code for this object instance.
 275      *
 276      * @return A hash code.
 277      */
 278     public int hashCode() {
 279         return toSerial();
 280     }
 281 
 282     /**
 283      * Returns the difference (in days) between this date and the specified
 284      * 'other' date.
 285      *
 286      * @param other  the date being compared to.
 287      *
 288      * @return The difference (in days) between this date and the specified
 289      *         'other' date.
 290      */
 291     public int compare(final SerialDate other) {
 292         return this.serial - other.toSerial();
 293     }
 294 
 295     /**
 296      * Implements the method required by the Comparable interface.
 297      *
 298      * @param other  the other object (usually another SerialDate).
 299      *
 300      * @return A negative integer, zero, or a positive integer as this object
 301      *         is less than, equal to, or greater than the specified object.
 302      */
 303     public int compareTo(final Object other) {
 304         return compare((SerialDate) other);
 305     }
 306 
 307     /**
 308      * Returns true if this SerialDate represents the same date as the
 309      * specified SerialDate.
 310      *
 311      * @param other  the date being compared to.
 312      *
 313      * @return <code>true</code> if this SerialDate represents the same date as
 314      *         the specified SerialDate.
 315      */

Listing B-5 (continued)
SpreadsheetDate.java



387AAppendix B: org.jfree.date.SerialDate

 316     public boolean isOn(final SerialDate other) {
 317         return (this.serial == other.toSerial());
 318     }
 319 
 320     /**
 321      * Returns true if this SerialDate represents an earlier date compared to
 322      * the specified SerialDate.
 323      *
 324      * @param other  the date being compared to.
 325      *
 326      * @return <code>true</code> if this SerialDate represents an earlier date
 327      *         compared to the specified SerialDate.
 328      */
 329     public boolean isBefore(final SerialDate other) {
 330         return (this.serial < other.toSerial());
 331     }
 332 
 333     /**
 334      * Returns true if this SerialDate represents the same date as the
 335      * specified SerialDate.
 336      *
 337      * @param other  the date being compared to.
 338      *
 339      * @return <code>true</code> if this SerialDate represents the same date
 340      *         as the specified SerialDate.
 341      */
 342     public boolean isOnOrBefore(final SerialDate other) {
 343         return (this.serial <= other.toSerial());
 344     }
 345 
 346     /**
 347      * Returns true if this SerialDate represents the same date as the
 348      * specified SerialDate.
 349      *
 350      * @param other  the date being compared to.
 351      *
 352      * @return <code>true</code> if this SerialDate represents the same date
 353      *         as the specified SerialDate.
 354      */
 355     public boolean isAfter(final SerialDate other) {
 356         return (this.serial > other.toSerial());
 357     }
 358 
 359     /**
 360      * Returns true if this SerialDate represents the same date as the
 361      * specified SerialDate.
 362      *
 363      * @param other  the date being compared to.
 364      *
 365      * @return <code>true</code> if this SerialDate represents the same date as
 366      *         the specified SerialDate.
 367      */
 368     public boolean isOnOrAfter(final SerialDate other) {
 369         return (this.serial >= other.toSerial());
 370     }
 371 
 372     /**
 373      * Returns <code>true</code> if this {@link SerialDate} is within the
 374      * specified range (INCLUSIVE).  The date order of d1 and d2 is not
 375      * important.
 376      *
 377      * @param d1  a boundary date for the range.
 378      * @param d2  the other boundary date for the range.

Listing B-5 (continued)
SpreadsheetDate.java



388A Appendix B: org.jfree.date.SerialDate

 379      *
 380      * @return A boolean.
 381      */
 382     public boolean isInRange(final SerialDate d1, final SerialDate d2) {
 383         return isInRange(d1, d2, SerialDate.INCLUDE_BOTH);
 384     }
 385 
 386     /**
 387      * Returns true if this SerialDate is within the specified range (caller
 388      * specifies whether or not the end-points are included).  The order of d1
 389      * and d2 is not important.
 390      *
 391      * @param d1  one boundary date for the range.
 392      * @param d2  a second boundary date for the range.
 393      * @param include  a code that controls whether or not the start and end
 394      *                 dates are included in the range.
 395      *
 396      * @return <code>true</code> if this SerialDate is within the specified
 397      *         range.
 398      */
 399     public boolean isInRange(final SerialDate d1, final SerialDate d2,
 400                              final int include) {
 401         final int s1 = d1.toSerial();
 402         final int s2 = d2.toSerial();
 403         final int start = Math.min(s1, s2);
 404         final int end = Math.max(s1, s2);
 405 
 406         final int s = toSerial();
 407         if (include == SerialDate.INCLUDE_BOTH) {
 408             return (s >= start && s <= end);
 409         }
 410         else if (include == SerialDate.INCLUDE_FIRST) {
 411             return (s >= start && s < end);
 412         }
 413         else if (include == SerialDate.INCLUDE_SECOND) {
 414             return (s > start && s <= end);
 415         }
 416         else {
 417             return (s > start && s < end);
 418         }
 419     }
 420 
 421     /**
 422      * Calculate the serial number from the day, month and year.
 423      * <P>
 424      * 1-Jan-1900 = 2.
 425      *
 426      * @param d  the day.
 427      * @param m  the month.
 428      * @param y  the year.
 429      *
 430      * @return the serial number from the day, month and year.
 431      */
 432     private int calcSerial(final int d, final int m, final int y) {
 433         final int yy = ((y - 1900) * 365) + SerialDate.leapYearCount(y - 1);
 434         int mm = SerialDate.AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[m];
 435         if (m > MonthConstants.FEBRUARY) {
 436             if (SerialDate.isLeapYear(y)) {
 437                 mm = mm + 1;
 438             }
 439         }
 440         final int dd = d;

Listing B-5 (continued)
SpreadsheetDate.java



389AAppendix B: org.jfree.date.SerialDate

 441         return yy + mm + dd + 1;
 442     }
 443 
 444     /**
 445      * Calculate the day, month and year from the serial number.
 446      */
 447     private void calcDayMonthYear() {
 448 
 449         // get the year from the serial date
 450         final int days = this.serial - SERIAL_LOWER_BOUND;
 451         // overestimated because we ignored leap days
 452         final int overestimatedYYYY = 1900 + (days / 365);
 453         final int leaps = SerialDate.leapYearCount(overestimatedYYYY);
 454         final int nonleapdays = days - leaps;
 455         // underestimated because we overestimated years
 456         int underestimatedYYYY = 1900 + (nonleapdays / 365);
 457 
 458         if (underestimatedYYYY == overestimatedYYYY) {
 459             this.year = underestimatedYYYY;
 460         }
 461         else {
 462             int ss1 = calcSerial(1, 1, underestimatedYYYY);
 463             while (ss1 <= this.serial) {
 464                 underestimatedYYYY = underestimatedYYYY + 1;
 465                 ss1 = calcSerial(1, 1, underestimatedYYYY);
 466             }
 467             this.year = underestimatedYYYY - 1;
 468         }
 469 
 470         final int ss2 = calcSerial(1, 1, this.year);
 471 
 472         int[] daysToEndOfPrecedingMonth
 473             = AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH;
 474 
 475         if (isLeapYear(this.year)) {
 476             daysToEndOfPrecedingMonth
 477                 = LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH;
 478         }
 479 
 480         // get the month from the serial date
 481         int mm = 1;
 482         int sss = ss2 + daysToEndOfPrecedingMonth[mm] - 1;
 483         while (sss < this.serial) {
 484             mm = mm + 1;
 485             sss = ss2 + daysToEndOfPrecedingMonth[mm] - 1;
 486         }
 487         this.month = mm - 1;
 488 
 489         // what's left is d(+1);
 490         this.day = this.serial - ss2
 491                    - daysToEndOfPrecedingMonth[this.month] + 1;
 492 
 493     }
 494 
 495 }

Listing B-5 (continued)
SpreadsheetDate.java



390A Appendix B: org.jfree.date.SerialDate

Listing B-6 
RelativeDayOfWeekRule.java

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   6  *
   7  * Project Info:  http://www.jfree.org/jcommon/index.html
   8  *
   9  * This library is free software; you can redistribute it and/or modify it
  10  * under the terms of the GNU Lesser General Public License as published by
  11  * the Free Software Foundation; either version 2.1 of the License, or
  12  * (at your option) any later version.
  13  *
  14  * This library is distributed in the hope that it will be useful, but
  15  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  16  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
  17  * License for more details.
  18  *
  19  * You should have received a copy of the GNU Lesser General Public
  20  * License along with this library; if not, write to the Free Software
  21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
  22  * USA.
  23  *
  24  * [Java is a trademark or registered trademark of Sun Microsystems, Inc.
  25  * in the United States and other countries.]
  26  *
  27  * --------------------------
  28  * RelativeDayOfWeekRule.java
  29  * --------------------------
  30  * (C) Copyright 2000-2003, by Object Refinery Limited and Contributors.
  31  *
  32  * Original Author:  David Gilbert (for Object Refinery Limited);
  33  * Contributor(s):   -;
  34  *
  35  * $Id: RelativeDayOfWeekRule.java,v 1.6 2005/11/16 15:58:40 taqua Exp $
  36  *
  37  * Changes (from 26-Oct-2001)
  38  * --------------------------
  39  * 26-Oct-2001 : Changed package to com.jrefinery.date.*;
  40  * 03-Oct-2002 : Fixed errors reported by Checkstyle (DG);
  41  *
  42  */
  43 
  44 package org.jfree.date;
  45 
  46 /**
  47  * An annual date rule that returns a date for each year based on (a) a
  48  * reference rule; (b) a day of the week; and (c) a selection parameter
  49  * (SerialDate.PRECEDING, SerialDate.NEAREST, SerialDate.FOLLOWING).
  50  * <P>
  51  * For example, Good Friday can be specified as 'the Friday PRECEDING Easter
  52  * Sunday'.
  53  *
  54  * @author David Gilbert
  55  */
  56 public class RelativeDayOfWeekRule extends AnnualDateRule {
  57 
  58     /** A reference to the annual date rule on which this rule is based. */
  59     private AnnualDateRule subrule;
  60 
  61     /**
  62      * The day of the week (SerialDate.MONDAY, SerialDate.TUESDAY, and so on).
  63      */
  64     private int dayOfWeek;



391AAppendix B: org.jfree.date.SerialDate

  65 
  66     /** Specifies which day of the week (PRECEDING, NEAREST or FOLLOWING). */
  67     private int relative;
  68 
  69     /**
  70      * Default constructor - builds a rule for the Monday following 1 January.
  71      */
  72     public RelativeDayOfWeekRule() {
  73         this(new DayAndMonthRule(), SerialDate.MONDAY, SerialDate.FOLLOWING);
  74     }
  75 
  76     /**
  77      * Standard constructor - builds rule based on the supplied sub-rule.
  78      *
  79      * @param subrule  the rule that determines the reference date.
  80      * @param dayOfWeek  the day-of-the-week relative to the reference date.
  81      * @param relative  indicates *which* day-of-the-week (preceding, nearest
  82      *                  or following).
  83      */
  84     public RelativeDayOfWeekRule(final AnnualDateRule subrule,
  85             final int dayOfWeek, final int relative) {
  86         this.subrule = subrule;
  87         this.dayOfWeek = dayOfWeek;
  88         this.relative = relative;
  89     }
  90 
  91     /**
  92      * Returns the sub-rule (also called the reference rule).
  93      *
  94      * @return The annual date rule that determines the reference date for this
  95      *         rule.
  96      */
  97     public AnnualDateRule getSubrule() {
  98         return this.subrule;
  99     }
 100 
 101     /**
 102      * Sets the sub-rule.
 103      *
 104      * @param subrule  the annual date rule that determines the reference date
 105      *                 for this rule.
 106      */
 107     public void setSubrule(final AnnualDateRule subrule) {
 108         this.subrule = subrule;
 109     }
 110 
 111     /**
 112      * Returns the day-of-the-week for this rule.
 113      *
 114      * @return the day-of-the-week for this rule.
 115      */
 116     public int getDayOfWeek() {
 117         return this.dayOfWeek;
 118     }
 119 
 120     /**
 121      * Sets the day-of-the-week for this rule.
 122      *
 123      * @param dayOfWeek  the day-of-the-week (SerialDate.MONDAY,
 124      *                   SerialDate.TUESDAY, and so on).
 125      */
 126     public void setDayOfWeek(final int dayOfWeek) {
 127         this.dayOfWeek = dayOfWeek;
 128     }
 129 

Listing B-6 (continued)
RelativeDayOfWeekRule.java



392A Appendix B: org.jfree.date.SerialDate

 130     /**
 131      * Returns the 'relative' attribute, that determines *which*
 132      * day-of-the-week we are interested in (SerialDate.PRECEDING,
 133      * SerialDate.NEAREST or SerialDate.FOLLOWING).
 134      *
 135      * @return The 'relative' attribute.
 136      */
 137     public int getRelative() {
 138         return this.relative;
 139     }
 140 
 141     /**
 142      * Sets the 'relative' attribute (SerialDate.PRECEDING, SerialDate.NEAREST,
 143      * SerialDate.FOLLOWING).
 144      *
 145      * @param relative  determines *which* day-of-the-week is selected by this
 146      *                  rule.
 147      */
 148     public void setRelative(final int relative) {
 149         this.relative = relative;
 150     }
 151 
 152     /**
 153      * Creates a clone of this rule.
 154      *
 155      * @return a clone of this rule.
 156      *
 157      * @throws CloneNotSupportedException this should never happen.
 158      */
 159     public Object clone() throws CloneNotSupportedException {
 160         final RelativeDayOfWeekRule duplicate
 161             = (RelativeDayOfWeekRule) super.clone();
 162         duplicate.subrule = (AnnualDateRule) duplicate.getSubrule().clone();
 163         return duplicate;
 164     }
 165 
 166     /**
 167      * Returns the date generated by this rule, for the specified year.
 168      *
 169      * @param year  the year (1900 &lt;= year &lt;= 9999).
 170      *
 171      * @return The date generated by the rule for the given year (possibly
 172      *         <code>null</code>).
 173      */
 174     public SerialDate getDate(final int year) {
 175 
 176         // check argument...
 177         if ((year < SerialDate.MINIMUM_YEAR_SUPPORTED)
 178             || (year > SerialDate.MAXIMUM_YEAR_SUPPORTED)) {
 179             throw new IllegalArgumentException(
 180                 "RelativeDayOfWeekRule.getDate(): year outside valid range.");
 181         }
 182 
 183         // calculate the date...
 184         SerialDate result = null;
 185         final SerialDate base = this.subrule.getDate(year);
 186 
 187         if (base != null) {
 188             switch (this.relative) {
 189                 case(SerialDate.PRECEDING):
 190                     result = SerialDate.getPreviousDayOfWeek(this.dayOfWeek,
 191                             base);

Listing B-6 (continued)
RelativeDayOfWeekRule.java



393AAppendix B: org.jfree.date.SerialDate

 192                     break;
 193                 case(SerialDate.NEAREST):
 194                     result = SerialDate.getNearestDayOfWeek(this.dayOfWeek,
 195                             base);
 196                     break;
 197                 case(SerialDate.FOLLOWING):
 198                     result = SerialDate.getFollowingDayOfWeek(this.dayOfWeek,
 199                             base);
 200                     break;
 201                 default:
 202                     break;
 203             }
 204         }
 205         return result;
 206 
 207     }
 208 
 209 }

Listing B-6 (continued)
RelativeDayOfWeekRule.java



394A Appendix B: org.jfree.date.SerialDate

Listing B-7 
DayDate.java (Final)

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   ...
  36  */
  37 package org.jfree.date;
  38 
  39 import java.io.Serializable;
  40 import java.util.*;
  41 
  42 /**
  43  * An abstract class that represents immutable dates with a precision of
  44  * one day.  The implementation will map each date to an integer that
  45  * represents an ordinal number of days from some fixed origin.
  46  *
  47  * Why not just use java.util.Date?  We will, when it makes sense.  At times,
  48  * java.util.Date can be *too* precise - it represents an instant in time,
  49  * accurate to 1/1000th of a second (with the date itself depending on the
  50  * time-zone).  Sometimes we just want to represent a particular day (e.g. 21
  51  * January 2015) without concerning ourselves about the time of day, or the
  52  * time-zone, or anything else.  That's what we've defined DayDate for.
  53  *
  54  * Use DayDateFactory.makeDate to create an instance.
  55  *
  56  * @author David Gilbert
  57  * @author Robert C. Martin did a lot of refactoring.
  58  */
  59 
  60 public abstract class DayDate implements Comparable, Serializable {
  61   public abstract int getOrdinalDay();
  62   public abstract int getYear();
  63   public abstract Month getMonth();
  64   public abstract int getDayOfMonth();
  65 
  66   protected abstract Day getDayOfWeekForOrdinalZero();
  67 
  68   public DayDate plusDays(int days) {
  69     return DayDateFactory.makeDate(getOrdinalDay() + days);
  70   }
  71 
  72   public DayDate plusMonths(int months) {
  73     int thisMonthAsOrdinal = getMonth().toInt() - Month.JANUARY.toInt();
  74     int thisMonthAndYearAsOrdinal = 12 * getYear() + thisMonthAsOrdinal;
  75     int resultMonthAndYearAsOrdinal = thisMonthAndYearAsOrdinal + months;
  76     int resultYear = resultMonthAndYearAsOrdinal / 12;
  77     int resultMonthAsOrdinal = resultMonthAndYearAsOrdinal % 12 + Month.JANUARY.toInt();
  78     Month resultMonth = Month.fromInt(resultMonthAsOrdinal);
  79     int resultDay = correctLastDayOfMonth(getDayOfMonth(), resultMonth, resultYear);
  80     return DayDateFactory.makeDate(resultDay, resultMonth, resultYear);
  81   }
  82 
  83   public DayDate plusYears(int years) {
  84     int resultYear = getYear() + years;
  85     int resultDay = correctLastDayOfMonth(getDayOfMonth(), getMonth(), resultYear);
  86     return DayDateFactory.makeDate(resultDay, getMonth(), resultYear);
  87   }
  88 
  89   private int correctLastDayOfMonth(int day, Month month, int year) {
  90     int lastDayOfMonth = DateUtil.lastDayOfMonth(month, year);
  91     if (day > lastDayOfMonth)
  92         day = lastDayOfMonth;
  93     return day;
  94   }



395AAppendix B: org.jfree.date.SerialDate

  95 
  96   public DayDate getPreviousDayOfWeek(Day targetDayOfWeek) {
  97     int offsetToTarget = targetDayOfWeek.toInt() - getDayOfWeek().toInt();
  98     if (offsetToTarget >= 0)
  99       offsetToTarget -= 7;
 100     return plusDays(offsetToTarget);
 101   }
 102 
 103   public DayDate getFollowingDayOfWeek(Day targetDayOfWeek) {
 104     int offsetToTarget = targetDayOfWeek.toInt() - getDayOfWeek().toInt();
 105     if (offsetToTarget <= 0)
 106       offsetToTarget += 7;
 107     return plusDays(offsetToTarget);
 108   }
 109 
 110   public DayDate getNearestDayOfWeek(Day targetDayOfWeek) {
 111     int offsetToThisWeeksTarget = targetDayOfWeek.toInt() - getDayOfWeek().toInt();
 112     int offsetToFutureTarget = (offsetToThisWeeksTarget + 7) % 7;
 113     int offsetToPreviousTarget = offsetToFutureTarget - 7;
 114 
 115     if (offsetToFutureTarget > 3)
 116       return plusDays(offsetToPreviousTarget);
 117     else
 118       return plusDays(offsetToFutureTarget);
 119   }
 120 
 121   public DayDate getEndOfMonth() {
 122     Month month = getMonth();
 123     int year = getYear();
 124     int lastDay = DateUtil.lastDayOfMonth(month, year);
 125     return DayDateFactory.makeDate(lastDay, month, year);
 126   }
 127 
 128   public Date toDate() {
 129     final Calendar calendar = Calendar.getInstance();
 130     int ordinalMonth = getMonth().toInt() - Month.JANUARY.toInt();
 131     calendar.set(getYear(), ordinalMonth, getDayOfMonth(), 0, 0, 0);
 132     return calendar.getTime();
 133   }
 134 
 135   public String toString() {
 136     return String.format("%02d-%s-%d", getDayOfMonth(), getMonth(), getYear());
 137   }
 138 
 139   public Day getDayOfWeek() {
 140     Day startingDay = getDayOfWeekForOrdinalZero();
 141     int startingOffset = startingDay.toInt() - Day.SUNDAY.toInt();
 142     int ordinalOfDayOfWeek = (getOrdinalDay() + startingOffset) % 7;
 143     return Day.fromInt(ordinalOfDayOfWeek + Day.SUNDAY.toInt());
 144   }
 145 
 146   public int daysSince(DayDate date) {
 147     return getOrdinalDay() - date.getOrdinalDay();
 148   }
 149 
 150   public boolean isOn(DayDate other) {
 151     return getOrdinalDay() == other.getOrdinalDay();
 152   }
 153 
 154   public boolean isBefore(DayDate other) {
 155     return getOrdinalDay() < other.getOrdinalDay();
 156   }
 157 
 158   public boolean isOnOrBefore(DayDate other) {
 159     return getOrdinalDay() <= other.getOrdinalDay();

Listing B-7 (continued)
DayDate.java (Final)



396A Appendix B: org.jfree.date.SerialDate

 160   }
 161 
 162   public boolean isAfter(DayDate other) {
 163     return getOrdinalDay() > other.getOrdinalDay();
 164   }
 165 
 166   public boolean isOnOrAfter(DayDate other) {
 167     return getOrdinalDay() >= other.getOrdinalDay();
 168   }
 169 
 170   public boolean isInRange(DayDate d1, DayDate d2) {
 171     return isInRange(d1, d2, DateInterval.CLOSED);
 172   }
 173 
 174   public boolean isInRange(DayDate d1, DayDate d2, DateInterval interval) {
 175     int left = Math.min(d1.getOrdinalDay(), d2.getOrdinalDay());
 176     int right = Math.max(d1.getOrdinalDay(), d2.getOrdinalDay());
 177     return interval.isIn(getOrdinalDay(), left, right);
 178   }
 179 }

Listing B-7 (continued)
DayDate.java (Final)



397AAppendix B: org.jfree.date.SerialDate

Listing B-8 
Month.java (Final)

   1 package org.jfree.date;
   2 
   3 import java.text.DateFormatSymbols;
   4 
   5 public enum Month {
   6   JANUARY(1), FEBRUARY(2), MARCH(3),
   7   APRIL(4),   MAY(5),      JUNE(6),
   8   JULY(7),    AUGUST(8),   SEPTEMBER(9),
   9   OCTOBER(10),NOVEMBER(11),DECEMBER(12);
  10   private static DateFormatSymbols dateFormatSymbols = new DateFormatSymbols();
  11   private static final int[] LAST_DAY_OF_MONTH =
  12     {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
  13 
  14   private int index;
  15 
  16   Month(int index) {
  17     this.index = index;
  18   }
  19 
  20   public static Month fromInt(int monthIndex) {
  21     for (Month m : Month.values()) {
  22       if (m.index == monthIndex)
  23         return m;
  24     }
  25     throw new IllegalArgumentException("Invalid month index " + monthIndex);
  26   }
  27 
  28   public int lastDay() {
  29     return LAST_DAY_OF_MONTH[index];
  30   }
  31 
  32   public int quarter() {
  33     return 1 + (index - 1) / 3;
  34   }
  35 
  36   public String toString() {
  37     return dateFormatSymbols.getMonths()[index - 1];
  38   }
  39 
  40   public String toShortString() {
  41     return dateFormatSymbols.getShortMonths()[index - 1];
  42   }
  43 
  44   public static Month parse(String s) {
  45     s = s.trim();
  46     for (Month m : Month.values())
  47       if (m.matches(s))
  48         return m;
  49 
  50     try {
  51       return fromInt(Integer.parseInt(s));
  52     }
  53     catch (NumberFormatException e) {}
  54     throw new IllegalArgumentException("Invalid month " + s);
  55   }
  56 
  57   private boolean matches(String s) {
  58     return s.equalsIgnoreCase(toString()) ||
  59            s.equalsIgnoreCase(toShortString());
  60   }
  61 
  62   public int toInt() {
  63     return index;
  64   }
  65 }



398A Appendix B: org.jfree.date.SerialDate

Listing B-9 
Day.java (Final)

   1 package org.jfree.date;
   2 
   3 import java.util.Calendar;
   4 import java.text.DateFormatSymbols;
   5 
   6 public enum Day {
   7   MONDAY(Calendar.MONDAY),
   8   TUESDAY(Calendar.TUESDAY),
   9   WEDNESDAY(Calendar.WEDNESDAY),
  10   THURSDAY(Calendar.THURSDAY),
  11   FRIDAY(Calendar.FRIDAY),
  12   SATURDAY(Calendar.SATURDAY),
  13   SUNDAY(Calendar.SUNDAY);
  14 
  15   private final int index;
  16   private static DateFormatSymbols dateSymbols = new DateFormatSymbols();
  17 
  18   Day(int day) {
  19     index = day;
  20   }
  21 
  22   public static Day fromInt(int index) throws IllegalArgumentException {
  23     for (Day d : Day.values())
  24       if (d.index == index)
  25         return d;
  26     throw new IllegalArgumentException(
  27       String.format("Illegal day index: %d.", index));
  28   }
  29 
  30   public static Day parse(String s) throws IllegalArgumentException {
  31     String[] shortWeekdayNames =
  32       dateSymbols.getShortWeekdays();
  33     String[] weekDayNames =
  34       dateSymbols.getWeekdays();
  35 
  36     s = s.trim();
  37     for (Day day : Day.values()) {
  38       if (s.equalsIgnoreCase(shortWeekdayNames[day.index]) ||
  39           s.equalsIgnoreCase(weekDayNames[day.index])) {
  40         return day;
  41       }
  42     }
  43     throw new IllegalArgumentException(
  44       String.format("%s is not a valid weekday string", s));
  45   }
  46 
  47   public String toString() {
  48     return dateSymbols.getWeekdays()[index];
  49   }
  50 
  51   public int toInt() {
  52     return index;
  53   }
  54 }



399AAppendix B: org.jfree.date.SerialDate

Listing B-10 
DateInterval.java (Final)

   1 package org.jfree.date;
   2 
   3 public enum DateInterval {
   4   OPEN {
   5     public boolean isIn(int d, int left, int right) {
   6       return d > left && d < right;
   7     }
   8   },
   9   CLOSED_LEFT {
  10     public boolean isIn(int d, int left, int right) {
  11       return d >= left && d < right;
  12     }
  13   },
  14   CLOSED_RIGHT {
  15     public boolean isIn(int d, int left, int right) {
  16       return d > left && d <= right;
  17     }
  18   },
  19   CLOSED {
  20     public boolean isIn(int d, int left, int right) {
  21       return d >= left && d <= right;
  22     }
  23   };
  24 
  25   public abstract boolean isIn(int d, int left, int right);
  26 }



400A Appendix B: org.jfree.date.SerialDate

Listing B-11 
WeekInMonth.java (Final)

   1 package org.jfree.date;
   2 
   3 public enum WeekInMonth {
   4   FIRST(1), SECOND(2), THIRD(3), FOURTH(4), LAST(0);
   5   private final int index;
   6 
   7   WeekInMonth(int index) {
   8     this.index = index;
   9   }
  10 
  11   public int toInt() {
  12     return index;
  13   }
  14 }



401AAppendix B: org.jfree.date.SerialDate

Listing B-12 
WeekdayRange.java (Final)

   1 package org.jfree.date;
   2 
   3 public enum WeekdayRange {
   4   LAST, NEAREST, NEXT
   5 }



402A Appendix B: org.jfree.date.SerialDate

Listing B-13 
DateUtil.java (Final)

   1 package org.jfree.date;
   2 
   3 import java.text.DateFormatSymbols;
   4 
   5 public class DateUtil {
   6   private static DateFormatSymbols dateFormatSymbols = new DateFormatSymbols();
   7 
   8   public static String[] getMonthNames() {
   9     return dateFormatSymbols.getMonths();
  10   }
  11 
  12   public static boolean isLeapYear(int year) {
  13     boolean fourth = year % 4 == 0;
  14     boolean hundredth = year % 100 == 0;
  15     boolean fourHundredth = year % 400 == 0;
  16     return fourth && (!hundredth || fourHundredth);
  17   }
  18 
  19   public static int lastDayOfMonth(Month month, int year) {
  20     if (month == Month.FEBRUARY && isLeapYear(year))
  21       return month.lastDay() + 1;
  22     else
  23       return month.lastDay();
  24   }
  25 
  26   public static int leapYearCount(int year) {
  27     int leap4 = (year - 1896) / 4;
  28     int leap100 = (year - 1800) / 100;
  29     int leap400 = (year - 1600) / 400;
  30     return leap4 - leap100 + leap400;
  31   }
  32 }



403AAppendix B: org.jfree.date.SerialDate

Listing B-14 
DayDateFactory.java (Final)

   1 package org.jfree.date;
   2 
   3 public abstract class DayDateFactory {
   4   private static DayDateFactory factory = new SpreadsheetDateFactory();
   5   public static void setInstance(DayDateFactory factory) {
   6     DayDateFactory.factory = factory;
   7   }
   8 
   9   protected abstract DayDate _makeDate(int ordinal);
  10   protected abstract DayDate _makeDate(int day, Month month, int year);
  11   protected abstract DayDate _makeDate(int day, int month, int year);
  12   protected abstract DayDate _makeDate(java.util.Date date);
  13   protected abstract int _getMinimumYear();
  14   protected abstract int _getMaximumYear();
  15 
  16   public static DayDate makeDate(int ordinal) {
  17     return factory._makeDate(ordinal);
  18   }
  19 
  20   public static DayDate makeDate(int day, Month month, int year) {
  21     return factory._makeDate(day, month, year);
  22   }
  23 
  24   public static DayDate makeDate(int day, int month, int year) {
  25     return factory._makeDate(day, month, year);
  26   }
  27 
  28   public static DayDate makeDate(java.util.Date date) {
  29     return factory._makeDate(date);
  30   }
  31 
  32   public static int getMinimumYear() {
  33     return factory._getMinimumYear();
  34   }
  35 
  36   public static int getMaximumYear() {
  37     return factory._getMaximumYear();
  38   }
  39 }



404A Appendix B: org.jfree.date.SerialDate

Listing B-15 
SpreadsheetDateFactory.java (Final)

   1 package org.jfree.date;
   2 
   3 import java.util.*;
   4 
   5 public class SpreadsheetDateFactory extends DayDateFactory {
   6   public DayDate _makeDate(int ordinal) {
   7     return new SpreadsheetDate(ordinal);
   8   }
   9 
  10   public DayDate _makeDate(int day, Month month, int year) {
  11     return new SpreadsheetDate(day, month, year);
  12   }
  13 
  14   public DayDate _makeDate(int day, int month, int year) {
  15     return new SpreadsheetDate(day, month, year);
  16   }
  17 
  18   public DayDate _makeDate(Date date) {
  19     final GregorianCalendar calendar = new GregorianCalendar();
  20     calendar.setTime(date);
  21     return new SpreadsheetDate(
  22       calendar.get(Calendar.DATE),
  23       Month.fromInt(calendar.get(Calendar.MONTH) + 1),
  24       calendar.get(Calendar.YEAR));
  25   }
  26 
  27   protected int _getMinimumYear() {
  28     return SpreadsheetDate.MINIMUM_YEAR_SUPPORTED;
  29   }
  30 
  31   protected int _getMaximumYear() {
  32     return SpreadsheetDate.MAXIMUM_YEAR_SUPPORTED;
  33   }
  34 }



405AAppendix B: org.jfree.date.SerialDate

Listing B-16 
SpreadsheetDate.java (Final)

   1 /* ========================================================================
   2  * JCommon : a free general purpose class library for the Java(tm) platform
   3  * ========================================================================
   4  *
   5  * (C) Copyright 2000-2005, by Object Refinery Limited and Contributors.
   6  * 
...
  52  *
  53  */
  54 
  55 package org.jfree.date;
  56 
  57 import static org.jfree.date.Month.FEBRUARY;
  58 
  59 import java.util.*;
  60 
  61 /**
  62  * Represents a date using an integer, in a similar fashion to the
  63  * implementation in Microsoft Excel.  The range of dates supported is
  64  * 1-Jan-1900 to 31-Dec-9999.
  65  * <p/>
  66  * Be aware that there is a deliberate bug in Excel that recognises the year
  67  * 1900 as a leap year when in fact it is not a leap year. You can find more
  68  * information on the Microsoft website in article Q181370:
  69  * <p/>
  70  * http://support.microsoft.com/support/kb/articles/Q181/3/70.asp
  71  * <p/>
  72  * Excel uses the convention that 1-Jan-1900 = 1.  This class uses the
  73  * convention 1-Jan-1900 = 2.
  74  * The result is that the day number in this class will be different to the
  75  * Excel figure for January and February 1900...but then Excel adds in an extra
  76  * day (29-Feb-1900 which does not actually exist!) and from that point forward
  77  * the day numbers will match.
  78  *
  79  * @author David Gilbert
  80  */
  81 public class SpreadsheetDate extends DayDate {
  82   public static final int EARLIEST_DATE_ORDINAL = 2;     // 1/1/1900
  83   public static final int LATEST_DATE_ORDINAL = 2958465; // 12/31/9999
  84   public static final int MINIMUM_YEAR_SUPPORTED = 1900;
  85   public static final int MAXIMUM_YEAR_SUPPORTED = 9999;
  86   static final int[] AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =
  87     {0, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365};
  88   static final int[] LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH =
  89     {0, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366};
  90 
  91   private int ordinalDay;
  92   private int day;
  93   private Month month;
  94   private int year;
  95 
  96   public SpreadsheetDate(int day, Month month, int year) {
  97     if (year < MINIMUM_YEAR_SUPPORTED || year > MAXIMUM_YEAR_SUPPORTED)
  98       throw new IllegalArgumentException(
  99         "The 'year' argument must be in range " +
 100         MINIMUM_YEAR_SUPPORTED + " to " + MAXIMUM_YEAR_SUPPORTED + ".");
 101     if (day < 1 || day > DateUtil.lastDayOfMonth(month, year))
 102       throw new IllegalArgumentException("Invalid 'day' argument.");
 103 
 104     this.year = year;
 105     this.month = month;



406A Appendix B: org.jfree.date.SerialDate

 106     this.day = day;
 107     ordinalDay = calcOrdinal(day, month, year);
 108   }
 109 
 110   public SpreadsheetDate(int day, int month, int year) {
 111     this(day, Month.fromInt(month), year);
 112   }
 113 
 114   public SpreadsheetDate(int serial) {
 115     if (serial < EARLIEST_DATE_ORDINAL || serial > LATEST_DATE_ORDINAL)
 116       throw new IllegalArgumentException(
 117         "SpreadsheetDate: Serial must be in range 2 to 2958465.");
 118 
 119     ordinalDay = serial;
 120     calcDayMonthYear();
 121   }
 122 
 123   public int getOrdinalDay() {
 124     return ordinalDay;
 125   }
 126 
 127   public int getYear() {
 128     return year;
 129   }
 130 
 131   public Month getMonth() {
 132     return month;
 133   }
 134 
 135   public int getDayOfMonth() {
 136     return day;
 137   }
 138 
 139   protected Day getDayOfWeekForOrdinalZero() {return Day.SATURDAY;}
 140 
 141   public boolean equals(Object object) {
 142     if (!(object instanceof DayDate))
 143       return false;
 144 
 145     DayDate date = (DayDate) object;
 146     return date.getOrdinalDay() == getOrdinalDay();
 147   }
 148 
 149   public int hashCode() {
 150     return getOrdinalDay();
 151   }
 152 
 153   public int compareTo(Object other) {
 154     return daysSince((DayDate) other);
 155   }
 156 
 157   private int calcOrdinal(int day, Month month, int year) {
 158     int leapDaysForYear = DateUtil.leapYearCount(year - 1);
 159     int daysUpToYear = (year - MINIMUM_YEAR_SUPPORTED) * 365 + leapDaysForYear;
 160     int daysUpToMonth = AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[month.toInt()];
 161     if (DateUtil.isLeapYear(year) && month.toInt() > FEBRUARY.toInt())
 162       daysUpToMonth++;
 163     int daysInMonth = day - 1;
 164     return daysUpToYear + daysUpToMonth + daysInMonth + EARLIEST_DATE_ORDINAL;
 165   }
 166 

Listing B-16 (continued)
SpreadsheetDate.java (Final)



407AAppendix B: org.jfree.date.SerialDate

 167   private void calcDayMonthYear() {
 168     int days = ordinalDay - EARLIEST_DATE_ORDINAL;
 169     int overestimatedYear = MINIMUM_YEAR_SUPPORTED + days / 365;
 170     int nonleapdays = days - DateUtil.leapYearCount(overestimatedYear);
 171     int underestimatedYear = MINIMUM_YEAR_SUPPORTED + nonleapdays / 365;
 172 
 173     year = huntForYearContaining(ordinalDay, underestimatedYear);
 174     int firstOrdinalOfYear = firstOrdinalOfYear(year);
 175     month = huntForMonthContaining(ordinalDay, firstOrdinalOfYear);
 176     day = ordinalDay - firstOrdinalOfYear - daysBeforeThisMonth(month.toInt());
 177   }
 178 
 179   private Month huntForMonthContaining(int anOrdinal, int firstOrdinalOfYear) {
 180     int daysIntoThisYear = anOrdinal - firstOrdinalOfYear;
 181     int aMonth = 1;
 182     while (daysBeforeThisMonth(aMonth) < daysIntoThisYear)
 183       aMonth++;
 184 
 185     return Month.fromInt(aMonth - 1);
 186   }
 187 
 188   private int daysBeforeThisMonth(int aMonth) {
 189     if (DateUtil.isLeapYear(year))
 190       return LEAP_YEAR_AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[aMonth] - 1;
 191     else
 192       return AGGREGATE_DAYS_TO_END_OF_PRECEDING_MONTH[aMonth] - 1;
 193   }
 194 
 195   private int huntForYearContaining(int anOrdinalDay, int startingYear) {
 196     int aYear = startingYear;
 197     while (firstOrdinalOfYear(aYear) <= anOrdinalDay)
 198       aYear++;
 199 
 200     return aYear - 1;
 201   }
 202 
 203   private int firstOrdinalOfYear(int year) {
 204     return calcOrdinal(1, Month.JANUARY, year);
 205   }
 206 
 207   public static DayDate createInstance(Date date) {
 208     GregorianCalendar calendar = new GregorianCalendar();
 209     calendar.setTime(date);
 210     return new SpreadsheetDate(calendar.get(Calendar.DATE),
 211                                Month.fromInt(calendar.get(Calendar.MONTH) + 1),
 212                                calendar.get(Calendar.YEAR));
 213 
 214   }
 215 }

Listing B-16 (continued)
SpreadsheetDate.java (Final)



This page intentionally left blank 



409A

Appendix C

Cross References of Heuristics

Cross references of Smells and Heuristics. All other cross references can be deleted.

C1 ..............................................................16-276A, 16-279A, 17-292A
C2 ..............................................16-279A, 16-285A, 16-295A, 17-292A
C3 ..............................................16-283A, 16-285A, 16-288A, 17-293A
C4 .............................................................................................. 17-293A
C5 .............................................................................................. 17-293A
E1 .............................................................................................. 17-294A
E2 .............................................................................................. 17-294A
F1 .............................................................................. 14-239A, 17-295A
F2 .............................................................................................. 17-295A
F3 .............................................................................................. 17-295A
F4 ............. 14-289A, 16-273A, 16-285A, 16-287A, 16-288A, 17-295A
G1 .............................................................................. 16-276A, 17-295A
G2 ..............................................................16-273A, 16-274A, 17-296A
G3 .............................................................................. 16-274A, 17-296A
G4 ................................. 9-31A, 16-279A, 16-286A, 16-291A, 17-297A
G5 ................. 9-31A, 16-279A, 16-286A, 16-291A, 16-296A, 17-297A
G6 .............. 6-106A, 16-280A, 16-283A, 16-284A, 16-289A, 16-293A,

16-294A, 16-296A, 17-299A
G7 ..............................................................16-281A, 16-283A, 17-300A
G8 .............................................................................. 16-283A, 17-301A
G9 ............................. 16-283A, 16-285A, 16-286A, 16-287A, 17-302A
G10 ............................... 5-86A, 15-264A, 16-276A, 16-284A, 17-302A
G11 ........................... 15-264A, 16-284A, 16-288A, 16-292A, 17-302A
G12 .............16-284A, 16-285A, 16-286A, 16-287A, 16-288A, 16-295A,

                                                                                        17-303A
G13 ............................................................16-286A, 16-288A, 17-303A



410A Appendix C: Cross References of Heuristics

G14 ............................................................16-288A, 16-292A, 17-304A
G15 ............................................................................ 16-288A, 17-305A
G16 ............................................................................ 16-289A, 17-306A
G17 ............................................................16-289A, 17-307A, 17-312A
G18 ............................................16-289A, 16-290A, 16-291A, 17-308A
G19 ............................................16-290A, 16-291A, 16-292A, 17-309A
G20 ............................................................................ 16-290A, 17-309A
G21 ............................................................................ 16-291A, 17-310A
G22 ............................................................................ 16-294A, 17-322A
G23 .............................................. ??-44A, 14-239A, 16-295A, 17-313A
G24 ............................................................................ 16-296A, 17-313A
G25 ............................................................................ 16-296A, 17-314A
G26 ............................................................................................ 17-316A
G27 ............................................................................................ 17-316A
G28 ............................................................................ 15-262A, 17-317A
G29 ............................................................................ 15-262A, 17-317A
G30 ............................................................................ 15-263A, 17-317A
G31 ............................................................................ 15-264A, 17-318A
G32 ............................................................................ 15-265A, 17-319A
G33 ............................................................15-265A, 15-266A, 17-320A
G34 ..................................................................1-40A, 6-106A, 17-321A
G35 ................................................................................ 5-90A, 17-323A
G36 .............................................................................. 6-103A, 17-324A
J1 ............................................................................... 16-276A, 17-325A
J2 ...............................................................16-278A, 16-285A, 17-326A
J3 ...............................................................16-283A, 16-285A, 17-327A
N1 ............ 15-264A, 16-277A, 16-279A, 16-282A, 16-287A, 16-288A,

16-289A, 16-290A, 16-294A, 16-296A, 17-328A
N2 .............................................................................. 16-277A, 17-330A
N3 ..............................................................16-284A, 16-288A, 17-331A
N4 ..............................................................15-263A, 16-291A, 17-332A
N5 ..................................................2-26A, 14-221A, 15-262A, 17-332A
N6 .............................................................................. 15-261A, 17-333A
N7 .............................................................................. 15-263A, 17-333A
T1 ..............................................................16-273A, 16-274A, 17-334A
T2 .............................................................................. 16-273A, 17-334A
T3 .............................................................................. 16-274A, 17-334A
T4 .............................................................................................. 17-334A
T5 ..............................................................16-274A, 16-275A, 17-335A
T6 .............................................................................. 16-275A, 17-335A
T7 .............................................................................. 16-275A, 17-335A
T8 .............................................................................. 16-275A, 17-335A
T9 .............................................................................................. 17-336A 



411A

Epilogue

In 2005, while attending the Agile conference in Denver, Elisabeth Hedrickson1
 handed me

a green wrist band similar to the kind that Lance Armstrong made so popular. This one
said “Test Obsessed” on it. I gladly put it on and wore it proudly. Since learning TDD from
Kent Beck in 1999, I have indeed become obsessed with test-driven development.

But then something strange happened. I found I could not take the band off. Not
because it was physically stuck, but because it was morally stuck. The band made an overt
statement about my professional ethics. It was a visible indication of my committment to
writing the best code I could write. Taking it off seemed like a betrayal of those ethics and
of that committment.

So it is on my wrist still. When I write code, I see it there in my peripheral vision. It is
a constant reminder of the promise I made to myself to write clean code.

1. http://www.qualitytree.com/

http://www.qualitytree.com/


This page intentionally left blank 



## detection, 237A–238A
++ (pre- or post-increment) operator, 
325A, 326A

A
aborted computation, 109A
abstract classes, 149A, 271A, 290A
ABSTRACT FACTORY pattern, 38A,

156A, 273A, 274A
abstract interfaces, 94A
abstract methods

adding to ArgumentMarshaler,
234A–235A

modifying, 282A
abstract terms, 95A
abstraction

classes depending on, 150A
code at wrong level of, 290A–291A
descending one level at a time, 37A

functions descending only one level
of, 304A–306A

mixing levels of, 36A–37A
names at the appropriate level of,

311A
separating levels of, 305A
wrapping an implementation, 11A

abstraction levels
raising, 290A
separating, 305A

accessor functions, Law of Demeter
and, 98A

accessors, naming, 25A
Active Records, 101A

adapted server, 185A
affinity, 84A
Agile Software Development: Principles,

Patterns, Practices (PPP), 15A
algorithms

correcting, 269A–27A0A
repeating, 48A
understanding, 297A–298A

ambiguities
in code, 301A
ignored tests as, 313A

amplification comments, 59A
analysis functions, 265A
“annotation form”, of AspectJ, 166A
Ant project, 76A, 77A
AOP (aspect-oriented programming),

160A, 163A
APIs. See also public APIs

calling a null-returning method
from, 110A

specialized for tests, 127A
wrapping third-party, 108A

applications
decoupled from Spring, 164A
decoupling from construction

details, 156A
infrastructure of, 163A
keeping concurrency-related code

separate, 181A
arbitrary structure, 303A–304A
args array, converting into a list,

231A–232A

Index

413A



Args class
constructing, 194A
implementation of, 194A–200A
rough drafts of, 201A–212A,

26A–231A
ArgsException class

listing, 198A–200A
merging exceptions into,

239A–242A
argument(s)

flag, 41A
for a function, 40A
in functions, 288A
monadic forms of, 41A
reducing, 43A

argument lists, 43A
argument objects, 43A
argument types

adding, 200A, 237A
negative impact of, 208A

ArgumentMarshaler class
adding the skeleton of, 213A–214A
birth of, 212A

ArgumentMarshaler interface,
197A–198A

arrays, moving, 279A
art, of clean code, 6A–7A
artificial coupling, 293A
AspectJ language, 166A
aspect-oriented programming (AOP),
160A, 163A
aspects

in AOP, 160A–161A
“first-class” support for, 166A

assert statements, 130A–131A
assertEquals, 42A
assertions, using a set of, 111A
assignments, unaligned, 87A–88A
atomic operation, 323A–324A
attributes, 68A
authors

of JUnit, 252A
programmers as, 13A–14A

authorship statements, 55A
automated code instrumentation,

189A–190A
automated suite, of unit tests, 124A

B
bad code, 3A–4A. See also dirty code;

messy code
degrading effect of, 250A

example, 71A–72A
experience of cleaning, 250A
not making up for, 55A

bad comments, 59A–74A
banner, gathering functions beneath,

67A
base classes, 290A, 291A
BDUF (Big Design Up Front), 167A
beans, private variables manipulated,

100A–101A
Beck, Kent, 3A, 34A, 71A, 171A, 252A,

289A, 296A
behaviors, 288A–289A
Big Design Up Front (BDUF), 167A
blank lines, in code, 78A–79A
blocks, calling functions within, 35A
Booch,Grady, 8A–9A
boolean, passing into a function, 41A
boolean arguments, 194A, 288A
boolean map, deleting, 224A
boolean output, of tests, 132A
bound resources, 183A, 184A
boundaries

clean, 120A
exploring and learning, 116A
incorrect behavior at, 289A
separating known from unknown,

118A–119A
boundary condition errors, 269A
boundary conditions

encapsulating, 304A
testing, 314A

boundary tests, easing a migration,
118A

“Bowling Game”, 312A
Boy Scout Rule, 14A–15A, 257A

following, 284A
satisfying, 265A

broken windows metaphor, 8A
bucket brigade, 303A

414A Index



BUILD-OPERATE-CHECK pattern,
127A

builds, 287A
business logic, separating from error

handling, 109A
bylines, 68A
byte-manipulation libraries, 161A,

162A–163A

C
The C++ Programming Language, 7A
calculations, breaking into intermediate

values, 296A
call stack, 324A
Callable interface, 326A
caller, cluttering, 104A
calling hierarchy, 106A
calls, avoiding chains of, 98A
caring, for code, 10A
Cartesian points, 42A
CAS operation, as atomic, 328A
change(s)

isolating from, 149A–150A
large number of very tiny, 213A
organizing for, 147A–150A
tests enabling, 124A

change history, deleting, 270A
check exceptions, in Java, 106A
circular wait, 337A, 338A–339A
clarification, comments as, 57A
clarity, 25A, 26A
class names, 25A
classes

cohesion of, 140A–141A
creating for bigger concepts,

28A–29A
declaring instance variables, 81A
enforcing design and business rules,

115A
exposing internals of, 294A
instrumenting into ConTest, 342A
keeping small, 136A, 175A
minimizing the number of, 176A
naming, 25A, 138A

nonthread-safe, 328A–329A
as nouns of a language, 49A
organization of, 136A
organizing to reduce risk of change,

147A
supporting advanced concurrency

design, 183A
classification, of errors, 107A
clean boundaries, 120A
clean code

art of, 6A–7A
described, 7A–12A
writing, 6A–7A

clean tests, 124A–127A
cleanliness

acquired sense of, 6A–7A
tied to tests, 9A

cleanup, of code, 14A–15A
clever names, 26A
client, using two methods, 330A
client code, connecting to a server, 318A
client-based locking, 185A, 329A,

330A–332A
clientScheduler, 320A
client/server application, concurrency

in,
317A–321A
Client/Server nonthreaded, code for,
343A–346A
client-server using threads, code

changes,
346A–347A
ClientTest.java, 318A, 344A–346A
closing braces, comments on, 67A–68A
Clover, 268A, 269A
clutter

Javadocs as, 276A
keeping free of, 293A

code, 2A
bad, 3A–4A
Beck’s rules of, 10A
commented-out, 68A–69A, 287A
dead, 292A
explaining yourself in, 55A
expressing yourself in, 54A

415AIndex



formatting of, 76A
implicity of, 18A–19A
instrumenting, 188A, 342A
jiggling, 190A
making readable, 311A
necessity of, 2A
reading from top to bottom, 37A
simplicity of, 18A, 19A
technique for shrouding, 20A
third-party, 114A–115A
width of lines in, 85A–90A
at wrong level of abstraction,

290A–291A
code bases, dominated by error han-

dling, 103A
code changes, comments not always fol-

lowing, 54A
code completion, automatic, 20A
code coverage analysis, 254A–256A
code instrumentation, 188A–190A
“code sense,” 6A, 7A
code smells, listing of, 285A–314A
coding standard, 299A
cohesion

of classes, 140A–141A
maintaining, 141A–146A

command line arguments, 193A–194A
commands, separating from queries,

45A–46A
comment header standard, 55A–56A
comment headers, replacing, 70A
commented-out code, 68A–69A, 287A
commenting style, example of bad,

71A–72A
comments

amplifying importance of something,
59A

bad, 59A–74A
deleting, 282A
as failures, 54A
good, 55A–59A
heuristics on, 286A–287A
HTML, 69A
inaccurate, 54A

informative, 56A
journal, 63A–64A
legal, 55A–56A
mandated, 63A
misleading, 63A
mumbling, 59A–60A
as a necessary evil, 53A–59A
noise, 64A–66A
not making up for bad code, 55A
obsolete, 286A
poorly written, 287A
proper use of, 54A
redundant, 60A–62A, 272A, 275A,

286A–287A
restating the obvious, 64A
separated from code, 54A
TODO, 58A–59A
too much information in, 70A
venting in, 65A
writing, 287A

“communication gap”, minimizing,
168A

Compare and Swap (CAS) operation,
327A–328A
ComparisonCompactor module,

252A–265A
defactored, 256A–261A
final, 263A–265A
interim, 261A–263A
original code, 254A–256A

compiler warnings, turning off, 289A
complex code, demonstrating failures
in, 341A
complexity, managing, 139A–140A
computer science (CS) terms, using for
names, 27A
concepts

keeping close to each other, 80A
naming, 19A
one word per, 26A
separating at different levels, 290A
spelling similar similarly, 20A
vertical openness between, 78A–79A

conceptual affinity, of code, 84A

416A Index



concerns
cross-cutting, 160A–161A
separating, 154A, 166A, 178A,

250A
concrete classes, 149A
concrete details, 149A
concrete terms, 94A
concurrency

defense principles, 180A–182A
issues, 190A
motives for adopting, 178A–179A
myths and misconceptions about,

179A–180A
concurrency code

compared to nonconcurrency-
related code, 181A

focusing, 321A
concurrent algorithms, 179A
concurrent applications, partition

behavior, 183A
concurrent code

breaking, 329A–333A
defending from problems of, 180A
flaws hiding in, 188A

concurrent programming, 180A
Concurrent Programming in Java:

Design Principles and Patterns, 182A,
342A

concurrent programs, 178A
concurrent update problems, 341A
ConcurrentHashMap implementation,

183A
conditionals

avoiding negative, 302A
encapsulating, 257A–25A8, 301A

configurable data, 306A
configuration constants, 306A
consequences, warning of, 58A
consistency

in code, 292A
of enums, 278A
in names, 40A

consistent conventions, 259A

constants
versus enums, 308A–309A
hiding, 308A
inheriting, 271A, 307A–308A
keeping at the appropriate level, 83A
leaving as raw numbers, 300A
not inheriting, 307A–308A
passing as symbols, 276A
turning into enums, 275A–276A

construction
moving all to main, 155A, 156A
separating with factory, 156A
of a system, 154A

constructor arguments, 157A
constructors, overloading, 25A
consumer threads, 184A
ConTest tool, 190A, 342A
context

adding meaningful, 27A–29A
not adding gratuitous, 29A–30A
providing with exceptions, 107A

continuous readers, 184A
control variables, within loop state-

ments, 80A–81A
convenient idioms, 155A
convention(s)

following standard, 299A–300A
over configuration, 164A
structure over, 301A
using consistent, 259A

convoluted code, 175A
copyright statements, 55A
cosmic-rays. See one-offs
CountDownLatch class, 183A
coupling. See also decoupling; temporal

coupling; tight coupling
artificial, 293A
hidden temporal, 302A–303A
lack of, 150A

coverage patterns, testing, 314A
coverage tools, 313A
“crisp abstraction”, 8A–9A
cross-cutting concerns, 160A

417AIndex



Cunningham, Ward, 11A–12A
cuteness, in code, 26A

D
dangling false argument, 294A
data

abstraction, 93A–95A
copies of, 181A–182A
encapsulation, 181A
limiting the scope of, 181A
sets processed in parallel, 179A
types, 97A, 101A

data structures. See also structure(s)
compared to objects, 95A, 97A
defined, 95A
interfaces representing, 94A
treating Active Records as, 101A

data transfer-objects (DTOs),
100A–101A, 160A

database normal forms, 48A
DateInterval enum, 282A–283A
DAY enumeration, 277A
DayDate class, running SerialDate as,

271A
DayDateFactory, 273A–274A
dead code, 288A, 292A
dead functions, 288A
deadlock, 183A, 335A–339A
deadly embrace. See circular wait
debugging, finding deadlocks, 336A
decision making, optimizing,

167A–168A
decisions, postponing, 168A
declarations, unaligned, 87A–88A
DECORATOR objects, 164A
DECORATOR pattern, 274A
decoupled architecture, 167A
decoupling, from construction details,

156A
decoupling strategy, concurrency as,

178A
default constructor, deleting, 276A

degradation, preventing, 14A
deletions, as the majority of changes,

250A
density, vertical in code, 79A–80A
dependencies

finding and breaking, 250A
injecting, 157A
logical, 282A
making logical physical,

298A–299A
between methods, 329A–333A
between synchronized methods,

185A
Dependency Injection (DI), 157A
Dependency Inversion Principle (DIP),

15A, 150A
dependency magnet, 47A
dependent functions, formatting,

82A–83A
derivatives

base classes depending on, 291A
base classes knowing about, 273A
of the exception class, 48A
moving set functions into, 232A,

233A–235A
pushing functionality into, 217A

description
of a class, 138A
overloading the structure of code

into, 310A
descriptive names

choosing, 309A–310A
using, 39A–40A

design(s)
of concurrent algorithms, 179A
minimally coupled, 167A
principles of, 15A

design patterns, 290A
details, paying attention to, 8A
DI (Dependency Injection), 157A
Dijkstra, Edsger, 48A
dining philosophers execution model,

184A–185A

418A Index



DIP (Dependency Inversion Principle),
15A, 150A

dirty code. See also bad code; messy
code

dirty code, cleaning, 200A
dirty tests, 123A
disinformation, avoiding, 19A–20A
distance, vertical in code, 80A–84A
distinctions, making meaningful,

20A–21A
domain-specific languages (DSLs),
168A–169A
domain-specific testing language, 127A
DoubleArgumentMarshaler class,

238A
DRY principle (Don’t Repeat Yourself),

181A, 289A
DTOs (data transfer objects),

100A–101A, 160A
dummy scopes, 90A
duplicate if statements, 276A
duplication

of code, 48A
in code, 289A–290A
eliminating, 173A–175A
focusing on, 10A
forms of, 173A, 290A
reduction of, 48A
strategies for eliminating, 48A

dyadic argument, 40A
dyadic functions, 42A
dynamic proxies, 161A

E
e, as a variable name, 22A
Eclipse, 26A
edit sessions, playing back, 13A–14A
efficiency, of code, 7A
EJB architecture, early as over-engi-

neered, 167A
EJB standard, complete overhaul of,

164A
EJB2A beans, 160A

EJB3A, Bank object rewritten in,
165A–166A

“elegant” code, 7A
emergent design, 171A–176A
encapsulation, 136A

of boundary conditions, 304A
breaking, 106A–107A
of conditionals, 301A

encodings, avoiding, 23A–24A,
312A–313A

entity bean, 158A–160A
enum(s)

changing MonthConstants to,
272A

using, 308A–309A
enumeration, moving, 277A
environment, heuristics on, 287A
environment control system,

128A–129A
envying, the scope of a class, 293A
error check, hiding a side effect, 258A
Error class, 47A–48A
error code constants, 198A–200A
error codes

implying a class or enum, 47A–48A
preferring exceptions to, 46A
returning, 103A–104A
reusing old, 48A
separating from the Args module,

242A–250A
error detection, pushing to the edges,

109A
error flags, 103A–104A
error handling, 8A, 47A–48A
error messages, 107A, 250A
error processing, testing, 238A–239A
errorMessage method, 250A
errors. See also boundary condition

errors; spelling errors; string compari-
son errors

classifying, 107A
Evans, Eric, 311A
events, 41A
exception classification, 107A

419AIndex



exception clauses, 107A–108A
exception management code, 223A
exceptions

instead of return codes, 103A–105A
narrowing the type of, 105A–106A
preferring to error codes, 46A
providing context with, 107A
separating from Args, 242A–250A
throwing, 104A–105A, 194A
unchecked, 106A–107A

execution, possible paths of, 321A–326A
execution models, 183A–185A
Executor framework, 326A–327A
ExecutorClientScheduler.java,

321A
explanation, of intent, 56A–57A
explanatory variables, 296A–297A
explicitness, of code, 19A
expressive code, 295A
expressiveness

in code, 10A–11A
ensuring, 175A–176A

Extract Method refactoring, 11A
Extreme Programming Adventures in

C#, 10
Extreme Programming Installed, 10A
“eye-full,” code fitting into, 79A–80A

F
factories, 155A–156A
factory classes, 273A–275A
failure
to express ourselves in code, 54A

patterns of, 314A
tolerating with no harm, 330A

false argument, 294A
fast tests, 132A
fast-running threads, starving longer

running, 183A
fear, of renaming, 30A
Feathers, Michael, 10A
feature envy

eliminating, 293A–294A
smelling of, 278A

file size, in Java, 76A
final keywords, 276A
F.I.R.S.T. acronym, 132A–133A
First Law, of TDD, 122A
FitNesse project

coding style for, 90A
file sizes, 76A, 77A
function in, 32A–33A
invoking all tests, 224A

flag arguments, 41A, 288A
focussed code, 8A
foreign code. See third-party code
formatting

horizontal, 85A–90A
purpose of, 76A
Uncle Bob’s rules, 90A–92A
vertical, 76A–85A

formatting style, for a team of develop-
ers, 90A

Fortran, forcing encodings, 23A
Fowler, Martin, 285A, 293A
frame, 324A
function arguments, 40A–45A
function call dependencies, 84A–85A
function headers, 70A
function signature, 45A
functionality, placement of, 295A–296A
functions

breaking into smaller, 141A–146A
calling within a block, 35A
dead, 288A
defining private, 292A
descending one level of abstraction,

304A–306A
doing one thing, 35A–36A, 302A
dyadic, 42A
eliminating extraneous if statements,

262A
establishing the temporal nature of,

260A
formatting dependent, 82A–83A
gathering beneath a banner, 67A
heuristics on, 288A
intention-revealing, 19A
keeping small, 175A

420A Index



length of, 34A–35A
moving, 279A
naming, 39A, 297A
number of arguments in, 288A
one level of abstraction per,

36A–37A
in place of comments, 67A
renaming for clarity, 258A
rewriting for clarity, 258A–259A
sections within, 36A
small as better, 34A
structured programming with, 49A

understanding, 297A–298A
as verbs of a language, 49A
writing, 49A
futures, 326A

G
Gamma, Eric, 252A
general heuristics, 288A–307A
generated byte-code, 180A
generics, improving code readability,

115A
get functions, 218A
getBoolean function, 224A
GETFIELD instruction, 325A, 326A
getNextId method, 326A
getState function, 129A
Gilbert, David, 267A, 268A
given-when-then convention, 130A
glitches. See one-offs
global setup strategy, 155A
“God class,” 136A–137A
good comments, 55A–59A
goto statements, avoiding, 48A, 49A
grand redesign, 5A
gratuitous context, 29A–30A

H
hand-coded instrumentation, 189A
HashTable, 328A–329A
headers. See comment headers; function

headers

heuristics
cross references of, 286A, 409A
general, 288A–307A
listing of, 285A–314A

hidden temporal coupling, 259A,
302A–303A

hidden things, in a function, 44A
hiding

implementation, 94A
structures, 99A

hierarchy of scopes, 88A
HN. See Hungarian Notation
horizontal alignment, of code, 87A–88A
horizontal formatting, 85A–90A
horizontal white space, 86A
HTML, in source code, 69A
Hungarian Notation (HN), 23A–24A,

295A
Hunt, Andy, 8A, 289A
hybrid structures, 99A

I
if statements

duplicate, 276A
eliminating, 262A

if-else chain
appearing again and again, 290A
eliminating, 233A

ignored tests, 313A
implementation

duplication of, 173A
encoding, 24A
exposing, 94A
hiding, 94A
wrapping an abstraction, 11A

Implementation Patterns, 3A, 296A
implicity, of code, 18A
import lists

avoiding long, 307A
shortening in SerialDate, 270A

imports, as hard dependencies, 307A
imprecision, in code, 301A
inaccurate comments, 54A

421AIndex



inappropriate information, in com-
ments, 286A

inappropriate static methods, 296A
include method, 48A
inconsistency, in code, 292A
inconsistent spellings, 20A
incrementalism, 212A–214A
indent level, of a function, 35A
indentation, of code, 88A–89A
indentation rules, 89A
independent tests, 132A
information

inappropriate, 286A
too much, 70A, 291A–292A

informative comments, 56A
inheritance hierarchy, 308A
inobvious connection, between a com-

ment and code, 70A
input arguments, 41A
instance variables

in classes, 140A
declaring, 81A
hiding the declaration of, 81A–82A
passing as function
arguments, 231A
proliferation of, 140A

instrumented classes, 342A
insufficient tests, 313A
integer argument(s)

defining, 194A
integrating, 224A–225A

integer argument functionality,
moving into ArgumentMarshaler,

215A–216A
integer argument type, adding to Args,

212A
integers, pattern of changes for, 220A
IntelliJ, 26A
intent

explaining in code, 55A
explanation of, 56A–57A
obscured, 295A

intention-revealing function, 19A
intention-revealing names, 18A–19A

interface(s)
defining local or remote,

158A–160A
encoding, 24A
implementing, 149A–150A
representing abstract concerns, 150A
turning ArgumentMarshaler into,

237A
well-defined, 291A–292A
writing, 119A

internal structures, objects hiding, 97A
intersection, of domains, 160A
intuition, not relying on, 289A
inventor of C++, 7A
Inversion of Control (IoC), 157A
InvocationHandler object, 162A
I/O bound, 318A
isolating, from change, 149A–150A
isxxxArg methods, 221A–222A
iterative process, refactoring as, 265A

J
jar files, deploying derivatives and

bases in, 291A
Java

aspects or aspect-like mechanisms,
161A–166A

heuristics on, 307A–309A
as a wordy language, 200A

Java 5A, improvements for concurrent
development, 182A–183A

Java 5A Executor framework,
320A–321A

Java 5A VM, nonblocking solutions in,
327A–328A

Java AOP frameworks, 163A–166A
Java programmers, encoding not need-

ed, 24A
Java proxies, 161A–163A
Java source files, 76A–77A
javadocs

as clutter, 276A
in nonpublic code, 71A
preserving formatting in, 270A

422A Index



in public APIs, 59A
requiring for every function, 63A

java.util.concurrent package, col-
lections

in, 182A–183A
JBoss AOP, proxies in, 163A
JCommon library, 267A
JCommon unit tests, 270A
JDepend project, 76A, 77A
JDK proxy, providing persistence sup-

port, 161A–163A
Jeffries, Ron, 10A–11A, 289A
jiggling strategies, 190A
JNDI lookups, 157A
journal comments, 63A–64A
JUnit, 34A
JUnit framework, 252A–265A
Junit project, 76A, 77A
Just-In-Time Compiler, 180A

K
keyword form, of a function name, 43A

L
L, lower-case in variable names, 20A
language design, art of programming

as, 49A
languages

appearing to be simple, 12A
level of abstraction, 2A
multiple in one source file, 288A
multiples in a comment, 270A

last-in, first-out (LIFO) data structure,
operand stack as, 324A

Law of Demeter, 97A–98A, 306A
LAZY INITIALIZATION/

EVALUATION idiom, 154A
LAZY-INITIALIZATION, 157A
Lea, Doug, 182A, 342A
learning tests, 116A, 118A
LeBlanc’s law, 4A
legacy code, 307A
legal comments, 55A–56A
level of abstraction, 36A–37A

levels of detail, 99A
lexicon, having a consistent, 26A
lines of code

duplicating, 173A
width of, 85A

list(s)
of arguments, 43A
meaning specific to programmers,

19A
returning a predefined immutable,

110A
literate code, 9A
literate programming, 9A
Literate Programming, 141A
livelock, 183A, 338A
local comments, 69A–70A
local variables, 324A

declaring, 292A
at the top of each function, 80A

lock & wait, 337A, 338A
locks, introducing, 185A
log4j package, 116A–118A
logical dependencies, 282A, 298A–299A
LOGO language, 36A
long descriptive names, 39A
long names, for long scopes, 312A
loop counters, single-letter names for,

25A

M
magic numbers

obscuring intent, 295A
replacing with named constants,
300A–301A

main function, moving construction to,
155A, 156A
managers, role of, 6A
mandated comments, 63A
manual control, over a serial ID, 272A
Map

adding for ArgumentMarshaler,
221A

methods of, 114A
maps, breaking the use of, 222A–223A

423AIndex



marshalling implementation,
214A–215A

meaningful context, 27A–29A
member variables

f prefix for, 257A
prefixing, 24A
renaming for clarity, 259A

mental mapping, avoiding, 25A
messy code. See also bad code; dirty

code
total cost of owning, 4A–12A

method invocations, 324A
method names, 25A
methods

affecting the order of execution,
188A

calling a twin with a flag, 278A
changing from static to instance,

280A
of classes, 140A
dependencies between, 329A–333A
eliminating duplication between,

173A–174A
minimizing assert statements in,

176A
naming, 25A
tests exposing bugs in, 269A

minimal code, 9A
misleading comments, 63A
misplaced responsibility, 295A–296A,

299A
MOCK OBJECT, assigning, 155A
monadic argument, 40A
monadic forms, of arguments, 41A
monads, converting dyads into, 42A
Monte Carlo testing, 341A
Month enum, 278A
MonthConstants class, 271A
multithread aware, 332A
multithread-calculation, of throughput,

335A
multithreaded code, 188A, 339A–342A
mumbling, 59A–60A
mutators, naming, 25A
mutual exclusion, 183A, 336A, 337A

N
named constants, replacing magic num-

bers, 300A–301A
name-length-challenged languages, 23A
names

abstractions, appropriate level of,
311A

changing, 40A
choosing, 175A, 309A–310A
of classes, 270A–271A
clever, 26A
descriptive, 39A–40A
of functions, 297A
heuristics on, 309A–313A
importance of, 309A–310A
intention-revealing, 18A–19A
length of corresponding to scope,

22A–23A
long names for long scopes, 312A
making unambiguous, 258A
problem domain, 27A
pronounceable, 21A–22A
rules for creating, 18A–30A
searchable, 22A–23A
shorter generally better than longer,

30A
solution domain, 27A
with subtle differences, 20A
unambiguous, 312A
at the wrong level of abstraction,

271A
naming, classes, 138A
naming conventions, as inferior to

structures, 301A
navigational methods, in Active

Records, 101A
near bugs, testing, 314A
negative conditionals, avoiding, 302A
negatives, 258A
nested structures, 46A
Newkirk, Jim, 116A
newspaper metaphor, 77A–78A
niladic argument, 40A
no preemption, 337A

424A Index



noise
comments, 64A–66A
scary, 66A
words, 21A

nomenclature, using standard,
311A–312A

nonblocking solutions, 327A–328A
nonconcurrency-related code, 181A
noninformative names, 21A
nonlocal information, 69A–70A
nonpublic code, javadocs in, 71A
nonstatic methods, preferred to static,

296A
nonthreaded code, getting working first,

187A
nonthread-safe classes, 328A–329A
normal flow, 109A
null

not passing into methods,
111A–112A

not returning, 109A–110A
passed by a caller accidentally, 111A

null detection logic, for
ArgumentMarshaler, 214A

NullPointerException, 110A, 111A
number-series naming, 21A

O
Object Oriented Analysis and Design

with Applications, 8A
object-oriented design, 15A
objects

compared to data structures, 95A,
97A

compared to data types and proce-
dures, 101A

copying read-only, 181A
defined, 95A

obscured intent, 295A
obsolete comments, 286A
obvious behavior, 288A–289A
obvious code, 12A
“Once and only once” principle, 289A
“ONE SWITCH” rule, 299A

one thing, functions doing, 35A–36A,
302A

one-offs, 180A, 187A, 191A
OO code, 97A
OO design, 139A
Open Closed Principle (OCP), 15A, 38A

by checked exceptions, 106A
supporting, 149A

operand stack, 324A
operating systems, threading policies,

188A
operators, precedence of, 86A
optimistic locking, 327A
optimizations, LAZY-EVALUATION

as, 157A
optimizing, decision making,

167A–168A
orderings, calculating the possible,

322A–323A
organization

for change, 147A–150A
of classes, 136A
managing complexity, 139A–140A

outbound tests, exercising an interface,
118A

output arguments, 41A, 288A
avoiding, 45A
need for disappearing, 45A

outputs, arguments as, 45A
overhead, incurred by concurrency,

179A
overloading, of code with description,

310A

P
paperback model, as an academic

model, 27A
parameters, taken by instructions, 324A
parse operation, throwing an excep-

tion, 220A
partitioning, 250A
paths of execution, 321A–326A
pathways, through critical sections,

188A

425AIndex



pattern names, using standard, 175A
patterns

of failure, 314A
as one kind of standard, 311A

performance
of a client/server pair, 318A
concurrency improving, 179A
of server-based locking, 333A

permutations, calculating, 323A
persistence, 160A, 161A
pessimistic locking, 327A
phraseology, in similar names, 40A
physicalizing, a dependency, 299A
Plain-Old Java Objects. See POJOs
platforms, running threaded code, 188A
pleasing code, 7A
pluggable thread-based code, 187A
POJO system, agility provided by, 168A
POJOs (Plain-Old Java Objects)

creating, 187A
implementing business logic, 162A
separating threaded-aware code,

190A
in Spring, 163A
writing application domain logic,

166A
polyadic argument, 40A
polymorphic behavior, of functions,

296A
polymorphic changes, 96A–97A
polymorphism, 37A, 299A
position markers, 67A
positives

as easier to understand, 258A
expressing conditionals as, 302A
of decisions, 301
precision as the point of all naming,

30A
predicates, naming, 25A
preemption, breaking, 338A
prefixes

for member variables, 24A
as useless in today’s environments,

312A–313A

pre-increment operator, ++, 324A,
325A, 326A

“prequel”, this book as, 15A
principle of least surprise, 288A–289A,

295A
principles, of design, 15A
PrintPrimes program, translation into

Java, 141A
private behavior, isolating, 148A–149A
private functions, 292A
private method behavior, 147A
problem domain names, 27A
procedural code, 97A
procedural shape example, 95A–96A
procedures, compared to objects, 101A
process function, repartitioning,

319A–320A
process method, I/O bound, 319A
processes, competing for resources,

184A
processor bound, code as, 318A
producer consumer execution model,

184A
producer threads, 184A
production environment, 127A–130A
productivity, decreased by messy code,

4A
professional programmer, 25A
professional review, of code, 268A
programmers

as authors, 13A–14A
conundrum faced by, 6A
responsibility  for messes, 5A–6A
unprofessional, 5A–6A

programming
defined, 2A
structured, 48A–49A

programs, getting them to work, 201A
pronounceable names, 21A–22A
protected variables, avoiding, 80A
proxies, drawbacks of, 163A
public APIs, javadocs in, 59A
puns, avoiding, 26A–27A
PUTFIELD instruction, as atomic, 325A

426A Index



Q
queries, separating from commands,

45A–46A

R
random jiggling, tests running, 190A
range, including end-point dates in,

276A
readability

of clean tests, 124A
of code, 76A
Dave Thomas on, 9A
improving using generics, 115A

readability perspective, 8A
readers

of code, 13A–14A
continuous, 184A

readers-writers execution model, 184A
reading

clean code, 8A
code from top to bottom, 37A
versus writing, 14A

reboots, as a lock up solution, 331A
recommendations, in this book, 13A
redesign, demanded by the team, 5A
redundancy, of noise words, 21A
redundant comments, 60A–62A, 272A,

275A, 286A–287A
ReentrantLock class, 183A
refactored programs, as longer, 146A
refactoring

Args, 212A
code incrementally, 172A
as an iterative process, 265A
putting things in to take out, 233A
test code, 127A

Refactoring (Fowler), 285A
renaming, fear of, 30A
repeatability, of concurrency bugs, 180A
repeatable tests, 132A
requirements, specifying, 2A
resetId, byte-code generated for,

324A–325A

resources
bound, 183A
processes competing for, 184A
threads agreeing on a global order-

ing of, 338A
responsibilities

counting in classes, 136A
definition of, 138A
identifying, 139A
misplaced, 295A–296A, 299A
splitting a program into main, 146A

return codes, using exceptions instead,
103A–105A

reuse, 174A
risk of change, reducing, 147A
robust clear code, writing, 112A
rough drafts, writing, 200A
runnable interface, 326A
run-on expressions, 295A
run-on journal entries, 63A–64A
runtime logic, separating startup from,

154A

S
safety mechanisms, overridden, 289A
scaling up, 157A–161A
scary noise, 66A
schema, of a class, 194A
schools of thought, about clean code,

12A–13A
scissors rule, in C++, 81A
scope(s)

defined by exceptions, 105A
dummy, 90A
envying, 293A
expanding and indenting, 89A
hierarchy in a source file, 88A
limiting for data, 181A
names related to the length of,

22A–23A, 312A
of shared variables, 333A

searchable names, 22A–23A
Second Law, of TDD, 122A
sections, within functions, 36A
selector arguments, avoiding,

294A–295A

427AIndex



self validating tests, 132A
Semaphore class, 183A
semicolon, making visible, 90A
“serial number,” SerialDate using,

271A
SerialDate class

making it right, 270A–284A
naming of, 270A–271A
refactoring, 267A–284A

SerialDateTests class, 268A
serialization, 272A
server, threads created by, 319A–321A
server application, 317A–318A,

343A–344A
server code, responsibilities of, 319A
server-based locking, 329A

as preferred, 332A–333A
with synchronized methods, 185A

“Servlet” model, of Web applications,
178A

Servlets, synchronization problems,
182A

set functions, moving into appropriate
derivatives, 232A, 233A–235A

setArgument, changing, 232A–233A
setBoolean function, 217A
setter methods, injecting dependencies,

157A
setup strategy, 155A
SetupTeardownIncluder.java list-

ing, 50A–52A
shape classes, 95A–96A
shared data, limiting access, 181A
shared variables

method updating, 328A
reducing the scope of, 333A

shotgun approach, hand-coded instru-
mentation as, 189A

shut-down code, 186A
shutdowns, graceful, 186A
side effects

having none, 44A
names describing, 313A

Simmons, Robert, 276A

simple code, 10A, 12A
Simple Design, rules of, 171A–176A
simplicity, of code, 18A, 19A
single assert rule, 130A–131A
single concepts, in each test function,

131A–132A
Single Responsibility Principle (SRP),

15A, 138A–140A
applying, 321A
breaking, 155A
as a concurrency defense principle,

181A
recognizing violations of, 174A
server violating, 320A
Sql class violating, 147A
supporting, 157A
in test classes conforming to, 172A
violating, 38A

single value, ordered components of,
42A

single-letter names, 22A, 25A
single-thread calculation, of through-

put, 334A
SINGLETON pattern, 274A
small classes, 136A
Smalltalk Best Practice Patterns, 296A
smart programmer, 25A
software project, maintenance of, 175A
software systems. See also system(s)

compared to physical systems, 158A
SOLID class design principle, 150A
solution domain names, 27A
source code control systems, 64A, 68A,

69A
source files

compared to newspaper articles,
77A–78A

multiple languages in, 288A
Sparkle program, 34A
spawned threads, deadlocked, 186A
special case objects, 110A
SPECIAL CASE PATTERN, 109A
specifications, purpose of, 2A
spelling errors, correcting, 20A

428A Index



SpreadsheetDateFactory,
274A–275A

Spring AOP, proxies in, 163A
Spring Framework, 157A
Spring model, following EJB3, 165A
Spring V2.5 configuration file,

163A–164A
spurious failures, 187A
Sql class, changing, 147A–149A
square root, as the iteration limit, 74A
SRP. See Single Responsibility Principle
standard conventions, 299A–300A
standard nomenclature, 175A,

311A–312A
standards, using wisely, 168A
startup process, separating from run-

time logic, 154A
starvation, 183A, 184A, 338A
static function, 279A
static import, 308A
static methods, inappropriate, 296A
The Step-down Rule, 37A
stories, implementing only today’s,

158A
STRATEGY pattern, 290A
string arguments, 194A, 208A–212A,

214A–225A
string comparison errors, 252A
StringBuffers, 129A
Stroustrup, Bjarne, 7A–8A
structure(s). See also data structures

hiding, 99A
hybrid, 99A
making massive changes to, 212A
over convention, 301A

structured programming, 48A–49A
SuperDashboard class, 136A–137A
swapping, as permutations, 323A
switch statements

burying, 37A, 38A
considering polymorphism before,

299A
reasons to tolerate, 38A–39A

switch/case chain, 290A

synchronization problems, avoiding
with Servlets, 182A

synchronized block, 334A
synchronized keyword, 185A

adding, 323A
always acquiring a lock, 328A
introducing a lock via, 331A
protecting a critical section 

in code, 181A
synchronized methods, 185A
synchronizing, avoiding, 182A
synthesis functions, 265A
system(s). See also software systems

file sizes of significant, 77A
keeping running during develop-

ment, 213A
needing domain-specific, 168A

system architecture, test driving,
166A–167A

system failures, not ignoring one-offs,
187A

system level, staying clean at, 154A
system-wide information, in a local

comment, 69A–70A

T
tables, moving, 275A
target deployment platforms, running

tests on, 341A
task swapping, encouraging, 188A
TDD (Test Driven Development), 213A

building logic, 106A
as fundamental discipline, 9A
laws of, 122A–123A

team rules, 90A
teams

coding standard for every,
299A–300A

slowed by messy code, 4A
technical names, choosing, 27A
technical notes, reserving comments for,

286A

429AIndex



TEMPLATE METHOD pattern
addressing duplication, 290A
removing higher-level duplication,

174A–175A
using, 130A

temporal coupling. See also coupling
exposing, 259A–260A
hidden, 302A–303A
side effect creating, 44A

temporary variables, explaining,
279A–281A

test cases
adding to check arguments, 237A
in ComparisonCompactor,

252A–254A
patterns of failure, 269A, 314A
turning off, 58A

test code, 124A, 127A
TEST DOUBLE, assigning, 155A
Test Driven Development. See TDD
test driving, architecture, 166A–167A
test environment, 127A–130A
test functions, single concepts in,

131A–132A
test implementation, of an interface,

150A
test suite

automated, 213A
of unit tests, 124A, 268A
verifying precise behavior, 146A

testable systems, 172A
test-driven development. See TDD
testing

arguments making harder, 40A
construction logic mixed with run-

time, 155A
testing language, domain-specific, 127A
testNG project, 76A, 77A
tests

clean, 124A–127A
cleanliness tied to, 9A
commented out for SerialDate,

268A–270A
dirty, 123A
enabling the -ilities, 124A
fast, 132A
fast versus slow, 314A

heuristics on, 313A–314A
ignored, 313A
independent, 132A
insufficient, 313A
keeping clean, 123A–124A
minimizing assert statements in,

130A–131A
not stopping trivial, 313A
refactoring, 126A–127A
repeatable, 132A
requiring more than one step, 287A
running, 341A
self validating, 132A
simple design running all, 172A
suite of automated, 213A
timely, 133A
writing for multithreaded code,

339A–342A
writing for threaded code,

186A–190A
writing good, 122A–123A

Third Law, of TDD, 122A
third-party code

integrating, 116A
learning, 116A
using, 114A–115A
writing tests for, 116A

this variable, 324A
Thomas, Dave, 8A, 9A, 289A
thread(s)

adding to a method, 322A
interfering with each other, 330A
making as independent as possible,

182A
stepping on each other, 180A, 326A
taking resources from other threads,

338A
thread management strategy, 320A
thread pools, 326A
thread-based code, testing, 342A
threaded code

making pluggable, 187A
making tunable, 187A–188A
symptoms of bugs in, 187A
testing, 186A–190A
writing in Java 5A, 182A–183A

threading

430A Index



adding to a client/server application,
319A, 346A–347A

problems in complex systems, 342A
thread-safe collections, 182A–183A,

329A
throughput

causing starvation, 184A
improving, 319A
increasing, 333A–335A
validating, 318A

throws clause, 106A
tiger team, 5A
tight coupling, 172A
time, taking to go fast, 6A
Time and Money project, 76A

file sizes, 77A
timely tests, 133A
timer program, testing, 121A–122A
“TO” keyword, 36A
TO paragraphs, 37A
TODO comments, 58A–59A
tokens, used as magic numbers, 300A
Tomcat project, 76A, 77A
tools

ConTest tool, 190A, 342A
coverage, 313A
handling proxy boilerplate, 163A
testing thread-based code, 342A

train wrecks, 98A–99A
transformations, as return values, 41A
transitive navigation, avoiding,

306A–307A
triadic argument, 40A
triads, 42A
try blocks, 105A
try/catch blocks, 46A–4A7, 65A–66A
try-catch-finally statement,

105A–106A
tunable threaded-based code,

187A–188A
type encoding, 24A

U
ubiquitous language, 311A–312A
unambiguous names, 312A
unchecked exceptions, 106A–107A
unencapsulated conditional, encapsu-

lating, 257A
unit testing, isolated as difficult, 160A
unit tests, 124A, 175A, 268A
unprofessional programming, 5A–6A
uppercase C, in variable names, 20A
usability, of newspapers, 78A
use, of a system, 154A
users, handling concurrently, 179A

V
validation, of throughput, 318A
variable names, single-letter, 25A
variables

1 based versus zero based, 261A
declaring, 80A, 81A, 292A
explaining temporary, 279A–281A
explanatory, 296A–297A
keeping private, 93A
local, 292A, 324A
moving to a different class, 273A
in place of comments, 67A
promoting to instance variables of

classes, 141A
with unclear context, 28A

venting, in comments, 65A
verbs, keywords and, 43A
Version class, 139A
versions, not deserializing across, 272A
vertical density, in code, 79A–80A
vertical distance, in code, 80A–84A
vertical formatting, 76A–85A
vertical openness, between concepts,

78A–79A
vertical ordering, in code, 84A–85A
vertical separation, 292A

431AIndex



W
wading, through bad code, 3A
Web containers, decoupling provided

by, 178A
what, decoupling from when, 178A
white space, use of horizontal, 86A
wildcards, 307A
Working Effectively with Legacy Code,

10A
“working” programs, 201A
workmanship, 176A
wrappers, 108A
wrapping, 108A
writers, starvation of, 184A
“Writing Shy Code,” 306A

X
XML

deployment descriptors, 160A
“policy” specified configuration

files, 164A

432A Index



 The Clean Coder 

Martin_FMB2.indd   i 10/17/11   9:55 AM



Praise for The Clean Coder
“‘Uncle Bob’ Martin definitely raises the bar with his latest book. He explains his 
expectation for a professional programmer on management interactions, time 
management, pressure, on collaboration, and on the choice of tools to use. Beyond 
TDD and ATDD, Martin explains what every programmer who considers him- or 
herself a professional not only needs to know, but also needs to follow in order to 
make the young profession of software development grow.”

—Markus Gärtner
Senior Software Developer

it-agile GmbH
www.it-agile.de

www.shino.de

“Some technical books inspire and teach; some delight and amuse. Rarely does a 
technical book do all four of these things. Robert Martin’s always have for me and 
The Clean Coder is no exception. Read, learn, and live the lessons in this book and 
you can accurately call yourself a software professional.”

—George Bullock
Senior Program Manager

Microsoft Corp.

“If a computer science degree had ‘required reading for after you graduate,’ this 
would be it. In the real world, your bad code doesn’t vanish when the semester’s 
over, you don’t get an A for marathon coding the night before an assignment’s due, 
and, worst of all, you have to deal with people. So, coding gurus are not necessarily 
professionals. The Clean Coder describes the journey to professionalism . . . and it 
does a remarkably entertaining job of it.”

—Jeff Overbey
 University of Illinois at Urbana-Champaign

“The Clean Coder is much more than a set of rules or guidelines. It contains hard-
earned wisdom and knowledge that is normally obtained through many years of 
trial and error or by working as an apprentice to a master craftsman. If you call 
yourself a software professional, you need this book.”

—R. L. Bogetti
Lead System Designer

Baxter Healthcare
www.RLBogetti.com

Martin_FMB2.indd   ii 10/17/11   9:55 AM

www.it-agile.de
www.shino.de
www.RLBogetti.com


   The Clean Coder 
 A CODE OF CONDUCT FOR 

PROFESSIONAL PROGRAMMERS 

   Robert C.   Martin   

     Upper Saddle River, NJ • Boston • Indianapolis • San Francisco 

 New York • Toronto • Montreal • London • Munich • Paris • Madrid 

 Cape Town • Sydney • Tokyo • Singapore • Mexico City

Martin_FMB2.indd   iii 10/17/11   9:55 AM



    Many of the designations used by manufacturers and sellers to distinguish their products are claimed as 
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark 
claim, the designations have been printed with initial capital letters or in all capitals. 

 The author and publisher have taken care in the preparation of this book, but make no expressed or 
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed 
for incidental or consequential damages in connection with or arising out of the use of the information or 
programs contained herein. 

 The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or 
special sales, which may include electronic versions and/or custom covers and content particular to your 
business, training goals, marketing focus, and branding interests. For more information, please contact: 

  U.S. Corporate and Government Sales 
  (800) 382-3419 
  corpsales@pearsontechgroup.com 

 For sales outside the United States please contact: 

  International Sales 
  international@pearson.com 

 Visit us on the Web:  www.informit.com/ph  

   Library of Congress Cataloging-in-Publication Data  
Martin, Robert C.
 The clean coder : a code of conduct for professional programmers / Robert Martin.
  p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-708107-3 (pbk. : alk. paper)
1. Computer programming—Moral and ethical aspects. 2.  Computer
programmers—Professional ethics.  I. Title.
 QA76.9.M65M367 2011
 005.1092—dc22 2011005962

   Copyright © 2011   Pearson Education, Inc. 
Illustrations copyright 2011 by Jennifer Kohnke.  

 All rights reserved. Printed in the United States of America. This publication is protected by copyright, and 
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or 
likewise. To obtain permission to use material from this work, please submit a written request to Pearson 
Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you 
may fax your request to (201) 236-3290. 

 ISBN-13: 978-0-13-708107-3 
 ISBN-10:  0-13-708107-3 

 Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana. 
 Second printing, August 2011 

Martin_FMB2.indd   iv 10/17/11   9:55 AM

www.informit.com/ph


     Between 1986 and 2000 I worked closely with Jim Newkirk, a colleague from 
Teradyne. He and I shared a passion for programming and for clean code. 
We would spend nights, evenings, and weekends together playing with different 
programming styles and design techniques. We were continually scheming 
about business ideas. Eventually we formed Object Mentor, Inc., together. 
I learned many things from Jim as we plied our schemes together. But one of 
the most important was his attitude of  work ethic ; it was something I strove to 
emulate. Jim is a professional. I am proud to have worked with him, and to call 
him my friend. 

Martin_FMB2.indd   v 10/17/11   9:55 AM



This page intentionally left blank 



vii

    FO R E WO R D

You’ve picked up this book, so I assume you are a software professional. That’s 
good; so am I. And since I have your attention, let me tell you why I picked up 
this book.

It all starts a short time ago in a place not too far away. Cue the curtain, lights 
and camera, Charley ....

Several years ago I was working at a medium-sized corporation selling highly 
regulated products. You know the type; we sat in a cubicle farm in a three-story 
building, directors and up had private offices, and getting everyone you needed 
into the same room for a meeting took a week or so.

We were operating in a very competitive market when the government opened 
up a new product.

Suddenly we had an entirely new set of potential customers; all we had to do 
was to get them to buy our product. That meant we had to file by a certain 
deadline with the federal government, pass an assessment audit by another date, 
and go to market on a third date.

Martin_FMB2.indd   vii 10/17/11   9:55 AM



viii

FOREWORD

Over and over again our management stressed to us the importance of those 
dates. A single slip and the government would keep us out of the market for a 
year, and if customers couldn’t sign up on day one, then they would all sign up 
with someone else and we’d be out of business.

It was the sort of environment in which some people complain, and others 
point out that “pressure makes diamonds.”

I was a technical project manager, promoted from development. My responsibility 
was to get the web site up on go-live day, so potential customers could download 
information and, most importantly, enrollment forms. My partner in the endeavor 
was the business-facing project manager, whom I’ll call Joe. Joe’s role was to work 
the other side, dealing with sales, marketing, and the non-technical requirements. 
He was also the guy fond of the “pressure makes diamonds” comment.

If you’ve done much work in corporate America, you’ve probably seen the 
finger-pointing, blamestorming, and work aversion that is completely natural. 
Our company had an interesting solution to that problem with Joe and me.

A little bit like Batman and Robin, it was our job to get things done. I met with 
the technical team every day in a corner; we’d rebuild the schedule every single 
day, figure out the critical path, then remove every possible obstacle from that 
critical path. If someone needed software; we’d go get it. If they would “love to” 
configure the firewall but “gosh, it’s time for my lunch break,” we would buy 
them lunch. If someone wanted to work on our configuration ticket but had 
other priorities, Joe and I would go talk to the supervisor.  

Then the manager.  

Then the director.

We got things done.  

It’s a bit of an exaggeration to say that we kicked over chairs, yelled, and 
screamed, but we did use every single technique in our bag to get things done, 
invented a few new ones along the way, and we did it in an ethical way that I am 
proud of to this day.

Martin_FMB2.indd   viii 10/17/11   9:55 AM



ix

I thought of myself as a member of the team, not above jumping in to write a 
SQL statement or doing a little pairing to get the code out the door. At the time, 
I thought of Joe the same way, as a member of the team, not above it.

Eventually I came to realize that Joe did not share that opinion. That was a very 
sad day for me.

It was Friday at 1:00 PM; the web site was set to go live very early the following 
Monday.

We were done. *DONE*. Every system was go; we were ready. I had the entire 
tech team assembled for the final scrum meeting and we were ready to flip the 
switch. More than “just” the technical team, we had the business folks from 
marketing, the product owners, with us.  

We were proud. It was a good moment.

Then Joe dropped by.

He said something like, “Bad news. Legal doesn’t have the enrollment forms 
ready, so we can’t go live yet.”

This was no big deal; we’d been held up by one thing or another for the length 
of the entire project and had the Batman/Robin routine down pat. I was ready, 
and my reply was essentially, “All right partner, let’s do this one more time. 
Legal is on the third floor, right?”

Then things got weird.

Instead of agreeing with me, Joe asked, “What are you talking about Matt?”

I said, “You know. Our usual song and dance. We’re talking about four PDF 
files, right? That are done; legal just has to approve them? Let’s go hang out in 
their cubicles, give them the evil eye, and get this thing done!”

Joe did not agree with my assessment, and answered, “We’ll just go live late next 
week. No big deal.”

FOREWORD

Martin_FMB2.indd   ix 10/17/11   9:55 AM



x

FOREWORD

You can probably guess the rest of the exchange; it sounded something like this:

Matt: “But why? They could do this in a couple hours.”

Joe: “It might take more than that.”

Matt: “But they’ve got all weekend. Plenty of time. Let’s do this!”

Joe: “Matt, these are professionals. We can’t just stare them down and 
insist they sacrifice their personal lives for our little project.”

Matt: (pause) “. . . Joe . . . what do you think we’ve been doing to the 
engineering team for the past four months?”

Joe: “Yes, but these are professionals.”

Pause.

Breathe.

What. Did. Joe. Just. Say?

At the time, I thought the technical staff were professionals, in the best sense of 
the word.

Thinking back over it again, though, I’m not so sure.

Let’s look at that Batman and Robin technique a second time, from a different 
perspective. I thought I was exhorting the team to its best performance, but I 
suspect Joe was playing a game, with the implicit assumption that the technical 
staff was his opponent. Think about it: Why was it necessary to run around, 
kicking over chairs and leaning on people?

Shouldn’t we have been able to ask the staff when they would be done, get a 
firm answer, believe the answer we were given, and not be burned by that belief?

Certainly, for professionals, we should . . . and, at the same time, we could not. 
Joe didn’t trust our answers, and felt comfortable micromanaging the tech 

Martin_FMB2.indd   x 10/17/11   9:55 AM



xi

FOREWORD

team—and at the same time, for some reason, he did trust the legal team and 
was not willing to micromanage them.

What’s that all about?

Somehow, the legal team had demonstrated professionalism in a way the 
technical team had not.

Somehow, another group had convinced Joe that they did not need a babysitter, 
that they were not playing games, and that they needed to be treated as peers 
who were respected.

No, I don’t think it had anything to do with fancy certificates hanging on walls 
or a few extra years of college, although those years of college might have 
included a fair bit of implicit social training on how to behave.

Ever since that day, those long years ago, I’ve wondered how the technical 
profession would have to change in order to be regarded as professionals.

Oh, I have a few ideas. I’ve blogged a bit, read a lot, managed to improve my 
own work life situation and help a few others. Yet I knew of no book that laid 
out a plan, that made the whole thing explicit.

Then one day, out of the blue, I got an offer to review an early draft of a book; 
the book that you are holding in your hands right now.

This book will tell step by step exactly how to present yourself and interact as a 
professional. Not with trite cliché, not with appeals to pieces of paper, but what 
you can do and how to do it.  

In some cases, the examples are word for word. 

Some of those examples have replies, counter-replies, clarifications, even advice 
for what to do if the other person tries to “just ignore you.”

Martin_FMB2.indd   xi 10/17/11   9:55 AM



xii

FOREWORD

Hey, look at that, here comes Joe again, stage left this time:

Oh, here we are, back at BigCo, with Joe and me, once more on the big web site 
conversion project. 

Only this time, imagine it just a little bit differently.

Instead of shirking from commitments, the technical staff actually makes them. 
Instead of shirking from estimates or letting someone else do the planning 
(then complaining about it), the technical team actually self-organizes and 
makes real commitments.

Now imagine that the staff is actually working together. When the programmers 
are blocked by operations, they pick up the phone and the sysadmin actually 
gets started on the work.

When Joe comes by to light a fire to get ticket 14321 worked on, he doesn’t need 
to; he can see that the DBA is working diligently, not surfing the web. Likewise, 
the estimates he gets from staff seem downright consistent, and he doesn’t get 
the feeling that the project is in priority somewhere between lunch and 
checking email. All the tricks and attempts to manipulate the schedule are not 
met with, “We’ll try,” but instead, “That’s our commitment; if you want to make 
up your own goals, feel free.”

After a while, I suspect Joe would start to think of the technical team as, well, 
professionals. And he’d be right.

Those steps to transform your behavior from technician to professional? You’ll 
find them in the rest of the book.

Welcome to the next step in your career; I suspect you are going to like it.

—Matthew Heusser
 Software Process Naturalist

Martin_FMB2.indd   xii 10/17/11   9:55 AM



xiii

     PR E FAC E 

 At 11:39  AM  EST on January 28, 1986, just 73.124 seconds after launch and at an 
altitude of 48,000 feet, the Space Shuttle Challenger was torn to smithereens by 
the failure of the right-hand solid rocket booster (SRB). Seven brave astronauts, 
including high school teacher Christa McAuliffe, were lost. The expression on 
the face of McAuliffe’s mother as she watched the demise of her daughter nine 
miles overhead haunts me to this day. 

 The Challenger broke up because hot exhaust gasses in the failing SRB leaked 
out from between the segments of its hull, splashing across the body of the 

Martin_FMB2.indd   xiii 10/17/11   9:55 AM



xiv

PREFACE

external fuel tank. The bottom of the main liquid hydrogen tank burst, igniting 
the fuel and driving the tank forward to smash into the liquid oxygen tank 
above it. At the same time the SRB detached from its aft strut and rotated 
around its forward strut. Its nose punctured the liquid oxygen tank. These 
aberrant force vectors caused the entire craft, moving well above mach 1.5, to 
rotate against the airstream. Aerodynamic forces quickly tore everything to 
shreds. 

 Between the circular segments of the SRB there were two concentric synthetic 
rubber O-rings. When the segments were bolted together the O-rings were 
compressed, forming a tight seal that the exhaust gasses should not have been 
able to penetrate. 

 But on the evening before the launch, the temperature on the launch pad got 
down to 17°F, 23 degrees below the O-rings’ minimum specified temperature 
and 33 degrees lower than any previous launch. As a result, the O-rings grew 
too stiff to properly block the hot gasses. Upon ignition of the SRB there was a 
pressure pulse as the hot gasses rapidly accumulated. The segments of the 
booster ballooned outward and relaxed the compression on the O-rings. The 
stiffness of the O-rings prevented them from keeping the seal tight, so some 
of the hot gasses leaked through and vaporized the O-rings across 70 degrees 
of arc. 

 The engineers at Morton Thiokol who designed the SRB had known that there 
were problems with the O-rings, and they had reported those problems to 
managers at Morton Thiokol and NASA seven years earlier. Indeed, the O-rings 
from previous launches had been damaged in similar ways, though not enough 
to be catastrophic. The coldest launch had experienced the most damage. The 
engineers had designed a repair for the problem, but implementation of that 
repair had been long delayed. 

 The engineers suspected that the O-rings stiffened when cold. They also knew 
that temperatures for the Challenger launch were colder than any previous 
launch and well below the red-line. In short, the engineers  knew  that the risk 
was too high. The engineers acted on that knowledge. They wrote memos 

Martin_FMB2.indd   xiv 10/17/11   9:55 AM



xv

PREFACE

raising giant red flags. They strongly urged Thiokol and NASA managers not to 
launch. In an eleventh-hour meeting held just hours before the launch, those 
engineers presented their best data. They raged, and cajoled, and protested. But 
in the end, the managers ignored them. 

 When the time for launch came, some of the engineers refused to watch the 
broadcast because they feared an explosion on the pad. But as the Challenger 
climbed gracefully into the sky they began to relax. Moments before the 
destruction, as they watched the vehicle pass through Mach 1, one of them said 
that they’d “dodged a bullet.” 

 Despite all the protest and memos, and urgings of the engineers, the managers 
believed they knew better. They thought the engineers were overreacting. They 
didn’t trust the engineers’ data or their conclusions. They launched because they 
were under immense financial and political pressure. They  hoped  everything 
would be just fine. 

 These managers were not merely foolish, they were criminal. The lives of seven 
good men and women, and the hopes of a generation looking toward space 
travel, were dashed on that cold morning because those managers set their own 
fears, hopes, and intuitions above the words of their own experts. They made a 
decision they had no right to make. They usurped the authority of the people 
who actually  knew : the engineers. 

 But what about the engineers? Certainly the engineers did what they were 
supposed to do. They informed their managers and fought hard for their 
position. They went through the appropriate channels and invoked all the right 
protocols. They did what they could,  within  the system—and still the managers 
overrode them. So it would seem that the engineers can walk away without 
blame. 

 But sometimes I wonder whether any of those engineers lay awake at night, 
haunted by that image of Christa McAuliffe’s mother, and wishing they’d called 
Dan Rather. 

Martin_FMB2.indd   xv 10/17/11   9:55 AM



 ABO UT TH I S BO O K 

 This book is about software professionalism. It contains a lot of pragmatic 
advice in an attempt to answer questions, such as 

 •   What is a software professional?  

 •   How does a professional behave?  

 •   How does a professional deal with conflict, tight schedules, and unreasonable 
managers?  

 •   When, and how, should a professional say “no”?  

 •   How does a professional deal with pressure?    

 But hiding within the pragmatic advice in this book you will find an attitude 
struggling to break through. It is an attitude of honesty, of honor, of self-
respect, and of pride. It is a willingness to accept the dire responsibility of being 
a craftsman and an engineer. That responsibility includes working well and 
working clean. It includes communicating well and estimating faithfully. It 
includes managing your time and facing difficult risk-reward decisions. 

 But that responsibility includes one other thing—one frightening thing. As an 
engineer, you have a depth of knowledge about your systems and projects that 
no managers can possibly have. With that knowledge comes the responsibility 
to  act . 

 B I B LI O G R A PH Y 

  [McConnell87]:  Malcolm McConnell,  Challenger ‘A Major Malfunction’ , New 
York, NY: Simon & Schuster, 1987 

  [Wiki-Challenger]: “ Space Shuttle Challenger disaster,”

 http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster  

PREFACE

xvi

Martin_FMB2.indd   xvi 10/17/11   9:55 AM

http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster


xvii

    AC K N OW LE DG M E NT S 

 My career has been a series of collaborations and schemes. Though I’ve had 
many private dreams and aspirations, I always seemed to find someone to share 
them with. In that sense I feel a bit like the Sith, “Always two there are.” 

 The first collaboration that I could consider professional was with John 
Marchese at the age of 13. He and I schemed about building computers 
together. I was the brains and he was the brawn. I showed him where to solder a 
wire and he soldered it. I showed him where to mount a relay and he mounted 
it. It was a load of fun, and we spent hundreds of hours at it. In fact, we built 
quite a few very impressive-looking objects with relays, buttons, lights, even 
Teletypes! Of course, none of them actually did anything, but they were very 
impressive and we worked very hard on them. To John: Thank you! 

 In my freshman year of high school I met Tim Conrad in my German class. 
Tim was  smart . When we teamed up to build a computer, he was the brains and 
I was the brawn. He taught me electronics and gave me my first introduction to 
a PDP-8. He and I actually built a working electronic 18-bit binary calculator 
out of basic components. It could add, subtract, multiply, and divide. It took us 
a year of weekends and all of spring, summer, and Christmas breaks. We worked 
furiously on it. In the end, it worked very nicely. To Tim: Thank you! 

Martin_FMB2.indd   xvii 10/17/11   9:55 AM



xviii

ACKNOWLEDGMENTS

 Tim and I learned how to program computers. This wasn’t easy to do in 1968, 
but we managed. We got books on PDP-8 assembler, Fortran, Cobol, PL/1, 
among others. We devoured them. We wrote programs that we had no hope of 
executing because we did not have access to a computer. But we wrote them 
anyway for the sheer love of it. 

 Our high school started a computer science curriculum in our sophomore year. 
They hooked up an ASR-33 Teletype to a 110-baud, dial-up modem. They had 
an account on the Univac 1108 time-sharing system at the Illinois Institute of 
Technology. Tim and I immediately became the de facto operators of that 
machine. Nobody else could get near it. 

 The modem was connected by picking up the telephone and dialing the 
number. When you heard the answering modem squeal, you pushed the “orig” 
button on the Teletype causing the originating modem to emit its own squeal. 
Then you hung up the phone and the data connection was established. 

 The phone had a lock on the dial. Only the teachers had the key. But that didn’t 
matter, because we learned that you could dial a phone (any phone) by tapping 
out the phone number on the switch hook. I was a drummer, so I had pretty 
good timing and reflexes. I could dial that modem, with the lock in place, in less 
than 10 seconds. 

 We had two Teletypes in the computer lab. One was the online machine and the 
other was an offline machine. Both were used by students to write their 
programs. The students would type their programs on the Teletypes with the 
paper tape punch engaged. Every keystroke was punched on tape. The students 
wrote their programs in IITran, a remarkably powerful interpreted language. 
Students would leave their paper tapes in a basket near the Teletypes. 

 After school, Tim and I would dial up the computer (by tapping of course), 
load the tapes into the IITran batch system, and then hang up. At 10 characters 
per second, this was not a quick procedure. An hour or so later, we’d call back 
and get the printouts, again at 10 characters per second. The Teletype did not 
separate the students’ listings by ejecting pages. It just printed one after the next 

Martin_FMB2.indd   xviii 10/17/11   9:55 AM



xix

ACKNOWLEDGMENTS

after the next, so we cut them apart using scissors, paper-clipped their input 
paper tape to their listing, and put them in the output basket. 

 Tim and I were the masters and gods of that process. Even the teachers left us 
alone when we were in that room. We were doing their job, and they knew it. 
They never asked us to do it. They never told us we could. They never gave us 
the key to the phone. We just moved in, and they moved out—and they gave us 
a very long leash. To my Math teachers, Mr. McDermit, Mr. Fogel, and Mr. 
Robien: Thank you! 

 Then, after all the student homework was done, we would play. We wrote 
program after program to do any number of mad and weird things. We wrote 
programs that graphed circles and parabolas in ASCII on a Teletype. We wrote 
random walk programs and random word generators. We calculated 50 factorial 
to the last digit. We spent hours and hours inventing programs to write and 
then getting them to work. 

 Two years later, Tim, our compadre Richard Lloyd, and I were hired as 
programmers at ASC Tabulating in Lake Bluff, Illinois. Tim and I were 18 at the 
time. We had decided that college was a waste of time and that we should begin 
our careers immediately. It was here that we met Bill Hohri, Frank Ryder, Big 
Jim Carlin, and John Miller. They gave some youngsters the opportunity to 
learn what professional programming was all about. The experience was not all 
positive and not all negative. It was certainly educational. To all of them, and to 
Richard who catalyzed and drove much of that process: Thank you. 

 After quitting and melting down at the age of 20, I did a stint as a lawn mower 
repairman working for my brother-in-law. I was so bad at it that he had to fire 
me. Thanks, Wes! 

 A year or so later I wound up working at Outboard Marine Corporation. By 
this time I was married and had a baby on the way. They fired me too. Thanks, 
John, Ralph, and Tom! 

Martin_FMB2.indd   xix 10/17/11   9:55 AM



xx

ACKNOWLEDGMENTS

 Then I went to work at Teradyne where I met Russ Ashdown, Ken Finder, Bob 
Copithorne, Chuck Studee, and CK Srithran (now Kris Iyer). Ken was my boss. 
Chuck and CK were my buds. I learned so much from all of them. Thanks, guys! 

 Then there was Mike Carew. At Teradyne, he and I became the dynamic duo. 
We wrote several systems together. If you wanted to get something done, and 
done fast, you got Bob and Mike to do it. We had a load of fun together. 
Thanks, Mike! 

Jerry Fitzpatrick also worked at Teradyne. We met while playing Dungeons & 
Dragons together, but quickly formed a collaboration. We wrote software on a 
Commodore 64 to support D&D users. We also started a new project at 
Teradyne called “The Electronic Receptionist.” We worked together for several 
years, and he became, and remains, a great friend. Thanks, Jerry!

 I spent a year in England while working for Teradyne. There I teamed up with 
Mike Kergozou. He and I schemed together about all manner of things, though 
most of those schemes had to do with bicycles and pubs. But he was a dedicated 
programmer who was very focused on quality and discipline (though, perhaps 
he would disagree). Thanks, Mike! 

 Returning from England in 1987, I started scheming with Jim Newkirk. We 
both left Teradyne (months apart) and joined a start-up named Clear 
Communications. We spent several years together there toiling to make the 
millions that never came. But we continued our scheming. Thanks, Jim! 

 In the end we founded Object Mentor together. Jim is the most direct, 
disciplined, and focused person with whom I’ve ever had the privilege to work. 
He taught me so many things, I can’t enumerate them here. Instead, I have 
dedicated this book to him. 

 There are so many others I’ve schemed with, so many others I’ve collaborated 
with, so many others who have had an impact on my professional life: Lowell 
Lindstrom, Dave Thomas, Michael Feathers, Bob Koss, Brett Schuchert, Dean 
Wampler, Pascal Roy, Jeff Langr, James Grenning, Brian Button, Alan Francis, 

Martin_FMB2.indd   xx 10/17/11   9:55 AM



xxi

ACKNOWLEDGMENTS

Mike Hill, Eric Meade, Ron Jeffries, Kent Beck, Martin Fowler, Grady Booch, 
and an endless list of others. Thank you, one and all. 

 Of course, the greatest collaborator of my life has been my lovely wife, Ann 
Marie. I married her when I was 20, three days after she turned 18. For 38 years 
she has been my steady companion, my rudder and sail, my love and my life. I 
look forward to another four decades with her. 

 And now, my collaborators and scheming partners are my children. I work 
closely with my eldest daughter Angela, my lovely mother hen and intrepid 
assistant. She keeps me on the straight and narrow and never lets me forget a 
date or commitment. I scheme business plans with my son Micah, the founder 
of 8thlight.com. His head for business is far better than mine ever was. Our 
latest venture, cleancoders.com, is very exciting! 

 My younger son Justin has just started working with Micah at 8th Light. My 
younger daughter Gina is a chemical engineer working for Honeywell. With 
those two, the serious scheming has just begun! 

 No one in your life will teach you more than your children will. Thanks, kids! 

Martin_FMB2.indd   xxi 10/17/11   9:55 AM



This page intentionally left blank 



xxiii

        ABO UT TH E AUTH O R 

  

 Robert C. Martin (“Uncle Bob”) has been a programmer since 1970. He is 
founder and president of Object Mentor, Inc., an international firm of highly 
experienced software developers and managers who specialize in helping 
companies get their projects done. Object Mentor offers process improvement 
consulting, object-oriented software design consulting, training, and skill 
development services to major corporations worldwide. 

 Martin has published dozens of articles in various trade journals and is a 
regular speaker at international conferences and trade shows. 

 He has authored and edited many books, including: 

 •    Designing Object Oriented C++ Applications Using the Booch Method   

 •    Patterns Languages of Program Design 3   

Martin_FMB2.indd   xxiii 10/17/11   9:55 AM



xxiv

 •    More C++ Gems   

 •    Extreme Programming in Practice   

 •    Agile Software Development: Principles, Patterns, and Practices   

 •    UML for Java Programmers   

 •    Clean Code     

 A leader in the industry of software development, Martin served for three years 
as editor-in-chief of the  C++ Report , and he served as the first chairman of the 
Agile Alliance. 

 Robert is also the founder of Uncle Bob Consulting, LLC, and cofounder with 
his son Micah Martin of The Clean Coders LLC. 

  

ABOUT THE AUTHOR

Martin_FMB2.indd   xxiv 10/17/11   9:55 AM



xxv

    ON TH E COV E R 

  

 The stunning image on the cover, reminiscent of Sauron’s eye, is M1, the Crab 
Nebula. M1 is located in Taurus, about one degree to the right of Zeta Tauri, the 
star at the tip of the bull’s left horn. The crab nebula is the remnant of a super-
nova that blew its guts all over the sky on the rather auspicious date of July 4th, 
1054 AD. At a distance of 6500 light years, that explosion appeared to Chinese 

Martin_FMB2.indd   xxv 10/17/11   9:55 AM



xxvi

observers as a new star, roughly as bright as Jupiter. Indeed, it was visible  during 
the day ! Over the next six months it slowly faded from naked-eye view. 

 The cover image is a composite of visible and X-ray light. The visible image was 
taken by the Hubble telescope and forms the outer envelope. The inner object 
that looks like a blue archery target was taken by the Chandra x-ray telescope. 

 The visible image depicts a rapidly expanding cloud of dust and gas laced with 
heavy elements left over from the supernova explosion. That cloud is now 11 
light-years in diameter, weighs in at 4.5 solar masses, and is expanding at the 
furious rate of 1500 kilometers per second. The kinetic energy of that old 
explosion is impressive to say the least. 

 At the very center of the target is a bright blue dot. That’s where the  pulsar  is. It 
was the formation of the pulsar that caused the star to blow up in the first place. 
Nearly a solar mass of material in the core of the doomed star imploded into a 
sphere of neutrons about 30 kilometers in diameter. The kinetic energy of that 
implosion, coupled with the incredible barrage of neutrinos created when all 
those neutrons formed, ripped the star open, and blew it to kingdom come. 

 The pulsar is spinning about 30 times per second; and it flashes as it spins. We 
can see it blinking in our telescopes. Those pulses of light are the reason we call 
it a pulsar, which is short for Pulsating Star. 

ON THE COVER

Martin_FMB2.indd   xxvi 10/17/11   9:55 AM



1B

  PR E-REQU I S ITE 
INTRO D U CTI O N 

  (Don’t skip this, you’re going to need it.)  

  

 I presume you just picked up this book because you are a computer 
programmer and are intrigued by the notion of professionalism. You should be. 
Professionalism is something that our profession is in dire need of. 

 I’m a programmer too. I’ve been a programmer for 421       years; and in that time—
 let me tell you —I’ve seen it all. I’ve been fired. I’ve been lauded. I’ve been a 
team leader, a manager, a grunt, and even a CEO. I’ve worked with brilliant 

1. Don’t Panic.



2B

PRE-REQUISITE INTRODUCTION

programmers and I’ve worked with slugs      .2 I’ve worked on high-tech cutting-
edge embedded software/hardware systems, and I’ve worked on corporate 
payroll systems. I’ve programmed in COBOL, FORTRAN, BAL, PDP-8, PDP-11, 
C, C++, Java, Ruby, Smalltalk, and a plethora of other languages and systems. 
I’ve worked with untrustworthy paycheck thieves, and I’ve worked with 
consummate professionals. It is that last classification that is the topic of this 
book. 

 In the pages of this book I will try to define what it means to be a professional 
programmer. I will describe the attitudes, disciplines, and actions that I consider 
to be essentially professional. 

 How do I know what these attitudes, disciplines, and actions are? Because I had 
to learn them the hard way. You see, when I got my first job as a programmer, 
professional was the last word you’d have used to describe me. 

 The year was 1969. I was 17. My father had badgered a local business named 
ASC into hiring me as a temporary part-time programmer. (Yes, my father 
could do things like that. I once watched him walk out in front of a speeding 
car with his hand out commanding it to “Stop!” The car stopped. Nobody said 
“no” to my Dad.) The company put me to work in the room where all the IBM 
computer manuals were kept. They had me put years and years of updates into 
the manuals. It was here that I first saw the phrase: “This page intentionally left 
blank.” 

 After a couple of days of updating manuals, my supervisor asked me to write a 
simple Easycoder3       program. I was thrilled to be asked. I’d never written a 
program for a real computer before. I had, however, inhaled the Autocoder 
books, and had a vague notion of how to begin. 

 The program was simply to read records from a tape, and replace the IDs of 
those records with new IDs. The new IDs started at 1 and were incremented by 

2. A technical term of unknown origins.

3. Easycoder was the assembler for the Honeywell H200 computer, which was similar to 

Autocoder for the IBM 1401 computer.



3B

PRE-REQUISITE INTRODUCTION

1 for each new record. The records with the new IDs were to be written to a 
new tape. 

 My supervisor showed me a shelf that held many stacks of red and blue 
punched cards. Imagine that you bought 50 decks of playing cards, 25 red 
decks, and 25 blue decks. Then you stacked those decks one on top of the other. 
That’s what these stacks of cards looked like. They were striped red and blue, 
and the stripes were about 200 cards each. Each one of those stripes contained 
the source code for the subroutine library that the programmers typically used. 
Programmers would simply take the top deck off the stack, making sure that 
they took nothing but red or blue cards, and then put that at the end of their 
program deck. 

 I wrote my program on some coding forms. Coding forms were large 
rectangular sheets of paper divided into 25 lines and 80 columns. Each line 
represented one card. You wrote your program on the coding form using block 
capital letters and a #2 pencil. In the last 6 columns of each line you wrote a 
sequence number with that #2 pencil. Typically you incremented the sequence 
number by 10 so that you could insert cards later. 

 The coding form went to the key punchers. This company had several dozen 
women who took coding forms from a big in-basket, and then “typed” them 
into key-punch machines. These machines were a lot like typewriters, except 
that the characters were punched into cards instead of printed on paper. 

 The next day the keypunchers returned my program to me by inter-office mail. 
My small deck of punched cards was wrapped up by my coding forms and a 
rubber band. I looked over the cards for keypunch errors. There weren’t any. So 
then I put the subroutine library deck on the end of my program deck, and 
then took the deck upstairs to the computer operators. 

 The computers were behind locked doors in an environmentally controlled 
room with a raised floor (for all the cables). I knocked on the door and an 
operator austerely took my deck from me and put it into another in-basket 
inside the computer room. When they got around to it, they would run my 
deck. 



4B

PRE-REQUISITE INTRODUCTION

 The next day I got my deck back. It was wrapped in a listing of the results of the 
run and kept together with a rubber band. (We used  lots  of rubber bands in 
those days!) 

 I opened the listing and saw that my compile had failed. The error messages in 
the listing were very difficult for me to understand, so I took it to my 
supervisor. He looked it over, mumbled under his breath, made some quick 
notes on the listing, grabbed my deck and then told me to follow him. 

 He took me up to the keypunch room and sat at a vacant keypunch machine. 
One by one he corrected the cards that were in error, and added one or two 
other cards. He quickly explained what he was doing, but it all went by like a 
flash. 

 He took the new deck up to the computer room and knocked at the door. He 
said some magic words to one of the operators, and then walked into the 
computer room behind him. He beckoned for me to follow. The operator set up 
the tape drives and loaded the deck while we watched. The tapes spun, the 
printer chattered, and then it was over. The program had worked. 

 The next day my supervisor thanked me for my help, and terminated my 
employment. Apparently ASC didn’t feel they had the time to nurture a 
17-year-old. 

 But my connection with ASC was hardly over. A few months later I got a full-
time second-shift job at ASC operating off-line printers. These printers printed 
junk mail from print images that were stored on tape. My job was to load the 
printers with paper, load the tapes into the tape drives, fix paper jams, and 
otherwise just watch the machines work. 

 The year was 1970. College was not an option for me, nor did it hold any 
particular enticements. The Viet Nam war was still raging, and the campuses 
were chaotic. I had continued to inhale books on COBOL, Fortran, PL/1, 
PDP-8, and IBM 360 Assembler. My intent was to bypass school and drive as 
hard as I could to get a job programming. 



5B

PRE-REQUISITE INTRODUCTION

 Twelve months later I achieved that goal. I was promoted to a full-time 
programmer at ASC. I, and two of my good friends, Richard and Tim, also 19, 
worked with a team of three other programmers writing a real-time accounting 
system for a teamster’s union. The machine was a Varian 620i. It was a simple 
mini-computer similar in architecture to a PDP-8 except that it had a 16-bit 
word and two registers. The language was assembler. 

 We wrote every line of code in that system. And I mean  every  line. We wrote the 
operating system, the interrupt heads, the IO drivers, the  file system  for the 
disks, the overlay swapper, and even the relocatable linker. Not to mention all 
the application code. We wrote all this in 8 months working 70 and 80 hours a 
week to meet a hellish deadline. My salary was $7,200 per year. 

 We delivered that system. And then we quit. 

 We quit suddenly, and with malice. You see, after all that work, and after having 
delivered a successful system, the company gave us a 2% raise. We felt cheated 
and abused. Several of us got jobs elsewhere and simply resigned. 

 I, however, took a different, and very unfortunate, approach. I and a buddy 
stormed into the boss’ office and quit together rather loudly. This was 
emotionally very satisfying—for a day. 

 The next day it hit me that I did not have a job. I was 19, unemployed, with no 
degree. I interviewed for a few programming positions, but those interviews did 
not go well. So I worked in my brother-in-law’s lawnmower repair shop for four 
months. Unfortunately I was a lousy lawnmower repairman. He eventually had 
to let me go. I fell into a nasty funk. 

 I stayed up till 3 AM every night eating pizza and watching old monster movies 
on my parents’ old black-and-white, rabbit-ear TV. Only some of the ghosts 
where characters in the movies. I stayed in bed till 1 PM because I didn’t want to 
face my dreary days. I took a calculus course at a local community college and 
failed it. I was a wreck. 



6B

PRE-REQUISITE INTRODUCTION

 My mother took me aside and told me that my life was a mess, and that I had 
been an idiot for quitting without having a new job, and for quitting so 
emotionally, and for quitting together with my buddy. She told me that you 
never quit without having a new job, and you always quit calmly, coolly, and 
alone. She told me that I should call my old boss and beg for my old job back. 
She said, “You need to eat some humble pie.” 

 Nineteen-year-old boys are not known for their appetite for humble pie, and I 
was no exception. But the circumstances had taken their toll on my pride. In the 
end I called my boss and took a big bite of that humble pie. And it worked. He 
was happy to re-hire me for $6,800 per year, and I was happy to take it. 

 I spent another eighteen months working there, watching my Ps and Qs 
and trying to be as valuable an employee as I could. I was rewarded with 
promotions and raises, and a regular paycheck. Life was good. When I left that 
company, it was on good terms, and with an offer for a better job in my pocket. 

 You might think that I had learned my lesson; that I was now a professional. Far 
from it. That was just the first of many lessons I needed to learn. In the coming 
years I would be fired from one job for carelessly missing critical dates, and 
nearly fired from still another for inadvertently leaking confidential information 
to a customer. I would take the lead on a doomed project and ride it into the 
ground without calling for the help I knew I needed. I would aggressively 
defend my technical decisions even though they flew in the face of the 
customers’ needs. I would hire one wholly unqualified person, saddling my 
employer with a huge liability to deal with. And worst of all, I would get two 
other people fired because of my inability to lead. 

 So think of this book as a catalog of my own errors, a blotter of my own crimes, 
and a set of guidelines for you to avoid walking in my early shoes. 



7B

1PRO F E S S I O N A LI S M

    “Oh laugh, Curtin, old boy. It’s a great joke played on us by the Lord, or fate, 
or nature, whatever you prefer. But whoever or whatever played it certainly 

had a sense of humor! Ha!”  

  — Howard, The Treasure of the Sierra Madre  



CHAPTER 1 PROFESSIONALISM

8B

  So, you want to be a professional software developer do you? You want to hold 
your head high and declare to the world: “I am a professional!” You want people 
to look at you with respect and treat you with deference. You want mothers 
pointing at you and telling their children to be like you. You want it all. Right? 

 BE CA R E F U L WH AT YO U AS K FO R 

 Professionalism is a loaded term. Certainly it is a badge of honor and pride, but 
it is also a marker of responsibility and accountability. The two go hand in 
hand, of course. You can’t take pride and honor in something that you can’t be 
held accountable for. 

 It’s a lot easier to be a nonprofessional. Nonprofessionals don’t have to take 
responsibility for the job they do—they leave that to their employers. If a 
nonprofessional makes an error, the employer cleans up the mess. But when a 
professional makes a mistake, he cleans up the mess. 

 What would happen if you allowed a bug to slip through a module, and it cost 
your company $10,000? The nonprofessional would shrug his shoulders, say 
“stuff happens,” and start writing the next module. The professional would 
write the company a check for $10,000!      1   

 Yeah, it feels a little different when it’s your own money, doesn’t it? But that 
feeling is the feeling a professional has all the time. Indeed, that feeling is the 
essence of professionalism. Because, you see, professionalism is all about taking 
responsibility. 

 TA K I N G RE S PO N S I B I L IT Y 

 You read the introduction, right? If not, go back and do so now; it sets the 
context for everything that follows in this book. 

 I learned about taking responsibility by suffering through the consequences of 
not taking it. 

1. Hopefully he has a good Errors and Omissions policy!



TAKING RESPONSIBILITY

9B

 In 1979 I was working for a company named Teradyne. I was the “responsible 
engineer” for the software that controlled a mini- and microcomputer-based 
system that measured the quality of telephone lines. The central mini-computer 
was connected via 300-baud dedicated or dial-up phone lines to dozens of 
satellite micro-computers that controlled the measurement hardware. The code 
was all written in assembler. 

 Our customers were the service managers of major telephone companies. Each 
had the responsibility for 100,000 telephone lines or more. My system helped 
these service area managers find and repair malfunctions and problems in the 
telephone lines before their customers noticed them. This reduced the customer 
complaint rates that the public utility commissions measured and used to 
regulate the rates that the telephone companies could charge. In short, these 
systems were incredibly important. 

 Every night these systems ran through a “nightly routine” in which the central 
mini-computer told each of the satellite micro-computers to test every 
telephone line under their control. Each morning the central computer would 
pull back the list of faulty lines, along with their failing characteristics. The 
service area managers would use this report to schedule repairmen to fix the 
faults before the customers could complain. 

 On one occasion I shipped a new release to several dozen customers. “Ship” is 
exactly the right word. I wrote the software onto tapes and shipped those tapes 
to the customers. The customers loaded the tapes and then rebooted the 
systems. 

 The new release fixed some minor defects and added a new feature that our 
customers had been demanding. We had told them we would provide that new 
feature by a certain date. I barely managed to overnight the tapes so that they’d 
arrive on the promised date. 

 Two days later I got a call from our field service manager, Tom. He told me that 
several customers had complained that the “nightly routine” had not completed, 
and that they had gotten no reports. My heart sank because in order to ship the 
software on time, I had neglected to test the routine. I had tested much of the 



CHAPTER 1 PROFESSIONALISM

10B

other functionality of the system, but testing the routine took hours, and I 
needed to ship the software. None of the bug fixes were in the routine code, so I 
felt safe. 

 Losing a nightly report was a big deal. It meant that the repairmen had less to 
do and would be overbooked later. It meant that some customers might notice a 
fault and complain. Losing a night’s worth of data is enough to get a service 
area manager to call Tom and lambaste him. 

 I fired up our lab system, loaded the new software, and then started a routine. It 
took several hours but then it aborted. The routine failed. Had I run this test 
before I shipped, the service areas wouldn’t have lost data, and the service area 
managers wouldn’t be roasting Tom right now. 

 I phoned Tom to tell him that I could duplicate the problem. He told me that most 
of the other customers had called him with the same complaint. Then he asked me 
when I could fix it. I told him I didn’t know, but that I was working on it. In the 
meantime I told him that the customers should go back to the old software. He 
was angry at me saying that this was a double blow to the customers since they’d 
lost a whole night’s worth of data and couldn’t use the new feature they were 
promised. 

 The bug was hard to find, and testing took several hours. The first fix didn’t 
work. Nor did the second. It took me several tries, and therefore several days, to 
figure out what had gone wrong. The whole time, Tom was calling me every few 
hours asking me when I’d have this fixed. He also made sure I knew about the 
earfuls he was getting from the service area managers, and just how 
embarrassing it was for him to tell them to put the old tapes back in. 

 In the end, I found the defect, shipped the new tapes, and everything went back 
to normal. Tom, who was not my boss, cooled down and we put the whole 
episode behind us. My boss came to me when it was over and said, “I bet you 
aren’t going to do that again.” I agreed. 

 Upon reflection I realized that shipping without testing the routine had been 
irresponsible. The reason I neglected the test was so I could say I had shipped 



FIRST, DO NO HARM

11B

on time. It was about me saving face. I had not been concerned about the 
customer, nor about my employer. I had only been concerned about my own 
reputation. I should have taken responsibility early and told Tom that the tests 
weren’t complete and that I was not prepared to ship the software on time. That 
would have been hard, and Tom would have been upset. But no customers 
would have lost data, and no service managers would have called. 

FI R ST,  DO NO HA R M

 So how do we take responsibility? There are some principles. Drawing from the 
Hippocratic oath may seem arrogant, but what better source is there? And, 
indeed, doesn’t it make sense that the first responsibility, and first goal, of an 
aspiring professional is to use his or her powers for good? 

 What harm can a software developer do? From a purely software point of view, 
he or she can do harm to both the function and structure of the software. We’ll 
explore how to avoid doing just that. 

  DO NO HA R M TO FU N C TI O N 

 Clearly, we want our software to work. Indeed, most of us are programmers 
today because we got something to work once and we want that feeling again. 
But we aren’t the only ones who want the software to work. Our customers and 
employers want it to work too. Indeed, they are paying us to create software that 
works just the way they want it to. 

 We harm the function of our software when we create bugs. Therefore, in order 
to be professional, we must not create bugs. 

 “But wait!” I hear you say. “That’s not reasonable. Software is too complex to 
create without bugs.” 

 Of course you are right. Software is too complex to create without bugs. 
Unfortunately that doesn’t let you off the hook. The human body is too 
complex to understand in it’s entirety, but doctors still take an oath to do no 
harm. If they don’t take themselves off a hook like that, how can we? 



CHAPTER 1 PROFESSIONALISM

12B

 “Are you telling us we must be perfect?” Do I hear you object? 

 No, I’m telling you that you must be responsible for your imperfections. The 
fact that bugs will certainly occur in your code does not mean you aren’t 
responsible for them. The fact that the task to write perfect software is virtually 
impossible does not mean you aren’t responsible for the imperfection. 

 It is the lot of a professional to be accountable for errors even though errors are 
virtually certain. So, my aspiring professional, the first thing you must practice 
is apologizing. Apologies are necessary, but insufficient. You cannot simply keep 
making the same errors over and over. As you mature in your profession, your 
error rate should rapidly decrease towards the asymptote of zero. It won’t ever 
get to zero, but it is your responsibility to get as close as possible to it. 

   QA Should Find Nothing 

 Therefore, when you release your software you should expect QA to find no 
problems. It is unprofessional in the extreme to purposely send code that you 
know to be faulty to QA. And what code do you know to be faulty? Any code 
you aren’t certain about! 

 Some folks use QA as the bug catchers. They send them code that they haven’t 
thoroughly checked. They depend on QA to find the bugs and report them back 
to the developers. Indeed, some companies reward QA based on the number of 
bugs they find. The more bugs, the greater the reward. 

 Never mind that this is a desperately expensive behavior that damages the 
company and the software. Never mind that this behavior ruins schedules and 
undermines the confidence of the enterprise in the development team. Never 
mind that this behavior is just plain lazy and irresponsible. Releasing code to QA 
that you don’t know works is unprofessional. It violates the “do no harm” rule. 

 Will QA find bugs? Probably, so get ready to apologize—and then figure out 
why those bugs managed to escape your notice and do something to prevent it 
from happening again. 



FIRST, DO NO HARM

13B

 Every time QA, or worse a  user , finds a problem, you should be surprised, 
chagrined, and determined to prevent it from happening again. 

   You Must Know It Works 

 How can you  know  your code works? That’s easy. Test it. Test it again. Test it up. 
Test it down. Test it seven ways to Sunday! 

 Perhaps you are concerned that testing your code so much will take too much 
time. After all you’ve got schedules and deadlines to keep. If you spend all your 
time testing, you’ll never get anything else written. Good point! So, automate 
your tests. Write unit tests that you can execute on a moment’s notice, and run 
those tests as often as you can. 

 How much of the code should be tested with these automated unit tests? Do 
I really need to answer that question? All of it! All. Of. It. 

 Am I suggesting 100% test coverage? No, I’m not  suggesting  it. I’m demanding it. 
Every single line of code that you write should be tested. Period. 

 Isn’t that unrealistic? Of course not. You only write code because you expect it 
to get executed. If you expect it to get executed, you ought to  know  that it 
works. The only way to know this is to test it. 

 I am the primary contributor and committer for an open source project called 
FITNESSE. As of this writing there are 60ksloc in FITNESSE. 26 of those 60 are written 
in 2000+ unit tests. Emma reports that the coverage of those 2000 tests is ~90%. 

 Why isn’t my code coverage higher? Because Emma can’t see all the lines of 
code that are being executed! I believe the coverage is much higher than that. 
Is the coverage 100%? No, 100% is an asymptote. 

 But isn’t some code hard to test? Yes, but only because that code has been 
designed to be hard to test. The solution to that is to design your code to be  easy  
to test. And the best way to do that is to write your tests first, before you write 
the code that passes them. 



CHAPTER 1 PROFESSIONALISM

14B

 This is a discipline known as Test Driven Development (TDD), which we will 
say more about in a later chapter. 

   Automated QA 

 The entire QA procedure for FITNESSE is the execution of the unit and acceptance 
tests. If those tests pass, I ship. This means my QA procedure takes about three 
minutes, and I can execute it on a whim. 

 Now, it’s true that nobody dies if there is a bug in FITNESSE. Nobody loses millions 
of dollars either. On the other hand, FITNESSE has many thousands of users, and a 
 very  small bug list. 

 Certainly some systems are so mission-critical that a short automated test is 
insufficient to determine readiness for deployment. On the other hand, you as a 
developer need a relatively quick and reliable mechanism to know that the code you 
have written works and does not interfere with the rest of the system. So, at the very 
least, your automated tests should tell you that the system is very likely to pass QA. 

   DO NO HA R M TO STR U C TU R E 

 The true professional knows that delivering function at the expense of structure 
is a fool’s errand. It is the structure of your code that allows it to be flexible. If 
you compromise the structure, you compromise the future. 

 The fundamental assumption underlying all software projects is that software is 
easy to change. If you violate this assumption by creating inflexible structures, 
then you undercut the economic model that the entire industry is based on. 

 In short: You must be able to make changes without exorbitant costs. 

 Unfortunately, all too many projects become mired in a tar pit of poor structure. 
Tasks that used to take days begin to take weeks, and then months. Management, 
desperate to recapture lost momentum, hires more developers to speed things 
up. But these developers simply add to the morass, deepening the structural 
damage and raising the impediment. 



FIRST, DO NO HARM

15B

 Much has been written about the principles and patterns of software design that 
support structures that are flexible and maintainable.      2   Professional software 
developers commit these things to memory and strive to conform their software 
to them. But there’s a trick to this that far too few software developers follow: If 
you want your software to be flexible, you have to flex it! 

 The only way to prove that your software is easy to change is to make easy 
changes to it. And when you find that the changes aren’t as easy as you thought, 
you refine the design so that the next change is easier. 

 When do you make these easy changes? All the time! Every time you look at a 
module you make small, lightweight changes to it to improve its structure. 
Every time you read through the code you adjust the structure. 

 This philosophy is sometimes called merciless refactoring. I call it “the Boy Scout 
rule”: Always check in a module cleaner than when you checked it out. Always 
make some random act of kindness to the code whenever you see it. 

 This is completely counter to the way most people think about software. They 
think that making a continuous series of changes to working software is 
dangerous. No! What is dangerous is allowing the software to remain static. If 
you aren’t flexing it, then when you  do  need to change it, you’ll find it rigid. 

 Why do most developers fear to make continuous changes to their code? They 
are afraid they’ll break it! Why are they afraid they’ll break it? Because they 
don’t have tests. 

 It all comes back to the tests. If you have an automated suite of tests that covers 
virtually 100% of the code, and if that suite of tests can be executed quickly on 
a whim, then you simply will not be afraid to change the code. How do you prove 
you are not afraid to change the code? You change it all the time. 

 Professional developers are so certain of their code and tests that they are 
maddeningly casual about making random, opportunistic changes. They’ll 
change the name of a class, on a whim. They’ll notice a long-ish method while 

2. [PPP2001]



CHAPTER 1 PROFESSIONALISM

16B

reading through a module and repartition it as a matter of course. They’ll 
transform a switch statement into polymorphic deployment, or collapse an 
inheritance hierarchy into a chain-of-command. In short, they treat software 
the way a sculptor treats clay—they continuously shape and mold it. 

   WO R K ETH I C 

 Your career is your responsibility. It is not your employer’s responsibility to 
make sure you are marketable. It is not your employer’s responsibility to train 
you, or to send you to conferences, or to buy you books. These things are  your  
responsibility. Woe to the software developer who entrusts his career to his 
employer. 

 Some employers are willing to buy you books and send you to training classes 
and conferences. That’s fine, they are doing you a favor. But never fall into the 
trap of thinking that this is your employer’s responsibility. If your employer 
doesn’t do these things for you, you should find a way to do them yourself. 

 It is also not your employer’s responsibility to give you the time you need to 
learn. Some employers may provide that time. Some employers may even 
demand that you take the time. But again, they are doing you a favor, and you 
should be appropriately appreciative. Such favors are not something you should 
expect. 

 You owe your employer a certain amount of time and effort. For the sake of 
argument, let’s use the U.S. standard of 40 hours per week. These 40 hours 
should be spent on your employer’s problems, not on your problems. 

 You should plan on working 60 hours per week. The first 40 are for your 
employer. The remaining 20 are for you. During this remaining 20 hours you 
should be reading, practicing, learning, and otherwise enhancing your career. 

 I can hear you thinking: “But what about my family? What about my life? Am 
I supposed to sacrifice them for my employer?” 



WORK ETHIC

17B

 I’m not talking about all your free time here. I’m talking about 20 extra hours 
per week. That’s roughly three hours per day. If you use your lunch hour to 
read, listen to podcasts on your commute, and spend 90 minutes per day 
learning a new language, you’ll have it all covered. 

 Do the math. In a week there are 168 hours. Give your employer 40, and your career 
another 20. That leaves 108. Another 56 for sleep leaves 52 for everything else. 

 Perhaps you don’t want to make that kind of commitment. That’s fine, but you 
should not then think of yourself as a professional. Professionals spend time 
caring for their profession. 

 Perhaps you think that work should stay at work and that you shouldn’t bring it 
home. I agree! You should not be working for your employer during those 20 
hours. Instead, you should be working on your career. 

 Sometimes these two are aligned with each other. Sometimes the work you do 
for your employer is greatly beneficial to your career. In that case, spending 
some of that 20 hours on it is reasonable. But remember, those 20 hours are for 
you. They are to be used to make yourself more valuable as a professional. 

 Perhaps you think this is a recipe for burnout. On the contrary, it is a recipe to 
avoid burnout. Presumably you became a software developer because you are 
passionate about software and your desire to be a professional is motivated by 
that passion. During that 20 hours you should be doing those things that 
reinforce that passion. Those 20 hours should be  fun!  

  KN OW YO U R FI E L D 

 Do you know what a Nassi-Schneiderman chart is? If not, why not? Do you 
know the difference between a Mealy and a Moore state machine? You should. 
Could you write a quicksort without looking it up? Do you know what the term 
“Transform Analysis” means? Could you perform a functional decomposition 
with Data Flow Diagrams? What does the term “Tramp Data” mean? Have you 
heard the term “Conascence”? What is a Parnas Table? 



CHAPTER 1 PROFESSIONALISM

18B

 A wealth of ideas, disciplines, techniques, tools, and terminologies decorate the 
last fifty years of our field. How much of this do you know? If you want to be a 
professional, you should know a sizable chunk of it and constantly be increasing 
the size of that chunk. 

 Why should you know these things? After all, isn’t our field progressing so 
rapidly that all these old ideas have become irrelevant? The first part of that 
query seems obvious on the surface. Certainly our field is progressing and at a 
ferocious pace. Interestingly enough, however, that progress is in many respects 
peripheral. It’s true that we don’t wait 24 hours for compile turnaround any 
more. It’s true that we write systems that are gigabytes in size. It’s true that we 
work in the midst of a globe-spanning network that provides instant access to 
information. On the other hand, we are writing the same  if  and  while  statements 
that we were writing 50 years ago. Much has changed. Much has not. 

 The second part of the query is certainly not true. Very few ideas of the past 50 
years have become irrelevant. Some have been sidelined, it’s true. The notion of 
doing waterfall development has certainly fallen into disfavor. But that doesn’t 
mean we shouldn’t know what it is, and what its good and bad points are. 

 Overall, however, the vast majority of the hard-won ideas of the last 50 years are 
as valuable today as they were then. Perhaps they are even more valuable now. 

 Remember Santayana’s curse: “Those who cannot remember the past are 
condemned to repeat it.” 

 Here is a  minimal  list of the things that every software professional should be 
conversant with: 

 •   Design patterns. You ought to be able to describe all 24 patterns in the GOF book 
and have a working knowledge of many of the patterns in the POSA books.  

 •   Design principles. You should know the SOLID principles and have a good 
understanding of the component principles.  

 •   Methods. You should understand XP, Scrum, Lean, Kanban, Waterfall, 
Structured Analysis, and Structured Design.  



WORK ETHIC

19B

 •   Disciplines. You should practice TDD, Object-Oriented design, Structured 
Programming, Continuous Integration, and Pair Programming.  

 •   Artifacts: You should know how to use: UML, DFDs, Structure Charts, Petri 
Nets, State Transition Diagrams and Tables, flow charts, and decision tables.    

   CO NTI N U O U S LE A R N I N G 

 The frenetic rate of change in our industry means that software developers 
must continue to learn copious quantities just to keep up. Woe to the architects 
who stop coding—they will rapidly find themselves irrelevant. Woe to the 
programmers who stop learning new languages—they will watch as the 
industry passes them by. Woe to the developers who fail to learn new disciplines 
and techniques—their peers will excel as they decline. 

 Would you visit a doctor who did not keep current with medical journals? 
Would you hire a tax lawyer who did not keep current with the tax laws and 
precedents? Why should employers hire developers who don’t keep current? 

 Read books, articles, blogs, tweets. Go to conferences. Go to user groups. 
Participate in reading and study groups. Learn things that are outside your 
comfort zone. If you are a .NET programmer, learn Java. If you are a Java 
programmer, learn Ruby. If you are a C programmer, learn Lisp. If you want to 
really bend your brain, learn Prolog and Forth! 

   PR AC TI C E 

 Professionals practice. True professionals work hard to keep their skills sharp 
and ready. It is not enough to simply do your daily job and call that practice. 
Doing your daily job is performance, not practice. Practice is when you 
specifically exercise your skills outside of the performance of your job for the 
sole purpose of refining and enhancing those skills. 

 What could it possibly mean for a software developer to practice? At first 
thought the concept seems absurd. But stop and think for a moment. Consider 
how musicians master their craft. It’s not by performing. It’s by practicing. And 
how do they practice? Among other things, they have special exercises that they 
perform. Scales and etudes and runs. They do these over and over to train their 
fingers and their mind, and to maintain mastery of their skill. 



CHAPTER 1 PROFESSIONALISM

20B

 So what could software developers do to practice? There’s a whole chapter in 
this book dedicated to different practice techniques, so I won’t go into much 
detail here. One technique I use frequently is the repetition of simple exercises 
such as the  Bowling Game  or  Prime Factors . I call these exercises kata. There are 
many such kata to choose from. 

 A kata usually comes in the form of a simple programming problem to solve, such 
as writing the function that calculates the prime factors of an integer. The point of 
doing the kata is not to figure out how to solve the problem; you know how to do 
that already. The point of the kata is to train your fingers and your brain. 

 I’ll do a kata or two every day, often as part of settling in to work. I might do it 
in Java, or in Ruby, or in Clojure, or in some other language for which I want to 
maintain my skills. I’ll use the kata to sharpen a particular skill, such as keeping 
my fingers used to hitting shortcut keys, or using certain refactorings. 

 Think of the kata as a 10-minute warm-up exercise in the morning and a 10-minute 
cool-down in the evening. 

   CO L L A BO R ATI O N 

 The second best way to learn is to collaborate with other people. Professional 
software developers make a special effort to program together, practice together, 
design and plan together. By doing so they learn a lot from each other, and they 
get more done faster with fewer errors. 

 This doesn’t mean you have to spend 100% of your time working with others. 
Alone time is also very important. As much as I like to pair program with 
others, it makes me crazy if I can’t get away by myself from time to time. 

   ME NTO R I N G 

 The best way to learn is to teach. Nothing will drive facts and values into your 
head faster and harder than having to communicate them to people you are 
responsible for. So the benefit of teaching is strongly in favor of the teacher. 



WORK ETHIC

21B

 By the same token, there is no better way to bring new people into an organization 
than to sit down with them and show them the ropes. Professionals take personal 
responsibility for mentoring juniors. They will not let a junior flail about 
unsupervised. 

   KN OW YO U R DO M A I N 

 It is the responsibility of every software professional to understand the domain 
of the solutions they are programming. If you are writing an accounting system, 
you should know the accounting field. If you are writing a travel application, 
you should know the travel industry. You don’t have to be a domain expert, but 
there is a reasonable amount of due diligence that you ought to engage in. 

 When starting a project in a new domain, read a book or two on the topic. 
Interview your customer and users about the foundation and basics of the 
domain. Spend some time with the experts, and try to understand their 
principles and values. 

 It is the worst kind of unprofessional behavior to simply code from a spec 
without understanding why that spec makes sense to the business. Rather, you 
should know enough about the domain to be able to recognize and challenge 
specification errors. 

   ID E NTI F Y W ITH YO U R EM PLOY E R / CU S TO M E R 

 Your employer’s problems are your problems. You need to understand what 
those problems are and work toward the best solutions. As you develop a system 
you need to put yourself in your employer’s shoes and make sure that the 
features you are developing are really going to address your employer’s needs. 

 It is easy for developers to identify with each other. It’s easy to fall into an us 
 versus  them attitude with your employer. Professionals avoid this at all costs. 



CHAPTER 1 PROFESSIONALISM

22B

   HU M I LIT Y 

 Programming is an act of creation. When we write code we are creating 
something out of nothing. We are boldly imposing order upon chaos. We are 
confidently commanding, in precise detail, the behaviors of a machine that 
could otherwise do incalculable damage. And so, programming is an act of 
supreme arrogance. 

 Professionals know they are arrogant and are not falsely humble. A professional 
knows his job and takes pride in his work. A professional is confident in his 
abilities, and takes bold and calculated risks based on that confidence. A 
professional is not timid. 

 However, a professional also knows that there will be times when he will fail, his 
risk calculations will be wrong, his abilities will fall short; he’ll look in the 
mirror and see an arrogant fool smiling back at him. 

 So when a professional finds himself the butt of a joke, he’ll be the first to laugh. 
He will never ridicule others, but will accept ridicule when it is deserved and 
laugh it off when it’s not. He will not demean another for making a mistake, 
because he knows he may be the next to fail. 

 A professional understands his supreme arrogance, and that the fates will eventually 
notice and level their aim. When that aim connects, the best you can do is take 
Howard’s advice: Laugh. 

    B I B LI O G R A PH Y 

    [PPP2001]:   Robert C. Martin, Principles, Patterns, and Practices of Agile Software 
Development , Upper Saddle River, NJ: Prentice Hall, 2002.    



23B

2SAYI N G NO

    “Do; or do not. There is no trying.” 

— Yoda  

  In the early ’70s, I, and two of my nineteen-year-old friends were working on a 
real-time accounting system for the Teamster’s union in Chicago for a company 
named ASC. If names like Jimmy Hoffa come to mind, they should. You didn’t 
mess around with the teamsters in 1971. 

 Our system was supposed to go live by a certain date. A lot of money was riding 
on that date. Our team had been working 60-, 70-, and 80-hour weeks to try to 
hold to that schedule. 



CHAPTER 2 SAYING NO

24B

 A week before the go-live date we finally got the system put together in its 
entirety. There were lots of bugs and issues to deal with, and we frantically 
worked through the list. There was barely time to eat and sleep, let alone think. 

 Frank, the manager of ASC, was a retired Air Force colonel. He was one of those 
loud, in-your-face kind of managers. It was his way or the highway, and he’d put 
you on that highway by dropping you from 10,000 feet without a parachute. We 
nineteen year olds were barely able to make eye contact with him. 

 Frank said it had to be done by the date. That was all there was to it. The date 
would come, and we would be done. Period. No discussion. Over and out. 

 My boss, Bill, was a likeable guy. He’d been working with Frank for quite a few 
years and understood what was possible with Frank, and what was not. He told 
us that we were going live on the date, no matter what. 

 So we went live on the date. And it was a blazing disaster. 

 There were a dozen 300-baud, half-duplex terminals that connected Teamster’s 
headquarters in Chicago to our machine thirty miles north in the suburbs. Each 
of those terminals locked up every 30 minutes or so. We had seen this problem 
before but had not simulated the traffic that the union data-entry clerks were 
suddenly slamming into our system. 

 To make matters worse, the tear sheets being printed on the ASR35 teletypes 
that were also connected to our system by 110-baud phone lines would freeze 
up in the middle of printing. 

 The solution to these freeze-ups was to reboot. So they’d have to get everybody 
whose terminal was still live to finish their work and then stop. When everyone 
was stopped, then they’d call us to reboot. The people who had been frozen 
would have to start over. And this was happening more than once per hour. 

 After half a day of this, the Teamster’s office manager told us to shut the system 
down and not bring it up again until we had it working. Meanwhile, they had lost 
a half day of work and were going to have to re-enter it all using the old system. 



25B

SAYING NO

 We heard Frank’s wails and roars all through the building. They went on for a 
long, long time. Then Bill, and our system’s analyst Jalil, came to us and asked 
when we could have the system stable. I said, “four weeks.” 

 The look on their faces was horror and then determination. “No,” they said, “it 
must be running by Friday.” 

 So I said, “Look, we just barely got this system to sort-of work last week. We 
need to shake down the troubles and issues. We need four weeks.” 

 But Bill and Jalil were adamant. “No, it’s really got to be Friday. Can you at 
least try?” 

 Then our team leader said, “OK, we’ll try.” 

 Friday was a good choice, The weekend load was a lot lower. We were able to 
find more problems and correct them before Monday came. Even so, the whole 
house of cards nearly came tumbling down again. The freeze-up problems kept 
on happening once or twice a day. There were other problems too. But 
gradually, after a few more weeks, we got the system to the point where the 
complaints died down, and normal life looked like it might actually be 
possible. 

 And then, as I told you in the introduction, we all quit. And they were left with 
a real crisis on their hands. They had to hire a new batch of programmers to try 
to deal with the huge stream of issues coming from the customer. 

 Who can we blame this debacle on? Clearly, Frank’s style is part of the 
problem. His intimidations made it difficult for him to hear the truth. 
Certainly Bill and Jalil should have pushed back on Frank much harder than 
they did. Certainly our team lead should not have caved in to the Friday 
demand. And certainly I should have continued to say “no” instead of getting 
in line behind our team lead. 

 Professionals speak truth to power. Professionals have the courage to say no to 
their managers. 



CHAPTER 2 SAYING NO

26B

 How do you say no to your boss? After all, it’s your boss! Aren’t you supposed to 
do what your boss says? 

 No. Not if you are a professional. 

 Slaves are not allowed to say no. Laborers may be hesitant to say no. But 
professionals are expected to say no. Indeed, good managers crave someone who 
has the guts to say no. It’s the only way you can really get anything done. 

  ADV E R S A R I A L RO L E S 

 One of the reviewers of this book truly hated this chapter. He said that it almost 
made him put the book down. He had built teams where there were no adversarial 
relationships; the teams worked together in harmony and without confrontation. 

 I’m happy for this reviewer, but I wonder if his teams are really as confrontation 
free as he supposes. And if they are, I wonder if they are as efficient as they 
could be. My own experience has been that the hard decisions are best made 
through the confrontation of adversarial roles. 

 Managers are people with a job to do, and most managers know how to do that 
job pretty well. Part of that job is to pursue and defend their objectives as 
aggressively as they can. 

 By the same token, programmers are also people with a job to do, and most of 
them know how to get that job done pretty well. If they are professionals they 
will pursue and defend their objectives as aggressively as they can. 

 When your manager tells you that the login page has to be ready by tomorrow, 
he is pursuing and defending one of his objectives. He’s doing his job. If you 
know full well that getting the login page done by tomorrow is impossible, then 
you are not doing your job if you say “OK, I’ll try.” The only way to do your job, 
at that point, is to say “No, that’s impossible.” 

 But don’t you have to do what your manager says? No, your manager is 
counting on you to defend your objectives as aggressively as he defends his. 
That’s how the two of you are going to get to the best possible outcome. 



ADVERSARIAL ROLES

27B

 The best possible outcome is the goal that you and your manager share. The 
trick is to find that goal, and that usually takes negotiation. 

 Negotiation can sometimes be pleasant.  

  Mike:  “Paula, I need the login page done by tomorrow.”  

  Paula: “Oh, wow! That soon? Well, OK, I’ll try.”  

  Mike:  “OK, that’s great. Thanks!”   

 That was a nice little conversation. All confrontation was avoided. Both parties 
left smiling. Nice. 

 But both parties were behaving unprofessionally. Paula knows full well that the 
login page is going to take her longer than a day, so she’s just lying. She might 
not think of it as a lie. Perhaps she thinks she actually will try, and maybe she 
holds out some meager hope that she’ll actually get it done. But in the end, it’s 
still a lie. 

 Mike, on the other hand, accepted the “I’ll try” as “Yes.” That’s just a dumb thing 
to do. He should have known that Paula was trying to avoid confrontation, so 
he should have pressed the issue by saying, “You seem hesitant. Are you sure you 
can get it done tomorrow?” 

 Here’s another pleasant conversation.  

  Mike:  “Paula, I need the login page done by tomorrow.”  

  Paula: “Oh, sorry Mike, but it’s going to take me more time than that.”  

  Mike:  “When do you think you can have it done?”  

  Paula: “How about two weeks from now?”  

  Mike:  (scribbles something in his daytimer) “OK, thanks.”   

 As pleasant as that was, it was also terribly dysfunctional and utterly 
unprofessional. Both parties failed in their search for the best possible outcome. 
Instead of asking whether two weeks would be OK, Paula should have been 
more assertive: “It’s going to take me two weeks, Mike.” 



CHAPTER 2 SAYING NO

28B

 Mike, on the other hand, just accepted the date without question, as though his 
own objectives didn’t matter. One wonders if he’s not going to simply report 
back to his boss that the customer demo will have to be postponed because of 
Paula. That kind of passive-aggressive behavior is morally reprehensible. 

 In all these cases neither party has pursued a common acceptable goal. Neither 
party has been looking for the best possible outcome. Let’s try this.  

  Mike:  “Paula, I need the login page done by tomorrow.”  

  Paula: “No, Mike, that’s a two-week job.”  

  Mike:   “Two weeks? The architects estimated it at three days and it’s 
already been five!”  

  Paula:  “The architects were wrong, Mike. They did their estimates before 
product marketing got hold of the requirements. I’ve got at least 
ten more days of work to do on this. Didn’t you see my updated 
estimate on the wiki?”  

  Mike:  (looking stern and trembling with frustration) “This isn’t acceptable 
Paula. Customers are coming for a demo tomorrow, and I’ve got to 
show them the login page working.”  

  Paula:  “What part of the login page do you need working by 
tomorrow?”  

  Mike:  “I need the login page! I need to be able to log in.”  

  Paula:  “Mike, I can give you a mock-up of the login page that will let you 
log in. I’ve got that working now. It won’t actually check your 
username and password, and it won’t email a forgotten password to 
you. It won’t have the company news banner “Times-squaring” 
around the top of it, and the help button and hover text won’t 
work. It won’t store a cookie to remember you for next time, and it 
won’t put any permission restrictions on you. But you’ll be able to 
log in. Will that do?”  

  Mike:  “I’ll be able to log in?”  

  Paula: “Yes, you’ll be able to log in.”  

  Mike:   “That’s great Paula, you’re a life saver!” (walks away pumping the 
air and saying “Yes!”)   



HIGH STAKES

29B

 They reached the best possible outcome. They did this by saying no and then 
working out a solution that was mutually agreeable to both. They were acting 
like professionals. The conversation was a bit adversarial, and there were a few 
uncomfortable moments, but that’s to be expected when two people assertively 
pursue goals that aren’t in perfect alignment. 

  WH AT A BO U T TH E WH Y? 

 Perhaps you think that Paula should have explained why the login page was 
going to take so much longer. My experience is that the why is a lot less 
important than the fact. That fact is that the login page will require two weeks. 
Why it will take two weeks is just a detail. 

 Still, knowing why might help Mike to understand, and therefore to accept, the 
fact. Fair enough. And in situations where Mike has the technical expertise and 
temperament to understand, such explanations might be useful. On the other 
hand, Mike might disagree with the conclusion. Mike might decide that Paula 
was doing it all wrong. He might tell her that she doesn’t need all that testing, 
or all that reviewing, or that step 12 could be omitted. Providing too much 
detail can be an invitation for micro-management. 

    HI G H STA K E S 

 The most important time to say no is when the stakes are highest. The higher 
the stakes, the more valuable no becomes. 

 This should be self-evident. When the cost of failure is so high that the survival 
of your company depends upon it, you must be absolutely determined to give 
your managers the best information you can. And that often means saying no.  

  Don (Director of Development): “So, our current estimate for completion 
of the Golden Goose project is twelve weeks from today, with an 
uncertainty of plus or minus five weeks.”  

  Charles (CEO): (sits glaring for fifteen seconds as his face reddens) “Do 
you mean to sit there and tell me that we might be seventeen weeks 
from delivery?”  



CHAPTER 2 SAYING NO

30B

  Don:  “That’s possible, yes.”  

  Charles:  (stands up, Don stands up a second later) “Damm it Don! This 
was supposed to be done three weeks ago! I’ve got Galitron 
calling me every day wondering where their frakking system is. 
I am not going to tell them that they have to wait another four 
months? You’ve got to do better.”  

  Don:   Chuck, I told you three months ago, after all the layoffs, that we’d 
need four more months. I mean, Christ Chuck, you cut my staff 
twenty percent! Did you tell Galitron then that we’d be late?”  

  Charles:  “You know damned well I didn’t. We can’t afford to lose that order 
Don. (Charles pauses, his face goes white) Without Galitron, we’re 
really hosed. You know that, don’t you? And now with this delay, 
I’m afraid . . . What will I tell the board? (He slowly sits back down 
in his seat, trying not to crumble.) Don, you’ve got to do better.”  

  Don:   “There’s nothing I can do Chuck. We’ve been through this already. 
Galitron won’t cut scope, and they won’t accept any interim 
releases. They want to do the installation once and be done with 
it. I simply cannot do that any faster. It’s not going to happen.”  

  Charles:  “Damn. I don’t suppose it would matter if I told you your job 
was at stake.”  

  Don:   “Firing me isn’t going to change the estimate, Charles.”  

  Charles:  “We’re done here. Go back to your team and keep this project 
moving. I’ve got some very tough phone calls to make.”   

 Of course, Charles should have told Galitron no three months ago when he first 
found out about the new estimate. At least now he’s doing the right thing by 
calling them (and the board). But if Don hadn’t stuck to his guns, those calls 
might have been delayed even longer. 

   BE I N G A “TE A M PL AY E R” 

 We’ve all heard how important it is to be a “team player.” Being a team player 
means playing your position as well as you possibly can, and helping out your 
teammates when they get into a jam. A team-player communicates frequently, 
keeps an eye out for his or her teammates, and executes his or her own 
responsibilities as well as possible. 



BEING A “TEAM PLAYER”

31B

 A team player is not someone who says yes all the time. Consider this scenario: 

  Paula:  “Mike, I’ve got those estimates for you. The team agrees that we’ll be 
ready to give a demo in about eight weeks, give or take one week.”  

  Mike:  “Paula, we’ve already scheduled the demo for six weeks from now.”  

  Paula:  “Without hearing from us first? Come on Mike, you can’t push that 
on us.”  

  Mike:  “It’s already done.”  

  Paula:  (sigh) “OK, look, I’ll go back to the team and find out what we can 
safely deliver in six weeks, but it won’t be the whole system. There’ll 
be some features missing, and the data load will be incomplete.”  

  Mike:  “Paula, the customer is expecting to see a complete demo.”  

  Paula: “That’s not going to happen Mike.”  

  Mike:   “Damn. OK, work up the best plan you can and let me know 
tomorrow.”  

  Paula: “That I can do.”  

  Mike:   “Isn’t there something you can do to bring this date in? Maybe 
there’s a way to work smarter and get creative.”  

  Paula:  “We’re all pretty creative, Mike. We’ve got a good handle on the 
problem, and the date is going to be eight or nine weeks, not six.”  

  Mike:  “You could work overtime.”  

  Paula:  “That just makes us go slower, Mike. Remember the mess we made 
last time we mandated overtime?”  

  Mike:  “Yeah, but that doesn’t have to happen this time.”  

  Paula:  “It’ll be just like last time, Mike. Trust me. It’s going to be eight or 
nine weeks, not six.”  

  Mike:   “OK, get me your best plan, but keep thinking about how to get it 
done in six weeks. I know you guys’ll figure out something.”  

  Paula:  “No, Mike, we won’t. I’ll get you a plan for six weeks, but it will be 
missing a lot of features and data. That’s just how it’s going to be.”  

  Mike:  “OK, Paula, but I bet you guys can work miracles if you try.”  

  (Paula walks away shaking her head.)  

  Later, in the Director’s strategy meeting …  



CHAPTER 2 SAYING NO

32B

  Don: “OK Mike, as you know the customer is coming in for a demo in six 
weeks. They’re expecting to see everything working.”  

  Mike: “Yes, and we’ll be ready. My team is busting their butts on this and 
we’re going to get it done. We’ll have to work some overtime, and 
get pretty creative, but we’ll make it happen!”  

  Don: “It’s great that you and your staff are such team players.”    

 Who were the  real  team players in this scenario? Paula was playing for the team, 
because she represented what could, and could not, be done to the best of her 
ability. She aggressively defended her position, despite the wheedling and 
cajoling from Mike. Mike was playing on a team of one. Mike is for Mike. He’s 
clearly not on Paula’s team because he just committed her to something she 
explicitly said she couldn’t do. He’s not on Don’s team either (though he’d 
disagree) because he just lied through his teeth. 

 So why did Mike do this? He wanted Don to see him as a team player, and he 
has faith in his ability to wheedle and manipulate Paula into trying for the six-
week deadline. Mike is not evil; he’s just too confident in his ability to get 
people to do what he wants. 

   TRY I N G 

 The worst thing Paula could do in response to Mike’s manipulations is say “OK, 
we’ll try.” I hate to channel Yoda here, but in this instance he is correct. There is 
no trying .  

 Perhaps you don’t like that idea? Perhaps you think trying is a positive thing to 
do. After all, would Columbus have discovered America if he hadn’t tried? 

 The word try has many definitions. The definition I take issue with here is “to 
apply extra effort.” What extra effort could Paula apply to get the demo ready in 
time? If there is extra effort she could apply, then she and her team must not 
have been applying all their effort before. They must have been holding some 
effort in reserve.      1   

1. Like Foghorn Leghorn: “I always keep my feathers numbered for just such an emergency.”



BEING A “TEAM PLAYER”

33B

 The promise to try is an admission that you’ve been holding back, that you have 
a reservoir of extra effort that you can apply. The promise to try is an admission 
that the goal is attainable through the application of this extra effort; moreover, 
it is a commitment to apply that extra effort to achieve the goal. Therefore, by 
promising to try you are committing to succeed. This puts the burden on you. 
If your “trying” does not lead to the desired outcome, you will have failed. 

 Do you have an extra reservoir of energy that you’ve been holding back? If you 
apply these reserves, will you be able to meet the goal? Or, by promising to try 
are you simply setting yourself up for failure? 

 By promising to try you are promising to change your plans. After all, the plans 
you had were insufficient. By promising to try you are saying that you have a 
new plan. What is that new plan? What change will you make to your behavior? 
What different things are you going to do because now you are “trying”? 

 If you don’t have a new plan, if you don’t make a change to your behavior, if 
you do everything exactly as you would have before you promised to “try,” then 
what does trying mean? 

 If you are not holding back some energy in reserve, if you don’t have a new plan, 
if you aren’t going to change your behavior, and if you are reasonably confident 
in your original estimate, then promising to try is fundamentally dishonest. You 
are lying. And you are probably doing it to save face and to avoid a confrontation. 

 Paula’s approach was much better. She continued to remind Mike that the 
team’s estimate was uncertain. She always said “eight or nine weeks.” She 
stressed the uncertainty and never backed off. She never suggested that there 
might be some extra effort, or some new plan, or some change in behavior that 
could reduce that uncertainty.  

  Three weeks later …  

  Mike:   “Paula, the demo is in three weeks, and the customers are 
demanding to see  FILE UPLOAD  working.”  

  Paula: “Mike, that’s not on the list of features we agreed to.”  



CHAPTER 2 SAYING NO

34B

  Mike:  “I know, but they’re demanding it.”  

  Paula:  “OK, that means that either  SINGLE SIGN-ON  or  BACKUP  will have to 
be dropped from the demo.”  

  Mike:   “Absolutely not! They’re expecting to see those features working as well!”  

  Paula:  “So then, they are expecting to see every feature working. Is that 
what you are telling me? I told you that wasn’t going to happen.”  

  Mike:   “I’m sorry Paula, but the customer just won’t budge on this. They 
want to see it all.”  

  Paula: “That’s not going to happen, Mike. It’s just not.”  

  Mike:  “Come on Paula, can’t you guys at least try?”  

  Paula:  “Mike, I could try to levitate. I could try to change lead in to gold. 
I could try to swim across the Atlantic. Do you think I’d succeed?”  

  Mike:  “Now you’re being unreasonable. I’m not asking for the  impossible .”  

  Paula: “Yes, Mike, you are.”  

  (Mike smirks, nods, and turns to walk away.)  

  Mike:  “I’ve got faith in you Paula; I know you won’t let me down.”  

  Paula:  (speaking to Mike’s back) “Mike, you’re dreaming. This  is  not going 
to end well.”  

  (Mike just waves without turning around.)   

   PA S S I V E AG G R E S S I O N 

 Paula’s got an interesting decision to make. She suspects that Mike is not telling 
Don about her estimates. She could just let Mike walk off the end of the cliff. 
She could make sure that copies of all the appropriate memos were on file, so 
that when the disaster strikes she can show what she told Mike, and when she 
told him. This is passive aggression. She’d just let Mike hang himself. 

 Or, she could try to head off the disaster by communicating directly with Don. 
This is risky, to be sure, but it’s also what being a team player is really all about. 
When a freight train is bearing down on you and you are the only one who can 
see it, you can either step quietly off the track and watch everyone else get run 
over, or you can yell “Train! Get off the track!”  



BEING A “TEAM PLAYER”

35B

  Two days later …  

  Paula:  “Mike, have you told Don about my estimates? Has he told the 
customer that the demo will not have the  FILE UPLOAD  feature working?”  

  Mike:  “Paula, you said you’d get that working for me.”  

  Paula:  “No, Mike, I didn’t. I told you that it was impossible. Here’s a copy 
of the memo I sent you after our talk.”  

  Mike: “Yeah, but you were going to try anyway, right?”  

  Paula:  “We’ve already had that discussion Mike. Remember, gold and lead?”  

  Mike:   (sighs) “Look, Paula, you’ve just got to do it. You just have to. Please 
do whatever it takes, but you just have to make this happen for me.”  

  Paula:  “Mike. You’re wrong. I don’t have to make this happen for you. 
What I have to do, if you don’t, is tell Don.”  

  Mike:  “That’d be going over my head, you wouldn’t do that.”  

  Paula: “I don’t want to Mike, but I will if you force me.”  

  Mike:  “Oh, Paula . . .”  

  Paula:  “Look, Mike, the features aren’t going to get done in time for the 
demo. You need to get this into your head. Stop trying to convince 
me to work harder. Stop deluding yourself that I’m somehow going 
to pull a rabbit out of a hat. Face the fact that you have to tell Don, 
and you have to tell him today.”  

  Mike:  (Eyes wide) “Today?”  

  Paula:  “Yes, Mike. Today. Because tomorrow I expect to have a meeting 
with you and Don about which features to include in the demo. If 
that meeting doesn’t happen tomorrow, then I will be forced to go 
to Don myself. Here’s a copy of the memo that explains just that.”  

  Mike:  “You’re just covering your ass!”  

  Paula:  “Mike, I’m trying to cover both our asses. Can you imagine the debacle 
if the customer comes here expecting a full demo and we can’t deliver?”   

 What happens in the end to Paula and Mike? I’ll leave it to you to work out the 
possibilities. The point is that Paula has behaved very professionally. She has 
said no at all the right times, and in all the right ways. She said no when pushed 



CHAPTER 2 SAYING NO

36B

to amend her estimates. She said no when manipulated, cajoled, and begged. 
And, most importantly, she said no to Mike’s self-delusion and inaction. Paula 
was playing for the team. Mike needed help, and she used every means in her 
power to help him. 

   TH E CO S T O F SAY I N G YE S 

 Most of the time we want to say yes. Indeed, healthy teams strive to find a way 
to say yes. Manager and developers in well-run teams will negotiate with each 
other until they come to a mutually agreed upon plan of action. 

 But, as we’ve seen, sometimes the only way to get to the right yes is to be 
unafraid so say no. 

 Consider the following story that John Blanco posted on his blog.      2   It is 
reprinted here with permission. As you read it, ask yourself when and how he 
should have said no.  

2. http://raptureinvenice.com/?p=63

 I S  GO O D CO D E IM PO S S I B L E ? 

 When you hit your teenage years you decide you want to be a software developer. During 
your high school years, you learn how to write software using object-oriented principles. 
When you graduate to college, you apply all the principles you’ve learned to areas such as 
artificial intelligence or 3D graphics. 

 And when you hit the professional circuit, you begin your never-ending quest to write 
commercial-quality, maintainable, and “perfect” code that will stand the test of time. 

 Commercial quality. Huh. That’s pretty funny. 

 I consider myself lucky, I love design patterns. I like studying the theory of coding 
perfection. I have no problem starting up an hour-long discussion about why my XP 
partner’s choice of inheritance hierarchy is wrong—that HAS-A is better than IS-A in so 
many cases. But something has been bugging me lately and I am wondering something . . . 

 . . . Is good code impossible in modern software development? 

http://raptureinvenice.com/?p=63


THE COST OF SAYING YES

37B

 The Typica l  Project Proposal 

 As a full-time contract developer (and part-time), I spend my days (and nights) developing 
mobile applications for clients. And what I’ve learned over the many years I’ve been doing this 
is that the demands of client work preclude me from writing the real quality apps that I’d like. 

 Before I begin, let me just say it’s not for a lack of trying. I love the topic of clean code. I 
don’t know anyone who pursues that perfect software design like I do. It’s the execution that 
I find more elusive, and not for the reason you think. 

 Here, let me tell you a story. 

 Towards the end of last year, a fairly well-known company put out an RFP (Request for 
Proposal) to have an app built for them. They’re a huge retailer, but for the sake of anonymity 
let’s call them Gorilla Mart. They say they need to create an iPhone presence and would like an 
app produced for them by Black Friday. The catch? It’s already November 1st. That leaves just 
under 4 weeks to create the app. Oh, and at this time Apple is still taking two weeks to approve 
apps. (Ah, the good old days.) So, wait, this app has to be written in . . . TWO WEEKS?!?! 

 Yes. We have two weeks to write this app. And, unfortunately, we’ve won the bid. (In 

business, client importance matters.) This is going to happen. 

   “But it’s OK,” Gorilla Mart Executive #1 says. “The app is simple. It just needs to show 
users a few products from our catalog and let them search for store locations. We 
already do it on our site. We’ll give you the graphics, too. You can probably—what’s 
the word—yeah, hardcode it!”  

  Gorilla Mart Executive #2 chimes in. “And we just need a couple of coupons the user 
can show at the cash register. The app will be a throwaway. Let’s get it out the door, 
and then for Phase II we’ll do something bigger and better from scratch.”  

  And then it’s happening. Despite years of constant reminders that every feature a client asks 
for will always be more complex to write than it is to explain, you go for it. You really believe 
that this time it really can be done in two weeks. Yes! We can do this! This time it’s different! 
It’s just a few graphics and a service call to get a store location. XML! No sweat. We can do 
this. I’m pumped! Let’s go! 

 It takes just a day for you and reality to once again make acquaintance.  

  Me: So, can you give me the info I need to call your store location web service?  

  The Client: What’s a web service?  

  Me: …………    
Continues



CHAPTER 2 SAYING NO

38B

 And that’s exactly how it happened. Their store location service, found right where it’s 
supposed to be on the top-right corner of their web site, is not a web service. It’s generated by 
Java code. Ix-nay with the API-ay. And to boot, it’s hosted by a Gorilla Mart strategic partner. 

 Enter the nefarious “3rd party.” 

 In client terms, a “3rd party” is akin to Angelina Jolie. Despite the promise that you’ll be able to 
have an enlightening conversation over a nice meal and hopefully hook up afterwards … sorry, it 
ain’t happenin’. You’re just gonna have to fantasize about it while you take care of business yourself. 

 In my case, the only thing I was able to wrestle out of Gorilla Mart was a current snapshot of their 
current store listings in an Excel file. I had to write the store location search code from scratch. 

 The double-whammy came later that day: They wanted the product and coupon data online 
so it could be changed weekly. There goes hardcoding! Two weeks to write an iPhone app 
have now become two weeks to write an iPhone app, a PHP backend, and integrate them 
togeth— . . . What? They want me to handle QA, too? 

 To make up for the extra work, the coding will have to go a little faster. Forget that abstract 
factory. Use a big fat for loop instead of the composite, there’s no time! 

 Good code has become impossible. 

 Two Weeks to Complet ion 

 Let me tell you, that two weeks was pretty miserable. First, two of the days were eliminated 
due to all-day meetings for my next project. (That amplifies how short a time frame this was 
going to be.) Ultimately, I really had eight days to get things done. The first week I worked 
74 hours and the next week . . . God . . . I don’t even recall, it’s been eradicated from my 
synapses. Probably a good thing. 

 I spent those eight days writing code in a fury. I used all the tools available to me to get it 
done: copy and paste (AKA reusable code), magic numbers (avoiding the duplication of 
defining constants and then, gasp!, retyping them), and absolutely NO unit tests! (Who 
needs red bars at a time like this, it’d just demotivate me!) 

 It was pretty bad code and I never had time to refactor. Considering the time frame, 
however, it was actually pretty stellar, and it was “throwaway” code after all, right? Does any 
of this sound familiar? Well just wait, it gets better. 

 As I was putting the final touches on the app (the final touches being writing the entirety of 
the server code), I started to look at the codebase and wondered if maybe it was worth it. 

The app was done after all. I survived! 

   “Hey, we just hired Bob, and he’s very busy and he couldn’t make the call, but he says 
we should be requiring users to provide their email addresses to get the coupons. He 



THE COST OF SAYING YES

39B

hasn’t seen the app, but he thinks this would be a great idea! We also want a reporting 
system to get those emails from the server. One that’s nice and not too expensive. 
(Wait, that last part was Monty Python.) Speaking of coupons, they need to be able to 
expire after a number of days we specify. Oh, and …”  

  Let’s step back. What do we know about what good code is? Good code should be 
extendable. Maintainable. It should lend itself to modification. It should read like prose. 
Well, this wasn’t good code. 

 Another thing. If you want to be a better developer, you must always keep this inevitably in 
mind: The client will always extend the deadline. They will always want more features. They 
will always want change—LATE. And here’s the formula for what to expect:

   (# of Executives) 2   
  + 2 * # of New Executives  
  + # of Bob’s Kids  
  = DAYS ADDED AT LAST MINUTE    

 Now, executives are decent people. I think. They provide for their family (assuming Satan has 
approved of their having one). They want the app to succeed (promotion time!). The 
problem is that they all want a direct claim to the project’s success. When all is said and done, 
they all want to point at some feature or design decision they can each call their very own. 

 So, back to the story, we added a couple more days to the project and got the email feature 
done. And then I collapsed from exhaustion. 

 The Clients Never Care as Much as You Do 

 The clients, despite their protestations, despite their apparent urgency, never care as much as 
you do about the app being on time. The afternoon that I dubbed the app completed, I sent 
an email with the final build to all the stakeholders, Executives (hiss!), managers, and so on. 
“IT IS DONE! I BRING YOU V1.0! PRAISE THY NAME.” I hit Send, lay back in my chair, 
and with a smug grin began to fantasize how the company would run me up onto their 
shoulders and lead a procession down 42nd Street while I was crowned “Greatest Developer 
Ev-ar.” At the very least, my face would be on all their advertising, right? 

 Funny, they didn’t seem to agree. In fact, I wasn’t sure what they thought. I heard nothing. Not a 
peep. Turns out, the folks at Gorilla Mart were eager to and had already moved on to the next thing. 

 You think I lie? Check this out. I pushed to the Apple store without filling in an app 
description. I had requested one from Gorilla Mart, and they hadn’t gotten back to me and 
there was no time to wait. (See previous paragraph.) I wrote them again. And again. I got 

Continues



CHAPTER 2 SAYING NO

40B

some of our own management on it. Twice I heard back and twice I was told, “What did you 
need again?” I NEED THE APP DESCRIPTION! 

 One week later, Apple started testing the app. This is usually a time of joyousness, but it was 
instead a time for mortal dread. As expected, later in the day the app was rejected. It was 
about the saddest, poorest excuse to allow a rejection I can imagine: “App is missing an app 
description.” Functionally perfect; no app description. And for this reason Gorilla Mart 
didn’t have their app ready for Black Friday. I was pretty upset. 

 I’d sacrificed my family for a two-week super sprint, and no one at Gorilla Mart could be 
bothered to create an app description given a week of time. They gave it to us an hour after 
the rejection—apparently that was the signal to get down to business. 

 If I was upset before, I would become livid a week and a half after that. You see, they still 
hadn’t gotten us real data. The products and coupons on the server were fake. Imaginary. 
The coupon code was 1234567890. You know, phoney baloney. (Bologna is spelled baloney 
when used in that context, BTW.) 

 And it was that fateful morning that I checked the Portal and THE APP WAS AVAILABLE! 
Fake data and all! I cried out in abject horror and called up whoever I could and screamed, 
“I NEED THE DATA!” and the woman on the other end asked me if I needed fire or police, 
so I hung up on 911. But then I called Gorilla Mart and was like, “I NEED DATA!” And I’ll 
never forget the response:

   Oh, hey there John. We have a new VP and we’ve decided not to release. Pull it off the 
App Store, would you?    

 In the end, it turned out that at least 11 people registered their email addresses in the 
database, which meant there were 11 people that could potentially walk into a Gorilla Mart 
with a fake iPhone coupon in tow. Boy, that might get ugly. 

 When it was all said and done, the client had said one thing correctly all along: The code was 
a throwaway. The only problem is, it was never released in the first place. 

 Result ?  Rush to Complete ,  S low to Market 

 The lesson in the story is that your stakeholders, whether an external client or internal 
management, have figured out how to get developers to write code quickly. Effectively? No. 
Quickly? Yes. Here’s how it works: 

 •    Tell the developer the app is simple.  This serves to pressure the 
development team into a false frame of mind. It also gets the developers 
to start working earlier, whereby they …  



41B

CODE IMPOSSIBLE

   CO D E IM PO S S I B L E 

 In the story when John asks “Is good code impossible?”, he is really asking “Is 
professionalism impossible?” After all, it wasn’t just the code that suffered in his 
tale of dysfunction. It was his family, his employer, his customer, and the users. 
Everybody lost      3   in this adventure. And they lost due to unprofessionalism. 

 So who was acting unprofessionally? John makes it clear that he thinks it was 
the executives at Gorilla Mart. After all, his playbook was a pretty clear 
indictment of their bad behavior. But was their behavior bad? I don’t think so. 

3. With the possible exception of John’s direct employer, though I’d bet they lost too.

 •    Add features by faulting the team for not recognizing their necessity.  In 
this case, the hardcoded content was going to require app updates to 
change. How could I not realize that? I did, but I’d been handed a false 
promise earlier, that’s why. Or a client will hire “a new guy” who’s 
recognized there is some obvious omission. One day a client will say they 
just hired Steve Jobs and can we add alchemy to the app? Then they’ll …  

 •    Push the deadline. Over and over.  Developers work their fastest and 
hardest (and BTW are at their most error prone, but who cares about 
that, right?) with a couple days to go on a deadline. Why tell them you 
can push the date out further while they’re being so productive? Take 
advantage of it! And so it goes, a few days are added, a week is added, just 
when you had worked a 20-hour shift to get everything just right. It’s like 
a donkey and carrot, except you’re not treated as well as the donkey.    

 It’s a brilliant playbook. Can you blame them for thinking it works? But they don’t see the 
God-awful code. And so it happens, time and again, despite the results. 

 In a globalized economy, where corporations are held to the almighty dollar and raising the 
stock price involves layoffs, overworked staffs, and offshoring, this strategy I’ve shown you of 
cutting developer costs is making good code obsolete. As developers, we’re going to be asked/
told/conned into writing twice the code in half the time if we’re not careful. 



CHAPTER 2 SAYING NO

42B

 The folks at Gorilla Mart wanted the option to have an iPhone app on Black 
Friday. They were willing to pay to have that option. They found someone 
willing to provide that option. So how can you fault them? 

 Yes, it’s true, there were some communications failures. Apparently the 
executives didn’t know what a web service really was, and there were all the 
normal issues of one part of a big corporation not knowing what another part 
is doing. But all that should have been expected. John even admits as much 
when he says: “Despite years of constant reminders that every feature a client 
asks for will always be more complex to write than it is to explain  . . . ” 

 So if the culprit was not Gorilla Mart, then who? 

 Perhaps it was John’s direct employer. John didn’t say this explicitly, but there 
was a hint when he said, parenthetically, “In business, client importance 
matters . ” So did John’s employer make unreasonable promises to Gorilla Mart? 
Did they put pressure on John, directly or indirectly, to make those promises 
come true? John doesn’t say this, so we can only wonder. 

 Even so, where is John’s responsibility in all of this? I put the fault squarely on 
John. John is the one who accepted the initial two-week deadline, knowing full 
well that projects are usually more complex than they sound. John is the one 
who accepted the need to write the PHP server. John is the one who accepted 
the email registration, and the coupon expiration. John is the one who worked 
20-hour days and 90-hour weeks. John is the one who subtracted himself from 
his family and his life to make this deadline. 

 And why did John do this? He tells us in no uncertain terms: “I hit Send, lay 
back in my chair, and with a smug grin began to fantasize how the company 
would run me up onto their shoulders and lead a procession down 42nd Street 
while I was crowned “Greatest Developer Ev-ar . ” In short, John was trying to be 
a hero. He saw his chance for accolades, and he went for it. He leaned over and 
grabbed for the brass ring. 

 Professionals are often heroes, but not because they try to be. Professionals become 
heroes when they get a job done well, on time, and on budget. By trying to become 
the man of the hour, the savior of the day, John was not acting like a professional. 



CODE IMPOSSIBLE

43B

 John should have said no to the original two-week deadline. Or if not, then he 
should have said no when he found there was no web service. He should have 
said no to the request for email registration and coupon expiration. He should 
have said no to anything that would require horrific overtime and sacrifice. 

 But most of all, John should have said no to his own internal decision that the 
only way to get this job done on time was to make a big mess. Notice what John 
said about good code and unit tests: 

 “To make up for the extra work, the coding will have to go a little faster. Forget 
that abstract factory. Use a big fat for loop instead of the composite, there’s no 
time!” 

 And again: 

 “I spent those eight days writing code in a fury. I used all the tools available to 
me to get it done: copy-and-paste (AKA reusable code), magic numbers 
(avoiding the duplication of defining constants and then, gasp!, retyping them), 
and absolutely NO unit tests! (Who needs red bars at a time like this, it’d just 
demotivate me!)” 

 Saying yes to those decisions was the real crux of the failure. John accepted that 
the only way to succeed was to behave unprofessionally, so he reaped the 
appropriate reward. 

 That may sound harsh. It’s not intended that way. In previous chapters I 
described how I’ve made the same mistake in my career, more than once. The 
temptation to be a hero and “solve the problem” is huge. What we all have to 
realize is that saying yes to dropping our professional disciplines is not the way 
to solve problems. Dropping those disciplines is the way you create problems. 

 With that, I can finally answer John’s initial question: 

 “Is good code impossible? Is professionalism impossible?” 

 Answer: I say no.  



This page intentionally left blank 



45B

3SAYI N G YE S

  Did you know that I invented voice mail? It’s true. Actually there were three of 
us who held the patent for voice mail. Ken Finder, Jerry Fitzpatrick, and I. It was 
in the very early 80s, and we worked for a company named Teradyne. Our CEO 
had commissioned us to come up with a new kind of product, and we invented 
“The Electronic Receptionist,” or ER for short. 



CHAPTER 3 SAYING YES

46B

 You all know what ER is. ER is one of those horrible machines that answers the 
phone at companies and asks you all kinds of brain-dead questions that you 
need to answer by pressing buttons. (“For English, press 1.”) 

 Our ER would answer the phone for a company and ask you to dial the name of 
the person you wanted. It would ask you to pronounce your name, and then it 
would call the person in question. It would announce the call and ask whether 
it should be accepted. If so, it would connect the call and drop off. 

 You could tell ER where you were. You could give it several phone numbers to 
try. So if you were in someone else’s office, ER could find you. If you were at 
home, ER could find you. If you were in a different city, ER could find you. 
And, in the end, if ER could not find you, it would take a message. That’s where 
the voice mail came in. 

 Oddly enough, Teradyne could not figure out how to sell ER. The project ran 
out of budget and was morphed into something we knew how to sell—CDS, 
The Craft Dispatch System, for dispatching telephone repairmen to their next 
job. And Teradyne also dropped the patent without telling us. (!) The current 
patent holder filed three months after we did. (!!)      1   

 Long after the morphing of ER into CDS, but long before I found out that the 
patent had been dropped. I waited in a tree for the CEO of the company. We 
had a big oak tree outside the front of the building. I climbed it and waited for 
his Jaguar to pull in. I met him at the door and asked for a few minutes. He 
obliged. 

 I told him we really needed to start up the ER project again. I told him I was 
sure it could make money. He surprised me by saying, “OK Bob, work up a 
plan. Show me how I can make money. If you do, and I believe it, I’ll start up 
ER again.” 

 I hadn’t expected that. I had expected him to say, “You’re right Bob. I’m going to 
start that project up again, and I’m going to figure out how to make money at 

1. Not that the patent was worth any money to me. I had sold it to Teradyne for $1, as per my employment 

contract (and I didn’t get the dollar).



A LANGUAGE OF COMMITMENT

47B

it.” But no. He put the burden back on me. And it was a burden I was ambivalent 
about. After all, I was a software guy, not a money guy. I wanted to work on the 
ER project, not be responsible for profit and loss. But I didn’t want to show my 
ambivalence. So I thanked him and left his office with these words: 

 “Thanks Russ. I’m committed . . . I guess.” 

 With that, let me introduce you to Roy Osherove, who will tell you just how 
pathetic that statement was. 

  A L A N G UAG E O F CO M M ITM E NT 

  By Roy Osherove 

  Say. Mean. Do. 

 There are three parts to making a commitment.  

1.   You say you’ll do it.  

2.   You mean it.  

3.   You actually do it.   

 But how often do we encounter other people (not ourselves, of course!) who 
never go all the way with these three stages?  

 •    You ask the IT guy  why the network is so slow and he says “Yeah. We really 
need to get some new routers.” And you know nothing will ever happen in 
that category.  

 •    You ask a team member  to run some manual tests before checking in the 
source code, and he replies, “Sure. I hope to get to it by the end of the day.” 
And somehow you feel that you’ll need to ask tomorrow if any testing really 
took place before check-in.  

 •    Your boss  wanders into the room and mumbles, “we have to move faster.” 
And you know he really means YOU have to move faster.  He’s  not going to do 
anything about it.   



CHAPTER 3 SAYING YES

48B

 There are very few people who, when they say something, they mean it and then 
actually get it done. There are some who will say things and mean them, but 
they never get it done. And there are far more people who promise things and 
don’t even mean to do them. Ever heard someone say, “Man, I really need to 
lose some weight,” and you knew they are not going to do anything about it? It 
happens all the time. 

 Why do we keep getting that strange feeling that, most of the time, people aren’t 
really committed to getting something done? 

 Worse, often our intuition can fail us. Sometimes we’d like to believe someone 
really means what they say when they really don’t. We’d like to believe a 
developer when they say, pressed to the corner, that they can finish that two-
week task in one week instead, but we shouldn’t. 

 Instead of trusting our guts, we can use some language-related tricks to try and 
figure out if people really mean what they say. And by changing what we say, we 
can start taking care of steps 1 and 2 of the previous list on our own. When we 
say we will commit to something, and we need to mean it. 

  RE C O G N I Z I N G L AC K O F CO M M ITM E NT 

 We should look at the language we use when we commit to doing something, as 
the telltale sign of things to come. Actually, it’s more a matter of looking for 
specific words in what we say. If you can’t find those little magic words, chances 
are we don’t mean what we say, or we may not believe it to be feasible. 

 Here are some examples of words and phrases to look for that are telltale signs 
of noncommitment: 

 •    Need\should.  “We need to get this done.” “I need to lose weight.” “Someone 
should make that happen.”  

 •    Hope\wish.  “I hope to get this done by tomorrow.” “I hope we can meet 
again some day.” “I wish I had time for that.” “I wish this computer was 
faster.”  

 •    Let’s . (not followed by “I . . .”) “Let’s meet sometime.” “Let’s finish this thing.”    



A LANGUAGE OF COMMITMENT

49B

 As you start to look for these words you’ll see that you start spotting them 
almost everywhere around you, and even in things you say to others. 

 You’ll find we tend to be very busy not taking responsibility for things. 

 And that’s not okay when you or someone else relies on those promises as part 
of the job. You’ve taken the first step, though—start recognizing lack of 
commitment around you, and in you. 

 We heard what noncommitment sounds like. How do we recognize real 
commitment? 

   WH AT DO E S CO M M ITM E NT SO U N D LI K E ? 

 What’s common in the phrases of the previous section is that they either 
assume things are out of “my” hands or they don’t take personal responsibility. 
In each of these cases, people behave as if they were victims of a situation 
instead of in control of it. 

 The real truth is that you, personally, ALWAYS have something that’s under your 
control, so there is always something you can fully commit to doing. 

 The secret ingredient to recognizing real commitment is to look for sentences 
that sound like this: I will . . . by . . . (example: I will finish this by Tuesday.) 

 What’s important about this sentence? You’re stating a fact about something YOU 
will do with a clear end time .  You’re not talking about anyone else but yourself. 
You’re talking about an action that you will take. You won’t “possibly” take it, or 
“might get to it”; you will achieve it. 

 There is (technically) no way out of this verbal commitment. You said you’ll do 
it and now only a binary result is possible—you either get it done, or you don’t. 
If you don’t get it done, people can hold you up to your promises. You will feel 
bad about not doing it. You will feel awkward telling someone about not having 
done it (if that someone heard you promise you will). 

 Scary, isn’t it? 



CHAPTER 3 SAYING YES

50B

 You’re taking full responsibility for something, in front of an audience of at least 
one person. It’s not just you standing in front of the mirror, or the computer 
screen. It’s you, facing another human being, and saying you’ll do it. That’s the 
start of commitment. Putting yourself in the situation that forces you to do 
something. 

 You’ve changed the language you use to a language of commitment, and that 
will help you get through the next two stages: meaning it, and following 
through. 

 Here are a number of reasons you might not mean it, or follow through, with 
some solutions. 

   It wouldn’t work because I rely on person X to get this done. 

 You can only commit to things that you have full control of. For example, if 
your goal is to finish a module that also depends on another team, you can’t 
commit to finish the module with full integration with the other team. But 
you can commit to specific actions that will bring you to your target. You 
could: 

 •   Sit down for an hour with Gary from the infrastructure team to understand 
your dependencies.  

 •   Create an interface that abstracts your module’s dependency from the other 
team’s infrastructure.  

 •   Meet at least three times this week with the build guy to make sure your 
changes work well in the company’s build system.  

 •   Create your own personal build that runs your integration tests for the 
module.    

 See the difference? 

 If the end goal depends on someone else, you should commit to specific actions 
that bring you closer to the end goal. 



A LANGUAGE OF COMMITMENT

51B

   It wouldn’t work because I don’t really know if it can be done. 

 If it can’t be done, you can still commit to actions that will bring you closer 
to the target. Finding out if it can be done can be one of the actions to 
commit to! 

 Instead of committing to fix all 25 remaining bugs before the release (which 
may not be possible), you can commit to these specific actions that bring you 
closer to that goal: 

 •   Go through all 25 bugs and try to recreate them.  

 •   Sit down with the QA who found each bug to see a repro of that bug.  

 •   Spend all the time you have this week trying to fix each bug.    

   It wouldn’t work because sometimes I just won’t make it. 

 That happens. Something unexpected might happen, and that’s life. But you still 
want to live up to expectations. In that case, it’s time to change the expectations, 
as soon as possible. 

 If you can’t make your commitment, the most important thing is to raise a red 
flag as soon as possible to whoever you committed to. 

 The earlier you raise the flag to all stakeholders, the more likely there will be 
time for the team to stop, reassess the current actions being taken, and decide if 
something can be done or changed (in terms of priorities, for example). By 
doing this, your commitment can still be fulfilled, or you can change to a 
different commitment. 

 Some examples are: 

 •   If you set a meeting for noon at a cafe downtown with a colleague and you 
get stuck in traffic, you doubt you’ll be able to follow through on your 
commitment to be there on time. You can call your colleague as soon as you 
realize you might be late, and let them know. Maybe you can find a closer 
place to meet, or perhaps postpone the meeting.  



CHAPTER 3 SAYING YES

52B

 •   If you committed to solving a bug you thought was solvable and you realize 
at some point the bug is much more hideous than previously thought, you 
can raise the flag. The team can then decide on a course of action to make 
that commitment (pairing, spiking on potential solutions, brainstorming) or 
change the priority and move you over to another simpler bug.    

 One important point here is: If you don’t tell anyone about the potential 
problem as soon as possible, you’re not giving anyone a chance to help you 
follow through on your commitment. 

   SU M M A RY 

 Creating a language of commitment may sound a bit scary, but it can help solve 
many of the communication problems programmers face today—estimations, 
deadlines, and face-to-face communication mishaps. You’ll be taken as a serious 
developer who lives up to their word, and that’s one of the best things you can 
hope for in our industry. 

 ~~~ 

    LE A R N I N G HOW TO SAY “YE S” 

 I asked Roy to contribute that article because it struck a chord within me. I’ve 
been preaching about learning how to say no for some time. But it is just as 
important to learn how to say yes. 

  TH E OTH E R S I D E O F “TRY” 

 Let’s imagine that Peter is responsible for some modifications to the rating 
engine. He’s privately estimated that these modifications will take him five or six 
days. He also thinks that writing the documentation for the modifications will 
take a few hours. On Monday morning his manager, Marge, asks him for status.  

  Marge: “Peter, will you have the rating engine mods done by Friday?”  

  Peter: “I think that’s doable.”  



LEARNING HOW TO SAY “YES”

53B

  Marge: “Will that include the documentation?”  

  Peter: “I’ll try to get that done as well.”   

 Perhaps Marge can’t hear the dithering in Peter’s statements, but he’s certainly 
not making much of a commitment. Marge is asking questions that demand 
boolean answers but Peter’s boolean responses are fuzzy. 

 Notice the abuse of the word try. In the last chapter we used the “extra effort” 
definition of try. Here, Peter is using the “maybe, maybe not” definition. 

 Peter would be better off responding like this: 

  Marge: “Peter, will you have the rating engine mods done by Friday?”  

  Peter: “Probably, but it might be Monday.”  

  Marge: “Will that include the documentation?”  

  Peter:  “The documentation will take me another few hours, so Monday 
is possible, but it might be as late as Tuesday.”    

 In this case Peter’s language is more honest. He is describing his own 
uncertainty to Marge. Marge may be able to deal with that uncertainty. On the 
other hand, she might not. 

   CO M M IT TI N G W ITH DI S C I PLI N E  

  Marge:  “Peter, I need a definite yes or no. Will you have the rating engine 
finished and documented by Friday?”   

 This is a perfectly fair question for Marge to ask. She’s got a schedule to maintain, 
and she needs a binary answer about Friday. How should Peter respond?  

  Peter:  “In that case, Marge, I’ll have to say no. The soonest I can be sure 
that I’ll be done with the mods and the docs is Tuesday.”  

  Marge: “You are committing to Tuesday?”  

  Peter: “Yes, I will have it all ready on Tuesday.”   



CHAPTER 3 SAYING YES

54B

 But what if Marge really needs the modifications and documentation done by 
Friday?  

  Marge:  “Peter, Tuesday gives me a real problem. Willy, our tech writer, will 
be available on Monday. He’s got five days to finish up the user 
guide. If I don’t have the rating engine docs by Monday morning, 
he’ll never get the manual done on time. Can you do the docs first?”  

  Peter:  “No, the mods have to come first, because we generate the docs 
from the output of the test runs.”  

  Marge:  “Well, isn’t there some way you can finish up the mods and the 
docs before Monday morning?”   

 Now Peter has a decision to make. There is a good chance he’ll be done with the 
rate engine modifications on Friday, and he might even be able to finish up the 
docs before he goes home for the weekend. He could do a few hours of work on 
Saturday too if things take longer than he hopes. So what should he tell Marge?  

  Peter:  “Look Marge, there’s a good chance that I can get everything done 
by Monday morning if I put in a few extra hours on Saturday.”   

 Does that solve Marge’s problem? No, it simply changes the odds, and that’s 
what Peter needs to tell her.  

  Marge: “Can I count on Monday morning then?”  

  Peter: “Probably, but not definitely.”   

 That might not be good enough for Marge.  

  Marge:  “Look, Peter, I really need a definite on this. Is there any way you 
can commit to get this done before Monday morning?”   

 Peter might be tempted to break discipline at this point. He might be able to get 
done faster if he doesn’t write his tests. He might be able to get done faster if he 
doesn’t refactor. He might be able to get done faster if he doesn’t run the full 
regression suite. 



LEARNING HOW TO SAY “YES”

55B

 This is where the professional draws the line. First of all, Peter is just wrong 
about his suppositions. He won’t get done faster if he doesn’t write his tests. He 
won’t get done faster if he doesn’t refactor. He won’t get done faster if he omits 
the full regression suite. Years of experience have taught us that breaking 
disciplines only slows us down. 

 But secondly, as a professional he has a responsibility to maintain certain 
standards. His code needs to be tested, and needs to have tests. His code 
needs to be clean. And he has to be sure he hasn’t broken anything else in 
the system. 

 Peter, as a professional, has already made a commitment to maintain these 
standards. All other commitments he makes should be subordinate to that. So 
this whole line of reasoning needs to aborted.  

  Peter:  “No, Marge, there’s really no way I can be certain about any date 
before Tuesday. I’m sorry if that messes up your schedule, but it’s 
just the reality we’re faced with.”  

  Marge:  “Damn. I was really counting on bringing this one in sooner. 
You’re sure?”  

  Peter: “I’m sure that it might be as late as Tuesday, yes.”  

  Marge: “OK, I guess I’ll go talk to Willy to see if he can rearrange his schedule.”   

 In this case Marge accepted Peter’s answer and started hunting for other 
options. But what if all Marge’s options have been exhausted? What if Peter 
were the last hope?  

  Marge:  “Peter, look, I know this is a huge imposition, but I really need you 
to find a way to get this all done by Monday morning. It’s really 
critical. Isn’t there something you can do?”   

 So now Peter starts to think about working some significant overtime, and 
probably most of the weekend. He needs to be very honest with himself about 
his stamina and reserves. It’s easy to say you’ll get a lot done on the weekends, 
it’s a lot harder to actually muster enough energy to do high-quality work. 



CHAPTER 3 SAYING YES

56B

 Professionals know their limits. They know how much overtime they can 
effectively apply, and they know what the cost will be. 

 In this case Peter feels pretty confident that a few extra hours during the week 
and some time on the weekend will be sufficient.  

  Peter:  “OK, Marge, I’ll tell you what. I’ll call home and clear some 
overtime with my family. If they are OK with it, then I’ll get this 
task done by Monday morning. I’ll even come in on Monday 
morning to make sure everything goes smoothly with Willy. But 
then I’ll go home and won’t be back until Wednesday. Deal?”   

 This is perfectly fair. Peter knows that he can get the modifications and 
documents done if he works the overtime. He also knows he’ll be useless for a 
couple of days after that. 

    CO N C LU S I O N 

 Professionals are not required to say yes to everything that is asked of them. 
However, they should work hard to find creative ways to make “yes” possible. 
When professionals say yes, they use the language of commitment so that there 
is no doubt about what they’ve promised.  



57B

4CO D I N G

  In a previous book      1   I wrote a great deal about the structure and nature of  Clean Code . 
This chapter discusses the  act  of coding, and the context that surrounds that act. 

 When I was 18 I could type reasonably well, but I had to look at the keys. 
I could not type blind. So one evening I spent a few long hours at an IBM 029 
keypunch refusing to look at my fingers as I typed a program that I had written 
on several coding forms. I examined each card after I typed it and discarded 
those that were typed wrong. 

1. [Martin09]



CHAPTER 4 CODING

58B

 At first I typed quite a few in error. By the end of the evening I was typing them 
all with near perfection. I realized, during that long night, that typing blind is 
all about confidence. My fingers knew where the keys were, I just had to gain 
the confidence that I wasn’t making a mistake. One of the things that helped 
with that confidence is that I could  feel  when I was making an error. By the end 
of the evening, if I made a mistake, I knew it almost instantly and simply 
ejected the card without looking at it. 

 Being able to sense your errors is really important. Not just in typing, but in 
everything. Having error-sense means that you very rapidly close the feedback 
loop and learn from your errors all the more quickly. I’ve studied, and mastered, 
several disciplines since that day on the 029. I’ve found that in each case that the 
key to mastery is confidence and error-sense. 

 This chapter describes my personal set of rules and principles for coding. These rules 
and principles are not about my code itself; they are about my behavior, mood, and 
attitude while writing code. They describe my own mental, moral, and emotional 
context for writing code. These are the roots of my confidence and error-sense. 

 You will likely not agree with everything I say here. After all, this is deeply personal 
stuff. In fact, you may violently disagree with some of my attitudes and principles. 
That’s OK—they are not intended to be absolute truths for anyone other than me. 
What they are is one man’s approach to being a professional coder. 

 Perhaps, by studying and contemplating my own personal coding milieu you 
can learn to snatch the pebble from my hand. 

  PR E PA R E D N E S S 

 Coding is an intellectually challenging and exhausting activity. It requires a level 
of concentration and focus that few other disciplines require. The reason for 
this is that coding requires you to juggle many competing factors at once.  

1.   First, your code must work. You must understand what problem you are 
solving and understand how to solve that problem. You must ensure that the 
code you write is a faithful representation of that solution. You must manage 



PREPAREDNESS

59B

every detail of that solution while remaining consistent within the language, 
platform, current architecture, and all the warts of the current system.  

2.   Your code must solve the problem set for you by the customer. Often the 
customer’s requirements do not actually solve the customer’s problems. It is 
up to you to see this and negotiate with the customer to ensure that the 
customer’s true needs are met.  

3.   Your code must fit well into the existing system. It should not increase the 
rigidity, fragility, or opacity of that system. The dependencies must be well-
managed. In short, your code needs to follow solid engineering principles.      2    

4.   Your code must be readable by other programmers. This is not simply a 
matter of writing nice comments. Rather, it requires that you craft the code in 
such a way that it reveals your intent. This is hard to do. Indeed, this may be 
the most difficult thing a programmer can master.   

 Juggling all these concerns is hard. It is physiologically difficult to maintain the 
necessary concentration and focus for long periods of time. Add to this the 
problems and distractions of working in a team, in an organization, and the 
cares and concerns of everyday life. The bottom line is that the opportunity for 
distraction is high. 

 When you cannot concentrate and focus sufficiently, the code you write will be 
wrong. It will have bugs. It will have the wrong structure. It will be opaque and 
convoluted. It will not solve the customers’ real problems. In short, it will have 
to be reworked or redone. Working while distracted creates waste. 

 If you are tired or distracted,  do not code . You’ll only wind up redoing what you 
did. Instead, find a way to eliminate the distractions and settle your mind. 

  3   A M  CO D E 

 The worst code I ever wrote was at 3  AM . The year was 1988, and I was working 
at a telecommunications start-up named Clear Communications. We were all 
putting in long hours in order to build “sweat equity.” We were, of course, all 
dreaming of being rich. 

2. [Martin03]



CHAPTER 4 CODING

60B

 One very late evening—or rather, one very early morning, in order to solve a 
timing problem—I had my code send a message to itself through the event 
dispatch system (we called this “sending mail”). This was the  wrong  solution, 
but at 3  AM  it looked pretty damned good. Indeed, after 18 hours of solid coding 
(not to mention the 60–70 hour weeks) it was all I could think of. 

 I remember feeling so good about myself for the long hours I was working. 
I remember feeling  dedicated . I remember thinking that working at 3  AM  is what 
serious professionals do. How wrong I was! 

 That code came back to bite us over and over again. It instituted a faulty design 
structure that everyone used but consistently had to work around. It caused all 
kinds of strange timing errors and odd feedback loops. We’d get into infinite 
mail loops as one message caused another to be sent, and then another, 
infinitely. We never had time to rewrite this wad (so we thought) but we always 
seemed to have time to add another wart or patch to work around it. The cruft 
grew and grew, surrounding that 3  AM  code with ever more baggage and side 
effects. Years later it had become a team joke. Whenever I was tired or frustrated 
they’d say, “Look out! Bob’s about to send mail to himself!” 

 The moral of this story is: Don’t write code when you are tired. Dedication and 
professionalism are more about discipline than hours. Make sure that your sleep, 
health, and lifestyle are tuned so that you can put in eight  good  hours per day. 

   WO R RY CO D E 

 Have you ever gotten into a big fight with your spouse or friend, and then tried 
to code? Did you notice that there was a background process running in your 
mind trying to resolve, or at least review the fight? Sometimes you can feel the 
stress of that background process in your chest, or in the pit of your stomach. 
It can make you feel anxious, like when you’ve had too much coffee or diet 
coke. It’s distracting. 

 When I am worried about an argument with my wife, or a customer crisis, or a 
sick child, I can’t maintain focus. My concentration wavers. I find myself with 
my eyes on the screen and my fingers on the keyboard, doing nothing. Catatonic. 



PREPAREDNESS

61B

Paralyzed. A million miles away working through the problem in the 
background rather than actually solving the coding problem in front of me. 

 Sometimes I will force myself to  think  about the code. I might drive myself to 
write a line or two. I might push myself to get a test or two to pass. But I can’t 
keep it up. Inevitably I find myself descending into a stupefied insensibility, seeing 
nothing through my open eyes, inwardly churning on the background worry. 

 I have learned that this is no time to code. Any code I produce will be trash. So 
instead of coding, I need to resolve the worry. 

 Of course, there are many worries that simply cannot be resolved in an hour or 
two. Moreover, our employers are not likely to long tolerate our inability to 
work as we resolve our personal issues. The trick is to learn how to shut down 
the background process, or at least reduce its priority so that it’s not a 
continuous distraction. 

 I do this by partitioning my time. Rather than forcing myself to code while the 
background worry is nagging at me, I will spend a dedicated block of time, 
perhaps an hour, working on the issue that is creating the worry. If my child is 
sick, I will call home and check in. If I’ve had an argument with my wife, I’ll call 
her and talk through the issues. If I have money problems, I’ll spend time 
thinking about how I can deal with the financial issues. I know I’m not likely to 
solve the problems in this hour, but it is very likely that I can reduce the anxiety 
and quiet the background process. 

 Ideally the time spent wrestling with personal issues would be personal time. It 
would be a shame to spend an hour at the office this way. Professional developers 
allocate their personal time in order to ensure that the time spent at the office is 
as productive as possible. That means you should specifically set aside time at 
home to settle your anxieties so that you don’t bring them to the office. 

 On the other hand, if you find yourself at the office and the background 
anxieties are sapping your productivity, then it is better to spend an hour 
quieting them than to use brute force to write code that you’ll just have to 
throw away later (or worse, live with). 



CHAPTER 4 CODING

62B

    TH E FLOW ZO N E 

 Much has been written about the hyper-productive state known as “flow.” 
Some programmers call it “the Zone.” Whatever it is called, you are probably 
familiar with it. It is the highly focused, tunnel-vision state of consciousness 
that programmers can get into while they write code. In this state they feel 
 productive . In this state they feel  infallible . And so they desire to attain that 
state, and often measure their self-worth by how much time they can 
spend there. 

 Here’s a little hint from someone whose been there and back:  Avoid the Zone . 
This state of consciousness is not really hyper-productive and is certainly not 
infallible. It’s really just a mild meditative state in which certain rational 
faculties are diminished in favor of a sense of speed. 

 Let me be clear about this. You  will  write more code in the Zone. If you are 
practicing TDD, you will go around the red/green/refactor loop more quickly. 
And you will  feel  a mild euphoria or a sense of conquest. The problem is that 
you lose some of the big picture while you are in the Zone, so you will likely 
make decisions that you will later have to go back and reverse. Code written in 
the Zone may come out faster, but you’ll be going back to visit it more. 

 Nowadays when I feel myself slipping into the Zone, I walk away for a few minutes. 
I clear my head by answering a few emails or looking at some tweets. If it’s close 
enough to noon, I’ll break for lunch. If I’m working on a team, I’ll find a pair 
partner. 

 One of the big benefits of pair programming is that it is virtually impossible for 
a pair to enter the Zone. The Zone is an uncommunicative state, while pairing 
requires intense and constant communication. Indeed, one of the complaints I 
often hear about pairing is that it blocks entry into the Zone. Good! The Zone 
is  not  where you want to be. 

 Well, that’s not  quite  true. There are times when the Zone is exactly where you 
want to be. When you are  practicing . But we’ll talk about that in another 
chapter. 



THE FLOW ZONE

63B

  MU S I C 

 At Teradyne, in the late ’70s, I had a private office. I was the system administrator 
of our PDP 11/60, and so I was one of the few programmers allowed to have a 
private terminal. That terminal was a VT100 running at 9600 baud and connected 
to the PDP 11 with 80 feet of RS232 cable that I had strung over the ceiling tiles 
from my office to the computer room. 

 I had a stereo system in my office. It was an old turntable, amp, and floor 
speakers. I had a significant collection of vinyl, including Led Zeppelin, Pink 
Floyd, and … . Well, you get the picture. 

 I used to crank that stereo and then write code. I thought it helped my 
concentration. But I was wrong. 

 One day I went back into a module that I had been editing while listening to the 
opening sequence of  The Wall . The comments in that code contained lyrics 
from the piece, and editorial notations about dive bombers and crying babies. 

 That’s when it hit me. As a reader of the code, I was learning more about the 
music collection of the author (me) than I was learning about the problem that 
the code was trying to solve. 

 I realized that I simply don’t code well while listening to music. The music does 
not help me focus. Indeed, the act of listening to music seems to consume some 
vital resource that my mind needs in order to write clean and well-designed code. 

 Maybe it doesn’t work that way for you. Maybe music  helps  you write code. I 
know lots of people who code while wearing earphones. I accept that the music 
may help them, but I am also suspicious that what’s really happening is that the 
music is helping them enter the Zone. 

   INTE R R U P TI O N S 

 Visualize yourself as you are coding at your workstation. How do you respond 
when someone asks you a question? Do you snap at them? Do you glare? Does your 
body-language tell them to go away because you are busy? In short, are you rude? 



CHAPTER 4 CODING

64B

 Or, do you stop what you are doing and politely help someone who is stuck? Do 
you treat them as you would have them treat you if you were stuck? 

 The rude response often comes from the Zone. You may resent being dragged 
out of the Zone, or you may resent someone interfering with your attempt to 
enter the Zone. Either way, the rudeness often comes from your relationship to 
the Zone. 

 Sometimes, however, it’s not the Zone that’s at fault, it’s just that you are trying 
to understand something complicated that requires concentration. There are 
several solutions to this. 

 Pairing can be very helpful as a way to deal with interruptions. Your pair partner 
can hold the context of the problem at hand, while you deal with a phone call, 
or a question from a coworker. When you return to your pair partner, he quickly 
helps you reconstruct the mental context you had before the interruption. 

 TDD is another big help. If you have a failing test, that test holds the context of 
where you are. You can return to it after an interruption and continue to make 
that failing test pass. 

 In the end, of course,  there will be interruptions  that distract you and cause you 
to lose time. When they happen, remember that next time you may be the one 
who needs to interrupt someone else. So the professional attitude is a polite 
willingness to be helpful. 

    WR ITE R’S BLO C K 

 Sometimes the code just doesn’t come. I’ve had this happen to me and I’ve seen 
it happen to others. You sit at your workstation and nothing happens. 

 Often you will find other work to do. You’ll read email. You’ll read tweets. You’ll 
look through books, or schedules, or documents. You’ll call meetings. You’ll 
start up conversations with others. You’ll do  anything  so that you don’t have to 
face that workstation and watch as the code refuses to appear. 



WRITER’S BLOCK

65B

 What causes such blockages? We’ve spoken about many of the factors already. 
For me, another major factor is sleep. If I’m not getting enough sleep, I simply 
can’t code. Others are worry, fear, and depression. 

 Oddly enough there is a very simple solution. It works almost every time. It’s easy 
to do, and it can provide you with the momentum to get lots of code written. 

 The solution: Find a pair partner. 

 It’s uncanny how well this works. As soon as you sit down next to someone else, 
the issues that were blocking you melt away. There is a  physiological  change that 
takes place when you work with someone. I don’t know what it is, but I can 
definitely feel it. There’s some kind of chemical change in my brain or body that 
breaks me through the blockage and gets me going again. 

 This is not a perfect solution. Sometimes the change lasts an hour or two, only 
to be followed by exhaustion so severe that I have to break away from my pair 
partner and find some hole to recover in. Sometimes, even when sitting with 
someone, I can’t do more than just agree with what that person is doing. But for 
me the typical reaction to pairing is a recovery of my momentum. 

  CR E ATI V E IN PU T 

 There are other things I do to prevent blockage. I learned a long time ago that 
creative output depends on creative input. 

 I read a lot, and I read all kinds of material. I read material on software, politics, 
biology, astronomy, physics, chemistry, mathematics, and much more. However, 
I find that the thing that best primes the pump of creative output is science 
fiction. 

 For you, it might be something else. Perhaps a good mystery novel, or poetry, or 
even a romance novel. I think the real issue is that creativity breeds creativity. 
There’s also an element of escapism. The hours I spend away from my usual 
problems, while being actively stimulated by challenging and creative ideas, 
results in an almost irresistible pressure to create something myself. 



CHAPTER 4 CODING

66B

 Not all forms of creative input work for me. Watching TV does not usually help 
me create. Going to the movies is better, but only a bit. Listening to music does 
not help me create code, but does help me create presentations, talks, and 
videos. Of all the forms of creative input, nothing works better for me than 
good old space opera. 

    DE B U G G I N G 

 One of the worst debugging sessions in my career happened in 1972. The 
terminals connected to the Teamsters’ accounting system used to freeze once or 
twice a day. There was no way to force this to happen. The error did not prefer 
any particular terminals or any particular applications. It didn’t matter what the 
user had been doing before the freeze. One minute the terminal was working 
fine, and the next minute it was hopelessly frozen. 

 It took weeks to diagnose this problem. Meanwhile the Teamsters’ were getting 
more and more upset. Every time there was a freeze-up the person at that 
terminal would have to stop working and wait until they could coordinate all 
the other users to finish their tasks. Then they’d call us and we’d reboot. It was a 
nightmare. 

 We spent the first couple of weeks just gathering data by interviewing the 
people who experienced the lockups. We’d ask them what they were doing at 
the time, and what they had done previously. We asked other users if they 
noticed anything on  their  terminals at the time of the freeze-up. These 
interviews were all done over the phone because the terminals were located in 
downtown Chicago, while we worked 30 miles north in the cornfields. 

 We had no logs, no counters, no debuggers. Our only access to the internals of 
the system were lights and toggle switches on the front panel. We could stop the 
computer, and then peek around in memory one word at a time. But we 
couldn’t do this for more than five minutes because the Teamsters’ needed their 
system back up. 

 We spent a few days writing a simple real-time inspector that could be operated 
from the ASR-33 teletype that served as our console. With this we could peek 



DEBUGGING

67B

and poke around in memory while the system was running. We added log 
messages that printed on the teletype at critical moments. We created in-memory 
counters that counted events and remembered state history that we could 
inspect with the inspector. And, of course, all this had to be written from 
scratch in assembler and tested in the evenings when the system was not in use. 

 The terminals were interrupt driven. The characters being sent to the terminals 
were held in circular buffers. Every time a serial port finished sending a character, 
an interrupt would fire and the next character in the circular buffer would be 
readied for sending. 

 We eventually found that when a terminal froze it was because the three variables 
that managed the circular buffer were out of sync. We had no idea why this was 
happening, but at least it was a clue. Somewhere in the 5 KSLOC of supervisory 
code there was a bug that mishandled one of those pointers. 

 This new knowledge also allowed us to un-freeze terminals manually! We could 
poke default values into those three variables using the inspector, and the 
terminals would magically start running again. Eventually we wrote a little hack 
that would look through all the counters to see if they were misaligned and 
repair them. At first we invoked that hack by hitting a special user-interrupt 
switch on the front panel whenever the Teamsters called to report a freeze-up. 
Later we simply ran the repair utility once every second. 

 A month or so later the freeze-up issue was dead, as far as the Teamsters were 
concerned. Occasionally one of their terminals would pause for a half second or 
so, but at a base rate of 30 characters per second, nobody seemed to notice. 

 But why were the counters getting misaligned? I was nineteen and determined 
to find out. 

 The supervisory code had been written by Richard, who had since gone off to 
college. None of the rest of us were familiar with that code because Richard had 
been quite possessive of it. That code was  his , and we weren’t allowed to know 
it. But now Richard was gone, so I got out the inches-thick listing and started to 
go over it page by page. 



CHAPTER 4 CODING

68B

 The circular queues in that system were just FIFO data structures, that is, 
queues. Application programs pushed characters in one end of the queue until 
the queue was full. The interrupt heads popped the characters off the other end 
of the queue when the printer is ready for them. When the queue was empty, 
the printer would stop. Our bug caused the applications to think that the queue 
was full, but caused the interrupt heads to think that the queue was empty. 

 Interrupt heads run in a different “thread” than all other code. So counters and 
variables that are manipulated by both interrupt heads and other code must be 
protected from concurrent update. In our case that meant turning the 
interrupts off around any code that manipulated those three variables. By the 
time I sat down with that code I knew I was looking for someplace in the code 
that touched the variables but did not disable the interrupts first. 

 Nowadays, of course, we’d use the plethora of powerful tools at our disposal to 
find all the places where the code touched those variables. Within seconds we’d 
know every line of code that touched them. Within minutes we’d know which 
did not disable the interrupts. But this was 1972, and I didn’t have any tools like 
that. What I had were my eyes. 

 I pored over every page of that code, looking for the variables. Unfortunately, 
the variables were used  everywhere . Nearly every page touched them in one way 
or another. Many of those references did not disable the interrupts because they 
were read-only references and therefore harmless. The problem was, in that 
particular assembler there was no good way to know if a reference was read-
only without following the logic of the code. Any time a variable was read, it 
might later be updated and stored. And if that happened while the interrupts 
were enabled, the variables could get corrupted. 

 It took me days of intense study, but in the end I found it. There, in the middle 
of the code, was one place where one of the three variables was being updated 
while the interrupts were enabled. 

 I did the math. The vulnerability was about two microseconds long. There were 
a dozen terminals all running at 30 cps, so an interrupt every 3 ms or so. Given 
the size of the supervisor, and the clock rate of the CPU, we’d expect a freeze-up 
from this vulnerability one or two times a day. Bingo! 



PACING YOURSELF

69B

 I fixed the problem, of course, but never had the courage to turn off the 
automatic hack that inspected and fixed the counters. To this day I’m not 
convinced there wasn’t another hole. 

  DE B U G G I N G TI M E 

 For some reason software developers don’t think of debugging time as coding 
time. They think of debugging time as a call of nature, something that just  has  
to be done. But debugging time is just as expensive to the business as coding 
time is, and therefore anything we can do to avoid or diminish it is good. 

 Nowadays I spend much less time debugging than I did ten years ago. I haven’t 
measured the difference, but I believe it’s about a factor of ten. I achieved this 
truly radical reduction in debugging time by adopting the practice of Test 
Driven Development (TDD), which we’ll be discussing in another chapter. 

 Whether you adopt TDD or some other discipline of equal efficacy,      3   it is 
incumbent upon you as a professional to reduce your debugging time as close 
to zero as you can get. Clearly zero is an asymptotic goal, but it is the goal 
nonetheless. 

 Doctors don’t like to reopen patients to fix something they did wrong. Lawyers 
don’t like to retry cases that they flubbed up. A doctor or lawyer who did that 
too often would not be considered professional. Likewise, a software developer 
who creates many bugs is acting unprofessionally. 

    PAC I N G YO U R S E L F 

 Software development is a marathon, not a sprint. You can’t win the race by 
trying to run as fast as you can from the outset. You win by conserving your 
resources and pacing yourself. A marathon runner takes care of her body both 
before and  during  the race. Professional programmers conserve their energy and 
creativity with the same care. 

3. I don’t know of any discipline that is as effective as TDD, but perhaps you do.



CHAPTER 4 CODING

70B

  KN OW WH E N TO WA L K AWAY 

 Can’t go home till you solve this problem? Oh yes you can, and you probably 
should! Creativity and intelligence are fleeting states of mind. When you are 
tired, they go away. If you then pound your nonfunctioning brain for hour after 
late-night hour trying to solve a problem, you’ll simply make yourself more 
tired and reduce the chance that the shower, or the car, will help you solve the 
problem. 

 When you are stuck, when you are tired, disengage for awhile. Give your 
creative subconscious a crack at the problem. You will get more done in less 
time and with less effort if you are careful to husband your resources. Pace 
yourself, and your team. Learn your patterns of creativity and brilliance, and 
take advantage of them rather than work against them. 

   DR I V I N G HO M E 

 One place that I have solved a number of problems is my car on the way home 
from work. Driving requires a lot of noncreative mental resources. You must 
dedicate your eyes, hands, and portions of your mind to the task; therefore, you 
must disengage from the problems at work. There is something about 
 disengagement  that allows your mind to hunt for solutions in a different and 
more creative way. 

   TH E SH OW E R 

 I have solved an inordinate number of problems in the shower. Perhaps that 
spray of water early in the morning wakes me up and gets me to review all the 
solutions that my brain came up with while I was asleep. 

 When you are working on a problem, you sometimes get so close to it that you 
can’t see all the options. You miss elegant solutions because the creative part of 
your mind is suppressed by the intensity of your focus. Sometimes the best way 
to solve a problem is to go home, eat dinner, watch TV, go to bed, and then 
wake up the next morning and take a shower. 



BEING LATE

71B

    BE I N G L ATE 

 You  will  be late. It happens to the best of us. It happens to the most dedicated of 
us. Sometimes we just blow our estimates and wind up late. 

 The trick to managing lateness is early detection and transparency. The worst 
case scenario occurs when you continue to tell everyone, up to the very end, 
that you will be on time—and then let them all down.  Don’t  do this. Instead, 
 regularly  measure your progress against your goal, and come up with three      4   
fact-based end dates: best case, nominal case, and worst case. Be as honest as 
you can about all three dates.  Do not incorporate hope into your estimates!  
Present all three numbers to your team and stakeholders. Update these 
numbers daily. 

  HO PE 

 What if these numbers show that you  might  miss a deadline? For example, let’s 
say that there’s a trade show in ten days, and we need to have our product there. 
But let’s also say that your three-number estimate for the feature you are 
working on is 8/12/20. 

  Do not hope that you can get it all done in ten days!  Hope is the project killer. 
Hope destroys schedules and ruins reputations. Hope will get you into deep 
trouble. If the trade show is in ten days, and your nominal estimate is 12, you 
 are not  going to make it. Make sure that the team and the stakeholders 
understand the situation, and don’t let up until there is a fall-back plan. Don’t 
let anyone else have hope. 

   RU S H I N G 

 What if your manager sits you down and asks you to try to make the deadline? 
What if your manager insists that you “do what it takes”?  Hold to your estimates!  
Your original estimates are more accurate than any changes you make while 

4. There’s much more about this in the Estimation chapter.



CHAPTER 4 CODING

72B

your boss is confronting you. Tell your boss that you’ve already considered the 
options (because you have) and that the only way to improve the schedule is to 
reduce scope.  Do not be tempted to rush.  

 Woe to the poor developer who buckles under pressure and agrees to  try  to 
make the deadline. That developer will start taking shortcuts and working extra 
hours in the vain hope of working a miracle. This is a recipe for disaster because 
it gives you, your team, and your stakeholders false hope. It allows everyone to 
avoid facing the issue and delays the necessary tough decisions. 

 There is no way to rush. You can’t make yourself code faster. You can’t make 
yourself solve problems faster. If you try, you’ll just slow yourself down and 
make a mess that slows everyone else down, too. 

 So you must answer your boss, your team, and your stakeholders by depriving 
them of hope. 

   OV E RTI M E 

 So your boss says, “What if you work an extra two hours a day? What if you work 
on Saturday? Come on, there’s just got to be a way to squeeze enough hours in 
to get the feature done on time.” 

 Overtime can work, and sometimes it is necessary. Sometimes you can make an 
otherwise impossible date by putting in some ten-hour days, and a Saturday or 
two. But this is very risky. You are not likely to get 20% more work done by 
working 20% more hours. What’s more, overtime will  certainly  fail if it goes on 
for more than two or three weeks. 

 Therefore you should  not  agree to work overtime unless (1) you can personally 
afford it, (2) it is short term, two weeks or less, and (3)  your boss has a fall-back 
plan  in case the overtime effort fails. 

 That last criterion is a deal breaker. If your boss cannot articulate to you what 
he’s going to do if the overtime effort fails, then you should not agree to work 
overtime. 



HELP

73B

   FA L S E DE LI V E RY 

 Of all the unprofessional behaviors that a programmer can indulge in, perhaps 
the worst of all is saying you are done when you know you aren’t. Sometimes 
this is just an overt lie, and that’s bad enough. But the far more insidious case is 
when we manage to rationalize a new definition of “done.” We convince 
ourselves that we are done  enough , and move on to the next task. We rationalize 
that any work that remains can be dealt with later when we have more time. 

 This is a contagious practice. If one programmer does it, others will see and 
follow suit. One of them will stretch the definition of “done” even more, and 
everyone else will adopt the new definition. I’ve seen this taken to horrible 
extremes. One of my clients actually defined “done” as “checked-in.” The code 
didn’t even have to compile. It’s very easy to be “done” if nothing has to work! 

 When a team falls into this trap, managers hear that everything is going fine. All 
status reports show that everyone is on time. It’s like blind men having a picnic 
on the railroad tracks: Nobody sees the freight train of unfinished work bearing 
down on them until it is too late. 

   DE F I N E “DO N E” 

 You avoid the problem of false delivery by creating an independent definition of 
“done.” The best way to do this is to have your business analysts and testers 
create automated acceptance tests      5   that must pass before you can say that you 
are done. These tests should be written in a testing language such as FITNESSE, 
Selenium, RobotFX, Cucumber, and so on. The tests should be understandable 
by the stakeholders and business people, and should be run frequently. 

    HE LP 

 Programming is  hard . The younger you are the less you believe this. After all, it’s 
just a bunch of  if  and  while  statements. But as you gain experience you begin to 
realize that the way you combine those  if  and  while  statements is critically 

5. See Chapter 7, “Acceptance Testing.”



CHAPTER 4 CODING

74B

important. You can’t just slather them together and hope for the best. Rather, 
you have to carefully partition the system into small understandable units that 
have as little to do with each other as possible—and that’s hard. 

 Programming is so hard, in fact, that it is beyond the capability of one person 
to do it well. No matter how skilled you are, you will certainly benefit from 
another programmer’s thoughts and ideas. 

  HE LPI N G OTH E R S 

 Because of this, it is the responsibility of programmers to be available to help 
each other. It is a violation of professional ethics to sequester yourself in a 
cubicle or office and refuse the queries of others. Your work is not so important 
that you cannot lend some of your time to help others. Indeed, as a professional 
you are honor bound to offer that help whenever it is needed. 

 This doesn’t mean that you don’t need some alone time. Of course you do. But 
you have to be fair and polite about it. For example, you can let it be known 
that between the hours of 10  AM  and noon you should not be bothered, but 
from 1  PM  to 3  PM  your door is open. 

 You should be conscious of the status of your teammates. If you see someone 
who appears to be in trouble, you should offer your help. You will likely be quite 
surprised at the profound effect your help can have. It’s not that you are so 
much smarter than the other person, it’s just that a fresh perspective can be a 
profound catalyst for solving problems. 

 When you help someone, sit down and write code together. Plan to spend the 
better part of an hour or more. It may take less than that, but you don’t want to 
appear to be rushed. Resign yourself to the task and give it a solid effort. You 
will likely come away having learned more than you gave. 

   BE I N G HE LPE D 

 When someone offers to help you, be gracious about it. Accept the help 
gratefully and give yourself to that help.  Do not protect your turf.  Do not push 



HELP

75B

the help away because you are under the gun. Give it thirty minutes or so. If by 
that time the person is not really helping all that much, then politely excuse 
yourself and terminate the session with thanks. Remember, just as you are 
honor bound to offer help, you are honor bound to accept help. 

 Learn how to  ask  for help. When you are stuck, or befuddled, or just can’t wrap 
your mind around a problem, ask someone for help. If you are sitting in a team 
room, you can just sit back and say, “I need some help.” Otherwise, use yammer, 
or twitter, or email, or the phone on your desk. Call for help. Again, this is a 
matter of professional ethics. It is unprofessional to remain stuck when help is 
easily accessible. 

 By this time you may be expecting me to burst into a chorus of  Kumbaya  while 
fuzzy bunnies leap onto the backs of unicorns and we all happily fly over 
rainbows of hope and change. No, not quite. You see, programmers  tend  to be 
arrogant, self-absorbed introverts. We didn’t get into this business because we 
like  people . Most of us got into programming because we prefer to deeply focus 
on sterile minutia, juggle lots of concepts simultaneously, and in general prove 
to ourselves that we have brains the size of a planet, all while not having to 
interact with the messy complexities of  other people . 

 Yes, this is a stereotype. Yes, it is generalization with many exceptions. But the 
reality is that programmers do not tend to be collaborators.      6   And yet collaboration 
is critical to effective programming. Therefore, since for many of us collaboration 
is not an instinct, we require  disciplines  that drive us to collaborate. 

   ME NTO R I N G 

 I have a whole chapter on this topic later in the book. For now let me simply say 
that the training of less experienced programmers is the responsibility of those 
who have more experience. Training courses don’t cut it. Books don’t cut it. 
Nothing can bring a young software developer to high performance quicker 

6. This is far more true of men than women. I had a wonderful conversation with @desi (Desi McAdam, 

founder of DevChix) about what motivates women programmers. I told her that when I got a program 

working, it was like slaying the great beast. She told me that for her and other women she had spoken to, 

the act of writing code was an act of nurturing creation.



CHAPTER 4 CODING

76B

than his own drive, and effective mentoring by his seniors. Therefore, once 
again, it is a matter of professional ethics for senior programmers to spend time 
taking younger programmers under their wing and mentoring them. By the 
same token, those younger programmers have a professional duty to seek out 
such mentoring from their seniors. 

    B I B LI O G R A PH Y 

    [Martin09]:  Robert C. Martin,  Clean Code , Upper Saddle River, NJ: Prentice 
Hall, 2009. 

    [Martin03]:  Robert C. Martin,  Agile Software Development: Principles, Patterns, 
and Practices , Upper Saddle River, NJ: Prentice Hall, 2003.    



77B

5TE ST DR IV E N 
DE V E LO PM E NT

     It has been over ten years since Test Driven Development (TDD) made its debut 
in the industry. It came in as part of the Extreme Programming (XP) wave, but 
has since been adopted by Scrum, and virtually all of the other Agile methods. 
Even non-Agile teams practice TDD. 

 When, in 1998, I first heard of “Test First Programming” I was skeptical. Who 
wouldn’t be? Write your unit tests  first ? Who would do a goofy thing like that? 



CHAPTER 5 TEST DRIVEN DEVELOPMENT

78B

 But I’d been a professional programmer for thirty years by then, and I’d seen 
things come and go in the industry. I knew better than to dismiss anything out 
of hand, especially when someone like Kent Beck says it. 

 So in 1999 I travelled to Medford, Oregon, to meet with Kent and learn the 
discipline from him. The whole experience was a shocker! 

 Kent and I sat down in his office and started to code some simple little problem 
in Java. I wanted to just write the silly thing. But Kent resisted and took me, step 
by step, through the process. First he wrote a small part of a unit test, barely 
enough to qualify as code. Then he wrote just enough code to make that test 
compile. Then he wrote a little more test, then more code. 

 The cycle time was completely outside my experience. I was used to writing 
code for the better part of an hour before trying to compile or run it. But Kent 
was literally executing his code every thirty seconds or so. I was flabbergasted! 

 What’s more, I recognized the cycle time! It was the kind of cycle time I’d used 
years before as a kid      1   programming games in interpreted languages like Basic or 
Logo. In those languages there is no build time, so you just add a line of code 
and then execute. You go around the cycle very quickly. And because of that, 
you can be  very  productive in those languages. 

 But in  real  programming that kind of cycle time was absurd. In  real  
programming you had to spend lots of time writing code, and then lots more 
time getting it to compile. And then even more time debugging it.  I was a C++ 
programmer, dammit!  And in C++ we had build and link times that took 
minutes, sometimes hours. Thirty-second cycle times were unimaginable. 

 Yet there was Kent, cooking away at this Java program in thirty-second cycles 
and without any hint that he’d be slowing down any time soon. So it dawned on 
me, while I sat there in Kent’s office, that using this simple discipline I could 
code in real languages with the cycle time of Logo! I was hooked! 

1. From my vantage point at the time a kid is anyone younger than 35. During my twenties I spent a signifi-

cant amount of time writing silly little games in interpreted languages. I wrote space war games, adventure 

games, horse race games, snake games, gambling games, you name it.



79B

THE THREE LAWS OF TDD

  TH E JU RY IS IN 

 Since those days I’ve learned that TDD is much more than a simple trick to 
shorten my cycle time. The discipline has a whole repertoire of benefits that I’ll 
describe in the following paragraphs. 

 But first I need to say this: 

 •   The jury is in!  

 •   The controversy is over.  

 •    GOTO  is harmful  .

 •   And TDD works.    

 Yes, there have been lots of controversial blogs and articles written about TDD 
over the years and there still are. In the early days they were serious attempts at 
critique and understanding. Nowadays, however, they are just rants. The bottom 
line is that TDD works, and everybody needs to get over it. 

 I know this sounds strident and unilateral, but given the record I don’t think 
surgeons should have to defend hand-washing, and I don’t think programmers 
should have to defend TDD. 

 How can you consider yourself to be a professional if you do not  know  that all 
your code works? How can you know all your code works if you don’t test it 
every time you make a change? How can you test it every time you make a 
change if you don’t have automated unit tests with very high coverage? How can 
you get automated unit tests with very high coverage without practicing TDD? 

 That last sentence requires some elaboration. Just what is TDD? 

    TH E TH R E E L AW S O F TDD   

1.   You are not allowed to write any production code until you have first written 
a failing unit test.  

2.   You are not allowed to write more of a unit test than is sufficient to fail—and 
not compiling is failing.  



CHAPTER 5 TEST DRIVEN DEVELOPMENT

80B

3.   You are not allowed to write more production code that is sufficient to pass 
the currently failing unit test.    

 These three laws lock you into a cycle that is, perhaps, thirty seconds long. You 
begin by writing a small portion of a unit test. But within a few seconds you 
must mention the name of some class or function you have not written yet, 
thereby causing the unit test to fail to compile. So you must write production 
code that makes the test compile. But you can’t write any more than that, so you 
start writing more unit test code. 

 Round and round the cycle you go. Adding a bit to the test code. Adding a bit to the 
production code. The two code streams grow simultaneously into complementary 
components. The tests fit the production code like an antibody fits an antigen. 

  TH E LITA N Y O F BE N E F IT S 

  Certainty 

 If you adopt TDD as a professional discipline, then you will write dozens of 
tests every day, hundreds of tests every week, and thousands of tests every year. 
And you will keep all those tests on hand and run them any time you make any 
changes to the code. 

 I am the primary author and maintainer of F IT N ESSE      , 2   a Java-based acceptance 
testing tool. As of this writing F IT N ESSE  is 64,000 lines of code, of which 28,000 
are contained in just over 2,200 individual unit tests. These tests cover at least 
90% of the production code      3   and take about 90 seconds to run. 

 Whenever I make a change to any part of F IT N ESSE , I simply run the unit tests. If 
they pass, I am nearly certain that the change I made didn’t break anything. 
How certain is “nearly certain”? Certain enough to ship! 

 The QA process for FITNESSE is the command:  ant release . That command 
builds F IT N ESSE  from scratch and then runs all the unit and acceptance tests. 
If those tests all pass, I ship it. 

2. http://fitnesse.org

3. Ninety percent is a minimum. The number is actually larger than that. The exact amount is hard to 

 calculate because the coverage tools can’t see code that runs in external processes or in catch blocks.

http://fitnesse.org


THE THREE LAWS OF TDD

81B

   Defect Injection Rate 

 Now, F IT N ESSE  is not a mission-critical application. If there’s a bug, nobody 
dies, and nobody loses millions of dollars. So I can afford to ship based on 
nothing but passing tests. On the other hand, F IT N ESSE  has thousands of users, 
and despite the addition of 20,000 new lines of code last year, my bug list only 
has 17 bugs on it (many of which are cosmetic in nature). So I know my defect 
injection rate is very low. 

 This is not an isolated effect. There have been several reports      4   and studies      5   that 
describe significant defect reduction. From IBM, to Microsoft, from Sabre to 
Symantec, company after company and team after team have experienced defect 
reductions of 2X, 5X, and even 10X. These are numbers that no professional 
should ignore. 

   Courage 

 Why don’t you fix bad code when you see it? Your first reaction upon seeing a 
messy function is “This is a mess, it needs to be cleaned.” Your second reaction 
is “I’m not touching it!” Why? Because you know that if you touch it you risk 
breaking it; and if you break it, it becomes yours. 

 But what if you could be  sure  that your cleaning did not break anything? What 
if you had the kind of  certainty  that I just mentioned? What if you could click a 
button and  know  within 90 seconds that your changes had broken nothing,  and 
had only done good ? 

 This is one of the most powerful benefits of TDD. When you have a suite of 
tests that you trust, then you lose all fear of making changes. When you see bad 
code, you simply clean it on the spot. The code becomes clay that you can safely 
sculpt into simple and pleasing structures. 

 When programmers lose the fear of cleaning, they clean! And clean code is 
easier to understand, easier to change, and easier to extend. Defects become 

4. http://www.objectmentor.com/omSolutions/agile_customers.html

5. [Maximilien], [George2003], [Janzen2005], [Nagappan2008]

http://www.objectmentor.com/omSolutions/agile_customers.html


CHAPTER 5 TEST DRIVEN DEVELOPMENT

82B

even less likely because the code gets simpler. And the code base steadily 
 improves  instead of the normal rotting that our industry has become used to. 

 What professional programmer would allow the rotting to continue? 

   Documentation 

 Have you ever used a third-party framework? Often the third party will send 
you a nicely formatted manual written by tech writers. The typical manual 
employs 27 eight-by-ten color glossy photographs with circles and arrows and a 
paragraph on the back of each one explaining how to configure, deploy, 
manipulate, and otherwise use that framework. At the back, in the appendix, 
there’s often an ugly little section that contains all the code examples. 

 Where’s the first place you go in that manual? If you are a programmer, you go 
to the code examples. You go to the code because you know the code will tell 
you the truth. The 27 eight-by-ten color glossy photographs with circles and 
arrows and a paragraph on the back might be pretty, but if you want to know 
how to use code you need to read code. 

 Each of the unit tests you write when you follow the three laws is an example, 
written in code, describing how the system should be used. If you follow the 
three laws, then there will be a unit test that describes how to create every object 
in the system, every way that those objects can be created. There will be a unit 
test that describes how to call every function in the system every way that those 
functions can meaningfully be called. For anything you need to know how to 
do, there will be a unit test that describes it in detail. 

 The unit tests are documents. They describe the lowest-level design of the 
system. They are unambiguous, accurate, written in a language that the 
audience understands, and are so formal that they execute. They are the best 
kind of low-level documentation that can exist. What professional would not 
provide such documentation? 

   Design 

 When you follow the three laws and write your tests first, you are faced with a 
dilemma. Often you know exactly what code you want to write, but the three 



WHAT TDD IS NOT

83B

laws tell you to write a unit test that fails because that code doesn’t exist! This 
means you have to test the code that you are about to write. 

 The problem with testing code is that you have to isolate that code. It is often 
difficult to test a function if that function calls other functions. To write that 
test you’ve got to figure out some way to decouple the function from all the 
others. In other words, the need to test first forces you to think about  good  
 design . 

 If you don’t write your tests first, there is no force preventing you from coupling 
the functions together into an untestable mass. If you write your tests later, you 
may be able to test the inputs and the outputs of the total mass, but it will 
probably be quite difficult to test the individual functions. 

 Therefore, following the three laws, and writing your tests first, creates a force 
that drives you to a better decoupled design. What professional would not 
employ tools that drove them toward better designs? 

    “But I can write my tests later,” you say.   No, you can’t. Not really. Oh, you can 
write  some  tests later. You can even approach high coverage later if you are careful 
to measure it. But the tests you write after the fact are  defense . The tests you write 
first are  offense . After-the-fact tests are written by someone who is already vested 
in the code and already knows how the problem was solved. There’s just no way 
those tests can be anywhere near as incisive as tests written first. 

   TH E PR O F E S S I O N A L OP TI O N 

 The upshot of all this is that TDD is the professional option. It is a discipline 
that enhances certainty, courage, defect reduction, documentation, and design. 
With all that going for it, it could be considered  unprofessional  not to use it. 

    WH AT TDD IS NOT 

 For all its good points, TDD is not a religion or a magic formula. Following the 
three laws does not guarantee any of these benefits. You can still write bad code 
even if you write your tests first. Indeed, you can write bad tests. 



CHAPTER 5 TEST DRIVEN DEVELOPMENT

84B

 By the same token, there are times when following the three laws is simply 
impractical or inappropriate. These situations are rare, but they exist. No 
professional developer should ever follow a discipline when that discipline does 
more harm than good. 

   B I B LI O G R A PH Y 

    [Maximilien]:   E. Michael Maximilien, Laurie Williams,  “Assessing Test-Driven 
Development at IBM ,”  http://collaboration.csc.ncsu.edu/laurie/Papers/
MAXIMILIEN_WILLIAMS.PDF  

    [George2003]:  B. George, and L. Williams,  “An Initial Investigation of Test-
Driven Development in Industry,”   http://collaboration.csc.ncsu.edu/laurie/
Papers/TDDpaperv8.pdf  

    [Janzen2005]:  D. Janzen and H. Saiedian,  “Test-driven development concepts, 
taxonomy, and future direction ,” IEEE Computer, Volume 38, Issue 9, 
pp. 43–50. 

    [Nagappan2008]:  Nachiappan Nagappan, E. Michael Maximilien, Thirumalesh 
Bhat, and Laurie Williams,  “Realizing quality improvement through test 
driven development: results and experiences of four industrial teams ,” 
Springer Science + Business Media, LLC 2008:  http://research.microsoft.
com/en-us/projects/esm/nagappan_tdd.pdf     

http://collaboration.csc.ncsu.edu/laurie/Papers/MAXIMILIEN_WILLIAMS.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/MAXIMILIEN_WILLIAMS.PDF
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf
http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf
http://research.microsoft.com/en-us/projects/esm/nagappan_tdd.pdf


85B

6PR ACTI C I N G

     All professionals practice their art by engaging in skill-sharpening exercises. 
Musicians rehearse scales. Football players run through tires. Doctors practice 
sutures and surgical techniques. Lawyers practice arguments. Soldiers rehearse 
missions. When performance matters, professionals practice. This chapter is all 
about the ways in which programmers can practice their art. 



CHAPTER 6 PRACTICING

86B

SO M E BAC KG RO U N D O N PR AC TI C I N G

 Practicing is not a new concept in software development, but we didn’t 
recognize it as practicing until just after the turn of the millennium. Perhaps 
the first formal instance of a practice program was printed on page 6 of 
[K&R-C].   

   main()   
   {   
     printf("hello, world\n");   
   }     

 Who among us has not written that program in one form or another? We use it 
as a way to prove a new environment or a new language. Writing and executing 
that program is proof that we can write and execute  any  program. 

 When I was much younger, one of the first programs I would write on a new 
computer was  SQINT , the squares of integers. I wrote it in assembler, BASIC, 
FORTRAN, COBOL, and a zillion other languages. Again, it was a way to prove 
that I could make the computer do what I wanted it to do. 

 In the early ’80s personal computers first started to show up in department 
stores. Whenever I passed one, like a VIC-20 or a Commodore-64, or a TRS-80, 
I would write a little program that printed an infinite stream of ‘\’ and ‘/’ characters 
on the screen. The patterns this program produced were pleasing to the eye and 
looked far more complex than the little program that generated them. 

 Although these little programs were certainly practice programs, program-
mers in general did not  practice . Frankly, the thought never occurred to us. 
We were too busy writing code to think about practicing our skills. And 
besides, what would have been the point? During those years programming 
did not require quick reactions or nimble fingers. We did not use screen 
editors until the late ’70s. We spent much of our time waiting for compiles 
or debugging long, horrid stretches of code. We had not yet invented the 
short-cycles of TDD, so we did not require the fine-tuning that practice 
could bring. 



87B

SOME BACKGROUND ON PRACTICING 

  TW E NT Y-TWO ZE R O S 

 But things have changed since the early days of programming. Some things have 
changed a  lot . Other things haven’t changed much at all. 

 One of the first machines I ever wrote programs for was a PDP-8/I. This machine 
had a 1.5-microsecond cycle time. It had 4,096 12-bit words in core memory. 
It was the size of a refrigerator and consumed a significant amount of electrical 
power. It had a disk drive that could store 32K of 12-bit words, and we talked 
to it with a 10-character-per-second teletype. We thought this was a  powerful  
machine, and we used it to work miracles. 

 I just bought a new Macbook Pro laptop. It has a 2.8GHz dual core processor, 
8GB of RAM, a 512GB SSD, and a 17-inch 1920 ´ 1200 LED screen. I carry it in 
my backpack. It sits on my lap. It consumes less than 85 watts. 

 My laptop is  eight thousand  times faster, has  two million  times more memory, has 
sixteen million times more offline storage, requires 1% of the power, takes up 1% of 
the space, and costs one twenty-fifth of the price of the PDP-8/I. Let’s do the math: 

    8  ,   000   ́    2  ,   000  ,   000   ́    16  ,   000  ,   000   ́    100  ´    100    ´   25   =   6.4   ́      10    22      

 This number is  large . We’re talking about  22 orders of magnitude ! That’s how 
many angstroms there are between here and Alpha Centauri. That’s how many 
electrons there are in a silver dollar. That’s the mass of the Earth in units of 
Michael Moore. This is a big, big, number. And it’s sitting in my lap, and 
probably yours too! 

 And what am I doing with this increase in power of 22 factors of ten? I’m doing 
pretty much what I was doing with that PDP-8/I. I’m writing  if  statements, 
 while  loops, and  assignments . 

 Oh, I’ve got better tools to write those statements with. And I have better languages 
to write those statements with. But the nature of the statements hasn’t changed in 
all that time. Code in 2010 would be recognizable to a programmer from the 
1960s. The clay that we manipulate has not changed much in those four decades. 



CHAPTER 6 PRACTICING

88B

   TU R N A R O U N D TI M E 

 But the  way  we work has changed dramatically. In the ’60s I could wait a day 
or two to see the results of a compile. In the late ’70s a 50,000-line program 
might take 45 minutes to compile. Even in the ’90s, long build times were 
the norm. 

 Programmers today don’t wait for compiles.      1   Programmers today have such 
immense power under their fingers that they can spin around the red-green-
refactor loop in seconds. 

 For example, I work on a 64,000-line Java project named F IT N ESSE . A full build, 
including  all  unit and integration tests, executes in less than 4 minutes. If those 
tests pass, I’m ready to ship the product.  So the whole QA process, from source 
code to deployment, requires less than 4 minutes.  Compiles take almost no measur-
able time at all. Partial tests require  seconds . So I can literally spin around the 
compile/test loop  ten times per minute ! 

 It’s not always wise to go that fast. Often it is better to slow down and just  think.       2   
But there are other times when spinning around that loop as fast as possible is 
 highly  productive. 

 Doing anything quickly requires practice. Spinning around the code/test loop 
quickly requires you to make very quick decisions. Making decisions quickly 
means being able to recognize a vast number of situations and problems and 
simply  know  what to do to address them. 

 Consider two martial artists in combat. Each must recognize what the other 
is attempting and respond appropriately within milliseconds. In a combat 
situation you don’t have the luxury of freezing time, studying the positions, and 
deliberating on the appropriate response. In a combat situation you simply have 
to  react . Indeed, it is your  body  that reacts while your mind is working on a 
higher-level strategy. 

1. The fact that some programmers do wait for builds is tragic and indicative of carelessness. In today’s world 

build times should be measured in seconds, not minutes, and certainly not hours.

2. This is a technique that Rich Hickey calls HDD, or Hammock-Driven Development.



THE CODING DOJO

89B

 When you are spinning around the code/test loop several times per minute, it is 
your  body  that knows what keys to hit. A primal part of your mind recognizes 
the situation and reacts within milliseconds with the appropriate solution while 
your mind is free to focus on the higher-level problem. 

 In both the martial arts case and the programming case, speed depends on 
 practice . And in both cases the practice is similar. We choose a repertoire of 
problem/solution pairs and execute them over and over again until we know 
them cold. 

 Consider a guitarist like Carlos Santana. The music in his head simply comes 
out his fingers. He does not focus on finger positions or picking technique. His 
mind is free to plan out higher-level melodies and harmonies while his body 
translates those plans into lower-level finger motions. 

 But to gain that kind of ease of play requires  practice . Musicians practice scales 
and études and riffs over and over until they know them cold. 

    TH E CO D I N G DO J O 

 Since 2001 I have been performing a TDD demonstration that I call  The Bowling 
Game.       3   It’s a lovely little exercise that takes about thirty minutes. It experiences 
conflict in the design, builds to a climax, and ends with a surprise. I wrote a 
whole chapter on this example in [PPP2003]. 

 Over the years I performed this demonstration hundreds, perhaps thousands, of 
times. I got  very  good at it! I could do it in my sleep. I minimized the keystrokes, 
tuned the variable names, and tweaked the algorithm structure until it was just 
right. Although I didn’t know it at the time, this was my first kata. 

 In 2005 I attended the XP2005 Conference in Sheffield, England. I attended a 
session with the name  Coding Dojo  led by Laurent Bossavit and Emmanuel 
Gaillot. They had everyone open their laptops and code along with them as they 

3. This has become a very popular kata, and a Google search will find many instances of it. The original is 

here: http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata.

http://butunclebob.com/ArticleS.UncleBob.TheBowlingGameKata


CHAPTER 6 PRACTICING

90B

used TDD to write Conway’s Game of Life. They called it a “Kata” and credited 
“Pragmatic” Dave Thomas      4   with the original idea.      5   

 Since then many programmers have adopted a martial arts metaphor for their 
practice sessions. The name Coding Dojo      6   seems to have stuck. Sometimes a 
group of programmers will meet and practice together just like martial artists 
do. At other times, programmers will practice solo, again as martial artists do. 

 About a year ago I was teaching a group of developers in Omaha. At lunch they 
invited me to join their Coding Dojo. I watched as twenty developers opened their 
laptops and, keystroke by keystroke, followed along with the leader who was doing 
The  Bowling Game  Kata. 

 There are several kinds of activities that take place in a dojo. Here are a few: 

  K ATA 

 In martial arts, a kata is a precise set of choreographed movements that simulates 
one side of a combat. The goal, which is asymptotically approached, is perfection. 
The artist strives to teach his body to make each movement perfectly and to 
assemble those movements into fluid enactment. Well-executed kata are beautiful 
to watch. 

 Beautiful though they are, the purpose of learning a kata is not to perform it on 
stage. The purpose is to train your mind and body how to react in a particular 
combat situation. The goal is to make the perfected movements automatic and 
instinctive so that they are there when you need them. 

 A programming kata is a precise set of choreographed keystrokes and mouse 
movements that simulates the solving of some programming problem. You 
aren’t actually solving the problem because you already know the solution. 
Rather, you are practicing the movements and decisions involved in solving the 
problem. 

4. We use the “Pragmatic” prefix to disambiguate him from “Big” Dave Thomas from OTI.

5. http://codekata.pragprog.com

6. http://codingdojo.org/

http://codekata.pragprog.com
http://codingdojo.org/


THE CODING DOJO

91B

 The asymptote of perfection is once again the goal. You repeat the exercise over 
and over again to train your brain and fingers how to move and react. As you 
practice you may discover subtle improvements and efficiencies either in your 
motions or in the solution itself. 

 Practicing a suite of katas is a good way to learn hot keys and navigation 
idioms. It is also a good way to learn disciplines such as TDD and CI. But most 
importantly, it is a good way to drive common problem/solution pairs into your 
subconscious, so that you simply know how to solve them when facing them in 
real programming. 

 Like any martial artist, a programmer should know several different kata and 
practice them regularly so that they don’t fade away from memory. Many kata 
are recorded at  http://katas.softwarecraftsmanship.org . Others can be found at 
http://codekata.pragprog.com. Some of my favorites are: 

 •    The Bowling Game : http://butunclebob.com/ArticleS.UncleBob.TheBowling-
GameKata  

 •    Prime Factors : http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-
Kata  

 •    Word Wrap : http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-
path.html    

 For a real challenge, try learning a kata so well that you can set it to music. 
Doing this well is  hard.       7   

   WA S A 

 When I studied jujitsu, much of our time in the dojo was spent in pairs practicing 
our wasa. Wasa is very much like a two-man kata. The routines are precisely 
memorized and played back. One partner plays the role of the aggressor, and the 
other partner is the defender. The motions are repeated over and over again as the 
practitioners swap roles. 

7. http://katas.softwarecraftsmanship.org/?p=71

http://katas.softwarecraftsmanship.org
http://codekata.pragprog.com
http://butunclebob.com/ArticleS.UncleBob.TheBowling-GameKata
http://butunclebob.com/ArticleS.UncleBob.TheBowling-GameKata
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-Kata
http://butunclebob.com/ArticleS.UncleBob.ThePrimeFactors-Kata
http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-path.html
http://thecleancoder.blogspot.com/2010/10/craftsman-62-dark-path.html
http://katas.softwarecraftsmanship.org/?p=71


CHAPTER 6 PRACTICING

92B

 Programmers can practice in a similar fashion using a game known as  ping-
pong.       8   The two partners choose a kata, or a simple problem. One programmer 
writes a unit test, and then the other must make it pass. Then they reverse 
roles. 

 If the partners choose a standard kata, then the outcome is known and the 
programmers are practicing and critiquing each other’s keyboarding and 
mousing techniques, and how well they’ve memorized the kata. On the other 
hand, if the partners choose a new problem to solve, then the game can get a bit 
more interesting. The programmer writing a test has an inordinate amount of 
control over how the problem will be solved. He also has a significant amount 
of power to set constraints. For example, if the programmers choose to 
implement a sort algorithm, the test writer can easily put constraints on speed 
and memory space that will challenge his partner. This can make the game quite 
competative . . . and fun. 

   R A N D O R I 

 Randori is free-form combat. In our jujitsu dojo, we would set up a variety of 
combat scenarios and then enact them. Sometimes one person was told to defend, 
while each of the rest of us would attack him in sequence. Sometimes we would 
set two or more attackers against a single defender (usually the sensei, who almost 
always won). Sometimes we’d do two on two, and so forth. 

 Simulated combat does not map well to programming; however, there is a game 
that is played at many coding dojos called randori. It is very much like two-man 
wasa in which the partners are solving a problem. However, it is played with 
many people and the rules have a twist. With the screen projected on the wall, 
one person writes a test and then sits down. The next person makes the test pass 
and then writes the next test. This can be done in sequence around the table, or 
people can simply line up as they feel so moved. In either case these exercises 
can be a  lot  of fun. 

8. http://c2.com/cgi/wiki?PairProgrammingPingPongPattern

http://c2.com/cgi/wiki?PairProgrammingPingPongPattern


BROADENING YOUR EXPERIENCE

93B

 It is remarkable how much you can learn from these sessions. You can gain an 
immense insight into the way other people solve problems. These insights can 
only serve to broaden your own approach and improve your skill. 

    BROA D E N I N G YO U R EX PE R I E N C E 

 Professional programmers often suffer from a lack of diversity in the kinds 
of problems that they solve. Employers often enforce a single language, platform, 
and domain in which their programmers must work. Without a broadening 
influence, this can lead to a very unhealthy narrowing of your resume and your 
mindset. It is not uncommon for such programmers to find themselves unprepared 
for the changes that periodically sweep the industry. 

  OPE N SO U R C E 

 One way to stay ahead of the curve is to do what lawyers and doctors do: Take on 
some pro-bono work by contributing to an open-source project. There are lots of 
them out there, and there is probably no better way to increase your repertoire of 
skills than to actually work on something that someone else cares about. 

 So if you are a Java programmer, contribute to a Rails project. If you write a lot 
of C++ for your employer, find a Python project and contribute to it. 

   PR AC TI C E ETH I C S 

 Professional programmers practice on their own time. It is not your employer’s 
job to help you keep your skills sharp for you. It is not your employer’s job to 
help you keep your resume tuned. Patients do not pay doctors to practice sutures. 
Football fans do not (usually) pay to see players run through tires. Concert-goers 
do not pay to hear musicians play scales. And employers of programmers don’t 
have to pay you for your practice time. 

 Since your practice time is your own time, you don’t have to use the same languages 
or platforms that you use with your employer. Pick any language you like and 
keep your polyglot skills sharp. If you work in a .NET shop, practice a little Java 
or Ruby at lunch, or at home. 



CHAPTER 6 PRACTICING

94B

    CO N C LU S I O N 

 In one way or another,  all  professionals practice. They do this because they 
care about doing the best job they possibly can. What’s more, they practice on 
their own time because they realize that it is their responsibility—and not their 
employer’s—to keep their skills sharp. Practicing is what you do when you  aren’t  
getting paid. You do it so that you  will  be paid, and paid  well . 

   B I B LI O G R A PH Y 

    [K&R-C]:  Brian W. Kernighan and Dennis M. Ritchie, The C Programming 
Language, Upper Saddle River, NJ: Prentice Hall, 1975. 

    [PPP2003]:  Robert C. Martin,  Agile Software Development: Principles, Patterns, 
and Practices , Upper Saddle River, NJ: Prentice Hall, 2003.    



95B

7ACC E P TA N C E 
TE STI N G

     The role of the professional developer is a communications role as well as a devel-
opment role. Remember that garbage-in/garbage-out applies to programmers too, 
so professional programmers are careful to make sure that their communication 
with other members of the team, and the business, are accurate and healthy. 

   CO M M U N I C ATI N G REQ U I R E M E NT S 

 One of the most common communication issues between programmers and 
business is the requirements. The business people state what they believe they 
need, and then the programmers build what they believe the business described. 
At least that’s how it’s supposed to work. In reality, the communication of 
requirements is extremely difficult, and the process is fraught with error. 



CHAPTER 7 ACCEPTANCE TESTING

96B

 In 1979, while working at Teradyne, I had a visit from Tom, the manager of 
installation and field service. He asked me to show him how to use the ED-402 
text editor to create a simple trouble-ticket system. 

 ED-402 was a proprietary editor written for the M365 computer, which was 
Teradyne’s PDP-8 clone. As a text editor it was very powerful. It had a built-in 
scripting language that we used for all kinds of simple text applications. 

 Tom was not a programmer. But the application he had in mind was simple, so 
he thought I could teach him quickly and then he could write the application 
himself. In my naivete I thought the same thing. After all, the scripting language 
was little more than a macro language for the editing commands, with very 
rudimentary decision and looping constructs. 

 So we sat down together and I asked him what he wanted his application to do. 
He started with the initial entry screen. I showed him how to create a text file 
that would hold the script statements and how to type the symbolic 
representation of the edit commands into that script. But when I looked into 
his eyes, there was nothing looking back. My explanation simply made no sense 
to him at all. 

 This was the first time I had encountered this. For me it was a simple thing to 
represent editor commands symbolically. For example, to represent a control-B 
command (the command that puts the cursor at the beginning of the current 
line) you simply typed ^B into the script file. But this made no sense to Tom. He 
couldn’t make the leap from editing a file to editing a file that edited a file. 

 Tom wasn’t dumb. I think he simply realized that this was going to be a lot 
more involved than he initially thought, and he didn’t want to invest the time 
and mental energy necessary to learn something so hideously convoluted as 
using an editor to command an editor. 

 So bit by bit I found myself implementing this application while he sat there 
and watched. Within the first twenty minutes it was clear that his emphasis had 
changed from learning how to do it himself to making sure that what  I  did was 
what  he  wanted. 



COMMUNICATING REQUIREMENTS

97B

 It took us an entire day. He would describe a feature and I would implement it 
as he watched. The cycle time was five minutes or less, so there was no reason 
for him to get up and do anything else. He’d ask me to do X, and within five 
minutes I had X working. 

 Often he would draw what he wanted on a scrap of paper. Some of the things 
he wanted were hard to do in ED-402, so I’d propose something else. We’d 
eventually agree on something that would work, and then I’d make it work. 

 But then we’d try it and he’d change his mind. He’d say something like, “Yeah, 
that just doesn’t have the flow I’m looking for. Let’s try it a different way.” 

 Hour after hour we fiddled and poked and prodded that application into shape. 
We tried one thing, then another, and then another. It became very clear to me 
that  he  was the sculptor, and I was the tool he was wielding. 

 In the end, he got the application he was looking for but had no idea how to 
go about building the next one for himself. I, on the other hand, learned a 
powerful lesson about how customers actually discover what they need. I learned 
that their vision of the features does not often survive actual contact with the 
computer. 

  PR E M AT U R E PR E C I S I O N 

 Both business and programmers are tempted to fall into the trap of premature 
precision. Business people want to know exactly what they are going to get before 
they authorize a project. Developers want to know exactly what they are supposed 
to deliver before they estimate the project. Both sides want a precision that simply 
cannot be achieved, and are often willing to waste a fortune trying to attain it. 

  The Uncertainty Principle 

 The problem is that things appear different on paper than they do in a working 
system. When the business actually sees what they specified running in a system, 
they realize that it wasn’t what they wanted at all. Once they see the requirement 
actually running, they have a better idea of what they really want—and it’s 
usually not what they are seeing. 



CHAPTER 7 ACCEPTANCE TESTING

98B

 There’s a kind of observer effect, or uncertainty principle, in play. When you 
demonstrate a feature to the business, it gives them more information than they 
had before, and that new information impacts how they see the whole system. 

 In the end, the more precise you make your requirements, the less relevant they 
become as the system is implemented. 

   Estimation Anxiety 

 Developers, too, can get caught in the precision trap. They know they must 
estimate the system and often think that this requires precision. It doesn’t. 

 First, even with perfect information your estimates will have a huge variance. 
Second, the uncertainty principle makes hash out of early precision. The 
requirements  will  change making that precision moot. 

 Professional developers understand that estimates can, and should, be made 
based on low precision requirements, and recognize that those estimates  are 
estimates . To reinforce this, professional developers always include error bars 
with their estimates so that the business understands the uncertainty. (See 
Chapter 10, “Estimation.”) 

    L ATE AM B I G U IT Y 

 The solution to premature precision is to defer precision as long as possible. 
Professional developers don’t flesh out a requirement until they are just about 
to develop it. However, that can lead to another malady:  late ambiguity . 

 Often stakeholders disagree. When they do, they may find it easier to  wordsmith  
their way around the disagreement rather than solve it. They will find some way 
of phrasing the requirement that they can all agree with, without actually 
resolving the dispute. I once heard Tom DeMarco say, “An ambiguity in a 
requirements document represents an argument amongst the stakeholders.”      1   

 Of course, it doesn’t take an argument or a disagreement to create ambiguity. 
Sometimes the stakeholders simply assume that their readers know what they mean. 

1. XP Immersion 3, May, 2000. http://c2.com/cgi/wiki?TomsTalkAtXpImmersionThree

http://c2.com/cgi/wiki?TomsTalkAtXpImmersionThree


COMMUNICATING REQUIREMENTS

99B

It may be perfectly clear to them in their context, but mean something 
completely different to the programmer who reads it. This kind of contextual 
ambiguity can also occur when customers and programmers are speaking face 
to face.  

  Sam (stakeholder): “OK, now these log files need to be backed up.”  

  Paula: “OK, how often?”  

  Sam: “Daily.”  

  Paula: “Right. And where do you want it saved?”  

  Sam: “What do you mean?”  

  Paula: “Do you want me to save it a particular sub-directory?”  

  Sam: “Yes, that’d be good.”  

  Paula: “What shall we call it?”  

  Sam: “How about ‘backup’?”  

  Paula: “Sure, that’d be fine. So we’ll write the log file into the backup 
directory every day. What time?”  

  Sam: “Every day.”  

  Paula: “No, I mean what time of day do you want it written?”  

  Sam: “Any time.”  

  Paula: “Noon?”  

  Sam: “No, not during trading hours. Midnight would be better.”  

  Paula: “OK, midnight then.”  

  Sam: “Great, thanks!”  

  Paula: “Always a pleasure.” 

 Later, Paula is telling her teammate Peter about the task.  

  Paula: “OK, we need to copy the log file into a sub-directory named 
backup every night at midnight.”  

  Peter: “OK, what file name should we use?”  

  Paula: “log.backup ought to do it.”  

  Peter: “You got it.” 



CHAPTER 7 ACCEPTANCE TESTING

100B

 In a different office, Sam is on the phone with his customer.  

  Sam: “Yes, yes, the log files will be saved.”  

  Carl:  “OK, it’s vital that we never lose any logs. We need to go back 
through all those log files, even months or years later, whenever 
there’s an outage, event, or dispute.”  

  Sam: “Don’t worry, I just spoke to Paula. She’ll be saving the logs into a 
directory named backup every night at midnight.”  

  Carl: “OK, that sounds good.”   

 I presume you’ve detected the ambiguity. The customer expects all log files to be 
saved, and Paula simply thought they wanted to save last night’s log file. When 
the customer goes looking for months’ worth of log file backups, they’ll just 
find last night’s. 

 In this case both Paula and Sam dropped the ball. It is the responsibility of 
professional developers (and stakeholders) to make sure that all ambiguity is 
removed from the requirements. 

 This is  hard , and there’s only one way I know how to do it. 

    AC C E P TA N C E TE ST S 

 The term acceptance test is overloaded and overused. Some folks assume that 
these are the tests that users execute before they accept a release. Other folks 
think these are QA tests. In this chapter we will define acceptance tests as tests 
written by a collaboration of the stakeholders and the programmers  in order to 
define when a requirement is done . 

  TH E DE F I N ITI O N O F “DO N E” 

 One of the most common ambiguities we face as software professionals is the 
ambiguity of “done.” When a developer says he’s done with a task, what does that 
mean? Is the developer done in the sense that he’s ready to deploy the feature 
with full confidence? Or does he mean that he’s ready for QA? Or perhaps he’s 
done writing it and has gotten it to run once but hasn’t really tested it yet. 



ACCEPTANCE TESTS

101B

 I have worked with teams who had a different definition for the words “done” 
and “complete.” One particular team used the terms “done” and “done-done.” 

 Professional developers have a  single  definition of done: Done means  done . 
Done means all code written, all tests pass, QA and the stakeholders have 
accepted. Done. 

 But how can you get this level of done-ness and still make quick progress from 
iteration to iteration? You create a set of automated tests that, when they pass, 
meet all of the above criteria! When the acceptance tests for your feature pass, 
you are  done . 

 Professional developers drive the definition of their requirements all the way to 
automated acceptance tests. They work with stakeholder’s and QA to ensure 
that these automated tests are a complete specification of done.  

  Sam: “OK, now these log files need to be backed up.”  

  Paula: “OK, how often?”  

  Sam: “Daily.”  

  Paula: “Right. And where do you want it saved?”  

  Sam: “What do you mean?”  

  Paula: “Do you want me to save it a particular sub-directory?”  

  Sam: “Yes, that’d be good.”  

  Paula: “What shall we call it?”  

  Sam: “How about ‘backup’ ”?  

  Tom (tester): “Wait, backup is too common a name. What are you really 
storing in this directory?”  

  Sam: “The backups.”  

  Tom: “Backups of what?”  

  Sam: “The log files.”  

  Paula: “But there’s only one log file.”  

  Sam: “No, there are many. One for each day.”  

  Tom: “You mean that there is one  active  log file, and many log file 
backups?”  



CHAPTER 7 ACCEPTANCE TESTING

102B

  Sam: “Of course.”  

  Paula: “Oh! I thought you just wanted a temporary backup.”  

  Sam: “No, the customer wants to keep them all forever.”  

  Paula: “That’s a new one on me. OK, glad we cleared that up.”  

  Tom: “So the name of the sub-directory should tell us exactly what’s in it.”  

  Sam: “It’s got all the old inactive logs.”  

  Tom: “So let’s call it  old_inactive_logs .”  

  Sam: “Great.”  

  Tom: “So when does this directory get created?”  

  Sam: “Huh?”  

  Paula: “We should create the directory when the system starts, but only if 
the directory doesn’t already exist.”  

  Tom: “OK, there’s our first test. I’ll need to start up the system and see if 
the  old_inactive_logs  directory is created. Then I’ll add a file to that 
directory. Then I’ll shut down, and start again, and make sure both 
the directory and the file are still there.”  

  Paula: “That test is going to take you a long time to run. System start-up is 
already 20 seconds, and growing. Besides, I really don’t want to have 
to build the whole system every time I run the acceptance tests.”  

  Tom: “What do you suggest?”  

  Paula: “We’ll create a  SystemStarter  class. The main program will load this 
starter with a group of  StartupCommand  objects, which will follow the 
 COMMAND  pattern. Then during system start-up the  SystemStarter  
will simply tell all the  StartupCommand  objects to run. One of those 
 StartupCommand  derivatives will create the  old_inactive_logs  
directory, but only if it doesn’t already exist.”  

  Tom: “Oh, OK, then all I need to test is that  StartupCommand  derivative. 
I can write a simple  FITNESSE  test for that.”   

Tom goes to the board.  

  “The first part will look something like this”:     

   given the command LogFileDirectoryStartupCommand   
   given that the old_inactive_logs directory does not exist   



ACCEPTANCE TESTS

103B

   when the command is executed   
   then the old_inactive_logs directory should exist   
   and it should be empty      

   “The second part will look like this”:     

   given the command LogFileDirectoryStartupCommand   
   given that the old_inactive_logs directory exists   
   and that it contains a file named x   
   When the command is executed   
   Then the old_inactive_logs directory should still exist   
   and it should still contain a file named x      

  Paula: “Yeah, that should cover it.”  

  Sam: “Wow, is all that really necessary?”  

  Paula: “Sam, which of these two statements isn’t important enough to 
specify?”  

  Sam: “I just mean that it looks like a lot of work to think up and write all 
these tests.”  

  Tom: “It is, but it’s no more work than writing a manual test plan. And 
it’s  much  more work to repeatedly execute a manual test.”   

   CO M M U N I C ATI O N 

 The purpose of acceptance tests is communication, clarity, and precision. By 
agreeing to them, the developers, stakeholders, and testers all understand what the 
plan for the system behavior is. Achieving this kind of clarity is the responsibility 
of all parties. Professional developers make it their responsibility to work with 
stakeholders and testers to ensure that all parties know what is about to be built. 

   AU TO M ATI O N 

 Acceptance tests should  always  be automated. There is a place for manual 
testing elsewhere in the software lifecycle, but  these  kinds of tests should never 
be manual. The reason is simple: cost. 

 Consider the image in Figure 7-1. The hands you see there belong to the QA 
manager of a large Internet company. The document he is holding is the  table of 



CHAPTER 7 ACCEPTANCE TESTING

104B

contents  for his  manual  test plan. He has an army of manual testers in off-shore 
locations that execute this plan once every six weeks. It costs him over a million 
dollars every time. He’s holding it out for me because he’s just come back from 
a meeting in which his manager has told him that they need to cut his budget 
by 50%. His question to me is, “Which half of these tests should I not run?”  

        Figure 7-1 Manual test plan   

 To call this a disaster would be a gross understatement. The cost of running the 
manual test plan is so enormous that they have decided to sacrifice it and 
simply live with the fact that  they won’t know if half of their product works ! 

 Professional developers do not let this kind of situation happen. The cost of 
automating acceptance tests is so small in comparison to the cost of executing 
manual test plans that it makes no economic sense to write scripts for humans 
to execute. Professional developers take responsibility for their part in ensuring 
that acceptance tests are automated. 



ACCEPTANCE TESTS

105B

 There are many open-source and commercial tools that facilitate the automation 
of acceptance tests. FITNESSE, Cucumber, cuke4duke, robot framework, and 
Selenium, just to mention a few. All these tools allow you to specify automated 
tests in a form that nonprogrammers can read, understand, and even author. 

   EX TR A WO R K 

 Sam’s point about work is understandable. It  does  look like a lot of extra work 
to write acceptance tests like this. But given Figure 7-1 we can see that it’s not 
really extra work at all. Writing these tests is simply the work of specifying the 
system. Specifying at this level of detail is the only way we, as programmers, can 
know what “done” means. Specifying at this level of detail is the only way that 
the stakeholders can ensure that the system they are paying for really does what 
they need. And specifying at this level of detail is the only way to successfully 
automate the tests. So don’t look at these tests as extra work. Look at them as 
massive time and money savers. These tests will prevent you from implementing 
the wrong system and will allow you to  know  when you are done. 

  WH O WR ITE S AC C E P TA N C E TE S T S ,  A N D WH E N ? 

 In an ideal world, the stakeholders and QA would collaborate to write these 
tests, and developers would review them for consistency. In the real world, 
stakeholders seldom have the time or inclination to dive into the required level 
of detail. So they often delegate the responsibility to business analysts, QA, or 
even developers. If it turns out that developers must write these tests, then take 
care that the developer who writes the test is not the same as the developer who 
implements the tested feature. 

 Typically business analysts write the “happy path” versions of the tests, because 
those tests describe the features that have business value. QA typically writes the 
“unhappy path” tests, the boundary conditions, exceptions, and corner cases. 
This is because QA’s job is to help think about what can go wrong. 

 Following the principle of “late precision,” acceptance tests should be written as 
late as possible, typically a few days before the feature is implemented. In Agile 
projects, the tests are written  after  the features have been selected for the next 
Iteration or Sprint. 



CHAPTER 7 ACCEPTANCE TESTING

106B

 The first few acceptance tests should be ready by the first day of the iteration. 
More should be completed each day until the midpoint of the iteration when all 
of them should be ready. If all the acceptance tests aren’t ready by the midpoint of 
the iteration, then some developers will have to pitch in to finish them off. If this 
happens frequently, then more BAs and/or QAs should be added to the team. 

  TH E DE V E LO PE R’S RO L E 

 Implementation work on a feature begins when the acceptance tests for that 
feature are ready. The developers execute the acceptance tests for the new 
feature and see how they fail. Then they work to connect the acceptance test to 
the system, and then start making the test pass by implementing the desired 
feature.  

  Paula: “Peter, would you give me a hand with this story?”  

  Peter: “Sure, Paula, what’s up?”  

  Paula: “Here’s the acceptance test. As you can see, it’s failing.”     

   given the command LogFileDirectoryStartupCommand   
   given that the old_inactive_logs directory does not exist   
   when the command is executed   
   then the old_inactive_logs directory should exist   
   and it should be empty      

  Peter: “Yeah, all red. None of the scenarios are written. Let me write the 
first one.”     

   |scenario|given the command _|cmd|   
   |create command|@cmd|      

  Paula: “Do we already have a  createCommand  operation?”  

  Peter: “Yeah, it’s in the  CommandUtilitiesFixture  that I wrote last week.”  

  Paula: “OK, so let’s run the test now.”  

  Peter: (runs test). “Yeah, the first line is green, let’s move on to the next.”   

 Don’t worry too much about Scenarios and Fixtures. Those are just some of 
the plumbing you have to write to connect the tests to the system being tested. 



ACCEPTANCE TESTS

107B

Suffice it to say that the tools all provide some way to use pattern matching to 
recognize and parse the statements of the test, and then to call functions that 
feed the data in the test into the system being tested. The amount of effort is 
small, and the Scenarios and Fixtures are reusable across many different tests. 

 The point of all this is that it is the developer’s job to connect the acceptance 
tests to the system, and then to make those tests pass. 

   TE S T NE G OTI ATI O N A N D PA S S I V E AG G R E S S I O N 

 Test authors are human and make mistakes. Sometimes the tests as written don’t 
make a lot of sense once you start implementing them. They might be too 
complicated. They might be awkward. They might contains silly assumptions. 
Or they might just be wrong. This can be very frustrating if you are the 
developer who has to make the test pass. 

 As a professional developer, it is your job to negotiate with the test author for a 
better test. What you should  never  do is take the passive-aggressive option and 
say to yourself, “Well, that’s what the test says, so that’s what I’m going to do.” 

 Remember, as a professional it is your job to help your team create the best 
software they can. That means that everybody needs to watch out for errors and 
slip-ups, and work together to correct them.  

  Paula: “Tom, this test isn’t quite right.”     

   ensure that the post operation finishes in 2 seconds.      

  Tom: “It looks OK to me. Our requirement is that users should not have 
to wait more than two seconds. What’s the problem?”  

  Paula: “The problem is we can only make that guarantee in a statistical 
sense.”  

  Tom: “Huh? That sounds like weasel words. The requirement is two 
seconds.”  

  Paula: “Right, and we can achieve that 99.5% of the time.”  

  Tom: “Paula, that’s not the requirement.”  

  Paula: “But it’s reality. There’s no way I can make the guarantee any other way.”  



CHAPTER 7 ACCEPTANCE TESTING

108B

  Tom: “Sam’s going to throw a fit.”  

  Paula: “No, actually, I’ve already spoken to him about it. He’s fine as long 
as the  normal  user experience is two seconds or less.”  

  Tom: “OK, so how do I write this test? I can’t just say that the post 
operation  usually  finishes in two seconds.”  

  Paula: “You say it statistically.”  

  Tom: “You mean you want me to run a thousand post operation and make 
sure no more than five are more than two seconds? That’s absurd.”  

  Paula: “No, that would take the better part of an hour to run. How about 
this?”     

   execute 15 post transactions and accumulate times.   
   ensure that the Z score for 2 seconds is at least 2.57      

  Tom: “Whoa, what’s a Z score?”  

  Paula: “Just a bit of statistics. Here, how about this?”     

   execute 15 post transactions and accumulate times.   
   ensure odds are 99.5% that time will be less than 2 seconds.      

  Tom: “Yeah, that’s readable, sort of, but can I trust the math behind the 
scenes?”  

  Paula: “I’ll make sure to show all the intermediate calculations in the test 
report so that you can check the math if you have any doubts.”  

  Tom: “OK, that works for me.”   

   AC C E P TA N C E TE S T S A N D UN IT TE S T S 

 Acceptance tests are not  unit  tests. Unit tests are written  by  programmers  for  
programmers. They are formal design documents that describe the lowest level 
structure and behavior of the code. The audience is programmers, not business. 

 Acceptance tests are written  by  the business  for  the business (even when you, the 
developer, end up writing them). They are formal requirements documents that 
specify how the system should behave from the business’ point of view. The 
audience is the business  and  the programmers. 



ACCEPTANCE TESTS

109B

 It can be tempting to try to eliminate “extra work” by assuming that the two 
kinds of tests are redundant. Although it is true that unit and acceptance tests 
often test the same things, they are not redundant at all. 

 First, although they may test the same things, they do so through different 
mechanisms and pathways. Unit tests dig into the guts of the system making 
calls to methods in particular classes. Acceptance tests invoke the system much 
farther out, at the API or sometimes even UI level. So the execution pathways 
that these tests take are very different. 

 But the real reason these tests aren’t redundant is that their primary function  is 
not testing . The fact that they are tests is incidental. Unit tests and acceptance 
tests are  documents   first , and tests second. Their primary purpose is to formally 
document the design, structure, and behavior of the system. The fact that they 
automatically verify the design, structure, and behavior that they specify is 
wildly useful, but the specification is their true purpose. 

   GUIS A N D OTH E R CO M PLI C ATI O N S 

 It is hard to specify GUIs up front. It can be done, but it is seldom done well. The 
reason is that the aesthetics are subjective and therefore volatile. People want to 
 fiddle  with GUIs. They want to massage and manipulate them. They want to try 
different fonts, colors, page-layouts, and workflows. GUIs are constantly in flux. 

 This makes it challenging to write acceptance tests for GUIs. The trick is to 
design the system so that you can treat the GUI as though it were an API rather 
than a set of buttons, sliders, grids, and menus. This may sound strange, but it’s 
really just good design. 

 There is a design principle called the Single Responsibility Principle (SRP). This 
principle states that you should separate those things that change for different 
reasons, and group together those things that change for the same reasons. 
GUIs are no exception. 

 The layout, format, and workflow of the GUI will change for aesthetic and 
efficiency reasons, but the underlying capability of the GUI will remain the same 



CHAPTER 7 ACCEPTANCE TESTING

110B

despite these changes. Therefore, when writing acceptance tests for a GUI you 
take advantage of the underlying abstractions that don’t change very frequently. 

 For example, there may be several buttons on a page. Rather than creating tests 
that click on those buttons based on their positions on the page, you may be 
able to click on them based on their names. Better yet, perhaps they each have 
a unique  ID  that you can use. It is much better to write a test that selects the 
button whose  ID  is  ok_button  than it is to select the button in column 3 of row 
4 of the control grid. 

  Testing through the Right Interface 

 Better still is to write tests that invoke the features of the underlying system 
through a real API rather than through the GUI. This API should be the same 
API used by the GUI. This is nothing new. Design experts have been telling us 
for decades to separate our GUIs from our business rules. 

 Testing through the GUI is always problematic unless you are testing  just  the 
GUI. The reason is that the GUI is likely to change, making the tests very fragile. 
When every GUI change breaks a thousand tests, you are either going to start 
throwing the tests away or you are going to stop changing the GUI. Neither of 
those are good options. So write your business rule tests to go through an API 
just below the GUI. 

 Some acceptance tests specify the behavior of the GUI itself. These tests  must  go 
through the GUI. However, these tests do not test business rules and therefore 
don’t require the business rules to be connected to the GUI. Therefore, it is a 
good idea to decouple the GUI and the business rules and replace the business 
rules with stubs while testing the GUI itself. 

 Keep the GUI tests to a minimum. They are fragile, because the GUI is volatile. 
The more GUI tests you have the less likely you are to keep them. 

    CO NTI N U O U S INTE G R ATI O N 

 Make sure that all your unit tests and acceptance tests are run several times per 
day in a  continuous integration  system. This system should be triggered by your 



CONCLUSION

111B

source code control system. Every time someone commits a module, the CI 
system should kick off a build, and then run all the tests in the system. The 
results of that run should be emailed to everyone on the team. 

  Stop the Presses 

 It is very important to keep the CI tests running at all times. They should never 
fail. If they fail, then the whole team should stop what they are doing and focus 
on getting the broken tests to pass again. A broken build in the CI system 
should be viewed as an emergency, a “stop the presses” event. 

 I have consulted for teams that failed to take broken tests seriously. They were 
“too busy” to fix the broken tests so they set them aside, promising to fix them 
later. In one case the team actually took the broken tests out of the build because 
it was so inconvenient to see them fail. Later, after releasing to the customer, 
they realized that they had forgotten to put those tests back into the build. They 
learned this because an angry customer was calling them with bug reports. 

     CO N C LU S I O N 

 Communication about details is hard. This is especially true for programmers 
and stakeholders communicating about the details of an application. It is too 
easy for each party to wave their hands and  assume  that the other party 
understands. All too often both parties agree that they understand and leave 
with completely different ideas. 

 The only way I know of to effectively eliminate communication errors between 
programmers and stakeholders is to write automated acceptance tests. These 
tests are so formal that they execute. They are completely unambiguous, and 
they cannot get out of sync with the application. They are the perfect 
requirements document.  



This page intentionally left blank 



113B

8TE STI N G STR ATEG I E S

     Professional developers test their code. But testing is not simply a matter of 
writing a few unit tests or a few acceptance tests. Writing these tests is a good 
thing, but it is far from sufficient. What every professional development team 
needs is a good  testing strategy .  

 In 1989, I was working at Rational on the first release of Rose. Every month or 
so our QA manager would call a “Bug Hunt” day. Everyone on the team, from 
programmers to managers to secretaries to database administrators, would sit 
down with Rose and try to make it fail. Prizes were awarded for various types of 



CHAPTER 8 TESTING STRATEGIES

114B

bugs. The person who found a crashing bug could win a dinner for two. The 
person who found the most bugs might win a weekend in Monterrey.  

   QA SH O U L D FI N D NOTH I N G 

 I’ve said this before, and I’ll say it again. Despite the fact that your company 
may have a separate QA group to test the software, it should be the goal of the 
development group that QA find nothing wrong. 

 Of course, it’s not likely that this goal will be constantly achieved. After all, when 
you have a group of intelligent people bound and determined to find all the 
wrinkles and deficits in a product, they are likely going to find some. Still, every 
time QA finds something the development team should react in horror. They 
should ask themselves how it happened and take steps to prevent it in the future. 

  QA Is PA RT O F TH E TE A M 

 The previous section might have made it seem that QA and Development are at 
odds with each other, that their relationship is adversarial. This is not the intent. 
Rather, QA and Development should be working together to ensure the quality 
of the system.   The best role for the QA part of the team is to act as specifiers 
and characterizers. 

  QA as Specifiers 

 It should be QA’s role to work with business to create the automated acceptance 
tests that become the true specification and requirements document for the 
system. Iteration by iteration they gather the requirements from business and 
translate them into tests that describe to developers how the system should 
behave (See Chapter 7, “Acceptance Testing”). In general, the business writes the 
happy-path tests, while QA writes the corner, boundary, and unhappy-path tests. 

   QA as Characterizers 

 The other role for QA is to use the discipline of exploratory testing      1   to 
characterize the true behavior of the running system and report that behavior 

1. http://www.satisfice.com/articles/what_is_et.shtml

http://www.satisfice.com/articles/what_is_et.shtml


THE TEST AUTOMATION PYRAMID

115B

back to development and business. In this role QA is  not  interpreting the 
requirements. Rather, they are identifying the actual behaviors of the system. 

     TH E TE ST AUTO M ATI O N PY R A M I D 

 Professional developers employ the discipline of Test Driven Development 
to create unit tests. Professional development teams use acceptance tests to 
specify their system, and continuous integration (Chapter 7, page 110) to 
prevent regression. But these tests are only part of the story. As good as it is to 
have a suite of unit and acceptance tests, we also need higher-level tests to 
ensure that QA finds nothing. Figure 8-1 shows the Test Automation Pyramid      ,2 
a graphical depiction of the kinds of tests that a professional development 
organization needs.  

2. [COHN09] pp. 311–312

         Figure 8-1 The test automation pyramid   

�100% XUnit

�50%

�20%

�10% gui

api

api

�5%

M

Exploratory

System tests

Integration tests

Component tests

Unit tests



CHAPTER 8 TESTING STRATEGIES

116B

     UN IT TE S T S 

 At the bottom of the pyramid are the unit tests. These tests are written by 
programmers, for programmers, in the programming language of the system. 
The intent of these tests is to specify the system at the lowest level. Developers 
write these tests before writing production code as a way to specify what they 
are about to write. They are executed as part of Continuous Integration to 
ensure that the intent of the programmers’ is upheld.  

 Unit tests provide as close to 100% coverage as is practical. Generally this 
number should be somewhere in the 90s. And it should be  true  coverage as 
opposed to false tests that execute code without asserting its behavior. 

   CO M PO N E NT TE S T S 

 These are some of the acceptance tests mentioned in the previous chapter. 
Generally they are written against individual components of the system. The 
components of the system encapsulate the business rules, so the tests for those 
components are the acceptance tests for those business rules 

 As depicted in Figure 8-2 a component test wraps a component. It passes input 
data into the component and gathers output data from it. It tests that the 
output matches the input. Any other system components are decoupled from 
the test using appropriate mocking and test-doubling techniques.  

         Figure 8-2 Component acceptance test   

Component

A
cc

ep
ta

nc
e 

te
st



THE TEST AUTOMATION PYRAMID

117B

 Component tests are written by QA and Business with assistance from develop-
ment. They are composed in a component-testing environment such as FITNESSE, 
JBehave, or Cucumber. (GUI components are tested with GUI testing environ-
ments such as Selenium or Watir.) The intent is that the business should be able 
to read and interpret these tests, if not author them. 

 Component tests cover roughly half the system. They are directed more towards 
happy-path situations and very obvious corner, boundary, and alternate-path 
cases. The vast majority of unhappy-path cases are covered by unit tests and are 
meaningless at the level of component tests. 

   INTE G R ATI O N TE S T S 

 These tests only have meaning for larger systems that have many components. 
As shown in Figure 8-3, these tests assemble groups of components and test 
how well they communicate with each other. The other components of the 
system are decoupled as usual with appropriate mocks and test-doubles.  

 Integration tests are  choreography  tests. They do not test business rules. Rather, 
they test how well the assembly of components dances together. They are 
 plumbing  tests that make sure that the components are properly connected and 
can clearly communicate with each other. 

         Figure 8-3 Integration test   

Component

Component

In
te

gr
at

io
n 

te
st

Component

Component



CHAPTER 8 TESTING STRATEGIES

118B

 Integration tests are typically written by the system architects, or lead designers, 
of the system. The tests ensure that the architectural structure of the system is 
sound. It is at this level that we might see performance and throughput tests. 

 Integration tests are typically written in the same language and environment 
as component tests. They are typically  not  executed as part of the Continuous 
Integration suite, because they often have longer runtimes. Instead, these tests 
are run periodically (nightly, weekly, etc.) as deemed necessary by their 
authors. 

   SYS TE M TE S T S 

 These are automated tests that execute against the entire integrated system. 
They are the ultimate integration tests. They do not test business rules directly. 
Rather, they test that the system has been wired together correctly and its parts 
interoperate according to plan. We would expect to see throughput and 
performance tests in this suite. 

 These tests are written by the system architects and technical leads. Typically 
they are written in the same language and environment as integration tests for 
the UI. They are executed relatively infrequently depending on their duration, 
but the more frequently the better.  

 System tests cover perhaps 10% of the system. This is because their intent is not 
to ensure correct system behavior, but correct system  construction . The correct 
behavior of the underlying code and components have already been ascertained 
by the lower layers of the pyramid. 

   MA N UA L EX PLO R ATO RY TE S T S 

 This is where humans put their hands on the keyboards and their eyes on the 
screens. These tests are not automated,  nor are they scripted . The intent of these 
tests is to explore the system for unexpected behaviors while confirming expected 
behaviors. Toward that end we need human brains, with human creativity, 
working to investigate and explore the system. Creating a written test plan for 
this kind of testing defeats the purpose. 



119B

BIBLIOGRAPHY

 Some teams will have specialists do this work. Other teams will simply declare a 
day or two of “bug hunting” in which as many people as possible, including 
managers, secretaries, programmers, testers, and tech writers, “bang” on the 
system to see if they can make it break.  

 The goal is not coverage. We are not going to prove out every business rule and 
every execution pathway with these tests. Rather, the goal is to ensure that the 
system behaves well under human operation and to creatively find as many 
“peculiarities” as possible.  

     CO N C LU S I O N 

 TDD is a powerful discipline, and Acceptance Tests are valuable ways to express 
and enforce requirements. But they are only part of a total testing strategy. To 
make good on the goal that “QA should find nothing,” development teams need 
to work hand in hand with QA to create a hierarchy of unit, component, inte-
gration, system, and exploratory tests. These tests should be run as frequently as 
possible to provide maximum feedback and to ensure that the system remains 
continuously clean. 

   B I B LI O G R A PH Y 

    [COHN09]:   Mike Cohn, Succeeding with Agile, Boston, MA:  Addison-Wesley, 
2009.    



This page intentionally left blank 



121B

9TI M E MA N AG E M E NT

     Eight hours is a remarkably short period of time. It’s just 480 minutes or 28,800 
seconds. As a professional, you expect that you will use those few precious 
seconds as efficiently and effectively as possible. What strategy can you use to 
ensure that you don’t waste the little time you have? How can you effectively 
manage your time? 

 In 1986 I was living in Little Sandhurst, Surrey, England. I was managing 
a 15-person software development department for Teradyne in Bracknell. My 



CHAPTER 9 TIME MANAGEMENT

122B

days were hectic with phone calls, impromptu meetings, field service issues, 
and interruptions. So in order to get any work done I had to adopt some pretty 
drastic time-management disciplines.   

 •   I awoke at 5 every morning and rode my bicycle to the office in Bracknell by 
6 AM. That gave me 2-  1 _ 2   hours of quiet time before the chaos of the day 
began.  

 •   Upon arrival I would write a schedule on my board. I divided time into 
15-minute increments and filled in the activity I would work on during that 
block of time.  

 •   I completely filled the first 3 hours of that schedule. Starting at 9 AM I started 
leaving one 15-minute gap per hour; that way I could quickly push most 
interruptions into one of those open slots and continue working.  

 •   I left the time after lunch unscheduled because I knew that by then all hell 
would have broken loose and I’d have to be in reactive mode for the rest of 
the day. During those rare afternoon periods that the chaos did not intrude, 
I simply worked on the most important thing until it did.    

 This scheme did not always succeed. Waking up at 5 AM was not always feasible, 
and sometimes the chaos broke through all my careful strategies and consumed 
my day. But for the most part I was able to keep my head above water. 

   ME E TI N G S 

 Meetings cost about $200 per hour per attendee. This takes into account 
salaries, benefits, facilities costs, and so forth. The next time you are in a 
meeting, calculate the cost. You may be amazed. 

 There are two truths about meeting.   

1.   Meetings are necessary.  

2.   Meetings are huge time wasters.    

 Often these two truths equally describe the same meeting. Some in attendance 
may find them invaluable; others may find them redundant or useless. 



MEETINGS

123B

 Professionals are aware of the high cost of meetings. They are also aware that 
their own time is precious; they have code to write and schedules to meet. 
Therefore, they actively resist attending meetings that don’t have an immediate 
and significant benefit. 

  DE C L I N I N G 

 You do not have to attend every meeting to which you are invited. Indeed, it is 
unprofessional to go to too many meetings. You need to use your time wisely. So 
be very careful about which meetings you attend and which you politely refuse. 

 The person inviting you to a meeting is not responsible for managing your 
time. Only  you  can do that. So when you receive a meeting invitation, don’t 
accept unless it is a meeting for which your participation is immediately and 
significantly necessary to the job you are doing now. 

 Sometimes the meeting will be about something that interests you, but is not 
immediately necessary. You will have to choose whether you can afford the time. Be 
careful—there may be more than enough of these meetings to consume your days. 

 Sometimes the meeting will be about something that you can contribute to but 
is not immediately significant to what you are currently doing. You will have to 
choose whether the loss to your project is worth the benefit to theirs. This may 
sound cynical, but your responsibility is to  your  projects first. Still, it is often 
good for one team to help another, so you may want to discuss your 
participation with your team and manager. 

 Sometimes your presence at the meeting will be requested by someone in 
authority, such as a very senior engineer in another project or the manager of a 
different project. You will have to choose whether that authority outweighs your 
work schedule. Again, your team and your supervisor can be of help in making 
that decision. 

 One of the most important duties of your manager is to keep you  out  of meetings. 
A good manager will be more than willing to defend your decision to decline 
attendance because that manager is just as concerned about your time as you are. 



CHAPTER 9 TIME MANAGEMENT

124B

   LE AV I N G 

 Meetings don’t always go as planned. Sometimes you find yourself sitting in a 
meeting that you would have declined had you known more. Sometimes new 
topics get added, or somebody’s pet peeve dominates the discussion. Over the 
years I’ve developed a simple rule: When the meeting gets boring,  leave . 

 Again, you have an obligation to manage your time well. If you find yourself 
stuck in a meeting that is not a good use of your time, you need to find a way to 
politely exit that meeting. 

 Clearly you should not storm out of a meeting exclaiming “This is boring!” 
There’s no need to be rude. You can simply ask, at an opportune moment, if your 
presence is still necessary. You can explain that you can’t afford a lot more time, 
and ask whether there is a way to expedite the discussion or shuffle the agenda. 

 The important thing to realize is that remaining in a meeting that has become a 
waste of time for you, and to which you can no longer significantly contribute, 
is unprofessional. You have an obligation to wisely spend your employer’s time 
and money, so it is  not  unprofessional to choose an appropriate moment to 
negotiate your exit. 

   HAV E A N AG E N DA A N D A GOA L 

 The reason we are willing to endure the cost of meetings is that we sometimes 
 do  need the participants together in a room to help achieve a specific goal. To 
use the participants’ time wisely, the meeting should have a clear agenda, with 
times for each topic and a stated goal. 

 If you are asked to go to a meeting, make sure you know what discussions are on 
the table, how much time is allotted for them, and what goal is to be achieved. If 
you can’t get a clear answer on these things, then politely decline to attend. 

 If you go to a meeting and you find that the agenda has been high-jacked or 
abandoned, you should request that the new topic be tabled and the agenda be 
followed. If this doesn’t happen, you should politely leave when possible. 



MEETINGS

125B

   STA N D -UP ME E TI N G S 

 These meetings are part of the Agile cannon. Their name comes from the fact 
that the participants are expected to stand while the meeting is in session. Each 
participant takes a turn to answer three questions: 

1.   What did I do yesterday?  

2.   What am I going to do today?  

3.   What’s in my way?    

 That’s all. Each question should require  no more than  twenty seconds, so 
each participant should require no more than one minute. Even in a group 
of ten people this meeting should be over well before ten minutes has 
elapsed. 

   ITE R ATI O N PL A N N I N G ME E TI N G S 

 These are the most difficult meetings in the Agile canon to do well. Done 
poorly, they take far too much time. It takes skill to make these meetings go 
well, a skill that is well worth learning. 

 Iteration planning meetings are meant to select the backlog items that will be 
executed in the next iteration. Estimates should already be done for the candi-
date items. Assessment of business value should already be done. In  really good  
organizations the acceptance/component tests will already be written, or at least 
sketched out. 

 The meeting should proceed quickly with each candidate backlog item being 
briefly discussed and then either selected or rejected. No more than five or ten 
minutes should be spent on any given item. If a longer discussion is needed, it 
should be scheduled for another time with a subset of the team. 

 My rule of thumb is that the meeting should take no more than 5% of the total 
time in the iteration. So for a one week iteration (forty hours) the meeting 
should be over within two hours. 



CHAPTER 9 TIME MANAGEMENT

126B

   ITE R ATI O N RE S TR O S PE C TI V E A N D DE M O 

 These meetings are conducted at the end of each iteration. Team members 
discuss what went right and what went wrong. Stakeholders see a demo of the 
newly working features. These meetings can be badly abused and can soak up a 
lot of time, so schedule them 45 minutes before quitting time on the last day of 
the iteration. Allocate no more than 20 minutes for retrospective and 25 
minutes for the demo. Remember, it’s only been a week or two so there 
shouldn’t be all that much to talk about. 

   AR G U M E NT S / DI S AG R E E M E NT S 

 Kent Beck once told me something profound: “Any argument that can’t be 
settled in five minutes can’t be settled by arguing.” The reason it goes on so long 
is that there is no clear evidence supporting either side. The argument is 
probably religious, as opposed to factual. 

 Technical disagreements tend to go off into the stratosphere. Each party has all 
kinds of justifications for their position but seldom any data. Without data, any 
argument that doesn’t forge agreement within a few minutes (somewhere 
between five and thirty) simply won’t ever forge agreement. The only thing to 
do is to go get some data. 

 Some folks will try to win an argument by force of character. They might yell, 
or get in your face, or act condescending. It doesn’t matter; force of will doesn’t 
settle disagreements for long. Data does. 

 Some folks will be passive-aggressive. They’ll agree just to end the argument, 
and then sabotage the result by refusing to engage in the solution. They’ll say to 
themselves, “This is the way they wanted it, and now they’re going to get what 
they wanted.” This is probably the worst kind of unprofessional behavior there 
is. Never, ever do this. If you agree, then you  must  engage. 

 How do you get the data you need to settle a disagreement? Sometimes you can 
run experiments, or do some simulation or modeling. But sometimes the best 
alternative is to simply flip a coin to choose one of the two paths in question. 



FOCUS-MANNA

127B

If things work out, then that path was workable. If you get into trouble, you can 
back out and go down the other path. It would be wise to agree on a time as 
well as a set of criteria to help determine when the chosen path should be 
abandoned. 

 Beware of meetings that are really just a venue to vent a disagreement and to 
gather support for one side or the other. And avoid those where only one of the 
arguers is presenting. 

 If an argument must truly be settled, then ask each of the arguers to present 
their case to the team in five minutes or less. Then have the team vote. The 
whole meeting will take less than fifteen minutes. 

    FO C U S -MA N N A 

 Forgive me if this section seems to smell of New Age metaphysics, or perhaps of 
Dungeons & Dragons. It’s just that this is the way I think about this topic. 

 Programming is an intellectual exercise that requires extended periods of 
concentration and focus. Focus is a scarce resource, rather like manna.      1   After 
you have expended your focus-manna, you have to recharge by doing unfocused 
activities for an hour or more. 

 I don’t know what this focus-manna is, but I have a feeling that it is a physical 
substance (or possibly its lack) that affects alterness and attention. Whatever it 
may be, you can  feel  when it’s there, and you can feel when it’s gone. 
Professional developers learn to manage their time to take advantage of their 
focus-manna. We write code when our focus-manna is high; and we do other, 
less productive things when it’s not. 

 Focus-manna is also a decaying resource. If you don’t use it when it’s there, you 
are likely to lose it. That’s one of the reasons that meetings can be so 

1. Manna is a common commodity in fantasy and role-playing games like Dungeons & Dragons. Every player 

has a certain amount of manna, which is a magical substance expended whenever a player casts a magical 

spell. The more potent the spell, the more of that player’s manna is consumed. Manna recharges at a slow, 

fixed daily rate. So it’s easy to use it all up in a few spell-casting sessions.



CHAPTER 9 TIME MANAGEMENT

128B

devastating. If you spend all your focus-manna in a meeting, you won’t have 
any left for coding. 

 Worry and distractions also consume focus-manna. The fight you had with 
your spouse last night, the dent you put in your fender this morning, or the bill 
you forgot to pay last week will all suck the focus-manna out of you quickly. 

  SL E E P 

 I can’t stress this one strongly enough. I have the most focus-manna after a 
good night’s sleep. Seven hours of sleep will often give me a full eight hours’ 
worth of focus-manna. Professional developers manage their sleep schedule to 
ensure that they have topped up their focus-manna by the time they get to work 
in the morning. 

   CA F F E I N E 

 There is no doubt that some of us can make more efficient use of our focus-
manna by consuming moderate amounts of caffeine. But take care. Caffeine 
also puts a strange “jitter” on your focus. Too much of it can send your focus off 
in very strange directions. A really strong caffeine buzz can cause you to waste 
an entire day hyper-focussing on all the wrong things. 

 Caffeine usage and tolerance is a personal thing. My personal preference is a 
single strong cup of coffee in the morning and a diet coke with lunch. 
I sometimes double this dose, but seldom do more than that. 

   RE C H A R G I N G 

 Focus-manna can be partially recharged by de-focussing. A good long walk, a 
conversation with friends, a time of just looking out a window can all help to 
pump the focus-manna back up. 

 Some people meditate. Other people grab a power nap. Others will listen to a 
podcast or thumb through a magazine. 



FOCUS-MANNA

129B

 I have found that once the manna is gone, you can’t force the focus. You can 
still write code, but you’ll almost certainly have to rewrite it the next day, or live 
with a rotting mass for weeks or months. So it’s better to take thirty, or even 
sixty minutes to de-focus. 

   MU S C L E FO C U S 

 There is something peculiar about doing physical disciplines such as martial 
arts, tai-chi or yoga. Even though these activities require significant focus, it is a 
different kind of focus from coding. It’s not intellectual, it’s muscle. And 
somehow muscle focus helps to recharge mental focus. It’s more than a simple 
recharge though. I find that a regular regimen of muscle focus increases my 
capacity for mental focus. 

 My chosen form of physical focus is bike riding. I’ll ride for an hour or two, 
sometimes covering twenty or thirty miles. I ride on a trail that parallels the Des 
Plaines river, so I don’t have to deal with cars. 

 While I ride I listen to podcasts about astronomy or politics. Sometimes I just 
listen to my favorite music. And sometimes I just turn the headphones off and 
listen to nature. 

 Some people take the time to work with their hands. Perhaps they enjoy 
carpentry, or building models, or gardening. Whatever the activity, there is 
something about activities that focus on muscles that enhances the ability to 
work with your mind. 

   IN PU T V E R S U S OUTPUT 

 Another thing I find essential for focus is to balance my output with 
appropriate input. Writing software is a  creative  exercise. I find that I am most 
creative when I am exposed to other people’s creativity. So I read lots of science 
fiction. The creativity of those authors somehow stimulates my own creative 
juices for software. 



CHAPTER 9 TIME MANAGEMENT

130B

    TI M E BOX I N G A N D TO M ATO E S 

 One very effective way that I’ve used to manage my time and focus is to use the 
well-known  Pomodoro          Technique,2 otherwise knows as  tomatoes . The basic idea 
is very simple. You set a standard kitchen timer (traditionally shaped like a 
tomato) for 25 minutes. While that timer is running, you let  nothing  interfere 
with what you are doing. If the phone rings you answer and politely ask if you 
can call back within 25 minutes. If someone stops in to ask you a question you 
politely ask if you can get back to them within 25 minutes. Regardless of the 
interruption, you simply defer it until the timer dings. After all, few interruptions 
are so horribly urgent that they can’t wait 25 minutes! 

 When the tomato timer dings you stop what you are doing  immediately . You 
deal with any interruptions that occurred during the tomato. Then you take a 
break of five minutes or so. Then you set the timer for another 25 minutes and 
start the next tomato. Every fourth tomato you take a longer break of 30 
minutes or so. 

 There is quite a bit written about this technique, and I urge you to read it. 
However, the description above should provide you with the gist of the technique. 

 Using this technique your time is divided into tomato and non-tomato time. 
Tomato time is productive. It is within tomatoes that you get real work done. 
Time outside of tomatoes is either distractions, meetings, breaks, or other time 
that is not spent working on your tasks. 

 How many tomatoes can you get done in a day? On a good day you might get 12 
or even 14 tomatoes done. On a bad day, you might only get two or three done. 
If you count them, and chart them, you’ll get a pretty quick feel for how much of 
your day you spend productive and how much you spend dealing with “stuff.” 

 Some people get so comfortable with the technique that they estimate their tasks 
in tomatoes and then measure their weekly tomato velocity. But this is just icing 
on the cake. The real benefit of the Pomodoro Technique is that 25-minute 
window of productive time that you aggressively defend against all interruptions. 

2. http://www.pomodorotechnique.com/

http://www.pomodorotechnique.com/


131B

BLIND ALLEYS

   AVO I DA N C E 

 Sometimes your heart just isn’t in your work. It may be that the thing that 
needs doing is scary or uncomfortable or boring. Perhaps you think it will force 
you into a confrontation or lead you into an inescapable rat hole. Or maybe you 
just plain don’t want to do it. 

  PR I O R IT Y IN V E R S I O N 

  Whatever the reason, you find ways to avoid doing the real work. You convince 
yourself that something else is more urgent, and you do that instead.  This is 
called priority inversion. You raise the priority of a task so that you can postpone 
the task that has the true priority. Priority inversions are a lie we tell ourselves. 
We can’t face what needs to be done, so we convince ourselves that another task 
is more important. We know it’s not, but we lie to ourselves. 

 Actually, we aren’t lying to ourselves. What we are really doing is preparing for 
the lie we’ll tell when someone asks us what we are doing and why we are doing 
it. We are building a defense to protect us from the judgment of others. 

 Clearly this is unprofessional behavior. Professionals evaluate the priority of 
each task, disregarding their personal fears and desires, and execute those tasks 
in priority order. 

    BLI N D AL L E YS 

 Blind alleys are a fact of life for all software craftsmen. Sometimes you will 
make a decision and wander down a technical pathway that leads to nowhere. 
The more vested you are in your decision, the longer you will wander in the 
wilderness. If you’ve staked your professional reputation, you’ll wander 
forever. 

 Prudence and experience will help you avoid certain blind alleys, but you’ll 
never avoid them all. So the real skill you need is to quickly realize when you are 
in one, and have the courage to back out. This is sometimes called  The Rule of 
Holes : When you are in one, stop digging. 



CHAPTER 9 TIME MANAGEMENT

132B

 Professionals avoid getting so vested in an idea that they can’t abandon it and 
turn around. They keep an open mind about other ideas so that when they hit a 
dead end they still have other options. 

   MA R S H E S ,  BO G S ,  SWA M P S ,  A N D OTH E R ME S S E S 

 Worse than blind alleys are messes. Messes slow you down, but don’t stop you. 
Messes impede your progress, but you can still make progress through sheer 
brute force. Messes are worse than blind alleys because you can always see the 
way forward, and it always looks shorter than the way back (but it isn’t). 

 I have seen products ruined and companies destroyed by software messes. I’ve 
seen the productivity of teams decrease from jitterbug to dirge in just a few 
months. Nothing has a more profound or long-lasting negative effect on the 
productivity of a software team than a mess. Nothing. 

 The problem is that starting a mess, like going down a blind alley, is 
unavoidable. Experience and prudence can help you to avoid them, but 
eventually you will make a decision that leads to a mess. 

 The progression of such a mess is insidious. You create a solution to a simple 
problem, being careful to keep the code simple and clean. As the problem grows 
in scope and complexity you extend that code base, keeping it as clean as you 
can. At some point you realize that you made a wrong design choice when you 
started, and that your code doesn’t scale well in the direction that the 
requirements are moving. 

 This is the inflection point! You can still go back and fix the design. But you can 
also continue to go forward. Going back looks expensive because you’ll have to 
rework the existing code, but going back will  never  be easier than it is now. If 
you go forward you will drive the system into a swamp from which it may never 
escape. 



CONCLUSION

133B

 Professionals fear messes far more than they fear blind alleys. They are always 
on the lookout for messes that start to grow without bound, and will expend all 
necessary effort to escape from them as early and as quickly as possible. 

 Moving forward through a swamp, when you  know  it’s a swamp, is the worst 
kind of priority inversion. By moving forward you are lying to yourself, lying to 
your team, lying to your company, and lying to your customers. You are telling 
them that all will be well, when in fact you are heading to a shared doom. 

   CO N C LU S I O N 

 Software professionals are diligent in the management of their time and their 
focus. They understand the temptations of priority inversion and fight it as a 
matter of honor. They keep their options open by keeping an open mind about 
alternate solutions. They never become so vested in a solution that they can’t 
abandon it. And they are always on the lookout for growing messes, and they 
clean them as soon as they are recognized. There is no sadder sight than a team 
of software developers fruitlessly slogging through an ever-deepening bog.  



This page intentionally left blank 



135B

10ESTI M ATI O N

     Estimation is one of the simplest, yet most frightening activities that software 
professionals face. So much business value depends on it. So much of our 
reputations ride on it. So much of our angst and failure are caused by it. It is 
the primary wedge that has been driven between business people and developers. 
It is the source of nearly all the distrust that rules that relationship. 

Martin_ch10.indd   135 9/7/11   4:40 PM



136B

CHAPTER 10 ESTIMATION

 In 1978, I was the lead developer for a 32K embedded Z-80 program written 
in assembly language. The program was burned onto 32 1K ´ 8 EEprom 
chips. These 32 chips were inserted into three boards, each of which held 12 
chips. 

 We had hundreds of devices in the field, installed in telephone central offices 
all over the United States. Whenever we fixed a bug or added a feature, we’d 
have to send field service techs to each of those units and have them replace 
all 32 chips! 

 This was a nightmare. The chips and the boards were fragile. The pins on the 
chips could bend and break. The constant flexing of the boards could damage 
solder joints. The risk of breakage and error were enormous. The cost to the 
company was far too high. 

 My boss, Ken Finder, came to me and asked me to fix this. What he wanted was 
a way to make a change to a chip that did not require all the other chips to 
change. If you’ve read my books, or heard my talks, you know I rant a lot about 
independent deployability. This is where I first learned that lesson. 

 Our problem was that the software was a single linked executable. If a new line 
of code was added to the program, all the addresses of the following lines of 
code changed. Since each chip simply held 1K of the address space, the contents 
of virtually all the chips would change. 

 The solution was pretty simple. Each chip had to be decoupled from all the 
others. Each had to be turned into an independent compilation unit that could 
be burned independently of all the others. 

 So I measured the sizes of all the functions in the application and wrote a 
simple program that fit them, like a jigsaw puzzle, into each of the chips, 
leaving 100 bytes of space or so for expansion. At the beginning of each chip 
I put a table of pointers to all the functions on that chip. At boot-up these 
pointers were moved into RAM. All the code in the system was changed so 
that functions were called only through these RAM vectors and never 
directly. 

Martin_ch10.indd   136 9/7/11   4:40 PM



137B

ESTIMATION

 Yes, you got it. The chips were objects, with vtables. All functions were poly-
mor phically deployed. And, yes, this is how I learned some of the principles of 
OOD, long before I knew what an object was. 

 The benefits were enormous. Not only could we deploy individual chips, we 
could also make patches in the field by moving functions into RAM and 
rerouting the vectors. This made field debugging and hot patching much easier. 

 But I digress. When Ken came to me and asked me to fix this problem he 
suggested something about pointers to functions. I spent a day or two 
formalizing the idea and then presented him with a detailed plan. He asked me 
how long it would take, and I responded that it would take me about a month. 

 It took  three  months. 

 I’ve only been drunk two times in my life, and only  really  drunk once. It was at 
the Teradyne Christmas party in 1978. I was 26 years old. 

 The party was held at the Teradyne office, which was mostly open lab space. 
Everybody got there early, and then there was a huge blizzard that prevented the 
band and the caterer from getting there. Fortunately there was plenty of booze. 

 I don’t remember much of that night. And what I  do  remember I wish I didn’t. 
But I will share one poignant moment with you. 

 I was sitting cross-legged on the floor with Ken (my boss, who was all of 29 
years old at the time and  not  drunk) weeping about how long the vectorization 
job was taking me. The alcohol had released my pent up fears and insecurities 
about my estimate. I don’t  think  my head was in his lap, but my memory just 
isn’t very clear about that kind of detail. 

 I do remember asking him if he was mad at me, and if he thought it was taking 
me too long. Although the night was a blur, his response has remained clear 
through the following decades. He said, “Yes, I think it’s taken you a long time, 
but I can see that you are working hard on it, and making good progress. It’s 
something we really need. So, no, I’m not mad.” 

Martin_ch10.indd   137 9/7/11   4:40 PM



CHAPTER 10 ESTIMATION

138B

   WH AT IS A N ESTI M ATE ? 

 The problem is that we view estimates in different ways. Business likes to view 
estimates as commitments. Developers like to view estimates as guesses. The 
difference is profound. 

  A CO M M ITM E NT 

 A commitment is something you must achieve. If you commit to getting 
something done by a certain date, then you simply  have  to get it done by that 
date. If that means you have to work 12 hours a day, on weekends, skipping family 
vacations, then so be it. You’ve made the commitment, and you have to honor it. 

 Professionals don’t make commitments unless they  know  they can achieve them. 
It’s really as simple as that. If you are asked to commit to something that you 
aren’t  certain  you can do, then you are honor bound to decline. If you are asked 
to commit to a date that you know you  can  achieve, but would require long 
hours, weekends, and skipped family vacations, then the choice is yours; but 
you’d better be willing to do what it takes. 

 Commitment is about  certainty . Other people are going to accept your commitments 
and make plans based upon them. The cost of missing those commitments, to them, 
and to your reputation, is enormous. Missing a commitment is an act of 
dishonesty only slightly less onerous than an overt lie. 

   AN ES TI M ATE 

 An estimate is a guess. No commitment is implied. No promise is made. 
Missing an estimate is not in any way dishonorable. The reason we make 
estimates is because  we don’t know  how long something will take. 

 Unfortunately, most software developers are terrible estimators. This is not because 
there’s some secret skill to estimating—there’s not. The reason we are often so bad 
at estimating is because we don’t understand the true nature of an estimate. 

 An estimate is not a number. An estimate is a  distribution . Consider: 

Martin_ch10.indd   138 9/7/11   4:40 PM



139B

WHAT IS AN ESTIMATE?

  Mike: “What is your estimate for completing the Frazzle task?”  

  Peter: “Three days.”  

  Is Peter really going to be done in three days? It’s possible, but how likely is it? 
The answer to that is: We have no idea. What did Peter mean, and what has 
Mike learned? If Mike comes back in three days, should he be surprised if Peter 
is not done? Why would he be? Peter has not made a commitment. Peter has 
not told him how likely three days is versus four days or five days.  

  What would have happened if Mike had asked Peter how likely his estimate of 
three days was?  

  Mike: “How likely is it that you’ll be done in three days?  

  Peter: “Pretty likely.”  

  Mike: “Can you put a number on it?”  

  Peter: “Fifty or sixty percent.”  

  Mike: “So there’s a good chance that it’ll take you four days.”  

  Peter: “Yes, in fact it might even take me five or six, though I doubt it.”  

  Mike: “How much do you doubt it?”  

  Peter: “Oh, I don’t know … I’m ninety-five percent certain I’ll be done 
before six days have passed.”  

  Mike: “You mean it might be seven days?”  

  Peter: “Well, only if everything goes wrong. Heck, if  everything  goes 
wrong, it could take me ten or even eleven days. But it’s not very 
likely that so much will go wrong.”    

 Now we’re starting to hone in on the truth. Peter’s estimate is a  probability 
distributio  n . In his mind, Peter sees the likelihood of completion like what is 
shown is Figure 10-1.  

 You can see why Peter gave the original estimate as three days. It’s the highest 
bar on the chart. So in Peter’s mind it is the most likely duration for the task. 
But Mike sees things differently. He looks at the right-hand tail of the chart and 
worries that Peter might really take eleven days to finish. 

Martin_ch10.indd   139 9/7/11   4:40 PM



CHAPTER 10 ESTIMATION

140B

 Should Mike be worried about this? Of course! Murphy      1   will have his way with 
Peter, so some things are probably going to go wrong. 

   IM PLI E D CO M M ITM E NT S 

 So now Mike has a problem. He’s uncertain about the time it will take Peter to 
get the task done. To minimize that uncertainty he may ask Peter for a 
commitment. This is something the Peter is in no position to give.   

  Mike: “Peter, can you give me a hard date when you’ll be done?”  

  Peter: “No, Mike. Like I said, it’ll probably be done in three, maybe four, 
days.”  

  Mike: “Can we say four then?”  

  Peter: “No, it  could  be five or six.”  

  So far, everyone is behaving fairly. Mike has asked for a commitment and Peter 
has carefully declined to give him one. So Mike tries a different tack:  

1. Murphy’s Law holds that if anything can go wrong, it will go wrong.

         Figure 10-1 Probability distribution   

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%
2 3 4 5 6 7 8 9 10 11

Martin_ch10.indd   140 9/7/11   4:40 PM



PERT

141B

  Mike: “OK, Peter, but can you  try  to make it no more than six days?”    

 Mike’s plea sounds innocent enough, and Mike certainly has no ill intentions. 
But what, exactly, is Mike asking Peter to do? What does it mean to “try”? 

 We talked about this before, back in Chapter 2. The word try is a loaded term. If 
Peter agrees to “try” then he is committing to six days. There’s no other way to 
interpret it. Agreeing to try is agreeing to succeed. 

 What other interpretation could there be? What is it, precisely, that Peter is 
going to do in order to “try”? Is he going to work more than eight hours? That’s 
clearly implied. Is he going to work weekends? Yes, that’s implied too. Will he 
skip family vacations? Yes, that also part of the implication. All of those things 
are part of “trying.” If Peter doesn’t do those things, then Mike could accuse 
him of not trying hard enough. 

 Professionals draw a clear distinction between estimates and commitments. 
They do not commit unless they know for certain they will succeed. They are 
careful not to make any  implied  commitments. They communicate the proba-
bility distribution of their estimates as clearly as possible, so that managers can 
make appropriate plans. 

    PERT 

 In 1957, the Program Evaluation and Review Technique (PERT) was created to 
support the U.S. Navy’s Polaris submarine project. One of the elements of PERT is 
the way that estimates are calculated. The scheme provides a very simple, but very 
effective way to convert estimates into probability distributions suitable for managers. 

 When you estimate a task, you provide three numbers. This is called  trivariate 
analysis :   

 •    O : Optimistic Estimate. This number is  wildly  optimistic. You could only 
get the task done this quickly if absolutely everything went right. Indeed, 
in order for the math to work this number should have much less than a 

Martin_ch10.indd   141 9/7/11   4:40 PM



CHAPTER 10 ESTIMATION

142B

1% chance of occurrence      .2   In Peter’s case, this would be 1 day, as shown in 
Figure 10-1.  

 •    N : Nominal Estimate. This is the estimate with the greatest chance of success. 
If you were to draw a bar chart, it would be the highest bar, as shown in 
Figure 10-1. It is 3 days.  

 •    P : Pessimistic Estimate. Once again this is  wildly  pessimistic. It should 
include everything except hurricanes, nuclear war, stray black holes, and 
other catastrophes. Again, the math only works if this number has much less 
than a 1% chance of success. In Peter’s case this number is off the chart on 
the right. So 12 days.    

 Given these three estimates, we can describe the probability distribution as 
follows:   

 • μ =
+ +O N P4

6  

   μ  is the expected duration of the task. In Peter’s case it is (1+12+12)/6, or 
about 4.2 days. For most tasks this will be a somewhat pessimistic number 
because the right-hand tail of the distribution is longer than the left-hand 
tail.      3      

 • σ =
−P O
6  

   s  is the standard deviation      4   of the probability distribution for the task. It is a 
measure of how uncertain the task is. When this number is large, the 
uncertainty is large too. For Peter this number is (12 – 1)/6, or about 1.8 days.    

 Given Peter’s estimate of 4.2/1.8, Mike understands that this task will likely be 
done within five days but might also take 6, or even 9, days to complete. 

2. The precise number for a normal distribution is 1:769, or 0.13%, or 3 sigma. Odds of one in a thousand are 

probably safe.

3. PERT presumes that this approximates a beta distribution. This makes sense since the minimum duration 

for a task is often much more certain than the maximum. [McConnell2006] Fig. 1-3.

4. If you don’t know what a standard deviation is, you should find a good summary of probability and statis-

tics. The concept is not hard to understand, and it will serve you very well.

Martin_ch10.indd   142 9/7/11   4:40 PM



PERT

143B

 But Mike is not just managing one task. He’s managing a project of many tasks. 
Peter has three of those tasks that he must work on in sequence. Peter has 
estimated these tasks as shown in Table 10-1. 

  Table 10-1 Peter’s Tasks   

Task Optimistic Nominal Pessimistic μ σ

Alpha 1 3 12 4.2 1.8
Beta 1 1.5 14 3.5 2.2
Gamma 3 6.25 11 6.5 1.3

 What’s up with that “beta” task? It looks like Peter is pretty confident about it, 
but that something could possibly go wrong that would derail him significantly. 
How should Mike interpret that? How long should Mike plan for Peter to 
complete all three tasks? 

 It turns out that, with a few simple calculations, Mike can combine all of Peter’s 
tasks and come up with a probability distribution for the entire set of tasks. The 
math is pretty straightforward:     

 • μ μsequence task= ∑  

  For any sequence of tasks the expected duration of that sequence is the 
simple sum of all the expected durations of the tasks in that sequence. So if 
Peter has three tasks to complete, and their estimates are 4.2/1.8, 3.5/2.2, 
and 6.5/1.3, then Peter will likely be done with all three in about 14 days: 
4.2 + 3.5 + 6.5.    

 • σ σsequence = ∑ task
2

 

  The standard deviation of the sequence is the square root of the sum of the 
squares of the standard deviations of the tasks. So the standard deviation for 
all three of Peter’s tasks is about 3.  

(1.8 2.2 1.3 )
(3.24 2.48 1.69)
9.77

2 2 2 1/2

1/2

1/2

+ + =

+ + =

==  ∼ 3.13
    

Martin_ch10.indd   143 9/7/11   4:40 PM



CHAPTER 10 ESTIMATION

144B

 This tells Mike that Peter’s tasks will likely take 14 days, but could very well take 
17 days (1s) and could possibly even take 20 days (2s). It could even take 
longer, but that’s pretty unlikely. 

 Look back at the table of estimates. Can you feel the pressure to get all three 
tasks done in five days? After all, the best-case estimates are 1, 1, and 3. Even the 
nominal estimates only add up to 10 days. How did we get all the way up to 14 
days, with a possibility of 17 or 20? The answer is that the uncertainty in those 
tasks compounds in a way that adds  realism  to the plan. 

 If you are a programmer of more than a few years’ experience, you’ve likely seen 
projects that were estimated optimistically, and that took three to five times 
longer than hoped. The simple PERT scheme just shown is one reasonable way 
to help prevent setting optimistic expectations. Software professionals are very 
careful to set reasonable expectations despite the pressure to  try  to go fast. 

   ESTI M ATI N G TA S K S 

 Mike and Peter were making a terrible mistake. Mike was asking Peter how long 
his tasks would take. Peter gave honest trivariate answers, but what about the 
opinions of his teammates? Might they have a different idea? 

 The most important estimation resource you have are the people around you. 
They can see things that you don’t. They can help you estimate your tasks more 
accurately than you can estimate them on your own. 

  WI D E BA N D DE LPH I   

 In the 1970s Barry Boehm introduced us to an estimation technique called 
“wideband delphi.”5 There have been many variations over the years. Some are 
formal, some are informal; but they all have one thing in common: consensus. 

 The strategy is simple. A team of people assemble, discuss a task, estimate the 
task, and iterate the discussion and estimation until they reach agreement. 

5. [Boehm81]

Martin_ch10.indd   144 9/7/11   4:40 PM



ESTIMATING TASKS

145B

 The original approach outlined by Boehm involved several meetings and 
documents that involve too much ceremony and overhead for my tastes. I prefer 
simple low-overhead approaches such as the following. 

  Flying Fingers 

 Everybody sits around a table. Tasks are discussed one at a time. For each task 
there is discussion about what the task involves, what might confound or 
complicate it, and how it might be implemented. Then the participants put 
their hands below the table and raise 0 to 5 fingers based on how long they 
think the task will take. The moderator counts 1-2-3, and all the participants 
show their hands at once. 

 If everyone agrees, then they go on to the next task. Otherwise they continue 
the discussion to determine why they disagree. They repeat this until they agree. 

 Agreement does not need to be absolute. As long as the estimates are close, it’s 
good enough. So, for example, a smattering of 3s and 4s is agreement. However 
if everyone holds up 4 fingers except for one person who holds up 1 finger, then 
they have something to talk about. 

 The scale of the estimate is decided on at the beginning of the meeting. It might 
be the number of days for a task, or it might be some more interesting scale 
such as “fingers times three” or “fingers squared.” 

 The simultaneity of displaying the fingers is important. We don’t want people 
changing their estimates based on what they see other people do. 

   Planning Poker 

 In 2002 James Grenning wrote a delightful paper   6      describing “Planning Poker.” 
This variation of wideband delphi has become so popular that several different 
companies have used the idea to make marketing giveaways in the form of 
planning poker card decks   .7      There is even a web site named  planningpoker.com  
that you can use to do planning poker on the Net with distributed teams. 

6. [Grenning2002]

7. http://store.mountaingoatsoftware.com/products/planning-poker-cards

Martin_ch10.indd   145 9/7/11   4:40 PM

http://store.mountaingoatsoftware.com/products/planning-poker-cards


CHAPTER 10 ESTIMATION

146B

 The idea is very simple. For each member of the estimation team, deal a hand 
of cards with different numbers on them. The numbers 0 through 5 work fine, 
and make this system logically equivalent to  flying fingers . 

 Pick a task and discuss it. At some point the moderator asks everyone to pick a 
card. The members of the team pull out a card that matches their estimate and 
hold it up with the back facing outward so that no one else can see the value of 
the card. Then the moderator tells everyone to show their cards. 

 The rest is just like flying fingers. If there is agreement, then the estimate is 
accepted. Otherwise the cards are returned to the hand, and the players 
continue to discuss the task. 

 Much “science” has been dedicated to choosing the correct card values for a 
hand. Some folks have gone so far as to use cards based on a Fibonacci series. 
Others have included cards for infinity and question mark. Personally, I think 
five cards labeled 0, 1, 3, 5, 10 are sufficient. 

   Affinity Estimation 

 A particularly unique variation of wideband delphi was shown to me several 
years ago by Lowell Lindstrom. I’ve had quite a bit of good luck with this 
approach with various customers and teams. 

 All the tasks are written onto cards, without any estimates showing. The 
estimation team stands around a table or a wall with the cards spread out 
randomly. The team members do not talk, they simply start sorting the cards 
relative to one another. Tasks that take longer are moved to the right. Smaller 
tasks move to the left. 

 Any team member can move any card at any time, even if it has already been 
moved by another member. Any card moved more than h times is set aside for 
discussion. 

 Eventually the silent sorting peters out and discussion can begin. Disagreements 
about the ordering of the cards are explored. There may be some quick design 
sessions or some quick hand-drawn wire frames to help gain consensus. 

Martin_ch10.indd   146 9/7/11   4:40 PM



147B

CONCLUSION

 The next step is to draw lines between the cards that represent bucket sizes. 
These buckets might be in days, weeks, or points. Five buckets in a Fibonacci 
sequence (1, 2, 3, 5, 8) is traditional. 

   Trivariate Estimates 

 These wideband delphi techniques are good for choosing a single nominal 
estimate for a task. But as we stated earlier, most of the time we want three 
estimates so that we can create a probability distribution. The optimistic and 
pessimistic values for each task can be generated very quickly using any of the 
wideband delphi variants. For example, if you are using planning poker, you 
simply ask the team to hold up the cards for their pessimistic estimate and then 
take the highest. You do the same for the optimistic estimate and take the lowest. 

     TH E L AW O F L A RG E NU M B E R S 

 Estimates are fraught with error. That’s why they are called estimates. One way of 
managing error is to take advantage of the  Law of Large Numbers.8  An implication 
of this law is that if you break up a large task into many smaller tasks and estimate 
them independently, the sum of the estimates of the small tasks will be more 
accurate than a single estimate of the larger task. The reason for this increase in 
accuracy is that the errors in the small tasks tend to  integrate out . 

 Frankly, this is optimistic. Errors in estimates tend toward underestimation and 
not overestimation, so the integration is hardly perfect. That being said, 
breaking large tasks into small ones and estimating the small ones independently 
is still a good technique. Some of the errors  do  integrate out, and breaking the 
tasks up is a good way to understand those tasks better and uncover surprises. 

   CO N C LU S I O N 

 Professional software developers know how to provide the business with 
practical estimates that the business can use for planning purposes. They do not 
make promises that they can’t keep, and they don’t make commitments that 
they aren’t sure they can meet. 

8. http://en.wikipedia.org/wiki/Law_of_large_numbers

Martin_ch10.indd   147 9/7/11   4:40 PM

http://en.wikipedia.org/wiki/Law_of_large_numbers


CHAPTER 10 ESTIMATION

148B

 When professionals make commitments, they provide  hard  numbers, and then 
they make those numbers. However, in most cases professionals do not make 
such committments. Rather, they provide probabilistic estimates that describe 
the expected completion time and the likely variance. 

 Professional developers work with the other members of their team to achieve 
consensus on the estimates that are given to management. 

 The techniques described in this chapter are  examples  of some of the different 
ways that professional developers create practical estimates. These are not the 
only such techniques and are not necessarily the best. They are simply 
techniques that I have found to work well for me. 

   B I B LI O G R A PH Y 

    [McConnell2006]:   Steve McConnell, Software Estimation: Demystifying the Black 
Art , Redmond, WA: Microsoft Press, 2006. 

    [Boehm81]:   Barry W. Boehm, Software Engineering Economics , Upper Saddle 
River, NJ: Prentice Hall, 1981. 

    [Grenning2002]:   James Grenning, “Planning Poker or How to Avoid Analysis 
Paralysis while Release Planning , ” April 2002,  http://renaissancesoftware.
net/papers/14-papers/44-planing-poker.html     

Martin_ch10.indd   148 9/7/11   4:40 PM

http://renaissancesoftware.net/papers/14-papers/44-planing-poker.html
http://renaissancesoftware.net/papers/14-papers/44-planing-poker.html


149B

11PR E S S U R E

     Imagine that you are having an out-of-body experience, observing yourself on 
an operating table while a surgeon performs open heart surgery on you. That 
surgeon is trying to save your life, but time is limited so he is operating under a 
deadline—a  literal  deadline. 



CHAPTER 11 PRESSURE

150B

 How do you want that doctor to behave? Do you want him to appear calm and 
collected? Do you want him issuing clear and precise orders to his support staff? 
Do you want him following his training and adhering to his disciplines? 

 Or do you want him sweating and swearing? Do you want him slamming and 
throwing instruments? Do you want him blaming management for unrealistic 
expectations and continuously complaining about the time? Do you want him 
behaving like a professional, or like a typical developer? 

 The professional developer is calm and decisive under pressure. As the pressure 
grows he adheres to his training and disciplines, knowing that they are the best 
way to meet the deadlines and commitments that are pressing on him. 

 In 1988 I was working at Clear Communications. This was a start-up that never 
quite got started. We burned through our first round of financing and then had 
to go for a second, and then a third. 

 The initial product vision sounded good, but the product architecture could 
never seem to get grounded. At first the product was both software and 
hardware. Then it became software only. The software platform changed from 
PCs to Sparcstations. The customers changed from high end to low end. 
Eventually, even the original intent of the product drifted as the company tried 
to find something that would generate revenue. In the nearly four years I spent 
there, I don’t think the company saw a penny of income. 

 Needless to say, we software developers were under significant pressure. There 
were quite a few very long nights, and even longer weekends spent in the office 
at the terminal. Functions were written in C that were  3,000 lines long . There 
were arguments with shouting and name calling. There was intrigue and 
subterfuge. There were fists punched through walls, pens thrown angrily at 
whiteboards, caricatures of annoying colleagues embossed into walls with the 
tips of pencils, and there was a never ending supply of anger and stress. 

 Deadlines were driven by events. Features had to be made ready for trade shows 
or customer demos. Anything a customer asked for, regardless of how silly, we’d 
have ready for the next demo. Time was always too short. Work was always 
behind. Schedules were always overwhelming. 



AVOIDING PRESSURE

151B

 If you worked 80 hours in a week, you could be a hero. If you hacked some 
mess together for a customer demo, you could be a hero. If you did it enough, 
you could be promoted. If you didn’t, you could be fired. It was a start-up—it 
was all about the “sweat equity.” And in 1988, with nearly 20 years’ experience 
under my belt, I bought into it. 

 I was the development manager telling the programmers who worked for me 
that they had to work more and faster. I was one of the 80-hour guys, writing 
3,000-line C functions at 2 AM while my children slept at home without their 
father in the house. I was the one who threw the pens and shouted. I got people 
fired if they didn’t shape up. It was awful. I was awful. 

 Then came the day when my wife forced me to take a good long look in the 
mirror. I didn’t like what I saw. She told me I just wasn’t very nice to be around. 
I had to agree. But I didn’t like it, so I stormed out of the house in anger and 
started walking without a destination. I walked for thirty minutes or so, 
seething as I strode; and then it started to rain. 

 And something clicked inside my head. I started to laugh. I laughed at my folly. 
I laughed at my stress. I laughed at the man in the mirror, the poor schmuck 
who’d been making life miserable for himself and others in the name of— what ? 

 Everything changed that day. I stopped the crazy hours. I stopped the high-
stress lifestyle. I stopped throwing pens and writing 3,000-line C functions. 
I determined that I was going to  enjoy  my career  by doing it well , not by doing 
it stupidly. 

 I left that job as professionally as I could, and I became a consultant. Since that 
day I’ve never called another person “boss.” 

   AVO I D I N G PR E S S U R E 

 The best way to stay calm under pressure is to avoid the situations that  cause  
pressure. That avoidance may not eliminate the pressure completely, but it 
can go a long way towards minimizing and shortening the high-pressure 
periods. 



CHAPTER 11 PRESSURE

152B

  CO M M ITM E NT S 

 As we discovered in Chapter 10, it is important to avoid committing to 
deadlines that we aren’t sure we can meet. The business will always want these 
commitments because they want to eliminate risk. What we must do is make 
sure that the risk is quantified and presented to the business so that they can 
manage it appropriately. Accepting unrealistic commitments thwarts this goal 
and does a disservice to both the business and to ourselves. 

 Sometimes commitments are made for us. Sometimes we find that our business 
has made promises to the customers without consulting us. When this happens 
we are honor bound to help the business find a way to meet those 
commitments. However, we are  not  honor bound to  accept  the commitments. 

 The difference is important. Professionals will always help the business find a 
way to achieve its goals. But professionals do not necessarily accept commit-
ments made for them by the business. In the end, if we can find no way to meet 
the promises made by the business, then the people who made the promises 
must accept the responsibility. 

 This is easy to say. But when your business is failing, and your paycheck is 
delayed because of missed commitments, it’s hard not to feel the pressure. But if 
you have behaved professionally, at least you can hold your head high as you 
hunt for a new job. 

   STAY I N G CL E A N 

 The way to go fast, and to keep the deadlines at bay, is to stay clean. Professionals 
do not succumb to the temptation to create a mess in order to move quickly. 
Professionals realize that “quick and dirty” is an oxymoron. Dirty always means 
slow! 

 We can avoid pressure by keeping our systems, our code, and our design as 
clean as possible. This does not mean that we spend endless hours polishing 
code. It simply means that we don’t tolerate messes. We know that messes will 
slow us down, causing us to miss dates and break commitments. So we do the 
best work we can and keep our output as clean as we can. 



HANDLING PRESSURE

153B

   CR I S I S  DI S C I PLI N E 

 You know what you believe by observing yourself in a crisis. If in a crisis you 
follow your disciplines, then you truly believe in those disciplines. On the other 
hand, if you change your behavior in a crisis, then you don’t truly believe in 
your normal behavior. 

 If you follow the discipline of Test Driven Development in noncrisis times 
but abandon it during a crisis, then you don’t really trust that TDD is helpful. 
If you keep your code clean during normal times but make messes in a crisis, 
then you don’t really believe that messes slow you down. If you pair in a 
crisis but don’t normally pair, then you believe pairing is more efficient than 
non-pairing. 

 Choose disciplines that you feel comfortable following in a crisis.  Then follow 
them all the time . Following these disciplines is the best way to avoid getting 
into a crisis. 

 Don’t change your behavior when the crunch comes. If your disciplines are the 
best way to work, then they should be followed even in the depths of a crisis. 

    HA N D LI N G PR E S S U R E 

 Forestalling, mitigating, and eliminating pressure is all well and good, but 
sometimes the pressure comes despite all your best intentions and preventions. 
Sometimes the project just takes longer than anyone thought it would. Sometimes 
the initial design is just wrong and must be reworked. Sometimes you lose a 
valued team member or customer. Sometimes you make a commitment that 
you just can’t keep. Then what? 

  DO N’T PA N I C 

 Manage your stress. Sleepless nights won’t help you get done any faster. Sitting 
and fretting won’t help either. And the worst thing you could do is to  rush ! 
Resist that temptation at all costs. Rushing will only drive you deeper into the 
hole. 



CHAPTER 11 PRESSURE

154B

 Instead, slow down. Think the problem through. Plot a course to the best 
possible outcome, and then drive towards that outcome at a reasonable and 
steady pace. 

   CO M M U N I C ATE 

 Let your team and your superiors know that you are in trouble. Tell them your 
best plans for getting out of trouble. Ask them for their input and guidance. 
Avoid creating surprises. Nothing makes people more angry and less rational 
than surprises. Surprises multiply the pressure by ten. 

   RE LY O N YO U R DI S C I PLI N E S 

 When the going gets tough,  trust your disciplines . The reason you  have  
disciplines is to give you guidance through times of high pressure. These are the 
times to pay special attention to all your disciplines. These are  not  the times to 
question or abandon them. 

 Instead of looking around in a panic for something,  anything , that will help 
you get done faster, become more deliberate and dedicated to following 
your chosen disciplines. If you follow TDD, then write even more tests than 
usual. If you are a merciless refactorer, then refactor even more. If you keep 
your functions small, then keep them even smaller. The only way through 
the pressure cooker is to rely on what you already know works—your 
disciplines. 

   GE T HE LP 

 Pair! When the heat is on, find an associate who is willing to pair program with 
you. You will get done faster, with fewer defects. Your pair partner will help 
you hold on to your disciplines and keep you from panicking. Your partner will 
spot things that you miss, will have helpful ideas, and will pick up the slack 
when you lose focus. 



CONCLUSION

155B

 By the same token, when you see someone else who’s under pressure, offer to 
pair with them. Help them out of the hole they are in. 

    CO N C LU S I O N 

 The trick to handling pressure is to avoid it when you can, and weather it when 
you can’t. You avoid it by managing commitments, following your disciplines, 
and keeping clean. You weather it by staying calm, communicating, following 
your disciplines, and getting help.  



This page intentionally left blank 



157B

12CO LL A BO R ATI O N

     Most software is created by teams. Teams are most effective when the team 
members collaborate professionally. It is unprofessional to be a loner or a 
recluse on a team. 

 In 1974 I was 22. My marriage to my wonderful wife, Ann Marie, was barely six 
months old. The birth of my first child, Angela, was still a year away. And I 
worked at a division of Teradyne known as Chicago Laser Systems. 



CHAPTER 12 COLLABORATION

158B

 Working next to me was my high school buddy, Tim Conrad. Tim and I had 
worked quite a few miracles in our time. We built computers together in his 
basement. We built Jacob’s ladders in mine. We taught each other how to 
program PDP-8s and how to wire up integrated circuits and transistors into 
functioning calculators. 

 We were programmers working on a system that used lasers to trim electronic 
components like resistors and capacitors to extremely high accuracy. For 
example, we trimmed the crystal for the first digital watch, the Motorola Pulsar. 

 The computer we programmed was the M365, Teradyne’s PDP-8 clone. We 
wrote in assembly language, and our source files were kept on magnetic tape 
cartridges. Although we could edit on a screen, the process was quite involved, 
so we used printed listings for most of our code reading and preliminary 
editing. 

 We had no facility at all for searching the code base. There was no way to find 
out all the places where a given function was called or a given constant was 
used. As you might imagine, this was quite a hindrance. 

 So one day Tim and I decided we would write a cross-reference generator. This 
program would read in our source tapes and print out a listing of every symbol, 
along with the file and line numbers where that symbol was used. 

 The initial program was pretty simple to write. It simply read in the source tape, 
parsed the assembler syntax, created a symbol table, and added references to the 
entries. It worked great, but it was horribly slow. It took over an hour to process 
our Master Operating Program (the MOP). 

 The reason it was so slow was that we were holding the growing symbol table in 
a single memory buffer. Whenever we found a new reference we inserted it into 
the buffer, moving the rest of the buffer down by a few bytes to make room. 

 Tim and I were not experts on data structures and algorithms. We’d never heard 
of hash tables or binary searches. We had no clue how to make an algorithm 
fast. We just knew that what we were doing was too slow. 



PROGRAMMERS VERSUS PEOPLE

159B

 So we tried one thing after another. We tried putting the references in linked 
lists. We tried leaving gaps in the array and only growing the buffer when the 
gaps filled. We tried creating linked lists of gaps. We tried all kinds of crazy ideas. 

 We stood at the whiteboard in our office and drew diagrams of our data 
structures and performed calculations to predict performance. We’d get to the 
office every day with another new idea. We collaborated like fiends. 

 Some of the things we tried increased performance. Some slowed it down. It 
was maddening. This was when I first discovered how hard it is to optimize 
software, and how nonintuitive the process is. 

 In the end we got the time down under 15 minutes, which was very close to 
how long it took simply to read the source tape. So we were satisfied. 

   PRO G R A M M E R S V E R S U S PEO PLE 

 We didn’t become programmers because we like working with people. As a rule 
we find interpersonal relationships messy and unpredictable. We like the clean 
and predictable behavior of the machines that we program. We are happiest 
when we are alone in a room for hours deeply focussing on some really 
interesting problem. 

 OK, that’s a huge overgeneralization and there are loads of exceptions. There are 
plenty of programmers who are good at working with people and enjoy the 
challenge. But the group average still tends in the direction I stated. We, 
programmers, enjoy the mild sensory deprivation and cocoonlike immersion 
of  focus . 

  PR O G R A M M E R S V E R S U S EM PLOY E R S 

 In the seventies and eighties, while working as a programmer at Teradyne, I 
learned to be  really  good at debugging. I loved the challenge and would throw 
myself at problems with vigor and enthusiasm. No bug could hide long 
from me! 



CHAPTER 12 COLLABORATION

160B

 When I solved a bug it was like winning a victory, or slaying the Jabberwock! 
I would go to my boss, Ken Finder, Vorpal blade in hand, and passionately 
describe to him how  interesting  the bug was. One day Ken finally erupted in 
frustration: “Bugs aren’t interesting. Bugs just need to be fixed!” 

 I learned something that day. It’s good to be passionate about what we do. But 
it’s also good to keep your eye on the goals of the people who pay you. 

 The first responsibility of the professional programmer is to meet the needs of 
his or her employer. That means collaborating with your managers, business 
analysts, testers, and other team members to  deeply understand  the business 
goals. This doesn’t mean you have to become a business wonk. It  does  mean that 
you need to understand why you are writing the code you are writing, and how 
the business that employs you will benefit from it. 

 The worst thing a professional programmer can do is to blissfully bury himself 
in a tomb of technology while the business crashes and burns around him. Your 
 job  is to keep the business afloat! 

 So, professional programmers take the time to understand the business. They 
talk to users about the software they are using. They talk to sales and marketing 
people about the problems and issues they have. They talk to their managers to 
understand the short- and long-term goals of the team. 

 In short, they pay attention to the ship they are sailing on. 

 The only time I was fired from a programming job was in 1976. I was working 
for Outboard Marine Corp. at the time. I was helping to write a factory 
automation system that used IBM System/7s to monitor dozens of aluminum 
die-cast machines on the shop floor. 

 Technically, this was a challenging and rewarding job. The architecture of the 
System/7 was fascinating, and the factory automation system itself was really 
interesting. 

 We also had a good team. The team lead, John, was competent and motivated. 
My two programming teammates were pleasant and helpful. We had a lab 



PROGRAMMERS VERSUS PEOPLE

161B

dedicated to our project, and we all worked in that lab. The business partner 
was engaged and in the lab with us. Our manager, Ralph, was competent, 
focused, and in charge. 

 Everything should have been great. The problem was me. I was enthusiastic 
enough about the project, and about the technology, but at the grand old age of 
24 I simply could not bring myself to care about the business or about its 
internal political structure. 

 My first mistake was on my first day. I showed up without wearing a tie. I had 
worn one on my interview, and I had seen that everyone else wore ties, but I 
failed to make the connection. So on my first day, Ralph came to me and plainly 
said, “We wear ties here.” 

 I can’t tell you how much I resented that. It bothered me at a deep level. I wore 
the tie everyday, and I hated it. But why? I knew what I was getting into. I knew 
the conventions they had adopted. Why would I be so upset? Because I was a 
selfish, narcissistic little twerp. 

 I simply could not get to work on time. And I thought it didn’t matter. After all, 
I was doing “a good job.” And it was true, I was doing a very good job at writing 
my programs. I was easily the best technical programmer on the team. I could 
write code faster and better than the others. I could diagnose and solve 
problems quicker. I  knew  I was valuable. So times and dates didn’t matter much 
to me. 

 The decision to fire me was made one day when I failed to show on time for a 
milestone. Apparently John had told us all that he wanted a demo of working 
features next Monday. I’m sure I knew about this, but dates and times simply 
weren’t important to me. 

 We were in active development. The system was not in production. There was 
no reason to leave the system running when no one was in the lab. I must have 
been the last one to leave that Friday, and apparently I left the system in a 
nonfunctioning state. The fact that Monday was important had simply not 
stuck in my brain. 



CHAPTER 12 COLLABORATION

162B

 I came in an hour late that Monday and saw everyone gathered glumly around 
a nonfunctioning system. John asked me, “Why isn’t the system working 
today, Bob?” My answer: “I don’t know.” And I sat down to debug it. I was 
still clueless about the Monday demo, but I could tell by everyone else’s body 
language that something was wrong. Then John came over and whispered 
in my ear, “What if Stenberg had decided to visit?” Then he walked away in 
disgust. 

 Stenberg was the VP in charge of automation. Nowadays we’d call him a CIO. 
The question held no meaning for me. “So what?” I thought. “The system isn’t 
in production, what’s the big deal?” 

 I got my first warning letter later that day. It told me I had to change my 
attitude immediately or “ quick termination will be the result .” I was 
horrified! 

 I took some time to analyze my behavior and began to realize what I had been 
doing wrong. I talked with John and Ralph about it. I determined to turn 
myself and my job around. 

 And I did! I stopped coming in late. I started paying attention to internal 
politics. I began to understand why John was worried about Stenberg. I began 
to see the bad situation I had put him in by not having that system running on 
Monday. 

 But it was too little, too late. The die was cast. I got a second warning letter a 
month later for a trivial error that I made. I should have realized at that point 
that the letters were a formality and that the decision to terminate me had 
already been made. But I was determined to rescue the situation. So I worked 
even harder. 

 The termination meeting came a few weeks later. 

 I went home that day to my pregnant 22-year-old wife and had to tell her that 
I’d been fired. That’s not an experience I ever want to repeat. 



PROGRAMMERS VERSUS PEOPLE

163B

   PR O G R A M M E R S V E R S U S PR O G R A M M E R S 

 Programmers often have difficulty working closely with other programmers. 
This leads to some really terrible problems. 

  Owned Code 

 One of the worst symptoms of a dysfunctional team is when each programmer 
builds a wall around  his  code and refuses to let other programmers touch it. 
I have been to places where the programmers wouldn’t even let other 
programmers  see  their code. This is a recipe for disaster. 

 I once consulted for a company that built high-end printers. These machines 
have many different components such as feeders, printers, stackers, staplers, 
cutters, and so on. The business valued each of these devices differently. Feeders 
were more important than stackers, and nothing was more important than the 
printer. 

 Each programmer worked on  his  device. One guy would write the code for the 
feeder, another guy would write the code for the stapler. Each of them kept their 
technology to themselves and prevented anyone else from touching their code. 
The political clout that these programmers wielded was directly related to how 
much the business valued the device. The programmer who worked on the 
printer was unassailable. 

 This was a disaster for the technology. As a consultant I was able to see that there 
was massive duplication in the code and that the interfaces between the modules 
were completely skewed. But no amount of argument on my part could convince 
the programmers (or the business) to change their ways. After all, their salary 
reviews were tied to the importance of the devices they maintained. 

   Collective Ownership 

 It is far better to break down all walls of code ownership and have the team own 
all the code. I prefer teams in which any team member can check out any 
module and make any changes they think are appropriate. I want the  team  to 
own the code, not the individuals. 



CHAPTER 12 COLLABORATION

164B

 Professional developers do not prevent others from working in the code. They 
do not build walls of ownership around code. Rather, they work with each other 
on as much of the system as they can. They learn from each other by working 
with each other on other parts of the system. 

   Pairing 

 Many programmers dislike the idea of pair-programming. I find this odd 
since most programmers  will  pair in emergencies. Why? Because it is clearly 
the most efficient way to solve the problem. It just goes back to the old adage: 
 Two heads are better than one . But if pairing is the most efficient way to solve 
a problem in an emergency, why isn’t it the most efficient way to solve a 
problem period? 

 I’m not going to quote studies at you, although there are some that could be 
quoted. I’m not going to tell you any anecdotes, although there are many I could 
tell. I’m not even going to tell you how much you should pair. All I’m going to 
tell you is that  professionals pair .   Why? Because for at least some problems it is 
the most efficient way to solve them. But that’s not the only reason. 

 Professionals also pair because it is the best way to share knowledge with each 
other. Professionals don’t create knowledge silos. Rather, they learn the different 
parts of the system and business by pairing with each other. They recognize that 
although all team members have a position to play, all team members should 
also be able play another position in a pinch. 

 Professionals pair because it is the best way to review code. No system should 
consist of code that hasn’t been reviewed by other programmers. There are 
many ways to conduct code reviews; most of them are horrifically inefficient. 
The most efficient and effective way to review code is to collaborate in writing it. 

     CE R E B E L LU M S 

 I rode the train into Chicago one morning in 2000 during the height of the dot 
com boom. As I stepped off the train onto the platform I was assaulted by a 
huge billboard hanging above the exit doors. The sign was for a well-known 



CEREBELLUMS

165B

software firm that was recruiting programmers. It read:  Come rub cerebellums 
with the best . 

 I was immediately struck by the rank stupidity of a sign like that. These poor 
clueless advertising people were trying to appeal to a highly technical, intelligent, 
and knowledgeable population of  programmers . These are the kind of people who 
don’t suffer stupidity particularly well. The advertisers were trying to evoke the 
image of knowledge sharing with other highly intelligent people. Unfortunately 
they referred to a part of the brain, the cerebellum, that deals with fine muscle 
control, not intelligence. So the very people they were trying to attract were 
sneering at such a silly error. 

 But something else intrigued me about that sign. It made me think of a group 
of people trying to rub cerebellums. Since the cerebellum is at the back of the 
brain, the best way to rub cerebellums is to face away from each other. I 
imagined a team of programmers in cubicles, sitting in corners with their backs 
to each other, staring at screens while wearing headphones.  That’s  how you rub 
cerebellums. That’s also not a team. 

 Professionals work  together . You can’t work together while you are sitting in 
corners wearing headphones. So I want you sitting around tables  facing  each 
other. I want you to be able to smell each other’s fear. I want you to be able to 
overhear someone’s frustrated mutterings. I want serendipitous communication, 
both verbal and body language. I want you  communicating  as a unit. 

 Perhaps you believe that you work better when you work alone. That may 
be true, but it doesn’t mean that the  team  works better when you work alone. 
And, in fact, it’s highly unlikely that you  do  work better when you work 
alone. 

 There are times when working alone is the right thing to do. There are times 
when you simply need to think long and hard about a problem. There are times 
when the task is so trivial that it would be a waste to have another person 
working with you. But, in general, it is best to collaborate closely with others 
and to pair with them a large fraction of the time. 



CHAPTER 12 COLLABORATION

166B

   CO N C LU S I O N 

 Perhaps we didn’t get into programming to work with people. Tough luck for 
us. Programming  is all about working with people . We need to work with our 
business, and we need to work with each other. 

 I know, I know. Wouldn’t it be great if they just shut us into a room with six 
massive screens, a T3 pipe, a parallel array of superfast processors, unlimited 
ram and disk, and a never-ending supply of diet cola and spicy corn chips? Alas, 
it is not to be. If we really want to spend our days programming, we are going 
to have to learn to talk to—people      .1    

1. A reference to the last word in the movie Soylent Green.



167B

13TE A M S A N D PROJ ECT S

     What if you have lots of little projects to get done? How should you allocate 
those projects to the programmers? What if you have one really huge project to 
get done? 



168B

CHAPTER 13 TEAMS AND PROJECTS

   DO E S IT BL E N D ? 

 I have consulted for a number of banks and insurance companies over the years. 
One thing they seem to have in common is the odd way they partition projects. 

 Often a project at a bank will be a relatively small job that requires one or two 
programmers for a few weeks. This project will often be staffed with a project 
manager, who is also managing other projects. It will be staffed with a business 
analyst, who is also providing requirements for other projects. It will be staffed 
with some programmers who are also working on other projects. A tester or 
two will be assigned, and they too will be working on other projects. 

 See the pattern? The project is so small that no individual can be assigned to it 
on a full-time basis. Everybody is working on the project at 50, or even 25, 
percent. 

 Now here’s a rule:  There is no such thing as half a person.   

 It makes no sense to tell a programer to devote half their time to project A and 
the rest of their time to project B, especially when the two projects have two 
different project managers, different business analysts, different programmers, 
and different testers. How in Hell’s kitchen can you call a monstrosity like that a 
 team ? That’s not a team, that’s something that came out of a Waring blender. 

  TH E GE L L E D TE A M 

 It take  time  for a team to form. The team members start to form relationships. 
They learn how to collaborate with each other. They learn each other’s quirks, 
strengths, and weaknesses. Eventually the team begins to  gel . 

 There is something truly magical about a gelled team. They can work miracles. 
They anticipate each other, cover for each other, support each other, and 
demand the best from each other.  They make things happen . 

 A gelled team usually consists of about a dozen people. It could be as many as 
twenty or as few as three, but the best number is probably around twelve. The 



DOES IT BLEND?

169B

team should be composed of programmers, testers, and analysts. And it should 
have a project manager. 

 The ratio of programmers to testers and analysts can vary greatly, but 2:1 is a 
good number. So a nicely gelled team of twelve might have seven programmers, 
two testers, two analysts, and a project manager. 

 The analysts develop the requirements and write automated acceptance tests for 
them. The testers also write automated acceptance tests. The difference between 
the two is perspective. Both are writing requirements. But analysts focus on 
business value; testers focus on correctness. Analysts write the happy path cases; 
testers worry about what might go wrong, and write the failure and boundary 
cases. 

 The project manager tracks the progress of the team, and makes sure the team 
understands the schedules and priorities. 

 One of the team members may play a part-time role of coach, or master, with 
responsibility for defending the team’s process and disciplines. They act as the 
team conscience when the team is tempted to go off-process because of 
schedule pressure. 

   Fermentation 

 It takes time for a team like this to work out their differences, come to terms 
with each other, and really  gel . It might take six months. It might even take a 
year. But once it happens, it’s magic. A gelled team will plan together, solve 
problems together, face issues together, and  get things done . 

 Once this happens, it is ludicrous to break it apart just because a project 
comes to an end. It’s best to keep that team together and just keep feeding it 
projects. 

   Which Came First, the Team or the Project? 

 Banks and insurance companies tried to form teams around projects. This is a 
foolish approach. The teams simply cannot gel. The individuals are only on the 



project for a short time, and only for a percentage of their time, and therefore 
never learn how to deal with each other. 

 Professional development organizations allocate projects to existing gelled 
teams, they don’t form teams around projects. A gelled team can accept many 
projects simultaneously and will divvy up the work according to their own 
opinions, skills, and abilities. The gelled team will get the projects done. 

   BU T HOW DO YO U MA N AG E TH AT? 

 Teams have velocities.      1   The velocity of a team is simply the amount of work it 
can get done in a fixed period of time. Some teams measure their velocity in 
 points  per week, where points are a unit of complexity. They break down the 
features of each project they are working on and estimate them in points. Then 
they measure how many points they get done per week. 

 Velocity is a statistical measure. A team might get 38 points done one week, 42 
done the next, and 25 done the next. Over time this will average out. 

 Management can set targets for each project given to a team. For example, if the 
average velocity of a team is 50 and they have three projects they are working 
on, then management can ask the team to split their effort into 15, 15, and 20. 

 Aside from having a gelled team working on your projects, the advantage of this 
scheme is that in an emergency the business can say, “Project B is in crisis; put 
100% of your effort on that project for the next three weeks.” 

 Reallocating priorities that quickly is virtually impossible with the teams that 
came out of the blender, but gelled teams that are working on two or three 
projects concurrently can turn on a dime. 

   TH E PR O J E C T OW N E R DI L E M M A 

 One of the objections to the approach I’m advocating is that the project owners 
lose some security and power. Project owners who have a team dedicated to 

1. [RCM2003] pp. 20–22; [COHN2006] Look in the index for many excellent references to velocity.

CHAPTER 13 TEAMS AND PROJECTS

170B



171B

BIBLIOGRAPHY

their project can count on the effort of that team. They know that because 
forming and disbanding a team is an expensive operation, the business will not 
take the team away for short-term reasons. 

 On the other hand, if projects are given to gelled teams, and if those teams take 
on several projects at the same time, then the business is free to change 
priorities on a whim. This can make the project owner insecure about the 
future. The resources that project owner is depending on might be suddenly 
removed from him. 

 Frankly, I prefer the latter situation. The business should not have its hands tied 
by the artificial difficulty of forming and disbanding teams. If the business 
decides that one project is higher priority than another, it should be able to 
reallocate resources quickly. It is the project owner’s responsibility to make the 
case for his project. 

    CO N C LU S I O N 

 Teams are harder to build than projects. Therefore, it is better to form persistent 
teams that move together from one project to the next and can take on more 
than one project at a time. The goal in forming a team is to give that team 
enough time to gel, and then keep it together as an engine for getting many 
projects done. 

   B I B LI O G R A PH Y 

    [RCM2003]:  Robert C. Martin, Agile Software Development: Principles, Patterns, 
and Practices, Upper Saddle River, NJ: Prentice Hall, 2003. 

    [COHN2006]:  Mike Cohn, Agile Estimating and Planning, Upper Saddle River, 
NJ: Prentice Hall, 2006.    



This page intentionally left blank 



173B

14ME NTO R I N G, 
APPR E NTI C E S H I P,  A N D 

CR A FT S M A N S H I P

     I have been consistently disappointed by the quality of CS graduates. It’s not 
that the graduates aren’t bright or talented, it’s just that they haven’t been 
taught what programming is really all about. 



CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

174B

   DE G R E E S O F FA I LU R E 

 I once interviewed a young woman who was working on her master’s degree in 
computer science for a major university. She was applying for a summer intern 
position. I asked her to write some code with me, and she said “I don’t really 
write code.” 

  Please read the previous paragraph again, and then skip over this one to the next.   

 I asked her what programming courses she had taken in pursuit of her master’s 
degree. She said that she hadn’t taken any. 

  Maybe you’d like to start at the beginning of the chapter just to be sure you haven’t 
fallen into some alternate universe or have just awakened from a bad dream.  

 At this point you might well be asking yourself how a student in a CS master’s 
program can avoid a programming course. I wondered the same thing at the 
time. I’m still wondering today. 

 Of course, that’s the most extreme of a series of disappointments I’ve had while 
interviewing graduates. Not all CS graduates are disappointing—far from it! 
However, I’ve noticed that those who aren’t have something in common: Nearly 
all of them  taught themselves to program  before they entered university and 
continued to teach themselves despite university. 

 Now don’t get me wrong. I think it is possible to get an excellent education at a 
university. It’s just that I also think it’s possible to wiggle yourself through the 
system and come out with a diploma, and not much else. 

 And there’s another problem. Even the best CS degree programs do not typically 
prepare the young graduate for what they will find in industry. This is not an 
indictment of the degree programs so much as it is the reality of nearly all disciplines. 
What you learn in school and what you find on the job are often very different things. 

   ME NTO R I N G 

 How do we learn how to program? Let me tell you my story about being mentored. 



MENTORING

175B

  DI G I - CO M P I ,  MY FI R S T CO M PU TE R  

 In 1964 my mother gave me a little plastic computer for my twelfth birthday. It 
was called a  Digi-Comp I         .1 It had three plastic flip-flops and six plastic  and -
gates. You could connect the outputs of the flip-flops to the inputs of the  and -
gates. You could also connect the output of the  and -gates to the inputs of the 
flip-flops. In short, this allowed you to create a three-bit finite state machine. 

 The kit came with a manual that gave you several programs to run. You 
programmed the machine by pushing little tubes (short segments of soda straws) 
onto little pegs protruding from the flip flops. The manual told you exactly where 
to put each tube, but not what the tubes  did . I found this very frustrating! 

 I stared at the machine for hours and determined how it worked at the lowest 
level; but I could not, for the life of me, figure out how to make it do what 
I wanted it to do. The last page in the manual told me to send in a dollar and 
they would send back a manual         telling me how to program the machine.2 

 I sent in my dollar and waited with the impatience of a twelve year old. The day 
the manual arrived I devoured it. It was a simple treatise on boolean algebra 
covering basic factoring of boolean equations, associative and distributive laws, 
and DeMorgan’s theorem. The manual showed how to express a problem in 
terms of a sequence of boolean equations. It also described how to reduce those 
equations to fit into 6  and -gates. 

 I conceived of my first program. I still remember the name:  Mr. Patternson’s 
Computerized Gate.  I wrote the equations, reduced them, and mapped them to 
the tubes and pegs of the machine.    And it worked!  

 Writing those three words just now sent chills down my spine. The same chills 
that coursed down that twelve year old nearly half a century ago. I was hooked. 
My life would never be the same. 

 Do you remember the moment your first program worked? Did it change your 
life or set you on a course you could not turn away from? 

1. There are many web sites that offer simulators of this stimulating little computer.

2. I still have this manual. It holds a place of honor on one of my bookshelves.



CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

176B

  I did not figure it all out for myself. I was  mentored . Some very kind and very 
adept people (to whom I owe a huge debt of gratitude) took the time to write a 
treatise on boolean algebra that was accessible to a twelve year old. They 
connected the mathematical theory to the pragmatics of the little plastic 
computer and empowered me to make that computer do what I wanted it to do. 

 I just pulled down my copy of that fateful manual. I keep it in a zip-lock bag. 
Nevertheless, the years have taken their toll by yellowing the pages and making 
them brittle. Still, the power of the words shines out of them. The elegance of 
their description of boolean algebra consumed three sparse pages. Their step-
by-step walk-through of the equations for each of the original programs is still 
compelling. It was a work of mastery. It was a work that changed at least one 
young man’s life. Yet I doubt I’ll never know the names of the authors. 

TH E     ECP-18 I N HI G H SC H O O L 

 At the age of fifteen, as a freshman in high school, I liked hanging out in the 
math department. (Go figure!) One day they wheeled in a machine the size of a 
table saw. It was an educational computer made for high schools, called the 
ECP-18. Our school was getting a two-week demo. 

 I stood in the background as the teachers and technicians talked. This machine 
had a 15-bit word (what’s a word?) and a 1024-word drum memory. (I knew 
what drum memory was by then, but only in concept.) 

 When they powered it up, it made a whining sound reminiscent of a jet aircraft 
taking off. I guessed that was the drum spinning up. Once up to speed, it was 
relatively quiet. 

 The machine was  lovely . It was essentially an office desk with a marvelous 
control panel protruding from the top like the bridge of a battleship. The 
control panel was adorned with rows of lights that were also push-buttons. 
Sitting at that desk was like sitting in Captain Kirk’s chair. 

 As I watched the technicians push those buttons, I noted that they lit up when 
pushed, and that you could push them again to turn them off. I also noted that there 
were other buttons they were pushing; buttons with names like  deposit  and  run . 



MENTORING

177B

 The buttons in each row were grouped into five clusters of three. My Digi-
Comp was also three bits, so I could read an octal digit when expressed in 
binary. It was not a big leap to realize that these were just five octal digits. 

 As the technicians pushed the buttons I could hear them mutter to themselves. 
They would push 1, 5, 2, 0, 4, in the  memory buffer  row while saying to 
themselves, “store in 204.” They would push 1, 0, 2, 1, 3 and mutter, “load 213 
into the  accumulator .” There was a row of buttons named  accumulator ! 

 Ten minutes of that and it was pretty clear to my fifteen-year-old mind that the 
15 meant  store  and the 10 meant  load , that the accumulator was what was being 
stored or loaded, and that the other numbers were the numbers of one of the 
1024 words on the drum. (So  that’s  what a word is!) 

 Bit by bit (no pun intended) my eager mind latched on to more and more 
instruction codes and concepts. By the time the technicians left, I knew the 
basics of how that machine worked. 

 That afternoon, during a study hall, I crept into the math lab and started 
fiddling with the computer. I had learned long ago that it is better to ask 
forgiveness than permission! I toggled in a little program that would multiply 
the accumulator by two and add one. I toggled a 5 into the accumulator, ran the 
program, and saw 13 

8
  in the accumulator! It had worked! 

 I toggled in several other simple programs like that and they all worked as 
planned. I was master of the universe! 

 Days later I realized how stupid, and lucky, I had been. I found an instruction 
sheet laying around in the math lab. It showed all the different instructions and 
op-codes, including many I had not learned by watching the technicians. I was 
gratified that I had interpreted those that I knew correctly and thrilled by the 
others. However, one of the new instructions was HLT. It just so happened that 
the  halt  instruction was a word of all zeros. And it just so happened that I had 
put a word of all zeros at the end of each of my programs so that I could load it 
into the accumulator to clear it. The concept of a halt simply had not occurred 
to me. I just figured the program would stop when it was done! 



CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

178B

 I remember at one point sitting in the math lab watching one of the teachers 
struggle to get a program working. He was trying to type two numbers in 
decimal on the attached teletype, and then print out the sum. Anyone who has 
tried to write a program like this in machine language on a mini-computer 
knows that it is far from trivial. You have to read in the characters, convert them 
to digits, then to binary, add them, convert back to decimal and encode back 
into characters. And, believe me, it’s a  lot  worse when you are entering the 
program in binary through the front panel! 

 I watched as he put a halt into his program and then ran it until it stopped. 
(Oh! That’s a good idea!) This primitive breakpoint allowed him to examine the 
contents of the registers to see what his program had done. I remember him 
muttering, “Wow, that was fast!” Boy, do I have news for him! 

 I had no idea what his algorithm was. That kind of programming was still magic 
to me. And he never spoke to me while I watched over his shoulder. Indeed, 
 nobody  talked to me about this computer. I think they considered me a nuisance 
to be ignored, fluttering around the math lab like a moth. Suffice it to say that 
neither the student nor the teachers had developed a high degree of social skill. 

 In the end he got his program working. It was amazing to watch. He’d slowly 
type in the two numbers because, despite his earlier protestation, that computer 
was  not  fast (think of reading consecutive words from a spinning drum in 
1967). When he hit return after the second number, the computer blinked 
ferociously for a bit and then started to print the result. It took about one 
second per digit. It printed all but the last digit, blinked even more ferociously 
for five seconds, and then printed the final digit and halted. 

 Why that pause before the last digit? I never found out. But it made me realize that 
the approach to a problem can have a profound effect on the user. Even though the 
program produced the correct answer, there was  still  something wrong with it. 

  This was mentoring.   Certainly it was not the kind of mentoring I could have 
hoped for. It would have been nice if one of those teachers had taken me under 
his wing and worked with me. But it didn’t matter, because I was  observing  
them and learning at a furious pace. 



MENTORING

179B

    UN C O N V E NTI O N A L ME NTO R I N G 

 I told you those two stories because they describe two very different kinds of 
mentoring, neither of which are the kind that the word usually implies. In the 
first case I learned from the authors of a very well-written manual. In the 
second case I learned by observing people who were actively trying to ignore 
me. In both cases the knowledge gained was profound and foundational. 

 Of course, I had other kinds of mentors too. There was the kindly neighbor 
who worked at Teletype who brought me home a box of 30 telephone relays to 
play with. Let me tell you, give a lad some relays and a electric train transformer 
and he can conquer the world! 

 There was the kindly neighbor who was a ham operator who showed me how to 
use a multimeter (which I promptly broke). There was the office supply store 
owner who allowed me to come in and “play” with his very expensive 
programmable calculator. There was the Digital Equipment Corporation sales 
office that allowed me to come in and “play” with their PDP-8 and PDP-10. 

 Then there was big Jim Carlin, a BAL programmer who saved me from being 
fired from my first programming job by helping me debug a Cobol program 
that was way beyond my depth. He taught me how to read core dumps, and 
how to format my code with appropriate blank lines, rows of stars, and 
comments. He gave me my first push towards craftsmanship. I’m sorry I could 
not return the favor when the boss’s displeasure fell on him a year later. 

 But, frankly, that’s about it. There just weren’t that many senior programmers in 
the early seventies. Everywhere else I worked, I  was  senior. There was nobody to 
help me figure out what true professional programming was. There was no role 
model who taught me how to behave or what to value. Those things I had to 
learn for myself, and it was by no means easy. 

  HA R D KN O C K S 

 As I told you before, I did, in fact, get fired from that factory automation job in 
1976. Although I was technically very competent, I had not learned to pay 
attention to the business or the business goals. Dates and deadlines meant 



CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

180B

nothing to me. I forgot about a big Monday morning demo, left the system broken 
on Friday, and showed up late on Monday with everyone staring angrily at me. 

 My boss sent me a letter warning me that I had to make changes immediately or 
be fired. This was a significant wake-up call for me. I reevaluated my life and 
career and started to make some significant changes in my behavior—some of 
which you have been reading about in this book. But it was too little, too late. 
The momentum was all in the wrong direction and small things that wouldn’t 
have mattered before became significant. So, though I gave it a hardy try, they 
eventually escorted me out of the building. 

Needless to say, it’ s not fun to bring that kind of news home to a pregnant wife 
and a two-year old daughter. But I picked myself up and took some powerful 
life lessons to my next job—which I held for fifteen years and which formed the 
true foundation of my current career. 

    In the end, I survived and prospered. But there has to be a better way. It would have 
been far better for me if I’d had a true mentor, someone to teach me the in’s and 
out’s. Someone I could have observed while I helped him with small tasks, and who 
would review and guide my early work. Someone to act as a role model and teach 
me appropriate values and reflexes. A sensei. A master. A mentor. 

    APPR E NTI C E S H I P 

 What do doctors do? Do you think hospitals hire medical graduates and throw 
them into operating rooms to do heart surgery on their first day on the job? Of 
course not. 

 The medical profession has developed a discipline of intense mentoring 
ensconced in ritual and lubricated with tradition. The medical profession 
oversees the universities and makes sure the graduates have the best education. 
That education involves roughly  equal amounts  of classroom study and clinical 
activity in hospitals working with professionals. 

 Upon graduation, and before they can be licensed, the newly minted doctors are 
required to spend a year in supervised practice and training called internship. 



APPRENTICESHIP

181B

This is intense on-the-job training. The intern is surrounded by role models 
and teachers. 

 Once internship has been completed each of the medical specialties requires 
three to five more years of further supervised practice and training known as 
residency. The resident gains confidence by taking on ever greater responsibilities 
while still being surrounded by, and supervised by, senior doctors. 

 Many specialties require yet another one to three years of fellowship in which 
the student continues specialized training and supervised practice. 

 And  then  they are eligible to take their exams and become board certified. 

   This description of the medical profession was somewhat idealized, and 
probably wildly inaccurate. But the fact remains that when the stakes are high, 
we do not send graduates into a room, throw meat in occasionally, and expect 
good things to come out. So why do we do this in software? 

 It’s true that there are  relatively  few deaths caused by software bugs. But there 
 are  significant monetary losses. Companies lose huge amounts of money due to 
the inadequate training of their software developers. 

 Somehow the software development industry has gotten the idea that program-
mers are programmers, and that once you graduate you can code. Indeed, it is not 
at all uncommon for companies to hire kids right out of school, form them into 
“teams,” and ask them to build the most critical systems. It’s insane! 

 Painters don’t do this. Plumbers don’t. Electricians don’t. Hell, I don’t even 
think short-order cooks behave this way! It seems to me that companies who 
hire CS graduates ought to invest more in their training than McDonalds 
invests in their servers. 

   Let’s not kid ourselves that this doesn’t matter.  There’s a lot at stake.  Our 
civilization runs on software. It is software that moves and manipulates the 
information that pervades our daily life. Software controls our automobile 
engines, transmissions, and brakes. It maintains our bank balances, sends us our 



CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

182B

bills, and accepts our payments. Software washes our clothes and tells us the 
time. It puts pictures on the TV, sends our text messages, makes our phone calls, 
and entertains us when we are bored. It’s everywhere.   

 Given that we entrust software developers with all aspects of our lives, from the 
minutia to the momentous, I suggest that a reasonable period of training and 
supervised practice is not inappropriate. 

    SO F T WA R E APPR E NTI C E S H I P 

 So how  should  the software profession induct young graduates into the ranks of 
professionalism? What steps should they follow? What challenges should they 
meet? What goals should they achieve? Let’s work it backwards. 

  Masters 

 These are programmers who have taken the lead on more than one significant 
software project. Typically they will have 10+ years of experience and will have 
worked on several different kinds of systems, languages, and operating systems. 
They know how to lead and coordinate multiple teams, are proficient designers 
and architects, and can code circles around everyone else without breaking a 
sweat. They have been offered management positions, but have either turned 
them down, have fled back after accepting them, or have integrated them with 
their primarily technical role. They maintain that technical role by reading, 
studying, practicing, doing, and  teaching . It is to a master that the company will 
assign technical responsibility for a project. Think, “Scotty.” 

   Journeymen 

 These are programmers who are trained, competent, and energetic. During this 
period of their career they will learn to work well in a team and to become team 
leaders. They are knowledgeable about current technology but typically lack 
experience with many diverse systems. They tend to know one language, one 
system, one platform; but they are learning more. Experience levels vary widely 
among their ranks, but the average is about five years. On the far side of 
that average we have burgeoning masters; on the near side we have recent 
apprentices. 



APPRENTICESHIP

183B

 Journeymen are supervised by masters, or other more senior journeymen. 
Young journeymen are seldom allowed autonomy. Their work is closely 
supervised. Their code is  scrutinized . As they gain in experience, autonomy 
grows. Supervision becomes less direct and more nuanced. Eventually it 
transitions into peer review. 

   Apprentices/Interns 

 Graduates start their careers as apprentices. Apprentices have no autonomy. 
They are very closely supervised by journeymen. At first they take no tasks at 
all, they simply provide assistance to the journeymen. This should be a time of 
very intense pair-programming. This is when disciplines are learned and 
reinforced. This is when the foundation of values is created. 

 Journeymen are the teachers. They make sure that the apprentices know design 
principles, design patterns, disciplines, and rituals. Journeymen teach TDD, 
refactoring, estimation, and so forth. They assign reading, exercises, and 
practices to the apprentices; they review their progress. 

 Apprenticeship ought to last a year. By that time, if the journeymen are willing 
to accept the apprentice into their ranks, they will make a recommendation to 
the masters. The masters should examine the apprentice both by interview and 
by reviewing their accomplishments. If the masters agree, then the apprentice 
becomes a journeyman. 

TH E    RE A LIT Y 

 Again, all of this is idealized and hypothetical. However, if you change the 
names and squint at the words you’ll realize that it’s not all that different from 
the way we  expect  things to work now. Graduates are supervised by young team-
leads, who are supervised by project-leads, and so on. The problem is that, in 
most cases, this supervision  is not technical!  In most companies there is no 
technical supervision at all. Programmers get raises and eventual promotions 
because, well, that’s just what you do with programmers. 

 The difference between what we do today and my idealized program of appren-
ticeship is the focus on technical teaching, training, supervision, and review. 



CHAPTER 14 MENTORING, APPRENTICESHIP, AND CRAFTSMANSHIP

184B

The  difference is the very notion that professional values and technical acumen 
must be taught, nurtured, nourished, coddled, and encultured. What’s missing 
from our current sterile approach is the responsibility of the elders to teach the 
young. 

     CR A F T S M A N S H I P 

 So now we are in a position to define this word:  craftsmanship . Just what is it? 
To understand, let’s look at the word  craftsman . This word brings to mind skill 
and quality. It evokes experience and competence. A craftsman is someone who 
works quickly, but without rushing, who provides reasonable estimates and 
meets commitments. A craftsman knows when to say  no , but tries hard to say 
 yes . A craftsman is a professional. 

 Craftsmanship is the  mindset  held by craftsmen. Craftsmanship is a meme that 
contains values, disciplines, techniques, attitudes, and answers. 

 But how do cratftsmen adopt this meme? How do they attain this mindset? 

 The craftsmanship meme is handed from one person to another. It is taught by 
elders to the young. It is exchanged between peers. It is observed and relearned, as 
elders observe the young. Craftsmanship is a contagion, a kind of mental virus. 
You catch it by observing others and allowing the meme to take hold. 

  CO N V I N C I N G PEO PLE 

 You can’t convince people to be craftsmen. You can’t convince them to accept 
the craftsmanship meme. Arguments are ineffective. Data is inconsequential. 
Case studies mean nothing. The acceptance of a meme is not so much a rational 
decision as an emotional one. This is a very  human  thing. 

 So how do you get people to adopt the craftsmanship meme? Remember that a 
meme is contagious, but only if it can be observed. So you make the meme 
 observable . You act as a role model. You become a craftsman first, and let your 
craftsmanship show. Then just let the meme do the rest of the work.   



CONCLUSION

185B

CO N C LU S I O N

School can teach the theory of computer programming. But school does not, 
and cannot teach the discipline, practice, and skill of being a craftsman. Those 
things are acquired through years of personal tutelage and mentoring. It is time 
for those of us in the software industry to face the fact that guiding the next 
batch of software developers to maturity will fall to us, not to the universities. 
It’s time for us to adopt a program of apprenticeship, internship, and long-term 
guidance.



This page intentionally left blank 



187B

ATOO LI N G

     In 1978, I was working at Teradyne on the telephone test system that I described 
earlier. The system was about 80KSLOC of M365 assembler. We kept the source 
code on tapes. 

 The tapes were similar to those 8-track stereo tape cartridges that were so 
popular back in the ’70s. The tape was an endless loop, and the tape drive could 
only move in one direction. The cartridges came in 10', 25', 50', and 100' lengths. 
The longer the tape, the longer it took to “rewind” since the tape drive had to 
simply move it forward until it found the “load point.” A 100' tape took five 
minutes to go to load point, so we chose the lengths of our tapes judiciously.      1   

1. These tapes could only be moved in one direction. So when there was a read error, there was no way for the 

tape drive to back up and read again. You had to stop what you were doing, send the tape back to the load 

point, and then start again. This happened two or three times per day. Write errors were also very common, 

and the drive had no way to detect them. So we always wrote the tapes in pairs and then checked the pairs 

when we were done. If one of the tapes was bad we immediately made a copy. If both were bad, which was 

very infrequent, we started the whole operation over. That was what life was like in the ’70s.

Martin_Appendix.indd   187 10/11/11   3:19 PM



188B

APPENDIX A TOOLING

 Logically, the tapes were subdivided into files. You could have as many files on a 
tape as would fit. To find a file you loaded the tape and then skipped forward 
one file at a time until you found the one you wanted. We kept a listing of the 
source code directory on the wall so that we would know how many files to skip 
before we got to the one we wanted. 

 There was a master 100' copy of the source code tape on a shelf in the lab. It was 
labeled  MASTER . When we wanted to edit a file we loaded the  MASTER  source 
tape into one drive and a 10' blank into another. We’d skip through the  MASTER  
until we got to the file we needed. Then we’d copy that file onto the scratch tape. 
Then we’d “rewind” both tapes and put the  MASTER  back on the shelf. 

 There was a special directory listing of the  MASTER  on a bulletin board in the lab. 
Once we had made the copies of the files we needed to edit, we’d put a colored 
pin on the board next to the name of that file. That’s how we checked files out! 

 We edited the tapes on a screen. Our text editor, ED-402, was actually very 
good. It was very similar to vi. We would read a “page” from tape, edit the 
contents, and then write that page out and read the next one. A page was 
typically 50 lines of code. You could not look ahead on the tape to see the pages 
that were coming, and you could not look back on the tape to see the pages you 
had edited. So we used listings. 

 Indeed, we would mark up our listings with all the changes we wanted to make, 
and  then  we’d edit the files according to our markups.  Nobody  wrote or 
modified code at the terminal! That was suicide. 

 Once the changes were made to all the files we needed to edit, we’d merge those 
files with the master to create a working tape. This is the tape we’d use to run 
our compiles and tests. 

 Once we were done testing and were sure our changes worked, we’d look at the 
board. If there were no new pins on the board we’d simply relabel our working 
tape as  MASTER  and pull our pins off the board. If there  were  new pins on the 
board we’d remove our pins and hand our working tape to the person whose 
pins were still on the board. They’d have to do the merge. 

Martin_Appendix.indd   188 10/11/11   3:19 PM



189B

SOURCE CODE CONTROL

 There were three of us, and each of us had our own color of pin, so it was easy 
for us to know who had which files checked out. And since we all worked in the 
same lab and talked to each other all the time, we held the status of the board in 
our heads. So usually the board was redundant, and we often didn’t use it. 

   TO O L S 

 Today software developers have a wide array of tools to choose from. Most 
aren’t worth getting involved with, but there are a few that every software 
developer must be conversant with. This chapter describes my current personal 
toolkit. I have not done a complete survey of all the other tools out there, so 
this should not be considered a comprehensive review. This is just what I use. 

   SO U RC E CO D E CO NTRO L 

 When it comes to source code control, the open source tools are usually your 
best option. Why? Because they are written by developers, for developers. The 
open source tools are what developers write for themselves when they need 
something that works. 

 There are quite a few expensive, commercial, “enterprise” version control 
systems available. I find that these are not sold to developers so much as they 
are sold to managers, executives, and “tool groups.” Their list of features is 
impressive and compelling. Unfortunately, they often don’t have the features 
that developers actually need. The chief among those is  speed . 

  AN “ENTE R PR I S E” SO U R C E CO NTR O L SYS TE M 

 It may be that your company has invested a small fortune in an “enterprise” 
source code control system. If so, my condolences. It’s probably politically 
inappropriate for you to go around telling everyone, “Uncle Bob says not to use 
it.” However, there is an easy solution. 

 You can check your source code into the “enterprise” system at the end of each 
iteration (once every two weeks or so) and use one of the open source systems 

Martin_Appendix.indd   189 10/11/11   3:19 PM



190B

in the midst of each iteration. This keeps everyone happy, doesn’t violate any 
corporate rules, and keeps your productivity high. 

   PE S S I M I S TI C V E R S U S OP TI M I S TI C LO C K I N G 

 Pessimistic locking seemed like a good idea in the ’80s. After all, the simplest 
way to manage concurrent update problems is to serialize them. So if  I’m  
editing a file,  you’d  better not. Indeed, the system of colored pins that I used in 
the late ’70s was a form of pessimistic locking. If there was a pin in a file, you 
didn’t edit that file. 

 Of course, pessimistic locking has its problems. If I lock a file and then go on 
vacation, everybody else who wants to edit that file is stuck. Indeed, even if I 
keep the file locked for a day or two, I can delay others who need to make 
changes. 

 Our tools have gotten much better at merging source files that have been edited 
concurrently. It’s actually quite amazing when you think about it. The tools look 
at the two different files and at the ancestor of those two files, and then they 
apply multiple strategies to figure out how to integrate the concurrent changes. 
And they do a pretty good job. 

 So the era of pessimistic locking is over. We do not need to lock files when we 
check them out anymore. Indeed, we don’t bother to check out individual files 
at all. We just check out the whole system and edit any files we need to. 

 When we are ready to check in our changes, we perform an “update” operation. 
This tells us whether anybody else checked in code ahead of us, automatically 
merges most of the changes, finds conflicts, and helps us do the remaining 
merges. Then we commit the merged code. 

 I’ll have a lot to say about the role that automated tests and continuous 
integration play with regard to this process later on in this chapter. For the 
moment let’s just say that we  never  check in code that doesn’t pass all the tests. 
 Never   ever . 

APPENDIX A TOOLING

Martin_Appendix.indd   190 10/11/11   3:19 PM



SOURCE CODE CONTROL

191B

   CVS / SVN 

 The old standby source control system is CVS. It was good for its day but has 
grown a bit long in the tooth for today’s projects. Although it is very good at 
dealing with individual files and directories, it’s not very good at renaming files 
or deleting directories. And the attic . . . . Well, the less said about that, the better. 

 Subversion, on the other hand, works very nicely. It allows you to check out the 
whole system in a single operation. You can easily update, merge, and commit. 
As long as you don’t get into branching, SVN systems are pretty simple to 
manage. 

   Branching 

 Until 2008 I avoided all but the simplest forms of branching. If a developer 
created a branch, that branch had to be brought back into the main line before 
the end of the iteration. Indeed, I was so austere about branching that it was 
very rarely done in the projects I was involved with. 

 If you are using SVN, then I still think that’s a good policy. However, there are 
some new tools that change the game completely. They are the  distributed  
source control systems. git is my favorite of the distributed source control 
systems. Let me tell you about it. 

   git 

 I started using git in late 2008, and it has since changed everything about the 
way I use source code control. Understanding why this tool is such a game 
changer is beyond the scope of this book. But comparing Figure A-1 to Figure 
A-2 ought to be worth quite a few of the words that I’m not going to include 
here.   

 Figure A-1 shows a few weeks’ worth of development on the  FITNESSE  project 
while it was controlled by SVN. You can see the effect of my austere 
no-branching rule. We simply did not branch. Instead, we did very frequent 
updates, merges, and commits to the main line. 

Martin_Appendix.indd   191 10/11/11   3:19 PM



192B

APPENDIX A TOOLING

        Figure A-1 FITNESSE under subversion   

 Figure A-2 picture shows a few weeks’ worth of development on the same 
project using  git . As you can see, we are branching and merging all over the 
place. This was not because I relaxed my no-branching policy; rather, it simply 

Martin_Appendix.indd   192 10/11/11   3:19 PM



SOURCE CODE CONTROL

193B

became the obvious and most convenient way to work. Individual developers 
can make very short-lived branches and then merge them with each other on 
a whim. 

        Figure A-2 FITNESSE under git   

Martin_Appendix.indd   193 10/11/11   3:19 PM



194B

 Notice also that you can’t see a true main line. That’s because  there isn’t one . 
When you use  git  there’s no such thing as a central repository, or a main line. 
Every developer keeps his or her own copy of the  entire  history of the project on 
their local machine. They check in and out of that local copy, and then merge it 
with others as needed. 

 It’s true that I keep a special golden repository into which I push all the releases 
and interim builds. But to call this repository the main line would be missing 
the point. It’s really just a convenient snapshot of the whole history that every 
developer maintains locally. 

 If you don’t understand this, that’s OK.  git  is something of a mind bender at 
first. You have to get used to how it works. But I’ll tell you this:  git , and tools 
like it, are what the future of source code control looks like. 

    IDE / ED ITO R 

 As developers, we spend most of our time reading and editing code. The tools 
we use for this purpose have changed greatly over the decades. Some are 
immensely powerful, and some are little changed since the ’70s. 

  V I 

 You’d think that the days of using vi as the primary development editor 
would be long over. There are tools nowadays that far outclass vi, and other 
simple text editors like it. But the truth is that vi has enjoyed a significant 
resurgence in popularity due to its simplicity, ease of use, speed, and 
flexibility. Vi might not be as powerful as Emacs, or eclipse, but it’s still a fast 
and powerful editor. 

 Having said that, I’m not a power vi user any more. There was a day when I was 
known as a vi “god,” but those days are long gone. I use vi from time to time if I 
need to do a quick edit of a text file. I have even used it recently to make a quick 
change to a Java source file in a remote environment. But the amount of true 
coding I have done in vi in the last 10 years is vanishingly small. 

APPENDIX A TOOLING

Martin_Appendix.indd   194 10/11/11   3:19 PM



IDE/EDITOR

195B

   EM AC S 

 Emacs is still one of the most powerful editors out there, and will probably 
remain so for decades to come. The internal lisp model guarantees that. As a 
general-purpose editing tool, nothing else even comes close. On the other hand, 
I think that Emacs cannot really compete with the specific-purpose IDEs that 
now dominate. Editing code is  not  a general-purpose editing job. 

 In the ’90s I was an Emacs bigot. I wouldn’t consider using anything else. The 
point-and-click editors of the day were laughable toys that no developer could 
take seriously. But in the early ’00s I was introduced to IntelliJ, my current IDE 
of choice, and I’ve never looked back. 

   EC LI P S E / INTE LLI J 

 I’m an IntelliJ user. I love it. I use it to write Java, Ruby, Clojure, Scala, 
Javascript, and many others. This tool was written by programmers who 
understand what programmers need when writing code. Over the years, they 
have seldom disappointed me and almost always pleased me. 

 Eclipse is similar in power and scope to IntelliJ. The two are simply leaps and 
bounds above Emacs when it comes to editing Java. There are other IDEs in this 
category, but I won’t mention them here because I have no direct experience 
with them. 

 The features that set these IDEs above tools like Emacs are the extremely 
powerful ways in which they help you manipulate code. In IntelliJ, for example, 
you can extract a superclass from a class with a single command. You can 
rename variables, extract methods, and convert inheritance into composition, 
among many other great features. 

 With these tools, code editing is no longer about lines and characters as much 
as it is about complex manipulations. Rather than thinking about the next few 
characters and lines you need to type, you think about the next few trans-
formations you need to make. In short, the programming model is remarkably 
different and highly productive. 

Martin_Appendix.indd   195 10/11/11   3:19 PM



196B

 Of course, this power comes at a cost. The learning curve is high, and project 
set-up time is not insignificant. These tools are  not  lightweight. They take a lot 
of computing resources to run. 

   TE X TMATE 

 TextMate is powerful and lightweight. It can’t do the wonderful manipulations 
that IntelliJ and Eclipse can do. It doesn’t have the powerful lisp engine and 
library of Emacs. It doesn’t have the speed and fluidity of vi. On the other hand, 
the learning curve is small, and its operation is intuitive. 

 I use TextMate from time to time, especially for the occasional C++. I would 
use Emacs for a large C++ project, but I’m too rusty to bother with Emacs for 
the short little C++ tasks I have. 

    I S S U E TR AC K I N G 

 At the moment I’m using Pivotal Tracker. It’s an elegant and simple system to 
use. It fits nicely with the Agile/iterative approach. It allows all the stakeholders 
and developers to communicate quickly. I’m very pleased with it. 

 For very small projects, I’ve sometimes used Lighthouse. It’s very quick and easy 
to set up and use. But it doesn’t come close to the power of Tracker. 

 I’ve also simply used a wiki. Wikis are fine for internal projects. They allow you 
to set up any scheme you like. You aren’t forced into a certain process or a rigid 
structure. They are very easy to understand and use. 

 Sometimes the best issue-tracking system of all is a set of cards and a bulletin 
board. The bulletin board is divided into columns such as “To Do,” “In Progress,” 
and “Done.” The developers simply move the cards from one column to the next 
when appropriate. Indeed, this may be the most common issue-tracking system 
used by agile teams today. 

 The recommendation I make to clients is to start with a manual system like the 
bulletin board before you purchase a tracking tool. Once you’ve mastered the 

APPENDIX A TOOLING

Martin_Appendix.indd   196 10/11/11   3:19 PM



CONTINUOUS BUILD

197B

manual system, you will have the knowledge you need to select the appropriate 
tool. And indeed, the appropriate choice may simply be to continue using the 
manual system. 

  BU G CO U NT S 

 Teams of developers certainly need a list of issues to work on. Those issues include 
new tasks and features as well as bugs. For any reasonably sized team (5 to 12 
developers) the size of that list should be in the dozens to hundreds.  Not thousands . 

 If you have thousands of bugs, something is wrong. If you have thousands of 
features and/or tasks, something is wrong. In general, the list of issues should be 
relatively small, and therefore manageable with a lightweight tool like a wiki, 
Lighthouse, or Tracker. 

 There are some commercial tools out there that seem to be pretty good. I’ve 
seen clients use them but haven’t had the opportunity to work with them 
directly. I am not opposed to tools like this, as long as the number of issues 
remains small and manageable. When issue-tracking tools are forced to track 
thousands of issues, then the word “tracking” loses meaning. They become 
“issue dumps” (and often smell like a dump too). 

    CO NTI N U O U S BU I L D 

 Lately I’ve been using Jenkins as my Continuous Build engine. It’s lightweight, 
simple, and has almost no learning curve. You download it, run it, do some 
quick and simple configurations, and you are up and running. Very nice. 

 My philosophy about continuous build is simple: Hook it up to your source 
code control system. Whenever anybody checks in code, it should automatically 
build and then report status to the team. 

 The team must simply keep the build working at all times. If the build fails, it 
should be a   “stop the presses”   event and the team should meet to quickly resolve 
the issue. Under no circumstances should the failure be allowed to persist for a 
day or more. 

Martin_Appendix.indd   197 10/11/11   3:19 PM



198B

 For the FITNESSE project I have every developer run the continuous-build script 
before they commit. The build takes less than 5 minutes, so this is not onerous. 
If there are problems, the developers resolve them before the commit. So the 
automatic build seldom has any problems. The most common source of automatic 
build failures turns out to be environment-related issues since my automatic 
build environment is quite different from the developer’s development 
environments. 

   UN IT TE STI N G TO O L S 

 Each language has it’s own particular unit testing tool. My favorites are  JUNIT  
for Java,  RSPEC  for Ruby,  NUNIT  for .Net, Midje for Clojure, and  CPPUTEST  for C 
and C++. 

 Whatever unit testing tool you choose, there are a few basic features they all 
should support.   

1.   It should be quick and easy to run the tests. Whether this is done through 
IDE plugins or simple command line tools is irrelevant, as long as developers 
can run those tests on a whim. The gesture to run the tests should be trivial. 

 For example, I run my  CPPUTEST  tests by typing  command-M  in TextMate. 
I have this command set up to run my  makefile  which automatically runs the 
tests and prints a one-line report if all tests pass.  JUNIT  and  RSPEC  are both 
supported by  INTELLIJ , so all I have to do is push a button. For  NUNIT , I use 
the  RESHARPER  plugin to give me the test button.  

2.   The tool should give you a clear visual pass/fail indication. It doesn’t matter if 
this is a graphical green bar or a console message that says “All Tests Pass.” The 
point is that you must be able to tell that all tests passed quickly and unam-
biguously. If you have to read a multiline report, or worse, compare the 
output of two files to tell whether the tests passed, then you have failed this 
point.  

3.   The tool should give you a clear visual indication of progress. It doesn’t matter 
whether this is a graphical meter or a string of dots as long as you can tell that 
progress is still being made and that the tests have not stalled or aborted.  

APPENDIX A TOOLING

Martin_Appendix.indd   198 10/11/11   3:19 PM



COMPONENT TESTING TOOLS

199B

4.   The tool should discourage individual test cases from communicating with 
each other.  JUNIT  does this by creating a new instance of the test class for each 
test method, thereby preventing the tests from using instance variables to 
communicate with each other. Other tools will run the test methods in random 
order so that you can’t depend on one test preceding another. Whatever the 
mechanism, the tool should help you keep your tests independent from each 
other. Dependent tests are a deep trap that you don’t want to fall into.  

5.   The tool should make it very easy to write tests.  JUNIT  does this by supplying a 
convenient API for making assertions. It also uses reflection and Java attributes 
to distinguish test functions from normal functions. This allows a good IDE to 
automatically identify all your tests, eliminating the hassle of wiring up suites 
and creating error-prone lists of tests.    

   CO M PO N E NT TE STI N G TO O L S 

 These tools are for testing components at the API level. Their role is to make 
sure that the behavior of a component is specified in a language that the 
business and QA people can understand. Indeed, the ideal case is when business 
analysts and QA can  write  that specification using the tool. 

  TH E DE F I N ITI O N O F DO N E 

 More than any other tool, component testing tools are the means by which we 
specify what  done  means. When business analysts and QA collaborate to create a 
specification that defines the behavior of a component, and when that 
specification can be executed as a suite of tests that pass or fail, then  done  takes 
on a very unambiguous meaning: “All Tests Pass.” 

   FITNE S S E 

 My favorite component testing tool is FITNESSE. I wrote a large part of it, and 
I am the primary committer. So it’s my baby. 

 FITNESSE is a wiki-based system that allows business analysts and QA specialists 
to write tests in a very simple tabular format. These tables are similar to Parnas 

Martin_Appendix.indd   199 10/11/11   3:19 PM



200B

tables both in form and intent. The tests can be quickly assembled into suites, 
and the suites can be run at a whim. 

 FITNESSE is written in Java but can test systems in any language because it 
communicates with an underlying test system that can be written in any 
language. Supported languages include Java, C#/.NET, C, C++, Python, Ruby, 
PHP, Delphi, and others. 

 There are two test systems that underlie FITNESSE: Fit and Slim. Fit was written 
by Ward Cunningham and was the original inspiration for FITNESSE and it’s ilk. 
Slim is a much simpler and more portable test system that is favored by 
FITNESSE users today. 

   OTH E R TO O L S 

 I know of several other tools that could classify as component testing tools.   

 •   RobotFX is a tool developed by Nokia engineers. It uses a similar tabular 
format to FITNESSE, but is not wiki based. The tool simply runs on flat files 
prepared with Excel or similar. The tool is written in Python but can test 
systems in any language using appropriate bridges.  

 •   Green Pepper is a commercial tool that has a number of similarities with 
FITNESSE. It is based on the popular confluence wiki.  

 •   Cucumber is a plain text tool driven by a Ruby engine, but capable of 
testing many different platforms. The language of Cucumber is the popular 
Given/When/Then style.  

 •   JBehave is similar to Cucumber and is the logical parent of Cucumber. It is 
written in Java.    

    INTE G R ATI O N TE STI N G TO O L S 

 Component testing tools can also be used for many integration tests, but are 
less than appropriate for tests that are driven through the UI. 

 In general, we don’t want to drive very many tests through the UI because UIs are 
notoriously volatile. That volatility makes tests that go through the UI very fragile. 

APPENDIX A TOOLING

Martin_Appendix.indd   200 10/11/11   3:19 PM



UML/MDA

201B

 Having said that, there are some tests that  must  go through the UI—most 
importantly, tests  of  the UI. Also, a few end-to-end tests should go through the 
whole assembled system, including the UI. 

 The tools that I like best for UI testing are Selenium and Watir. 

   UML/ MDA 

 In the early ’90s I was very hopeful that the CASE tool industry would cause a 
radical change in the way software developers worked. As I looked ahead from 
those heady days, I thought that by now everyone would be coding in diagrams 
at a higher level of abstraction and that textual code would be a thing of the past. 

 Boy was I wrong. Not only hasn’t this dream been fulfilled, but every attempt to 
move in that direction has met with abject failure. Not that there aren’t tools and 
systems out there that demonstrate the potential; it’s just that those tools simply 
don’t truly realize the dream, and hardly anybody seems to want to use them. 

 The dream was that software developers could leave behind the details of 
textual code and author systems in a higher-level language of diagrams. Indeed, 
so the dream goes, we might not need programmers at all. Architects could 
create whole systems from UML diagrams. Engines, vast and cool and 
unsympathetic to the plight of mere programmers, would transform those 
diagrams into executable code. Such was the grand dream of Model Driven 
Architecture (MDA). 

 Unfortunately, this grand dream has one tiny little flaw. MDA assumes that the 
problem is code. But code is  not  the problem. It has never been the problem. 
The problem is  detail . 

  TH E DE TA I L S 

 Programmers are detail managers. That’s what we do. We specify the behavior 
of systems in the minutest detail. We happen to use textual languages for this 
(code) because textual languages are remarkably convenient (consider English, 
for example). 

Martin_Appendix.indd   201 10/11/11   3:19 PM



202B

 What kinds of details do we manage? 

 Do you know the difference between the two characters \n and \r? The first, \n, 
is a line feed. The second, \r, is a carriage return. What’s a carriage? 

 In the ’60s and early ’70s one of the more common output devices for computers 
was a teletype. The model ASR33      2   was the most common. 

 This device consisted of a print head that could print ten characters per second. 
The print head was composed of a little cylinder with the characters embossed 
upon it. The cylinder would rotate and elevate so that the correct character was 
facing the paper, and then a little hammer would smack the cylinder against the 
paper. There was an ink ribbon between the cylinder and the paper, and the ink 
transferred to the paper in the shape of the character. 

 The print head rode on a carriage. With every character the carriage would move 
one space to the right, taking the print head with it. When the carriage got to the 
end of the 72-character line, you had to explicitly return the carriage by sending 
the carriage return characters (\r = 0 ´ 0D), otherwise the print head would 
continue to print characters in the 72nd column, turning it into a nasty black 
rectangle. 

 Of course, that wasn’t sufficient. Returning the carriage did not raise the paper 
to the next line. If you returned the carriage and did not send a line-feed 
character (\n = 0 ´ 0A), then the new line would print on top of the old line. 

 Therefore, for an ASR33 teletype the end-of-line sequence was “\r\n”. Actually, 
you had to be careful about that since the carriage might take more than 100ms 
to return. If you sent “\n\r” then the next character just might get printed as the 
carriage returned, thereby creating a smudged character in the middle of the 
line. To be safe, we often padded the end-of-line sequence with one or two 
rubout      3   characters (0 ́   FF). 

2. http://en.wikipedia.org/wiki/ASR-33_Teletype

3. Rubout characters were very useful for editing paper tapes. By convention, rubout characters were ignored. 

Their code, 0 ´ FF, meant that every hole on that row of the tape was punched. This meant that any char-

acter could be converted to a rubout by overpunching it. Therefore, if you made a mistake while typing 

your  program you could backspace the punch and hit rubout, then continue typing.

APPENDIX A TOOLING

Martin_Appendix.indd   202 10/11/11   3:19 PM

http://en.wikipedia.org/wiki/ASR-33_Teletype


UML/MDA

203B

 In the ’70s, as teletypes began to fade from use, operating systems like UNIX 
shortened the end-of-line sequence to simply ‘\n’. However, other operating 
systems, like DOS, continued to use the ‘\r\n’ convention. 

 When was the last time you had to deal with text files that use the “wrong” 
convention? I face this problem at least once a year. Two identical source files 
don’t compare, and don’t generate identical checksums, because they use 
different line ends. Text editors fail to word-wrap properly, or double space the 
text because the line ends are “wrong.” Programs that don’t expect blank lines 
crash because they interpret ‘\r\n’ as two lines. Some programs recognize ‘\r\n’ 
but don’t recognize ‘\n\r’. And so on. 

  That’s  what I mean by  detail . Try coding the horrible logic for sorting out line 
ends in UML! 

   NO HO PE ,  NO CH A N G E 

 The hope of the MDA movement was that a great deal of detail could be 
eliminated by using diagrams instead of code. That hope has so far proven to be 
forlorn. It turns out that there just isn’t that much extra detail embedded in 
code that can be eliminated by pictures. What’s more, pictures contain their 
own accidental details. Pictures have their own grammar and syntax and rules 
and constraints. So, in the end, the difference in detail is a wash. 

 The hope of MDA was that diagrams would prove to be at a higher level of 
abstraction than code, just as Java is at a higher level than assembler. But again, 
that hope has so far proven to be misplaced. The difference in the level of 
abstraction is tiny at best. 

 And, finally, let’s say that one day someone does invent a truly useful 
diagrammatic language. It won’t be architects drawing those diagrams, it will be 
programmers. The diagrams will simply become the new code, and 
programmers will be needed to  draw  that code because, in the end, it’s all about 
detail, and it is programmers who manage that detail. 

Martin_Appendix.indd   203 10/11/11   3:19 PM



204B

    CO N C LU S I O N 

 Software tools have gotten wildly more powerful and plentiful since I started 
programming. My current toolkit is a simple subset of that menagerie. I use git 
for source code control, Tracker for issue management, Jenkins for Continuous 
Build, IntelliJ as my IDE, XUnit for testing, and  FITNESSE  for component 
testing. 

 My machine is a Macbook Pro, 2.8Ghz Intel Core i7, with a 17-inch matte 
screen, 8GB ram, 512GB SSD, with two extra screens.  

APPENDIX A TOOLING

Martin_Appendix.indd   204 10/11/11   3:19 PM



205B

IN D E X

A
Acceptance tests

automated, 97B–99B
communication and, 97B
continuous integration and, 

104B–105B
definition of, 94B
developer’s role in, 100B–101B
extra work and, 99B
GUIs and, 103B–105B
negotiation and, 101B–102B
passive aggression and, 101B–102B
timing of, 99B–100B
unit tests and, 102B–103B
writers of, 99B–100B

Adversarial roles, 20B–23B
Affinity estimation, 140B–141B
Ambiguity, in requirements, 92B–94B
Apologies, 6B
Apprentices, 183B
Apprenticeship, 180B–184B
Arguments, in meetings, 120B–121B
Arrogance, 16B

Automated acceptance testing, 
97B–99B

Automated quality assurance, 8B
Avoidance, 125B

B
Blind alleys, 125B–126B
Bossavit, Laurent, 83B
Bowling Game, 83B
Branching, 191B
Bug counts, 197B
Business goals, 154B

C
Caffeine, 122B
Certainty, 74B
Code

control, 189B–194B
owned, 157B
3B AM, 53B–54B
worry, 54B–55B

Coding Dojo, 83B–87B
Collaboration, 14B, 151B–160B



INDEX

206B

Collective ownership, 157B–158B
Commitment(s), 41B–46B

control and, 44B
discipline and, 47B–50B
estimation and, 132B
expectations and, 45B
identifying, 43B–44B
implied, 134B–135B
importance of, 132B
lack of, 42B–43B
pressure and, 146B

Communication
acceptance tests and, 97B
pressure and, 148B
of requirements, 89B–94B

Component tests
in testing strategy, 110B–111B
tools for, 199B–200B

Conflict, in meetings, 120B–121B
Continuous build, 197B–198B
Continuous integration, 104B–105B
Continuous learning, 13B
Control, commitment and, 44B
Courage, 75B–76B
Craftsmanship, 184B
Creative input, 59B–60B, 123B
Crisis discipline, 147B
Cucumber, 200B
Customer, identification with, 15B
CVS, 191B
Cycle time, in test-driven 

development, 72B

D
Deadlines

false delivery and, 67B
hoping and, 65B
overtime and, 66B
rushing and, 65B–66B

Debugging, 60B–63B
Defect injection rate, 75B
Demo meetings, 120B
Design, test-driven development and, 

76B–77B
Design patterns, 12B
Design principles, 12B
Details, 201B–203B
Development. see test driven 

development (TDD)
Disagreements, in meetings, 

120B–121B
Discipline

commitment and, 47B–50B
crisis, 147B

Disengagement, 64B
Documentation, 76B
Domain, knowledge of, 15B
“Done,” defining, 67B, 94B–97B
“Do no harm” approach, 5B–10B

to function, 5B–8B
to structure, 8B–10B

Driving, 64B

E
Eclipse, 195B–196B
Emacs, 195B
Employer(s)

identification with, 15B
programmers vs., 153B–156B

Estimation
affinity, 140B–141B
anxiety, 92B
commitment and, 132B
definition of, 132B–133B
law of large numbers and, 141B
nominal, 136B
optimistic, 135B–136B
PERT and, 135B–138B



INDEX

207B

pessimistic, 136B
probability and, 133B
of tasks, 138B–141B
trivariate, 141B

Expectations, commitment and, 45B
Experience, broadening, 87B

F
Failure, degrees of, 174B
False delivery, 67B
FitNesse, 199B–200B
Flexibility, 9B
Flow zone, 56B–58B
Flying fingers, 139B
Focus, 121B–123B
Function, in “do no harm” 

approach, 5B–8B

G
Gaillot, Emmanuel, 83B
Gelled team, 162B–164B
Git, 191B–194B
Goals, 20B–23B, 118B
Graphical user interfaces (GUIs), 

103B–105B
Green Pepper, 200B
Grenning, James, 139B
GUIs, 103B–105B

H
Hard knocks, 179B–180B
Help, 67B–70B

giving, 68B
mentoring and, 69B–70B
pressure and, 148B–149B
receiving, 68B–69B

“Hope,” 42B
Hoping, deadlines and, 65B
Humility, 16B

I
IDE/editor, 194B
Identification, with employer/

customer, 15B
Implied commitments, 134B–135B
Input, creative, 59B–60B, 123B
Integration, continuous, 104B–105B
Integration tests

in testing strategy, 111B–112B
tools for, 200B–201B

IntelliJ, 195B–196B
Interns, 183B
Interruptions, 57B–58B
Issue tracking, 196B–197B
Iteration planning meetings, 119B
Iteration retrospective meetings, 120B

J
JBehave, 200B
Journeymen, 182B–183B

K
Kata, 84B–85B
Knowledge

of domain, 15B
minimal, 12B
work ethic and, 11B–13B

L
Lateness, 65B–67B
Law of large numbers, 141B
Learning, work ethic and, 13B
“Let’s,” 42B
Lindstrom, Lowell, 140B
Locking, 190B

M
Manual exploratory tests, in testing 

strategy, 112B–113B
Masters, 182B
MDA, 201B–203B



INDEX

208B

Meetings
agenda in, 118B
arguments and disagreements in, 

120B–121B
declining, 117B
demo, 120B
goals in, 118B
iteration planning, 119B
iteration retrospective, 120B
leaving, 118B
stand-up, 119B
time management and, 116B–121B

Mentoring, 14B–15B, 69B–70B, 
174B–180B

Merciless refactoring, 9B
Messes, 126B–127B, 146B
Methods, 12B
Model Driven Architecture (MDA), 

201B–203B
Muscle focus, 123B
Music, 57B

N
“Need,” 42B
Negotiation, acceptance tests and, 

101B–102B
Nominal estimate, 136B
Nonprofessional, 2B

O
Open source, 87B
Optimistic estimate, 135B–136B
Optimistic locking, 190B
Outcomes, best-possible, 20B–23B
Overtime, 66B
Owned code, 157B
Ownership, collective, 157B–158B

P
Pacing, 63B–64B
Pairing, 58B, 148B–149B, 158B
Panic, 147B–148B
Passion, 154B
Passive aggression, 28B–30B, 

101B–102B
People, programmers vs., 153B–158B
Personal issues, 54B–55B
PERT (Program Evaluation and 

Review Technique), 135B–138B
Pessimistic estimate, 136B
Pessimistic locking, 190B
Physical activity, 123B
Planning Poker, 139B–140B
Practice

background on, 80B–83B
ethics, 87B
experience and, 87B
turnaround time and, 82B–83B
work ethic and, 13B–14B

Precision, premature, in 
requirements, 91B–92B

Preparedness, 52B–55B
Pressure

avoiding, 145B–147B
cleanliness and, 146B
commitments and, 146B
communication and, 148B
handling, 147B–149B
help and, 148B–149B
messes and, 146B
panic and, 147B–148B

Priority inversion, 125B
Probability, 133B
Professionalism, 2B
Programmers

employers vs., 153B–156B
people vs., 153B–158B
programmers vs., 157B

Proposal, project, 31B–32B



INDEX

209B

Q
Quality assurance (QA)

automated, 8B
as bug catchers, 6B
as characterizers, 108B–109B
ideal of, as finding no problems, 

108B–109B
problems found by, 6B–7B
as specifiers, 108B
as team member, 108B

R
Randori, 86B–87B
Reading, as creative input, 59B
Recharging, 122B–123B
Reputation, 5B
Requirements

communication of, 89B–94B
estimation anxiety and, 92B
late ambiguity in, 92B–94B
premature precision in, 91B–92B
uncertainty and, 91B–92B

Responsibility, 2B–5B
apologies and, 6B
“do no harm” approach and, 

5B–10B
function and, 5B–8B
structure and, 8B–10B
work ethic and, 10B–16B

RobotFX, 200B
Roles, adversarial, 20B–23B
Rushing, 34B–35B, 65B–66B

S
Santana, Carlos, 83B
“Should,” 42B
Shower, 64B
Simplicity, 34B
Sleep, 122B
Source code control, 189B–194B

Stakes, 23B–24B
Stand-up meetings, 119B
Structure

in “do no harm” approach, 8B–10B
flexibility and, 9B
importance of, 8B

SVN, 191B–194B
System tests, in testing strategy, 112B

T
Task estimation, 138B–141B
Teams and teamwork, 24B–30B

gelled, 162B–164B
management of, 164B
passive aggression and, 28B–30B
preserving, 163B
project-initiated, 163B–164B
project owner dilemma with, 

164B–165B
trying and, 26B–28B
velocity of, 164B

Test driven development (TDD)
benefits of, 74B–77B
certainty and, 74B
courage and, 75B–76B
cycle time in, 72B
debut of, 71B–72B
defect injection rate and, 75B
definition of, 7B–8B
design and, 76B–77B
documentation and, 76B
interruptions and, 58B
three laws of, 73B–74B
what it is not, 77B–78B

Testing
acceptance

automated, 97B–99B
communication and, 97B
continuous integration and, 

104B–105B



INDEX

210B

definition of, 94B
developer’s role in, 100B–101B
extra work and, 99B
GUIs and, 103B–105B
negotiation and, 101B–102B
passive aggression and, 

101B–102B
timing of, 99B–100B
unit tests and, 102B–103B
writers of, 99B–100B

automation pyramid, 109B–113B
component

in testing strategy, 110B–111B
tools for, 199B–200B

importance of, 7B–8B
integration

in testing strategy, 111B–112B
tools for, 200B–201B

manual exploratory, 112B–113B
structure and, 9B
system, 112B
unit

acceptance tests and, 102B–103B
in testing strategy, 110B
tools for, 198B–199B

TextMate, 196B
Thomas, Dave, 84B
3B AM code, 53B–54B
Time, debugging, 63B
Time management

avoidance and, 125B
blind alleys and, 125B–126B
examples of, 116B
focus and, 121B–123B
meetings and, 116B–121B
messes and, 126B–127B
priority inversion and, 125B
recharging and, 122B–123B
“tomatoes” technique for, 124B

Tiredness, 53B–54B
“Tomatoes” time management 

technique, 124B
Tools, 189B
Trivariate estimates, 141B
Turnaround time, practice 

and, 82B–83B

U
UML, 201B
Uncertainty, requirements and, 

91B–92B
Unconventional mentoring, 179B. 

see also mentoring
Unit tests

acceptance tests and, 102B–103B
in testing strategy, 110B
tools for, 198B–199B

V
Vi, 194B

W
Walking away, 64B
Wasa, 85B–86B
Wideband delphi, 138B–141B
“Wish,” 42B
Work ethic, 10B–16B

collaboration and, 14B
continuous learning and, 13B
knowledge and, 11B–13B
mentoring and, 14B–15B
practice and, 13B–14B

Worry code, 54B–55B
Writer’s block, 58B–60B

Y
“Yes”

cost of, 30B–34B
learning how to say, 46B–50B



  InformIT is a brand of Pearson and the online presence 
for the world’s leading technology publishers. It’s your source 
for reliable and qualified content and knowledge, providing 
access to the top brands, authors, and contributors from 
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips?  InformIT has the solution.

•   Learn about new releases and special promotions by 
subscribing to a wide variety of newsletters. 
Visit informit.com/newsletters.

•   Access FREE podcasts from experts at informit.com/podcasts.

•   Read the latest author articles and sample chapters at 
informit.com/articles.

•  Access thousands of books and videos in the Safari Books 
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the 
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook, 

Twitter, YouTube, and more! Visit informit.com/socialconnect.



Register the Addison-Wesley, Exam 
Cram, Prentice Hall, Que, and 
Sams products you own to unlock 
great benefi ts. 

To begin the registration process, 
simply go to informit.com/register 
to sign in or create an account. 
You will then be prompted to enter 
the 10- or 13-digit ISBN that appears 
on the back cover of your product.

informIT.com 
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley  |  Cisco Press  |  Exam Cram   

IBM Press   |   Que   |   Prentice Hall   |   Sams 

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS 
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall 

Professional, Que, and Sams. Here you will gain access to quality and trusted content and 

resources from the authors, creators, innovators, and leaders of technology. Whether you’re 

looking for a book on a new technology, a helpful article, timely newsletters, or access to 

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock 
the following benefi ts:

•  Access to supplemental content, 
including bonus chapters, 
source code, or project fi les. 

•  A coupon to be used on your 
next purchase.

Registration benefi ts vary by product.  
Benefi ts will be listed on your Account 
page under Registered Products.

informit.com/register

THIS PRODUCT

ph_regthisprod_7x9.indd   1 12/5/08   4:13:24 PM


	Table of Contents
	CLEAN CODE
	1 Clean Code
	There Will Be Code
	Bad Code
	The Total Cost of Owning a Mess
	The Grand Redesign in the Sky
	Attitude
	The Primal Conundrum
	The Art of Clean Code?
	What Is Clean Code?

	Schools of Thought
	We Are Authors
	The Boy Scout Rule
	Prequel and Principles
	Conclusion
	Bibliography

	2 Meaningful Names
	Introduction
	Use Intention-Revealing Names
	Avoid Disinformation
	Make Meaningful Distinctions
	Use Pronounceable Names
	Use Searchable Names
	Avoid Encodings
	Hungarian Notation
	Member Prefixes
	Interfaces and Implementations

	Avoid Mental Mapping
	Class Names
	Method Names
	Don’t Be Cute
	Pick One Word per Concept
	Don’t Pun
	Use Solution Domain Names
	Use Problem Domain Names
	Add Meaningful Context
	Don’t Add Gratuitous Context
	Final Words

	3 Functions
	Small!
	Blocks and Indenting

	Do One Thing
	Sections within Functions

	One Level of Abstraction per Function
	Reading Code from Top to Bottom: The Stepdown Rule

	Switch Statements
	Use Descriptive Names
	Function Arguments
	Common Monadic Forms
	Flag Arguments
	Dyadic Functions
	Triads
	Argument Objects
	Argument Lists
	Verbs and Keywords

	Have No Side Effects
	Output Arguments

	Command Query Separation
	Prefer Exceptions to Returning Error Codes
	Extract Try/Catch Blocks
	Error Handling Is One Thing
	The Error.java Dependency Magnet

	Don’t Repeat Yourself
	Structured Programming
	How Do You Write Functions Like This?
	Conclusion
	SetupTeardownIncluder
	Bibliography

	4 Comments
	Comments Do Not Make Up for Bad Code
	Explain Yourself in Code
	Good Comments
	Legal Comments
	Informative Comments
	Explanation of Intent
	Clarification
	Warning of Consequences
	TODO Comments
	Amplification
	Javadocs in Public APIs

	Bad Comments
	Mumbling
	Redundant Comments
	Misleading Comments
	Mandated Comments
	Journal Comments
	Noise Comments
	Scary Noise
	Don’t Use a Comment When You Can Use a Function or a Variable
	Position Markers
	Closing Brace Comments
	Attributions and Bylines
	Commented-Out Code
	HTML Comments
	Nonlocal Information
	Too Much Information
	Inobvious Connection
	Function Headers
	Javadocs in Nonpublic Code
	Example

	Bibliography

	5 Formatting
	The Purpose of Formatting
	Vertical Formatting
	The Newspaper Metaphor
	Vertical Openness Between Concepts
	Vertical Density
	Vertical Distance
	Vertical Ordering

	Horizontal Formatting
	Horizontal Openness and Density
	Horizontal Alignment
	Indentation
	Dummy Scopes

	Team Rules
	Uncle Bob’s Formatting Rules

	6 Objects and Data Structures
	Data Abstraction
	Data/Object Anti-Symmetry
	The Law of Demeter
	Train Wrecks
	Hybrids
	Hiding Structure

	Data Transfer Objects
	Active Record

	Conclusion
	Bibliography

	7 Error Handling
	Use Exceptions Rather Than Return Codes
	Write Your Try-Catch-Finally Statement First
	Use Unchecked Exceptions
	Provide Context with Exceptions
	Define Exception Classes in Terms of a Caller’s Needs
	Define the Normal Flow
	Don’t Return Null
	Don’t Pass Null
	Conclusion
	Bibliography

	8 Boundaries
	Using Third-Party Code
	Exploring and Learning Boundaries
	Learning log4j
	Learning Tests Are Better Than Free
	Using Code That Does Not Yet Exist
	Clean Boundaries
	Bibliography

	9 Unit Tests
	The Three Laws of TDD
	Keeping Tests Clean
	Tests Enable the -ilities

	Clean Tests
	Domain-Specific Testing Language
	A Dual Standard

	One Assert per Test
	Single Concept per Test

	F.I.R.S.T.
	Conclusion
	Bibliography

	10 Classes
	Class Organization
	Encapsulation

	Classes Should Be Small!
	The Single Responsibility Principle
	Cohesion

	Maintaining Cohesion Results in Many Small Classes
	Organizing for Change
	Isolating from Change

	Bibliography

	11 Systems
	How Would You Build a City?
	Separate Constructing a System from Using It
	Separation of Main
	Factories
	Dependency Injection

	Scaling Up
	Cross-Cutting Concerns

	Java Proxies
	Pure Java AOP Frameworks
	AspectJ Aspects
	Test Drive the System Architecture
	Optimize Decision Making
	Use Standards Wisely, When They Add Demonstrable Value
	Systems Need Domain-Specific Languages
	Conclusion
	Bibliography

	12 Emergence
	Getting Clean via Emergent Design
	Simple Design Rule 1: Runs All the Tests
	Simple Design Rules 2–4: Refactoring
	No Duplication
	Expressive
	Minimal Classes and Methods
	Conclusion
	Bibliography

	13 Concurrency
	Why Concurrency?
	Myths and Misconceptions

	Challenges
	Concurrency Defense Principles
	Single Responsibility Principle
	Corollary: Limit the Scope of Data
	Corollary: Use Copies of Data
	Corollary: Threads Should Be as Independent as Possible

	Know Your Library
	Thread-Safe Collections

	Know Your Execution Models
	Producer-Consumer
	Readers-Writers
	Dining Philosophers

	Beware Dependencies Between Synchronized Methods
	Keep Synchronized Sections Small
	Writing Correct Shut-Down Code Is Hard
	Testing Threaded Code
	Treat Spurious Failures as Candidate Threading Issues
	Get Your Nonthreaded Code Working First
	Make Your Threaded Code Pluggable
	Make Your Threaded Code Tunable
	Run with More Threads Than Processors
	Run on Different Platforms
	Instrument Your Code to Try and Force Failures
	Hand-Coded
	Automated

	Conclusion
	Bibliography

	14 Successive Refinement
	Args Implementation
	How Did I Do This?

	Args: The Rough Draft
	So I Stopped
	On Incrementalism

	String Arguments
	Conclusion

	15 JUnit Internals
	The JUnit Framework
	Conclusion

	16 Refactoring SerialDate
	First, Make It Work
	Then Make It Right
	Conclusion
	Bibliography

	17 Smells and Heuristics
	Comments
	C1: Inappropriate Information
	C2: Obsolete Comment
	C3: Redundant Comment
	C4: Poorly Written Comment
	C5: Commented-Out Code

	Environment
	E1: Build Requires More Than One Step
	E2: Tests Require More Than One Step

	Functions
	F1: Too Many Arguments
	F2: Output Arguments
	F3: Flag Arguments
	F4: Dead Function

	General
	G1: Multiple Languages in One Source File
	G2: Obvious Behavior Is Unimplemented
	G3: Incorrect Behavior at the Boundaries
	G4: Overridden Safeties
	G5: Duplication
	G6: Code at Wrong Level of Abstraction
	G7: Base Classes Depending on Their Derivatives
	G8: Too Much Information
	G9: Dead Code
	G10: Vertical Separation
	G11: Inconsistency
	G12: Clutter
	G13: Artificial Coupling
	G14: Feature Envy
	G15: Selector Arguments
	G16: Obscured Intent
	G17: Misplaced Responsibility
	G18: Inappropriate Static
	G19: Use Explanatory Variables
	G20: Function Names Should Say What They Do
	G21: Understand the Algorithm
	G22: Make Logical Dependencies Physical
	G23: Prefer Polymorphism to If/Else or Switch/Case
	G24: Follow Standard Conventions
	G25: Replace Magic Numbers with Named Constants
	G26: Be Precise
	G27: Structure over Convention
	G28: Encapsulate Conditionals
	G29: Avoid Negative Conditionals
	G30: Functions Should Do One Thing
	G31: Hidden Temporal Couplings
	G32: Don’t Be Arbitrary
	G33: Encapsulate Boundary Conditions
	G34: Functions Should Descend Only One Level of Abstraction
	G35: Keep Configurable Data at High Levels
	G36: Avoid Transitive Navigation

	Java
	J1: Avoid Long Import Lists by Using Wildcards
	J2: Don’t Inherit Constants
	J3: Constants versus Enums

	Names
	N1: Choose Descriptive Names
	N2: Choose Names at the Appropriate Level of Abstraction
	N3: Use Standard Nomenclature Where Possible
	N4: Unambiguous Names
	N5: Use Long Names for Long Scopes
	N6: Avoid Encodings
	N7: Names Should Describe Side-Effects

	Tests
	T1: Insufficient Tests
	T2: Use a Coverage Tool!
	T3: Don’t Skip Trivial Tests
	T4: An Ignored Test Is a Question about an Ambiguity
	T5: Test Boundary Conditions
	T6: Exhaustively Test Near Bugs
	T7: Patterns of Failure Are Revealing
	T8: Test Coverage Patterns Can Be Revealing
	T9: Tests Should Be Fast

	Conclusion
	Bibliography

	A: Concurrency II
	Client/Server Example
	The Server
	Adding Threading
	Server Observations
	Conclusion

	Possible Paths of Execution
	Number of Paths
	Digging Deeper
	Conclusion

	Knowing Your Library
	Executor Framework
	Nonblocking Solutions
	Nonthread-Safe Classes

	Dependencies Between Methods Can Break Concurrent Code
	Tolerate the Failure
	Client-Based Locking
	Server-Based Locking

	Increasing Throughput
	Single-Thread Calculation of Throughput
	Multithread Calculation of Throughput

	Deadlock
	Mutual Exclusion
	Lock & Wait
	No Preemption
	Circular Wait
	Breaking Mutual Exclusion
	Breaking Lock & Wait
	Breaking Preemption
	Breaking Circular Wait

	Testing Multithreaded Code
	Tool Support for Testing Thread-Based Code
	Conclusion
	Tutorial: Full Code Examples
	Client/Server Nonthreaded
	Client/Server Using Threads


	B: org.jfree.date.SerialDate
	C: Cross References of Heuristics
	Epilogue
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


	THE CLEAN CODER
	Pre-Requisite Introduction
	1 Professionalism
	Be Careful What You Ask For
	Taking Responsibility
	First, Do No Harm
	Work Ethic
	Bibliography

	2 Saying No
	Adversarial Roles
	High Stakes
	Being a “Team Player”
	The Cost of Saying Yes
	Code Impossible

	3 Saying Yes
	A Language of Commitment
	Learning How to Say “Yes”
	Conclusion

	4 Coding
	Preparedness
	The Flow Zone
	Writer’s Block
	Debugging
	Pacing Yourself
	Being Late
	Help
	Bibliography

	5 Test Driven Development
	The Jury Is In
	The Three Laws of TDD
	What TDD Is Not
	Bibliography

	6 Practicing
	Some Background on Practicing
	The Coding Dojo
	Broadening Your Experience
	Conclusion
	Bibliography

	7 Acceptance Testing
	Communicating Requirements
	Acceptance Tests
	Conclusion

	8 Testing Strategies
	QA Should Find Nothing
	The Test Automation Pyramid
	Conclusion
	Bibliography

	9 Time Management
	Meetings
	Focus-Manna
	Time Boxing and Tomatoes
	Avoidance
	Blind Alleys
	Marshes, Bogs, Swamps, and Other Messes
	Conclusion

	10 Estimation
	What Is an Estimate?
	PERT
	Estimating Tasks
	The Law of Large Numbers
	Conclusion
	Bibliography

	11 Pressure
	Avoiding Pressure
	Handling Pressure
	Conclusion

	12 Collaboration
	Programmers versus People
	Cerebellums
	Conclusion

	13 Teams and Projects
	Does It Blend?
	Conclusion
	Bibliography

	14 Mentoring, Apprenticeship, and Craftsmanship
	Degrees of Failure
	Mentoring
	Apprenticeship
	Craftsmanship
	Conclusion

	A: Tooling
	Tools
	Source Code Control
	IDE/Editor
	Issue Tracking
	Continuous Build
	Unit Testing Tools
	Component Testing Tools
	Integration Testing Tools
	UML/MDA
	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y



