

Programming in C

Third Edition

00 0672326663 fm 6/10/04 2:04 PM Page i

Developer’s Library

Programming in Objective-C
Stephen G. Kochan
0-672-32586-1

Unix Shell Programming,Third Edition
Stephen G. Kochan
0-672-32490-3

Microsoft Visual C# .NET 2003
Developer’s Cookbook

Mark Schmidt, Simon Robinson
0-672-32580-2

ASP.NET Developer’s Cookbook
Steven Smith, Rob Howard
0-672-32524-1

PHP and MySQL Web Development,
2nd Edition

Luke T.Welling, Laura Thomson
0-672-32525-X

Advanced PHP Programming
George Schlossnagle
0-672-32561-6

Perl Developer’s Dictionary
Clinton Pierce
0-672-32067-3

MySQL, Second Edition
Paul Dubois
0-7357-1212-3

Apache Administrator’s Handbook
Rich Bowen, Daniel Ridrueio,Allan
Liska
0-672-32274-9

HTTP Developer’s Handbook
Chris Shiflett
0-672-32454-7

mod_perl Developer’s Cookbook
Geoffrey Young, Paul Lindner, Randy
Kobes
0-672-32240-4

PostgreSQL Developer’s Handbook
Ewald Geschwinde, Hans-Juergen
Schoenig
0-672-32260-9

00 0672326663 fm 6/10/04 2:04 PM Page ii

Programming in C

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240

DEVELOPER’S
LIBRARY

Stephen G. Kochan

Third Edition

00 0672326663 fm 6/10/04 2:04 PM Page iii

Programming in C,Third Edition
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32666-3

Library of Congress Catalog Card Number: 2004093272

Printed in the United States of America

First Printing: July 2004

07 06 05 04 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied.The infor-
mation provided is on an “as is” basis.The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

Associate Publisher
Michael Stephens

Development Editor
Mark Renfrow

Managing Editor
Charlotte Clapp

Project Editor
Dan Knott

Copy Editor
Karen Annett

Indexer
Chris Barrick

Proofreader
Eileen Dennie

Technical Editor
Bradley L. Jones

Publishing Coordinator
Cindy Teeters

Interior Designer
Gary Adair

Cover Designer
Alan Clements

00 0672326663 fm 6/10/04 2:04 PM Page iv

❖

To my mother and father

❖

00 0672326663 fm 6/10/04 2:04 PM Page v

Contents At a Glance
Preface xvii

1 Introduction 1

2 Some Fundamentals 5

3 Compiling and Running Your First Program 11

4 Variables, Data Types, and Arithmetic
Expressions 21

5 Program Looping 43

6 Making Decisions 65

7 Working with Arrays 95

8 Working with Functions 119

9 Working with Structures 165

10 Character Strings 195

11 Pointers 235

12 Operations on Bits 279

13 The Preprocessor 299

14 More on Data Types 321

15 Working with Larger Programs 333

16 Input and Output Operations in C 347

17 Miscellaneous and Advanced Features 373

18 Debugging Programs 389

19 Object-Oriented Programming 411

A C Language Summary 425

B The Standard C Library 467

C Compiling Programs with gcc 493

D Common Programming Mistakes 497

E Resources 501

Index 505

00 0672326663 fm 6/10/04 2:04 PM Page vi

Table of Contents

1 Introduction 1

2 Some Fundamentals 5
Programming 5
Higher-Level Languages 6
Operating Systems 6
Compiling Programs 7
Integrated Development Environments 10
Language Interpreters 10

3 Compiling and Running Your First
Program 11
Compiling Your Program 11
Running Your Program 12
Understanding Your First Program 13
Displaying the Values of Variables 15
Comments 17
Exercises 19

4 Variables, Data Types, and Arithmetic
Expressions 21
Working with Variables 21
Understanding Data Types and Constants 23

The Basic Integer Type int 23
The Floating Number Type float 24
The Extended Precision Type double 25
The Single Character Type char 25
The Boolean Data Type _Bool 26
Type Specifiers: long, long long, short,
unsigned, and signed 28

Working with Arithmetic Expressions 30
Integer Arithmetic and the Unary Minus
Operator 33
The Modulus Operator 35
Integer and Floating-Point Conversions 36

00 0672326663 fm 6/10/04 2:04 PM Page vii

viii Contents

Combining Operations with Assignment:The
Assignment Operators 38
Types _Complex and _Imaginary 39
Exercises 40

5 Program Looping 43
The for Statement 44

Relational Operators 46
Aligning Output 50
Program Input 51
Nested for Loops 53
for Loop Variants 54

The while Statement 56
The do Statement 60

The break Statement 62
The continue Statement 62

Exercises 63

6 Making Decisions 65
The if Statement 65

The if-else Construct 69
Compound Relational Tests 72
Nested if Statements 75
The else if Construct 76

The switch Statement 84
Boolean Variables 87
The Conditional Operator 91
Exercises 93

7 Working with Arrays 95
Defining an Array 96

Using Array Elements as Counters 100
Generating Fibonacci Numbers 103
Using an Array to Generate Prime Numbers
104

Initializing Arrays 106

00 0672326663 fm 6/10/04 2:04 PM Page viii

ixContents

Character Arrays 108
Base Conversion Using Arrays 109
The const Qualifier 111

Multidimensional Arrays 113
Variable-Length Arrays 115
Exercises 117

8 Working with Functions 119
Defining a Function 119
Arguments and Local Variables 122

Function Prototype Declaration 124
Automatic Local Variables 124

Returning Function Results 126
Functions Calling Functions Calling… 131

Declaring Return Types and Argument Types
134
Checking Function Arguments 135

Top-Down Programming 137
Functions and Arrays 137

Assignment Operators 142
Sorting Arrays 143
Multidimensional Arrays 146

Global Variables 152
Automatic and Static Variables 156
Recursive Functions 159
Exercises 162

9 Working with Structures 165
A Structure for Storing the Date 166

Using Structures in Expressions 168
Functions and Structures 171

A Structure for Storing the Time 177
Initializing Structures 180

Compound Literals 181
Arrays of Structures 182
Structures Containing Structures 185

00 0672326663 fm 6/10/04 2:04 PM Page ix

x Contents

Structures Containing Arrays 187
Structure Variants 190
Exercises 191

10 Character Strings 195
Arrays of Characters 196
Variable-Length Character Strings 198

Initializing and Displaying Character
Strings 201
Testing Two Character Strings for Equality 204
Inputting Character Strings 206
Single-Character Input 208
The Null String 213

Escape Characters 216
More on Constant Strings 218
Character Strings, Structures, and Arrays 219

A Better Search Method 222
Character Operations 227
Exercises 230

11 Pointers 235
Defining a Pointer Variable 235
Using Pointers in Expressions 239
Working with Pointers and Structures 240

Structures Containing Pointers 243
Linked Lists 244

The Keyword const and Pointers 253
Pointers and Functions 254
Pointers and Arrays 259

A Slight Digression About Program
Optimization 263
Is It an Array or Is It a Pointer? 264
Pointers to Character Strings 266
Constant Character Strings and Pointers 267
The Increment and Decrement Operators
Revisited 268

Operations on Pointers 272

00 0672326663 fm 6/10/04 2:04 PM Page x

xiContents

Pointers to Functions 273
Pointers and Memory Addresses 274
Exercises 276

12 Operations on Bits 279
Bit Operators 280

The Bitwise AND Operator 281
The Bitwise Inclusive-OR Operator 283
The Bitwise Exclusive-OR Operator 284
The Ones Complement Operator 285
The Left Shift Operator 287
The Right Shift Operator 287
A Shift Function 288
Rotating Bits 290

Bit Fields 292
Exercises 297

13 The Preprocessor 299
The #define Statement 299

Program Extendability 303
Program Portability 305
More Advanced Types of Definitions 306
The # Operator 312
The ## Operator 313

The #include Statement 313
System Include Files 316

Conditional Compilation 316
The #ifdef, #endif, #else, and #ifndef
Statements 316
The #if and #elif Preprocessor
Statements 318
The #undef Statement 319

Exercises 320

14 More on Data Types 321
Enumerated Data Types 321
The typedef Statement 325

00 0672326663 fm 6/10/04 2:04 PM Page xi

xii Contents

Data Type Conversions 327
Sign Extension 329
Argument Conversion 329

Exercises 330

15 Working with Larger Programs 333
Dividing Your Program into Multiple Files 333

Compiling Multiple Source Files from the
Command Line 334

Communication Between Modules 336
External Variables 336
StaticVersus ExternVariables and
Functions 339
Using Header Files Effectively 341

Other Utilities for Working with Larger
Programs 342

The make Utility 343
The cvs Utility 344
Unix Utilities: ar, grep, sed, and so on 345

16 Input and Output Operations in C 347
Character I/O: getchar and putchar 348
Formatted I/O: printf and scanf 348

The printf Function 348
The scanf Function 355

Input and Output Operations with Files 359
Redirecting I/O to a File 359
End of File 361

Special Functions for Working with Files 363
The fopen Function 363
The getc and putc Functions 365
The fclose Function 365
The feof Function 367
The fprintf and fscanf Functions 368
The fgets and fputs Functions 368
stdin, stdout, and stderr 369
The exit Function 370
Renaming and Removing Files 371

Exercises 371

00 0672326663 fm 6/10/04 2:04 PM Page xii

xiiiContents

17 Miscellaneous and Advanced Features 373
Miscellaneous Language Statements 373

The goto Statement 373
The null Statement 374

Working with Unions 375
The Comma Operator 378
Type Qualifiers 378

The register Qualifier 378
The volatile Qualifier 379
The restrict Qualifier 379

Command-Line Arguments 380
Dynamic Memory Allocation 383

The calloc and malloc Functions 384
The sizeof Operator 385
The free Function 387

18 Debugging Programs 389
Debugging with the Preprocessor 389
Debugging Programs with gdb 395

Working with Variables 398
Source File Display 399
Controlling Program Execution 400
Getting a Stack Trace 405
Calling Functions and Setting Arrays and
Structures 405
Getting Help with gdb Commands 406
Odds and Ends 408

19 Object-Oriented Programming 411
What Is an Object Anyway? 411
Instances and Methods 412
Writing a C Program to Work with Fractions 413
Defining an Objective-C Class to Work with
Fractions 414
Defining a C++ Class to Work with Fractions 419
Defining a C# Class to Work with Fractions 422

00 0672326663 fm 6/10/04 2:04 PM Page xiii

xiv Contents

A C Language Summary 425
1.0 Digraphs and Identifiers 425

1.1 Digraph Characters 425
1.2 Identifiers 425

2.0 Comments 426
3.0 Constants 427

3.1 Integer Constants 427
3.2 Floating-Point Constants 427
3.3 Character Constants 428
3.4 Character String Constants 429
3.5 Enumeration Constants 430

4.0 Data Types and Declarations 430
4.1 Declarations 430
4.2 Basic Data Types 430
4.3 Derived Data Types 432
4.4 Enumerated Data Types 438
4.5 The typedef Statement 438
4.6 Type Modifiers const, volatile, and
restrict 439

5.0 Expressions 439
5.1 Summary of C Operators 440
5.2 Constant Expressions 442
5.3 Arithmetic Operators 443
5.4 Logical Operators 444
5.5 Relational Operators 444
5.6 Bitwise Operators 445
5.7 Increment and Decrement Operators 445
5.8 Assignment Operators 446
5.9 Conditional Operators 446
5.10 Type Cast Operator 446
5.11 sizeof Operator 447
5.12 Comma Operator 447
5.13 Basic Operations with Arrays 447
5.14 Basic Operations with Structures 448
5.15 Basic Operations with Pointers 448
5.16 Compound Literals 450
5.17 Conversion of Basic Data Types 451

00 0672326663 fm 6/10/04 2:04 PM Page xiv

xvContents

6.0 Storage Classes and Scope 452
6.1 Functions 452
6.2 Variables 452

7.0 Functions 454
7.1 Function Definition 454
7.2 Function Call 455
7.3 Function Pointers 456

8.0 Statements 456
8.1 Compound Statements 456
8.2 The break Statement 456
8.3 The continue Statement 457
8.4 The do Statement 457
8.5 The for Statement 457
8.6 The goto Statement 458
8.7 The if Statement 458
8.8 The null Statement 458
8.9 The return Statement 459
8.10 The switch Statement 459
8.11 The while Statement 460

9.0 The Preprocessor 460
9.1 Trigraph Sequences 460
9.2 Preprocessor Directives 461
9.3 Predefined Identifiers 466

B The Standard C Library 467
Standard Header Files 467

<stddef.h> 467
<limits.h> 468
<stdbool.h> 469
<float.h> 469
<stdint.h> 469

String Functions 470
Memory Functions 472
Character Functions 473
I/O Functions 473
In-Memory Format Conversion Functions 478
String-to-Number Conversion 479

00 0672326663 fm 6/10/04 2:04 PM Page xv

xvi Contents

Dynamic Memory Allocation Functions 481
Math Functions 482

Complex Arithmetic 488
General Utility Functions 490

C Compiling Programs with gcc 493
General Command Format 493
Command-Line Options 494

D Common Programming Mistakes 497

E Resources 501
Answers to Exercises, Errata, etc. 501
The C Programming Language 501

Books 501
Web Sites 502
Newsgroups 502

C Compilers and Integrated Development
Environments 502

gcc 502
MinGW 502
CygWin 502
Visual Studio 503
CodeWarrior 503
Kylix 503

Miscellaneous 503
Object-Oriented Programming 503
The C++ Language 503
The C# Language 503
The Objective-C Language 503
Development Tools 504

Index 505

00 0672326663 fm 6/10/04 2:04 PM Page xvi

Preface
It’s hard to believe that 20 years have passed since I first wrote Programming in C. At that
time the Kernighan & Ritchie book The C Programming Language was the only other
book on the market. How times have changed!

When talk about an ANSI C standard emerged in the early 1980s, this book was split
into two titles:The original was still called Programming in C, and the title that covered
ANSI C was called Programming in ANSI C.This was done because it took several years
for the compiler vendors to release their ANSI C compilers and for them to become
ubiquitous. I felt it was too confusing to try to cover both ANSI and non-ANSI C in
the same tutorial text, thus the reason for the split.

The ANSI C standard has changed several times since the first standard was published
in 1989.The latest version, called C99, is the major reason for this edition.This edition
addresses the changes made to the language as a result of that standard.

In addition to covering C99 features, this book also includes two new chapters. The
first discusses debugging C programs.The second offers a brief overview of the pervasive
field of object-oriented programming, or OOP.This chapter was added because several
popular OOP languages are based on C: C++, C#, Java, and Objective-C.

For those who have stayed with this text through the years, I am sincerely grateful.
The feedback I have received has been enormously gratifying. It remains my main moti-
vation for continuing to write today.

For newcomers, I welcome your input and hope that this book satisfies your expecta-
tions.
Stephen Kochan
June 2004
steve@kochan-wood.com

00 0672326663 fm 6/10/04 2:04 PM Page xvii

About the Author
Stephen Kochan has been developing software with the C programming language for
over 20 years. He is the author and coauthor of several bestselling titles on the C
language, including Programming in C, Programming in ANSI C, and Topics in C
Programming, and several Unix titles, including Exploring the Unix System, Unix Shell
Programming, and Unix System Security. Mr. Kochan’s most recent title, Programming in
Objective-C, is a tutorial on an object-oriented programming language that is based on C.

00 0672326663 fm 6/10/04 2:04 PM Page xviii

Acknowledgements
I wish to thank the following people for their help in the preparation of various versions
of this text: Douglas McCormick, Jim Scharf, Henry Tabickman, Dick Fritz, Steve Levy,
Tony Ianinno, and Ken Brown. I also want to thank Henry Mullish of New York
University for teaching me so much about writing and for getting me started in the
publishing business.

From Sams Publishing, I’d like to thank my development editor Mark Renfrow and
my project editor Dan Knott.Thanks also to my copy editor, Karen Annett, and my
technical editor, Bradley Jones. Finally, I’d like to thank all the other people from Sams
who were involved on this project, even if I did not work with them directly.

00 0672326663 fm 6/10/04 2:04 PM Page xix

We Want to Hear from You
As the reader of this book, you are our most important critic and commentator.We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an associate publisher for Sams Publishing, I welcome your comments.You can
email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book.We
do have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.
Email: feedback@samspublishing.com
Mail: Michael Stephens

Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams Publishing title, visit our Web
site at www.samspublishing.com.Type the ISBN (excluding hyphens) or the title of a
book in the Search field to find the page you’re looking for.

00 0672326663 fm 6/10/04 2:04 PM Page xx

1
Introduction

THE C PROGRAMMING LANGUAGE WAS pioneered by Dennis Ritchie at AT&T Bell
Laboratories in the early 1970s. It was not until the late 1970s, however, that this pro-
gramming language began to gain widespread popularity and support.This was because
until that time C compilers were not readily available for commercial use outside of Bell
Laboratories. Initially, C’s growth in popularity was also spurred on in part by the equal,
if not faster, growth in popularity of the Unix operating system.This operating system,
which was also developed at Bell Laboratories, had C as its “standard” programming lan-
guage. In fact, well over 90% of the operating system itself was written in the C lan-
guage!

The enormous success of the IBM PC and its look-alikes soon made MS-DOS the
most popular environment for the C language.As C grew in popularity across different
operating systems, more and more vendors hopped on the bandwagon and started mar-
keting their own C compilers. For the most part, their version of the C language was
based on an appendix found in the first C programming text—The C Programming
Language—by Brian Kernighan and Dennis Ritchie. Unfortunately, this appendix did not
provide a complete and unambiguous definition of C, meaning that vendors were left to
interpret some aspects of the language on their own.

In the early 1980s, a need was seen to standardize the definition of the C language.
The American National Standards Institute (ANSI) is the organization that handles such
things, so in 1983 an ANSI C committee (called X3J11) was formed to standardize C. In
1989, the committee’s work was ratified, and in 1990, the first official ANSI standard def-
inition of C was published.

Because C is used around the world, the International Standard Organization (ISO)
soon got involved.They adopted the standard, where it was called ISO/IEC 9899:1990.
Since that time, additional changes have been made to the C language.The most recent
standard was adopted in 1999. It is known as ANSI C99, or ISO/IEC 9899:1999. It is
this version of the language upon which this book is based.

C is a “higher-level language,” yet it provides capabilities that enable the user to “get
in close” with the hardware and deal with the computer on a much lower level.This is

01 0672326663 CH01 6/10/04 2:04 PM Page 1

2 Chapter 1 Introduction

because, although C is a general-purpose structured programming language, it was origi-
nally designed with systems programming applications in mind and, as such, provides the
user with an enormous amount of power and flexibility.

This book proposes to teach you how to program in C. It assumes no previous expo-
sure to the language and was designed to appeal to novice and experienced programmers
alike. If you have previous programming experience, you will find that C has a unique
way of doing things that probably differs from other languages you have used.

Every feature of the C language is treated in this text.As each new feature is present-
ed, a small complete program example is usually provided to illustrate the feature.This
reflects the overriding philosophy that has been used in writing this book: to teach by
example. Just as a picture is worth a thousand words, so is a properly chosen program
example. If you have access to a computer facility that supports the C programming lan-
guage, you are strongly encouraged to download and run each program presented in this
book and to compare the results obtained on your system to those shown in the text. By
doing so, not only will you learn the language and its syntax, but you will also become
familiar with the process of typing in, compiling, and running C programs.

You will find that program readability has been stressed throughout the book.This is
because I strongly believe that programs should be written so that they can be easily
read—either by the author or by somebody else.Through experience and common
sense, you will find that such programs are almost always easier to write, debug, and
modify. Furthermore, developing programs that are readable is a natural result of a true
adherence to a structured programming discipline.

Because this book was written as a tutorial, the material covered in each chapter is
based on previously presented material.Therefore, maximum benefit will be derived
from this book by reading each chapter in succession, and you are highly discouraged
from “skipping around.”You should also work through the exercises that are presented at
the end of each chapter before proceeding on to the next chapter.

Chapter 2,“Some Fundamentals,” which covers some fundamental terminology about
higher-level programming languages and the process of compiling programs, has been
included to ensure that you understand the language used throughout the remainder of
the text. From Chapter 3,“Compiling and Running Your First Program,” on, you will be
slowly introduced to the C language. By the time Chapter 16,“Input and Output
Operations in C,” rolls around, all the essential features of the language will have been
covered. Chapter 16 goes into more depth about I/O operations in C. Chapter 17,
“Miscellaneous and Advanced Features,” includes those features of the language that are
of a more advanced or esoteric nature.

Chapter 18,“Debugging Programs,” shows how you can use the C preprocessor to
help debug your programs. It also introduces you to interactive debugging.The popular
debugger gdb was chosen to illustrate this debugging technique.

Over the last decade, the programming world has been abuzz with the notion of
object-oriented programming, or OOP for short. C is not an OOP language; however,
several other programming languages that are based on C are OOP languages. Chapter
19,“Object-Oriented Programming,” gives a brief introduction to OOP and some of its

01 0672326663 CH01 6/10/04 2:04 PM Page 2

3Introduction

terminology. It also gives a brief overview of three OOP languages that are based on C,
namely C++, C#, and Objective-C.

Appendix A,“C Language Summary,” provides a complete summary of the language
and is provided for reference purposes.

Appendix B,“The Standard C Library,” provides a summary of many of the standard
library routines that you will find on all systems that support C.

Appendix C,“Compiling Programs with gcc,” summarizes many of the commonly
used options when compiling programs with GNU’s C compiler gcc.

In Appendix D,“Common Programming Mistakes,” you’ll find a list of common pro-
gramming mistakes.

Finally,Appendix E,“Resources,” provides a list of resources you can turn to for more
information about the C language and to further your studies.

Answers to the quizzes at the end of chapters can be found at www.kochan-wood.com.
This book makes no assumptions about a particular computer system or operating

system on which the C language is implemented.The text makes brief mention of how
to compile and execute programs using the popular GNU C compiler gcc.

I want to thank the following people for their help in the preparation of various ver-
sions of this text: Douglas McCormick, Jim Scharf, Henry Tabickman, Dick Fritz, Steve
Levy,Tony Ianinno, and Ken Brown. I also want to thank Henry Mullish of New York
University for teaching me so much about writing and for getting me started in the
publishing business.

An earlier edition of this book was also dedicated to the memory of Maureen
Connelly, a former production editor at Hayden Book Company, the publishers of the
first edition of this book.

01 0672326663 CH01 6/10/04 2:04 PM Page 3

01 0672326663 CH01 6/10/04 2:04 PM Page 4

2
Some Fundamentals

THIS CHAPTER DESCRIBES SOME FUNDAMENTAL TERMS that you must understand before
you can learn how to program in C.A general overview of the nature of programming
in a higher-level language is provided, as is a discussion of the process of compiling a
program developed in such a language.

Programming
Computers are really very dumb machines indeed because they do only what they are
told to do. Most computer systems perform their operations on a very primitive level.
For example, most computers know how to add one to a number or how to test
whether a number is equal to zero.The sophistication of these basic operations usually
does not go much further than that.The basic operations of a computer system form
what is known as the computer’s instruction set.

To solve a problem using a computer, you must express the solution to the problem
in terms of the instructions of the particular computer.A computer program is just a col-
lection of the instructions necessary to solve a specific problem.The approach or method
that is used to solve the problem is known as an algorithm. For example, if you want to
develop a program that tests if a number is odd or even, the set of statements that solves
the problem becomes the program.The method that is used to test if the number is even
or odd is the algorithm. Normally, to develop a program to solve a particular problem,
you first express the solution to the problem in terms of an algorithm and then develop
a program that implements that algorithm. So, the algorithm for solving the even/odd
problem might be expressed as follows: First, divide the number by two. If the remainder
of the division is zero, the number is even; otherwise, the number is odd.With the algo-
rithm in hand, you can then proceed to write the instructions necessary to implement
the algorithm on a particular computer system.These instructions would be expressed in
the statements of a particular computer language, such as Visual Basic, Java, C++, or C.

02 0672326663 CH02 6/10/04 2:02 PM Page 5

6 Chapter 2 Some Fundamentals

Higher-Level Languages
When computers were first developed, the only way they could be programmed was in
terms of binary numbers that corresponded directly to specific machine instructions and
locations in the computer’s memory.The next technological software advance occurred
in the development of assembly languages, which enabled the programmer to work with
the machine on a slightly higher level. Instead of having to specify sequences of binary
numbers to carry out particular tasks, the assembly language permits the programmer to
use symbolic names to perform various operations and to refer to specific memory loca-
tions.A special program, known as an assembler, translates the assembly language program
from its symbolic format into the specific machine instructions of the computer system.

Because a one-to-one correspondence still exists between each assembly language
statement and a specific machine instruction, assembly languages are regarded as low-
level languages.The programmer must still learn the instruction set of the particular
computer system to write a program in assembly language, and the resulting program is
not portable; that is, the program will not run on a different processor type without being
rewritten.This is because different processor types have different instruction sets, and
because assembly language programs are written in terms of these instruction sets, they
are machine dependent.

Then, along came the so-called higher-level languages, of which the FORTRAN
(FORmula TRANslation) language was one of the first. Programmers developing pro-
grams in FORTRAN no longer had to concern themselves with the architecture of the
particular computer, and operations performed in FORTRAN were of a much more
sophisticated or higher level, far removed from the instruction set of the particular
machine. One FORTRAN instruction or statement resulted in many different machine
instructions being executed, unlike the one-to-one correspondence found between
assembly language statements and machine instructions.

Standardization of the syntax of a higher-level language meant that a program could
be written in the language to be machine independent.That is, a program could run on
any machine that supported the language with few or no changes.

To support a higher-level language, a special computer program must be developed
that translates the statements of the program developed in the higher-level language into
a form that the computer can understand—in other words, into the particular instruc-
tions of the computer. Such a program is known as a compiler.

Operating Systems
Before continuing with compilers, it is worthwhile to understand the role that is played
by a computer program known as an operating system.

An operating system is a program that controls the entire operation of a computer
system.All input and output (that is, I/O) operations that are performed on a computer
system are channeled through the operating system.The operating system must also
manage the computer system’s resources and must handle the execution of programs.

One of the most popular operating systems today is the Unix operating system,
which was developed at Bell Laboratories. Unix is a rather unique operating system in

02 0672326663 CH02 6/10/04 2:02 PM Page 6

7Compiling Programs

that it can be found on many different types of computer systems, and in different
“flavors,” such as Linux or Mac OS X. Historically, operating systems were typically asso-
ciated with only one type of computer system. But because Unix was written primarily
in the C language and made very few assumptions about the architecture of the comput-
er, it has been successfully ported to many different computer systems with a relatively
small amount of effort.

Microsoft Windows XP is another example of a popular operating system.That sys-
tem is found running primarily on Pentium (or Pentium-compatible) processors.

Compiling Programs
A compiler is a software program that is, in principle, no different than the ones you will
see in this book, although it is certainly much more complex.A compiler analyzes a pro-
gram developed in a particular computer language and then translates it into a form that
is suitable for execution on your particular computer system.

Figure 2.1 shows the steps that are involved in entering, compiling, and executing a
computer program developed in the C programming language and the typical Unix
commands that would be entered from the command line.

The program that is to be compiled is first typed into a file on the computer system.
Computer installations have various conventions that are used for naming files, but in
general, the choice of the name is up to you. C programs can typically be given any
name provided the last two characters are “.c” (this is not so much a requirement as it is
a convention). So, the name prog1.c might be a valid filename for a C program on your
system.

A text editor is usually used to enter the C program into a file. For example, vi is a
popular text editor used on Unix systems. The program that is entered into the file is
known as the source program because it represents the original form of the program
expressed in the C language.After the source program has been entered into a file, you
can then proceed to have it compiled.

The compilation process is initiated by typing a special command on the system.
When this command is entered, the name of the file that contains the source program
must also be specified. For example, under Unix, the command to initiate program com-
pilation is called cc. If you are using the popular GNU C compiler, the command you
use is gcc.Typing the line

gcc prog1.c

has the effect of initiating the compilation process with the source program contained in
prog1.c.

In the first step of the compilation process, the compiler examines each program
statement contained in the source program and checks it to ensure that it conforms to
the syntax and semantics of the language1. If any mistakes are discovered by the compiler

1.Technically speaking, the C compiler normally makes a prepass of the program looking for spe-
cial statements.This preprocessing phase is described in detail in Chapter 13,“The Preprocessor.”

02 0672326663 CH02 6/10/04 2:02 PM Page 7

8 Chapter 2 Some Fundamentals

during this phase, they are reported to the user and the compilation process ends right
there.The errors then have to be corrected in the source program (with the use of an
editor), and the compilation process must be restarted.Typical errors reported during this
phase of compilation might be due to an expression that has unbalanced parentheses
(syntactic error), or due to the use of a variable that is not “defined” (semantic error).

Start

Edit

Compile
(and assemble)

Errors?

Link

Execute

Results OK?

Done

Source
program
(file.c)

Object
program
(file.o)

Executable
object
(a.out)

vi file.c

cc file.c

a.out

Libraries
and

other
object

programs

UNIX Command

yes

no

no

yes

Figure 2.1 Typical steps for entering, compiling, and executing C programs
from the command line.

02 0672326663 CH02 6/10/04 2:02 PM Page 8

9Compiling Programs

When all the syntactic and semantic errors have been removed from the program, the
compiler then proceeds to take each statement of the program and translate it into a
“lower” form. On most systems, this means that each statement is translated by the com-
piler into the equivalent statement or statements in assembly language needed to per-
form the identical task.

After the program has been translated into an equivalent assembly language program,
the next step in the compilation process is to translate the assembly language statements
into actual machine instructions.This step might or might not involve the execution of a
separate program known as an assembler. On most systems, the assembler is executed
automatically as part of the compilation process.

The assembler takes each assembly language statement and converts it into a binary
format known as object code, which is then written into another file on the system.This
file typically has the same name as the source file under Unix, with the last letter an “o”
(for object) instead of a “c”. Under Windows, the suffix letters "obj" typically replace the
“c” in the filename.

After the program has been translated into object code, it is ready to be linked. This
process is once again performed automatically whenever the cc or gcc command is
issued under Unix.The purpose of the linking phase is to get the program into a final
form for execution on the computer. If the program uses other programs that were pre-
viously processed by the compiler, then during this phase the programs are linked
together. Programs that are used from the system’s program library are also searched and
linked together with the object program during this phase.

The process of compiling and linking a program is often called building.
The final linked file, which is in an executable object code format, is stored in another

file on the system, ready to be run or executed. Under Unix, this file is called a.out by
default. Under Windows, the executable file usually has the same name as the source file,
with the c extension replaced by an exe extension.

To subsequently execute the program, all you do is type in the name of the exe-
cutable object file. So, the command

a.out

has the effect of loading the program called a.out into the computer’s memory and initi-
ating its execution.

When the program is executed, each of the statements of the program is sequentially
executed in turn. If the program requests any data from the user, known as input, the
program temporarily suspends its execution so that the input can be entered. Or, the
program might simply wait for an event, such as a mouse being clicked, to occur. Results
that are displayed by the program, known as output, appear in a window, sometimes called
the console. Or, the output might be directly written to a file on the system.

If all goes well (and it probably won’t the first time the program is executed), the pro-
gram performs its intended functions. If the program does not produce the desired
results, it is necessary to go back and reanalyze the program’s logic.This is known as the
debugging phase, during which an attempt is made to remove all the known problems or
bugs from the program.To do this, it will most likely be necessary to make changes to

02 0672326663 CH02 6/10/04 2:02 PM Page 9

10 Chapter 2 Some Fundamentals

the original source program. In that case, the entire process of compiling, linking, and
executing the program must be repeated until the desired results are obtained.

Integrated Development Environments
The individual steps involved in developing C programs were outlined earlier, showing
typical commands that would be entered for each step.This process of editing, compil-
ing, running, and debugging programs is often managed by a single integrated applica-
tion known as an Integrated Development Environment, or IDE for short.An IDE is a
windows-based program that allows you to easily manage large software programs, edit
files in windows, and compile, link, run, and debug your programs.

On Mac OS X, CodeWarrior and Xcode are two IDEs that are used by many pro-
grammers. Under Windows, Microsoft Visual Studio is a good example of a popular IDE.
Kylix is a popular IDE for developing applications under Linux.All the IDE applications
greatly simplify the entire process involved in program development so it is worth your
while to learn how to use one. Most IDEs also support program development in several
different programming languages in addition to C, such as C# and C++.

For more information about IDEs, consult Appendix E,“Resources.”

Language Interpreters
Before leaving this discussion of the compilation process, note that there is another
method used for analyzing and executing programs developed in a higher-level language.
With this method, programs are not compiled but are interpreted.An interpreter analyzes
and executes the statements of a program at the same time.This method usually allows
programs to be more easily debugged. On the other hand, interpreted languages are typi-
cally slower than their compiled counterparts because the program statements are not
converted into their lowest-level form in advance of their execution.

BASIC and Java are two programming languages in which programs are often inter-
preted and not compiled. Other examples include the Unix system’s shell and Python.
Some vendors also offer interpreters for the C programming language.

02 0672326663 CH02 6/10/04 2:02 PM Page 10

3
Compiling and Running Your

First Program

IN THIS CHAPTER,YOU ARE INTRODUCED to the C language so that you can see what
programming in C is all about.What better way to gain an appreciation for this language
than by taking a look at an actual program written in C?

To begin with, you’ll choose a rather simple example—a program that displays the
phrase “Programming is fun.” in your window. Program 3.1 shows a C program to
accomplish this task.

Program 3.1 Writing Your First C Program

#include <stdio.h>

int main (void)

{

printf ("Programming is fun.\n");

return 0;

}

In the C programming language, lowercase and uppercase letters are distinct. In addition,
in C, it does not matter where on the line you begin typing—you can begin typing your
statement at any position on the line.This fact can be used to your advantage in devel-
oping programs that are easier to read.Tab characters are often used by programmers as a
convenient way to indent lines.

Compiling Your Program
Returning to your first C program, you first need to type it into a file.Any text editor
can be used for this purpose. Unix users often use an editor such as vi or emacs.

03 0672326663 CH03 6/10/04 2:01 PM Page 11

12 Chapter 3 Compiling and Running Your First Program

Most C compilers recognize filenames that end in the two characters “.” and “c” as C
programs. So, assume you type Program 3.1 into a file called prog1.c. Next, you need to
compile the program.

Using the GNU C compiler, this can be as simple as issuing the gcc command at the
terminal followed by the filename, like this:

$ gcc prog1.c

$

If you’re using the standard Unix C compiler, the command is cc instead of gcc. Here,
the text you typed is entered in bold.The dollar sign is your command prompt if you’re
compiling your C program from the command line.Your actual command prompt might
be some characters other than the dollar sign.

If you make any mistakes keying in your program, the compiler lists them after you
enter the gcc command, typically identifying the line numbers from your program that
contain the errors. If, instead, another command prompt appears, as is shown in the pre-
ceding example, no errors were found in your program.

When the compiler compiles and links your program, it creates an executable version
of your program. Using the GNU or standard C compiler, this program is called a.out
by default. Under Windows, it is often called a.exe instead.

Running Your Program
You can now run the executable by simply typing its name on the command line1:

$ a.out

Programming is fun.

$

You can also specify a different name for the executable file at the time the program is
compiled.This is done with the –o (that’s the letter O) option, which is followed by the
name of the executable. For example, the command line

$ gcc prog1.c –o prog1

compiles the program prog1.c, placing the executable in the file prog1, which can sub-
sequently be executed just by specifying its name:

$ prog1

Programming is fun.

$

1. If you get an error like this: a.out: No such file or directory, then it probably means
the current directory is not in your PATH.You can either add it to your PATH or type the fol-
lowing instead at the command prompt: ./a.out.

03 0672326663 CH03 6/10/04 2:01 PM Page 12

13Understanding Your First Program

Understanding Your First Program
Take a closer look at your first program.The first line of the program

#include <stdio.h>

should be included at the beginning of just about every program you write. It tells the
compiler information about the printf output routine that is used later in the program.
Chapter 13,“The Preprocessor,” discusses in detail what this line does.

The line of the program that reads

int main (void)

informs the system that the name of the program is main, and that it returns an integer
value, which is abbreviated “int.” main is a special name that indicates precisely where the
program is to begin execution.The open and close parentheses immediately following
main specify that main is the name of a function.The keyword void that is enclosed in
the parentheses specifies that the function main takes no arguments (that is, it is void of
arguments).These concepts are explained in great detail in Chapter 8,“Working with
Functions.”

Now that you have identified main to the system, you are ready to specify precisely
what this routine is to perform.This is done by enclosing all program statements of the
routine within a pair of curly braces.All program statements included between the braces
are taken as part of the main routine by the system. In Program 3.1, you have only two
such statements.The first statement specifies that a routine named printf is to be
invoked or called.The parameter or argument to be passed to the printf routine is the
string of characters

"Programming is fun.\n"

The printf routine is a function in the C library that simply prints or displays its argu-
ment (or arguments, as you will see shortly) on your screen.The last two characters in
the string, namely the backslash (\) and the letter n, are known collectively as the newline
character.A newline character tells the system to do precisely what its name implies—
that is, go to a new line.Any characters to be printed after the newline character then
appear on the next line of the display. In fact, the newline character is similar in concept
to the carriage return key on a typewriter. (Remember those?)

All program statements in C must be terminated by a semicolon (;).This is the reason
for the semicolon that appears immediately following the closing parenthesis of the
printf call.

The last statement in main that reads

return 0;

says to finish execution of main, and return to the system a status value of 0.You can use
any integer here. Zero is used by convention to indicate that the program completed
successfully—that is, without running into any errors. Different numbers can be used to
indicate different types of error conditions that occurred (such as a file not being found).
This exit status can be tested by other programs (such as the Unix shell) to see whether
the program ran successfully.

03 0672326663 CH03 6/10/04 2:01 PM Page 13

14 Chapter 3 Compiling and Running Your First Program

Now that you’ve finished analyzing your first program, you can modify it to also dis-
play the phrase “And programming in C is even more fun.”This can be done by the
simple addition of another call to the printf routine, as shown in Program 3.2.
Remember that every C program statement must be terminated by a semicolon.

Program 3.2

#include <stdio.h>

int main (void)

{

printf ("Programming is fun.\n");

printf ("And programming in C is even more fun.\n");

return 0;

}

If you type in Program 3.2 and then compile and execute it, you can expect the follow-
ing output in your program’s output window, sometimes called the “console.”

Program 3.2 Output

Programming is fun.

And programming in C is even more fun.

As you will see from the next program example, it is not necessary to make a separate
call to the printf routine for each line of output. Study the program listed in Program
3.3 and try to predict the results before examining the output. (No cheating now!)

Program 3.3 Displaying Multiple Lines of Output

#include <stdio.h>

int main (void)

{

printf ("Testing...\n..1\n...2\n....3\n");

return 0;

}

Program 3.3 Output

Testing...

..1

...2

....3

03 0672326663 CH03 6/10/04 2:01 PM Page 14

15Displaying the Values of Variables

Displaying the Values of Variables
The printf routine is the most commonly used routine in this book.This is because it
provides an easy and convenient means to display program results. Not only can simple
phrases be displayed, but the values of variables and the results of computations can also
be displayed. In fact, Program 3.4 uses the printf routine to display the results of adding
two numbers, namely 50 and 25.

Program 3.4 Displaying Variables

#include <stdio.h>

int main (void)

{

int sum;

sum = 50 + 25;

printf ("The sum of 50 and 25 is %i\n", sum);

return 0;

}

Program 3.4 Output

The sum of 50 and 25 is 75

In Program 3.4, the first C program statement declares the variable sum to be of type inte-
ger. C requires that all program variables be declared before they are used in a program.
The declaration of a variable specifies to the C compiler how a particular variable will
be used by the program.This information is needed by the compiler to generate the cor-
rect instructions to store and retrieve values into and out of the variable.A variable
declared as type int can only be used to hold integral values; that is, values without dec-
imal places. Examples of integral values are 3, 5, –20, and 0. Numbers with decimal
places, such as 3.14, 2.455, and 27.0, for example, are known as floating-point or real num-
bers.

The integer variable sum is used to store the result of the addition of the two integers
50 and 25.A blank line was intentionally left following the declaration of this variable to
visually separate the variable declarations of the routine from the program statements;
this is strictly a matter of style. Sometimes, the addition of a single blank line in a pro-
gram can help to make the program more readable.

The program statement

sum = 50 + 25;

reads as it would in most other programming languages:The number 50 is added (as
indicated by the plus sign) to the number 25, and the result is stored (as indicated by the
assignment operator, the equal sign) in the variable sum.

03 0672326663 CH03 6/10/04 2:01 PM Page 15

16 Chapter 3 Compiling and Running Your First Program

The printf routine call in Program 3.4 now has two items or arguments enclosed
within the parentheses.These arguments are separated by a comma.The first argument to
the printf routine is always the character string to be displayed. However, along with
the display of the character string, you might also frequently want to have the value of
certain program variables displayed. In this case, you want to have the value of the vari-
able sum displayed at the terminal after the characters

The sum of 50 and 25 is

are displayed.The percent character inside the first argument is a special character recog-
nized by the printf function.The character that immediately follows the percent sign
specifies what type of value is to be displayed at that point. In the preceding program, the
letter i is recognized by the printf routine as signifying that an integer value is to be
displayed.2

Whenever the printf routine finds the %i characters inside a character string, it
automatically displays the value of the next argument to the printf routine. Because
sum is the next argument to printf, its value is automatically displayed after the charac-
ters “The sum of 50 and 25 is” are displayed.

Now try to predict the output from Program 3.5.

Program 3.5 Displaying Multiple Values

#include <stdio.h>

int main (void)

{

int value1, value2, sum;

value1 = 50;

value2 = 25;

sum = value1 + value2;

printf ("The sum of %i and %i is %i\n", value1, value2, sum);

return 0;

}

Program 3.5 Output

The sum of 50 and 25 is 75

2. Note that printf also allows you to specify %d format characters to display an integer.This
book consistently uses %i throughout the remaining chapters.

03 0672326663 CH03 6/10/04 2:01 PM Page 16

17Comments

The first program statement declares three variables called value1, value2, and sum all to
be of type int.This statement could have equivalently been expressed using three sepa-
rate declaratory statements as follows:

int value1;

int value2;

int sum;

After the three variables have been declared, the program assigns the value 50 to the
variable value1 and then assigns 25 to value2.The sum of these two variables is then
computed, and the result is assigned to the variable sum.

The call to the printf routine now contains four arguments. Once again, the first
argument, commonly called the format string, describes to the system how the remaining
arguments are to be displayed.The value of value1 is to be displayed immediately fol-
lowing the display of the characters “The sum of.” Similarly, the values of value2 and
sum are to be printed at the appropriate points, as indicated by the next two occurrences
of the %i characters in the format string.

Comments
The final program in this chapter (Program 3.6) introduces the concept of the comment.
A comment statement is used in a program to document a program and to enhance its
readability.As you will see from the following example, comments serve to tell the reader
of the program—the programmer or someone else whose responsibility it is to maintain
the program—just what the programmer had in mind when he or she wrote a particular
program or a particular sequence of statements.

Program 3.6 Using Comments in a Program

/* This program adds two integer values

and displays the results */

#include <stdio.h>

int main (void)

{

// Declare variables

int value1, value2, sum;

// Assign values and calculate their sum

value1 = 50;

value2 = 25;

sum = value1 + value2;

03 0672326663 CH03 6/10/04 2:01 PM Page 17

18 Chapter 3 Compiling and Running Your First Program

// Display the result

printf ("The sum of %i and %i is %i\n", value1, value2, sum);

return 0;

}

Program 3.6 Output

The sum of 50 and 25 is 75

There are two ways to insert comments into a C program.A comment can be initiat-
ed by the two characters / and *.This marks the beginning of the comment.These types
of comments have to be terminated.To end the comment, the characters * and / are used
without any embedded spaces.All characters included between the opening /* and the
closing */ are treated as part of the comment statement and are ignored by the C com-
piler.This form of comment is often used when comments span several lines in the pro-
gram.The second way to add a comment to your program is by using two consecutive
slash characters //.Any characters that follow these slashes up to the end of the line are
ignored by the compiler.

In Program 3.6, four separate comment statements were used.This program is other-
wise identical to Program 3.5.Admittedly, this is a contrived example because only the
first comment at the head of the program is useful. (Yes, it is possible to insert so many
comments into a program that the readability of the program is actually degraded instead
of improved!)

The intelligent use of comment statements inside a program cannot be overempha-
sized. Many times, a programmer returns to a program that he coded perhaps only six
months ago, only to discover to his dismay that he could not for the life of him remem-
ber the purpose of a particular routine or of a particular group of statements.A simple
comment statement judiciously inserted at that particular point in the program might
have saved a significant amount of time otherwise wasted on rethinking the logic of the
routine or set of statements.

It is a good idea to get into the habit of inserting comment statements into the pro-
gram as the program is being written or typed in.There are good reasons for this. First, it
is far easier to document the program while the particular program logic is still fresh in
your mind than it is to go back and rethink the logic after the program has been com-
pleted. Second, by inserting comments into the program at such an early stage of the
game, you get to reap the benefits of the comments during the debug phase, when pro-
gram logic errors are being isolated and debugged.A comment can not only help you
read through the program, but it can also help point the way to the source of the logic
mistake. Finally, I have yet to discover a programmer who actually enjoyed documenting
a program. In fact, after you have finished debugging your program, you will probably

Program 3.6 Continued

03 0672326663 CH03 6/10/04 2:01 PM Page 18

19Exercises

not relish the idea of going back to the program to insert comments. Inserting
comments while developing the program makes this sometimes tedious task a bit easier
to swallow.

This concludes this introductory chapter on developing programs in C. By now, you
should have a good feel as to what is involved in writing a program in C, and you
should be able to develop a small program on your own. In the next chapter, you begin
to learn some of the finer intricacies of this wonderfully powerful and flexible program-
ming language. But first, try your hand at the following exercises to make certain you
understand the concepts presented in this chapter.

Exercises
1. Type in and run the six programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Write a program that prints the following text at the terminal.

1. In C, lowercase letters are significant.

2. main is where program execution begins.

3. Opening and closing braces enclose program statements in a routine.

4. All program statements must be terminated by a semicolon.

3. What output would you expect from the following program?
#include <stdio.h>

int main (void)

{

printf ("Testing...");

printf ("....1");

printf ("...2");

printf ("..3");

printf ("\n");

return 0;

}

4. Write a program that subtracts the value 15 from 87 and displays the result,
together with an appropriate message, at the terminal.

5. Identify the syntactic errors in the following program.Then type in and run the
corrected program to ensure you have correctly identified all the mistakes.
#include <stdio.h>

int main (Void)

(

03 0672326663 CH03 6/10/04 2:01 PM Page 19

20 Chapter 3 Compiling and Running Your First Program

INT sum;

/* COMPUTE RESULT

sum = 25 + 37 - 19

/* DISPLAY RESULTS //

printf ("The answer is %i\n" sum);

return 0;

}

6. What output might you expect from the following program?
#include <stdio.h>

int main (void)

{

int answer, result;

answer = 100;

result = answer - 10;

printf ("The result is %i\n", result + 5);

return 0;

}

03 0672326663 CH03 6/10/04 2:01 PM Page 20

4
Variables, Data Types, and

Arithmetic Expressions

IN THIS CHAPTER,YOU LEARN MORE about variable names and constants.You also take a
detailed look at the basic data types and some fundamental rules for writing arithmetic
expressions in C.

Working with Variables
Early computer programmers had the onerous task of having to write their programs in
the binary language of the machine they were programming.This meant that computer
instructions had to be hand-coded into binary numbers by the programmer before they
could be entered into the machine. Furthermore, the programmer had to explicitly
assign and reference any storage locations inside the computer’s memory by a specific
number or memory address.

Today’s programming languages allow you to concentrate more on solving the partic-
ular problem at hand than worrying about specific machine codes or memory locations.
They enable you to assign symbolic names, known as variable names, for storing program
computations and results.A variable name can be chosen by you in a meaningful way to
reflect the type of value that is to be stored in that variable.

In Chapter 3,“Compiling and Running Your First Program,” you used several vari-
ables to store integer values. For example, you used the variable sum in Program 3.4 to
store the result of the addition of the two integers 50 and 25.

The C language allows data types other than just integers to be stored in variables as
well, provided the proper declaration for the variable is made before it is used in the pro-
gram.Variables can be used to store floating-point numbers, characters, and even pointers
to locations inside the computer’s memory.

04 0672326663 CH04 6/10/04 2:04 PM Page 21

22 Chapter 4 Variables, Data Types, and Arithmetic Expressions

The rules for forming variable names are quite simple:They must begin with a letter
or underscore (_) and can be followed by any combination of letters (upper- or lower-
case), underscores, or the digits 0–9.The following is a list of valid variable names.

sum

pieceFlag

i

J5x7

Number_of_moves

_sysflag

On the other hand, the following variable names are not valid for the stated reasons:
sum$value $ is not a valid character.

piece flag Embedded spaces are not permitted.

3Spencer Variable names cannot start with a number.

int int is a reserved word.

int cannot be used as a variable name because its use has a special meaning to the C
compiler.This use is known as a reserved name or reserved word. In general, any name
that has special significance to the C compiler cannot be used as a variable name.
Appendix A,“C Language Summary,” provides a complete list of such reserved names.

You should always remember that upper- and lowercase letters are distinct in C.
Therefore, the variable names sum, Sum, and SUM each refer to a different variable.

Your variable names can be as long as you want, although only the first 63 characters
might be significant, and in some special cases (as described in Appendix A), only the
first 31 characters might be significant. It’s typically not practical to use variable names
that are too long—just because of all the extra typing you have to do. For example,
although the following line is valid

theAmountOfMoneyWeMadeThisYear = theAmountOfMoneyLeftAttheEndOfTheYear –

theAmountOfMoneyAtTheStartOfTheYear;

this line

moneyMadeThisYear = moneyAtEnd – moneyAtStart;

conveys almost as much information in much less space.
When deciding on the choice of a variable name, keep one recommendation in

mind—don’t be lazy. Pick names that reflect the intended use of the variable.The reasons
are obvious. Just as with the comment statement, meaningful variable names can dramat-
ically increase the readability of a program and pay off in the debug and documentation
phases. In fact, the documentation task is probably greatly reduced because the program
is more self-explanatory.

04 0672326663 CH04 6/10/04 2:04 PM Page 22

23Understanding Data Types and Constants

Understanding Data Types and Constants
You have already been exposed to the C basic data type int.As you will recall, a variable
declared to be of type int can be used to contain integral values only—that is, values
that do not contain decimal places.

The C programming language provides four other basic data types: float, double,
char, and _Bool.A variable declared to be of type float can be used for storing float-
ing-point numbers (values containing decimal places).The double type is the same as
type float, only with roughly twice the precision.The char data type can be used to
store a single character, such as the letter a, the digit character 6, or a semicolon (more
on this later). Finally, the _Bool data type can be used to store just the values 0 or 1.
Variables of this type are used for indicating an on/off, yes/no, or true/false situation.

In C, any number, single character, or character string is known as a constant. For
example, the number 58 represents a constant integer value.The character string
"Programming in C is fun.\n" is an example of a constant character string.
Expressions consisting entirely of constant values are called constant expressions. So, the
expression

128 + 7 - 17

is a constant expression because each of the terms of the expression is a constant value.
But if i were declared to be an integer variable, the expression

128 + 7 – i

would not represent a constant expression.

The Basic Integer Type int
In C, an integer constant consists of a sequence of one or more digits.A minus sign pre-
ceding the sequence indicates that the value is negative.The values 158, –10, and 0 are all
valid examples of integer constants. No embedded spaces are permitted between the dig-
its, and values larger than 999 cannot be expressed using commas. (So, the value 12,000
is not a valid integer constant and must be written as 12000.)

Two special formats in C enable integer constants to be expressed in a base other
than decimal (base 10). If the first digit of the integer value is a 0, the integer is taken as
expressed in octal notation—that is, in base 8. In that case, the remaining digits of the
value must be valid base-8 digits and, therefore, must be 0–7. So, to express the value 50
in base 8 in C, which is equivalent to the value 40 in decimal, the notation 050 is used.
Similarly, the octal constant 0177 represents the decimal value 127 (1 × 64 + 7 × 8 + 7).
An integer value can be displayed at the terminal in octal notation by using the format
characters %o in the format string of a printf statement. In such a case, the value is dis-
played in octal without a leading zero.The format characters %#o do cause a leading zero
to be displayed before an octal value.

If an integer constant is preceded by a zero and the letter x (either lowercase or
uppercase), the value is taken as being expressed in hexadecimal (base 16) notation.

04 0672326663 CH04 6/10/04 2:04 PM Page 23

24 Chapter 4 Variables, Data Types, and Arithmetic Expressions

Immediately following the letter x are the digits of the hexadecimal value, which can be
composed of the digits 0–9 and the letters a–f (or A–F).The letters represent the values
10–15, respectively. So, to assign the hexadecimal value FFEF0D to an integer variable
called rgbColor, the statement

rgbColor = 0xFFEF0D;

can be used.The format characters %x display a value in hexadecimal format without the
leading 0x, and using lowercase letters a–f for hexadecimal digits.To display the value
with the leading 0x, you use the format characters %#x, as in the following:

printf ("Color is %#x\n", rgbColor);

An uppercase x, as in %X, or %#X can be used to display the leading x and the hexadeci-
mal digits that follow using uppercase letters.

Storage Sizes and Ranges

Every value, whether it’s a character, integer, or floating-point number, has a range of val-
ues associated with it.This range has to do with the amount of storage that is allocated
to store a particular type of data. In general, that amount is not defined in the language.
It typically depends on the computer you’re running, and is, therefore, called
implementation- or machine-dependent. For example, an integer might take up 32 bits on
your computer, or perhaps it might be stored in 64.You should never write programs
that make any assumptions about the size of your data types.You are, however, guaran-
teed that a minimum amount of storage will be set aside for each basic data type. For
example, it’s guaranteed that an integer value will be stored in a minimum of 32 bits of
storage, which is the size of a “word” on many computers. See Table A.4 in Appendix A
for more information about data type sizes.

The Floating Number Type float
A variable declared to be of type float can be used for storing values containing deci-
mal places.A floating-point constant is distinguished by the presence of a decimal point.
You can omit digits before the decimal point or digits after the decimal point, but obvi-
ously you can’t omit both.The values 3., 125.8, and –.0001 are all valid examples of
floating-point constants.To display a floating-point value at the terminal, the printf
conversion characters %f are used.

Floating-point constants can also be expressed in scientific notation.The value 1.7e4 is
a floating-point value expressed in this notation and represents the value 1.7 × 10–4.
The value before the letter e is known as the mantissa, whereas the value that follows is
called the exponent.This exponent, which can be preceded by an optional plus or minus
sign, represents the power of 10 by which the mantissa is to be multiplied. So, in the
constant 2.25e–3, the 2.25 is the value of the mantissa and –3 is the value of the expo-
nent.This constant represents the value 2.25 × 10–3, or 0.00225. Incidentally, the letter
e, which separates the mantissa from the exponent, can be written in either lowercase or
uppercase.

04 0672326663 CH04 6/10/04 2:04 PM Page 24

25Understanding Data Types and Constants

To display a value in scientific notation, the format characters %e should be specified
in the printf format string.The printf format characters %g can be used to let printf
decide whether to display the floating-point value in normal floating-point notation or
in scientific notation.This decision is based on the value of the exponent: If it’s less than
–4 or greater than 5, %e (scientific notation) format is used; otherwise, %f format is used.

Use the %g format characters for displaying floating-point numbers—it produces the
most aesthetically pleasing output.

A hexadecimal floating constant consists of a leading 0x or 0X, followed by one or
more decimal or hexadecimal digits, followed by a p or P, followed by an optionally
signed binary exponent. For example, 0x0.3p10 represents the value 3/16 × 210 = 192.

The Extended Precision Type double
Type double is very similar to type float, but it is used whenever the range provided by
a float variable is not sufficient.Variables declared to be of type double can store
roughly twice as many significant digits as can a variable of type float. Most computers
represent double values using 64 bits.

Unless told otherwise, all floating-point constants are taken as double values by the C
compiler.To explicitly express a float constant, append either an f or F to the end of
the number, as follows:

12.5f

To display a double value, the format characters %f, %e, or %g, which are the same format
characters used to display a float value, can be used.

The Single Character Type char
A char variable can be used to store a single character.1 A character constant is formed
by enclosing the character within a pair of single quotation marks. So 'a', ';', and '0'
are all valid examples of character constants.The first constant represents the letter a, the
second is a semicolon, and the third is the character zero—which is not the same as the
number zero. Do not confuse a character constant, which is a single character enclosed
in single quotes, with a character string, which is any number of characters enclosed in
double quotes.

The character constant '\n'—the newline character—is a valid character constant
even though it seems to contradict the rule cited previously.This is because the backslash
character is a special character in the C system and does not actually count as a charac-
ter. In other words, the C compiler treats the character '\n' as a single character, even
though it is actually formed by two characters.There are other special characters that are
initiated with the backslash character. Consult Appendix A for a complete list.

1.Appendix A discusses methods for storing characters from extended character sets, through spe-
cial escape sequences, universal characters, and wide characters.

04 0672326663 CH04 6/10/04 2:04 PM Page 25

26 Chapter 4 Variables, Data Types, and Arithmetic Expressions

The format characters %c can be used in a printf call to display the value of a char
variable at the terminal.

The Boolean Data Type _Bool
A _Bool variable is defined in the language to be large enough to store just the values 0
and 1.The precise amount of memory that is used is unspecified. _Bool variables are
used in programs that need to indicate a Boolean condition. For example, a variable of
this type might be used to indicate whether all data has been read from a file.

By convention, 0 is used to indicate a false value, and 1 indicates a true value.When
assigning a value to a _Bool variable, a value of 0 is stored as 0 inside the variable,
whereas any nonzero value is stored as 1.

To make it easier to work with _Bool variables in your program, the standard header
file <stdbool.h> defines the values bool, true, and false.An example of this is shown
in Program 6.10A in Chapter 6,“Making Decisions.”

In Program 4.1, the basic C data types are used.

Program 4.1 Using the Basic Data Types

#include <stdio.h>

int main (void)

{

int integerVar = 100;

float floatingVar = 331.79;

double doubleVar = 8.44e+11;

char charVar = 'W';

_Bool boolVar = 0;

printf ("integerVar = %i\n", integerVar);

printf ("floatingVar = %f\n", floatingVar);

printf ("doubleVar = %e\n", doubleVar);

printf ("doubleVar = %g\n", doubleVar);

printf ("charVar = %c\n", charVar);

printf ("boolVar = %i\n", boolVar);

return 0;

}

Program 4.1 Output

integerVar = 100

floatingVar = 331.790009

doubleVar = 8.440000e+11

04 0672326663 CH04 6/10/04 2:04 PM Page 26

27Understanding Data Types and Constants

doubleVar = 8.44e+11

charVar = W

boolVar = 0;

The first statement of Program 4.1 declares the variable integerVar to be an integer
variable and also assigns to it an initial value of 100, as if the following two statements
had been used instead:

int integerVar;

integerVar = 100;

In the second line of the program’s output, notice that the value of 331.79, which is
assigned to floatingVar, is actually displayed as 331.790009. In fact, the actual value
displayed is dependent on the particular computer system you are using.The reason for
this inaccuracy is the particular way in which numbers are internally represented inside
the computer.You have probably come across the same type of inaccuracy when dealing
with numbers on your pocket calculator. If you divide 1 by 3 on your calculator, you get
the result .33333333, with perhaps some additional 3s tacked on at the end.The string of
3s is the calculator’s approximation to one third.Theoretically, there should be an infinite
number of 3s. But the calculator can hold only so many digits, thus the inherent inaccu-
racy of the machine.The same type of inaccuracy applies here: Certain floating-point
values cannot be exactly represented inside the computer’s memory.

When displaying the values of float or double variables, you have the choice of
three different formats.The %f characters are used to display values in a standard manner.
Unless told otherwise, printf always displays a float or double value to six decimal
places rounded.You see later in this chapter how to select the number of decimal places
that are displayed.

The %e characters are used to display the value of a float or double variable in sci-
entific notation. Once again, six decimal places are automatically displayed by the system.

With the %g characters, printf chooses between %f and %e and also automatically
removes from the display any trailing zeroes. If no digits follow the decimal point, it
doesn’t display that either.

In the next-to-last printf statement, the %c characters are used to display the single
character 'W' that you assigned to charVar when the variable was declared. Remember
that whereas a character string (such as the first argument to printf) is enclosed within
a pair of double quotes, a character constant must always be enclosed within a pair of
single quotes.

The last printf shows that a _Bool variable can have its value displayed using the
integer format characters %i.

Program 4.1 Continued

04 0672326663 CH04 6/10/04 2:04 PM Page 27

28 Chapter 4 Variables, Data Types, and Arithmetic Expressions

Type Specifiers: long, long long, short, unsigned, and
signed
If the specifier long is placed directly before the int declaration, the declared integer
variable is of extended range on some computer systems.An example of a long int
declaration might be

long int factorial;

This declares the variable factorial to be a long integer variable.As with floats and
doubles, the particular accuracy of a long variable depends on your particular computer
system. On many systems, an int and a long int both have the same range and either
can be used to store integer values up to 32-bits wide (231 – 1, or 2,147,483,647).

A constant value of type long int is formed by optionally appending the letter L
(upper- or lowercase) onto the end of an integer constant. No spaces are permitted
between the number and the L. So, the declaration

long int numberOfPoints = 131071100L;

declares the variable numberOfPoints to be of type long int with an initial value of
131,071,100.

To display the value of a long int using printf, the letter l is used as a modifier
before the integer format characters i, o, and x.This means that the format characters
%li can be used to display the value of a long int in decimal format, the characters %lo
can display the value in octal format, and the characters %lx can display the value in
hexadecimal format.

There is also a long long integer data type, so

long long int maxAllowedStorage;

declares the indicated variable to be of the specified extended range, which is guaranteed
to be at least 64 bits wide. Instead of a single letter l, two ls are used in the printf string
to display long long integers, as in %lli.

The long specifier is also allowed in front of a double declaration, as follows:

long double US_deficit_2004;

A long double constant is written as a floating constant with the letter l or L immedi-
ately following, such as

1.234e+7L

To display a long double, the L modifier is used. So, %Lf displays a long double value
in floating-point notation, %Le displays the same value in scientific notation, and %Lg tells
printf to choose between %Lf and %Le.

The specifier short, when placed in front of the int declaration, tells the C compiler
that the particular variable being declared is used to store fairly small integer values.The
motivation for using short variables is primarily one of conserving memory space,
which can be an issue in situations in which the program needs a lot of memory and the
amount of available memory is limited.

04 0672326663 CH04 6/10/04 2:04 PM Page 28

29Understanding Data Types and Constants

On some machines, a short int takes up half the amount of storage as a regular int
variable does. In any case, you are guaranteed that the amount of space allocated for a
short int will not be less than 16 bits.

There is no way to explicitly write a constant of type short int in C.To display a
short int variable, place the letter h in front of any of the normal integer conversion
characters: %hi, %ho, or %hx.Alternatively, you can also use any of the integer conversion
characters to display short ints, due to the way they can be converted into integers
when they are passed as arguments to the printf routine.

The final specifier that can be placed in front of an int variable is used when an inte-
ger variable will be used to store only positive numbers.The declaration

unsigned int counter;

declares to the compiler that the variable counter is used to contain only positive values.
By restricting the use of an integer variable to the exclusive storage of positive integers,
the range of the integer variable is extended.

An unsigned int constant is formed by placing the letter u (or U) after the constant,
as follows:

0x00ffU

You can combine the letters u (or U) and l (or L) when writing an integer constant, so

20000UL

tells the compiler to treat the constant 20000 as an unsigned long.
An integer constant that’s not followed by any of the letters u, U, l, or L and that is

too large to fit into a normal-sized int is treated as an unsigned int by the compiler. If
it’s too small to fit into an unsigned int, the compiler treats it as a long int. If it still
can’t fit inside a long int, the compiler makes it an unsigned long int. If it doesn’t fit
there, the compiler treats it as a long long int if it fits, and as an unsigned long long
int otherwise.

When declaring variables to be of type long long int, long int, short int, or
unsigned int, you can omit the keyword int.Therefore, the unsigned variable
counter could have been equivalently declared as follows:

unsigned counter;

You can also declare char variables to be unsigned.
The signed qualifier can be used to explicitly tell the compiler that a particular vari-

able is a signed quantity. Its use is primarily in front of the char declaration, and further
discussion is deferred until Chapter 14,“More on Data Types.”

Don’t worry if the discussions of these specifiers seem a bit esoteric to you at this
point. In later sections of this book, many of these different types are illustrated with
actual program examples. Chapter 14 goes into more detail about data types and conver-
sions.

Table 4.1 summarizes the basic data types and qualifiers.

04 0672326663 CH04 6/10/04 2:04 PM Page 29

30 Chapter 4 Variables, Data Types, and Arithmetic Expressions

Table 4.1 Basic Data Types

printf
Type Constant Examples chars

char 'a', '\n' %c

_Bool 0, 1 %i, %u

short int — %hi, %hx, %ho

unsigned short int — %hu, %hx, %ho

int 12, -97, 0xFFE0, 0177 %i, %x, %o

unsigned int 12u, 100U, 0XFFu %u, %x, %o

long int 12L, -2001, 0xffffL %li, %lx, %lo

unsigned long int 12UL, 100ul, 0xffeeUL %lu, %lx, %lo

long long int 0xe5e5e5e5LL, 500ll %lli, %llx, &llo

unsigned long long int 12ull, 0xffeeULL %llu, %llx, %llo

float 12.34f, 3.1e-5f, 0x1.5p10,0x1P-1 %f, %e, %g, %a

double 12.34, 3.1e-5, 0x.1p3 %f, %e, %g, %a

long double 12.341, 3.1e-5l %Lf, $Le, %Lg

Working with Arithmetic Expressions
In C, just as in virtually all programming languages, the plus sign (+) is used to add two
values, the minus sign (–) is used to subtract two values, the asterisk (*) is used to multi-
ply two values, and the slash (/) is used to divide two values.These operators are known
as binary arithmetic operators because they operate on two values or terms.

You have seen how a simple operation such as addition can be performed in C.
Program 4.2 further illustrates the operations of subtraction, multiplication, and division.
The last two operations performed in the program introduce the notion that one opera-
tor can have a higher priority, or precedence, over another operator. In fact, each operator
in C has a precedence associated with it.This precedence is used to determine how an
expression that has more than one operator is evaluated:The operator with the higher
precedence is evaluated first. Expressions containing operators of the same precedence
are evaluated either from left to right or from right to left, depending on the operator.
This is known as the associative property of an operator.Appendix A provides a complete
list of operator precedences and their rules of association.

Program 4.2 Using the Arithmetic Operators

// Illustrate the use of various arithmetic operators

#include <stdio.h>

int main (void)

{

04 0672326663 CH04 6/10/04 2:04 PM Page 30

31Working with Arithmetic Expressions

int a = 100;

int b = 2;

int c = 25;

int d = 4;

int result;

result = a - b; // subtraction

printf ("a - b = %i\n", result);

result = b * c; // multiplication

printf ("b * c = %i\n", result);

result = a / c; // division

printf ("a / c = %i\n", result);

result = a + b * c; // precedence

printf ("a + b * c = %i\n", result);

printf ("a * b + c * d = %i\n", a * b + c * d);

return 0;

}

Program 4.2 Output

a - b = 98

b * c = 50

a / c = 4

a + b * c = 150

a * b + c * d = 300

After declaring the integer variables a, b, c, d, and result, the program assigns the result
of subtracting b from a to result and then displays its value with an appropriate printf
call.

The next statement

result = b * c;

has the effect of multiplying the value of b by the value of c and storing the product in
result.The result of the multiplication is then displayed using a printf call that should
be familiar to you by now.

The next program statement introduces the division operator—the slash.The result of
4, as obtained by dividing 100 by 25, is displayed by the printf statement immediately
following the division of a by c.

Program 4.2 Continued

04 0672326663 CH04 6/10/04 2:04 PM Page 31

32 Chapter 4 Variables, Data Types, and Arithmetic Expressions

On some computer systems, attempting to divide a number by zero results in abnor-
mal termination of the program.2 Even if the program does not terminate abnormally,
the results obtained by such a division will be meaningless.

In Chapter 6, you see how you can check for division by zero before the division
operation is performed. If it is determined that the divisor is zero, an appropriate action
can be taken and the division operation can be averted.

The expression

a + b * c

does not produce the result of 2550 (102 × 25); rather, the result as displayed by the cor-
responding printf statement is shown as 150.This is because C, like most other pro-
gramming languages, has rules for the order of evaluating multiple operations or terms in
an expression. Evaluation of an expression generally proceeds from left to right.
However, the operations of multiplication and division are given precedence over the
operations of addition and subtraction.Therefore, the expression

a + b * c

is evaluated as

a + (b * c)

by the C system. (This is the same way this expression would be evaluated if you were to
apply the basic rules of algebra.)

If you want to alter the order of evaluation of terms inside an expression, you can use
parentheses. In fact, the expression listed previously is a perfectly valid C expression.
Thus, the statement

result = a + (b * c);

could have been substituted in Program 4.2 to achieve identical results. However, if the
expression

result = (a + b) * c;

were used instead, the value assigned to result would be 2550 because the value of a
(100) would be added to the value of b (2) before multiplication by the value of c (25)
would take place. Parentheses can also be nested, in which case evaluation of the expres-
sion proceeds outward from the innermost set of parentheses. Just be certain you have as
many closed parentheses as you have open ones.

You will notice from the last statement in Program 4.2 that it is perfectly valid to give
an expression as an argument to printf without having to first assign the result of the
expression evaluation to a variable.The expression

a * b + c * d

2.This happens using the gcc compiler under Windows. On Unix systems, the program might
not terminate abnormally, and might give 0 as the result of an integer division by zero and
“Infinity” as the result of a float division by zero.

04 0672326663 CH04 6/10/04 2:04 PM Page 32

33Working with Arithmetic Expressions

is evaluated according to the rules stated previously as

(a * b) + (c * d)

or

(100 * 2) + (25 * 4)

The result of 300 is handed to the printf routine.

Integer Arithmetic and the Unary Minus Operator
Program 4.3 reinforces what you just learned and introduces the concept of integer
arithmetic.

Program 4.3 More Examples with Arithmetic Operators

// More arithmetic expressions

#include <stdio.h>

int main (void)

{

int a = 25;

int b = 2;

float c = 25.0;

float d = 2.0;

printf ("6 + a / 5 * b = %i\n", 6 + a / 5 * b);

printf ("a / b * b = %i\n", a / b * b);

printf ("c / d * d = %f\n", c / d * d);

printf ("-a = %i\n", -a);

return 0;

}

Program 4.3 Output

6 + a / 5 * b = 16

a / b * b = 24

c / d * d = 25.000000

-a = -25

Extra blank spaces are inserted between int and the declaration of a, b, c, and d in the
first four statements to align the declaration of each variable.This helps make the pro-
gram more readable.You also might have noticed in each program presented thus far that
a blank space was placed around each operator.This, too, is not required and is done

04 0672326663 CH04 6/10/04 2:04 PM Page 33

34 Chapter 4 Variables, Data Types, and Arithmetic Expressions

solely for aesthetic reasons. In general, you can add extra blank spaces just about any-
where that a single blank space is allowed.A few extra presses of the spacebar proves
worthwhile if the resulting program is easier to read.

The expression in the first printf call of Program 4.3 reinforces the notion of opera-
tor precedence. Evaluation of this expression proceeds as follows:

1. Because division has higher precedence than addition, the value of a (25) is divid-
ed by 5 first.This gives the intermediate result of 5.

2. Because multiplication also has higher precedence than addition, the intermediate
result of 5 is next multiplied by 2, the value of b, giving a new intermediate result
of 10.

3. Finally, the addition of 6 and 10 is performed, giving a final result of 16.

The second printf statement introduces a new twist.You would expect that dividing a
by b and then multiplying by b would return the value of a, which has been set to 25.
But this does not seem to be the case, as shown by the output display of 24. It might
seem like the computer lost a bit somewhere along the way.The fact of the matter is that
this expression was evaluated using integer arithmetic.

If you glance back at the declarations for the variables a and b, you will recall that
they were both declared to be of type int.Whenever a term to be evaluated in an
expression consists of two integers, the C system performs the operation using integer
arithmetic. In such a case, all decimal portions of numbers are lost.Therefore, when the
value of a is divided by the value of b, or 25 is divided by 2, you get an intermediate
result of 12 and not 12.5 as you might expect. Multiplying this intermediate result by 2
gives the final result of 24, thus explaining the “lost” digit. Don’t forget that if you divide
two integers, you always get an integer result.

As can be seen from the next-to-last printf statement in Program 4.3, if you per-
form the same operation using floating-point values instead of integers, you obtain the
expected result.

The decision of whether to use a float variable or an int variable should be made
based on the variable’s intended use. If you don’t need any decimal places, use an integer
variable.The resulting program is more efficient—that is, it executes more quickly on
many computers. On the other hand, if you need the decimal place accuracy, the choice
is clear.The only question you then must answer is whether to use a float, double, or
long double.The answer to this question depends on the desired accuracy of the num-
bers you are dealing with, as well as their magnitude.

In the last printf statement, the value of the variable a is negated by use of the
unary minus operator.A unary operator is one that operates on a single value, as opposed
to a binary operator, which operates on two values.The minus sign actually has a dual
role:As a binary operator, it is used for subtracting two values; as a unary operator, it is
used to negate a value.

The unary minus operator has higher precedence than all other arithmetic operators,
except for the unary plus operator (+), which has the same precedence. So the expression

c = -a * b;

04 0672326663 CH04 6/10/04 2:04 PM Page 34

35Working with Arithmetic Expressions

results in the multiplication of –a by b. Once again, in Appendix A you will find a table
summarizing the various operators and their precedences.

The Modulus Operator
The next arithmetic to be presented in this chapter is the modulus operator, which is
symbolized by the percent sign (%).Try to determine how this operator works by analyz-
ing Program 4.4.

Program 4.4 Illustrating the Modulus Operator

// The modulus operator

#include <stdio.h>

int main (void)

{

int a = 25, b = 5, c = 10, d = 7;

printf ("a %% b = %i\n", a % b);

printf ("a %% c = %i\n", a % c);

printf ("a %% d = %i\n", a % d);

printf ("a / d * d + a %% d = %i\n",

a / d * d + a % d);

return 0;

}

Program 4.4 Output

a % b = 0

a % c = 5

a % d = 4

a / d * d + a % d = 25

The first statement inside main defines and initializes the variables a, b, c, and d in a sin-
gle statement.

As you know, printf uses the character that immediately follows the percent sign to
determine how to print the next argument. However, if it is another percent sign that
follows, the printf routine takes this as an indication that you really intend to display a
percent sign and inserts one at the appropriate place in the program’s output.

You are correct if you concluded that the function of the modulus operator % is to
give the remainder of the first value divided by the second value. In the first example,
the remainder after 25 is divided by 5 and is displayed as 0. If you divide 25 by 10, you
get a remainder of 5, as verified by the second line of output. Dividing 25 by 7 gives a
remainder of 4, as shown in the third output line.

04 0672326663 CH04 6/10/04 2:04 PM Page 35

36 Chapter 4 Variables, Data Types, and Arithmetic Expressions

The last line of output in Program 4.4 requires a bit of explanation. First, you will
notice that the program statement has been written on two lines.This is perfectly valid
in C. In fact, a program statement can be continued to the next line at any point at
which a blank space could be used. (An exception to this occurs when dealing with
character strings—a topic discussed in Chapter 10,“Character Strings.”) At times, it
might not only be desirable, but perhaps even necessary to continue a program statement
onto the next line.The continuation of the printf call in Program 4.4 is indented to
visually show that it is a continuation of the preceding program statement.

Turn your attention to the expression evaluated in the final statement.You will recall
that any operations between two integer values in C are performed with integer arith-
metic.Therefore, any remainder resulting from the division of two integer values is
simply discarded. Dividing 25 by 7, as indicated by the expression a / d, gives an inter-
mediate result of 3. Multiplying this value by the value of d, which is 7, produces the
intermediate result of 21. Finally, adding the remainder of dividing a by d, as indicated
by the expression a % d, leads to the final result of 25. It is no coincidence that this
value is the same as the value of the variable a. In general, the expression

a / b * b + a % b

will always equal the value of a, assuming of course that a and b are both integer values.
In fact, the modulus operator % is defined to work only with integer values.

As far as precedence is concerned, the modulus operator has equal precedence to the
multiplication and division operators.This implies, of course, that an expression such as

table + value % TABLE_SIZE

will be evaluated as

table + (value % TABLE_SIZE)

Integer and Floating-Point Conversions
To effectively develop C programs, you must understand the rules used for the implicit
conversion of floating-point and integer values in C. Program 4.5 demonstrates some of
the simple conversions between numeric data types.You should note that some compil-
ers might give warning messages to alert you of the fact that conversions are being per-
formed.

Program 4.5 Converting Between Integers and Floats

// Basic conversions in C

#include <stdio.h>

int main (void)

{

float f1 = 123.125, f2;

04 0672326663 CH04 6/10/04 2:04 PM Page 36

37Working with Arithmetic Expressions

int i1, i2 = -150;

char c = 'a';

i1 = f1; // floating to integer conversion

printf ("%f assigned to an int produces %i\n", f1, i1);

f1 = i2; // integer to floating conversion

printf ("%i assigned to a float produces %f\n", i2, f1);

f1 = i2 / 100; // integer divided by integer

printf ("%i divided by 100 produces %f\n", i2, f1);

f2 = i2 / 100.0; // integer divided by a float

printf ("%i divided by 100.0 produces %f\n", i2, f2);

f2 = (float) i2 / 100; // type cast operator

printf ("(float) %i divided by 100 produces %f\n", i2, f2);

return 0;

}

Program 4.5 Output

123.125000 assigned to an int produces 123

-150 assigned to a float produces -150.000000

-150 divided by 100 produces -1.000000

-150 divided by 100.0 produces -1.500000

(float) -150 divided by 100 produces -1.500000

Whenever a floating-point value is assigned to an integer variable in C, the decimal
portion of the number gets truncated. So, when the value of f1 is assigned to i1 in the
previous program, the number 123.125 is truncated, which means that only its integer
portion, or 123, is stored in i1.The first line of the program’s output verifies that this is
the case.

Assigning an integer variable to a floating variable does not cause any change in the
value of the number; the value is simply converted by the system and stored in the float-
ing variable.The second line of the program’s output verifies that the value of i2 (–150)
was correctly converted and stored in the float variable f1.

The next two lines of the program’s output illustrate two points that must be remem-
bered when forming arithmetic expressions.The first has to do with integer arithmetic,
which was previously discussed in this chapter.Whenever two operands in an expression
are integers (and this applies to short, unsigned, long, and long long integers as well),
the operation is carried out under the rules of integer arithmetic.Therefore, any decimal

Program 4.5 Continued

04 0672326663 CH04 6/10/04 2:04 PM Page 37

38 Chapter 4 Variables, Data Types, and Arithmetic Expressions

portion resulting from a division operation is discarded, even if the result is assigned to a
floating variable (as you did in the program).Therefore, when the integer variable i2 is
divided by the integer constant 100, the system performs the division as an integer divi-
sion.The result of dividing –150 by 100, which is –1, is, therefore, the value that is stored
in the float variable f1.

The next division performed in the previous listing involves an integer variable and a
floating-point constant.Any operation between two values in C is performed as a float-
ing-point operation if either value is a floating-point variable or constant.Therefore,
when the value of i2 is divided by 100.0, the system treats the division as a floating-
point division and produces the result of –1.5, which is assigned to the float variable f1.

The Type Cast Operator

The last division operation from Program 4.5 that reads

f2 = (float) i2 / 100; // type cast operator

introduces the type cast operator.The type cast operator has the effect of converting the
value of the variable i2 to type float for purposes of evaluation of the expression. In no
way does this operator permanently affect the value of the variable i2; it is a unary oper-
ator that behaves like other unary operators. Because the expression –a has no perma-
nent effect on the value of a, neither does the expression (float) a.

The type cast operator has a higher precedence than all the arithmetic operators
except the unary minus and unary plus. Of course, if necessary, you can always use
parentheses in an expression to force the terms to be evaluated in any desired order.

As another example of the use of the type cast operator, the expression

(int) 29.55 + (int) 21.99

is evaluated in C as

29 + 21

because the effect of casting a floating value to an integer is one of truncating the
floating-point value.The expression

(float) 6 / (float) 4

produces a result of 1.5, as does the following expression:

(float) 6 / 4

Combining Operations with Assignment:The
Assignment Operators
The C language permits you to join the arithmetic operators with the assignment opera-
tor using the following general format: op=

04 0672326663 CH04 6/10/04 2:04 PM Page 38

39Types _Complex and _Imaginary

In this format, op is any of the arithmetic operators, including +, –, ×, /, and %. In
addition, op can be any of the bit operators for shifting and masking, which is discussed
later.

Consider this statement:

count += 10;

The effect of the so-called “plus equals” operator += is to add the expression on the right
side of the operator to the expression on the left side of the operator and to store the
result back into the variable on the left-hand side of the operator. So, the previous state-
ment is equivalent to this statement:

count = count + 10;

The expression

counter -= 5

uses the “minus equals” assignment operator to subtract 5 from the value of counter and
is equivalent to this expression:

counter = counter - 5

A slightly more involved expression is:

a /= b + c

which divides a by whatever appears to the right of the equal sign—or by the sum of b
and c—and stores the result in a.The addition is performed first because the addition
operator has higher precedence than the assignment operator. In fact, all operators but
the comma operator have higher precedence than the assignment operators, which all
have the same precedence.

In this case, this expression is identical to the following:

a = a / (b + c)

The motivation for using assignment operators is threefold. First, the program statement
becomes easier to write because what appears on the left side of the operator does not
have to be repeated on the right side. Second, the resulting expression is usually easier to
read.Third, the use of these operators can result in programs that execute more quickly
because the compiler can sometimes generate less code to evaluate an expression.

Types _Complex and _Imaginary
Before leaving this chapter it is worthy to note two other types in the language called
_Complex and _Imaginary for working with complex and imaginary numbers.

Support for _Complex and _Imaginary types is optional for a compiler.3 For more
information, look at the summary of data types in Appendix A.

3.As of this writing, the gcc compiler version 3.3 does not have full support for these data types.

04 0672326663 CH04 6/10/04 2:04 PM Page 39

40 Chapter 4 Variables, Data Types, and Arithmetic Expressions

Exercises
1. Type in and run the five programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Which of the following are invalid variable names? Why?

Int char 6_05

Calloc Xx alpha_beta_routine

floating _1312 z

ReInitialize _ A$

3. Which of the following are invalid constants? Why?

123.456 0x10.5 0X0G1

0001 0xFFFF 123L

0Xab05 0L -597.25

123.5e2 .0001 +12

98.6F 98.7U 17777s

0996 -12E-12 07777

1234uL 1.2Fe-7 15,000

1.234L 197u 100U

0XABCDEFL 0xabcu +123

4. Write a program that converts 27° from degrees Fahrenheit (F) to degrees Celsius
(C) using the following formula:

C = (F - 32) / 1.8

5. What output would you expect from the following program?

#include <stdio.h>

int main (void)

{

char c, d;

c = 'd';

d = c;

printf ("d = %c\n", d);

return 0;

}

6. Write a program to evaluate the polynomial shown here:

3x3 - 5x2 + 6

for x = 2.55.

04 0672326663 CH04 6/10/04 2:04 PM Page 40

41Exercises

7. Write a program that evaluates the following expression and displays the results
(remember to use exponential format to display the result):

(3.31 x 10-8 x 2.01 x 10-7) / (7.16 x 10-6 + 2.01 x 10-8)

8. To round off an integer i to the next largest even multiple of another integer j,
the following formula can be used:

Next_multiple = i + j - i % j

For example, to round off 256 days to the next largest number of days evenly
divisible by a week, values of i = 256 and j = 7 can be substituted into the pre-
ceding formula as follows:

Next_multiple = 256 + 7 - 256 % 7

= 256 + 7 - 4

= 259

Write a program to find the next largest even multiple for the following values of
i and j:

i j

365 7

12,258 23

996 4

04 0672326663 CH04 6/10/04 2:04 PM Page 41

04 0672326663 CH04 6/10/04 2:04 PM Page 42

5
Program Looping

IF YOU ARRANGE 15 DOTS in the shape of a triangle, you end up with an arrangement
that might look something like this:

•

• •

• • •

• • • •

• • • • •

The first row of the triangle contains one dot, the second row contains two dots, and so
on. In general, the number of dots it takes to form a triangle containing n rows is the
sum of the integers from 1 through n.This sum is known as a triangular number. If you
start at 1, the fourth triangular number is the sum of the consecutive integers 1 through
4 (1 + 2 + 3 + 4), or 10.

Suppose you want to write a program that calculates and displays the value of the
eighth triangular number at the terminal. Obviously, you could easily calculate this num-
ber in your head, but for the sake of argument, assume that you want to write a program
in C to perform this task. Such a program is shown in Program 5.1.

The technique of Program 5.1 works fine for calculating relatively small, triangular
numbers. But what happens if you need to find the value of the 200th triangular num-
ber, for example? It certainly would be tedious to modify Program 5.1 to explicitly add
up all of the integers from 1 to 200. Luckily, there is an easier way.

Program 5.1 Calculating the Eighth Triangular Number

// Program to calculate the eighth triangular number

#include <stdio.h>

05 0672326663 CH05 6/10/04 2:02 PM Page 43

44 Chapter 5 Program Looping

int main (void)

{

int triangularNumber;

triangularNumber = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8;

printf ("The eighth triangular number is %i\n",
triangularNumber);

return 0;

}

Program 5.1 Output

The eighth triangular number is 36

One of the fundamental properties of a computer is its ability to repetitively execute a
set of statements.These looping capabilities enable you to develop concise programs con-
taining repetitive processes that could otherwise require thousands or even millions of
program statements to perform.The C programming language contains three different
program statements for program looping.They are known as the for statement, the
while statement, and the do statement. Each of these statements are described in detail
in this chapter.

The for Statement
Let’s dive right in and take a look at a program that uses the for statement.The purpose
of Program 5.2 is to calculate the 200th triangular number. See if you can determine
how the for statement works.

Program 5.2 Calculating the 200th Triangular Number

/* Program to calculate the 200th triangular number

Introduction of the for statement */

#include <stdio.h>

int main (void)

{

int n, triangularNumber;

triangularNumber = 0;

Program 5.1 Continued

05 0672326663 CH05 6/10/04 2:02 PM Page 44

45The for Statement

for (n = 1; n <= 200; n = n + 1)

triangularNumber = triangularNumber + n;

printf ("The 200th triangular number is %i\n", triangularNumber);

return 0;

}

Program 5.2 Output

The 200th triangular number is 20100

Some explanation is owed for Program 5.2.The method employed to calculate the 200th
triangular number is really the same as that used to calculate the 8th triangular number
in Program 5.1—the integers from 1 to 200 are summed.The for statement provides
the mechanism that enables you to avoid having to explicitly write out each integer
from 1 to 200. In a sense, this statement is used to “generate” these numbers for you.

The general format of the for statement is as follows:

for (init_expression; loop_condition; loop_expression)
program statement

The three expressions that are enclosed within the parentheses—init_expression,
loop_condition, and loop_expression—set up the environment for the program loop.
The program statement that immediately follows (which is, of course, terminated by a
semicolon) can be any valid C program statement and constitutes the body of the loop.
This statement is executed as many times as specified by the parameters set up in the for
statement.

The first component of the for statement, labeled init_expression, is used to set
the initial values before the loop begins. In Program 5.2, this portion of the for statement
is used to set the initial value of n to 1.As you can see, an assignment is a valid form of
an expression.

The second component of the for statement the condition or conditions that are
necessary for the loop to continue. In other words, looping continues as long as this con-
dition is satisfied. Once again referring to Program 5.2, note that the loop_condition of
the for statement is specified by the following relational expression:

n <= 200

This expression can be read as “n less than or equal to 200.”The “less than or equal to”
operator (which is the less than character < followed immediately by the equal sign =) is
only one of several relational operators provided in the C programming language.These
operators are used to test specific conditions.The answer to the test is “yes” or, more
commonly,TRUE if the condition is satisfied and “no” or FALSE if the condition is not
satisfied.

Program 5.2 Continued

05 0672326663 CH05 6/10/04 2:02 PM Page 45

46 Chapter 5 Program Looping

Relational Operators
Table 5.1 lists all the relational operators that are available in C.

Table 5.1 Relational Operators

Operator Meaning Example

== Equal to count == 10

!= Not equal to flag != DONE

< Less than a < b

<= Less than or equal to low <= high

> Greater than pointer > end_of_list

>= Greater than or equal to j >= 0

The relational operators have lower precedence than all arithmetic operators.This means,
for example, that the following expression

a < b + c

is evaluated as

a < (b + c)

as you would expect. It would be TRUE if the value of a were less than the value of b +
c and FALSE otherwise.

Pay particular attention to the “is equal to” operator == and do not confuse its use
with the assignment operator =.The expression

a == 2

tests if the value of a is equal to 2, whereas the expression

a = 2

assigns the value 2 to the variable a.
The choice of which relational operator to use obviously depends on the particular

test being made and in some instances on your particular preferences. For example, the
relational expression

n <= 200

can be equivalently expressed as

n < 201

Returning to our example, the program statement that forms the body of the for loop

triangularNumber = triangularNumber + n;

is repetitively executed as long as the result of the relational test is TRUE, or in this case, as
long as the value of n is less than or equal to 200.This program statement has the effect
of adding the value of triangularNumber to the value of n and storing the result back
in the value of triangularNumber.

05 0672326663 CH05 6/10/04 2:02 PM Page 46

47The for Statement

When the loop_condition is no longer satisfied, execution of the program continues
with the program statement immediately following the for loop. In your program, exe-
cution continues with the printf statement after the loop has terminated.

The final component of the for statement contains an expression that is evaluated
each time after the body of the loop is executed. In Program 5.2, this loop_expression
adds 1 to the value of n.Therefore, the value of n is incremented by 1 each time after its
value has been added into the value of triangularNumber and ranges in value from 1 to
201.

It is worth noting that the last value that n attains, namely 201, is not added into the
value of triangularNumber because the loop is terminated as soon as the looping condi-
tion is no longer satisfied, or as soon as n equals 201.

In summary, execution of the for statement proceeds as follows:

1. The initial expression is evaluated first.This expression usually sets a variable that
will be used inside the loop, generally referred to as an index variable, to some ini-
tial value such as 0 or 1.

2. The looping condition is evaluated. If the condition is not satisfied (the expression
is FALSE), the loop is immediately terminated. Execution continues with the pro-
gram statement that immediately follows the loop.

3. The program statement that constitutes the body of the loop is executed.

4. The looping expression is evaluated.This expression is generally used to change
the value of the index variable, frequently by adding 1 to it or subtracting 1
from it.

5. Return to step 2.

Remember that the looping condition is evaluated immediately on entry into the loop,
before the body of the loop has even executed one time.Also, remember not to put a
semicolon after the close parenthesis at the end of the loop (this immediately ends the
loop).

Because Program 5.2 actually generates all of the first 200 triangular numbers on its
way to its final goal, it might be nice to generate a table of these numbers.To save space,
however, let’s assume that you just want to print a table of the first 10 triangular num-
bers. Program 5.3 performs precisely this task!

Program 5.3 Generating a Table of Triangular Numbers

// Program to generate a table of triangular numbers

#include <stdio.h>

int main (void)

{

int n, triangularNumber;

05 0672326663 CH05 6/10/04 2:02 PM Page 47

48 Chapter 5 Program Looping

printf ("TABLE OF TRIANGULAR NUMBERS\n\n");

printf (" n Sum from 1 to n\n");

printf ("--- ---------------\n");

triangularNumber = 0;

for (n = 1; n <= 10; ++n) {

triangularNumber += n;

printf (" %i %i\n", n, triangularNumber);

}

return 0;

}

Program 5.3 Output

TABLE OF TRIANGULAR NUMBERS

n Sum from 1 to n

--- ---------------

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

It is always a good idea to add some extra printf statements to a program to provide
more meaning to the output. In Program 5.3, the purpose of the first three printf state-
ments is simply to provide a general heading and to label the columns of the output.
Notice that the first printf statement contains two newline characters.As you would
expect, this has the effect of not only advancing to the next line, but also inserting an
extra blank line into the display.

After the appropriate headings have been displayed, the program proceeds to calculate
the first 10 triangular numbers.The variable n is used to count the current number
whose “sum from 1 to n" you are computing, whereas the variable triangularNumber is
used to store the value of triangular number n.

Execution of the for statement commences by setting the value of the variable n to
1. Remember that the program statement immediately following the for statement

Program 5.3 Continued

05 0672326663 CH05 6/10/04 2:02 PM Page 48

49The for Statement

constitutes the body of the program loop. But what happens if you want to repetitively
execute not just a single program statement, but a group of program statements? This can
be accomplished by enclosing all such program statements within a pair of braces.The
system then treats this group or block of statements as a single entity. In general, any place
in a C program that a single statement is permitted, a block of statements can be used,
provided that you remember to enclose the block within a pair of braces.

Therefore, in Program 5.3, both the expression that adds n into the value of
triangularNumber and the printf statement that immediately follows constitute the
body of the program loop. Pay particular attention to the way the program statements
are indented. It is easy to determine which statements form part of the for loop.You
should also note that programmers use different coding styles. Some prefer to type the
loop this way:

for (n = 1; n <= 10; ++n)

{

triangularNumber += n;

printf (" %i %i\n", n, triangularNumber);

}

Here, the opening brace is placed on the next line after the for.This is strictly a matter
of taste and has no effect on the program.

The next triangular number is calculated by simply adding the value of n to the pre-
vious triangular number.This time, the “plus equals” operator is used, which was intro-
duced in Chapter 4,“Variables, Data Types, and Arithmetic Expressions.” Recall that the
expression

triangularNumber += n;

is equivalent to the expression

triangularNumber = triangularNumber + n;

The first time through the for loop, the “previous” triangular number is 0, so the new
value of triangularNumber when n is equal to 1 is simply the value of n, or 1.The val-
ues of n and triangularNumber are then displayed, with an appropriate number of blank
spaces inserted in the format string to ensure that the values of the two variables line up
under the appropriate column headings.

Because the body of the loop has now been executed, the looping expression is eval-
uated next.The expression in this for statement appears a bit strange, however. It seems
like you made a typographical mistake and meant to insert the expression

n = n + 1

instead of the funny-looking expression

++n

The expression ++n is actually a perfectly valid C expression. It introduces you to a new
(and rather unique) operator in the C programming language—the increment operator.The
function of the double plus sign—or the increment operator—is to add 1 to its operand.

05 0672326663 CH05 6/10/04 2:02 PM Page 49

50 Chapter 5 Program Looping

Because addition by 1 is such a common operation in programs, a special operator was
created solely for this purpose.Therefore, the expression ++n is equivalent to the expres-
sion n = n + 1.Although it might appear that n = n + 1 is more readable, you will
soon become familiar with the function of this operator and will even learn to appreci-
ate its succinctness.

Of course, no programming language that offered an increment operator to add 1
would be complete without a corresponding operator to subtract 1.The name of this
operator is the decrement operator and is symbolized by the double minus sign. So, an
expression in C that reads

bean_counter = bean_counter - 1

can be equivalently expressed using the decrement operator as

--bean_counter

Some programmers prefer to put the ++ or -- after the variable name, as in n++ or
bean_counter--.This is acceptable, and is a matter of personal preference.

Aligning Output
One slightly disturbing thing that you might have noticed in Program 5.3’s output is the
fact that the 10th triangular number does not quite line up under the previous triangular
numbers.This is because the number 10 takes up two print positions, whereas the previ-
ous values of n, 1 through 9, took up only one print position.Therefore, the value 55 is
effectively “pushed over” one extra position in the display.This minor annoyance can be
corrected if you substitute the following printf statement in place of the corresponding
statement from Program 5.3.

printf ("%2i %i\n", n, triangularNumber);

To verify that this change does the trick, here is the output from the modified program
(we’ll call it Program 5.3A).

Program 5.3A Output

TABLE OF TRIANGULAR NUMBERS

n Sum from 1 to n

--- ---------------

1 1

2 3

3 6

4 10

5 15

6 21

7 28

8 36

9 45

10 55

05 0672326663 CH05 6/10/04 2:02 PM Page 50

51The for Statement

The primary change made to the printf statement was the inclusion of a field width
specification.The characters %2i tell the printf routine that not only do you want to dis-
play the value of an integer at that particular point, but you also want the size of the
integer to be displayed to take up two columns in the display.Any integer that would
normally take up less than two columns (that is, the integers 0 through 9) are displayed
with a leading space.This is known as right justification.

Thus, by using a field width specification of %2i, you guarantee that at least two
columns are used for displaying the value of n and, therefore, you ensure that the values
of triangularNumber are lined up.

If the value that is to be displayed requires more columns than are specified by the
field width, printf simply ignores the field width specification and uses as many
columns as are necessary to display the value.

Field width specifications can also be used for displaying values other than integers.
You will see some examples of this in programs that are coming up shortly.

Program Input
Program 5.2 calculates the 200th triangular number—and nothing more. If you want to
calculate the 50th or the 100th triangular number instead, you have to go back and
change the program so that the for loop is executed the correct number of times.You
also have to change the printf statement to display the correct message.

An easier solution might be if you could somehow have the program ask which tri-
angular number you want to calculate.Then, after you provide your answer, the program
could calculate the desired triangular number for you. Such a solution can be effected in
C by using a routine called scanf.The scanf routine is very similar in concept to the
printf routine.Whereas the printf routine is used to display values at the terminal, the
scanf routine enables you to type values into the program. Program 5.4 asks the user
which triangular number should be calculated, proceeds to calculate that number, and
then displays the results.

Program 5.4 Asking the User for Input

#include <stdio.h>

int main (void)

{

int n, number, triangularNumber;

printf ("What triangular number do you want? ");

scanf ("%i", &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)
triangularNumber += n;

05 0672326663 CH05 6/10/04 2:02 PM Page 51

52 Chapter 5 Program Looping

printf ("Triangular number %i is %i\n", number, triangularNumber);

return 0;

}

In Program 5.4 Output, the number typed in by the user (100) is set in bold type to
distinguish it from the output displayed by the program.

Program 5.4 Output

What triangular number do you want? 100

Triangular number 100 is 5050

According to the output, the number 100 was typed in by the user.The program then
proceeded to calculate the 100th triangular number and displayed the result of 5050 at
the terminal.The user could have instead typed in the number 10, or 30, if he desired to
calculate those particular triangular numbers.

The first printf statement in Program 5.4 is used to prompt the user to type in a
number. Of course, it is always nice to remind the user what it is you want entered.After
the message is printed, the scanf routine is called.The first argument to scanf is the
format string and is very similar to the format string used by printf. In this case, the
format string doesn’t tell the system what types of values are to be displayed but rather
what types of values are to be read in from the terminal. Like printf, the %i characters
are used to specify an integer value.

The second argument to the scanf routine specifies where the value that is typed in
by the user is to be stored.The & character before the variable number is necessary in this
case. Don’t worry about its function here, though. Chapter 11,“Pointers,” discusses this
character, which is actually an operator, in great detail.Always remember to put the lead-
ing & in front of the variable name in the scanf function call. If you forget, it causes
unpredictable results and might cause your program to terminate abnormally.

Given the preceding discussion, you can now see that the scanf call from Program
5.4 specifies that an integer value is to be read from the terminal and stored in the vari-
able number.This value represents the particular triangular number that the user wants to
calculate.

After this number has been typed in (and the “Return” or “Enter” key on the key-
board pressed to signal that typing of the number is completed), the program then pro-
ceeds to calculate the requested triangular number.This is done in the same way as in
Program 5.2—the only difference being that instead of using 200 as the limit, number is
used.

After the desired triangular number has been calculated, the results are displayed, and
execution of the program is then complete.

Program 5.4 Continued

05 0672326663 CH05 6/10/04 2:02 PM Page 52

53The for Statement

Nested for Loops
Program 5.4 gives the user the flexibility to have the program calculate any triangular
number that is desired. However, if the user has a list of five triangular numbers to be
calculated, she can simply execute the program five times, each time typing in the next
triangular number from the list to be calculated.

Another way to accomplish this same goal, and a far more interesting method as far as
learning about C is concerned, is to have the program handle the situation.This can best
be accomplished by inserting a loop in the program to simply repeat the entire series of
calculations five times.You know by now that the for statement can be used to set up
such a loop. Program 5.5 and its associated output illustrate this technique.

Program 5.5 Using Nested for Loops

#include <stdio.h>

int main (void)

{

int n, number, triangularNumber, counter;

for (counter = 1; counter <= 5; ++counter) {

printf ("What triangular number do you want? ");

scanf ("%i", &number);

triangularNumber = 0;

for (n = 1; n <= number; ++n)

triangularNumber += n;

printf ("Triangular number %i is %i\n\n", number, triangularNumber);

}

return 0;

}

Program 5.5 Output

What triangular number do you want? 12

Triangular number 12 is 78

What triangular number do you want? 25

Triangular number 25 is 325

What triangular number do you want? 50

Triangular number 50 is 1275

05 0672326663 CH05 6/10/04 2:02 PM Page 53

54 Chapter 5 Program Looping

What triangular number do you want? 75

Triangular number 75 is 2850

What triangular number do you want? 83

Triangular number 83 is 3486

The program consists of two levels of for statements.The outermost for statement

for (counter = 1; counter <= 5; ++counter)

specifies that the program loop is to be executed precisely five times.This can be seen
because the value of counter is initially set to 1 and is incremented by 1 until it is no
longer less than or equal to 5 (in other words, until it reaches 6).

Unlike the previous program examples, the variable counter is not used anywhere
else within the program. Its function is solely as a loop counter in the for statement.
Nevertheless, because it is a variable, it must be declared in the program.

The program loop actually consists of all the remaining program statements, as indi-
cated by the braces. It might be easier for you to comprehend the way this program
operates if you conceptualize it as follows:

For 5 times

{

Get the number from the user.

Calculate the requested triangular number.

Display the result.

}

The portion of the loop referred to in the preceding as Calculate the requested triangular
number actually consists of setting the value of the variable triangularNumber to 0 plus
the for loop that calculates the triangular number.Thus, you see that you have a for
statement that is actually contained within another for statement.This is perfectly valid
in C, and nesting can continue even further up to 127 levels!

The proper use of indentation becomes even more critical when dealing with more
sophisticated program constructs, such as nested for statements.You can easily determine
which statements are contained within each for statement. (To see how unreadable a
program can be if correct attention isn’t paid to formatting, see exercise 5 at the end of
this chapter.)

for Loop Variants
Some syntactic variations are permitted in forming the for loop.When writing a for
loop, you might discover that you have more than one variable that you want to initial-
ize before the loop begins or more than one expression that you want to evaluate each
time through the loop.

Program 5.5 Continued

05 0672326663 CH05 6/10/04 2:02 PM Page 54

55The for Statement

Multiple Expressions

You can include multiple expressions in any of the fields of the for loop, provided that
you separate such expressions by commas. For example, in the for statement that begins

for (i = 0, j = 0; i < 10; ++i)

...

the value of i is set to 0 and the value of j is set to 0 before the loop begins.The two
expressions i = 0 and j = 0 are separated from each other by a comma, and both
expressions are considered part of the init_expression field of the loop.As another
example, the for loop that starts

for (i = 0, j = 100; i < 10; ++i, j = j - 10)

...

sets up two index variables, i and j; the former initialized to 0 and the latter to 100
before the loop begins. Each time after the body of the loop is executed, the value of i
is incremented by 1, whereas the value of j is decremented by 10.

Omitting Fields

Just as the need might arise to include more than one expression in a particular field of
the for statement, the need might arise to omit one or more fields from the statement.
This can be done simply by omitting the desired field and marking its place with a semi-
colon.The most common application for the omission of a field in the for statement
occurs when there is no initial expression that needs to be evaluated.The
init_expression field can simply be “left blank” in such a case, as long as the semi-
colon is still included:

for (; j != 100; ++j)

...

This statement might be used if j were already set to some initial value before the loop
was entered.

A for loop that has its looping_condition field omitted effectively sets up an infi-
nite loop; that is, a loop that is theoretically executed forever. Such a loop can be used
provided there is some other means used to exit from the loop (such as executing a
return, break, or goto statement as discussed elsewhere in this book).

Declaring Variables

You can also declare variables as part of your initial expression inside a for loop.This is
done using the normal ways you’ve defined variables in the past. For example, the fol-
lowing can be used to set up a for loop with an integer variable counter both defined
and initialized to the value 1:

for (int counter = 1; counter <= 5; ++counter)

05 0672326663 CH05 6/10/04 2:02 PM Page 55

56 Chapter 5 Program Looping

The variable counter is only known throughout the execution of the for loop (it’s
called a local variable) and cannot be accessed outside the loop.As another example, the
following for loop

for (int n = 1, triangularNumber = 0; n <= 200; ++n)

triangularNumber += n;

defines two integer variables and sets their values accordingly.

The while Statement
The while statement further extends the C language’s repertoire of looping capabilities.
The syntax of this frequently used construct is as follows:

while (expression)

program statement

The expression specified inside the parentheses is evaluated. If the result of the
expression evaluation is TRUE, the program statement that immediately follows is
executed.After execution of this statement (or statements if enclosed in braces), the
expression is once again evaluated. If the result of the evaluation is TRUE, the program
statement is once again executed.This process continues until the expression finally
evaluates as FALSE, at which point the loop is terminated. Execution of the program
then continues with the statement that follows the program statement.

As an example of its use, Program 5.6 sets up a while loop, which merely counts
from 1 to 5.

Program 5.6 Introducing the while Statement

// Program to introduce the while statement

#include <stdio.h>

int main (void)

{

int count = 1;

while (count <= 5) {

printf ("%i\n", count);

++count;

}

return 0;

}

05 0672326663 CH05 6/10/04 2:02 PM Page 56

57The while Statement

Program 5.6 Output

1

2

3

4

5

The program initially sets the value of count to 1. Execution of the while loop then
begins. Because the value of count is less than or equal to 5, the statement that immedi-
ately follows is executed.The braces serve to define both the printf statement and the
statement that increments count as the body of the while loop. From the output of the
program, you can readily observe that this loop is executed precisely 5 times, or until the
value of count reaches 6.

You might have realized from this program that you could have readily accomplished
the same task by using a for statement. In fact, a for statement can always be translated
into an equivalent while statement, and vice versa. For example, the general for
statement

for (init_expression; loop_condition; loop_expression)

program statement

can be equivalently expressed in the form of a while statement as

init_expression;

while (loop_condition) {

program statement

loop_expression;

}

After you become familiar with the use of the while statement, you will gain a better
feel as to when it seems more logical to use a while statement and when to use a for
statement.

In general, a loop executed a predetermined number of times is a prime candidate for
implementation as a for statement.Also, if the initial expression, looping expression, and
looping condition all involve the same variable, the for statement is probably the right
choice.

The next program provides another example of the use of the while statement.The
program computes the greatest common divisor of two integer values.The greatest common
divisor (gcd) of two integers is the largest integer value that evenly divides the two inte-
gers. For example, the gcd of 10 and 15 is 5 because 5 is the largest integer that evenly
divides both 10 and 15.

05 0672326663 CH05 6/10/04 2:02 PM Page 57

58 Chapter 5 Program Looping

There is a procedure or algorithm that can be followed to arrive at the gcd of two arbi-
trary integers.This algorithm is based on a procedure originally developed by Euclid
around 300 B.C., and can be stated as follows:

Problem: Find the greatest common divisor of two nonnegative integers u
and v.

Step 1: If v equals 0, then you are done and the gcd is equal to u.

Step 2: Calculate temp = u % v, u = v, v = temp, and go back to step 1.

Don’t concern yourself with the details of how the preceding algorithm works—simply
take it on faith. Focus more here on developing the program to find the greatest com-
mon divisor than on performing an analysis of how the algorithm works.

After the solution to the problem of finding the greatest common divisor has been
expressed in terms of an algorithm, it becomes a much simpler task to develop the com-
puter program.An analysis of the steps of the algorithm reveals that step 2 is repetitively
executed as long as the value of v is not equal to 0.This realization leads to the natural
implementation of this algorithm in C with the use of a while statement.

Program 5.7 finds the gcd of two nonnegative integer values typed in by the user.

Program 5.7 Finding the Greatest Common Divisor

/* Program to find the greatest common divisor

of two nonnegative integer values */

#include <stdio.h>

int main (void)

{

int u, v, temp;

printf ("Please type in two nonnegative integers.\n");

scanf ("%i%i", &u, &v);

while (v != 0) {

temp = u % v;

u = v;

v = temp;

}

printf ("Their greatest common divisor is %i\n", u);

return 0;

}

05 0672326663 CH05 6/10/04 2:02 PM Page 58

59The while Statement

Program 5.7 Output

Please type in two nonnegative integers.

150 35

Their greatest common divisor is 5

Program 5.7 Output (Rerun)

Please type in two nonnegative integers.

1026 405

Their greatest common divisor is 27

The double %i characters in the scanf call indicate that two integer values are to be
entered from the keyboard.The first value that is entered is stored in the integer variable
u, whereas the second value is stored in the variable v.When the values are actually
entered from the terminal, they can be separated from each other by one or more blank
spaces or by a carriage return.

After the values have been entered from the keyboard and stored in the variables u
and v, the program enters a while loop to calculate their greatest common divisor.After
the while loop is exited, the value of u, which represents the gcd of v and the original
value of u, is displayed at the terminal, together with an appropriate message.

Program 5.8 illustrates another use of the while statement, the task of reversing the
digits of an integer that is entered from the terminal. For example, if the user types in
the number 1234, you want the program to reverse the digits of this number and display
the result of 4321.

To write such a program, you first must come up with an algorithm that accomplish-
es the stated task. Frequently, an analysis of your own method for solving the problem
leads to the development of an algorithm.To reverse the digits of a number, the method
of solution can be simply stated as “successively read the digits of the number from right
to left.”You can have a computer program “successively read” the digits of the number
by developing a procedure to successively isolate or “extract” each digit of the number,
beginning with the rightmost digit.The extracted digit can be subsequently displayed at
the terminal as the next digit of the reversed number.

You can extract the rightmost digit from an integer number by taking the remainder
of the integer after it is divided by 10. For example, 1234 % 10 gives the value 4, which
is the rightmost digit of 1234, and is also the first digit of the reversed number.
(Remember the modulus operator, which gives the remainder of one integer divided by
another.) You can get the next digit of the number by using the same process if you first
divide the number by 10, bearing in mind the way integer division works.Thus, 1234 /
10 gives a result of 123, and 123 % 10 gives us 3, which is the next digit of your
reversed number.

This procedure can be continued until the last digit has been extracted. In the general
case, you know that the last digit of the number has been extracted when the result of
the last integer division by 10 is 0.

05 0672326663 CH05 6/10/04 2:02 PM Page 59

60 Chapter 5 Program Looping

Program 5.8 Reversing the Digits of a Number

// Program to reverse the digits of a number

#include <stdio.h>

int main (void)

{

int number, right_digit;

printf ("Enter your number.\n");

scanf ("%i", &number);

while (number != 0) {

right_digit = number % 10;

printf ("%i", right_digit);

number = number / 10;

}

printf ("\n");

return 0;

}

Program 5.8 Output

Enter your number.

13579

97531

Each digit is displayed as it is extracted by the program. Notice that you did not include
a newline character inside the printf statement contained in the while loop.This forces
each successive digit to be displayed on the same line.The final printf call at the end of
the program contains just a newline character, which causes the cursor to advance to the
start of the next line.

The do Statement
The two looping statements discussed so far in this chapter both make a test of the con-
ditions before the loop is executed.Therefore, the body of the loop might never be exe-
cuted at all if the conditions are not satisfied.When developing programs, it sometimes
becomes desirable to have the test made at the end of the loop rather than at the begin-
ning. Naturally, the C language provides a special language construct to handle such a
situation.This looping statement is known as the do statement.The syntax of this state-
ment is as follows:

05 0672326663 CH05 6/10/04 2:02 PM Page 60

61The do Statement

do

program statement

while (loop_expression);

Execution of the do statement proceeds as follows: the program statement is executed
first. Next, the loop_expression inside the parentheses is evaluated. If the result of eval-
uating the loop_expression is TRUE, the loop continues and the program statement
is once again executed.As long as evaluation of the loop_expression continues to be
TRUE, the program statement is repeatedly executed.When evaluation of the expres-
sion proves FALSE, the loop is terminated, and the next statement in the program is exe-
cuted in the normal sequential manner.

The do statement is simply a transposition of the while statement, with the looping
conditions placed at the end of the loop rather than at the beginning.

Remember that, unlike the for and while loops, the do statement guarantees that the
body of the loop is executed at least once.

In Program 5.8, you used a while statement to reverse the digits of a number. Go
back to that program and try to determine what would happen if you typed in the
number 0 instead of 13579.The loop of the while statement would never be executed
and you would simply end up with a blank line in your display (as a result of the display
of the newline character from the second printf statement). If you use a do statement
instead of a while statement, you are assured that the program loop executes at least
once, thus guaranteeing the display of at least one digit in all cases. Program 5.9 shows
this revised program.

Program 5.9 Implementing a Revised Program to Reverse the Digits of a Number

// Program to reverse the digits of a number

#include <stdio.h>

int main ()

{

int number, right_digit;

printf ("Enter your number.\n");

scanf ("%i", &number);

do {

right_digit = number % 10;

printf ("%i", right_digit);

number = number / 10;

}

while (number != 0);

printf ("\n");

return 0;

}

05 0672326663 CH05 6/10/04 2:02 PM Page 61

62 Chapter 5 Program Looping

Program 5.9 Output

Enter your number.

13579

97531

Program 5.9 Output (Rerun)

Enter your number.

0

0

As you can see from the program’s output, when 0 is keyed into the program, the pro-
gram correctly displays the digit 0.

The break Statement
Sometimes when executing a loop, it becomes desirable to leave the loop as soon as a
certain condition occurs (for instance, you detect an error condition, or you reach the
end of your data prematurely).The break statement can be used for this purpose.
Execution of the break statement causes the program to immediately exit from the loop
it is executing, whether it’s a for, while, or do loop. Subsequent statements in the loop
are skipped, and execution of the loop is terminated. Execution continues with whatever
statement follows the loop.

If a break is executed from within a set of nested loops, only the innermost loop in
which the break is executed is terminated.

The format of the break statement is simply the keyword break followed by a semi-
colon:

break;

The continue Statement
The continue statement is similar to the break statement except it doesn’t cause the
loop to terminate. Rather, as its name implies, this statement causes the loop in which it
is executed to be continued.At the point that the continue statement is executed, any
statements in the loop that appear after the continue statement are automatically
skipped. Execution of the loop otherwise continues as normal.

The continue statement is most often used to bypass a group of statements inside a
loop based upon some condition, but to otherwise continue execution of the loop.The
format of the continue statement is simply

continue;

Don’t use the break or continue statements until you become very familiar with writ-
ing program loops and gracefully exiting from them.These statements are too easy to
abuse and can result in programs that are hard to follow.

05 0672326663 CH05 6/10/04 2:02 PM Page 62

63Exercises

Now that you are familiar with all the basic looping constructs provided by the C
language, you are ready to learn about another class of language statements that enable
you to make decisions during the execution of a program.These decision-making capa-
bilities are described in detail in Chapter 6,“Making Decisions.” First, try the exercises
that follow to be certain you understand how to work with loops in C.

Exercises
1. Type in and run the nine programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Write a program to generate and display a table of n and n2, for integer values of n
ranging from 1 to 10. Be certain to print appropriate column headings.

3. A triangular number can also be generated by the formula

triangularNumber = n (n + 1) / 2

for any integer value of n. For example, the 10th triangular number, 55, can be
generated by substituting 10 as the value for n in the preceding formula.Write a
program that generates a table of triangular numbers using the preceding formula.
Have the program generate every fifth triangular number between 5 and 50 (that
is, 5, 10, 15, ..., 50).

4. The factorial of an integer n, written n!, is the product of the consecutive integers
1 through n. For example, 5 factorial is calculated as

5! = 5 x 4 x 3 x 2 x 1 = 120

Write a program to generate and print a table of the first 10 factorials.

5. The following perfectly valid C program was written without much attention paid
to its format.As you will observe, the program is not very readable. (And believe it
or not, it is even possible to make this program significantly more unreadable!)
Using the programs presented in this chapter as examples, reformat the program so
that it is more readable.Then type the program into the computer and run it.
#include <stdio.h>

int main(void){

int n,two_to_the_n;

printf("TABLE OF POWERS OF TWO\n\n");

printf(" n 2 to the n\n");

printf("--- ---------------\n");

two_to_the_n=1;

for(n=0;n<=10;++n){

printf("%2i %i\n",n,two_to_the_n); two_to_the_n*=2;}

return 0;}

05 0672326663 CH05 6/10/04 2:02 PM Page 63

64 Chapter 5 Program Looping

6. A minus sign placed in front of a field width specification causes the field to be
displayed left-justified. Substitute the following printf statement for the correspon-
ding statement in Program 5.2, run the program, and compare the outputs pro-
duced by both programs.

printf ("%-2i %i\n", n, triangularNumber);

7. A decimal point before the field width specification in a printf statement has a
special purpose.Try to determine its purpose by typing in and running the follow-
ing program. Experiment by typing in different values each time you are
prompted.
#include <stdio.h>

int main (void)

{

int dollars, cents, count;

for (count = 1; count <= 10; ++count) {

printf ("Enter dollars: ");

scanf ("%i", &dollars);

printf ("Enter cents: ");

scanf ("%i", ¢s);

printf ("$%i.%.2i\n\n", dollars, cents);

}

return 0;

}

8. Program 5.5 allows the user to type in only five different numbers. Modify that
program so that the user can type in the number of triangular numbers to be cal-
culated.

9. Rewrite Programs 5.2 through 5.5, replacing all uses of the for statement by
equivalent while statements. Run each program to verify that both versions are
identical.

10. What would happen if you typed a negative number into Program 5.8? Try it
and see.

11. Write a program that calculates the sum of the digits of an integer. For example,
the sum of the digits of the number 2155 is 2 + 1 + 5 + 5 or 13.The program
should accept any arbitrary integer typed in by the user.

05 0672326663 CH05 6/10/04 2:02 PM Page 64

6
Making Decisions

IN CHAPTER 5,“PROGRAM LOOPING,”YOU LEARNED that one of the fundamental prop-
erties of a computer is its capability to repetitively execute a sequence of instructions.
But another fundamental property lies in its capability to make decisions.You saw how
these decision-making powers were used in the execution of the various looping state-
ments to determine when to terminate the program loop.Without such capabilities, you
would never be able to “get out” of a program loop and would end up executing the
same sequence of statements over and over again, theoretically forever (which is why
such a program loop is called an infinite loop).

The C programming language also provides several other decision-making constructs,
which are covered in this chapter:

n The if statement
n The switch statement
n The conditional operator

The if Statement
The C programming language provides a general decision-making capability in the form
of a language construct known as the if statement. The general format of this statement
is as follows:

if (expression)

program statement

Imagine that you could translate a statement such as “If it is not raining, then I will go
swimming” into the C language. Using the preceding format for the if statement, this
might be “written” in C as follows:

if (it is not raining)

I will go swimming

06 0672326663 CH06 6/10/04 2:01 PM Page 65

66 Chapter 6 Making Decisions

The if statement is used to stipulate execution of a program statement (or statements if
enclosed in braces) based upon specified conditions. I will go swimming if it is not rain-
ing. Similarly, in the program statement

if (count > COUNT_LIMIT)

printf ("Count limit exceeded\n");

the printf statement is executed only if the value of count is greater than the value of
COUNT_LIMIT; otherwise, it is ignored.

An actual program example helps drive this point home. Suppose you want to write a
program that accepts an integer typed in from the terminal and then displays the
absolute value of that integer.A straightforward way to calculate the absolute value of an
integer is to simply negate the number if it is less than zero.The use of the phrase “if it is
less than zero” in the preceding sentence signals that a decision must be made by the
program.This decision can be affected by the use of an if statement, as shown in
Program 6.1.

Program 6.1 Calculating the Absolute Value of an Integer

// Program to calculate the absolute value of an integer

int main (void)

{

int number;

printf ("Type in your number: ");

scanf ("%i", &number);

if (number < 0)

number = -number;

printf ("The absolute value is %i\n", number);

return 0;

}

Program 6.1 Output

Type in your number: -100

The absolute value is 100

Program 6.1 Output (Rerun)

Type in your number: 2000

The absolute value is 2000

06 0672326663 CH06 6/10/04 2:01 PM Page 66

67The if Statement

The program was run twice to verify that it is functioning properly. Of course, it might
be desirable to run the program several more times to get a higher level of confidence so
that you know it is indeed working correctly, but at least you know that you have
checked both possible outcomes of the decision made by the program.

After a message is displayed to the user and the integer value that is entered is stored
in number, the program tests the value of number to see if it is less than zero. If it is, the
following program statement, which negates the value of number, is executed. If the
value of number is not less than zero, this program statement is automatically skipped. (If
it is already positive, you don’t want to negate it.) The absolute value of number is then
displayed by the program, and program execution ends.

Look at Program 6.2, which uses the if statement. Imagine that you have a list of
grades for which you want to compute the average. But in addition to computing the
average, suppose that you also need a count of the number of failing grades in the list.
For the purposes of this problem, assume that a grade less than 65 is considered a failing
grade.

The notion of keeping count of the number of failing grades indicates that you must
make a decision as to whether a grade qualifies as a failing grade. Once again, the if
statement comes to the rescue.

Program 6.2 Calculating the Average of a Set of Grades and Counting the Number of
Failing Test Grades

/* Program to calculate the average of a set of grades and count

the number of failing test grades */

#include <stdio.h>

int main (void)

{

int numberOfGrades, i, grade;

int gradeTotal = 0;

int failureCount = 0;

float average;

printf ("How many grades will you be entering? ");

scanf ("%i", &numberOfGrades);

for (i = 1; i <= numberOfGrades; ++i) {

printf ("Enter grade #%i: ", i);

scanf ("%i", &grade);

gradeTotal = gradeTotal + grade;

06 0672326663 CH06 6/10/04 2:01 PM Page 67

68 Chapter 6 Making Decisions

if (grade < 65)

++failureCount;

}

average = (float) gradeTotal / numberOfGrades;

printf ("\nGrade average = %.2f\n", average);

printf ("Number of failures = %i\n", failureCount);

return 0;

}

Program 6.2 Output

How many grades will you be entering? 7

Enter grade #1: 93

Enter grade #2: 63

Enter grade #3: 87

Enter grade #4: 65

Enter grade #5: 62

Enter grade #6: 88

Enter grade #7: 76

Grade average = 76.29

Number of failures = 2

The variable gradeTotal, which is used to keep a cumulative total of the grades as they
are typed in at the terminal, is initially set to 0.The number of failing test grades is
stored in the variable failureCount, whose value also is initially set to 0.The variable
average is declared to be of type float because the average of a set of integers is not
necessarily an integer itself.

The program then asks the user to enter the number of grades that will be keyed in
and stores the value that is entered in the variable numberOfGrades.A loop is then set up
that will be executed for each grade.The first part of the loop prompts the user to enter
in the grade.The value that is entered is stored in the variable called, appropriately
enough, grade.

The value of grade is then added into gradeTotal, after which a test is made to see
if it is a failing test grade. If it is, the value of failureCount is incremented by 1.The
entire loop is then repeated for the next grade in the list.

When all of the grades have been entered and totaled, the program then calculates the
grade average. On impulse, it seems that a statement such as

average = gradeTotal / numberOfGrades;

Program 6.2 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 68

69The if Statement

would do the trick. However, recall that if the preceding statement were used, the deci-
mal portion of the result of the division would be lost.This is because an integer division
would be performed because both the numerator and the denominator of the division
operation are integers.

Two different solutions are possible for this problem. One is to declare either
numberOfGrades or gradeTotal to be of type float.This then guarantees that the divi-
sion is carried out without the loss of the decimal places.The only problem with this
approach is that the variables numberOfGrades and gradeTotal are used by the program
to store only integer values. Declaring either of them to be of type float only obscures
their use in the program and is generally not a very clean way of doing things.

The other solution, as used by the program, is to actually convert the value of one of
the variables to a floating-point value for the purposes of the calculation.The type cast
operator (float) is used to convert the value of the variable gradeTotal to type float
for purposes of evaluation of the expression. Because the value of gradeTotal is cast
into a floating-point value before the division takes place, the division is treated as the
division of a floating value by an integer. Because one of the operands is now a floating-
point value, the division operation is carried out as a floating-point operation.This
means, of course, that you obtain those decimal places that you want in the average.

After the average has been calculated, it is displayed at the terminal to two decimal
places of accuracy. If a decimal point followed by a number (known collectively as a pre-
cision modifier) is placed directly before the format character f (or e) in a printf format
string, the corresponding value is displayed to the specified number of decimal places,
rounded. So in Program 6.2, the precision modifier .2 is used to cause the value of
average to be displayed to two decimal places.

After the program has displayed the number of failing grades, execution of the pro-
gram is complete.

The if-else Construct
If someone asks you whether a particular number is even or odd, you most likely make
the determination by examining the last digit of the number. If this digit is either 0, 2, 4,
6, or 8, you readily state that the number is even. Otherwise, you claim that the number
is odd.

An easier way for a computer to determine whether a particular number is even or
odd is affected not by examining the last digit of the number to see if it is 0, 2, 4, 6, or
8, but by simply determining whether the number is evenly divisible by 2. If it is, the
number is even; else it is odd.

You have already seen how the modulus operator % is used to compute the remainder
of one integer divided by another.This makes it the perfect operator to use in determin-
ing whether an integer is evenly divisible by 2. If the remainder after division by 2 is
zero, it is even; else it is odd.

Look at Program 6.3—a program that determines whether an integer value typed in
by the user is even or odd and that displays an appropriate message at the terminal.

06 0672326663 CH06 6/10/04 2:01 PM Page 69

70 Chapter 6 Making Decisions

Program 6.3 Determining if a Number Is Even or Odd

// Program to determine if a number is even or odd

#include <stdio.h>

int main (void)

{

int number_to_test, remainder;

printf ("Enter your number to be tested.: ");

scanf ("%i", &number_to_test);

remainder = number_to_test % 2;

if (remainder == 0)

printf ("The number is even.\n");

if (remainder != 0)

printf ("The number is odd.\n");

return 0;

}

Program 6.3 Output

Enter your number to be tested: 2455

The number is odd.

Program 6.3 Output (Rerun)

Enter your number to be tested: 1210

The number is even.

After the number is typed in, the remainder after division by 2 is calculated.The first if
statement tests the value of this remainder to see if it is equal to zero. If it is, the message
“The number is even” is displayed.

The second if statement tests the remainder to see if it’s not equal to zero and, if
that’s the case, displays a message stating that the number is odd.

The fact is that whenever the first if statement succeeds, the second one must fail,
and vice versa. Recall from the discussions of even/odd numbers at the beginning of this
section that if the number is evenly divisible by 2, it is even; else it is odd.

06 0672326663 CH06 6/10/04 2:01 PM Page 70

71The if Statement

When writing programs, this “else” concept is so frequently required that almost all
modern programming languages provide a special construct to handle this situation. In
C, this is known as the if-else construct and the general format is as follows:

if (expression)

program statement 1

else

program statement 2

The if-else is actually just an extension of the general format of the if statement. If
the result of the evaluation of expression is TRUE, program statement 1, which
immediately follows, is executed; otherwise, program statement 2 is executed. In either
case, either program statement 1 or program statement 2 is executed, but not both.

You can incorporate the if-else statement into Program 6.3, replacing the two if
statements with a single if-else statement.The use of this new program construct actu-
ally helps to reduce the program’s complexity and also improves its readability, as shown
in Program 6.4.

Program 6.4 Revising the Program to Determine if a Number Is Even or Odd

// Program to determine if a number is even or odd (Ver. 2)

#include <stdio.h>

int main ()

{

int number_to_test, remainder;

printf ("Enter your number to be tested: ");

scanf ("%i", &number_to_test);

remainder = number_to_test % 2;

if (remainder == 0)

printf ("The number is even.\n");

else

printf ("The number is odd.\n");

return 0;

}

Program 6.4 Output

Enter your number to be tested: 1234

The number is even.

06 0672326663 CH06 6/10/04 2:01 PM Page 71

72 Chapter 6 Making Decisions

Program 6.4 Output (Rerun)

Enter your number to be tested: 6551

The number is odd.

Remember that the double equal sign == is the equality test and the single equal sign is
the assignment operator. It can lead to lots of headaches if you forget this and inadver-
tently use the assignment operator inside the if statement.

Compound Relational Tests
The if statements that you’ve used so far in this chapter set up simple relational tests
between two numbers. In Program 6.1, you compared the value of number against 0,
whereas in Program 6.2, you compared the value of grade against 65. Sometimes, it
becomes desirable, if not necessary, to set up more sophisticated tests. Suppose, for exam-
ple, that in Program 6.2 you want to count not the number of failing grades, but instead
the number of grades that are between 70 and 79, inclusive. In such a case, you do not
merely want to compare the value of grade against one limit, but against the two limits
70 and 79 to make certain that it falls within the specified range.

The C language provides the mechanisms necessary to perform these types of com-
pound relational tests.A compound relational test is simply one or more simple relational
tests joined by either the logical AND or the logical OR operator.These operators are rep-
resented by the character pairs && and || (two vertical bar characters), respectively.As an
example, the C statement

if (grade >= 70 && grade <= 79)

++grades_70_to_79;

increments the value of grades_70_to_79 only if the value of grade is greater than or
equal to 70 and less than or equal to 79. In a like manner, the statement

if (index < 0 || index > 99)

printf ("Error - index out of range\n");

causes execution of the printf statement if index is less than 0 or greater than 99.
The compound operators can be used to form extremely complex expressions in C.

The C language grants the programmer ultimate flexibility in forming expressions.This
flexibility is a capability that is often abused. Simpler expressions are almost always easier
to read and debug.

When forming compound relational expressions, liberally use parentheses to aid read-
ability of the expression and to avoid getting into trouble because of a mistaken assump-
tion about the precedence of the operators in the expression.You can also use blank
spaces to aid in the expression’s readability.An extra blank space around the && and ||
operators visually sets these operators apart from the expressions that are being joined by
these operators.

06 0672326663 CH06 6/10/04 2:01 PM Page 72

73The if Statement

To illustrate the use of a compound relational test in an actual program example,
write a program that tests to see whether a year is a leap year.A year is a leap year if it is
evenly divisible by 4.What you might not realize, however, is that a year that is divisible
by 100 is not a leap year unless it also is divisible by 400.

Try to think how you would go about setting up a test for such a condition. First,
you could compute the remainders of the year after division by 4, 100, and 400, and
assign these values to appropriately named variables, such as rem_4, rem_100, and
rem_400, respectively.Then, you could proceed to test these remainders to determine if
the desired criteria for a leap year are met.

If you rephrase the previous definition of a leap year, you can say that a year is a leap
year if it is evenly divisible by 4 and not by 100 or if it is evenly divisible by 400. Stop
for a moment to reflect on this last sentence and to verify to yourself that it is equivalent
to our previously stated definition. Now that you have reformulated our definition in
these terms, it becomes a relatively straightforward task to translate it into a program
statement as follows:

if ((rem_4 == 0 && rem_100 != 0) || rem_400 == 0)

printf ("It's a leap year.\n");

The parentheses around the subexpression

rem_4 == 0 && rem_100 != 0

are not required because that is how the expression will be evaluated anyway.
If you add a few statements in front of this test to declare your variables and to enable

the user to key in the year from the terminal, you end up with a program that deter-
mines if a year is a leap year, as shown in Program 6.5.

Program 6.5 Determining if a Year Is a Leap Year

// Program to determines if a year is a leap year

#include <stdio.h>

int main (void)

{

int year, rem_4, rem_100, rem_400;

printf ("Enter the year to be tested: ");

scanf ("%i", &year);

rem_4 = year % 4;

rem_100 = year % 100;

rem_400 = year % 400;

if ((rem_4 == 0 && rem_100 != 0) || rem_400 == 0)

printf ("It's a leap year.\n");

06 0672326663 CH06 6/10/04 2:01 PM Page 73

74 Chapter 6 Making Decisions

else

printf ("Nope, it's not a leap year.\n");

return 0;

}

Program 6.5 Output

Enter the year to be tested: 1955

Nope, it's not a leap year.

Program 6.5 Output (Rerun)

Enter the year to be tested: 2000

It's a leap year.

Program 6.5 Output (Second Rerun)

Enter the year to be tested: 1800

Nope, it's not a leap year.

The previous examples show a year that was not a leap year because it wasn’t evenly
divisible by 4 (1955), a year that was a leap year because it was evenly divisible by 400
(2000), and a year that wasn’t a leap year because it was evenly divisible by 100 but not
by 400 (1800).To complete the run of test cases, you should also try a year that is evenly
divisible by 4 but not by 100.This is left as an exercise for you.

As mentioned previously, C gives you a tremendous amount of flexibility in forming
expressions. For instance, in the preceding program, you did not have to calculate the
intermediate results rem_4, rem_100, and rem_400—you could have performed the calcu-
lation directly inside the if statement as follows:

if ((year % 4 == 0 && year % 100 != 0) || year % 400 == 0)

The use of blank spaces to set off the various operators still makes the preceding expres-
sion readable. If you decide to ignore adding blanks and remove the unnecessary set of
parentheses, you end up with an expression that looks like this:

if(year%4==0&&year%100!=0)||year%400==0)

This expression is perfectly valid and (believe it or not) executes identically to the
expression shown immediately prior. Obviously, those extra blanks go a long way toward
aiding understanding of complex expressions.

Program 6.5 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 74

75The if Statement

Nested if Statements
In the general format of the if statement, remember that if the result of evaluating the
expression inside the parentheses is TRUE, the statement that immediately follows is
executed. It is perfectly valid that this program statement be another if statement, as in
the following statement:

if (gameIsOver == 0)

if (playerToMove == YOU)

printf ("Your Move\n");

If the value of gameIsOver is 0, the following statement is executed, which is another if
statement.This if statement compares the value of playerToMove against YOU. If the two
values are equal, the message “Your Move” is displayed at the terminal.Therefore, the
printf statement is executed only if gameIsOver equals 0 and playerToMove equals YOU.
In fact, this statement could have been equivalently formulated using compound rela-
tionals as follows:

if (gameIsOver == 0 && playerToMove == YOU)

printf ("Your Move\n");

A more practical example of “nested” if statements is if you added an else clause to the
previous example, as follows:

if (gameIsOver == 0)

if (playerToMove == YOU)

printf ("Your Move\n");

else

printf ("My Move\n");

Execution of this statement proceeds as described previously. However, if gameIsOver
equals 0 and the value of playerToMove is not equal to YOU, then the else clause is exe-
cuted.This displays the message “My Move” at the terminal. If gameIsOver does not
equal 0, the entire if statement that follows, including its associated else clause, is
skipped.

Notice how the else clause is associated with the if statement that tests the value of
playerToMove, and not with the if statement that tests the value of gameIsOver.The
general rule is that an else clause is always associated with the last if statement that
does not contain an else.

You can go one step further and add an else clause to the outermost if statement in
the preceding example.This else clause is executed if the value of gameIsOver is not 0.

if (gameIsOver == 0)

if (playerToMove == YOU)

printf ("Your Move\n");

else

printf ("My Move\n");

else

printf ("The game is over\n");

06 0672326663 CH06 6/10/04 2:01 PM Page 75

76 Chapter 6 Making Decisions

The proper use of indentation goes a long way toward aiding your understanding of the
logic of complex statements.

Of course, even if you use indentation to indicate the way you think a statement will
be interpreted in the C language, it might not always coincide with the way that the
compiler actually interprets the statement. For instance, removing the first else clause
from the previous example

if (gameIsOver == 0)

if (playerToMove == YOU)

printf ("Your Move\n");

else

printf ("The game is over\n");

does not result in the statement being interpreted as indicated by its format. Instead, this
statement is interpreted as

if (gameIsOver == 0)

if (playerToMove == YOU)

printf ("Your Move\n");

else

printf ("The game is over\n");

because the else clause is associated with the last un-elsed if.You can use braces to
force a different association in those cases in which an innermost if does not contain an
else, but an outer if does.The braces have the effect of “closing off ” the if statement.
Thus,

if (gameIsOver == 0) {

if (playerToMove == YOU)

printf ("Your Move\n");

}

else

printf ("The game is over\n");

achieves the desired effect, with the message “The game is over” being displayed if the
value of gameIsOver is not 0.

The else if Construct
You’ve seen how the else statement comes into play when you have a test against two
possible conditions—either the number is even, else it is odd; either the year is a leap
year, else it is not. However, programming decisions that you have to make are not
always so black-and-white. Consider the task of writing a program that displays –1 if a
number typed in by a user is less than zero, 0 if the number typed in is equal to zero, and
1 if the number is greater than zero. (This is actually an implementation of what is com-
monly called the sign function.) Obviously, you must make three tests in this case—to
determine if the number that is keyed in is negative, zero, or positive. Our simple if-
else construct does not work. Of course, in this case, you could always resort to three

06 0672326663 CH06 6/10/04 2:01 PM Page 76

77The if Statement

separate if statements, but this solution does not always work in general—especially if
the tests that are made are not mutually exclusive.

You can handle the situation just described by adding an if statement to your else
clause. Because the statement that followed an else can be any valid C program state-
ment, it seems logical that it can be another if.Thus, in the general case, you could
write

if (expression 1)

program statement 1

else

if (expression 2)

program statement 2

else

program statement 3

which effectively extends the if statement from a two-valued logic decision to a three-
valued logic decision.You can continue to add if statements to the else clauses, in the
manner just shown, to effectively extend the decision to an n-valued logic decision.

The preceding construct is so frequently used that it is generally referred to as an
else if construct and is usually formatted differently from that shown previously as

if (expression 1)

program statement 1

else if (expression 2)

program statement 2

else

program statement 3

This latter method of formatting improves the readability of the statement and makes it
clearer that a three-way decision is being made.

Program 6.6 illustrates the use of the else if construct by implementing the sign
function discussed earlier.

Program 6.6 Implementing the Sign Function

// Program to implement the sign function

#include <stdio.h>

int main (void)

{

int number, sign;

printf ("Please type in a number: ");

scanf ("%i", &number);

06 0672326663 CH06 6/10/04 2:01 PM Page 77

78 Chapter 6 Making Decisions

if (number < 0)

sign = -1;

else if (number == 0)

sign = 0;

else // Must be positive

sign = 1;

printf ("Sign = %i\n", sign);

return 0;

}

Program 6.6 Output

Please type in a number: 1121

Sign = 1

Program 6.6 Output (Rerun)

Please type in a number: -158

Sign = -1

Program 6.6 Output (Second Rerun)

Please type in a number: 0

Sign = 0

If the number that is entered is less than zero, sign is assigned the value –1; if the num-
ber is equal to zero, sign is assigned the value 0; otherwise, the number must be greater
than zero, so sign is assigned the value 1.

Program 6.7 analyzes a character that is typed in from the terminal and classifies it as
either an alphabetic character (a–z or A–Z), a digit (0–9), or a special character (any-
thing else).To read a single character from the terminal, the format characters %c are
used in the scanf call.

Program 6.7 Categorizing a Single Character Entered at the Terminal

// Program to categorize a single character that is entered at the terminal

#include <stdio.h>

int main (void)

{

char c;

Program 6.6 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 78

79The if Statement

printf ("Enter a single character:\n");

scanf ("%c", &c);

if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))

printf ("It's an alphabetic character.\n");

else if (c >= '0' && c <= '9')

printf ("It's a digit.\n");

else

printf ("It's a special character.\n");

return 0;

}

Program 6.7 Output

Enter a single character:

&

It's a special character.

Program 6.7 Output (Rerun)

Enter a single character:

8

It's a digit.

Program 6.7 Output (Second Rerun)

Enter a single character:

B

It's an alphabetic character.

The first test that is made after the character is read in determines whether the char
variable c is an alphabetic character.This is done by testing if the character is either a
lowercase letter or an uppercase letter.The former test is made by the expression

(c >= 'a' && c <= 'z')

which is TRUE if c is within the range of characters 'a' through 'z'; that is, if c is a
lowercase letter.The latter test is made by the expression

(c >= 'A' && c <= 'Z')

Program 6.7 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 79

80 Chapter 6 Making Decisions

which is TRUE if c is within the range of characters 'A' through 'Z'; that is, if c is an
uppercase letter.These tests work on all computer systems that store characters inside the
machine in a format known as ASCII format.1

If the variable c is an alphabetic character, the first if test succeeds and the message
It's an alphabetic character. is displayed. If the test fails, the else if clause is
executed.This clause determines if the character is a digit. Note that this test compares
the character c against the characters '0' and '9' and not the integers 0 and 9.This is
because a character was read in from the terminal, and the characters '0' to '9' are not
the same as the numbers 0–9. In fact, on a computer system that uses the ASCII format
mentioned previously, the character '0' is actually represented internally as the number
48, the character '1' as the number 49, and so on.

If c is a digit character, the phrase It's a digit. is displayed. Otherwise, if c is not
alphabetic and is not a digit, the final else clause is executed and displays the phrase
It’s a special character. Execution of the program is then complete.

You should note that even though scanf is used here to read just a single character,
the Enter (or Return) key must still be pressed after the character is typed to send the
input to the program. In general, whenever you’re reading data from the terminal, the
program doesn’t see any of the data typed on the line until the Enter key is pressed.

For your next example, suppose you want to write a program that allows the user to
type in simple expressions of the form

number operator number

The program evaluates the expression and displays the results at the terminal, to two
decimal places of accuracy.The operators that you want to have recognized are the nor-
mal operators for addition, subtraction, multiplication, and division. Program 6.8 makes
use of a large if statement with many else if clauses to determine which operation is
to be performed.

Program 6.8 Evaluating Simple Expressions

/* Program to evaluate simple expressions of the form

number operator number */

#include <stdio.h>

int main (void)

{

float value1, value2;

char operator;

1. It’s better to use routines in the standard library called islower and isupper and avoid the internal
representation issue entirely. To do that, you need to include the line #include <ctype.h> in
your program. However, we’ve put this here for illustrative purposes only.

06 0672326663 CH06 6/10/04 2:01 PM Page 80

81The if Statement

printf ("Type in your expression.\n");

scanf ("%f %c %f", &value1, &operator, &value2);

if (operator == '+')

printf ("%.2f\n", value1 + value2);

else if (operator == '-')

printf ("%.2f\n", value1 - value2);

else if (operator == '*')

printf ("%.2f\n", value1 * value2);

else if (operator == '/')

printf ("%.2f\n", value1 / value2);

return 0;

}

Program 6.8 Output

Type in your expression.

123.5 + 59.3

182.80

Program 6.8 Output (Rerun)

Type in your expression.

198.7 / 26

7.64

Program 6.8 Output (Second Rerun)

Type in your expression.

89.3 * 2.5

223.25

The scanf call specifies that three values are to be read into the variables value1,
operator, and value2.A floating value can be read in with the %f format characters, the
same characters used for the output of floating values.This is the format used to read in
the value of the variable value1, which is the first operand of your expression.

Next, you want to read in the operator. Because the operator is a character ('+', '-',
'*', or '/') and not a number, you read it into the character variable operator.The %c
format characters tell the system to read in the next character from the terminal.The
blank spaces inside the format string indicate that an arbitrary number of blank spaces
are to be permitted on the input.This enables you to separate the operands from the

Program 6.8 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 81

82 Chapter 6 Making Decisions

operator with blank spaces when you type in these values. If you had specified the for-
mat string "%f%c%f" instead, no spaces would have been permitted after typing in the
first number and before typing in the operator.This is because when the scanf function
is reading a character with the %c format characters, the next character on the input, even
if it is a blank space, is the character that is read. However, it should be noted that, in gen-
eral, the scanf function always ignores leading spaces when it is reading in either a deci-
mal or floating-point number.Therefore, the format string "%f %c%f" would have
worked just as well in the preceding program.

After the second operand has been keyed in and stored in the variable value2, the
program proceeds to test the value of operator against the four permissible operators.
When a correct match is made, the corresponding printf statement is executed to dis-
play the results of the calculation. Execution of the program is then complete.

A few words about program thoroughness are in order at this point.While the pre-
ceding program does accomplish the task that it was set to perform, the program is not
really complete because it does not account for mistakes made by the user. For example,
what happens if the user types in a ? for the operator by mistake? The program simply
“falls through” the if statement and no messages ever appear at the terminal to alert the
user that he incorrectly typed in his expression.

Another case that is overlooked is when the user types in a division operation with
zero as the divisor.You know by now that you should never attempt to divide a number
by zero in C.The program should check for this case.

Trying to predict the ways that a program can fail or produce unwanted results and
then taking preventive measures to account for such situations is a necessary part of pro-
ducing good, reliable programs. Running a sufficient number of test cases against a pro-
gram often points the finger to portions of the program that do not account for certain
cases. But it goes further than that. It must become a matter of self-discipline while cod-
ing a program to always say “What would happen if ...” and to insert the necessary pro-
gram statements to handle the situation properly.

Program 6.8A, a modified version of Program 6.8, accounts for division by zero and
the keying in of an unknown operator.

Program 6.8A Revising the Program to Evaluate Simple Expressions

/* Program to evaluate simple expressions of the form

value operator value */

#include <stdio.h>

int main (void)

{

float value1, value2;

char operator;

printf ("Type in your expression.\n");

scanf ("%f %c %f", &value1, &operator, &value2);

06 0672326663 CH06 6/10/04 2:01 PM Page 82

83The if Statement

if (operator == '+')

printf ("%.2f\n", value1 + value2);

else if (operator == '-')

printf ("%.2f\n", value1 - value2);

else if (operator == '*')

printf ("%.2f\n", value1 * value2);

else if (operator == '/')

if (value2 == 0)

printf ("Division by zero.\n");

else

printf ("%.2f\n", value1 / value2);

else

printf ("Unknown operator.\n");

return 0;

}

Program 6.8A Output

Type in your expression.

123.5 + 59.3

182.80

Program 6.8A Output (Rerun)

Type in your expression.

198.7 / 0

Division by zero.

Program 6.8A Output (Second Rerun)

Type in your expression.

125 $ 28

Unknown operator.

When the operator that is typed in is the slash, for division, another test is made to
determine if value2 is 0. If it is, an appropriate message is displayed at the terminal.
Otherwise, the division operation is carried out and the results are displayed. Pay careful
attention to the nesting of the if statements and the associated else clauses in this case.

The else clause at the end of the program catches any “fall throughs.”Therefore, any
value of operator that does not match any of the four characters tested causes this else
clause to be executed, resulting in the display of “Unknown operator.”

Program 6.8A Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 83

84 Chapter 6 Making Decisions

The switch Statement
The type of if-else statement chain that you encountered in the last program exam-
ple—in which the value of a variable is successively compared against different values—is
so commonly used when developing programs that a special program statement exists in
the C language for performing precisely this function.The name of the statement is the
switch statement, and its general format is

switch (expression)

{

case value1:

program statement

program statement

...

break;

case value2:

program statement

program statement

...

break;

...

case valuen:

program statement

program statement

...

break;

default:

program statement

program statement

...

break;

}

The expression enclosed within parentheses is successively compared against the values
value1, value2, ..., valuen, which must be simple constants or constant expressions. If a
case is found whose value is equal to the value of expression, the program statements
that follow the case are executed. Note that when more than one such program state-
ment is included, they do not have to be enclosed within braces.

The break statement signals the end of a particular case and causes execution of the
switch statement to be terminated. Remember to include the break statement at the
end of every case. Forgetting to do so for a particular case causes program execution to
continue into the next case whenever that case gets executed.

The special optional case called default is executed if the value of expression does
not match any of the case values.This is conceptually equivalent to the “fall through”
else that you used in the previous example. In fact, the general form of the switch
statement can be equivalently expressed as an if statement as follows:

06 0672326663 CH06 6/10/04 2:01 PM Page 84

85The switch Statement

if (expression == value1)

{

program statement

program statement

...

}

else if (expression == value2)

{

program statement

program statement

...

}

...

else if (expression == valuen)

{

program statement

program statement

...

}

else

{

program statement

program statement

...

}

Bearing this mind, you can translate the big if statement from Program 6.8A into an
equivalent switch statement, as shown in Program 6.9.

Program 6.9 Revising the Program to Evaluate Simple Expressions,Version 2

/* Program to evaluate simple expressions of the form

value operator value */

#include <stdio.h>

int main (void)

{

float value1, value2;

char operator;

printf ("Type in your expression.\n");

scanf ("%f %c %f", &value1, &operator, &value2);

switch (operator)

{

case '+':

printf ("%.2f\n", value1 + value2);

06 0672326663 CH06 6/10/04 2:01 PM Page 85

86 Chapter 6 Making Decisions

break;

case '-':

printf ("%.2f\n", value1 - value2);

break;

case '*':

printf ("%.2f\n", value1 * value2);

break;

case '/':

if (value2 == 0)

printf ("Division by zero.\n");

else

printf ("%.2f\n", value1 / value2);

break;

default:

printf ("Unknown operator.\n");

break;

}

return 0;

}

Program 6.9 Output

Type in your expression.

178.99 - 326.8

-147.81

After the expression has been read in, the value of operator is successively compared
against the values as specified by each case.When a match is found, the statements con-
tained inside the case are executed.The break statement then sends execution out of the
switch statement, where execution of the program is complete. If none of the cases
match the value of operator, the default case, which displays Unknown operator. is
executed.

The break statement in the default case is actually unnecessary in the preceding
program because no statements follow this case inside the switch. Nevertheless, it is a
good programming habit to remember to include the break at the end of every case.

When writing a switch statement, bear in mind that no two case values can be the
same. However, you can associate more than one case value with a particular set of
program statements.This is done simply by listing the multiple case values (with the
keyword case before the value and the colon after the value in each case) before the
common statements that are to be executed.As an example, in the following switch
statement, the printf statement, which multiples value1 by value2, is executed if
operator is equal to an asterisk or to the lowercase letter x.

Program 6.9 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 86

87Boolean Variables

switch (operator)

{

...

case '*':

case 'x':

printf ("%.2f\n", value1 * value2);

break;

...

}

Boolean Variables
Many new programmers soon find themselves with the task of having to write a pro-
gram to generate a table of prime numbers.To refresh your memory, a positive integer p is
a prime number if it is not evenly divisible by any other integers, other than 1 and itself.
The first prime integer is defined to be 2.The next prime is 3, because it is not evenly
divisible by any integers other than 1 and 3, and 4 is not prime because it is evenly divis-
ible by 2.

There are several approaches that you can take to generate a table of prime numbers.
If you have the task of generating all prime numbers up to 50, for example, the most
straightforward (and simplest) algorithm to generate such a table is simply to test each
integer p for divisibility by all integers from 2 through p–1. If any such integer evenly
divided p, then p is not prime; otherwise, it is a prime number. Program 6.10 illustrates
the program to generate a table of prime numbers.

Program 6.10 Generating a Table of Prime Numbers

// Program to generate a table of prime numbers

#include <stdio.h>

int main (void)

{

int p, d;

_Bool isPrime;

for (p = 2; p <= 50; ++p) {

isPrime = 1;

for (d = 2; d < p; ++d)

if (p % d == 0)

isPrime = 0;

if (isPrime != 0)

printf ("%i ", p);

}

06 0672326663 CH06 6/10/04 2:01 PM Page 87

88 Chapter 6 Making Decisions

printf ("\n");

return 0;

}

Program 6.10 Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Several points are worth noting about the program in Program 6.10.The outermost for
statement sets up a loop to cycle through the integers 2 through 50.The loop variable p
represents the value you are currently testing to see if it is prime.The first statement in
the loop assigns the value 1 to the variable isPrime.The use of this variable will become
apparent shortly.

A second loop is set up to divide p by the integers from 2 through p–1. Inside the
loop, a test is made to see if the remainder of p divided by d is 0. If it is, you know that p
cannot be prime because an integer other than 1 and itself can evenly divide it.To signal
that p is no longer a candidate as a prime number, the value of the variable isPrime is
set equal to 0.

When the innermost loop finishes execution, the value of isPrime is tested. If its
value is not equal to zero, no integer was found that evenly divides p; therefore, p must
be a prime number, and its value is displayed.

You might have noticed that the variable isPrime takes on either the value 0 or 1,
and no other values.That’s why you declared it to be a _Bool variable. Its value is 1 as
long as p still qualifies as a prime number. But as soon as a single even divisor is found,
its value is set to 0 to indicate that p no longer satisfies the criteria for being prime.
Often, variables that are used in such a manner are referred to as flags.A flag typically
assumes only one of two different values. Furthermore, the value of a flag is usually test-
ed at least once in the program to see if it is “on” (TRUE) or “off ” (FALSE), and some
particular action is taken based upon the results of the test.

In C, the notion of a flag being TRUE or FALSE is most naturally translated into the
values 1 and 0, respectively. So in the Program 6.10, when you set the value of isPrime
to 1 inside the loop, you are effectively setting it as TRUE to indicate that p “is prime.”
If during the course of execution of the inner for loop an even divisor is found, the
value of isPrime is set to FALSE to indicate that p no longer “is prime.”

It is no coincidence that the value 1 is typically used to represent the TRUE or “on”
state and 0 to represent the FALSE or “off ” state.This representation corresponds to the
notion of a single bit inside a computer.When the bit is “on,” its value is 1; when it is

Program 6.10 Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 88

89Boolean Variables

“off,” its value is 0. But in C, there is an even more convincing argument in favor of
these logic values. It has to do with the way the C language treats the concept of TRUE
and FALSE.

Recall from the beginning of this chapter that if the conditions specified inside the
if statement are “satisfied,” the program statement that immediately follows executes.
But what exactly does “satisfied” mean? In the C language, satisfied means nonzero, and
nothing more. So the statement

if (100)

printf ("This will always be printed.\n");

results in execution of the printf statement because the condition in the if statement
(in this case, simply the value 100) is nonzero and, therefore, is satisfied.

In each of the programs in this chapter, the notions of “nonzero means satisfied” and
“zero means not satisfied” are used.This is because whenever a relational expression is
evaluated in C, it is given the value 1 if the expression is satisfied and 0 if the expression
is not satisfied. So evaluation of the statement

if (number < 0)

number = -number;

actually proceeds as follows:

1. The relational expression number < 0 is evaluated. If the condition is satisfied, that
is, if number is less than zero, the value of the expression is 1; otherwise, its value
is 0.

2. The if statement tests the result of the expression evaluation. If the result is
nonzero, the statement that immediately follows is executed; otherwise, the state-
ment is skipped.

The preceding discussion also applies to evaluation of conditions inside the for,
while, and do statements. Evaluation of compound relational expressions such as in the
statement

while (char != 'e' && count != 80)

also proceeds as outlined previously. If both specified conditions are valid, the result is 1;
but if either condition is not valid, the result of the evaluation is 0.The results of the
evaluation are then checked. If the result is 0, the while loop terminates; otherwise it
continues.

Returning to Program 6.10 and the notion of flags, it is perfectly valid in C to test if
the value of a flag is TRUE by an expression such as

if (isPrime)

rather than with the equivalent expression

if (isPrime != 0)

06 0672326663 CH06 6/10/04 2:01 PM Page 89

90 Chapter 6 Making Decisions

To easily test if the value of a flag is FALSE, you can use the logical negation operator,
!. In the expression

if (! isPrime)

the logical negation operator is used to test if the value of isPrime is FALSE (read this
statement as “if not isPrime”). In general, an expression such as

! expression

negates the logical value of expression. So if expression is zero, the logical negation
operator produces a 1.And if the result of the evaluation of expression is nonzero, the
negation operator yields a 0.

The logical negation operator can be used to easily “flip” the value of a flag, such as
in the expression

myMove = ! myMove;

As you might expect, this operator has the same precedence as the unary minus opera-
tor, which means that it has higher precedence than all binary arithmetic operators and
all relational operators. So to test if the value of a variable x is not less than the value of a
variable y, such as in

! (x < y)

the parentheses are required to ensure proper evaluation of the expression. Of course,
you could have equivalently expressed the previous expression as

x >= y

In Chapter 4,“Variables, Data Types, and Arithmetic Expressions,” you learned about
some special values that are defined in the language which you can use when working
with Boolean values.These are the type bool, and the values true and false.To use
these, you need to include the header file <stdbool.h> inside your program. Program
6.10A is a rewrite of Program 6.10, which takes advantage of this data type and values.

Program 6.10A Revising the Program to Generate a Table of Prime Numbers

// Program to generate a table of prime numbers

#include <stdio.h>

#include <stdbool.h>

int main (void)

{

int p, d;

bool isPrime;

for (p = 2; p <= 50; ++p) {

isPrime = true;

06 0672326663 CH06 6/10/04 2:01 PM Page 90

91The Conditional Operator

for (d = 2; d < p; ++d)

if (p % d == 0)

isPrime = false;

if (isPrime != false)

printf ("%i ", p);

}

printf ("\n");

return 0;

}

Program 6.10A Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

As you can see, by including <stdbool.h> in your program, you can declare variables to
be of type bool instead of _Bool.This is strictly for cosmetic purposes because the for-
mer is easier to read and type than the latter, and it fits in more with the style of the
other basic C data types, such as int, float, and char.

The Conditional Operator
Perhaps the most unusual operator in the C language is one called the conditional opera-
tor. Unlike all other operators in C—which are either unary or binary operators—the
conditional operator is a ternary operator; that is, it takes three operands.The two sym-
bols that are used to denote this operator are the question mark (?) and the colon (:).
The first operand is placed before the ?, the second between the ? and the :, and the
third after the :.

The general format of the conditional operator is

condition ? expression1 : expression2

where condition is an expression, usually a relational expression, that is evaluated first
whenever the conditional operator is encountered. If the result of the evaluation of con-
dition is TRUE (that is, nonzero), then expression1 is evaluated and the result of the
evaluation becomes the result of the operation. If condition evaluates FALSE (that is,
zero), then expression2 is evaluated and its result becomes the result of the operation.

The conditional operator is most often used to assign one of two values to a variable
depending upon some condition. For example, suppose you have an integer variable x
and another integer variable s. If you want to assign –1 to s if x were less than zero, and
the value of x2 to s otherwise, the following statement could be written:

s = (x < 0) ? -1 : x * x;

Program 6.10A Continued

06 0672326663 CH06 6/10/04 2:01 PM Page 91

92 Chapter 6 Making Decisions

The condition x < 0 is first tested when the preceding statement is executed.
Parentheses are generally placed around the condition expression to aid in the statement’s
readability.This is usually not required because the precedence of the conditional opera-
tor is very low—lower, in fact, than all other operators besides the assignment operators
and the comma operator.

If the value of x is less than zero, the expression immediately following the ? is evalu-
ated.This expression is simply the constant integer value –1, which is assigned to the
variable s if x is less than zero.

If the value of x is not less than zero, the expression immediately following the : is
evaluated and assigned to s. So if x is greater than or equal to zero, the value of x * x,
or x2, is assigned to s.

As another example of the use of the conditional operator, the following statement
assigns to the variable maxValue the maximum of a and b:

maxValue = (a > b) ? a : b;

If the expression that is used after the : (the “else” part) consists of another conditional
operator, you can achieve the effects of an “else if ” clause. For example, the sign function
that was implemented in Program 6.6 can be written in one program line using two
conditional operators as follows:

sign = (number < 0) ? -1 : ((number == 0) ? 0 : 1);

If number is less than zero, sign is assigned the value –1; else if number is equal to zero,
sign is assigned the value 0; else it is assigned the value 1.The parentheses around the
“else” part of the preceding expression are actually unnecessary.This is because the con-
ditional operator associates from right to left, meaning that multiple uses of this operator
in a single expression, such as in

e1 ? e2 : e3 ? e4 : e5

group from right to left and, therefore, are evaluated as

e1 ? e2 : (e3 ? e4 : e5)

It is not necessary that the conditional operator be used on the right-hand side of an
assignment—it can be used in any situation in which an expression could be used.This
means that you could display the sign of the variable number, without first assigning it to
a variable, using a printf statement as shown:

printf ("Sign = %i\n", (number < 0) ? –1 : (number == 0) ? 0 : 1);

The conditional operator is very handy when writing preprocessor macros in C.This is
seen in detail in Chapter 13,“The Preprocessor.”

This concludes the discussions on making decisions. In Chapter 7,“Working with
Arrays,” you get your first look at more sophisticated data types.The array is a powerful
concept that will find its way into many programs that you will develop in C. Before
moving on, test your understanding of the material covered in this chapter by complet-
ing the following exercises.

06 0672326663 CH06 6/10/04 2:01 PM Page 92

93Exercises

Exercises
1. Type in and run the 10 programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.Try experimenting with each program by keying in values other than those
shown.

2. Write a program that asks the user to type in two integer values at the terminal.
Test these two numbers to determine if the first is evenly divisible by the second,
and then display an appropriate message at the terminal.

3. Write a program that accepts two integer values typed in by the user. Display the
result of dividing the first integer by the second, to three-decimal-place accuracy.
Remember to have the program check for division by zero.

4. Write a program that acts as a simple “printing” calculator.The program should
allow the user to type in expressions of the form

number operator

The following operators should be recognized by the program:

+ - * / S E

The S operator tells the program to set the “accumulator” to the typed-in number.
The E operator tells the program that execution is to end.The arithmetic opera-
tions are performed on the contents of the accumulator with the number that was
keyed in acting as the second operand.The following is a “sample run” showing
how the program should operate:

Begin Calculations

10 S Set Accumulator to 10

= 10.000000 Contents of Accumulator

2 / Divide by 2

= 5.000000 Contents of Accumulator

55 - Subtract 55

-50.000000

100.25 S Set Accumulator to 100.25

= 100.250000

4 * Multiply by 4

= 401.000000

0 E End of program

= 401.000000

End of Calculations.

Make certain that the program detects division by zero and also checks for
unknown operators.

5. You developed Program 5.9 to reverse the digits of an integer typed in from the
terminal. However, this program does not function well if you type in a negative

06 0672326663 CH06 6/10/04 2:01 PM Page 93

94 Chapter 6 Making Decisions

number. Find out what happens in such a case and then modify the program so
that negative numbers are correctly handled. For example, if the number –8645 is
typed in, the output of the program should be 5468–.

6. Write a program that takes an integer keyed in from the terminal and extracts and
displays each digit of the integer in English. So, if the user types in 932, the pro-
gram should display

nine three two

Remember to display “zero” if the user types in just a 0. (Note: This exercise is a
hard one!)

7. Program 6.10 has several inefficiencies. One inefficiency results from checking
even numbers. Because it is obvious that any even number greater than 2 cannot
be prime, the program could simply skip all even numbers as possible primes and
as possible divisors.The inner for loop is also inefficient because the value of p is
always divided by all values of d from 2 through p–1.This inefficiency could be
avoided by adding a test for the value of isPrime in the conditions of the for
loop. In this manner, the for loop could be set up to continue as long as no divi-
sor was found and the value of d was less than p. Modify Program 6.10 to incor-
porate these two changes.Then run the program to verify its operation. (Note: In
Chapter 7, you discover even more efficient ways of generating prime numbers.)

06 0672326663 CH06 6/10/04 2:01 PM Page 94

7
Working with Arrays

THE C LANGUAGE PROVIDES A CAPABILITY that enables you to define a set of ordered
data items known as an array.This chapter describes how arrays can be defined and
manipulated. In later chapters, you learn more about arrays to illustrate how well they
work together with program functions, structures, character strings, and pointers.

Suppose you have a set of grades that you want to read into the computer, and sup-
pose that you want to perform some operations on these grades, such as rank them in
ascending order, compute their average, or find their median. In Program 6.2, you were
able to calculate the average of a set of grades by simply adding each grade into a
cumulative total as each grade was entered. However, if you want to rank the grades
into ascending order, for example, you need to do something further. If you think about
the process of ranking a set of grades, you quickly realize that you cannot perform such
an operation until each and every grade has been entered.Therefore, using the tech-
niques described previously, you would read in each grade and store it into a unique
variable, perhaps with a sequence of statements such as the following:

printf ("Enter grade 1\n");

scanf ("%i", &grade1);

printf ("Enter grade 2\n");

scanf ("%i", &grade2);

. . .

After the grades have been entered, you can then proceed to rank them.This can be
done by setting up a series of if statements to compare each of the values to determine
the smallest grade, the next smallest grade, and so on, until the maximum grade has been
determined. If you sit down and try to write a program to perform precisely this task,
you soon realize that for any reasonably sized list of grades (where reasonably sized is
probably only about 10), the resulting program is quite large and complex.All is not lost,
however, as this is one instance in which the array comes to the rescue.

07 0672326663 CH07 6/10/04 2:04 PM Page 95

96 Chapter 7 Working with Arrays

Defining an Array
You can define a variable called grades, which represents not a single value of a grade,
but an entire set of grades. Each element of the set can then be referenced by means of a
number called an index number or subscript.Whereas in mathematics a subscripted vari-
able, xi, refers to the ith element x in a set, in C the equivalent notation is as follows:

x[i]

So the expression

grades[5]

(read as “grades sub 5”) refers to element number 5 in the array called grades.Array
elements begin with the number zero, so

grades[0]

actually refers to the first element of the array. (For this reason, it is easier to think of it
as referring to element number zero, rather than as referring to the first element.)

An individual array element can be used anywhere that a normal variable can be
used. For example, you can assign an array value to another variable with a statement
such as the following:

g = grades[50];

This statement takes the value contained in grades[50] and assigns it to g. More gener-
ally, if i is declared to be an integer variable, the statement

g = grades[i];

takes the value contained in element number i of the grades array and assigns it to g.
So if i is equal to 7 when the preceding statement is executed, the value of grades[7] is
assigned to g.

A value can be stored in an element of an array simply by specifying the array ele-
ment on the left side of an equal sign. In the statement

grades[100] = 95;

the value 95 is stored in element number 100 of the grades array.The statement

grades[i] = g;

has the effect of storing the value of g in grades[i].
The capability to represent a collection of related data items by a single array enables

you to develop concise and efficient programs. For example, you can easily sequence
through the elements in the array by varying the value of a variable that is used as a sub-
script in the array. So the for loop

for (i = 0; i < 100; ++i)

sum += grades[i];

07 0672326663 CH07 6/10/04 2:04 PM Page 96

97Defining an Array

sequences through the first 100 elements of the array grades (elements 0 through 99)
and adds the value of each grade into sum.When the for loop is finished, the variable
sum then contains the total of the first 100 values of the grades array (assuming sum was
set to zero before the loop was entered).

When working with arrays, remember that the first element of an array is indexed by
zero, and the last element is indexed by the number of elements in the array minus one.

In addition to integer constants, integer-valued expressions can also be used inside the
brackets to reference a particular element of an array. So if low and high are defined as
integer variables, the statement

next_value = sorted_data[(low + high) / 2];

assigns the value indexed to the variable next_value by evaluating the expression (low
+ high) / 2. If low is equal to 1 and high is equal to 9, the value of sorted_data[5]
is assigned to next_value. In addition, if low is equal to 1 and high is equal to 10, the
value of sorted_data[5] is also referenced because you know that an integer division of
11 by 2 gives the result of 5.

Just as with variables, arrays must also be declared before they are used.The declara-
tion of an array involves declaring the type of element that will be contained in the
array—such as int, float, or char—as well as the maximum number of elements that
will be stored inside the array. (The C compiler needs this latter information to deter-
mine how much of its memory space to reserve for the particular array.)

As an example, the declaration

int grades[100];

declares grades to be an array containing 100 integer elements.Valid references to this
array can be made by using subscripts from 0 through 99. But be careful to use valid
subscripts because C does not do any checking of array bounds for you. So a reference
to element number 150 of array grades, as previously declared, does not necessarily
cause an error but does most likely cause unwanted, if not unpredictable, program results.

To declare an array called averages that contains 200 floating-point elements, the
declaration

float averages[200];

is used.This declaration causes enough space inside the computer’s memory to be
reserved to contain 200 floating-point numbers. Similarly, the declaration

int values[10];

reserves enough space for an array called values that could hold up to 10 integer num-
bers.You can better conceptualize this reserved storage space by referring to Figure 7.1.

07 0672326663 CH07 6/10/04 2:04 PM Page 97

98 Chapter 7 Working with Arrays

Figure 7.1 The array values in memory.

The elements of arrays declared to be of type int, float, or char can be manipulated in
the same fashion as ordinary variables.You can assign values to them, display their values,
add to them, subtract from them, and so on. So, if the following statements appear in a
program, the array values would contain the numbers as shown in Figure 7.2.

int values[10];

values[0] = 197;

values[2] = -100;

values[5] = 350;

values[3] = values[0] + values[5];

values[9] = values[5] / 10;

--values[2];

The first assignment statement has the effect of storing the value 197 in values[0]. In a
similar fashion, the second and third assignment statements store –100 and 350 into
values[2] and values[5], respectively.The next statement adds the contents of
values[0] (which is 197) to the contents of values[5] (which is 350) and stores the
result of 547 in values[3]. In the following program statement, 350—the value con-
tained in values[5]—is divided by 10 and the result is stored in values[9].The last
statement decrements the contents of values[2], which has the effect of changing its
value from –100 to –101.

The preceding program statements are incorporated into Program 7.1.The for loop
sequences through each element of the array, displaying its value at the terminal in turn.

values [0]

values [1]

values [2]

values [3]

values [4]

values [5]

values [6]

values [7]

values [8]

values [9]

07 0672326663 CH07 6/10/04 2:04 PM Page 98

99Defining an Array

Figure 7.2 values with some initialized elements.

Program 7.1 Working with an Array

#include <stdio.h>

int main (void)

{

int values[10];

int index;

values[0] = 197;

values[2] = -100;

values[5] = 350;

values[3] = values[0] + values[5];

values[9] =

values[5] / 10;

--values[2];

for (index = 0; index < 10; ++index)

printf ("values[%i] = %i\n", index, values[index]);

return 0;

}

values [0]

values [1]

values [2]

values [3]

values [4]

values [5]

values [6]

values [7]

values [8]

values [9]

197

-101

547

350

35

07 0672326663 CH07 6/10/04 2:04 PM Page 99

100 Chapter 7 Working with Arrays

Program 7.1 Output

values[0] = 197

values[1] = 0

values[2] = -101

values[3] = 547

values[4] = 0

values[5] = 350

values[6] = 0

values[7] = 0

values[8] = 0

values[9] = 35

The variable index assumes the values 0 through 9 as the last valid subscript of an array
is always one less than the number of elements (due to that zeroth element). Because you
never assigned values to five of the elements in the array—elements 1, 4, and 6 through
8—the values that are displayed for them are meaningless. Even though the program’s
output shows these values as zero, the value of any uninitialized variable or array element
is not defined. For this reason, no assumption should ever be made as to the value of an
uninitialized variable or array element.

Using Array Elements as Counters
It’s now time to consider a slightly more practical example. Suppose you took a tele-
phone survey to discover how people felt about a particular television show and you
asked each respondent to rate the show on a scale from 1 to 10, inclusive.After inter-
viewing 5,000 people, you accumulated a list of 5,000 numbers. Now, you want to ana-
lyze the results. One of the first pieces of data you want to gather is a table showing the
distribution of the ratings. In other words, you want to know how many people rated
the show a 1, how many rated it a 2, and so on up to 10.

Although not an impossible chore, it would be a bit tedious to go through each
response and manually count the number of responses in each rating category. In addi-
tion, if you have a response that could be answered in more than 10 ways (consider the
task of categorizing the age of the respondent), this approach would be even more
unreasonable. So, you want to develop a program to count the number of responses for
each rating.The first impulse might be to set up 10 different counters, called perhaps
rating_1 through rating_10, and then to increment the appropriate counter each time
the corresponding rating was entered. But once again, if you are dealing with more than
10 possible choices, this approach could become a bit tedious.And besides, an approach
that uses an array provides the vehicle for implementing a much cleaner solution, even in
this case.

You can set up an array of counters called ratingCounters, for example, and then
you can increment the corresponding counter as each response is entered.To conserve
space in this book, Program 7.2 assumes you are dealing with only 20 responses. In addi-
tion, it’s always good practice to first get a program working on a smaller test case before

07 0672326663 CH07 6/10/04 2:04 PM Page 100

101Defining an Array

proceeding with the full set of data because problems that are discovered in the program
are much easier to isolate and debug if the amount of test data is small.

Program 7.2 Demonstrating an Array of Counters

#include <stdio.h>

int main (void)

{

int ratingCounters[11], i, response;

for (i = 1; i <= 10; ++i)

ratingCounters[i] = 0;

printf ("Enter your responses\n");

for (i = 1; i <= 20; ++i) {

scanf ("%i", &response);

if (response < 1 || response > 10)

printf ("Bad response: %i\n", response);

else

++ratingCounters[response];

}

printf ("\n\nRating Number of Responses\n");

printf ("------ -------------------\n");

for (i = 1; i <= 10; ++i)

printf ("%4i%14i\n", i, ratingCounters[i]);

return 0;

}

Program 7.2 Output

Enter your responses

6

5

8

3

9

6

5

7

15

07 0672326663 CH07 6/10/04 2:04 PM Page 101

102 Chapter 7 Working with Arrays

Bad response: 15

5

5

1

7

4

10

5

5

6

8

9

Rating Number of Responses

------ -------------------

1 1

2 0

3 1

4 1

5 6

6 3

7 2

8 2

9 2

10 1

The array ratingCounters is defined to contain 11 elements.A valid question you
might ask is,“If there are only 10 possible responses to the survey, why is the array
defined to contain 11 elements rather than 10?”The answer lies in the strategy for
counting the responses in each particular rating category. Because each response can be a
number from 1 to 10, the program keeps track of the responses for any one particular
rating by simply incrementing the corresponding array element (after first checking to
make certain that the user entered a valid response between 1 and 10). For example, if a
rating of 5 is typed in, the value of ratingCounters[5] is incremented by one. By
employing this technique, the total number of respondents who rated the TV show a 5
are contained in ratingCounters[5].

The reason for 11 elements versus 10 should now be clear. Because the highest rating
number is a 10, you must set up your array to contain 11 elements to index
ratingCounters[10], remembering that because of the zeroth element, the number of
elements in an array is always one more than the highest index number. Because no
response can have a value of zero, ratingCounters[0] is never used. In fact, in the for
loops that initialize and display the contents of the array, note that the variable i starts at
1, and thereby bypasses the initialization and display of ratingCounters[0].

Program 7.2 Continued

07 0672326663 CH07 6/10/04 2:04 PM Page 102

103Defining an Array

As a point of discussion, you could have developed your program to use an array con-
taining precisely 10 elements.Then, when each response was keyed in by the user, you
could have instead incremented ratingCounters[response - 1].This way,
ratingCounters[0] would have contained the number of respondents who rated the
show a 1, ratingCounters[1] the number who rated the show a 2, and so on.This is a
perfectly fine approach.The only reason it was not used is because storing the number of
responses of value n inside ratingCounters[n] is a slightly more straightforward
approach.

Generating Fibonacci Numbers
Study Program 7.3, which generates a table of the first 15 Fibonacci numbers, and try to
predict its output.What relationship exists between each number in the table?

Program 7.3 Generating Fibonacci Numbers

// Program to generate the first 15 Fibonacci numbers

#include <stdio.h>

int main (void)

{

int Fibonacci[15], i;

Fibonacci[0] = 0; // by definition

Fibonacci[1] = 1; // ditto

for (i = 2; i < 15; ++i)

Fibonacci[i] = Fibonacci[i-2] + Fibonacci[i-1];

for (i = 0; i < 15; ++i)

printf ("%i\n", Fibonacci[i]);

return 0;

}

Program 7.3 Output

0

1

1

2

3

5

8

13

21

07 0672326663 CH07 6/10/04 2:04 PM Page 103

104 Chapter 7 Working with Arrays

34

55

89

144

233

377

The first two Fibonacci numbers, called F0 and F1, are defined to be 0 and 1, respective-
ly.Thereafter, each successive Fibonacci number Fi is defined to be the sum of the two
preceding Fibonacci numbers Fi–2 and Fi–1. So F2 is calculated by adding together the
values of F0 and F1. In the preceding program, this corresponds directly to calculating
Fibonacci[2] by adding the values Fibonacci[0] and Fibonacci[1].This calculation
is performed inside the for loop, which calculates the values of F2 through F14 (or,
equivalently, Fibonacci[2] through Fibonacci[14]).

Fibonacci numbers actually have many applications in the field of mathematics and in
the study of computer algorithms.The sequence of Fibonacci numbers historically origi-
nated from the “rabbits problem”: If you start with a pair of rabbits and assume that each
pair of rabbits produces a new pair of rabbits each month, that each newly born pair of
rabbits can produce offspring by the end of their second month, and that rabbits never
die, how many pairs of rabbits will you have after the end of one year? The answer to
this problem rests in the fact that at the end of the nth month, there will be a total of
Fn+2 rabbits.Therefore, according to the table from Program 7.3, at the end of the
twelfth month, you will have a total of 377 pairs of rabbits.

Using an Array to Generate Prime Numbers
Now, it’s time to return to the prime number program that you developed in Chapter 6,
“Making Decisions,” and see how the use of an array can help you to develop a more
efficient program. In Program 6.10A, the criteria that you used for determining if a
number was prime was to divide the prime candidate by all successive integers from 2
up to the number –1. In exercise 7 in Chapter 6, you noted two inefficiencies with this
approach that could easily be corrected. But even with these changes, the approach used
is still not efficient.Although such questions of efficiency might not be important when
dealing with a table of prime numbers up to 50, these questions do become important,
for example, when you start thinking about generating a table of prime numbers up to
1,000,000.

An improved method for generating prime numbers involves the notion that a num-
ber is prime if it is not evenly divisible by any other prime number.This stems from the
fact that any nonprime integer can be expressed as a multiple of prime factors. (For
example, 20 has the prime factors 2, 2, and 5.) You can use this added insight to develop
a more efficient prime number program.The program can test if a given integer is prime
by determining if it is evenly divisible by any other previously generated prime. By now

Program 7.3 Continued

07 0672326663 CH07 6/10/04 2:04 PM Page 104

105Defining an Array

the term “previously generated” should trigger in your mind the idea that an array must
be involved here.You can use an array to store each prime number as it is generated.

As a further optimization of the prime number generator program, it can be readily
demonstrated that any nonprime integer n must have as one of its factors an integer that
is less than or equal to the square root of n.This means that it is only necessary to deter-
mine if a given integer is prime by testing it for even divisibility against all prime factors
up to the square root of the integer.

Program 7.4 incorporates the previous discussions into a program to generate all
prime numbers up to 50.

Program 7.4 Revising the Program to Generate Prime Numbers,Version 2

#include <stdio.h>

#include <stdbool.h>

// Modified program to generate prime numbers

int main (void)

{

int p, i, primes[50], primeIndex = 2;

bool isPrime;

primes[0] = 2;

primes[1] = 3;

for (p = 5; p <= 50; p = p + 2) {

isPrime = true;

for (i = 1; isPrime && p / primes[i] >= primes[i]; ++i)

if (p % primes[i] == 0)

isPrime = false;

if (isPrime == true) {

primes[primeIndex] = p;

++primeIndex;

}

}

for (i = 0; i < primeIndex; ++i)

printf ("%i ", primes[i]);

printf ("\n");

return 0;

}

07 0672326663 CH07 6/10/04 2:04 PM Page 105

106 Chapter 7 Working with Arrays

Program 7.4 Output

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

The expression

p / primes[i] >= primes[i]

is used in the innermost for loop as a test to ensure that the value of p does not exceed
the square root of primes[i].This test comes directly from the discussions in the previ-
ous paragraph. (You might want to think about the math a bit.)

Program 7.4 starts by storing 2 and 3 as the first two primes in the array primes.This
array has been defined to contain 50 elements, even though you obviously don’t need
that many locations for storing the prime numbers.The variable primeIndex is initially
set to 2, which is the next free slot in the primes array.A for loop is then set up to run
through the odd integers from 5 to 50.After the Boolean variable isPrime is set to
true, another for loop is entered.This loop successively divides the value of p by all of
the previously generated prime numbers that are stored in the array primes.The index
variable i starts at 1 because it is not necessary to test any values of p for divisibility by
primes[0] (which is 2).This is true because our program does not even consider even
numbers as possible primes. Inside the loop, a test is made to see if the value of p is
evenly divisible by primes[i], and if it is, then isPrime is set false.The for loop con-
tinues execution so long as the value of isPrime is true and the value of primes[i]
does not exceed the square root of p.

After exiting the for loop, a test of the isPrime flag determines whether to store the
value of p as the next prime number inside the primes array.

After all values of p have been tried, the program displays each prime number that has
been stored inside the primes array.The value of the index variable i varies from 0
through primeIndex - 1 because primeIndex was always set pointing to the next free
slot in the primes array.

Initializing Arrays
Just as you can assign initial values to variables when they are declared, so can you assign
initial values to the elements of an array.This is done by simply listing the initial values
of the array, starting from the first element.Values in the list are separated by commas and
the entire list is enclosed in a pair of braces.
The statement

int counters[5] = { 0, 0, 0, 0, 0 };

declares an array called counters to contain five integer values and initializes each of
these elements to zero. In a similar fashion, the statement

int integers[5] = { 0, 1, 2, 3, 4 };

sets the value of integers[0] to 0, integers[1] to 1, integers[2] to 2, and so on.

07 0672326663 CH07 6/10/04 2:04 PM Page 106

107Initializing Arrays

Arrays of characters are initialized in a similar manner; thus the statement

char letters[5] = { 'a', 'b', 'c', 'd', 'e' };

defines the character array letters and initializes the five elements to the characters
'a', 'b', 'c', 'd', and 'e', respectively.

It is not necessary to completely initialize an entire array. If fewer initial values are
specified, only an equal number of elements are initialized.The remaining values in the
array are set to zero. So the declaration

float sample_data[500] = { 100.0, 300.0, 500.5 };

initializes the first three values of sample_data to 100.0, 300.0, and 500.5, and sets the
remaining 497 elements to zero.

By enclosing an element number in a pair of brackets, specific array elements can be
initialized in any order. For example,

float sample_data[500] = { [2] = 500.5, [1] = 300.0, [0] = 100.0 };

initializes the sample_data array to the same values as shown in the previous example.
And the statements

int x = 1233;

int a[10] = { [9] = x + 1, [2] = 3, [1] = 2, [0] = 1 };

define a 10-element array and initialize the last element to the value of x + 1 (or to
1234), and the first three elements to 1, 2, and 3, respectively.

Unfortunately, C does not provide any shortcut mechanisms for initializing array ele-
ments.That is, there is no way to specify a repeat count, so if it were desired to initially
set all 500 values of sample_data to 1, all 500 would have to be explicitly spelled out. In
such a case, it is better to initialize the array inside the program using an appropriate for
loop.

Program 7.5 illustrates two types of array-initialization techniques.

Program 7.5 Initializing Arrays

#include <stdio.h>

int main (void)

{

int array_values[10] = { 0, 1, 4, 9, 16 };

int i;

for (i = 5; i < 10; ++i)

array_values[i] = i * i;

for (i = 0; i < 10; ++i)

printf ("array_values[%i] = %i\n", i, array_values[i]);

return 0;

}

07 0672326663 CH07 6/10/04 2:04 PM Page 107

108 Chapter 7 Working with Arrays

Program 7.5 Output

array_values[0] = 0

array_values[1] = 1

array_values[2] = 4

array_values[3] = 9

array_values[4] = 16

array_values[5] = 25

array_values[6] = 36

array_values[7] = 49

array_values[8] = 64

array_values[9] = 81

In the declaration of the array array_values, the first five elements of the array are ini-
tialized to the square of their element number (for example, element number 3 is set
equal to 32 or 9).The first for loop shows how this same type of initialization can be
performed inside a loop.This loop sets each of the elements 5 through 9 to the square of
its element number.The second for loop simply runs through all 10 elements to display
their values at the terminal.

Character Arrays
The purpose of Program 7.6 is to simply illustrate how a character array can be used.
However, one point is worthy of discussion. Can you spot it?

Program 7.6 Introducing Character Arrays

#include <stdio.h>

int main (void)

{

char word[] = { 'H', 'e', 'l', 'l', 'o', '!' };

int i;

for (i = 0; i < 6; ++i)

printf ("%c", word[i]);

printf ("\n");

return 0;

}

Program 7.6 Output

Hello!

07 0672326663 CH07 6/10/04 2:04 PM Page 108

109Character Arrays

The most notable point in the preceding program is the declaration of the character
array word.There is no mention of the number of elements in the array.The C language
allows you to define an array without specifying the number of elements. If this is done,
the size of the array is determined automatically based on the number of initialization
elements. Because Program 7.6 has six initial values listed for the array word, the C lan-
guage implicitly dimensions the array to six elements.

This approach works fine so long as you initialize every element in the array at the
point that the array is defined. If this is not to be the case, you must explicitly dimension
the array.

In the case of using index numbers in the initialization list, as in

float sample_data[] = { [0] = 1.0, [49] = 100.0, [99] = 200.0 };

the largest index number specified sets the size of the array. In this case, sample_data is
set to contain 100 elements, based on the largest index value of 99 that is specified.

Base Conversion Using Arrays
The next program further illustrates the use of integer and character arrays.The task is to
develop a program that converts a positive integer from its base 10 representation into its
equivalent representation in another base up to base 16.As inputs to the program, you
specify the number to be converted and also the base to which you want the number
converted.The program then converts the keyed-in number to the appropriate base and
displays the result.

The first step in developing such a program is to devise an algorithm to convert a
number from base 10 to another base.An algorithm to generate the digits of the con-
verted number can be informally stated as follows:A digit of the converted number is
obtained by taking the modulo of the number by the base.The number is then divided
by the base, with any fractional remainder discarded, and the process is repeated until the
number reaches zero.

The outlined procedure generates the digits of the converted number starting from
the rightmost digit. See how this works in the following example. Suppose you want to
convert the number 10 into base 2.Table 7.1 shows the steps that would be followed to
arrive at the result.

Table 7.1 Converting an Integer from Base 10 to Base 2

Number Number Modulo 2 Number / 2

10 0 5

5 1 2

2 0 1

1 1 0

The result of converting 10 to base 2 is, therefore, seen to be 1010, reading the digits of
the “Number Modulo 2” column from the bottom to the top.

07 0672326663 CH07 6/10/04 2:04 PM Page 109

110 Chapter 7 Working with Arrays

To write a program that performs the preceding conversion process, you must take a
couple of things into account. First, the fact that the algorithm generates the digits of the
converted number in reverse order is not very nice.You certainly can’t expect the user to
read the result from right to left, or from the bottom of the page upward.Therefore, you
must correct this problem. Rather than simply displaying each digit as it is generated,
you can have the program store each digit inside an array.Then, when you’ve finished
converting the number, you can display the contents of the array in the correct order.

Second, you must realize that you specified for the program to handle conversion of
numbers into bases up to 16.This means that any digits of the converted number that
are between 10 and 15 must be displayed using the corresponding letters,A through F.
This is where our character array enters the picture.

Examine Program 7.7 to see how these two issues are handled.This program also
introduces the type qualifier const, which is used for variables whose value does not
change in a program.

Program 7.7 Converting a Positive Integer to Another Base

// Program to convert a positive integer to another base

#include <stdio.h>

int main (void)

{

const char baseDigits[16] = {

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };

int convertedNumber[64];

long int numberToConvert;

int nextDigit, base, index = 0;

// get the number and the base

printf ("Number to be converted? ");

scanf ("%ld", &numberToConvert);

printf ("Base? ");

scanf ("%i", &base);

// convert to the indicated base

do {

convertedNumber[index] = numberToConvert % base;

++index;

numberToConvert = numberToConvert / base;

07 0672326663 CH07 6/10/04 2:04 PM Page 110

111Character Arrays

}

while (numberToConvert != 0);

// display the results in reverse order

printf ("Converted number = ");

for (--index; index >= 0; --index) {

nextDigit = convertedNumber[index];

printf ("%c", baseDigits[nextDigit]);

}

printf ("\n");

return 0;

}

Program 7.7 Output

Number to be converted? 10

Base? 2

Converted number = 1010

Program 7.7 Output (Rerun)

Number to be converted? 128362

Base? 16

Converted number = 1F56A

The const Qualifier
The compiler allows you to associate the const qualifier with variables whose values
will not be changed by the program.That is, you can tell the compiler that the specified
variables have a constant value throughout the program’s execution. If you try to assign a
value to a const variable after initializing it, or try to increment or decrement it, the
compiler might issue an error message, although it is not required to do so. One of the
motivations for the const attribute in the language is that it allows the compiler to place
your const variables into read-only memory. (Normally, the instructions of your pro-
gram are also placed into read-only memory.)

Program 7.7 Continued

07 0672326663 CH07 6/10/04 2:04 PM Page 111

112 Chapter 7 Working with Arrays

As an example of the const attribute, the line

const double pi = 3.141592654;

declares the const variable pi.This tells the compiler that this variable will not be modi-
fied by the program. If you subsequently wrote a line like this in your program:

pi = pi / 2;

the gcc compiler would give you a warning message similar to this:

foo.c:16: warning: assignment of read-only variable 'pi'

Returning to Program 7.7, the character array baseDigits is set up to contain the 16
possible digits that will be displayed for the converted number. It is declared as a const
array because its contents will not be changed after it is initialized. Note that this fact
also aids in the program’s readability.

The array convertedNumber is defined to contain a maximum of 64 digits, which
holds the results of converting the largest possible long integer to the smallest possible
base (base 2) on just about all machines.The variable numberToConvert is defined to be
of type long int so that relatively large numbers can be converted if desired. Finally, the
variables base (to contain the desired conversion base) and index (to index into the
convertedNumber array) are both defined to be of type int.

After the user keys in the values of the number to be converted and the base—note
that the scanf call to read in a long integer value takes the format characters %ld—the
program then enters a do loop to perform the conversion.The do was chosen so that at
least one digit appears in the convertedNumber array even if the user keys in the num-
ber zero to be converted.

Inside the loop, the numberToConvert modulo the base is computed to determine
the next digit.This digit is stored inside the convertedNumber array, and the index in
the array is incremented by 1.After dividing the numberToConvert by the base, the con-
ditions of the do loop are checked. If the value of numberToConvert is 0, the loop ter-
minates; otherwise, the loop is repeated to determine the next digit of the converted
number.

When the do loop is complete, the value of the variable index is the number of digits
in the converted number. Because this variable is incremented one time too many inside
the do loop, its value is initially decremented by 1 in the for loop.The purpose of this
for loop is to display the converted number at the terminal.The for loop sequences
through the convertedNumber array in reverse sequence to display the digits in the cor-
rect order.

Each digit from the convertedNumber array is in turn assigned to the variable
nextDigit. For the numbers 10 through 15 to be correctly displayed using the letters A
through F, a lookup is then made inside the array baseDigits, using the value of
nextDigit as the index. For the digits 0 through 9, the corresponding location in the
array baseDigits contains nothing more than the characters '0' through '9' (which as
you recall are distinct from the integers 0 through 9). Locations 10 through 15 of the
array contain the characters 'A' through 'F'. So, if the value of nextDigit is 10, for

07 0672326663 CH07 6/10/04 2:04 PM Page 112

113Multidimensional Arrays

example, the character contained in baseDigits[10], or 'A', is displayed.And if the
value of nextDigit is 8, the character '8' as contained in baseDigits[8] is displayed.

When the value of index becomes less than zero, the for loop is finished.At this
point, the program displays a newline character, and program execution is terminated.

Incidentally, you might be interested in knowing that you could have easily avoided
the intermediate step of assigning the value of convertedNumber[index] to nextDigit
by directly specifying this expression as the subscript of the baseDigits array in the
printf call. In other words, the expression

baseDigits[convertedNumber[index]]

could have been supplied to the printf routine with the same results achieved. Of
course, this expression is a bit more cryptic than the two equivalent expressions used by
the program.

It should be pointed out that the preceding program is a bit sloppy. No check was
ever made to ensure that the value of base was between 2 and 16. If the user had
entered 0 for the value of the base, the division inside the do loop would have been a
division by zero.You should never allow this to happen. In addition, if the user had keyed
in 1 as the value of the base, the program would enter an infinite loop because the value
of numberToConvert would never reach zero. If the user had entered a base value that
was greater than 16, you might have exceeded the bounds of the baseDigits array later
in the program.That’s another “gotcha” that you must avoid because the C system does
not check this condition for us.

In Chapter 8,“Working with Functions,” you rewrite this program and resolve these
issues. But now, it’s time to look at an interesting extension to the notion of an array.

Multidimensional Arrays
The types of arrays that you have been exposed to so far are all linear arrays—that is,
they all dealt with a single dimension.The C language allows arrays of any dimension to
be defined. In this section, you take a look at two-dimensional arrays.

One of the most natural applications for a two-dimensional array arises in the case of
a matrix. Consider the 4 x 5 matrix shown in Table 7.2.

Table 7.2 A 4 x 5 Matrix

10 5 -3 17 82

9 0 0 8 -7

32 20 1 0 14

0 0 8 7 6

In mathematics, it is quite common to refer to an element of a matrix by use of a
double subscript. So if you call the preceding matrix M, the notation Mi,j refers to the
element in the ith row, jth column, where i ranges from 1 to 4, and j ranges from 1 to 5.

07 0672326663 CH07 6/10/04 2:04 PM Page 113

114 Chapter 7 Working with Arrays

The notation M3,2 refers to the value 20, which is found in the 3rd row, 2nd column of
the matrix. In a similar fashion, M4,5 refers to the element contained in the 4th row, 5th
column: the value 6.

In C, you can use an analogous notation when referring to elements of a two-
dimensional array. However, because C likes to start numbering things at zero, the 1st
row of the matrix is actually row 0, and the 1st column of the matrix is column 0.The
preceding matrix would then have row and column designations, as shown in Table 7.3.

Table 7.3 A 4 x 5 Matrix in C

Column (j) 0 1 2 3 4
Row (i)

0 10 5 -3 17 82

1 9 0 0 8 -7

2 32 20 1 0 14

3 0 0 8 7 6

Whereas in mathematics the notation Mi,j is used, in C the equivalent notation is

M[i][j]

Remember, the first index number refers to the row number, whereas the second index
number references the column. So the statement

sum = M[0][2] + M[2][4];

adds the value contained in row 0, column 2—which is –3—to the value contained in
row 2, column 4—which is 14—and assigns the result of 11 to the variable sum.

Two-dimensional arrays are declared the same way that one-dimensional arrays are;
thus

int M[4][5];

declares the array M to be a two-dimensional array consisting of 4 rows and 5 columns,
for a total of 20 elements. Each position in the array is defined to contain an integer
value.

Two-dimensional arrays can be initialized in a manner analogous to their one-
dimensional counterparts.When listing elements for initialization, the values are listed
by row. Brace pairs are used to separate the list of initializers for one row from the next.
So to define and initialize the array M to the elements listed in Table 7.3, a statement
such as the following can be used:

int M[4][5] = {

{ 10, 5, -3, 17, 82 },

{ 9, 0, 0, 8, -7 },

{ 32, 20, 1, 0, 14 },

{ 0, 0, 8, 7, 6 }

};

07 0672326663 CH07 6/10/04 2:04 PM Page 114

115Variable-Length Arrays

Pay particular attention to the syntax of the preceding statement. Note that commas are
required after each brace that closes off a row, except in the case of the final row.The use
of the inner pairs of braces is actually optional. If not supplied, initialization proceeds by
row.Thus, the preceding statement could also have been written as follows:

int M[4][5] = { 10, 5, -3, 17, 82, 9, 0, 0, 8, -7, 32,

20, 1, 0, 14, 0, 0, 8, 7, 6 };

As with one-dimensional arrays, it is not required that the entire array be initialized.A
statement such as

int M[4][5] = {

{ 10, 5, -3 },

{ 9, 0, 0 },

{ 32, 20, 1 },

{ 0, 0, 8 }

};

only initializes the first three elements of each row of the matrix to the indicated values.
The remaining values are set to 0. Note that, in this case, the inner pairs of braces are
required to force the correct initialization.Without them, the first two rows and the first
two elements of the 3rd row would have been initialized instead. (Verify to yourself that
this is the case.)

Subscripts can also be used in the initialization list, in a like manner to single-
dimensional arrays. So the declaration

int matrix[4][3] = { [0][0] = 1, [1][1] = 5, [2][2] = 9 };

initializes the three indicated elements of matrix to the specified values.The unspecified
elements are set to zero by default.

Variable-Length Arrays1

This section discusses a feature in the language that enables you to work with arrays in
your programs without having to give them a constant size.

In the examples in this chapter, you have seen how the size of an array is declared to
be of a specific size.The C language allows you to declare arrays of a variable size. For
example, Program 7.3 only calculates the first 15 Fibonacci numbers. But what if you
want to calculate 100 or even 500 Fibonacci numbers? Or, what if you want to have the
user specify the number of Fibonacci numbers to generate? Study Program 7.8 to see
one method for resolving this problem.

1.As of this writing, full support for variable-length arrays was not offered by all compilers.You
might want to check your compiler’s documentation before you use this feature.

07 0672326663 CH07 6/10/04 2:04 PM Page 115

116 Chapter 7 Working with Arrays

Program 7.8 Generating Fibonacci Numbers Using Variable-Length Arrays

// Generate Fibonacci numbers using variable length arrays

#include <stdio.h>

int main (void)

{

int i, numFibs;

printf ("How many Fibonacci numbers do you want (between 1 and 75)? ");

scanf ("%i", &numFibs);

if (numFibs < 1 || numFibs > 75) {

printf ("Bad number, sorry!\n");

return 1;

}

unsigned long long int Fibonacci[numFibs];

Fibonacci[0] = 0; // by definition

Fibonacci[1] = 1; // ditto

for (i = 2; i < numFibs; ++i)

Fibonacci[i] = Fibonacci[i-2] + Fibonacci[i-1];

for (i = 0; i < numFibs; ++i)

printf ("%llu ", Fibonacci[i]);

printf ("\n");

return 0;

}

Program 7.8 Output

How many Fibonacci numbers do you want (between 1 and 75)? 50

0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584

4181 6765 10946 17711 28657 46368 75025 121393 196418 317811 514229

832040 1346269 2178309 3524578 5702887 9227465 14930352 24157817

39088169 63245986 102334155 165580141 267914296 433494437 701408733

1134903170 1836311903 2971215073 4807526976 7778742049

Program 7.8 has several points worth discussing. First, the variables i and numFibs are
declared.The latter variable is used to store the requested number of Fibonacci numbers
that the user wants to generate. Notice the range of the entered value is checked by the
program, which is good programming practice. If the value is out of range (that is, less

07 0672326663 CH07 6/10/04 2:04 PM Page 116

117Exercises

than 1 or greater than 75), the program displays a message and returns a value of 1.
Executing the return statement at that point in the program causes the program to ter-
minate immediately, and no further statements are executed.As noted in Chapter 3,
“Compiling and Running Your First Program,” the nonzero value that is returned indi-
cates by convention that the program terminated with an error condition, and that fact
could be tested by another program if desired.

After the number has been entered by the user, you see the statement

unsigned long long int Fibonacci[numFibs];

The Fibonacci array is declared to contain numFibs elements.This is called a variable
length array because the size of the array is specified by a variable and not by a constant
expression.Also, as previously noted, a variable can be declared anywhere in a program,
as long as the declaration occurs before the variable is first used. So although this decla-
ration appears out of place, it’s perfectly legitimate. It’s not usually considered good
programming style to do this, however, mainly because, by convention, the variable
declarations are often grouped together so someone reading the program can see the
variables and their types in one place.

Because Fibonacci numbers get large very quickly, the array is declared to contain the
largest positive integer value you can specify, namely an unsigned long long int.As
an exercise, you might want to determine the largest Fibonacci number that you can
store inside an unsigned long long int variable on your computer.

The rest of the program is self-explanatory:The requested number of Fibonacci num-
bers are calculated and then displayed to the user.The execution of the program is then
complete.

A technique known as dynamic memory allocation is also often used to allocate space for
arrays while a program is executing.This involves using functions such as malloc and
calloc that are in the standard C library.This topic is discussed in detail in Chapter 17,
“Miscellaneous and Advanced Features.”

You have seen how arrays are powerful constructs that are available in virtually all
programming languages.A program example showing the use of multidimensional arrays
is deferred to Chapter 8, which begins a detailed discussion of one of the most impor-
tant concepts in the C language—the program function. Before proceeding to that chap-
ter, however, try to work the following exercises.

Exercises
1. Type in and run the eight programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Modify Program 7.1 so that the elements of the array values are initially set to 0.
Use a for loop to perform the initialization.

3. Program 7.2 permits only 20 responses to be entered. Modify that program so that
any number of responses can be entered. So that the user does not have to count

07 0672326663 CH07 6/10/04 2:04 PM Page 117

118 Chapter 7 Working with Arrays

the number of responses in the list, set up the program so that the value 999 can
be keyed in by the user to indicate that the last response has been entered. (Hint:
You can use the break statement here if you want to exit your loop.)

4. Write a program that calculates the average of an array of 10 floating-point values.

5. What output do you expect from the following program?

#include <stdio.h>

int main (void)

{

int numbers[10] = { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

int i, j;

for (j = 0; j < 10; ++j)

for (i = 0; i < j; ++i)

numbers[j] += numbers[i];

for (j = 0; j < 10; ++j)

printf ("%i ", numbers[j]);

printf ("\n");

return 0;

}

6. You don’t need to use an array to generate Fibonacci numbers.You can simply use
three variables: two to store the previous two Fibonacci numbers and one to store
the current one. Rewrite Program 7.3 so that arrays are not used. Because you’re
no longer using an array, you need to display each Fibonacci number as you gen-
erate it.

7. Prime numbers can also be generated by an algorithm known as the Sieve of
Erastosthenes.The algorithm for this procedure is presented here.Write a program
that implements this algorithm. Have the program find all prime numbers up to n
= 150.What can you say about this algorithm as compared to the ones used in the
text for calculating prime numbers?

Sieve of Erastosthenes Algorithm
To Display All Prime Numbers Between 1 and n

Step 1: Define an array of integers P. Set all elements Pi to 0, 2 <= i <= n.

Step 2: Set i to 2.

Step 3: If i > n, the algorithm terminates.

Step 4: If Pi is 0, then i is prime.

Step 5: For all positive integer values of j, such that i x j ≤ n, set Pixj to 1.

Step 6: Add 1 to i and go to step 3.

07 0672326663 CH07 6/10/04 2:04 PM Page 118

8
Working with Functions

BEHIND ALL WELL-WRITTEN PROGRAMS in the C programming language lies the same
fundamental element—the function.You’ve used functions in every program that you’ve
encountered so far.The printf and scanf routines are examples of functions. Indeed,
each and every program also used a function called main. So you might ask, what is all
the fuss about? The truth is that the program function provides the mechanism for pro-
ducing programs that are easy to write, read, understand, debug, modify, and maintain.
Obviously, anything that can accomplish all of these things is worthy of a bit of fanfare.

Defining a Function
First, you must understand what a function is, and then you can proceed to find out how
it can be most effectively used in the development of programs. Go back to the very first
program that you wrote (Program 3.1), which displayed the phrase “Programming is
fun.” at the terminal:

#include <stdio.h>

int main (void)

{

printf ("Programming is fun.\n");

return 0;

}

Here is a function called printMessage that does the same thing:

void printMessage (void)

{

printf ("Programming is fun.\n");

}

08 0672326663 CH08 6/10/04 2:02 PM Page 119

120 Chapter 8 Working with Functions

The differences between printMessage and the function main from Program 3.1 is in
the first and last line.The first line of a function definition tells the compiler (in order
from left to right) four things about the function:

1. Who can call it (discussed in Chapter 15,“Working with Larger Programs”)

2. The type of value it returns

3. Its name

4. The arguments it takes

The first line of the printMessage function definition tells the compiler that the func-
tion returns no value (the first use of the keyword void), its name is printMessage, and
that it takes no arguments (the second use of the keyword void).You learn more details
about the void keyword shortly.

Obviously, choosing meaningful function names is just as important as choosing
meaningful variable names—the choice of names greatly affects the program’s readability.

Recall from discussions of Program 3.1 that main is a specially recognized name in
the C system that always indicates where the program is to begin execution.You must
always have a main.You can add a main function to the preceding code to end up with a
complete program, as shown in Program 8.1.

Program 8.1 Writing a Function in C

#include <stdio.h>

void printMessage (void)

{

printf ("Programming is fun.\n");

}

int main (void)

{

printMessage ();

return 0;

}

Program 8.1 Output

Programming is fun.

Program 8.1 consists of two functions: printMessage and main. Program execution
always begins with main. Inside that function, the statement

printMessage ();

08 0672326663 CH08 6/10/04 2:02 PM Page 120

121Defining a Function

appears.This statement indicates that the function printMessage is to be executed.The
open and close parentheses are used to tell the compiler that printMessage is a function
and that no arguments or values are to be passed to this function (which is consistent
with the way the function is defined in the program).When a function call is executed,
program execution is transferred directly to the indicated function. Inside the
printMessage function, the printf statement is executed to display the message
“Programming is fun.” at the terminal.After the message has been displayed, the
printMessage routine is finished (as signaled by the closing brace) and the program
returns to the main routine, where program execution continues at the point where the
function call was executed. Note that it is acceptable to insert a return statement at the
end of printMessage like this:

return;

Because printMessage does not return a value, no value is specified for the return.This
statement is optional because reaching the end of a function without executing a return
has the effect of exiting the function anyway without returning a value. In other words,
either with or without the return statement, the behavior on exit from printMessage
is identical.

As mentioned previously, the idea of calling a function is not new.The printf and
scanf routines are both program functions.The main distinction here is that these rou-
tines did not have to be written by you because they are a part of the standard C library.
When you use the printf function to display a message or program results, execution is
transferred to the printf function, which performs the required tasks and then returns
back to the program. In each case, execution is returned to the program statement that
immediately follows the call to the function.

Now try to predict the output from Program 8.2.

Program 8.2 Calling Functions

#include <stdio.h>

void printMessage (void)

{

printf ("Programming is fun.\n");

}

int main (void)

{

printMessage ();

printMessage ();

return 0;

}

08 0672326663 CH08 6/10/04 2:02 PM Page 121

122 Chapter 8 Working with Functions

Program 8.2 Output

Programming is fun.

Programming is fun.

Execution of the preceding program starts at main, which contains two calls to the
printMessage function.When the first call to the function is executed, control is sent
directly to the printMessage function, which displays the message “Programming is
fun.” at the terminal and then returns to the main routine. Upon return, another call to
the printMessage routine is encountered, which results in the execution of the same
function a second time.After the return is made from the printMessage function, exe-
cution is terminated.

As a final example of the printMessage function, try to predict the output from
Program 8.3

Program 8.3 More on Calling Functions

#include <stdio.h>

void printMessage (void)

{

printf ("Programming is fun.\n");

}

int main (void)

{

int i;

for (i = 1; i <= 5; ++i)

printMessage ();

return 0;

}

Program 8.3 Output

Programming is fun.

Programming is fun.

Programming is fun.

Programming is fun.

Programming is fun.

Arguments and Local Variables
When the printf function is called, you always supply one or more values to the func-
tion, the first value being the format string and the remaining values being the specific

08 0672326663 CH08 6/10/04 2:02 PM Page 122

123Arguments and Local Variables

program results to be displayed.These values, called arguments, greatly increase the useful-
ness and flexibility of a function. Unlike your printMessage routine, which displays the
same message each time it is called, the printf function displays whatever you tell it to
display.

You can define a function that accepts arguments. In Chapter 5,“Program Looping,”
you developed an assortment of programs for calculating triangular numbers. Here, you
define a function to generate a triangular number, called appropriately enough,
calculateTriangularNumber.As an argument to the function, you specify which trian-
gular number to calculate.The function then calculates the desired number and displays
the results at the terminal. Program 8.4 shows the function to accomplish this task and a
main routine to try it out.

Program 8.4 Calculating the nth Triangular Number

// Function to calculate the nth triangular number

#include <stdio.h>

void calculateTriangularNumber (int n)

{

int i, triangularNumber = 0;

for (i = 1; i <= n; ++i)

triangularNumber += i;

printf ("Triangular number %i is %i\n", n, triangularNumber);

}

int main (void)

{

calculateTriangularNumber (10);

calculateTriangularNumber (20);

calculateTriangularNumber (50);

return 0;

}

Program 8.4 Output

Triangular number 10 is 55

Triangular number 20 is 210

Triangular number 50 is 1275

08 0672326663 CH08 6/10/04 2:02 PM Page 123

124 Chapter 8 Working with Functions

Function Prototype Declaration
The function calculateTriangularNumber requires a bit of explanation.The first line
of the function:

void calculateTriangularNumber (int n)

is called the function prototype declaration. It tells the compiler that
calculateTriangularNumber is a function that returns no value (the keyword void)
and that takes a single argument, called n, which is an int.The name that is chosen for
an argument, called its formal parameter name, as well as the name of the function itself,
can be any valid name formed by observing the rules outlined in Chapter 4,“Variables,
Data Types, and Arithmetic Expressions,” for forming variable names. For obvious rea-
sons, you should choose meaningful names.

After the formal parameter name has been defined, it can be used to refer to the
argument anywhere inside the body of the function.

The beginning of the function’s definition is indicated by the opening curly brace.
Because you want to calculate the nth triangular number, you have to set up a variable
to store the value of the triangular number as it is being calculated.You also need a vari-
able to act as your loop index.The variables triangularNumber and i are defined for
these purposes and are declared to be of type int.These variables are defined and initial-
ized in the same manner that you defined and initialized your variables inside the main
routine in previous programs.

Automatic Local Variables
Variables defined inside a function are known as automatic local variables because they are
automatically “created” each time the function is called, and because their values are local
to the function.The value of a local variable can only be accessed by the function in
which the variable is defined. Its value cannot be accessed by any other function. If an
initial value is given to a variable inside a function, that initial value is assigned to the
variable each time the function is called.

When defining a local variable inside a function, it is more precise in C to use the
keyword auto before the definition of the variable.An example of this is as follows:

auto int i, triangularNumber = 0;

Because the C compiler assumes by default that any variable defined inside a function is
an automatic local variable, the keyword auto is seldom used, and for this reason it is not
used in this book.

Returning to the program example, after the local variables have been defined, the
function calculates the triangular number and displays the results at the terminal.The
closing brace then defines the end of the function.

Inside the main routine, the value 10 is passed as the argument in the first call to
calculateTriangularNumber. Execution is then transferred directly to the function

08 0672326663 CH08 6/10/04 2:02 PM Page 124

125Arguments and Local Variables

where the value 10 becomes the value of the formal parameter n inside the function.The
function then proceeds to calculate the value of the 10th triangular number and display
the result.

The next time that calculateTriangularNumber is called, the argument 20 is passed.
In a similar process, as described earlier, this value becomes the value of n inside the
function.The function then proceeds to calculate the value of the 20th triangular num-
ber and display the answer at the terminal.

For an example of a function that takes more than one argument, rewrite the greatest
common divisor program (Program 5.7) in function form.The two arguments to the
function are the two numbers whose greatest common divisor (gcd) you want to calcu-
late. See Program 8.5.

Program 8.5 Revising the Program to Find the Greatest Common Divisor

/* Function to find the greatest common divisor

of two nonnegative integer values */

#include <stdio.h>

void gcd (int u, int v)

{

int temp;

printf ("The gcd of %i and %i is ", u, v);

while (v != 0) {

temp = u % v;

u = v;

v = temp;

}

printf ("%i\n", u);

}

int main (void)

{

gcd (150, 35);

gcd (1026, 405);

gcd (83, 240);

return 0;

}

08 0672326663 CH08 6/10/04 2:02 PM Page 125

126 Chapter 8 Working with Functions

Program 8.5 Output

The gcd of 150 and 35 is 5

The gcd of 1026 and 405 is 27

The gcd of 83 and 240 is 1

The function gcd is defined to take two integer arguments.The function refers to these
arguments through their formal parameter names u and v.After declaring the variable
temp to be of type int, the program displays the values of the arguments u and v,
together with an appropriate message at the terminal.The function then calculates and
displays the greatest common divisor of the two integers.

You might be wondering why there are two printf statements inside the function
gcd.You must display the values of u and v before you enter the while loop because their
values are changed inside the loop. If you wait until after the loop has finished, the values
displayed for u and v do not at all resemble the original values that were passed to the
routine.Another solution to this problem is to assign the values of u and v to two vari-
ables before entering the while loop.The values of these two variables can then be dis-
played together with the value of u (the greatest common divisor) using a single printf
statement after the while loop has completed.

Returning Function Results
The functions in Program 8.4 and 8.5 perform some straightforward calculations and
then display the results of the calculations at the terminal. However, you might not
always want to have the results of your calculations displayed.The C language provides
you with a convenient mechanism whereby the results of a function can be returned to
the calling routine.This is not new to you because you’ve used it in all previous pro-
grams to return from main.The general syntax of this construct is straightforward
enough:

return expression;

This statement indicates that the function is to return the value of expression to the
calling routine. Parentheses are placed around expression by some programmers as a
matter of programming style, but their use is optional.

An appropriate return statement is not enough.When the function declaration is
made, you must also declare the type of value the function returns.This declaration is placed
immediately before the function’s name. Each of the previous examples in this book
defined the function main to return an integer value, which is why the keyword int is
placed directly before the function name. On the other hand, a function declaration that
starts like this:

float kmh_to_mph (float km_speed)

begins the definition of a function kmh_to_mph, which takes one float argument called
km_speed and which returns a floating-point value. Similarly,

int gcd (int u, int v)

08 0672326663 CH08 6/10/04 2:02 PM Page 126

127Returning Function Results

defines a function gcd with integer arguments u and v that returns an integer value. In
fact, you can modify Program 8.5 so that the greatest common divisor is not displayed
by the function gcd but is instead returned to the main routine, as shown in
Program 8.6.

Program 8.6 Finding the Greatest Common Divisor and Returning the Results

/* Function to find the greatest common divisor of two

nonnegative integer values and to return the result */

#include <stdio.h>

int gcd (int u, int v)

{

int temp;

while (v != 0) {

temp = u % v;

u = v;

v = temp;

}

return u;

}

int main (void)

{

int result;

result = gcd (150, 35);

printf ("The gcd of 150 and 35 is %i\n", result);

result = gcd (1026, 405);

printf ("The gcd of 1026 and 405 is %i\n", result);

printf ("The gcd of 83 and 240 is %i\n", gcd (83, 240));

return 0;

}

Program 8.6 Output

The gcd of 150 and 35 is 5

The gcd of 1026 and 405 is 27

The gcd of 83 and 240 is 1

08 0672326663 CH08 6/10/04 2:02 PM Page 127

128 Chapter 8 Working with Functions

After the value of the greatest common divisor has been calculated by the gcd function,
the statement

return u;

is executed.This has the effect of returning the value of u, which is the value of the
greatest common divisor, back to the calling routine.

You might be wondering what you can do with the value that is returned to the call-
ing routine.As you can see from the main routine, in the first two cases, the value that is
returned is stored in the variable result. More precisely, the statement

result = gcd (150, 35);

says to call the function gcd with the arguments 150 and 35 and to store the value that
is returned by this function in the variable result.

The result that is returned by a function does not have to be assigned to a variable, as
you can see by the last statement in the main routine. In this case, the result returned by
the call

gcd (83, 240)

is passed directly to the printf function, where its value is displayed.
A C function can only return a single value in the manner just described. Unlike

some other languages, C makes no distinction between subroutines (procedures) and
functions. In C, there is only the function, which can optionally return a value. If the
declaration of the type returned by a function is omitted, the C compiler assumes that
the function returns an int—if it returns a value at all. Some C programmers take
advantage of the fact that functions are assumed to return an int by default and omit
the return type declaration.This is poor programming practice and should be avoided.
When a function returns a value, make certain you declare the type of value returned in
the function’s header, if only for the sake of improving the program’s readability. In this
manner, you can always identify from the function header not only the function’s name
and the number and type of its arguments, but also if it returns a value and the returned
value’s type.

As noted earlier, a function declaration that is preceded by the keyword void explicit-
ly informs the compiler that the function does not return a value.A subsequent attempt
at using the function in an expression, as if a value were returned, results in a compiler
error message. For example, because the calculateTriangularNumber function of
Program 8.4 did not return a value, you placed the keyword void before its name when
defining the function. Subsequently attempting to use this function as if it returned a
value, as in

number = calculateTriangularNumber (20);

results in a compiler error.
In a sense, the void data type is actually defining the absence of a data type.Therefore,

a function declared to be of type void has no value and cannot be used as if it does have
a value in an expression.

08 0672326663 CH08 6/10/04 2:02 PM Page 128

129Returning Function Results

In Chapter 6,“Making Decisions,” you wrote a program to calculate and display the
absolute value of a number. Now, write a function that takes the absolute value of its
argument and then returns the result. Instead of using integer values as you did in
Program 6.1, write this function to take a floating value as an argument and to return
the answer as type float, as shown in Program 8.7.

Program 8.7 Calculating the Absolute Value

// Function to calculate the absolute value

#include <stdio.h>

float absoluteValue (float x)

{

if (x < 0)

x = -x;

return x;

}

int main (void)

{

float f1 = -15.5, f2 = 20.0, f3 = -5.0;

int i1 = -716;

float result;

result = absoluteValue (f1);

printf ("result = %.2f\n", result);

printf ("f1 = %.2f\n", f1);

result = absoluteValue (f2) + absoluteValue (f3);

printf ("result = %.2f\n", result);

result = absoluteValue ((float) i1);

printf ("result = %.2f\n", result);

result = absoluteValue (i1);

printf ("result = %.2f\n", result);

printf ("%.2f\n", absoluteValue (-6.0) / 4);

return 0;

}

08 0672326663 CH08 6/10/04 2:02 PM Page 129

130 Chapter 8 Working with Functions

Program 8.7 Output

result = 15.50

f1 = -15.50

result = 25.00

result = 716.00

result = 716.00

1.50

The absoluteValue function is relatively straightforward.The formal parameter called x
is tested against zero. If it is less than zero, the value is negated to take its absolute value.
The result is then returned back to the calling routine with an appropriate return state-
ment.

You should note some interesting points with respect to the main routine that tests
out the absoluteValue function. In the first call to the function, the value of the vari-
able f1, initially set to –15.5, is passed. Inside the function itself, this value is assigned to
the variable x. Because the result of the if test is TRUE, the statement that negates the
value of x is executed, thereby setting the value of x to 15.5. In the next statement, the
value of x is returned to the main routine where it is assigned to the variable result and
is then displayed.

When the value of x is changed inside the absoluteValue function, this in no way
affects the value of the variable f1.When f1 was passed to the absoluteValue function,
its value was automatically copied into the formal parameter x by the system.Therefore, any
changes made to the value of x inside the function affect only the value of x and not the
value of f1.This is verified by the second printf call, which displays the unchanged
value of f1 at the terminal. Make certain you understand that it’s not possible for a func-
tion to directly change the value of any of its arguments—it can only change copies of
them.

The next two calls to the absoluteValue function illustrate how the result returned
by a function can be used in an arithmetic expression.The absolute value of f2 is added
to the absolute value of f3 and the sum is assigned to the variable result.

The fourth call to the absoluteValue function introduces the notion that the type of
argument that is passed to a function should agree with the type of argument as declared
inside the function. Because the function absoluteValue expects a floating value as its
argument, the integer variable i1 is first cast to type float before the call is made. If you
omit the cast operation, the compiler does it for you anyway because it knows the
absoluteValue function is expecting a floating argument. (This is verified by the fifth
call to the absoluteValue function.) However, it’s clearer what’s going on if you do the
casting yourself rather than relying on the system to do the conversion for you.

The final call to the absoluteValue function shows that the rules for evaluation of
arithmetic expressions also pertain to values returned by functions. Because the value
returned by the absoluteValue function is declared to be of type float, the compiler
treats the division operation as the division of a floating-point number by an integer.As
you recall, if one operand of a term is of type float, the operation is performed using

08 0672326663 CH08 6/10/04 2:02 PM Page 130

131Functions Calling Functions Calling…

floating arithmetic. In accordance with this rule, the division of the absolute value of
–6.0 by 4 produces a result of 1.5.

Now that you’ve defined a function that computes the absolute value of a number,
you can use it in any future programs in which you might need such a calculation per-
formed. In fact, the next program (Program 8.8) is just such an example.

Functions Calling Functions Calling…
With calculators as commonplace as watches, it’s usually no big deal to find the square
root of a particular number should the need arise. But years ago, students were taught
manual techniques that could be used to arrive at an approximation of the square root of
a number. One such approximation method that lends itself most readily to solution by a
computer is known as the Newton-Raphson Iteration Technique. In Program 8.8, you write
a square root function that uses this technique to arrive at an approximation of the
square root of a number.

The Newton-Raphson method can be easily described as follows.You begin by
selecting a “guess” at the square root of the number.The closer that this guess is to the
actual square root, the fewer the number of calculations that have to be performed to
arrive at the square root. For the sake of argument, however, assume that you are not
very good at guessing and, therefore, always make an initial guess of 1.

The number whose square root you want to obtain is divided by the initial guess and
is then added to the value of guess.This intermediate result is then divided by 2.The
result of this division becomes the new guess for another go-around with the formula.
That is, the number whose square root you are calculating is divided by this new guess,
added into this new guess, and then divided by 2.This result then becomes the new
guess and another iteration is performed.

Because you don’t want to continue this iterative process forever, you need some way
of knowing when to stop. Because the successive guesses that are derived by repeated
evaluation of the formula get closer and closer to the true value of the square root, you
can set a limit that you can use for deciding when to terminate the process.The differ-
ence between the square of the guess and the number itself can then be compared
against this limit—usually called epsilon (ε). If the difference is less than ε, the desired
accuracy for the square root has been obtained and the iterative process can be
terminated.

This procedure can be expressed in terms of an algorithm, as shown next.

Newton-Raphson Method to Compute the Square Root of x

Step 1: Set the value of guess to 1.

Step 2: If |guess2 - x| < ε, proceed to step 4.

Step 3: Set the value of guess to (x / guess + guess) / 2 and return to
step 2.

Step 4: The guess is the approximation of the square root.

08 0672326663 CH08 6/10/04 2:02 PM Page 131

132 Chapter 8 Working with Functions

It is necessary to test the absolute difference of guess2 and x against ε in step 2 because
the value of guess can approach the square root of x from either side.

Now that you have an algorithm for finding the square root at your disposal, it once
again becomes a relatively straightforward task to develop a function to calculate the
square root. For the value of ε in the following function, the value .00001 was arbitrarily
chosen. See the example in Program 8.8.

Program 8.8 Calculating the Square Root of a Number

// Function to calculate the absolute value of a number

#include <stdio.h>

float absoluteValue (float x)

{

if (x < 0)

x = -x;

return (x);

}

// Function to compute the square root of a number

float squareRoot (float x)

{

const float epsilon = .00001;

float guess = 1.0;

while (absoluteValue (guess * guess - x) >= epsilon)

guess = (x / guess + guess) / 2.0;

return guess;

}

int main (void)

{

printf ("squareRoot (2.0) = %f\n", squareRoot (2.0));

printf ("squareRoot (144.0) = %f\n", squareRoot (144.0));

printf ("squareRoot (17.5) = %f\n", squareRoot (17.5));

return 0;

}

08 0672326663 CH08 6/10/04 2:02 PM Page 132

133Functions Calling Functions Calling…

Program 8.8 Output

squareRoot (2.0) = 1.414216

squareRoot (144.0) = 12.000000

squareRoot (17.5) = 4.183300

The actual values that are displayed by running this program on your computer system
might differ slightly in the less significant digits.

The preceding program requires a detailed analysis.The absoluteValue function is
defined first.This is the same function that was used in Program 8.7.

Next, you find the squareRoot function.This function takes one argument called x
and returns a value of type float. Inside the body of the function, two local variables
called epsilon and guess are defined.The value of epsilon, which is used to determine
when to end the iteration process, is set to .00001.The value of your guess at the
square root of the number is initially set to 1.0.These initial values are assigned to these
two variables each time that the function is called.

After the local variables have been declared, a while loop is set up to perform the
iterative calculations.The statement that immediately follows the while condition is
repetitively executed as long as the absolute difference between guess2 and x is greater
than or equal to epsilon.The expression

guess * guess - x

is evaluated and the result of the evaluation is passed to the absoluteValue function.
The result returned by the absoluteValue function is then compared against the value
of epsilon. If the value is greater than or equal to epsilon, the desired accuracy of the
square root has not yet been obtained. In that case, another iteration of the loop is per-
formed to calculate the next value of guess.

Eventually, the value of guess is close enough to the true value of the square root,
and the while loop terminates.At that point, the value of guess is returned to the call-
ing program. Inside the main function, this returned value is passed to the printf func-
tion, where it is displayed.

You might have noticed that both the absoluteValue function and the squareRoot
function have formal parameters named x.The C compiler doesn’t get confused, howev-
er, and keeps these two values distinct.

In fact, a function always has its own set of formal parameters. So the formal parame-
ter x used inside the absoluteValue function is distinct from the formal parameter x
used inside the squareRoot function.

The same is true for local variables.You can declare local variables with the same
name inside as many functions as you want.The C compiler does not confuse the usage
of these variables because a local variable can only be accessed from within the function
where it is defined.Another way of saying this is that the scope of a local variable is the
function in which it is defined. (As you discover in Chapter 11,“Pointers,” C does pro-
vide a mechanism for indirectly accessing a local variable from outside of a function.)

08 0672326663 CH08 6/10/04 2:02 PM Page 133

134 Chapter 8 Working with Functions

Based upon this discussion, you can understand that when the value of guess2 - x is
passed to the absoluteValue function and assigned to the formal parameter x, this
assignment has absolutely no effect on the value of x inside the squareRoot function.

Declaring Return Types and Argument Types
As mentioned previously, the C compiler assumes that a function returns a value of type
int as the default case. More specifically, when a call is made to a function, the compiler
assumes that the function returns a value of type int unless either of the following has
occurred:

1. The function has been defined in the program before the function call is encoun-
tered.

2. The value returned by the function has been declared before the function call is
encountered.

In Program 8.8, the absoluteValue function is defined before the compiler encounters
a call to this function from within the squareRoot function.The compiler knows, there-
fore, that when this call is encountered, the absoluteValue function will return a value
of type float. Had the absoluteValue function been defined after the squareRoot
function, then upon encountering the call to the absoluteValue function, the compiler
would have assumed that this function returned an integer value. Most C compilers
catch this error and generate an appropriate diagnostic message.

To be able to define the absoluteValue function after the squareRoot function (or
even in another file—see Chapter 15), you must declare the type of result returned by the
absoluteValue function before the function is called.The declaration can be made inside
the squareRoot function itself, or outside of any function. In the latter case, the declara-
tion is usually made at the beginning of the program.

Not only is the function declaration used to declare the function’s return type, but it
is also used to tell the compiler how many arguments the function takes and what their
types are.

To declare absoluteValue as a function that returns a value of type float and that
takes a single argument, also of type float, the following declaration is used:

float absoluteValue (float);

As you can see, you just have to specify the argument type inside the parentheses, and
not its name.You can optionally specify a “dummy” name after the type if you want:

float absoluteValue (float x);

This name doesn’t have to be the same as the one used in the function definition—the
compiler ignores it anyway.

A foolproof way to write a function declaration is to simply use your text editor to
make a copy of the first line from the actual definition of the function. Remember to
place a semicolon at the end.

08 0672326663 CH08 6/10/04 2:02 PM Page 134

135Functions Calling Functions Calling…

If the function doesn’t take an argument, use the keyword void between the paren-
theses. If the function doesn’t return a value, this fact can also be declared to thwart any
attempts at using the function as if it does:

void calculateTriangularNumber (int n);

If the function takes a variable number of arguments (such as is the case with printf
and scanf), the compiler must be informed.The declaration

int printf (char *format, ...);

tells the compiler that printf takes a character pointer as its first argument (more on that
later), and is followed by any number of additional arguments (the use of the …). printf
and scanf are declared in the special file stdio.h.This is why you have been placing
the following line at the start of each of your programs:

#include <stdio.h>

Without this line, the compiler can assume printf and scanf take a fixed number of
arguments, which could result in incorrect code being generated.

The compiler automatically converts your arguments to the appropriate types when a
function is called, but only if you have placed the function’s definition or have declared
the function and its argument types before the call.

Here are some reminders and suggestions about functions:

1. Remember that, by default, the compiler assumes that a function returns an int.

2. When defining a function that returns an int, define it as such.

3. When defining a function that doesn’t return a value, define it as void.

4. The compiler converts your arguments to agree with the ones the function
expects only if you have previously defined or declared the function.

5. To play it safe, declare all functions in your program, even if they are defined
before they are called. (You might decide later to move them somewhere else in
your file or even to another file.)

Checking Function Arguments
The square root of a negative number takes you away from the realm of real numbers
and into the area of imaginary numbers. So what happens if you pass a negative number
to your squareRoot function? The fact is, the Newton-Raphson process would never
converge; that is, the value of guess would not get closer to the correct value of the
square root with each iteration of the loop.Therefore, the criteria set up for termination
of the while loop would never be satisfied, and the program would enter an infinite loop.
Execution of the program would have to be abnormally terminated by typing in some
command or pressing a special key at the terminal (such as Ctrl+C).

Obviously, modifying the program to correctly account for this situation is called for
in this case.You could put the burden on the calling routine and mandate that it never

08 0672326663 CH08 6/10/04 2:02 PM Page 135

136 Chapter 8 Working with Functions

pass a negative argument to the squareRoot function.Although this approach might
seem reasonable, it does have its drawbacks. Eventually, you would develop a program
that used the squareRoot function but which forgot to check the argument before call-
ing the function. If a negative number were then passed to the function, the program
would go into an infinite loop as described and would have to be aborted.

A much wiser and safer solution to the problem is to place the onus of checking the
value of the argument on the squareRoot function itself. In that way, the function is
“protected” from any program that used it.A reasonable approach to take is to check the
value of the argument x inside the function and then (optionally) display a message if the
argument is negative.The function can then immediately return without performing its
calculations.As an indication to the calling routine that the squareRoot function did not
work as expected, a value not normally returned by the function could be returned.1

The following is a modified squareRoot function, which tests the value of its argu-
ment and which also includes a prototype declaration for the absoluteValue function as
described in the previous section.

/* Function to compute the square root of a number.

If a negative argument is passed, then a message

is displayed and -1.0 is returned. */

float squareRoot (float x)

{

const float epsilon = .00001;

float guess = 1.0;

float absoluteValue (float x);

if (x < 0)

{

printf ("Negative argument to squareRoot.\n");

return -1.0;

}

while (absoluteValue (guess * guess - x) >= epsilon)

guess = (x / guess + guess) / 2.0;

return guess;

}

If a negative argument is passed to the preceding function, an appropriate message is dis-
played, and the value –1.0 is immediately returned to the calling routine. If the argu-
ment is not negative, calculation of the square root proceeds as previously described.

1.The square root routine in the standard C library is called sqrt and it returns a domain error if a
negative argument is supplied.The actual value that is returned is implementation-defined. On
some systems, if you try to display such a value, it displays as nan, which means not a number.

08 0672326663 CH08 6/10/04 2:02 PM Page 136

137Functions and Arrays

As you can see from the modified squareRoot function (and as you also saw in the
last example from Chapter 7,“Working with Arrays”), you can have more than one
return statement in a function.Whenever a return is executed, control is immediately
sent back to the calling function; any program statements in the function that appear
after the return are not executed.This fact also makes the return statement ideal for
use by a function that does not return a value. In such a case, as noted earlier in this
chapter, the return statement takes the simpler form

return;

because no value is to be returned. Obviously, if the function is supposed to return a
value, this form cannot be used to return from the function.

Top-Down Programming
The notion of functions that call functions that in turn call functions, and so on, forms
the basis for producing good, structured programs. In the main routine of Program 8.8,
the squareRoot function is called several times.All the details concerned with the actual
calculation of the square root are contained within the squareRoot function itself, and
not within main.Thus, you can write a call to this function before you even write the
instructions of the function itself, as long as you specify the arguments that the function
takes and the value that it returns.

Later, when proceeding to write the code for the squareRoot function, this same
type of top-down programming technique can be applied:You can write a call to the
absoluteValue function without concerning yourself at that time with the details of
operation of that function.All you need to know is that you can develop a function to
take the absolute value of a number.

The same programming technique that makes programs easier to write also makes
them easier to read.Thus, the reader of Program 8.8 can easily determine upon exami-
nation of the main routine that the program is simply calculating and displaying the
square root of three numbers. She need not sift through all of the details of how the
square root is actually calculated to glean this information. If she wants to get more
involved in the details, she can study the specific code associated with the squareRoot
function. Inside that function, the same discussion applies to the absoluteValue func-
tion. She does not need to know how the absolute value of a number is calculated to
understand the operation of the squareRoot function. Such details are relegated to the
absoluteValue function itself, which can be studied if a more detailed knowledge of its
operation is desired.

Functions and Arrays
As with ordinary variables and values, it is also possible to pass the value of an array ele-
ment and even an entire array as an argument to a function.To pass a single array ele-
ment to a function (which is what you did in Chapter 7 when you used the printf

08 0672326663 CH08 6/10/04 2:02 PM Page 137

138 Chapter 8 Working with Functions

function to display the elements of an array), the array element is specified as an argu-
ment to the function in the normal fashion. So, to take the square root of averages[i]
and assign the result to a variable called sq_root_result, a statement such as

sq_root_result = squareRoot (averages[i]);

does the trick.
Inside the squareRoot function itself, nothing special has to be done to handle single

array elements passed as arguments. In the same manner as with a simple variable, the
value of the array element is copied into the value of the corresponding formal parame-
ter when the function is called.

Passing an entire array to a function is an entirely new ball game.To pass an array to a
function, it is only necessary to list the name of the array, without any subscripts, inside the
call to the function.As an example, if you assume that gradeScores has been declared as
an array containing 100 elements, the expression

minimum (gradeScores)

in effect passes the entire 100 elements contained in the array gradeScores to the func-
tion called minimum. Naturally, on the other side of the coin, the minimum function must
be expecting an entire array to be passed as an argument and must make the appropriate
formal parameter declaration. So the minimum function might look something like this:

int minimum (int values[100])

{

...

return minValue;

}

The declaration defines the function minimum as returning a value of type int and as
taking as its argument an array containing 100 integer elements. References made to the
formal parameter array values reference the appropriate elements inside the array that
was passed to the function. Based upon the function call previously shown and the cor-
responding function declaration, a reference made to values[4], for example, would
actually reference the value of gradeScores[4].

For your first program that illustrates a function that takes an array as an argument,
you can write a function minimum to find the minimum value in an array of 10 integers.
This function, together with a main routine to set up the initial values in the array, is
shown in Program 8.9.

Program 8.9 Finding the Minimum Value in an Array

// Function to find the minimum value in an array

#include <stdio.h>

08 0672326663 CH08 6/10/04 2:02 PM Page 138

139Functions and Arrays

int minimum (int values[10])

{

int minValue, i;

minValue = values[0];

for (i = 1; i < 10; ++i)

if (values[i] < minValue)

minValue = values[i];

return minValue;

}

int main (void)

{

int scores[10], i, minScore;

int minimum (int values[10]);

printf ("Enter 10 scores\n");

for (i = 0; i < 10; ++i)

scanf ("%i", &scores[i]);

minScore = minimum (scores);

printf ("\nMinimum score is %i\n", minScore);

return 0;

}

Program 8.9 Output

Enter 10 scores

69

97

65

87

69

86

78

67

92

90

Minimum score is 65

Program 8.9 Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 139

140 Chapter 8 Working with Functions

The first thing that catches your eye inside main is the prototype declaration for the
minimum function.This tells the compiler that minimum returns an int and takes an array
of 10 integers. Remember, it’s not necessary to make this declaration here because the
minimum function is defined before it’s called from inside main. However, play it safe
throughout the rest of this text and declare all functions that are used.

After the array scores is defined, the user is prompted to enter 10 values.The scanf
call places each number as it is keyed in into scores[i], where i ranges from 0 through
9.After all the values have been entered, the minimum function is called with the array
scores as an argument.

The formal parameter name values is used to reference the elements of the array
inside the function. It is declared to be an array of 10 integer values.The local variable
minValue is used to store the minimum value in the array and is initially set to
values[0], the first value in the array.The for loop sequences through the remaining
elements of the array, comparing each element in turn against the value of minValue. If
the value of values[i] is less than minValue, a new minimum in the array has been
found. In such a case, the value of minValue is reassigned to this new minimum value
and the scan through the array continues.

When the for loop has completed execution, minValue is returned to the calling
routine, where it is assigned to the variable minScore and is then displayed.

With your general-purpose minimum function in hand, you can use it to find the
minimum of any array containing 10 integers. If you had five different arrays containing
10 integers each, you could simply call the minimum function five separate times to find
the minimum value of each array. In addition, you can just as easily define other func-
tions to perform tasks, such as finding the maximum value, the median value, the mean
(average) value, and so on.

By defining small, independent functions that perform well-defined tasks, you can
build upon these functions to accomplish more sophisticated tasks and also make use of
them for other related programming applications. For example, you could define a func-
tion statistics, which takes an array as an argument and perhaps, in turn, calls a mean
function, a standardDeviation function, and so on, to accumulate statistics about an
array.This type of program methodology is the key to the development of programs that
are easy to write, understand, modify, and maintain.

Of course, your general-purpose minimum function is not so general purpose in the
sense that it only works on an array of precisely 10 elements. But this problem is rela-
tively easy to rectify.You can extend the versatility of this function by having it take the
number of elements in the array as an argument. In the function declaration, you can
then omit the specification of the number of elements contained in the formal parame-
ter array.The C compiler actually ignores this part of the declaration anyway; all the
compiler is concerned with is the fact that an array is expected as an argument to the
function and not how many elements are in it.

Program 8.10 is a revised version of Program 8.9 in which the minimum function
finds the minimum value in an integer array of arbitrary length.

08 0672326663 CH08 6/10/04 2:02 PM Page 140

141Functions and Arrays

Program 8.10 Revising the Function to Find the Minimum Value in an Array

// Function to find the minimum value in an array

#include <stdio.h>

int minimum (int values[], int numberOfElements)

{

int minValue, i;

minValue = values[0];

for (i = 1; i < numberOfElements; ++i)

if (values[i] < minValue)

minValue = values[i];

return minValue;

}

int main (void)

{

int array1[5] = { 157, -28, -37, 26, 10 };

int array2[7] = { 12, 45, 1, 10, 5, 3, 22 };

int minimum (int values[], int numberOfElements);

printf ("array1 minimum: %i\n", minimum (array1, 5));

printf ("array2 minimum: %i\n", minimum (array2, 7));

return 0;

}

Program 8.10 Output

array1 minimum: -37

array2 minimum: 1

This time, the function minimum is defined to take two arguments: first, the array whose
minimum you want to find and second, the number of elements in the array.The open
and close brackets that immediately follow values in the function header serve to
inform the C compiler that values is an array of integers.As stated previously, the com-
piler really doesn’t need to know how large it is.

The formal parameter numberOfElements replaces the constant 10 as the upper limit
inside the for statement. So the for statement sequences through the array from values[1]
through the last element of the array, which is values[numberOfElements - 1].

08 0672326663 CH08 6/10/04 2:02 PM Page 141

142 Chapter 8 Working with Functions

In the main routine, two arrays called array1 and array2 are defined to contain five
and seven elements, respectively.

Inside the first printf call, a call is made to the minimum function with the arguments
array1 and 5.This second argument specifies the number of elements contained in
array1.The minimum function finds the minimum value in the array and the returned
result of –37 is then displayed at the terminal.The second time the minimum function is
called, array2 is passed, together with the number of elements in that array.The result of
1 as returned by the function is then passed to the printf function to be displayed.

Assignment Operators
Study Program 8.11 and try to guess the output before looking at the actual program
results.

Program 8.11 Changing Array Elements in Functions

#include <stdio.h>

void multiplyBy2 (float array[], int n)

{

int i;

for (i = 0; i < n; ++i)

array[i] *= 2;

}

int main (void)

{

float floatVals[4] = { 1.2f, -3.7f, 6.2f, 8.55f };

int i;

void multiplyBy2 (float array[], int n);

multiplyBy2 (floatVals, 4);

for (i = 0; i < 4; ++i)

printf ("%.2f ", floatVals[i]);

printf ("\n");

return 0;

}

Program 8.11 Output

2.40 -7.40 12.40 17.10

08 0672326663 CH08 6/10/04 2:02 PM Page 142

143Functions and Arrays

When you were examining Program 8.11, your attention surely must have been drawn
to the following statement:

array[i] *= 2;

The effect of the “times equals” operator (*=) is to multiply the expression on the left
side of the operator by the expression on the right side of the operator and to store the
result back into the variable on the left side of the operator. So, the previous expression is
equivalent to the following statement:

array[i] = array[i] * 2;

Getting back to the main point to be made about the preceding program, you might
have realized by now that the function multiplyBy2 actually changes values inside the
floatVals array. Isn’t this a contradiction to what you learned before about a function
not being able to change the value of its arguments? Not really.

This program example points out one major distinction that must always be kept in
mind when dealing with array arguments: If a function changes the value of an array
element, that change is made to the original array that was passed to the function.This
change remains in effect even after the function has completed execution and has
returned to the calling routine.

The reason an array behaves differently from a simple variable or an array element—
whose value cannot be changed by a function—is worthy of explanation.As mentioned
previously, when a function is called, the values that are passed as arguments to the func-
tion are copied into the corresponding formal parameters.This statement is still valid.
However, when dealing with arrays, the entire contents of the array are not copied into
the formal parameter array. Instead, the function gets passed information describing where
in the computer’s memory the array is located.Any changes made to the formal parame-
ter array by the function are actually made to the original array passed to the function,
and not to a copy of the array.Therefore, when the function returns, these changes still
remain in effect.

Remember, the discussion about changing array values in a function applies only to
entire arrays that are passed as arguments, and not to individual elements, whose values
are copied into the corresponding formal parameters and, therefore, cannot be perma-
nently changed by the function. Chapter 11 discusses this concept in greater detail.

Sorting Arrays
To further illustrate the idea that a function can change values in an array passed as an
argument, you will develop a function to sort (rank) an array of integers.The process of
sorting has always received much attention by computer scientists, probably because sort-
ing is an operation that is so commonly performed. Many sophisticated algorithms have
been developed to sort a set of information in the least amount of time, using as little of
the computer’s memory as possible. Because the purpose of this book is not to teach
such sophisticated algorithms, you develop a sort function that uses a fairly straightfor-
ward algorithm to sort an array into ascending order. Sorting an array into ascending order

08 0672326663 CH08 6/10/04 2:02 PM Page 143

144 Chapter 8 Working with Functions

means rearranging the values in the array so that the elements progressively increase in
value from the smallest to the largest. By the end of such a sort, the minimum value is
contained in the first location of the array, whereas the maximum value is found in the
last location of the array, with values that progressively increase in between.

If you want to sort an array of n elements into ascending order, you can do so by per-
forming a successive comparison of each of the elements of the array.You can begin by
comparing the first element in the array against the second. If the first element is greater
in value than the second, you simply “swap” the two values in the array; that is, exchange
the values contained in these two locations.

Next, compare the first element in the array (which you now know is less than the
second) against the third element in the array. Once again, if the first value is greater
than the third, you exchange these two values. Otherwise, you leave them alone. Now,
you have the smallest of the first three elements contained in the first location of the
array.

If you repeat the previous process for the remaining elements in the array—compar-
ing the first element against each successive element and exchanging their values if the
former is larger than the latter—the smallest value of the entire array is contained in the
first location of the array by the end of the process.

If you now did the same thing with the second element of the array, that is, compare
it against the third element, then against the fourth, and so on; and if you exchange any
values that are out of order, you end up with the next smallest value contained in the
second location of the array when the process is complete.

It should now be clear how you can go about sorting the array by performing these
successive comparisons and exchanges as needed.The process stops after you have com-
pared the next-to-last element of the array against the last and have interchanged their
values if required.At that point, the entire array has been sorted into ascending order.

The following algorithm gives a more concise description of the preceding sorting
process.This algorithm assumes that you are sorting an array a of n elements.

Simple Exchange Sort Algorithm

Step 1: Set i to 0.

Step 2: Set j to i + 1.

Step 3: If a[i] > a[j], exchange their values.

Step 4: Set j to j + 1. If j < n, go to step 3.

Step 5: Set i to i + 1. If i < n – 1, go to step 2.

Step 6: a is now sorted in ascending order.

Program 8.12 implements the preceding algorithm in a function called sort, which
takes two arguments: the array to be sorted and the number of elements in the array.

08 0672326663 CH08 6/10/04 2:02 PM Page 144

145Functions and Arrays

Program 8.12 Sorting an Array of Integers into Ascending Order

// Program to sort an array of integers into ascending order

#include <stdio.h>

void sort (int a[], int n)

{

int i, j, temp;

for (i = 0; i < n - 1; ++i)

for (j = i + 1; j < n; ++j)

if (a[i] > a[j]) {

temp = a[i];

a[i] = a[j];

a[j] = temp;

}

}

int main (void)

{

int i;

int array[16] = { 34, -5, 6, 0, 12, 100, 56, 22,

44, -3, -9, 12, 17, 22, 6, 11 };

void sort (int a[], int n);

printf ("The array before the sort:\n");

for (i = 0; i < 16; ++i)

printf ("%i ", array[i]);

sort (array, 16);

printf ("\n\nThe array after the sort:\n");

for (i = 0; i < 16; ++i)

printf ("%i ", array[i]);

printf ("\n");

return 0;

}

08 0672326663 CH08 6/10/04 2:02 PM Page 145

146 Chapter 8 Working with Functions

Program 8.12 Output

The array before the sort:

34 -5 6 0 12 100 56 22 44 -3 -9 12 17 22 6 11

The array after the sort:

-9 -5 -3 0 6 6 11 12 12 17 22 22 34 44 56 100

The sort function implements the algorithm as a set of nested for loops.The outer-
most loop sequences through the array from the first element through the next-to-last
element (a[n-2]). For each such element, a second for loop is entered, which starts
from the element after the one currently selected by the outer loop and ranges through
the last element of the array.

If the elements are out of order (that is, if a[i] is greater than a[j]), the elements are
switched.The variable temp is used as a temporary storage place while the switch is
being made.

When both for loops are finished, the array has been sorted into ascending order.
Execution of the function is then complete.

In the main routine, array is defined and initialized to 16 integer values.The pro-
gram then displays the values of the array at the terminal and proceeds to call the sort
function, passing as arguments array and 16, the number of elements in array.After the
function returns, the program once again displays the values contained in array.As you
can see from the output, the function successfully sorted the array into ascending order.

The sort function shown in Program 8.12 is fairly simple.The price that must be paid
for such a simplistic approach is one of execution time. If you have to sort an extremely
large array of values (arrays containing thousands of elements, for example), the sort rou-
tine as you have implemented it here could take a considerable amount of execution
time. If this happened, you would have to resort to one of the more sophisticated algo-
rithms. The Art of Computer Programming,Volume 3, Sorting and Searching (Donald E.
Knuth,Addison-Wesley) is a classic reference source for such algorithms.2

Multidimensional Arrays
A multidimensional array element can be passed to a function just as any ordinary vari-
able or single-dimensional array element can. So the statement

squareRoot (matrix[i][j]);

calls the squareRoot function, passing the value contained in matrix[i][j] as the argu-
ment.

2.There is also a function called qsort in the standard C library that can be used to sort an array
containing any data type. However, before you use it, you need to understand pointers to func-
tions, which are discussed in Chapter 11.

08 0672326663 CH08 6/10/04 2:02 PM Page 146

147Functions and Arrays

An entire multidimensional array can be passed to a function in the same way that a
single-dimensional array can:You simply list the name of the array. For example, if the
matrix measured_values is declared to be a two-dimensional array of integers, the C
statement

scalarMultiply (measured_values, constant);

can be used to invoke a function that multiplies each element in the matrix by the value
of constant.This implies, of course, that the function itself can change the values con-
tained inside the measured_values array.The discussion of this topic for single-
dimensional arrays also applies here:An assignment made to any element of the formal
parameter array inside the function makes a permanent change to the array that was
passed to the function.

When declaring a single-dimensional array as a formal parameter inside a function,
you learned that the actual dimension of the array is not needed; simply use a pair of
empty brackets to inform the C compiler that the parameter is, in fact, an array.This
does not totally apply in the case of multidimensional arrays. For a two-dimensional
array, the number of rows in the array can be omitted, but the declaration must contain
the number of columns in the array. So the declarations

int array_values[100][50]

and

int array_values[][50]

are both valid declarations for a formal parameter array called array_values containing
100 rows by 50 columns; but the declarations

int array_values[100][]

and

int array_values[][]

are not because the number of columns in the array must be specified.
In Program 8.13, you define a function scalarMultiply, which multiplies a two-

dimensional integer array by a scalar integer value.Assume for purposes of this example
that the array is dimensioned 3 x 5.The main routine calls the scalarMultiply routine
twice.After each call, the array is passed to the displayMatrix routine to display the
contents of the array. Pay careful attention to the nested for loops that are used in both
scalarMultiply and displayMatrix to sequence through each element of the two-
dimensional array.

Program 8.13 Using Multidimensional Arrays and Functions

#include <stdio.h>

int main (void)

{

08 0672326663 CH08 6/10/04 2:02 PM Page 147

148 Chapter 8 Working with Functions

void scalarMultiply (int matrix[3][5], int scalar);

void displayMatrix (int matrix[3][5]);

int sampleMatrix[3][5] =

{

{ 7, 16, 55, 13, 12 },

{ 12, 10, 52, 0, 7 },

{ -2, 1, 2, 4, 9 }

};

printf ("Original matrix:\n");

displayMatrix (sampleMatrix);

scalarMultiply (sampleMatrix, 2);

printf ("\nMultiplied by 2:\n");

displayMatrix (sampleMatrix);

scalarMultiply (sampleMatrix, -1);

printf ("\nThen multiplied by -1:\n");

displayMatrix (sampleMatrix);

return 0;

}

// Function to multiply a 3 x 5 array by a scalar

void scalarMultiply (int matrix[3][5], int scalar)

{

int row, column;

for (row = 0; row < 3; ++row)

for (column = 0; column < 5; ++column)

matrix[row][column] *= scalar;

}

void displayMatrix (int matrix[3][5])

{

int row, column;

for (row = 0; row < 3; ++row) {

for (column = 0; column < 5; ++column)

printf ("%5i", matrix[row][column]);

Program 8.13 Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 148

149Functions and Arrays

printf ("\n");

}

}

Program 8.13 Output

Original matrix:

7 16 55 13 12

12 10 52 0 7

-2 1 2 4 9

Multiplied by 2:

14 32 110 26 24

24 20 104 0 14

-4 2 4 8 18

Then multiplied by -1:

-14 -32 -110 -26 -24

-24 -20 -104 0 -14

4 -2 -4 -8 -18

The main routine defines the matrix sampleValues and then calls the displayMatrix
function to display its initial values at the terminal. Inside the displayMatrix routine,
notice the nested for statements.The first or outermost for statement sequences
through each row in the matrix, so the value of the variable row varies from 0 through
2. For each value of row, the innermost for statement is executed.This for statement
sequences through each column of the particular row, so the value of the variable
column ranges from 0 through 4.

The printf statement displays the value contained in the specified row and column
using the format characters %5i to ensure that the elements line up in the display.After
the innermost for loop has finished execution—meaning that an entire row of the
matrix has been displayed—a newline character is displayed so that the next row of the
matrix is displayed on the next line of the terminal.

The first call to the scalarMultiply function specifies that the sampleMatrix array
is to be multiplied by 2. Inside the function, a simple set of nested for loops is set up to
sequence through each element in the array.The element contained in
matrix[row][column] is multiplied by the value of scalar in accordance with the use
of the assignment operator *=.After the function returns to the main routine, the
displayMatrix function is once again called to display the contents of the
sampleMatrix array.The program’s output verifies that each element in the array has, in
fact, been multiplied by 2.

Program 8.13 Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 149

150 Chapter 8 Working with Functions

The scalarMultiply function is called a second time to multiply the now modified
elements of the sampleMatrix array by –1.The modified array is then displayed by a
final call to the displayMatrix function, and program execution is then complete.

Multidimensional Variable-Length Arrays and Functions

You can take advantage of the variable-length array feature in the C language and write
functions that can take multidimensional arrays of varying sizes. For example, Program
8.13 can been rewritten so that the scalarMultiply and displayMatrix functions can
accept matrices containing any number of rows and columns, which can be passed as
arguments to the functions. See Program 8.13A.

Program 8.13A Multidimensional Variable-Length Arrays

#include <stdio.h>

int main (void)

{

void scalarMultiply (int nRows, int nCols,

int matrix[nRows][nCols], int scalar);

void displayMatrix (int nRows, int nCols, int matrix[nRows][nCols]);

int sampleMatrix[3][5] =

{

{ 7, 16, 55, 13, 12 },

{ 12, 10, 52, 0, 7 },

{ -2, 1, 2, 4, 9 }

};

printf ("Original matrix:\n");

displayMatrix (3, 5, sampleMatrix);

scalarMultiply (3, 5, sampleMatrix, 2);

printf ("\nMultiplied by 2:\n");

displayMatrix (3, 5, sampleMatrix);

scalarMultiply (3, 5, sampleMatrix, -1);

printf ("\nThen multiplied by -1:\n");

displayMatrix (3, 5, sampleMatrix);

return 0;

}

// Function to multiply a matrix by a scalar

void scalarMultiply (int nRows, int nCols,

int matrix[nRows][nCols], int scalar)

08 0672326663 CH08 6/10/04 2:02 PM Page 150

151Functions and Arrays

{

int row, column;

for (row = 0; row < nRows; ++row)

for (column = 0; column < nCols; ++column)

matrix[row][column] *= scalar;

}

void displayMatrix (int nRows, int nCols, int matrix[nRows][nCols])

{

int row, column;

for (row = 0; row < nRows; ++row) {

for (column = 0; column < nCols; ++column)

printf ("%5i", matrix[row][column]);

printf ("\n");

}

}

Program 8.13A Output

Original matrix:

7 16 55 13 12

12 10 52 0 7

-2 1 2 4 9

Multiplied by 2:

14 32 110 26 24

24 20 104 0 14

-4 2 4 8 18

Then multiplied by -1:

-14 -32 -110 -26 -24

-24 -20 -104 0 -14

4 -2 -4 -8 -18

The function declaration for scalarMultiply looks like this:

void scalarMultiply (int nRows, int nCols, int matrix[nRows][nCols], int scalar)

The rows and columns in the matrix, nRows, and nCols, must be listed as arguments
before the matrix itself so that the compiler knows about these parameters before it
encounters the declaration of matrix in the argument list. If you try it this way instead:

void scalarMultiply (int matrix[nRows][nCols], int nRows, int nCols, int scalar)

Program 8.13A Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 151

152 Chapter 8 Working with Functions

you get an error from the compiler because it doesn’t know about nRows and nCols
when it sees them listed in the declaration of matrix.

As you can see, the output shown in Program 8.13A matches that shown in Program
8.13. Now, you have two functions (scalarMultiply and displayMatrix) that you can
use with matrices of any size.This is one of the advantages of using variable-length
arrays.3

Global Variables
It is now time to tie together many of the principles you have learned in this chapter, as
well as learn some new ones.Take Program 7.7, which converted a positive integer to
another base, and rewrite it in function form.To do this, you must conceptually divide
the program into logical segments. If you glance back at that program, you see that this is
readily accomplished simply by looking at the three comment statements inside main.
They suggest the three primary functions that the program is performing: getting the
number and base from the user, converting the number to the desired base, and display-
ing the results.

You can define three functions to perform an analogous task.The first function you
call is getNumberAndBase.This function prompts the user to enter the number to be
converted and the base, and reads these values in from the terminal. Here, you make a
slight improvement over what was done in Program 7.7. If the user types in a value of
base that is less than 2 or greater than 16, the program displays an appropriate message at
the terminal and sets the value of the base to 10. In this manner, the program ends up
redisplaying the original number to the user. (Another approach might be to let the user
reenter a new value for the base, but this is left as an exercise.)

The second function you call is convertNumber.This function takes the value as
typed in by the user and converts it to the desired base, storing the digits resulting from
the conversion process inside the convertedNumber array.

The third and final function you call is displayConvertedNumber.This function takes
the digits contained inside the convertedNumber array and displays them to the user in
the correct order. For each digit to be displayed, a lookup is made inside the baseDigits
array so that the correct character is displayed for the corresponding digit.

The three functions that you define communicate with each other by means of global
variables.As noted previously, one of the fundamental properties of a local variable is that
its value can be accessed only by the function in which the variable is defined.As you
might expect, this restriction does not apply to global variables.That is, a global variable’s
value can be accessed by any function in the program.

The distinguishing quality of a global variable declaration versus a local variable dec-
laration is that the former is made outside of any function.This indicates its global
nature—it does not belong to any particular function. Any function in the program can
then access the value of that variable and can change its value if desired.

3.As noted earlier, just make certain your particular C compiler offers full support for variable-
length arrays so that you can use this feature.

08 0672326663 CH08 6/10/04 2:02 PM Page 152

153Global Variables

In Program 8.14, four global variables are defined. Each of these variables is used by
at least two functions in the program. Because the baseDigits array and the variable
nextDigit are used exclusively by the function displayConvertedNumber, they are not
defined as global variables. Instead, these variables are locally defined within the function
displayConvertedNumber.

The global variables are defined first in the program. Because they are not defined
within any particular function, these variables are global, which means that they can now
be referenced by any functionin the program.

Program 8.14 Converting a Positive Integer to Another Base

// Program to convert a positive integer to another base

#include <stdio.h>

int convertedNumber[64];

long int numberToConvert;

int base;

int digit = 0;

void getNumberAndBase (void)

{

printf ("Number to be converted? ");

scanf ("%li", &numberToConvert);

printf ("Base? ");

scanf ("%i", &base);

if (base < 2 || base > 16) {

printf ("Bad base - must be between 2 and 16\n");

base = 10;

}

}

void convertNumber (void)

{

do {

convertedNumber[digit] = numberToConvert % base;

++digit;

numberToConvert /= base;

}

while (numberToConvert != 0);

}

void displayConvertedNumber (void)

{

08 0672326663 CH08 6/10/04 2:02 PM Page 153

154 Chapter 8 Working with Functions

const char baseDigits[16] =

{ '0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', 'A', 'B', 'C', 'D', 'E', 'F' };

int nextDigit;

printf ("Converted number = ");

for (--digit; digit >= 0; --digit) {

nextDigit = convertedNumber[digit];

printf ("%c", baseDigits[nextDigit]);

}

printf ("\n");

}

int main (void)

{

void getNumberAndBase (void), convertNumber (void),

displayConvertedNumber (void);

getNumberAndBase ();

convertNumber ();

displayConvertedNumber ();

return 0;

}

Program 8.14 Output

Number to be converted? 100

Base? 8

Converted number = 144

Program 8.14 Output (Rerun)

Number to be converted? 1983

Base? 0

Bad base - must be between 2 and 16

Converted number = 1983

Notice how the wise choice of function names makes the operation of Program 8.14
clear. Spelled out directly in the main routine is the function of the program: to get a
number and a base, convert the number, and then display the converted number.The

Program 8.14 Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 154

155Global Variables

much improved readability of this program over the equivalent one from Chapter 7 is a
direct result of the structuring of the program into separate functions that perform small,
well-defined tasks. Note that you do not even need comment statements inside the main
routine to describe what the program is doing—the function names speak for them-
selves.

The primary use of global variables is in programs in which many functions must
access the value of the same variable. Rather than having to pass the value of the variable
to each individual function as an argument, the function can explicitly reference the
variable instead.There is a drawback with this approach. Because the function explicitly
references a particular global variable, the generality of the function is somewhat
reduced. So, every time that function is to be used, you must ensure that the global vari-
able exists, by its particular name.

For example, the convertNumber function of Program 8.14 succeeds in converting
only a number that is stored in the variable numberToConvert to a base as specified by
the value of the variable base. Furthermore, the variable digit and the array
convertedNumber must be defined.A far more flexible version of this function would
allow the arguments to be passed to the function.

Although the use of global variables can reduce the number of arguments that need
to be passed to a function, the price that must be paid is reduced function generality
and, in some cases, reduced program readability.This issue of program readability stems
from the fact that if you use global variables, the variables that are used by a particular
function are not evident simply by examining the function’s header.Also, a call to the
particular function does not indicate to the reader what types of parameters the function
needs as inputs or produces as outputs.

Some programmers adopt the convention of prefixing all global variable names with
the letter “g”. For example, their variable declarations for Program 8.14 might look like
this:

int gConvertedNumber[64];

long int gNumberToConvert;

int gBase;

int gDigit = 0;

The reason for adopting such a convention is that it becomes easier to pick out a global
variable from a local one when reading through a program. For example, the statement

nextMove = gCurrentMove + 1;

implies that nextMove is a local variable and gCurrentMove is a global one.This tells the
reader of this line about the scope of these variables and where to look for their declara-
tions.

One final thing about global variables.They do have default initial values: zero. So, in
the global declaration

int gData[100];

all 100 elements of the gData array are set to zero when the program begins execution.

08 0672326663 CH08 6/10/04 2:02 PM Page 155

156 Chapter 8 Working with Functions

So remember that while global variables have default initial values of zero, local vari-
ables have no default initial value and so must be explicitly initialized by the program.

Automatic and Static Variables
When you normally declare a local variable inside a function, as in the declaration of the
variables guess and epsilon in your squareRoot function

float squareRoot (float x)

{

const float epsilon = .00001;

float guess = 1.0;

. . .

}

you are declaring automatic local variables. Recall that the keyword auto can, in fact, pre-
cede the declaration of such variables, but is optional because it is the default case.An
automatic variable is, in a sense, actually created each time the function is called. In the
preceding example, the local variables epsilon and guess are created whenever the
squareRoot function is called.As soon as the squareRoot function is finished, these
local variables “disappear.”This process happens automatically, hence the name automatic
variables.

Automatic local variables can be given initial values, as is done with the values of
epsilon and guess, previously. In fact, any valid C expression can be specified as the ini-
tial value for a simple automatic variable.The value of the expression is calculated and
assigned to the automatic local variable each time the function is called.4 And because an
automatic variable disappears after the function completes execution, the value of that
variable disappears along with it. In other words, the value an automatic variable has
when a function finishes execution is guaranteed not to exist the next time the function is
called.

If you place the word static in front of a variable declaration, you are in an entirely
new ball game.The word static in C refers not to an electric charge, but rather to the
notion of something that has no movement.This is the key to the concept of a static
variable—it does not come and go as the function is called and returns.This implies that
the value a static variable has upon leaving a function is the same value that variable will
have the next time the function is called.

Static variables also differ with respect to their initialization.A static, local variable is
initialized only once at the start of overall program execution—and not each time that
the function is called. Furthermore, the initial value specified for a static variable must be
a simple constant or constant expression. Static variables also have default initial values of
zero, unlike automatic variables, which have no default initial value.

In the function auto_static, which is defined as follows:

4. In the case of const variables, they can be stored in read-only memory. So they may not be
initialized each time the function is entered.

08 0672326663 CH08 6/10/04 2:02 PM Page 156

157Automatic and Static Variables

void auto_static (void)

{

static int staticVar = 100;

.

.

.

}

the value of staticVar is initialized to 100 only once when program execution begins.
To set its value to 100 each time the function is executed, an explicit assignment state-
ment is needed, as in

void auto_static (void)

{

static int staticVar;

staticVar = 100;

.

.

.

}

Of course, reinitializing staticVar this way defeats the purpose of using a static vari-
able in the first place.

Program 8.15 should help make the concepts of automatic and static variables a bit
clearer.

Program 8.15 Illustrating Static and Automatic Variables

// Program to illustrate static and automatic variables

#include <stdio.h>

void auto_static (void)

{

int autoVar = 1;

static int staticVar = 1;

printf ("automatic = %i, static = %i\n", autoVar, staticVar);

++autoVar;

++staticVar;

}

int main (void)

{

08 0672326663 CH08 6/10/04 2:02 PM Page 157

158 Chapter 8 Working with Functions

int i;

void auto_static (void);

for (i = 0; i < 5; ++i)

auto_static ();

return 0;

}

Program 8.15 Output

automatic = 1, static = 1

automatic = 1, static = 2

automatic = 1, static = 3

automatic = 1, static = 4

automatic = 1, static = 5

Inside the auto_static function, two local variables are declared.The first variable,
called autoVar, is an automatic variable of type int with an initial value of 1.The sec-
ond variable, called staticVar, is a static variable, also of type int and also with an ini-
tial value of 1.The function calls the printf routine to display the values of these two
variables.After this, the variables are each incremented by 1, and execution of the func-
tion is then complete.

The main routine sets up a loop to call the auto_static function five times.The
output from Program 8.15 points out the difference between the two variable types.The
value of the automatic variable is listed as 1 for each line of the display.This is because
its value is set to 1 each time the function is called. On the other hand, the output shows
the value of the static variable steadily increasing from 1 through 5.This is because its
value is set equal to 1 only once—when program execution begins—and because its
value is retained from one function call to the next.

The choice of whether to use a static variable or automatic variable depends upon
the intended use of the variable. If you want the variable to retain its value from one
function call to the next (for example, consider a function that counts the number of
times that it is called), use a static variable.Also, if your function uses a variable whose
value is set once and then never changes, you might want to declare the variable static, as
it saves the inefficiency of having the variable reinitialized each time that the function is
called.This efficiency consideration is even more important when dealing with arrays.

From the other direction, if the value of a local variable must be initialized at the
beginning of each function call, an automatic variable seems the logical choice.

Program 8.15 Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 158

159Recursive Functions

Recursive Functions
The C language supports a capability known as recursive function. Recursive functions
can be effectively used to succinctly and efficiently solve problems.They are commonly
used in applications in which the solution to a problem can be expressed in terms of
successively applying the same solution to subsets of the problem. One example might
be in the evaluation of expressions containing nested sets of parenthesized expressions.
Other common applications involve the searching and sorting of data structures called
trees and lists.

Recursive functions are most commonly illustrated by an example that calculates the
factorial of a number. Recall that the factorial of a positive integer n, written n!, is simply
the product of the successive integers 1 through n.The factorial of 0 is a special case and
is defined equal to 1. So 5! is calculated as follows:

5! = 5 x 4 x 3 x 2 x 1

= 120

and

6! = 6 x 5 x 4 x 3 x 2 x 1

= 720

Comparing the calculation of 6! to the calculation of 5!, observe that the former is equal
to 6 times the latter; that is, 6! = 6 x 5!. In the general case, the factorial of any positive
integer n greater than zero is equal to n multiplied by the factorial of n - 1:

n! = n x (n - 1)!

The expression of the value of n! in terms of the value of (n-1)! is called a recursive defi-
nition because the definition of the value of a factorial is based on the value of another
factorial. In fact, you can develop a function that calculates the factorial of an integer n
according to this recursive definition. Such a function is illustrated in Program 8.16.

Program 8.16 Calculating Factorials Recursively

#include <stdio.h>

int main (void)

{

unsigned int j;

unsigned long int factorial (unsigned int n);

for (j = 0; j < 11; ++j)

printf ("%2u! = %lu\n", j, factorial (j));

return 0;

}

// Recursive function to calculate the factorial of a positive integer

08 0672326663 CH08 6/10/04 2:02 PM Page 159

160 Chapter 8 Working with Functions

unsigned long int factorial (unsigned int n)

{

unsigned long int result;

if (n == 0)

result = 1;

else

result = n * factorial (n - 1);

return result;

}

Program 8.16 Output

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

The fact that the factorial function includes a call to itself makes this function recur-
sive.When the function is called to calculate the factorial of 3, the value of the formal
parameter n is set to 3. Because this value is not zero, the following program statement

result = n * factorial (n - 1);

is executed, which, given the value of n, is evaluated as

result = 3 * factorial (2);

This expression specifies that the factorial function is to be called, this time to calcu-
late the factorial of 2.Therefore, the multiplication of 3 by this value is left pending
while factorial (2) is calculated.

Even though you are again calling the same function, you should conceptualize this as
a call to a separate function. Each time any function is called in C—be it recursive or
not—the function gets its own set of local variables and formal parameters with which
to work.Therefore, the local variable result and the formal parameter n that exist when
the factorial function is called to calculate the factorial of 3 are distinct from the vari-
able result and the parameter n when the function is called to calculate the factorial
of 2.

Program 8.16 Continued

08 0672326663 CH08 6/10/04 2:02 PM Page 160

161Recursive Functions

With the value of n equal to 2, the factorial function executes the statement

result = n * factorial (n - 1);

which is evaluated as

result = 2 * factorial (1);

Once again, the multiplication of 2 by the factorial of 1 is left pending while the
factorial function is called to calculate the factorial of 1.

With the value of n equal to 1, the factorial function once again executes the state-
ment

result = n * factorial (n - 1);

which is evaluated as

result = 1 * factorial (0);

When the factorial function is called to calculate the factorial of 0, the function sets
the value of result to 1 and returns, thus initiating the evaluation of all of the pending
expressions. So the value of factorial (0), or 1, is returned to the calling function
(which happens to be the factorial function), multiplied by 1, and assigned to result.
This value of 1, which represents the value of factorial (1), is then returned back to
the calling function (once again the factorial function) where it is multiplied by 2,
stored into result, and returned as the value of factorial (2). Finally, the returned
value of 2 is multiplied by 3, thus completing the pending calculation of factorial
(3).The resulting value of 6 is returned as the final result of the call to the factorial
function, to be displayed by the printf function.

In summary, the sequence of operations that is performed in the evaluation of
factorial (3) can be conceptualized as follows:

factorial (3) = 3 * factorial (2)

= 3 * 2 * factorial (1)

= 3 * 2 * 1 * factorial (0)

= 3 * 2 * 1 * 1

= 6

It might be a good idea for you to trace through the operation of the factorial func-
tion with a pencil and paper.Assume that the function is initially called to calculate the
factorial of 4. List the values of n and result at each call to the factorial function.

This discussion concludes this chapter on functions and variables.The program func-
tion is a powerful tool in the C programming language. Enough cannot be said about
the critical importance of structuring a program in terms of small, well-defined func-
tions. Functions are used heavily throughout the remainder of this book.At this point,
you should review any topics covered in this chapter that still seem unclear.Working
through the following exercises will also help reinforce the topics that have been dis-
cussed.

08 0672326663 CH08 6/10/04 2:02 PM Page 161

162 Chapter 8 Working with Functions

Exercises
1. Type in and run the 16 programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Modify Program 8.4 so the value of triangularNumber is returned by the func-
tion.Then go back to Program 5.5 and change that program so that it calls the
new version of the calculateTriangularNumber function.

3. Modify Program 8.8 so that the value of epsilon is passed as an argument to the
function.Try experimenting with different values of epsilon to see the effect that
it has on the value of the square root.

4. Modify Program 8.8 so that the value of guess is printed each time through the
while loop. Notice how quickly the value of guess converges to the square root.
What conclusions can you reach about the number of iterations through the loop,
the number whose square root is being calculated, and the value of the initial
guess?

5. The criteria used for termination of the loop in the squareRoot function of
Program 8.8 is not suitable for use when computing the square root of very large
or very small numbers. Rather than comparing the difference between the value of
x and the value of guess2, the program should compare the ratio of the two values
to 1.The closer this ratio gets to 1, the more accurate the approximation of the
square root.

Modify Program 8.8 so this new termination criteria is used.

6. Modify Program 8.8 so that the squareRoot function accepts a double precision
argument and returns the result as a double precision value. Be certain to change
the value of the variable epsilon to reflect the fact that double precision variables
are now being used.

7. Write a function that raises an integer to a positive integer power. Call the func-
tion x_to_the_n taking two integer arguments x and n. Have the function return
a long int, which represents the results of calculating xn.

8. An equation of the form

ax2 + bx + c = 0

is known as a quadratic equation.The values of a, b, and c in the preceding example
represent constant values. So

4x2 - 17x - 15 = 0

08 0672326663 CH08 6/10/04 2:02 PM Page 162

163Exercises

represents a quadratic equation where a = 4, b = –17, and c = –15.The values of x
that satisfy a particular quadratic equation, known as the roots of the equation, can
be calculated by substituting the values of a, b, and c into the following two
formulas:

If the value of b2–4ac, called the discriminant, is less than zero, the roots of the
equation, x1 and x2, are imaginary numbers.

Write a program to solve a quadratic equation.The program should allow
the user to enter the values for a, b, and c. If the discriminant is less than
zero, a message should be displayed that the roots are imaginary; otherwise,
the program should then proceed to calculate and display the two roots of
the equation. (Note: Be certain to make use of the squareRoot function that
you developed in this chapter.)

9. The least common multiple (lcm) of two positive integers u and v is the smallest
positive integer that is evenly divisible by both u and v.Thus, the lcm of 15 and 10,
written lcm (15, 10), is 30 because 30 is the smallest integer divisible by both 15
and 10.Write a function lcm that takes two integer arguments and returns their
lcm.The lcm function should calculate the least common multiple by calling the
gcd function from Program 8.6 in accordance with the following identity:

lcm (u, v) = uv / gcd (u, v) u, v >= 0

10. Write a function prime that returns 1 if its argument is a prime number and
returns 0 otherwise.

11. Write a function called arraySum that takes two arguments: an integer array and
the number of elements in the array. Have the function return as its result the sum
of the elements in the array.

12. A matrix M with i rows, j columns can be transposed into a matrix N having j rows
and i columns by simply setting the value of Na,b equal to the value of Mb,a for all
relevant values of a and b.

a. Write a function transposeMatrix that takes as an argument a 4 x 5 matrix
and a 5 x 4 matrix. Have the function transpose the 4 x 5 matrix and store
the results in the 5 x 4 matrix.Also write a main routine to test the function.

b. Using variable-length arrays, rewrite the transposeMatrix function devel-
oped in exercise 12a to take the number of rows and columns as arguments,
and to transpose the matrix of the specified dimensions.

13. Modify the sort function from Program 8.12 to take a third argument indicating
whether the array is to be sorted in ascending or descending order.Then modify
the sort algorithm to correctly sort the array into the indicated order.

14. Rewrite the functions developed in the last four exercises to use global variables
instead of arguments. For example, the preceding exercise should now sort a glob-
ally defined array.

08 0672326663 CH08 6/10/04 2:02 PM Page 163

164 Chapter 8 Working with Functions

15. Modify Program 8.14 so that the user is reasked to type in the value of the base if
an invalid base is entered.The modified program should continue to ask for the
value of the base until a valid response is given.

16. Modify Program 8.14 so that the user can convert any number of integers. Make
provision for the program to terminate when a zero is typed in as the value of the
number to be converted.

08 0672326663 CH08 6/10/04 2:02 PM Page 164

9
Working with Structures

CHAPTER 7,“WORKING WITH ARRAYS,” INTRODUCED the array that permits you to
group elements of the same type into a single logical entity.To reference an element in
the array, all that is necessary is that the name of the array be given together with the
appropriate subscript.

The C language provides another tool for grouping elements together.This falls
under the name of structures and forms the basis for the discussions in this chapter.As you
will see, the structure is a powerful concept that you will use in many C programs that
you develop.

Suppose you want to store a date—for example 9/25/04—inside a program, perhaps
to be used for the heading of some program output, or even for computational purposes.
A natural method for storing the date is to simply assign the month to an integer vari-
able called month, the day to an integer variable called day, and the year to an integer
variable called year. So the statements

int month = 9, day = 25, year = 2004;

work just fine.This is a totally acceptable approach. But suppose your program also needs
to store the date of purchase of a particular item, for example.You can go about the
same procedure of defining three more variables such as purchaseMonth, purchaseDay,
and purchaseYear.Whenever you need to use the purchase date, these three variables
could then be explicitly accessed.

Using this method, you must keep track of three separate variables for each date that
you use in the program—variables that are logically related. It would be much better if
you could somehow group these sets of three variables together.This is precisely what
the structure in C allows you to do.

09 0672326663 CH09 6/10/04 2:01 PM Page 165

166 Chapter 9 Working with Structures

A Structure for Storing the Date
You can define a structure called date in the C language that consists of three compo-
nents that represent the month, day, and year.The syntax for such a definition is rather
straightforward, as follows:

struct date

{

int month;

int day;

int year;

};

The date structure just defined contains three integer members called month, day, and
year.The definition of date in a sense defines a new type in the language in that vari-
ables can subsequently be declared to be of type struct date, as in the declaration

struct date today;

You can also declare a variable purchaseDate to be of the same type by a separate decla-
ration, such as

struct date purchaseDate;

Or, you can simply include the two declarations on the same line, as in

struct date today, purchaseDate;

Unlike variables of type int, float, or char, a special syntax is needed when dealing
with structure variables.A member of a structure is accessed by specifying the variable
name, followed by a period, and then the member name. For example, to set the value of
the day in the variable today to 25, you write

today.day = 25;

Note that there are no spaces permitted between the variable name, the period, and the
member name.To set the year in today to 2004, the expression

today.year = 2004;

can be used. Finally, to test the value of month to see if it is equal to 12, a statement
such as

if (today.month == 12)

nextMonth = 1;

does the trick.
Try to determine the effect of the following statement.

if (today.month == 1 && today.day == 1)

printf ("Happy New Year!!!\n");

Program 9.1 incorporates the preceding discussions into an actual C program.

09 0672326663 CH09 6/10/04 2:01 PM Page 166

167A Structure for Storing the Date

Program 9.1 Illustrating a Structure

// Program to illustrate a structure

#include <stdio.h>

int main (void)

{

struct date

{

int month;

int day;

int year;

};

struct date today;

today.month = 9;

today.day = 25;

today.year = 2004;

printf ("Today's date is %i/%i/%.2i.\n", today.month, today.day,

today.year % 100);

return 0;

}

Program 9.1 Output

Today's date is 9/25/04.

The first statement inside main defines the structure called date to consist of three inte-
ger members called month, day, and year. In the second statement, the variable today is
declared to be of type struct date.The first statement simply defines what a date
structure looks like to the C compiler and causes no storage to be reserved inside the
computer.The second statement declares a variable to be of type struct date and,
therefore, does cause memory to be reserved for storing the three integer values of the
variable today. Be certain you understand the difference between defining a structure
and declaring variables of the particular structure type.

After today has been declared, the program then proceeds to assign values to each of
the three members of today, as depicted in Figure 9.1.

09 0672326663 CH09 6/10/04 2:01 PM Page 167

168 Chapter 9 Working with Structures

Figure 9.1. Assigning values to a structure variable.

After the assignments have been made, the values contained inside the structure are dis-
played by an appropriate printf call.The remainder of today.year divided by 100 is
calculated prior to being passed to the printf function so that just 04 is displayed for
the year. Recall that the format characters %.2i are used to specify that two integer dig-
its are to be displayed with zero fill.This ensures that you get the proper display for the
last two digits of the year.

Using Structures in Expressions
When it comes to the evaluation of expressions, structure members follow the same
rules as ordinary variables do in the C language. So division of an integer structure
member by another integer is performed as an integer division, as in

century = today.year / 100 + 1;

Suppose you want to write a simple program that accepts today’s date as input and dis-
plays tomorrow’s date to the user. Now, at first glance, this seems a perfectly simple task
to perform.You can ask the user to enter today’s date and then proceed to calculate
tomorrow’s date by a series of statements, such as

tomorrow.month = today.month;

tomorrow.day = today.day + 1;

tomorrow.year = today.year;

Of course, the preceding statements work just fine for the majority of dates, but the fol-
lowing two cases are not properly handled:

1. If today’s date falls at the end of a month.

2. If today’s date falls at the end of a year (that is, if today’s date is December 31).

One way to determine easily if today’s date falls at the end of a month is to set up an
array of integers that corresponds to the number of days in each month.A lookup inside
the array for a particular month then gives the number of days in that month. So the
statement

int daysPerMonth[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

.month

.day

.year

9

2004

25today

today.month = 9;
today.day = 25;
today.year = 2004;

09 0672326663 CH09 6/10/04 2:01 PM Page 168

169A Structure for Storing the Date

defines an array called daysPerMonth containing 12 integer elements. For each month i,
the value contained in daysPerMonth[i - 1] corresponds to the number of days in that
particular month.Therefore, the number of days in April, which is the fourth month of
the year, is given by daysPerMonth[3], which is equal to 30. (You could define the array
to contain 13 elements, with daysPerMonth[i] corresponding to the number of days in
month i.Access into the array could then be made directly based on the month num-
ber, rather than on the month number minus 1.The decision of whether to use 12 or 13
elements in this case is strictly a matter of personal preference.)

If it is determined that today’s date falls at the end of the month, you can calculate
tomorrow’s date by simply adding 1 to the month number and setting the value of the
day equal to 1.

To solve the second problem mentioned earlier, you must determine if today’s date is
at the end of a month and if the month is 12. If this is the case, then tomorrow’s day and
month must be set equal to 1 and the year appropriately incremented by 1.

Program 9.2 asks the user to enter today’s date, calculates tomorrow’s date, and dis-
plays the results.

Program 9.2 Determining Tomorrow’s Date

// Program to determine tomorrow's date

#include <stdio.h>

int main (void)

{

struct date

{

int month;

int day;

int year;

};

struct date today, tomorrow;

const int daysPerMonth[12] = { 31, 28, 31, 30, 31, 30,

31, 31, 30, 31, 30, 31 };

printf ("Enter today's date (mm dd yyyy): ");

scanf ("%i%i%i", &today.month, &today.day, &today.year);

if (today.day != daysPerMonth[today.month - 1]) {

tomorrow.day = today.day + 1;

tomorrow.month = today.month;

tomorrow.year = today.year;

}

09 0672326663 CH09 6/10/04 2:01 PM Page 169

170 Chapter 9 Working with Structures

else if (today.month == 12) { // end of year

tomorrow.day = 1;

tomorrow.month = 1;

tomorrow.year = today.year + 1;

}

else { // end of month

tomorrow.day = 1;

tomorrow.month = today.month + 1;

tomorrow.year = today.year;

}

printf ("Tomorrow's date is %i/%i/%.2i.\n", tomorrow.month,

tomorrow.day, tomorrow.year % 100);

return 0;

}

Program 9.2 Output

Enter today's date (mm dd yyyy): 12 17 2004

Tomorrow's date is 12/18/04.

Program 9.2 Output (Rerun)

Enter today's date (mm dd yyyy): 12 31 2005

Tomorrow's date is 1/1/06.

Program 9.2 Output (Second Rerun)

Enter today's date (mm dd yyyy): 2 28 2004

Tomorrow's date is 3/1/04.

If you look at the program’s output, you quickly notice that there seems to be a mistake
somewhere:The day after February 28, 2004 is listed as March 1, 2004 and not as
February 29, 2004.The program forgot about leap years! You fix this problem in the fol-
lowing section. First, you need to analyze the program and its logic.

After the date structure is defined, two variables of type struct date, today and
tomorrow, are declared.The program then asks the user to enter today’s date.The three
integer values that are entered are stored into today.month, today.day, and
today.year, respectively. Next, a test is made to determine if the day is at the end of the
month, by comparing today.day to daysPerMonth[today.month - 1]. If it is not the

Program 9.2 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 170

171Functions and Structures

end of the month, tomorrow’s date is calculated by simply adding 1 to the day and set-
ting tomorrow’s month and year equal to today’s month and year.

If today’s date does fall at the end of the month, another test is made to determine if
it is the end of the year. If the month equals 12, meaning that today’s date is December
31, tomorrow’s date is set equal to January 1 of the next year. If the month does not
equal 12, tomorrow’s date is set to the first day of the following month (of the same
year).

After tomorrow’s date has been calculated, the values are displayed to the user with an
appropriate printf statement call, and program execution is complete.

Functions and Structures
Now, you can return to the problem that was discovered in the previous program.Your
program thinks that February always has 28 days, so naturally when you ask it for the
day after February 28, it always displays March 1 as the answer.You need to make a spe-
cial test for the case of a leap year. If the year is a leap year, and the month is February,
the number of days in that month is 29. Otherwise, the normal lookup inside the
daysPerMonth array can be made.

A good way to incorporate the required changes into Program 9.2 is to develop a
function called numberOfDays to determine the number of days in a month.The func-
tion would perform the leap year test and the lookup inside the daysPerMonth array as
required. Inside the main routine, all that has to be changed is the if statement, which
compares the value of today.day to daysPerMonth[today.month - 1]. Instead, you
could now compare the value of today.day to the value returned by your
numberOfDays function.

Study Program 9.3 carefully to determine what is being passed to the numberOfDays
function as an argument.

Program 9.3 Revising the Program to Determine Tomorrow’s Date

// Program to determine tomorrow's date

#include <stdio.h>

#include <stdbool.h>

struct date

{

int month;

int day;

int year;

};

int main (void)

{

09 0672326663 CH09 6/10/04 2:01 PM Page 171

172 Chapter 9 Working with Structures

struct date today, tomorrow;

int numberOfDays (struct date d);

printf ("Enter today's date (mm dd yyyy): ");

scanf ("%i%i%i", &today.month, &today.day, &today.year);

if (today.day != numberOfDays (today)) {

tomorrow.day = today.day + 1;

tomorrow.month = today.month;

tomorrow.year = today.year;

}

else if (today.month == 12) { // end of year

tomorrow.day = 1;

tomorrow.month = 1;

tomorrow.year = today.year + 1;

}

else { // end of month

tomorrow.day = 1;

tomorrow.month = today.month + 1;

tomorrow.year = today.year;

}

printf ("Tomorrow's date is %i/%i/%.2i.\n",tomorrow.month,

tomorrow.day, tomorrow.year % 100);

return 0;

}

// Function to find the number of days in a month

int numberOfDays (struct date d)

{

int days;

bool isLeapYear (struct date d);

const int daysPerMonth[12] =

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

if (isLeapYear (d) == true && d.month == 2)

days = 29;

else

days = daysPerMonth[d.month - 1];

return days;

}

Program 9.3 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 172

173Functions and Structures

// Function to determine if it's a leap year

bool isLeapYear (struct date d)

{

bool leapYearFlag;

if ((d.year % 4 == 0 && d.year % 100 != 0) ||

d.year % 400 == 0)

leapYearFlag = true; // It's a leap year

else

leapYearFlag = false; // Not a leap year

return leapYearFlag;

}

Program 9.3 Output

Enter today's date (mm dd yyyy): 2 28 2004

Tomorrow's date is 2/29/04.

Program 9.3 Output (Rerun)

Enter today's date (mm dd yyyy): 2 28 2005

Tomorrow's date is 3/1/05.

The first thing that catches your eye in the preceding program is the fact that the defini-
tion of the date structure appears first and outside of any function.This makes the
definition known throughout the file. Structure definitions behave very much like
variables—if a structure is defined within a particular function, only that function knows
of its existence.This is a local structure definition. If you define the structure outside of
any function, that definition is global.A global structure definition allows any variables
that are subsequently defined in the program (either inside or outside of a function) to
be declared to be of that structure type.

Inside the main routine, the prototype declaration

int numberOfDays (struct date d);

informs the C compiler that the numberOfDays function returns an integer value and
takes a single argument of type struct date.

Instead of comparing the value of today.day against the value
daysPerMonth[today.month - 1], as was done in the preceding example, the statement

if (today.day != numberOfDays (today))

Program 9.3 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 173

174 Chapter 9 Working with Structures

is used.As you can see from the function call, you are specifying that the structure today
is to be passed as an argument. Inside the numberOfDays function, the appropriate decla-
ration must be made to inform the system that a structure is expected as an argument:

int numberOfDays (struct date d)

As with ordinary variables, and unlike arrays, any changes made by the function to the
values contained in a structure argument have no effect on the original structure.They
affect only the copy of the structure that is created when the function is called.

The numberOfDays function begins by determining if it is a leap year and if the
month is February.The former determination is made by calling another function called
isLeapYear.You learn about this function shortly. From reading the if statement

if (isLeapYear (d) == true && d.month == 2)

you can assume that the isLeapYear function returns true if it is a leap year and returns
false if it is not a leap year.This is directly in line with our discussions of Boolean vari-
ables back in Chapter 6,“Making Decisions.” Recall that the standard header file
<stdbool.h> defines the values bool, true, and false for you, which is why this file is
included at the beginning of Program 9.3.

An interesting point to be made about the previous if statement concerns the choice
of the function name isLeapYear.This name makes the if statement extremely readable
and implies that the function is returning some kind of yes/no answer.

Getting back to the program, if the determination is made that it is February of a leap
year, the value of the variable days is set to 29; otherwise, the value of days is found by
indexing the daysPerMonth array with the appropriate month.The value of days is then
returned to the main routine, where execution is continued as in Program 9.2.

The isLeapYear function is straightforward enough—it simply tests the year con-
tained in the date structure given as its argument and returns true if it is a leap year and
false if it is not.

As an exercise in producing a better-structured program, take the entire process of
determining tomorrow’s date and relegate it to a separate function.You can call the new
function dateUpdate and have it take as its argument today’s date.The function then cal-
culates tomorrow’s date and returns the new date back to us. Program 9.4 illustrates how
this can be done in C.

Program 9.4 Revising the Program to Determine Tomorrow’s Date,Version 2

// Program to determine tomorrow's date

#include <stdio.h>

#include <stdbool.h>

struct date

{

int month;

int day;

09 0672326663 CH09 6/10/04 2:01 PM Page 174

175Functions and Structures

int year;

};

// Function to calculate tomorrow's date

struct date dateUpdate (struct date today)

{

struct date tomorrow;

int numberOfDays (struct date d);

if (today.day != numberOfDays (today)) {

tomorrow.day = today.day + 1;

tomorrow.month = today.month;

tomorrow.year = today.year;

}

else if (today.month == 12) { // end of year

tomorrow.day = 1;

tomorrow.month = 1;

tomorrow.year = today.year + 1;

}

else { // end of month

tomorrow.day = 1;

tomorrow.month = today.month + 1;

tomorrow.year = today.year;

}

return tomorrow;

}

// Function to find the number of days in a month

int numberOfDays (struct date d)

{

int days;

bool isLeapYear (struct date d);

const int daysPerMonth[12] =

{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

if (isLeapYear && d.month == 2)

days = 29;

else

days = daysPerMonth[d.month - 1];

return days;

}

Program 9.4 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 175

176 Chapter 9 Working with Structures

// Function to determine if it's a leap year

bool isLeapYear (struct date d)

{

bool leapYearFlag;

if ((d.year % 4 == 0 && d.year % 100 != 0) ||

d.year % 400 == 0)

leapYearFlag = true; // It's a leap year

else

leapYearFlag = false; // Not a leap year

return leapYearFlag;

}

int main (void)

{

struct date dateUpdate (struct date today);

struct date thisDay, nextDay;

printf ("Enter today's date (mm dd yyyy): ");

scanf ("%i%i%i", &thisDay.month, &thisDay.day,

&thisDay.year);

nextDay = dateUpdate (thisDay);

printf ("Tomorrow's date is %i/%i/%.2i.\n",nextDay.month,

nextDay.day, nextDay.year % 100);

return 0;

}

Program 9.4 Output

Enter today's date (mm dd yyyy): 2 28 2008

Tomorrow's date is 2/29/08.

Program 9.4 Output (Rerun)

Enter today's date (mm dd yyyy): 2 22 2005

Tomorrow's date is 2/23/05.

Inside main, the statement

next_date = dateUpdate (thisDay);

Program 9.4 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 176

177Functions and Structures

illustrates the ability to pass a structure to a function and to return one as well.The
dateUpdate function has the appropriate declaration to indicate that the function
returns a value of type struct date. Inside the function is the same code that was
included in the main routine of Program 9.3.The functions numberOfDays and
isLeapYear remain unchanged from that program.

Make certain that you understand the hierarchy of function calls in the preceding
program:The main function calls dateUpdate, which in turn calls numberOfDays, which
itself calls the function isLeapYear.

A Structure for Storing the Time
Suppose you have the need to store values inside a program that represents various times
expressed as hours, minutes, and seconds. Because you have seen how useful our date
structure has been in helping you to logically group the day, month, and year, it seems
only natural to use a structure that you could call appropriately enough, time, to group
the hours, minutes, and seconds.The structure definition is straightforward enough, as
follows:

struct time

{

int hour;

int minutes;

int seconds;

};

Most computer installations choose to express the time in terms of a 24-hour clock,
known as military time.This representation avoids the hassle of having to qualify a time
with a.m. or p.m.The hour begins with 0 at 12 midnight and increases by 1 until it
reaches 23, which represents 11:00 p.m. So, for example, 4:30 means 4:30 a.m., whereas
16:30 represents 4:30 p.m.; and 12:00 represents noon, whereas 00:01 represents 1
minute after midnight.

Virtually all computers have a clock inside in the system that is always running.This
clock is used for such diversified purposes as informing the user of the current time,
causing certain events to occur or programs to be executed at specific times, or recording
the time that a particular event occurs. One or more computer programs are usually
associated with the clock. One of these programs might be executed every second, for
example, to update the current time that is stored somewhere in the computer’s
memory.

Suppose you want to mimic the function of the program described previously—
namely, to develop a program that updates the time by one second. If you think about
this for a second (pun intentional), you realize that this problem is quite analagous to the
problem of updating the date by one day.

Just as finding the next day had some special requirements, so does the process of
updating the time. In particular, these special cases must be handled:

09 0672326663 CH09 6/10/04 2:01 PM Page 177

178 Chapter 9 Working with Structures

1. If the number of seconds reaches 60, the seconds must be reset to 0 and the min-
utes increased by 1.

2. If the number of minutes reaches 60, the minutes must be reset to 0 and the hour
increased by 1.

3. If the number of hours reaches 24, the hours, minutes, and seconds must be reset
to 0.

Program 9.5 uses a function called timeUpdate, which takes as its argument the current
time and returns a time that is one second later.

Program 9.5 Updating the Time by One Second

// Program to update the time by one second

#include <stdio.h>

struct time

{

int hour;

int minutes;

int seconds;

};

int main (void)

{

struct time timeUpdate (struct time now);

struct time currentTime, nextTime;

printf ("Enter the time (hh:mm:ss): ");

scanf ("%i:%i:%i", ¤tTime.hour,

¤tTime.minutes, ¤tTime.seconds);

nextTime = timeUpdate (currentTime);

printf ("Updated time is %.2i:%.2i:%.2i\n", nextTime.hour,

nextTime.minutes, nextTime.seconds);

return 0;

}

// Function to update the time by one second

struct time timeUpdate (struct time now)

{

++now.seconds;

09 0672326663 CH09 6/10/04 2:01 PM Page 178

179Functions and Structures

if (now.seconds == 60) { // next minute

now.seconds = 0;

++now.minutes;

if (now.minutes == 60) { // next hour

now.minutes = 0;

++now.hour;

if (now.hour == 24) // midnight

now.hour = 0;

}

}

return now;

}

Program 9.5 Output

Enter the time (hh:mm:ss): 12:23:55

Updated time is 12:23:56

Program 9.5 Output (Rerun)

Enter the time (hh:mm:ss): 16:12:59

Updated time is 16:13:00

Program 9.5 Output (Second Rerun)

Enter the time (hh:mm:ss): 23:59:59

Updated time is 00:00:00

The main routine asks the user to enter in the time.The scanf call uses the format
string

"%i:%i:%i"

to read the data. Specifying a nonformat character, such as ':', in a format string signals
to the scanf function that the particular character is expected as input.Therefore, the
format string listed in Program 9.5 specifies that three integer values are to be input—
the first separated from the second by a colon, and the second separated from the third
by a colon. In Chapter 16,“Input and Output Operations in C,” you learn how the
scanf function returns a value that can be tested to determine if the values were entered
in the correct format.

Program 9.5 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 179

180 Chapter 9 Working with Structures

After the time has been entered, the program calls the timeUpdate function, passing
along the currentTime as the argument.The result returned by the function is assigned
to the struct time variable nextTime, which is then displayed with an appropriate
printf call.

The timeUpdate function begins execution by “bumping” the time in now by one
second.A test is then made to determine if the number of seconds has reached 60. If it
has, the seconds are reset to 0 and the minutes are increased by 1.Another test is then
made to see if the number of minutes has now reached 60, and if it has, the minutes are
reset to 0 and the hour is increased by 1. Finally, if the two preceding conditions are sat-
isfied, a test is then made to see if the hour is equal to 24; that is, if it is precisely
midnight. If it is, the hour is reset to 0.The function then returns the value of now,
which contains the updated time, back to the calling routine.

Initializing Structures
Initializing structures is similar to initializing arrays—the elements are simply listed inside
a pair of braces, with each element separated by a comma.

To initialize the date structure variable today to July 2, 2005, the statement

struct date today = { 7, 2, 2005 };

can be used.The statement

struct time this_time = { 3, 29, 55 };

defines the struct time variable this_time and sets its value to 3:29:55 a.m.As with
other variables, if this_time is a local structure variable, it is initialized each time the
function is entered. If the structure variable is made static (by placing the keyword
static in front of it), it is only initialized once at the start of program execution. In
either case, the initial values listed inside the curly braces must be constant expressions.

As with the initialization of an array, fewer values might be listed than are contained
in the structure. So the statement

struct time time1 = { 12, 10 };

sets time1.hour to 12 and time1.minutes to 10 but gives no initial value to
time1.seconds. In such a case, its default initial value is undefined.

You can also specify the member names in the initialization list. In that case, the gen-
eral format is

.member = value

This method enables you to initialize the members in any order, or to only initialize
specified members. For example,

struct time time1 = { .hour = 12, .minutes = 10 };

09 0672326663 CH09 6/10/04 2:01 PM Page 180

181Initializing Structures

sets the time1 variable to the same initial values as shown in the previous example.The
statement

struct date today = { .year = 2004 };

sets just the year member of the date structure variable today to 2004.

Compound Literals
You can assign one or more values to a structure in a single statement using what is
know as compound literals. For example, assuming that today has been previously declared
as a struct date variable, the assignment of the members of today as shown in
Program 9.1 can also be done in a single statement as follows:

today = (struct date) { 9, 25, 2004 };

Note that this statement can appear anywhere in the program; it is not a declaration
statement.The type cast operator is used to tell the compiler the type of the expression,
which in this case is struct date, and is followed by the list of values that are to be
assigned to the members of the structure, in order.These values are listed in the same
way as if you were initializing a structure variable.

You can also specify values using the .member notation like this:

today = (struct date) { .month = 9, .day = 25, .year = 2004 };

The advantage of using this approach is that the arguments can appear in any order.
Without explicitly specifying the member names, they must be supplied in the order in
which they are defined in the structure.

The following example shows the dateUpdate function from Program 9.4 rewritten
to take advantage of compound literals:

// Function to calculate tomorrow's date – using compound literals

struct date dateUpdate (struct date today)

{

struct date tomorrow;

int numberOfDays (struct date d);

if (today.day != numberOfDays (today))

tomorrow = (struct date) { today.month, today.day + 1, today.year };

else if (today.month == 12) // end of year

tomorrow = (struct date) { 1, 1, today.year + 1 };

else // end of month

tomorrow = (struct date) { today.month + 1, 1, today.year };

return tomorrow;

}

09 0672326663 CH09 6/10/04 2:01 PM Page 181

182 Chapter 9 Working with Structures

Whether you decide to use compound literals in your programs is up to you. In this
case, the use of compound literals makes the dateUpdate function easier to read.

Compound literals can be used in other places where a valid structure expression is
allowed.This is a perfectly valid, albeit totally impractical example of such a use:

nextDay = dateUpdate ((struct date) { 5, 11, 2004});

The dateUpdate function expects an argument of type struct date, which is precisely
the type of compound literal that is supplied as the argument to the function.

Arrays of Structures
You have seen how useful the structure is in enabling you to logically group related ele-
ments together.With the time structure, for instance, it is only necessary to keep track of
one variable, instead of three, for each time that is used by the program. So, to handle 10
different times in a program, you only have to keep track of 10 different variables,
instead of 30.

An even better method for handling the 10 different times involves the combination
of two powerful features of the C programming language: structures and arrays. C does
not limit you to storing simple data types inside an array; it is perfectly valid to define an
array of structures. For example,

struct time experiments[10];

defines an array called experiments, which consists of 10 elements. Each element inside
the array is defined to be of type struct time. Similarly, the definition

struct date birthdays[15];

defines the array birthdays to contain 15 elements of type struct date. Referencing a
particular structure element inside the array is quite natural.To set the second birthday
inside the birthdays array to August 8, 1986, the sequence of statements

birthdays[1].month = 8;

birthdays[1].day = 8;

birthdays[1].year = 1986;

works just fine.To pass the entire time structure contained in experiments[4] to a
function called checkTime, the array element is specified:

checkTime (experiments[4]);

As is to be expected, the checkTime function declaration must specify that an argument
of type struct time is expected:

void checkTime (struct time t0)

{

.

.

.

}

09 0672326663 CH09 6/10/04 2:01 PM Page 182

183Arrays of Structures

Initialization of arrays containing structures is similar to initialization of multidimensional
arrays. So the statement

struct time runTime [5] =

{ {12, 0, 0}, {12, 30, 0}, {13, 15, 0} };

sets the first three times in the array runTime to 12:00:00, 12:30:00, and 13:15:00.The
inner pairs of braces are optional, meaning that the preceding statement can be equiva-
lently expressed as

struct time runTime[5] =

{ 12, 0, 0, 12, 30, 0, 13, 15, 0 };

The following statement

struct time runTime[5] =

{ [2] = {12, 0, 0} };

initializes just the third element of the array to the specified value, whereas the statement

static struct time runTime[5] = { [1].hour = 12, [1].minutes = 30 };

sets just the hours and minutes of the second element of the runTime array to 12 and
30, respectively.

Program 9.6 sets up an array of time structures called testTimes.The program then
calls your timeUpdate function from Program 9.5.To conserve space, the timeUpdate
function is not included in this program listing. However, a comment statement is insert-
ed to indicate where in the program the function could be included.

In Program 9.6, an array called testTimes is defined to contain five different times.
The elements in this array are assigned initial values that represent the times 11:59:59,
12:00:00, 1:29:59, 23:59:59, and 19:12:27, respectively. Figure 9.2 can help you to under-
stand what the testTimes array actually looks like inside the computer’s memory.A par-
ticular time structure stored in the testTimes array is accessed by using the appropriate
index number 0–4.A particular member (hour, minutes, or seconds) is then accessed by
appending a period followed by the member name.

For each element in the testTimes array, Program 9.6 displays the time as represent-
ed by that element, calls the timeUpdate function from Program 9.5, and then displays
the updated time.

Program 9.6 Illustrating Arrays of Structures

// Program to illustrate arrays of structures

#include <stdio.h>

struct time

{

09 0672326663 CH09 6/10/04 2:01 PM Page 183

184 Chapter 9 Working with Structures

int hour;

int minutes;

int seconds;

};

int main (void)

{

struct time timeUpdate (struct time now);

struct time testTimes[5] =

{ { 11, 59, 59 }, { 12, 0, 0 }, { 1, 29, 59 },

{ 23, 59, 59 }, { 19, 12, 27 }};

int i;

for (i = 0; i < 5; ++i) {

printf ("Time is %.2i:%.2i:%.2i", testTimes[i].hour,

testTimes[i].minutes, testTimes[i].seconds);

testTimes[i] = timeUpdate (testTimes[i]);

printf (" ...one second later it's %.2i:%.2i:%.2i\n",

testTimes[i].hour, testTimes[i].minutes, testTimes[i].seconds);

}

return 0;

}

// ***** Include the timeUpdate function here *****

Program 9.6 Output

Time is 11:59:59 ...one second later it's 12:00:00

Time is 12:00:00 ...one second later it's 12:00:01

Time is 01:29:59 ...one second later it's 01:30:00

Time is 23:59:59 ...one second later it's 00:00:00

Time is 19:12:27 ...one second later it's 19:12:28

The concept of an array of structures is a very powerful and important one in C. Make
certain you understand it fully before you move on.

Program 9.6 Continued

09 0672326663 CH09 6/10/04 2:01 PM Page 184

185Structures Containing Structures

Figure 9.2 The array testTimes in memory.

Structures Containing Structures
C provides you with an enormous amount of flexibility in defining structures. For
instance, you can define a structure that itself contains other structures as one or more of
its members, or you can define structures that contain arrays.

You have seen how it is possible to logically group the month, day, and year into a
structure called date and how to group the hour, minutes, and seconds into a structure
called time. In some applications, you might have the need to logically group both a
date and a time together. For example, you might need to set up a list of events that are
to occur at a particular date and time.

What the preceding discussion implies is that you want to have a convenient means
for associating both the date and the time together.You can do this in C by defining a
new structure, called, for example, dateAndTime, which contains as its members two ele-
ments: the date and the time.

.hour

.minutes

.seconds

11

59

12

0

23

.hour

.minutes

.seconds

.hour

.minutes

.seconds

.hour

.minutes

.seconds

.hour

.minutes

.seconds

testTimes[0]

testTimes[4]

testTimes[1]

testTimes[2]

testTimes[3]

59

0

1

29

59

59

59

12

27

19

09 0672326663 CH09 6/10/04 2:01 PM Page 185

186 Chapter 9 Working with Structures

struct dateAndTime

{

struct date sdate;

struct time stime;

};

The first member of this structure is of type struct date and is called sdate.The sec-
ond member of the dateAndTime structure is of type struct time and is called stime.
This definition of a dateAndTime structure requires that a date structure and a time
structure have been previously defined to the compiler.

Variables can now be defined to be of type struct dateAndTime, as in

struct dateAndTime event;

To reference the date structure of the variable event, the syntax is the same:

event.sdate

So, you could call your dateUpdate function with this date as the argument and assign
the result back to the same place by a statement such as

event.sdate = dateUpdate (event.sdate);

You can do the same type of thing with the time structure contained within your
dateAndTime structure:

event.stime = timeUpdate (event.stime);

To reference a particular member inside one of these structures, a period followed by the
member name is tacked on the end:

event.sdate.month = 10;

This statement sets the month of the date structure contained within event to October,
and the statement

++event.stime.seconds;

adds one to the seconds contained within the time structure.
The event variable can be initialized in the expected manner:

struct dateAndTime event =

{ { 2, 1, 2004 }, { 3, 30, 0 } };

This sets the date in the variable event to February 1, 2004, and sets the time to
3:30:00.

Of course, you can use members’ names in the initialization, as in

struct dateAndTime event =
{ { .month = 2, .day = 1, .year = 2004 },
{ .hour = 3, .minutes = 30, .seconds = 0 }

};

09 0672326663 CH09 6/10/04 2:01 PM Page 186

187Structures Containing Arrays

Naturally, it is possible to set up an array of dateAndTime structures, as is done with the
following declaration:

struct dateAndTime events[100];

The array events is declared to contain 100 elements of type struct dateAndTime.The
fourth dateAndTime contained within the array is referenced in the usual way as
events[3], and the ith date in the array can be sent to your dateUpdate function as fol-
lows:

events[i].sdate = dateUpdate (events[i].sdate);

To set the first time in the array to noon, the series of statements

events[0].stime.hour = 12;

events[0].stime.minutes = 0;

events[0].stime.seconds = 0;

can be used.

Structures Containing Arrays
As the heading of this section implies, it is possible to define structures that contain
arrays as members. One of the most common applications of this type is setting up an
array of characters inside a structure. For example, suppose you want to define a struc-
ture called month that contains as its members the number of days in the month as well
as a three-character abbreviation for the month name.The following definition does
the job:

struct month

{

int numberOfDays;

char name[3];

};

This sets up a month structure that contains an integer member called numberOfDays and
a character member called name.The member name is actually an array of three charac-
ters.You can now define a variable to be of type struct month in the normal fashion:

struct month aMonth;

You can set the proper fields inside aMonth for January with the following sequence of
statements:

aMonth.numberOfDays = 31;

aMonth.name[0] = 'J';

aMonth.name[1] = 'a';

aMonth.name[2] = 'n';

09 0672326663 CH09 6/10/04 2:01 PM Page 187

188 Chapter 9 Working with Structures

Or, you can initialize this variable to the same values with the following statement:

struct month aMonth = { 31, { 'J', 'a', 'n' } };

To go one step further, you can set up 12 month structures inside an array to represent
each month of the year:

struct month months[12];

Program 9.7 illustrates the months array. Its purpose is simply to set up the initial values
inside the array and then display these values at the terminal.

It might be easier for you to conceptualize the notation that is used to reference par-
ticular elements of the months array as defined in the program by examining Figure 9.3.

Program 9.7 Illustrating Structures and Arrays

// Program to illustrate structures and arrays

#include <stdio.h>

int main (void)

{

int i;

struct month

{

int numberOfDays;

char name[3];

};

const struct month months[12] =

{ { 31, {'J', 'a', 'n'} }, { 28, {'F', 'e', 'b'} },

{ 31, {'M', 'a', 'r'} }, { 30, {'A', 'p', 'r'} },

{ 31, {'M', 'a', 'y'} }, { 30, {'J', 'u', 'n'} },

{ 31, {'J', 'u', 'l'} }, { 31, {'A', 'u', 'g'} },

{ 30, {'S', 'e', 'p'} }, { 31, {'O', 'c', 't'} },

{ 30, {'N', 'o', 'v'} }, { 31, {'D', 'e', 'c'} } };

printf ("Month Number of Days\n");

printf ("----- --------------\n");

for (i = 0; i < 12; ++i)

printf (" %c%c%c %i\n",

months[i].name[0], months[i].name[1],

months[i].name[2], months[i].numberOfDays);

return 0;

}

09 0672326663 CH09 6/10/04 2:01 PM Page 188

189Structures Containing Arrays

Program 9.7 Output

Month Number of Days

----- ---------------

Jan 31

Feb 28

Mar 31

Apr 30

May 31

Jun 30

Jul 31

Aug 31

Sep 30

Oct 31

Nov 30

Dec 31

As you can see in Figure 9.3, the notation

months[0]

refers to the entire month structure contained in the first location of the months array.
The type of this expression is struct month.Therefore, when passing months[0] to a
function as an argument, the corresponding formal parameter inside the function must
be declared to be of type struct month.

Going one step further, the expression

months[0].numberOfDays

refers to the numberOfDays member of the month structure contained in months[0].The
type of this expression is int.The expression

months[0].name

references the three-character array called name inside the month structure of months[0].
If passing this expression as an argument to a function, the corresponding formal param-
eter is declared to be an array of type char.

Finally, the expression

months[0].name[0]

references the first character of the name array contained in months[0] (the character
'J').

09 0672326663 CH09 6/10/04 2:01 PM Page 189

190 Chapter 9 Working with Structures

Figure 9.3 The array months.

Structure Variants
You do have some flexibility in defining a structure. First, it is valid to declare a variable
to be of a particular structure type at the same time that the structure is defined.This is
done simply by including the variable name (or names) before the terminating semi-
colon of the structure definition. For example, the statement

31

'a'

'n'

'F'

'M'

[0]

[1]

[2]

.name

'J'

28

'e'

'b'

31

'a'

'r'

'A'

'p'

30

[0]

[1]

[2]

.name

[0]

[1]

[2]

.name

[0]

[1]

[2]

.name

numberOfDays

numberOfDays

numberOfDays

numberOfDays

months[0]

months[1]

months[2]

months[3]

31

'e'

'c'

[0]

[1]

[2]

.name

'D'

numberOfDays

months[11]

'r'

09 0672326663 CH09 6/10/04 2:01 PM Page 190

191Exercises

struct date

{

int month;

int day;

int year;

} todaysDate, purchaseDate;

defines the structure date and also declares the variables todaysDate and purchaseDate
to be of this type.You can also assign initial values to the variables in the normal fashion.
Thus,

struct date

{

int month;

int day;

int year;

} todaysDate = { 1, 11, 2005 };

defines the structure date and the variable todaysDate with initial values as indicated.
If all of the variables of a particular structure type are defined when the structure is

defined, the structure name can be omitted. So the statement

struct

{

int month;

int day;

int year;

} dates[100];

defines an array called dates to consist of 100 elements. Each element is a structure
containing three integer members: month, day, and year. Because you did not supply a
name to the structure, the only way to subsequently declare variables of the same type is
by explicitly defining the structure again.

You have seen how structures can be used to conveniently reference groups of data
under a single label.You’ve also seen in this chapter how easily you can define arrays of
structures and work with them with functions. In the next chapter, you learn how to
work with arrays of characters, also known as character strings. Before going on, try the
following exercises.

Exercises
1. Type in and run the seven programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. In certain applications, particularly in the financial area, it is often necessary to cal-
culate the number of elapsed days between two dates. For example, the number of

09 0672326663 CH09 6/10/04 2:01 PM Page 191

192 Chapter 9 Working with Structures

days between July 2, 2005, and July 16, 2005, is obviously 14. But how many days
are there between August 8, 2004, and February 22, 2005? This calculation requires
a bit more thought.

Luckily, a formula can be used to calculate the number of days between two dates.
This is affected by computing the value of N for each of the two dates and then
taking the difference, where N is calculated as follows:

N = 1461 x f(year, month) / 4 + 153 x g(month) / 5 + day

where

f(year, month) = year - 1 if month <= 2

year otherwise

g(month) = month + 13 if month <= 2

month + 1 otherwise

As an example of applying the formula, to calculate the number of days between
August 8, 2004, and February 22, 2005, you can calculate the values of N1 and N2

by substituting the appropriate values into the preceding formula as shown:

N1 = 1461 x f(2004, 8) / 4 + 153 x g(8) / 5 + 3

= (1461 x 2004) / 4 + (153 x 9) / 5 + 3

= 2,927,844 / 4 + 1,377 / 5 + 3

= 731,961 + 275 + 3

= 732,239

N2 = 1461 x f(2005, 2) / 4 + 153 x g(2) / 5 + 21

= (1461 x 2004) / 4 + (153 x 15) / 5 + 21

= 2,927,844 / 4 + 2295 / 5 + 21

= 731,961 + 459 + 21

= 732,441

Number of elapsed days = N2 - N1

= 732,441 – 732,239

= 202

So the number of days between the two dates is shown to be 202.The preceding
formula is applicable for any dates after March 1, 1900 (1 must be added to N for
dates from March 1, 1800, to February 28, 1900, and 2 must be added for dates
between March 1, 1700, and February 28, 1800).

Write a program that permits the user to type in two dates and then calculates the
number of elapsed days between the two dates.Try to structure the program logi-
cally into separate functions. For example, you should have a function that accepts
as an argument a date structure and returns the value of N computed as shown

09 0672326663 CH09 6/10/04 2:01 PM Page 192

193Exercises

previously.This function can then be called twice, once for each date, and the dif-
ference taken to determine the number of elapsed days.

3. Write a function elapsed_time that takes as its arguments two time structures
and returns a time structure that represents the elapsed time (in hours, minutes,
and seconds) between the two times. So the call

elapsed_time (time1, time2)

where time1 represents 3:45:15 and time2 represents 9:44:03, should return a
time structure that represents 5 hours, 58 minutes, and 48 seconds. Be careful with
times that cross midnight.

4. If you take the value of N as computed in exercise 2, subtract 621,049 from it, and
then take that result modulo 7, you get a number from 0 to 6 that represents the
day of the week (Sunday through Saturday, respectively) on which the particular
day falls. For example, the value of N computed for August 8, 2004, is 732,239 as
derived previously. 732,239 – 621,049 gives 111,190, and 111,190 % 7 gives 2,
indicating that this date falls on a Tuesday.

Use the functions developed in the previous exercise to develop a program that
displays the day of the week on which a particular date falls. Make certain that the
program displays the day of the week in English (such as “Monday”).

5. Write a function called clockKeeper that takes as its argument a dateAndTime
structure as defined in this chapter.The function should call the timeUpdate func-
tion, and if the time reaches midnight, the function should call the dateUpdate
function to switch over to the next day. Have the function return the updated
dateAndTime structure.

6. Replace the dateUpdate function from Program 9.4 with the modified one that
uses compound literals as presented in the text. Run the program to verify its
proper operation.

09 0672326663 CH09 6/10/04 2:01 PM Page 193

09 0672326663 CH09 6/10/04 2:01 PM Page 194

10
Character Strings

NOW,YOU ARE READY TO TAKE a look at character strings in more detail.You were
first introduced to character strings in Chapter 3,“Compiling and Running Your First
Program,” when you wrote your first C program. In the statement

printf ("Programming in C is fun.\n");

the argument that is passed to the printf function is the character string

"Programming in C is fun.\n"

The double quotation marks are used to delimit the character string, which can contain
any combinations of letters, numbers, or special characters, other than a double quotation
mark. But as you shall see shortly, it is even possible to include a double quotation mark
inside a character string.

When introduced to the data type char, you learned that a variable that is declared to
be of this type can contain only a single character.To assign a single character to such a
variable, the character is enclosed within a pair of single quotation marks.Thus, the
assignment

plusSign = '+';

has the effect of assigning the character '+' to the variable plusSign, assuming it has
been appropriately declared. In addition, you learned that there is a distinction made
between the single quotation and double quotation marks, and that if plusSign is
declared to be of type char, then the statement

plusSign = "+";

is incorrect. Be certain you remember that single quotation and double quotation marks
are used to create two different types of constants in C.

10 0672326663 CH10 6/10/04 2:05 PM Page 195

196 Chapter 10 Character Strings

Arrays of Characters
If you want to be able to deal with variables that can hold more than a single character,1

this is precisely where the array of characters comes into play.
In Program 7.6, you defined an array of characters called word as follows:

char word [] = { 'H', 'e', 'l', 'l', 'o', '!' };

Remembering that in the absence of a particular array size, the C compiler automatically
computes the number of elements in the array based upon the number of initializers, this
statement reserves space in memory for exactly six characters, as shown in Figure 10.1.

1. Recall that the type wchar_t can be used for representing so-called wide characters, but that’s
for handling a single character from an international character set. The discussion here is about
storing sequences of multiple characters.

'H'

'l'

'l'

'!'

word[1]

word[2]

word[3]

'e'

'o'

word[0]

word[5]

word[4]

Figure 10.1 The array word in memory.

To print out the contents of the array word, you ran through each element in the array
and displayed it using the %c format characters.

With this technique, you can begin to build an assortment of useful functions for
dealing with character strings. Some of the more commonly performed operations on
character strings include combining two character strings together (concatenation),
copying one character string to another, extracting a portion of a character string (sub-
string), and determining if two character strings are equal (that is, if they contain the
same characters). Take the first mentioned operation, concatenation, and develop a func-
tion to perform this task.You can define a call to your concat function as follows:

concat (result, str1, n1, str2, n2);

where str1 and str2 represent the two character arrays that are to be concatenated and
n1 and n2 represent the number of characters in the respective arrays.This makes the
function flexible enough so that you can concatenate two character arrays of arbitrary
length.The argument result represents the character array that is to be the destination
of the concatenated character arrays str1 followed by str2. See Program 10.1.

10 0672326663 CH10 6/10/04 2:05 PM Page 196

197Arrays of Characters

Program 10.1 Concatenating Character Arrays

// Function to concatenate two character arrays

#include <stdio.h>

void concat (char result[], const char str1[], int n1,

const char str2[], int n2)

{

int i, j;

// copy str1 to result

for (i = 0; i < n1; ++i)

result[i] = str1[i];

// copy str2 to result

for (j = 0; j < n2; ++j)

result[n1 + j] = str2[j];

}

int main (void)

{

void concat (char result[], const char str1[], int n1,

const char str2[], int n2);

const char s1[5] = { 'T', 'e', 's', 't', ' '};

const char s2[6] = { 'w', 'o', 'r', 'k', 's', '.' };

char s3[11];

int i;

concat (s3, s1, 5, s2, 6);

for (i = 0; i < 11; ++i)

printf ("%c", s3[i]);

printf ("\n");

return 0;

}

Program 10.1 Output

Test works.

10 0672326663 CH10 6/10/04 2:05 PM Page 197

198 Chapter 10 Character Strings

The first for loop inside the concat function copies the characters from the str1 array
into the result array.This loop is executed n1 times, which is the number of characters
contained inside the str1 array.

The second for loop copies str2 into the result array. Because str1 was n1 charac-
ters long, copying into result begins at result[n1]—the position immediately follow-
ing the one occupied by the last character of str1.After this for loop is done, the
result array contains the n1+n2 characters representing str2 concatenated to the end of
str1.

Inside the main routine, two const character arrays, s1 and s2, are defined.The
first array is initialized to the characters 'T', 'e', 's', 't', and ' '.This last character
represents a blank space and is a perfectly valid character constant.The second array is
initially set to the characters 'w', 'o', 'r', 'k', 's', and '.'.A third character array, s3,
is defined with enough space to hold s1 concatenated to s2, or 11 characters. It is not
declared as a const array because its contents will be changed.

The function call

concat (s3, s1, 5, s2, 6);

calls the concat function to concatenate the character arrays s1 and s2, with the desti-
nation array s3.The arguments 5 and 6 are passed to the function to indicate the num-
ber of characters in s1 and s2, respectively.

After the concat function has completed execution and returns to main, a for loop is
set up to display the results of the function call.The 11 elements of s3 are displayed at
the terminal, and as can be seen from the program’s output, the concat function seems
to be working properly. In the preceding program example, it is assumed that the first
argument to the concat function—the result array—contains enough space to hold the
resulting concatenated character arrays. Failure to do so can produce unpredictable results
when the program is run.

Variable-Length Character Strings
You can adopt a similar approach to that used by the concat function for defining other
functions to deal with character arrays.That is, you can develop a set of routines, each of
which has as its arguments one or more character arrays plus the number of characters
contained in each such array. Unfortunately, after working with these functions for a
while, you will find that it gets a bit tedious trying to keep track of the number of char-
acters contained in each character array that you are using in your program—especially if
you are using your arrays to store character strings of varying sizes.What you need is a
method for dealing with character arrays without having to worry about precisely how
many characters you have stored in them.

There is such a method, and it is based upon the idea of placing a special character at
the end of every character string. In this manner, the function can then determine for
itself when it has reached the end of a character string after it encounters this special
character. By developing all of your functions to deal with character strings in this

10 0672326663 CH10 6/10/04 2:05 PM Page 198

199Variable-Length Character Strings

fashion, you can eliminate the need to specify the number of characters that are con-
tained inside a character string.

In the C language, the special character that is used to signal the end of a string is
known as the null character and is written as '\0'. So, the statement

const char word [] = { 'H', 'e', 'l', 'l', 'o', '!', '\0' };

defines a character array called word that contains seven characters, the last of which is
the null character. (Recall that the backslash character [\] is a special character in the C
language and does not count as a separate character; therefore, '\0' represents a single
character in C.) The array word is depicted in Figure 10.2.

'H'

'l'

'l'

'!'

word[1]

word[2]

word[3]

'e'

'o'

word[0]

word[5]

word[4]

'\0'word[6]

Figure 10.2 The array word with a terminating null character.

To begin with an illustration of how these variable-length character strings are used, write
a function that counts the number of characters in a character string, as shown in
Program 10.2. Call the function stringLength and have it take as its argument a charac-
ter array that is terminated by the null character.The function determines the number of
characters in the array and returns this value back to the calling routine. Define the
number of characters in the array as the number of characters up to, but not including,
the terminating null character. So, the function call

stringLength (characterString)

should return the value 3 if characterString is defined as follows:

char characterString[] = { 'c', 'a', 't', '\0' };

Program 10.2 Counting the Characters in a String

// Function to count the number of characters in a string

#include <stdio.h>

10 0672326663 CH10 6/10/04 2:05 PM Page 199

200 Chapter 10 Character Strings

int stringLength (const char string[])

{

int count = 0;

while (string[count] != '\0')

++count;

return count;

}

int main (void)

{

int stringLength (const char string[]);

const char word1[] = { 'a', 's', 't', 'e', 'r', '\0' };

const char word2[] = { 'a', 't', '\0' };

const char word3[] = { 'a', 'w', 'e', '\0' };

printf ("%i %i %i\n", stringLength (word1),

stringLength (word2), stringLength (word3));

return 0;

}

Program 10.2 Output

5 2 3

The stringLength function declares its argument as a const array of characters because
it is not making any changes to the array, merely counting its size.

Inside the stringLength function, the variable count is defined and its value set to 0.
The program then enters a while loop to sequence through the string array until the
null character is reached.When the function finally hits upon this character, signaling the
end of the character string, the while loop is exited and the value of count is returned.
This value represents the number of characters in the string, excluding the null character.
You might want to trace through the operation of this loop on a small character array to
verify that the value of count when the loop is exited is in fact equal to the number of
characters in the array, excluding the null character.

In the main routine, three character arrays, word1, word2, and word3, are defined.The
printf function call displays the results of calling the stringLength function for each of
these three character arrays.

Program 10.2 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 200

201Variable-Length Character Strings

Initializing and Displaying Character Strings
Now, it is time to go back to the concat function developed in Program 10.1 and
rewrite it to work with variable-length character strings. Obviously, the function must be
changed somewhat because you no longer want to pass as arguments the number of
characters in the two arrays.The function now takes only three arguments: the two char-
acter arrays to be concatenated and the character array in which to place the result.

Before delving into this program, you should first learn about two nice features that
C provides for dealing with character strings.

The first feature involves the initialization of character arrays. C permits a character
array to be initialized by simply specifying a constant character string rather than a list of
individual characters. So, for example, the statement

char word[] = { "Hello!" };

can be used to set up an array of characters called word with the initial characters ‘H’, ‘e’,
‘l’, ‘l’, ‘o’, ‘!’, and ‘\0’, respectively.You can also omit the braces when initializing character
arrays in this manner. So, the statement

char word[] = "Hello!";

is perfectly valid. Either statement is equivalent to the statement

char word[] = { 'H', 'e', 'l', 'l', 'o', '!', '\0' };

If you’re explicitly specifying the size of the array, make certain you leave enough space
for the terminating null character. So, in

char word[7] = { "Hello!" };

the compiler has enough room in the array to place the terminating null character.
However, in

char word[6] = { "Hello!" };

the compiler can’t fit a terminating null character at the end of the array, and so it
doesn’t put one there (and it doesn’t complain about it either).

In general, wherever they appear in your program, character-string constants in the C
language are automatically terminated by the null character.This fact helps functions
such as printf determine when the end of a character string has been reached. So, in
the call

printf ("Programming in C is fun.\n");

the null character is automatically placed after the newline character in the character
string, thereby enabling the printf function to determine when it has reached the end
of the format string.

The other feature to be mentioned here involves the display of character strings.The
special format characters %s inside a printf format string can be used to display an array
of characters that is terminated by the null character. So, if word is a null-terminated
array of characters, the printf call

printf ("%s\n", word);

10 0672326663 CH10 6/10/04 2:05 PM Page 201

202 Chapter 10 Character Strings

can be used to display the entire contents of the word array at the terminal.The printf
function assumes when it encounters the %s format characters that the corresponding
argument is a character string that is terminated by a null character.

The two features just described were incorporated into the main routine of Program
10.3, which illustrates your revised concat function. Because you are no longer passing
the number of characters in each string as arguments to the function, the function must
determine when the end of each string is reached by testing for the null character.Also,
when str1 is copied into the result array, you want to be certain not to also copy the
null character because this ends the string in the result array right there.You do need,
however, to place a null character into the result array after str2 has been copied so as
to signal the end of the newly created string.

Program 10.3 Concatenating Character Strings

#include <stdio.h>

int main (void)

{

void concat (char result[], const char str1[], const char str2[]);

const char s1[] = { "Test " };

const char s2[] = { "works." };

char s3[20];

concat (s3, s1, s2);

printf ("%s\n", s3);

return 0;

}

// Function to concatenate two character strings

void concat (char result[], const char str1[], const char str2[])

{

int i, j;

// copy str1 to result

for (i = 0; str1[i] != '\0'; ++i)

result[i] = str1[i];

// copy str2 to result

10 0672326663 CH10 6/10/04 2:05 PM Page 202

203Variable-Length Character Strings

for (j = 0; str2[j] != '\0'; ++j)

result[i + j] = str2[j];

// Terminate the concatenated string with a null character

result [i + j] = '\0';

}

Program 10.3 Output

Test works.

In the first for loop of the concat function, the characters contained inside str1 are
copied into the result array until the null character is reached. Because the for loop
terminates as soon as the null character is matched, it does not get copied into the
result array.

In the second loop, the characters from str2 are copied into the result array direct-
ly after the final character from str1.This loop makes use of the fact that when the pre-
vious for loop finished execution, the value of i was equal to the number of characters
in str1, excluding the null character.Therefore, the assignment statement

result[i + j] = str2[j];

is used to copy the characters from str2 into the proper locations of result.
After the second loop is completed, the concat function puts a null character at the

end of the string. Study the function to ensure that you understand the use of i and j.
Many program errors when dealing with character strings involve the use of an index
number that is off by 1 in either direction.

Remember, to reference the first character of an array, an index number of 0 is used.
In addition, if a character array string contains n characters, excluding the null byte,
then string[n – 1] references the last (nonnull) character in the string, whereas
string[n] references the null character. Furthermore, string must be defined to con-
tain at least n + 1 characters, bearing in mind that the null character occupies a location
in the array.

Returning to the program, the main routine defines two char arrays, s1 and s2, and
sets their values using the new initialization technique previously described.The array s3
is defined to contain 20 characters, thus ensuring that sufficient space is reserved for the
concatenated character string and saving you from the trouble of having to precisely cal-
culate its size.

The concat function is then called with the three strings s1, s2, and s3 as arguments.
The result, as contained in s3 after the concat function returns, is displayed using the %s
format characters.Although s3 is defined to contain 20 characters, the printf function
only displays characters from the array up to the null character.

Program 10.3 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 203

204 Chapter 10 Character Strings

Testing Two Character Strings for Equality
You cannot directly test two strings to see if they are equal with a statement such as

if (string1 == string2)

...

because the equality operator can only be applied to simple variable types, such as
floats, ints, or chars, and not to more sophisticated types, such as structures or arrays.

To determine if two strings are equal, you must explicitly compare the two character
strings character by character. If you reach the end of both character strings at the same
time, and if all of the characters up to that point are identical, the two strings are equal;
otherwise, they are not.

It might be a good idea to develop a function that can be used to compare two char-
acter strings, as shown in Program 10.4.You can call the function equalStrings and
have it take as arguments the two character strings to be compared. Because you are only
interested in determining whether the two character strings are equal, you can have the
function return a bool value of true (or nonzero) if the two strings are identical, and
false (or zero) if they are not. In this way, the function can be used directly inside test
statements, such as in

if (equalStrings (string1, string2))

...

Program 10.4 Testing Strings for Equality

// Function to determine if two strings are equal

#include <stdio.h>

#include <stdbool.h>

bool equalStrings (const char s1[], const char s2[])

{

int i = 0;

bool areEqual;

while (s1[i] == s2 [i] &&

s1[i] != '\0' && s2[i] != '\0')

++i;

if (s1[i] == '\0' && s2[i] == '\0')

areEqual = true;

else

areEqual = false;

10 0672326663 CH10 6/10/04 2:05 PM Page 204

205Variable-Length Character Strings

return areEqual;

}

int main (void)

{

bool equalStrings (const char s1[], const char s2[]);

const char stra[] = "string compare test";

const char strb[] = "string";

printf ("%i\n", equalStrings (stra, strb));

printf ("%i\n", equalStrings (stra, stra));

printf ("%i\n", equalStrings (strb, "string"));

return 0;

}

Program 10.4 Output

0

1

1

The equalStrings function uses a while loop to sequence through the character strings
s1 and s2.The loop is executed so long as the two character strings are equal (s1[i] ==
s2[i]) and so long as the end of either string is not reached (s1[i] != '\0' && s2[i]
!= '\0').The variable i, which is used as the index number for both arrays, is incre-
mented each time through the while loop.

The if statement that executes after the while loop has terminated determines if you
have simultaneously reached the end of both strings s1 and s2.You could have used the
statement

if (s1[i] == s2[i])

...

instead to achieve the same results. If you are at the end of both strings, the strings must
be identical, in which case areEqual is set to true and returned to the calling routine.
Otherwise, the strings are not identical and areEqual is set to false and returned.

In main, two character arrays stra and strb are set up and assigned the indicated ini-
tial values.The first call to the equalStrings function passes these two character arrays
as arguments. Because these two strings are not equal, the function correctly returns a
value of false, or 0.

Program 10.4 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 205

206 Chapter 10 Character Strings

The second call to the equalStrings function passes the string stra twice.The
function correctly returns a true value to indicate that the two strings are equal, as veri-
fied by the program’s output.

The third call to the equalStrings function is a bit more interesting.As you can see
from this example, you can pass a constant character string to a function that is expecting
an array of characters as an argument. In Chapter 11,“Pointers,” you see how this works.
The equalStrings function compares the character string contained in strb to the
character string "string" and returns true to indicate that the two strings are equal.

Inputting Character Strings
By now, you are used to the idea of displaying a character string using the %s format
characters. But what about reading in a character string from your window (or your
“terminal window”)? Well, on your system, there are several library functions that you
can use to input character strings.The scanf function can be used with the %s format
characters to read in a string of characters up to a blank space, tab character, or the end
of the line, whichever occurs first. So, the statements

char string[81];

scanf ("%s", string);

have the effect of reading in a character string typed into your terminal window and
storing it inside the character array string. Note that unlike previous scanf calls, in the
case of reading strings, the & is not placed before the array name (the reason for this is
also explained in Chapter 11).

If the preceding scanf call is executed, and the following characters are entered:

Shawshank

the string "Shawshank" is read in by the scanf function and is stored inside the string
array. If the following line of text is typed instead:

iTunes playlist

just the string "iTunes" is stored inside the string array because the blank space after
the word scanf terminates the string. If the scanf call is executed again, this time the
string "playlist" is stored inside the string array because the scanf function always
continues scanning from the most recent character that was read in.

The scanf function automatically terminates the string that is read in with a null
character. So, execution of the preceding scanf call with the line of text

abcdefghijklmnopqrstuvwxyz

causes the entire lowercase alphabet to be stored in the first 26 locations of the string
array, with string[26] automatically set to the null character.

10 0672326663 CH10 6/10/04 2:05 PM Page 206

207Variable-Length Character Strings

If s1, s2, and s3 are defined to be character arrays of appropriate sizes, execution of
the statement

scanf ("%s%s%s", s1, s2, s3);

with the line of text

micro computer system

results in the assignment of the string "micro" to s1, "computer" to s2, and "system"
to s3. If the following line of text is typed instead:

system expansion

it results in the assignment of the string "system" to s1, and "expansion" to s2.
Because no further characters appear on the line, the scanf function then waits for more
input to be entered from your terminal window.

In Program 10.5, scanf is used to read three character strings.

Program 10.5 Reading Strings with scanf

// Program to illustrate the %s scanf format characters

#include <stdio.h>

int main (void)

{

char s1[81], s2[81], s3[81];

printf ("Enter text:\n");

scanf ("%s%s%s", s1, s2, s3);

printf ("\ns1 = %s\ns2 = %s\ns3 = %s\n", s1, s2, s3);

return 0;

}

Program 10.5 Output

Enter text:

system expansion

bus

s1 = system

s2 = expansion

s3 = bus

10 0672326663 CH10 6/10/04 2:05 PM Page 207

208 Chapter 10 Character Strings

In the preceding program, the scanf function is called to read in three character strings:
s1, s2, and s3. Because the first line of text contains only two character strings—where
the definition of a character string to scanf is a sequence of characters up to a space,
tab, or the end of the line—the program waits for more text to be entered.After this is
done, the printf call is used to verify that the strings "system", "expansion", and
"bus" are correctly stored inside the string arrays s1, s2, and s3, respectively.

If you type in more than 80 consecutive characters to the preceding program without
pressing the spacebar, the tab key, or the Enter (or Return) key, scanf overflows one of
the character arrays.This might cause the program to terminate abnormally or cause
unpredictable things to happen. Unfortunately, scanf has no way of knowing how large
your character arrays are.When handed a %s format, it simply continues to read and
store characters until one of the noted terminator characters is reached.

If you place a number after the % in the scanf format string, this tells scanf the max-
imum number of characters to read. So, if you used the following scanf call:

scanf ("%80s%80s%80s", s1, s2, s3);

instead of the one shown in Program 10.5, scanf knows that no more than 80 charac-
ters are to be read and stored into either s1, s2, or s3. (You still have to leave room for
the terminating null character that scanf stores at the end of the array.That’s why %80s
is used instead of %81s.)

Single-Character Input
The standard library provides several functions for the express purposes of reading and
writing single characters and entire character strings.A function called getchar can be
used to read in a single character from the terminal. Repeated calls to the getchar func-
tion return successive single characters from the input.When the end of the line is
reached, the function returns the newline character '\n'. So, if the characters “abc” are
typed at the terminal, followed immediately by the Enter (or Return) key, the first call to
the getchar function returns the character 'a', the second call returns the character
'b', the third call returns 'c', and the fourth call returns the newline character '\n'.A
fifth call to this function causes the program to wait for more input to be entered from
the terminal.

You might be wondering why you need the getchar function when you already
know how to read in a single character with the %c format characters of the scanf func-
tion. Using the scanf function for this purpose is a perfectly valid approach; however,
the getchar function is a more direct approach because its sole purpose is for reading in
single characters, and, therefore, it does not require any arguments.The function returns
a single character that might be assigned to a variable or used as desired by the program.

In many text-processing applications, you need to read in an entire line of text.This
line of text is frequently stored in a single place—generally called a “buffer”—where it is
processed further. Using the scanf call with the %s format characters does not work in
such a case because the string is terminated as soon as a space is encountered in the
input.

10 0672326663 CH10 6/10/04 2:05 PM Page 208

209Variable-Length Character Strings

Also available from the function library is a function called gets.The sole purpose of
this function—you guessed it—is to read in a single line of text.As an interesting pro-
gram exercise, Program 10.6 shows how a function similar to the gets function—called
readLine here—can be developed using the getchar function.The function takes a sin-
gle argument: a character array in which the line of text is to be stored. Characters read
from the terminal window up to, but not including, the newline character are stored in
this array by the function.

Program 10.6 Reading Lines of Data

#include <stdio.h>

int main (void)

{

int i;

char line[81];

void readLine (char buffer[]);

for (i = 0; i < 3; ++i)

{

readLine (line);

printf ("%s\n\n", line);

}

return 0;

}

// Function to read a line of text from the terminal

void readLine (char buffer[])

{

char character;

int i = 0;

do

{

character = getchar ();

buffer[i] = character;

++i;

}

while (character != '\n');

buffer[i - 1] = '\0';

}

10 0672326663 CH10 6/10/04 2:05 PM Page 209

210 Chapter 10 Character Strings

Program 10.6 Output

This is a sample line of text.

This is a sample line of text.

abcdefghijklmnopqrstuvwxyz

abcdefghijklmnopqrstuvwxyz

runtime library routines

runtime library routines

The do loop in the readLine function is used to build up the input line inside the char-
acter array buffer. Each character that is returned by the getchar function is stored in
the next location of the array.When the newline character is reached—signaling the end
of the line—the loop is exited.The null character is then stored inside the array to ter-
minate the character string, replacing the newline character that was stored there the last
time that the loop was executed.The index number i – 1 indexes the correct position
in the array because the index number was incremented one extra time inside the loop
the last time it was executed.

The main routine defines a character array called line with enough space reserved to
hold 81 characters.This ensures that an entire line (80 characters has historically been
used as the line length of a “standard terminal”) plus the null character can be stored
inside the array. However, even in windows that display 80 or fewer characters per line,
you are still in danger of overflowing the array if you continue typing past the end of the
line without pressing the Enter (or Return) key. It is a good idea to extend the
readLine function to accept as a second argument the size of the buffer. In this way, the
function can ensure that the capacity of the buffer is not exceeded.

The program then enters a for loop, which simply calls the readLine function three
times. Each time that this function is called, a new line of text is read from the terminal.
This line is simply echoed back at the terminal to verify proper operation of the func-
tion.After the third line of text has been displayed, execution of Program 10.6 is then
complete.

For your next program example (see Program 10.7), consider a practical text-process-
ing application: counting the number of words in a portion of text. Develop a function
called countWords, which takes as its argument a character string and which returns the
number of words contained in that string. For the sake of simplicity, assume here that a
word is defined as a sequence of one or more alphabetic characters.The function can
scan the character string for the occurrence of the first alphabetic character and consid-
ers all subsequent characters up to the first nonalphabetic character as part of the same
word.Then, the function can continue scanning the string for the next alphabetic
character, which identifies the start of a new word.

10 0672326663 CH10 6/10/04 2:05 PM Page 210

211Variable-Length Character Strings

Program 10.7 Counting Words

// Function to determine if a character is alphabetic

#include <stdio.h>

#include <stdbool.h>

bool alphabetic (const char c)

{

if ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))

return true;

else

return false;

}

/* Function to count the number of words in a string */

int countWords (const char string[])

{

int i, wordCount = 0;

bool lookingForWord = true, alphabetic (const char c);

for (i = 0; string[i] != '\0'; ++i)

if (alphabetic(string[i]))

{

if (lookingForWord)

{

++wordCount;

lookingForWord = false;

}

}

else

lookingForWord = true;

return wordCount;

}

int main (void)

{

const char text1[] = "Well, here goes.";

const char text2[] = "And here we go... again.";

int countWords (const char string[]);

printf ("%s - words = %i\n", text1, countWords (text1));

printf ("%s - words = %i\n", text2, countWords (text2));

return 0;

}

10 0672326663 CH10 6/10/04 2:05 PM Page 211

212 Chapter 10 Character Strings

Program 10.7 Output

Well, here goes. - words = 3

And here we go... again. - words = 5

The alphabetic function is straightforward enough—it simply tests the value of the
character passed to it to determine if it is either a lowercase or uppercase letter. If it is
either, the function returns true, indicating that the character is alphabetic; otherwise,
the function returns false.

The countWords function is not as straightforward.The integer variable i is used as
an index number to sequence through each character in the string.The integer variable
lookingForWord is used as a flag to indicate whether you are currently in the process of
looking for the start of a new word.At the beginning of the execution of the function,
you obviously are looking for the start of a new word, so this flag is set to true.The
local variable wordCount is used for the obvious purpose of counting the number of
words in the character string.

For each character inside the character string, a call to the alphabetic function is
made to determine whether the character is alphabetic. If the character is alphabetic, the
lookingForWord flag is tested to determine if you are in the process of looking for a
new word. If you are, the value of wordCount is incremented by 1, and the
lookingForWord flag is set to false, indicating that you are no longer looking for the
start of a new word.

If the character is alphabetic and the lookingForWord flag is false, this means that
you are currently scanning inside a word. In such a case, the for loop is continued with
the next character in the string.

If the character is not alphabetic—meaning either that you have reached the end of a
word or that you have still not found the beginning of the next word—the flag
lookingForWord is set to true (even though it might already be true).

When all of the characters inside the character string have been examined, the func-
tion returns the value of wordCount to indicate the number of words that were found in
the character string.

It is helpful to present a table of the values of the various variables in the countWords
function to see how the algorithm works.Table 10.1 shows such a table, with the first
call to the countWords function from the preceding program as an example.The first
line of Table 10.1 shows the initial value of the variables wordCount and
lookingForWord before the for loop is entered. Subsequent lines depict the values of
the indicated variables each time through the for loop. So, the second line of the table
shows that the value of wordCount has been set to 1 and the lookingForWord flag set to
false (0) after the first time through the loop (after the 'W' has been processed).The
last line of the table shows the final values of the variables when the end of the string is
reached.You should spend some time studying this table, verifying the values of the indi-
cated variables against the logic of the countWords function.After this has been accom-
plished, you should then feel comfortable with the algorithm that is used by the function
to count the number of words in a string.

10 0672326663 CH10 6/10/04 2:05 PM Page 212

213Variable-Length Character Strings

Table 10.1 Execution of the countWords Function

i string[i] wordCount lookingForWord

0 true

0 'W' 1 false

1 'e' 1 false

2 'l' 1 false

3 'l' 1 false

4 ',' 1 true

5 ' ' 1 true

6 'h' 2 false

7 'e' 2 false

8 'r' 2 false

9 'e' 2 false

10 ' ' 2 true

11 'g' 3 false

12 'o' 3 false

13 'e' 3 false

14 's' 3 false

15 '.' 3 true

16 '\0' 3 true

The Null String
Now consider a slightly more practical example of the use of the countWords function.
This time, you make use of your readLine function to allow the user to type in multiple
lines of text at the terminal window.The program then counts the total number of
words in the text and displays the result.

To make the program more flexible, you do not limit or specify the number of lines
of text that are entered.Therefore, you must have a way for the user to “tell” the pro-
gram when he is done entering text. One way to do this is to have the user simply press
the Enter (or Return) key an extra time after the last line of text has been entered.
When the readLine function is called to read in such a line, the function immediately
encounters the newline character and, as a result, stores the null character as the first (and
only) character in the buffer.Your program can check for this special case and can know
that the last line of text has been entered after a line containing no characters has been
read.

A character string that contains no characters other than the null character has a spe-
cial name in the C language; it is called the null string.When you think about it, the use
of the null string is still perfectly consistent with all of the functions that you have
defined so far in this chapter.The stringLength function correctly returns 0 as the size

10 0672326663 CH10 6/10/04 2:05 PM Page 213

214 Chapter 10 Character Strings

of the null string; your concat function also properly concatenates “nothing” onto the
end of another string; even your equalStrings function works correctly if either or
both strings are null (and in the latter case, the function correctly calls these strings
equal).

Always remember that the null string does, in fact, have a character in it, albeit a
null one.

Sometimes, it becomes desirable to set the value of a character string to the null
string. In C, the null string is denoted by an adjacent pair of double quotation marks. So,
the statement

char buffer[100] = "";

defines a character array called buffer and sets its value to the null string. Note that the
character string "" is not the same as the character string " " because the second string
contains a single blank character. (If you are doubtful, send both strings to the
equalStrings function and see what result comes back.)

Program 10.8 uses the readLine, alphabetic, and countWords functions from previ-
ous programs.They have not been shown in the program listing to conserve space.

Program 10.8 Counting Words in a Piece of Text

#include <stdio.h>

#include <stdbool.h>

/***** Insert alphabetic function here *****/

/***** Insert readLine function here *****/

/***** Insert countWords function here *****/

int main (void)

{

char text[81];

int totalWords = 0;

int countWords (const char string[]);

void readLine (char buffer[]);

bool endOfText = false;

printf ("Type in your text.\n");

printf ("When you are done, press 'RETURN'.\n\n");

while (! endOfText)

{

readLine (text);

if (text[0] == '\0')

endOfText = true;

10 0672326663 CH10 6/10/04 2:05 PM Page 214

215Variable-Length Character Strings

else

totalWords += countWords (text);

}

printf ("\nThere are %i words in the above text.\n", totalWords);

return 0;

}

Program 10.8 Output

Type in your text.

When you are done, press 'RETURN'.

Wendy glanced up at the ceiling where the mound of lasagna loomed

like a mottled mountain range. Within seconds, she was crowned with

ricotta ringlets and a tomato sauce tiara. Bits of beef formed meaty

moles on her forehead. After the second thud, her culinary coronation

was complete.

Enter

There are 48 words in the above text.

The line labeled Enter indicates the pressing of the Enter or Return key.
The endOfText variable is used as a flag to indicate when the end of the input text

has been reached.The while loop is executed as long as this flag is false. Inside this
loop, the program calls the readLine function to read a line of text.The if statement
then tests the input line that is stored inside the text array to see if just the Enter (or
Return) key was pressed. If so, then the buffer contains the null string, in which case the
endOfText flag is set to true to signal that all of the text has been entered.

If the buffer does contain some text, the countWords function is called to count the
number of words in the text array.The value that is returned by this function is added
into the value of totalWords, which contains the cumulative number of words from all
lines of text entered thus far.

After the while loop is exited, the program displays the value of totalWords, along
with some informative text, at the terminal.

It might seem that the preceding program does not help to reduce your work efforts
much because you still have to manually enter all of the text at the terminal. But as you
will see in Chapter 16,“Input and Output Operations in C,” this same program can also
be used to count the number of words contained in a file stored on a disk, for example.
So, an author using a computer system for the preparation of a manuscript might find
this program extremely valuable as it can be used to quickly determine the number of
words contained in the manuscript (assuming the file is stored as a normal text file and
not in some word processor format like Microsoft Word).

Program 10.8 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 215

216 Chapter 10 Character Strings

Escape Characters
As alluded to previously, the backslash character has a special significance that extends
beyond its use in forming the newline and null characters. Just as the backslash and the
letter n, when used in combination, cause subsequent printing to begin on a new line, so
can other characters be combined with the backslash character to perform special func-
tions.These various backslash characters, often referred to as escape characters, are summa-
rized in Table 10.2.

Table 10.2 Escape Characters

Escape Character Name

\a Audible alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\" Double quotation mark

\' Single quotation mark

\? Question mark

\nnn Octal character value nnn

\unnnn Universal character name
\Unnnnnnnn Universal character name
\xnn Hexadecimal character value nn

The first seven characters listed in Table 10.2 perform the indicated function on most
output devices when they are displayed. The audible alert character, \a, sounds a “bell” in
most terminal windows. So, the printf call

printf ("\aSYSTEM SHUT DOWN IN 5 MINUTES!!\n");

sounds an alert and displays the indicated message.
Including the backspace character '\b' inside a character string causes the terminal

to backspace one character at the point at which the character appears in the string, pro-
vided that it is supported by the terminal window. Similarly, the function call

printf ("%i\t%i\t%i\n", a, b, c);

displays the value of a, spaces over to the next tab setting (typically set to every eight
columns by default), displays the value of b, spaces over to the next tab setting, and then
displays the value of c.The horizontal tab character is particularly useful for lining up
data in columns.

10 0672326663 CH10 6/10/04 2:05 PM Page 216

217Escape Characters

To include the backslash character itself inside a character string, two backslash char-
acters are necessary, so the printf call

printf ("\\t is the horizontal tab character.\n");

displays the following:

\t is the horizontal tab character.

Note that because the \\ is encountered first in the string, a tab is not displayed in this
case.

To include a double quotation character inside a character string, it must be preceded
by a backslash. So, the printf call

printf ("\"Hello,\" he said.\n");

results in the display of the message

"Hello," he said.

To assign a single quotation character to a character variable, the backslash character
must be placed before the quotation mark. If c is declared to be a variable of type char,
the statement

c = '\'';

assigns a single quotation character to c.
The backslash character, followed immediately by a ?, is used to represent a ? charac-

ter.This is sometimes necessary when dealing with trigraphs in non-ASCII character sets.
For more details, consult Appendix A,“C Language Summary.”

The final four entries in Table 10.2 enable any character to be included in a character
string. In the escape character '\nnn', nnn is a one- to three-digit octal number. In the
escape character '\xnn', nn is a hexadecimal number.These numbers represent the
internal code of the character.This enables characters that might not be directly available
from the keyboard to be coded into a character string. For example, to include an ASCII
escape character, which has the value octal 33, you could include the sequence \033 or
\x1b inside your string.

The null character '\0' is a special case of the escape character sequence described in
the preceding paragraph. It represents the character that has a value of 0. In fact, because
the value of the null character is 0, this knowledge is frequently used by programmers in
tests and loops dealing with variable-length character strings. For example, the loop to
count the length of a character string in the function stringLength from Program 10.2
can also be equivalently coded as follows:

while (string[count])

++count;

The value of string[count] is nonzero until the null character is reached, at which
point the while loop is exited.

It should once again be pointed out that these escape characters are only considered a
single character inside a string. So, the character string "\033\"Hello\"\n" actually

10 0672326663 CH10 6/10/04 2:05 PM Page 217

218 Chapter 10 Character Strings

consists of nine characters (not counting the terminating null): the character '\033', the
double quotation character '\"', the five characters in the word Hello, the double quo-
tation character once again, and the newline character.Try passing the preceding charac-
ter string to the stringLength function to verify that nine is indeed the number of
characters in the string (again, excluding the terminating null).

A universal character name is formed by the characters \u followed by four hexadecimal
numbers or the characters \U followed by eight hexadecimal numbers. It is used for
specifying characters from extended character sets; that is, character sets that require more
than the standard eight bits for internal representation.The universal character name
escape sequence can be used to form identifier names from extended character sets, as
well as to specify 16-bit and 32-bit characters inside wide character string and character
string constants. For more information, refer to Appendix A.

More on Constant Strings
If you place a backslash character at the very end of the line and follow it immediately
by a carriage return, it tells the C compiler to ignore the end of the line.This line con-
tinuation technique is used primarily for continuing long constant character strings onto
the next line and, as you see in Chapter 13,“The Preprocessor,” for continuing a macro
definition onto the next line.

Without the line continuation character, your C compiler generates an error message
if you attempt to initialize a character string across multiple lines; for example:

char letters[] =

{ "abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ" };

By placing a backslash character at the end of each line to be continued, a character
string constant can be written over multiple lines:

char letters[] =

{ "abcdefghijklmnopqrstuvwxyz\

ABCDEFGHIJKLMNOPQRSTUVWXYZ" };

It is necessary to begin the continuation of the character string constant at the beginning
of the next line because, otherwise, the leading blank spaces on the line get stored in the
character string.The preceding statement, therefore, has the net result of defining the
character array letters and of initializing its elements to the character string

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

Another way to break up long character strings is to divide them into two or more adja-
cent strings.Adjacent strings are constant strings separated by zero or more spaces, tabs,

10 0672326663 CH10 6/10/04 2:05 PM Page 218

219Character Strings, Structures, and Arrays

or newlines.The compiler automatically concatenates adjacent strings together.
Therefore, writing the strings

"one" "two" "three"

is syntactically equivalent to writing the single string

"onetwothree"

So, the letters array can also be set to the letters of the alphabet by writing

char letters[] =

{ "abcdefghijklmnopqrstuvwxyz"

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" };

Finally, the three printf calls

printf ("Programming in C is fun\n");

printf ("Programming" " in C is fun\n");

printf ("Programming" " in C" " is fun\n");

all pass a single argument to printf because the compiler concatenates the strings
together in the second and third calls.

Character Strings, Structures, and Arrays
You can combine the basic elements of the C programming language to form very pow-
erful programming constructs in many ways. In Chapter 9,“Working with Structures,”
for example, you saw how you could easily define an array of structures. Program 10.9
further illustrates the notion of arrays of structures, combined with the variable-length
character string.

Suppose you want to write a computer program that acts like a dictionary. If you had
such a program, you could use it whenever you came across a word whose meaning was
not clear.You could type the word into the program, and the program could then auto-
matically “look up” the word inside the dictionary and tell you its definition.

If you contemplate developing such a program, one of the first thoughts that comes
to mind is the representation of the word and its definition inside the computer.
Obviously, because the word and its definition are logically related, the notion of a struc-
ture comes immediately to mind.You can define a structure called entry, for example, to
hold the word and its definition:

struct entry

{

char word[15];

char definition[50];

};

10 0672326663 CH10 6/10/04 2:05 PM Page 219

220 Chapter 10 Character Strings

In the preceding structure definition, you have defined enough space for a 14-letter
word (remember, you are dealing with variable-length character strings, so you need to
leave room for the null character) plus a 49-character definition.The following is an
example of a variable defined to be of type struct entry that is initialized to contain
the word “blob” and its definition.

struct entry word1 = { "blob", "an amorphous mass" };

Because you want to provide for many words inside your dictionary, it seems logical to
define an array of entry structures, such as in

struct entry dictionary[100];

which allows for a dictionary of 100 words. Obviously, this is far from sufficient if you
are interested in setting up an English language dictionary, which requires at least
100,000 entries to be of any value. In that case, you would probably adopt a more
sophisticated approach, one that would typically involve storing the dictionary on the
computer’s disk, as opposed to storing its entire contents in memory.

Having defined the structure of your dictionary, you should now think a bit about its
organization. Most dictionaries are organized alphabetically. It makes sense to organize
yours the same way. For now, assume that this is because it makes the dictionary easier to
read. Later, you see the real motivation for such an organization.

Now, it’s time to think about the development of the program. It is convenient to
define a function to look up a word inside the dictionary. If the word is found, the func-
tion could return the entry number of the word inside the dictionary; otherwise, the
function could return –1 to indicate that the word was not found in the dictionary. So, a
typical call to this function, which you can call lookup, might appear as follows:

entry = lookup (dictionary, word, entries);

In this case, the lookup function searches dictionary for the word as contained in the
character string word.The third argument, entries, represents the number of entries in
the dictionary.The function searches the dictionary for the specified word and returns
the entry number in the dictionary if the word is found, or returns –1 if the word is not
found.

In Program 10.9, the lookup function uses the equalStrings function defined in
Program 10.4 to determine if the specified word matches an entry in the dictionary.

Program 10.9 Using the Dictionary Lookup Program

// Program to use the dictionary lookup program

#include <stdio.h>

#include <stdbool.h>

struct entry

{

char word[15];

10 0672326663 CH10 6/10/04 2:05 PM Page 220

221Character Strings, Structures, and Arrays

char definition[50];

};

/***** Insert equalStrings function here *****/

// function to look up a word inside a dictionary

int lookup (const struct entry dictionary[], const char search[],

const int entries)

{

int i;

bool equalStrings (const char s1[], const char s2[]);

for (i = 0; i < entries; ++i)

if (equalStrings (search, dictionary[i].word))

return i;

return -1;

}

int main (void)

{

const struct entry dictionary[100] =

{ { "aardvark", "a burrowing African mammal" },

{ "abyss", "a bottomless pit" },

{ "acumen", "mentally sharp; keen" },

{ "addle", "to become confused" },

{ "aerie", "a high nest" },

{ "affix", "to append; attach" },

{ "agar", "a jelly made from seaweed" },

{ "ahoy", "a nautical call of greeting" },

{ "aigrette", "an ornamental cluster of feathers" },

{ "ajar", "partially opened" } };

char word[10];

int entries = 10;

int entry;

int lookup (const struct entry dictionary[], const char search[],

const int entries);

printf ("Enter word: ");

scanf ("%14s", word);

entry = lookup (dictionary, word, entries);

if (entry != -1)

printf ("%s\n", dictionary[entry].definition);

Program 10.9 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 221

222 Chapter 10 Character Strings

else

printf ("Sorry, the word %s is not in my dictionary.\n", word);

return 0;

}

Program 10.9 Output

Enter word: agar

a jelly made from seaweed

Program 10.9 Output (Rerun)

Enter word: accede

Sorry, the word accede is not in my dictionary.

The lookup function sequences through each entry in the dictionary. For each such
entry, the function calls the equalStrings function to determine if the character string
search matches the word member of the particular dictionary entry. If it does match, the
function returns the value of the variable i, which is the entry number of the word that
was found in the dictionary.The function is exited immediately upon execution of the
return statement, despite the fact that the function is in the middle of executing a for
loop.

If the lookup function exhausts all the entries in the dictionary without finding a
match, the return statement after the for loop is executed to return the “not found”
indication (–1) back to the caller.

A Better Search Method
The method used by the lookup function to search for a particular word in the diction-
ary is straightforward enough; the function simply performs a sequential search through
all the entries in the dictionary until either a match is made or the end of the dictionary
is reached. For a small-sized dictionary like the one in your program, this approach is
perfectly fine. However, if you start dealing with large dictionaries containing hundreds
or perhaps even thousands of entries, this approach might no longer be sufficient because
of the time it takes to sequentially search through all of the entries.The time required
can be considerable—even though considerable in this case could mean only a fraction
of a second. One of the prime considerations that must be given to any sort of informa-
tion retrieval program is that of speed. Because the searching process is one that is so
frequently used in computer applications, much attention has been given by computer
scientists to developing efficient algorithms for searching (about as much attention as has
been given to the process of sorting).

Program 10.9 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 222

223Character Strings, Structures, and Arrays

You can make use of the fact that your dictionary is in alphabetical order to develop a
more efficient lookup function.The first obvious optimization that comes to mind is in
the case that the word you are looking for does not exist in the dictionary.You can make
your lookup function “intelligent” enough to recognize when it has gone too far in its
search. For example, if you look up the word “active” in the dictionary defined in
Program 10.9, as soon as you reach the word “acumen,” you can conclude that “active” is
not there because, if it was, it would have appeared in the dictionary before the word
“acumen.”

As was mentioned, the preceding optimization strategy does help to reduce your
search time somewhat, but only when a particular word is not present in the dictionary.
What you are really looking for is an algorithm that reduces the search time in most
cases, not just in one particular case. Such an algorithm exists under the name of the
binary search.

The strategy behind the binary search is relatively simple to understand.To illustrate
how this algorithm works, take an analogous situation of a simple guessing game.
Suppose I pick a number from 1 to 99 and then tell you to try to guess the number in
the fewest number of guesses. For each guess that you make, I can tell you if you are too
low, too high, or if your guess is correct.After a few tries at the game, you will probably
realize that a good way to narrow in on the answer is by using a halving process. For
example, if you take 50 as your first guess, an answer of either “too high” or “too low”
narrows the possibilities down from 100 to 49. If the answer was “too high,” the number
must be from 1 to 49, inclusive; if the answer was “too low,” the number must be from
51 to 99, inclusive.

You can now repeat the halving process with the remaining 49 numbers. So if the
first answer was “too low,” the next guess should be halfway between 51 and 99, which is
75.This process can be continued until you finally narrow in on the answer. On the
average, this procedure takes far less time to arrive at the answer than any other search
method.

The preceding discussion describes precisely how the binary search algorithm works.
The following provides a formal description of the algorithm. In this algorithm, you are
looking for an element x inside an array M, which contains n elements.The algorithm
assumes that the array M is sorted in ascending order.

Binary Search Algorithm

Step 1: Set low to 0, high to n – 1.

Step 2: If low > high, x does not exist in M and the algorithm terminates.

Step 3: Set mid to (low + high) / 2.

Step 4: If M[mid] < x, set low to mid + 1 and go to step 2.

Step 5: If M[mid] > x, set high to mid – 1 and go to step 2.

Step 6: M[mid] equals x and the algorithm terminates.

The division performed in step 3 is an integer division, so if low is 0 and high is 49, the
value of mid is 24.

10 0672326663 CH10 6/10/04 2:05 PM Page 223

224 Chapter 10 Character Strings

Now that you have the algorithm for performing a binary search, you can rewrite
your lookup function to use this new search strategy. Because the binary search must be
able to determine if one value is less than, greater than, or equal to another value, you
might want to replace your equalStrings function with another function that makes
this type of determination for two character strings. Call the function compareStrings
and have it return the value –1 if the first string is lexicographically less than the second
string, 0 if the two strings are equal, and 1 if the first string is lexicographically greater
than the second string. So, the function call

compareStrings ("alpha", "altered")

returns the value –1 because the first string is lexicographically less than the second
string (think of this to mean that the first string occurs before the second string in a dic-
tionary).And, the function call

compareStrings ("zioty", "yucca");

returns the value 1 because “zioty” is lexicographically greater than “yucca.”
In Program 10.10, the new compareStrings function is presented.The lookup func-

tion now uses the binary search method to scan through the dictionary.The main rou-
tine remains unchanged from the previous program.

Program 10.10 Modifying the Dictionary Lookup Using Binary Search

// Dictionary lookup program

#include <stdio.h>

struct entry

{

char word[15];

char definition[50];

};

// Function to compare two character strings

int compareStrings (const char s1[], const char s2[])

{

int i = 0, answer;

while (s1[i] == s2[i] && s1[i] != '\0'&& s2[i] != '\0')

++i;

if (s1[i] < s2[i])

answer = -1; /* s1 < s2 */

else if (s1[i] == s2[i])

answer = 0; /* s1 == s2 */

10 0672326663 CH10 6/10/04 2:05 PM Page 224

225Character Strings, Structures, and Arrays

else

answer = 1; /* s1 > s2 */

return answer;

}

// Function to look up a word inside a dictionary

int lookup (const struct entry dictionary[], const char search[],

const int entries)

{

int low = 0;

int high = entries - 1;

int mid, result;

int compareStrings (const char s1[], const char s2[]);

while (low <= high)

{

mid = (low + high) / 2;

result = compareStrings (dictionary[mid].word, search);

if (result == -1)

low = mid + 1;

else if (result == 1)

high = mid - 1;

else

return mid; /* found it */

}

return -1; /* not found */

}

int main (void)

{

const struct entry dictionary[100] =

{ { "aardvark", "a burrowing African mammal" },

{ "abyss", "a bottomless pit" },

{ "acumen", "mentally sharp; keen" },

{ "addle", "to become confused" },

{ "aerie", "a high nest" },

{ "affix", "to append; attach" },

{ "agar", "a jelly made from seaweed" },

{ "ahoy", "a nautical call of greeting" },

{ "aigrette", "an ornamental cluster of feathers" },

{ "ajar", "partially opened" } };

Program 10.10 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 225

226 Chapter 10 Character Strings

int entries = 10;

char word[15];

int entry;

int lookup (const struct entry dictionary[], const char search[],

const int entries);

printf ("Enter word: ");

scanf ("%14s", word);

entry = lookup (dictionary, word, entries);

if (entry != -1)

printf ("%s\n", dictionary[entry].definition);

else

printf ("Sorry, the word %s is not in my dictionary.\n", word);

return 0;

}

Program 10.10 Output

Enter word: aigrette

an ornamental cluster of feathers

Program 10.10 Output (Rerun)

Enter word: acerb

Sorry, that word is not in my dictionary.

The compareStrings function is identical to the equalStrings function up through
the end of the while loop.When the while loop is exited, the function analyzes the two
characters that resulted in the termination of the while loop. If s1[i] is less than s2[i],
s1 must be lexicographically less than s2. In such a case, –1 is returned. If s1[i] is equal
to s2[i], the two strings are equal so 0 is returned. If neither is true, s1 must be lexico-
graphically greater than s2, in which case 1 is returned.

The lookup function defines int variables low and high and assigns them initial val-
ues defined by the binary search algorithm.The while loop executes as long as low does
not exceed high. Inside the loop, the value mid is calculated by adding low and high and
dividing the result by 2.The compareStrings function is then called with the word
contained in dictionary[mid] and the word you are searching for as arguments.The
returned value is assigned to the variable result.

Program 10.10 Continued

10 0672326663 CH10 6/10/04 2:05 PM Page 226

227Character Operations

If compareStrings returns a value of –1—indicating that dictionary[mid].word is
less than search—lookup sets the value of low to mid + 1. If compareStrings returns
1—indicating that dictionary[mid].search is greater than search—lookup sets the
value of high to mid – 1. If neither –1 nor 1 is returned, the two strings must be equal,
and, in that case, lookup returns the value of mid, which is the entry number of the
word in the dictionary.

If low eventually exceeds high, the word is not in the dictionary. In that case, lookup
returns –1 to indicate this “not found” condition.

Character Operations
Character variables and constants are frequently used in relational and arithmetic expres-
sions.To properly use characters in such situations, it is necessary for you to understand
how they are handled by the C compiler.

Whenever a character constant or variable is used in an expression in C, it is automat-
ically converted to, and subsequently treated as, an integer value.

In Chapter 6,“Making Decisions,” you saw how the expression

c >= 'a' && c <= 'z'

could be used to determine if the character variable c contained a lowercase letter.As
mentioned there, such an expression could be used on systems that used an ASCII char-
acter representation because the lowercase letters are represented sequentially in ASCII,
with no other characters in-between.The first part of the preceding expression, which
compares the value of c against the value of the character constant 'a', is actually com-
paring the value of c against the internal representation of the character 'a'. In ASCII,
the character 'a' has the value 97, the character 'b' has the value 98, and so on.
Therefore, the expression c >= 'a' is TRUE (nonzero) for any lowercase character con-
tained in c because it has a value that is greater than or equal to 97. However, because
there are characters other than the lowercase letters whose ASCII values are greater than
97 (such as the open and close braces), the test must be bounded on the other end to
ensure that the result of the expression is TRUE for lowercase characters only. For this
reason, c is compared against the character 'z', which, in ASCII, has the value 122.

Because comparing the value of c against the characters 'a' and 'z' in the preceding
expression actually compares c to the numerical representations of 'a' and 'z', the
expression

c >= 97 && c <= 122

could be equivalently used to determine if c is a lowercase letter.The first expression is
preferred, however, because it does not require the knowledge of the specific numerical
values of the characters 'a' and 'z', and because its intentions are less obscure.

The printf call

printf ("%i\n", c);

10 0672326663 CH10 6/10/04 2:05 PM Page 227

228 Chapter 10 Character Strings

can be used to print out the value that is used to internally represent the character stored
inside c. If your system uses ASCII, the statement

printf ("%i\n", 'a');

displays 97, for example.
Try to predict what the following two statements would produce:

c = 'a' + 1;

printf ("%c\n", c);

Because the value of 'a' is 97 in ASCII, the effect of the first statement is to assign the
value 98 to the character variable c. Because this value represents the character 'b' in
ASCII, this is the character that is displayed by the printf call.

Although adding one to a character constant hardly seems practical, the preceding
example gives way to an important technique that is used to convert the characters '0'
through '9' into their corresponding numerical values 0 through 9. Recall that the
character '0' is not the same as the integer 0, the character '1' is not the same as the
integer 1, and so on. In fact, the character '0' has the numerical value 48 in ASCII,
which is what is displayed by the following printf call:

printf ("%i\n", '0');

Suppose the character variable c contains one of the characters '0' through '9' and that
you want to convert this value into the corresponding integer 0 through 9. Because the
digits of virtually all character sets are represented by sequential integer values, you can
easily convert c into its integer equivalent by subtracting the character constant '0' from
it.Therefore, if i is defined as an integer variable, the statement

i = c - '0';

has the effect of converting the character digit contained in c into its equivalent integer
value. Suppose c contained the character '5', which, in ASCII, is the number 53.The
ASCII value of '0' is 48, so execution of the preceding statement results in the integer
subtraction of 48 from 53, which results in the integer value 5 being assigned to i. On a
machine that uses a character set other than ASCII, the same result would most likely be
obtained, even though the internal representations of '5' and '0' might differ.

The preceding technique can be extended to convert a character string consisting of
digits into its equivalent numerical representation.This has been done in Program 10.11
in which a function called strToInt is presented to convert the character string passed
as its argument into an integer value.The function ends its scan of the character string
after a nondigit character is encountered and returns the result back to the calling rou-
tine. It is assumed that an int variable is large enough to hold the value of the converted
number.

10 0672326663 CH10 6/10/04 2:05 PM Page 228

229Character Operations

Program 10.11 Converting a String to its Integer Equivalent

// Function to convert a string to an integer

#include <stdio.h>

int strToInt (const char string[])

{

int i, intValue, result = 0;

for (i = 0; string[i] >= '0' && string[i] <= '9'; ++i)

{

intValue = string[i] - '0';

result = result * 10 + intValue;

}

return result;

}

int main (void)

{

int strToInt (const char string[]);

printf ("%i\n", strToInt("245"));

printf ("%i\n", strToInt("100") + 25);

printf ("%i\n", strToInt("13x5"));

return 0;

}

Program 10.11 Output

245

125

13

The for loop is executed as long as the character contained in string[i] is a digit
character. Each time through the loop, the character contained in string[i] is convert-
ed into its equivalent integer value and is then added into the value of result multiplied
by 10.To see how this technique works, consider execution of this loop when the func-
tion is called with the character string "245" as an argument:The first time through the
loop, intValue is assigned the value of string[0] – '0'. Because string[0] contains
the character '2', this results in the value 2 being assigned to intValue. Because the
value of result is 0 the first time through the loop, multiplying it by 10 produces 0,
which is added to intValue and stored back in result. So, by the end of the first pass
through the loop, result contains the value 2.

10 0672326663 CH10 6/10/04 2:05 PM Page 229

230 Chapter 10 Character Strings

The second time through the loop, intValue is set equal to 4, as calculated by sub-
tracting '0' from '4'. Multiplying result by 10 produces 20, which is added to the
value of intValue, producing 24 as the value stored in result.

The third time through the loop, intValue is equal to '5' – '0', or 5, which is
added into the value of result multiplied by 10 (240).Thus, the value 245 is the value
of result after the loop has been executed for the third time.

Upon encountering the terminating null character, the for loop is exited and the
value of result, 245, is returned to the calling routine.

The strToInt function could be improved in two ways. First, it doesn’t handle nega-
tive numbers. Second, it doesn’t let you know whether the string contained any valid
digit characters at all. For example, strToInt ("xxx") returns 0.These improvements
are left as an exercise.

This discussion concludes this chapter on character strings.As you can see, C provides
capabilities that enable character strings to be efficiently and easily manipulated.The
library actually contains a wide variety of library functions for performing operations on
strings. For example, it offers the function strlen to calculate the length of a character
string, strcmp to compare two strings, strcat to concatenate two strings, strcpy to
copy one string to another, atoi to convert a string to an integer, and isupper,
islower, isalpha, and isdigit to test whether a character is uppercase, lowercase,
alphabetic, or a digit.A good exercise is to rewrite the examples from this chapter to
make use of these routines. Consult Appendix B,“The Standard C Library,” which lists
many of the functions available from the library.

Exercises
1. Type in and run the 11 programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Why could you have replaced the while statement of the equalStrings function
of Program 10.4 with the statement

while (s1[i] == s2[i] && s1[i] != '\0')

to achieve the same results?

3. The countWords function from Programs 10.7 and 10.8 incorrectly counts a word
that contains an apostrophe as two separate words. Modify this function to correct-
ly handle this situation.Also, extend the function to count a sequence of positive
or negative numbers, including any embedded commas and periods, as a single
word.

4. Write a function called substring to extract a portion of a character string.The
function should be called as follows:

substring (source, start, count, result);

10 0672326663 CH10 6/10/04 2:05 PM Page 230

231Exercises

where source is the character string from which you are extracting the substring,
start is an index number into source indicating the first character of the
substring, count is the number of characters to be extracted from the source
string, and result is an array of characters that is to contain the extracted sub-
string. For example, the call

substring ("character", 4, 3, result);

extracts the substring "act" (three characters starting with character number 4)
from the string "character" and places the result in result.

Be certain the function inserts a null character at the end of the substring in the
result array.Also, have the function check that the requested number of characters
does, in fact, exist in the string. If this is not the case, have the function end the
substring when it reaches the end of the source string. So, for example, a call
such as

substring ("two words", 4, 20, result);

should just place the string “words” inside the result array, even though 20 charac-
ters were requested by the call.

5. Write a function called findString to determine if one character string exists
inside another string.The first argument to the function should be the character
string that is to be searched and the second argument is the string you are interest-
ed in finding. If the function finds the specified string, have it return the location
in the source string where the string was found. If the function does not find the
string, have it return –1. So, for example, the call

index = findString ("a chatterbox", "hat");

searches the string "a chatterbox" for the string "hat". Because "hat" does exist
inside the source string, the function returns 3 to indicate the starting position
inside the source string where "hat" was found.

6. Write a function called removeString to remove a specified number of characters
from a character string.The function should take three arguments: the source
string, the starting index number in the source string, and the number of charac-
ters to remove. So, if the character array text contains the string "the wrong
son", the call

removeString (text, 4, 6);

has the effect of removing the characters “wrong “ (the word “wrong” plus the
space that follows) from the array text.The resulting string inside text is then
"the son".

7. Write a function called insertString to insert one character string into another
string.The arguments to the function should consist of the source string, the string

10 0672326663 CH10 6/10/04 2:05 PM Page 231

232 Chapter 10 Character Strings

to be inserted, and the position in the source string where the string is to be
inserted. So, the call

insertString (text, "per", 10);

with text as originally defined in the previous exercise, results in the character
string "per" being inserted inside text, beginning at text[10].Therefore, the
character string "the wrong person" is stored inside the text array after the
function returned.

8. Using the findString, removeString, and insertString functions from preced-
ing exercises, write a function called replaceString that takes three character
string arguments as follows

replaceString (source, s1, s2);

and that replaces s1 inside source with the character string s2.The function
should call the findString function to locate s1 inside source, then call the
removeString function to remove s1 from source, and finally call the
insertString function to insert s2 into source at the proper location.

So, the function call

replaceString (text, "1", "one");

replaces the first occurrence of the character string "1" inside the character string
text, if it exists, with the string "one". Similarly, the function call

replaceString (text, "*", "");

has the effect of removing the first asterisk inside the text array because the
replacement string is the null string.

9. You can extend even further the usefulness of the replaceString function from
the preceding exercise if you have it return a value that indicates whether the
replacement succeeded, which means that the string to be replaced was found
inside the source string. So, if the function returns true if the replacement suc-
ceeds and false if it does not, the loop

do

stillFound = replaceString (text, " ", "");

while (stillFound = true);

could be used to remove all blank spaces from text, for example.

Incorporate this change into the replaceStrings function and try it with various
character strings to ensure that it works properly.

10. Write a function called dictionarySort that sorts a dictionary, as defined in
Programs 10.9 and 10.10, into alphabetical order.

11. Extend the strToInt function from Program 10.11 so that if the first character of
the string is a minus sign, the value that follows is taken as a negative number.

10 0672326663 CH10 6/10/04 2:05 PM Page 232

233Exercises

12. Write a function called strToFloat that converts a character string into a floating-
point value. Have the function accept an optional leading minus sign. So, the call

strToFloat ("-867.6921");

should return the value –867.6921.

13. If c is a lowercase character, the expression

c – 'a' + 'A'

produces the uppercase equivalent of c, assuming an ASCII character set.

Write a function called uppercase that converts all lowercase characters in a string
into their uppercase equivalents.

14. Write a function called intToStr that converts an integer value into a character
string. Be certain the function handles negative integers properly.

10 0672326663 CH10 6/10/04 2:05 PM Page 233

10 0672326663 CH10 6/10/04 2:05 PM Page 234

11
Pointers

IN THIS CHAPTER,YOU EXAMINE one of the most sophisticated features of the C pro-
gramming language: pointers. In fact, the power and flexibility that C provides in dealing
with pointers serve to set it apart from many other programming languages. Pointers
enable you to effectively represent complex data structures, to change values passed as
arguments to functions, to work with memory that has been allocated “dynamically” (see
Chapter 17,“Miscellaneous and Advanced Features”), and to more concisely and effi-
ciently deal with arrays.

To understand the way in which pointers operate, it is first necessary to understand
the concept of indirection.You are familiar with this concept from your everyday life. For
example, suppose you need to buy a new ink cartridge for your printer. In the company
that you work for, all purchases are handled by the Purchasing department. So, you call
Jim in Purchasing and ask him to order the new cartridge for you. Jim, in turn, calls the
local supply store to order the cartridge.This approach to obtain your new cartridge is
actually an indirect one because you are not ordering the cartridge directly from the
supply store yourself.

This same notion of indirection applies to the way pointers work in C.A pointer
provides an indirect means of accessing the value of a particular data item.And just as
there are reasons why it makes sense to go through the Purchasing department to order
new cartridges (you don’t have to know which particular store the cartridges are being
ordered from, for example), so are there good reasons why, at times, it makes sense to use
pointers in C.

Defining a Pointer Variable
But enough talk—it’s time to see how pointers actually work. Suppose you define a

variable called count as follows:

int count = 10;

11 0672326663 CH11 6/10/04 2:03 PM Page 235

236 Chapter 11 Pointers

You can define another variable, called int_pointer, that can be used to enable you to
indirectly access the value of count by the declaration

int *int_pointer;

The asterisk defines to the C system that the variable int_pointer is of type pointer to
int.This means that int_pointer is used in the program to indirectly access the value
of one or more integer values.

You have seen how the & operator was used in the scanf calls of previous programs.
This unary operator, known as the address operator, is used to make a pointer to an
object in C. So, if x is a variable of a particular type, the expression &x is a pointer to that
variable.The expression &x can be assigned to any pointer variable, if desired, that has
been declared to be a pointer to the same type as x.

Therefore, with the definitions of count and int_pointer as given, you can write a
statement such as

int_pointer = &count;

to set up the indirect reference between int_pointer and count.The address operator
has the effect of assigning to the variable int_pointer, not the value of count, but a
pointer to the variable count.The link that has been made between int_pointer and
count is conceptualized in Figure 11.1.The directed line illustrates the idea that
int_pointer does not directly contain the value of count, but a pointer to the variable
count.

int_pointer

10count

Figure 11.1 Pointer to an integer.

To reference the contents of count through the pointer variable int_pointer, you use
the indirection operator, which is the asterisk *. So, if x is defined as type int, the
statement

x = *int_pointer;

assigns the value that is indirectly referenced through int_pointer to the variable x.
Because int_pointer was previously set pointing to count, this statement has the effect
of assigning the value contained in the variable count—which is 10—to the variable x.

The previous statements have been incorporated into Program 11.1, which illustrates
the two fundamental pointer operators: the address operator, &, and the indirection oper-
ator, *.

11 0672326663 CH11 6/10/04 2:03 PM Page 236

237Defining a Pointer Variable

Program 11.1 Illustrating Pointers

// Program to illustrate pointers

#include <stdio.h>

int main (void)

{

int count = 10, x;

int *int_pointer;

int_pointer = &count;

x = *int_pointer;

printf ("count = %i, x = %i\n", count, x);

return 0;

}

Program 11.1 Output

count = 10, x = 10

The variables count and x are declared to be integer variables in the normal fashion. On
the next line, the variable int_pointer is declared to be of type “pointer to int.” Note
that the two lines of declarations could have been combined into the single line

int count = 10, x, *int_pointer;

Next, the address operator is applied to the variable count.This has the effect of creating
a pointer to this variable, which is then assigned by the program to the variable
int_pointer.

Execution of the next statement in the program,

x = *int_pointer;

proceeds as follows:The indirection operator tells the C system to treat the variable
int_pointer as containing a pointer to another data item.This pointer is then used to
access the desired data item, whose type is specified by the declaration of the pointer
variable. Because you told the compiler that int_pointer points to integers when you
declared the variable, the compiler knows that the value referenced by the expression
*int_pointer is an integer.And because you set int_pointer to point to the integer
variable count in the previous program statement, it is the value of count that is indi-
rectly accessed by this expression.

You should realize that Program 11.1 is a manufactured example of the use of point-
ers and does not show a practical use for them in a program. Such motivation is present-
ed shortly, after you have become familiar with the basic ways in which pointers can be
defined and manipulated in a program.

11 0672326663 CH11 6/10/04 2:03 PM Page 237

238 Chapter 11 Pointers

Program 11.2 illustrates some interesting properties of pointer variables. Here, a
pointer to a character is used.

Program 11.2 More Pointer Basics

// Further examples of pointers

#include <stdio.h>

int main (void)

{

char c = 'Q';

char *char_pointer = &c;

printf ("%c %c\n", c, *char_pointer);

c = '/';

printf ("%c %c\n", c, *char_pointer);

*char_pointer = '(';

printf ("%c %c\n", c, *char_pointer);

return 0;

}

Program 11.2 Output

Q Q

/ /

((

The character variable c is defined and initialized to the character 'Q'. In the next line
of the program, the variable char_pointer is defined to be of type “pointer to char,”
meaning that whatever value is stored inside this variable should be treated as an indirect
reference (pointer) to a character. Notice that you can assign an initial value to this vari-
able in the normal fashion.The value that you assign to char_pointer in the program is
a pointer to the variable c, which is obtained by applying the address operator to the
variable c. (Note that this initialization generates a compiler error if c had been defined
after this statement because a variable must always be declared before its value can be ref-
erenced in an expression.)

The declaration of the variable char_pointer and the assignment of its initial value
could have been equivalently expressed in two separate statements as

char *char_pointer;

char_pointer = &c;

11 0672326663 CH11 6/10/04 2:03 PM Page 238

239Using Pointers in Expressions

(and not by the statements

char *char_pointer;

*char_pointer = &c;

as might be implied from the single-line declaration).
Always remember, that the value of a pointer in C is meaningless until it is set point-

ing to something.
The first printf call simply displays the contents of the variable c and the contents of

the variable that is referenced by char_pointer. Because you set char_pointer to point
to the variable c, the value that is displayed is the contents of c, as verified by the first
line of the program’s output.

In the next line of the program, the character '/' is assigned to the character variable
c. Because char_pointer still points to the variable c, displaying the value of
*char_pointer in the subsequent printf call correctly displays this new value of c at
the terminal.This is an important concept. Unless the value of char_pointer is
changed, the expression *char_pointer always accesses the value of c. So, as the value of
c changes, so does the value of *char_pointer.

The previous discussion can help you to understand how the program statement that
appears next in the program works. Unless char_pointer is changed, the expression
*char_pointer always references the value of c.Therefore, in the expression

*char_pointer = '(';

you are assigning the left parenthesis character to c. More formally, the character '(' is
assigned to the variable that is pointed to by char_pointer.You know that this variable
is c because you placed a pointer to c in char_pointer at the beginning of the pro-
gram.

The preceding concepts are the key to your understanding of the operation of point-
ers. Please review them at this point if they still seem a bit unclear.

Using Pointers in Expressions
In Program 11.3, two integer pointers, p1 and p2, are defined. Notice how the value

referenced by a pointer can be used in an arithmetic expression. If p1 is defined to be of
type “pointer to integer,” what conclusion do you think can be made about the use of
*p1 in an expression?

Program 11.3 Using Pointers in Expressions

// More on pointers

#include <stdio.h>

int main (void)

{

11 0672326663 CH11 6/10/04 2:03 PM Page 239

240 Chapter 11 Pointers

int i1, i2;

int *p1, *p2;

i1 = 5;

p1 = &i1;

i2 = *p1 / 2 + 10;

p2 = p1;

printf ("i1 = %i, i2 = %i, *p1 = %i, *p2 = %i\n", i1, i2, *p1, *p2);

return 0;

}

Program 11.3 Output

i1 = 5, i2 = 12, *p1 = 5, *p2 = 5

After defining the integer variables i1 and i2 and the integer pointer variables p1 and
p2, the program then assigns the value 5 to i1 and stores a pointer to i1 inside p1. Next,
the value of i2 is calculated with the following expression:

i2 = *p1 / 2 + 10;

In As implied from the discussions of Program 11.2, if a pointer px points to a variable x,
and px has been defined to be a pointer to the same data type as is x, then use of *px in
an expression is, in all respects, identical to the use of x in the same expression.

Because in Program 11.3 the variable p1 is defined to be an integer pointer, the pre-
ceding expression is evaluated using the rules of integer arithmetic.And because the value
of *p1 is 5 (p1 points to i1), the final result of the evaluation of the preceding expression
is 12, which is the value that is assigned to i2. (The pointer reference operator * has
higher precedence than the arithmetic operation of division. In fact, this operator, as well
as the address operator &, has higher precedence than all binary operators in C.)

In the next statement, the value of the pointer p1 is assigned to p2.This assignment is
perfectly valid and has the effect of setting p2 to point to the same data item to which p1
points. Because p1 points to i1, after the assignment statement has been executed, p2 also
points to i1 (and you can have as many pointers to the same item as you want in C).

The printf call verifies that the values of i1, *p1, and *p2 are all the same (5) and
that the value of i2 was set to 12 by the program.

Working with Pointers and Structures
You have seen how a pointer can be defined to point to a basic data type, such as an int
or a char. But pointers can also be defined to point to structures. In Chapter 9,
“Working with Structures,” you defined your date structure as follows:

Program 11.3 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 240

241Working with Pointers and Structures

struct date

{

int month;

int day;

int year;

};

Just as you defined variables to be of type struct date, as in

struct date todaysDate;

so can you define a variable to be a pointer to a struct date variable:

struct date *datePtr;

The variable datePtr, as just defined, then can be used in the expected fashion. For
example, you can set it to point to todaysDate with the assignment statement

datePtr = &todaysDate;

After such an assignment has been made, you then can indirectly access any of the mem-
bers of the date structure pointed to by datePtr in the following way:

(*datePtr).day = 21;

This statement has the effect of setting the day of the date structure pointed to by
datePtr to 21.The parentheses are required because the structure member
operator . has higher precedence than the indirection operator *.

To test the value of month stored in the date structure pointed to by datePtr, a
statement such as

if ((*datePtr).month == 12)

...

can be used.
Pointers to structures are so often used in C that a special operator exists in the lan-

guage.The structure pointer operator ->, which is the dash followed by the greater than
sign, permits expressions that would otherwise be written as

(*x).y

to be more clearly expressed as

x->y

So, the previous if statement can be conveniently written as

if (datePtr->month == 12)

...

Program 9.1, the first program that illustrated structures, was rewritten using the concept
of structure pointers, as shown in Program 11.4.

11 0672326663 CH11 6/10/04 2:03 PM Page 241

242 Chapter 11 Pointers

Program 11.4 Using Pointers to Structures

// Program to illustrate structure pointers

#include <stdio.h>

int main (void)

{

struct date

{

int month;

int day;

int year;

};

struct date today, *datePtr;

datePtr = &today;

datePtr->month = 9;

datePtr->day = 25;

datePtr->year = 2004;

printf ("Today's date is %i/%i/%.2i.\n",

datePtr->month, datePtr->day, datePtr->year % 100);

return 0;

}

Program 11.4 Output

Today's date is 9/25/04.

Figure 11.2 depicts how the variables today and datePtr would look after all of the
assignment statements from the preceding program have been executed.

datePtr

.month

.day

.year

today

9

25

2004

Figure 11.2 Pointer to a structure.

11 0672326663 CH11 6/10/04 2:03 PM Page 242

243Working with Pointers and Structures

Once again, it should be pointed out that there is no real motivation shown here as to
why you should even bother using a structure pointer when it seems as though you can
get along just fine without it (as you did in Program 9.1).You will discover the motiva-
tion shortly.

Structures Containing Pointers
Naturally, a pointer also can be a member of a structure. In the structure definition

struct intPtrs

{

int *p1;

int *p2;

};

a structure called intPtrs is defined to contain two integer pointers, the first one called
p1 and the second one p2.You can define a variable of type struct intPtrs in the
usual way:

struct intPtrs pointers;

The variable pointers can now be used in the normal fashion, remembering that
pointers itself is not a pointer, but a structure variable that has two pointers as its mem-
bers.

Program 11.5 shows how the intPtrs structure can be handled in a C program.

Program 11.5 Using Structures Containing Pointers

// Function to use structures containing pointers

#include <stdio.h>

int main (void)

{

struct intPtrs

{

int *p1;

int *p2;

};

struct intPtrs pointers;

int i1 = 100, i2;

pointers.p1 = &i1;

pointers.p2 = &i2;

*pointers.p2 = -97;

11 0672326663 CH11 6/10/04 2:03 PM Page 243

244 Chapter 11 Pointers

printf ("i1 = %i, *pointers.p1 = %i\n", i1, *pointers.p1);

printf ("i2 = %i, *pointers.p2 = %i\n", i2, *pointers.p2);

return 0;

}

Program 11.5 Output

i1 = 100, *pointers.p1 = 100

i2 = -97, *pointers.p2 = -97

After the variables have been defined, the assignment statement

pointers.p1 = &i1;

sets the p1 member of pointers pointing to the integer variable i1, whereas the next
statement

pointers.p2 = &i2;

sets the p2 member pointing to i2. Next, –97 is assigned to the variable that is pointed
to by pointers.p2. Because you just set this to point to i2, –97 is stored in i2. No
parentheses are needed in this assignment statement because, as mentioned previously, the
structure member operator . has higher precedence than the indirection operator.
Therefore, the pointer is correctly referenced from the structure before the indirection
operator is applied. Of course, parentheses could have been used just to play it safe, as at
times it can be difficult to try to remember which of two operators has higher prece-
dence.

The two printf calls that follow each other in the preceding program verify that the
correct assignments were made.

Figure 11.3 has been provided to help you understand the relationship between the
variables i1, i2, and pointers after the assignment statements from Program 11.5 have
been executed.As you can see in Figure 11.3, the p1 member points to the variable i1,
which contains the value 100, whereas the p2 member points to the variable i2, which
contains the value –97.

Linked Lists
The concepts of pointers to structures and structures containing pointers are very pow-
erful ones in C, for they enable you to create sophisticated data structures, such as linked
lists, doubly linked lists, and trees.

Suppose you define a structure as follows:

struct entry

{

int value;

struct entry *next;

};

Program 11.5 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 244

245Working with Pointers and Structures

Figure 11.3 Structure containing pointers.

This defines a structure called entry, which contains two members.The first member of
the structure is a simple integer called value.The second member of the structure is a
member called next, which is a pointer to an entry structure.Think about this for a
moment. Contained inside an entry structure is a pointer to another entry structure.
This is a perfectly valid concept in the C language. Now suppose you define two vari-
ables to be of type struct entry as follows:

struct entry n1, n2;

You set the next pointer of structure n1 to point to structure n2 by executing the fol-
lowing statement:

n1.next = &n2;

This statement effectively makes a link between n1 and n2, as depicted in Figure 11.4.

pointers
p1

p2

100

-97

i1

i2

n1
value

next

n2
value

next

Figure 11.4 Linked structures.

11 0672326663 CH11 6/10/04 2:03 PM Page 245

246 Chapter 11 Pointers

Assuming a variable n3 were also defined to be of type struct entry, you could add
another link with the following statement:

n2.next = &n3;

This resulting chain of linked entries, known more formally as a linked list, is illustrated
in Figure 11.5. Program 11.6 illustrates this linked list.

n1
value

next

n2
value

next

100

200

n3
value

next

300

Figure 11.5 A linked list.

Program 11.6 Using Linked Lists

// Function to use linked Lists

#include <stdio.h>

int main (void)

{

struct entry

{

int value;

struct entry *next;

};

struct entry n1, n2, n3;

int i;

11 0672326663 CH11 6/10/04 2:03 PM Page 246

247Working with Pointers and Structures

n1.value = 100;

n2.value = 200;

n3.value = 300;

n1.next = &n2;

n2.next = &n3;

i = n1.next->value;

printf ("%i ", i);

printf ("%i\n", n2.next->value);

return 0;

}

Program 11.6 Output

200 300

The structures n1, n2, and n3 are defined to be of type struct entry, which consists of
an integer member called value and a pointer to an entry structure called next.The
program then assigns the values 100, 200, and 300 to the value members of n1, n2, and
n3, respectively.

The next two statements in the program

n1.next = &n2;

n2.next = &n3;

set up the linked list, with the next member of n1 pointing to n2 and the next member
of n2 pointing to n3.

Execution of the statement

i = n1.next->value;

proceeds as follows:The value member of the entry structure pointed to by n1.next is
accessed and assigned to the integer variable i. Because you set n1.next to point to n2,
the value member of n2 is accessed by this statement.Therefore, this statement has the
net result of assigning 200 to i, as verified by the printf call that follows in the pro-
gram.You might want to verify that the expression n1.next->value is the correct one
to use and not n1.next.value, because the n1.next field contains a pointer to a struc-
ture, and not the structure itself.This distinction is important and can quickly lead to
programming errors if it is not fully understood.

The structure member operator . and the structure pointer operator -> have the
same precedence in the C language. In expressions such as the preceding one, where

Program 11.6 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 247

248 Chapter 11 Pointers

both operators are used, the operators are evaluated from left to right.Therefore, the
expression is evaluated as

i = (n1.next)->value;

which is what was intended.
The second printf call in Program 11.6 displays the value member that is pointed

to by n2.next. Because you set n2.next to point to n3, the contents of n3.value are
displayed by the program.

As mentioned, the concept of a linked list is a very powerful one in programming.
Linked lists greatly simplify operations such as the insertion and removal of elements
from large lists of sorted items.

For example, if n1, n2, and n3 are as defined previously, you can easily remove n2 from
the list simply by setting the next field of n1 to point to whatever n2 is pointing to:

n1.next = n2.next;

This statement has the effect of copying the pointer contained in n2.next into n1.next,
and, because n2.next was set to point to n3, n1.next is now pointing to n3.
Furthermore, because n1 no longer points to n2, you have effectively removed it from
your list. Figure 11.6 depicts this situation after the preceding statement is executed. Of
course, you could have set n1 pointing to n3 directly with the statement

n1.next = &n3;

but this latter statement is not as general because you must know in advance that n2 is
pointing to n3.

n1
value

next

n2
value

next

n3
value

next

Figure 11.6 Removing an entry from a linked list.

11 0672326663 CH11 6/10/04 2:03 PM Page 248

249Working with Pointers and Structures

Inserting an element into a list is just as straightforward. If you want to insert a struct
entry called n2_3 after n2 in the list, you can simply set n2_3.next to point to whatever
n2.next was pointing to, and then set n2.next to point to n2_3. So, the sequence of
statements

n2_3.next = n2.next;

n2.next = &n2_3;

inserts n2_3 into the list, immediately after entry n2. Note that the sequence of the pre-
ceding statements is important because executing the second statement first overwrites
the pointer stored in n2.next before it has a chance to be assigned to n2_3.next.The
inserted element n2_3 is depicted in Figure 11.7. Notice that n2_3 is not shown
between n1 and n3.This is to emphasize that n2_3 can be anywhere in memory and
does not have to physically occur after n1 and before n3.This is one of the main motiva-
tions for the use of a linked list approach for storing information: Entries of the list do
not have to be stored sequentially in memory, as is the case with elements in an array.

n1
value

next

n2
value

next

n3
value

next

n2_3
value

next

Figure 11.7 Inserting an element into a linked list.

11 0672326663 CH11 6/10/04 2:03 PM Page 249

250 Chapter 11 Pointers

Before developing some functions to work with linked lists, two more issues must be
discussed. Usually associated with a linked list is at least one pointer to the list. Often, a
pointer to the start of the list is kept. So, for your original three-element list, which con-
sisted of n1, n2, and n3, you can define a variable called list_pointer and set it to point
to the beginning of the list with the statement

struct entry *list_pointer = &n1;

assuming that n1 has been previously defined.A pointer to a list is useful for sequencing
through the entries in the list, as you see shortly.

The second issue to be discussed involves the idea of having some way to identify the
end of the list.This is needed so that a procedure that searches through the list, for
example, can tell when it has reached the final element in the list. By convention, a con-
stant value of 0 is used for such a purpose and is known as the null pointer.You can use
the null pointer to mark the end of a list by storing this value in the pointer field of the
last entry of the list.1

In your three-entry list, you can mark its end by storing the null pointer in n3.next:

n3.next = (struct entry *) 0;

You see in Chapter 13,“The Preprocessor,” how this assignment statement can be made
a bit more readable.

The type cast operator is used to cast the constant 0 to the appropriate type (“pointer
to struct entry”). It’s not required, but makes the statement more readable.

Figure 11.8 depicts the linked list from Program 11.6, with a struct entry pointer
called list_pointer pointing to the start of the list and the n3.next field set to the null
pointer.

Program 11.7 incorporates the concepts just described.The program uses a while loop
to sequence through the list and display the value member of each entry in the list.

Program 11.7 Traversing a Linked List

// Program to traverse a linked list

#include <stdio.h>

int main (void)

{

struct entry

{

int value;

struct entry *next;

};

1.A null pointer is not necessarily internally represented as the value 0. However, the compiler
must recognize assignment of the constant 0 to a pointer as assigning the null pointer.This also
applies to comparing a pointer against the constant 0:The compiler interprets it as a test to see if
the pointer is null.

11 0672326663 CH11 6/10/04 2:03 PM Page 250

251Working with Pointers and Structures

struct entry n1, n2, n3;

struct entry *list_pointer = &n1;

n1.value = 100;

n1.next = &n2;

n2.value = 200;

n2.next = &n3;

n3.value = 300;

n3.next = (struct entry *) 0; // Mark list end with null pointer

while (list_pointer != (struct entry *) 0) {

printf ("%i\n", list_pointer->value);

list_pointer = list_pointer->next;

}

return 0;

}

list_pointer

100

200

300

0

Program 11.7 Continued

Figure 11.8 Linked list showing list pointer and terminating null.

11 0672326663 CH11 6/10/04 2:03 PM Page 251

252 Chapter 11 Pointers

Program 11.7 Output

100

200

300

The program defines the variables n1, n2, and n3 and the pointer variable list_pointer,
which is initially set to point to n1, the first entry in the list.The next program state-
ments link together the three elements of the list, with the next member of n3 set to the
null pointer to mark the end of the list.

A while loop is then set up to sequence through each element of the list.This loop is
executed as long as the value of list_pointer is not equal to the null pointer.The
printf call inside the while loop displays the value member of the entry currently
pointed to by list_pointer.

The statement that follows the printf call,

list_pointer = list_pointer->next;

has the effect of taking the pointer from the next member of the structure pointed to by
list_pointer and assigning it to list_pointer. So, the first time through the loop, this
statement takes the pointer contained in n1.next (remember, list_pointer was initially
set pointing to n1) and assigns it to list_pointer. Because this value is not null—it’s a
pointer to the entry structure n2—the while loop is repeated.

The second time through, the while loop results in the display of n2.value, which is
200.The next member of n2 is then copied into list_pointer, and because you set this
value to point to n3, list_pointer points to n3 by the end of the second pass through
the loop.

When the while loop is executed the third time, the printf call displays the value of
300 as contained in n3.value.At that point, list_pointer->next (which is actually
n3.next) is copied into list_pointer, and, because you set this member to the null
pointer, the while loop terminates after it has been executed three times.

Trace through the operation of the while loop just discussed, using a pencil and
paper, if necessary, to keep track of the values of the various variables. Understanding the
operation of this loop is the key to your understanding the operation of pointers in C.
Incidentally, it should be noted that this same while loop can be used to sequence
through the elements of a list of any size, provided the end of the list is marked by the
null pointer.

When working with actual linked lists in a program, you will not normally link
together list entries that have been explicitly defined like in the program examples in
this section.You did that here just to illustrate the mechanics of working with a linked
list. In actual practice, you will typically ask the system to give you memory for each
new list entry and you will link it into the list while the program is executing.This is
done with a mechanism known as dynamic memory allocation, and is covered in
Chapter 17.

11 0672326663 CH11 6/10/04 2:03 PM Page 252

253The Keyword const and Pointers

The Keyword const and Pointers
You have seen how a variable or an array can be declared as const to alert the compiler
as well as the reader that the contents of a variable or an array will not be changed by
the program.With pointers, there are two things to consider: whether the pointer will be
changed, and whether the value that the pointer points to will be changed.Think about
that for a second.Assume the following declarations:

char c = 'X';

char *charPtr = &c;

The pointer variable charPtr is set pointing to the variable c. If the pointer variable is
always set pointing to c, it can be declared as a const pointer as follows:

char * const charPtr = &c;

(Read this as “charPtr is a constant pointer to a character.”) So, a statement like this:

charPtr = &d; // not valid

causes the GNU C compiler to give a message like this:2

foo.c:10: warning: assignment of read-only variable 'charPtr'

Now if, instead, the location pointed to by charPtr will not change through the pointer
variable charPtr, that can be noted with a declaration as follows:

const char *charPtr = &c;

(Read this as “charPtr points to a constant character.”) Now of course, that doesn’t
mean that the value cannot be changed by the variable c, which is what charPtr is set
pointing to. It means, however, that it won’t be changed with a subsequent statement like
this:

*charPtr = 'Y'; // not valid

which causes the GNU C compiler to issue a message like this:

foo.c:11: warning: assignment of read-only location

In the case in which both the pointer variable and the location it points to will not be
changed through the pointer, the following declaration can be used:

const char * const *charPtr = &c;

The first use of const says the contents of the location the pointer references will not be
changed.The second use says that the pointer itself will not be changed.Admittedly, this
looks a little confusing, but it’s worth noting at this point in the text.3

2.Your compiler may give a different warning message, or no message at all.
3.The keyword const is not used in every program example where it can be employed; only in
selected examples. Until you are familiar with reading expressions such as previously shown, it can
make understanding the examples more difficult.

11 0672326663 CH11 6/10/04 2:03 PM Page 253

254 Chapter 11 Pointers

Pointers and Functions
Pointers and functions get along quite well together.That is, you can pass a pointer as an
argument to a function in the normal fashion, and you can also have a function return a
pointer as its result.

The first case cited previously, passing pointer arguments, is straightforward enough:
The pointer is simply included in the list of arguments to the function in the normal
fashion. So, to pass the pointer list_pointer from the previous program to a function
called print_list, you can write

print_list (list_pointer);

Inside the print_list routine, the formal parameter must be declared to be a pointer to
the appropriate type:

void print_list (struct entry *pointer)

{

...

}

The formal parameter pointer can then be used in the same way as a normal pointer
variable. One thing worth remembering when dealing with pointers that are sent to
functions as arguments:The value of the pointer is copied into the formal parameter
when the function is called.Therefore, any change made to the formal parameter by the
function does not affect the pointer that was passed to the function. But here’s the catch:
Although the pointer cannot be changed by the function, the data elements that the
pointer references can be changed! Program 11.8 helps clarify this point.

Program 11.8 Using Pointers and Functions

// Program to illustrate using pointers and functions

#include <stdio.h>

void test (int *int_pointer)

{

*int_pointer = 100;

}

int main (void)

{

void test (int *int_pointer);

int i = 50, *p = &i;

printf ("Before the call to test i = %i\n", i);

11 0672326663 CH11 6/10/04 2:03 PM Page 254

255Pointers and Functions

test (p);

printf ("After the call to test i = %i\n", i);

return 0;

}

Program 11.8 Output

Before the call to test i = 50

After the call to test i = 100

The function test is defined to take as its argument a pointer to an integer. Inside the
function, a single statement is executed to set the integer pointed to by int_pointer to
the value 100.

The main routine defines an integer variable i with an initial value of 50 and a point-
er to an integer called p that is set to point to i.The program then displays the value of
i and calls the test function, passing the pointer p as the argument.As you can see from
the second line of the program’s output, the test function did, in fact, change the value
of i to 100.

Now consider Program 11.9.

Program 11.9 Using Pointers to Exchange Values

// More on pointers and functions

#include <stdio.h>

void exchange (int * const pint1, int * const pint2)

{

int temp;

temp = *pint1;

*pint1 = *pint2;

*pint2 = temp;

}

int main (void)

{

void exchange (int * const pint1, int * const pint2);

int i1 = -5, i2 = 66, *p1 = &i1, *p2 = &i2;

printf ("i1 = %i, i2 = %i\n", i1, i2);

Program 11.8 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 255

256 Chapter 11 Pointers

exchange (p1, p2);

printf ("i1 = %i, i2 = %i\n", i1, i2);

exchange (&i1, &i2);

printf ("i1 = %i, i2 = %i\n", i1, i2);

return 0;

}

Program 11.9 Output

i1 = -5, i2 = 66

i1 = 66, i2 = -5

i1 = -5, i2 = 66

The purpose of the exchange function is to interchange the two integer values pointed
to by its two arguments.The function header

void exchange (int * const pint1, int * const pint2)

says that the exchange function takes two integer pointers as arguments, and that the
pointers will not be changed by the function (the use of the keyword const).

The local integer variable temp is used to hold one of the integer values while the
exchange is made. Its value is set equal to the integer that is pointed to by pint1.The
integer pointed to by pint2 is then copied into the integer pointed to by pint1, and the
value of temp is then stored in the integer pointed to by pint2, thus making the
exchange complete.

The main routine defines integers i1 and i2 with values of –5 and 66, respectively.
Two integer pointers, p1 and p2, are then defined and are set to point to i1 and i2,
respectively.The program then displays the values of i1 and i2 and calls the exchange
function, passing the two pointers, p1 and p2, as arguments.The exchange function
exchanges the value contained in the integer pointed to by p1 with the value contained
in the integer pointed to by p2. Because p1 points to i1, and p2 to i2, the values of i1
and i2 end up getting exchanged by the function.The output from the second printf
call verifies that the exchange worked properly.

The second call to exchange is a bit more interesting.This time, the arguments that
are passed to the function are pointers to i1 and i2 that are manufactured right on the
spot by applying the address operator to these two variables. Because the expression &i1
produces a pointer to the integer variable i1, this is right in line with the type of argu-
ment that your function expects for the first argument (a pointer to an integer).The
same applies for the second argument as well.And as can be seen from the program’s
output, the exchange function did its job and switched the values of i1 and i2 back to
their original values.

Program 11.9 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 256

257Pointers and Functions

You should realize that without the use of pointers, you could not have written your
exchange function to exchange the value of two integers because you are limited to
returning only a single value from a function and because a function cannot permanent-
ly change the value of its arguments. Study Program 11.9 in detail. It illustrates with a
small example the key concepts to be understood when dealing with pointers in C.

Program 11.10 shows how a function can return a pointer.The program defines a
function called findEntry whose purpose is to search through a linked list to find a
specified value.When the specified value is found, the program returns a pointer to the
entry in the list. If the desired value is not found, the program returns the null pointer.

Program 11.10 Returning a Pointer from a Function

#include <stdio.h>

struct entry

{

int value;

struct entry *next;

};

struct entry *findEntry (struct entry *listPtr, int match)

{

while (listPtr != (struct entry *) 0)

if (listPtr->value == match)

return (listPtr);

else

listPtr = listPtr->next;

return (struct entry *) 0;

}

int main (void)

{

struct entry *findEntry (struct entry *listPtr, int match);

struct entry n1, n2, n3;

struct entry *listPtr, *listStart = &n1;

int search;

n1.value = 100;

n1.next = &n2;

n2.value = 200;

n2.next = &n3;

n3.value = 300;

n3.next = 0;

11 0672326663 CH11 6/10/04 2:03 PM Page 257

258 Chapter 11 Pointers

printf ("Enter value to locate: ");

scanf ("%i", &search);

listPtr = findEntry (listStart, search);

if (listPtr != (struct entry *) 0)

printf ("Found %i.\n", listPtr->value);

else

printf ("Not found.\n");

return 0;

}

Program 11.10 Output

Enter value to locate: 200

Found 200.

Program 11.10 Output (Rerun)

Enter value to locate: 400

Not found.

Program 11.10 Output (Second Rerun)

Enter value to locate: 300

Found 300.

The function header

struct entry *findEntry (struct entry *listPtr, int match)

specifies that the function findEntry returns a pointer to an entry structure and that it
takes such a pointer as its first argument and an integer as its second.The function begins
by entering a while loop to sequence through the elements of the list.This loop is exe-
cuted until either match is found equal to one of the value entries in the list (in which
case the value of listPtr is immediately returned) or until the null pointer is reached
(in which case the while loop is exited and a null pointer is returned).

After setting up the list as in previous programs, the main routine asks the user for a
value to locate in the list and then calls the findEntry function with a pointer to the
start of the list (listStart) and the value entered by the user (search) as arguments.
The pointer that is returned by findEntry is assigned to the struct entry pointer
variable listPtr. If listPtr is not null, the value member pointed to by listPtr is

Program 11.10 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 258

259Pointers and Arrays

displayed.This should be the same as the value entered by the user. If listPtr is null,
then a “Not found.” message is displayed.

The program’s output verifies that the values 200 and 300 were correctly located in
the list, and the value 400 was not found because it did not, in fact, exist in the list.

The pointer that is returned by the findEntry function in the program does not
seem to serve any useful purpose. However, in more practical situations, this pointer
might be used to access other elements contained in the particular entry of the list. For
example, you could have a linked list of your dictionary entries from Chapter 10,
“Character Strings.”Then, you could call the findEntry function (or rename it lookup
as it was called in that chapter) to search the linked list of dictionary entries for the
given word.The pointer returned by the lookup function could then be used to access
the definition member of the entry.

Organizing the dictionary as a linked list has several advantages. Inserting a new word
into the dictionary is easy:After determining where in the list the new entry is to be
inserted, it can be done by simply adjusting some pointers, as illustrated earlier in this
chapter. Removing an entry from the dictionary is also simple. Finally, as you learn in
Chapter 17, this approach also provides the framework that enables you to dynamically
expand the size of the dictionary.

However, the linked list approach for the organization of the dictionary does suffer
from one major drawback:You cannot apply your fast binary search algorithm to such a
list.This algorithm only works with an array of elements that can be directly indexed.
Unfortunately, there is no faster way to search your linked list other than by a straight,
sequential search because each entry in the list can only be accessed from the
previous one.

One way to glean the benefits of easy insertion and removal of elements, as well as
fast search time, is by using a different type of data structure known as a tree. Other
approaches, such as using hash tables, are also feasible.The reader is respectfully referred
elsewhere—such as to The Art of Computer Programming,Volume 3, Sorting and Searching
(Donald E. Knuth,Addison-Wesley)—for discussion of these types of data structures,
which can be easily implemented in C with the techniques already described.

Pointers and Arrays
One of the most common uses of pointers in C is as pointers to arrays.The main reasons
for using pointers to arrays are ones of notational convenience and of program efficiency.
Pointers to arrays generally result in code that uses less memory and executes faster.The
reason for this will become apparent through our discussions in this section.

If you have an array of 100 integers called values, you can define a pointer called
valuesPtr, which can be used to access the integers contained in this array with the
statement

int *valuesPtr;

11 0672326663 CH11 6/10/04 2:03 PM Page 259

260 Chapter 11 Pointers

When you define a pointer that is used to point to the elements of an array, you don’t
designate the pointer as type “pointer to array”; rather, you designate the pointer as
pointing to the type of element that is contained in the array.

If you have an array of characters called text, you could similarly define a pointer to
be used to point to elements in text with the statement

char *textPtr;

To set valuesPtr to point to the first element in the values array, you simply write

valuesPtr = values;

The address operator is not used in this case because the C compiler treats the appear-
ance of an array name without a subscript as a pointer to the array.Therefore, simply
specifying values without a subscript has the effect of producing a pointer to the first
element of values (see Figure 11.9).

values[0]

values[1]

values[2]

values[3]

valuesPtr

values[99]

Figure 11.9 Pointer to an array element.

An equivalent way of producing a pointer to the start of values is to apply the address
operator to the first element of the array.Thus, the statement

valuesPtr = &values[0];

can be used to serve the same purpose as placing a pointer to the first element of
values in the pointer variable valuesPtr.

11 0672326663 CH11 6/10/04 2:03 PM Page 260

261Pointers and Arrays

To set textPtr to point to the first character inside the text array, either the statement

textPtr = text;

or

textPtr = &text[0];

can be used.Whichever statement you choose to use is strictly a matter of taste.
The real power of using pointers to arrays comes into play when you want to

sequence through the elements of an array. If valuesPtr is as previously defined and is
set pointing to the first element of values, the expression

*valuesPtr

can be used to access the first integer of the values array, that is, values[0].To refer-
ence values[3] through the valuesPtr variable, you can add 3 to valuesPtr and then
apply the indirection operator:

*(valuesPtr + 3)

In general, the expression

*(valuesPtr + i)

can be used to access the value contained in values[i].
So, to set values[10] to 27, you could obviously write the expression

values[10] = 27;

or, using valuesPtr, you could write

*(valuesPtr + 10) = 27;

To set valuesPtr to point to the second element of the values array, you can apply the
address operator to values[1] and assign the result to valuesPtr:

valuesPtr = &values[1];

If valuesPtr points to values[0], you can set it to point to values[1] by simply
adding 1 to the value of valuesPtr:

valuesPtr += 1;

This is a perfectly valid expression in C and can be used for pointers to any data type.
So, in general, if a is an array of elements of type x, px is of type “pointer to x,” and i

and n are integer constants or variables, the statement

px = a;

sets px to point to the first element of a, and the expression

*(px + i)

subsequently references the value contained in a[i]. Furthermore, the statement

px += n;

11 0672326663 CH11 6/10/04 2:03 PM Page 261

262 Chapter 11 Pointers

sets px to point n elements farther in the array, no matter what type of element is contained in
the array.

The increment and decrement operators ++ and -- are particularly handy when deal-
ing with pointers.Applying the increment operator to a pointer has the same effect as
adding one to the pointer, while applying the decrement operator has the same effect as
subtracting one from the pointer. So, if textPtr is defined as a char pointer and is set
pointing to the beginning of an array of chars called text, the statement

++textPtr;

sets textPtr pointing to the next character in text, which is text[1]. In a similar fash-
ion, the statement

--textPtr;

sets textPtr pointing to the previous character in text, assuming, of course, that
textPtr was not pointing to the beginning of text prior to the execution of this state-
ment.

It is perfectly valid to compare two pointer variables in C.This is particularly useful
when comparing two pointers in the same array. For example, you can test the pointer
valuesPtr to see if it points past the end of an array containing 100 elements by com-
paring it to a pointer to the last element in the array. So, the expression

valuesPtr > &values[99]

is TRUE (nonzero) if valuesPtr is pointing past the last element in the values array,
and is FALSE (zero) otherwise. Recall from previous discussions that you can replace the
preceding expression with its equivalent

valuesPtr > values + 99

because values used without a subscript is a pointer to the beginning of the values
array. (Remember, it’s the same as writing &values[0].)

Program 11.11 illustrates pointers to arrays.The arraySum function calculates the sum
of the elements contained in an array of integers.

Program 11.11 Working with Pointers to Arrays

// Function to sum the elements of an integer array

#include <stdio.h>

int arraySum (int array[], const int n)

{

int sum = 0, *ptr;

int * const arrayEnd = array + n;

for (ptr = array; ptr < arrayEnd; ++ptr)

sum += *ptr;

11 0672326663 CH11 6/10/04 2:03 PM Page 262

263Pointers and Arrays

return sum;

}

int main (void)

{

int arraySum (int array[], const int n);

int values[10] = { 3, 7, -9, 3, 6, -1, 7, 9, 1, -5 };

printf ("The sum is %i\n", arraySum (values, 10));

return 0;

}

Program 11.11 Output

The sum is 21

Inside the arraySum function, the constant integer pointer arrayEnd is defined and set
pointing immediately after the last element of array.A for loop is then set up to
sequence through the elements of array.The value of ptr is set to point to the begin-
ning of array when the loop is entered. Each time through the loop, the element of
array pointed to by ptr is added into sum.The value of ptr is then incremented by the
for loop to set it pointing to the next element in array.When ptr points past the end
of array, the for loop is exited, and the value of sum is returned to the calling routine.

A Slight Digression About Program Optimization
It is pointed out that the local variable arrayEnd was not actually needed by the func-
tion because you could have explicitly compared the value of ptr to the end of the array
inside the for loop:

for (...; pointer <= array + n; ...)

The sole motivation for using arrayEnd was one of optimization. Each time through the
for loop, the looping conditions are evaluated. Because the expression array + n is
never changed from within the loop, its value is constant throughout the execution of
the for loop. By evaluating it once before the loop is entered, you save the time that
would otherwise be spent reevaluating this expression each time through the loop.
Although there is virtually no savings in time for a 10-element array, especially if the
arraySum function is called only once by the program, there could be a more substantial
savings if this function were heavily used by a program for summing large-sized arrays,
for example.

The other issue to be discussed about program optimization concerns the very use of
pointers themselves in a program. In the arraySum function discussed earlier, the

Program 11.11 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 263

264 Chapter 11 Pointers

expression *ptr is used inside the for loop to access the elements in the array. Formerly,
you would have written your arraySum function with a for loop that used an index
variable, such as i, and then would have added the value of array[i] into sum inside the
loop. In general, the process of indexing an array takes more time to execute than does
the process of accessing the contents of a pointer. In fact, this is one of the main reasons
why pointers are used to access the elements of an array—the code that is generated is
generally more efficient. Of course, if access to the array is not generally sequential,
pointers accomplish nothing, as far as this issue is concerned, because the expression
*(pointer + j) takes just as long to execute as does the expression array[j].

Is It an Array or Is It a Pointer?
Recall that to pass an array to a function, you simply specify the name of the array, as
you did previously with the call to the arraySum function.You should also remember
that to produce a pointer to an array, you need only specify the name of the array.This
implies that in the call to the arraySum function, what was passed to the function was
actually a pointer to the array values.This is precisely the case and explains why you are
able to change the elements of an array from within a function.

But if it is indeed the case that a pointer to the array is passed to the function, then
you might wonder why the formal parameter inside the function isn’t declared to be a
pointer. In other words, in the declaration of array in the arraySum function, why isn’t
the declaration

int *array;

used? Shouldn’t all references to an array from within a function be made using pointer
variables?

To answer these questions, recall the previous discussion about pointers and arrays.As
mentioned, if valuesPtr points to the same type of element as contained in an array
called values, the expression *(valuesPtr + i) is in all ways equivalent to the expres-
sion values[i], assuming that valuesPtr has been set to point to the beginning of
values.What follows from this is that you also can use the expression *(values + i)
to reference the ith element of the array values, and, in general, if x is an array of any
type, the expression x[i] can always be equivalently expressed in C as *(x + i).

As you can see, pointers and arrays are intimately related in C, and this is why you
can declare array to be of type “array of ints” inside the arraySum function or to be of
type “pointer to int.” Either declaration works just fine in the preceding program—try
it and see.

If you are going to be using index numbers to reference the elements of an array that
is passed to a function, declare the corresponding formal parameter to be an array.This
more correctly reflects the use of the array by the function. Similarly, if you are using the
argument as a pointer to the array, declare it to be of type pointer.

Realizing now that you could have declared array to be an int pointer in the pre-
ceding program example, and then could have subsequently used it as such, you can

11 0672326663 CH11 6/10/04 2:03 PM Page 264

265Pointers and Arrays

eliminate the variable ptr from the function and use array instead, as shown in Program
11.12.

Program 11.12 Summing the Elements of an Array

// Function to sum the elements of an integer array Ver. 2

#include <stdio.h>

int arraySum (int *array, const int n)

{

int sum = 0;

int * const arrayEnd = array + n;

for (; array < arrayEnd; ++array)

sum += *array;

return sum;

}

int main (void)

{

int arraySum (int *array, const int n);

int values[10] = { 3, 7, -9, 3, 6, -1, 7, 9, 1, -5 };

printf ("The sum is %i\n", arraySum (values, 10));

return 0;

}

Program 11.12 Output

The sum is 21

The program is fairly self-explanatory.The first expression inside the for loop was omit-
ted because no value had to be initialized before the loop was started. One point worth
repeating is that when the arraySum function is called, a pointer to the values array is
passed, where it is called array inside the function. Changes to the value of array (as
opposed to the values referenced by array) do not in any way affect the contents of the
values array. So, the increment operator that is applied to array is just incrementing a
pointer to the array values, and not affecting its contents. (Of course, you know that
you can change values in the array if you want to, simply by assigning values to the ele-
ments referenced by the pointer.)

11 0672326663 CH11 6/10/04 2:03 PM Page 265

266 Chapter 11 Pointers

Pointers to Character Strings
One of the most common applications of using a pointer to an array is as a pointer to a
character string.The reasons are ones of notational convenience and efficiency.To show
how easily pointers to character strings can be used, write a function called copyString
to copy one string into another. If you write this function using normal array indexing
methods, the function might be coded as follows:

void copyString (char to[], char from[])

{

int i;

for (i = 0; from[i] != '\0'; ++i)

to[i] = from[i];

to[i] = '\0';

}

The for loop is exited before the null character is copied into the to array, thus explain-
ing the need for the last statement in the function.

If you write copyString using pointers, you no longer need the index variable i.A
pointer version is shown in Program 11.13.

Program 11.13 Pointer Version of copyString

#include <stdio.h>

void copyString (char *to, char *from)

{

for (; *from != '\0'; ++from, ++to)

*to = *from;

*to = '\0';

}

int main (void)

{

void copyString (char *to, char *from);

char string1[] = "A string to be copied.";

char string2[50];

copyString (string2, string1);

printf ("%s\n", string2);

copyString (string2, "So is this.");

printf ("%s\n", string2);

return 0;

}

11 0672326663 CH11 6/10/04 2:03 PM Page 266

267Pointers and Arrays

Program 11.13 Output

A string to be copied.

So is this.

The copyString function defines the two formal parameters to and from as character
pointers and not as character arrays as was done in the previous version of copyString.
This reflects how these two variables are used by the function.

A for loop is then entered (with no initial conditions) to copy the string pointed to
by from into the string pointed to by to. Each time through the loop, the from and to
pointers are each incremented by one.This sets the from pointer pointing to the next
character that is to be copied from the source string and sets the to pointer pointing to
the location in the destination string where the next character is to be stored.

When the from pointer points to the null character, the for loop is exited.The func-
tion then places the null character at the end of the destination string.

In the main routine, the copyString function is called twice, the first time to copy
the contents of string1 into string2, and the second time to copy the contents of the
constant character string "So is this." into string2.

Constant Character Strings and Pointers
The fact that the call

copyString (string2, "So is this.");

works in the previous program implies that when a constant character string is passed as
an argument to a function, what is actually passed is a pointer to that character string.
Not only is this true in this case, but it also can be generalized by saying that whenever a
constant character string is used in C, it is a pointer to that character string that is pro-
duced. So, if textPtr is declared to be a character pointer, as in

char *textPtr;

then the statement

textPtr = "A character string.";

assigns to textPtr a pointer to the constant character string "A character string." Be
careful to make the distinction here between character pointers and character arrays, as
the type of assignment just shown is not valid with a character array. So, for example, if
text is defined instead to be an array of chars, with a statement such as

char text[80];

then you could not write a statement such as

text = "This is not valid.";

The only time that C lets you get away with performing this type of assignment to a
character array is when initializing it, as in

char text[80] = "This is okay.";

11 0672326663 CH11 6/10/04 2:03 PM Page 267

268 Chapter 11 Pointers

Initializing the text array in this manner does not have the effect of storing a pointer to
the character string "This is okay." inside text, but rather the actual characters
themselves inside corresponding elements of the text array.

If text is a character pointer, initializing text with the statement

char *text = "This is okay.";

assigns to it a pointer to the character string "This is okay."
As another example of the distinction between character strings and character string

pointers, the following sets up an array called days, which contains pointers to the names
of the days of the week.

char *days[] =

{ "Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday",
"Saturday" };

The array days is defined to contain seven entries, each a pointer to a character string.
So days[0] contains a pointer to the character string "Sunday", days[1] contains a
pointer to the string "Monday", and so on (see Figure 11.10).You could display the name
of the third weekday, for example, with the following statement:

printf ("%s\n", days[3]);

days[0]

days[1]

days[2]

days[3]

days[4]

days[5]

days[6]

S u n d a y \0

M o n d a y \0

T u e s d a y \0

W e d n e s d a y \0

T h u r s d a y \0

F r i d a y \0

S a t u r d a y \0

Figure 11.10 Array of pointers.

The Increment and Decrement Operators Revisited
Up to this point, whenever you used the increment or decrement operator, it was the
only operator that appeared in the expression.When you write the expression ++x, you
know that this has the effect of adding 1 to the value of the variable x.And as you have

11 0672326663 CH11 6/10/04 2:03 PM Page 268

269Pointers and Arrays

just seen, if x is a pointer to an array, this has the effect of setting x to point to the next
element of the array.

The increment and decrement operators can be used in expressions in which other
operators also appear. In such cases, it becomes important to know more precisely how
these operators work.

So far, when you used the increment and decrement operators, you always placed
them before the variables that were being incremented or decremented. So, to increment
a variable i, you simply wrote

++i;

Actually, it also is perfectly valid to place the increment operator after the variable, as fol-
lows:

i++;

Both expressions are perfectly valid and both achieve the same result—namely, of incre-
menting the value of i. In the first case, where the ++ is placed before its operand, the
increment operation is more precisely identified as a preincrement. In the second case,
where the ++ is placed after its operand, the operation is identified as a postincrement.

The same discussion applies to the decrement operator. So the statement

--i;

technically performs a predecrement of i, whereas the statement

i--;

performs a postdecrement of i. Both have the same net result of subtracting 1 from the
value of i.

It is when the increment and decrement operators are used in more complex expres-
sions that the distinction between the pre- and post- nature of these operators is realized.

Suppose you have two integers called i and j. If you set the value of i to 0 and then
write the statement

j = ++i;

the value that gets assigned to j is 1, and not 0 as you might expect. In the case of the
preincrement operator, the variable is incremented before its value is used in the expres-
sion. So, in the preceding expression, the value of i is first incremented from 0 to 1 and
then its value is assigned to j, as if the following two statements had been written
instead:

++i;

j = i;

If you instead use the postincrement operator in the statement

j = i++;

11 0672326663 CH11 6/10/04 2:03 PM Page 269

270 Chapter 11 Pointers

then i is incremented after its value has been assigned to j. So, if i is 0 before the pre-
ceding statement is executed, 0 is assigned to j and then i is incremented by 1, as if the
statements

j = i;

++i;

were used instead.As another example, if i is equal to 1, then the statement

x = a[--i];

has the effect of assigning the value of a[0] to x because the variable i is decremented
before its value is used to index into a.The statement

x = a[i--];

used instead has the effect of assigning the value of a[1] to x because i is decremented
after its value has been used to index into a.

As a third example of the distinction between the pre- and post- increment and
decrement operators, the function call

printf ("%i\n", ++i);

increments i and then sends its value to the printf function, whereas the call

printf ("%i\n", i++);

increments i after its value has been sent to the function. So, if i is equal to 100, the first
printf call displays 101, whereas the second printf call displays 100. In either case, the
value of i is equal to 101 after the statement has executed.

As a final example on this topic before presenting Program 11.14, if textPtr is a
character pointer, the expression

*(++textPtr)

first increments textPtr and then fetches the character it points to, whereas the
expression

*(textPtr++)

fetches the character pointed to by textPtr before its value is incremented. In either
case, the parentheses are not required because the * and ++ operators have equal prece-
dence but associate from right to left.

Now go back to the copyString function from Program 11.13 and rewrite it to
incorporate the increment operations directly into the assignment statement.

Because the to and from pointers are incremented each time after the assignment
statement inside the for loop is executed, they should be incorporated into the assign-
ment statement as postincrement operations.The revised for loop of Program 11.13
then becomes

for (; *from != '\0';)

*to++ = *from++;

11 0672326663 CH11 6/10/04 2:03 PM Page 270

271Pointers and Arrays

Execution of the assignment statement inside the loop proceeds as follows.The character
pointed to by from is retrieved and then from is incremented to point to the next char-
acter in the source string.The referenced character is then stored inside the location
pointed to by to, and then to is incremented to point to the next location in the desti-
nation string.

Study the preceding assignment statement until you fully understand its operation.
Statements of this type are so commonly used in C programs, it’s important that you
understand it completely before continuing.

The preceding for statement hardly seems worthwhile because it has no initial
expression and no looping expression. In fact, the logic would be better served when
expressed in the form of a while loop.This has been done in Program 11.14.This pro-
gram presents your new version of the copyString function.The while loop uses the
fact that the null character is equal to the value 0, as is commonly done by experienced
C programmers.

Program 11.14 Revised Version of the copyString Function

// Function to copy one string to another. Pointer Ver. 2

#include <stdio.h>

void copyString (char *to, char *from)

{

while (*from)

*to++ = *from++;

*to = '\0';

}

int main (void)

{

void copyString (char *to, char *from);

char string1[] = "A string to be copied.";

char string2[50];

copyString (string2, string1);

printf ("%s\n", string2);

copyString (string2, "So is this.");

printf ("%s\n", string2);

return 0;

}

11 0672326663 CH11 6/10/04 2:03 PM Page 271

272 Chapter 11 Pointers

Program 11.14 Output

A string to be copied.

So is this.

Operations on Pointers
As you have seen in this chapter, you can add or subtract integer values from pointers.
Furthermore, you can compare two pointers to see if they are equal or not, or if one
pointer is less than or greater than another pointer.The only other operation that is per-
mitted on pointers is the subtraction of two pointers of the same type.The result of sub-
tracting two pointers in C is the number of elements contained between the two point-
ers. So, if a points to an array of elements of any type and b points to another element
somewhere farther along in the same array, the expression b – a represents the number
of elements between these two pointers. For example, if p points to some element in an
array x, the statement

n = p - x;

has the effect of assigning to the variable n (assumed here to be an integer variable) the
index number of the element inside x to which p points.4 Therefore, if p is set pointing
to the hundredth element in x by a statement such as

p = &x[99];

the value of n after the previous subtraction is performed is 99.
As a practical application of this newly learned fact about pointer subtraction, take a

look at a new version of the stringLength function from Chapter 10.
In Program 11.15, the character pointer cptr is used to sequence through the charac-

ters pointed to by string until the null character is reached.At that point, string is
subtracted from cptr to obtain the number of elements (characters) contained in the
string. The program’s output verifies that the function is working correctly.

Program 11.15 Using Pointers to Find the Length of a String

// Function to count the characters in a string – Pointer version

#include <stdio.h>

int stringLength (const char *string)

{

const char *cptr = string;

4.The actual type of signed integer that is produced by subtracting two pointers (for example,
int, long int, or long long int) is ptrdiff_t, which is defined in the standard header file
<stddef.h>.

11 0672326663 CH11 6/10/04 2:03 PM Page 272

273Pointers to Functions

while (*cptr)

++cptr;

return cptr - string;

}

int main (void)

{

int stringLength (const char *string);

printf ("%i ", stringLength ("stringLength test"));

printf ("%i ", stringLength (""));

printf ("%i\n", stringLength ("complete"));

return 0;

}

Program 11.15 Output

17 0 8

Pointers to Functions
Of a slightly more advanced nature, but presented here for the sake of completeness, is
the notion of a pointer to a function.When working with pointers to functions, the C
compiler needs to know not only that the pointer variable points to a function, but also
the type of value returned by that function as well as the number and types of its argu-
ments.To declare a variable fnPtr to be of type “pointer to function that returns an int
and that takes no arguments,” the declaration

int (*fnPtr) (void);

can be written.The parentheses around *fnPtr are required because otherwise the C
compiler treats the preceding statement as the declaration of a function called fnPtr that
returns a pointer to an int (because the function call operator () has higher precedence
than the pointer indirection operator *).

To set your function pointer pointing to a specific function, you simply assign the
name of the function to it. So, if lookup is a function that returns an int and that takes
no arguments, the statement

fnPtr = lookup;

stores a pointer to this function inside the function pointer variable fnPtr.Writing a
function name without a subsequent set of parentheses is treated in an analogous way to
writing an array name without a subscript.The C compiler automatically produces a

Program 11.15 Continued

11 0672326663 CH11 6/10/04 2:03 PM Page 273

274 Chapter 11 Pointers

pointer to the specified function.An ampersand is permitted in front of the function
name, but it’s not required.

If the lookup function has not been previously defined in the program, it is necessary
to declare the function before the preceding assignment can be made. So, a statement
such as

int lookup (void);

is needed before a pointer to this function can be assigned to the variable fnPtr.
You can call the function that is indirectly referenced through a pointer variable by

applying the function call operator to the pointer, listing any arguments to the function
inside the parentheses. For example,

entry = fnPtr ();

calls the function pointed to by fnPtr, storing the returned value inside the variable
entry.

One common application for pointers to functions is in passing them as arguments to
other functions.The standard C library uses this, for example, in the function qsort,
which performs a “quicksort” on an array of data elements.This function takes as one of
its arguments a pointer to a function that is called whenever qsort needs to compare
two elements in the array being sorted. In this manner, qsort can be used to sort arrays
of any type, as the actual comparison of any two elements in the array is made by a user-
supplied function, and not by the qsort function itself.Appendix B,“The Standard C
Library,” goes into more detail about qsort and contains an actual example of its use.

Another common application for function pointers is to create what is known as dis-
patch tables.You can’t store functions themselves inside the elements of an array.
However, it is valid to store function pointers inside an array. Given this, you can create
tables that contain pointers to functions to be called. For example, you might create a
table for processing different commands that will be entered by a user. Each entry in the
table could contain both the command name and a pointer to a function to call to
process that particular command. Now, whenever the user enters a command, you can
look up the command inside the table and invoke the corresponding function to
handle it.

Pointers and Memory Addresses
Before ending this discussion of pointers in C, you should note the details of how they
are actually implemented.A computer’s memory can be conceptualized as a sequential
collection of storage cells. Each cell of the computer’s memory has a number, called an
address, associated with it.Typically, the first address of a computer’s memory is numbered
0. On most computer systems, a “cell” is called a byte.

The computer uses memory for storing the instructions of your computer program,
and also for storing the values of the variables that are associated with a program. So, if
you declare a variable called count to be of type int, the system assigns location(s) in

11 0672326663 CH11 6/10/04 2:03 PM Page 274

275Pointers and Memory Addresses

memory to hold the value of count while the program is executing.This location might
be at address 500, for example, inside the computer’s memory.

Luckily, one of the advantages of higher-level programming languages such as C is
that you don’t need to concern yourself with the particular memory addresses that are
assigned to variables—they are automatically handled by the system. However, the
knowledge that a unique memory address is associated with each variable will help you
to understand the way pointers operate.

When you apply the address operator to a variable in C, the value that is generated is
the actual address of that variable inside the computer’s memory. (Obviously, this is
where the address operator gets its name.) So, the statement

intPtr = &count;

assigns to intPtr the address in the computer’s memory that has been assigned to the
variable count. So, if count is located at address 500 and contains the value 10, this state-
ment assigns the value 500 to intPtr, as depicted in Figure 11.11.

Variable

count

intPtr

500

– –

Address

10

500

Figure 11.11 Pointers and memory addresses.

The address of intPtr is shown in Figure 11.11 as –- because its actual value is irrele-
vant for this example.

Applying the indirection operator to a pointer variable, as in the expression

*intPtr

has the effect of treating the value contained in the pointer variable as a memory
address.The value stored at that memory address is then fetched and interpreted in
accordance with the type declared for the pointer variable. So, if intPtr is of type point-
er to int, the value stored in the memory address given by *intPtr is interpreted as an
integer by the system. In our example, the value stored at memory address 500 is fetched
and interpreted as an integer.The result of the expression is 10, and is of type int.

Storing a value in a location reference by a pointer, as in

*intPtr = 20;

proceeds in a like manner.The contents of intPtr is fetched and treated as a memory
address.The specified integer value is then stored at that address. In the preceding state-
ment, the integer value of 20 is, therefore, stored at memory address 500.

At times, system programmers must access particular locations inside the computer’s
memory. In such cases, this knowledge of the way that pointer variables operate proves
helpful.

11 0672326663 CH11 6/10/04 2:03 PM Page 275

276 Chapter 11 Pointers

As you can see from this chapter, the pointer is a very powerful construct in C.The
flexibility in defining pointer variables extends beyond those illustrated in this chapter.
For example, you can define a pointer to a pointer, and even a pointer to a pointer to a
pointer.These types of constructs are beyond the scope of this book, although they are
simply logical extensions of everything you’ve learned about pointers in this chapter.

The topic of pointers is probably the hardest for novices to grasp.You should reread
any sections of this chapter that still seem unclear before proceeding. Solving the exercis-
es that follow will also help you to understand the material.

Exercises
1. Type in and run the 15 programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Write a function called insertEntry to insert a new entry into a linked list. Have
the procedure take as arguments a pointer to the list entry to be inserted (of type
struct entry as defined in this chapter), and a pointer to an element in the list
after which the new entry is to be inserted.

3. The function developed in exercise 2 only inserts an element after an existing ele-
ment in the list, thereby preventing you from inserting a new entry at the front of
the list. How can you use this same function and yet overcome this problem?
(Hint: Think about setting up a special structure to point to the beginning of the
list.)

4. Write a function called removeEntry to remove an entry from a linked list.The
sole argument to the procedure should be a pointer to the list. Have the function
remove the entry after the one pointed to by the argument. (Why can’t you
remove the entry pointed to by the argument?) You need to use the special struc-
ture you set up in exercise 3 to handle the special case of removing the first ele-
ment from the list.

5. A doubly linked list is a list in which each entry contains a pointer to the preceding
entry in the list as well as a pointer to the next entry in the list. Define the appro-
priate structure definition for a doubly linked list entry and then write a small pro-
gram that implements a small doubly linked list and prints out the elements of the
list.

6. Develop insertEntry and removeEntry functions for a doubly linked list that are
similar in function to those developed in previous exercises for a singly linked list.
Why can your removeEntry function now take as its argument a direct pointer to
the entry to be removed from the list?

7. Write a pointer version of the sort function from Chapter 8,“Working with
Functions.” Be certain that pointers are exclusively used by the function, including
index variables in the loops.

11 0672326663 CH11 6/10/04 2:03 PM Page 276

277Exercises

8. Write a function called sort3 to sort three integers into ascending order. (This
function is not to be implemented with arrays.)

9. Rewrite the readLine function from Chapter 10 so that it uses a character pointer
rather than an array.

10. Rewrite the compareStrings function from Chapter 10 to use character pointers
instead of arrays.

11. Given the definition of a date structure as defined in this chapter, write a function
called dateUpdate that takes a pointer to a date structure as its argument and that
updates the structure to the following day (see Program 9.4).

12. Given the following declarations:

char *message = "Programming in C is fun\n";

char message2[] = "You said it\n";

char *format = "x = %i\n";

int x = 100;

determine whether each printf call from the following sets is valid and produces
the same output as other calls from the set.

/*** set 1 ***/

printf ("Programming in C is fun\n");

printf ("%s", "Programming in C is fun\n");

printf ("%s", message);

printf (message);

/*** set 2 ***/

printf ("You said it\n");

printf ("%s", message2);

printf (message2);

printf ("%s", &message2[0]);

/*** set 3 ***/

printf ("said it\n");

printf (message2 + 4);

printf ("%s", message2 + 4);

printf ("%s", &message2[4]);

/*** set 4 ***/

printf ("x = %i\n", x);

printf (format, x);

11 0672326663 CH11 6/10/04 2:03 PM Page 277

11 0672326663 CH11 6/10/04 2:03 PM Page 278

12
Operations on Bits

AS MENTIONED ON PREVIOUS OCCASIONS, the C language was developed with sys-
tems programming applications in mind. Pointers are the perfect case in point because
they give the programmer an enormous amount of control over and access into the
computer’s memory.Along these same lines, systems programmers frequently must get in
and “twiddle with the bits” of particular computer words. C provides a host of operators
specifically designed for performing operations on individual bits.

Recall from the discussions in the previous chapter the concept of a byte. On most
computer systems, a byte consists of eight smaller units called bits.A bit can assume either
of two values: 1 or 0. So a byte stored at address 1000 in a computer’s memory, for
example, might be conceptualized as a string of eight binary digits as shown:

01100100

The rightmost bit of a byte is known as the least significant or low-order bit, whereas the
leftmost bit is known as the most significant or high-order bit. If you treat the string of bits
as an integer, the rightmost bit of the preceding byte represents 20 or 1, the bit immedi-
ately to its left represents 21 or 2, the next bit 22 or 4, and so on.Therefore, the preced-
ing binary number represents the value 22 + 25 + 26 = 4 + 32 + 64 = 100 decimal.

The representation of negative numbers is handled slightly differently. Most comput-
ers represent such numbers using a so-called “twos complement” notation. Using this
notation, the leftmost bit represents the sign bit. If this bit is 1, the number is negative;
otherwise, the bit is 0 and the number is positive.The remaining bits represent the value
of the number. In twos complement notation, the value –1 is represented by all bits
being equal to 1:

11111111

A convenient way to convert a negative number from decimal to binary is to first add 1
to the value, express the absolute value of the result in binary, and then “complement” all
the bits; that is, change all 1s to 0s and 0s to 1s. So, for example, to convert -5 to binary,
1 is added, which gives -4; 4 expressed in binary is 00000100, and complementing the
bits produces 11111011.

12 0672326663 CH12 6/10/04 2:02 PM Page 279

280 Chapter 12 Operations on Bits

To convert a negative number from binary back to decimal, first complement all of
the bits, convert the result to decimal, change the sign of the result, and then subtract 1.

Given this discussion about twos complement representation, the largest positive
number that can be stored into n bits is 2n–1–1. So in eight bits, you can store a value up
to 27 – 1, or 127. Similarly, the smallest negative number that can be stored into n bits is
–2n–1, which in an eight-bit byte comes to –128. (Can you figure out why the largest
positive and smallest negative values are not of the same magnitude?)

On most of today’s processors, integers occupy four contiguous bytes, or 32 bits, in
the computer’s memory.The largest positive value that can, therefore, be stored into such
an integer is 231–1 or 2,147,483,647, whereas the smallest negative number that can be
stored is –2,147,483,648.

In Chapter 4,“Variables, Data Types, and Arithmetic Expressions,” you were intro-
duced to the unsigned modifier and learned that it could be used to effectively increase
the range of a variable.This is because the leftmost bit is no longer needed to store the
sign of the number because you are only dealing with positive integers.This “extra” bit is
used to increase the magnitude of the value stored in that variable by a factor of 2. More
precisely, n bits can now be used to store values up to 2n–1. On a machine that stores
integers in 32 bits, this means that unsigned integers can range in value from 0 through
4,294,967,296.

Bit Operators
Now that you have learned some preliminaries, it’s time to discuss the various bit opera-
tors that are available.The operators that C provides for manipulating bits are presented
in Table 12.1.

Table 12.1 Bit Operators

Symbol Operation

& Bitwise AND

| Bitwise Inclusive-OR

^ Bitwise Exclusive-OR

~ Ones complement

<< Left shift

>> Right shift

All the operators listed in Table 12.1, with the exception of the ones complement opera-
tor ~, are binary operators and as such take two operands. Bit operations can be per-
formed on any type of integer value in C—be it short, long, long long, and signed or
unsigned—and on characters, but cannot be performed on floating-point values.

12 0672326663 CH12 6/10/04 2:02 PM Page 280

281Bit Operators

The Bitwise AND Operator
When two values are ANDed in C, the binary representations of the values are com-
pared bit by bit. Each corresponding bit that is a 1 in the first value and a 1 in the sec-
ond value produces a 1 in the corresponding bit position of the result; anything else
produces a 0. If b1 and b2 represent corresponding bits of the two operands, then the
following table, called a truth table, shows the result of b1 ANDed with b2 for all possible
values of b1 and b2.

b1 b2 b1 & b2

--

0 0 0

0 1 0

1 0 0

1 1 1

So, for example, if w1 and w2 are defined as short ints, and w1 is set equal to 25 and w2
is set equal to 77, then the C statement

w3 = w1 & w2;

assigns the value 9 to w3.This can be more easily seen by treating the values of w1, w2,
and w3 as binary numbers.Assume that you are dealing with a short int size of 16 bits.

w1 0000000000011001 25

w2 0000000001001101 & 77

w3 0000000000001001 9

If you think about the way the logical AND operator && works (true only if both
operands are true), you will be able to more easily remember the way the bitwise AND
operator works. Incidentally, make sure that you don’t get these two operators confused!
The logical AND operator && is used in logical expressions for producing a true/false
result; it does not perform a bitwise AND.

Bitwise ANDing is frequently used for masking operations.That is, this operator can
be used to easily set specific bits of a data item to 0. For example, the statement

w3 = w1 & 3;

assigns to w3 the value of w1 bitwise ANDed with the constant 3.This has the effect of
setting all of the bits in w3, other than the rightmost two bits, to 0, and of preserving the
rightmost two bits from w1.

As with all binary arithmetic operators in C, the binary bit operators can also be used
as assignment operators by tacking on an equal sign. So the statement

word &= 15;

performs the same function as

word = word & 15;

and has the effect of setting all but the rightmost four bits of word to 0.

12 0672326663 CH12 6/10/04 2:02 PM Page 281

282 Chapter 12 Operations on Bits

When using constants in performing bitwise operations, it is usually more convenient
to express the constants in either octal or hexadecimal notation.The choice as to which
to use is usually influenced by the size of the data with which you are dealing. For
example, when dealing with 32-bit computers, hexadecimal notation is often used
because 32 is an even multiple of 4 (the number of bits in a hexadecimal digit).

Program 12.1 is presented to illustrate the bitwise AND operator. Because you are
dealing with only positive values in this program, all integers have been declared as
unsigned int variables.

Program 12.1 The Bitwise AND Operator

// Program to demonstrate the bitwise AND operator

#include <stdio.h>

int main (void)

{

unsigned int word1 = 077u, word2 = 0150u, word3 = 0210u;

printf ("%o ", word1 & word2);

printf ("%o ", word1 & word1);

printf ("%o ", word1 & word2 & word3);

printf ("%o\n", word1 & 1);

return 0;

}

Program 12.1 Output

50 77 10 1

Recall that if an integer constant has a leading 0, it represents an octal (base 8) constant
in C.Therefore, the three unsigned ints, word1, word2, and word3, are given initial octal
values of 077, 0150, and 0210, respectively. Recall also from Chapter 4 that if a u or U
follows an integer constant, it is treated as unsigned.

The first printf call displays octal 50 as the result of bitwise ANDing word1 with
word2.The following depicts how this value was calculated:

word1 ... 000 111 111 077

word2 ... 001 101 000 & 0150

... 000 101 000 050

Only the rightmost nine bits of the previous values are shown because all bits to the left
are 0.The binary numbers have been arranged in groups of three bits to make it easier
to translate back and forth between binary and octal.

12 0672326663 CH12 6/10/04 2:02 PM Page 282

283Bit Operators

The second printf call results in the display of octal 77, which is the result of
ANDing word1 with itself. By definition, any quantity x, when ANDed with itself, pro-
duces x.

The third printf call displays the result of ANDing word1, word2, and word3 togeth-
er.The operation of bitwise ANDing is such that it makes no difference whether an
expression such as a & b & c is evaluated as (a & b) & c or as a & (b & c), but for
the record, evaluation proceeds from left to right. It is left as an exercise to you to verify
that the displayed result of octal 10 is the correct result of ANDing word1 with word2
with word3.

The final printf call has the effect of extracting the rightmost bit of word1.This is
actually another way of testing if an integer is even or odd because that rightmost bit of
any odd integer is 1 and of any even integer is 0.Therefore when the if statement

if (word1 & 1)

...

is executed, the expression is true if word1 is odd (because the result of the AND opera-
tion is 1) and false if it is even (because the result of the AND operation is 0). (Note: On
machines that use a ones complement representation for numbers, this does not work for
negative integers.)

The Bitwise Inclusive-OR Operator
When two values are bitwise Inclusive-ORed in C, the binary representation of the two
values are once again compared bit by bit.This time, each bit that is a 1 in the first value
or a 1 in the second value produces a 1 in the corresponding bit of the result.The truth
table for the Inclusive-OR operator is shown next.

b1 b2 b1 | b2

--

0 0 0

0 1 1

1 0 1

1 1 1

So, if w1 is an unsigned int equal to octal 0431 and w2 is an unsigned int equal to
octal 0152, then a bitwise Inclusive-OR of w1 and w2 produces a result of octal 0573 as
shown:

w1 ... 100 011 001 0431

w2 ... 001 101 010 | 0152

... 101 111 011 0573

As was pointed out with the bitwise AND operator, be sure to not confuse the opera-
tion of bitwise ORing (|) with that of logical ORing (||), the latter operation being
used to determine if either of two logical values is true.

12 0672326663 CH12 6/10/04 2:02 PM Page 283

284 Chapter 12 Operations on Bits

Bitwise Inclusive-ORing, frequently called just bitwise ORing, is used to set some
specified bits of a word to 1. For example, the statement

w1 = w1 | 07;

sets the three rightmost bits of w1 to 1, regardless of the state of these bits before the
operation was performed. Of course, you could have used a special assignment operator
in the statement, as follows:

w1 |= 07;

Presentation of a program example illustrating the use of the Inclusive-OR operator is
deferred until later in this chapter.

The Bitwise Exclusive-OR Operator
The bitwise Exclusive-OR operator, which is often called the XOR operator, works as
follows: For corresponding bits of the two operands, if either bit is a 1—but not both—
the corresponding bit of the result is a 1; otherwise it is a 0.The truth table for this
operator is as shown.

b1 b2 b1 ˆ b2

0 0 0

0 1 1

1 0 1

1 1 0

If w1 and w2 were set equal to octal 0536 and octal 0266, respectively, then the result of
w1 Exclusive-ORed with w2 would be octal 0750, as illustrated:

w1 ... 101 011 110 0536

w2 ... 010 110 110 ^ 0266

... 111 101 000 0750

One interesting property of the Exclusive-OR operator is that any value Exclusive-
ORed with itself produces 0. Historically, this trick was often used by assembly language
programmers as a fast way to set a value to 0 or to compare two values to see if they
were equal.This method is not recommended for use in C programs, however, as it
doesn’t save time and most likely makes the program more obscure.

Another interesting application of the Exclusive-OR operator is that it can be used to
effectively exchange two values without the need for an extra memory location.You
know that you would normally interchange two integers called i1 and i2 with a
sequence of statements such as

temp = i1;

i1 = i2;

i2 = temp;

12 0672326663 CH12 6/10/04 2:02 PM Page 284

285Bit Operators

Using the Exclusive-OR operator, you can exchange values without the need of the
temporary storage location:

i1 ^= i2;

i2 ^= i1;

i1 ^= i2;

It is left as an exercise to you to verify that the previous statements do in fact succeed in
interchanging the values of i1 and i2.

The Ones Complement Operator
The ones complement operator is a unary operator, and its effect is to simply “flip” the
bits of its operand. Each bit of the operand that is a 1 is changed to a 0, and each bit that
is a 0 is changed to a 1.The truth table is shown next simply for the sake of complete-
ness.

b1 ~b1

0 1

1 0

If w1 is a short int that is 16 bits long, and is set equal to octal 0122457, then taking
the ones complement of this value produces a result of octal 0055320:

w1 1 010 010 100 101 111 0122457

`w1 0 101 101 011 010 000 0055320

The ones complement operator (~) should not be confused with the arithmetic minus
operator (–) or with the logical negation operator (!). So if w1 is defined as an int, and
set equal to 0, then –w1 still results in 0. If you apply the ones complement operator to
w1, you end up with w1 being set to all ones, which is –1 when treated as a signed value
in twos complement notation. Finally, applying the logical negation operator to w1 pro-
duces the result true (1) because w1 is false (0).

The ones complement operator is useful when you don’t know the precise bit size of
the quantity that you are dealing with in an operation. Its use can help make a program
more portable—in other words, less dependent on the particular computer on which the
program is running and, therefore, easier to get running on a different machine. For
example, to set the low-order bit of an int called w1 to 0, you can AND w1 with an int
consisting of all 1s except for a single 0 in the rightmost bit. So a statement in C such as

w1 &= 0xFFFFFFFE;

works fine on machines in which an integer is represented by 32 bits.
If you replace the preceding statement with

w1 &= ~1;

12 0672326663 CH12 6/10/04 2:02 PM Page 285

286 Chapter 12 Operations on Bits

w1 gets ANDed with the correct value on any machine because the ones complement of
1 is calculated and consists of as many leftmost one bits as are necessary to fill the size of
an int (31 leftmost bits on a 32-bit integer system).

Program 12.2 summarizes the various bitwise operators presented thus far. Before
proceeding, however, it is important to mention the precedences of the various opera-
tors.The AND, OR, and Exclusive-OR operators each have lower precedence than any
of the arithmetic or relational operators, but higher precedence than the logical AND
and logical OR operators.The bitwise AND is higher in precedence than the bitwise
Exclusive-OR, which in turn is higher in precedence than the bitwise OR.The unary
ones complement operator has higher precedence than any binary operator. For a sum-
mary of these operator precedences, see Appendix A,“C Language Summary.”

Program 12.2 Illustrate Bitwise Operators

/* Program to illustrate bitwise operators */

#include <stdio.h>

int main (void)

{

unsigned int w1 = 0525u, w2 = 0707u, w3 = 0122u;

printf ("%o %o %o\n", w1 & w2, w1 | w2, w1 ^ w2);

printf ("%o %o %o\n", ~w1, ~w2, ~w3);

printf ("%o %o %o\n", w1 ^ w1, w1 & ~w2, w1 | w2 | w3);

printf ("%o %o\n", w1 | w2 & w3, w1 | w2 & ~w3);

printf ("%o %o\n", ~(~w1 & ~w2), ~(~w1 | ~w2));

w1 ^= w2;

w2 ^= w1;

w1 ^= w2;

printf ("w1 = %o, w2 = %o\n", w1, w2);

return 0;

}

Program 12.2 Output

505 727 222

37777777252 37777777070 37777777655

0 20 727

527 725

727 505

w1 = 707, w2 = 525

12 0672326663 CH12 6/10/04 2:02 PM Page 286

287Bit Operators

You should work out each of the operations from Program 12.2 with a paper and pencil
to verify that you understand how the results were obtained.The program was run on a
computer that uses 32 bits to represent an int.

In the fourth printf call, it is important to remember that the bitwise AND operator
has higher precedence than the bitwise OR, because this fact influences the resulting
value of the expression.

The fifth printf call illustrates DeMorgan’s rule, namely that ~(~a & ~b) is equal to
a | b and that ~(~a | ~b) is equal to a & b.The sequence of statements that follow
next in the program verifies that the exchange operation works as discussed in “The
Bitwise Exclusive-OR Operator” section.

The Left Shift Operator
When a left shift operation is performed on a value, the bits contained in the value are
literally shifted to the left.Associated with this operation is the number of places (bits)
that the value is to be shifted. Bits that are shifted out through the high-order bit of the
data item are lost, and 0s are always shifted in through the low-order bit of the value. So
if w1 is equal to 3, then the expression

w1 = w1 << 1;

which can also be expressed as

w1 <<= 1;

results in 3 being shifted one place to the left, which results in 6 being assigned to w1:

w1 ... 000 011 03

w1 << 1 ... 000 110 06

The operand on the left of the << operator is the value to be shifted, whereas the
operand on the right is the number of bit positions by which the value is to be shifted.
If you shift w1 one more place to the left, you end up with octal 014 as the value of w1:

w1 ... 000 110 06

w1 << 1 ... 001 100 014

Left shifting actually has the effect of multiplying the value that is shifted by two. In fact,
some C compilers automatically perform multiplication by a power of two by left shift-
ing the value the appropriate number of places because shifting is a much faster opera-
tion than multiplication on most computers.

A program example illustrating the left shift operator is presented after the right shift
operator has been described.

The Right Shift Operator
As implied from its name, the right shift operator >> shifts the bits of a value to the

right. Bits shifted out of the low-order bit of the value are lost. Right shifting an
unsigned value always results in 0s being shifted in on the left; that is, through the

12 0672326663 CH12 6/10/04 2:02 PM Page 287

288 Chapter 12 Operations on Bits

high-order bits.What is shifted in on the left for signed values depends on the sign of
the value that is being shifted and also on how this operation is implemented on your
computer system. If the sign bit is 0 (meaning the value is positive), 0s are shifted in
regardless of which machine you are running. However, if the sign bit is 1, on some
machines 1s are shifted in, and on others 0s are shifted in.This former type of operation
is known as an arithmetic right shift, whereas the latter is known as a logical right shift.

Never make any assumptions about whether a system implements an arithmetic or a
logical right shift.A program that shifts signed values right might work correctly on one
system but fail on another due to this type of assumption.

If w1 is an unsigned int, which is represented in 32 bits, and w1 is set equal to hexa-
decimal F777EE22, then shifting w1 one place to the right with the statement

w1 >>= 1;

sets w1 equal to hexadecimal 7BBBF711.

w1 1111 0111 0111 0111 1110 1110 0010 0010 F777EE22

w1 >> 1 0111 1011 1011 1011 1111 0111 0001 0001 7BBBF711

If w1 were declared to be a (signed) int, the same result would be produced on some
computers; on others, the result would be FBBBF711 if the operation were performed as
an arithmetic right shift.

It should be noted that the C language does not produce a defined result if an
attempt is made to shift a value to the left or right by an amount that is greater than or
equal to the number of bits in the size of the data item. So, on a machine that represents
integers in 32 bits, for example, shifting an integer to the left or right by 32 or more bits
is not guaranteed to produce a defined result in your program.You should also note that
if you shift a value by a negative amount, the result is also undefined.

A Shift Function
Now, it’s time to put the left and right shift operators to work in an actual program
example, as shown in Program 12.3. Some computers have a single machine instruction
to shift a value to the left if the shift count is positive and to the right if the shift count
is negative. Now, write a function in C to mimic this type of operation.You can have the
function take two arguments: the value to be shifted and the shift count. If the shift
count is positive, the value is shifted left the designated number of places; otherwise, the
value is shifted right the number of places as specified by the absolute value of the shift
count.

Program 12.3 Implementing a Shift Function

// Function to shift an unsigned int left if

// the count is positive, and right if negative

#include <stdio.h>

12 0672326663 CH12 6/10/04 2:02 PM Page 288

289Bit Operators

unsigned int shift (unsigned int value, int n)

{

if (n > 0) // left shift

value <<= n;

else // right shift

value >>= -n;

return value;

}

int main (void)

{

unsigned int w1 = 0177777u, w2 = 0444u;

unsigned int shift (unsigned int value, int n);

printf ("%o\t%o\n", shift (w1, 5), w1 << 5);

printf ("%o\t%o\n", shift (w1, -6), w1 >> 6);

printf ("%o\t%o\n", shift (w2, 0), w2 >> 0);

printf ("%o\n", shift (shift (w1, -3), 3));

return 0;

}

Program 12.3 Output

7777740 7777740

1777 1777

444 444

177770

The shift function shown in Program 12.3 declares the type of the argument value to
be unsigned int, thus ensuring that a right shift of value will be zero filled; in other
words, performed as a logical right shift.

If the value of n, which is the shift count, is greater than zero, the function shifts
value left n bits. If n is negative (or zero), the function performs a right shift, where the
number of places that value is shifted is obtained by negating the value of n.

The first call to the shift function from the main routine specifies that the value of
w1 is to be left shifted five bits.The printf call that displays the result of the call to the
shift function also displays the result of directly shifting w1 left five places so that these
values can be compared.

The second call to the shift function has the effect of shifting w1 six places to the
right.The result returned by the function is identical to the result obtained by directly
shifting w1 to the right six places, as verified by the program’s output.

Program 12.3 Continued

12 0672326663 CH12 6/10/04 2:02 PM Page 289

290 Chapter 12 Operations on Bits

In the third call to shift, a shift count of zero is specified. In this case, the shift func-
tion performs a right shift of value by zero bits, which, as you can see from the program’s
output, has no effect on the value.

The final printf call illustrates nested function calls to the shift function.The
innermost call to shift is executed first.This call specifies that w1 is to be shifted right
three places.The result of this function call, which is 0017777, is then passed to the
shift function to be shifted to the left three places.As you can see from the program’s
output, this has the net effect of setting the low-order three bits of w1 to 0. (Of course,
you know by now that this could also have been done by simply ANDing w1 with ~7.)

Rotating Bits
For the next program example, which ties together some of the bit operations presented
in this chapter, you will develop a function to rotate a value to the left or right.The
process of rotation is similar to shifting, except that when a value is rotated to the left,
the bits that are shifted out of the high-order bits are shifted back into the low-order
bits.When a value is rotated to the right, the bits that are shifted out of the low-order
bits of the value are shifted back into the high-order bits. So, if you are dealing with 32-
bit unsigned integers, the value hexadecimal 80000000 rotated to the left by one bit pro-
duces hexadecimal 00000001 because the 1 from the sign bit that is normally lost by a
left shift of one bit is brought around and shifted back into the low-order bit.

Your function takes two arguments: the first, the value to be rotated, and the second,
the number of bits by which the object is to be rotated. If this second argument is posi-
tive, you rotate the value to the left; otherwise, you rotate the value to the right.

You can adopt a fairly straightforward approach to implementing your rotate func-
tion. For example, to compute the result of rotating x to the left by n bits, where x is of
type int and n ranges from 0 to the number of bits in an int minus 1, you can extract
the leftmost n bits of x, shift x to the left by n bits, and then put the extracted bits back
into x at the right.A similar algorithm also can be used to implement the right rotate
function.

Program 12.4 implements the rotate function using the algorithm described previ-
ously.This function makes the assumption that an int uses 32 bits on the computer.
Exercises at the end of the chapter show one way to write this function so that this
assumption does not have to be made.

Program 12.4 Implementing a Rotate Function

// Program to illustrate rotation of integers

#include <stdio.h>

int main (void)

{

unsigned int w1 = 0xabcdef00u, w2 = 0xffff1122u;

unsigned int rotate (unsigned int value, int n);

12 0672326663 CH12 6/10/04 2:02 PM Page 290

291Bit Operators

printf ("%x\n", rotate (w1, 8));

printf ("%x\n", rotate (w1, -16));

printf ("%x\n", rotate (w2, 4));

printf ("%x\n", rotate (w2, -2));

printf ("%x\n", rotate (w1, 0));

printf ("%x\n", rotate (w1, 44));

return 0;

}

// Function to rotate an unsigned int left or right

unsigned int rotate (unsigned int value, int n)

{

unsigned int result, bits;

// scale down the shift count to a defined range

if (n > 0)

n = n % 32;

else

n = -(-n % 32);

if (n == 0)

result = value;

else if (n > 0) { // left rotate

bits = value >> (32 - n);

result = value << n | bits;

}

else { // right rotate

n = -n;

bits = value << (32 - n);

result = value >> n | bits;

}

return result;

}

Program 12.4 Output

cdef00ab

ef00abcd

fff1122f

Program 12.4 Continued

12 0672326663 CH12 6/10/04 2:02 PM Page 291

292 Chapter 12 Operations on Bits

bfffc448

abcdef00

def00abc

The function first ensures that the shift count, n, is valid.The code

if (n > 0)

n = n % 32;

else

n = -(-n % 32);

checks first to see if n is positive. If it is, the value of n modulo the size of an int
(assumed to be 32 in this example) is calculated and stored back inside n.This places the
shift count in the range of 0 through 31. If n is negative, its value is negated before the
modulus operator is applied.This is done because C does not define the sign of the
result of applying the modulus operator to a negative value.Your machine can produce
either a positive or negative result. By negating the value first, you ensure the result is
positive.You then apply the unary minus operator to the result to turn it negative again;
that is, within the range of values –31 through 0.

If the adjusted shift count is 0, the function simply assigns value to result.
Otherwise, it proceeds with the rotation.

An n-bit rotation to the left is divided into three steps by the function. First, the n
leftmost bits of value are extracted and shifted to the right.This is done by shifting
value to the right by the size of an int (in our case, 32) minus n. Next, value is shifted
n bits to the left, and finally, the extracted bits are ORed back in.A similar procedure is
followed to rotate value to the right.

In the main routine, note the use of hexadecimal notation for a change.The first call
to the rotate function specifies that the value of w1 is to be rotated eight bits to the left.
As can be seen from the program’s output, the hexadecimal value cdef00ab is returned
by the rotate function, which is in fact abcdef00 rotated to the left eight bits.

The second call to the rotate function has the effect of rotating the value of w1 16
bits to the right.

The next two calls to the rotate function do similar things with the value of w2 and
are fairly self-explanatory.The next-to-last call to rotate specifies a rotate count of 0.
The program’s output verifies that in such a case the function simply returns the value
unchanged.

The final call to rotate specifies a left rotate 44 places.This has the net effect of
rotating the value left 12 bits (44 % 32 is 12).

Bit Fields
With the bit operators discussed previously, you can proceed to perform all sorts of
sophisticated operations on bits. Bit operations are frequently performed on data items

Program 12.4 Continued

12 0672326663 CH12 6/10/04 2:02 PM Page 292

293Bit Fields

that contain packed information. Just as a short int can be used to conserve memory
space on some computers, so can you pack information into the bits of a byte or word if
you do not need to use the entire byte or word to represent the data. For example, flags
that are used for a Boolean true or false condition can be represented in a single bit on a
computer. Declaring a char variable that will be used as a flag uses eight bits (one byte)
on most computers, and a _Bool variable is likely to use eight bits as well. In addition, if
you need to store many flags inside a large table, the amount of memory that is wasted
could become significant.

Two methods are available in C that can be used to pack information together to
make better use of memory. One way is to simply represent the data inside a normal
int, for example, and then access the desired bits of the int using the bit operators
described in the previous sections.Another way is to define a structure of packed infor-
mation using a C construct known as a bit field.

To illustrate how the first method can be used, suppose you want to pack five data
values into a word because you have to maintain a very large table of these values in
memory.Assume that three of these data values are flags, which you call f1, f2, and f3;
the fourth value is an integer called type, which ranges from 1 to 255; and the final
value is an integer called index, which ranges from 0 to 100,000.

Storing the values of the flags f1, f2, and f3 only requires three bits of storage, one
bit for the true/false value of each flag. Storing the value of the integer type, which
ranges from 1 to 255, requires eight bits of storage. Finally, storing the value of the inte-
ger index, which can assume a value from 0 to 100,000, requires 18 bits.Therefore, the
total amount of storage needed to store the five data values, f1, f2, f3, type, and index,
is 29 bits.You could define an integer variable that could be used to contain all five of
these values, as in

unsigned int packed_data;

and could then arbitrarily assign specific bits or fields inside packed_data to be used to
store the five data values. One such assignment is depicted in Figure 12.1, which assumes
that the size of packed_data is 32 bits.

f1

0 0

unused f2 f3 type index

0 0 0

Figure 12.1 Bit field assignments in packed_data.

Note that packed_data has three unused bits.You can now apply the correct sequence
of bit operations to packed_data to set and retrieve values to and from the various fields
of the integer. For example, you can set the type field of packed_data to 7 by shifting
the value 7 the appropriate number of places to the left and then ORing it into
packed_data:

packed_data |= 7 << 18;

12 0672326663 CH12 6/10/04 2:02 PM Page 293

294 Chapter 12 Operations on Bits

or you can set the type field to the value n, where n is between 0 and 255, by the
statement

packed_data |= n << 18;

To ensure that n is between 0 and 255, you can AND it with 0xff before it is shifted.
Of course, the preceding statements only work if you know that the type field is

zero; otherwise, you must zero it first by ANDing it with a value (frequently called a
mask) that consists of 0s in the eight bit locations of the type field and 1s everywhere
else:

packed_data &= 0xfc03ffff;

To save yourself the bother of having to explicitly calculate the preceding mask, and also
to make the operation independent of the size of an integer, you could instead use the
following statement to set the type field to zero:

packed_data &= ~(0xff << 18);

Combining the statements described previously, you can set the type field of
packed_data to the value contained in the eight low-order bits of n, irrespective of any
value previously stored in this field, with the following statement:

packed_data = (packed_data & ~(0xff << 18)) | ((n & 0xff) << 18);

In the preceding code, some of the parentheses are superfluous but were added to aid
readability.

You can see how complex the preceding expression is for accomplishing the relatively
simple task of setting the bits in the type field to a specified value. Extracting a value
from one of these fields is not as bad:The field can be shifted into the low-order bits of
the word and then ANDed with a mask of the appropriate bit length. So, to extract the
type field of packed_data and assign it to n, the statement

n = (packed_data >> 18) & 0xff;

does the trick.
The C language does provide a more convenient way of dealing with bit fields.This

method uses a special syntax in the structure definition that allows you to define a field
of bits and assign a name to that field.Whenever the term “bit fields” is applied to C, it is
this approach that is referenced.

To define the bit field assignments previously mentioned, you can define a structure
called packed_struct, for example, as follows:

struct packed_struct

{

unsigned int :3;

unsigned int f1:1;

unsigned int f2:1;

unsigned int f3:1;

unsigned int type:8;

unsigned int index:18;

};

12 0672326663 CH12 6/10/04 2:02 PM Page 294

295Bit Fields

The structure packed_struct is defined to contain six members.The first member is
not named.The :3 specifies three unnamed bits.The second member, called f1, is also an
unsigned int.The :1 that immediately follows the member name specifies that this
member is to be stored in one bit.The flags f2 and f3 are similarly defined as being a
single bit in length.The member type is defined to occupy eight bits, whereas the mem-
ber index is defined as being 18 bits long.

The C compiler automatically packs the preceding bit field definitions together.The
nice thing about this approach is that the fields of a variable defined to be of type
packed_struct can now be referenced in the same convenient way normal structure
members are referenced. So, if you declare a variable called packed_data as follows:

struct packed_struct packed_data;

you could easily set the type field of packed_data to 7 with the simple statement

packed_data.type = 7;

or you could set this field to the value of n with the similar statement

packed_data.type = n;

In this last case, you need not worry about whether the value of n is too large to fit into
the type field; only the low-order eight bits of n will be assigned to packed_data.type.

Extraction of the value from a bit field is also automatically handled, so the statement

n = packed_data.type;

extracts the type field from packed_data (automatically shifting it into the low-order
bits as required) and assigns it to n.

Bit fields can be used in normal expressions and are automatically converted to inte-
gers. So the statement

i = packed_data.index / 5 + 1;

is perfectly valid, as is

if (packed_data.f2)

...

which tests if flag f2 is true or false. One thing worth noting about bit fields is that there
is no guarantee whether the fields are internally assigned from left to right or from right
to left.This should not present a problem unless you are dealing with data that was creat-
ed by a different program or by a different machine. In such cases, you must know how
the bit fields are assigned and make the declarations appropriately.You could have
defined the structure packed_struct as

struct packed_struct

{

unsigned int index:18;

unsigned int type:8;

unsigned int f3:1;

12 0672326663 CH12 6/10/04 2:02 PM Page 295

296 Chapter 12 Operations on Bits

unsigned int f2:1;

unsigned int f1:1;

unsigned int :3;

};

to achieve the same representation on a machine that assigns fields from right to left as
depicted in Figure 12.1. Never make any assumptions about how structure members—
whether they contain bit field members or not—are stored.

You can also include normal data types within a structure that contains bit fields. So if
you want to define a structure that contained an int, a char, and two one-bit flags, the
following definition is valid:

struct table_entry

{

int count;

char c;

unsigned int f1:1;

unsigned int f2:1;

};

Certain points are worth mentioning with respect to bit fields.They can only be
declared to be of integer or _Bool type. If just int is used in the declaration, it’s imple-
mentation dependent whether this is interpreted as a signed or unsigned value.To play it
safe, use the explicit declarations signed int or unsigned int.A bit field cannot be
dimensioned; that is, you cannot have an array of fields, such as flag:1[5]. Finally, you
cannot take the address of a bit field, and, therefore, there is obviously no such thing as a
type “pointer to bit field.”

Bit fields are packed into units as they appear in the structure definition, where the
size of a unit is defined by the implementation and is most likely a word.

The C compiler does not rearrange the bit field definitions to try to optimize storage
space.

A final point concerning the specification of fields concerns the special case of an
unnamed field of length 0.This can be used to force alignment of the next field in the
structure at the start of a unit boundary.

This concludes the discussion of bit operations in C.You can see how much power
and flexibility the C language provides for the efficient manipulation of bits. Operators
are conveniently provided in the language for performing bitwise AND, Inclusive-OR,
Exclusive-OR, ones complement, and left and right shift operations.A special bit field
format enables you to allocate a specified number of bits for a data item and to easily set
and retrieve its value without having to use masking and shifting.

See Chapter 14, ”More on Data Types,” for a discussion on what happens when you
perform bitwise operations between two values of differing integral types, for example
between an unsigned long int and a short int.

Before proceeding to the next chapter, try the following exercises to test your under-
standing of bit operations in C.

12 0672326663 CH12 6/10/04 2:02 PM Page 296

297Exercises

Exercises
1. Type in and run the four programs presented in this chapter. Compare the output

produced by each program with the output presented after each program in the
text.

2. Write a program that determines whether your particular computer performs an
arithmetic or a logical right shift.

3. Given that the expression ~0 produces an integer that contains all 1s, write a func-
tion called int_size that returns the number of bits contained in an int on your
particular machine.

4. Using the result obtained in exercise 3, modify the rotate function from Program
12.4 so that it no longer makes any assumptions about the size of an int.

5. Write a function called bit_test that takes two arguments: an unsigned int and
a bit number n. Have the function return 1 bit number n if it is on inside the
word, and 0 if it is off.Assume that bit number 0 references the leftmost bit inside
the integer.Also write a corresponding function called bit_set that takes two
arguments: an unsigned int and a bit number n. Have the function return the
result of turning bit n on inside the integer.

6. Write a function called bitpat_search that looks for the occurrence of a speci-
fied pattern of bits inside an unsigned int.The function should take three argu-
ments and should be called as shown:

bitpat_search (source, pattern, n)

The function searches the integer source, starting at the leftmost bit, to see if the
rightmost n bits of pattern occur in source. If the pattern is found, have the
function return the number of the bit at which the pattern begins, where the left-
most bit is bit number 0. If the pattern is not found, then have the function return
–1. So, for example, the call

index = bitpat_search (0xe1f4, 0x5, 3);

causes the bitpat_search function to search the number 0xe1f4 (= 1110 0001
1111 0100 binary) for the occurrence of the three-bit pattern 0x5 (= 101 binary).
The function returns 11 to indicate that the pattern was found in the source
beginning with bit number 11.

Make certain that the function makes no assumptions about the size of an int (see
exercise 3 in this chapter).

7. Write a function called bitpat_get to extract a specified set of bits. Have it take
three arguments: the first an unsigned int, the second an integer starting bit
number, and the third a bit count. Using the convention that bit numbering starts

12 0672326663 CH12 6/10/04 2:02 PM Page 297

298 Chapter 12 Operations on Bits

at 0 with the leftmost bit, extract the specified number of bits from the first argu-
ment and return the result. So the call

bitpat_get (x, 0, 3)

extracts the three leftmost bits from x.The call

bitpat_get (x, 3, 5)

extracts five bits starting with the fourth bit in from the left.

8. Write a function called bitpat_set to set a specified set of bits to a particular
value.The function should take four arguments: a pointer to an unsigned int in
which the specified bits are to be set; another unsigned int containing the value
to which the specified bits are to be set, right adjusted in the unsigned int; a
third int that specifies the starting bit number (with the leftmost bit numbered 0);
and a fourth int specifying the size of the field. So the call

bitpat_set (&x, 0, 2, 5);

has the effect of setting the five bits contained in x, beginning with the third bit
from the left (bit number 2), to 0. Similarly, the call

bitpat_set (&x, 0x55u, 0, 8);

sets the eight leftmost bits of x to hexadecimal 55.

Make no assumptions about the particular size of an int (refer to exercise 3 in this
chapter).

12 0672326663 CH12 6/10/04 2:02 PM Page 298

13
The Preprocessor

THIS CHAPTER DESCRIBES YET ANOTHER UNIQUE FEATURE of the C language that is
not found in many other higher-level programming languages.The C preprocessor pro-
vides the tools that enable you to develop programs that are easier to develop, easier to
read, easier to modify, and easier to port to a different computer system.You can also use
the preprocessor to literally customize the C language to suit a particular programming
application or to satisfy your own programming style.

The preprocessor is a part of the C compilation process that recognizes special state-
ments that might be interspersed throughout a C program.As its name implies, the pre-
processor actually analyzes these statements before analysis of the C program itself takes
place. Preprocessor statements are identified by the presence of a pound sign, #, which
must be the first nonspace character on the line.As you will see, preprocessor statements
have a syntax that is slightly different from that of normal C statements.You begin by
examining the #define statement.

The #define Statement
One of the primary uses of the #define statement is to assign symbolic names to pro-
gram constants.The preprocessor statement

#define YES 1

defines the name YES and makes it equivalent to the value 1.The name YES can subse-
quently be used anywhere in the program where the constant 1 could be used.
Whenever this name appears, its defined value of 1 is automatically substituted into the
program by the preprocessor. For example, you might have the following C statement
that uses the defined name YES:

gameOver = YES;

This statement assigns the value of YES to gameOver.You don’t need to concern yourself
with the actual value that you defined for YES, but because you do know that it is

13 0672326663 CH13 6/10/04 2:05 PM Page 299

300 Chapter 13 The Preprocessor

defined as 1, the preceding statement has the effect of assigning 1 to gameOver.The pre-
processor statement

#define NO 0

defines the name NO and makes its subsequent use in the program equivalent to specify-
ing the value 0.Therefore, the statement

gameOver = NO;

assigns the value of NO to gameOver, and the statement

if (gameOver == NO)

...

compares the value of gameOver against the defined value of NO. Just about the only
place that you cannot use a defined name is inside a character string; so the statement

char *charPtr = "YES";

sets charPtr pointing to the string "YES" and not to the string "1".
A defined name is not a variable.Therefore, you cannot assign a value to it, unless the

result of substituting the defined value is in fact a variable.Whenever a defined name is
used in a program, whatever appears to the right of the defined name in the #define
statement gets automatically substituted into the program by the preprocessor. It’s analo-
gous to doing a search and replace with a text editor; in this case, the preprocessor
replaces all occurrences of the defined name with its associated text.

Notice that the #define statement has a special syntax:There is no equal sign used to
assign the value 1 to YES. Furthermore, a semicolon does not appear at the end of the
statement. Soon, you will understand why this special syntax exists. But first, take a look
at a small program that uses the YES and NO defines as previously illustrated.The function
isEven in Program 13.1 simply returns YES if its argument is even and NO if its argument
is odd.

Program 13.1 Introducing the #define Statement

#include <stdio.h>

#define YES 1

#define NO 0

// Function to determine if an integer is even

int isEven (int number)

{

int answer;

if (number % 2 == 0)

answer = YES;

13 0672326663 CH13 6/10/04 2:05 PM Page 300

301The #define Statement

else

answer = NO;

return answer;

}

int main (void)

{

int isEven (int number);

if (isEven (17) == YES)

printf ("yes ");

else

printf ("no ");

if (isEven (20) == YES)

printf ("yes\n");

else

printf ("no\n");

return 0;

}

Program 13.1 Output

no yes

The #define statements appear first in the program.This is not required; they can appear
anywhere in the program.What is required is that a name be defined before it is refer-
enced by the program. Defined names do not behave like variables:There is no such
thing as a local define.After a name has been defined in a program, either inside or out-
side a function, it can subsequently be used anywhere in the program. Most programmers
group their defines at the beginning of the program (or inside an include file1) where
they can be quickly referenced and shared by more than one source file.

The defined name NULL is frequently used by programmers to represent the null
pointer.2

Program 13.1 Continued

1. Read on to learn how defines can be set up inside special files that you can include in your
program.
2. NULL is already defined on your system inside a file named <stddef.h>.Again, include files are
discussed in more detail shortly.

13 0672326663 CH13 6/10/04 2:05 PM Page 301

302 Chapter 13 The Preprocessor

By including a definition such as

#define NULL 0

in a program, you can then write more readable statements, such as

while (listPtr != NULL)

...

to set up a while loop that will execute as long as the value of listPtr is not equal to
the null pointer.

As another example of the use of a defined name, suppose you want to write three
functions to find the area of a circle, the circumference of a circle, and the volume of a
sphere of a given radius. Because all these functions need to use the constant π, which is
not a particularly easy constant to remember, it makes sense to define the value of this
constant once at the start of the program and then use this value where needed in each
function.3

Program 13.2 shows how a definition for this constant can be set up and used in a
program.

Program 13.2 More on Working with Defines

/* Function to calculate the area and circumference of a

circle, and the volume of a sphere of a given radius */

#include <stdio.h>

#define PI 3.141592654

double area (double r)

{

return PI * r * r;

}

double circumference (double r)

{

return 2.0 * PI * r;

}

double volume (double r)

{

return 4.0 / 3.0 * PI * r * r * r;

}

3.The identifier M_PI is already defined for you in the header file <math.h>. By including that
file in your program, you can use it directly in your programs.

13 0672326663 CH13 6/10/04 2:05 PM Page 302

303The #define Statement

int main (void)

{

double area (double r), circumference (double r),

volume (double r);

printf ("radius = 1: %.4f %.4f %.4f\n",

area(1.0), circumference(1.0), volume(1.0));

printf ("radius = 4.98: %.4f %.4f %.4f\n",

area(4.98), circumference(4.98), volume(4.98));

return 0;

}

Program 13.2 Output

radius = 1: 3.1416 6.2832 4.1888

radius = 4.98: 77.9128 31.2903 517.3403

The symbolic name PI is defined as the value 3.141592654 at the beginning of the pro-
gram. Subsequent use of the name PI inside the area, circumference, and volume func-
tions has the effect of causing its defined value to be automatically substituted at the
appropriate point.

Assignment of a constant to a symbolic name frees you from having to remember the
particular constant value every time you want to use it in a program. Furthermore, if you
ever need to change the value of the constant (if, perhaps, you find out that you are
using the wrong value, for example), you only have to change the value in one place in
the program: in the #define statement.Without this approach, you would have to other-
wise search throughout the program and explicitly change the value of the constant
whenever it was used.

You might have realized that all the defines you have seen so far (YES, NO, NULL, and
PI) have been written in capital letters.The reason this is done is to visually distinguish a
defined value from a variable. Some programmers adopt the convention that all defined
names be capitalized, so that it becomes easy to determine when a name represents a
variable and when it represents a defined name.Another common convention is to pre-
fix the define with the letter k. In that case, the following characters of the name are not
capitalized. kMaximumValues and kSignificantDigits are two examples of defined
names that adhere to this convention.

Program Extendability
Using a defined name for a constant value helps to make programs more readily extend-
able. For example, when you define an array, you must specify the number of elements in

Program 13.2 Continued

13 0672326663 CH13 6/10/04 2:05 PM Page 303

304 Chapter 13 The Preprocessor

the array—either explicitly or implicitly (by specifying a list of initializers). Subsequent
program statements will likely use the knowledge of the number of elements contained
inside the array. For example, if the array dataValues is defined in a program as follows:

float dataValues[1000];

there is a good chance that you will see statements in the program that use the fact that
dataValues contains 1,000 elements. For instance, in a for loop

for (i = 0; i < 1000; ++i)

...

you would use the value 1000 as an upper bound for sequencing through the elements
of the array.A statement such as

if (index > 999)

...

might also be used in the program to test if an index value exceeds the maximum size of
the array.

Now suppose that you had to increase the size of the dataValues array from 1,000
to 2,000 elements.This would necessitate changing all statements that used the fact that
dataValues contained 1,000 elements.

A better way of dealing with array bounds, which makes programs easier to extend, is
to define a name for the upper array bound. So, if you define a name such as
MAXIMUM_DATAVALUES with an appropriate #define statement:

#define MAXIMUM_DATAVALUES 1000

you can subsequently define the dataValues array to contain MAXIMUM_DATAVALUES ele-
ments with the following program line:

float dataValues[MAXIMUM_DATAVALUES];

Statements that use the upper array bound can also make use of this defined name.To
sequence through the elements in dataValues, for example, the for statement

for (i = 0; i < MAXIMUM_DATAVALUES; ++i)

...

could be used.To test if an index value is greater than the upper bound of the array, you
could write

if (index > MAXIMUM_DATAVALUES - 1)

...

and so on.The nicest thing about the preceding approach is that you can now easily
change the size of the dataValues array to 2,000 elements by simply changing the defi-
nition:

#define MAXIMUM_DATAVALUES 2000

13 0672326663 CH13 6/10/04 2:05 PM Page 304

305The #define Statement

And if the program is written to use MAXIMUM_DATAVALUES in all cases where the size of
the array was used, the preceding definition could be the only statement in the program
that would have to be changed.

Program Portability
Another nice use of the define is that it helps to make programs more portable from one
computer system to another.At times, it might be necessary to use constant values that
are related to the particular computer on which the program is running.This might have
to do with the use of a particular computer memory address, a filename, or the number
of bits contained in a computer word, for example.You will recall that your rotate
function from Program 12.4 used the knowledge that an int contained 32 bits on the
machine on which the program was executed.

If you want to execute this program on a different machine, on which an int con-
tained 64 bits, the rotate function would not work correctly.4 Study the following
code. In situations in which the program must be written to make use of machine-
dependent values, it makes sense to isolate such dependencies from the program as much
as possible.The #define statement can help significantly in this respect.The new version
of the rotate function would be easier to port to another machine, even though it is a
rather simple case in point. Here’s the new function:

#include <stdio.h>

#define kIntSize 32 // *** machine dependent !!! ***

// Function to rotate an unsigned int left or right

unsigned int rotate (unsigned int value, int n)

{

unsigned int result, bits;

/* scale down the shift count to a defined range */

if (n > 0)

n = n % kIntSize;

else

n = -(-n % kIntSize);

if (n == 0)

result = value;

4. Of course, you can write the rotate function so that it determines the number of bits in an
int by itself and, therefore, is completely machine independent. Refer back to exercises 3 and 4 at
the end of Chapter 12,“Operations on Bits.”

13 0672326663 CH13 6/10/04 2:05 PM Page 305

306 Chapter 13 The Preprocessor

else if (n > 0) /* left rotate */

{

bits = value >> (kIntSize - n);

result = value << n | bits;

}

else /* right rotate */

{

n = -n;

bits = value << (kIntSize - n) ;

result = value >> n | bits;

}

return result;

}

More Advanced Types of Definitions
A definition for a name can include more than a simple constant value. It can include an
expression, and, as you will see shortly, just about anything else!

The following defines the name TWO_PI as the product of 2.0 and 3.141592654:

#define TWO_PI 2.0 * 3.141592654

You can subsequently use this defined name anywhere in a program where the expres-
sion 2.0 × 3.141592654 would be valid. So you could have replaced the return state-
ment of the circumference function from the previous program with the following
statement, for example:

return TWO_PI * r;

Whenever a defined name is encountered in a C program, everything that appears to the
right of the defined name in the #define statement is literally substituted for the name
at that point in the program. So, when the C preprocessor encounters the name TWO_PI
in the return statement shown previously, it substitutes for this name whatever appeared
in the #define statement for this name.Therefore, 2.0 × 3.141592654 is literally sub-
stituted by the preprocessor whenever the defined name TWO_PI occurs in the program.

The fact that the preprocessor performs a literal text substitution whenever the
defined name occurs explains why you don’t usually want to end your #define state-
ment with a semicolon. If you did, then the semicolon would also be substituted into the
program wherever the defined name appeared. If you had defined PI as

#define PI 3.141592654;

and then written

return 2.0 * PI * r;

13 0672326663 CH13 6/10/04 2:05 PM Page 306

307The #define Statement

the preprocessor would replace the occurrence of the defined name PI with
3.141592654;.The compiler would therefore see this statement as

return 2.0 * 3.141592654; * r;

after the preprocessor had made its substitution, which would result in a syntax error.
A preprocessor definition does not have to be a valid C expression in its own right—

just so long as wherever it is used the resulting expression is valid. For instance, the defi-
nition

#define LEFT_SHIFT_8 << 8

is legitimate, even though what appears after LEFT_SHIFT_8 is not a syntactically valid
expression.You can use your definition of LEFT_SHIFT_8 in a statement such as

x = y LEFT_SHIFT_8;

to shift the contents of y to the left eight bits and assign the result to x. Of a much more
practical nature, you can set up the definitions

#define AND &&

#define OR ||

and then write expressions such as

if (x > 0 AND x < 10)

...

and

if (y == 0 OR y == value)

...

You can even include a define for the equality test:

#define EQUALS ==

and then write the statement

if (y EQUALS 0 OR y EQUALS value)

...

thus removing the very real possibility of mistakenly using a single equal sign for the
equality test, as well as improving the statement’s readability.

Although these examples illustrate the power of the #define, you should note that it
is commonly considered poor programming practice to redefine the syntax of the
underlying language in such a manner. Moreover, it can make it harder for someone else
to understand your code.

To make things even more interesting, a defined value can itself reference another
defined value. So the two defines

#define PI 3.141592654

#define TWO_PI 2.0 * PI

13 0672326663 CH13 6/10/04 2:05 PM Page 307

308 Chapter 13 The Preprocessor

are perfectly valid.The name TWO_PI is defined in terms of the previously defined name
PI, thus obviating the need to spell out the value 3.141592654 again.

Reversing the order of the defines, as in

#define TWO_PI 2.0 * PI

#define PI 3.141592654

is also valid.The rule is that you can reference other defined values in your definitions
provided everything is defined at the time the defined name is used in the program.

Good use of defines often reduces the need for comments within the program.
Consider the following statement:

if (year % 4 == 0 && year % 100 != 0 || year % 400 == 0)

...

You know from previous programs in this book that the preceding expression tests
whether the variable year is a leap year. Now consider the following define and the sub-
sequent if statement:

#define IS_LEAP_YEAR year % 4 == 0 && year % 100 != 0 \

|| year % 400 == 0

...

if (IS_LEAP_YEAR)

...

Normally, the preprocessor assumes that a definition is contained on a single line of the
program. If a second line is needed, the final character on the line must be a backslash
character.This character signals a continuation to the preprocessor and is otherwise
ignored.The same holds true for more than one continuation line; each line to be con-
tinued must be ended with a backslash character.

The preceding if statement is far easier to understand than the one shown directly
before it.There is no need for a comment as the statement is self-explanatory.The pur-
pose that the define IS_LEAP_YEAR serves is analogous to that served by a function.You
could have used a call to a function named is_leap_year to achieve the same degree of
readability.The choice of which to use in this case is completely subjective. Of course,
the is_leap_year function could be made more general than the preceding define
because it could be written to take an argument.This would enable you to test if the
value of any variable were a leap year and not just the variable year to which the
IS_LEAP_YEAR define restricts you.Actually, you can write a definition to take one or
more arguments, which leads to our next point of discussion.

Arguments and Macros

IS_LEAP_YEAR can be defined to take an argument called y as follows:
#define IS_LEAP_YEAR(y) y % 4 == 0 && y % 100 != 0 \

|| y % 400 == 0

13 0672326663 CH13 6/10/04 2:05 PM Page 308

309The #define Statement

Unlike a function, you do not define the type of the argument y here because you are
merely performing a literal text substitution and not invoking a function.

Note that no spaces are permitted in the #define statement between the defined name
and the left parenthesis of the argument list.

With the preceding definition, you can write a statement such as

if (IS_LEAP_YEAR (year))

...

to test whether the value of year were a leap year, or

if (IS_LEAP_YEAR (next_year))

...

to test whether the value of next_year were a leap year. In the preceding statement, the
definition for IS_LEAP_YEAR would be directly substituted inside the if statement, with
the argument next_year replacing y wherever it appeared in the definition. So the if
statement would actually be seen by the compiler as

if (next_year % 4 == 0 && next_year % 100 != 0 \

|| next_year % 400 == 0)

...

In C, definitions are frequently called macros.This terminology is more often applied to
definitions that take one or more arguments.An advantage of implementing something
in C as a macro, as opposed to as a function, is that in the former case, the type of the
argument is not important. For example, consider a macro called SQUARE that simply
squares its argument.The definition

#define SQUARE(x) x * x

enables you to subsequently write statements, such as

y = SQUARE (v);

to assign the value of v2 to y.The point to be made here is that v can be of type int, or
of type long, or of type float, for example, and the same macro can be used. If SQUARE
were implemented as a function that took an int argument, for example, you couldn’t
use it to calculate the square of a double value. One consideration about macro defini-
tions, which might be relevant to your application: Because macros are directly substitut-
ed into the program by the preprocessor, they inevitably use more memory space than
an equivalently defined function. On the other hand, because a function takes time to
call and to return, this overhead is avoided when a macro definition is used instead.

Although the macro definition for SQUARE is straightforward, there is an interesting
pitfall to avoid when defining macros.As has been described, the statement

y = SQUARE (v);

13 0672326663 CH13 6/10/04 2:05 PM Page 309

310 Chapter 13 The Preprocessor

assigns the value of v2 to y.What do you think would happen in the case of the state-
ment

y = SQUARE (v + 1);

This statement does not assign the value of (v + 1)2 to y as you would expect. Because
the preprocessor performs a literal text substitution of the argument into the macro defi-
nition, the preceding expression would actually be evaluated as

y = v + 1 * v + 1;

which would obviously not produce the expected results.To handle this situation prop-
erly, parentheses are needed in the definition of the SQUARE macro:

#define SQUARE(x) ((x) * (x))

Even though the preceding definition might look strange, remember that it is the entire
expression as given to the SQUARE macro that is literally substituted wherever x appears
in the definition.With your new macro definition for SQUARE, the statement

y = SQUARE (v + 1);

is then correctly evaluated as

y = ((v + 1) * (v + 1));

The conditional expression operator can be particularly handy when defining macros.
The following defines a macro called MAX that gives the maximum of two values:

#define MAX(a,b) (((a) > (b)) ? (a) : (b))

This macro enables you to subsequently write statements such as

limit = MAX (x + y, minValue);

which would assign to limit the maximum of x + y and minValue. Parentheses were
placed around the entire MAX definition to ensure that an expression such as

MAX (x, y) * 100

gets evaluated properly; and parentheses were individually placed around each argument
to ensure that expressions such as

MAX (x & y, z)

get correctly evaluated.The bitwise AND operator has lower precedence than the > opera-
tor used in the macro.Without the parentheses in the macro definition, the > operator
would be evaluated before the bitwise AND, producing the incorrect result.

The following macro tests if a character is a lowercase letter:

#define IS_LOWER_CASE(x) (((x) >= 'a') && ((x) <= 'z'))

and thereby permits expressions such as

if (IS_LOWER_CASE (c))

...

13 0672326663 CH13 6/10/04 2:05 PM Page 310

311The #define Statement

to be written.You can even use this macro in a subsequent macro definition to convert
an ASCII character from lowercase to uppercase, leaving any nonlowercase character
unchanged:

#define TO_UPPER(x) (IS_LOWER_CASE (x) ? (x) - 'a' + 'A' : (x))

The program loop

while (*string != '\0')

{

*string = TO_UPPER (*string);

++string;

}

would sequence through the characters pointed to by string, converting any lowercase
characters in the string to uppercase.5

Variable Number of Arguments to Macros

A macro can be defined to take an indeterminate or variable number of arguments.This
is specified to the preprocessor by putting three dots at the end of the argument list.The
remaining arguments in the list are collectively referenced in the macro definition by the
special identifier __VA_ARGS__.As an example, the following defines a macro called
debugPrintf to take a variable number of arguments:

#define debugPrintf(...) printf ("DEBUG: " __VA_ARGS__);

Legitimate macro uses would include

debugPrintf ("Hello world!\n");

as well as

debugPrintf ("i = %i, j = %i\n", i, j);

In the first case, the output would be

DEBUG: Hello world!

And in the second case, if i had the value 100 and j the value 200, the output would be

DEBUG: i = 100, j = 200

The printf call in the first case gets expanded into

printf ("DEBUG: " "Hello world\n");

by the preprocessor, which also concatenates the adjacent character string constants
together. So the final printf call looks like this:

printf ("DEBUG: Hello world\n");

5.There is a host of functions in the library for doing character tests and conversions. For example,
islower and toupper serve the same purpose as the macros IS_LOWER_CASE and TO_UPPER.
For more details, consult Appendix B,“The Standard C Library.”

13 0672326663 CH13 6/10/04 2:05 PM Page 311

312 Chapter 13 The Preprocessor

The # Operator
If you place a # in front of a parameter in a macro definition, the preprocessor creates a
constant string out of the macro argument when the macro is invoked. For example, the
definition

#define str(x) # x

causes the subsequent invocation

str (testing)

to be expanded into

"testing"

by the preprocessor.The printf call

printf (str (Programming in C is fun.\n));

is therefore equivalent to

printf ("Programming in C is fun.\n");

The preprocessor literally inserts double quotation marks around the actual macro argu-
ment.Any double quotation marks or backslashes in the argument are preserved by the
preprocessor. So

str ("hello")

produces

"\"hello\""

A more practical example of the use of the # operator might be in the following macro
definition:

#define printint(var) printf (# var " = %i\n", var)

This macro is used to display the value of an integer variable. If count is an integer vari-
able with a value of 100, the statement

printint (count);

is expanded into

printf ("count" " = %i\n", count);

which, after string concatenation is performed on the two adjacent strings, becomes

printf ("count = %i\n", count);

So the # operator gives you a means to create a character string out of a macro argu-
ment. Incidentally, a space between the # and the parameter name is optional.

13 0672326663 CH13 6/10/04 2:05 PM Page 312

313The #include Statement

The ## Operator
This operator is used in macro definitions to join two tokens together. It is preceded (or
followed) by the name of a parameter to the macro.The preprocessor takes the actual
argument to the macro that is supplied when the macro is invoked and creates a single
token out of that argument and whatever token follows (or precedes) the ##.

Suppose, for example, you have a list of variables x1 through x100.You can write a
macro called printx that simply takes as its argument an integer value 1 through 100
and that displays the corresponding x variable as shown:

#define printx(n) printf ("%i\n", x ## n)

The portion of the define that reads

x ## n

says to take the tokens that occur before and after the ## (the letter x and the argument
n, respectively) and make a single token out of them. So the call

printx (20);

is expanded into

printf ("%i\n", x20);

The printx macro can even use the previously defined printint macro to get the vari-
able name as well as its value displayed:

#define printx(n) printint(x ## n)

The invocation

printx (10);

first expands into

printint (x10);

and then into

printf ("x10" " = %i\n", x10);

and finally into

printf ("x10 = %i\n", x10);

The #include Statement
After you have programmed in C for a while, you will find yourself developing your
own set of macros that you will want to use in each of your programs. But instead of
having to type these macros into each new program you write, the preprocessor enables
you to collect all your definitions into a separate file and then include them in your pro-
gram, using the #include statement.These files normally end with the characters .h and
are referred to as header or include files.

13 0672326663 CH13 6/10/04 2:05 PM Page 313

314 Chapter 13 The Preprocessor

Suppose you are writing a series of programs for performing various metric conver-
sions.You might want to set up some defines for all of the constants that you need to
perform your conversions:

#define INCHES_PER_CENTIMETER 0.394

#define CENTIMETERS_PER_INCH 1 / INCHES_PER_CENTIMETER

#define QUARTS_PER_LITER 1.057

#define LITERS_PER_QUART 1 / QUARTS_PER_LITER

#define OUNCES_PER_GRAM 0.035

#define GRAMS_PER_OUNCE 1 / OUNCES_PER_GRAM

...

Suppose you entered the previous definitions into a separate file on the system called
metric.h.Any program that subsequently needed to use any of the definitions contained
in the metric.h file could then do so by simply issuing the preprocessor directive

#include "metric.h"

This statement must appear before any of the defines contained in metric.h are refer-
enced and is typically placed at the beginning of the source file.The preprocessor looks
for the specified file on the system and effectively copies the contents of the file into the
program at the precise point that the #include statement appears. So, any statements
inside the file are treated just as if they had been directly typed into the program at that
point.

The double quotation marks around the include filename instruct the preprocessor to
look for the specified file in one or more file directories (typically first in the same
directory that contains the source file, but the actual places the preprocessor searches are
system dependent). If the file isn’t located, the preprocessor automatically searches other
system directories as described next.

Enclosing the filename within the characters < and > instead, as in

#include <stdio.h>

causes the preprocessor to look for the include file in the special system include file
directory or directories. Once again, these directories are system dependent. On Unix
systems (including Mac OS X systems), the system include file directory is
/usr/include, so the standard header file stdio.h can be found in
/usr/include/stdio.h.

To see how include files are used in an actual program example, type the six defines
given previously into a file called metric.h.Then type in and run Program 13.3.

Program 13.3 Using the #include Statement

/* Program to illustrate the use of the #include statement

Note: This program assumes that definitions are

set up in a file called metric.h */

13 0672326663 CH13 6/10/04 2:05 PM Page 314

315The #include Statement

#include <stdio.h>

#include "metric.h"

int main (void)

{

float liters, gallons;

printf ("*** Liters to Gallons ***\n\n");

printf ("Enter the number of liters: ");

scanf ("%f", &liters);

gallons = liters * QUARTS_PER_LITER / 4.0;

printf ("%g liters = %g gallons\n", liters, gallons);

return 0;

}

Program 13.3 Output

*** Liters to Gallons ***

Enter the number of liters: 55.75

55.75 liters = 14.73 gallons.

The preceding example is a rather simple one because it only shows a single defined
value (QUARTS_PER_LITER) being referenced from the included file metric.h.
Nevertheless, the point is well made:After the definitions have been entered into
metric.h, they can be used in any program that uses an appropriate #include
statement.

One of the nicest things about the include file capability is that it enables you to cen-
tralize your definitions, thus ensuring that all programs reference the same value.
Furthermore, errors discovered in one of the values contained in the include file need
only be corrected in that one spot, thus eliminating the need to correct each and every
program that uses the value.Any program that references the incorrect value simply
needs to be recompiled and does not have to be edited.

You can actually put anything you want in an include file—not just #define state-
ments, as might have been implied. Using include files to centralize commonly used pre-
processor definitions, structure definitions, prototype declarations, and global variable
declarations is good programming technique.

One last point to be made about include files in this chapter: Include files can be
nested.That is, an include file can itself include another file, and so on.

Program 13.3 Continued

13 0672326663 CH13 6/10/04 2:05 PM Page 315

316 Chapter 13 The Preprocessor

System Include Files
It was noted that the include file <stddef.h> contains a define for NULL and is often
used for testing to see whether a pointer has a null value. Earlier in this chapter, it was
also noted that the header file <math.h> contains the definition M_PI, which is set to an
approximation for the value of π.

The <stdio.h> header file contains information about the I/O routines contained in
the standard I/O library.This header file is described in more detail in Chapter 16,
“Input and Output Operations in C.”You should include this file whenever you use any
I/O library routine in your program.

Two other useful system include files are <limits.h> and <float.h>.The first file,
<limits.h>, contains system-dependent values that specify the sizes of various character
and integer data types. For instance, the maximum size of an int is defined by the name
INT_MAX inside this file.The maximum size of an unsigned long int is defined by
ULONG_MAX, and so on.

The <float.h> header file gives information about floating-point data types. For
example, FLT_MAX specifies the maximum floating-point number, and FLT_DIG specifies
the number of decimal digits of precision for a float type.

Other system include files contain prototype declarations for various functions stored
inside the system library. For example, the include file <string.h> contains prototype
declarations for the library routines that perform character string operations, such as
copying, comparing, and concatenating.

For more details on these header files, consult Appendix B.

Conditional Compilation
The C preprocessor offers a feature known as conditional compilation. Conditional compi-
lation is often used to create one program that can be compiled to run on different
computer systems. It is also often used to switch on or off various statements in the pro-
gram, such as debugging statements that print out the values of various variables or trace
the flow of program execution.

The #ifdef, #endif, #else, and #ifndef Statements
You were shown earlier in this chapter how you could make the rotate function from
Chapter 12 more portable.You saw there how the use of a define would help in this
regard.The definition

#define kIntSize 32

was used to isolate the dependency on the specific number of bits contained in an
unsigned int. It was noted in several places that this dependency does not have to be
made at all because the program can itself determine the number of bits stored inside an
unsigned int.

Unfortunately, a program sometimes must rely on system-dependent parameters—on
a filename, for example—that might be specified differently on different systems or on a
particular feature of the operating system.

13 0672326663 CH13 6/10/04 2:05 PM Page 316

317Conditional Compilation

If you had a large program that had many such dependencies on the particular hard-
ware and/or software of the computer system (and this should be minimized as much as
possible), you might end up with many defines whose values would have to be changed
when the program was moved to another computer system.

You can help reduce the problem of having to change these defines when the pro-
gram is moved and can incorporate the values of these defines for each different
machine into the program by using the conditional compilation capabilities of the pre-
processor.As a simple example, the statements

#ifdef UNIX

define DATADIR "/uxn1/data"

#else

define DATADIR "\usr\data"

#endif

have the effect of defining DATADIR to "/uxn1/data" if the symbol UNIX has been previ-
ously defined and to "\usr\data" otherwise.As you can see here, you are allowed to
put one or more spaces after the # that begins a preprocessor statement.

The #ifdef, #else, and #endif statements behave as you would expect. If the sym-
bol specified on the #ifdef line has been already defined—through a #define statement
or through the command line when the program is compiled—then lines that follow up
to a #else, #elif, or #endif are processed by the compiler; otherwise, they are ignored.

To define the symbol UNIX to the preprocessor, the statement

#define UNIX 1

or even just

#define UNIX

suffices. Most compilers also permit you to define a name to the preprocessor when the
program is compiled by using a special option to the compiler command.The gcc com-
mand line

gcc -D UNIX program.c

defines the name UNIX to the preprocessor, causing all #ifdef UNIX statements inside
program.c to evaluate as TRUE (note that the -D UNIX must be typed before the pro-
gram name on the command line).This technique enables names to be defined without
having to edit the source program.

A value can also be assigned to the defined name on the command line. For example,

gcc -D GNUDIR=/c/gnustep program.c

invokes the gcc compiler, defining the name GNUDIR to be the text /c/gnustep.

Avoiding Multiple Inclusion of Header Files

The #ifndef statement follows along the same lines as the #ifdef.This statement is
used the same way the #ifdef statement is used, except that it causes the subsequent
lines to be processed if the indicated symbol is not defined.This statement is often used
to avoid multiple inclusion of a file in a program. For example, inside a header file, if you

13 0672326663 CH13 6/10/04 2:05 PM Page 317

318 Chapter 13 The Preprocessor

want to make certain it is included only once in a program, you can define a unique
identifier that can be tested later. Consider the sequence of statements:

#ifndef _MYSTDIO_H

#define _MYSTDIO_H

...

#endif /* _MYSTDIO_H */

Suppose you typed this into a file called mystdio.h. If you included this file in your pro-
gram with a statement like this:

#include "mystdio.h"

the #ifndef inside the file would test whether _MYSTDIO_H were defined. Because it
wouldn’t be, the lines between the #ifndef and the matching #endif would be includ-
ed in the program. Presumably, this would contain all of the statements that you want
included in your program from this header file. Notice that the very next line in the
header file defines _MYSTDIO_H. If an attempt were made to again include the file in the
program, _MYSTDIO_H would be defined, so the statements that followed (up to the
#endif, which presumably is placed at the very end of your header file) would not be
included in the program, thus avoiding multiple inclusion of the file in the program.

This method as shown is used in the system header files to avoid their multiple inclu-
sion in your programs.Take a look at some and see!

The #if and #elif Preprocessor Statements
The #if preprocessor statement offers a more general way of controlling conditional
compilation.The #if statement can be used to test whether a constant expression evalu-
ates to nonzero. If the result of the expression is nonzero, subsequent lines up to a #else,
#elif, or #endif are processed; otherwise, they are skipped.As an example of how this
might be used, assume you define the name OS, which is set to 1 if the operating system
is Macintosh OS, to 2 if the operating system is Windows, to 3 if the operating system is
Linux, and so on.You could write a sequence of statements to conditionally compile
statements based upon the value of OS as follows:

#if OS == 1 /* Mac OS */

...

#elif OS == 2 /* Windows */

...

#elif OS == 3 /* Linux */

...

#else

...

#endif

With most compilers, you can assign a value to the name OS on the command line using
the -D option discussed earlier.The command line

gcc -D OS=2 program.c

13 0672326663 CH13 6/10/04 2:05 PM Page 318

319Conditional Compilation

compiles program.c with the name OS defined as 2.This causes the program to be com-
piled to run under Windows.

The special operator

defined (name)

can also be used in #if statements.The set of preprocessor statements

#if defined (DEBUG)

...

#endif

and

#ifdef DEBUG

...

#endif

do the same thing.The statements

#if defined (WINDOWS) || defined (WINDOWSNT)

define BOOT_DRIVE "C:/"

#else

define BOOT_DRIVE "D:/"

#endif

define BOOT_DRIVE as "C:/" if either WINDOWS or WINDOWSNT is defined and as "D:/"
otherwise.

The #undef Statement
On some occasions, you might need to cause a defined name to become undefined.This
is done with the #undef statement.To remove the definition of a particular name, you
write

#undef name

So the statement

#undef WINDOWS_NT

removes the definition of WINDOWS_NT. Subsequent #ifdef WINDOWS_NT or #if defined
(WINDOWS_NT) statements will evaluate as FALSE.

This concludes the discussion of the preprocessor.You have seen how the preproces-
sor can be used to make programs easier to read, write, and modify.You’ve also seen how
you can use include files to group common definitions and declarations together into a
file that can be shared among different files. Some other preprocessor statements that
weren’t described here are described in Appendix A,“C Language Summary.”

In the next chapter, you’ll learn more about data types and type conversions. Before
proceeding, try the following exercises.

13 0672326663 CH13 6/10/04 2:05 PM Page 319

320 Chapter 13 The Preprocessor

Exercises
1. Type in and run the three programs presented in this chapter, remembering to

type in the include file associated with Program 13.3. Compare the output pro-
duced by each program with the output presented in the text.

2. Locate the system header files <stdio.h>, <limits.h>, and <float.h> on your
system (on Unix systems, look inside the /usr/include directory). Examine the
files to see what’s in them.

3. Define a macro MIN that gives the minimum of two values.Then write a program
to test the macro definition.

4. Define a macro MAX3 that gives the maximum of three values.Write a program to
test the definition.

5. Write a macro SHIFT to perform the identical purpose as the shift function of
Program 12.3.

6. Write a macro IS_UPPER_CASE that gives a nonzero value if a character is an
uppercase letter.

7. Write a macro IS_ALPHABETIC that gives a nonzero value if a character is an
alphabetic character. Have the macro use the IS_LOWER_CASE macro defined in the
chapter text and the IS_UPPER_CASE macro defined in exercise 6.

8. Write a macro IS_DIGIT that gives a nonzero value if a character is a digit '0'
through '9'. Use this macro in the definition of another macro IS_SPECIAL,
which gives a nonzero result if a character is a special character; that is, not alpha-
betic and not a digit. Be certain to use the IS_ALPHABETIC macro developed in
exercise 7.

9. Write a macro ABSOLUTE_VALUE that computes the absolute value of its argument.
Make certain that an expression such as

ABSOLUTE_VALUE (x + delta)

is properly evaluated by the macro.

10. Consider the definition of the printint macro from this chapter:

#define printint(n) printf ("%i\n", x ## n)

Could the following be used to display the values of the 100 variables x1–x100?
Why or why not?
for (i = 1; i < 100; ++i)

printx (i);

11. Test out the system library functions that are equivalent to the macros you devel-
oped in exercises 6, 7, and 8.The library functions are called isupper, isalpha,
and isdigit.You need to include the system header file <ctype.h> in your pro-
gram in order to use them.

13 0672326663 CH13 6/10/04 2:05 PM Page 320

14
More on Data Types

THIS CHAPTER INTRODUCES YOU TO A data type that has not yet been described: the
enumerated data type.You also learn about the typedef statement, which enables you to
assign your own names to basic data types or to derived data types. Finally, in this chap-
ter you see the precise rules that are used by the compiler in the conversion of data types
in an expression.

Enumerated Data Types
Wouldn’t it be nice if you could define a variable and specify the valid values that could
be stored into that variable? For example, suppose you had a variable called myColor and
you wanted to use it to store one of the primary colors, red, yellow, or blue, and no
other values.This type of capability is provided by the enumerated data type.

An enumerated data type definition is initiated by the keyword enum. Immediately
following this keyword is the name of the enumerated data type, followed by a list of
identifiers (enclosed in a set of curly braces) that define the permissible values that can
be assigned to the type. For example, the statement

enum primaryColor { red, yellow, blue };

defines a data type primaryColor.Variables declared to be of this data type can be
assigned the values red, yellow, and blue inside the program, and no other values.That’s
the theory anyway! An attempt to assign another value to such a variable causes some
compilers to issue an error message. Other compilers simply don’t check.

To declare a variable to be of type enum primaryColor, you again use the keyword
enum, followed by the enumerated type name, followed by the variable list. So the
statement

enum primaryColor myColor, gregsColor;

14 0672326663 CH14 6/10/04 2:03 PM Page 321

322 Chapter 14 More on Data Types

defines the two variables myColor and gregsColor to be of type primaryColor.The
only permissible values that can be assigned to these variables are the names red, yellow,
and blue. So statements such as

myColor = red;

and

if (gregsColor == yellow)

...

are valid.As another example of an enumerated data type definition, the following
defines the type enum month, with permissible values that can be assigned to a variable
of this type being the months of the year:

enum month { january, february, march, april, may, june,

july, august, september, october, november, december };

The C compiler actually treats enumeration identifiers as integer constants. Beginning
with the first name in the list, the compiler assigns sequential integer values to these
names, starting with 0. If your program contains these two lines:

enum month thisMonth;

...

thisMonth = february;

the value 1 is assigned to thisMonth (and not the name february) because it is the sec-
ond identifier listed inside the enumeration list.

If you want to have a specific integer value associated with an enumeration identifier,
the integer can be assigned to the identifier when the data type is defined. Enumeration
identifiers that subsequently appear in the list are assigned sequential integer values
beginning with the specified integer value plus 1. For example, in the definition

enum direction { up, down, left = 10, right };

an enumerated data type direction is defined with the values up, down, left, and
right.The compiler assigns the value 0 to up because it appears first in the list; 1 to
down because it appears next; 10 to left because it is explicitly assigned this value; and
11 to right because it appears immediately after left in the list.

Program 14.1 shows a simple program using enumerated data types.The enumerated
data type month sets january to 1 so that the month numbers 1 through 12 correspond
to the enumeration values january, february, and so on.The program reads a month
number and then enters a switch statement to see which month was entered. Recall that
enumeration values are treated as integer constants by the compiler, so they’re valid case
values.The variable days is assigned the number of days in the specified month, and its
value is displayed after the switch is exited.A special test is included to see if the month
is February.

14 0672326663 CH14 6/10/04 2:03 PM Page 322

323Enumerated Data Types

Program 14.1 Using Enumerated Data Types

// Program to print the number of days in a month

#include <stdio.h>

int main (void)

{

enum month { january = 1, february, march, april, may, june,

july, august, september, october, november, december };

enum month aMonth;

int days;

printf (“Enter month number: “);

scanf (“%i”, &aMonth);

switch (aMonth) {

case january:

case march:

case may:

case july:

case august:

case october:

case december:

days = 31;

break;

case april:

case june:

case september:

case november:

days = 30;

break;

case february:

days = 28;

break;

default:

printf (“bad month number\n”);

days = 0;

break;

}

if (days != 0)

printf (“Number of days is %i\n”, days);

if (amonth == february)

printf (“...or 29 if it’s a leap year\n”);

return 0;

}

14 0672326663 CH14 6/10/04 2:03 PM Page 323

324 Chapter 14 More on Data Types

Program 14.1 Output

Enter month number: 5

Number of days is 31

Program 14.1 Output (Rerun)

Enter month number: 2

Number of days is 28

...or 29 if it’s a leap year

Enumeration identifiers can share the same value. For example, in

enum switch { no=0, off=0, yes=1, on=1 };

assigning either the value no or off to an enum switch variable assigns it the value 0;
assigning either yes or on assigns it the value 1.

Explicitly assigning an integer value to an enumerated data type variable can be done
with the type cast operator. So if monthValue is an integer variable that has the value 6,
for example, the expression

thisMonth = (enum month) (monthValue - 1);

is permissible and assigns the value 5 to thisMonth.
When writing programs with enumerated data types, try not to rely on the fact that

the enumerated values are treated as integers. Instead, try to treat them as distinct data
types.The enumerated data type gives you a way to associate a symbolic name with an
integer number. If you subsequently need to change the value of that number, you must
change it only in the place where the enumeration is defined. If you make assumptions
based on the actual value of the enumerated data type, you defeat this benefit of using an
enumeration.

The variations permitted when defining an enumerated data type are similar to those
permitted with structure definitions:The name of the data type can be omitted, and
variables can be declared to be of the particular enumerated data type when the type is
defined.As an example showing both of these options, the statement

enum { east, west, south, north } direction;

defines an (unnamed) enumerated data type with values east, west, south, or north,
and declares a variable direction to be of that type.

Enumerated type definitions behave like structure and variable definitions as far as
their scope is concerned: Defining an enumerated data type within a block limits the
scope of that definition to the block. On the other hand, defining an enumerated data
type at the beginning of the program, outside of any function, makes the definition
global to the file.

When defining an enumerated data type, you must make certain that the enumeration
identifiers are unique with respect to other variable names and enumeration identifiers
defined within the same scope.

14 0672326663 CH14 6/10/04 2:03 PM Page 324

325The typedef Statement

The typedef Statement
C provides a capability that enables you to assign an alternate name to a data type.This is
done with a statement known as typedef.The statement

typedef int Counter;

defines the name Counter to be equivalent to the C data type int.Variables can subse-
quently be declared to be of type Counter, as in the following statement:

Counter j, n;

The C compiler actually treats the declaration of the variables j and n, shown in the
preceding code, as normal integer variables.The main advantage of the use of the
typedef in this case is in the added readability that it lends to the definition of the
variables. It is clear from the definition of j and n what the intended purpose of these
variables is in the program. Declaring them to be of type int in the traditional fashion
would not have made the intended use of these variables at all clear. Of course, choosing
more meaningful variable names would have helped as well!

In many instances, a typedef statement can be equivalently substituted by the appro-
priate #define statement. For example, you could have instead used the statement

#define Counter int

to achieve the same results as the preceding statement. However, because the typedef is
handled by the C compiler proper, and not by the preprocessor, the typedef statement
provides more flexibility than does the #define when it comes to assigning names to
derived data types. For example, the following typedef statement:

typedef char Linebuf [81];

defines a type called Linebuf, which is an array of 81 characters. Subsequently declaring
variables to be of type Linebuf, as in

Linebuf text, inputLine;

has the effect of defining the variables text and inputLine to be arrays containing 81
characters.This is equivalent to the following declaration:

char text[81], inputLine[81];

Note that, in this case, Linebuf could not have been equivalently defined with a #define
preprocessor statement.

The following typedef defines a type name StringPtr to be a char pointer:

typedef char *StringPtr;

Variables subsequently declared to be of type StringPtr, as in

StringPtr buffer;

are treated as character pointers by the C compiler.

14 0672326663 CH14 6/10/04 2:03 PM Page 325

326 Chapter 14 More on Data Types

To define a new type name with typedef, follow these steps:

1. Write the statement as if a variable of the desired type were being declared.

2. Where the name of the declared variable would normally appear, substitute the
new type name.

3. In front of everything, place the keyword typedef.

As an example of this procedure, to define a type called Date to be a structure contain-
ing three integer members called month, day, and year, you write out the structure defi-
nition, substituting the name Date where the variable name would normally appear
(before the last semicolon). Before everything, you place the keyword typedef:

typedef struct

{

int month;

int day;

int year;

} Date;

With this typedef in place, you can subsequently declare variables to be of type Date,
as in

Date birthdays[100];

This defines birthdays to be an array containing 100 Date structures.
When working on programs in which the source code is contained in more than one

file (as described in Chapter 15,“Working with Larger Programs”), it’s a good idea to
place the common typedefs into a separate file that can be included into each source
file with an #include statement.

As another example, suppose you’re working on a graphics package that needs to deal
with drawing lines, circles, and so on.You probably will be working very heavily with
the coordinate system. Here’s a typedef statement that defines a type named Point,
where a Point is a structure containing two float members x and y:

typedef struct

{

float x;

float y;

} Point;

You can now proceed to develop your graphics library, taking advantage of this Point
type. For example, the declaration

Point origin = { 0.0, 0.0 }, currentPoint;

defines origin and currentPoint to be of type Point and sets the x and y members of
origin to 0.0.

14 0672326663 CH14 6/10/04 2:03 PM Page 326

327Data Type Conversions

Here’s a function called distance that calculates the distance between two points.

#include <math.h>

double distance (Point p1, Point p2)

{

double diffx, diffy;

diffx = p1.x - p2.x;

diffy = p1.y - p2.y;

return sqrt (diffx * diffx + diffy * diffy);

}

As previously noted, sqrt is the square root function from the standard library. It is
declared in the system header file math.h, thus the reason for the #include.

Remember, the typedef statement does not actually define a new type—only a new
type name. So the Counter variables j and n, as defined in the beginning of this section,
would in all respects be treated as normal int variables by the C compiler.

Data Type Conversions
Chapter 4,“Variables, Data Types, and Arithmetic Expressions,” briefly addressed the fact
that sometimes conversions are implicitly made by the system when expressions are eval-
uated.The case you examined was with the data types float and int.You saw how an
operation that involved a float and an int was carried out as a floating-point opera-
tion, the integer data item being automatically converted to floating point.

You have also seen how the type cast operator can be used to explicitly dictate a con-
version. So in the statement

average = (float) total / n;

the value of the variable total is converted to type float before the operation is per-
formed, thereby guaranteeing that the division will be carried out as a floating-point
operation.

The C compiler adheres to strict rules when it comes to evaluating expressions that
consist of different data types.

The following summarizes the order in which conversions take place in the evalua-
tion of two operands in an expression:

1. If either operand is of type long double, the other is converted to long double,
and that is the type of the result.

2. If either operand is of type double, the other is converted to double, and that is
the type of the result.

3. If either operand is of type float, the other is converted to float, and that is the
type of the result.

14 0672326663 CH14 6/10/04 2:03 PM Page 327

328 Chapter 14 More on Data Types

4. If either operand is of type _Bool, char, short int, bit field, or of an enumer-
ated data type, it is converted to int.

5. If either operand is of type long long int, the other is converted to long long
int, and that is the type of the result.

6. If either operand is of type long int, the other is converted to long int, and that
is the type of the result.

7. If this step is reached, both operands are of type int, and that is the type of the
result.

This is actually a simplified version of the steps that are involved in converting operands
in an expression.The rules get more complicated when unsigned operands are involved.
For the complete set of rules, refer to Appendix A,“C Language Summary.”

Realize from this series of steps that whenever you reach a step that says “that is the
type of the result,” you’re done with the conversion process.

As an example of how to follow these steps, see how the following expression would
be evaluated, where f is defined to be a float, i an int, l a long int, and s a short
int variable:

f * i + l / s

Consider first the multiplication of f by i, which is the multiplication of a float by an
int. From step 3, you find that, because f is of type float, the other operand, i, is also
converted to type float, and that is the type of the result of the multiplication.

Next, the division of l by s occurs, which is the division of a long int by a short
int. Step 4 tells you that the short int is promoted to an int. Continuing, you find
from step 6 that because one of the operands (l) is a long int, the other operand is
converted to a long int, which is also the type of the result.This division, therefore,
produces a value of type long int, with any fractional part resulting from the division
truncated.

Finally, step 3 indicates that if one of the operands in an expression is of type float
(as is the result of multiplying f * i), the other operand is converted to type float,
which is the type of the result.Therefore, after the division of l by s has been per-
formed, the result of the operation is converted to type float and then added into the
product of f and i.The final result of the preceding expression is, therefore, a value of
type float.

Remember, the type cast operator can always be used to explicitly force conversions
and thereby control the way that a particular expression is evaluated.

So, if you didn’t want the result of dividing l by s to be truncated in the preceding
expression evaluation, you could have type cast one of the operands to type float,
thereby forcing the evaluation to be performed as a floating-point division:

f * i + (float) l / s

In this expression, l would be converted to float before the division operation was
performed, because the type cast operator has higher precedence than the division

14 0672326663 CH14 6/10/04 2:03 PM Page 328

329Data Type Conversions

operator. Because one of the operands of the division would then be of type float, the
other (s) would be automatically converted to type float, and that would be the type of
the result.

Sign Extension
Whenever a signed int or signed short int is converted into an integer of a larger
size, the sign is extended to the left when the conversion is performed.This ensures that
a short int having a value of –5, for example, will also have the value –5 when con-
verted to a long int.Whenever an unsigned integer is converted to an integer of a larg-
er size, as you would expect, no sign extension occurs.

On some systems (such as Mac G4/G5 and Pentium processors) characters are treated
as signed quantities.This means that when a character is converted to an integer, sign
extension occurs.As long as characters are used from the standard ASCII character set,
this fact will never pose a problem. However, if a character value is used that is not part
of the standard character set, its sign might be extended when converted to an integer.
For example on a Mac, the character constant ‘\377’ is converted to the value –1
because its value is negative when treated as a signed, eight-bit quantity.

Recall that the C language permits character variables to be declared unsigned, thus
avoiding this potential problem.That is, an unsigned char variable will never have its
sign extended when converted to an integer; its value will always be greater than or
equal to 0. For the typical eight-bit character, a signed character variable, therefore, has
the range of values from -128 to +127, inclusive.An unsigned character variable can
range in value from 0 to 255, inclusive.

If you want to force sign extension on your character variables, you can declare such
variables to be of type signed char.This ensures that sign extension will occur when
the character value is converted to an integer, even on machines that don’t do so by
default.

Argument Conversion
You have used prototype declarations for all the functions that you have written in this
book. In Chapter 8,“Working with Functions,” you learned this was prudent because
you can physically locate the function either before or after its call, or even in another
source file, with a prototype declaration. It was also noted that the compiler automatical-
ly converts your arguments to the appropriate types as long as it knows the types of
arguments the function expects.The only way it can know this is by having previously
encountered the actual function definition or a prototype declaration.

Recall that, if the compiler sees neither the function definition nor a prototype decla-
ration before it encounters a call to a function, it assumes the function returns an int.
The compiler also makes assumptions about its argument types. In the absence of infor-
mation about the argument types to a function, the compiler automatically converts
_Bool, char, or short arguments to ints and converts float arguments to double.

14 0672326663 CH14 6/10/04 2:03 PM Page 329

330 Chapter 14 More on Data Types

For example, assume that the compiler encounters in your program

float x;

...

y = absoluteValue (x);

Having not previously seen the definition of the absoluteValue function, and with
no prototype declaration for it either, the compiler generates code to convert the value
stored inside the float variable x to double and passes the result to the function.The
compiler also assumes the function returns an int.

If the absoluteValue function is defined inside another source file like this:

float absoluteValue (float x)

{

if (x < 0.0)

x = -x;

return x;

}

you’re in trouble. First, the function returns a float, yet the compiler thinks it returns an
int. Second, the function expects to see a float argument, but you know the compiler
will pass a double.

Remember, the bottom line here is that you should always include prototype declara-
tions for the functions you use.This prevents the compiler from making mistaken
assumptions about return types and argument types.

Now that you have learned more about data types, it’s time to learn about how to
work with programs that can be split into multiple source files. Chapter 15 covers this
topic in detail. Before you start that chapter, try the following exercises to make certain
you understand the concepts you just learned.

Exercises
1. Define a type FunctionPtr (using typedef) that represents a pointer to a function

that returns an int and that takes no arguments. Refer to Chapter 11,“Pointers,”
for the details on how to declare a variable of this type.

2. Write a function called monthName that takes as its argument a value of type enum
month (as defined in this chapter) and returns a pointer to a character string con-
taining the name of the month. In this way, you can display the value of an enum
month variable with a statement such as:

printf (“%s\n”, monthName (aMonth));

14 0672326663 CH14 6/10/04 2:03 PM Page 330

331Exercises

3. Given the following variable declarations:

float f = 1.00;

short int i = 100;

long int l = 500L;

double d = 15.00;

and the seven steps outlined in this chapter for conversion of operands in expres-
sions, determine the type and value of the following expressions:

f + i

l / d

i / l + f

l * i

f / 2

i / (d + f)

l / (i * 2.0)

l + i / (double) l

14 0672326663 CH14 6/10/04 2:03 PM Page 331

14 0672326663 CH14 6/10/04 2:03 PM Page 332

15
Working with Larger Programs

THE PROGRAMS THAT HAVE BEEN ILLUSTRATED throughout this book have all been
very small and relatively simple. Unfortunately, the programs that you will have to devel-
op to solve your particular problems will probably be neither as small nor as simple.
Learning the proper techniques for dealing with such programs is the topic of this chap-
ter.As you will see, C provides all the features necessary for the efficient development of
large programs. In addition, you can use several utility programs—which are briefly
mentioned in this chapter—that make working with large projects easier.

Dividing Your Program into Multiple Files
In every program that you’ve seen so far, it was assumed that the entire program was
entered into a single file—presumably via some text editor, such as emacs, vim, or some
Windows-based editor—and then compiled and executed. In this single file, all the func-
tions that the program used were included—except, of course, for the system functions,
such as printf and scanf. Standard header files such as <stdio.h> and <stdbool.h>
were also included for definitions and function declarations.This approach works fine
when dealing with small programs—that is, programs that contain up to 100 statements
or so. However, when you start dealing with larger programs, this approach no longer
suffices.As the number of statements in the program increases, so does the time it takes
to edit the program and to subsequently recompile it. Not only that, large programming
applications frequently require the efforts of more than one programmer. Having every-
one work on the same source file, or even on their own copy of the same source file, is
unmanageable.

C supports the notion of modular programming in that it does not require that all the
statements for a particular program be contained in a single file.This means that you can
enter your code for a particular module into one file, for another module into a different
file, and so on. Here, the term module refers either to a single function or to a number of
related functions that you choose to group logically.

15 0672326663 CH15 6/10/04 2:02 PM Page 333

334 Chapter 15 Working with Larger Programs

If you’re working with a windows-based project management tool, such as
Metrowerks’ CodeWarrior, Microsoft Visual Studio, or Apple’s Xcode, then working with
multiple source files is easy.You simply have to identify the particular files that belong to
the project on which you are working, and the software handles the rest for you.The
next section describes how to work with multiple files if you’re not using such a tool,
also known as an Integrated Development Environment (IDE).That is, the next section
assumes you are compiling programs from the command line by directly issuing gcc or
cc commands, for example.

Compiling Multiple Source Files from the Command Line
Suppose you have conceptually divided your program into three modules and have
entered the statements for the first module into a file called mod1.c, the statements for
the second module into a file called mod2.c, and the statements for your main routine
into the file main.c.To tell the system that these three modules actually belong to the
same program, you simply include the names of all three files when you enter the com-
mand to compile the program. For example, using gcc, the command

$ gcc mod1.c mod2.c main.c –o dbtest

has the effect of separately compiling the code contained in mod1.c, mod2.c, and
main.c. Errors discovered in mod1.c, mod2.c, and main.c are separately identified by the
compiler. For example, if the gcc compiler gives output that looks like this:

mod2.c:10: mod2.c: In function 'foo':

mod2.c:10: error: 'i' undeclared (first use in this function)

mod2.c:10: error: (Each undeclared identifier is reported only once

mod2.c:10: error: for each function it appears in.)

then the compiler indicates that mod2.c has an error at line 10, which is in the function
foo. Because no messages are displayed for mod1.c and main.c, no errors are found
compiling those modules.

Typically, if there are errors discovered in a module, you have to edit the module to
correct the mistakes.1 In this case, because an error was discovered only inside mod2.c,
you have to edit only this file to fix the mistake.You can then tell the C compiler to
recompile your modules after the correction has been made:

$ gcc mod1.c mod2.c main.c –o dbtest

$

Because no error message was reported, the executable was placed in the file dbtest.
Normally, the compiler generates intermediate object files for each source file that it

compiles.The compiler places the resulting object code from compiling mod.c into the
file mod.o by default. (Most Windows compilers work similarly, only they might place

1.The error might be due to a problem with a header file included by that module, for example,
which means the header file and not the module would have to be edited.

15 0672326663 CH15 6/10/04 2:02 PM Page 334

335Dividing Your Program into Multiple Files

the resulting object code into .obj files instead of .o files.) Typically, these intermediate
object files are automatically deleted after the compilation process ends. Some C compil-
ers (and, historically, the standard Unix C compiler) keep these object files around and
do not delete them when you compile more than one file at a time.This fact can be
used to your advantage for recompiling a program after making a change to only one or
several of your modules. So in the previous example, because mod1.c and main.c had no
compiler errors, the corresponding .o files—mod1.o and main.o—would still be around
after the gcc command completed. Replacing the c from the filename mod.c with an o
tells the C compiler to use the object file that was produced the last time mod.c was
compiled. So, the following command line could be used with a compiler (in this case,
cc) that does not delete the object code files:

$ cc mod1.o mod2.c main.o –o dbtest

So, not only do you not have to reedit mod1.c and main.c if no errors are discovered by
the compiler, but you also don’t have to recompile them.

If your compiler automatically deletes the intermediate .o files, you can still take
advantage of performing incremental compilations by compiling each module separately
and using the –c command-line option.This option tells the compiler not to link your
file (that is, not to try to produce an executable) and to retain the intermediate object
file that it creates. So, typing

$ gcc –c mod2.c

compiles the file mod2.c, placing the resulting executable in the file mod2.o.
So, in general, you can use the following sequence to compile your three-module

program dbtest using the incremental compilation technique:

$ gcc –c mod1.c Compile mod1.c => mod1.o

$ gcc –c mod2.c Compile mod2.c => mod2.o

$ gcc –c main.c Compile main.c => main.o

$ gcc mod1.o mod2.o mod3.o –o dbtest Create executable

The three modules are compiled separately.The previous output shows no errors were
detected by the compiler. If any were, the file could be edited and incrementally recom-
piled.The last line that reads

$ gcc mod1.o mod2.o mod3.o

lists only object files and no source files. In this case, the object files are just linked
together to produce the executable output file dbtest.

If you extend the preceding examples to programs that consist of many modules, you
can see how this mechanism of separate compilations can enable you to develop large
programs more efficiently. For example, the commands

$ gcc –c legal.c Compile legal.c, placing output in legal.o
$ gcc legal.o makemove.o exec.o enumerator.o evaluator.o display.o –o superchess

could be used to compile a program consisting of six modules, in which only the mod-
ule legal.c needs to be recompiled.

15 0672326663 CH15 6/10/04 2:02 PM Page 335

336 Chapter 15 Working with Larger Programs

As you’ll see in the last section of this chapter, the process of incremental compilation
can be automated by using a tool called make.The IDE tools that were mentioned at the
beginning of this chapter invariably have this knowledge of what needs recompilation,
and they only recompile files as necessary.

Communication Between Modules
Several methods can be used so that the modules contained in separate files can effec-
tively communicate. If a function from one file needs to call a function contained inside
another file, the function call can be made in the normal fashion, and arguments can be
passed and returned in the usual way. Of course, in the file that calls the function, you
should always make certain to include a prototype declaration so the compiler knows the function’s
argument types and the type of the return value. As noted in Chapter 14,“More on Data
Types,” in the absence of any information about a function, the compiler assumes it
returns an int and converts short or char arguments to ints and float arguments to
doubles when the function is called.

It’s important to remember that even though more than one module might be speci-
fied to the compiler at the same time on the command line, the compiler compiles each
module independently.That means that no knowledge about structure definitions, function
return types, or function argument types is shared across module compilations by the
compiler. It’s totally up to you to ensure that the compiler has sufficient information
about such things to correctly compile each module.

External Variables
Functions contained in separate files can communicate through external variables, which
are effectively an extension to the concept of the global variable discussed in Chapter 8,
“Working with Functions.”

An external variable is one whose value can be accessed and changed by another
module. Inside the module that wants to access the external variable, the variable is
declared in the normal fashion and the keyword extern is placed before the declaration.
This signals to the system that a globally defined variable from another file is to be
accessed.

Suppose you want to define an int variable called moveNumber, whose value you
want to access and possibly modify from within a function contained in another file. In
Chapter 8, you learned that if you wrote the statement

int moveNumber = 0;

at the beginning of your program, outside of any function, then its value could be refer-
enced by any function within that program. In such a case, moveNumber was defined as a
global variable.

Actually, this same definition of the variable moveNumber also makes its value accessi-
ble by functions contained in other files. Specifically, the preceding statement defines the

15 0672326663 CH15 6/10/04 2:02 PM Page 336

337Communication Between Modules

variable moveNumber not just as a global variable, but also as an external global variable.To
reference the value of an external global variable from another module, you must declare
the variable to be accessed, preceding the declaration with the keyword extern, as
follows:

extern int moveNumber;

The value of moveNumber can now be accessed and modified by the module in which
the preceding declaration appears. Other modules can also access the value of
moveNumber by incorporating a similar extern declaration in the file.

You must obey an important rule when working with external variables.The variable
has to be defined in some place among your source files.This is done in one of two ways.
The first way is to declare the variable outside of any function, not preceded by the key-
word extern, as follows:

int moveNumber;

Here, an initial value can be optionally assigned to the variable, as was shown previously.
The second way to define an external variable is to declare the variable outside of any

function, placing the keyword extern in front of the declaration, and explicitly assigning
an initial value to it, as follows:

extern int moveNumber = 0;

Note that these two ways are mutually exclusive.
When dealing with external variables, the keyword extern can only be omitted in

one spot throughout your source files. If you don’t omit the keyword in any one spot, in
exactly one place, you must assign the variable an initial value.

Take a look at a small program example to illustrate the use of external variables.
Suppose you type the following code into a file called main.c:

#include <stdio.h>

int i = 5;

int main (void)

{

printf ("%i ", i);

foo ();

printf ("%i\n", i);

return 0;

}

15 0672326663 CH15 6/10/04 2:02 PM Page 337

338 Chapter 15 Working with Larger Programs

The definition of the global variable i in the preceding program makes its value accessi-
ble by any module that uses an appropriate extern declaration. Suppose you now type
the following statements into a file called foo.c:

extern int i;

void foo (void)

{

i = 100;

}

Compiling the two modules main.c and foo.c together with a command like

$ gcc main.c foo.c

and subsequently executing the program produces the following output at the terminal:

5 100

This output verifies that the function foo is able to access and change the value of the
external variable i.

Because the value of the external variable i is referenced inside the function foo, you
could have placed the extern declaration of i inside the function itself, as follows:

void foo (void)

{

extern int i;

i = 100;

}

If many functions in the file foo.c need to access the value of i, it is easier to make the
extern declaration just once at the front of the file. However, if only one function or a
small number of functions need to access this variable, there is something to be said for
making separate extern declarations in each such function: It makes the program more
organized and isolates the use of the particular variable to those functions that actually
use it.

When declaring an external array, it is not necessary to give its size.Thus, the
declaration

extern char text[];

enables you to reference a character array text that is defined elsewhere.As with formal
parameter arrays, if the external array is multidimensional, all but the first dimension
must be specified.Thus, the declaration

extern int matrix[][50];

suffices to declare a two-dimensional external array matrix that contains 50 columns.

15 0672326663 CH15 6/10/04 2:02 PM Page 338

339Communication Between Modules

StaticVersus ExternVariables and Functions
You now know that any variable defined outside of a function is not only a global vari-
able, but is also an external variable. Many situations arise in which you want to define a
variable to be global but not external. In other words, you want to define a global vari-
able to be local to a particular module (file). It makes sense to want to define a variable
this way if no functions other than those contained inside a particular file need access to
the particular variable.This can be accomplished in C by defining the variable to be
static.

The statement

static int moveNumber = 0;

if made outside of any function, makes the value of moveNumber accessible from any sub-
sequent point in the file in which the definition appears, but not from functions contained in
other files.

If you need to define a global variable whose value does not have to be accessed from
another file, declare the variable to be static.This is a cleaner approach to program-
ming:The static declaration more accurately reflects the variable’s usage and no con-
flicts can be created by two modules that unknowingly both use different external global
variables of the same name.

As mentioned earlier in this chapter, you can directly call a function defined in
another file. Unlike variables, no special mechanisms are required; that is, to call a func-
tion contained in another file, you don’t need an extern declaration for that function.

When a function is defined, it can be declared to be extern or static, the former
case being the default.A static function can be called only from within the same file as
the function appears. So, if you have a function called squareRoot, placing the keyword
static before the function header declaration for this function makes it callable only
from within the file in which it is defined:

static double squareRoot (double x)

{

...

}

The definition of the squareRoot function effectively becomes local to the file in which
it is defined. It cannot be called from outside the file.

The same motivations previously cited for using static variables also apply to the case
of static functions.

Figure 15.1 summarizes communication between different modules. Here two mod-
ules are depicted, mod1.c and mod2.c.

mod1.c defines two functions: doSquare and main.The way things are set up here,
main calls doSquare, which in turn calls square.This last function is defined in the
module mod2.c.

Because doSquare is declared static, it can only be called from within mod1.c, and
by no other module.

15 0672326663 CH15 6/10/04 2:02 PM Page 339

340 Chapter 15 Working with Larger Programs

Figure 15.1 Communication between modules.

mod1.c defines two global variables: x and result, both of type double. x can be
accessed by any module that is linked together with mod1.c. On the other hand, the
keyword static in front of the definition of result means that it can only be accessed
by functions defined inside mod1.c (namely main and doSquare).

When execution begins, the main routine calls doSquare.This function assigns the
value 2.0 to the global variable x and then calls the function square. Because square is
defined in another source file (inside mod2.c), and because it doesn’t return an int,
doSquare properly includes an appropriate declaration at the beginning of the function.

The square function returns as its value the square of the value of the global variable
x. Because square wants to access the value of this variable, which is defined in another
source file (in mod1.c), an appropriate extern declaration appears in mod2.c (and, in this
case, it makes no difference whether the declaration occurs inside or outside the square
function).

The value that is returned by square is assigned to the global variable result inside
doSquare, which then returns back to main. Inside main, the value of the global variable
result is displayed.This example, when run, produces a result of 4.0 at the terminal
(because that’s obviously the square of 2.0).

Study the example until you feel comfortable with it.This small—albeit impractical—
example illustrates very important concepts about communicating between modules, and
it’s necessary that you understand these concepts to work effectively with larger
programs.

double x;
static double result;

static void doSquare (void)
{
 double square (void);

 x = 2.0;
 result = square ();
}

int main (void)
{
 doSquare ();
 printf ("%g\n", result);

 return 0;
}

extern double x;

double square(void)
{

 return x * x;
}

mod1.c mod2.c

15 0672326663 CH15 6/10/04 2:02 PM Page 340

341Communication Between Modules

Using Header Files Effectively
In Chapter 13,“The Preprocessor,” you were introduced to the concept of the include
file. As stated there, you can group all your commonly used definitions inside such a file
and then simply include the file in any program that needs to use those definitions.
Nowhere is the usefulness of the #include facility greater than in developing programs
that have been divided into separate program modules.

If more than one programmer is working on developing a particular program, include
files provide a means of standardization: Each programmer is using the same definitions,
which have the same values. Furthermore, each programmer is thus spared the time-
consuming and error-prone task of typing these definitions into each file that must use
them.These last two points are made even stronger when you start placing common
structure definitions, external variable declarations, typedef definitions, and function
prototype declarations into include files.Various modules of a large programming system
invariably deal with common data structures. By centralizing the definition of these data
structures into one or more include files, you eliminate the error that is caused by two
modules that use different definitions for the same data structure. Furthermore, if a
change has to be made to the definition of a particular data structure, it can be done in
one place only—inside the include file.

Recall your date structure from Chapter 9,“Working with Structures”; following is
an include file that might be similar to one you would set up if you have to work with a
lot of dates within different modules. It is also a good example of how to tie together
many of the concepts you’ve learned up to this point.

// Header file for working with dates

#include <stdbool.h>

// Enumerated types

enum kMonth { January=1, February, March, April, May, June,

July, August, September, October, November, December };

enum kDay { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday };

struct date

{

enum kMonth month;

enum kDay day;

int year;

};

15 0672326663 CH15 6/10/04 2:02 PM Page 341

342 Chapter 15 Working with Larger Programs

// Date type

typedef struct date Date;

// Functions that work with dates

Date dateUpdate (Date today);

int numberOfDays (Date d);

bool isLeapYear (Date d);

// Macro to set a date in a structure

#define setDate(s,mm,dd,yy) s = (Date) {mm, dd, yy}

// External variable reference

extern Date todaysDate;

The header file defines two enumerated data types, kMonth and kDay, and the date struc-
ture (and note the use of the enumerated data types); uses typedef to create a type
called Date; and declares functions that use this type, a macro to set a date to specific val-
ues (using compound literals), and an external variable called todaysDate, that will pre-
sumably be set to today’s date (and is defined in one of the source files).

As an example using this header file, the following is a rewritten version of the
dateUpdate function from Chapter 9.

#include "date.h"

// Function to calculate tomorrow's date

Date dateUpdate (Date today)

{

Date tomorrow;

if (today.day != numberOfDays (today))

setDate (tomorrow, today.month, today.day + 1, today.year);

else if (today.month == December) // end of year

setDate (tomorrow, January, 1, today.year + 1);

else // end of month

setDate (tomorrow, today.month + 1, 1, today.year);

return tomorrow;

} .

Other Utilities for Working with Larger
Programs
As briefly mentioned previously, the IDE can be a powerful tool for working with larger
programs. If you still want to work from the command line, there are tools you might

15 0672326663 CH15 6/10/04 2:02 PM Page 342

343Other Utilities for Working with Larger Programs

want to learn how to use.These tools are not part of the C language. However, they can
help speed your development time, which is what it’s all about.

Following is a list of tools you might want to consider when working with larger
programs. If you are running Unix, you will find a plethora of commands at your dispos-
al that can also help you in your development efforts.This is just the tip of the iceberg
here. Learning how to write programs in a scripting language, such as the Unix shell, can
also prove useful when dealing with large numbers of files.

The make Utility
This powerful utility (or its GNU version gnumake) allows you to specify a list of files
and their dependencies in a special file known as a Makefile.The make program automat-
ically recompiles files only when necessary.This is based on the modification times of a
file. So, if make finds that your source (.c) file is newer than your corresponding object
(.o) file, it automatically issues the commands to recompile the source file to create a
new object file.You can even specify source files that depend on header files. For exam-
ple, you can specify that a module called datefuncs.o is dependent on its source file
datefunc.c as well as the header file date.h.Then, if you change anything inside the
date.h header file, the make utility automatically recompiles the datefuncs.c file.This
is based on the simple fact that the header file is newer than the source file.

Following is a simple Makefile that you could use for the three-module example
from this chapter. It is assumed here that you’ve placed this file in the same directory as
your source files.

$ cat Makefile

SRC = mod1.c mod2.c main.c

OBJ = mod1.o mod2.o main.o

PROG = dbtest

$(PROG): $(OBJ)

gcc $(OBJ) -o $(PROG)

$(OBJ): $(SRC)

A detailed explanation of how this Makefile works is not provided here. In a nutshell, it
defines the set of source files (SRC), the corresponding set of object files (OBJ), the
name of the executable (PROG), and some dependencies.The first dependency,

$(PROG): $(OBJ)

says that the executable is dependent on the object files. So, if one or more object files
change, the executable needs to be rebuilt.The way to do that is specified on the follow-
ing gcc command line, which must be typed with a leading tab, as follows:

gcc $(OBJ) -o $(PROG)

The last line of the Makefile,

$(OBJ): $(SRC)

15 0672326663 CH15 6/10/04 2:02 PM Page 343

344 Chapter 15 Working with Larger Programs

says that each object file depends on its corresponding source file. So, if a source file
changes, its corresponding object file must be rebuilt.The make utility has built-in rules
that tell it how to do that.

Here’s what happens the first time you run make:

$ make

gcc -c -o mod1.o mod1.c

gcc -c -o mod2.o mod2.c

gcc -c -o main.o main.c

gcc mod1.o mod2.o main.o -o dbtest

$

That’s kind of nice! make compiled each individual source file and then linked the result-
ing object files to create the executable.

If you instead had an error in mod2.c, here’s what the output from make would have
looked like:

$ make

gcc -c -o mod1.o mod1.c

gcc -c -o mod2.o mod2.c

mod2.c: In function 'foo2':

mod2.c:3: error: 'i' undeclared (first use in this function)

mod2.c:3: error: (Each undeclared identifier is reported only once

mod2.c:3: error: for each function it appears in.)

make: *** [mod2.o] Error 1

$

Here, make found there was an error in compiling mod2.c and stopped the make process,
which is its default action.

If you correct mod2.c and run make again, here’s what happens:

$ make

gcc -c -o mod2.o mod2.c

gcc -c -o main.o main.c

gcc mod1.o mod2.o main.o -o dbtest

$

Notice that make didn’t recompile mod1.c.That’s because it knew it didn’t have to.
Therein lies the real power and elegance of the make utility.

Even with this simple example, you can use the sample Makefile to start using make
for your own programs.Appendix E,“Resources,” tells you where you can turn for more
information on this powerful utility.

The cvs Utility
This is one of several utilities for managing source code. It provides for automatic ver-
sion-tracking of source code, and keeps track of changes that are made to a module.This
allows you to re-create a particular version of a program if needed (either to roll back

15 0672326663 CH15 6/10/04 2:02 PM Page 344

345Other Utilities for Working with Larger Programs

code or to re-create an older version for customer support, for example).With cvs
(which stands for Concurrent Versions System), you “check out” a program (using the
cvs command with the checkout option), make your changes to it, and then “check it
back in” (using the cvs command with the commit option).This mechanism avoids the
potential conflict that can arise if more than one programmer wants to edit the same
source file.With cvs, programmers can be at multiple locations and can all work on the
same source code over a network.

Unix Utilities: ar, grep, sed, and so on
A wide assortment of commands available under Unix makes large program develop-
ment easier and more productive. For example, you can use ar to create your own
library.This is useful, for example, if you create a bunch of utility functions that you fre-
quently use or want to share. Just as you linked your program with the –lm option
whenever you used a routine from the standard math library, so too can you specify your
own library at link time, using the option –llib. During the link edit phase, the library
is automatically searched to locate functions that you reference from the library.Any
such functions are pulled from the library and linked together with your program.

Other commands such as grep and sed are useful for searching for strings in a file or
making global changes to a set of files. For example, combined with a little shell pro-
gramming skills, you can easily use sed to change all occurrences of one particular vari-
able name to another across a set of source files.The grep command simply searches a
file or files for a specified string.This is useful for locating a variable or function in a set
of source files, or a macro in a set of header files, for example. So the command

$ grep todaysDate main.c

can be used to search the file main.c for all lines containing the string todaysDate.The
command

$ grep –n todaysDate *.c *.h

searches all source and header files in the current directory and displays each match pre-
ceded by its relative line number within the file (the use of the –n option).You have seen
how the C language supports division of your program into smaller modules and incre-
mental and independent compilation of those modules. Header files provide the “glue”
between your modules when you use them to specify shared prototype declarations,
macros, structure definitions, enumerations, and so on.

If you are using an IDE, managing multiple modules in a program is straightforward.
The IDE application keeps track of the files that need to be recompiled when you make
changes. If you’re instead using a command-line compiler, like gcc, you either have to
keep track of the files that need to be recompiled yourself, or you should resort to a tool
such as make to automatically keep track for you. If you are compiling from the com-
mand line, you’ll want to look into other tools that can help you search your source files,
make global changes to them, and create and maintain program libraries.

15 0672326663 CH15 6/10/04 2:02 PM Page 345

15 0672326663 CH15 6/10/04 2:02 PM Page 346

16
Input and Output

Operations in C

ALL READING AND WRITING OF DATA up to this point has been done through your
terminal.1 When you wanted to input some information, you either used the scanf or
getchar functions.All program results were displayed in your window with a call to the
printf function.

The C language itself does not have any special statements for performing input/out-
put (I/O) operations; all I/O operations in C must be carried out through function calls.
These functions are contained in the standard C library.

Recall the use of the following include statement from previous programs that used
the printf function:

#include <stdio.h>

This include file contains function declarations and macro definitions associated with the
I/O routines from the standard library.Therefore, whenever using a function from this
library, you should include this file in your program.

In this chapter, you learn about many of the I/O functions that are provided in the
standard library. Unfortunately, space does not permit lengthy details about these func-
tions or discussions of each function that is offered. Refer to Appendix B,“The Standard
C Library,” for a list of most of the functions in the library.

1.Again, the term “terminal” is used loosely here to typically mean the active window in which
you are running your program, or the window in which the output from your program appears.
On some systems the output window is called the “console.”

16 0672326663 CH16 6/10/04 2:05 PM Page 347

348 Chapter 16 Input and Output Operations in C

Character I/O: getchar and putchar
The getchar function proved convenient when you wanted to read data from a single
character at a time.You saw how you could develop a function called readLine to read
an entire line of text from your terminal.This function repeatedly called getchar until a
newline character was read.

There is an analogous function for writing data to the terminal a single character at a
time.The name of this function is putchar.

A call to the putchar function is quite simple:The only argument it takes is the char-
acter to be displayed. So, the call

putchar (c);

in which c is defined as type char, has the effect of displaying the character contained
in c.

The call

putchar ('\n');

has the effect of displaying the newline character, which, as you know, causes the cursor
to move to the beginning of the next line.

Formatted I/O: printf and scanf
You have been using the printf and scanf functions throughout this book. In this sec-
tion, you learn about all of the options that are available for formatting data with these
functions.

The first argument to both printf and scanf is a character pointer.This points to
the format string.The format string specifies how the remaining arguments to the func-
tion are to be displayed in the case of printf, and how the data that is read is to be
interpreted in the case of scanf.

The printf Function
You have seen in various program examples how you could place certain characters
between the % character and the specific so-called conversion character to more precisely
control the formatting of the output. For example, you saw in Program 5.3A how an
integer value before the conversion character could be used to specify a field width.The
format characters %2i specified the display of an integer value right-justified in a field
width of two columns.You also saw in exercise 6 in Chapter 5,“Program Looping,” how
a minus sign could be used to left-justify a value in a field.

The general format of a printf conversion specification is as follows:

%[flags][width][.prec][hlL]type

Optional fields are enclosed in brackets and must appear in the order shown.
Tables 16.1, 16.2, and 16.3 summarize all possible characters and values that can be

placed directly after the % sign and before the type specification inside a format string.

16 0672326663 CH16 6/10/04 2:05 PM Page 348

349Formatted I/O: printf and scanf

Table 16.1 printf Flags

Flag Meaning

- Left-justify value

+ Precede value with + or -

(space) Precede positive value with space character

0 Zero fill numbers

Precede octal value with 0, hexadecimal value with 0x (or 0X); display decimal
point for floats; leave trailing zeroes for g or G format

Table 16.2 printf Width and Precision Modifiers

Specifier Meaning

number Minimum size of field

* Take next argument to printf as size of field

.number Minimum number of digits to display for integers; number of decimal
places for e or f formats; maximum number of significant digits to display
for g; maximum number of characters for s format

.* Take next argument to printf as precision (and interpret as indicated in
preceding row)

Table 16.3 printf Type Modifiers

Type Meaning

hh Display integer argument as a character

h* Display short integer

l* Display long integer

ll* Display long long integer

L Display long double

j* Display intmax_t or uintmax_t value

t* Display ptrdiff_t value

z* Display size_t value

*Note:These modifiers can also be placed in front of the n conversion character to
indicate the corresponding pointer argument is of the specified type.

Table 16.4 lists the conversion characters that can be specified in the format string.

16 0672326663 CH16 6/10/04 2:05 PM Page 349

350 Chapter 16 Input and Output Operations in C

Table 16.4 printf Conversion Characters

Char Use to Display

i or d Integer

u Unsigned integer

o Octal integer

x Hexadecimal integer, using a–f

X Hexadecimal integer, using A–F

f or F Floating-point number, to six decimal places by default

e or E Floating-point number in exponential format (e places lowercase e before
the exponent, E places uppercase E before exponent)

g Floating-point number in f or e format

G Floating-point number in F or E format

a or A Floating-point number in the hexadecimal format 0xd.ddddp±d

c Single character

s Null-terminated character string

p Pointer

n Doesn’t print anything; stores the number of characters written so far by this
call inside the int pointed to by the corresponding argument (see note from
Table 16.3)

% Percent sign

Tables 16.1 to 16.4 might appear a bit overwhelming.As you can see, many different
combinations can be used to precisely control the format of your output.The best way
to become familiar with the various possibilities is through experimentation. Just make
certain that the number of arguments you give to the printf function matches the
number of % signs in the format string (with %% as the exception, of course).And, in the
case of using an * in place of an integer for the field width or precision modifiers,
remember that printf is expecting an argument for each asterisk as well.

Program 16.1 shows some of the formatting possibilities using printf.

Program 16.1 Illustrating the printf Formats

// Program to illustrate various printf formats

#include <stdio.h>

int main (void)

{

char c = 'X';

char s[] = "abcdefghijklmnopqrstuvwxyz";

int i = 425;

short int j = 17;

unsigned int u = 0xf179U;

long int l = 75000L;

16 0672326663 CH16 6/10/04 2:05 PM Page 350

351Formatted I/O: printf and scanf

long long int L = 0x1234567812345678LL;

float f = 12.978F;

double d = -97.4583;

char *cp = &c;

int *ip = &i;

int c1, c2;

printf ("Integers:\n");

printf ("%i %o %x %u\n", i, i, i, i);

printf ("%x %X %#x %#X\n", i, i, i, i);

printf ("%+i % i %07i %.7i\n", i, i, i, i);

printf ("%i %o %x %u\n", j, j, j, j);

printf ("%i %o %x %u\n", u, u, u, u);

printf ("%ld %lo %lx %lu\n", l, l, l, l);

printf ("%lli %llo %llx %llu\n", L, L, L, L);

printf ("\nFloats and Doubles:\n");

printf ("%f %e %g\n", f, f, f);

printf ("%.2f %.2e\n", f, f);

printf ("%.0f %.0e\n", f, f);

printf ("%7.2f %7.2e\n", f, f);

printf ("%f %e %g\n", d, d, d);

printf ("%.*f\n", 3, d);

printf ("%*.*f\n", 8, 2, d);

printf ("\nCharacters:\n");

printf ("%c\n", c);

printf ("%3c%3c\n", c, c);

printf ("%x\n", c);

printf ("\nStrings:\n");

printf ("%s\n", s);

printf ("%.5s\n", s);

printf ("%30s\n", s);

printf ("%20.5s\n", s);

printf ("%-20.5s\n", s);

printf ("\nPointers:\n");

printf ("%p %p\n\n", ip, cp);

printf ("This%n is fun.%n\n", &c1, &c2);

printf ("c1 = %i, c2 = %i\n", c1, c2);

return 0;

}

Program 16.1 Continued

16 0672326663 CH16 6/10/04 2:05 PM Page 351

352 Chapter 16 Input and Output Operations in C

Program 16.1 Output

Integers:

425 651 1a9 425

1a9 1A9 0x1a9 0X1A9

+425 425 0000425 0000425

17 21 11 17

61817 170571 f179 61817

75000 222370 124f8 75000

1311768465173141112 110642547402215053170 1234567812345678 1311768465173141112

Floats and Doubles:

12.978000 1.297800e+01 12.978

12.98 1.30e+01

13 1e+01

12.98 1.30e+01

-97.458300 -9.745830e+01 -97.4583

-97.458

-97.46

Characters:

X

X X

58

Strings:

abcdefghijklmnopqrstuvwxyz

abcde

abcdefghijklmnopqrstuvwxyz

abcde

abcde

Pointers:

0xbffffc20 0xbffffbf0

This is fun.

c1 = 4, c2 = 12

It’s worthwhile to take some time to explain the output in detail.The first set of output
deals with the display of integers: short, long, unsigned, and “normal” ints.The first
line displays i in decimal (%i), octal (%o), hexadecimal (%x), and unsigned (%u) formats.
Notice that octal numbers are not preceded by a leading 0 when they are displayed.

The next line of output displays the value of i again. First, i is displayed in hexadeci-
mal notation using %x.The use of a capital X (%#X) causes printf to use uppercase letters
A–F instead of lowercase letters when displaying numbers in hexadecimal.The # modifi-
er (%#x) causes a leading 0x to appear before the number and causes a leading 0X to
appear when the capital X is used as the conversion character (%#X).

16 0672326663 CH16 6/10/04 2:05 PM Page 352

353Formatted I/O: printf and scanf

The fourth printf call first uses the + flag to force a sign to appear, even if the value
is positive (normally, no sign is displayed).Then, the space modifier is used to force a
leading space in front of a positive value. (Sometimes this is useful for aligning data that
might be positive or negative; the positive values have a leading space; the negative ones
have a minus sign.) Next, %07 is used to display the value of i right-justified within a
field width of seven characters.The 0 flag specifies zero fill.Therefore, four leading zeroes
are placed in front of the value of i, which is 425.The final conversion in this call, %.7i
is used to display the value of i using a minimum of seven digits.The net effect is the
same as specifying %07i: Four leading zeroes are displayed, followed by the three-digit
number 425.

The fifth printf call displays the value of the short int variable j in various for-
mats.Any integer format can be specified to display the value of a short int.

The next printf call shows what happens when %i is used to display the value of an
unsigned int. Because the value assigned to u is larger than the maximum positive
value that can be stored in a signed int on the machine on which this program was
run, it is displayed as a negative number when the %i format characters are used.

The next to last printf call in this set shows how the l modifier is used to display
long integers, and the final printf call in the set shows how long long integers can be
displayed.

The second set of output illustrates various formatting possibilities for displaying
floats and doubles.The first output line of this set shows the result of displaying a
float value using %f, %e, and %g formats.As mentioned, unless specified otherwise, the
%f and %e formats default to six decimal places.With the %g format, printf decides
whether to display the value in either %e or %f format, depending upon the magnitude
of the value and on the specified precision. If the exponent is less than –4 or greater
than the optionally specified precision (remember, the default is 6), %e is used; otherwise,
%f is used. In either case, trailing zeroes are automatically removed, and a decimal point
is displayed only if nonzero digits follow it. In general, %g is the best format to use for
displaying floating-point numbers in the most aesthetically pleasing format.

In the next line of output, the precision modifier .2 is specified to limit the display of
f to two decimal places.As you can see, printf is nice enough to automatically round
the value of f for you.The line that immediately follows shows the use of the .0 preci-
sion modifier to suppress the display of any decimal places, including the decimal point,
in the %f format. Once again, the value of f is automatically rounded.

The modifiers 7.2, as used for generating the next line of output, specify that the
value is to be displayed in a minimum of seven columns, to two decimal places of accu-
racy. Because both values need fewer than seven columns to be displayed, printf right-
justifies the value (adding spaces on the left) within the specified field width.

In the next three lines of output, the value of the double variable d is displayed with
various formats.The same format characters are used for the display of floats and
double values, because, as you’ll once again recall, floats are automatically converted to
doubles when passed as arguments to functions.The printf call

printf ("%.*f\n", 3, d);

16 0672326663 CH16 6/10/04 2:05 PM Page 353

354 Chapter 16 Input and Output Operations in C

specifies that the value of d is to be displayed to three decimal places.The asterisk after
the period in the format specification instructs printf to take the next argument to the
function as the value of the precision. In this case, the next argument is 3.This value
could also have been specified by a variable, as in

printf ("%.*f\n", accuracy, d);

which makes this feature useful for dynamically changing the format of a display.
The final line of the floats and doubles set shows the result of using the format

characters %*.*f for displaying the value of d. In this case, both the field width and the
precision are given as arguments to the function, as indicated by the two asterisks in the
format string. Because the first argument after the format string is 8, this is taken as the
field width.The next argument, 2, is taken as the precision.The value of d is, therefore,
displayed to two decimal places in a field size of eight characters. Notice that the minus
sign as well as the decimal point are included in the field-width count.This is true for
any field specifier.

In the next set of program output, the character c, which was initially set to the char-
acter X, is displayed in various formats.The first time it is displayed using the familiar %c
format characters. On the next line, it is displayed twice with a field-width specification
of 3.This results in the display of the character with two leading spaces.

A character can be displayed using any integer format specification. In the next line
of output, the value of c is displayed in hexadecimal.The output indicates that on this
machine the character X is internally represented by the number hexadecimal 58.

In the final set of program output, the character string s is displayed.The first time it
is displayed with the normal %s format characters.Then, a precision specification of 5 is
used to display just the first five characters from the string.This results in the display of
the first five letters of the alphabet.

In the third output line from this set, the entire character string is once again dis-
played, this time using a field-width specification of 30.As you can see, the string is dis-
played right-justified in the field.

The final two lines from this set show five characters from the string s being dis-
played in a field-width size of 20.The first time, these five characters are displayed right-
justified in the field.The second time, the minus sign results in the display of the first five
letters left-justified in the field.The vertical bar character was printed to verify that the
format characters %-20.5s actually result in the display of 20 characters at the terminal
(five letters followed by 15 spaces).

The %p characters are used to display the value of a pointer. Here, you are displaying
the integer pointer ip and the character pointer cp.You should note that you will proba-
bly get different values displayed on your system because your pointers will most likely
contain different addresses.

The format of the output when using %p is implementation-defined, but in this
example, the pointers are displayed in hexadecimal format.According to the output, the
pointer variable ip contained the address bffffc20 hexadecimal, and the pointer cp con-
tained the address bffffbf0.

16 0672326663 CH16 6/10/04 2:05 PM Page 354

355Formatted I/O: printf and scanf

The final set of output shows the use of the %n format characters. In this case, the
corresponding argument to printf must be of type pointer to int, unless a type modifi-
er of hh, h, l, ll, j, z, or t is specified. printf actually stores the number of characters it
has written so far into the integer pointed to by this argument. So, the first occurrence
of %n causes printf to store the value 4 inside the integer variable c1 because that’s how
many characters have been written so far by this call.The second occurrence of %n caus-
es the value 12 to be stored inside c2. This is because 12 characters had been displayed at
that point by printf. Notice that inclusion of the %n inside the format string has no
effect on the actual output produced by printf.

The scanf Function
Like the printf function, many more formatting options can be specified inside the for-
mat string of a scanf call than have been illustrated up to this point.As with printf,
scanf takes optional modifiers between the % and the conversion character.These
optional modifiers are summarized in Table 16.5.The possible conversion characters that
can be specified are summarized in Table 16.6.

When the scanf function searches the input stream for a value to be read, it always
bypasses any leading so-called whitespace characters, where whitespace refers to either a
blank space, horizontal tab ('\t'), vertical tab ('\v'), carriage return ('\r'), newline
('\n'), or form-feed character ('\f').The exceptions are in the case of the %c format
characters—in which case, the next character from the input, no matter what it is, is
read—and in the case of the bracketed character string—in which case, the characters
contained in the brackets (or not contained in the brackets) specify the permissible char-
acters of the string.

Table 16.5 scanf Conversion Modifiers

Modifier Meaning

* Field is to be skipped and not assigned

size Maximum size of the input field

hh Value is to be stored in a signed or unsigned char

h Value is to be stored in a short int

l Value is to be stored in a long int, double, or wchar_t

j, z, or t Value is to be stored in a size_t (%j), ptrdiff_t (%z), intmax_t, or
uintmax_t (%t)

ll Value is to be stored in a long long int

L Value is to be stored in a long double

type Conversion character

16 0672326663 CH16 6/10/04 2:05 PM Page 355

356 Chapter 16 Input and Output Operations in C

Table 16.6 scanf Conversion Characters

Character Action

d The value to be read is expressed in decimal notation; the corresponding argu-
ment is a pointer to an int unless the h, l, or ll modifier is used, in which
case the argument is a pointer to a short, long, or long long int, respec-
tively.

i Like %d, except numbers expressed in octal (leading 0) or hexadecimal (lead-
ing 0x or 0X) also can be read.

u The value to be read is an integer, and the corresponding argument is a point-
er to an unsigned int.

o The value to be read is expressed in octal notation and can be optionally pre-
ceded by a 0.The corresponding argument is a pointer to an int, unless h, l,
or ll precedes the letter o, in which case the argument is a pointer to a
short, long, or long long, respectively.

x The value to be read is expressed in hexadecimal notation and can be option-
ally preceded by a leading 0x or 0X; the corresponding argument is a pointer
to an unsigned int, unless a h, l, or ll modifies the x.

a, e, f, or g The value to be read is expressed in floating-point notation; the value can be
optionally preceded by a sign and can optionally be expressed in exponential
notation (as in 3.45 e-3); the corresponding argument is a pointer to
float, unless an l or L modifier is used, in which case it is a pointer to a
double or to a long double, respectively.

c The value to be read is a single character; the next character that appears on
the input is read, even if it is a space, tab, newline, or form-feed character.The
corresponding argument is a pointer to char; an optional count before the c
specifies the number of characters to be read.

s The value to be read is a sequence of characters; the sequence begins with the
first nonwhitespace character and is terminated by the first whitespace charac-
ter.The corresponding argument is a pointer to a character array, which must
contain enough characters to contain the characters that are read plus the null
character that is automatically added to the end. If a number precedes the s,
the specified number of characters is read, unless a whitespace character is
encountered first.

[...] Characters enclosed within brackets indicate that a character string is to be
read, as in %s; the characters within the brackets indicate the permissible char-
acters in the string. If any character other than that specified in the brackets is
encountered, the string is terminated; the sense of how these characters are
treated can be “inverted” by placing a ^ as the first character inside the brack-
ets. In such a case, the subsequent characters are taken to be the ones that will
terminate the string; that is, if any of the subsequent characters are found on
the input, the string is terminated.

16 0672326663 CH16 6/10/04 2:05 PM Page 356

357Formatted I/O: printf and scanf

n Nothing gets read.The number of characters read so far by this call is written
into the int pointed to by the corresponding argument.

p The value to be read is a pointer expressed in the same format as is displayed
by printf with the %p conversion characters.The corresponding argument is
a pointer to a pointer to void.

% The next nonwhitespace character on input must be a %.

When scanf reads in a particular value, reading of the value terminates as soon as the
number of characters specified by the field width is reached (if supplied) or until a char-
acter that is not valid for the value being read is encountered. In the case of integers,
valid characters are an optionally signed sequence of digits that are valid for the base of
the integer that is being read (decimal: 0–9, octal: 0–7, hexadecimal: 0–9, a–f, or A–F).
For floats, permissible characters are an optionally signed sequence of decimal digits,
followed by an optional decimal point and another sequence of decimal digits, all of
which can be followed by the letter e (or E) and an optionally signed exponent. In the
case of %a, a hexadecimal floating value can be supplied in the format of a leading 0x,
followed by a sequence of hexadecimal digits with an optional decimal point, followed
by an optional exponent preceded by the letter p (or P).

For character strings read with the %s format, any nonwhitespace character is valid. In
the case of %c format, all characters are valid. Finally, in the case of the bracketed string
read, valid characters are only those enclosed within the brackets (or not enclosed within
the brackets if the ^ character is used after the open bracket).

Recall from Chapter 9,“Working with Structures,” when you wrote the programs
that prompted the user to enter the time from the terminal, any nonformat characters
that were specified in the format string of the scanf call were expected on the input.
So, for example, the scanf call

scanf ("%i:%i:%i", &hour, &minutes, &seconds);

means that three integer values are to be read in and stored in the variables hour,
minutes, and seconds, respectively. Inside the format string, the : character specifies that
colons are expected as separators between the three integer values.

To specify that a percent sign is expected as input, double percent signs are included
in the format string, as follows:

scanf ("%i%%", &percentage);

Whitespace characters inside a format string match an arbitrary number of whitespace
characters on the input. So, the call

scanf ("%i%c", &i, &c);

with the line of text

29 w

Table 16.6 Continued

Character Action

16 0672326663 CH16 6/10/04 2:05 PM Page 357

358 Chapter 16 Input and Output Operations in C

assigns the value 29 to i and a space character to c because this is the character that
appears immediately after the characters 29 on the input. If the following scanf call is
made instead:

scanf ("%i %c", &i, &c);

and the same line of text is entered, the value 29 is assigned to i and the character 'w'
to c because the blank space in the format string causes the scanf function to ignore
any leading whitespace characters after the characters 29 have been read.

Table 16.5 indicates that an asterisk can be used to skip fields. If the scanf call

scanf ("%i %5c %*f %s", &i1, text, string);

is executed and the following line of text is typed in:

144abcde 736.55 (wine and cheese)

the value 144 is stored in i1; the five characters abcde are stored in the character array
text; the floating value 736.55 is matched but not assigned; and the character string
"(wine" is stored in string, terminated by a null.The next call to scanf picks up where
the last one left off. So, a subsequent call such as

scanf ("%s %s %i", string2, string3, &i2);

has the effect of storing the character string "and" in string2 and the string "cheese)"
in string3, and causes the function to wait for an integer value to be typed.

Remember that scanf expects pointers to the variables where the values that are read
in are to be stored.You know from Chapter 11,“Pointers,” why this is necessary—so that
scanf can make changes to the variables; that is, store the values that it reads into them.
Remember also that to specify a pointer to an array, only the name of the array needs be
specified. So, if text is defined as an appropriately sized array of characters, the scanf call

scanf ("%80c", text);

reads the next 80 characters from the input and stores them in text.
The scanf call

scanf ("%[^/]", text);

indicates that the string to be read can consist of any character except for a slash. Using
the preceding call on the following line of text

(wine and cheese)/

has the effect of storing the string "(wine and cheese)" in text because the string is
not terminated until the / is matched (which is also the character read by scanf on the
next call).

To read an entire line from the terminal into the character array buf, you can specify
that the newline character at the end of the line is your string terminator:

scanf ("%[^\n]\n", buf);

16 0672326663 CH16 6/10/04 2:05 PM Page 358

359Input and Output Operations with Files

The newline character is repeated outside the brackets so that scanf matches it and does
not read it the next time it’s called. (Remember, scanf always continues reading from
the character that terminated its last call.)

When a value is read that does not match a value expected by scanf (for example,
typing in the character x when an integer is expected), scanf does not read any further
items from the input and immediately returns. Because the function returns the number
of items that were successfully read and assigned to variables in your program, this value
can be tested to determine if any errors occurred on the input. For example, the call

if (scanf ("%i %f %i", &i, &f, &l) != 3)

printf ("Error on input\n");

tests to make certain that scanf successfully read and assigned three values. If not, an
appropriate message is displayed.

Remember, the return value from scanf indicates the number of values read and
assigned, so the call

scanf ("%i %*d %i", &i1, &i3)

returns 2 when successful and not 3 because you are reading and assigning two integers
(skipping one in between). Note also that the use of %n (to obtain the number of charac-
ters read so far) does not get included in the value returned by scanf.

Experiment with the various formatting options provided by the scanf function.As
with the printf function, a good understanding of these various formats can be
obtained only by trying them in actual program examples.

Input and Output Operations with Files
So far, when a call was made to the scanf function by one of the programs in this book,
the data that was requested by the call was always read in from your terminal. Similarly,
all calls to the printf function resulted in the display of the desired information in your
terminal window. In this section, you learn how you can read and write data from and
to a file instead.

Redirecting I/O to a File
Both read and write file operations can be easily performed under many operating

systems, such as Unix and Windows, without anything special being done at all to the
program. If you want to write all your program results into a file called data, for exam-
ple, all that you need to do under Unix or Windows if running in a terminal window is
to redirect the output from the program into the file data by executing the program
with the following command:

prog > data

This command instructs the system to execute the program prog but to redirect the out-
put normally written to the terminal into a file called data instead. So, any values

16 0672326663 CH16 6/10/04 2:05 PM Page 359

360 Chapter 16 Input and Output Operations in C

displayed by printf do not appear in your window but are instead written into the file
called data.

To see how this works, type in the very first program you wrote, Program 3.1, and
compile the program in the usual way. Now execute the program as you normally would
by typing in the program name (assume it’s called prog1):

prog1

If all goes well, you should get the output

Programming is fun.

displayed in your window. Now type in the following command:

prog1 > data

This time, notice that you did not get any output at the terminal.This is because the
output was redirected into the file called data. If you now examine the contents of the
file data, you should find that it contains the following line of text:

Programming is fun.

This verifies that the output from the program went into the file data as described pre-
viously.You might want to try the preceding sequence of commands with a program that
produces more lines of output to verify that the preceding process works properly in
such cases.

You can do a similar type of redirection for the input to your programs.Any call to a
function that normally reads data from your window, such as scanf and getchar, can be
easily made to read its information from a file. Program 5.8 was designed to reverse the
digits of a number.The program uses scanf to read in the value of the number to be
reversed from the terminal.You can have the program instead get its input from a file
called number, for example, by redirecting the input to the program when the program is
executed. If the program is called reverse, the following command line should do the
trick:

reverse < number

If you type the number 2001 into a file called number before issuing the preceding com-
mand, the following output appears at the terminal after this command is entered:

Enter your number.

1002

Notice that the program requested that a number be entered but did not wait for you to
type in a number.This is because the input to the program—but not its output—was
redirected to the file called number.Therefore, the scanf call from the program had the
effect of reading the value from the file number and not from your terminal window.The
information must be entered in the file the same way that it would be typed in from the

16 0672326663 CH16 6/10/04 2:05 PM Page 360

361Input and Output Operations with Files

terminal.The scanf function itself does not actually know (or care) whether its input is
coming from your window or from a file; all it cares about is that it is properly formatted.

Naturally, you can redirect the input and the output to a program at the same time.
The command

reverse < number > data

causes execution of the program contained in reverse to read all program input from
the file number and to write all program results into the file data. So, if you execute the
previous command for Program 5.8, the input is once again taken from the file number,
and the output is written into the file data.

The method of redirecting the program’s input and/or its output is often practical.
For example, suppose you are writing an article for a magazine and have typed the text
into a file called article. Program 10.8 counted the number of words that appeared in
lines of text entered at the terminal.You could use this very same program to count the
number of words in your article simply by typing in the following command:2

wordcount < article

Of course, you have to remember to include an extra carriage return at the end of the
article file because your program was designed to recognize an end-of-data condition
by the presence of a single newline character on a line.

Note that I/O redirection, as described here, is not actually part of the ANSI defini-
tion of C.This means that you might find operating systems that don’t support it.
Luckily, most do.

End of File
The preceding point about end of data is worthy of more discussion.When dealing with
files, this condition is called end of file.An end-of-file condition exists when the final
piece of data has been read from a file.Attempting to read past the end of the file might
cause the program to terminate with an error, or it might cause the program to go into
an infinite loop if this condition is not checked by the program. Luckily, most of the
functions from the standard I/O library return a special flag to indicate when a program
has reached the end of a file.The value of this flag is equal to a special name called EOF,
which is defined in the standard I/O include file <stdio.h>.

As an example of the use of the EOF test in combination with the getchar function,
Program 16.2 reads in characters and echoes them back in the terminal window until an
end of file is reached. Notice the expression contained inside the while loop.As you can
see, an assignment does not have to be made in a separate statement.

2. Unix systems provide a wc command, which can also count words.Also, recall that this program
was designed to work on text files, not word processing files, such as MS Word .doc files.

16 0672326663 CH16 6/10/04 2:05 PM Page 361

362 Chapter 16 Input and Output Operations in C

Program 16.2 Copying Characters from Standard Input to Standard Output

// Program to echo characters until an end of file

#include <stdio.h>

int main (void)

{

int c;

while ((c = getchar ()) != EOF)

putchar (c);

return 0;

}

If you compile and execute Program 16.2, redirecting the input to a file with a com-
mand such as

copyprog < infile

the program displays the contents of the file infile at the terminal.Try it and see!
Actually, the program serves the same basic function as the cat command under Unix,
and you can use it to display the contents of any text file you choose.

In the while loop of Program 16.2, the character that is returned by the getchar
function is assigned to the variable c and is then compared against the defined value EOF.
If the values are equal, this means that you have read the final character from the file.
One important point must be mentioned with respect to the EOF value that is returned
by the getchar function:The function actually returns an int and not a char.This is
because the EOF value must be unique; that is, it cannot be equal to the value of any
character that would normally be returned by getchar.Therefore, the value returned by
getchar is assigned to an int and not a char variable in the preceding program.This
works out okay because C allows you to store characters inside ints, even though, in
general, it might not be the best of programming practices.

If you store the result of the getchar function inside a char variable, the results are
unpredictable. On systems that do sign extension of characters, the code might still work
okay. On systems that don’t do sign extension, you might end up in an infinite loop.

The bottom line is to always remember to store the result of getchar inside an int
so that you can properly detect an end-of-file condition.

The fact that you can make an assignment inside the conditional expression of the
while loop illustrates the flexibility that C provides in the formation of expressions.The
parentheses are required around the assignment because the assignment operator has
lower precedence than the not equals operator.

16 0672326663 CH16 6/10/04 2:05 PM Page 362

363Special Functions for Working with Files

Special Functions for Working with Files
It is very likely that many of the programs you will develop will be able to perform all
their I/O operations using just the getchar, putchar, scanf, and printf functions and
the notion of I/O redirection. However, situations do arise when you need more flexi-
bility to work with files. For example, you might need to read data from two or more
different files or to write output results into several different files.To handle these situa-
tions, special functions have been designed expressly for working with files. Several of
these functions are described in the following sections.

The fopen Function
Before you can begin to do any I/O operations on a file, the file must first be opened.To
open a file, you must specify the name of the file.The system then checks to make cer-
tain that this file actually exists and, in certain instances, creates the file for you if it does
not.When a file is opened, you must also specify to the system the type of I/O opera-
tions that you intend to perform with the file. If the file is to be used to read in data,
you normally open the file in read mode. If you want to write data into the file, you open
the file in write mode. Finally, if you want to append information to the end of a file that
already contains some data, you open the file in append mode. In the latter two cases,
write and append mode, if the specified file does not exist on the system, the system cre-
ates the file for you. In the case of read mode, if the file does not exist, an error occurs.

Because a program can have many different files open at the same time, you need a
way to identify a particular file in your program when you want to perform some I/O
operation on the file.This is done by means of a file pointer.

The function called fopen in the standard library serves the function of opening a file
on the system and of returning a unique file pointer with which to subsequently identify
the file.The function takes two arguments:The first is a character string specifying the
name of the file to be opened; the second is also a character string that indicates the
mode in which the file is to be opened.The function returns a file pointer that is used
by other library functions to identify the particular file.

If the file cannot be opened for some reason, the function returns the value NULL,
which is defined inside the header file <stdio.h>.3 Also defined in this file is the defini-
tion of a type called FILE.To store the result returned by the fopen function in your
program, you must define a variable of type “pointer to FILE.”

3. NULL is “officially” defined in the header file <stddef.h>; however, it is most likely also
defined in <stdio.h>.

16 0672326663 CH16 6/10/04 2:05 PM Page 363

364 Chapter 16 Input and Output Operations in C

If you take the preceding comments into account, the statements

#include <stdio.h>

FILE *inputFile;

inputFile = fopen ("data", "r");

have the effect of opening a file called data in read mode. (Write mode is specified by
the string "w", and append mode is specified by the string "a".) The fopen call returns
an identifier for the opened file that is assigned to the FILE pointer variable inputFile.
Subsequent testing of this variable against the defined value NULL, as in the following:

if (inputFile == NULL)

printf ("*** data could not be opened.\n");

else

// read the data from the file

tells you whether the open was successful.
You should always check the result of an fopen call to make certain it succeeds.

Using a NULL pointer can produce unpredictable results.
Frequently, in the fopen call, the assignment of the returned FILE pointer variable

and the test against the NULL pointer are combined into a single statement, as follows:

if ((inputFile = fopen ("data", "r")) == NULL)

printf ("*** data could not be opened.\n");

The fopen function also supports three other types of modes, called update modes ("r+",
"w+", and "a+").All three update modes permit both reading and writing operations to
be performed on a file. Read update ("r+") opens an existing file for both reading and
writing.Write update ("w+") is like write mode (if the file already exists, the contents are
destroyed; if one doesn’t exist, it’s created), but once again both reading and writing are
permitted.Append update ("a+") opens an existing file or creates a new one if one
doesn’t exist. Read operations can occur anywhere in the file, but write operations can
only add data to the end.

Under operating systems such as Windows, which distinguish text files from binary
files, a b must be added to the end of the mode string to read or write a binary file. If
you forget to do this, you will get strange results, even though your program will still
run.This is because on these systems, carriage return/line feed character pairs are con-
verted to return characters when they are read from or written to text files.
Furthermore, on input, a file that contains a Ctrl+Z character causes an end-of-file con-
dition if the file was not opened as a binary file. So,

inputFile = fopen ("data", "rb");

opens the binary file data for reading.

16 0672326663 CH16 6/10/04 2:05 PM Page 364

365Special Functions for Working with Files

The getc and putc Functions
The function getc enables you to read in a single character from a file.This function
behaves identically to the getchar function described previously.The only difference is
that getc takes an argument: a FILE pointer that identifies the file from which the char-
acter is to be read. So, if fopen is called as shown previously, then subsequent execution
of the statement

c = getc (inputFile);

has the effect of reading a single character from the file data. Subsequent characters can
be read from the file simply by making additional calls to the getc function.

The getc function returns the value EOF when the end of file is reached, and as with
the getchar function, the value returned by getc should be stored in a variable of
type int.

As you might have guessed, the putc function is equivalent to the putchar function,
only it takes two arguments instead of one.The first argument to putc is the character
that is to be written into the file.The second argument is the FILE pointer. So the call

putc ('\n', outputFile);

writes a newline character into the file identified by the FILE pointer outputFile. Of
course, the identified file must have been previously opened in either write or append
mode (or in any of the update modes) for this call to succeed.

The fclose Function
One operation that you can perform on a file, which must be mentioned, is that of clos-
ing the file.The fclose function, in a sense, does the opposite of what the fopen does:
It tells the system that you no longer need to access the file.When a file is closed, the
system performs some necessary housekeeping chores (such as writing all the data that it
might be keeping in a buffer in memory to the file) and then dissociates the particular
file identifier from the file.After a file has been closed, it can no longer be read from or
written to unless it is reopened.

When you have completed your operations on a file, it is a good habit to close the
file.When a program terminates normally, the system automatically closes any open files
for you. It is generally better programming practice to close a file as soon as you are
done with it.This can be beneficial if your program has to deal with a large number of
files, as there are practical limits on the number of files that can be kept simultaneously
open by a program.Your system might have various limits on the number of files that
you can have open simultaneously.This might only be an issue if you are working with
multiple files in your program.

By the way, the argument to the fclose function is the FILE pointer of the file to be
closed. So, the call

fclose (inputFile);

closes the file associated with the FILE pointer inputFile.

16 0672326663 CH16 6/10/04 2:05 PM Page 365

366 Chapter 16 Input and Output Operations in C

With the functions fopen, putc, getc, and fclose, you can now proceed to write a
program that will copy one file to another. Program 16.3 prompts the user for the name
of the file to be copied and the name of the resultant copied file.This program is based
upon Program 16.2.You might want to refer to that program for comparison purposes.

Assume that the following three lines of text have been previously typed into the file
copyme:

This is a test of the file copy program

that we have just developed using the

fopen, fclose, getc, and putc functions.

Program 16.3 Copying Files

// Program to copy one file to another

#include <stdio.h>

int main (void)

{

char inName[64], outName[64];

FILE *in, *out;

int c;

// get file names from user

printf ("Enter name of file to be copied: ");

scanf ("%63s", inName);

printf ("Enter name of output file: ");

scanf ("%63s", outName);

// open input and output files

if ((in = fopen (inName, "r")) == NULL) {

printf ("Can't open %s for reading.\n", inName);

return 1;

}

if ((out = fopen (outName, "w")) == NULL) {

printf ("Can't open %s for writing.\n", outName);

return 2;

}

// copy in to out

16 0672326663 CH16 6/10/04 2:05 PM Page 366

367Special Functions for Working with Files

while ((c = getc (in)) != EOF)

putc (c, out);

// Close open files

fclose (in);

fclose (out);

printf ("File has been copied.\n");

return 0;

}

Program 16.3 Output

Enter name of file to be copied: copyme

Enter name of output file: here

File has been copied.

Now examine the contents of the file here.The file should contain the same three lines
of text as contained in the copyme file.

The scanf function call in the beginning of the program is given a field-width count
of 63 just to ensure that you don’t overflow your inName or outName character arrays.
The program then opens the specified input file for reading and the specified output file
for writing. If the output file already exists and is opened in write mode, its previous
contents are overwritten on most systems.

If either of the two fopen calls is unsuccessful, the program displays an appropriate
message at the terminal and proceeds no further, returning a nonzero exit status to indi-
cate the failure. Otherwise, if both opens succeed, the file is copied one character at a
time by means of successive getc and putc calls until the end of the file is encountered.
The program then closes the two files and returns a zero exit status to indicate success.

The feof Function
To test for an end-of-file condition on a file, the function feof is provided.The single
argument to the function is a FILE pointer.The function returns an integer value that is
nonzero if an attempt has been made to read past the end of a file, and is zero otherwise.
So, the statements

if (feof (inFile)) {

printf ("Ran out of data.\n");

return 1;

}

Program 16.3 Continued

16 0672326663 CH16 6/10/04 2:05 PM Page 367

368 Chapter 16 Input and Output Operations in C

have the effect of displaying the message “Ran out of data” at the terminal if an end-of-
file condition exists on the file identified by inFile.

Remember, feof tells you that an attempt has been made to read past the end of the
file, which is not the same as telling you that you just read the last data item from a file.
You have to read one past the last data item for feof to return nonzero.

The fprintf and fscanf Functions
The functions fprintf and fscanf are provided to perform the analogous operations of
the printf and scanf functions on a file.These functions take an additional argument,
which is the FILE pointer that identifies the file to which the data is to be written or
from which the data is to be read. So, to write the character string "Programming in C
is fun.\n" into the file identified by outFile, you can write the following statement:

fprintf (outFile, "Programming in C is fun.\n");

Similarly, to read in the next floating-point value from the file identified by inFile into
the variable fv, the statement

fscanf (inFile, "%f", &fv);

can be used.As with scanf, fscanf returns the number of arguments that are successful-
ly read and assigned or the value EOF, if the end of the file is reached before any of the
conversion specifications have been processed.

The fgets and fputs Functions
For reading and writing entire lines of data from and to a file, the fputs and fgets
functions can be used.The fgets function is called as follows:

fgets (buffer, n, filePtr);

buffer is a pointer to a character array where the line that is read in will be stored; n is
an integer value that represents the maximum number of characters to be stored into
buffer; and filePtr identifies the file from which the line is to be read.

The fgets function reads characters from the specified file until a newline character
has been read (which will get stored in the buffer) or until n-1 characters have been read,
whichever occurs first.The function automatically places a null character after the last
character in buffer. It returns the value of buffer (the first argument) if the read is suc-
cessful, and the value NULL if an error occurs on the read or if an attempt is made to read
past the end of the file.

fgets can be combined with sscanf (see Appendix B) to perform line-oriented
reading in a more orderly and controlled fashion than by using scanf alone.

The fputs function writes a line of characters to a specified file.The function is
called as follows:

fputs (buffer, filePtr);

16 0672326663 CH16 6/10/04 2:05 PM Page 368

369Special Functions for Working with Files

Characters stored in the array pointed to by buffer are written to the file identified by
filePtr until the null character is reached.The terminating null character is not written
to the file.

There are also analogous functions called gets and puts that can be used to read a
line from the terminal and write a line to the terminal, respectively.These functions are
described in Appendix B.

stdin, stdout, and stderr
When a C program is executed, three files are automatically opened by the system for
use by the program.These files are identified by the constant FILE pointers stdin,
stdout, and stderr, which are defined in <stdio.h>.The FILE pointer stdin identifies
the standard input of the program and is normally associated with your terminal win-
dow.All standard I/O functions that perform input and do not take a FILE pointer as an
argument get their input from stdin. For example, the scanf function reads its input
from stdin, and a call to this function is equivalent to a call to the fscanf function with
stdin as the first argument. So, the call

fscanf (stdin, "%i", &i);

reads in the next integer value from the standard input, which is normally your terminal
window. If the input to your program has been redirected to a file, this call reads the
next integer value from the file to which the standard input has been redirected.

As you might have guessed, stdout refers to the standard output, which is normally
also associated with your terminal window. So, a call such as

printf ("hello there.\n");

can be replaced by an equivalent call to the fprintf function with stdout as the first
argument:

fprintf (stdout, "hello there.\n");

The FILE pointer stderr identifies the standard error file.This is where most of the
error messages produced by the system are written and is also normally associated with
your terminal window.The reason stderr exists is so that error messages can be logged
to a device or file other than where the normal output is written.This is particularly
desirable when the program’s output is redirected to a file. In such a case, the normal
output is written into the file, but any system error messages still appear in your window.
You might want to write your own error messages to stderr for this same reason.As an
example, the fprintf call in the following statement:

if ((inFile = fopen ("data", "r")) == NULL)

{

fprintf (stderr, "Can't open data for reading.\n");

...

}

16 0672326663 CH16 6/10/04 2:05 PM Page 369

370 Chapter 16 Input and Output Operations in C

writes the indicated error message to stderr if the file data cannot be opened for read-
ing. In addition, if the standard output has been redirected to a file, this message still
appears in your window.

The exit Function
At times, you might want to force the termination of a program, such as when an error
condition is detected by a program.You know that program execution is automatically
terminated whenever the last statement in main is executed or when executing a return
from main.To explicitly terminate a program, no matter from what point you are exe-
cuting, the exit function can be called.The function call

exit (n);

has the effect of terminating (exiting from) the current program.Any open files are auto-
matically closed by the system.The integer value n is called the exit status, and has the
same meaning as the value returned from main.

The standard header file <stdlib.h> defines EXIT_FAILURE as an integer value that
you can use to indicate the program has failed and EXIT_SUCCESS to be one that you
can use to indicate it has succeeded.

When a program terminates simply by executing the last statement in main, its exit
status is undefined. If another program needs to use this exit status, you mustn’t let this
happen. In such a case, make certain that you exit or return from main with a defined
exit status.

As an example of the use of the exit function, the following function causes the pro-
gram to terminate with an exit status of EXIT_FAILURE if the file specified as its argu-
ment cannot be opened for reading. Naturally, you might want to return the fact that the
open failed instead of taking such a drastic action by terminating the program.

#include <stdlib.h>

#include <stdio.h>

FILE *openFile (const char *file)

{

FILE *inFile;

if ((inFile = fopen (file, "r")) == NULL) {

fprintf (stderr, "Can't open %s for reading.\n", file);

exit (EXIT_FAILURE);

}

return inFile;

}

Remember that there’s no real difference between exiting or returning from main.They
both terminate the program, sending back an exit status.The main difference between
exit and return is when they’re executed from inside a function other than main.The

16 0672326663 CH16 6/10/04 2:05 PM Page 370

371Exercises

exit call terminates the program immediately whereas return simply transfers control
back to the calling routine.

Renaming and Removing Files
The rename function from the library can be used to change the name of a file. It takes
two arguments: the old filename and the new filename. If for some reason the renaming
operation fails (for example, if the first file doesn’t exist, or the system doesn’t allow you
to rename the particular file), rename returns a nonzero value.The code

if (rename ("tempfile", "database")) {

fprintf (stderr, "Can't rename tempfile\n");

exit (EXIT_FAILURE);

}

renames the file called tempfile to database and checks the result of the operation to
ensure it succeeded.

The remove function deletes the file specified by its argument. It returns a nonzero
value if the file removal fails.The code

if (remove ("tempfile"))

{

fprintf (stderr, "Can't remove tempfile\n");

exit (EXIT_FAILURE);

}

attempts to remove the file tempfile and writes an error message to standard error and
exit if the removal fails.

Incidentally, you might be interested in using the perror function to report errors
from standard library routines. For more details, consult Appendix B.

This concludes our discussion of I/O operations under C.As mentioned, not all of
the library functions are covered here due to lack of space.The standard C library con-
tains a wide selection of functions for performing operations with character strings, for
random I/O, mathematical calculations, and dynamic memory management.Appendix B
lists many of the functions inside this library.

Exercises
1. Type in and run the three programs presented in this chapter. Compare the output

produced by each program with the output presented in the text.

2. Go back to programs developed earlier in this book and experiment with redirect-
ing their input and output to files.

3. Write a program to copy one file to another, replacing all lowercase characters
with their uppercase equivalents.

16 0672326663 CH16 6/10/04 2:05 PM Page 371

372 Chapter 16 Input and Output Operations in C

4. Write a program that merges lines alternately from two files and writes the results
to stdout. If one file has less lines than the other, the remaining lines from the
larger file should simply be copied to stdout.

5. Write a program that writes columns m through n of each line of a file to stdout.
Have the program accept the values of m and n from the terminal window.

6. Write a program that displays the contents of a file at the terminal 20 lines at a
time.At the end of each 20 lines, have the program wait for a character to be
entered from the terminal. If the character is the letter q, the program should stop
the display of the file; any other character should cause the next 20 lines from the
file to be displayed.

16 0672326663 CH16 6/10/04 2:05 PM Page 372

17
Miscellaneous and Advanced

Features

THIS CHAPTER DISCUSSES SOME MISCELLANEOUS FEATURES of the C language that have
not yet been covered and provides a discussion of some more advanced topics, such as
command-line arguments and dynamic memory allocation.

Miscellaneous Language Statements
This section discusses two statement you haven’t encountered to this point: the goto and
the null statement.

The goto Statement
Anyone who has learned about structured programming knows of the bad reputation
afforded to the goto statement.Virtually every computer language has such a statement.

Execution of a goto statement causes a direct branch to be made to a specified point
in the program.This branch is made immediately and unconditionally upon execution of
the goto.To identify where in the program the branch is to be made, a label is needed.A
label is a name that is formed with the same rules as variable names and must be imme-
diately followed by a colon.The label is placed directly before the statement to which
the branch is to be made and must appear in the same function as the goto.

So, for example, the statement

goto out_of_data;

causes the program to branch immediately to the statement that is preceded by the label
out_of_data:.This label can be located anywhere in the function, before or after the
goto, and might be used as shown:

out_of_data: printf ("Unexpected end of data.\n");

...

17 0672326663 CH17 6/10/04 2:03 PM Page 373

374 Chapter 17 Miscellaneous and Advanced Features

Programmers who are lazy frequently abuse the goto statement to branch to other por-
tions of their code.The goto statement interrupts the normal sequential flow of a pro-
gram.As a result, programs are harder to follow. Using many gotos in a program can
make it impossible to decipher. For this reason, goto statements are not considered part
of good programming style.

The null Statement
C permits a solitary semicolon to be placed wherever a normal program statement can
appear.The effect of such a statement, known as the null statement, is that nothing is
done.Although this might seem useless, it is often used by C programmers in while,
for, and do statements. For example, the purpose of the following statement is to store
all the characters read in from the standard input into the character array pointed to by
text until a newline character is encountered.

while ((*text++ = getchar ()) != '\n')

;

All of the operations are performed inside the looping-conditions part of the while
statement.The null statement is needed because the compiler takes the statement that
follows the looping expression as the body of the loop.Without the null statement,
whatever statement that follows in the program is treated as the body of the program
loop by the compiler.

The following for statement copies characters from the standard input to the stan-
dard output until the end of file is encountered:

for (; (c = getchar ()) != EOF; putchar (c))

;

The next for statement counts the number of characters that appear in the standard
input:

for (count = 0; getchar () != EOF; ++count)

;

As a final example illustrating the null statement, the following loop copies the charac-
ter string pointed to by from to the one pointed to by to.

while ((*to++ = *from++) != '\0')

;

The reader is advised that there is a tendency among certain programmers to try to
squeeze as much as possible into the condition part of the while or into the condition
or looping part of the for.Try not to become one of those programmers. In general,
only those expressions involved with testing the condition of a loop should be included
inside the condition part. Everything else should form the body of the loop.The only
case to be made for forming such complex expressions might be one of execution effi-
ciency. Unless execution speed is that critical, you should avoid using these types of
expressions.

17 0672326663 CH17 6/10/04 2:03 PM Page 374

375Working with Unions

The preceding while statement is easier to read when written like this:

while (*from != '\0')

*to++ = *from++;

*to = '\0';

Working with Unions
One of the more unusual constructs in the C programming language is the union.This
construct is used mainly in more advanced programming applications in which it is nec-
essary to store different types of data in the same storage area. For example, if you want
to define a single variable called x, which could be used to store a single character, a
floating-point number, or an integer, you could first define a union called, perhaps,
mixed:

union mixed

{

char c;

float f;

int i;

};

The declaration for a union is identical to that of a structure, except the keyword union
is used where the keyword struct is otherwise specified.The real difference between
structures and unions has to do with the way memory is allocated. Declaring a variable
to be of type union mixed, as in

union mixed x;

does not define x to contain three distinct members called c, f, and i; rather, it defines x
to contain a single member that is called either c, f, or i. In this way, the variable x can be
used to store either a char or a float or an int, but not all three (or not even two of
the three).You can store a character in the variable x with the following statement:

x.c = 'K';

The character stored in x can subsequently be retrieved in the same manner. So, to dis-
play its value at the terminal, for example, the following could be used:

printf ("Character = %c\n", x.c);

To store a floating-point value in x, the notation x.f is used:

x.f = 786.3869;

Finally, to store the result of dividing an integer count by 2 in x, the following statement
can be used:

x.i = count / 2;

17 0672326663 CH17 6/10/04 2:03 PM Page 375

376 Chapter 17 Miscellaneous and Advanced Features

Because the float, char, and int members of x all exist in the same place in memory,
only one value can be stored in x at a time. Furthermore, it is your responsibility to
ensure that the value retrieved from a union is consistent with the way it was last stored
in the union.

A union member follows the same rules of arithmetic as the type of the member that
is used in the expression. So in

x.i / 2

the expression is evaluated according to the rules of integer arithmetic because x.i and
2 are both integers.

A union can be defined to contain as many members as desired.The C compiler
ensures that enough storage is allocated to accommodate the largest member of the
union. Structures can be defined that contain unions, as can arrays.When defining a
union, the name of the union is not required, and variables can be declared at the same
time that the union is defined. Pointers to unions can also be declared, and their syntax
and rules for performing operations are the same as for structures.

One of the members of a union variable can be initialized. If no member name is
specified, the first member of the union is set to the specified value, as in:

union mixed x = { '#' };

This sets the first member of x, which is c, to the character #.
By specifying the member name, any member of the union can be initialized like so:

union mixed x = { .f = 123.456; };

This sets the floating member f of the union mixed variable x to the value 123.456.
An automatic union variable can also be initialized to another union variable of the

same type:

void foo (union mixed x)

{

union mixed y = x;

...

}

Here, the function foo assigns to the automatic union variable y the value of the argu-
ment x.

The use of a union enables you to define arrays that can be used to store elements of
different data types. For example, the statement

struct

{

char *name;

enum symbolType type;

union

{

int i;

17 0672326663 CH17 6/10/04 2:03 PM Page 376

377Working with Unions

float f;

char c;

} data;

} table [kTableEntries];

sets up an array called table, consisting of kTableEntries elements. Each element of
the array contains a structure consisting of a character pointer called name, an enumera-
tion member called type, and a union member called data. Each data member of the
array can contain either an int, a float, or a char.The member type might be used to
keep track of the type of value stored in the member data. For example, you could
assign it the value INTEGER if it contained an int, FLOATING if it contained a float, and
CHARACTER if it contained a char.This information would enable you to know how to
reference the particular data member of a particular array element.

To store the character '#' in table[5], and subsequently set the type field to indi-
cate that a character is stored in that location, the following two statements could be
used:

table[5].data.c = '#';

table[5].type = CHARACTER;

When sequencing through the elements of table, you could determine the type of data
value stored in each element by setting up an appropriate series of test statements. For
example, the following loop would display each name and its associated value from
table at the terminal:

enum symbolType { INTEGER, FLOATING, CHARACTER };

...

for (j = 0; j < kTableEntries; ++j) {

printf ("%s ", table[j].name);

switch (table[j].type) {

case INTEGER:

printf ("%i\n", table[j].data.i);

break;

case FLOATING:

printf ("%f\n", table[j].data.f);

break;

case CHARACTER:

printf ("%c\n", table[j].data.c);

break;

default:

printf ("Unknown type (%i), element %i\n", table[j].type, j);

break;

}

}

17 0672326663 CH17 6/10/04 2:03 PM Page 377

378 Chapter 17 Miscellaneous and Advanced Features

The type of application illustrated might be practical for storage of a symbol table, for
example, which might contain the name of each symbol, its type, and its value (and per-
haps other information about the symbol as well).

The Comma Operator
At first glance, you might not realize that a comma can be used in expressions as an
operator.The comma operator is at the bottom of the precedence totem pole, so to
speak. In Chapter 5,“Program Looping,” you learned that inside a for statement you
could include more than one expression in any of the fields by separating each expres-
sion with a comma. For example, the for statement that begins

for (i = 0, j = 100; i != 10; ++i, j -= 10)

...

initializes the value of i to 0 and j to 100 before the loop begins, and increments the
value of i and subtracts 10 from the value of j each time after the body of the loop is
executed.

The comma operator can be used to separate multiple expressions anywhere that a
valid C expression can be used.The expressions are evaluated from left to right. So, in
the statement

while (i < 100)

sum += data[i], ++i;

the value of data[i] is added into sum and then i is incremented. Note that you don’t
need braces here because just one statement follows the while statement. (It consists of
two expressions separated by the comma operator.)

Because all operators in C produce a value, the value of the comma operator is that
of the rightmost expression.

Note that a comma, used to separate arguments in a function call, or variable names
in a list of declarations, for example, is a separate syntactic entity and is not an example of
the use of the comma operator.

Type Qualifiers
The following qualifiers can be used in front of variables to give the compiler more
information about the intended use of the variable and, in some cases, to help it generate
better code.

The register Qualifier
If a function uses a particular variable heavily, you can request that access to the variable
be made as fast as possible by the compiler.Typically, this means requesting that it be
stored in one of the machine’s registers when the function is executed.This is done by
prefixing the declaration of the variable by the keyword register, as follows:

17 0672326663 CH17 6/10/04 2:03 PM Page 378

379Type Qualifiers

register int index;

register char *textPtr;

Both local variables and formal parameters can be declared as register variables.The
types of variables that can be assigned to registers vary among machines.The basic data
types can usually be assigned to registers, as well as pointers to any data type.

Even if your compiler enables you to declare a variable as a register variable, it is
still not guaranteed that it will do anything with that declaration. It is up to the
compiler.

You might want to also note that you cannot apply the address operator to a
register variable. Other than that, register variables behave just as ordinary automatic
variables.

The volatile Qualifier
This is sort of the inverse to const. It tells the compiler explicitly that the specified vari-
able will change its value. It’s included in the language to prevent the compiler from
optimizing away seemingly redundant assignments to a variable, or repeated examination
of a variable without its value seemingly changing.A good example is to consider an
I/O port. Suppose you have an output port that’s pointed to by a variable in your pro-
gram called outPort. If you want to write two characters to the port, for example an O
followed by an N, you might have the following code:

*outPort = 'O';

*outPort = 'N';

A smart compiler might notice two successive assignments to the same location and,
because outPort isn’t being modified in between, simply remove the first assignment
from the program.To prevent this from happening, you declare outPort to be a
volatile pointer, as follows:

volatile char *outPort;

The restrict Qualifier
Like the register qualifier, restrict is an optimization hint for the compiler.As such,
the compiler can choose to ignore it. It is used to tell the compiler that a particular
pointer is the only reference (either indirect or direct) to the value it points to through-
out its scope.That is, the same value is not referenced by any other pointer or variable
within that scope.

The lines

int * restrict intPtrA;

int * restrict intPtrB;

tell the compiler that, for the duration of the scope in which intPtrA and intPtrB are
defined, they will never access the same value.Their use for pointing to integers inside
an array, for example, is mutually exclusive.

17 0672326663 CH17 6/10/04 2:03 PM Page 379

380 Chapter 17 Miscellaneous and Advanced Features

Command-Line Arguments
Many times, a program is developed that requires the user to enter a small amount of
information at the terminal.This information might consist of a number indicating the
triangular number that you want to have calculated or a word that you want to have
looked up in a dictionary.

Rather than having the program request this type of information from the user, you
can supply the information to the program at the time the program is executed.This
capability is provided by what is known as command-line arguments.

As pointed out previously, the only distinguishing quality of the function main is that
its name is special; it specifies where program execution is to begin. In fact, the function
main is actually called upon at the start of program execution by the C system (known
more formally as the runtime system), just as you call a function from within your own C
program.When main completes execution, control is returned to the runtime system,
which then knows that your program has completed execution.

When main is called by the runtime system, two arguments are actually passed to the
function.The first argument, which is called argc by convention (for argument count), is
an integer value that specifies the number of arguments typed on the command line.The
second argument to main is an array of character pointers, which is called argv by con-
vention (for argument vector).There are argc + 1 character pointers contained in this
array, where argc always has a minimum value of 0.The first entry in this array is a
pointer to the name of the program that is executing or is a pointer to a null string if
the program name is not available on your system. Subsequent entries in the array point
to the values that were specified in the same line as the command that initiated execu-
tion of the program.The last pointer in the argv array, argv[argc], is defined to be
null.

To access the command-line arguments, the main function must be appropriately
declared as taking two arguments.The conventional declaration that is used appears as
follows:

int main (int argc, char *argv[])

{

...

}

Remember, the declaration of argv defines an array that contains elements of type
“pointer to char.”As a practical use of command-line arguments, recall Program 10.10,
which looked up a word inside a dictionary and printed its meaning.You can make use
of command-line arguments so that the word whose meaning you want to find can be
specified at the same time that the program is executed, as in the following command:

lookup aerie

This eliminates the need for the program to prompt the user to enter a word because it
is entered on the command line.

17 0672326663 CH17 6/10/04 2:03 PM Page 380

381Command-Line Arguments

If the previous command is executed, the system automatically passes to main a point-
er to the character string "aerie" in argv[1]. Recall that argv[0] contains a pointer to
the name of the program, which in this case is "lookup".

The main routine might appear as follows:

#include <stdlib.h>

#include <stdio.h>

int main (int argc, char *argv[])

{

const struct entry dictionary[100] =

{ { "aardvark", "a burrowing African mammal" },

{ "abyss", "a bottomless pit" },

{ "acumen", "mentally sharp; keen" },

{ "addle", "to become confused" },

{ "aerie", "a high nest" },

{ "affix", "to append; attach" },

{ "agar", "a jelly made from seaweed" },

{ "ahoy", "a nautical call of greeting" },

{ "aigrette", "an ornamental cluster of feathers" },

{ "ajar", "partially opened" } };

int entries = 10;

int entryNumber;

int lookup (const struct entry dictionary [], const char search[],

const int entries);

if (argc != 2)

{

fprintf (stderr, "No word typed on the command line.\n");

return EXIT_FAILURE;

}

entryNumber = lookup (dictionary, argv[1], entries);

if (entryNumber != -1)

printf ("%s\n", dictionary[entryNumber].definition);

else

printf ("Sorry, %s is not in my dictionary.\n", argv[1]);

return EXIT_SUCCESS;

}

The main routine tests to make certain that a word was typed after the program name
when the program was executed. If it wasn’t, or if more than one word was typed, the
value of argc is not equal to 2. In this case, the program writes an error message to stan-
dard error and terminates, returning an exit status of EXIT_FAILURE.

17 0672326663 CH17 6/10/04 2:03 PM Page 381

382 Chapter 17 Miscellaneous and Advanced Features

If argc is equal to 2, the lookup function is called to find the word pointed to by
argv[1] in the dictionary. If the word is found, its definition is displayed.

As another example of command-line arguments, Program 16.3 was a file-copy pro-
gram. Program 17.1, which follows, takes the two filenames from the command line,
rather than prompting the user to type them in.

Program 17.1 File Copy Program Using Command-Line Arguments

// Program to copy one file to another -- version 2

#include <stdio.h>

int main (int argc, char *argv[])

{

FILE *in, *out;

int c;

if (argc != 3) {

fprintf (stderr, "Need two files names\n");

return 1;

}

if ((in = fopen (argv[1], "r")) == NULL) {

fprintf (stderr, "Can't read %s.\n", argv[1]);

return 2;

}

if ((out = fopen (argv[2], "w")) == NULL) {

fprintf (stderr, "Can't write %s.\n", argv[2]);

return 3;

}

while ((c = getc (in)) != EOF)

putc (c, out);

printf ("File has been copied.\n");

fclose (in);

fclose (out);

return 0;

}

The program first checks to make certain that two arguments were typed after the pro-
gram name. If so, the name of the input file is pointed to by argv[1], and the name of

17 0672326663 CH17 6/10/04 2:03 PM Page 382

383Dynamic Memory Allocation

the output file by argv[2].After opening the first file for reading and the second file for
writing, and after checking both opens to make certain they succeeded, the program
copies the file character by character as before.

Note that there are four different ways for the program to terminate: incorrect num-
ber of command-line arguments, can’t open the file to be copied for reading, can’t open
the output file for writing, and successful termination. Remember, if you’re going to use
the exit status, you should always terminate the program with one. If your program ter-
minates by falling through the bottom of main, it returns an undefined exit status.

If Program 17.1 were called copyf and the program was executed with the following
command line:

copyf foo foo1

then the argv array would look like Figure 17.1 when main is entered.

argv[0]

argv[1]

argv[2]

argv[3]

c o p y f

f o o \0

f o o 1 \0

null

\0

Figure 17.1 argv array on startup of copyf.

Remember that command-line arguments are always stored as character strings.
Execution of the program power with the command-line arguments 2 and 16, as in

power 2 16

stores a pointer to the character string "2" inside argv[1], and a pointer to the string
"16" inside argv[2]. If the arguments are to be interpreted as numbers by the program
(as you might suspect is the case in the power program), they must be converted by the
program itself. Several routines are available in the program library for doing such con-
versions, such as sscanf, atof, atoi, strtod, and strtol.These are described in
Appendix B,“The Standard C Library.”

Dynamic Memory Allocation
Whenever you define a variable in C—whether it is a simple data type, an array, or a
structure—you are effectively reserving one or more locations in the computer’s memo-
ry to contain the values that will be stored in that variable.The C compiler automatically
allocates the correct amount of storage for you.

17 0672326663 CH17 6/10/04 2:03 PM Page 383

384 Chapter 17 Miscellaneous and Advanced Features

It is frequently desirable, if not necessary, to be able to dynamically allocate storage
while a program is running. Suppose you have a program that is designed to read in a set
of data from a file into an array in memory. Suppose, however, that you don’t know how
much data is in the file until the program starts execution.You have three choices:

n Define the array to contain the maximum number of possible elements at compile
time.

n Use a variable-length array to dimension the size of the array at runtime.
n Allocate the array dynamically using one of C’s memory allocation routines.

Using the first approach, you have to define your array to contain the maximum number
of elements that would be read into the array, as in the following:

#define kMaxElements 1000

struct dataEntry dataArray [kMaxElements];

Now, as long as the data file contains 1,000 elements or less, you’re in business. But if the
number of elements exceeds this amount, you must go back to the program, change the
value of kMaxElements, and recompile it. Of course, no matter what value you select,
you always have the chance of running into the same problem again in the future.

With the second approach, if you can determine the number of elements you need
before you start reading in the data (perhaps from the size of the file, for example), you
can then define a variable-length array as follows:

struct dateEntry dataArray [dataItems];

Here, it is assumed that the variable dataItems contains the aforementioned number of
data items to read in.

Using the dynamic memory allocation functions, you can get storage as you need it.
That is, this approach also enables you to allocate memory as the program is executing.
To use dynamic memory allocation, you must first learn about three functions and one
new operator.

The calloc and malloc Functions
In the standard C library, two functions, called calloc and malloc, can be used to allo-
cate memory at runtime.The calloc function takes two arguments that specify the
number of elements to be reserved and the size of each element in bytes.The function
returns a pointer to the beginning of the allocated storage area in memory.The storage
area is also automatically set to 0.

calloc returns a pointer to void, which is C’s generic pointer type. Before storing
this returned pointer inside a pointer variable in your program, it can be converted into
a pointer of the appropriate type using the type cast operator.

The malloc function works similarly, except that it only takes a single argument—the
total number of bytes of storage to allocate—and also doesn’t automatically set the stor-
age area to 0.

17 0672326663 CH17 6/10/04 2:03 PM Page 384

385Dynamic Memory Allocation

The dynamic memory allocation functions are declared in the standard header file
<stdlib.h>, which should be included in your program whenever you want to use
these routines.

The sizeof Operator
To determine the size of data elements to be reserved by calloc or malloc in a
machine-independent way, the C sizeof operator should be used.The sizeof operator
returns the size of the specified item in bytes.The argument to the sizeof operator can
be a variable, an array name, the name of a basic data type, the name of a derived data
type, or an expression. For example, writing

sizeof (int)

gives the number of bytes needed to store an integer. On a Pentium 4 machine, this has
the value 4 because an integer occupies 32 bits on that machine. If x is defined to be an
array of 100 integers, the expression

sizeof (x)

gives the amount of storage required for the 100 integers of x (or the value 400 on a
Pentium 4).The expression

sizeof (struct dataEntry)

has as its value the amount of storage required to store one dataEntry structure. Finally,
if data is defined as an array of struct dataEntry elements, the expression

sizeof (data) / sizeof (struct dataEntry)

gives the number of elements contained in data (data must be a previously defined
array, and not a formal parameter or externally referenced array).The expression

sizeof (data) / sizeof (data[0])

also produces the same result.The macro

#define ELEMENTS(x) (sizeof(x) / sizeof(x[0]))

simply generalizes this technique. It enables you to write code like

if (i >= ELEMENTS (data))

...

and

for (i = 0; i < ELEMENTS (data); ++i)

...

You should remember that sizeof is actually an operator, and not a function, even
though it looks like a function.This operator is evaluated at compile time and not at
runtime, unless a variable-length array is used in its argument. If such an array is not
used, the compiler evaluates the value of the sizeof expression and replaces it with the
result of the calculation, which is treated as a constant.

17 0672326663 CH17 6/10/04 2:03 PM Page 385

386 Chapter 17 Miscellaneous and Advanced Features

Use the sizeof operator wherever possible to avoid having to calculate and hard-
code sizes into your program.

Getting back to dynamic memory allocation, if you want to allocate enough storage
in your program to store 1,000 integers, you can call calloc as follows:

#include <stdlib.h>

...

int *intPtr;

...

intPtr = (int *) calloc (sizeof (int), 1000);

Using malloc, the function call looks like this:

intPtr = (int *) malloc (1000 * sizeof (int));

Remember that both malloc and calloc are defined to return a pointer to void and, as
noted, this pointer should be type cast to the appropriate pointer type. In the preceding
example, the pointer is type cast to an integer pointer and then assigned to intPtr.

If you ask for more memory than the system has available, calloc (or malloc) returns
a null pointer.Whether you use calloc or malloc, be certain to test the pointer that is
returned to ensure that the allocation succeeded.

The following code segment allocates space for 1,000 integer pointers and tests the
pointer that is returned. If the allocation fails, the program writes an error message to
standard error and then exits.

#include <stdlib.h>

#include <stdio.h>

...

int *intPtr;

...

intptr = (int *) calloc (sizeof (int), 1000);

if (intPtr == NULL)

{

fprintf (stderr, "calloc failed\n");

exit (EXIT_FAILURE);

}

If the allocation succeeds, the integer pointer variable intPtr can be used as if it were
pointing to an array of 1,000 integers. So, to set all 1,000 elements to –1, you could
write

for (p = intPtr; p < intPtr + 1000; ++p)

*p = -1;

assuming p is declared to be an integer pointer.
To reserve storage for n elements of type struct dataEntry, you first need to define

a pointer of the appropriate type

struct dataEntry *dataPtr;

17 0672326663 CH17 6/10/04 2:03 PM Page 386

387Dynamic Memory Allocation

and could then proceed to call the calloc function to reserve the appropriate number
of elements

dataPtr = (struct dataEntry *) calloc (n, sizeof (struct dataEntry));

Execution of the preceding statement proceeds as follows:

1. The calloc function is called with two arguments, the first specifying that storage
for n elements is to be dynamically allocated and the second specifying the size of
each element.

2. The calloc function returns a pointer in memory to the allocated storage area. If
the storage cannot be allocated, the null pointer is returned.

3. The pointer is type cast into a pointer of type “pointer to struct dataEntry” and
is then assigned to the pointer variable dataPtr.

Once again, the value of dataPtr should be subsequently tested to ensure that the allo-
cation succeeded. If it did, its value is nonnull.This pointer can then be used in the nor-
mal fashion, as if it were pointing to an array of n dataEntry elements. For example, if
dataEntry contains an integer member called index, you can assign 100 to this member
as pointed to by dataPtr with the following statement:

dataPtr->index = 100;

The free Function
When you have finished working with the memory that has been dynamically allocated
by calloc or malloc, you should give it back to the system by calling the free func-
tion.The single argument to the function is a pointer to the beginning of the allocated
memory, as returned by a calloc or malloc call. So, the call

free (dataPtr);

returns the memory allocated by the calloc call shown previously, provided that the
value of dataPtr still points to the beginning of the allocated memory.

The free function does not return a value.
The memory that is released by free can be reused by a later call to calloc or

malloc. For programs that need to allocate more storage space than would otherwise be
available if it were all allocated at once, this is worth remembering. Make certain you
give the free function a valid pointer to the beginning of some previously allocated
space.

Dynamic memory allocation is invaluable when dealing with linked structures, such
as linked lists.When you need to add a new entry to the list, you can dynamically allo-
cate storage for one entry in the list and link it into the list with the pointer returned by
calloc or malloc. For example, assume that listEnd points to the end of a singly
linked list of type struct entry, defined as follows:

17 0672326663 CH17 6/10/04 2:03 PM Page 387

388 Chapter 17 Miscellaneous and Advanced Features

struct entry

{

int value;

struct entry *next;

};

Here is a function called addEntry that takes as its argument a pointer to the start of the
linked list and that adds a new entry to the end of the list.

#include <stdlib.h>

#include <stddef.h>

// add new entry to end of linked list

struct entry *addEntry (struct entry *listPtr)

{

// find the end of the list

while (listPtr->next != NULL)

listPtr = listPtr->next;

// get storage for new entry

listPtr->next = (struct entry *) malloc (sizeof (struct entry));

// add null to the new end of the list

if (listPtr->next != NULL)

(listPtr->next)->next = (struct entry *) NULL;

return listPtr->next;

}

If the allocation succeeds, a null pointer is placed in the next member of the newly allo-
cated linked-list entry (pointed to by listPtr->next).

The function returns a pointer to the new list entry, or the null pointer if the alloca-
tion fails (verify that this is, in fact, what happens). If you draw a picture of a linked list
and trace through the execution of addEntry, it will help you to understand how the
function works.

Another function, called realloc, is associated with dynamic memory allocation. It
can be used to shrink or expand the size of some previously allocated storage. For more
details, consult Appendix B.

This chapter concludes coverage of the features of the C language. In Chapter 18,
“Debugging Programs,” you learn some techniques that will help you to debug your C
programs. One involves using the preprocessor.The other involves the use of a special
tool, called an interactive debugger.

17 0672326663 CH17 6/10/04 2:03 PM Page 388

18
Debugging Programs

THIS CHAPTER TEACHES YOU TWO TECHNIQUES you can use to debug your programs.
One involves using the preprocessor to allow for the conditional inclusion of debugging
statements in your program.The other technique involves the use of an interactive
debugger. In this chapter, you are introduced to a popular debugger called gdb. Even if
you use a different debugger (such as dbx, or one built in to an IDE tool), it is likely that
your debugger will have similarities to gdb.

Debugging with the Preprocessor
As noted in Chapter 13,“The Preprocessor,” conditional compilation is useful when
debugging programs.The C preprocessor can be used to insert debugging code into
your program. By appropriate use of #ifdef statements, the debugging code can be
enabled or disabled at your discretion. Program 18.1 is a program (admittedly contrived)
that reads in three integers and prints out their sum. Note that when the preprocessor
identifier DEBUG is defined, the debugging code (which prints to stderr) is compiled
with the rest of the program, and when DEBUG isn’t defined, the debugging code is
left out.

Program 18.1 Adding Debug Statements with the Preprocessor

#include <stdio.h>

#define DEBUG

int process (int i, int j, int k)

{

return i + j + k;

}

18 0672326663 CH18 6/10/04 2:01 PM Page 389

390 Chapter 18 Debugging Programs

int main (void)

{

int i, j, k, nread;

nread = scanf ("%d %d %d", &i, &j, &k);

#ifdef DEBUG

fprintf (stderr, "Number of integers read = %i\n", nread);

fprintf (stderr, "i = %i, j = %i, k = %i\n", i, j, k);

#endif

printf ("%i\n", process (i, j, k));

return 0;

}

Program 18.1 Output

1 2 3

Number of integers read = 3

i = 1, j = 2, k = 3

6

Program 18.1 Output (Rerun)

1 2 e

Number of integers read = 2

i = 1, j = 2, k = 0

3

Note that the value displayed for k can be anything because its value was not set by the
scanf call and it was not initialized by the program.

The statements

#ifdef DEBUG

fprintf (stderr, "Number of integers read = %i\n", nread);

fprintf (stderr, "i = %d, j = %d, k = %d\n", i, j, k);

#endif

are analyzed by the preprocessor. If the identifier DEBUG has been previously defined
(#ifdef DEBUG), the preprocessor sends the statements that follow up to the #endif (the
two fprintfs) to the compiler to be compiled. If DEBUG hasn’t been defined, the two

Program 18.1 Continued

18 0672326663 CH18 6/10/04 2:01 PM Page 390

391Debugging with the Preprocessor

fprintfs never make it to the compiler (they’re removed from the program by the pre-
processor).As you can see, the program prints out messages after it reads in the integers.
The second time the program is run, an invalid character is entered (e).The debugging
output informs you of the error. Note that to turn off the debugging code, all you have
to do is remove the line

#define DEBUG

and the fprintfs are not compiled with the rest of the program.Although this program
is so short you might not feel it’s worth the bother, consider how easy it is to turn
debugging code on and off in a program several hundreds of lines long by simply chang-
ing one line.

You can even control the debugging from the command line when the program is
compiled. If you’re using gcc, the command

gcc –D DEBUG debug.c

compiles the file debug.c, defining the preprocessor variable DEBUG for you.This is
equivalent to putting the following line in your program:

#define DEBUG

Take a look at a slightly longer program. Program 18.2 takes up to two command-line
arguments. Each of these is converted into an integer value and is assigned to the corre-
sponding variables arg1 and arg2.To convert the command-line arguments into inte-
gers, the standard library function atoi is used.This function takes a character string as
its argument and returns its corresponding representation as an integer.The atoi func-
tion is declared in the header file <stdlib.h>, which is included at the beginning of
Program 18.2.

After processing the arguments, the program calls the process function, passing the
two command-line values as arguments.This function simply returns the product of
these two arguments.As you can see, when the DEBUG identifier is defined, various
debugging messages are printed, and when it isn’t defined, only the result is printed.

Program 18.2 Compiling in Debug Code

#include <stdio.h>

#include <stdlib.h>

int process (int i1, int i2)

{

int val;

#ifdef DEBUG

fprintf (stderr, "process (%i, %i)\n", i1, i2);

#endif

val = i1 * i2;

#ifdef DEBUG

18 0672326663 CH18 6/10/04 2:01 PM Page 391

392 Chapter 18 Debugging Programs

fprintf (stderr, "return %i\n", val);

#endif

return val;

}

int main (int argc, char *argv[])

{

int arg1 = 0, arg2 = 0;

if (argc > 1)

arg1 = atoi (argv[1]);

if (argc == 3)

arg2 = atoi (argv[2]);

#ifdef DEBUG

fprintf (stderr, "processed %i arguments\n", argc - 1);

fprintf (stderr, "arg1 = %i, arg2 = %i\n", arg1, arg2);

#endif

printf ("%i\n", process (arg1, arg2));

return 0;

}

Program 18.2 Output

$ gcc –D DEBUG p18-2.c Compile with DEBUG defined

$ a.out 5 10

processed 2 arguments

arg1 = 5, arg2 = 10

process (5, 10)

return 50

50

Program 18.2 Output (Rerun)

$ gcc p18-2.c Compile without DEBUG defined

$ a.out 2 5

10

When the program is ready for distribution, the debugging statements can be left in the
source file without affecting the executable code, as long as DEBUG isn’t defined. If a bug
is found at some later time, the debugging code can be compiled in and the output
examined to see what’s happening.

The previous method is still rather clumsy because the programs themselves tend to
be difficult to read. One thing you can do is change the way the preprocessor is used.

Program 18.2 Continued

18 0672326663 CH18 6/10/04 2:01 PM Page 392

393Debugging with the Preprocessor

You can define a macro that can take a variable number of arguments to produce your
debugging output:

#define DEBUG(fmt, ...) fprintf (stderr, fmt, __VA_ARGS__)

and use it instead of fprintf as follows:

DEBUG ("process (%i, %i)\n", i1, i2);

This gets evaluated as follows:

fprintf (stderr, "process (%i, %i)\n", i1, i2);

The DEBUG macro can be used throughout a program, and the intent is quite clear, as
shown in Program 18.3.

Program 18.3 Defining a DEBUG Macro

#include <stdio.h>

#include <stdlib.h>

#define DEBUG(fmt, ...) fprintf (stderr, fmt, __VA_ARGS__)

int process (int i1, int i2)

{

int val;

DEBUG ("process (%i, %i)\n", i1, i2);

val = i1 * i2;

DEBUG ("return %i\n", val);

return val;

}

int main (int argc, char *argv[])

{

int arg1 = 0, arg2 = 0;

if (argc > 1)

arg1 = atoi (argv[1]);

if (argc == 3)

arg2 = atoi (argv[2]);

DEBUG ("processed %i arguments\n", argc - 1);

DEBUG ("arg1 = %i, arg2 = %i\n", arg1, arg2);

printf ("%d\n", process (arg1, arg2));

return 0;

}

18 0672326663 CH18 6/10/04 2:01 PM Page 393

394 Chapter 18 Debugging Programs

Program 18.3 Output

$ gcc pre3.c

$ a.out 8 12

processed 2 arguments

arg1 = 8, arg2 = 12

process (8, 12)

return 96

96

As you can see, the program is much more readable in this form.When you no longer
need debugging output, simply define the macro to be nothing:

#define DEBUG(fmt, ...)

This tells the preprocessor to replace calls to the DEBUG macro with nothing, so all uses
of DEBUG simply turn into null statements.

You can expand on the notion of the DEBUG macro a little further to allow for both
compile-time and execution-time debugging control: Declare a global variable Debug
that defines a debugging level.All DEBUG statements less than or equal to this level pro-
duce output. DEBUG now takes at least two arguments; the first is the level:

DEBUG (1, "processed data\n");

DEBUG (3, "number of elements = %i\n", nelems)

If the debugging level is set to 1 or 2, only the first DEBUG statement produces output; if
the debugging level is set to 3 or more, both DEBUG statements produce output.The
debugging level can be set via a command-line option at execution time as follows:

a.out –d1 Set debugging level to 1

a.out -d3 Set debugging level to 3

The definition for DEBUG is straightforward:

#define DEBUG(level, fmt, ...) \

if (Debug >= level) \

fprintf (stderr, fmt, __VA_ARGS__)

So

DEBUG (3, "number of elements = %i\n", nelems);

becomes
if (Debug >= 3)

fprintf (stderr, "number of elements = %i\n", nelems);

Again, if DEBUG is defined to be nothing, the DEBUG calls become null statements.
The following definition provides all the mentioned features, as well as the ability to

control the definition of DEBUG at compile time.

18 0672326663 CH18 6/10/04 2:01 PM Page 394

395Debugging Programs with gdb

#ifdef DEBON

define DEBUG(level, fmt, ...) \

if (Debug >= level) \

fprintf (stderr, fmt, __VA_ARGS__)

#else

define DEBUG(level, fmt, ...)

#endif

When compiling a program containing the previous definition (which you can conve-
niently place inside a header file and include in your program), you either define DEBON
or not. If you compile prog.c as follows:

$ gcc prog.c

it compiles in the null definition for DEBUG based on the #else clause shown in the pre-
vious preprocessor statements. On the other hand, if you compile your program like this:

$ gcc –D DEBON prog.c

the DEBUG macro that calls fprintf based on the debug level is compiled in with the rest
of your code.

At runtime, if you have compiled in the debugging code, you can select the debug
level.As noted, this can be done with a command-line option as follows:

$ a.out –d3

Here, the debug level is set to 3. Presumably, you would process this command-line argu-
ment in your program and store the debug level in a variable (probably global) called
Debug.And in this case, only DEBUG macros that specify a level of 3 or greater cause the
fprintf calls to be made.

Note that a.out -d0 sets the debugging level to zero and no debugging output is
generated even though the debugging code is still in there.

To summarize, you have seen here a two-tiered debugging scheme: Debugging code
can be compiled in or out of the code, and when compiled in, different debugging levels
can be set to produce varying amounts of debugging output.

Debugging Programs with gdb
gdb is a powerful interactive debugger that is frequently used to debug programs com-
piled with GNU’s gcc compiler. It allows you to run your program, stop at a predeter-
mined location, display and/or set variables, and continue execution. It allows you to
trace your program’s execution and even execute it one line at a time. gdb also has a
facility for determining where core dumps occur.A core dump occurs due to some abnor-
mal event, possibly division by zero or attempts to access past the end of an array.This
results in the creation of a file named core that contains a snapshot of the contents of the
process’s memory at the time it terminated.1

1.Your system might be configured to disable the automatic creation of this core file, often due to
the large size of these files. Sometimes, this has to do with the maximum file creation size, which
can be changed with the ulimit command.

18 0672326663 CH18 6/10/04 2:01 PM Page 395

396 Chapter 18 Debugging Programs

Your C program must be compiled with the gcc compiler using the -g option to
make full use of gdb’s features.The -g option causes the C compiler to add extra infor-
mation to the output file, including variable and structure types, source filenames, and C
statement to machine code mappings.

Program 18.4 shows a program that attempts to access elements past the end of an
array.

Program 18.4 A Simple Program for Use with gdb

#include <stdio.h>

int main (void)

{

const int data[5] = {1, 2, 3, 4, 5};

int i, sum;

for (i = 0; i >= 0; ++i)

sum += data[i];

printf ("sum = %i\n", sum);

return 0;

}

Here’s what happens when the program is run on a Mac OS X system from a terminal
window (on other systems you might get a different message displayed when you run
the program):

$ a.out

Segmentation fault

Use gdb to try to track down the error.This is certainly a contrived example; neverthe-
less, it is illustrative.

First, make sure you compile the program with the –g option.Then, you can start up
gdb on the executable file, which is a.out by default.This might result in lines of intro-
ductory messages being displayed on your system:

$ gcc –g p18.4.c Recompile with debugging information for gdb

$ gdb a.out Start up gdb on the executable file

GNU gdb 5.3-20030128 (Apple version gdb-309) (Thu Dec 4 15:41:30 GMT 2003)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "powerpc-apple-darwin".

Reading symbols for shared libraries .. done

18 0672326663 CH18 6/10/04 2:01 PM Page 396

397Debugging Programs with gdb

When gdb is ready to accept commands, it displays a (gdb) prompt. In our simple
example, you’re simply telling it to run your program by entering the run command.
This causes gdb to start execution of your program until it finishes or an abnormal event
occurs:

(gdb) run

Starting program: /Users/stevekochan/MySrc/c/a.out

Reading symbols for shared libraries . done

Program received signal EXC_BAD_ACCESS, Could not access memory.

0x00001d7c in main () at p18-4.c:9

9 sum += data[i];

(gdb)

So your program receives an error (as it did before), but it still remains under the control
of gdb.That’s the nice part because now you can see what it was doing when the error
occurred as well as look at the values of variables at the time of the error.

As you can see from the previous display, the program tried to perform an invalid
memory access at line 9 in your program.The actual line in question is automatically
displayed from your source file.To gain a little context around that line, you can use the
list command, which displays a window of 10 lines around the specified line (5 lines
before and 4 lines after):

(gdb) list 9

4 {

5 const int data[5] = {1, 2, 3, 4, 5};

6 int i, sum;

7

8 for (i = 0; i >= 0; ++i)

9 sum += data[i];

10

11 printf ("sum = %i\n", sum);

12

13 return 0;

(gdb)

You can look at variables by using the print command.Take a look at what the value of
sum was at the time the program stopped with an error:

(gdb) print sum

$1 = -1089203864

This value for sum is obviously out of whack (and on your system might differ from
what’s shown here).The $n notation is used by gdb to keep track of the values you’ve
previously displayed, so you can easily reference them again later.

Take a look at what the index variable i is set to:

(gdb) print i

$2 = 232

18 0672326663 CH18 6/10/04 2:01 PM Page 397

398 Chapter 18 Debugging Programs

Oops! That’s not good.You have only five elements in the array and you tried to access
the 233rd element when the error occurred. On your system, the error might occur ear-
lier or later. But eventually, you should get an error.

Before you exit from gdb, look at another variable. See how nicely gdb deals with
variables like arrays and structures:

(gdb) print data Show the contents of the data array

$3 = {1, 2, 3, 4, 5}

(gdb) print data[0] Show the value of the first element

$4 = 1

You’ll see an example of a structure a little later.To complete this first example with gdb,
you need to learn how to get out.You can do that with the quit command:

(gdb) quit

The program is running. Exit anyway? (y or n) y

$

Even though the program had an error, technically speaking, it was still active inside gdb;
the error merely caused your program’s execution to be suspended, but not terminated.
That’s the reason gdb asked for confirmation about quitting.

Working with Variables
gdb has two basic commands that allow you to work with variables in your program.
One you’ve seen already is print.The other allows you to set the value of a variable.
This is done with the set var command.The set command actually takes a number of
different options, but var is the one you want to use to assign a value to a variable:

(gdb) set var i=5

(gdb) print i

$1 = 5

(gdb) set var i=i*2 You can write any valid expression

(gdb) print i

$2 = 10

(gdb) set var i=$1+20 You can use so-called "convenience variables"

(gdb) print i

$3 = 25

A variable must be accessible by the current function, and the process must be active, that
is, running. gdb maintains an idea of a current line (like an editor), a current file (the
source file of the program), and a current function.When gdb starts up without a core
file, the current function is main, the current file is the one that contains main, and the
current line is the first executable line in main; otherwise, the current line, file, and pro-
cedure are set to the location where the program aborted.

If a local variable with the specified name doesn’t exist, gdb looks for an external
variable of the same name. In the previous example, the function executing at the time
the invalid access occurred was main, and i was a variable local to main.

18 0672326663 CH18 6/10/04 2:01 PM Page 398

399Debugging Programs with gdb

A function can be specified as part of the variable name in the form
function::variable to reference a variable local to a specific routine, for example,

(gdb) print main::i Display contents of i in main

$4 = 25

(gdb) set var main::i=0 Set value of i in main

Note that attempting to set a variable in an inactive function (that is, a function that is
not either currently executing or waiting for another function to return to continue its
own execution) is an error and results in the following message:

No symbol "var" in current context.

Global variables can be directly referenced as 'file’::var.This forces gdb to access an
external variable as defined in the file file and ignore any local variable of the same name
in the current function.

Structure and union members can be accessed using standard C syntax. If datePtr is
a pointer to a date structure, print datePtr->year prints the year member of the
structure pointed to by datePtr.

Referencing a structure or union without a member causes the contents of the entire
structure or union to be displayed.

You can force gdb to display a variable in a different format, for example hexadeci-
mal, by following the print command with a / and a letter that specifies the format to
use. Many gdb commands can be abbreviated with a single letter. In the following exam-
ple, the abbreviation for the print command, which is p, is used:

(gdb) set var i=35 Set i to 35

(gdb) p /x i Display i in hexadecimal

$1 = 0x23

Source File Display
gdb provides several commands that give you access to the source files.This enables you
to debug the program without having to reference a source listing or open your source
files in other windows.

As mentioned earlier, gdb maintains an idea of what the current line and file are.
You’ve seen how you can display the area around the current line with the list com-
mand, which can be abbreviated as l. Each time you subsequently type the list com-
mand (or more simply, just press the Enter or Return key), the next 10 lines from the file
are displayed.This value of 10 is the default and can be set to any value by using the
listsize command.

If you want to display a range of lines, you can specify the starting and ending line
numbers, separated by a comma, as follows:

(gdb) list 10,15 List lines 10 through 15

18 0672326663 CH18 6/10/04 2:01 PM Page 399

400 Chapter 18 Debugging Programs

Lines from a function can be listed by specifying the function’s name to the list com-
mand:

(gdb) list foo Display lines for function foo

If the function is in another source file, gdb automatically switches to that file.You can
find the name of the current source file being displayed with gdb by typing in the com-
mand info source.

Typing a + after the list command causes the next 10 lines from the current file to
be displayed, which is the same action that occurs if just list is typed.Typing a – causes
the previous 10 lines to be displayed. Both the + and – options can also be followed by a
number to specify a relative offset to be added or subtracted from the current line.

Controlling Program Execution
Displaying lines from a file doesn’t modify the way a program is executed.You must use
other commands for that.You’ve seen two commands that control the execution of a
program in gdb: run, which runs the program from the beginning, and quit, which ter-
minates execution of the current program.

The run command can be followed by command-line arguments and/or redirection
(< or >), and gdb handles them properly. Subsequent use of the run command without
any arguments reuses the previous arguments and redirection.You can display the current
arguments with the command show args.

Inserting Breakpoints

The break command can be used to set breakpoints in your program.A breakpoint is just
as its name implies—a point in your program that, when reached during execution, caus-
es the program to “break” or pause.The program’s execution is suspended, which allows
you to do things such as look at variables and determine precisely what’s going on at the
point.

A breakpoint can be set at any line in your program by simply specifying the line
number to the command. If you specify a line number but no function or filename, the
breakpoint is set on that line in the current file; if you specify a function, the breakpoint
is set on the first executable line in that function.

(gdb) break 12 Set breakpoint on line 12

Breakpoint 1 at 0x1da4: file mod1.c, line 12.

(gdb) break main Set breakpoint at start of main

Breakpoint 2 at 0x1d6c: file mod1.c, line 3.

(gdb) break mod2.c:foo Breakpoint in function foo in file mod2.c

Breakpoint 3 at 0x1dd8: file mod2.c, line 4.

When a breakpoint is reached during program execution, gdb suspends execution of your
program, returns control to you, and identifies the breakpoint and the line of your pro-
gram at which it stopped.You can do anything you want at that point:You can display or
set variables, set or unset breakpoints, and so on.To resume execution of the program, you
can simply use the continue command, which can be abbreviated as simply c.

18 0672326663 CH18 6/10/04 2:01 PM Page 400

401Debugging Programs with gdb

Single Stepping

Another useful command for controlling program execution is the step command,
which can be abbreviated as s.This command single steps your program, meaning that
one line of C code in your program is executed for each step command you enter. If
you follow the step command with a number, then that many lines are executed. Note
that a line might contain several C statements; however, gdb is line oriented, and exe-
cutes all statements on a line as a single step. If a statement spans several lines, single step-
ping the first line of the statement causes all the lines of the statement to be executed.
You can single step your program at any time that a continue is appropriate (after a sig-
nal or breakpoint).

If the statement contains a function call and you step, gdb takes you into the func-
tion (provided it’s not a system library function; these are typically not entered). If you
use the next command instead of step, gdb makes the function call and does not step
you into it.

Try some of gdb’s features on Program 18.5, which otherwise serves no useful pur-
pose.

Program 18.5 Working with gdb

#include <stdio.h>

#include <stdlib.h>

struct date {

int month;

int day;

int year;

};

struct date foo (struct date x)

{

++x.day;

return x;

}

int main (void)

{

struct date today = {10, 11, 2004};

int array[5] = {1, 2, 3, 4, 5};

struct date *newdate, foo ();

char *string = "test string";

int i = 3;

newdate = (struct date *) malloc (sizeof (struct date));

newdate->month = 11;

18 0672326663 CH18 6/10/04 2:01 PM Page 401

402 Chapter 18 Debugging Programs

newdate->day = 15;

newdate->year = 2004;

today = foo (today);

free (newdate);

return 0;

}

In the sample session for Program 18.5, your output might be slightly different, depend-
ing on which version and on what system you are running gdb.

Program 18.5 gdb Session

$ gcc -g p18-5.c

$ gdb a.out

GNU gdb 5.3-20030128 (Apple version gdb-309) (Thu Dec 4 15:41:30 GMT 2003)

Copyright 2003 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.

Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.

This GDB was configured as "powerpc-apple-darwin".

Reading symbols for shared libraries .. done

(gdb) list main

14

15 return x;

16 }

17

18 int main (void)

19 {

20 struct date today = {10, 11, 2004};

21 int array[5] = {1, 2, 3, 4, 5};

22 struct date *newdate, foo ();

23 char *string = "test string";

(gdb) break main Set breakpoint in main

Breakpoint 1 at 0x1ce8: file p18-5.c, line 20.

(gdb) run Start program execution

Starting program: /Users/stevekochan/MySrc/c/a.out

Reading symbols for shared libraries . done

Breakpoint 1, main () at p18-5.c:20

20 struct date today = {10, 11, 2004};

(gdb) step Execute line 20

Program 18.5 Continued

18 0672326663 CH18 6/10/04 2:01 PM Page 402

403Debugging Programs with gdb

21 int array[5] = {1, 2, 3, 4, 5};

(gdb) print today

$1 = {

month = 10,

day = 11,

year = 2004

}

(gdb) print array This array hasn't been initialized yet

$2 = {-1881069176, -1880816132, -1880815740, -1880816132, -1880846287}

(gdb) step Run another line

23 char *string = "test string";

(gdb) print array Now try it

$3 = {1, 2, 3, 4, 5} That's better

(gdb) list 23,28

23 char *string = "test string";

24 int i = 3;

25

26 newdate = (struct date *) malloc (sizeof (struct date));

27 newdate->month = 11;

28 newdate->day = 15;

(gdb) step 5 Execute 5 lines

29 newdate->year = 2004;

(gdb) print string

$4 = 0x1fd4 "test string"

(gdb) print string[1]

$5 = 101 'e'

(gdb) print array[i] The program set i to 3

$6 = 3

(gdb) print newdate This is a pointer variable

$7 = (struct date *) 0x100140

(gdb) print newdate->month

$8 = 11

(gdb) print newdate->day + i Arbitrary C expression

$9 = 18

(gdb) print $7 Access previous value

$10 = (struct date *) 0x100140

(gdb) info locals Show the value of all local variables

today = {

month = 10,

day = 11,

year = 2004

}

array = {1, 2, 3, 4, 5}

newdate = (struct date *) 0x100140

string = 0x1fd4 "test string"

Program 18.5 Continued

18 0672326663 CH18 6/10/04 2:01 PM Page 403

404 Chapter 18 Debugging Programs

i = 3

(gdb) break foo Put a breakpoint at the start of foo

Breakpoint 2 at 0x1c98: file p18-5.c, line 13.

(gdb) continue Continue execution

Continuing.

Breakpoint 2, foo (x={month = 10, day = 11, year = 2004}) at p18-5.c:13

13 ++x.day; 0x8e in foo:25: {

(gdb) print today Display value of today

No symbol "today" in current context

(gdb) print main::today Display value of today from main

$11 = {

month = 10,

day = 11,

year = 2004

}

(gdb) step

15 return x;

(gdb) print x.day

$12 = 12

(gdb) continue

Continuing.

Program exited normally.

(gdb)

Note one feature of gdb:After a breakpoint is reached or after single stepping, it lists the
line that will be executed next when you resume execution of your program, and not
the last executed line.That’s why array was still not initialized the first time it was dis-
played. Single stepping one line caused it to be initialized.Also note that declarations that
initialize automatic variables are considered executable lines (they actually do cause the
compiler to produce executable code).

Listing and Deleting Breakpoints

Once set, breakpoints remain in a program until gdb exits or until you delete them.You
can see all the breakpoints that you have set by using the info break command, as
follows:

(gdb) info break

Num Type Disp Enb Address What

1 breakpoint keep y 0x00001c9c in main at p18-5.c:20

2 breakpoint keep y 0x00001c4c in foo at p18-5.c:13

Program 18.5 Continued

18 0672326663 CH18 6/10/04 2:01 PM Page 404

405Debugging Programs with gdb

You can delete a breakpoint at a particular line with the clear command followed by
the line number.You can delete a breakpoint at the start of a function by specifying the
function’s name to the clear command instead:

(gdb) clear 20 Remove breakpoint from line 20

Deleted breakpoint 1

(gdb) info break

Num Type Disp Enb Address What

2 breakpoint keep y 0x00001c4c in foo at p18-5.c:13

(gdb) clear foo Remove breakpoint on entry into foo

Deleted breakpoint 2

(gdb) info break

No breakpoints or watchpoints.

(gdb)

Getting a Stack Trace
Sometimes, you’ll want to know exactly where you are in terms of the hierarchy of
function calls when a program gets interrupted.This is useful information when examin-
ing a core file.You can take a look at the call stack by using the backtrace command,
which can be abbreviated as bt.The following is an example use of Program 18.5.

(gdb) break foo

Breakpoint 1 at 0x1c4c: file p18-5.c, line 13.

(gdb) run

Starting program: /Users/stevekochan/MySrc/c/a.out

Reading symbols for shared libraries . done

Breakpoint 1, foo (x={month = 10, day = 11, year = 2004}) at p18-5.c:13

13 ++x.day;

(gdb) bt Print stack trace

#0 foo (x={month = 10, day = 11, year = 2004}) at p18-5.c:13

#1 0x00001d48 in main () at p18-5.c:31

(gdb)

When the break is taken on entry to foo, the backtrace command is entered.The out-
put shows two functions on the call stack: foo and main.As you can see, the arguments
to the functions are also listed.Various commands (such as up, down, frame, and info
args) that are not covered here allow you to work your way around in the stack so that
you can more easily examine arguments passed to a particular function or work with its
local variables.

Calling Functions and Setting Arrays and Structures
You can use function calls in gdb expressions as follows:

(gdb) print foo(*newdate) Call foo with date structure pointed to by newdate

$13 = {

18 0672326663 CH18 6/10/04 2:01 PM Page 405

406 Chapter 18 Debugging Programs

month = 11,

day = 16,

year = 2004

}

(gdb)

Here, the function foo is as defined in Program 18.5.
You can assign values to an array or structure by listing them inside a set of curly

braces, as follows:

(gdb) print array

$14 = {1, 2, 3, 4, 5}

(gdb) set var array = {100, 200}

(gdb) print array

$15 = {100, 200, 0, 0} Unspecified values set to zero

(gdb) print today

$16 = {

month = 10,

day = 11,

year = 2004

}

(gdb) set var today={8, 8, 2004}

(gdb) print today

$17 = {

month = 8,

day = 8,

year = 2004

}

(gdb)

Getting Help with gdb Commands
You can use the built-in help command to get information about various commands or
types of commands (called classes by gdb).

The command help, without any arguments, lists all the available classes:

(gdb) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

18 0672326663 CH18 6/10/04 2:01 PM Page 406

407Debugging Programs with gdb

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

Now, you can give the help command one of those listed classes, as follows:

(gdb) help breakpoints

Making program stop at certain points.

List of commands:

awatch -- Set a watchpoint for an expression

break -- Set breakpoint at specified line or function

catch -- Set catchpoints to catch events

clear -- Clear breakpoint at specified line or function

commands -- Set commands to be executed when a breakpoint is hit

condition -- Specify breakpoint number N to break only if COND is true

delete -- Delete some breakpoints or auto-display expressions

disable -- Disable some breakpoints

enable -- Enable some breakpoints

future-break -- Set breakpoint at expression

hbreak -- Set a hardware assisted breakpoint

ignore -- Set ignore-count of breakpoint number N to COUNT

rbreak -- Set a breakpoint for all functions matching REGEXP

rwatch -- Set a read watchpoint for an expression

save-breakpoints -- Save current breakpoint definitions as a script

set exception-catch-type-regexp –

Set a regexp to match against the exception type of a caughtobject

set exception-throw-type-regexp –

Set a regexp to match against the exception type of a thrownobject

show exception-catch-type-regexp –

Show a regexp to match against the exception type of a caughtobject

show exception-throw-type-regexp –

Show a regexp to match against the exception type of a thrownobject

tbreak -- Set a temporary breakpoint

tcatch -- Set temporary catchpoints to catch events

thbreak -- Set a temporary hardware assisted breakpoint

watch -- Set a watchpoint for an expression

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

18 0672326663 CH18 6/10/04 2:01 PM Page 407

408 Chapter 18 Debugging Programs

Alternatively, you can specify a command, such as one from the previous list:

(gdb_ help break

Set breakpoint at specified line or function.

Argument may be line number, function name, or "*" and an address.

If line number is specified, break at start of code for that line.

If function is specified, break at start of code for that function.

If an address is specified, break at that exact address.

With no arg, uses current execution address of selected stack frame.

This is useful for breaking on return to a stack frame.

Multiple breakpoints at one place are permitted, and useful if conditional.

break ... if <cond> sets condition <cond> on the breakpoint as it is created.

Do "help breakpoints" for info on other commands dealing with breakpoints.

(gdb)

So, you can see that you have a lot of help information built right in to the gdb debug-
ger. Be sure to take advantage of it!

Odds and Ends
Many other features are available with gdb that can’t be covered here for space reasons.
These include the ability to

n Set temporary breakpoints that are automatically removed when they are reached.
n Enable and disable breakpoints without having to clear them.
n Dump memory locations in a specified format.
n Set a watchpoint that allows for your program’s execution to be stopped whenever

the value of a specified expression changes (for example, when a variable changes
its value).

n Specify a list of values to be displayed whenever the program stops.
n Set your own “convenience variables” by name.

Table 18.1 lists the gdb commands covered in this chapter.A leading bold character for a
command name shows how the command can be abbreviated.

18 0672326663 CH18 6/10/04 2:01 PM Page 408

409Debugging Programs with gdb

Table 18.1 Common gdb Commands

Command Meaning

SOURCE FILE

list [n]2 Displays lines around line n or next 10 lines if n is not specified

list m,n Displays lines m through n

list +[n] Displays lines around line n lines forward in file or 10 lines forward
if n is not specified

list –[n] Displays lines around line n lines back in file or 10 lines back if n is
not specified

list func Displays lines from function func

listsize n Specifies number of lines to display with list command

info source Shows current source file name

VARIABLES AND EXPRESSIONS

print /fmt expr Prints expr according to format fmt, which can be d (decimal), u
(unsigned), o (octal), x (hexadecimal), c (character), f (floating
point), t (binary), or a (address)

info locals Shows value of local variables in current function

set var var=expr Sets variable var to value of expr

BREAKPOINTS

break n Sets breakpoint at line n

break func Sets breakpoint at start of function func

info break Shows all breakpoints

clear [n] Removes breakpoint at line n or at next line if not specified

clear func Removes breakpoint at start of function func

PROGRAM EXECUTION

run [args] [<file] [>file] Starts program execution from the beginning

continue Continues program execution

step [n] Executes next program line or next n program lines

next [n] Executes next program line or next n program lines without step-
ping into functions

quit Quits gdb execution

HELP

help [cmd] Displays classes of commands or help about specific command cmd
help [class] or class

2. Note that each command that takes a line number or function name can be preceded by an
optional filename followed by a colon (e.g., list main.c:1,10 or break main.c:12)

18 0672326663 CH18 6/10/04 2:01 PM Page 409

18 0672326663 CH18 6/10/04 2:01 PM Page 410

19
Object-Oriented Programming

BECAUSE OBJECT-ORIENTED PROGRAMMING (OR OOP) is so popular, and because
many of the widely used OOP languages—such as C++, C#, Java, and Objective-C—
are based on the C language, a brief introduction to this topic is presented here.The
chapter starts with an overview about the concepts of OOP, and then shows you a sim-
ple program in three of the four aforementioned OOP languages (I picked the three that
contain the word “C”!).The idea here is not to teach you how to program in these lan-
guages or even to describe their main features so much as it is to give you a quick taste.

What Is an Object Anyway?
An object is a thing.Think about object-oriented programming as a thing and something
you want to do to that thing.This is in contrast to a programming language such as C,
more formally known as a procedural programming language. In C, you typically think
about what you want to do first (and maybe write some functions to accomplish those
tasks), and then you worry about the objects—almost the opposite from object orienta-
tion.

As an example from everyday life, assume you own a car.That car is obviously an
object—one that you own.You don’t have just any car; you have a particular car that was
manufactured from the factory, perhaps in Detroit, perhaps in Japan, or perhaps some-
place else.Your car has a vehicle identification number (VIN) that uniquely identifies
your car.

In object-oriented parlance, your car is an instance of a car.And continuing with the
terminology, car is the name of the class from which this instance was created. So, each
time a new car gets manufactured, a new instance from the class of cars gets created.
Each instance of the car is also referred to as an object.

Now, your car might be silver, it might have a black interior, it might be a convertible
or hardtop, and so on. In addition, there are certain things, or actions, you do with your
car. For example, you drive your car, you fill it up with gas, you (hopefully) wash your
car, you take it in for service, and so on.This is depicted in Table 19.1.

19 0672326663 CH19 6/10/04 2:04 PM Page 411

412 Chapter 19 Object-Oriented Programming

Table 19.1 Actions on Objects

Object What You Do with It

Your car Drive it

Fill it with gas

Wash it

Service it

The actions listed in Table 19.1 can be done with your car, and they can also be done with
other cars. For example, your sister can drive her car, wash it, fill it up with gas, and so on.

Instances and Methods
A unique occurrence of a class is an instance.The actions that you perform are called
methods. In some cases, a method can be applied to an instance of the class or to the class
itself. For example, washing your car applies to an instance (in fact, all of the methods
listed in Table 19.1 are considered instance methods). Finding out how many different
types of cars a manufacturer makes applies to the class, so it is a class method.

In C++, you invoke a method on an instance using the following notation:

Instance.method ();

A C# method is invoked with the same notation as follows:

Instance.method ();

An Objective-C message call follows this format:

[Instance method]

Go back to the previous list and write a message expression in this new syntax.Assume
that yourCar is an object from the Car class.Table 19.2 shows what message expressions
might look like in the three OOP languages.

Table 19.2 Message Expressions in OOP Languages

C++ C# Objective-C Action

yourCar.drive() yourCar.drive() [yourCar drive] Drive your car

yourCar.getGas() yourCar.getGas() [yourCar getGas] Put gas in your
car

yourCar.wash() yourCar.wash() [yourCar wash] Wash your car

yourCar.service() yourCar.service() [yourCar service] Service your car

And if your sister has a car, called suesCar, for example, then she can invoke the same
methods on her car, as follows:

suesCar.drive() suesCar.drive() [suesCar drive]

19 0672326663 CH19 6/10/04 2:04 PM Page 412

413Writing a C Program to Work with Fractions

This is one of the key concepts behind object-oriented programming (that is, applying
the same methods to different objects).

Another key concept, known as polymorphism, allows you to send the same message
to instances from different classes. For example, if you have a Boat class, and an instance
from that class called myBoat, then polymorphism allows you to write the following
message expressions in C++:

myBoat.service()

myBoat.wash()

The key here is that you can write a method for the Boat class that knows about servic-
ing a boat, that can be (and probably is) completely different from the method in the
Car class that knows how to service a car.This is the key to polymorphism.

The important distinction for you to understand about OOP languages versus C, is
that in the former case you are working with objects, such as cars and boats. In the latter,
you are typically working with functions (or procedures). In a so-called procedural lan-
guage like C, you might write a function called service and then inside that function
write separate code to handle servicing different vehicles, such as cars, boats, or bicycles.
If you ever want to add a new type of vehicle, you have to modify all functions that deal
with different vehicle types. In the case of an OOP language, you just define a new class
for that vehicle and add new methods to that class.You don’t have to worry about the
other vehicle classes; they are independent of your class, so you don’t have to modify
their code (to which you might not even have access).

The classes you work with in your OOP programs will probably not be cars or boats.
More likely, they’ll be objects such as windows, rectangles, clipboards, and so on.The
messages you’ll send (in a language like C#) will look like this:

myWindow.erase() Erase the window

myRect.getArea() Calculate the area of the rectangle

userText.spellCheck() Spell check some text

deskCalculator.setAccumulator(0.0) Clear the accumulator

favoritePlaylist.showSongs() Show songs in favorite playlist

Writing a C Program to Work with Fractions
Suppose you need to write a program to work with fractions. Perhaps you need to deal
with adding, subtracting, multiplying them, and so on.You could define a structure to
hold a fraction, and then develop a set of functions to manipulate them.

The basic setup for a fraction using C might look like Program 19.1. Program 19.1
sets the numerator and denominator and then displays the value of the fraction.

19 0672326663 CH19 6/10/04 2:04 PM Page 413

414 Chapter 19 Object-Oriented Programming

Program 19.1 Working with Fractions in C

// Simple program to work with fractions

#include <stdio.h>

typedef struct {

int numerator;

int denominator;

} Fraction;

int main (void)

{

Fraction myFract;

myFract.numerator = 1;

myFract.denominator = 3;

printf ("The fraction is %i/%i\n", myFract.numerator, myFract.denominator);

return 0;

}

Program 19.1 Output

The fraction is 1/3

The next three sections illustrate how you might work with fractions in Objective-C,
C++, and C#, respectively.The discussion about OOP that follows the presentation of
Program 19.2 applies to OOP in general, so you should read these sections in order.

Defining an Objective-C Class to Work with
Fractions
The Objective-C language was invented by Brad Cox in the early 1980s.The language
was based on a language called SmallTalk-80 and was licensed by NeXT Software in
1988.When Apple acquired NeXT in 1988, it used NEXTSTEP as the basis for its Mac
OS X operating system. Most of the applications found today on Mac OS X are written
in Objective-C.

Program 19.2 shows how you can define and use a Fraction class in Objective-C.

Program 19.2 Working with Fractions in Objective-C

// Program to work with fractions – Objective-C version

#import <stdio.h>

#import <objc/Object.h>

19 0672326663 CH19 6/10/04 2:04 PM Page 414

415Defining an Objective-C Class to Work with Fractions

//------- @interface section -------

@interface Fraction: Object

{

int numerator;

int denominator;

}

-(void) setNumerator: (int) n;

-(void) setDenominator: (int) d;

-(void) print;

@end

//------- @implementation section -------

@implementation Fraction;

// getters

-(int) numerator

{

return numerator;

}

-(int) denominator

{

return denominator;

}

// setters

-(void) setNumerator: (int) num

{

numerator = num;

}

-(void) setDenominator: (int) denom

{

denominator = denom;

}

// other

-(void) print

{

Program 19.2 Continued

19 0672326663 CH19 6/10/04 2:04 PM Page 415

416 Chapter 19 Object-Oriented Programming

printf ("The value of the fraction is %i/%i\n", numerator, denominator);

}

@end

//------- program section -------

int main (void)

{

Fraction *myFract;

myFract = [Fraction new];

[myFract setNumerator: 1];

[myFract setDenominator: 3];

printf ("The numerator is %i, and the denominator is %i\n",

[myFract numerator], [myFract denominator]);

[myFract print]; // use the method to display the fraction

[myFract free];

return 0;

}

Program 19.2 Output

The numerator is 1, and the denominator is 3

The value of the fraction is 1/3

As you can see from the comments in Program 19.2, the program is logically divided
into three sections: the @interface section, the @implementation section, and the pro-
gram section.These sections are typically placed in separate files.The @interface section
is usually put into a header file that gets included in any program that wants to work
with that particular class. It tells the compiler what variables and methods are contained
in the class.

The @implementation section contains the actual code that implements these meth-
ods. Finally, the program section contains the program code to carry out the intended
purpose of the program.

Program 19.2 Continued

19 0672326663 CH19 6/10/04 2:04 PM Page 416

417Defining an Objective-C Class to Work with Fractions

The name of the new class is Fraction, and its parent class is Object. Classes inherit
methods and variables from their parents.

As you can see in the @interface section, the declarations

int numerator;

int denominator;

say that a Fraction object has two integer members called numerator and
denominator.

The members declared in this section are known as the instance variables. Each time
you create a new object, a new and unique set of instance variables is created.Therefore,
if you have two fractions, one called fracA and another called fracB, each has its own
set of instance variables.That is, fracA and fracB each has its own separate numerator
and denominator.

You have to define methods to work with your fractions.You need to be able to set
the value of a fraction to a particular value. Because you don’t have direct access to the
internal representation of a fraction (in other words, direct access to its instance vari-
ables), you must write methods to set the numerator and denominator (these are known
as setters).You also need methods to retrieve the values of your instance variables (such
methods are known as getters).1

The fact that the instance variables for an object are kept hidden from the user of the
object is another key concept of OOP known as data encapsulation.This assures someone
extending or modifying a class that all the code that accesses the data (that is, the
instance variables) for that class is contained in the methods. Data encapsulation provides
a nice layer of insulation between the programmer and the class developer.

Here’s what one such setter method declaration looks like:

-(int) numerator;

The leading minus sign (-) says that the method is an instance method.The only other
option is a plus sign (+), which indicates a class method.A class method is one that per-
forms some operation on the class itself, such as creating a new instance of the class.This
is similar to manufacturing a new car, in that the car is the class and you want to create a
new one—which would be a class method.

An instance method performs some operation on a particular instance of a class, such
as setting its value, retrieving its value, displaying its value, and so on. Referring to the
car example, after you have manufactured the car, you might need to fill it with gas.The
operation of filling it with gas is performed on a particular car, so it is analogous to an
instance method.

1.You can get direct access to the instance variables, but it’s generally considered poor program-
ming practice.

19 0672326663 CH19 6/10/04 2:04 PM Page 417

418 Chapter 19 Object-Oriented Programming

When you declare a new method (and similar to declaring a function), you tell the
Objective-C compiler whether the method returns a value, and if it does, what type of
value it returns.This is done by enclosing the return type in parentheses after the leading
minus or plus sign. So, the declaration

-(int) numerator;

specifies that the instance method called numerator returns an integer value. Similarly,
the line

-(void) setNumerator: (int) num;

defines a method that doesn’t return a value that can be used to set the numerator of
your fraction.

When a method takes an argument, you append a colon to the method name when
referring to the method.Therefore, the correct way to identify these two methods is
setNumerator: and setDenominator:—each of which takes a single argument.Also, the
identification of the numerator and denominator methods without a trailing colon indi-
cates that these methods do not take any arguments.

The setNumerator: method takes the integer argument you called num and simply
stores it in the instance variable numerator. Similarly, setDenominator: stores the value
of its argument denom in the instance variable denominator. Note that methods have
direct access to their instance variables.

The last method defined in your Objective-C program is called print. It’s use is to
display the value of a fraction.As you see, it takes no arguments and returns no results. It
simply uses printf to display the numerator and denominator of the fraction, separated
by a slash.

Inside main, you define a variable called myFract with the following line:

Fraction *myFract;

This line says that myFract is an object of type Fraction; that is, myFract is used to
store values from your new Fraction class.The asterisk (*) in front of myFraction says
that myFract is actually a pointer to a Fraction. In fact, it points to the structure that
contains the data for a particular instance from the Fraction class.

Now that you have an object to store a Fraction, you need to create one, just like
you ask the factory to build you a new car.This is done with the following line:

myFract = [Fraction new];

You want to allocate memory storage space for a new fraction.The expression

[Fraction new]

sends a message to your newly created Fraction class.You are asking the Fraction class
to apply the new method, but you never defined a new method, so where did it come
from? The method was inherited from a parent class.

You are now ready to set the value of your Fraction.The program lines

[myFract setNumerator: 1];

[myFract setDenominator: 3];

19 0672326663 CH19 6/10/04 2:04 PM Page 418

419Defining a C++ Class to Work with Fractions

do just that.The first message statement sends the setNumerator: message to myFract.
The argument that is supplied is the value 1. Control is then sent to the setNumerator:
method you defined for your Fraction class.The Objective-C runtime system knows
that it is the method from this class to use because it knows that myFract is an object
from the Fraction class.

Inside the setNumerator: method, the single program line in that method takes the
value passed in as the argument and stores it in the instance variable numerator. So, you
have effectively set the numerator of myFract to 1.

The message that invokes the setDenominator: method on myFract follows next,
and works in a similar way.

With the fraction being set, Program 19.2 then calls the two getter methods
numerator and denominator to retrieve the values of the corresponding instance
variables from myFract.The results are then passed to printf to be displayed.

The program next invokes the print method.This method displays the value of the
fraction that is the receiver of the message. Even though you saw in the program how
the numerator and denominator could be retrieved using the getter methods, a separate
print method was also added to the definition of the Fraction class for illustrative pur-
poses.

The last message in the program

[myFract free];

frees the memory that was used by your Fraction object.

Defining a C++ Class to Work with Fractions
Program 19.3 shows how a program to implement a Fraction class might be written
using the C++ language. C++ has become an extremely popular programming language
for software development. It was invented by Bjarne Stroustroup at Bell Laboratories,
and was the first object-oriented programming language based on C—at least to my
knowledge!

Program 19.3 Working with Fractions in C++

#include <iostream>

class Fraction

{

private:

int numerator;

int denominator;

public:

void setNumerator (int num);

void setDenominator (int denom);

int Numerator (void);

19 0672326663 CH19 6/10/04 2:04 PM Page 419

420 Chapter 19 Object-Oriented Programming

int Denominator (void);

void print (Fraction f);

};

void Fraction::setNumerator (int num)

{

numerator = num;

}

void Fraction::setDenominator (int denom)

{

denominator = denom;

}

int Fraction::Numerator (void)

{

return numerator;

}

int Fraction::Denominator (void)

{

return denominator;

}

void Fraction::print (void)

{

std::cout << "The value of the fraction is " << numerator << '/'

<< denominator << '\n';

}

int main (void)

{

Fraction myFract;

myFract.setNumerator (1);

myFract.setDenominator (3);

myFract.print ();

return 0;

}

Program 19.3 Output

The value of the fraction is 1/3

Program 19.3 Continued

19 0672326663 CH19 6/10/04 2:04 PM Page 420

421Defining a C++ Class to Work with Fractions

The C++ members (instance variables) numerator and denominator are labeled
private to enforce data encapsulation; that is, to prevent them from being directly
accessed from outside the class.

The setNumerator method is declared as follows:

void Fraction::setNumerator (int num)

The method is preceded by the notation Fraction:: to identify that it belongs to the
Fraction class.

A new instance of a Fraction is created like a normal variable in C, as in the follow-
ing declaration in main:

Fraction myFract;

The numerator and denominator of the fraction are then set to 1 and 3, respectively,
with the following method calls:

myFract.setNumerator (1);

myFract.setDenominator (3);

The value of the fraction is then displayed using the fraction’s print method.
Probably the oddest-appearing statement from Program 19.3 occurs inside the print

method as follows:

std::cout << "The value of the fraction is " << numerator << '/'

<< denominator << '\n';

cout is the name of the standard output stream, analogous to stdout in C.The << is
known as the stream insertion operator, and it provides an easy way to get output.You
might recall that << is also C’s left shift operator.This is one significant aspect of C++: a
feature known as operator overloading that allows you to define operators that are associat-
ed with a class. Here, the left shift operator is overloaded so that when it is used in this
context (that is, with a stream as its left operand), it invokes a method to write a format-
ted value to an output stream, instead of trying to actually perform a left shift operation.

As another example of overloading, you might want to override the addition operator
+ so that if you try to add two fractions together, as in

myFract + myFract2

an appropriate method from your Fraction class is invoked to handle the addition.
Each expression that follows the << is evaluated and written to the standard output

stream. In this case, first the string "The value of the fraction is" gets written,
followed by the fraction’s numerator, followed by a /, the fraction’s denominator, and
then a newline character.

The C++ language is rich with features. Consult Appendix E,“Resources,” for rec-
ommendations on a good tutorial.

Note that in the previous C++ example, the getter methods Numerator () and
Denominator () were defined in the Fraction class but were not used.

19 0672326663 CH19 6/10/04 2:04 PM Page 421

422 Chapter 19 Object-Oriented Programming

Defining a C# Class to Work with Fractions
As the final example in this chapter, Program 19.4 shows the fraction example written in
C#, a programming language developed by Microsoft, Inc. C# is one of the newer OOP
languages, and is turning out to be quite popular. It has become the language of choice
for developing applications with .NET.

Program 19.4 Working with Fractions in C#

using System;

class Fraction

{

private int numerator;

private int denominator;

public int Numerator

{

get

{

return numerator;

}

set

{

numerator = value;

}

}

public int Denominator

{

get

{

return denominator;

}

set

{

denominator = value;

}

}

public void print ()

{

Console.WriteLine("The value of the fraction is {0}/{1}",

numerator, denominator);

19 0672326663 CH19 6/10/04 2:04 PM Page 422

423Defining a C# Class to Work with Fractions

}

}

class example

{

public static void Main()

{

Fraction myFract = new Fraction();

myFract.Numerator = 1;

myFract.Denominator = 3;

myFract.print ();

}

}

Program 19.4 Output

The value of the fraction is 1/3

You can see the C# program looks a little different from the other two OOP programs,
but you can probably still determine what’s happening.The Fraction class definition
begins by declaring the two instance variables numerator and denominator as private.
The Numerator and Denominator methods each have their getter and setter method
defined as properties.Take a closer look at Numerator:

public int Numerator

{

get

{

return numerator;

}

set

{

numerator = value;

}

}

The “get” code is executed when the value of the numerator is needed in an expression,
such as in

num = myFract.Numerator;

Program 19.4 Continued

19 0672326663 CH19 6/10/04 2:04 PM Page 423

424 Chapter 19 Object-Oriented Programming

The “set” code is executed when a value is assigned to the method, as in

myFract.Numerator = 1;

The actual value that is assigned gets stored in the variable value when the method gets
called. Note that parentheses do not follow the setter and getter methods here.

Naturally, you can define methods that optionally take arguments, or setter methods
that take multiple arguments. For example, this C# method invocation might be used to
set the value of a fraction to 2/5 with a single call:

myFract.setNumAndDen (2, 5)

Returning to Program 19.4, the statement

Fraction myFract = new Fraction();

is used to create a new instance from the Fraction class and assign the result to the
Fraction variable myFract.The Fraction is then set to 1/3 using the Fraction’s set-
ters.

The print method is invoked next on myFract to display the value of the fraction.
Inside the print method, the WriteLine method from the Console class is used to dis-
play output. Similar to printf’s % notation, {0} specifies in the string where the first
value is be substituted, {1} where the second value is to be displayed, and so on. Unlike
the printf routine, you don’t need to worry here about the types being displayed.

As with the C++ example, the getter methods for the C# Fraction class were not
exercised here.They were included for illustrative purposes.

This concludes this brief introduction to object-oriented programming. Hopefully,
this chapter has given you a better idea about what object-oriented programming is all
about and how programming in an OOP language differs from a language such as C.
You have seen how you can write a simple program in one of three OOP languages to
work with objects that represent fractions. If you were serious about working with frac-
tions in your programs, you would probably extend your class definition to support
operations such as addition, subtraction, multiplication, division, inversion, and reduction
of fractions, for example.This would be a relatively straightforward task for you to do.

To continue your studies further, get a good tutorial on a particular OOP language,
such as one listed in Appendix E.

19 0672326663 CH19 6/10/04 2:04 PM Page 424

A
C Language Summary

THIS SECTION SUMMARIZES THE C LANGUAGE in a format suitable for quick reference.
It is not intended that this section be a complete definition of the language, but rather a
more informal description of its features.You should thoroughly read the material in this
section after you have completed the text. Doing so not only reinforces the material you
have learned, but also provides you with a better global understanding of C.

This summary is based on the ANSI C99 (ISO/IEC 9899:1999) standard.

1.0 Digraphs and Identifiers

1.1 Digraph Characters
Table A.1 lists special two-character sequences (digraphs) that are equivalent to the listed
single-character punctuators.

Table A.1 Digraph Characters

Digraph Meaning

<: [

:>]

<% {

%> }

%: #

%:%: ##

1.2 Identifiers
An identifier in C consists of a sequence of letters (upper- or lowercase), universal character
names (Section 1.2.1), digits, or underscore characters.The first character of an identifier

20 0672326663 AppA 6/10/04 2:01 PM Page 425

426 Appendix A C Language Summary

must be a letter, underscore, or a universal character name.The first 31 characters of an
identifier are guaranteed to be significant in an external name, and the first 63 characters
are guaranteed to be significant for an internal identifier or macro name.

1.2.1 Universal Character Names

A universal character name is formed by the characters \u followed by four hexadecimal
numbers or the characters \U followed by eight hexadecimal numbers. If the first char-
acter of an identifier is specified by a universal character, its value cannot be that of a
digit character. Universal characters, when used in identifier names can also not specify a
character whose value is less than A016 (other than 2416, 4016, or 6016) or a character in
the range D80016 through DFFF16, inclusive.

Universal character names can be used in identifier names, character constants, and
character strings.

1.2.2 Keywords

The identifiers listed in Table A.2 are keywords that have a special meaning to the C
compiler.

Table A.2 Keywords

_Bool default if sizeof while

_Complex do inline static

_Imaginary double int struct

auto else long switch

break enum register typedef

case extern restrict union

char float return unsigned

const for short void

continue goto signed volatile

2.0 Comments
You can insert comments into a program in two ways.A comment can begin with the
two characters //.Any characters that follow on the line are ignored by the compiler.

A comment can also begin with the two characters /* and end when the characters
*/ are encountered.Any characters can be included inside the comment, which can
extend over multiple lines of the program.A comment can be used anywhere in the pro-
gram where a blank space is allowed. Comments, however, cannot be nested, which
means that the first */ characters encountered end the comment, no matter how many
/* characters you use.

20 0672326663 AppA 6/10/04 2:01 PM Page 426

4273.0 Constants

3.0 Constants

3.1 Integer Constants
An integer constant is a sequence of digits, optionally preceded by a plus or minus sign.
If the first digit is 0, the integer is taken as an octal constant, in which case all digits that
follow must be from 0 to 7. If the first digit is 0 and is immediately followed by the let-
ter x (or X), the integer is taken as a hexadecimal constant, and the digits that follow can
be in the range from 0 to 9 or from a to f (or from A to F).

The suffix letter l or L can be added to the end of a decimal integer constant to
make it a long int constant. If the value can’t fit into a long int, it’s treated as a long
long int. If the suffix letter l or L is added to the end of an octal or a hexadecimal
constant, it is taken as a long int if it can fit; if it cannot fit, it is taken as a long long
int. Finally, if it cannot fit in a long long int, it is taken as an unsigned long long
int constant.

The suffix letters ll or LL can be added to the end of a decimal integer constant to
make it a long long int.When added to the end of an octal or a hexadecimal con-
stant, it is taken as a long long int first, and if it cannot fit there, it is taken as an
unsigned long long int constant.

The suffix u or U can be added to the end of an integer constant to make it
unsigned. If the constant is too large to fit inside an unsigned int, it’s taken as an
unsigned long int. If it’s too large for an unsigned long int, it’s taken as an
unsigned long long int.

Both an unsigned and a long suffix can be added to an integer constant to make it
an unsigned long int. If the constant is too large to fit in an unsigned long int, it’s
taken as an unsigned long long int.

Both an unsigned and a long long suffix can be added to an integer constant to
make it an unsigned long long int.

If an unsuffixed decimal integer constant is too large to fit into a signed int, it is
treated as a long int. If it’s too large to fit into a long int, it’s treated as a long
long int.

If an unsuffixed octal or hexadecimal integer constant is too large to fit into a signed
int, it is treated as an unsigned int. If it’s too large to fit into an unsigned int, it’s
treated as a long int, and if it’s too large to fit into a long int, it’s treated as an
unsigned long int. If it’s too large for an unsigned long int, it’s taken as a long
long int. Finally, if it’s too large to fit into a long long int, the constant is treated as
an unsigned long long int.

3.2 Floating-Point Constants
A floating-point constant consists of a sequence of decimal digits, a decimal point, and
another sequence of decimal digits.A minus sign can precede the value to denote a neg-
ative value. Either the sequence of digits before the decimal point or after the decimal
point can be omitted, but not both.

20 0672326663 AppA 6/10/04 2:01 PM Page 427

428 Appendix A C Language Summary

If the floating-point constant is immediately followed by the letter e (or E) and an
optionally signed integer, the constant is expressed in scientific notation.This integer (the
exponent) represents the power of 10 by which the value preceding the letter e (the
mantissa) is multiplied (for example, 1.5e–2 represents 1.5 × 10–2 or .015).

A hexadecimal floating constant consists of a leading 0x or 0X, followed by one or
more decimal or hexadecimal digits, followed by a p or P, followed by an optionally
signed binary exponent. For example, 0x3p10 represents the value 3 × 210.

Floating-point constants are treated as double precision values by the compiler.The
suffix letter f or F can be added to specify a float constant instead of a double con-
stant.The suffix letter l or L can be added to specify a long double constant.

3.3 Character Constants
A character enclosed within single quotation marks is a character constant. How the
inclusion of more than one character inside the single quotation marks is handled is
implementation-defined.A universal character (Section 1.2.1) can be used in a character
constant to specify a character not included in the standard character set.

3.3.1 Escape Sequences

Special escape sequences are recognized and are introduced by the backslash character.
These escape sequences are listed in Table A.3.

Table A.3 Special Escape Sequences

Character Meaning

\a Audible alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\\ Backslash

\" Double quote

\' Single quote

\? Question mark

\nnn Octal character value

\unnnn Universal character name

\Unnnnnnnn Universal character name

\xnn Hexadecimal character value

20 0672326663 AppA 6/10/04 2:01 PM Page 428

4293.0 Constants

In the octal character case, from one to three octal digits can be specified. In the last
three cases, hexadecimal digits are used.

3.3.2 Wide Character Constants

A wide character constant is written as L'x'.The type of such a constant is wchar_t, as
defined in the standard header file <stddef.h>.Wide character constants provide a way
to express a character from a character set that cannot be fully represented with the nor-
mal char type.

3.4 Character String Constants
A sequence of zero or more characters enclosed within double quotation marks repre-
sents a character string constant.Any valid character can be included in the string,
including any of the escape characters listed previously.The compiler automatically
inserts a null character ('\0') at the end of the string.

Normally, the compiler produces a pointer to the first character in the string and the
type is “pointer to char.” However, when the string constant is used with the sizeof
operator to initialize a character array, or with the & operator, the type of the string con-
stant is “array of char.”

Character string constants cannot be modified by the program.

3.4.1 Character String Concatenation

The preprocessor automatically concatenates adjacent character string constants together.
The strings can be separated by zero or more whitespace characters. So, the following
three strings

"a" " character "

"string"

are equivalent to the single string

"a character string"

after concatenation.

3.4.2 Multibyte Characters

Implementation-defined sequences of characters can be used to shift back and forth
between different states in a character string so that multibyte characters can be
included.

3.4.3 Wide Character String Constants

Character string constants from an extended character set are expressed using the format
L"...".The type of such a constant is “pointer to wchar_t,” where wchar_t is defined
in <stddef.h>.

20 0672326663 AppA 6/10/04 2:01 PM Page 429

430 Appendix A C Language Summary

3.5 Enumeration Constants
An identifier that has been declared as a value for an enumerated type is taken as a con-
stant of that particular type and is otherwise treated as type int by the compiler.

4.0 Data Types and Declarations
This section summarizes the basic data types, derived data types, enumerated data types,
and typedef.Also summarized in this section is the format for declaring variables.

4.1 Declarations
When defining a particular structure, union, enumerated data type, or typedef, the com-
piler does not automatically reserve any storage.The definition merely tells the compiler
about the particular data type and (optionally) associates a name with it. Such a defini-
tion can be made either inside or outside a function. In the former case, only the func-
tion knows of its existence; in the latter case, it is known throughout the remainder of
the file.

After the definition has been made, variables can be declared to be of that particular
data type.A variable that is declared to be of any data type does have storage reserved for
it, unless it is an extern declaration, in which case it might or might not have storage
allocated (see Section 6.0).

The language also enables storage to be allocated at the same time that a particular
structure, union, or enumerated data type is defined.This is done by simply listing the
variables before the terminating semicolon of the definition.

4.2 Basic Data Types
The basic C data types are summarized in Table A.4.A variable can be declared to be of
a particular basic data type using the following format:

type name = initial_value;

The assignment of an initial value to the variable is optional, and is subject to the rules
summarized in Section 6.2. More than one variable can be declared at once using the
following general format:

type name = initial_value, name = initial_value, ... ;

Before the type declaration, an optional storage class might also be specified, as summa-
rized in Section 6.2. If a storage class is specified, and the type of the variable is int,
then int can be omitted. For example,

static counter;

declares counter to be a static int variable.

20 0672326663 AppA 6/10/04 2:01 PM Page 430

4314.0 Data Types and Declarations

Table A.4 Summary of Basic Data Types

Type Meaning

int Integer value; that is, a value that contains no decimal point;
guaranteed to contain at least 16 bits of precision.

short int Integer value of reduced precision; takes half as much memory as
an int on some machines; guaranteed to contain at least 16 bits
of precision.

long int Integer value of extended precision; guaranteed to contain at
least 32 bits of precision.

long long int Integer value of extraextended precision; guaranteed to contain
at least 64 bits of precision.

unsigned int Positive integer value; can store positive values up to twice as
large as an int; guaranteed to contain at least 16 bits of preci-
sion.

float Floating-point value; that is, a value that can contain decimal
places; guaranteed to contain at least six digits of precision.

double Extended accuracy floating-point value; guaranteed to contain at
least 10 digits of precision.

long double Extraextended accuracy floating-point value; guaranteed to con-
tain at least 10 digits of precision.

char Single character value; on some systems, sign extension might
occur when used in an expression.

unsigned char Same as char, except ensures that sign extension does not occur
as a result of integral promotion.

signed char Same as char, except ensures that sign extension does occur as a
result of integral promotion.

_Bool Boolean type; large enough to store the values 0 or 1.

float _Complex Complex number.

double _Complex Extended accuracy complex number.

long double _Complex Extraextended accuracy complex number.

void No type; used to ensure that a function that does not return a
value is not used as if it does return one, or to explicitly “dis-
card” the results of an expression.Also used as a generic pointer
type (void *).

Note that the signed modifier can also be placed in front of the short int, int, long
int, and long long int types. Because these types are signed by default anyway, this has
no effect.

_Complex and _Imaginary data types enable complex and imaginary numbers to be
declared and manipulated, with functions in the library for supporting arithmetic on
these types. Normally, you should include the file <complex.h> in your program, which

20 0672326663 AppA 6/10/04 2:01 PM Page 431

432 Appendix A C Language Summary

defines macros and declares functions for working with complex and imaginary num-
bers. For example, a double_Complex variable c1 can be declared and initialized to the
value 5 + 10.5i with a statement such as:

double _Complex c1 = 5 + 10.5 * I;

Library routines such as creal and cimag can then be used to extract the real and imag-
inary part of c1, respectively.

An implementation is not required to support types _Complex and _Imaginary, or
can optionally support one but not the other.

The header file <stdbool.h> can be included in a program to make working with
Boolean variables easier. In that file, the macros bool, true, and false are defined,
enabling you to write statements such as:

bool endOfData = false;

4.3 Derived Data Types
A derived data type is one that is built up from one or more of the basic data types.
Derived data types are arrays, structures, unions, and pointers.A function that returns a
value of a specified type is also considered a derived data type. Each of these, with the
exception of functions, is summarized in the following sections. Functions are separately
covered in Section 7.0.

4.3.1 Arrays

Single-Dimensional Arrays

Arrays can be defined to contain any basic data type or any derived data type.Arrays of
functions are not permitted (although arrays of function pointers are).

The declaration of an array has the following basic format:

type name[n] = { initExpression, initExpression, ... };

The expression n determines the number of elements in the array name and can be
omitted provided a list of initial values is specified. In such a case, the size of the array is
determined based on the number of initial values listed or on the largest index element
referenced if designated initializers are used.

Each initial value must be a constant expression if a global array is defined.There can
be fewer values in the initialization list than there are elements in the array, but there
cannot be more. If fewer values are specified, only that many elements of the array are
initialized.The remaining elements are set to 0.

A special case of array initialization occurs in the event of character arrays, which can
be initialized by a constant character string. For example,

char today[] = "Monday";

declares today as an array of characters.This array is initialized to the characters 'M',
'o', 'n', 'd', 'a', 'y', and '\0', respectively.

20 0672326663 AppA 6/10/04 2:01 PM Page 432

4334.0 Data Types and Declarations

If you explicitly dimension the character array and don’t leave room for the terminat-
ing null, the compiler does not place a null at the end of the array:

char today[6] = "Monday";

This declares today as an array of six characters and sets its elements to the characters
'M', 'o', 'n', 'd', 'a', and 'y', respectively.

By enclosing an element number in a pair of brackets, specific array elements can be
initialized in any order. For example

int x = 1233;

int a[] = { [9] = x + 1, [3] = 3, [2] = 2, [1] = 1 };

defines a 10-element array called a (based on the highest index into the array), and ini-
tializes the last element to the value of x + 1 (1234), and the first three elements to 1, 2,
and 3, respectively.

4.3.1.1 Variable-Length Arrays

Inside a function or block, you can dimension an array using an expression containing
variables. In that case, the size is calculated at runtime. For example, the function

int makeVals (int n)

{

int valArray[n];

…

}

defines an automatic array called valArray with a size of n elements, where n is evaluat-
ed at runtime, and might vary between function calls.Variable-length arrays cannot be
initialized at the time they are declared.

4.3.1.2 Multidimensional Arrays

The general format for declaring a multidimensional array is as follows:

type name[d1][d2]...[dn] = initializationList;

The array name is defined to contain d1 x d2 x ... x dn elements of the specified type. For
example,

int three_d [5][2][20];

defines a three-dimensional array, three_d, containing 200 integers.
A particular element is referenced from a multidimensional array by enclosing the

desired subscript for each dimension in its own set of brackets. For example, the
statement

three_d [4][0][15] = 100;

stores 100 in the indicated element of the array three_d.

20 0672326663 AppA 6/10/04 2:01 PM Page 433

434 Appendix A C Language Summary

Multidimensional arrays can be initialized in the same manner as one-dimensional
arrays. Nested pairs of braces can be used to control the assignment of values to the ele-
ments in the array.

The following declares matrix to be a two-dimensional array containing four rows
and three columns:

int matrix[4][3] =

{ { 1, 2, 3 },

{ 4, 5, 6 },

{ 7, 8, 9 } };

Elements in the first row of matrix are set to the values 1, 2, and 3, respectively; ele-
ments in the second row are set to the values 4, 5, and 6, respectively; and in the third
row, elements are set to the values 7, 8, and 9, respectively.The elements in the fourth
row are set to 0 because no values are specified for that row.The declaration

static int matrix[4][3] =

{ 1, 2, 3, 4, 5, 6, 7, 8, 9 };

initializes matrix to the same values because the elements of a multidimensional array
are initialized in “dimension-order”; that is, from leftmost to rightmost dimension.

The declaration

int matrix[4][3] =

{ { 1 },

{ 4 },

{ 7 } };

sets the first element of the first row of matrix to 1, the first element of the second row
to 4, and the first element of the third row to 7.All remaining elements are set to 0 by
default.

Finally, the declaration

int matrix[4][3] = { [0][0] = 1, [1][1] = 5, [2][2] = 9 };

initializes the indicated elements of the matrix to the specified values.

4.3.2 Structures

The general format for declaring a structure is as follows:

struct name

{

memberDeclaration

memberDeclaration

...

} variableList;

The structure name is defined to contain the members as specified by each
memberDeclaration. Each such declaration consists of a type specification followed by a
list of one or more member names.

20 0672326663 AppA 6/10/04 2:01 PM Page 434

4354.0 Data Types and Declarations

Variables can be declared at the time that the structure is defined simply by listing
them before the terminating semicolon, or they can subsequently be declared using the
format

struct name variableList;

This format cannot be used if name is omitted when the structure is defined. In that
case, all variables of that structure type must be declared with the definition.

The format for initializing a structure variable is similar to that for arrays. Its members
can be initialized by enclosing the list of initial values in a pair of curly braces. Each
value in the list must be a constant expression if a global structure is initialized.

The declaration
struct point

{

float x;

float y;

} start = {100.0, 200.0};

defines a structure called point and a struct point variable called start with initial
values as specified. Specific members can be designated for initialization in any order
with the notation

.member = value

in the initialization list, as in

struct point end = { .y = 500, .x = 200 };

The declaration

struct entry

{

char *word;

char *def;

} dictionary[1000] = {

{ "a", "first letter of the alphabet" },

{ "aardvark", "a burrowing African mammal" },

{ "aback", "to startle" }

};

declares dictionary to contain 1,000 entry structures, with the first three elements ini-
tialized to the specified character string pointers. Using designated initializers, you could
have also written it like this:

struct entry

{

char *word;

char *def;

} dictionary[1000] = {

[0].word = "a", [0].def = "first letter of the alphabet",

20 0672326663 AppA 6/10/04 2:01 PM Page 435

436 Appendix A C Language Summary

[1].word = "aardvark", [1].def = "a burrowing African mammal",

[2].word = "aback", [2].def = "to startle"

};

or equivalently like this:

struct entry

{

char *word;

char *def;

} dictionary[1000] = {

{ {.word = "a", .def = "first letter of the alphabet" },

{.word = "aardvark", .def = "a burrowing African mammal"} ,

{.word = "aback", .def = "to startle"}

};

An automatic structure variable can be initialized to another structure of the same type
like this:

struct date tomorrow = today;

This declares the date structure variable tomorrow and assigns to it the contents of the
(previously declared) date structure variable today.

A memberDeclaration that has the format

type fieldName : n

defines a field that is n bits wide inside the structure, where n is an integer value. Fields
can be packed from left to right on some machines and from right to left on others. If
fieldName is omitted, the specified number of bits are reserved, but cannot be refer-
enced. If fieldName is omitted and n is 0, the field that follows is aligned on the next
storage unit boundary, where a unit is implementation-defined.The type of field can be
_Bool, int, signed int, or unsigned int. It is implementation-defined whether an int
field is treated as signed or unsigned.The address operator (&) cannot be applied to a
field, and arrays of fields cannot be defined.

4.3.3 Unions

The general format for declaring a union is as follows:

union name

{

memberDeclaration

memberDeclaration

...

} variableList;

This defines a union called name with members as specified by each
memberDeclaration. Each member of the union shares overlapping storage space, and
the compiler takes care of ensuring that enough space is reserved to contain the largest
member of the union.

20 0672326663 AppA 6/10/04 2:01 PM Page 436

4374.0 Data Types and Declarations

Variables can be declared at the time that the union is defined, or they can be subse-
quently declared using the notation

union name variableList;

provided the union was given a name when it was defined.
It is the programmer’s responsibility to ensure that the value retrieved from a union is

consistent with the last value that was stored inside the union.The first member of a
union can be initialized by enclosing the initial value, which, in the case of a global
union variable, must be a constant expression, inside a pair of curly braces:

union shared

{

long long int l;

long int w[2];

} swap = { 0xffffffff };

This declares the union variable swap and sets the l member to hexadecimal ffffffff.
A different member can be initialized instead by specifying the member name, as in

union shared swap2 = {.w[0] = 0x0, .w[1] = 0xffffffff; }

An automatic union variable can also be initialized to a union of the same type, as in

union shared swap2 = swap;

4.3.4 Pointers

The basic format for declaring a pointer variable is as follows:

type *name;

The identifier name is declared to be of type “pointer to type,” which can be a basic data
type, or a derived data type. For example,

int *ip;

declares ip to be a pointer to an int, and the declaration

struct entry *ep;

declares ep to be a pointer to an entry structure.
Pointers that point to elements in an array are declared to point to the type of ele-

ment contained in the array. For example, the previous declaration of ip can also be used
to declare a pointer into an array of integers.

More advanced forms of pointer declarations are also permitted. For example, the
declaration

char *tp[100];

declares tp to be an array of 100 character pointers, and the declaration

struct entry (*fnPtr) (int);

20 0672326663 AppA 6/10/04 2:01 PM Page 437

438 Appendix A C Language Summary

declares fnPtr to be a pointer to a function that returns an entry structure and that
takes a single int argument.

A pointer can be tested to see if it’s null by comparing it against a constant expression
whose value is 0.The implementation can choose to internally represent a null pointer
with a value other than 0. However, a comparison between such an internally represent-
ed null pointer and a constant value of 0 must prove equal.

The manner in which pointers are converted to integers, and integers are converted
to pointers, is machine dependent, as is the size of the integer required to hold a pointer.

The type “pointer to void” is the generic pointer type.The language guarantees that
a pointer of any type can be assigned to a void pointer and back again without chang-
ing its value.

Other than this special case, assignment of different pointer types is not permitted,
and typically results in a warning message from the compiler if attempted.

4.4 Enumerated Data Types
The general format for declaring enumerated data types is as follows:

enum name { enum_1, enum_2, ... } variableList;

The enumerated type name is defined with enumeration values enum_1, enum_2, ..., each
of which is an identifier or an identifier followed by an equal sign and a constant expres-
sion. variableList is an optional list of variables (with optional initial values) declared
to be of type enum name.

The compiler assigns sequential integers to the enumeration identifiers starting at
zero. If an identifier is followed by = and a constant expression, the value of that expres-
sion is assigned to the identifier. Subsequent identifiers are assigned values beginning
with that constant expression plus 1. Enumeration identifiers are treated as constant inte-
ger values by the compiler.

If it is desired to declare variables to be of a previously defined (and named) enumer-
ation type, the construct

enum name variableList;

can be used.
A variable declared to be of a particular enumerated type can only be assigned a value

of the same data type, although the compiler might not flag this as an error.

4.5 The typedef Statement
The typedef statement is used to assign a new name to a basic or derived data type.The
typedef does not define a new type but simply a new name for an existing type.
Therefore, variables declared to be of the newly named type are treated by the compiler
exactly as if they were declared to be of the type associated with the new name.

In forming a typedef definition, proceed as though a normal variable declaration
were being made.Then, place the new type name where the variable name would nor-
mally appear. Finally, in front of everything, place the keyword typedef.

20 0672326663 AppA 6/10/04 2:01 PM Page 438

4395.0 Expressions

As an example,

typedef struct

{

float x;

float y;

} Point;

associates the name Point with a structure containing two floating-point members called
x and y.Variables can subsequently be declared to be of type Point, as in

Point origin = { 0.0, 0.0 };

4.6 Type Modifiers const, volatile, and restrict
The keyword const can be placed before a type declaration to tell the compiler that the
value cannot be modified. So the declaration

const int x5 = 100;

declares x5 to be a constant integer (that is, it won’t be set to anything else during the
program’s execution).The compiler is not required to flag attempts to change the value
of a const variable.

The volatile modifier explicitly tells the compiler that the value changes (usually
dynamically).When a volatile variable is used in an expression, its value is accessed
each place it appears.

To declare port17 to be of type “volatile pointer to char,” write

volatile char *port17;

The restrict keyword can be used with pointers. It is a hint to the compiler for opti-
mization (like the register keyword for variables).The restrict keyword specifies to
the compiler that the pointer is the only reference to a particular object; that is, it is not
referenced by any other pointer within the same scope.The lines
int * restrict intPtrA;

int * restrict intPtrB;

tell the compiler that for the duration of the scope in which intPtrA and intPtrB are
defined, they will never access the same value.Their use for pointing to integers (in an
array, for example) is mutually exclusive.

5.0 Expressions
Variable names, function names, array names, constants, function calls, array references,
and structure and union references are all considered expressions.Applying a unary oper-
ator (where appropriate) to one of these expressions is also an expression, as is combin-
ing two or more of these expressions with a binary or ternary operator. Finally, an
expression enclosed within parentheses is also an expression.

20 0672326663 AppA 6/10/04 2:01 PM Page 439

440 Appendix A C Language Summary

An expression of any type other than void that identifies a data object is called an
lvalue. If it can be assigned a value, it is known as a modifiable lvalue.

Modifiable lvalue expressions are required in certain places.The expression on the
left-hand side of an assignment operator must be a modifiable lvalue. Furthermore, the
increment and decrement operators can only be applied to modifiable lvalues, as can the
unary address operator & (unless it’s a function).

5.1 Summary of C Operators
Table A.5 summarizes the various operators in the C language.These operators are listed
in order of decreasing precedence. Operators grouped together have the same prece-
dence.

Table A.5 Summary of C Operators

Operator Description Associativity

() Function call

[] Array element reference

-> Pointer to structure member reference Left to right

. Structure member reference

- Unary minus

+ Unary plus

++ Increment

-- Decrement

! Logical negation

~ Ones complement Right to left

* Pointer reference (indirection)

& Address

sizeof Size of an object

(type) Type cast (conversion)

* Multiplication

/ Division Left to right

% Modulus

+ Addition Left to right

- Subtraction

<< Left shift Left to right

>> Right shift

< Less than

<= Less than or equal to Left to right

> Greater than

=> Greater than or equal to

20 0672326663 AppA 6/10/04 2:01 PM Page 440

4415.0 Expressions

== Equality Left to right

!= Inequality

& Bitwise AND Left to right

^ Bitwise XOR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

|| Logical OR Left to right

?: Conditional Right to left

=

*= /= %=

+= -= &= Assignment operators Right to left

^= |=

<<= >>=

, Comma operator Right to left

As an example of how to use Table A.5, consider the following expression:

b | c & d * e

The multiplication operator has higher precedence than both the bitwise OR and bit-
wise AND operators because it appears above both of these in Table A.5. Similarly, the
bitwise AND operator has higher precedence than the bitwise OR operator because the
former appears above the latter in the table.Therefore, this expression is evaluated as

b | (c & (d * e))

Now consider the following expression:

b % c * d

Because the modulus and multiplication operator appear in the same grouping in Table
A.5, they have the same precedence.The associativity listed for these operators is left to
right, indicating that the expression is evaluated as

(b % c) * d

As another example, the expression

++a->b

is evaluated as

++(a->b)

because the -> operator has higher precedence than the ++ operator.

Table A.5 Continued

Operator Description Associativity

20 0672326663 AppA 6/10/04 2:01 PM Page 441

442 Appendix A C Language Summary

Finally, because the assignment operators group from right to left, the statement

a = b = 0;

is evaluated as

a = (b = 0);

which has the net result of setting the values of a and b to 0. In the case of the
expression

x[i] + ++i

it is not defined whether the compiler evaluates the left side of the plus operator or the
right side first. Here, the way that it’s done affects the result because the value of i might
be incremented before x[i] is evaluated.

Another case in which the order of evaluation is not defined is in the following
expression:

x[i] = ++i

In this situation, it is not defined whether the value of i is incremented before or after
its value is used to index into x.

The order of evaluation of function arguments is also undefined.Therefore, in the
function call

f (i, ++i);

i might be incremented first, thereby causing the same value to be sent as the two argu-
ments to the function.

The C language guarantees that the && and || operators are evaluated from left to
right. Furthermore, in the case of &&, it is guaranteed that the second operand is not
evaluated if the first is 0; and in the case of ||, it is guaranteed that the second operand is
not evaluated if the first is nonzero.This fact is worth bearing in mind when forming
expressions such as

if (dataFlag || checkData (myData))

...

because, in this case, checkData is called only if the value of dataFlag is 0.To take
another example, if the array a is defined to contain n elements, the statement that
begins

if (index >= 0 && index < n && a[index] == 0))

...

references the element contained in the array only if index is a valid subscript in the
array.

5.2 Constant Expressions
A constant expression is an expression in which each of the terms is a constant value.
Constant expressions are required in the following situations:

20 0672326663 AppA 6/10/04 2:01 PM Page 442

4435.0 Expressions

1. As the value after a case in a switch statement

2. For specifying the size of an array that is initialized or globally declared

3. For assigning a value to an enumeration identifier

4. For specifying the bit field size in a structure definition

5. For assigning initial values to static variables

6. For assigning initial values to global variables

7. As the expression following the #if in a #if preprocessor statement

In the first four cases, the constant expression must consist of integer constants, character
constants, enumeration constants, and sizeof expressions.The only operators that can be
used are the arithmetic operators, the bitwise operators, the relational operators, the con-
ditional expression operator, and the type cast operator.The sizeof operator cannot be
used on an expression with a variable-length array because the result is evaluated at run-
time and is, therefore, not a constant expression.

In the fifth and sixth cases, in addition to the rules cited earlier, the address operator
can be implicitly or explicitly used. However, it can only be applied to global or static
variables or functions. So, for example, the expression

&x + 10

is a valid constant expression, provided that x is a global or static variable. Furthermore,
the expression

&a[10] - 5

is a valid constant expression if a is a global or static array. Finally, because &a[0] is
equivalent to the expression a,

a + sizeof (char) * 100

is also a valid constant expression.
For the last situation that requires a constant expression (after the #if), the rules are

the same as for the first four cases, except the sizeof operator, enumeration constants,
and the type cast operator cannot be used. However, the special defined operator is per-
mitted (see Section 9.2.3).

5.3 Arithmetic Operators
Given that

a, b are expressions of any basic data type except void;

i, j are expressions of any integer data type;

then the expression
-a negates the value of a;

+a gives the value of a;

a + b adds a with b;

20 0672326663 AppA 6/10/04 2:01 PM Page 443

444 Appendix A C Language Summary

a - b subtracts b from a;

a * b multiplies a by b;

a / b divides a by b;

i % j gives the remainder of i divided by j.

In each expression, the usual arithmetic conversions are performed on the operands (see
Section 5.17). If a is unsigned, –a is calculated by first applying integral promotion to it,
subtracting it from the largest value of the promoted type, and adding 1 to the result.

If two integral values are divided, the result is truncated. If either operand is negative,
the direction of the truncation is not defined (that is, –3 / 2 might produce –1 on some
machines and –2 on others); otherwise, truncation is always toward zero (3 / 2 always
produces 1). See Section 5.15 for a summary of arithmetic operations with pointers.

5.4 Logical Operators
Given that

a, b are expressions of any basic data type except void, or are both
pointers;

then the expression
a && b has the value 1 if both a and b are nonzero, and 0 otherwise (and b is

evaluated only if a is nonzero);

a || b has the value 1 if either a or b is nonzero, and 0 otherwise (and b is
evaluated only if a is zero);

! a has the value 1 if a is zero, and 0 otherwise.

The usual arithmetic conversions are applied to a and b (see Section 5.17).The type of
the result in all cases is int.

5.5 Relational Operators
Given that

a, b are expressions of any basic data type except void, or are both
pointers;

then the expression
a < b has the value 1 if a is less than b, and 0 otherwise;

a <= b has the value 1 if a is less than or equal to b, and 0 otherwise;

a > b has the value 1 if a is greater than b, and 0 otherwise;

a >= b has the value 1 if a is greater than or equal to b, and 0 otherwise;

a == b has the value 1 if a is equal to b, and 0 otherwise;

a != b has the value 1 if a is not equal to b, and 0 otherwise.

20 0672326663 AppA 6/10/04 2:01 PM Page 444

4455.0 Expressions

The usual arithmetic conversions are performed on a and b (see Section 5.17).The first
four relational tests are only meaningful for pointers if they both point into the same
array or to members of the same structure or union.The type of the result in each case
is int.

5.6 Bitwise Operators
Given that

i, j, n are expressions of any integer data type;

then the expression
i & j performs a bitwise AND of i and j;

i | j performs a bitwise OR of i and j;

i ^ j performs a bitwise XOR of i and j;

~i takes the ones complement of i;

i << n shifts i to the left n bits;

i >> n shifts i to the right n bits.

The usual arithmetic conversions are performed on the operands, except with << and >>,
in which case just integral promotion is performed on each operand (see Section 5.17).
If the shift count is negative or is greater than or equal to the number of bits contained
in the object being shifted, the result of the shift is undefined. On some machines, a
right shift is arithmetic (sign fill) and on others logical (zero fill).The type of the result
of a shift operation is that of the promoted left operand.

5.7 Increment and Decrement Operators
Given that

lv is a modifiable lvalue expression, whose type is not qualified as
const;

then the expression
++lv increments lv and then uses its value as the value of the expression;

lv++ uses lv as the value of the expression and then increments lv;

--lv decrements lv and then uses its value as the value of the expression;

lv-- uses lv as the value of the expression and then decrements lv.

Section 5.15 describes these operations on pointers.

20 0672326663 AppA 6/10/04 2:01 PM Page 445

446 Appendix A C Language Summary

5.8 Assignment Operators
Given that

lv is a modifiable lvalue expression, whose type is not qualified as
const;

op is any operator that can be used as an assignment operator (see Table
A.5);

a is an expression;

then the expression
lv = a stores the value of a into lv;

lv op= a applies op to lv and a, storing the result in lv.

In the first expression, if a is one of the basic data types (except void), it is converted to
match the type of lv. If lv is a pointer, a must be a pointer to the same type as lv, a
void pointer, or the null pointer.

If lv is a void pointer, a can be of any pointer type.The second expression is treated
as if it were written lv = lv op (a), except lv is only evaluated once (consider
x[i++] += 10).

5.9 Conditional Operators
Given that

a, b, c are expressions;

then the expression
a ? b : c has as its value b if a is nonzero, and c otherwise; only expression b or

c is evaluated.

Expressions b and c must be of the same data type. If they are not, but are both arith-
metic data types, the usual arithmetic conversions are applied to make their types the
same. If one is a pointer and the other is zero, the latter is taken as a null pointer of the
same type as the former. If one is a pointer to void and the other is a pointer to another
type, the latter is converted to a pointer to void, and that is the resulting type.

5.10 Type Cast Operator
Given that

type is the name of a basic data type, an enumerated data type (preceded by
the keyword enum), a typedef-defined type, or is a derived data type;

a is an expression;

then the expression
(type) converts a to the specified type.

20 0672326663 AppA 6/10/04 2:01 PM Page 446

4475.0 Expressions

5.11 sizeof Operator
Given that

type is as described previously;

a is an expression;

then the expression
sizeof (type) has as its value the number of bytes needed to contain a value of

the specified type;

sizeof a has as its value the number of bytes required to hold the result
of the evaluation of a.

If type is char, the result is defined to be 1. If a is the name of an array that has been
dimensioned (either explicitly or implicitly through initialization) and is not a formal
parameter or undimensioned extern array, sizeof a gives the number of bytes required
to store the elements in a.

The type of integer produced by the sizeof operator is size_t, which is defined in
the standard header file <stddef.h>.

If a is a variable-length array, the sizeof operator is evaluated at runtime; otherwise a
is evaluated at compile time and the result can be used in constant expressions (see
Section 5.2).

5.12 Comma Operator
Given that

a, b are expressions;

then the expression
a, b causes a to be evaluated and then b to be evaluated; the type and value

of the expression is that of b.

5.13 Basic Operations with Arrays
Given that

a is declared as an array of n elements;

i is an expression of any integer data type;

v is an expression;

then the expression
a[0] references the first element of a;

a[n - 1] references the last element of a;

a[i] references element number i of a;

a[i] = v stores the value of v into a[i].

20 0672326663 AppA 6/10/04 2:01 PM Page 447

448 Appendix A C Language Summary

In each case, the type of the result is the type of the elements contained in a. See
Section 5.15 for a summary of operations with pointers and arrays.

5.14 Basic Operations with Structures1

Given that
x is a modifiable lvalue expression of type struct s;

y is an expression of type struct s;

m is the name of one of the members of the structure s;

v is an expression;

then the expression
x references the entire structure and is of type struct s;

y.m references the member m of the structure y and is of the type declared
for the member m;

x.m = v assigns v to the member m of x and is of the type declared for the
member m;

x = y assigns y to x and is of type struct s;

f (y) calls the function f, passing contents of the structure y as the argu-
ment; inside f, the formal parameter must be declared to be of type
struct s;

return y; returns the structure y; the return type declared for the function must
be struct s.

5.15 Basic Operations with Pointers
Given that

x is an lvalue expression of type t;

pt is a modifiable lvalue expression of type “pointer to t”;

v is an expression;

then the expression
&x produces a pointer to x and has type “pointer to t”;

pt = &x sets pt pointing to x and has type “pointer to t”;

pt = 0 assigns the null pointer to pt;

pt == 0 tests to see if pt is null;

*pt references the value pointed to by pt and has type t;

*pt = v stores the value of v into the location pointed to by pt and has type t.

1.Also applies to unions.

20 0672326663 AppA 6/10/04 2:01 PM Page 448

4495.0 Expressions

Pointers to Arrays

Given that
a is an array of elements of type t;

pa1 is a modifiable lvalue expression of type “pointer to t” that points to
an element in a;

pa2 is an lvalue expression of type “pointer to t” that points to an ele-
ment in a, or to one past the last element in a;

v is an expression;

n is an integral expression;

then the expression
a, &a, &a[0] produces a pointer to the first element;

&a[n] produces a pointer to element number n of a and has type
“pointer to t”;

*pa1 references the element of a that pa1 points to and has type t;

*pa1 = v stores the value of v in the element pointed to by pa1, and has
type t;

++pa1 sets pa1 pointing to the next element of a, no matter what type
of elements are contained in a and has type “pointer to t”;

--pa1 sets pa1 pointing to the previous element of a, no matter what
type of elements are contained in a, and has type “pointer to t”;

*++pa1 increments pa1 and then references the value in a that pa1
points to, and has type t;

*pa1++ references the value in a that pa1 points to before incrementing
pa1 and has type t;

pa1 + n produces a pointer that points n elements further into a than
pa1 and has type “pointer to t”;

pa1 - n produces a pointer to a that points n elements previous to that
pointed to by pa1 and has type “pointer to t”;

*(pa1 + n) = v stores the value of v in the element pointed to by pa1 + n and
has type t;

pa1 < pa2 tests if pa1 is pointing to an earlier element in a than is pa2 and
has type int (any relational operators can be used to compare
two pointers);

pa2 - pa1 produces the number of elements in a contained between the
pointers pa2 and pa1 (assuming that pa2 points to an element
further in a than pa1) and has integer type;

20 0672326663 AppA 6/10/04 2:01 PM Page 449

450 Appendix A C Language Summary

a + n produces a pointer to element number n of a, has type “pointer
to t,” and is in all ways equivalent to the expression &a[n];

*(a + n) references element number n of a, has type t, and is in all ways
equivalent to the expression a[n].

The actual type of the integer produced by subtracting two pointers is specified by
ptrdiff_t, which is defined in the standard header file <stddef.h>.

Pointers to Structures2

Given that
x is an lvalue expression of type struct s;

ps is a modifiable lvalue expression of type “pointer to struct s”;

m is the name of a member of the structure s and is of type t;

v is an expression;

then the expression
&x produces a pointer to x and is of type “pointer to struct s”;

ps = &x sets ps pointing to x and is of type “pointer to struct s”;

ps->m references member m of the structure pointed to by ps and is of
type t;

(*ps).m also references this member and is in all ways equivalent to the expres-
sion ps->m;

ps->m = v stores the value of v into the member m of the structure pointed to by
ps and is of type t.

5.16 Compound Literals
A compound literal is a type name enclosed in parentheses followed by an initialization
list. It creates an unnamed value of the specified type, which has scope limited to the
block in which it is created, or global scope if defined outside of any block. In the latter
case, the initializers must all be constant expressions.

As an example,

(struct point) {.x = 0, .y = 0}

is an expression that produces a structure of type struct point with the specified initial
values.This can be assigned to another struct point structure, as in

origin = (struct point) {.x = 0, .y = 0};

or passed to a function expecting an argument of struct point, as in

moveToPoint ((struct point) {.x = 0, .y = 0});

2.Also applies to unions.

20 0672326663 AppA 6/10/04 2:01 PM Page 450

4515.0 Expressions

Types other than structures can be defined as well, for example, if intPtr is of type
int *, the statement

intPtr = (int [100]) {[0] = 1, [50] = 50, [99] = 99 };

(which can appear anywhere in the program) sets intptr pointing to an array of 100
integers, whose three elements are initialized as specified.

If the size of the array is not specified, it is determined by the initializer list.

5.17 Conversion of Basic Data Types
The C language converts operands in arithmetic expressions in a predefined order,
known as the usual arithmetic conversions.

Step 1: If either operand is of type long double, the other is converted to
long double, and that is the type of the result.

Step 2: If either operand is of type double, the other is converted to double,
and that is the type of the result.

Step 3: If either operand is of type float, the other is converted to float, and
that is the type of the result.

Step 4: If either operand is of type _Bool, char, short int, int bit field, or of
an enumerated data type, it is converted to int, if an int can fully
represent its range of values; otherwise, it is converted to unsigned
int. If both operands are of the same type, that is the type of the
result.

Step 5: If both operands are signed or both are unsigned, the smaller integer
type is converted to the larger integer type, and that is the type of the
result.

Step 6: If the unsigned operand is equal in size or larger than the signed
operand, then the signed operand is converted to the type of the
unsigned operand, and that is the type of the result.

Step 7: If the signed operand can represent all of the values in the unsigned
operand, the latter is converted to the type of the former, and that is
the type of the result.

Step 8: If this step is reached, both operands are converted to the unsigned
type corresponding to the type of the signed type.

Step 4 is known more formally as integral promotion.
Conversion of operands is well behaved in most situations, although the following

points should be noted:

1. Conversion of a char to an int might involve sign extension on some machines,
unless the char is declared as unsigned.

20 0672326663 AppA 6/10/04 2:01 PM Page 451

452 Appendix A C Language Summary

2. Conversion of a signed integer to a longer integer results in extension of the sign
to the left; conversion of an unsigned integer to a longer integer results in zero fill
to the left.

3. Conversion of any value to a _Bool results in 0 if the value is zero and 1 other-
wise.

4. Conversion of a longer integer to a shorter one results in truncation of the integer
on the left.

5. Conversion of a floating-point value to an integer results in truncation of the deci-
mal portion of the value. If the integer is not large enough to contain the convert-
ed floating-point value, the result is not defined, as is the result of converting a
negative floating-point value to an unsigned integer.

6. Conversion of a longer floating-point value to a shorter one might or might not
result in rounding before the truncation occurs.

6.0 Storage Classes and Scope
The term storage class refers to the manner in which memory is allocated by the compil-
er in the case of variables and to the scope of a particular function definition. Storage
classes are auto, static, extern, and register.A storage class can be omitted in a dec-
laration and a default storage class is assigned, as discussed later in this chapter.

The term scope refers to the extent of the meaning of a particular identifier within a
program.An identifier defined outside any function or statement block (herein referred
to as a BLOCK) can be referenced anywhere subsequent in the file. Identifiers defined
within a BLOCK are local to that BLOCK and can locally redefine an identifier defined
outside it. Label names are known throughout the BLOCK, as are formal parameter
names. Labels, structure and structure member names, union and union member names,
and enumerated type names do not have to be distinct from each other or from variable
or function names. However, enumeration identifiers do have to be distinct from variable
names and from other enumeration identifiers defined within the same scope.

6.1 Functions
If a storage class is specified when a function is defined, it must be either static or
extern. Functions that are declared as static can only be referenced from within the
same file that contains the function. Functions that are specified as extern (or that have
no class specified) can be called by functions from other files.

6.2 Variables
Table A.6 summarizes the various storage classes that can be used in declaring variables
as well as their scope and methods of initialization.

20 0672326663 AppA 6/10/04 2:01 PM Page 452

4536.0 Storage Classes and Scope

Table A.6 Variables: Summary of Storage Classes, Scope, and Initialization

If Storage And Variable Then it can be And can be
Class is is declared referenced initialized with Comments

static Outside any Anywhere Constant Variables are
BLOCK within the file expression only initialized
Inside a BLOCK Within the only once at

BLOCK the start of pro-
gram execution;
values are
retained through
BLOCKs;
default value is 0

extern Outside any Anywhere within Constant Variable must
BLOCK the file expression only be declared
Inside a BLOCK Within the in at least

BLOCK one place with-
out the extern
keyword, or in
one place using
the keyword
extern and
assigned an ini-
tial value

auto Inside a BLOCK Within the Any valid Variable is
BLOCK expression initialized each

time the
BLOCK is
entered; no
default value

register Inside a BLOCK Within the Any valid Assignment
BLOCK expression to register not

guaranteed;
varying restric-
tions on types of
variables that
can be declared;
cannot take the
address of a reg-
ister variable;
initialized each
time BLOCK is
entered; no
default value

20 0672326663 AppA 6/10/04 2:01 PM Page 453

454 Appendix A C Language Summary

omitted Outside Anywhere within Constant This
any BLOCK the file or by expressions declaration

other files that only can appear in
contain only one
appropriate place;
declarations variable is

initialized at
the start of
program
execution;
default value
is 0

Inside a BLOCK (See auto) (See auto) defaults to
auto

7.0 Functions
This section summarizes the syntax and operation of functions.

7.1 Function Definition
The general format for declaring a function definition is as follows:
returnType name (type1 param1, type2 param2, ...)

{

variableDeclarations

programStatement

programStatement

...

return expression;

}

The function called name is defined, which returns a value of type returnType and has
formal parameters param1, param2,... . param1 is declared to be of type type1,
param2 is declared to be of type type2, and so on.

Local variables are typically declared at the beginning of the function, but that’s not
required.They can be declared anywhere, in which case their access is limited to state-
ments appearing after their declaration in the function.

If the function does not return a value, returnType is specified as void.
If just void is specified inside the parentheses, the function takes no arguments. If ...

is used as the last (or only) parameter in the list, the function takes a variable number of
arguments, as in

Table A.6 Continued

If Storage And Variable Then it can be And can be
Class is is declared referenced initialized with Comments

20 0672326663 AppA 6/10/04 2:01 PM Page 454

4557.0 Functions

int printf (char *format, ...)

{

...

}

Declarations for single-dimensional array arguments do not have to specify the number
of elements in the array. For multidimensional arrays, the size of each dimension except
the first must be specified.

See Section 8.9 for a discussion of the return statement.
The keyword inline can be placed in front of a function definition as a hint to the

compiler. Some compilers replace the function call with the actual code for the function
itself, thus providing for faster execution.An example is

inline int min (int a, int b)

{

return (a < b ? a : b);

}

7.2 Function Call
The general format for declaring a function call is as follows:

name (arg1, arg2, ...)

The function called name is called and the values arg1, arg2, ... are passed as arguments
to the function. If the function takes no arguments, just the open and closed parentheses
are specified (as in initialize ()).

If you are calling a function that is defined after the call, or in another file, you should
include a prototype declaration for the function, which has the following general format:

returnType name (type1 param1, type2 param2, ...);

This tells the compiler the function’s return type, the number of arguments it takes, and
the type of each argument.As an example, the line

long double power (double x, int n);

declares power to be a function that returns a long double and that takes two argu-
ments, the first a double and the second an int.The argument names inside the paren-
theses are actually dummy names and can be omitted if desired, so

long double power (double, int);

works just as well.
If the compiler has previously encountered the function definition or a prototype

declaration for the function, the type of each argument is automatically converted
(where possible) to match the type expected by the function when the function is called.

If neither the function’s definition nor a prototype declaration has been encountered, the
compiler assumes the function returns a value of type int, automatically converts all float
arguments to type double, and performs integral promotion on any integer arguments as
outlined in Section 5.17. Other function arguments are passed without conversion.

20 0672326663 AppA 6/10/04 2:01 PM Page 455

456 Appendix A C Language Summary

Functions that take a variable number of arguments must be declared as such.
Otherwise, the compiler is at liberty to assume the function takes a fixed number of
arguments based upon the number actually used in the call.

A function whose return type is declared as void causes the compiler to flag any calls
to that function that try to make use of a returned value.

All arguments to a function are passed by value; therefore, their values cannot be
changed by the function. If a pointer is passed to a function, the function can change val-
ues referenced by the pointer, but it still cannot change the value of the pointer variable
itself.

7.3 Function Pointers
A function name, without a following set of parentheses, produces a pointer to that
function.The address operator can also be applied to a function name to produce a
pointer to it.

If fp is a pointer to a function, the corresponding function can be called either by
writing

fp ()

or

(*fp) ()

If the function takes arguments, they can be listed inside the parentheses.

8.0 Statements
A program statement is any valid expression (usually an assignment or function call) that
is immediately followed by a semicolon, or it is one of the special statements described
in the following sections.A label can optionally precede any statement, and consists of an
identifier followed immediately by a colon (see Section 8.6).

8.1 Compound Statements
Program statements that are contained within a pair of braces are known collectively as a
compound statement or block and can appear anywhere in the program that a single state-
ment is permitted.A block can have its own set of variable declarations, which override
any similarly named variables defined outside the block.The scope of such local variables
is the block in which they are defined.

8.2 The break Statement
The general format for declaring a break statement is as follows:

break;

20 0672326663 AppA 6/10/04 2:01 PM Page 456

4578.0 Statements

Execution of a break statement from within a for, while, do, or switch statement caus-
es execution of that statement to be immediately terminated. Execution continues with
the statement that immediately follows the loop or switch.

8.3 The continue Statement
The general format for declaring the continue statement is as follows:

continue;

Execution of the continue statement from within a loop causes any statements that fol-
low the continue in the loop to be skipped. Execution of the loop otherwise continues
as normal.

8.4 The do Statement
The general format for declaring the do statement is as follows:

do

programStatement

while (expression);

programStatement is executed as long as expression evaluates as nonzero. Note that,
because expression is evaluated each time after the execution of programStatement, it
is guaranteed that programStatement will be executed at least once.

8.5 The for Statement
The general format for declaring the for statement is as follows:

for (expression_1; expression_2; expression_3)

programStatement

expression_1 is evaluated once when execution of the loop begins. Next,
expression_2 is evaluated. If its value is nonzero, programStatement is executed and
then expression_3 is evaluated. Execution of programStatement and the subsequent
evaluation of expression_3 continues as long as the value of expression_2 is nonzero.
Note that, because expression_2 is evaluated each time before programStatement is
executed, programStatement might never be executed if the value of expression_2 is 0
when the loop is first entered.

Variables local to the for loop can be declared in expression_1.The scope of such
variables is the scope of the for loop. For example,

for (int i = 0; i < 100; ++i)

...

declares the integer variable i and sets its initial value to 0 when the loop begins.The
variable can be accessed by any statements inside the loop, but is not accessible after the
loop is terminated.

20 0672326663 AppA 6/10/04 2:01 PM Page 457

458 Appendix A C Language Summary

8.6 The goto Statement
The general format for declaring the goto statement is as follows:

goto identifier;

Execution of the goto causes control to be sent directly to the statement labeled
identifier.The labeled statement must be located in the same function as the goto.

8.7 The if Statement
One general format for declaring an if statement is as follows:

if (expression)

programStatement

If the result of evaluating expression is nonzero, programStatement is executed; other-
wise, it is skipped.

Another general format for declaring an if statement is as follows:

if (expression)

programStatement_1

else

programStatement_2

If the value of expression is nonzero, the programStatement_1 is executed; otherwise,
programStatement_2 is executed. If programStatement_2 is another if statement, an
if-else if chain is affected:

if (expression_1)

programStatement_1

else if (expression_2)

programStatement_2

...

else

programStatement_n

An else clause is always associated with the last if statement that does not contain an
else. Braces can be used to change this association if necessary.

8.8 The null Statement
The general format for declaring the null statement is as follows:

;

Execution of a null statement has no effect and is used primarily to satisfy the require-
ment of a program statement in a for, do, or while loop. For example, in the following
statement, which copies a character string pointed to by from to one pointed to by to:

while (*to++ = *from++)

;

20 0672326663 AppA 6/10/04 2:01 PM Page 458

4598.0 Statements

the null statement is used to satisfy the requirement that a program statement appear
after the looping expression of the while.

8.9 The return Statement
One general format for declaring the return statement is as follows:

return;

Execution of the return statement causes program execution to be immediately
returned to the calling function.This format can only be used to return from a function
that does not return a value.

If execution proceeds to the end of a function and a return statement is not encoun-
tered, it returns as if a return statement of this form had been executed.Therefore, in
such a case, no value is returned.

A second general format for declaring the return statement is as follows:

return expression;

The value of expression is returned to the calling function. If the type of expression
does not agree with the return type declared in the function declaration, its value is
automatically converted to the declared type before it is returned.

8.10 The switch Statement
The general format for declaring a switch statement is as follows:

switch (expression)

{

case constant_1:

programStatement

programStatement

...

break;

case constant_2:

programStatement

programStatement

...

break;

...

case constant_n:

programStatement

programStatement

...

break;

default:

programStatement

programStatement

...

break;

}

20 0672326663 AppA 6/10/04 2:01 PM Page 459

460 Appendix A C Language Summary

expression is evaluated and compared against the constant expression values
constant_1, constant_2, …, constant_n. If the value of expression matches one of these
case values, the program statements that immediately follow are executed. If no case
value matches the value of expression, the default case, if included, is executed. If the
default case is not included, no statements contained in the switch are executed.

The result of the evaluation of expression must be of integral type and no two cases
can have the same value. Omitting the break statement from a particular case causes
execution to continue into the next case.

8.11 The while Statement
The general format for declaring the while statement is as follows:

while (expression)

programStatement

programStatement is executed as long as the value of expression is nonzero. Note that,
because expression is evaluated each time before the execution of programStatement,
programStatement might never be executed.

9.0 The Preprocessor
The preprocessor analyzes the source file before the compiler properly sees the code.The
preprocessor does the following:

1. Replaces trigraph sequences (See Section 9.1) by their equivalents

2. Joins any lines that end with a backslash character (\) together into a single line

3. Divides the program into a stream of tokens

4. Removes comments, replacing them with a single space

5. Processes preprocessor directives (see Section 9.2) and expands macros

9.1 Trigraph Sequences
To handle non-ASCII character sets, the three-character sequences (called trigraphs) listed
in Table A.7 are recognized and treated specially wherever they occur inside a program
(as well as inside character strings):

Table A.7 Trigraph Sequences

Trigraph Meaning

??= #

??([

??)]

??< {

20 0672326663 AppA 6/10/04 2:01 PM Page 460

4619.0 The Preprocessor

??> }

??/ \

??' ^

??! |

??- ~

9.2 Preprocessor Directives
All preprocessor directives begin with the character #, which must be the first nonwhite-
space character on the line.The # can be optionally followed by one or more space or
tab characters.

9.2.1 The #define Directive

The general format for declaring the #define directive is as follows:

#define name text

This defines the identifier name to the preprocessor and associates with it whatever text
appears after the first blank space after name to the end of the line. Subsequent use of
name in the program causes text to be substituted directly into the program at that
point.

Another general format for declaring the #define directive is as follows:

#define name(param_1, param_2, ..., param_n) text

The macro name is defined to take arguments as specified by param_1, param_2, ...,
param_n, each of which is an identifier. Subsequent use of name in the program with an
argument list causes text to be substituted directly into the program at that point, with
the arguments of the macro call replacing all occurrences of the corresponding parame-
ters inside text.

If the macro takes a variable number of arguments, three dots are used at the end of
the argument list.The remaining arguments in the list are collectively referenced in the
macro definition by the special identifier __VA_ARGS__.As an example, the following
defines a macro called myPrintf to take a leading format string followed by a variable
number of arguments:

#define myPrintf(...) printf ("DEBUG: " __VA_ARGS__);

Legitimate macro uses includes

myPrintf ("Hello world!\n");

as well as

myPrintf ("i = %i, j = %i\n", i, j);

Table A.7 Trigraph Sequences

Trigraph Meaning

20 0672326663 AppA 6/10/04 2:01 PM Page 461

462 Appendix A C Language Summary

If a definition requires more than one line, each line to be continued must be ended
with a backslash character.After a name has been defined, it can be used subsequently
anywhere in the file.

The # operator is permitted in #define directives that take arguments. It is followed
by the name of an argument to the macro.The preprocessor puts double quotation
marks around the actual value passed to the macro when it’s invoked.That is, it turns it
into a character string. For example, the definition

#define printint(x) printf (# x " = %d\n", x)

with the call

printint (count);

is expanded by the preprocessor into

printf ("count" " = %i\n", count);

or, equivalently,

printf ("count = %i\n", count);

The preprocessor puts a \ character in front of any " or \ characters when performing
this stringizing operation. So, with the definition

#define str(x) # x

the call

str (The string "\t" contains a tab)

expands to

"The string \"\\t\" contains a tab"

The ## operator is also allowed in #define directives that take arguments. It is preceded
(or followed) by the name of an argument to the macro.The preprocessor takes the value
that is passed when the macro is invoked and creates a single token from the argument
to the macro and the token that follows (or precedes) it. For example, the macro
definition

#define printx(n) printf ("%i\n", x ## n);

with the call

printx (5)

produces

printf ("%i\n", x5);

The definition

#define printx(n) printf ("x" # n " = %i\n", x ## n);

with the call

printx(10)

20 0672326663 AppA 6/10/04 2:01 PM Page 462

4639.0 The Preprocessor

produces

printf ("x10 = %i\n", x10);

after substitution and concatenation of the character strings.
Spaces are not required around the # and ## operators.

9.2.2 The #error Directive

The general format for declaring the #error directive is as follows:

#error text

...

The specified text is written as an error message by the preprocessor.

9.2.3 The #if Directive

One general format for declaring the #if directive is as follows:

#if constant_expression

...

#endif

The value of constant_expression is evaluated. If the result is nonzero, all program
lines up until the #endif directive are processed; otherwise, they are automatically
skipped and are not processed by the preprocessor or by the compiler.

Another general format for declaring the #if directive is as follows:

#if constant_expression_1

...

#elif constant_expression_2

...

#elif constant_expression_n

...

#else

...

#endif

If constant_expression_1 is nonzero, all program lines up until the #elif are
processed, and the remaining lines up to the #endif are skipped. Otherwise, if
constant_expression_2 is nonzero, all program lines up until the next #elif are
processed, and the remaining lines up to the #endif are skipped. If none of the constant
expressions evaluates to nonzero, the lines after the #else (if included) are processed.

The special operator defined can be used as part of the constant expression, so

#if defined (DEBUG)

...

#endif

20 0672326663 AppA 6/10/04 2:01 PM Page 463

464 Appendix A C Language Summary

causes the code between the #if and #endif to be processed if the identifier DEBUG has
been previously defined (see Section 9.2.4).The parentheses are not necessary around
the identifier, so

#if defined DEBUG

works just as well.

9.2.4 The #ifdef Directive

The general format for declaring the #ifdef directive is as follows:

#ifdef identifier

...

#endif

If the value of identifier has been previously defined (either through a #define or
with the -D command-line option when the program was compiled), all program lines
up until the #endif are processed; otherwise, they are skipped.As with the #if directive,
#elif and #else directives can be used with a #ifdef directive.

9.2.5 The #ifndef Directive

The general format for declaring the #ifndef directive is as follows:

#ifndef identifier

...

#endif

If the value of identifier has not been previously defined, all program lines up until
the #endif are processed; otherwise, they are skipped.As with the #if directive, #elif
and #else directives can be used with a #ifndef directive.

9.2.6 The #include Directive

One general format for declaring the #include directive is as follows:

#include "fileName"

The preprocessor searches an implementation-defined directory or directories first for
the file fileName.Typically, the same directory that contains the source file is searched
first. If the file is not found there, a sequence of implementation-defined standard places
is searched.After it is found, the contents of the file is included in the program at the
precise point that the #include directive appears. Preprocessor directives contained
within the included file are analyzed, and, therefore, an included file can itself contain
other #include directives.

Another general format for declaring the #include directive is as follows:

#include <fileName>

The preprocessor searches for the specified file only in the standard places.The action
taken after the file is found is otherwise identical to that described previously.

20 0672326663 AppA 6/10/04 2:01 PM Page 464

4659.0 The Preprocessor

In either format, a previously defined name can be supplied and expansion occurs. So
the following sequence works:

#define DATABASE_DEFS </usr/data/database.h>

…

#include DATABASE_DEFS

9.2.7 The #line Directive

The general format for declaring the #line directive is as follows:

#line constant "fileName"

This directive causes the compiler to treat subsequent lines in the program as if the name
of the source file were fileName, and as if the line number of all subsequent lines began
at constant. If fileName is not specified, the filename specified by the last #line direc-
tive or the name of the source file (if no filename was previously specified) is used.

The #line directive is primarily used to control the filename and line number that
are displayed whenever an error message is issued by the compiler.

9.2.8 The #pragma Directive

The general format for declaring the #pragma directive is as follows:

#pragma text

This causes the preprocessor to perform some implementation-defined action. For
example,

#pragma loop_opt(on)

might cause special loop optimization to be performed on a particular compiler. If this
pragma is encountered by a compiler that doesn’t recognize the loop_opt pragma, it is
ignored.

The special keyword STDC is used after the #pragma for special meaning. Current sup-
ported “switches” that can follow a #pragma STDC are FP_CONTRACT, FENV_ACCESS, and
CX_LIMITED_RANGE.

9.2.9 The #undef Directive

The general format for declaring the #undef directive is as follows:

#undef identifier

The specified identifier becomes undefined to the preprocessor. Subsequent #ifdef
or #ifndef directives behave as if the identifier were never defined.

9.2.10 The # Directive

This is a null directive and is ignored by the preprocessor.

20 0672326663 AppA 6/10/04 2:01 PM Page 465

466 Appendix A C Language Summary

9.3 Predefined Identifiers
The identifiers listed in Table A.8 are defined by the preprocessor.

Table A.8 Predefined Preprocesor Identifiers

Identifier Meaning

__LINE__ Current line number being compiled

__FILE__ Name of the current source file being compiled

__DATE__ Date the file is being compiled, in the format "mm dd yyyy"

__TIME__ Time the file is being compiled, in the format "hh:mm:ss"

__STDC__ Defined as 1 if the compiler conforms to the ANSI standard,
0 if not

__STDC_HOSTED__ Defined as 1 if the implementation is hosted, 0 if not

__STDC_VERSION__ Defined as 199901L

20 0672326663 AppA 6/10/04 2:01 PM Page 466

B
The Standard C Library

THE STANDARD C LIBRARY CONTAINS a large selection of functions that might be
called from a C program.This section does not list all of these functions, but rather most
of the more commonly used ones. For a complete listing of all the functions that are
available, consult the documentation that was included with your compiler, or check one
of the resources listed in Appendix E,“Resources.”

Among the routines not described in this appendix are ones for manipulating the date
and time (such as time, ctime, and localtime), performing nonlocal jumps (setjmp and
longjmp), generating diagnostics (assert), handling a variable number of arguments
(va_list, va_start, va_arg, and va_end), handling signals (signal and raise), dealing
with localization (as defined in <locale.h>), and dealing with wide character strings.

Standard Header Files
This section describes the contents of some standard header files: <stddef.h>,
<stdbool.h>, <limits.h>, <float.h>, and <stdinit.h>.

<stddef.h>
This header file contains some standard definitions, such as the following:

Define Meaning

NULL A null pointer constant

offsetof (structure, member) The offset in bytes of the member member
from the start of the structure structure; the
type of the result is size_t

ptrdiff_t The type of integer produced by subtracting
two pointers

21 0672326663 AppB 6/10/04 2:03 PM Page 467

468 Appendix B The Standard C Library

size_t The type of integer produced by the sizeof
operator

wchar_t The type of the integer required to hold a
wide character (see Appendix A,“C Language
Summary”)

<limits.h>
This header file contains various implementation-defined limits for character and integer
data types. Certain minimum values are guaranteed by the ANSI standard.These are
noted at the end of each description inside parentheses.

Define Meaning

CHAR_BIT Number of bits in a char (8)

CHAR_MAX Maximum value for object of type char (127 if sign extension is
done on chars, 255 otherwise)

CHAR_MIN Minimum value for object of type char (–127 if sign extension
is done on chars, 0 otherwise)

SCHAR_MAX Maximum value for object of type signed char (127)

SCHAR_MIN Minimum value for object of type signed char (–127)

UCHAR_MAX Maximum value for object of type unsigned char (255)

SHRT_MAX Maximum value for object of type short int (32767)

SHRT_MIN Minimum value for object of type short int (–32767)

USHRT_MAX Maximum value for object of type unsigned short int
(65535)

INT_MAX Maximum value for object of type int (32767)

INT_MIN Minimum value for object of type int (–32767)

UINT_MAX Maximum value for object of type unsigned int (65535)

LONG_MAX Maximum value for object of type long int (2147483647)

LONG_MIN Minimum value for object of type long int (–2147483647)

ULONG_MAX Maximum value for object of type unsigned long int
(4294967295)

LLONG_MAX Maximum value for object of type long long int
(9223372036854775807)

LLONG_MIN Minimum value for object of type long long int
(–9223372036854775807)

ULLONG_MAX Maximum value for object of type unsigned long long int
(18446744073709551615)

Define Meaning

21 0672326663 AppB 6/10/04 2:03 PM Page 468

469Standard Header Files

<stdbool.h>
This header file contains definitions for working with Boolean variables (type _Bool).

Define Meaning

bool Substitute name for the basic _Bool data type

true Defined as 1

false Defined as 0

<float.h>
This header file defines various limits associated with floating-point arithmetic.
Minimum magnitudes are noted at the end of each description inside parentheses. Note
that all of the definitions are not listed here.

Define Meaning

FLT_DIG Number of digits of precision for a float (6)

FLT_EPSILON Smallest value that, when added to 1.0, does not compare equal
to 1.0 (1e–5)

FLT_MAX Maximum size of a float (1e+37)

FLT_MAX_EXP Maximum size of a float (1e+37)

FLT_MIN Minimum size of a normalized float (1e–37)

Similar definitions exist for double and long double types. Just replace the leading FLT
with DBL for doubles, and with LDBL for long doubles. For example, DBL_DIG gives the
number of digits of precision for a double, and LDBL_DIG gives it for a long double.

You should also note that the header file <fenv.h> is used to get information and
have more control over the floating-point environment. For example, there’s a function
called fesetround that allows you to specify the direction of rounding to a value as
defined in <fenv.h>: FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, or FE_TOWARDZERO.You
also have the ability to clear, raise, or test floating-point exceptions, using the
feclearexcept, feraiseexcept, and fetextexcept functions, respectively.

<stdint.h>
This header file defines various type definitions and constants that you can use to work
with integers in a more machine-independent fashion. For example, the typedef
int32_t can be used to declare a signed integer variable of exactly 32 bits, without hav-
ing to know the exact 32-bit integer data type on the system on which the program is
being compiled. Similarly, int_least32_t can be used to declare an integer with a
width of at least 32 bits. Other types of typedefs allow you to select the fastest integer
representations, for example. For more information, you can take a look at the file on
your system or consult your documentation.

21 0672326663 AppB 6/10/04 2:03 PM Page 469

470 Appendix B The Standard C Library

A few other useful definitions from this header file are as follows:

Define Meaning

intptr_t Integer guaranteed to hold any pointer value

uintptr_t Unsigned integer guaranteed to hold any pointer value

intmax_t Largest signed integer type

uintmax_t Largest unsigned integer type

String Functions
The following functions perform operations on character arrays. In the description of
these routines, s, s1, and s2 represent pointers to null-terminated character arrays, c is an
int, and n represents an integer of type size_t (defined in stddef.h). For the strnxxx
routines, s1 and s2 can point to character arrays that aren’t null-terminated.

To use any of these functions, you should include the header file <string.h> in your
program:

#include <string.h>

char *strcat (s1, s2)

Concatenates the character string s2 to the end of s1, placing a null character at the
end of the final string.The function returns s1.

char *strchr (s, c)

Searches the string s for the first occurrence of the character c. If it is found, a point-
er to the character is returned; otherwise, a null pointer is returned.

int strcmp (s1, s2)

Compares strings s1 and s2 and returns a value less than zero if s1 is less than s2,
equal to zero if s1 is equal to s2, and greater than zero if s1 is greater than s2.

char *strcoll (s1, s2)

Is like strcmp, except s1 and s2 are pointers to strings represented in the current
locale.

char *strcpy (s1, s2)

Copies the string s2 to s1, returning s1.

21 0672326663 AppB 6/10/04 2:03 PM Page 470

471String Functions

char *strerror (n)

Returns the error message associated with error number n.

size_t strcspn (s1, s2)

Counts the maximum number of initial characters in s1 that consist of any characters
but those in s2, returning the result.

size_t strlen (s)

Returns the number of characters in s, excluding the null character.

char *strncat (s1, s2, n)

Copies s2 to the end of s1 until either the null character is reached or n characters
have been copied, whichever occurs first. Returns s1.

int strncmp (s1, s2, n)

Performs the same function as strcmp, except that at most n characters from the
strings are compared.

char *strncpy (s1, s2, n)

Copies s2 to s1 until either the null character is reached or n characters have been
copied, whichever occurs first. Returns s1.

char *strrchr (s, c)

Searches the string s for the last occurrence of the character c. If found, a pointer to
the character in s is returned; otherwise, the null pointer is returned.

char *strpbrk (s1, s2)

Locates the first occurrence of any character from s2 inside s1, returning a pointer to
it or the null pointer if not found.

size_t strspn (s1, s2)

Counts the maximum number of initial characters in s1 that consist only of charac-
ters from s2, returning the result.

char *strstr (s1, s2)

Searches the string s1 for the first occurrence of the string s2. If found, a pointer to
the start of where s2 is located inside s1 is returned; otherwise, if s2 is not located
inside s1, the null pointer is returned.

char *strtok (s1, s2)

Breaks the string s1 into tokens based on delimiter characters in s2. For the first call,
s1 is the string being parsed and s2 contains a list of characters that delimit the
tokens.The function places a null character in s1 to mark the end of each token as it

21 0672326663 AppB 6/10/04 2:03 PM Page 471

472 Appendix B The Standard C Library

is found and returns a pointer to the start of the token. On subsequent calls, s1
should be a null pointer.When no more tokens remain, a null pointer is returned.

size_t strxfrm (s1, s2, n)

Transforms up to n characters from the string s2, placing the result in s1.Two such
transformed strings from the current locale can then be compared with strcmp.

Memory Functions
The following routines deal with arrays of characters.They are designed for efficient
searching of memory and for copying data from one area of memory to another.They
require the header file <string.h>:

#include <string.h>

In the description of these routines, m1 and m2 are of type void *, c is an int that gets
converted by the routine to an unsigned char, and n is an integer of type size_t.

void *memchr (m1, c, n)

Searches m1 for the first occurrence of c, returning a pointer to it if found, or the null
pointer, if not found after examining n characters.

void *memcmp (m1, m2, n)

Compares the corresponding first n characters from m1 and m2. Zero is returned if
both arrays are identical in their first n characters. If they’re not, the difference
between the corresponding characters from m1 and m2 that caused the first mismatch
is returned. So, if the disagreeing character from m1 was less than the corresponding
character from m2, a value less than zero is returned; otherwise, a value greater than
zero is returned.

void *memcpy (m1, m2, n)

Copies n characters from m2 to m1, returning m1.

void *memmove (m1, m2, n)

Is like memcpy, but is guaranteed to work even if m1 and m2 overlap in memory.

void *memset (m1, c, n)

Sets the first n characters of m1 to the value c. memset returns m1.

Note that these routines attach no special significance to null characters inside the arrays.
They can be used with arrays other than character arrays provided you cast the pointers
accordingly to void *. So, if data1 and data2 are each an array of 100 ints, the call

memcpy ((void *) data2, (void *) data1, sizeof (data1));

copies all 100 integers from data1 to data2.

21 0672326663 AppB 6/10/04 2:03 PM Page 472

473I/O Functions

Character Functions
The following functions deal with single characters.To use them, you must include the
file <ctype.h> in your program:

#include <ctype.h>

Each of the functions that follow takes an int(c) as an argument and returns a TRUE
value (nonzero), if the test is satisfied, and a FALSE (zero) value otherwise.

Name Test

isalnum Is c an alphanumeric character?

isalpha Is c an alphabetic character?

isblank Is c a blank character (space or horizontal tab)?

iscntrl Is c a control character?

isdigit Is c a digit character?

isgraph Is c a graphics character (any printable character except a space)?

islower Is c a lowercase letter?

isprint Is c a printable character (including a space)?

ispunct Is c a punctuation character (any character except a space or
alphanumeric)?

isspace Is c a whitespace character (space, newline, carriage return, hori-
zontal or vertical tab, or formfeed)?

isupper Is c an uppercase letter?

isxdigit Is c a hexadecimal digit character?

The following two functions are provided for performing character translation:

int tolower(c)

Returns the lowercase equivalent of c. If c is not an uppercase letter, c itself is
returned.

int toupper(c)

Returns the uppercase equivalent of c. If c is not a lowercase letter, c itself is
returned.

I/O Functions
The following describes some of the more commonly used I/O functions from the C
library.You should include the header file <stdio.h> at the front of any program that
uses one of these functions, using the following statement:

#include <stdio.h>

21 0672326663 AppB 6/10/04 2:03 PM Page 473

474 Appendix B The Standard C Library

Included in this file are declarations for the I/O functions and definitions for the names
EOF, NULL, stdin, stdout, stderr (all constant values), and FILE.

In the descriptions that follow, fileName, fileName1, fileName2, accessMode, and
format are pointers to null-terminated strings, buffer is a pointer to a character array,
filePtr is of type “pointer to FILE,” n and size are positive integer values of type
size_t, and i and c are of type int.

void clearerr (filePtr)

Clears the end of file and error indicators associated with the file identified by
filePtr.

int fclose (filePtr)

Closes the file identified by filePtr and returns zero if the close is successful, or
returns EOF if an error occurs.

int feof (filePtr)

Returns nonzero if the identified file has reached the end of the file and returns zero
otherwise.

int ferror (filePtr)

Checks for an error condition on the indicated file and returns zero if an error exists,
and returns nonzero otherwise.

int fflush (filePtr)

Flushes (writes) any data from internal buffers to the indicated file, returning zero on
success and the value EOF if an error occurs.

int fgetc (filePtr)

Returns the next character from the file identified by filePtr, or the value EOF if an
end-of-file condition occurs. (Remember that this function returns an int.)

int fgetpos (filePtr, fpos)

Gets the current file position for the file associated with filePtr, storing it into the
fpos_t (defined in <stdio.h>) variable pointed to by fpos. fgetpos returns zero on
success, and returns nonzero on failure. See also the fsetpos function.

char *fgets (buffer, i, filePtr)

Reads characters from the indicated file, until either i – 1 characters are read or a
newline character is read, whichever occurs first. Characters that are read are stored
into the character array pointed to by buffer. If a newline character is read, it will be
stored in the array. If an end of file is reached or an error occurs, the value NULL is
returned; otherwise, buffer is returned.

21 0672326663 AppB 6/10/04 2:03 PM Page 474

475I/O Functions

FILE *fopen (fileName, accessMode)

Opens the specified file with the indicated access mode.Valid modes are "r" for read-
ing, "w" for writing, "a" for appending to the end of an existing file, "r+" for
read/write access starting at the beginning of an existing file, "w+" for read/write
access (and the previous contents of the file, if it exists, are lost), and "a+" for
read/write access with all writes going to the end of the file. If the file to be opened
does not exist, it is created if the accessMode is write ("w", "w+") or append ("a",
"a+"). If a file is opened in append mode ("a" or "a+"), it is not possible to overwrite
existing data in the file.

On systems that distinguish binary from text files, the letter b must be appended to
the access mode (as in "rb") to open a binary file.

If the fopen call is successful, a FILE pointer is returned to be used to identify the file
in subsequent I/O operations; otherwise, a null pointer is returned.

int fprintf (filePtr, format, arg1, arg2, ..., argn)

Writes the specified arguments to the file identified by filePtr, according to the for-
mat specified by the character string format. Format characters are the same as for
the printf function (see Chapter 16,“Input and Output Operations in C”).The
number of characters written is returned.A negative return value indicates that an
error occurred on output.

int fputc (c, filePtr)

Writes the value of c (converted to an unsigned char) to the file identified by
filePtr, returning c if the write is successful, and the value EOF otherwise.

int fputs (buffer, filePtr)

Writes the characters in the array pointed to by buffer to the indicated file until the
terminating null character in buffer is reached.A newline character is not automati-
cally written to the file by this function. On failure, the value EOF is returned.

size_t fread (buffer, size, n, filePtr)

Reads n items of data from the identified file into buffer. Each item of data is size
bytes in length. For example, the call

numread = fread (text, sizeof (char), 80, in_file);

reads 80 characters from the file identified by in_file and stores them into the array
pointed to by text.The function returns the number of data items successfully read.

FILE *freopen (fileName, accessMode, filePtr)

Closes the file associated with filePtr and opens the file fileName with the speci-
fied accessMode (see the fopen function).The file that is opened is subsequently

21 0672326663 AppB 6/10/04 2:03 PM Page 475

476 Appendix B The Standard C Library

associated with filePtr. If the freopen call is successful, filePtr is returned; other-
wise, a null pointer is returned.The freopen function is frequently used to reassign
stdin, stdout, or stderr in the program. For example, the call

if (freopen ("inputData", "r", stdin) == NULL) {

...

}

has the effect of reassigning stdin to the file inputData, which is opened in read
access mode. Subsequent I/O operations performed with stdin are performed with
the file inputData, as if stdin had been redirected to this file when the program was
executed.

int fscanf (filePtr, format, arg1, arg2, ..., argn)

Reads data items from the file identified by filePtr, according to the format speci-
fied by the character string format.The values that are read are stored in the argu-
ments specified after format, each of which must be a pointer.The format characters
that are allowed in format are the same as those for the scanf function (see Chapter
16).The fscanf function returns the number of items successfully read and assigned
(excluding any %n assignments) or the value EOF if the end of file is reached before
the first item is converted.

int fseek (filePtr, offset, mode)

Positions the indicated file to a point that is offset (a long int) bytes from the
beginning of the file, from the current position in the file, or from the end of the file,
depending upon the value of mode (an integer). If mode equals SEEK_SET, positioning
is relative to the beginning of the file. If mode equals SEEK_CUR, positioning is relative
to the current position in the file. If mode equals SEEK_END, positioning is relative to
the end of the file. SEEK_SET, SEEK_CUR, and SEEK_END are defined in <stdio.h>.

On systems that distinguish between text and binary files, SEEK_END might not be
supported for binary files. For text files, either offset must be zero or must be a
value returned from a prior call to ftell. In the latter case, mode must be SEEK_SET.

If the fseek call is unsuccessful, a nonzero value is returned.

int fsetpos (filePtr, fpos)

Sets the current file position for the file associated with filePtr to the value pointed
to by fpos, which is of type fpos_t (defined in <stdio.h>). Returns zero on success,
and nonzero on failure. See also fgetpos.

long ftell (filePtr)

Returns the relative offset in bytes of the current position in the file identified by
filePtr, or –1L on error.

21 0672326663 AppB 6/10/04 2:03 PM Page 476

477I/O Functions

size_t fwrite (buffer, size, n, filePtr)

Writes n items of data from buffer to the specified file. Each item of data is size
bytes in length. Returns the number of items successfully written.

int getc (filePtr)

Reads and returns the next character from the indicated file.The value EOF is
returned if an error occurs or if the end of the file is reached.

int getchar (void)

Reads and returns the next character from stdin.The value EOF is returned upon
error or end of file.

char *gets (buffer)

Reads characters from stdin into buffer until a newline character is read.The new-
line character is not stored in buffer, and the character string is terminated with a
null character. If an error occurs in performing the read, or if no characters are read, a
null pointer is returned; otherwise, buffer is returned.

void perror (message)

Writes an explanation of the last error to stderr, preceded by the string pointed to
by message. For example, the code

#include <stdlib.h>

#include <stdio.h>

if ((in = fopen ("data", "r")) == NULL) {

perror ("data file read");

exit (EXIT_FAILURE);

}

produces an error message if the fopen call fails, possibly giving more details to the
user about the reason for the failure.

int printf (format, arg1, arg2, ..., argn)

Writes the specified arguments to stdout, according to the format specified by the
character string format (see Chapter 16). Returns the number of characters written.

int putc (c, filePtr)

Writes the value of c as an unsigned char to the indicated file. On success, c is
returned; otherwise EOF is returned.

int putchar(c)

Writes the value of c as an unsigned char to stdout, returning c on success and
EOF on failure.

21 0672326663 AppB 6/10/04 2:03 PM Page 477

478 Appendix B The Standard C Library

int puts (buffer)

Writes the characters contained in buffer to stdout until a null character is encoun-
tered.A newline character is automatically written as the last character (unlike the
fputs function). On error, EOF is returned.

int remove (fileName)

Removes the specified file.A nonzero value is returned on failure.

int rename (fileName1, fileName2)

Renames the file fileName1 to fileName2, returning a nonzero result on failure.

void rewind (filePtr)

Resets the indicated file back to the beginning.

int scanf (format, arg1, arg2, ..., argn)

Reads items from stdin according to the format specified by the string format (see
Chapter 16).The arguments that follow format must all be pointers.The number of
items successfully read and assigned (excluding %n assignments) is returned by the
function.The value EOF is returned if an end of file is encountered before any items
have been converted.

FILE *tmpfile (void)

Creates and opens a temporary binary file in write update mode ("r+b"); it returns
NULL if an error occurs.The temporary file is automatically removed when the pro-
gram terminates. (A function called tmpnam is also available for creating unique, tem-
porary file names.)

int ungetc (c, filePtr)

Effectively “puts back” a character to the indicated file.The character is not actually
written to the file but is placed in a buffer associated with the file.The next call to
getc returns this character.The ungetc function can only be called to “put back” one
character to a file at a time; that is, a read operation must be performed on the file
before another call to ungetc can be made.The function returns c if the character is
successfully “put back”; otherwise, it returns the value EOF.

In-Memory Format Conversion Functions
The functions sprintf and sscanf are provided for performing data conversion in
memory.These functions are analogous to the fprintf and fscanf functions, except a
character string replaces the FILE pointer as the first argument.You should include the
header file <stdio.h> in your program when using these routines.

21 0672326663 AppB 6/10/04 2:03 PM Page 478

479String-to-Number Conversion

int sprintf (buffer, format, arg1, arg2, ..., argn)

The specified arguments are converted according to the format specified by the char-
acter string format (see Chapter 16) and are placed into the character array pointed
to by buffer.A null character is automatically placed at the end of the string inside
buffer.The number of characters placed into buffer is returned, excluding the ter-
minating null.As an example, the code

int version = 2;

char fname[125];

...

sprintf (fname, "/usr/data%i/2005", version);

results in the character string "/usr/data2/2005" being stored in fname.

int sscanf (buffer, format, arg1, arg2, ..., argn)

The values as specified by the character string format are read from buffer and
stored in the corresponding pointer arguments that follow format (see Chapter 16).
The number of items successfully converted is returned by this function.As an exam-
ple, the code

char buffer[] = "July 16, 2004", month[10];

int day, year;

...

sscanf (buffer, "%s %d, %d", month, &day, &year);

stores the string "July" inside month, the integer value 16 inside day, and the integer
value 2004 inside year.The code

#include <stdio.h>

#include <stdlib.h>

if (sscanf (argv[1], "%f", &fval) != 1) {

fprintf (stderr, "Bad number: %s\n", argv[1]);

exit (EXIT_FAILURE);

}

converts the first command-line argument (pointed to by argv[1]) to a floating-
point number, and checks the value returned by sscanf to see if a number was suc-
cessfully read from argv[1]. (See the routines described in the next section for other
ways to convert strings to numbers.)

String-to-Number Conversion
The following routines convert character strings to numbers.To use any of the routines
described here, include the header file <stdlib.h> in your program:

#include <stdlib.h>

21 0672326663 AppB 6/10/04 2:03 PM Page 479

480 Appendix B The Standard C Library

In the descriptions that follow, s is a pointer to a null-terminated string, end is a pointer
to a character pointer, and base is an int.

All routines skip leading whitespace characters in the string and stop their scan upon
encountering a character that is invalid for the type of value being converted.

double atof (s)

Converts the string pointed to by s into a floating-point number, returning the result.

int atoi (s)

Converts the string pointed to by s into an int, returning the result.

int atol (s)

Converts the string pointed to by s into a long int, returning the result.

int atoll (s)

Converts the string pointed to by s into a long long int, returning the result.

double strtod (s, end)

Converts s to double, returning the result.A pointer to the character that terminated
the scan is stored inside the character pointer pointed to by end, provided end is not a
null pointer.

As an example, the code

#include <stdlib.h>

...

char buffer[] = " 123.456xyz", *end;

double value;

...

value = strtod (buffer, &end);

has the effect of storing the value 123.456 inside value.The character pointer vari-
able end is set by strtod to point to the character in buffer that terminated the
scan. In this case, it is set pointing to the character 'x'.

float strtof (s, end)

Is like strtod, except converts its argument to float.

long int strtol (s, end, base)

Converts s to long int, returning the result. base is an integer base number between
2 and 36, inclusive.The integer is interpreted according to the specified base. If base
is 0, the integer can be expressed in either base 10, octal (leading 0), or hexadecimal
(leading 0x or 0X). If base is 16, the value can optionally be preceded by a leading 0x
or 0X.

21 0672326663 AppB 6/10/04 2:03 PM Page 480

481Dynamic Memory Allocation Functions

A pointer to the character that terminated the scan is stored inside the character
pointer pointed to by end, provided end is not a null pointer.

long double strtold (s, end)

Is like strtod, except converts its argument to long double.

long long int strtoll (s, end, base)

Is like strtol, except a long long int is returned.

unsigned long int strtoul (s, end, base)

Converts s to unsigned long int, returning the result.The remaining arguments are
interpreted as for strtol.

unsigned long long int strtoull (s, end, base)

Converts s to unsigned long long int, returning the result.The remaining argu-
ments are interpreted as for strtol.

Dynamic Memory Allocation Functions
The following functions are available for allocating and freeing memory dynamically. For
each of these functions, n and size represent integers of type size_t, and pointer rep-
resents a void pointer.To use these functions, include the following line in your pro-
gram:

#include <stdlib.h>

void *calloc (n, size)

Allocates contiguous space for n items of data, where each item is size bytes in
length.The allocated space is initially set to all zeroes. On success, a pointer to the
allocated space is returned; on failure, the null pointer is returned.

void free (pointer)

Returns a block of memory pointed to by pointer that was previously allocated by a
calloc, malloc, or realloc call.

void *malloc (size)

Allocates contiguous space of size bytes, returning a pointer to the beginning of the
allocated block if successful, and the null pointer otherwise.

void *realloc (pointer, size)

Changes the size of a previously allocated block to size bytes, returning a pointer to
the new block (which might have moved), or a null pointer if an error occurs.

21 0672326663 AppB 6/10/04 2:03 PM Page 481

482 Appendix B The Standard C Library

Math Functions
The following list identifies the math functions.To use these routines, include the
following statement in your program:

#include <math.h>

The standard header file <tgmath.h> defines type-generic macros that can be used to
call a function from the math or complex math libraries without worrying about the
argument type. For example, you can use six different square root functions based upon
the argument type and return type:

n double sqrt (double x)

n float sqrtf (float x)

n long double sqrtl (long double x)

n double complex csqrt (double complex x)

n float complex csqrtf (float complex f)

n long double complex csqrtl (long double complex)

Instead of having to worry about all six functions, you can include <tgmath.h> instead
of <math.h> and <complex.h> and just use the “generic” version of the function under
the name sqrt.The corresponding macro defined in <tgmath.h> ensures that the cor-
rect function gets called.

Returning to <math.h>, the following macros can be used to test specific properties
of floating-point values given as argument(s):

int fpclassify (x)

Classifies x as NaN (FP_NAN), infinite (FP_INFINITE), normal (FP_NORMAL), subnormal
(FP_SUBNORMAL), zero (FP_ZERO), or in some other implementation-defined category;
each FP_... value is defined in math.h.

int isfin (x)

Does x represent a finite value?

int isinf (x)

Does x represent an infinite value?

int isgreater (x, y)

Is x > y?

int isgreaterequal (x, y)

Is x ≥ y?

21 0672326663 AppB 6/10/04 2:03 PM Page 482

483Math Functions

int islessequal (x, y)

Is x ≤ y?

int islessgreater (x, y)

Is x < y or is x > y?

int isnan (x)

Is x a NaN (that is, not a number)?

int isnormal (x)

Is x a normal value?

int isunordered (x, y)

Are x and y unordered (for example, one or both might be NaNs)?

int signbit (x)

Is the sign of x negative?

In the list of functions that follows, x, y, and z are of type double, r is an angle expressed
in radians and is of type double, and n is an int.

For more information about how errors are reported by these functions, consult your
documentation.

double acos (x)1

Returns the arccosine of x, as an angle expressed in radians in the range [0, π]. x is in
the range [–1, 1].

double acosh (x)

Returns the hyperbolic arccosine of x, x ≥ 1.

double asin (x)

Returns the arcsine of x as an angle expressed in radians in the range [–π/2, π/2].
x is in the range [–1, 1].

double asinh (x)

Returns the hyperbolic arcsine of x.

1.The math library contains float, double, and long double versions of the math functions that take
and return float, double, and long double values.The double versions are summarized here.The
float versions have the same name with an f on the end (e.g. acosf).The long double versions
have an l on the end instead (e.g. acosl).

21 0672326663 AppB 6/10/04 2:03 PM Page 483

484 Appendix B The Standard C Library

double atan (x)

Returns the arctangent of x as an angle expressed in radians in the range [–π/2, π/2].

double atanh (x)

Returns the hyperbolic arctangent of x, |x| ≤ 1.

double atan2 (y, x)

Returns the arctangent of y/x as an angle expressed in radians in the range [–π, π].

double ceil (x)

Returns the smallest integer value greater than or equal to x. Note that the value is
returned as a double.

double copysign (x, y)

Returns a value whose magnitude is that of x and whose sign is that of y.

double cos (r)

Returns the cosine of r.

double cosh (x)

Returns the hyperbolic cosine of x.

double erf (x)

Computes and returns the error function of x.

double erfc (x)

Computes and returns the complementary error function of x.

double exp (x)

Returns ex.

double expm1 (x)

Returns ex – 1.

double fabs (x)

Returns the absolute value of x.

double fdim (x, y)

Returns x – y if x > y; otherwise, it returns 0.

double floor (x)

Returns the largest integer value less than or equal to x. Note that the value is
returned as a double.

21 0672326663 AppB 6/10/04 2:03 PM Page 484

485Math Functions

double fma (x, y, z)

Returns (x × y) + z.

double fmax (x, y)

Returns the maximum of x and y.

double fmin (x, y)

Returns the minimum of x and y.

double fmod (x, y)

Returns the floating-point remainder of dividing x by y.The sign of the result is that
of x.

double frexp (x, exp)

Divides x into a normalized fraction and a power of two. Returns the fraction in the
range [1/2, 1] and stores the exponent in the integer pointed to by exp. If x is zero,
both the value returned and the exponent stored are zero.

int hypot (x, y)

Returns the square root of the sum of x2 + y2.

int ilogb (x)

Extracts the exponent of x as a signed integer.

double ldexp (x, n)

Returns x × 2n.

double lgamma (x)

Returns the natural logarithm of the absolute value of the gamma of x.

double log (x)

Returns the natural logarithm of x, x ≥ 0.

double logb (x)

Returns the signed exponent of x.

double log1p (x)

Returns the natural logarithm of (x + 1), x ≥ –1.

double log2 (x)

Returns log2 x, x ≥ 0.

21 0672326663 AppB 6/10/04 2:03 PM Page 485

486 Appendix B The Standard C Library

double log10 (x)

Returns log10 x, x ≥ 0.

long int lrint (x)

Returns x rounded to the nearest long integer.

long long int llrint (x)

Returns x rounded to the nearest long long integer.

long long int llround (x)

Returns the value of x rounded to the nearest long long int. Halfway values are
always rounded away from zero (so 0.5 always rounds to 1).

long int lround (x)

Returns the value of x rounded to the nearest long int. Halfway values are always
rounded away from zero (so 0.5 always rounds to 1).

double modf (x, ipart)

Extracts the fractional and integral parts of x.The fractional part is returned and the
integral part is stored in the double pointed to by ipart.

double nan (s)

Returns a NaN, if possible, according to the content specified by the string pointed
to by s.

double nearbyint (x)

Returns the nearest integer to x in floating-point format.

double nextafter (x, y)

Returns the next representable value of x in the direction of y.

double nexttoward (x, ly)

Returns the next representable value of x in the direction of y. Similar to nextafter,
except in this case the second argument is of type long double.

double pow (x, y)

Returns xy. If x is less than zero, y must be an integer. If x is equal to zero, y must be
greater than zero.

double remainder (x, y)

Returns the remainder of x divided by y.

21 0672326663 AppB 6/10/04 2:03 PM Page 486

487Math Functions

double remquo (x, y, quo)

Returns the remainder of x divided by y, storing the quotient into the integer point-
ed to by quo.

double rint (x)

Returns the nearest integer to x in floating-point format. Might raise a floating-point
exception if the value of the result is not equal to the argument x.

double round (x)

Returns the value of x rounded to the nearest integer in floating-point format.
Halfway values are always rounded away from zero (so 0.5 always rounds to 1.0).

double scalbln (x, n)

Returns x × FLT_RADIXn, where n is a long int.

double scalbn (x, n)

Returns x × FLT_RADIXn.

double sin (r)

Returns the sine of r.

double sinh (x)

Returns the hyperbolic sine of x.

double sqrt (x)

Returns the square root of x, x ≥ 0.

double tan (r)

Returns the tangent of r.

double tanh (x)

Returns the hyperbolic tangent of x.

double tgamma (x)

Returns the gamma of x.

double trunc (x)

Truncates the argument x to an integer value, returning the result as a double.

21 0672326663 AppB 6/10/04 2:03 PM Page 487

488 Appendix B The Standard C Library

Complex Arithmetic
This header file <complex.h> defines various type definitions and functions for working
with complex numbers. Listed next are several macros that are defined in this file, fol-
lowed by functions for performing complex arithmetic.

Define Meaning

complex Substitute name for the type _Complex

_Complex_I Macro used for specifying the imaginary part of a complex
number (for example, 4 + 6.2 * _Complex_I specifies 4 +
6.2i)

imaginary Substitute name for the type _Imaginary; only defined if the
implementation supports imaginary types

_Imaginary_I Macro used to specify the imaginary part of an imaginary
number

In the list of functions that follows, y and z are of type double complex, x is of type
double, and n is an int.

double complex cabs (z)2

Returns the complex absolute value of z.

double complex cacos (z)

Returns the complex arc cosine of z.

double complex cacosh (z)

Returns the complex arc hyperbolic cosine of z.

double carg (z)

Returns the phase angle of z.

double complex casin (z)

Returns the complex arc sine of z.

double complex casinh (z)

Returns the complex arc hyperbolic sine of z.

2.The complex math library contains float complex, double complex, and long double complex
versions of the functions that take and return float complex, double complex, and long double
complex values.The double complex versions are summarized here.The float complex versions
have the same name with an f on the end (e.g. cacosf).The long double versions have an l on
the end instead (e.g. cacosl).

21 0672326663 AppB 6/10/04 2:03 PM Page 488

489Math Functions

double complex catan (z)

Returns the complex arc tangent of z.

double complex catanh (z)

Returns the complex arc hyperbolic tangent of z.

double complex ccos (z)

Returns the complex cosine of z.

double complex ccosh (z)

Returns the complex hyperbolic cosine of z.

double complex cexp (z)

Returns the complex natural exponential of z.

double cimag (z)

Returns the imaginary part of z.

double complex clog (z)

Returns the complex natural logarithm of z.

double complex conj (z)

Returns the complex conjugate of z (inverts the sign of its imaginary part).

double complex cpow (y, z)

Returns the complex power function yz.

double complex cproj (z)

Returns the projection of z onto the Riemann sphere.

double complex creal (z)

Returns the real part of z.

double complex csin (z)

Returns the complex sine of z.

double complex csinh (z)

Returns the complex hyperbolic sine of z.

double complex csqrt (z)

Returns the complex square root of z.

21 0672326663 AppB 6/10/04 2:03 PM Page 489

490 Appendix B The Standard C Library

double complex ctan (z)

Returns the complex tangent of z.

double complex ctanh (z)

Returns the complex hyperbolic tangent of z.

General Utility Functions
Some routines from the library don’t fit neatly into any of the previous categories.To use
these routines, include the header file <stdlib.h>.

int abs (n)

Returns the absolute value of its int argument n.

void exit (n)

Terminates program execution, closing any open files and returning the exit status
specified by its int argument n. EXIT_SUCCESS and EXIT_FAILURE, defined in
<stdlib.h>, can be used to return a success or failure exit status, respectively.

Other related routines in the library that you might want to refer to are abort and
atexit.

char *getenv (s)

Returns a pointer to the value of the environment variable pointed to by s, or a null
pointer if the variable doesn’t exist.This function operates in a system-dependent way.

As an example, under Unix, the code

char *homedir;

...

homedir = getenv ("HOME");

could be used to get the value of the user’s HOME variable, storing a pointer to it inside
homedir.

long int labs (l)

Returns the absolute value of its long int argument l.

long long int llabs (ll)

Returns the absolute value of its long long int argument ll.

void qsort (arr, n, size, comp_fn)

Sorts the data array pointed to by the void pointer arr.There are n elements in the
array, each size bytes in length. n and size are of type size_t.The fourth argument
is of type “pointer to function that returns int and that takes two void pointers as

21 0672326663 AppB 6/10/04 2:03 PM Page 490

491General Utility Functions

arguments.” qsort calls this function whenever it needs to compare two elements in
the array, passing it pointers to the elements to compare.The function, which is user-
supplied, is expected to compare the two elements and return a value less than zero,
equal to zero, or greater than zero if the first element is less than, equal to, or greater
than the second element, respectively.

Here is an example of how to use qsort to sort an array of 1,000 integers called
data:

#include <stdlib.h>

...

int main (void)

{

int data[1000], comp_ints (void *, void *);

...

qsort (data, 1000, sizeof(int), comp_ints);

...

}

int comp_ints (void *p1, void *p2)

{

int i1 = * (int *) p1;

int i2 = * (int *) p2;

return i1 - i2;

}

Another routine called bsearch, which is not described here, takes similar arguments
to qsort and performs a binary search of an ordered array of data.

int rand (void)

Returns a random number in the range [0, RAND_MAX], where RAND_MAX is defined in
<stdlib.h> and has a minimum value of 32767. See also srand.

void srand (seed)

Seeds the random number generator to the unsigned int value seed.

int system (s)

Gives the command contained in the character array pointed to by s to the system
for execution, returning a system-defined value. If s is the null pointer, system
returns a nonzero value if a command processor is available to execute your com-
mands.

As an example, under Unix, the call

system ("mkdir /usr/tmp/data");

causes the system to create a directory called /usr/tmp/data (assuming you have the
proper permissions to do so).

21 0672326663 AppB 6/10/04 2:03 PM Page 491

21 0672326663 AppB 6/10/04 2:03 PM Page 492

C
Compiling Programs with gcc

THIS APPENDIX SUMMARIZES SOME OF THE more commonly used gcc options. For
information about all command-line options, under Unix, type the command man gcc.
You can also visit the gccWeb site, http://gcc.gnu.org/onlinedocs, for complete
online documentation.

This appendix summarizes the command-line options available in gcc, release 3.3,
and does not cover extensions added by other vendors, such as Apple Computer, Inc.

General Command Format
The general format of the gcc command is

gcc [options] file [file …]

Items enclosed in square brackets are optional.
Each file in the list is compiled by the gcc compiler. Normally, this involves prepro-

cessing, compiling, assembling, and linking. Command-line options can be used to alter
this sequence.

The suffix of each input file determines the way the file is interpreted.This can be
overridden with the –x command-line option (consult the gcc documentation).Table
C.1 contains a list of common suffixes.

Table C.1 Common Source File Suffixes

Suffix Meaning

.c C language source file

.cc, .cpp C++ language source file

.h Header file

.m Objective-C source file

.pl Perl source file

.o Object (precompiled file)

22 0672326663 AppC 6/10/04 2:02 PM Page 493

494 Appendix C Compiling Programs with gcc

Command-Line Options
Table C.2 contains a list of common options used for compiling C programs.

Table C.2 Commonly Used gcc Options

Option Meaning Example

--help Displays summary of common gcc --help

command-line options.

-c Does not link the files, saves the gcc –c

object files using .o for the enumerator.c

suffix of each object file.

-dumpversion Displays current version of gcc. gcc -dumpversion

-g Includes debugging information, gcc –g testprog.c

typically for use with gdb (use –o testprog

–ggdb if multiple debuggers are
supported).

-D id In the first case, defines the identifier gcc –D DEBUG=3

-D id=value id to the preprocessor with value 1. test.c

In the second case, defines the identifier
id and sets its value to value.

-E Just preprocesses files and writes results gcc –E

to standard output; useful for examining enumerator.c

the results of preprocessing.

-I dir Adds directory dir to the list of gcc –I /users/

directories to be searched for header steve/include x.c

files; this directory is searched before
other standard directories.

-llibrary Resolves library references against the gcc

file specified by library.This option mathfuncs.c -lm

should be specified after the files that need
functions from the library.The linker
searches standard places (see the –L option)
for a file named liblibrary.a.

-L dir Adds directory dir to the list of directories gcc –L /users/

to be searched for library files.This directory steve/lib x.c

is searched first before other standard directories.

-o execfile Places the executable file in the file named gcc dbtest.c –o

execfile. dbtest

22 0672326663 AppC 6/10/04 2:02 PM Page 494

495Command-Line Options

-Olevel Optimizes the code for execution speed gcc –O3 m1.c m2.c

according to the level specified by level, –o mathfuncs

which can be 1, 2, or 3. If no level is specified,
as in –O, then 1 is the default. Larger numbers
indicate higher levels of optimization, and
might result in longer compilation times and
reduced debugging capability when using a
debugger like gdb.

-std=standard Specifies the standard for C files.1 Use c99 gcc –std=c99

for ANSI C99 without the GNU extensions. mod1.c mod2.c

-Wwarning Turns on warning messages specified by gcc –Werror

warning. Useful options are all, to get mod1.c mod2.c

optional warnings that might be helpful for
most programs, and error, which turns all
warnings into errors, thereby forcing you
to correct them.

Table C.2 Continued

Option Meaning Example

1.The current default is gnu89 for ANSI C90 plus GNU extensions.Will be changed to gnu99
(for ANSI C99 plus GNU extensions) once all C99 features are implemented.

22 0672326663 AppC 6/10/04 2:02 PM Page 495

22 0672326663 AppC 6/10/04 2:02 PM Page 496

D
Common Programming Mistakes

THE FOLLOWING LIST SUMMARIZES SOME OF the more common programming mistakes
made in C.They are not arranged in any particular order. Knowledge of these mistakes
will hopefully help you avoid them in your own programs.

1. Misplacing a semicolon.

Example

if (j == 100);

j = 0;

In the previous statements, the value of j will always be set to 0 due to the
misplaced semicolon after the closing parenthesis. Remember, this semicolon is
syntactically valid (it represents the null statement), and, therefore, no error is pro-
duced by the compiler.This same type of mistake is frequently made in while and
for loops.

2. Confusing the operator = with the operator ==.

This mistake is usually made inside an if, while, or do statement.

Example

if (a = 2)

printf ("Your turn.\n");

The preceding statement is perfectly valid and has the effect of assigning 2 to a
and then executing the printf call.The printf function will always be called
because the value of the expression contained in the if statement will always be
nonzero. (Its value will be 2.)

3. Omitting prototype declarations.

Example

result = squareRoot (2);

23 0672326663 AppD 6/10/04 2:00 PM Page 497

498 Appendix D Common Programming Mistakes

If squareRoot is defined later in the program, or in another file, and is not explic-
itly declared otherwise, the compiler assumes that the function returns an int.
Furthermore, the compiler converts float arguments to double, and _Bool, char,
and short arguments to int. No other conversion of arguments is done.
Remember, it’s always safest to include a prototype declaration for all functions
that you call (either explicitly yourself or implicitly by including the correct head-
er file in your program), even if they’re defined earlier.

4. Confusing the precedences of the various operators.

Examples

while (c = getchar () != EOF)

...

if (x & 0xF == y)

...

In the first example, the value returned by getchar is compared against the value
EOF first.This is because the inequality test has higher precedence than the assign-
ment operator.The value that is therefore assigned to c is the TRUE/FALSE result
of the test: 1 if the value returned by getchar is not equal to EOF, and 0 other-
wise. In the second example, the integer constant 0xF is compared against y first
because the equality test has higher precedence than any of the bitwise operators.
The result of this test (0 or 1) is then ANDed with the value of x.

5. Confusing a character constant and a character string.

In the statement

text = 'a';

a single character is assigned to text. In the statement

text = "a";

a pointer to the character string "a" is assigned to text.Whereas, in the first case,
text is normally declared to be a char variable, in the second case, it should be
declared to be of type "pointer to char".

6. Using the wrong bounds for an array.

Example

int a[100], i, sum = 0;

...

for (i = 1; i <= 100; ++i)

sum += a[i];

Valid subscripts of an array range from 0 through the number of elements minus
one.Therefore, the preceding loop is incorrect because the last valid subscript of a
is 99 and not 100.The writer of this statement also probably intended to start with
the first element of the array; therefore, i should have been initially set to 0.

23 0672326663 AppD 6/10/04 2:00 PM Page 498

499Common Programming Mistakes

7. Forgetting to reserve an extra location in an array for the terminating null character of a
string.

Remember to declare character arrays so that they are large enough to contain the
terminating null character. For example, the character string "hello" would
require six locations in a character array if you wanted to store a null at the end.

8. Confusing the operator -> with the operator . when referencing structure members.

Remember, the operator . is used for structure variables, whereas the operator ->
is used for structure pointer variables. So, if x is a structure variable, the notation
x.m is used to reference the member m of x. On the other hand, if x is a pointer to
a structure, the notation x->m is used to reference the member m of the structure
pointed to by x.

9. Omitting the ampersand before nonpointer variables in a scanf call.

Example

int number;

...

scanf ("%i", number);

Remember that all arguments appearing after the format string in a scanf call
must be pointers.

10. Using a pointer variable before it’s initialized.

Example

char *char_pointer;

*char_pointer = 'X';

You can only apply the indirection operator to a pointer variable after you have set
the variable pointing somewhere. In this example, char_pointer is never set
pointing to anything, so the assignment is not meaningful.

11. Omitting the break statement at the end of a case in a switch statement.

Remember that if a break is not included at the end of a case, then execution
continues into the next case.

12. Inserting a semicolon at the end of a preprocessor definition.

This usually happens because it becomes a matter of habit to end all statements
with semicolons. Remember that everything appearing to the right of the defined
name in the #define statement gets directly substituted into the program. So the
definition

#define END_OF_DATA 999;

leads to a syntax error if used in an expression such as

if (value == END_OF_DATA)

...

23 0672326663 AppD 6/10/04 2:00 PM Page 499

500 Appendix D Common Programming Mistakes

because the compiler will see this statement after preprocessing:

if (value == 999;)

...

13. Omitting parentheses around arguments in macro definitions.

Example

#define reciprocal(x) 1 / x

...

w = reciprocal (a + b);

The preceding assignment statement would be incorrectly evaluated as

w = 1 / a + b;

14. Leaving a blank space between the name of a macro and its argument list in the #define
statement.

Example

#define MIN (a,b) (((a) < (b)) ? (a) : (b))

This definition is incorrect, as the preprocessor considers the first blank space after
the defined name as the start of the definition for that name. In this case, the
statement

minVal = MIN (val1, val2);

gets expanded by the preprocessor into

minVal = (a,b) (((a) < (b)) ? (a) : (b))(val1,val2);

which is obviously not what is intended.

15. Using an expression that has side effects in a macro call.

Example

#define SQUARE(x) (x) * (x)

...

w = SQUARE (++v);

The invocation of the SQUARE macro causes v to be incremented twice because this
statement is expanded by the preprocessor to

w = (++v) * (++v);

23 0672326663 AppD 6/10/04 2:00 PM Page 500

E
Resources

THIS APPENDIX CONTAINS A SELECTIVE LIST OF RESOURCES you can turn to for more
information. Some of the information might be online at a Web site or available from a
book. If you can’t find what you need, send me an email at steve@kochan-wood.com
and I’ll try to help you out.

Answers to Exercises, Errata, etc.
You can visit the Web site www.kochan-wood.com to get answers to exercises and errata
for this book.You’ll also find an up-to-date resource guide there.

The C Programming Language
The C language has been around for over 25 years now, so there’s certainly no dearth of
information on the subject.The following is just the tip of the iceberg.

Books
Kernighan, Brian W., and Dennis M. Ritchie. The C Programming Language, 2nd Ed.
Englewood-Cliffs, NJ: Prentice Hall, Inc., 1988.

This has always been the bible as far as a reference for the language goes. It was the
first book ever written about C, cowritten by Dennis Ritchie, who created the language.

Harbison, Samuel P. III, and Guy L. Steele Jr. C:A Reference Manual, 5th Ed. Englewood-
Cliffs, NJ: Prentice Hall, Inc., 2002.

Another excellent reference book for C programmers.

Plauger, P. J. The Standard C Library. Englewood-Cliffs, NJ: Prentice Hall, Inc., 1992.
This book covers the standard C library, but as you can see from the publication date,

does not cover any of the ANSI C99 additions (such as the complex math library).

24 0672326663 AppE 6/10/04 2:03 PM Page 501

502 Appendix E Resources

Web Sites
www.kochan-wood.com

At this Web site, you’ll find a new online edition of the book Topics in C Programming,
which I wrote with Patrick Wood as a follow-up to my original Programming in C book.
www.ansi.org

This is the ANSI Web site.You can purchase the official ANSI C specification here.
Type 9899:1999 into the search window to locate the ANSI C99 specifications.
www.opengroup.org/onlinepubs/007904975/idx/index.html

This is a great online reference source for library functions (there are also non-ANSI
C functions here).

Newsgroups
comp.lang.c

This is a newsgroup devoted to the C programming language.You can ask questions
here and help other people out as well—after you gain more experience. It’s also useful
just to observe the discussions.A good way to get access to this newsgroup is through
http://groups.google.com.

C Compilers and Integrated Development
Environments
Following is a list of Web sites where you can download and/or purchase C compilers
and development environments, as well as obtain online documentation.

gcc
http://gcc.gnu.org/

The C compiler developed by the Free Software Foundation (FSF) is called gcc. It’s
also used by Apple on their Mac OS X systems.You can download a C compiler for no
charge from this Web site.

MinGW
www.mingw.org

If you want to get started writing C programs in a Windows environment, you can
get a GNU gcc compiler from this Web site.Also consider downloading MSYS as an
easy-to-use shell environment in which to work.

CygWin
www.cygwin.com

CygWin provides a Linux-like environment that runs under Windows.This develop-
ment environment is available at no charge.

24 0672326663 AppE 6/10/04 2:03 PM Page 502

503Miscellaneous

Visual Studio
http://msdn.microsoft.com/vstudio

Visual Studio is the Microsoft IDE that allows you to develop applications in a variety
of different programming languages.

CodeWarrior
www.metrowerks.com/mw/products/default.htm

Metrowerks offers professional IDE products that run on a variety of operating sys-
tems, including Linux, Mac OS X, Solaris, and Windows.

Kylix
www.borland.com/kylix/

Kylix is the IDE product sold by Borland for application development under Linux.

Miscellaneous
The following sections include resources for learning more about object-oriented pro-
gramming and development tools.

Object-Oriented Programming
Budd,Timothy. The Introduction to Object-Oriented Programming, 3rd Ed. Boston: Addison-
Wesley Publishing Company, 2001.

This is considered a classic text that introduces object-oriented programming.

The C++ Language
Prata, Stephen. C++ Primer Plus, 4th Ed. Indianapolis: Sams Publishing, 2001.

Stephen’s tutorials have been well received.This one covers the C++ language.

Stroustrup, Bjarne. The C++ Programming Language, 3rd Ed. Boston:Addison-Wesley
Publishing Company, 2000.

This is the classic text on the language written by its inventor.

The C# Language
Petzold, Charles. Programming in the Key of C#. Redmond,WA: Microsoft Press, 2003.

This book has received recognition as a good book for beginners on C#.

Liberty, Jesse. Programming C#, 3rd Ed. Cambridge, MA: O’Reilly & Associates, 2003.
A good introduction to C# for more experienced programmers.

24 0672326663 AppE 6/10/04 2:03 PM Page 503

504 Appendix E Resources

The Objective-C Language
Kochan, Stephen. Programming in Objective-C. Indianapolis: Sams Publishing, 2004.

Written by yours truly, it provides an introduction to the Objective-C language with-
out assuming prior C or object-oriented programming experience.
Apple Computer, Inc. The Objective-C Programming Language. Cupertino, CA:Apple
Computer, Inc., 2004.

This is an excellent reference book on Objective-C for C programmers. It is available
at no charge in pdf format at
http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/

ObjC.pdf.

Development Tools
www.gnu.org/manual/manual.html

Here, you’ll find a plethora of useful manuals, including ones on cvs, gdb, make, and
other Unix command-line tools as well.

24 0672326663 AppE 6/10/04 2:03 PM Page 504

Symbols
\’ (single quote) escape character, 217

\” (double quote) escape character,
217

\? (question mark) escape character,
217

\a (audible alert) escape character, 216

\b (backspace) escape character, 216

\n (newline character), program
syntax, 13

\nnn (octal character value) escape
character, 217

\t (horizontal tab) escape character,
216

\xnn (hexadecimal character value)
escape character, 217

\\ (backslash) escape character, 217

^ (bitwise Exclusive-OR) operator,
284-285

_Bool data type, 23, 26

_Complex data type, 39

_Imaginary data type, 39

{} (braces), program syntax, 13

| (bitwise Inclusive-OR) operator,
283-284

|| (logical OR) operator, compound
relationship tests, 72-73

; (semicolon)
#define statement, 306-307
program syntax, 13

! (logical negation) operator, Boolean
variables, 90

!= (not equal to) operator, 46-50

’ (single quotation marks), char data
type, 25-26

” (double quotation marks), char data
type, 25-26

operator, macros, 312

operator, macros, 313

#define statement, 299-303, 461-463
arguments, 308-311
defined names, 300
definition types, 306-308
Introducing the #define Statement

(Program 13.1), 300-302
macros, 308-311

converting character case, 311

defining number of arguments, 311

testing for lowercase characters, 310
More on Working with Defines

(Program 13.2), 302-303
program extendability, 303-305
program portability, 305-306
semicolon (;), 306-307

#elif statement, 318-319

#else statement, conditional
compilation, 316-318

#endif statement, conditional
compilation, 316-318

#error statement, 463

#if statement, 318-319, 463

#ifdef statement, 316-318, 464

#ifndef statement, 316-318, 464

#include statement, 464-465
macro definition collections, 313-315
Using the #include Statement (Program

13.3), 314-315

Index

25 0672326663 index 6/10/04 2:03 PM Page 505

506 #line statement

#line statement, 465

#pragma statement, 465

#undef statement, 319, 465

% (modulus) arithmetic operator,
35-36

& (address) operator, 236, 260

& (bitwise AND) operator, 281-283

&& (logical AND) operator,
compound relationship tests, 72-73

* (indirection) operator, 236

* (multiplication sign) arithmetic
operator, 30-33

*/ (closing comments), 18

*= (times equal) operator, 143

+ (plus sign) arithmetic operator,
30-33

++ (increment) operator, 49, 262, 268

- (minus sign)
arithmetic operator, 30-33
unary arithmetic operator, 33-34

-- (decrement) operator, 50, 262, 268,
445

/ (division sign) arithmetic operator,
30-33

/* (opening comments), 18

< (less than) operator, 46-50

<< (left shift) bitwise operator, 287

<= (less than or equal to) operator,
46-50

= (assignment) operator, 15

== (equal to) operator, 46-50

?\ (conditional) operator, ternary
nature of, 91-92

A
A Simple Program for Use with gdb
(Program 18.4), 396-398

abs() function, 490

absolute value of numbers,
calculating, 129-131

absolute_value() function, 129-131

acos() function, 483

Adding Debug Statements with the
Preprocessor (Program 18.1),
389-391

address (&) operator, 236, 260

adjacent strings, 218

algorithms
binary search, 223-227
function of, 5
Sieve of Erastosthenes (prime numbers),

118

aligning triangular number output,
50-51

field width specification, 51
right justification, 51

alphabetic() function, 212-214

American National Standard Institute.
See ANSI

ANSI (American National Standards
Institute), 1

C standardization efforts, 1
C99 standard, 425
Web site, 502

ar utility, programming functionality,
345

argc argument, 380

arguments, 16
#define statement (macros), 308-311
argc, 380
argv, 380
calling, 13
command-line, 380

File Copy Program Using
Command-Line Arguments (Program
17.1), 382-383

main() function, 380-381

storing, 383
data types, conversion of, 329-330
format string, 17

25 0672326663 index 6/10/04 2:03 PM Page 506

507arrays

functions, 122-123

declaring, 134-135

formal parameter name, 124

values, checking, 135-137
pointer arguments, passing, 254-257
sizeof operator, 385

argv argument, 380

arithmetic operators, 443-444
associative property, 30
binary, 30-33
division sign (/), 30-33
joining with assignment operators,

38-39
minus sign (-), 30-33
modulus (%), 35-36
More Examples with Arithmetic

Operators (Program 4.3), 33-34
multiplication sign (*), 30-33
plus sign (+), 30-33
precedence, 30

rules example, 34
type cast, precedence rules, 38
unary minus, 33-34
Using the Arithmetic Operators

(Program 4.2), 30-31

arithmetic right shift, 288

array of characters, Concatenating
Character Arrays (Program 10.1),
196-198

array operators, 447-448

array_sum() function, 262-264

arrays
characters, 108-109

memory functions, 472
const variable, 111-113
containment by structures, 187-189
declaring, 97-98
defining with unions, 376-377
dynamic memory allocation, 117

elements

as counters, 100-103

initializing, 106-108

sequencing through, 96-100
Fibonacci numbers, generating, 103-104
function of, 95
functions, passing multidimensional

arrays, 146-152
integer bases, conversion of, 109-111
multidimensional, 113-114, 433-434

initializing, 114-115

passing to functions, 146-152
multidimensional arrays, declaring, 114
passing to functions, 137-142

assignment operators, 142-143
pointers to, 259-260, 449-450

to character string, 266-267

decrement (--) operator, 262, 268

increment (++) operator, 262, 268

postdecrement operator, 269-271

postincrement operator, 269-271

predecrement operator, 269-271

preincrement operator, 269-271

program optimization, 263-264

sequencing through pointer elements, 261
prime numbers, generating, 104-106
programs

Converting a Positive Integer to Another
Base (7.7), 110-111

Demonstrating an Array of Counters
(7.2), 101-103

Finding the Minimum Value in an Array
(8.9), 138-140

Generating Fibonacci Numbers (7.3),
103-104

Generating Fibonacci Numbers Using
Variable-Length Arrays (7.8),
115-117

Illustrating Structures and Arrays (9.7),
188-189

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 507

508 arrays

Initializing Arrays (7.5), 107-108

Introducing Character Arrays (7.6),
108-109

Multidimensional Variable-Length Arrays
(8.13A), 150-152

Revising the Function to Find the
Minimum Value in an Array (8.10),
140-142

Revising the Program to Generate Prime
Numbers,Version 2 (7.4), 105-106

Sorting an Array of Integers into
Ascending Order (8.12), 144-146

Using Multidimensional Arrays and
Functions (8.13), 147-150

Working with an Array (7.1), 98-100
sequencing through elements with

pointers to arrays, 261
single-dimensional, 432-433
sorting, 143-146, 490-491
structures

defining, 182

initializing, 183

Using the Dictionary Lookup Program
(Program 10.9), 220-222

subscripts, 96
summing elements, 262-264
uses, 95
values, storing, 96
variable-length, 115-117, 433
variables, defining, 96-98
versus pointers, differentiating, 264-265

asin() function, 483

asinh() function, 483

Asking the User for Input (Program
5.4), 51-52

assemblers, 6
programs, compiling, 9

assigning structure values via
compound literals, 181-182

assignment operators, 15, 142-143, 446
joining with arithmetic operators, 38-39

AT&T Bell Laboratories, 1

atan() function, 484

atan2() function, 484

atanh() function, 484

atof() function, 480

atoi() function, 230, 480

atol() function, 480

audible alert (\a) escape character, 216

auto keyword, 124-126, 156

auto_static() function, 157-158

automatic local variables, 156
functions, 124-126

B
backslash (\\) escape character, 217

backspace (\b) escape character, 216

backtrace command (gdb debugger),
405

base notations, int data types, 23-24

bases, integers, converting via arrays,
109-111

basic data types
C language specifications, 430-432
usual arithmetic conversion, 451-452

BASIC programming language, 10

beginning comments, character
syntax, 18

binary arithmetic operators, 30-33

binary files, opening, 475

binary search algorithm, 223-227

bit fields, 292-294
declaring, 296
defining, 294-295
extracting values, 295
units, 296

25 0672326663 index 6/10/04 2:04 PM Page 508

509C language

bits, 279
bit fields, 292-294
high-order, 279
least significant, 279
low-order, 279
most significant, 279
operators, 280

& (bitwise AND), 281-283

<< (left shift), 287

^ (bitwise Exclusive-OR), 284-285

| (bitwise Inclusive-OR), 283-284
rotating values, 290, 292

bitwise operators, 445
Illustrating Bitwise Operators (Program

12.2), 286-287

book resources
The C Programming Language, 501
The C Reference Manual, 501
C# Programming in the Key of C#, 503
C++ Primer Plus, 4th Edition, 503
Introduction of Object-Oriented

Programming, 3rd Edition, 503
Objective-C Programming Language, 504
Programming in Objective-C, 503
The Standard C Library, 501

Boolean variables
logical negation (!) operator, 90
programs

Generating a Table of Prime Numbers
(6.10), 87-90

Revising the Program to Generate a Table
of Prime Numbers (6.10A), 90-91

braces ({}), program syntax, 13

break command (gdb debugger), 400,
409

break statement, 62, 84, 456

breakpoints in programs, debugging
(gdb tool), 400

bugs in programs, 9

bytes, 279

C
C language

ANSI standardization efforts, 1
arithmetic operators, 443-444
array pointers, 449-450
arrays

multidimensional, 433-434

operators, 447-448

single-dimensional, 432-433

variable-length, 433
assignment operators, 446
AT&T Bell Laboratories, 1
basic data type conversion, usual

arithmetic conversion, 451-452
as basis for Unix operating system, 1
bitwise operators, 445
book resources

The C Programming Language, 501

The C Reference Manual, 501

The Standard C Library, 501
character constants, 428

escape sequences, 428-429

wide character, 429
character string constants, 429

concatenation, 429

multibyte, 429
comma operators, 447
comments, 426
compound literals, 450-451
conditional operators, 446
constant expressions, 442-443
data types

basic, 430-432

declarations, 430

derived, 432-438

enumerated, 438

modifiers, 439

typedef statement, 438-439
decrement operators, 445

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 509

510 C language

digraph characters, 425
enumeration constants, 430
expressions, specifications, 439
filename extension, 7
floating-point constants, 427-428
fractions program, writing, 413-414
functions

calls, 455-456

definition of, 454-455

pointers, 456
identifiers, 425

keywords, 426

universal character names, 426
increment operators, 445
integer constants, 427
interpreters, 10
ISO standardization efforts, 1
logical operators, 444
operators, summary table, 440-442
origins, 1
pointers

declarations, 437-438

operators, 448
predefined identifiers, 466
preprocessor, 460

directives, 461-465

trigraph sequences, 460-461
relational operators, 444-445
scopes, 452
sizeof operators, 447
statements

break, 456

compound, 456

continue, 457

do, 457

for, 457

goto, 458

if, 458

null, 458

return, 459

switch, 459-460

while, 460
storage classes

functions, 452

variables, 452-454
structures

declarations, 434-436

operators, 448

pointers, 450
text editors, 7
type cast operators, 446
unions, declarations, 436-437
vendor marketing, 1
Web site resources, Kochan-Wood.com,

502

C preprocessor
conditional compilation, 316

#else statement, 316-318

#endif statement, 316-318

#ifdef statement, 316-318

#ifndef statement, 316-318
statements, #define, 299-303

The C Programming Language, 501

The C Reference Manual, 501

C# language
development history, 422
fractions program, writing, 422-424

C# Programming in the Key of C#, 503

C++ language
development history, 419
fractions program, writing, 419-421

C++ Primer Plus, 4th Edition, 503

cabs() function, 488

cacos() function, 488

cacosh() function, 488

25 0672326663 index 6/10/04 2:04 PM Page 510

511character strings

calculating
absolute value of numbers, 129-131
square roots, 131-133
triangular numbers

nested for loops (program looping), 53-54

output alignment (program looping),
50-51

program looping, 43-45

user input (program looping), 51-52

Calculating Factorials Recursively
(Program 8.16), 159-161

Calculating the 200th Triangular
Number (Program 5.2), 44-45

Calculating the Absolute Value
(Program 8.7), 129-131

Calculating the Absolute Value of an
Integer (Program 6.1), 66-67

Calculating the Average of a Set of
Grades (Program 6.2), 67-69

Calculating the Eighth Triangular
Number (Program 5.1), 43

Calculating the nth Triangular
Number (Program 8.4), 123

Calculating the Square Root of a
Number (Program 8.8), 132-133

call stacks (traces), 405

calling
functions, 121-122

C language specifications, 455-456
statements, 13

Calling Functions (Program 8.2), 121

calloc() function, 386, 481
dynamic memory allocation, 384-385

carq() function, 488

case sensitivity in programming, 11

casin() function, 488

casinh() function, 488

catan() function, 489

catanh() function, 489

Categorizing a Single Character
Entered at the Terminal (Program
6.7), 78-80

cc command (Unix), 7-9

ccos() function, 489

ccosh() function, 489

ceil() function, 484

cexp() function, 489

Changing Array Elements in
Functions (Program 8.11), 142-143

char data type, 23
quote usage, 25-26

character arrays, 108-109, 196-198

character constants
C language specifications, 428

escape sequences, 428-429

wide character, 429
in expressions, 227-230

character functions, 473

character I/O operations
getchar() function, 348
putchar() function, 348

character string constants
C language specifications

concatenation, 429

multibyte, 429
pointers, 267-268

character strings, 195
adjacent, 218
combining with array of structures,

219-222
comparing, 204-206
concatenating, 196
Concatenating Character Strings

(Program 10.3), 202-203
continuation of, 218-219
Converting a String to its Integer

Equivalent (Program 10.11), 228-230
converting into integers, 228

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 511

512 character strings

copying, 266-267, 271
delimiting, 195
displaying, 201-203
escape characters, 216-218
initializing, 201-203
inputting, 206-208
length, 199, 272
null string, 213-215
pointers to, 266-267
Reading Strings with scanf (Program

10.5), 207-208
testing for equality, 204-206
Testing Strings for Equality (Program

10.4), 204-206
universal character name, 218
variable length, 198-200

characters
arrays of

comparing, 472

copying, 472

initializing, 107

memory functions, 472

searching, 472
files

reading (getc() function), 365

reading (putc() function), 365
formation of valid variables, 22
pointers to, 238-239
sign extensions, 329
single-character input, 208-212
whitespace, scanf() function, 355

cimaq() function, 489

classes (OOP)
instances, 412-413
methods, 412-413

clear command (gdb debugger), 409

clearerr() function, 474

clearing end of file indicators, 474

cloq() function, 489

closing files, 474
fclose() function, 365-367

Code Warrior Web site, 503

comma operators, 378, 447

command lines, multiple source files,
compiling, 334-336

command-line arguments, 380
File Copy Program Using

Command-Line Arguments
(Program 17.1), 382-383

main() function, 380-381
storing, 383

comments
C language specifications, 426
character syntax

beginning, 18

terminating, 18
including in programs, 17-19
proper usage of, 18-19
Using Comments in a Program

((Program 3.6), 17-19

communication between modules
external variables, 336-338
include files, 341-342
prototype declarations, 336
static variables, 339-340

compare_strings() function, 224

comparing
arrays of characters, 472
character strings, 204-206
strings, 470-471

compilers, 6-9
GNU C, 12
Unix C, 12

compiling programs, 7-12
assemblers, 9
debugging phase, 9
errors

semantic, 7-9

syntactic, 7-9
multiple source files from command

lines, 334-336

25 0672326663 index 6/10/04 2:04 PM Page 512

513copying

Compiling the Debug Code (Program
18.2), 391-393

complex arithmetic functions, 488-490

compound literals, 450-451
structural values, assigning, 181-182

compound relationship tests
if statement, 72-74

Determining if a Year Is a Leap Year
(Program 6.5), 73-74

logical AND operator, 72-73

logical OR operator, 72-73

compound statements, C language
specifications, 456

concat() function, 196, 201-203

concatenating
character string constants, C language

specifications, 429
character strings, 196
strings, 470

Concatenating Character Arrays
(Program 10.1), 196-198

Concatenating Character Strings
(Program 10.3), 202-203

conditional (?\) operator, ternary
nature of, 91-92

conditional compilation, 316
#else statement, 316-318
#endif statement, 316-318
#ifdef statement, 316-318
#ifndef statement, 316-318

conditional expression operator,
#define statement in macros, 310

conditional operators, 446

conj() function, 489

console windows, 9

const modifier, C language
specifications, 439

const variable (arrays), 111-113

constant expressions, 23, 442-443

constant FILE pointers
stderr, 369-370
stdin, 369-370
stdout, 369-370

constant keyword (pointers), 253

constants (C language specifications)
character constants, 428-429

in expressions, 227-230
character strings, 267-268, 429
enumeration constants, 430
floating-point constants, 427-428
integer constants, 427
wide character constants, 429

continue statement, 62-63
C language specifications, 457

convert_number() function, 152

converting
arguments, data types, 329-330
character strings into integers, 228-229
data types

float to int, 36-38

in expressions, 327-329

int to float, 36-38

sign extension, 329
strings to numbers, 479-481

Converting a Positive Integer to
Another Base

Program 7.7, 110-111
Program 8.14, 153-156

Converting a String to its Integer
Equivalent (Program 10.11), 228-230

Converting Between Integers and
Floats (Program 4.5), 36-38

copy_string() function, 266-267, 271

copying
arrays of characters, 472
character strings, 266-267, 271
strings, 470-471

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 513

514 Copying Characters from Standard Input to Standard Output

Copying Characters from Standard
Input to Standard Output (Program
16.2), 361-362

Copying Files (Program 16.3), 366-367

copysign() function, 484

cos() function, 484

cosh() function, 484

counters, array elements, 100-103

Counting the Characters in a String
(Program 10.2), 199-200

Counting Words (Program 10.7),
210-212

countWords() function, 210-215

cpow() function, 489

cproj() function, 489

creal() function, 489

csin() function, 489

csinh() function, 489

csqrt() function, 489

ctan() function, 490

ctanh() function, 490

cvs utility, programming functionality,
344

CygWin Web site, 502

D
data encapsulation (OOP), 417

data types
arguments, conversion of, 329-330
arrays, declaring, 97-98
C language specifications

basic, 430-432

declarations, 430

derived, 432-438

enumerated, 438

modifiers, 439

typedef statement, 438-439
char, 23

quote usage, 25-26

conversions

order in evaluating expressions, 327-329

sign extension, 329
Converting Between Integers and Floats

(Program 4.5), 36-38
converting to float, 36-38
converting to int, 36-38
double, 23-25
enumerated

defining, 321-322, 324

Using Enumerated Data Types (14.1),
322-324

float, 23

decimal notation, 24

hexadecimal notation, 25

scientific notation, 24-25
int, 23

base notations, 23-24

machine-dependent ranges, 24

ranges, 24

storage sizes, 24

valid examples of, 23
naming (typedef statement), 325-327
specifiers

long, 28-30

long long, 28-30

short, 28-30

signed, 28-30

unsigned, 28-30
storage of differing types (unions),

375-378
Using the Basic Data Types (Program

4.1), 26-27
void, 128

value storage, 26

debugging
gdb tool, 395-398

backtrace command, 405

break command, 400, 409

25 0672326663 index 6/10/04 2:04 PM Page 514

515derived data types

breakpoint deletion, 404-405

clear command, 409

function calls, 405-406

help command, 406-408

info break command, 404-405

info source command, 409

inserting breakpoints, 400

list command, 399-400, 409

miscellaneous features, 408

next command, 409

print command, 409

program execution controls, 400

quit command, 409

run command, 400, 409

session example, 402-404

set var command, 398-399, 409

single stepping, 401-404

stacktrace retrieval, 405

step command, 401-404, 409

viewing source files, 399-400
preprocessor, 389-395
programs

A Simple Program for Use with gdb
(18.4), 396-398

Adding Debug Statements with the
Preprocessor (18.1), 389-391

Compiling the Debug Code (18.2),
391-393

Defining the DEBUG Macro (18.3),
393-395

Working with gdb (18.5), 401-402

decimal notation in float data types,
24

declaring
arguments in functions, 134-135
arrays

data types, 97-98

multidimensional, 114
bit fields, 296

data types, C language specifications,
430

return types in functions, 126, 134-135
structures, 166
unions, 375
variables, 15

in for loops, 55-56

decrement (--) operator, 50, 262, 268,
445

defined names
NULL, 301
values, 300

defined values, referencing (#define
statement), 307-308

defining
arrays

of structures, 182

with unions, 376-377
bit fields, 294-295
data types, enumerated, 321-324
external variables, 337
functions, 119-122
local variables in functions, 124-126
pointer variables, 235-239
structures, 166-168

global structure definition, 173
unions, members, 376
variables in arrays, 96-98

Defining the DEBUG Macro
(Program 18.3), 393-395

deleting files via remove() function,
371

delimiting character strings, 195

Demonstrating an Array of Counters
(Program 7.2), 101-103

derived data types
C language specifications, 432

multidimensional arrays, 433-434

pointers, 437-438

single-dimensional arrays, 432-433

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 515

516 derived data types

structures, 434-436

unions, 436-437

variable-length arrays, 433

Determining if a Number Is Even or
Odd (Program 6.3), 69-71

Determining if a Year Is a Leap Year
(Program 6.5), 73-74

Determining Tomorrow’s Date
(Program 9.2), 169-171

digraph characters, C language
specifications, 425

directives, 299
preprocessors, 461

#define, 461-463

#error, 463

#if, 463

#ifdef, 464

#ifndef, 464

#include, 464-465

#line, 465

#pragma, 465

#undef, 465

dispatch tables, 274

display_converted_number() function,
152

Displaying Multiple Lines of Output
(Program 3.3), 14

Displaying Multiple Variables
(Program 3.5), 16-17

Displaying Variables (Program 3.4),
15-16

division sign (/), arithmetic operator,
30-33

do statement, 60-62
C language specifications, 457
Implementing a Revised Program to

Reverse the Digits of a Number
(Program 5.9), 61-62

programming looping usage, 44

double data type, 23-25

double quotation marks (“)
char data types, 25-26
character strings, declaring, 195

double quote (\”) escape character,
217

doubly linked lists (pointers), 244-252

dynamic memory allocation, 383-384
arrays, 117
calloc() function, 384-386
free() function, 387-388
functions, 481
linked lists, 387-388
malloc() function, 384-386
returning memory to system, 387-388
sizeof operator, 385-387

E
editing programs with modular
programming, 333-334

elements (array)
counters, 100-103
initializing, 106-108
sequencing through, 96-100
summing, 262-264
values, storing, 96

else if construct (if statement), 76-83
Categorizing a Single Character Entered

at the Terminal (Program 6.7), 78-80
Evaluating Simple Expressions (Program

6.8), 80-82
Implementing the Sign Function

(Program 6.6), 77-78
Revising the Program to Evaluate

Simple Expressions (Program 6.8A),
82-83

sign function, 76

emacs text editor, 11

end-of-file conditions
clearing, 474
I/O operations, 361-362

enum keyword, 321-324

25 0672326663 index 6/10/04 2:04 PM Page 516

517file I/O operations

enumerated data types
C language specifications, 438
defining, 321-324
Using Enumerated Data Types (14.1),

322-324

enumeration constants, C language
specifications, 430

EOF values, getchar() function, 362

equal to (= =) operator, 46-50

equal_strings() function, 204

errors in programming,
troubleshooting, 497-500

escape characters, 216-218

escape sequences, C language
specifications, 428-429

evaluating order of operators, 442

Evaluating Simple Expressions
(Program 6.8), 80-82

.exe filename extension, 9

exf() function, 484

exfc() function, 484

exit() function, 490
programs, terminating, 370-371

exiting
loops, 62
programs, 490

exp() function, 484

expml() function, 484

expressions
C language specifications, 439

constant expressions, 442-443

summary table, 440-442
character constants in, 227-230
constant, 23
data types, conversion order, 327-329
pointers, 239-240
structures, 168-171

extensions (filenames), 9

external variables
defining, 337
modules, communicating between,

336-338
versus static variables, 339-340

F
fabs() function, 484

factorial() function, 159

fclose() function, 474
files, closing, 365-367

fdim() function, 484

feof() function, 474
testing files for EOF conditions,

367-368

ferror() function, 474

fflush() function, 474

fgetc() function, 474

fgetpos() function, 474

fgets() function, 474
files, reading to, 368

Fibonacci numbers, generating,
103-104

Generating Fibonacci Numbers Using
Variable-Length Arrays (Program 7.8),
115-117

field width specification, triangular
number output, 51

fields, omitting in for loops, 55

File Copy Program Using
Command-Line Arguments
(Program 17.1), 382-383

file I/O operations
fclose() function, 365-367
feof() function, 367-368
fgets() function, 368
fopen() function, 363-364
fprint() function, 368
fputs() function, 368
getc() function, 365

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 517

518 file I/O operations

putc() function, 365
remove() function, 371
rename() function, 371

FILE pointers
stderr, 369-370
stdin, 369-370
stdout, 369-370

filename extensions, 9

files
a.out (Unix executable), 9
characters

reading (getc() function), 365

reading (putc() function), 365
closing (fclose() function), 365-367, 474
copying (Program 16.3), 366-367
current position, returning, 474
deleting (remove() function), 371
EOF conditions, testing (fclose()

function), 367-368
executable (Unix), 9
header, 467
I/O operations

end-of-file conditions, 361-362

redirection of, 359-361
include, 341-342
modular programming organization,

333-334
naming, 7
opening, 475
opening (fopen() function), 363-364
printing (fprint() function), 368
programming utilities

ar, 345

cvs, 344

grep, 345

make, 343-344

sed, 345
reading to (fgets() function), 368
renaming (rename() function), 371, 478
temporary files, creating, 478
writing to (fputs() function), 368

find_entry() function, 257

Finding the Greatest Common
Divisor and Returning the Results
(Program 8.6), 127-128

Finding the Minimum Value in an
Array (Program 8.9), 138-140

float data type, 23
converting to, 36-38
decimal notation, 24
hexadecimal notation, 25
scientific notation, 24-25

float.h header file, 316, 469

floating point numbers, 15

floating-point constants, C language
specifications, 427-428

floor() function, 484

fma() function, 485

fmax() function, 485

fmin() function, 485

fmod() function, 485

fopen() function, 363-364, 475

for statement
array elements, sequencing through,

98-100
C language specifications, 457
init expression, 45
loop condition, 45
loop expression, 45
nested, 53-54
program looping

relational operators, 46-50

triangular number calculation, 44-45
programming looping usage, 44
variants, 54

field omission, 55

multiple expressions, 55

variable declaration, 55-56

formal parameter name, function
arguments, 124

format string, 17

25 0672326663 index 6/10/04 2:04 PM Page 518

519functions

formatted I/O operations
printf() function, 348

conversion characters, 350

flags, 348

Illustrating the printf Formats (Program
16.1), 350-355

type modifiers, 349

width and precision modifiers, 349
scanf() function, 355

conversion characters, 356-359

conversion modifiers, 355

FORTRAN (FORmula TRANslation)
language, 6

fpclassify() function, 482

fprintf() function, 368, 475

fputc() function, 475

fputs() function, 368, 475

fractions program
Working with Fractions in C (19.1),

413-414
Working with Fractions in C# (19.4),

422-424
Working with Fractions in C++ (19.3),

419-421
Working with Fractions in Objective-C

(19.2), 414-419
writing in C, 413-414
writing in C#, 422-424
writing in C++, 419-421
writing in Objective-C, 414-419

fread() function, 475

free() function, 387-388, 481

freopen() function, 475

frexp() function, 485

fscanf() function, 476

fseek() function, 476

fsetpos() function, 476

ftell() function, 476

function calls (gdb debugger), 405-406

functions, 119
abs(), 490
absolute value of numbers, calculating,

129-131
absolute_value(), 129-131
acos(), 483
alphabetic(), 212, 214
arguments, 16, 122-123

checking values, 135-137

declaring, 134-135

formal parameter name, 124

format string, 17

pointer arguments, passing, 254-257
array_sum(), 262-264
arrays

passing multidimensional arrays,
146-152

passing to, 137-142
asin(), 483
asinh(), 483
atan(), 484
atan2(), 484
atanh(), 484
atof(), 480
atoi(), 230, 480
atol(), 480
auto_static(), 157-158
automatic local variables, 124-126, 156
C language specifications, 452

calls, 455-456

definition of, 454-455

pointers, 456
cabs(), 488
cacos(), 488
cacosh(), 488
calling, 121-122
calloc(), 386, 481
carq(), 488
casin(), 488
casinh(), 488

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 519

520 functions

catan(), 489
catanh(), 489
ccos(), 489
ccosh(), 489
ceil(), 484
cexp(), 489
character functions, 473
cimaq(), 489
clearerr(), 474
cloq(), 489
compare_strings(), 224
complex arithmetic functions, 488-490
concat(), 196, 201-203
conj(), 489
convert_number(), 152
copy_string(), 266-267, 271
copysign(), 484
cos(), 484
cosh(), 484
count_words(), 210, 214-215
cpow(), 489
cproj(), 489
creal(), 489
csin(), 489
csinh(), 489
csqrt(), 489
ctan(), 490
ctanh(), 490
declaring return value type, 126
defining, 119-122

global structure definition, 173
display_converted_number(), 152
dynamic memory allocation

calloc(), 384-385

functions, 481

malloc(), 384-385
equal_strings(), 204
exf(), 484
exfc(), 484

exit(), 490
exp(), 484
expml(), 484
fabs(), 484
factorial(), 159
fclose(), 474
fdim(), 484
feof(), 474
ferror(), 474
fflush(), 474
fgetc(), 474
fgetpos(), 474
fgets(), 474
find_entry(), 257
floor(), 484
fma(), 485
fmax(), 485
fmin(), 485
fmod(), 485
fopen(), 475
fpclassify(), 482
fprintf(), 475
fputc(), 475
fputs(), 475
fread(), 475
free(), 387-388, 481
freopen(), 475
frexp(), 485
fscanf(), 476
fseek(), 476
fsetpos(), 476
ftell(), 476
fwrite(), 477
get_number_and_base(), 152
getc(), 477
getchar(), 208-210, 477
getenv(), 490
gets(), 209-212, 477
global variables, 152-156
hypot(), 485

25 0672326663 index 6/10/04 2:04 PM Page 520

521functions

I/O, 473-478

fclose(), 365-367

feof(), 367-368

fgets(), 368

fopen(), 363-364

fprint(), 368

fputs(), 368

getc(), 365

getchar(), 348

printf(), 348-355

putc(), 365

putchar(), 348

remove(), 371

rename(), 371

scanf(), 355-359
ilogb(), 485
in-memory format conversion, 478-479
is_leap_year(), 174
isalnum(), 473
isalpha(), 230, 473
iscntrl(), 473
isdigit(), 230, 473
isfin(), 482
isgraph(), 473
isgreater(), 482
isgreaterequal(), 482
isinf(), 482
islessequal(), 483
islessgreater(), 483
islower(), 230, 473
isnan(), 483
isnormal(), 483
isprint(), 473
ispunct(), 473
isspace(), 473
isunordered(), 483
isupper(), 230, 473
isxdigit(), 473
labs(), 490

ldexp(), 485
lgamma(), 485
llabs(), 490
llrint(), 486
llround(), 486
local variables, defining, 124-126
log(), 485
log1(), 486
log2(), 485
logb(), 485
loglb(), 485
lookup(), 219-223
lrint(), 486
main(), 120

program syntax, 13
malloc(), 386, 481
math functions, 482-487
memchr(), 472
memcmp(), 472
memcpy(), 472
memmove(), 472
memory functions, 472
minimum(), 138
modf(), 486
modules, 333
nan(), 486
nearbyint(), 486
Newton-Raphson Iteration Technique,

131-133
nextafter(), 486
nexttoward(), 486
number_of_days(), 171-174
passing arrays to assignment operators,

142-143
perror(), 477
pointers, returning, 257
pointers to, 273-274
pow(), 486
print_message(), 120
printf(), 16, 477

program syntax, 13

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 521

522 functions

programs

Calculating Factorials Recursively
(8.16), 159-161

Calculating the Absolute Value (8.7),
129-131

Calculating the nth Triangular Number
(8.4), 123

Calculating the Square Root of a
Number (8.8), 132-133

Calling Functions (8.2), 121

Changing Array Elements in Functions
(8.11), 142-143

Converting a Positive Integer to Another
Base (8.14), 153-156

Finding the Greatest Common Divisor
and Returning the Results (8.6),
127-128

Finding the Minimum Value in an Array
(8.9), 138, 140

Illustrating Static and Automatic Variables
(8.15), 157-158

More on Calling Functions (8.3), 122

Multidimensional Variable-Length Arrays
(8.13A), 150-152

Revising the Function to Find the
Minimum Value in an Array (8.10),
140-142

Revising the Program to Find the
Greatest Common Divisor (8.5),
125-126

Sorting an Array of Integers into
Ascending Order (8.12), 144-146

Updating the Time by One Second
(9.5), 178-180

Using Multidimensional Arrays and
Functions (8.13), 147-150

Writing a Function in C (8.1),
120-121

prototype declaration, 124
putc(), 477
putchar(), 477
puts(), 478

qsort(), 274, 490-491
rand(), 491
read_line(), 213-215
realloc(), 481
recursive, 159-161
remainder(), 486
remove(), 478
rename(), 478
returning results from, 126-135
rewind(), 478
rint(), 487
rotate(), 290-292
round(), 487
scalar_multiply(), 147
scalbln(), 487
scalbn(), 487
scanf(), 206, 478

input values, 51-52
shift functions, 288-290
shift(), 289
signbit(), 483
sin(), 487
sinh(), 487
sort(), 143-144, 146
sprintf(), 478-479
sqrt(), 487
square_root(), 133
srand(), 491
sscanf(), 478-479
static functions, 339
static variables, 156
strcat(), 230, 470
strchr(), 470
strcmp(), 230, 470
strcpy, 470-471
strcpy(), 230
string functions, 470-472
string-to-number conversions, 479-481
string_length(), 199, 272
string_to_integer(), 228-230
strlen(), 230, 471

25 0672326663 index 6/10/04 2:04 PM Page 522

523grep utility

strncat(), 471
strncmp(), 471
strncpy(), 471
strrchr(), 471
strstr(), 471-472
strtod(), 480
strtol(), 480
strtoul(), 481
structures, 171-174, 177
system(), 491
tan(), 487
tanh(), 487
tgamma(), 487
time_update(), 178-180, 183
tmpfile(), 478
tolower(), 473
toupper(), 473
trunc(), 487
ungetc(), 478
utility functions, 490-491

fwrite() function, 477

G
gcc compiler, command-line options,
493-495

gcc Web site, 493, 502

gdb tool, debugging with, 395-398
backtrace command, 405
break command, 400, 409
breakpoint deletion, 404-405
clear command, 409
function calls, 405-406
help command, 406-408
info break command, 404-405
info source command, 409
inserting breakpoints, 400
list command, 399-400, 409
miscellaneous features, 408
next command, 409
print command, 409

program execution controls, 400
quit command, 409
run command, 400, 409
session example, 402-404
set var command, 398-399, 409
single stepping, 401-404
stacktrace retrieval, 405
step command, 401-404, 409
viewing source files, 399-400

Generating a Table of Prime Numbers
(Program 6.10), 87-90

Generating a Table of Triangular
Numbers (Program 5.3), 47-50

Generating Fibonacci Numbers
(Program 7.3), 103-104

Generating Fibonacci Numbers Using
Variable-Length Arrays (Program
7.8), 115-117

get_number_and_base() function, 152

getc() function, 365, 477

getchar() function, 208-210, 348, 477

getenv() function, 490

gets() function, 209-212, 477

getter methods (OOP), 417

global variables
default initial values, 155
functions, 152-156

GNU C compiler, 12

GNU.org Web site, command-line
tools, 504

Google Groups Web site, 502

goto statement
C language specifications, 458
execution of, 373
labels, 373
programming abuse, 374

greater than or equal to (>=)
operator, 46-50

grep utility, programming
functionality, 345

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 523

524 header files

H
header files

#include statement, 313-315
float.h, 316, 469
limits.h, 316, 468
math.h, 482
modular programming, use of, 341-342
stdbool.h, 469
stddef.h, 467
stdint.h, 469-470
stdlib.h, 490-491

help command (gdb debugger),
406-408

hexadecimal character value (\xnn)
escape character, 217

hexadecimal notation
float data types, 25
int data type, 23-24

high-order bit, 279

higher-level languages, 6
assembly languages, 6
compilers, 6
FORTRAN, 6
interpreters, 10
syntax standardization, 6

horizontal tab (\t) escape character,
216

hypot() function, 485

I
I/O functions, 473-478

I/O operations, 347
character functions

getchar(), 348

putchar(), 348
Copying Characters from Standard

Input to Standard Output (Program
16.2), 361-362

file functions

fclose(), 365-367

feof(), 367-368

fgets(), 368

fopen(), 363-364

fprint(), 368

fputs(), 368

getc(), 365

putc(), 365

remove(), 371

rename(), 371
files

end-of-file conditions, 361-362

redirecting to, 359-361
formatted functions

printf(), 348-355

scanf(), 355-359
function calls, 347

identifiers, C language specifications,
425

keywords, 426
predefined, 466
universal character names, 426

IDEs (Integrated Development
Environments), 10, 334

function of, 10
Linux, 10
Mac OS X

CodeWarrior, 10

Xcode, 10
Windows OS,Visual Studio, 10

if statement, 65
C language specifications, 458
compound relational tests, 72-74
else if construct, 77-83
general format, 65
if-else construct, 69-72
nested, 75-76

25 0672326663 index 6/10/04 2:04 PM Page 524

525int data type

programs

Calculating the Absolute Value of an
Integer (6.1), 66-67

Calculating the Average of a Set of
Grades (6.2), 67-69

Determining if a Number Is Even or
Odd (6.3), 69-71

Revising the Program to Determine if a
Number Is Even or Odd (6.4), 71-72

if-else construct (if statement), 69-72
Determining if a Number Is Even or

Odd (Program 6.3), 69-71
Revising the Program to Determine if a

Number Is Even or Odd (Program
6.4), 71-72

Illustrating a Structure (Program 9.1),
166-168

Illustrating Arrays of Structures
(Program 9.6), 183-184

Illustrating Bitwise Operators
(Program 12.2), 286-287

Illustrating Pointers (Program 11.1),
236-237

Illustrating Static and Automatic
Variables (Program 8.15), 157-158

Illustrating Structures and Arrays
(Program 9.7), 188-189

Illustrating the Modulus Operator
(Program 4.4), 35-36

ilogb() function, 485

Implementing a Revised Program to
Reverse the Digits of a Number
(Program 5.9), 61-62

Implementing a Rotate Function
(Program 12.4), 290-292

Implementing a Shift Function
(Program 12.3), 288-290

Implementing the Sign Function
(Program 6.6), 77-78

in-memory format conversion
functions, 478-479

include files, modular programming,
341-342

include statement, program syntax, 13

increment (++) operator, 49, 262, 268,
445

index number (arrays), 96

indirection, 235-236

infinite loops, 65

info break command (gdb debugger),
404-405

info source command (gdb debug-
ger), 409

init expressions (for statement), 45

initializing
arrays

characters, 107

elements, 106-108

multidimensional arrays, 114-115

of structures, 183
character strings, 201-203
structures, 180-181
union variables, 376
variables (static), 156-158

Initializing Arrays (Program 7.5),
107-108

input
programs, 9
single-character, 208-212

input/output operations. See I/O
operations

inputting character strings, 206-208

instances, classes (OOP), 412-413

instruction sets, 5

int data type, 23
base notations, 23-24
converting to, 36-38
machine-dependent ranges, 24
ranges, 24
storage sizes, 24
valid examples of, 23

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 525

526 integers

integers
base conversion via arrays, 109-111
constants, C language specifications, 427
pointers, 239-240

Integrated Development
Environments. See IDEs

International Standard Organization
(ISO), 1

interpreters, 10

Introducing Character Arrays
(Program 7.6), 108-109

Introducing the #define Statement
(Program 13.1), 300-302

Introduction of Object-Oriented
Programming, 3rd Edition, 503

isalnum() function, 473

isalpha() function, 230, 473

iscntrl() function, 473

isdigit() function, 230, 473

isfin() function, 482

isgraph() function, 473

isgreater() function, 482

isgreaterequal() function, 482

isinf() function, 482

islessequal() function, 483

islessgreater() function, 483

islower() function, 230, 473

isnan() function, 483

isnormal() function, 483

ISO (International Standard
Organization), 1

isprint() function, 473

ispunct() function, 473

isspace() function, 473

isunordered() function, 483

isupper() function, 230, 473

isxdigit() function, 473

J - K
JAVA programming language, inter-
pretive nature of, 10

joining tokens in macros (## opera-
tor), 313

keywords
auto, 124-126, 156
C language specifications, 426
enum, 321-324
static, 156
void, 128

Kochan-Wood Web site, 502
book exercises and errata resources, 501

Kylix (Linux IDE), 10

L
labels in goto statements, 373

labs() function, 490

ldexp() function, 485

least significant bit, 279

left shift (<<) bitwise operator, 287

length of strings, 471

less than (<) operator, 46-50

less than or equal to (<=) operator,
46-50

lgamma() function, 485

limits.h header file, 316, 468

linked lists
dynamic memory allocation, 387-388
pointers, 244-252

linking programs, 9

Linux, Kylix IDE, 10

list command (gdb debugger),
399-400, 409

llabs() function, 490

llrint() function, 486

25 0672326663 index 6/10/04 2:04 PM Page 526

527macros

llround() function, 486

loading programs, 9

local variables
automatic (functions), 124-126, 156
defining (functions), 124-126

log() function, 485

log1() function, 486

log2() function, 485

logb() function, 485

logical AND (&&) operator,
compound relationship tests, 72-73

logical negation (!) operator, Boolean
variables, 90

logical operators, 444

logical OR (||) operator, compound
relationship tests, 72-73

logical right shift, 288

loglb() function, 485

long long specifier (data types), 28-30

long specifier (data types), 28-30

lookup() function, 219-223

loop condition (for statement), 45

loop expressions (for statement), 45

loops
Boolean variables

Generating a Table of Prime Numbers
(Program 6.10), 87-90

Revising the Program to Generate a Table
of Prime Numbers (Program 6.10A),
90-91

break statement, 62, 84
continue statement, 62-63
do statement, 60-62
for statement, 44-45

field omission, 55

multiple expressions, 55

nested, 53-54

sequencing through array elements,
98-100

variable declaration, 55-56

variants, 54-56
if statement, 65

Calculating the Absolute Value of an
Integer (Program 6.1), 66-67

Calculating the Average of a Set of
Grades (Program 6.2), 67-69

if-else construct, 69-72
infinite, 65
null statement, 374
relational operators, 46-50
switch statement, 84

Revising the Program to Evaluate Simple
Expressions,Version 2 (Program 6.9),
85-86

while statement, 56-60

low-order bit, 279

lrint() function, 486

M
Mac OS X

IDEs

CodeWarrior, 10

Xcode, 10
Objective-C language usage, 414

macros
operator, 312
operator, 313
#define statement, 308-311

conditional expression operator, 310

converting character case, 311

defining number of arguments, 311

testing for lowercase characters, 310
#include statement, header files,

313-315
tokens, joining (## operator), 313

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 527

528 main() function

main() function, 120
command-line arguments, 380-381
program syntax, 13

make utility, programming
functionality, 343-344

malloc() function, 386, 481
dynamic memory allocation, 384-385

math functions, 482-487

math.h header file, 482

members (unions)
arithmetic rules, 376
defining, 376

memchr() function, 472

memcmp() function, 472

memcpy() function, 472

memmove() function, 472

memory, dynamic memory allocation,
383-384

calloc() function, 386
free() function, 387-388
functions, 481
linked lists, 387-388
malloc() function, 386
returning memory to system, 387-388
sizeof operator, 385-386

memory addresses (pointers), 274-276

memory functions, 472

message expressions (OOP), 412-413

methods, classes (OOP), 412-413
getters, 417
setters, 417

Metrowerks Web site, 503

MinGW Web site, 502

minimum() function, 138

minus sign (-), arithmetic operator,
30-33

modf() function, 486

modifiers, C language specifications,
439

Modifying the Dictionary Lookup
Using Binary Search (Program
10.10), 224-227

modular programming
file organization, 333-334
header files, use of, 341-342
IDE (Integrated Development

Environment), 334
multiple source files, compiling from

command line, 334-336

modules, 333
communicating between

include files, 341-342

static variables, 339-340
compiling, 334-336
external variables, communicating

between, 336-338
prototype declarations, communicating

between, 336

modulus (%) arithmetic operator,
35-36

More Examples with Arithmetic
Operators (Program 4.3), 33-34

More on Calling Functions (Program
8.3), 122

More on Working with Defines
(Program 13.2), 302-303

More Pointer Basics (Program 11.2),
238

most significant bit, 279

multidimensional arrays, 113-114,
433-434

declaring, 114
initializing, 114-115
Multidimensional Variable-Length Arrays

(Program 8.13A), 150-152
passing to functions, 146-152
variable-length, 150-152

Multidimensional Variable-Length
Arrays (Program 8.13A), 150-152

multiple expressions, use in for loops,
55

25 0672326663 index 6/10/04 2:04 PM Page 528

529OOP

multiple source files, compiling from
command line, 334-336

multiplication sign (*), arithmetic
operator, 30-33

N
naming

data types (typedef statement), 325-327
files, 7
program constants, #define statement,

299-303
variables, 21

reserved names, 22

rules, 22

nan() function, 486

nearbyint() function, 486

negative numbers, 279-280

nested for loops, 53-54

nested if statements, 75-76

newline character (\n), program
syntax, 13

newsgroups, C programming
resources, 502

Newton-Raphson Iteration Technique,
131-133

next command (gdb debugger), 409

NeXT Software, 414

nextafter() function, 486

nexttoward() function, 486

not equal to (!=) operator, 46-50

null character (‘\0’), 199

null statement
C language specifications, 458
example of, 374-375
loop control, 374
programming uses, 374

null strings, 213-215

number_of_days() function, 171-174

numbers
absolute values, calculating, 129-131
Fibonacci, generation of, 103-104
negative, 279-280
prime, generating with arrays, 104-106
square roots, calculating, 131-133

O
object-oriented programming. See
OOP

Objective-C language
as basis for Mac OS X, 414
development history, 414
fractions program, writing, 414-419

Objective-C Programming Language, 504

octal character value (\nnn) escape
character, 217

octal notation, int data type, 23

omitting fields in for loops, 55

OOP (object-oriented programming),
411

C# language, development history, 422
C++ language, development history, 419
car analogy, 411-412
classes

instances, 412-413

methods, 412-413
data encapsulation, 417
Introduction of Object-Oriented

Programming, 3rd Edition, 503
languages, 411
message expressions, 412-413
methods

getters, 417

setters, 417
Objective-C language,Working with

Fractions in Objective-C (Program
19.2), 414-419

overview, 411-412
versus procedural languages, 413

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 529

530 openf() function modes

openf() function modes
append, 364
read, 364
update, 364
write, 364

opening files
binary files, 475
fopen() function, 363-364

operating systems
function of, 6
Unix

development of, 6

spin-offs, 6
Windows XP, 7

operators
#, macro definitions, 312
##, macro definitions, 313
assignment operators, 15, 142-143

joining with arithmetic operators, 38-39
bit operators, 280

& (bitwise AND), 281-283

<< (left shift), 287

^ (bitwise Exclusive-OR), 284-285

| (bitwise Inclusive-OR), 283-284
C language specifications

arithmetic operators, 443-444

array operators, 447-448

array pointers, 449-450

assignment operators, 446

bitwise operators, 445

comma operators, 447

conditional operators, 446

decrement operators, 445

increment operators, 445

logical operators, 444

pointer operators, 448

relational operators, 444-445

sizeof operators, 447

structure operators, 448

structure pointers, 450

type cast operators, 446
comma, 378
conditional expression in macros, 310
evaluation order, 442
pointer operators, 236
precedence rules, 441-442
relational operators, 46-50
sizeof

arguments, 385

dynamic memory allocation, 385-387
summary table, 440-442
type cast, 69

output operations
end-of-file conditions, 361-362
redirecting to files, 359-361

P
passing arrays to functions, 137-142

assignment operators, 142-143
multidimensional arrays, 146-152

perror() function, 477

plus sign (+) arithmetic operator,
30-33

pointer operators, 448

Pointer Version of copyString()
function (Program 11.13), 266-267

pointers, 235
& (address) operator, 236, 260
* (indirection) operator, 236
arrays, 259-260

decrement (--) operator, 262, 268

increment (++) operator, 262

postdecrement operator, 269-271

postincrement operator, 269-271

predecrement operator, 269-271

preincrement operator, 269-271

program optimization, 263-264

sequencing through array elements, 261

25 0672326663 index 6/10/04 2:04 PM Page 530

531prime numbers

character string constants, 266-268
const keyword, 253
declarations, 437-438
defining, 235-239
expressions, 239-240
functions, 273-274

C language specifications, 456

passing pointer arguments, 254-257

returning pointers, 257
indirection, 235
integers, 240
memory addresses, 274-276
programs

Illustrating Pointers (11.1), 236-237

More Pointer Basics (11.2), 238

Pointer Version of copyString() function
(11.13), 266-267

Returning a Pointer from a Function
(11.10), 257-259

Revised Version of copyString() function
(11.14), 271-272

Summing the Elements of an Array
(11.12), 264-265

Traversing a Linked List (11.7),
250-252

Using Linked Lists (11.6), 246-250

Using Pointers and Functions (11.8),
254-255

Using Pointers in Expressions (11.3),
239-240

Using Pointers to Exchange Values
(11.9), 255-257

Using Pointers to Find Length of a
String (11.15), 272-273

Using Pointers to Structures (11.4),
241-243

Using Structures Containing Pointers
(11.5), 243-244

Working with Pointers to Arrays
(11.11), 262-263

structures, 240-243

linked lists, 244-252

structures containing pointers, 243-244
subtracting, 272
versus arrays, differentiating, 264-265

postdecrement operators, 269-271

postincrement operators, 269-271

pow() function, 486

precedence rules
arithmetic operators, 30
operators, 441-442
rules example, 34

precision modifiers, 69

predecrement operators, 269-271

predefined identifiers (directives), 466

preincrement operators, 269-271

preprocessor
Adding Debug Statements with the

Preprocessor (Program 18.1), 389-391
C language specifications, 460

directives, 461-465

trigraph sequences, 460-461
debugging with, 389-395

preprocessor statements, 299
#define, 299-303

arguments, 308-311

definition types, 306-308

macros, 308-311

program extendability, 303-305

program portability, 305-306
#elif, 318-319
#if, 318-319
#include, macro definition collections,

313-315
#undef, 319

prime numbers
Generating a Table of Prime Numbers

(Program 6.10), 87-90
generating via arrays, 104-106

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 531

532 prime numbers

Revising the Program to Generate a
Table of Prime Numbers (Program
6.10A), 90-91

Sieve of Erastosthenes algorithm, 118

print_message() function, 120

print command (gdb debugger), 409

printf routine
output, 14
variables

displaying multiple values, 16-17

displaying values, 15-16

printf() function, 16, 348, 477
conversion characters, 350
flags, 348
Illustrating the printf Formats (Program

16.1), 350-355
program syntax, 13
type modifiers, 349
width and precision modifiers, 349

printing files via fprint() function,
368

procedural languages versus OOP lan-
guages, 413

program constants, symbolic names,
299-303

program looping
break statement, 62
Calculating the Eighth Triangular

Number (Program 5.1), 43
continue statement, 62-63
do statement, 44, 60-62
for statement, 44

Generating a Table of Triangular
Numbers (5.3), 47-50

relational operators, 46-50
scanf() function,Asking the User for

Input (Program 5.4), 51-52
triangular number calculation, 43-45

nested for loops, 53-54

output alignment, 50-51

user input, 51-52
while statement, 44, 56-60

programming
algorithms, 5
assembly languages, 6
case sensitivity, 11
common mistakes, troubleshooting,

497-500
higher-level languages, 6
instruction sets, 5
modular programming, 333-334
overview, 5
top-down, 137

Programming in Objective-C, 503

programming utilities
ar, 345
cvs, 344
grep, 345
make, 343-344
sed, 345

programs
#define statement

Introducing the #define Statement
(13.1), 300-302

More on Working with Defines (13.2),
302-303

A Simple Program for Use with gdb
(18.4), 396-398

Adding Debug Statements with the
Preprocessor (18.1), 389-391

arguments, calling, 13
arrays

Converting a Positive Integer to Another
Base (7.7), 110-111

Generating Fibonacci Numbers Using
Variable -Length Arrays (7.8),
115-117

Introducing Character Arrays (7.6),
108-109

Multidimensional Variable-Length Arrays
(8.13A), 150-152

Asking the User for Input (5.4), 51-52
assemblers, 6, 9

25 0672326663 index 6/10/04 2:04 PM Page 532

533programs

bitwise operators, Illustrating Bitwise
Operators (12.2), 286-287

bugs, 9
Calculating the Eighth Triangular

Number (5.1), 43
Calculating the 200th Triangular

Number (5.2), 44-45
Categorizing a Single Character Entered

at the Terminal (6.7), 78-80
comment statements, including, 17-19
compiling, 7-12

debugging phase, 9

semantic errors, 7-9

syntactic errors, 7-9
Compiling the Debug Code (18.2),

391-393
compound relational tests, Determining

if a Year Is a Leap Year (Program 6.5),
73-74

Concatenating Character Arrays (10.1),
196-198

Concatenating Character Strings (10.3),
202-203

Converting a String to its Integer
Equivalent (10.11), 228-230

Converting Between Integers and Floats
(4.5), 36-38

Copying Files (16.3), 366-367
Counting the Characters in a String

(Program 10.2), 199-200
Counting Words (Program 10.7),

210-212
Counting Words in a Piece of Text

(10.8), 214-215
debugging, 9
Defining the DEBUG Macro (18.3),

393-395
Demonstrating an Array of Counters

(7.2), 101-103
Determining if a Number Is Even or

Odd (6.3), 69-71
Displaying Multiple Lines of Output

(3.3), 14
Displaying Multiple Variables (3.5),

16-17

Displaying Variables (3.4), 15-16
editing (modular programming),

333-334
Evaluating Simple Expressions (6.8),

80-82
exiting, 490
File Copy Program Using

Command-Line Arguments (17.1),
382-383

Finding the Greatest Common Divisor
(5.7), 58-59

fractions

writing in C, 413-414

writing in C#, 422-424

writing in C++, 419-421

writing in Objective-C, 414-419
functions

Calculating Factorials Recursively
(8.16), 159-161

Calculating the Absolute Value (8.7),
129-131

Calculating the nth Triangular Number
(8.4), 123

Calculating the Square Root of a
Number (8.8), 132-133

Calling Functions (8.2), 121

Changing Array Elements in Functions
(8.11), 142-143

Converting a Positive Integer to Another
Base (8.14), 153-156

defining, 119-122

Finding the Greatest Common Divisor
and Returning the Results (8.6),
127-128

Finding the Minimum Value in an Array
(8.9), 138-140

Illustrating Static and Automatic Variables
(8.15), 157-158

More on Calling Functions (8.3), 122

Revising the Function to Find the
Minimum Value in an Array (8.10),
140-142

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 533

534 programs

Revising the Program to Find the
Greatest Common Divisor (8.5),
125-126

Sorting an Array of Integers into
Ascending Order (8.12), 144-146

Updating the Time by One Second
(9.5), 178-180

Using Multidimensional Arrays and
Functions (8.13), 147-150

Writing in Function in C (8.1),
120-121

Generating a Table of Prime Numbers
(6.10), 87-90

Generating a Table of Triangular
Numbers (5.3), 47-50

Generating Fibonacci Numbers (7.3),
103-104

I/O operations, Copying Characters
from Standard Input to Standard
Output (16.2), 361-362

Illustrating Pointers (11.1), 236-237
Illustrating the Modulus Operator (4.4),

35-36
Illustrating the printf Formats (16.1),

350-355
Implementing a Revised Program to

Reverse the Digits of a Number (5.9),
61-62

Implementing the Sign Function (6.6),
77-78

Initializing Arrays (7.5), 107-108
input, 9
interpreting, 10
Introducing the while Statement (5.6),

56-58
linking, 9
loading, 9
Modifying the Dictionary Lookup

Using Binary Search (10.10), 224-227
More Examples with Arithmetic

Operators (4.3), 33-34
More Pointer Basics (11.2), 238
output, 9
Pointer Version of copyString()

function (11.13), 266-267

portability of, 6
proper termination of, 383
Reading Lines of Input (10.6), 209-210
Reading Strings with scanf (10.5),

207-208
Returning a Pointer from a Function

(11.10), 257-259
Reversing the Digits of a Number (5.8),

59-60
Revised Version of copyString()

function (11.14), 271-272
Revising the Program to Determine if a

Number Is Even or Odd (6.4), 71-72
Revising the Program to Evaluate

Simple Expressions (6.8A), 82-83
Revising the Program to Evaluate

Simple Expressions,Version 2 (6.9),
85-86

Revising the Program to Generate a
Table of Prime Numbers (6.10A),
90-91

Revising the Program to Generate
Prime Numbers,Version 2 (7.4),
105-106

rotating bit values, Implementing a
Rotate Function (12.4), 290-292

running, 12
shift functions, Implementing a Shift

Function (12.3), 288-290
statements, calling, 13
structures

Determining Tomorrow’s Date (9.2),
169-171

Illustrating a Structure (9.1), 166-168

Illustrating Arrays of Structures (9.6),
183-184

Illustrating Structures and Arrays (9.7),
188-189

Revising the Program to Determine
Tomorrow’s Date (9.3), 171-174

Revising the Program to Determine
Tomorrow’s Date,Version 2 (9.4),
174-177

Summing the Elements of an Array
(11.12), 264-265

25 0672326663 index 6/10/04 2:04 PM Page 534

535referencing defined values

syntax

braces ({}), 13

include statement, 13

main() function, 13

newline character (\n), 13

printf() function, 13
terminating (exit() function), 370-371
Testing Strings for Equality (10.4),

204-206
Traversing a Linked List (11.7), 250-252
undefined exit status, 383
Using Comments in a Program (3.6),

17-19
Using Enumerated Data Types (14.1),

322-324
Using Linked Lists (11.6), 246-250
Using Nested for Loops (5.5), 53-54
Using Pointers and Functions (11.8),

254-255
Using Pointers in Expressions (11.3),

239-240
Using Pointers to Exchange Values

(11.9), 255-257
Using Pointers to Find Length of a

String (11.15), 272-273
Using Pointers to Structures (11.4),

241-243
Using Structures Containing Pointers

(11.5), 243-244
Using the #include Statement (13.3),

314-315
Using the Arithmetic Operators (4.2),

30-31
Using the Basic Data Types (4.1), 26-27
Using the Dictionary Lookup Program

(10.9), 220-222
Working with an Array (7.1), 98, 100
Working with Fractions in C (19.1),

413-414
Working with Fractions in C# (19.4),

422-424
Working with Fractions in C++ (19.3),

419-421

Working with Fractions in Objective-C
(19.2), 414-419

Working with gdb (18.5), 401-402
Working with Pointers to Arrays

(11.11), 262-263
Writing Your First C Program (3.1), 11

prototype declarations
functions, 124
modules, communicating between, 336

putc() function, 365, 477

putchar() function, 348, 477

puts() function, 478

Python programming language, 10

Q - R
qsort() function, 274, 490-491

qualifiers (variables)
register, 378-379
restrict, 379
volatile, 379

question mark (\?) escape character,
217

quit command (gdb debugger), 409

quotation marks, declaring character
strings, 195

rand() function, 491

read_line() function, 213-215

reading files via fgets() function, 368

Reading Lines of Data (Program
10.6), 209-210

Reading Strings with scanf (Program
10.5), 207-208

real numbers, 15

realloc() function, 481

recursive functions, 159-161

redirecting I/O operations to files,
359-361

referencing defined values (#define
statement), 307-308

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 535

536 register qualifier

register qualifier (variables), 378-379

relational operators, 46-50, 444-445

remainder() function, 486

remove() function, 478
files, deleting, 371

rename() function, 478
files, renaming, 371

renaming files, 478
rename() function, 371

reserved names (variables), 22

restrict modifier, C language
specifications, 439

restrict qualifier (variables), 379

return statement (functions), 126
C language specifications, 459

returning
function results, 126-131

declaring return types, 134-135
pointers, 257

Returning a Pointer from a Function
(Program 11.10), 257-259

Revised Version of copyString()
function (Program 11.14), 271-272

Revising the Function to Find the
Minimum Value in an Array
(Program 8.10), 140-142

Revising the Program to Determine if
a Number Is Even or Odd (Program
6.4), 71-72

Revising the Program to Determine
Tomorrow’s Date (9.3), 171-174

Revising the Program to Determine
Tomorrow’s Date,Version 2 (9.4),
174-177

Revising the Program to Evaluate
Simple Expressions (Program 6.8A),
82-83

Revising the Program to Evaluate
Simple Expressions,Version 2
(Program 6.9), 85-86

Revising the Program to Find the
Greatest Common Divisor (Program
8.5), 125-126

Revising the Program to Generate a
Table of Prime Numbers (Program
6.10A), 90-91

Revising the Program to Generate
Prime Numbers,Version 2 (Program
7.4), 105-106

rewind() function, 478

right justification, triangular number
output, 51

right shift () bitwise operator,
287-288

rint() function, 487

Ritchie, Dennis, 1

rotate() function, 290-292

rotating bit values, 290-292

round() function, 487

routines. See also functions
printf, 14

displaying multiple variable values, 16-17

displaying variable values, 15-16

output, 14

run command (gdb debugger), 400,
409

S
scalar_multiply() function, 147

scalbln() function, 487

scalbn() function, 487

scanf() function, 206, 355, 478
%s format characters, 206
conversion characters, 356-359
conversion modifiers, 355
input values, 51-52
skipping fields, 358

scientific notation, float data types,
24-25

scopes, 452

25 0672326663 index 6/10/04 2:04 PM Page 536

537statements

search methods
binary search algorithm, 223-227
lookup() function, 222-223

searches
arrays of characters, 472
strings, 470-471

sed utility, programming functionality,
345

semantic errors in programs,
compiling, 7-9

semicolon (;)
#define statement, 306-307
program syntax, 13

set var command (gdb debugger),
398-399, 409

setters, methods (OOP), 417

shell programming language, 10

shift functions, 288-290
programs, Implementing a Shift

Function (12.3), 288-290

shift() function, 289

short specifier (data types), 28-30

Sieve of Erastosthenes algorithm,
prime number generation, 118

sign bit, 279-280

sign extension, data type conversions,
329

sign function
else if construct (if statement), 76-83

Categorizing a Single Character Entered
at the Terminal (Program 6.7), 78-80

Implementing the Sign Function
(Program 6.6), 77-78

signbit() function, 483

sin() function, 487

single quotation marks (‘)
char data types, 25-26
character strings, declaring, 195

single quote (\’) escape character, 217

single-character input, 208-213
Counting Words (Program 10.7),

210-212
Reading Lines of Data (Program 10.6),

209-210

single-dimensional arrays, 432-433

sinh() function, 487

sizeof operators, 447
arguments, 385
dynamic memory allocation, 385-387

sort() function, 143-144

sorting arrays, 143-146, 490-491

Sorting an Array of Integers into
Ascending Order (Program 8.12),
144-146

source programs, 7

specifiers (data types)
long, 28-30
long long, 28-30
short, 28-30
unsigned, 28-30

sprintf() function, 478-479

sqrt() function, 487

square roots, calculating, 131-133

square_root() function, 133

srand() function, 491

sscanf() function, 478-479

The Standard C Library, 501

statements
#define, 299-303

arguments, 308-311

definition types, 306-308

macros, 308-311

program extendability, 303-305

program portability, 305-306
#elif, 318-319
#if, 318-319
#include, macro definition collections,

313-315
#undef, 319

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 537

538 statements

break, 62, 84
C language specifications, 456

break, 456

compound, 456

continue, 457

do, 457

for, 457

goto, 458

if, 458

null, 458

return, 459

switch, 459-460

while, 460
calling, 13
conditional compilation

#else, 316-318

#endif, 316-318

#ifdef, 316-318

#ifndef, 316-318
continue, 62-63
do, 60-62
for, 44-45

nested, 53-54
FORTRAN statements, 6
goto

execution of, 373

programming abuse, 374
if, 65

Calculating the Absolute Value of an
Integer (Program 6.1), 66-67

Calculating the Average of a Set of
Grades (Program 6.2), 67-69

compound relational tests, 72-74

else if construct, 76-83

general format, 65

if-else construct, 69-72

nested, 75-76
include, program syntax, 13

null

example of, 374-375

programming uses, 374
return (functions), 126
switch, 84

Revising the Program to Evaluate Simple
Expressions,Version 2 (Program 6.9),
85-86

terminating, 14
typedef, data types, naming, 325-327
while, 56-60

static functions, 339

static keyword, 156

static variables, 156
initializing, 156-158
versus external variables, 339-340

stdbool.h header file, 469

stddef.h header file, 467

stderr FILE pointer, 369-370

stdin FILE pointer, 369-370

stdint.h header file, 469-470

stdlib.h header file, 490-491

stdout FILE pointer, 369-370

step command (gdb debugger),
401-404, 409

storage classes
functions, 452
variables, 452-454

storing
different data types (unions), 375-378
time in programs, 177-180
values in arrays, 96
variables via dynamic memory

allocation, 383-384

strcat() function, 230, 470

strchr() function, 470

strcmp() function, 230, 470

strcpy() function, 230, 470-471

string functions, 470-472

25 0672326663 index 6/10/04 2:04 PM Page 538

539summing array elements

string_length() function, 199, 272

string_to_integer() function, 228-230

strings
character strings, 195

adjacent, 218

combining with array of structures,
219-222

comparing, 204-206

concatenating, 196

continuation of, 218-219

converting into integers, 228-229

copying, 266-267, 271

delimiting, 195

displaying, 201-203

escape characters, 216-218

initializing, 201-203

inputting, 206-208

length, 199, 272

pointers to, 266-267

testing for equality, 204-206

variable-length, 198-200
comparing, 470-471
concatenating, 470
converting to numbers, 479-481
copying, 470-471
length, 471
null, 213-215
searches, 470-471
searching, 471

strlen() function, 230, 471

strncat() function, 471

strncmp() function, 471

strncpy() function, 471

strrchr() function, 471

strstr() function, 471-472

strtod() function, 480

strtol() function, 480

strtoul() function, 481

structure operators, 448

structure pointers, 241, 450

structures
arrays of, 182

combining with character strings,
219-222

defining, 182

initializing, 183
compound literal values, assigning,

181-182
containing arrays, 187-189
containing other structures, 185-187
containing pointers, 243-244
declarations, 166, 434-436
defining, 166-168
expressions, 168-171
function of, 165
functions, 171-174, 177
initializing, 180-181
pointers to, 240-243

linked lists, 244-252
programs

Determining Tomorrow’s Date (9.2),
169-171

Illustrating a Structure (9.1), 166-168

Illustrating Arrays of Structures (9.6),
183-184

Illustrating Structures and Arrays (9.7),
188-189

Revising the Program to Determine
Tomorrow’s Date (9.3), 171-174

Revising the Program to Determine
Tomorrow’s Date,Version 2 (9.4),
174-177

time, updating, 177-180, 183
uses, 165
variants, 190-191

subscripts (arrays), 96

subtracting pointers, 272

summing array elements, 262-264

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 539

540 Summing the Elements of an Array

Summing the Elements of an Array
(Program 11.12), 264-265

switch statement, 84
C language specifications, 459-460
programs, Revising the Program to

Evaluate Simple Expressions,Version 2
(6.9), 85-86

symbolic names, program constants,
299-303

syntactic errors, programs, compiling,
7-9

system include files
float.h file, 316
limits.h file, 316

system() function, 491

T
tan() function, 487

tanh() function, 487

temporary files, creating, 478

terminating
comments, character syntax, 18
programs

exit() function, 370-371

proper methods, 383
statements, 14

ternary operator, 91-92

testing
character strings for equality, 204-206
files for EOF conditions, 367-368

Testing Strings for Equality (Program
10.4), 204-206

text editors
C programming, 7
emacs, 11
vi, 7, 11

tgamma() function, 487

time, updating, 177-180
with array of structures, 183

time_update() function, 178-180, 183

times equal (*=) operator, 143

tmpfile() function, 478

tokens, joining (## operator), 313

tolower() function, 473

top-down programming, 137

toupper() function, 473

Traversing a Linked List (Program
11.7), 250-252

trees, pointers, 244-252

triangular numbers, calculating, 43-45
nested for loops (program looping),

53-54
output alignment (program looping),

50-51
user input (program looping), 51-52

trigraph sequences, preprocessors,
460-461

troubleshooting programming errors,
common mistakes, 497-500

trunc() function, 487

truth tables
& (bitwise AND) operator, 281
^ (bitwise Exclusive-OR) operator, 284
| (bitwise Inclusive-OR) operator, 283

twos complement notation, 279-280

type cast operators, 69, 446
precedence rules, 38

typedef statement
C language specifications, 438-439
data types, naming, 325-327

U
unary minus arithmetic operator,
33-34

undefined exit statuses, 383

ungetc() function, 478

25 0672326663 index 6/10/04 2:04 PM Page 540

541variable-length character strings

unions
arrays, defining, 376-377
data types, storage, 375-378
declarations, 436-437
declaring, 375
members

arithmetic rules, 376

defining, 376
variables, initializing, 376

units, bit fields, 296

universal character names, 218
C language specifications, 426

Unix operating system
commands, 7
compiler, 12
development of, 6
naming files, 7
programming utilities

ar, 345

grep, 345

sed, 345
programs, linking, 9
roots in C programming language, 1
spin-offs, 6

unsigned specifier (data types), 28-30

updating time in programs, 177-180

Updating the Time by One Second
(Program 9.5), 178-180

Using Comments in a Program
(Program 3.6), 17-19

Using Enumerated Data Types
(Program 14.1), 322-324

Using Linked Lists (Program 11.6),
246-250

Using Multidimensional Arrays and
Functions (Program 8.13), 147-150

Using Nested for Loops (Program
5.5), 53-54

Using Pointers and Functions
(Program 11.8), 254-255

Using Pointers in Expressions
(Program 11.3), 239-240

Using Pointers to Exchange Values
(Program 11.9), 255-257

Using Pointers to Find Length of a
String (Program 11.15), 272-273

Using Pointers to Structures (Program
11.4), 241-243

Using Structures Containing Pointers
(Program 11.5), 243-244

Using the #include Statement
(Program 13.3), 314-315

Using the Arithmetic Operators
(Program 4.2), 30-31

Using the Basic Data Types (Program
4.1), 26-27

Using the Dictionary Lookup
Program (Program 10.9), 220-222

usual arithmetic conversion, basic data
types, 451-452

utilities (programming)
a, 345
cv, 344
gre, 345
mak, 343-344
se, 345

utility functions, 490-491

V
values

arrays, storing, 96
defined

names, 300

referencing (#define statement), 307-308

variable-length arrays, 433
Generating Fibonacci Numbers Using

Variable-Length Arrays (Program 7.8),
115-117

multidimensional, 150-152

variable-length character strings,
198-200

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 541

542 variables

variables
arrays, defining, 96-98
Boolean

Generating a Table of Prime Numbers
(Program 6.10), 87-90

Revising the Program to Generate a Table
of Prime Numbers (Program 6.10A),
90-91

C language specifications, 452-454
const (arrays), 111-113
data storage types, 21
declarations, 15

in for loops, 55-56
external, 336-338

defining, 337

versus static, 339-340
global (functions), 152-156
initializing static variables, 156-158
local

automatic (functions), 124-126, 156

defining (functions), 124-126
names, 21

reserved names, 22

rules, 22
pointers, defining, 235-239
qualifiers

register, 378-379

restrict, 379

volatile, 379
static, 156

initializing, 156-158

versus external, 339-340
storing via dynamic memory allocation,

383-384
union, initializing, 376
valid characters, 22

variants, structures of, 190-191

vi text editor, 7, 11

Visual Studio
Web site, 503
Windows IDE, 10

void data type, 128

void keyword, 128

volatile modifiers, C language
specifications, 439

volatile qualifiers, 379

W - Z
Web sites

C language resources

ANSI.org, 502

Code Warrior, 503

CygWin, 502

gcc compiler, 502

Kochan-Wood.com, 502

Kylix, 503

Metrowerks, 503

MinGW, 502

newsgroups, 502

Visual Studio, 503
gcc, 493
GNU.org, 504
Google Groups, 502
Kochan-Wood, book exercises and

errata, 501
OOP book resources

C# Programming in the Key of C#,
503

C++ Primer Plus, 503

Code Warrior, 503

Programming in Objective-C,
503-504

while statement, 56-60
C language specifications, 460
Finding the Greatest Common Divisor

(Program 5.7), 58-59

25 0672326663 index 6/10/04 2:04 PM Page 542

543Xcode

Introducing the while Statement
(Program 5.6), 56-58

programming looping usage, 44
Reversing the Digits of a Number

(Program 5.8), 59-60

whitespace characters, scanf()
function, 355

wide character constants, C language
specifications, 429

Working with an Array (Program 7.1),
98, 100

Working with Fractions in C
(Program 19.1), 413-414

Working with Fractions in C#
(Program 19.4), 422-424

Working with Fractions in C++
(Program 19.3), 419-421

Working with Fractions in
Objective-C (Program 19.2), 414-419

Working with gdb (Program 18.5),
401-402

Working with Pointers to Arrays
(Program 11.11), 262-263

writing
files with fputs() function, 368
programs

for handling fractions (C language),
413-414

for handling fractions (C# language),
422-424

for handling fractions (C++ language),
419-421

for handling fractions (Objective-C
language), 414-419

Writing in Function in C (Program
8.1), 120-121

Writing Your First C Program
(Program 3.1), 11

X3J11 committee (ANSI C), 1

Xcode, Mac OS X IDE, 10

XOR operator, 284-285

How can we make this index more useful? Email us at indexes@samspublishing.com

25 0672326663 index 6/10/04 2:04 PM Page 543

