

Programming in C

Programming in C

By

P. Rizwan Ahmed
MCA, M.Sc., M.A., M.Phil,(Ph.D)

Head of the Department
Department of Information System Management

Mazharul Uloom College, Ambur, Vellore
Tamil Nadu

University science Press
(An Imprint of Laxmi Publications Pvt. Ltd.)

 BAngAloRe ChennAi CoChin guwAhAti hydeRABAd
 JAlAndhAR KolKAtA luCKnow mumBAi RAnChi

new delhi BoSton, uSA

Published by :
University science Press

(An Imprint of Laxmi Publications Pvt. Ltd.)
113, Golden House, Darya Ganj,

New Delhi-110 002
 Phone : 011-43 53 25 00
 Fax : 011-43 53 25 28

www.laxmipublications.com
info@laxmipublications.com

First Edition : 2014

Offices

 Bangalore 080-26 75 69 30 chennai 044-24 34 47 26
 cochin 0484-237 70 04, 405 13 03 Guwahati 0361-251 38 81
 Hyderabad 040-24 65 23 33 Jalandhar 0181-222 12 72
 Kolkata 033-22 27 43 84 Lucknow 0522-220 99 16
 Mumbai 022-24 91 54 15 Ranchi 0651-220 44 64

UPC-9710-125-PROGRAMMING IN C-AHM c—
Typeset at : Sukuvisa Enterprises, New Delhi. Printed at :

Copyright © 2014 by Laxmi Publications Pvt. Ltd. All rights reserved with the publishers.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher.

Dedicated to
My Parents

Mr Rasheed Ahmed
Mrs Farida Rasheed

and
My Wife

Mrs Sumira Rizwan

Preface

This book was developed specifically for freshmen students taking up their first course in
programming, but people who are interested in learning C are also welcome to study it. Its

aim is to supplement classroom lectures by focusing on C programming. Topics are arranged
based on the order of class discussion.
 I tried my level best to maintain a very simple language throughout the book to enable the
readers to understand the concepts very easily.
 May you learn a lot from the study of this book, and may the knowledge that you have
gained be used for the common good of all people.
 This book is written for the first course on Programming in C. It is very useful to B.Sc.
Computer Science, B.Sc., Software Engineering, B.Sc. Information System Management, B.Sc.
Software Computer Science, B.Sc. Electronics, B.Sc. Mathematics, B.Com Computer Applications,
BCA, M.Sc. Information Technology, MCA, MBA, B.E./B.Tech and AMIE students. Review
questions are added at the end of each chapter for practice purpose. This book contains the five
chapters are summarized here:
 Chapter 1 covers the Fundamentals of C Programming, Programming Elements, Operators,
Expressions, Evaluation of Expressions and Library Functions. Chapter 2 contains Input and
Output Statements, Decision-making Statements, and Looping Statements. Chapter 3 contains
the functions, categories of functions, various storage classes, and recursion. Chapter 4 covers
the Arrays, Structure and Union. Chapter 5 covers the pointers, operations on pointers, files and
operation on files.

—Author

 vii

viii

Acknowledgments

With its blessings of almighty it gives me a great pleasure to acknowledge our revered
President of Ambur Muslim Educational Society (AMES) AliJanab Alhaj N. Md. Zackriah

Sahib, General Secretary, Ali Janab Alhaj Nathersa Md Sayeed Sahib, Correspondent and Secretary
Alijanab Alhaj Madekar Nazar Mohammed Sahib, Former Principal, Dr. D. Nisar Ahmed,
Principal, Dr. P. M. Aadil Ahmed, M.Com, M.Phil., Ph.D, for their inspiration and encouragement
in bringing out this book successfully.
 I acknowledge our respected Prof. S. Joseph Gabriel, MCA, M.Phil., Associate Professor and
Head of Computer Science and Prof. M. Mohammed Ismail, M.Sc.(IT)., M.Sc.(Phy.), M.Phil.,
PGDCA, Associate Professor in Computer Science and Chairman, Board of Studies in Computer
Science and Computer Applications, Member, Academic Council, Thiruvalluvar University,
Serkadu, Vellore, Prof. A. Herani Sahib, M.Sc., M.Phil., Associate Professor and Head of
Mathematics, Chairman, Board of Examiners in Mathematics, Thiruvalluvar University, Vellore
and Prof. A. Zakiuddin Ahmed, M.Sc., M.Phil., M.S, PGDCSM, Associate Professor in Computer
Science, and Mr. A. Aqueel Ahmed, B.Sc., B.A., B.Ed., Mazharul Uloom College, Ambur for their
constant support in bringing out this book.
 I also thank my sister Shariha Sahifa and brother Mohammed Ramil, V.I Arshad Azeez for
their patience and support extended to me all the times.

—Author

Contents
 Preface (vii)
 Acknowledgments (viii)

1. Fundamentals of C Programming 1—24

 1.1 History in C 1
 1.2 Why use C? 1
 1.3 Why Learn C? 1
 1.4 Features of C Language 2
 1.5 Programming Elements 2
 1.5.1 Character Set 2
 1.5.2 Keywords 3
 1.5.3 Identifiers 3
 1.5.4 Constants 4
 1.5.5 Data Types 4
 1.6 Variables 5
 1.6.1 Rules for Naming Variables 5
 1.6.2 Declaration of Variable 5
 1.6.3 Initialization of Variables/Assigning Values to Variables 6
 1.7 Structure of C-Program 7
 1.8 Operators 8
 1.8.1 Arithmetic Operators 8
 1.8.2 Relational Operators 9
 1.8.3 Logical Operators 10
 1.8.4 Assignment Operators 11
 1.8.5 Increment and Decrement Operators 12
 1.8.6 Bitwise Operators 13
 1.8.7 Conditional Operator 13
 1.8.8 Special Operators 14
 1.9 Operator Precedence and Associativity 14
 1.10 Creation and Execution of a C-Program 15
 1.11 Expressions 16
 1.12 Evaluation of Expressions 17
 1.12.1 Precedence of Arithmetic Operators 17
 1.13 Library Functions 18
 1.13.1 String Functions (string.h) or String Handling Functions 18
 1.13.2 Math Function(math.h) 20

 ix

x

 1.14 The C Preprocessor 21
 Let Us Summarise 23
 Review Questions 23
 Exercises 24
2. I/O and Control Statements 25—52

 2.1 I/O Statements 25
 2.1.1 Single Character I/O 25
 2.2 Formatted I/O 26
 2.2.1 Formatted Input: scanf() 26
 2.2.2 Formatted Output :printf() 26
 2.3 String I/O Functions 27
 2.3.1 String Input: gets() 27
 2.3.2 String Output: puts() 27
 2.4 Sample C Programs 28
 2.5 Control Statements/Control Flow/Programming Flow Control 29
 2.5.1 Decision–Making Statement 29
 2.5.2. Looping Statement 37
 2.6 Comma Operator 44
 2.7 Sample C Programs 44
 Let Us Summarise 51
 Review Questions 51
 Exercises 52
3. Functions and Storage Classes 53—59

 3.1 Functions 53
 3.1.1 Need for User Defined Functions 53
 3.2 Return Statement 54
 3.3 Function Prototype 55
 3.4 Calling a Function 55
 3.5 Formal and Actual Arguments 56
 3.5.1 Formal Arguments 56
 3.5.2 Passing Arguments 56
 3.6 Category of Functions/Types of Function 56
 3.6.1 Function with no Arguments and no Return Value 57
 3.6.2 Function with Arguments and no Return Value 57
 3.6.3 Function with no Arguments and Return Value 57
 3.6.4 Function with Arguments and Return Value 57
 3.7 Recursion 57
 3.8 Storage Classes 58

xi

 Let Us Summarise 59
 Review Questions 59
 Exercises 59
4. Arrays and Structures and Union 60—74

 4.1 Arrays 60
 4.1.1 One Dimensional Array 60
 4.1.2 Two Dimensional Arrays 61
 4.1.3 Multidimensional Arrays 62
 4.1.4 Sample C Programs 62
 4.2 Structure 65
 4.2.1 Defining Structure 65
 4.2.2 Structure Declaration 66
 4.2.3 Giving Values to Structure Members 66
 4.2.4 Structure Initialization 67
 4.2.5 Difference Between Arrays and Structure 67
 4.3 Structures within Structures 67
 4.4 Pointers to Structures 68
 4.5 Self-referential Structure 68
 4.6 Union 70
 4.6.1 Declaration of Union 70
 4.7 Difference Between Structure and Union 71
 4.8 Bitwise Operations 72
 4.9 User Defined Data Type 73
 Let Us Summarise 73
 Review Questions 74
 Exercises 74
5. Pointers and Files 75—87

 5.1 Pointers 75
 5.1.1 Accessing the Address of the Variable 75
 5.1.2 Declaring and Initializing Pointers 76
 5.1.3 Accessing a Variable Through its Pointer 76
 5.1.4 Pointer Operators 76
 5.2 Operations on Pointers 76
 5.3 Arrays of Pointers 77
 5.4 Pointers to Functions 78
 5.5 Pointers and Arrays 79
 5.6 Pointers and Structures 80

xii

 5.7 Pointers and Function 80
 5.7.1 Call by Value 80
 5.7.2 Call by Reference 81
 5.8 Dynamic Memory Allocation 82
 5.9 Command Line Input or Arguments 83
 5.10 Files 83
 5.10.1 Creating a File 84
 5.10.2 Reading a File 84
 5.10.3 Writing a File 84
 5.10.4 Opening a File 85
 5.10.5 Closing a File 85
 5.11 Operations on Files 86
 Let Us Summarise 86
 Review Questions 86
 Exercises 87
 Appendix I 88
 Appendix II 98
 Index 107

1

1.1 HIsTORY In C

Introduction

C is a general-purpose computer programming language developed in 1972 by Dennis Ritchie
at the Bell Telephone Laboratories for use with the Unix operating system. C is a structured
programming language, which means that it allows you to develop programs using well-defined
control structures (you will learn about control structures in the articles to come), and provides
modularity (breaking the task into multiple sub tasks that are simple enough to understand and
to reuse). C is often called a middle-level language because it combines the best elements of low-
level or machine language with high-level languages.

1.2 wHY Use C?

C (and its object oriented version, C++) is one of the most widely used third generation
programming languages. Its power and flexibility ensure it is still the leading choice for almost
all areas of application, especially in the software development environment.
 Many applications are written in C or C++, including the compilers for other programming
languages. It is the language many operating systems are written in including UNIX, DOS and
Windows. It continues to adapt to new uses, the latest being Java, which is used for programming
Internet applications.

C has much strength, it is flexible and portable, it can produce fast, compact code, it provides
the programmer with objects to create and manipulate complex structures (e.g. classes in C++)
and low level routines to control hardware (e.g. input and output ports and operating system
interrupts).

1.3 wHY LeARn C?

 • Compact, fast, and powerful
 • “Mid-level” Language

CHAPTER1
FUNDAMENTALS OF C PROGRAMMING

2 Programming in C

• Standard for program development (wide acceptance)
 • It is everywhere! (Portable)
 • Supports modular programming style
 • Useful for all applications
 • C is the native language of UNIX
 • Easy to interface with system devices/assembly routines.

1.4 FeATURes OF C LAnGUAGe

• It is a flexible high-level structured programming language.
 • It includes the features of low-level language like assembly language.
 • It is portable. A program written for one type of computer can be used in any other type.
 • It is much ability and efficient.
 • It has an ability to extend itself.
 • It has a number of built-in functions, which makes the programming
 • C is modular, as it supports functions to divide the program in to sub-program.
 • C is efficient on most machines, because certain constructs are machine dependant.
 • C language is well suited for structured programing, thus requiring the user to think of

a problem in terms of function modules or blocks.

1.5 PROGRAMMInG eLeMenTs

1.5.1 Character set

Characters are used in a language to form words, numbers and expression. Characters used in C
language can be grouped in to four types:
	 •	Letters
	 •	Digits
	 •	Special Characters
	 •	White Spaces

C Character Set
Letters Digits

Uppercase A – Z

Lowercase a – z

0 to 9

Special characters

, comma

; semicolon

? question mark

$ dollar symbol

number sign

~ tild

* asterisk

+ plus

- minus

< less than

> greater than

! exclamation mark

% percentage

 Fundamentals oF C Programming 3

White Spaces

Blank Space

Horizontal Tab

Carriage Return

New Line

Form Feed

1.5.2 Keywords

Keywords also referred as reserved words. Keywords have standard predefined specific meaning.
The user has no right to change its meaning. Keywords should be written in lower case. They
should be written in lower-case letters. The following keywords are reserved for C:

C Keywords

Switch Boolean Break Auto

For Case Const Register

Char Sizeof Void Static

Default Do Double Struct

While Continue Float Union

Include Else Go to Short

Nested For Char Signed

Int If Long Volatile

1.5.3 Identifiers

Identifiers refer to the names of variables, functions and arrays. These are user-defined names and
consist of a sequence of letters and digits with the letter as a first character. Both uppercase and
lowercase letters are permitted although lowercase letters are commonly used. The underscore is
used as a link between two words in long identifiers.

 Rules for naming an identifiers

	 •	 Identifiers are formed with alphabets, digits and a special character underscore (_).
	 •	The first character must be an alphabet.
	 •	No special characters are allowed other than underscore.
	 •	They are case sensitive. That it Sum is different from SUM.

 For Example

Valid Identifiers Invalid Identifiers

ROLL25 25ROLL

Register_No Register No

CT100 100CT

4 Programming in C

1.5.4 Constants

A constant is a quantity whose value does not change during the execution of the program. There
are three types of constants in C. They are:
 1. Numeric Constants
 2. Character Constants
 3. String Constants

1. Numeric Constants

A numeric constants is a constants made up of digits and some special characters. There are two
types of numeric constants. They are:
 1. Integer or fixed point constants
 2. Real or floating point constants
 1. Integer or Fixed Point Constants: Integer constant is a constant made up of digits without

decimal point. This can have values form –32, 768 to +32,767.
 For Example 125
 2. Real or Floating Point Constants: Any number written with one decimal point is called

real constant.
 For Example 98.50

2. Character Constants

Character constants are used to represent a alphabet within single quotes.
 For Example ‘F’ ‘G’

3. String Constants

String constants is a set of characters are represented with double quotes
 For Example: “College” “school”.

1.5.5 Data Types

Data types are used to store various types of data that is processed by program. Data type attaches
with variable to determine the number of bytes to be allocate to variable and valid operations
which can be performed on that variable. C supports various data types such as character, integer
and floating-point types.

Data Type Variable Type Size Range

Char Character 1 byte or 8 bits -128 to 127

Int Integer 2 bytes -32,768 to 32,767

Short Short integer 1 byte -32,768 to 32,767

Short int Short integer I byte -32,768 to 32,767

Long Long integer 4 bytes -2,147,483,648 to

2,147,483,648

Unsigned char Unsigned character 1 byte 0 to 255

Unsigned int Unsigned int 2 bytes 0 to 65,535

Unsigned short Unsigned short integer 0 to 65,535

Fundamentals oF C Programming 5

Unsigned long Unsigned long integer 4 bytes 0 to 4,294,967,295

Float Floating point (7 digits) 4 bytes 3.4e-38 to 3.4e+38

Double Floating point (15 digits) 8 bytes 1.7e-308 to 1.7e+308

1.6 VARIABLes

 Variable is a quantity which changes during the execution of a program. Declaration does three
things.
 Variable is a name of memory location where we can store any data. It can store only single
data (Latest data) at a time. In C, a variable must be declared before it can be used. Variables can
be declared at the start of any block of code, but most are found at the start of each function.
 1. It gives name to memory location.
 2. It specifies the type of data.
 3. It allocates memory space.

1.6.1 Rules for naming Variables

	 •	The first character in a variable name must be an alphabets, underscore (_), dollar
sign($).

	 •	Commas or blanks spaces are not allowed within a variable name.
	 •	Variable names are case sensitive. (i.e., regno is different from REGNO)
	 •	Uppercase and lowercase letters are distinct.
	 •	The Variable name should not be a keyword.
	 •	Variable names cannot contain blanks; use underscore instead.

1.6.2 Declaration of Variable

A declaration begins with the type, followed by the name of one variable.
 The general format is

data_type variable_name;

 where
 Variablename: Every variable has a name and a value. The name identifies the variable, the
value stores data. There is a limitation on what these names can be. Every variable name in
C must start with a letter; the rest of the name can consist of letters, numbers and underscore
characters. C recognizes upper and lower case characters as being different. Finally, you cannot
use any of C's keywords like main, while, switch etc as variable names.
 To declare multiple variables
 A declaration begins with the type, followed by the name of one or more variables.
 The general form is:

datatype var1,1var2,…….varn;
 where,
 datatype – any valid datatype
 var1,var2,….varn - name of the variables

6 Programming in C

 Some valid variable declarations are as follows:

 For Example

 int count;

 float x,y;

 double p1;

 byte b;

 char c1,c2,c3;

1.6.3 Initialization of Variables/Assigning Values to Variables

C Variables may be initialized with a value when they are declared. Consider the following
declaration,
 The general format is:

 datatype variable_name = value or expression;

 Example 1

 int a=10;

 char c=’M’;

 String str=”MAN;

 Example 2

 The following example illustrates the two methods for variable initialization:
#include <stdio.h>
main ()
{

int sum=33;
float money=44.12;
char letter;
double pressure;
letter=’E’; /* assign character value */
pressure=2.01e-10; /*assign double value */
printf(“value of sum is %d\n”,sum);
printf(“value of money is %f\n”,money);
printf(“value of letter is %c\n”,letter);
printf(“value of pressure is %e\n”,pressure);

}
 The output of the above program is as follows:
 value of sum is 33
 value of money is 44.119999
 value of letter is E
 value of pressure is 2.010000e-10

Fundamentals oF C Programming 7

 Local Variables

Local variables are declared within the body of a function, and can only be used within that
function only.
 Syntex:
 void main(){
 int a,b,c;
 }
 void fun1()
 {
 int x,y,z;
 }
 Here a, b, c are the local variable of void main() function and it can’t be used within fun1()
Function. And x, y and z are local variable of fun1().

 Global Variable

 A global variable declaration looks normal, but is located outside any of the program's
functions. This is usually done at the beginning of the program file, but after preprocessor
directives. The variable is not declared again in the body of the functions which access it.
 Syntax:
 #include<stdio.h>
 int a,b,c;
 void main()
 {

 }
 void fun1()
 {
 }
 Here a, b, c are global variable and these variable can be accessed (used) within a whole
program.

1.7 sTRUCTURe OF C-PROGRAM

The general structure of C-Program is

Include section
Main function
{
 Variable declarations;
 Method defi nitions
 {

8 Programming in C

 Statement1;
 - - - - - - - - - -
 - - - - - - - - - -

 Statement n;
 }
}

 Include Section

 In this section the header files must be included. This depends on the functions used in the
program statements. The include files must begin with # symbols.

 For Example

 #include<stdio.h>, #include<math.h> etc.

 Main Functions

 This function must present in all programs. This gives the starting point of the program.

 Variable Declaration

 In this section the user has to declare the variables which are local to the main block.

 Method Definition

 This is an optional section. This section is used to write sub-programs.

 Statements

 In this section the user can write valid C statements to solve the problem.

1.8 OPeRATORs

An operator is a symbol which helps the user to command the computer to do a certain
mathematical or logical manipulations. Operators are used in C language program to operate on
data and variables. C has a rich set of operators which can be classifi ed as

1. Arithmetic Operators
 2. Relational Operators
 3. Logical Operators
 4. Assignment Operators
 5. Increment & Decrement Operators
 6. Bitwise Operators
 7. Conditional Operators
 8. Special Operators

1.8.1 Arithmetic Operators

Arithmetic operators are used to perform arithmetic calculations. C provides basic arithmetic
operators. They are +,-,*, /, %

 Fundamentals oF C Programming 9

 Table shows you, the different Arithmetic operators that were used in C programming.
Table: Arithmetic Operators

Operators Example Meaning

+ a+b Addition (or) Unary plus

- a-b Subtraction (or) Unary minus

* a*b Multiplication

/ a/b Division

% a%b Modulo division (Remainder)

 Example

 /** program using Arithmetic operators **/

 #include<stdio.h>

 main()

 {

 int a,b,c;

 printf(“enter the a and b values:”);

 scanf(“%d%D”,&a,&b);

 c=a+b;

 printf(“ C value is%d “, c);

 }

1.8.2 Relational Operators

Relational operators are used to find out the relationship between two operands. Table shows
you the different relational operators used in C programming.

Operator Operations Example

< Less than a Greater than a>b

<= Less than or equal to a<=b

>= Greater than equal to a>=b

== Equal to a==b

!= Not equal to a!=b

 Example

 #include<stdio.h>

 int main(void)

{

 int n1,n2;

10 Programming in C

 printf(“enter the two numbers”);

 scanf(“%d%d”,&n1,&n2);

 if(n1==n2)

 {

 printf(“%d is equal to %d\n”,n1,n2);

 }

 if(n1!=n2)

 {

 printf(“%d is not equal to %d\n”,n1,n2);

 }

 if(n1<n2)

 {

 printf(“%d is less than %d\n”,n1,n2);

 }

 if(n1<=n2)

 {

 printf(“%d is less than or equal to %d\n”,n1,n2);

 }

 if(n1>=n2)

 {

 printf(“%d is greater than or equal to %d\n”,n1,n2);

 }

 retrun 0;

 }

 }

1.8.3 Logical Operators

Logical operator is used to find out the relationship between two or more relationship expressions.
Table 2.3 shows you the different logical operators used in C Programming.

Operators Meaning

&& Logical AND

|| Logical OR

! Logical NOT

 The logical operators && and | | are used when we want to form compound conditions by
combining two or more relations.

 Fundamentals oF C Programming 11

 Logical operators return results indicated in the following table.

X Y x && y x|| y

T T T T

T F F T

F T F T

F T F F

 Logical AND (&&)

 This operator is used to evaluate 2 conditions or expressions with relational operators
simultaneously. If both the expressions to the left and to the right of the logical operator is true
then the whole compound expression is true.

 Example

a > b && x = = 10
 The expression to the left is a > b and that on the right is x == 10 the whole expression is true
only if both expressions are true i.e., if a is greater than b and x is equal to 10.

 Logical OR (||)

 The logical OR is used to combine 2 expressions or the condition evaluates to true if any one
of the 2 expressions is true.
 Example a < m || a < n
 The expression evaluates to true if any one of them is true or if both of them are true. It
evaluates to true if a is less than either m or n and when a is less than both m and n.

 Logical NOT (!)

 The logical not operator takes single expression and evaluates to true if the expression is false
and evaluates to false if the expression is true. In other words it just reverses the value of the
expression.

 For example

 ! (x >= y) the NOT expression evaluates to true only if the value of x is neither greater than or
equal to y.

1.8.4 Assignment Operators

Assignment operators are used to assign the value of an expression to a variable. The Assignment
Operator evaluates an expression on the right of the expression and substitutes it to the value or
variable on the left of the expression. The general form is

V op=exp;
 Where,
 V - variable
 Exp - expression
 Op - C binary operators

12 Programming in C

 = - Is known as the assignment operators.
 V op=exp; is equal to V=V op (exp);
 i.e.,
 x+=y+1; is equal to x=x+(y+1);
 The table given below lists the assignment operators with example operator descriptions.

Table: Assignment Operators

Operators Meaning Expression

+= Add assign X+=a X=x+a

-= Sub assign X - = a
X=x-a

X=x-a

= Multiple assign X=a X=x*a

/ Division X/=a X=x/a

% Modulo X%=a X=x%a

 Example

 x = a + b
 Here the value of a + b is evaluated and substituted to the variable x.
 In addition, C has a set of shorthand assignment operators of the form.

1.8.5 Increment and Decrement Operators

C has two very useful operators. They are increment (++) and decrement (--) operators. The
increment operator (++) add 1 to the operator value contained in the variable. The decrement
operator (--) subtract from the value contained in the variable. The increment and decrement
operators are one of the unary operators which are very useful in C language. They are extensively
used in for and while loops.

Increment

Pre increment
(++ Variable)

Post increment
(Variable)++

Decrement

Pre decrement
(– – Variable)

Post decrement
(Variable)– –

 The increment operator ++ adds the value 1 to the current value of operand and the decrement
operator – – subtracts the value 1 from the current value of operand. ++variable name and variable
name++ mean the same thing when they form statements independently, they behave differently
when they are used in expression on the right hand side of an assignment statement.

 Example

 Consider the following:
 m = 5;
 y = ++m; (prefix)
 In this case the value of y and m would be 6
 Suppose if we rewrite the above statement as

 Fundamentals oF C Programming 13

 m = 5;
 y = m++; (post fix)
 Then the value of y will be 5 and that of m will be 6. A prefix operator first adds 1 to the
operand and then the result is assigned to the variable on the left. On the other hand, a postfix
operator first assigns the value to the variable on the left and then increments the operand.

1.8.6 Bitwise Operators

Bitwise operators are used to perform bit by bit operations. A bitwise operator operates on each
bit of data. Those operators are used for testing, complementing or shifting bits to the right on
left. Bitwise operators may not be applied to a float or double. The table given below lists the
various bitwise operators.

Table: Bitwise Operators

Operators Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise Exclusive OR

>> Bitwise Right Shift

<< Bitwise Left Shift

~ Bitwise Complement

 Bitwise AND (&)
 The bitwise operations are carried out between two bit patterns.

 Example

 Let x=0101 y= 1011

 x & y =0001
 Bitwise OR(| |)
 The bitwise operations is carried out between two bit patterns.

Let x=0100 y=1011

 x|y = 1111
 Bitwise exclusive OR(^)

Let x=0010 y=1010

 x ^ y = 1000

1.8.7 Conditional Operator

The conditional operators are also called ternary operator. It is used to construct conditional
expressions. Conditional operator has three operands. The general format is:

condition?expression1:expression2;

 If the result of condition is TRUE (non-zero), expression1 is evaluated and the result of the
evaluation becomes the result of the operation. If the condition is FALSE (zero), then expression2
is evaluated and its result becomes the result of the operation.

14 Programming in C

 For Example

int x=10, y=15;

int y= (x>y)?x : y;
 In the above example, check x>10, if is true, print x value otherwise y.

1.8.8 special Operators

C supports some special operators of interest such as comma operator, size of operator, pointer
operators (& and *) and member selection operators (. and ->). The size of and the comma
operators are discussed here. The remaining operators are discussed in forth coming chapters.

1.8.8.1 The Comma Operator
The comma operator can be used to link related expressions together. A comma-linked list of
expressions are evaluated left to right and value of right most expression is the value of the
combined expression.

 Example
 value = (x = 10, y = 5, x + y);
 First assigns 10 to x and 5 to y and finally assigns 15 to value. Since comma has the lowest
precedence in operators the parenthesis is necessary. Some examples of comma operator are
 In for loops:
 for (n=1, m=10, n <=m; n++,m++)
 In while loops
 While (c=getchar(), c != ‘10’)
 Exchanging values.
 t = x, x = y, y = t;

1.8.8.2 The Size of Operator
The operator size of gives the size of the data type or variable in terms of bytes occupied in the
memory. The operand may be a variable, a constant or a data type qualifier.

 Example
 m = sizeof (sum);
 n = sizeof (long int);
 k = sizeof (235L);
 The size of operator is normally used to determine the lengths of arrays and structures when
their sizes are not known to the programmer. It is also used to allocate memory space dynamically
to variables during the execution of the program.

1.9 OPeRATOR PReCeDenCe AnD AssOCIATIVITY

Table: Precedence and Associativity of Operators

() [] -> Left to right

! ~ ++ -- + - * (type)
sizeof

Right to left

Fundamentals oF C Programming 15

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& left to right

^ left to right

| left to right

&& left to right

|| left to right

?: right to left

= += -= *= /= %= &= ^=
|= <<= >>=

tight to left

 Example

 Write a C program to print the message “Welcome to C Program.”

 #include< stdio.h>
 int main()
 {
 printf(“Welcome to C program”);
 }
 • The C program starting point is identified by the word main().
 • This informs the computer as to where the program actually starts. The parentheses that

follow the keyword main indicate that there are no arguments supplied to this program.
 • The two braces, { and }, signify the begin and end segments of the program. In general,

braces are used throughout C to enclose a block of statements to be treated as a unit.
 • The purpose of the statement #include <stdio.h> is to allow the use of the printf statement

to provide program output. For each function built into the language, an associated
header file must be included. Text to be displayed by printf() must be enclosed in double
quotes. The program only has the one printf() statement.

 • printf() is actually a function (procedure) in C that is used for printing variables and text.
Where text appears in double quotes “”, it is printed without modification. There are
some exceptions however. This has to do with the \ and % characters. These characters
are modifiers, and for the present the \ followed by the n character represents a newline
character.

1.10 CReATIOn AnD exeCUTIOn OF A C-PROGRAM

The following steps are followed for creating and executing a C-Program.

 Step-1: Creating or Editing the C- Program

 Using any editor, we can create the program with C extension. Usually we use TC or Turbo
editor. For Example: Sample.C

16 Programming in C

 Step-2: Compiling and Executing a C Program

 Using Alt+F9 keys in TC editor, the program can be compiled and linked. This produces the
executable program with .exe extension. For Example: Sample.exe
 Using Ctrl+F9 we can run the .exe program and produce the required result.

 Sample C Program

Write a C Program to Computer Simple and Compound Interest.
#include<stdio.h>
#include<math.h>
Main()
{
 Float p,n,r,simple,compound;
 Printf(“Enter principle amount”);
 Scanf(“%f”, &p);
 Printf(“Enter the rate of interest”);
 Scanf(“%f”, &r);
 Printf(“Enter the time period in years”);
 Scanf(“%f”, &n);
 Simple=p*n*r/100;
 Compound=p*pow(1+r/100,t)-p;
 Printf(“simple interest is \n &6.2f”,
 simple);
 printf(“\n”);
 printf(“compound interest is \n\n%6.2f”,

compound);
 }

1.11 exPRessIOns

An expression is a linear combination of constants, variables and operators. There are three types
of expressions. They are:
 1. Arithmetic Expressions
 2. Relational Expressions
 3. Logical Expressions
 1. Arithmetic Expressions: Arithmetic Expressions are formed by connecting constants of

variables by arithmetic operators. The general form is:
variable Arithmetic operator variable

 Example

 x+y+z
 (x+y)/z
 (x+y)/(z/a)
 2. Relational Expressions: Relational Expressions are formed by connecting constants or

variable or arithmetic expressions by relational operators. The general form is
variable relational operator variable

Fundamentals oF C Programming 17

 Example

a==10
 a>=b
 3. Logical Expressions: Logical expressions are formed by connecting relational expressions

by logical operators. The general format is
Variable logical operator variable

 Example

a>10 && b>20
 salary>5000 && DA>=500

1.12 eVALUATIOn OF exPRessIOns

In “C” expressions are evaluated by assignment statement.
Variable = expression

 Example

 X=a+b/c;
 Z=(x/y)+(a/b)

1.12.1 Precedence of Arithmetic Operators

 Highest operator - * / %
 Lowest operator - +, -

 Example
 Consider the expression given below:
 5+8(3+1)+12*4+3
 Step1 – 5+8/4+12*4+3
 Step2 - 5+2+12*4+3
 Step3 – 5+2+48+3
 Step4 – 58

 Example
#include<stdio.h>
main()
{

 fl oat a,b,c,x,y,z;
 a=9;
 b=12;
 c=3;
 x=a-b/3+c*2-1;
 y=a-b/(3+c)*(2-1);
 z=a-(b/(3+c)*2)-1;
 printf(“x=%d”, x);

printf(“y=%d”, y);
printf(“z=%d”, z);

}

18 Programming in C

1.13 LIBRARY FUnCTIOns

Library Functions are functions not to be written by the programmer. But these are available in
separate files called header files. The commonly used predefined functions are as follows:
 (i) string function(string.h) or string handling functions.
 (ii) math function(math.h)

1.13.1 string Functions (string.h) or string Handling Functions

String are the combination of number of characters these are used to store any word in any
variable of constant. A string is an array of character. It is internally represented in system by
using ASCII value. Every single character can have its own ASCII value in the system. A character
string is stored in one array of character type.
 e.g. “Ram” contains ASCII value per location, when we are using strings and then these
strings are always terminated by character ‘\0’. We use conversion specifies %s to set any string
we can have any string as follows:-
 char nm [25].
 When we store any value in nm variable then it can hold only 24 character because at the end
of the string one character is consumed automatically by ‘\0’.
 The important string functions are given below:
 (i) strlen()
 (ii) strcpy()
 (iii) strcat()
 (iv) strupr()
 (v) strlwr()

 strlen()

 This function is sued to find out the number of characters in the given string. The general
format is

n=strlen(string);
 where,
 n - length of the string.
 String - valid string variable

 Example
 N=strlen(“mucollege”)
 Output: 9

 strcpy()
 This function is used to copy the content of one string to another string. The general form is

strcpy(string1, string2);
 Where,
 String1& string - valid string variable

 Fundamentals oF C Programming 19

 Example
 String2=”mucollege”;
 Strcpy(string1,string2);
 Output
 String1= mucollege

 strcat()
 This function is used to concatenate (merge or join) two strings. The general form is

strcat(string1, string2);
 Where,
 String1 & string2 - valid string variable

 Example
 String1 = “engineering”;
 String2=” college”;
 Strcat(string1,string2);
Output
 String1= engineering college
 String2=college

 strupr()
 strupr() function is used to convert a string in lowercase to uppercase. The general format
is

N=strupr(string);

 Example
N=Strupr(“muc”);

 Output: MUC

 strlwr()
 strlwr() function is used to convert a string in uppercase to lowercase. The general format
is

N=strlwr(string);

 Example
 String=”MUCOLLEGE”;
 N=strlwr(string);
 Output:
 Mucollege

 Example Program
 //program to demonstrate string handling functions
 #include <stdio.h>

 #include <conio.h>

 int main()

 {

20 Programming in C

char a[50];
char b[50];
printf(“Please the two strings one by one\n”);
gets(a);
gets(b);
printf(“Length of String a is %d \n”,strlen(a));
printf(“Length of String b is %d \n”,strlen(b));

 if(!strcmp(a,b))
printf(“Both the strings are Equal”);

 else
printf(“Both the strings are not equal”);
strcat(a,b); //Concatenation function
printf(“the concatenated String is:”);
puts(a);
strrev(a);
printf(“The reverse string is\n”);
puts(a);
getch();
return 0;

 }

1.13.2 Math Function(math.h)

The important math functions are given below:
 1. sin()
 2. cos()
 3. tan()
 4. exp()
 5. ceil()
 6. floor()
 7. abs()
 1. sin()
 sin() function is used to find the sine value of the given argument. The general format

is
Sin(double x);

 2. cos()
 cos() function is used to cosine the value of the given argument. The general format is

Cos(double x);
 3. tan()
 tan() function is used to tangent value of the given argument. The general format is

Tan(double x);
 4. exp()
 exp() function is used return exponential value of the given argument. The general

format is
Exp(double x);

Fundamentals oF C Programming 21

 5. ceil()
ceil() function is used to round the given argument(real number). The general format
is

Ceil(double x);
 6. floor()
 fl oor() function is used to round the given argument(real number). The general format

is
Floor(double x)

 7. abs()
 abs() function is used to fi nd the absolute value of an integer. The general format is

abs(int x);
 8. sqrt()
 Sqrt() function is used to fi nd the square root value of a given number. The general format

is
Sqrt(int x)

1.14 THe C PRePROCessOR

The C preprocessor is a tool which filters your source code before it is compiled. The preprocessor
allows constants to be named using the #define notation. The preprocessor provides several other
facilities which will be described here. It is particularly useful for selecting machine dependent
pieces of code for different computer types, allowing a single program to be compiled and run
on several different computers.
 The C preprocessor isn't restricted to use with C programs, and programmers who use other
languages may also find it useful, however it is tuned to recognize features of the C language like
comments and strings, so its use may be restricted in other circumstances. The preprocessor is
called cpp, however it is called automatically by the compiler so you will not need to call it while
programming in C.

 Using #define to Implement Constants

 We have already met this facility, in its simplest form it allows us to define textual substitutions
as follows:
 #define MAXSIZE 256

 This will lead to the value 256 being substituted for each occurrence of the word MAXSIZE
in the file.

 Using #define to Create Functional Macros

 #define can also be given arguments which are used in its replacement. The definitions are
then called macros. Macros work rather like functions, but with the following minor differences.
 • Since macros are implemented as a textual substitution; there is no effect on program

performance (as with functions).
 • Recursive macros are generally not a good idea.
 • Macros don't care about the type of their arguments. Hence macros are a good choice

where we might want to operate on real, integers or a mixture of the two. Programmers
sometimes call such type flexibility polymorphism.

22 Programming in C

 • Macros are generally fairly small.
 Macros are full of traps for the unwary programmer. In particular the textual substitution

means that arithmetic expressions are liable to be corrupted by the order of evaluation
rules.

 Reading in Other Files using #include

 The preprocessor directive #include is an instruction to read in the entire contents of another
file at that point. This is generally used to read in header files for library functions. Header files
contain details of functions and types used within the library. They must be included before the
program can make use of the library functions.
 Library header file names are enclosed in angle brackets, < >. These tell the preprocessor to
look for the header file in the standard location for library definitions. This is /usr/include for
most UNIX systems.

 For example

 #include <stdio.h>

 Another use for #include for the programmer is where multi-file programs are being written.
Certain information is required at the beginning of each program file. This can be put into a file
called globals.h and included in each program file. Local header file names are usually enclosed
by double quotes, " ". It is conventional to give header files a name which ends in .h to distinguish
them from other types of file.
 Our globals.h file would be included by the following line.
 #include "globals.h"

 Conditional selection of code using #ifdef

 The preprocessor has a conditional statement similar to C's if else. It can be used to selectively
include statements in a program. This is often used where two different computer types implement
a feature in different ways. It allows the programmer to produce a program which will run on
either type.
 The keywords for conditional selection are; #ifdef, #else and #endif.
 #ifdef takes a name as an argument, and returns true if the name has a current definition.
The name may be defined using a #define, the -d option of the compiler, or certain names which
are automatically defined by the UNIX environment.
 #else is optional and ends the block beginning with #ifdef. It is used to create a 2 way optional
selection.
 #endif ends the block started by #ifdef or #else.
 Where the #ifdef is true, statements between it and a following #else or #endif are included
in the program. Where it is false, and there is a following #else, statements between the #else and
the following #endif are included.
 This is best illustrated by an example.

 Using #ifdef for Different Computer Types

 Conditional selection is rarely performed using #defined values. A simple application using
machine dependent values is illustrated below.

 Fundamentals oF C Programming 23

 #include <stdio.h>

 main()

 {

 #ifdef vax

 printf("This is a VAX\n");

 #endif

 #ifdef sun

 printf("This is a SUN\n");

 #endif

 }

 Sun is defined automatically on SUN computers. vax is defined automatically on VAX
computers.

 Using #ifdef to temporarily remove program statements

 #ifdef also provides a useful means of temporarily `blanking out' lines of a program. The
lines in question are preceded by #ifdef NEVER and followed by #endif. Of course you should
ensure that the name NEVER isn't defined anywhere.

LeT Us sUMMARIse
	 •	C is an efficient and portable general purpose programming language.

	 •	Algorithm is defined as a step by step procedure to solve a problem. It can be written in any
language.

	 •	A flow chart is a graphical representation of an algorithm is called flow chart.

	 •	Characters are used in a language to form words, numbers and expression.

	 •	A constant is a quantity whose value does not change during the execution of the program.

	 •	Keywords also referred as reserved words.

	 •	Data types are used to store various types of data that is processed by program.

	 •	Variable is a quantity which changes during the execution of a program.

ReVIew QUesTIOns
 1. What is Character set?

 2. Define Identifiers.

 3. List out any two rules for naming variables.

 4. What are the various types of operators in C?

 5. What are keywords?

 6. Define Constants.

 7. What is Expressions?

 8. Define ternary operator.

 9. Define Library Functions.

 10. What is string?

24 Programming in C

exeRCIses
 1. Write a C-program to find the sum and average of three real numbers.

 2. Write a C-program to find area and perimeter of a circle.

 3. Write a C-program to print the sample interest.

 4. Write a C-program to convert centigrade to farenheit temperature.

 5. Write a C-program to convert farenheit to centigrade temperature.

25

2.1 i/o StatementS

Reading, processing, and writing of data are the three essential functions of a computer program.
Most programs take some data as input and display the processed data, often known as
information or results, on a suitable medium. There are two methods of providing data to the
program variables. One method is to assign values through the assignment statements such as
x = 5; a = 0; and so on.
 Another method is to use the input function scanf that can read data from a keyboard. We
have used both the methods in most of our earlier example programs. For outputting results we
have used extensively the function printf, which sends results out to a terminal. All input-output
operations are carried out through function calls such as printf and scanf. There exist several
functions that have more or less become standard for input and output operations in C. These
functions are collectively known as the standard I/O library. The first statement of a C Program
is

include < stdio. h >
 This is to instruct the compiler to fetch the standard input/output function from the C library,
and that it is not a part of C language. However, there might be exceptions. For example, this
is not necessary for the functions printf and scanf which have been defined as a part of the C
language. The file name stdio.h is an abbrevation for standard input-output header file. The
instruction #include <stdio.h> tells the compiler ‘to search for a file named stdio.h and place its
contents at this point in the program. The contents of the header file become part of the source
code when it is compiled # is a pre-processor.

2.1.1 Single character i/o

 Single Character Input : getchar()

 The getchar() function reads a single character from the keyboard. It takes no parameters
and it’s returned value is the input character. The general format is

Variable = getchar();

CHAPTER 2
I/O AND CONTROL STATEMENTS

26 Programming in C

 Example

Char c;
C=getchar();

 getchar() reads a character from the keyboard and assigns it to c.

 Single Character Output: putchar()

 The putchar() function displays a single character on the screen. The general format is:
putchar(variable)

Example

putchar(c);

2.2 FormatteD i/o

C provides two functions that gives formatted I/O : scanf() and printf().

2.2.1 Formatted Input: scanf()

This function reads character, strings are well as numeric values from the standard input. The
general format is:

scanf(“format string”, argument list);
 The following table show what format specifiers should be used with what data types:

Code Meaning

%c read a single character

%d read a decimal integer

%f read a floating point value

%e read a floating point value (even in exponential format)

%g read a floating point value

%h read a decimal, heaxadecimal or octal integer

%o read an octal integer

%s read a string

%u read an unsigned integer

%x read a hexadecimal integer

Example

scanf(“%d”, &x);
 Here,

x is an integer value.

2.2.2 Formatted Output :printf()

The printf () function is used to display values or results at the terminal. This function can
be used to output any combination of numerical values, single characters and strings.

printf(“ control string”, argument list);

i/o and Control StatementS 27

Where the control string consists of 1) literal text to be displayed, 2) format specifiers, and
3) special characters. The arguments can be variables, constants, expressions, or function calls
-- anything that produces a value which can be displayed. Number of arguments must match
the number of format identifiers. Unpredictable results if argument type does not “match” the
identifier.

The following table show what format specifiers should be used with what data types:

Code Meaning

%c character

%d decimal integer

%o octal integer (leading 0)

%x hexadecimal integer (leading 0x)

%u unsigned decimal integer

%ld long int

%f floating point

%lf double or long double

%e exponential floating point

%s character string

 Example

 printf(“ Welcome to c programming”);
 The above statement prints the output as welcome to c programming.

2.3 StrinG i/o FUnctionS

2.3.1 String Input : gets()

The gets () function is used to read a string form the keyboard until a carriage return key is
pressed.

gets(s)
 Where s is the name of the array storing the string.

 Example

 char name[20];
gets(name);

2.3.2 String Output : puts()

The puts() function outputs the string of characters stored in variable on the screen. The general
format is

puts(s);
 Where s is the name of the variable containing the text to be displayed.

28 Programming in C

Example

char name[20];
 gets(name);

puts(name);

2.4 SamPLe c ProGramS

Write a c program to print your rollno, name, address.
#include<stdio.h>
main()
{
 printf(“Rollno\1001”);
 printf(“name=”Faizan”);
 printf(“No.25, SK Road, Ambur”);

 }

 Write a C program to add two numbers

#include<stdilo.h>
main()
{
 Int a,b,c;
 Printf(“enter the two values a and b”);
 Scanf(“%d%d”, &a,&b);
 C=a+b;
 Printf(“C=%d”, c);

 }

 Write a C program to subtract two numbers

#include<stdio.h>
main()
{
 int a,b,c;
 printf(“enter the two values a and b”);
 scanf(“%d%d”, &a,&b);
 c=a-b;
 printf(“C=%d”, c);

 }

 Write a C program to multiply two numbers

#include<stdio.h>
main()
{
 int a,b,c;

printf(“enter the two values a and b”);
 scanf(“%d%d”, &a,&b);
 c=a*b;
 printf(“C=%d”, c);

 }

 I/O and COntrOl StatementS 29

 Write a C program to divide two numbers

#include<stdio.h>
main()
{
 int a,b,c;
 printf(“enter the two values a and b”);
 scanf(“%d%d”, &a,&b);
 c=a/b;
 printf(“C=%d”, c);

 }

 Write a C program to add, subtract, multiply and divide two numbers

#include<stdio.h>
main()
{
 int a,b,add,sub,mul,div;
 printf(“enter the two values a and b”);
 scanf(“%d%d”, &a,&b);

add=a+b;
sub=a-b;
mul=a*b;
div=a/b;

 printf(“add=%d”, add);
 printf(“sub=%d”, sub);
 printf(“mul=%d”, mul);
 printf(“div=%d”, div);

 }

2.5 Control StatementS/Control Flow/Programming Flow Control

Control statements are used to transfer control from one statement to any other statement in a
program. The control statements are classified as shown in the Fig. 2.1.

2.5.1 Decision–making Statement

Control statements

Looping statement/
Repetition statement/

Iterative statement

Decision
Making system

Jump statement

If If else Nested if Switch While Do-while For Break Continue

Figure 2.1

 2.5.1.1 Simple if statement

 Simple if statement is used to execute or skip on one statement or set of statements for a
particular condition. The general format is

30 Programming in C

 if(test condition)

 {

 Statement block(s);

 }

 next statement;

 If the test condition is true, statement block will be executed, otherwise execution starts from
the next statement.
 The following flow chart explains the working of the if statement:

Statement block
True

Test
condition

Next statement

False

Figure 2.2

 Example

 Write a C program to demonstrate the use of if statement.

 #include<stdio.h>

 main()

 {

int mark;

printf(“Enter the marks”);

scanf(“%d”, &mark);

if(mark>=70)

 {

mark=mark+10;

printf(“Marks= %d”, mark);

}

 }

 Compile and execute the above program.
 Enter the marks
 75

 i/o and Control StatementS 31

 The output of the above program is shown here
 Mark=85
 In the above example, test the mark of student. If the student mark is equal to 70 then 10
marks will be added to the mark statement.

2.5.1.2 if…else Statement

if…else Statement is used to execute one group of statements.
 Syntax:-

 if(test condition)

 {

 True block Statement(s);

 else

 False block Statement(s);

 }

 (i) If the test condition is true, then the True block statement is executed and the control
statements are transferred to the next statement.

 (ii) If the test condition is false, then false block statement is executed and the control
statement is transferred to the next statement.

 The following flow chart explains the working of the if-else statement:

Test
condition

True FalseTrue block
statements (s)

False block
statements (s)

Next statement

Figure 2.3

 Example
 Write a C program to find the biggest of two numbers.

 #include<stdio.h>

 main()

 {

 int a,b;

 printf(“Enter the a and b values”);

 scanf(“%d%d”, &a,&b);

 if (a>b)

32 Programming in C

 {

printf(“A is bigger than b”);

 }

else

{

printf(“b is bigger than a”);

 }

 }
 Compile and execute the above program.
 Enter the a and b values
 10
 5
 The program displays the following output:
 A is bigger than b
 In the above example:
 (i) This program test the true value of (a&b).
 (ii) IF A is greater than B, it prints “A is bigger than B”.
 (iii) Otherwise, It prints “B is greater than A”.

2.5.1.3 Nested-if Statement
If many decision makings occur in a program then, more than one if .. else can be used in nested
if statement.
 The general format is :

 if(test condition 1)

 {

 if(test condition 2)

 {

 Statement block 1;

 else

 Statement block 2;

 }

 else

 Statement block 3;

 }

 next Statement;
 (i) The computer first evaluates the value of the test condition 1.
 (ii) If test condition 1 is false, the control statement execute the statement block 3
 (iii) If the test condition 1 is true, the control is transferred to test condition 2, if test condition

2 is true the statement block 1 is executed.

 i/o and Control StatementS 33

 (iv) If the condition 2 is false statement block 2 is executed.
 The following flow chart explains the working of the nested if statement:

Test
condition

Test
condition-2

Statement block-3 Statement block-1 Statement block-2

Next statement

TrueFalse

True False

Figure 2.4

 Example

 Write a C program to find the biggest of three numbers.

#include<stdio.h>

main()

{

 int a, b, c;

 printf(“enter 3 values”);

 scanf(“%d%d%d”, &a,&b,&c);

 if (a>b)

 {

 if(b>c)

 {

 printf(“B is bigger than C”);

 }

 else

 {

 printf(“C is bigger than B”);

 }

34 Programming in C

else if(a>c)

{

 printf(A is bigger than C”);

}

else

{

 printf(“C is bigger than A”);

}

}

}

 Compile and execute the above program.
 Enter 3 values:
 10
 15
 5
 The output of the above program is shown here:
 B value 15 is large

 Example 2

 This program is to display the electricity bill calculation based on the number of units
consumed every month
 Input: The number of units – variable name – unit
 Output: Amount of rupee – variable name – amount

Logic: Units Rupees

1-50 units 0.75/unit

51-100 0.85/unit

101-200 1.50/unit

201-300 2.20/unit

>300 3.00/unit

 #include <stdio.h>

 #include <conio.h>

 int main()

 {

 float amount=0,units;

 printf(“Enter the number of units”);

 scanf(“%f”, &units);

 if(units <=50)

 i/o and Control StatementS 35

 {

 amount = units * 0.75;

 }

 else if(units >50 && units <=100)

 {

 amount=0.75 * 50 + 0.85*(units-50);

 }

 else if(units >100 && units <200)

 {

 amount=(0.75*50) + (0.85*50)+ (1.5 *(units-100));

 }

 else if(units >200 && units <300)

 {

 amount=(0.75*50) + (0.85*50)+ (1.5 *100) + (2.20*(units-200));

 }

 else

 {

 amount=(0.75*50) + (0.85*50)+ (1.5 *100) + (2.20 * 100)
+(3.0*(units-300));

 }

 amount=amount+(0.2*amount);

 printf(“The total electricity bill is %f”, amount);

 getch();

 return 0;

 }

 2.5.1.4 Switch Statement
 The switch statement allows a number of choices. The general format of switch statement is
shown here:
 switch(expression)

 {

 case Label 1:

 Statement block 1;

 Break;

 case Label 2:

 Statement block 2;

36 Programming in C

 Break;

 case Label n:

 Statement block n;

 Break;

 default:

 default Statement;

 break;

 }

 next statement;
 (i) Switch, case, default, are the keywords
 (ii) Expression is any valid expression
 (iii) Default part is optional
 The following flow chart explains the working of the switch statement:

Switch
(expression)

Statement block-1

Statement block-2

Statement block-n

Default statement

Next statement

Default

Labe in

Label 2

Label 1

Figure 2.5

 The switch statement works as follows:
 1. Integer control expression is evaluated.
 2. A match is looked for between this expression value and the case constants. If a match is

found, execute the statements for that case. If a match is not found, execute the default
statement.

 3. Terminate switch when a break statement is encountered or by “falling out the end”.

 i/o and Control StatementS 37

 Example

#include<stdio.h>

main()

{

 int color;

 printf(“enter the color number”);

 scanf(“%d”, &color);

 switch(color)

 {

 case 1:

 printf(“RED”);

 break;

 case 2:

 printf(“BLUE”;);

 break;

 case 3:

 printf(“GREEN”);

 break;

 default:

 printf(“Invalid number”);

 break;

}

 }

}
 Compile and execute the above program
 The output of the above program is shown here:
 Enter color code[1.RED, 2.BLUE, 3.GREEN];
 2
 BLUE
 Enter color code [1.RED, 2.BLUE, 3. GREEN];
 5
 Invalid Number

2.5.2. Looping Statement

Looping statement is used to execute a set of statements repeatedly until some condition is
satisfied.

38 Programming in C

 There are 3 types of looping statement. They are:
 1. While loop statement
 2. Do-while loop statement
 3. For loop statement

2.5.2.1 While loop statement (Entry control statement)

The general format is

 while(test condition)

 {

 //body of the loop

 }

 next statement;

 1. The computer first evaluates the loop condition.
 2. If the value is true, then the body of the loop is executed repeatedly until the loop

condition becomes false.
 3. If the value is false, then control is transferred to the next statement.
 The following flow chart explains the working of the while statement:

Test
condition

False block
statement (s)

False

Body of the loop

True

Figure 2.6

 Example1

 Write a C program to implement while loop

 #include<stdio.h>

 main()

 {

 int i,n;

 printf(“Enter the Number:”);

 scanf(“%d”,&n);

 while(i<=n)

{

 i/o and Control StatementS 39

 Printf”number=%d”, i);

 i++;

 }

 }
 The output of the above program is shown here:
 Enter the Number: 5
 number=1
 number=2
 number=3
 number=4
 number=5

 Example 2

 Write a C to find the reversal of a given number
 #include <stdio.h>
 #include <conio.h>
 int main()
 {

int num,rev=0;
printf(“enter the number to be reversed”);
scanf(“%d”, &num);

while(num>0) //till the number is positive, perform the process

{

rev=rev*10 +(num%10);

 num=num/10;

 }

 printf(“The reversal is %d “,rev);

 getch();

 return 0;

 }

2.5.2.2 Do-while (Exit control statement)

The general format is

 do

 {

 //body of the loop;

 }

 while(test condition);

 next statement;

40 Programming in C

 (i) Check the test condition
 (ii) If it is true, execute the body of the loop.
 (iii) If it is false, execute the next statement.
 The following flow chart explains the working of the do-while statement

Test
condition

Body of the loop

Next statement

False

True

Figure 2.7

 Example

 Write a C Program to implement do-while loop.

 #include<stdio.h>

 main() {

 int i,n;

 printf(“Enter the Number:”);

 scanf(“%d”,&n);

 do {

 printf”number=%d”, i);

 i++;

 } while(i<=n);

 }

 The output of the above program is shown here:
 Enter the Number: 5
 number=1
 number=2
 number=3
 number=4
 number=5

 i/o and Control StatementS 41

 Difference between while and do-while loop

Do-while While

Condition is checked at the end
of the loop

Condition is checked in the beginning
of the loop.

Set of statements within the loop
will be executed at least once.

If the condition fails the statements
will not be executed even once.

2.5.2.3 for loop

For statement is used to execute a statement or a group of statements repeatedly for a number of
times. The general form is:

 for(initialization;testcondition;incredecrement)

 {

 // body of the loop

 }

 next statement;

 (i) Give the initial value to the control variable.
 (ii) Check the test condition, If the test condition is true, execute the body of the loop.
 (iii) If the test condition is false, execute the next statement.
 The following flow chart explains the working of the for statement

Test
condition

Next statement

Initialization of
control variable

Body of the loop

Increment or
decrement of

control variable

True

False

Figure 2.8

 •	The	operation	for	the	loop	is	as	follows:
 1. The initialization expression is evaluated.
 2. The test expression is evaluated. If it is TRUE, body of the loop is executed. If it is

FALSE, exit the for loop.

42 Programming in C

 3. Assume test expression is TRUE. Execute the program statements making up the
body of the loop.

 4. Evaluate the increment expression and return to step 2.
 5. When test expression is FALSE, exit loop and move on to next line of code.

 Example

 Write a C program to implement for loop

 #include<stdio.h>

 main()

 {

 int i,n;

 printf(“Enter the number”);

 scanf(“%d”, &n);

 for(i=1;i<=10;i++)

 {

 printf(“number=%d”,i);

 }

 }

 }

 Compile and execute the above program
 The output of the above program is shown here:
 Enter the number
 5
 number = 1
 number = 2
 number = 3
 number = 4
 number = 5

2.5.3 Jump Statement

 1. Break statement
 2. Continue statement.

2.5.3.1 Break statement

Break statement is used to terminate from a loop while the test condition is true. This statement
can be used with in a while do while, for and switch statement. The general format is:

break;

 i/o and Control StatementS 43

 Example

 for(i=0;i<20;i++)

 {

 if(i==10)

 {

 break;

 }

 }

2.5.3.2 Continue Statement

The continue statement is used to skip the remaining statement in the loop. It only works within
loops where its effect is to force an immediate jump to the loop control statement.
	 •	 In	a	while	loop,	jump	to	the	test	statement.	
	 •	 In	a	do	while	loop,	jump	to	the	test	statement.	
	 •	 In	a	for	loop,	jump	to	the	test,	and	perform	the	iteration.	
 The general format is:

continue;

 Example

 int i;

 for(i=0;i<10;i++)

 {

 if (i==5)

 continue;

 printf("%d",i);

 if (i==8)

 break;

 }

 This code will print 1 to 8 except 5.
 Continue means, whatever code that follows the continue statement WITHIN the loop code
block will not be executed and the program will go to the next iteration, in this case, when the
program reaches i=5 it checks the condition in the if statement and executes 'continue', everything
after continue, which are the printf statement, the next if statement, will not be executed.
 Break statement will just stop execution of the look and go to the next statement after the
loop if any. In this case when i=8 the program will jump out of the loop. Meaning, it won’t
continue till i=9, 10.

44 Programming in C

2.6 comma oPerator

A set of expressions separated by commas is a valid construct in the c language. For example, x
and y are declared by the statement int x,y;
 Consider the following statement that makes use of comma operator.

int a,b,c;

2.7 SamPLe c ProGramS

Write a C program to check whether a number is Armstrong Number
 The armstrong number is of the form 153= 13 + 53 + 33
 The input is: 153 or any other number
 Output: The number is armstrong or not.
 Processing: take 153 as an example, remove 3, 5 and 1 in the reverse order (using % operator)
and take the power of 3 and add to the sum variable.
 If the total sum and the original number, both are same, then that is the armstrong number.
If else, the number is not an armstrong number.

#include <stdio.h>

 #include <conio.h>

 int main()

 {

int original_num, check, temp, sum=0;

printf(“Enter the number to check for armstrong number”);

scanf(“%d”, &original_num);

temp=original_num;

while(original_num>0)

{

check=original_num%10; sum=sum+check*check*check; original_
num=original_num/10;

}

 if(sum==temp)

printf(“This is an armstrong number\n”);

 else

 printf(“This is not an armstrong number”);

getch();

return 0;

 }

 i/o and Control StatementS 45

 Write a C program to check whether a given number is prime or not
 A prime number can be divided by 1 and itself, there are no other divisors,
 Examples are : 2 3, 5, 7, 11, …..
 To find out whether a given number is prime or not, here is the logic
 1. Get the number
 2. Divide the given number from 2 to n-1 (Example if 6 is the number divided by 2,3,4,5 will

get the remainder respectively 0,0,2,3)
 3. Increment a counter to 1 if the remainder is 0
 4. If there counter variable is 0, then the given number is prime (because we didn’t get any

remainder) else non prime
 #include <stdio.h>
 #include <conio.h>

 int main()

 {

 int a,i,count=0;

 printf(“enter a”); //Let the given number is a

 scanf(“%d”,&a); //get the number

 for(i=2;i<a;i++)

 {

 if(a%i==0) count++;

 }

 if(count !=0)

 printf(“a is not a prime number”);

 else

 printf(“a is a prime number”);

 getch();

 return 0;

 }

 Write a C program to sort a Given set of numbers in ascending order (Bubble Sort)
 /* Program to sort the given set of numbers in ascending order, this sorting is called as bubble
sort algorithm */

 #include <stdio.h>

 #include <conio.h>

 int main()

 {

 int a[10],i,j,temp=0;

46 Programming in C

 printf(“Enter all the 10 numbers”);

 for(i=0;i<10;i++)

 scanf(“%d”,&a[i]);

 for(i=0;i<10;i++)

 {

 for(j=0;j<9;j++)

 {

 if(a[j]>a[j+1])

 {

 temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 }

 }

 printf(“The ordered array is”);

 for(j=0;j<10;j++) //Finally print the ordered array

 printf(“%d \t”,a[j]);

 getch();

 return 0;

 }

 Write a C program to sort a set of numbers in the ascending order.

 #include<stdio.h>
 main()
 {
 int i,j,k,n,l=1,arr[50],tmp;
 clrscr();
 printf(“\t ASCENDING OF ORDERS\n”);
 printf(“\t~~~~~~~~~~~~~~~~~~~~~~”);
 printf(“\n Enter the number of elements to be
 sorted..”);
 scanf(“%d”,&n);
 printf(“\n Enter the elements to be sorted..”);
 for(i=0;i<n;i++)
 scanf(“%d”,&arr[i]);
 for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)

 i/o and Control StatementS 47

 {
 if(arr[i]>arr[j])
 {
 tmp=arr[i];
 arr[i]=arr[j];
 arr[j]=tmp;
 }
 }
 printf(“\n Pass %d\n”,l++);
 for(k=0;k<n;k++)
 printf(“%d\t”,arr[k]);
 }
 printf(“\n\t Elements sorted in ascending
 order\n”);
 for(i=0;i<n;i++)
 printf(“\t %d\n”,arr[i]);
 getch();
 }

 Write a C program for quadratic equation using pointers

 #include<stdio.h>
 #include<conio.h>
 #include<math.h>
 main()
 {

int a,b,c,*x,*y,*z;
float temp,root1,root2;
/*x=&a;
y=&b;
z=&c;*/
clrscr();

 printf(“\t QUADRATIC EQUATION (USING POINTERS)\n”);
 printf(“\t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n”);
 printf(“Enter thecoefficients....:”);
 scanf(“%d%d%d”,&a,&b,&c);

if(a==0)
 {
 printf(“Singleroot - Linear equation”);
 root1=(float)-c/b;
 printf(“\n The root of the equation is %5.2f”,root1);
 }

else
 temp=b*b-4*a*c;
 if(temp<0)
 {
 printf(“\n Imaginary roots”);
 temp=-temp;
 temp=(float)(sqrt(temp));
 root1=(float)-b/(2*a);

48 Programming in C

 printf(“\n The real part is % 5.2f”,root1);
 printf(“\n The imaginary part is (%5.2f)i/%d”,temp,2*a);
 }
 else
 if(temp>0)
 {

printf(“\n Real roots”);
root1=(float)(-b+sqrt(b*b-4*a*c))/(2*a);
root2=(float)(-b-sqrt(b*b-4*a*c))/(2*a);
printf(“\n The roots of the equation are %5.2f and
%5.2f”,root1,root2);

 }
 else
 {
 printf(“\n Single real root\n”);
 root1=-b/(2*a);
 printf(“\n the roots of the equation is %5.2f”,root1);
 }
 getch();
 }

 Write a C program for print customer name and type of product and discount, bill
amount.

 #include<stdio.h>
 #include<conio.h>
 #define FIVE 0.0F
 #define SEVEN 0.075
 #define TEN 0.1
 #define FTEEN 0.15
 main()
 {
 float amt,disc,total;
 int type,ch=0;
 char name[20];
 float mill(float);
 float handloom(float);
 clrscr();

do
{

 printf(“Enter the customer’s name; “);
 gets(name);
 printf(“\n Enter the amount purchased by the
 customer..Rs.”);
 scanf(“%f”,&amt);
 printf(“\n Enter the type purchased (0-mill&1-handloom:”);
 scanf(“%d”,&type);

switch(type) {
 case 0:

 i/o and Control StatementS 49

 disc=mill(amt);
 break;
 case 1:
 disc=handloom(amt);
 break;

}
total=amt-disc;
clrscr();
printf(“\t\t CASH BILL\n”);
printf(“\t\t ~~~~~~~~~~\n”);
printf(“\n\t customer’s Name :%s”,name);
if(type==0)

 printf(“\n\t The cloth type is Mill\n\n”);
else

 printf(“\n\t The cloth type is Handloom\n\n”);

 printf(“\n\t The amount purchased is
 Rs.%6.2f”,amt);
 printf(“\n\t The amount of discount is
 Rs.%6.2f”,disc);
 printf(“\n\t The amount to be paid is
 Rs.%6.2f\n\n”,total);
 printf(“\n\t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n\n”);
 printf(“\n\n continue ? (0--> yes, 1-->no):”);
 scanf(“%d”,&ch);
 clrscr();

}while(ch!=1);
 }
 float mill(float sum){
 float d;
 if(sum<=100)
 d=0.0;
 else if(sum<=200)
 d=FIVE*sum;
 else if(sum<=300)
 d=SEVEN*sum;
 else
 d=TEN*sum;

return(d); }
float handloom(float sum){
float d;

 if(sum<=100)
 d=FIVE*sum;
 else if(sum<=200)
 d=SEVEN*sum;
 else if(sum<=300)
 d=TEN*sum;
 else
 d=FTEEN*sum;
 return(d);
 }

50 Programming in C

 Write a C program to Count the number of vowels, consonants, words, white spaces in a
line of text and array of lines.

 #include<stdio.h>
 #include<conio.h>
 main()
 {
 char s[50];
 int i,c=0,w=1,v=0,len;
 clrscr();
 printf(“\nEnter the text: “);
 gets(s);
 len=strlen(s);
 for(i=0;i<len;i++)
 {
 switch(toupper(s[i]))
 {
 case ‘A’:
 case ‘E’:
 case ‘I’:
 case ‘O’:
 case ‘U’: v++; break;
 case ‘ ‘: w++; break;
 default : c++; break;
 }
 }
 printf(“\nThe given text: %s”,s);
 printf(“\nThe no. of vowels: %d”,v);
 printf(“\nThe no. of consonant: %d”,c);
 printf(“\nThe no. of words: %d”,w);
 printf(“\nThe no. of spaces: %d”,w-1);
 getch();
 }

 Write a C program to reverse a given string and check whether the given string is
palindrome or not.

 #include<stdio.h>
 #include<string.h>
 main()
 {

char str[80],rev[80];
int i,j,len;
clrscr();
printf(“\n\t\t\t\PALINDROME CHECKING”);
printf(“\n\t\t\t\t------------------”);
printf(“\n\nEnter the string\n\n”);
gets(str);
len=strlen(str);

 i/o and Control StatementS 51

for(i=len-1,j=0;i>=0;i--,j++)
rev[j]=str[i];
rev[j]=’\0’;
printf(“\nThe original string:%s”,str);
printf(“\nThe reversed string:%s\n\n\n\n”,rev);
if(strcmp(str,rev)==0)
 printf(“%s is a palindrome”,str);
else
 printf(“%s is not a palindrome”,str);
getch();

 }

 Write a C program to implement linear search

 #include<stdio.h>
 #include<conio.h>
 main()
 {
 int a[]={12,27,5,83,94,36,72,11,54,43};
 int i=0,n=10,x,found=0;
 clrscr();
 printf(“\n Enter a Number to search : “);
 scanf(“%d”,&x);
 while(i<n&&!found)
 if(a[i++]==x)
 found=1;
 found?
 printf(“\t%d : is found”,x):printf(“\t%d: not
 found”,x);
 getch();
 }

Let US SUmmariSe
	 •	 The getchar() function reads a single character from the keyboard.

	 •	 The putchar() function displays a single character on the screen.

	 •	 The printf () function is used to display values or results at the terminal.

	 •	 The gets () function is used to read a string form the keyboard until a carriage return key is
pressed.

	 •	 The puts() function outputs the string of characters stored in variable on the screen.

	 •	Control statements are used to transfer control from one statement to any other statement in a
program.

review QUeStionS
 1. Define Control Statements.

 2. What is Loop?

 3. Define Break and Continue Statement.

52 Programming in C

 4. Write the syntax of switch statement.

 5. Write the syntax of if-else statement.

 6. What is the purpose of comma operator?

exerciSeS
 1. Write a C Program to check whether the given number is even or odd.

 2. Write a C Program to check whether the given number is multiple of 7 or not.

 3. Write a C Program to manipulate student result. i.e. either pass or fail. Accept three
subject marks from user.

 4. Write a C Program to display 1 to 'n' numbers using while loop.

 5. Write a C Program to find reverse of a given number.

 6. Write a C Program to display first 'n' numbers using do-while loop.

 7. Write a C Program to find sum of first 'n' numbers.

 8. Write a C Program to check whether the given number is prime or not.

53

3.1 FUnctions

Functions are the building blocks of the C programming language. The most important of the
c functions is the main () function. A function can be invoked from different parts of the main
program.

In C language, there are two different types of functions. They are:
 1. Library functions
 2. User defined functions

 1. Library Functions

 Library Functions are functions not to be written by the programmer. But these are available
in separate files called header files. The commonly used predefined functions are as follows:
 (i) String function(string.h) or string handling functions.
 (ii) Math function(math.h)

 2. User defined functions

 A user defined function has to be written by the programmer to carry out some specific well
defined task.

A function in C is a small “sub-program” that performs a particular task, and supports the
concept of modular programming design techniques. In modular programming the various tasks
that your overall program must accomplish are assigned to individual functions and the main
program basically calls these functions in a certain order.

3.1.1 need for User Defined Functions

	 •	Length of source program can be reduced by using user defined functions.
	 •	Faulty functions can be easily located.
	 •	User defined functions can be used in any “C” program.

A Function should be defined before it is used. A function has two parts. Namely,

CHAPTER 3
FUNCTIONS AND STORAGE CLASSES

54 PrograMMing in c

 1. Function header
 2. Statement body

 Declaration of function

 The general format is
Function header →	return type function_name(list of arguments

 argument declaration)

{ Local declaration;
Executable statement;

Statement body ---------------------

} Executable statement;
return(expression);

Where,
 Function type - data type of the value returned by the function.
 Function name - name of the function
 List of argument - parameters
 Argument declaration - declaration of formal argument
 Return - return the value of the function to other function.

 Rules

	 •	Function header should not terminate with semicolon.
	 •	List of argument and declaration and return is optional.

3.2 retUrn statement

A function returns a value to the calling program with the use of the keyword return, followed
by a data variable or constant value. The return statement can even contain an expression. The
general format is

return or return(expression);

 For Example

return 3;
return n;
return (a*b);

 • When a return is encountered the following events occur:
 1. Execution of the function is terminated and control is passed back to the calling

program.
2. The function call evaluates to the value of the return expression.

 • If there is no return statement control is passed back when the closing brace of the
function is encountered.

Functions and storage classes 55

3.3 FUnction PrototYPe

Function prototype means, declaring the defined function in the main program. The general
format is

datatype function_name();
where,

 datatype – valid c data type.
 Function_name - name of the function

3.4 caLLinG a FUnction

A defined function can be called from other functions by specifying its name followed by a list of
arguments enclosed within parentheses. The general form is

Function_name(list of arguments);

Rules

	 •	Function_name should be the name used in the function definition.
	 •	 Iist of argument is optional.

Example 1

#include<stdio.h>
 main()
 {
 int a,b;
 int abc(); function prototype
 scanf(“%d%d”, &a,&b);
 printf(“%d”, abc(a,b));

 } function calling
 int abc(I,j)
 int I,j;
 {
 int k;
 k=i+j;
 retrun(k);
 }

Example 2

#include<stdio.h>
 main()
 {
 int mul(int a,int b);
 {
 Int c;
 C=a*b;
 Return(c)
 }

56 PrograMMing in c

 main()
 {
 int x,y,z;
 x=5;
 y=10;
 c=mul(x,y);
 printf(“the value of c is %d”, c);
 }

3.5 FormaL anD actUaL arGUments

3.5.1 Formal arguments

The arguments present in the function definition are called formal arguments. These are also
called as dummy arguments.

Example

int abc(I,j)
 int I,j;
 {
 int k;
 k=i+j;
 retrun(k);
 }

In this function I and j are called formal or dummy arguments because the values for the
arguments I and j are not available.

3.5.2 Passing arguments

The arguments present in the function calling are called passing arguments or actual arguments.

 Example

main()
 {
 int x,y,z;
 x=5;
 y=10;
 c=mul(x,y);
 printf(“the value of c is %d”, c);
 }
 In the above example, x and y are called actual or passing arguments, because only through
this the called function mul receives the values of the formal arguments I and j as 5 and 10.

3.6 cateGorY oF FUnctions/tYPes oF FUnction

There are four types of functions. They are:
1. Function with no arguments and no return value.

Functions and storage classes 57

 2. Function with arguments and no return value.
 3. Function with no arguments and return value.
 4. Function with arguments and return value.

3.6.1 Function with no arguments and no return value

This is the simplest function. This does not receive any arguments from the calling function and
does not return any value to the calling function.

3.6.2 Function with arguments and no return value

This function receives arguments from the calling function and does not return any value to the
calling function.

3.6.3 Function with no arguments and return value

This function does not receive arguments from the calling function and return the computed
value back to the calling function.

3.6.4 Function with arguments and return value

This function receives arguments from the calling program and return the computed value back
to the calling function.

3.7 recUrsion

A recursive function is one that calls itself again and again. Recursive functions are useful in
evaluating certain types of mathematical function. You may also encounter certain dynamic data
structures such as linked lists or binary trees. Recursion is a very useful way of creating and
accessing these structures.

Example

Write a program to find the factorial of a given number.
#include<stdio.h>

 main()
 {
 Int fact(int n);
 Int I,a;
 Scanf(“%d”, &i);
 A=fact(i);
 Printf(“%d”, a);
 }
 int fact(int n)
 {
 Int f;
 If(n==0)
 return 1;
 else
 f=n*fact(n-1);
 return(f);
 }

58 PrograMMing in c

Explanation

 Let us assume n=4, since the value of n is not equal to 0 the statement,
 Fact = n*fact(n-1)
 Call – 1
 Fact=4*fact(3)
 Call – 2
 Fact=4*3*fact(3)
 Call – 3
 Fact=4*3*2*fact(3)
 Call – 4
 Fact=4*3*2*1*fact(3)
 Call – 5
 Fact=4*3*2*1

Factorial 4 = 24

3.8 storaGe cLasses

A storage class defined both scope and life time of identifiers. The default storage class is auto,
which declares the scope of the variable as local.

Types of storage classes

 The various types of storage classes are as follows:
 1. Automatic
 2. External
 3. Register
 4. Static
 1. Automatic: This is the default storage class for the local variables. The variable which are

declared inside a function are called automatic variable. The general format is
auto datatype variabe1, variabe2,…… variable n;

 Example

auto int a,b;

 2. External: The variable which are declared outside the functions are called external
variable, Since these variables are not declared within a specific function, these are
common to all the functions in the program. The general format is

extern datatype variable1, variable2,…… variable n;

Example

extern int a;

 3. Register: The variable which are stored in the registered are called register variable. The
general format is

register datatype variable1, variable2,…… variable n;

 Example

register in b;

 Functions and storage classes 59

 4. Static: Static variables are variables which retain the values till the end of the program.
The general format is

static datatype variable1, variable2,…… variable n;

 Example

 static in a,b;

Let Us sUmmarise
	 •	 Functions are the building blocks of the C programming language.

	 •	 Library Functions are functions not to be written by the programmer.

	 •	A user defined function has to be written by the programmer to carry out some specific well
defined task.

	 •	A function send value to the calling using return statement.

	 •	 Function prototype means, declaring the defined function in the main program.

	 •	A defined function can be called from other functions by specifying its name followed by a list of
arguments enclosed within parentheses.

	 •	 The arguments present in the function definition are called formal arguments. These are also called
as dummy arguments.

	 •	 The arguments present in the function calling are called passing arguments or actual arguments.

review QUestions
 1. What is Function?

 2. List out the part of functions?

 3. Define storage class.

 4. Define Recursion.

 5. What is function prototype?

exercises
 1. Write a C program to define user-defined functions. Call them at different places.

 2. Write a C program to use return statement in different ways.

 3. Write a C program to send value to user defined function and display results.

60

4.1 ARRAYS

Arrays are widely used data type in ‘C’ language Array is a group of related data items, that
share a common name with same data type. An individual variable in the array is called an array
element.
 We can define an arrayname,rollno to represent a set of rollno of a group of students. A
particular value is indicated by a number called index number. An index number is present in
brackets after the arrayname.
	 •	One	Dimensional	Array
	 •	 Two	Dimensional	Array
	 •	Multidimensional	Array

4.1.1 one Dimensional Array

A	list	of	items	group	in	a	single	variable	name	with	only	one	index	is	called	1-	D	array.

 Declaration and initialization of arrays

(i) Declaration of One Array:		We	 can	declare	 an	 array	 in	C	using	 subscript	 operator.	 The	
general form is

 datatype var_name[size];

Here, datatype is valid c datatype and var_name is the name of the array.

 Example

i) int mark[50];

	 	 This	declares	 an	 integer	 type	 array	names	 as	mark	having	 50	memory	 locations	 to	
store	100	integer	data.

ii) fl oat salary[30];

	 	 This	declares	a	floating	point	type	array	named	as	salary	having	30	memory	locations	
to	store	30	floating	point	data.

CHAPTER 4
ARRAYS AND STRUCTURES AND UNION

 ArrAys And structures And union 61

 iii) char name[20];
	 	 This	declares	a	character	type	array	named	as	name	having	20	memory	locations	to	

store	20	characters.
 (ii) Initialization of 1-D Arrays: 	We	can	store	values	at	the	time	of	declaration.	The	compiler	

allocates	the	required	space	depending	upon	the	list	of	values.	The	general	form	is	:

datatype array_name[size] = { list of values};

 Example 1

 i) int mark[4]={45,58,90,76};

	 	 This	declare	mark	as	an	integer	array	having	four	locations	and	assign	initial	values	
as given below.

mark[0] mark[1] mark[2] mark[3]
45 58 90 76

 ii) int mark[6];

 If the size of the array is greater than the number of values in the list, then the unused
locations are filled with zeros as given below

mark[0] mark[1] mark[2] mark[3] mark[4] mark[5]
45 58 90 76 0 0

 iii) char dept[10];

	 	 This	declares	name	as	a	character	array	having	10	characters	and	assign	initial	values	
as

dept[0] dept[1] dept[2] dept[3] dept[4] dept[5] dept[6] dept[7]
C O P U T E R \0

4.1.2 Two Dimensional Arrays

A list of items group in a single variable name with two indexes (row and column size) is called
2-D	array.

 (i) Creation of 2-D Arrays: We	can	create	two	dimensional	array	as	follows:

datatype arrayname[size1][size2];

 Here,

 size1 – number of rows

 size2 – number of columns

 Example
 i) int arr[2] [3];

	 	 This	represents	a	two	dimensional	array	named	arr.
	 Structure	of	two-dimensional	arrays	as	shown	here:

62 ProgrAmming in c

arr[0][0] arr[0][1] arr[0][2]
arr[1][0] arr[1][1] arr[1][2]

 ii) int mark[5][2];

	 	 This	declares	mark	as	a	two	dimensional	integer	array	having	5	rows	and	2	columns.	
The	total	number	of	locations	is	5x2	=	10.

columns column1

row0 mark[0][0] mark[0][1]

row1 mark[1][0] mark[1][1]

row2 mark[2][0] mark[2][1]

row3 mark[3][0] mark[3][1]

row4 mark[4][0] mark[4][1]

 (ii) Initialization of 2-D Arrays: Two	 dimensional	 array	 can	 be	 initialized	 similar	 to	 one	
dimensional array as below.

datatype arrayname[size1][size2]={list of values};

 Example

 (i)	 int	mark[3][2]={45,65,89,78,99,66};

mark[0][0] mark[0][1]
45 65

mark[1][0] mark[1][1]
89 78

mark[2][0] mark[2][1]
99 66

4.1.3 Multidimensional Arrays

Three	or	more	dimensional	arrays	can	also	be	used	in	C.	The	general	form	is
dataype arrayname[size1][size2],[size3]……...[size n];

 Example

 int mark[5][4][3][2];
	 In	the	above	example	mark	is	a	four	dimensional	array	to	store	120		integer	type	of	data.

4.1.4 Sample C Programs

Write a C program to search a number in a given array
	 //This	program	is	to	search	a	given	number	in	an	array	
 #include <stdio.h>
 #include <conio.h>
 int main()
 {

int a[10],i,num;

 ArrAys And structures And union 63

printf(“enter the array elements”);
for(i=0;i<10;i++) //get all the numbers
scanf(“%d”,&a[i]);
printf(“Enter the number to search”);
 scanf(“%d”,&num);

 for(i=0;i<10;i++)
 {
 if(a[i]==num) //given num is matched in the array
 {
 printf(“The number is found in the %d position”,i+1);
 getch();
 exit(0); //to go the end of the program
 }
 }
 printf(“The number is not found”);
 getch();
 return 0;
 }

 Write a C program to add two matrices

 /* Program to add two matrices */
 #include <stdio.h>
 #include <conio.h>
 int main()
 {
 int a[10][10], b[10][10],c[10][10],i,j;
 printf(“Enter a”);

for(i=0;i<2;i++) //get the matrix A
for(j=0;j<2;j++)
scanf(“%d”,&a[i][j]);
printf(“Enter b”);
for(i=0;i<2;i++) //get the matrix B
for(j=0;j<2;j++)
scanf(“%d”,&b[i][j]);
for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
{
c[i][j] = a[i][j] +b[i][j]; //adding two matrices
}

 }
 printf(“Added Matrix is \n”);
 for(i=0;i<2;i++)
 for(j=0;j<2;j++)
 printf(“%d “,c[i][j]);
 getch();
 return 0;
 }

64 ProgrAmming in c

 Write a C program to multiply two matrices

 /* Program to multiply two matrices */
 #include <stdio.h>
 #include <conio.h>
 int main()
 {

int a[2][3],b[3][2],c[2][2],k,j,i;
printf(“enter a”);

 for(i=0;i<2;i++) //Get array A
{
for(j=0;j<3;j++)

 {
 scanf(“%d”,&a[i][j]);
 }
 }
 printf(“enter b”);
 for(i=0;i<3;i++) //Get array B
 {
 for(j=0;j<2;j++)

{
scanf(“%d”,&b[i][j]);

}
 }

for(i=0;i<2;i++)
 {

for(j=0;j<2;j++)
{
c[i][j]=0;

 for(k=0;k<3;k++)
{
 c[i][j]=c[i][j]+a[i][k]*b[k][j];
}

}
 }
 printf(“C is “);
 for(i=0;i<2;i++)
 for(j=0;j<2;j++)
 printf(“ c[%d][%d] – %d \n”,i,j,c[i][j]);
 getch();
 return 0;
 }

 Write a C program to create a 3*3*3 matrix and find the sum of matrix.

 #include<stdio.h>
 main()
 {
 static int num[3][3][3],i,j,k,sum=0,l=1;
 clrscr();
 for(i=0;i<3;i++)

ArrAys And structures And union 65

 for(j=0;j<3;j++)
 for(k=0;k<3;k++)
 {
 num[i][j][k]=l;
 l++;
 sum+=num[i][j][k];
 }
 printf(“\n\t\tTHREE DIMENSIONAL ARRAY”);
 printf(“\n\t\t**************************\n\n”);
 for(i=0;i<3;i++)
 {
 for(j=0;j<3;j++)
 {
 for(k=0;k<3;k++)
 {
 printf(“\t\t%d”,num[i][j][k]);
 }
 printf(“\n”);
 }
 printf(“\n”);
 }
 printf(“\n\tThe sum of the elements of the array is
 :%d\n”,sum);
 getch();
 }

4.2 STRuCTuRe

A structure	 is	a	collection	of	variables	under	a	single	name.	These	variables	can	be	of	different	
types, and each has a name which is used to select it from the structure. A structure is a convenient
way of grouping several pieces of related information together.

4.2.1 Defining Structure

A	structure	definition	contains	a	keyword	struct	and	a	user	defined	tag-field.	The	general	format	
is,

struct tag-fi eld
 {
 datatype member1;
 datatype member2;

datatype member1;
 };
 Where,

Struct - keyword to defi ne structure
Tag-fi eld - name of the structure
Datatype - valid c datatype

66 ProgrAmming in c

 Example

 Below structure can be defined for storing book details of a book store.
struct book_store

 {
 char title[15];
 char author[15];
 int pages;
 float price;
 }
 This	defines	a	structure	with	four	members	namely,	title,	author,	pages	and	price	of	different	
data	types.	The	name	of	the	structure	is	book_store.

4.2.2 Structure Declaration

Structure	 declaration	 means	 combining	 template	 declarations	 and	 variable	 declarations.	 The	
general format is

 struct tag-filed variable1, variable2,……… variablen;

 Example

struct book_store
 {
 char title[15];
 char author[15];
 int pages;
 float price;

struct book_store book1,book2,book3;
 }

4.2.3 Giving Values to Structure Members

Member	operator	or	dot	operator	 is	used	 to	establish	a	 link	between	member	 in	a	 structure	an	
structure variable.(‘ .	‘).	The	general	format	is

structure variable . membername;

 Example

 #include<stdio.h>
 struct book_store

{
 Char title[15];
 Char author[15];
 Int pages;
 Float price;
 };
 main()
 {
 struct book_store book1;
 printf(“input values”);
 scanf(“%c%c%d%f”,&book1.title,&book1.author,&book1.pages,

&book1.price);

ArrAys And structures And union 67

 Printf(“%c%c%d%f”,book1.title,book1.author,book1.pages,
book1.price);

 }

4.2.4 Structure initialization

Structure	variable	can	be	initialized	similar	to	other	data	types	in	C.	The	general	format	is
static	struct	tag-filed	structure	variable={	list	of	values};

 Example

 struct book_store
{

 Char title[15];
 Char author[15];
 Int pages;
 Float price;
 }static book1={ “ Programming in C”, “ Rizwan”,230,85};

4.2.5 Difference Between Arrays and Structure

Arrays Structure

All data in an array should
be of same data type.

Structures data can be of
different data type.

Individual entries in an
array are called elements.

Structure individual entries
are called members.

4.3 STRuCTuReS wiTHin STRuCTuReS

Structures can have as members other structures. A structure that contained both date and time
information.	One	way	to	accomplish	this	would	be	to	combine	two	separate	structures;	one	for	
the date and one for the time.

For Example

struct date
{

int month;
int day;
int year;

};
struct time
{
int hour;

int min;
int sec;

};
struct date_time
{

68 ProgrAmming in c

struct date today;
struct time now;

};
This	declares	a	structure	whose	elements	consist	of	two	other	previously	declared	structures.

	 Initialization	could	be	done	as	follows:
 static struct date_time veteran =
 {11,11,2011},{11,11,11}};
which sets the today element of the structure veteran to	 the	 eleventh	 of	November,	 2011.	 The	
now element of the structure is initialized to eleven hours, eleven minutes, eleven seconds. Each
item within the structure can be referenced if desired.

4.4 PoinTeRS To STRuCTuReS

One	 can	 have	 pointer	 variable	 that	 contain	 the	 address	 of	 complete	 structures,	 just	 like	 with	
the basic data types. Structure pointers are declared and used in the same manner as “simple”
pointers:
 struct playing_card *card_pointer,down_card;
 card_pointer=&down_card;
 (*card_pointer).pips=8;
 The	 above	 code	 has	 indirectly initialized the structure down_card to the Eight of Clubs
through the use of the pointer card_pointer.	(*card_pointer).suit=”Clubs”;
 The	type	of	the	variable	card_pointer	is	“pointer	to	a	playing_card	structure”.
 In C, there is a special symbol -> which is used as a shorthand when working with pointers
to structures. It is officially called the structure pointer operator. Its syntax is as follows:

*(struct_ptr).member is the same as struct_ptr->member
 Thus,	the	last	two	lines	of	the	previous	example	could	also	have	been	written	as:

card_pointer->pips=8;
card_pointer->suit=”Clubs”;

4.5 SeLF-ReFeRenTiAL STRuCTuRe

A self referential structure is used to create data structures like linked lists, stacks, etc. Following
is	an	example	of	this	kind	of	structure:	

struct struct_name
{
 datatype datatypename;
 struct_name * pointer_name;
};

 A self-referential structure is one of the data structures which refer to the pointer to (points)
to another structure of the same type. For example, a linked list is supposed to be a self-referential
data	structure.	The	next	node	of	a	node	 is	being	pointed,	which	 is	of	 the	same	struct	 type.	For	
example,

typedef struct listnode {
void *data;
struct listnode *next;
} linked_list;

 ArrAys And structures And union 69

Sample C Program

 /*program for student mark statement */
 #include<stdio.h>
 #include<conio.h>
 #include<string.h>
 struct stud

{
 char name[20];
 int score[10];
 int high;
 int low;
 float aveg;
 char grade;
 }cand;
 main()
 {
 input();
 output();
 }
 input()
 {
 int j,sum,mk;
 float avgmk;
 clrscr();
 printf(“\n\t\t ABC SCHOOL OF STUDIES::CHENNAI\n\n”);
 printf(“\n Enter the name..”);
 scanf(“%s”,&cand.name);
 printf(“\nEnter the 10 test marks..\n”);
 cand.low=100;
 cand.high=0;
 sum=0;
 for(j=0;j<5;j++)
 {
 printf(“test %d:”,j+1);
 scanf(“%d”,&mk);
 cand.score[j]=mk;
 sum+=mk;
 if(cand.high<mk)
 cand.high=mk;
 if(cand.low>mk)
 cand.low=mk;
 }
 avgmk=sum/5.0;
 cand.aveg=avgmk;
 if(avgmk<40)
 cand.grade=’F’;
 else
 if(avgmk<50)
 cand.grade=’D’;
 else

70 ProgrAmming in c

 if(avgmk<60)
 cand.grade=’C’;
 else
 if(avgmk<75)
 cand.grade=’B’;
 else
 cand.grade=’A’;
 }
 /* output printing */
 output()
 {
 int j;
 clrscr();
 printf(“\n\t\t ABC SCHOOL OF STUDIES::CHENNI\n”);
 printf(“\t\t______________________________\n”);
 printf(“\n NAME :%s\n”,cand.name);
 for(j=0;j<5;j++)
 printf(“\n\t test %d :%d”,j+1,cand.score[j]);
 printf(“\n\n\n\t\tHighest :%d”,cand.high);
 printf(“\n\t\tLowest :%d”,cand.low);
 printf(“\n\t\tAverage :%5.2f”,cand.aveg);
 printf(“\n\t\tGrade :%c\n”,cand.grade);
 getch();
 }

4.6 union

Unions	 are	 derived	 data	 type.	Union	 data	 type	 is	 similar	 to	 structure.	 The	main	 advantage	 of	
union is they conserve memory. A union is a single piece of memory that is shared by two or
more variables.

4.6.1 Declaration of union

The	union	can	be	declared	in	the	same	way	as	the	definition	of	structure.	The	general	format	is
union tag-fi led

 {
 Datatype member1;
 Datatype member2;

 Datatype membern;
 }

 Example

union student
 {
 Int rollno;
 Char name[12];
 }std;

ArrAys And structures And union 71

Example

#include<stdio.h>
main()
{
 struct bio

{
 char name[15];
 int rollno;

 }std;
 union bio_data
 {
 char name[15];
 int rollno;
 }bi;
 printf(“ Enter the name and rollno”);
 scanf(“%c%d”, &name,&rollno);
 printf(“name=%d”, std.name);
 printf(“rollno=%d”,std.rollno);
 printf(“name=%d”,bi.name);
 printf(“rollno=%d”,bi.rollno);
 }

4.7 DiFFeRenCe BeTween STRuCTuRe AnD union

Structure Union

Structure: The size in bytes is the sum
total of size of all the elements in the
structure, plus padding bytes.

Size of in bytes of the union is size
of the largest variable element in the
union.

Size Allocated to a Structure:

For eg:

struct example

{

 int integer;

 float floating_numbers;

}

the size allocated here is
eof(int)+sizeof(float);

where as in an union

Size Allocated to a Union:

For eg:

union example

{

 int integer;

 float floating_numbers;

}

size allocated is the size of the highest
member.

so size is=sizeof(float);

 Advantage of union over structure

 ->Less	RAM	space	is	required	thus	fast	execution	of	program.	

 Disadvantage of union over structure

 ->If	 we	 use	 2	 or	more	 instance	 of	 single	 union	 the	 data	will	 be	 lost	 after	 data	 for	 second	
instance is entered.

72 ProgrAmming in c

4.8 BiTwiSe oPeRATionS

C	provides	 six	operators	 for	bit	manipulation;	 these	may	only	be	applied	 to	 integral	operands,	
that	 is,	 char	 ,	 short	 ,	 int	 ,	 and	 long.	The	bitwise operators of C a summarized in the following
table:

Table: Bitwise Operators

& Bitwise AND

| Bitwise Inclusive OR

^ Bitwise exclusive XOR

~ One’s Compliment

<< Left shift

>> Right Shift

 Do	not	confuse	&	with	&&:	&	is	bitwise	AND,	&&	logical	AND.	Similarly	for	|	and	||.	
 ∼ is a unary operator -- it only operates on one argument to right of the operator.
	 The	shift	operators	perform	appropriate	shift	by	operator	on	the	right	to	the	operator	on	the	
left.	The	right	operator	must	be	positive.	The	vacated	bits	are	 filled	with	zero	 (i.e.	There	 is	NO
wrap around).
	 For	example:	x	<<	2	shifts	the	bits	in	x	by	2	places	to	the	left.	
	 So:	
 if x	=	00000010	(binary)	or	2	(decimal)	
 then: x>>=2>x=00000000 or 0 (decimal)
	 Also:	if	x	=	00000010	(binary)	or	2	(decimal)	
 X<<=200001000 or 8 (decimal)
	 Therefore	a	shift	left	is	equivalent	to	a	multiplication	by	2.	
	 Similarly	a	shift	right	is	equal	to	division	by	2.
	 To	illustrate	many	points	of	bitwise	operators	 let	us	write	a	function,	Bit	count,	 that	counts	
bits	set	to	1	in	an	8	bit	number	(unsigned	char)	passed	as	an	argument	to	the	function.	
 int bitcount(unsigned char x)
 {
 int count;
 for (count=0; x != 0; x>>=1)
 if (x & 01)
 count++;
 return count;
 }
	 This	function	illustrates	many	C	program	points:	

• For loop not used for simple counting operation
• x>>=1 x = x >> 1
• For loop will repeatedly shift right x until x becomes 0
• Use expression evaluation of x & 01 to control if
• x & 01 masks of 1st bit of x if this is 1 then count++

ArrAys And structures And union 73

Bit Fields

Bit	Fields	allow	the	packing	of	data	in	a	structure.	This	is	especially	useful	when	memory	or	data	
storage	is	at	a	premium.	Typical	examples:	

• Packing several objects into a machine word. e.g. 1 bit flags can be compacted -- Symbol
tables in compilers.

 • Reading external file formats -- non-standard file formats could be read in. e.g. 9 bit
integers.

	 C	lets	us	do	this	in	a	structure	definition	by	putting:	bit	length after the variable. i.e.
 struct packed_struct
 {
 unsigned int f1:1;
 unsigned int f2:1;
 unsigned int f3:1;
 unsigned int f4:1;
 unsigned int type:4;
 unsigned int funny_int:9;
 } pack;

Here	 the	packed_struct	 contains	 6	members:	 Four	 1	 bit	 flags	 f1..f3,	 a	 4	 bit	 type	 and	 a	 9	 bit	
funny_int.

4.9 uSeR DeFineD DATA TYPe

C Language supports a feature known as “type definition” that allows users to define an identifier
that	would	represent	an	existing	data	type.	The	user	defined	data	type	identifier	can	later	be	used	
to	declare	variables.	It	takes	the	general	form:

typedef type identifier;

	 Eg:	typedef	int	units;

LeT uS SuMMARiSe
 • Array is a group of related data items, that share a common name with same data type.

 • A list of items group in a single variable name with only one index is called 1- D array.

 • A list of items group in a single variable name with two indexes (row and column size) is called
2-D array.

 • A structure definition contains a keyword struct and a user defined tag-filed.

 • Structure is a collection of various data types. Or it is defined as a data type to represent several
different types of data with a single name.

 • Structure declaration means combining template declarations and variable declarations.

 • Member operator or dot operator is used to establish a link between member in a structure an
structure variable.(‘ . ‘).

 • A self referential structure is used to create data structures like linked lists, stacks, etc

 • Unions are derived data type. Union data type is similar to structure. The main advantage of union
is they conserve memory.

74 ProgrAmming in c

ReView QueSTionS
 1. What is arrays?

 2. Define one dimensional arrays.

 3. Define 2-D array.

 4. How to initialize 1-D array?

 5. Define Structure.

 6. What is union?

 7. Difference between Structure and Union.

exeRCiSeS
 1. Write a C Program to display character array with their address.

 2. Write a C Program to print string in the reverse order.

 3. Write a C program to define a structure and initialize its number variables.

75

5.1 POiNTERs

A pointer is a variable which contains the address in memory of another variable. Or A pointer is
a data object that contains the address of another object.

 Pointer declaration

 A pointer is a variable that contains the memory location of another variable in which data is
stored. Using pointer, you start by specifying the type of data stored in the location. The asterisk
helps to tell the compiler that you are creating a pointer variable. Finally, you have to give the
name of the variable. The address operator & is used to get the address of any data object and it
is stored in pointer type data object.

5.1.1 Accessing the Address of the Variable

The address operator & is used to get the address of any data object and it is stored in pointer
type data object.

P=& quantity
 In this statement, the address of variable memory quantity (5000) is assigned to the pointer
variable p.

Example
 #include<stdio.h>
 main()
 {
 char a;
 Int s;
 fl oat b;
 a=’R’;
 s=100;
 b=14.75;
 printf(“%c is stored at address %u\n”,a,&a);
 printf(“%d is stored at address %u\n”,a,&s);
 printf(“%f is stored at address %u\n”,a,&b);
 }

CHAPTER 5
POINTERS AND FILES

76 Programming in C

The output of the above program is as follows:
 R is stored at address 5083
 100 is stored at address 5076
 14.75 is stored at address 5041

5.1.2 Declaring and initializing Pointers

The address of a variable can be stored in another variable called the pointer variable. Pointer
variable can be declared as below:

Datatype * pointer variable name;

 Example

Int *p;
 In the above example, the declaration p is declared as pointer variable denoting integer data
type. P can be made to point an integer variable using assignment statement.
 P=&quantity;
 In this example the address of variable quantity is assigned to p. This is called pointer
initialization.

5.1.3 Accessing a Variable Through its Pointer

After assigning the address of a variable to a pointer variable that variable value can be accessed
the pointer variable using the unary operator*(asterisk) as below:

Int quantity,*p,n;
 Quantity=150;
 P=&quantity;
 N=*p;
 In the above example, the two statements,
 P=&quantity;
 N=*p;
 Are equivalent to n=*&quantity(or) n=quantity.

5.1.4 Pointer Operators

C provides two special pointer operators to manipulate the data items directly form the memory
location.

• Address operator (&) –The address operator & gives the ``address of a variable’’.
• Indirection operator(*) - The indirection or dereference operator * gives the ``contents of

an object pointed to by a pointer’’.

5.2 OPERATiONs ON POiNTERs

Pointer Arithmetic and Pointer Expression

Pointer variables can be used in expression of C language similar to other variables. For example
let us assume p1 and p2 are declared as pointer variable and are initialized.

Y=*p1 *p2(*p1)(*p2)

Pointers and Files 77

 In expressions, like other variables pointer variables can be used. For example if p1 and p2
are properly initialized and declared pointers, then the following statements are valid.

y=*p1**p2;

sum=sum+*p1;

z= 5* – *p2/p1;

*p2= *p2 + 10;

 C allows us to subtract integers to or add integers from pointers as well as to subtract one
pointer from the other. We can also use shorthand operators with pointers p1+=; sum+=*p2; etc.,
By using relational operators, we can also compare pointers like the expressions such as p1 >p2 ,
p1==p2 and p1!=p2 are allowed.

 Example

 /* a programs to display the memory address of a variable using pointer and to add with an
integer quantity with pointer and to display the content of the pointer */
 #include<stdio.h>
 main()
 {

int x;
int *ptr1,*ptr2;
x=10;
ptr1=&x;
ptr2=ptr1+6;
printf(“value of x=%d\n”,x);
printf(“content of ptr1=%d\n”,*ptr1);
printf(“address of ptr1=%u\n”,ptr1);
printf(“adress of ptr2=(ptr+6)=%u\n”,ptr2);
printf(“contents of ptr2=%d\n”,*ptr2);

 }
 /* end */value of x=10
 content of ptr1=10
 address of ptr1=65496
 address of ptr2=(ptr+6)=65508
 contents of ptr2=-24

5.3 ARRAYs OF POiNTERs

The way there can be array of int’s or an array of floats, similarly, there can be an arrays of
pointers. Since a pointer variable always contains an address, an array of pointers would be
nothing but a collection of addresses. The addresses present in the array of pointers can be
addresses of variables or addresses of array elements or any other addresses.

Example

#include<stdio.h>
 main()
 {

78 Programming in C

 int *arr[4];
 int i=3,j=5,k=7,m=9,n;
 arr[0]=&i;

arr[1]=&j;
arr[2]=&k;
arr[3]=&m;
for(n=0;n<=3;n++)
{
 printf(%d”,(arr[n]));
}

 }

5.4 POiNTERs TO FUNCTiONs

A useful technique is the ability to have pointers to functions. Their declaration is easy: write the
declaration as it would be for the function, say

int func(int a, fl oat b);

and simply put brackets around the name and a * in front of it: that declares the pointer. Because
of precedence, if you don’t parenthesize the name, you declare a function returning a pointer:
 /* function returning pointer to int */

int *func(int a, float b);

 /* pointer to function returning int */
 int (*func)(int a, float b);

 Once you’ve got the pointer, you can assign the address of the right sort of function just
by using its name: like an array, a function name is turned into an address when it’s used in an
expression. You can call the function using one of two forms:
 (*func)(1,2);
 /* or */
 func(1,2);
 The second form has been newly blessed by the Standard. Here’s a simple example.
 #include <stdio.h>
 #include <stdlib.h>
 void func(int);
 main(){
 void (*fp)(int);
 fp = func;
 (*fp)(1);
 fp(2);
 exit(EXIT_SUCCESS);
 }
 Void func(int arg){
 printf(“%d\n”, arg);
 }

Pointers and Files 79

5.5 POiNTERs AND ARRAYs

Pointers and arrays are very closely linked in C. Consider the following:
 int a[10], x;
 int *pa;
 pa = &a[0]; /* pa pointer to address of a[0] */
 x = *pa;
 /* x = contents of pa (a[0] in this case) */

++papa

0

a

9

pa+i

1

Figure 5.1: Arrays and Pointers

 To get somewhere in the array (Fig.) using a pointer we could do:
pa + i ≡ a[i]

 There is no bound checking of arrays and pointers so you can easily go beyond array
memory and overwrite other things.

 C however is much more subtle in its link between arrays and pointers.
 For example we can just type

pa = a;
instead of pa = &a[0]

 and a[i] can be written as *(a + i). i.e. &a[i] ≡ a + i.
 We also express pointer addressing like this: pa[i] ≡ *(pa + i).

 Example

#include<stdio.h>
 main{}
 {
 int *p,sum,I;
 Static int x[5]={5,9,6,3,7};
 i=0;
 p=x;
 printf(“Element value address”);
 while(i<5)
 {
 printf(x{%d]%d%u”,I,*p,p);
 Sum=sum+*p;
 I++;p++;
 }
 prinf(“sum=%d”,sum);
 prinf(&x[0]=%u”,&x[0]);
 printf(“p=%u”,p);
 }

80 Programming in C

5.6 POiNTERs AND sTRUCTUREs

These are fairly straight forward and are easily defined. Consider the following:
 struct COORD {float x,y,z;} pt;
 struct COORD *pt_ptr;

pt_ptr = &pt; /* assigns pointer to pt */
 the ->operator lets us access a member of the structure pointed to by a pointer. i.e.:
 pt_ptr->x = 1.0;
 pt_ptr->y = pt_ptr->y - 3.0;

 Example: Linked Lists

 typedef struct
 {
 int value;
 ELEMENT *next;
 } ELEMENT;

 ELEMENT n1, n2;
 n1.next = &n2;

Value *next Value *next

n1 n2

Figure 5.2: Linking Two Nodes

 We can only declare next as a pointer to ELEMENT. We cannot have a element of the
variable type as this would set up a recursive definition which is not allowed. We are
allowed to set a pointer reference since 4 bytes are set aside for any pointer.

5.7 POiNTERs AND FUNCTiON

In a function declaration, the pointer are very much used. Sometimes, only with a pointer a
complex function can be easily represented and success. In a function definition, the usage of the
pointers may be classified into two groups:
 1. Call by reference
 2. Call by value.

5.7.1 Call by Value

 We have seen that there will be a link established between the formal and actual parameters
when a function is invoked. As soon as temporary storage is created where the value of actual
parameters is stored. The formal parameters picks up its value from storage area the mechanism
of data transfer between formal and actual parameters allows the actual parameters mechanism of
data transfer is referred as call by value. The corresponding formal parameter always represents
a local variable in the called function. The current value of the corresponding actual parameter
becomes the initial value of formal parameter. In the body of the actual parameter, the value of
formal parameter may be changed. In the body of the subprogram, the value of formal parameter

 Pointers and Files 81

may be changed by assignment or input statements. This will not change the value of the actual
parameters.

 Example

 #include< stdio.h >
 void main()
 {
 int x,y;
 x=20;
 y=30;
 printf(”\n Value of a and b before function call =%d %d”,a,b);
 fncn(x,y);
 printf(”\n Value of a and b after function call =%d %d”,a,b);
 }
 fncn(p,q)
 int p,q;
 {
 p=p+p;
 q=q+q;

 }

5.7.2 Call by Reference

The address should be pointers, when we pass address to a function the parameters receiving. By
using pointers, the process of calling a function to pass the address of the variable is known as
call by reference. The function which is called by reference can change the value of the variable
used in the call.

 Example

 #include< stdio.h >
 void main()
 {
 int x,y;
 x=20;
 y=30;
 printf(”\n Value of a and b before function call =%d %d”,a,b);
 fncn(&x,&y); printf(”\n Value of a and b after function call =%d

%d”,a,b);
 }
 fncn(p,q)
 int p,q;
 {
 *p=*p+*p;
 *q=*q+*q;

 }

82 Programming in C

5.8 DYNAMiC MEMORY ALLOCATiON

Dynamic allocation is a pretty unique feature to C. It enables us to create data types and structures
of any size and length to suit our programs need within the program.
 We will look at two common applications of this:
 • Dynamic arrays
 • Dynamic data structure e.g. linked lists

Malloc, Sizeof, and Free

The Function malloc is most commonly used to attempt to ``grab'' a continuous portion of
memory. It is defined by:

void *malloc(size_t number_of_bytes)
 That is to say it returns a pointer of type void * that is the start in memory of the reserved
portion of size number_of_bytes. If memory cannot be allocated a NULL pointer is returned.
 Since a void * is returned the C standard states that this pointer can be converted to any type.
The size_t argument type is defined in stdlib.h and is an unsigned type.

char *cp;
cp = malloc(100);

 Attempts to get 100 bytes and assigns the start address to cp.
 Also it is usual to use the sizeof() function to specify the number of bytes:

int *ip;
ip = (int *) malloc(100*sizeof(int));

Some C compilers may require to cast the type of conversion. The (int *) means coercion to an
integer pointer. Coercion to the correct pointer type is very important to ensure pointer arithmetic
is performed correctly. I personally use it as a means of ensuring that I am totally correct in my
coding and use cast all the time.
 It is good practice to use size of () even if you know the actual size you want -- it makes for
device independent (portable) code.
 Sizeof can be used to find the size of any data type, variable or structure. Simply supply one
of these as an argument to the function.

int i;
struct COORD {float x,y,z};
typedef struct COORD PT;
sizeof(int), sizeof(i),
sizeof(struct COORD) and
sizeof(PT) are all ACCEPTABLE

 In the above we can use the link between pointers and arrays to treat the reserved memory
like an array. i.e we can do things like:

ip[0] = 100;
or

for(i=0;i<100;++i) scanf("%d",ip++);

Pointers and Files 83

 When you have finished using a portion of memory you should always free() it. This allows
the memory freed to be available again, possibly for further malloc() calls.
 The function free() takes a pointer as an argument and frees the memory to which the pointer
refers.

5.9 COMMAND LiNE iNPUT OR ARGUMENTs

C lets read arguments from the comma nd line which can then be used in our programs.
 We can type arguments after the program name when we run the program.
 In order to be able to use such arguments in our code we must define them as follows:

main(int argc, char **argv)
 So our main function now has its own arguments. These are the only arguments main accepts.

• argc is the number of arguments typed -- including the program name.
• argv is an array of strings holding each command line argument -- including the program

name in the first array element.

 Example
 #include<stdio.h>
 main (int argc, char **argv)
 { /* program to print arguments from command line */
 int i;
 printf(``argc = %d’’,argc);
 for (i=0;i<argc;++i)
 printf(``argv[%d]: %s\n’’,i, argv[i]);
 }
 Assume it is compiled to run it as args.
 So if we type:
 args f1 ``f2’’ f3 4 stop!
 The output would be:
 argc = 6
 argv[0] = args
 argv[1] = f1
 argv[2] = f2
 argv[3] = f3
 argv[4] = 4
 argv[5] = stop!

5.10 FiLEs

A file is a collection of bytes stored on a secondary storage device, which is generally a disk of
some kind. The collection of bytes may be interpreted, for example, as characters, words, lines,
paragraphs and pages from a textual document; fields and records belonging to a database; or

84 Programming in C

pixels from a graphical image. The meaning attached to a particular file is determined entirely by
the data structures and operations used by a program to process the file. It is conceivable (and
it sometimes happens) that a graphics file will be read and displayed by a program designed to
process textual data.
 File is a collection of records. The basic data file operations are naming, opening, reading,
writing, and closing.

5.10.1 Creating a File

Creat() function is used to create a new file or to rewrite old files. The general form is
Int creat(“filename”,mode);

 Where,
 Int - return type
 Creat - function name
 Filename - name of the file
 Mode - octal control digit to specify the access rights of a
 File

 Example
 Int fc;
 Fc=create(“muc”,0754”);

5.10.2 Reading a File

Reading a file means reading data from the opened or created file in read or read/write mode.
The general format is

Int read(fc,buf,n);
 Where,
 Int - return type
 Read - function name
 Fc - name of the already created file
 Buf - name of temporary memory area
 N - size of the data to read in terms of byte.

 Example

 Char buf[100];
 Int I,fc;
 Fc=open(“muc”,0);
 I=read(fc,buf,100);

5.10.3 Writing a File

Writing a file means, writing data to a file opened or created in write or read/write mode. The
general format is

In write(fc,nuf,n);

 Pointers and Files 85

 Example

 Char buf[100];
 Int I,fc;
 Fc=open(“muc”,1);
 I=write(fc,buf,100);

5.10.4 Opening a File

A file should be opened before reading from it or writing onto it. The fopen() function is used to
open a stream or data file. If the file open operation is a success. The general format is

fopen(“fileopen”,mode);
 The fopen function requires two arguments of type string. The first argument refers to the
name of the file to be opened. The second refers to the mode, which specifies the purpose for
which the file is opened.

 Example

 #include <stdio.h>
int main()
{

char filename[80];
FILE *fp;
printf(“File to be opened? “);
scanf(“%79s”, filename);
fp = fopen(filename,”r”);

if (fp == NULL)
{

fprintf(stderr, “Unable to open file
%s\n”, filename);
return 1; /* Exit to operating system */

}
return 0;
}

5.10.5 Closing a File

A file is closed when all the input/output operations are complemented close a file which has
been opened for use. The general format is

int fclose(file,*fp);

 Example

 file *p1,*p2;

 P1=fopen(“muc.txt”,”r”);

86 Programming in C

 P2=fopen(“sal.txt”,”w”);

 fclose(p1);

 fclose(p2);

5.11 OPERATiONs ON FiLEs

getc() and putc() functions are used to read or output a character similar to getchar and putchar
functions. getchar reads character from the standard input unit. Putchar displays character from
standard output unit. But getc is used to read a character form a file and putc routine is used to
write a character into a file.

 Example

Write a C program to open the file for reading.
 #include<stdio.h>
 main()
 {
 fi le *fp;
 char a[50];
 fp=fopen(“muc.txt”,”r”);
 if(fp==NULL)
 {
 puts(“Cannot open a fi le”);
 exit();
 }
 while(fgets(s,79,fp)!=NULL)
 printf(“%s”,s);
 fclose(fp);
 }

LET Us sUMMARisE
 • A pointer is a variable which contains the address in memory of another variable.

 • To get the address of memory location allocated to a variable address operator(&) can be used.

 • The address of a variable can be stored in another variable called the pointer variable.

 • After assigning the address of a variable to a pointer variable that variable value can be accessed
the pointer variable using the unary operator.

 • C provides two special pointer operators to manipulate the data items directly form the memory
location.

REViEW QUEsTiONs
 1. Define Pointer.

 2. How declaring a pointer?

 Pointers and Files 87

 3. What is indirect operator?

 4. What is & operator?

 5. List the operation on pointers.

ExERCisEs
 1. Write a C program to display the address of the variable.

 2. Write a C program to print element and its address using pointer.

 3. Write a C program to add two numbers through variables and their pointers.

 4. Write a C program to write data to text file and read it.

88

 1. Summation of Series: Sin(x) (Compare with built in functions)
 /* Sine Series*/
 #include<stdio.h>

 #include<conio.h>

 main()

 {

 float x,sum,term,y;

 int n,i;

 clrscr();

 printf(“\n Enter the value of x=”);

 scanf(“%f”,&x);

 y=x;

 printf(“\n Enter the no of terms=”);

 scanf(“%d”,&n);

 x=(x*3.1412)/180.0;

 sum=x; term=x;

 for(i=1;i<=n;i++)

 {

 term=(term*(-1)*x*x)/((2*i)*(2*i+1));

 sum=sum+term;

 }

 printf(“\n The sine series for x=%f =%10.6f”,y,sum);

 getch();

 }

 OUTPUT

AppnedixI
Thiruvalluvar universiTy

(PracTical exercises)

 Appendix i 89

 Enter the value of x=30

 Enter the no of terms=2

 The sine series for x=30.00000 = 0.499945

 2. Summation of Series Cos(x) (Compare with built in functions)
 /*Cosine Series */

 #include<stdio.h>

 #include<conio.h>

 main()

 {

 float x,sum=1,term=1,y;

 int n,i;

 clrscr();

 printf(“\n Enter the value of x=”);

 scanf(“%f”,&x);

 y=x;

 printf(“\n Enter the no of terms=”);

 scanf(“%d”,&n);

 x=(x*3.1412)/180.0;

 for(i=1;i<=n;i++)

 {

 term=(term*(-1)*x*x)/((2*i)*(2*i-1));

 sum=sum+term;

 }

 printf(“\n The cos series for x=%f = %10.6f”,y,sum);

 getch();

 }

 OUTPUT

 Enter the value of x=30

 Enter the no of terms=2

 The cos series for x=30.000000 = 0.866087
 3. Counting the no. of vowels, consonants, words, white spaces in a line of text and array

of lines
 /* Counting vowels of given text * /
 #include<stdio.h>

 #include<conio.h>

 main()

 {

 char s[50];

 int i,c=0,w=1,v=0,len;

90 progrAmming in C

 clrscr();

 printf(“\nEnter the text: “);

 gets(s);

 len=strlen(s);

 for(i=0;i<len;i++)

 {

 switch(toupper(s[i]))

 {

 case ‘A’:

 case ‘E’:

 case ‘I’:

 case ‘O’:

 case ‘U’: v++; break;

 case ‘ ‘: w++; break;

 default : c++; break;

 }

 }

 printf(“\nThe given text: %s”,s);

 printf(“\nThe no. of vowels: %d”,v);

 printf(“\nThe no. of consonant: %d”,c);

 printf(“\nThe no. of words: %d”,w);

 printf(“\nThe no. of spaces: %d”,w-1);

 getch();

 }

 OUTPUT

 Enter the text: shiek shafi

 The given text: shiek shafi

 The no. of vowels: 4

 The no. of consonant: 6

 The no. of words: 2

 The no. of spaces: 1

 4. Reverse a string & check for palindrome.
 /*Checking Palindrome of given string*/
 #include<stdio.h>

 #include<conio.h>

 #include<string.h>

 main()

 {

 Appendix i 91

 int i,j,flag;

 char *s;

 clrscr();

 printf(“\nEnter a string: “);

 gets(s);

 i=0;

 j=strlen(s);

 j=j-1;

 while(i<j&&flag)

 {

 if(s[i]!=s[j])

 flag=0;

 i++;

 j--;

 }

 printf(“\nThe given string is: %s”,s);

 flag?printf(“\nPalindrome”):printf(“\nNot Palindrome”);

 getch();

 }

 OUTPUT

 Enter the string: liril

 The given string is: liril

 Palindrome

 Enter the string: hamam

 The given string is: hamam

 Not Palindrome

 5. nPr, nCr in a single program.
 #include <stdio.h>
 #include <conio.h>

 long double fact(int p)

 {

 long double prod = 1;

 int i;

 for(i = 1; i<= p; i++) // multiply ‘i’ with prod where ‘i’ varies
from 1 to n

 prod = prod * i;

 return(prod); // n! factorial is returned

 }

 int ncr (int n, int r)

92 progrAmming in C

 {

 return(fact(n) / (fact(r) * fact(n- r))) ; // return ncr results

 }
 long npr(int n , int r)

 {

 return(fact(n) / fact(n- r)); // return npr result

 }

 main()

 {

 int n , r, ncr(int , int);

 long npr(int , int);

 long double fact(int);

 printf(“ enter value of n & r \n”);

 scanf(“%d %d”,&n , &r);

 if(n>= r) // test user entered inputs are valid or not

 {

 printf(“ ncr is %d\n”, ncr(n , r)); // display results of ncr and npr
 printf(“ npr is %ld”, npr(n, r));
 }

 else

 printf(“ n cannot be less than r”);

 getch();

 }

 6. GCD of two Numbers
 /*Finding GCD of two values*/

 #include<stdio.h>

 #include<conio.h>

 main()

 {

 int a,b,gcd,t1,t2;

 clrscr();

 printf(“\nEnter two values:\n”);

 scanf(“%d%d”,&a,&b);

 t1=a; t2=b;

 gcd=mygcd(a,b);

 printf(“\nGiven values are: a=%d, b=%d”,t1,t2);

 printf(“\n\nGCD = %d”,gcd);

 getch();

 }

 Appendix i 93

 int mygcd(int a,int b)

 { int r;

 r=a%b;

 if(r==0)

 return b;

 else

 mygcd(b,r);

 }

 OUTPUT

 Enter two values:

 15

 25

 Given values are: a=15, b=25

 GCD = 5

 7. Bubble Sort
 /*Bubble Sort*/
 #include<stdio.h>

 #include<conio.h>

 main()

 { int a[]={10,25,5,70,45};

 int n=5,i,j,temp;

 clrscr();

 printf(“\n BUBBLE SORT”);

 printf(“\nThe given values are:”);

 for(i=0;i<n;i++)

 printf(“%5d”,a[i]);

 for(i=0;i<n-1;i++)

 for(j=0;j<n-1;j++)

 if(a[j] > a[j+1])

 { temp=a[j];

 a[j]=a[j+1];

 a[j+1]=temp;

 }

 printf(“\nThe sorted numbers are:”);

 for(i=0;i<n;i++)

 printf(“%5d”,a[i]);

 getch();

 }

94 progrAmming in C

 OUTPUT

 BUBBLE SORT

 The given values are: 10 25 5 70 45

 The sorted numbers are:5 10 25 45 70

 8. Linear Search
 /* Linear Search*/
 #include<stdio.h>

 #include<conio.h>

 main()

 {

 int a[]={12,27,5,83,94,36,72,11,54,43};

 int i=0,n=10,x,found=0;

 clrscr();

 printf(“\n Enter a Number to search : “);

 scanf(“%d”,&x);

 while(i<n&&!found)

 if(a[i++]==x)

 found=1;

 found?

 printf(“\t%d : is found”,x):printf(“\t%d: not found”,x);

 getch();

 }

 OUTPUT

 Enter a Number to search :

 94

 94 : is found

 Enter a Number to search :

 100

 100 : is not found.

 9. Demonstration of pointer arithmetic.
 /* a program to display the memory address of a variable using pointer and to add with

an integer quantity with pointer and to display the content of the pointer */
 #include<stdio.h>
 main()

 {

 int x;

 int *ptr1,*ptr2;

 x=10;

 Appendix i 95

 ptr1=&x;

 ptr2=ptr1+6;

 printf(“value of x=%d\n”,x);

 printf(“content of ptr1=%d\n”,*ptr1);

 printf(“address of ptr1=%u\n”,ptr1);

 printf(“adress of ptr2=(ptr+6)=%u\n”,ptr2);

 printf(“contents of ptr2=%d\n”,*ptr2);

 }

 /* end */

 OUTPUT

 value of x=10

 content of ptr1=10

 address of ptr1=65496

 adress of ptr2=(ptr+6)=65508

 contents of ptr2=-24

 10. Find the maximum and minimum number of a set
 #include<stdio.h>
 main()

 {

 int a[50],max,min,n;

 printf(“enter the noof digits\n”);

 scanf(“%d”,&n);

 printf(“\nenter the numbers”);

 for(i=0;i<n;i++)

 {

 scanf(“%d”,&a[i]);

 }

 max=a[0];

 min=a[0];

 for(i=1;i<n;i++)

 {

 if(max<a[i])

 max=a[i];

 if(min>a[i])

 min=a[i];

 }

 printf(“\n max is %d \n min is %d”,max ,min);

 }

96 progrAmming in C

 11. Merge two arrays of integers both with their elements in ascending order into a single
ordered array.

 /* Program to merge two sorted arrays */
 #include<stdio.h>
 int merge(int[],int[],int[],int,int);

 main()

 {

 int a[20],b[20],c[40],n,m,i,p;

 printf(“\nEnter the no.of element present in the first array: “);

 scanf(“%d”,&n);

 printf(“\nEnter the first array…….\n”);

 for(i=0;i<n;i++)

 scanf(“%d”,&a[i]);

 printf(“\nEnter the no. of element present in the second array: “);

 scanf(“%d”,&m);

 printf(“\nEnter the second array…….\n”);

 for(i=0;i<m;i++)

 scanf(“%d”,&b[i]);

 p=merge(a,b,c,n,m);

 printf(“\nThe merged array is………\n”);

 for(i=0;i<p;i++)

 printf(“%d “,c[i]);

 printf(“\n\n”);

 }

 int merge(int a[],int b[],int c[],int n,int m)

 {
 int i=0,j=0,k=0;

 while(i<n&&j<m)

 {

 if(a[i]<b[j])

 {

 c[k]=a[i];

 i++; k++;

 }

 else if(a[i]>b[j])

 {

 c[k]=b[j];

 j++; k++;

 }

 else // to avoid duplication

 Appendix i 97

 {

 c[k]=a[i];

 i++; j++; k++;

 }

 }

 for(;i<n;i++,k++)

 c[k]=a[i];

 for(;j<m;j++,k++)

 c[k]=b[j];

 return k;

 }

 1. Write a program to find the largest number and smaller number by using if statement
 #include<stdio.h>

 main()

 {

 int c1,c2,c3;

 printf(“enter values of c1,c2,and c3”);

 scanf(“%d%d%d”,&c1,&c2,&c3);

 if((c1<c2)&&(c1<c3))

 printf(“\n c1 is less than c2 and c3”);

 if(!(c1<c2))

 printf(“\n c1 is greater than c2”);

 if((c1<c2)||(c1<c3))

 printf(“\n c1 is less than c2 or c3 or both”);

 }

 2. Write a program to convert the decimal to binary conversion by using while statement
 #include <stdio.h>

 #include <math.h>

 int getBinary(int);

 int main(void)

 {

 int integer;

 printf(“Enter decimal [base 10] integer: “);

 scanf(“%d”, &integer);

 getBinary(integer);

 return(0);

 }

AppnedixII
Periyar universiTy

(PracTical exercises)

98

 Appendix ii 99

 int getBinary(int integer)

 {

 int remainder;

 while (integer > 0)

 {

 remainder = integer % 2;

 printf(“%d”, remainder);

 integer = integer / 2;

 }

 printf(“\n”);

 return(integer);

 }

 3. Write a program to count the positive, negative & zero numbers.
 #include<stdio.h>
 #include<conio.h>

 #define size 15

 void main()

 {

 int input[size],i,neg=0,pos=0,zro=0;

 clrscr();

 printf(“how many elements you want enter(should be less than %d:”,size);

 scanf(“%d”,&n);

 printf(«enter elements into array:\n»);

 for(i=0;i<n;i++)

 scanf(«%d»,&input[i]);

 for(i=0;i<n;i++)

 {

 if(input[i]>0)

 pos++;

 if(input[i]<0)

 neg++;

 if(input[i]==0)

 zro++;

 }

 printf(«number of positive elements:%d\n»,pos);

 printf(«number of negetive elements:%d\n»,neg);

 printf(«number of zero elements:%d\n»,zro);

 getch();

 }

100 progrAmming in C

 4. Write a program to check whether a given number is a prime or not.
 include<stdio.h>
 int main(){

 int num,i,count=0;

 printf(“Enter a number: “);

 scanf(“%d”,&num);

 for(i=2;i<=num/2;i++){

 if(num%i==0){

 count++;

 break;

 }

 }

 if(count==0 && num!= 1)

 printf(“%d is a prime number”,num);

 else

 printf(“%d is not a prime number”,num);

 return 0;

 }

 5. Write a program to display the Fibonacci series.
 #include<stdio.h>
 int main(){

 int k,r;

 long int i=0l,j=1,f;

 //Taking maximum numbers form user

 printf(“Enter the number range:”);

 scanf(“%d”,&r);

 printf(“FIBONACCI SERIES: “);

 printf(“%ld %ld”,i,j); //printing firts two values.

 for(k=2;k<r;k++){

 f=i+j;

 i=j;

 j=f;

 printf(“ %ld”,j);

 }

 return 0;

 }

 6. Write a program to concatenate two strings without using string library function.
 #include<stdio.h>
 #include<conio.h>

 Appendix ii 101

 void main()

 {

 char a[10],b[10],c[40];

 int i,j;

 clrscr();

 printf(“\n\nENTER FIRST STRING:”);

 gets(a);

 printf(“\n\nENTER SECOND STRING:”);

 gets(b);

 for(i=0;a[i]!=’\0’;i++)

 c[i]=a[i];

 for(j=0;a[j]!=’\0’;j++)

 {

 c[i]=b[j];

 i++;

 }

 c[i]=’\0’;

 printf(“\n\nTHE COMBINED STRING IS:”);

 puts(c);

 getch();

 }

 7. Write a program to count the number of vowels, consonants, and digits in a line of
Text.

 #include<stdio.h>
 #include<conio.h>

 main()

 {

 char s[50];

 int i,c=0,w=1,v=0,len;

 clrscr();

 printf(“\nEnter the text: “);

 gets(s);

 len=strlen(s);

 for(i=0;i<len;i++)

 {

 switch(toupper(s[i]))

 {

 case ‘A’:

 case ‘E’:

 case ‘I’:

102 progrAmming in C

 case ‘O’:

 case ‘U’: v++; break;

 case ‘ ‘: w++; break;

 default : c++; break;

 }

 }

 printf(“\nThe given text: %s”,s);

 printf(“\nThe no. of vowels: %d”,v);

 printf(“\nThe no. of consonant: %d”,c);

 printf(“\nThe no. of words: %d”,w);

 printf(“\nThe no. of spaces: %d”,w-1);

 getch();

 }

 8. Write a program to reverse a String.
 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i=0;

 char str[10];

 clrscr();

 printf(“Enter the string:”);

 scanf(“%c”,str);

 while(str[i]!=’\0’)

 i++;

 for(i=0;str[i]!=’\0’;i++)

 {

 str1[j]=str[i];

 j++;

 }

 str1[j]=’\0’;

 printf(“Reverse of a given string:”,str1);

 getch();

 }

 9. Write a program to design the calculator functions as (i) Addition (ii) Subtraction &
(iii) Multiplication function.

 #include<stdio.h>

 /*Function for Addition*/

 add(int a,int b)

 {

 Appendix ii 103

 clrscr();

 c=a+b;

 return(c);

 }

 /*Function for Subtraction*/

 sub(int a,int b);

 {

 clrscr();

 c=a-b;

 return(c);

 }

 /*Function for Multiplication*/

 mul(int a,int b)

 {

 clrscr();

 c=a*b;

 return(c);

 }

 /*Function Main*/

 main()

 {

 int choice,n1,n2,ans;

 clrscr();

 printf(“Please Choose : \n”);

 printf(“1.Addition\n2.Subtraction\n3.Multiplication”);

 scanf(“%d”,choice);
 printf(“\nPlease enter First Number for Calculation : “);

 scanf(“%d”,n1);

 printf(“\nEnter the Second Number for Calculation : “);

 if(choice==1)

 {

 ans=add(n1,n2);

 printf(“The Answer is :%d”,ans);

 }

 else if(choice==2)

 {

 ans=sub(n1,n2);

 printf(“The Answer is :%d”,ans);

 }

104 progrAmming in C

 else if(choice==3)

 {

 ans=mul(n1,n2);

 printf(“The Answer is :%d”,ans);

 }

 /*If all these are not selected*/

 else

 {

 printf(“Out Of Range”);

 }

 getch();

 }

 10. Write a program to find the factorial of a number using recursion.
 #include<stdio.h>

 int fact(int);

 int main(){

 int num,f;

 printf(“\nEnter a number: “);

 scanf(“%d”,&num);

 f=fact(num);

 printf(“\nFactorial of %d is: %d”,num,f);

 return 0;

 }

 int fact(int n){

 if(n==1)

 return 1;

 else

 return(n*fact(n-1));

 }

 11. Write a program for ascending order of given N Numbers.
 #include<stdio.h>

 #include<conio.h>

 void main()

 {

 int i,arr[20],num,min,temp,j;

 clrscr();

 printf(“\nEnter the num’s of element to sorted in ascending order “);

 scanf(“%d”,&num);

 printf(“enter %d num’s”,num);

 Appendix ii 105

 for(i=0;i<num;i++)

 {

 scanf(“%d”,&arr[i]);

 }
 printf(“\nur orignal list\n”);

 for(i=0;i<num;i++)

 {

 printf(“ %d”,arr[i]);

 }
 for(i=0;i<num;i++)

 {
 min=i;

 for(j=i+1;j<num;j++)

 {

 if(arr[min]>arr[j])

 min=j;

 }

 if(min!=i)

 {

 temp=arr[i];

 arr[i]=arr[min];

 arr[min]=temp;

 }

 }

 printf(“\nur sorted list\n”);

 for(i=0;i<num;i++)

 {

 printf(“ %d”,arr[i]);

 }

 getch();

 }

 12. Write a program to separate odd and even numbers using file.
 #include<stdio.h>

 #include<math.h>

 void main()

 {

 FILE *all,*even,*odd;

 int number,i,records;

 printf(“input the total number of records that u want to enter”);

 scanf(“%d”,& records);

106 progrAmming in C

 all=fopen(“ANYNUMBER”,”w”);

 for(i=1;i<=records;i++)

 {

 scanf(“%d”,&number);

 if(number==-1)break;

 putw(number,all);

 }

 fclose(all);

 all=fopen(“ANYNUMBER”,”r”);

 even=fopen(“EVENNUMBER”,”w”);

 odd=fopen(“ODDNUMBER”,”w”);

 while((number=getw(all))!=EOF)

 {

 if(number%2==0)

 putw(number,even);

 else

 putw(number,odd);

 }

 fclose(all);

 fclose(even);

 fclose(odd);

 even=fopen(“EVENNUMBER”,”r”);

 odd=fopen(“ODDNUMBER”,”r”);

 printf(“ THE EVEN NUMBERS ARE”);

 while((number=getw(even))!=EOF)

 printf(“ %4d”,number);

 printf(“ THE ODD NUMBERS ARE”);

 while((number=getw(odd))!=EOF)

 printf(“ %4d”,number);

 fclose(even);

 fclose(odd);

 }

107

A

Address operator 75
Arithmetic expressions 16
Arithmetic operators 8
Array 60
Assignment operators 11

B

Bitwise operators 13
Break 42

C

Character constants 4
Comma operator 14
Constant 4
Continue 43
Control statements 29

D

Data types 4
Decrement 12

E

Expression 16

F

File 83
Formal arguments 56
Function prototype 55
Functions 53

G

Global variable 7

I

Identifiers 3
Increment 12

K

Keywords 3

Index

L

Library Functions 18
Local variables 7
Logical expressions 17
Logical operator 10
Looping 37

N

Numeric constants 4

O

Operator 8

P

Passing arguments 56
Pointer 75
Preprocessor 21

R

Recursive 57
Relational expressions 16
Relational operators 9
Return 54

S

Self referential structure 68
Storage class 58
String 18
String constants 4
Structure 65

U

Unions 70
User defined function 53

V

Variable 5

	Contents
	CHAPTER1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	Index

