Practical C
Programming

B. M. Harwani

Practical C Programming

Solutions for modern C developers to create efficient and
well-structured programs

B. M. Harwani

BIRMINGHAM - MUMBAI

Practical C Programming

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the
accuracy of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri

Content Development Editor: Ruvika Rao
Senior Editor: Afshaan Khan

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Francy Puthiry
Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Production Designer: Arvindkumar Gupta

First published: February 2020
Production reference: 1140220
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83864-110-8

www.packt .com

https://www.packtpub.com/

To Guido van Rossum, the creator of the Python language. Python is not only very
commonly used for making real-time applications, web applications, and smartphone
applications, but is also used in Al, data learning, Internet of things (IoT), and much

more.

To my mom, Mrs Nita Harwani. She is next to God for me. Whatever I am today is
because of the moral values she taught me.

— Bintu Harwani

Packh

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packt .com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the author

B. M. Harwani is the founder of Microchip Computer Education, based in Ajmer,
India, which provides computer literacy in programming and web development to
learners of all ages. He further helps the community by sharing the knowledge and
expertise he's gained over 20 years of teaching by writing books. His recent
publications include jQuery Recipes, published by Apress, Introduction to Python
Programming and Developing GUI Applications with PyQT, published by Cengage
Learning, The Android Tablet Developer’s Cookbook, published by Addison-Wesley
Professional, UNIX and Shell Programming, published by Oxford University Press, and
Qt5 Python GUI Programming Cookbook, published by Packt.

About the reviewer

Nibedit Dey is a software engineer turned serial entrepreneur with over 9 years of
experience in building complex software-based products using C and C++. He has
been involved in developing new medical devices, oscilloscopes, advanced
showering systems, automotive dashboards, and infotainment systems. He is
passionate about cutting-edge technologies. Before starting his entrepreneurial
journey, he worked for L&T and Tektronix in different R&D roles. He has also
reviewed several books on C and C++ programming for Packt.

I would like to thank the online programming communities, bloggers, and my peers
from earlier organizations, from whom I have learned a lot over the years.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their insight with
the global tech community. You can make a general application, apply for a specific
hot topic that we are recruiting an author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

Chapter 1: Working with Arrays

Inserting an element in an array
How to do it...
How it works...
There's more...

Multiplying two matrices
How to do it...
How it works...
There’s more...

Finding the common elements in two arrays
How to do it...
How it works...

Finding the difference between two sets or arrays
How to do it...
How it works...

Finding the unique elements in an array
How to do it...
How it works...

Finding whether a matrix is sparse
How to do it...
How it works...
There's more...

Merging two sorted arrays into a single array
How to do it...
How it works...

Chapter 2: Managing Strings
Determining whether the string is a palindrome
How to do it...
How it works...

Finding the occurrence of the first repetitive character in a

string
How to do it...
How it works...
Displaying the count of each character in a string
How to do it...
How it works...
Counting vowels and consonants in a sentence

Table of Contents

How to do it...
How it works...
Converting the vowels in a sentence to uppercase
How to do it...
How it works...

Chapter 3: Exploring Functions

What is a stack?

Finding whether a number is an Armstrong number
How to do it...
How it works...

Returning maximum and minimum values in an array
How to do it...
How it works...

Finding the greatest common divisor using recursion
How to do it...
How it works...

Converting a binary number into a hexadecimal number
How to do it...
How it works...

Finding whether a number is a palindrome
How to do it...
How it works...

Chapter 4: Preprocessing and Compilation

Performing conditional compilation with directives
How to do it...
How it works...

Applying assertions for validation
How to do it...
How it works...

Using assertions to ensure a pointer is not pointing to NULL
How to do it...
How it works...

Catching errors early with compile-time assertions
How to do it...
How it works...

Applying stringize and token-pasting operators
How to do it...
How it works...

Chapter 5: Deep Dive into Pointers
What is a pointer?
Reversing a string using pointers
How to do it...
How it works...

63
65
66
67
69

70
71
72
73
75
79
79
82
85
85
87
88
88
92
96
97
100

103
104
104
107
110
110
111
113
113
115
116
116
118
119
119
122

124
124
128
128
130

[ii]

Table of Contents

Finding the largest value in an array using pointers
How to do it...
How it works...
Sorting a singly linked list
How to do it...
How it works...
Creating a singly linked list
Sorting the singly linked list
The first iteration

The second iteration
The third and fourth iterations

Finding the transpose of a matrix using pointers
How to do it...
How it works...
Accessing a structure using a pointer
How to do it...
How it works...

Chapter 6: File Handling
Functions used in file handling
Functions commonly used in sequential file handling
fopen()
fclose()
fgets()
fputs()
Functions commonly used in random files
fseek()
ftell()
rewind()
Reading a text file and converting all characters after the
period into uppercase
How to do it...
How it works...
Displaying the contents of a random file in reverse order
How to do it...
How it works...
Counting the number of vowels in a file
How to do it...
How it works...
Replacing a word in a file with another word
How to do it...
How it works...
Encrypting a file
How to do it...
How it works...
See also

[iii]

134
134
136
139
140
143
144
146
146

149
150

151
152
156
158
158
161

164
165
165
165
166
166
166
167
167
168
168

168
169
172
173
174
176
178
178
181
183
183
186
188
188
191
193

Table of Contents

Chapter 7: Implementing Concurrency

What are processes and threads?
Mutual exclusion

Performing a task with a single thread
How to do it...
How it works...

Performing multiple tasks with multiple threads
How to do it...
How it works...

Using mutex to share data between two threads
How to do it...
How it works...

Understanding how a deadlock is created
How to do it...
How it works...

Avoiding a deadlock
How to do it...
How it works...

Chapter 8: Networking and Inter-Process Communication
Communicating between processes using pipes
Creating and to connecting processes
pipe()
mkfifo()
write()
read()
perror()
fork()
One process, both writing and reading from the pipe
How to do it...
How it works...
One process writing into the pipe and another process reading from
the pipe
How to do it...
How it works...
Communicating between processes using FIFO
Writing data into a FIFO
How to do it...
Reading data from a FIFO
How to do it...
How it works...
Communicating between the client and server using socket
programming
Client-server model
struct sockaddr_in structure
socket()
memset()

194
194
195
197
198
199
200
200
202
203
204
207
209
209
213
215
215
219

221
222
222
222
223
223
223
224
224
224
225
226

227
227
228
229
229
229
231
231
232

232
233
233
234
235

[iv]

Table of Contents

htons()
bind()
listen()
accept()
send()
connect()
recv()
Sending data to the client
How to do it...
How it works...
Reading data that's been sent from the server
How to do it...
How it works...
Communicating between processes using a UDP socket
Using a UDP socket for server-client communication
bzero()
INADDR_ANY
sendto()
recvfrom()
Await a message from the client and sending a reply using a UDP
socket
How to do it...
How it works...
Sending a message to the server and receiving the reply from the
server using the UDP socket
How to do it...
How it works...
Running Cygserver
Passing a message from one process to another using the
message queue
Functions used in IPC using shared memory and message queues
ftok()
shmget()
shmat()
shmdt()
shmctl()
msgget()
msgrcv()
msgsnd()
Writing a message into the message queue
How to do it...
How it works...
Reading a message from the message queue
How to do it...
How it works...
Communicating between processes using shared memory
Writing a message into shared memory
How to do it...

235
236
236
236
237
237
237
238
238
239
240
240
241
242
243
243
243
244
244

245
245
247

248
248
249
251

251
252
252
252
253
253
254
254
255
256
257
257
258
259
259
261
262

262
262

[v]

Table of Contents

How it works...

Reading a message from shared memory
How to do it...
How it works...

Chapter 9: Sorting and Searching
Searching for an item using binary search
How to do it...
How it works...
Arranging numbers in ascending order using bubble sort
How to do it...
How it works...
Arranging numbers in ascending order using insertion sort
How to do it...
How it works...
Arranging numbers in ascending order using quick sort
How to do it...
Quick sort
FindingPivot
How it works...
Arranging numbers in descending order using heap sort
How to do it...
Creating a max-heap
Deleting the max-heap
How it works...
See also

Chapter 10: Working with Graphs
Types of graphs
Directed graphs
Undirected graphs
Creating an adjacency matrix representation of a directed
graph
How to do it...
How it works...

Creating an adjacency matrix representation of an undirected

graph
How to do it...
How it works...

Creating an adjacency list representation of a directed graph

How to do it...
How it works...
Carrying out the breadth-first traversal of a graph
How to do it...
How it works...
Carrying out the depth-first traversal of a graph

263
264
264
265

267
268
268
270
274
274
276
281
281
282
287
287
287
288
291
299
300
300
300
303
310

311
312
312
313

314
315
317

318
319
320
322
323
326
331
332
335
339

[vil

Table of Contents

How to do it...
How it works...
Creating minimum spanning trees using Prim's algorithm
How to do it...
How it works...
Displaying the adjacency linked list
Creating the minimum spanning tree
Creating minimum spanning trees using Kruskal's algorithm
How to do it...
How it works...

Chapter 11: Advanced Data Structures and Algorithms
Stack
Doubly linked lists (two-way linked lists)
Circular linked lists
Binary tree
Binary search trees
Traversing trees
Implementing a stack using a singly linked list
How to do it...
How it works...
Implementing a doubly or two-way linked list
How to do it...
How it works...
Implementing a circular linked list
How to do it...
How it works...
Creating a binary search tree and performing an inorder
traversal on it recursively
How to do it... — binary tree
How to do it... — inorder traversal of the tree
How it works... — binary tree
How it works... — inorder traversal of the tree
Performing postorder traversal of a binary tree non-recursively
Getting started
How to do it...
How it works...
See also

Chapter 12: Creativity with Graphics
List of OpenGL functions
Drawing four graphical shapes

How to do it...
How it works...
Drawing a circle

339
342
346
346
353
355
356
360
360
365

368
368
369
370
371
371
372
373
373
375
380
380
384
389
389
392

397
397
398
401
405
408
408
408
412
417

418
419
422
422
424
426

[vii]

Table of Contents

How to do it...
How it works...
Drawing a line between two mouse clicks
How to do it...
How it works...
Making a bar graph of the supplied values
How to do it...
How it works...
Making an animated bouncing ball
How to do it...
How it works...

Chapter 13: Using MySQL Database
Functions in MySQL
mysql_init()
mysql_real_connect()
mysql_query()
mysql_use_result()
mysql_fetch_row()
mysql_num_fields()
mysql_free_result()
mysql_close()
Creating a MySQL database and tables
Create database
Create table
Displaying all the built-in tables in a default mysql database
How to do it...
How it works...
Storing information in MySQL database
How to do it...
How it works...
Searching for the desired information in the database
How to do it...
How it works...
Updating information in the database
How to do it...
How it works...
Deleting data from the database using C
How to do it...
How it works...

Chapter 14: General-Purpose Utilities
Dynamic memory allocation
malloc()
calloc()
realloc()

426
427
428
428
431
433
433
434
436
437
438

440
440
441
441
442
442
442
443
443
443
443
444
445
446
447
448
450
450
453
455
455
458
460
460
465
469
469
473

477
477
478
478
478

[viii]

Table of Contents

free()
Registering a function that is called when a program exits
How to do it...
How it works...
There's more...
Measuring the clock ticks and CPU seconds required in the
execution of a function
How to do it...
How it works...
Performing dynamic memory allocation
How to do it...
How it works...
Handling signals
Signals
signal()
How to do it...
How it works...

Chapter 15: Improving the Performance of Your Code

Using the register keyword in C code for better efficiency
How to do it...
How it works...

Taking input faster in C
How to do it...
How it works...

Applying loop unrolling for faster results
How to do it...
How it works...

Chapter 16: Low-Level Programming
Introduction to bitwise operators
& (binary AND)
| (binary OR)
A (binary XOR)
~ (binary complement)
<< (binary shift left)
>> (binary shift right)
Converting a binary number into a decimal using a bitwise
operator
How to do it...
How it works...
Converting a decimal into binary using a bitwise operator
How to do it...
How it works...
Converting a decimal number into binary using bit masking
How to do it...

478
479
479
481
482

483
484
485
486
486
488
490
490
491
491
493

495
495
496
497
498
499
500
501
501
503

505
505
505
506
506
506
507
507

507
508
508
511
511
513
515
516

[ix]

Table of Contents

How it works...
Introduction to assembly coding
Multiplying two numbers using the inline assembly language
inC
How to do it...
How it works...
Dividing two numbers using assembly code in C
How to do it...
How it works...

Chapter 17: Embedded Software and loT
Technical requirements
Introduction to embedded systems
Introduction to loT
Introduction to Arduino
Toggling the port of a microcontroller in Embedded C (blinking
LED)
How to do it...
How it works...
Incrementing the value of a port in Embedded C
How to do it...
How it works...
Toggle voltage in output pin using Arduino (blinking LED)
How to do it...
How it works...
Taking input from the serial port using Arduino
How to do it...
How it works...
Sensing the temperature using Arduino with the LM35 sensor
Getting ready...
How to do it...
How it works...

Chapter 18: Applying Security in Coding
Buffer overflow
gets()
fgets()
fpurge(stdin)
sprintf()
snprintf()
strepy()

strncpy()
Understanding how a buffer overflow occurs

How to do it...
How it works...

517
520

521
521
522
523
523
524

525
525
526
527
527

530
530
534
537
537
539
540
540
542
543
543
545
548
548
549
551

554
554
555
555
556
556
556
557
557
558
558
559

[x]

Table of Contents

Learning how to avoid a buffer overflow 561
How to do it... 561
How it works... 562

Understanding how a vulnerability occurs while copying

strings 563
How to do it... 563
How it works... 564

Learning how to write secure code while copying strings 565
How to do it... 566
How it works... 567

Understanding the errors that occur while formatting strings 567
How to do it... 568
How it works... 569

Learning how to avoid errors while formatting strings 570
How to do it... 570
How it works... 571

Understanding how vulnerabilities occur while accessing files

inC 572
How to do it... 572
How it works... 573

Learning how to avoid vulnerabilities while writing a fileinC 575
How to do it... 575
How it works... 576

Other Books You May Enjoy 578
Index 581

[xi]

Preface

This book is on the C programming language and explores all the important elements
of C, such as strings, arrays (including one-dimensional and two-dimensional arrays),
functions, pointers, file handling, threads, inter-process communication, database
handling, advanced data structures, graphs, and graphics. As this book takes the
cookbook approach, the reader will find independent solutions to different problems
that they usually come across while making applications. By the end of the book, the
reader will have sufficient knowledge to use high- as well as low-level features of the
C language and will be able to apply this knowledge to making real-time
applications.

Who this book is for

This book is meant for intermediate to advanced programmers and developers who
want to make complex and real-time applications in C programming. This book will
be of great use for trainers, teachers, and software developers who get stuck while
making applications with arrays, pointers, functions, structures, files, databases, inter-
process communication, advanced data structures, graphs, and graphics, and wish to
see a walkthrough example to find the way out of a given problem.

What this book covers

Chapter 1, Working with Arrays, covers some complex but essential operations with
arrays. You will learn how to insert an element into an array, multiply two matrices,
find the common elements in two arrays, and also how to find the difference between
two sets or arrays. Also, you will learn how to find the unique elements in an array
and will encounter a technique to help you find out whether a given matrix is a
sparse matrix or not. Lastly, we'll look at the procedure to merge two sorted arrays
into one array.

Chapter 2, Managing Strings, teaches you how to manipulate strings to the extent of
characters. You will learn how to find out whether a given string is a palindrome or
not, how to find a given occurrence of the first repetitive character in a string, and
how to count each character in a string. You will also learn how to count vowels and
consonants in a string and the procedure for converting the vowels in a sentence into
uppercase.

Preface

Chapter 3, Exploring Functions, explores the major role played by functions in
breaking down a big application into small, independent, and manageable modules.
In this chapter, you will learn to make a function that finds whether the supplied
argument is an Armstrong number or not. You will also learn how a function returns
an array and will make a function that finds the greatest common divisor (gcd) of
two numbers using recursion. You will also learn to make functions that convert a
binary number into hexadecimal. Lastly, you will learn to make a function that
determines whether the supplied number is a palindrome or not.

Chapter 4, Preprocessing and Compilation, covers a range of topics, including
performing preprocessing and compilation, performing conditional compilation with
directives, applying assertions for validation, catching errors early with compile-time
assertions, applying stringize, and how to use token-pasting operators.

Chapter 5, Deep Dive into Pointers, shows you how to use pointers to access content
from specific memory locations. You will learn how to reverse a string using pointers,
how to find the largest value in an array using pointers, and the procedure to sort a
singly linked list. Besides this, the chapter explains how to find the transpose of a
matrix using pointers and how to access a structure using pointers.

Chapter 6, File Handling, looks at how, when storing data for future use, file handling
is very important. In this chapter, you will learn to learn to read a text file and convert
all the characters after a period into uppercase. Also, you will learn how to display
the content of a random file in reverse order and how to count the number of vowels
in a text file. The chapter will also show you how to replace a word in a given text file
with another word, and how to keep your file secure from unauthorized access. You
will also learn how a file is encrypted.

Chapter 7, Implementing Concurrency, covers how concurrency is implemented in
order to increase the efficiency of CPU operations. In this chapter, you will learn to do
a task using a single thread. You will also learn to do multiple tasks with multiple
threads and examine the technique of sharing data between two threads using mutex.
Besides this, you will become familiar with situations where deadlock can be created
and how such deadlock situations can be avoided.

Chapter 8, Networking and Inter-Process Communication, focuses on how to establish
communication among processes. You will learn how to communicate between
processes using pipes, how to establish communication among processes using FIFO,
and how communication is established between the client and server using socket
programming. You will also learn to do inter-process communication using the UDP
socket, how a message is passed from one process to another using the message
queue, and how the two processes communicate using shared memory.

[2]

Preface

Chapter 9, Sorting and Searching, covers searching using binary search, sorting
numbers using bubble sort, and the use of insertion sort, quick sort, heap sort,
selection sort, merge sort, shell sort, and radix sort.

Chapter 10, Working with Graphs, examines implementing stacks, two-way linked
lists, circular linked lists, queues, circular queues, and the dequeue function. You'll
also look at performing inorder traversal of a binary search tree recursively, followed
by performing postorder traversal of a binary tree non-recursively.

Chapter 11, Advanced Data Structures and Algorithms, looks at representing graphs
using an adjacency matrix and adjacency list, how to do breadth-first and depth-first
traversal of graphs, and creating minimum spanning trees using Prim's and Kruskal's
algorithms.

Chapter 12, Creativity with Graphics, covers making different graphical shapes,
drawing a line between two mouse clicks, making a bar graph, and animating a
bouncing ball.

Chapter 13, Using MySQL Database, considers how no real-time application is
possible without storing information in a database. The information in a database
needs to be managed as and when required. In this chapter, you will learn to display
all the built-in tables in a default MySQL database. You will see how to store
information in a MySQL database and search for the desired information in the
database tables. Not only this; you will also learn to update information in the
database tables and the procedure of deleting data from the database when no longer
required anymore.

Chapter 14, General-Purpose Utilities, teaches you how to register a function that is
called when a program exits, along with examinations of measuring clock ticks in the
executing of a function, dynamic memory allocation, and handling signals.

Chapter 15, Improving the Performance of Your Code, focuses on using the register
keyword, taking input faster, and applying loop unrolling for faster results.

Chapter 16, Low-Level Programming, looks at converting a binary number to decimal,
multiplying and dividing two numbers using inline assembly language, and
converting decimal values into binary using the bitwise operator and by masking
certain bits of a register.

Chapter 17, Embedded Software and IoT, shows you how to toggle a port of a
microcontroller in Embedded C, increment the value of a port, toggle voltage in
Arduino, take input from the serial port, and how to detect and record temperatures
using Arduino.

[31]

Preface

Chapter 18, Applying Security in Coding, demonstrates how to avoid buffer overflow,
along with how to write secure code, avoid errors while string formatting, and avoid
vulnerabilities while accessing files in C.

To get the most out of this book

You need to have some preliminary knowledge of C programming. You need to have
basic knowledge of arrays, strings, functions, file handling, threads, and inter-process
communication. Also, to handle databases, you will need to have basic knowledge of
basic SQL commands.

Download the example code files

You can download the example code files for this book from your account
at www.packt . com. If you purchased this book elsewhere, you can
visit www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Practical-C-Programming. We also have other code bundles from
our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

[4]

http://www.packt.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/Practical-C-Programming
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: https://static.packt-cdn.com/downloads/
9781838641108_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, path names, dummy URLs, user input, and Twitter
handles. Here is an example: "In the figure, 1000 represents the memory address of

the i variable."

A block of code is set as follows:

for (1=0;1i<2;i++)
{
for (3=0; j<4; j++)
{
matR([1][J]=0;
for (k=0;k<3; k++)

{
matR[i] [j]=matR[i] [§]+matA[i] [k]*matB (k] [j];

}

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

printf ("How many elements are there? ");
scanf ("%d", &n);

Any command-line input or output is written as follows:
D:\CBook>reversestring

Enter a string: manish
Reverse string is hsinam

[5]

https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781838641108_ColorImages.pdf

Preface

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "Simply click the Next button to continue."

0 Warnings or important notes appear like this.
8 Tips and tricks appear like this.

Sections

In this book, you will find several headings that appear frequently (How to do
it and How it works).

To receive clear instructions on how to complete a recipe, use these sections as
follows:

How to do it...

This section contains the steps required to follow the recipe.

How it works...

This section consists of a detailed explanation of the steps followed in the previous
section.

There's more...

This section, when present, consists of additional information about the recipe in
order to enhance your knowledge about the recipe.

[6]

Preface

See also

This section, when present, provides helpful links to other useful information for the
recipe.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in
the subject of your message. If you have questions about any aspect of this book,
please email us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata, select
your book, click on the Errata Submission Form link, and enter the details.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Once you have read and used this book, why not leave a review on the site that you
purchased it from? Potential readers can then see and use your unbiased opinion to
make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[7]

http://www.packtpub.com/support/errata
http://authors.packtpub.com/
https://www.packtpub.com/

Working with Arrays

Arrays are an important construct of any programming language. To keep data of a
similar type together, we need arrays. Arrays are heavily used in applications where
elements have to be accessed at random. Arrays are also a prime choice when you
need to sort elements, look for desired data in a collection, and find common or
unique data between two sets. Arrays are assigned contiguous memory locations and
are a very popular structure for sorting and searching data collections because any
element of an array can be accessed by simply specifying its subscript or index
location. This chapter will cover recipes that include operations commonly applied to
arrays.

In this chapter, we will learn how to make the following recipes using arrays:

e Inserting an element into a one-dimensional array

Multiplying two matrices

Finding the common elements in two arrays

Finding the difference between two sets or arrays

Finding the unique elements in an array

Finding whether a matrix is sparse

Merging two sorted arrays into one

Let's begin with the first recipe!

Inserting an element in an array

In this recipe, we will learn how to insert an element in-between an array. You can
define the length of the array and also specify the location where you want the new
value to be inserted. The program will display the array after the value has been
inserted.

Working with Arrays Chapter 1

How to do it...

1. Let's assume that there is an array, p, with five elements, as follows:

10 | p[0]
20 | p[1]
30 | pl2]
40 | PR3]
50 | pl4]

Figure 1.1

Now, suppose you want to enter a value, say 99, at the third position. We will write a
C program that will give the following output:

10 | p[0]
20 | p[1]
99 | PI2]
30 | p[3]
a0 | PI4]
50 | PIS]

Figure 1.2

Here are the steps to follow to insert an element in an array:
1. Define a macro called max and initialize it to a value of 100:
#define max 100
2. Define an array p of size max elements:
int pl[max]

3. Enter the length of the array when prompted. The length you enter will be
assigned to a variable n:

printf ("Enter length of array:");
scanf ("%d", &n) ;

[91]

Working with Arrays Chapter 1

4. A for loop will be executed prompting you to enter the elements of the
array:

for (i=0;i<=n-1;i++)
scanf ("%d",&pl[il]);

5. Specify the position in the array where the new value has to be inserted:

printf ("\nEnter position where to insert:");
scanf ("%d", &k) ;

6. Because the arrays in C are zero-based, the position you enter is
decremented by 1:

k=—;

7. To create space for the new element at the specified index location, all the
elements are shifted one position down:

for (j=n-1; j>=k; j—-)
pli+1]l=pl[Jl;

8. Enter the new value which will be inserted at the vacated index location:

printf ("\nEnter the value to insert:");
scanf ("%d", &plk]);

Here is the insertintoarray.c program for inserting an element in between an

array:

#include<stdio.h>
#fdefine max 100
void main ()
{
int plmax], n,i,k,3;
printf ("Enter length of array:");
scanf ("%d", &n) ;
printf ("Enter %d elements of array\n",n);
for (i=0; i<=n-1;i++)
scanf ("%d", &pl[i]);
printf ("\nThe array is:\n");
for(i = 0;i<=n-1;1i++)
printf ("$d\n",p[i]);
printf ("\nEnter position where to insert:");
scanf ("%d", &k) ;
k-—; /*The position is always one value higher than the

[10]

Working with Arrays Chapter 1

subscript, so it is decremented by one*/
for (j=n-1;j>=k; j—-)
pli+1]=p[3];
/* Shifting all the elements of the array one position down
from the location of insertion */
printf ("\nEnter the value to insert:");
scanf ("%d", &p[k]);
printf ("\nArray after insertion of element: \n");
for (i=0; i<=n; i++)
printf ("$d\n",p[i]);
}

Now, let's go behind the scenes to understand the code better.

How it works...

Because we want to specify the length of the array, we will first define a macro called
max and initialize it to a value of 100. I have defined the value of max as 100 because I
assume that I will not need to enter more than 100 values in an array, but it can be
any value as desired. An array, p, is defined of size max elements. You will be
prompted to specify the length of the array. Let's specify the length of the array as 5.
We will assign the value 5 to the variable n. Using a for loop, you will be asked to
enter the elements of the array.

Let's say you enter the values in the array, as shown in Figure 1.1 given earlier:

10 | pl[0]
20 |p[1]
30 | pI2]
40 |pI3]
50 | p[4]

In the preceding diagram, the numbers, 0, 1, 2, and so on are known as index or
subscript and are used for assigning and retrieving values from an array. Next, you
will be asked to specify the position in the array where the new value has to be
inserted. Suppose, you enter 3, which is assigned to the variable k. This means that
you want to insert a new value at location 3 in the array.

Because the arrays in C are zero-based, position 3 means that you want to insert a
new value at index location 2, which is p[2]. Hence, the position entered in k is
decremented by 1.

[11]

Working with Arrays Chapter 1

To create space for the new element at index location p[2], all the elements are shifted
one position down. This means that the element at p[4] is moved to index location
plI5], the one at p[3] is moved to pl[4], and the element at p[2] is moved to pl3], as
follows:

p[o] | 10 p[o] | 10 piol | 10
P[] | 20 P[] | 20 pi11 | 20
PI2l | 30 pI2] | 30 pl2] | 30 Element at p[2] location
PI3] | 40 PRI | 40 Element at p[3] location ~ P[3] | 30 is copied to p[3]
PI4] | 50 Element at p[4] location PI4] | 40 Is copied to p[4] Pl | 40
pI5] | 50 is copied to p[5] pIS] | 50 pi5] | s0
Figure 1.3

Once the element from the target index location is safely copied to the next location,
you will be asked to enter the new value. Suppose you enter the new value as 99; that
value will be inserted at index location p[2], as shown in Figure 1.2, given earlier:

10 | pl0]
20 | PI1]
99 | p[2]
30 | pI3]
40 | p[4]
50 | p[5]

Let’s use GCC to compile the insertintoarray.c program, as shown in this
statement:

D:\CBook>gcc insertintoarray.c —-o insertintoarray

Now, let’s run the generated executable file, insertintoarray.exe, to see the
program output:

D:\CBook>./insertintoarray
Enter length of array:5
Enter 5 elements of array
10

20

30

40

50

[12]

Working with Arrays

Chapter 1

The array is:
10
20
30
40
50

Enter target position to insert:3
Enter the value to insert:99
Array after insertion of element:
10

20

99

30

40

50

Voila! We've successfully inserted an element in an array.

There's more...

What if we want to delete an element from an array? The procedure is simply the
reverse; in other words, all the elements from the bottom of the array will be copied

one place up to replace the element that was deleted.

Let's assume array p has the following five elements (Figure 1.1):

10

20

30

40

50

PI0]
PI1]
p[2]
PI3]
pl4]

Suppose, we want to delete the third element, in other words, the one at p[2], from
this array. To do so, the element at p[3] will be copied to pl2], the element at p[4] will

be copied to pl3], and the last element, which here is at p[4], will stay as it is:

[13]

Working with Arrays

Chapter 1

p[0] | 10 plo] | 10 plo] | 10
P | 20 pI1] | 20 pI1] | 20
pI2] | 30) pl2] | 40 P21 | 40 This element is
Element at p[3] location i
p[3] | 40 is copied to p[2] location P[31 | 40 Element at p[4] location pi31 | 50 « not accessed
o141 | 0 ei4l | 50 is copied to p[3] location pl4] N at all
,\

The deletefromarray.c program for deleting the array is as follows:

to

Figure 1.4

#include<stdio.h>
void main ()

{

}

int p[100],1i,n,a;
printf ("Enter the length of the array: ");
scanf ("%d", &n) ;
printf ("Enter %d elements of the array \n",n);
for (i=0; i<=n-1; i++)
scanf ("&d", &p[i]);
printf ("\nThe array is:\n");\
for (i=0; i<=n-1; i++)
printf ("$d\n",pl[i]);

printf ("Enter the position/location to delete: ");
scanf ("%d", &a) ;

a-=;

for (i=a;i<=n-2;i++)

{

plil=pli+l];

/* All values from the bottom of the array are shifted up till

the location of the element to be deleted */
}
pln-11=0;

/* The vacant position created at the bottom of the array is set

0 */
printf ("Array after deleting the element is\n");
for (i=0;i<= n-2;i++)

printf ("$d\n",pl[i]);

Now, let's move on to the next recipe!

[14]

Working with Arrays Chapter 1

Multiplying two matrices

A prerequisite for multiplying two matrices is that the number of columns in the first
matrix must be equal to the number of rows in the second matrix.

How to do it...

1. Create two matrices of orders 2 x 3 and 3 x 4 each.

2. Before we make the matrix multiplication program, we need to understand
how matrix multiplication is performed manually. To do so, let's assume
that the two matrices to be multiplied have the following elements:

[397]
154
2x3

Column of the first
matrix should be
equal to row of the
second matrix

Figure 1.5

3. The resultant matrix will be of the order 2 x 4, that is, the resultant matrix
will have the same number of rows as the first matrix and the same number

of columns as the second matrix:

397 X 6281 _ —-———
15423 3949 - ————— 2 x4
X
5313 |, ,
Figure 1.6

Essentially, the resultant matrix of the order 2 x 4 will have the following

elements:

[15]

Working with Arrays Chapter 1

first row, first column first row, second column first row, third column first row, fourth column

second row, first column second row, 1 row, third column second row, fourth column

Figure 1.7

4. The element first row, first column in the resultant matrix is computed
using the following formula:

SUM(first element of the first row of the first matrix x first element of the first
column of the second matrix), (second element of the first row... x second element of
the first column...), (and so on...)

For example, let's assume the elements of the two matrices are as shown in
Figure 1.5. The elements in the first row and the first column of the resultant
matrix will be computed as follows:

@ X 281
1542” 4

BXG6+IXIFTXDE = s mmmmmmemss semsssseseee

Figure 1.8

5. Hence, the element in first row, first column in the resultant matrix will be
as follows:

(3%6)+(9%3)+(7x5)
=18 + 27 + 35
=80

[16]

Working with Arrays Chapter 1

Figure 1.9 explains how the rest of the elements are computed in the
resultant matrix:

397 6281
15 4 3940
2x3 5313 |, ,
3x6+9x3+7x5 IX2+9x9+7x3 3x8+9xd4+7x1 3x1+9x0+7x3
I1x6+5x3+4x5 1%x2+5x9+4x3 1x8+5x4+4x1 1x1+5x0+4x3
18+27+35 6+81+21 24+ 36+7 3+0+21
6+15+20 2+45+12 8+20+4 1+0+12
80 108 67 24
41 59 32 13
Figure 1.9

The matrixmulti.c program for multiplying the two matrices is as follows:

#include <stdio.h>
int main ()
{
int matA[2][3], matB[3][4], matR[2][4];
int 1i,73,k;
printf ("Enter elements of the first matrix of order 2 x 3 \n");
for (1=0;1i<2;i++)
{
for (3=0; j<3; j++)
{
scanf ("&d", &matA[i][J]);

I3
printf ("Enter elements of the second matrix of order 3 x 4 \n");
for (1=0;1i<3;i++)
{
for (3=0; j<4; j++)
{

[17]

Working with Arrays Chapter 1

scanf ("$d", &matB[1i][]]);
i
i
for (1i=0;1i<2; i++)
{
for (j=0;3<4;j++)
{
matR[1] [3]=0;
for (k=0;k<3;k++)
{
matR[i] [j]=matR[i] [j]l+matA[i] [k]*matB[k][j];
i
i
i
printf ("\nFirst Matrix is \n");
for (1i=0;1i<2; i++)
{
for (j=0;3<3;j++)
{
printf ("$d\t",matA[1i][J]);
i
printf ("\n");
i
printf ("\nSecond Matrix is \n");
for (1i=0;i<3;i++)
{
for (j=0;3<4;j++)
{
printf ("$d\t",matB[1][J]);
i
printf ("\n");
i
printf ("\nMatrix multiplication is \n");
for (1i=0;1i<2; i++)
{
for (§=0; j<4; j++)
{
printf ("$d\t",matR[1][J]);
i
printf ("\n");
i
return 0;

}

Now, let's go behind the scenes to understand the code better.

[18]

Working with Arrays Chapter 1

How it works...

The two matrices are defined matA and matB of the orders 2 x 3 and 3 x 4,
respectively, using the following statement:

int matA[2][3], matB[3] [4]

You will be asked to enter the elements of the two matrices using the nested for
loops. The elements in the matrix are entered in row-major order, in other words, all
the elements of the first row are entered first, followed by all the elements of the
second row, and so on.

In the nested loops, for i and for j, the outer loop, for i, represents the row and
the inner loop, and for j represents the column.

While entering the elements of matrices matA and matB, the values entered in the two
matrices will be assigned to the respective index locations of the two-dimensional
arrays as follows:

columns
0 1 2
3 9 7
rows mat1A[0][0] matﬁ;[O]H] mab:[(]][z]
matA[1][0] matA[1][1] matA[1][2]
columns
0 1 2 3
6 2 8 1
matB[0][0] matB[0][1] matB[0][2] matB[0][3]
3 9 4 0
rows matB[11[0] matB[1][1] matB[1][2] matB[1][3]
5 3 1 3
matB[2][0] matB[2][1] matB[2][2] matB[2][3]

Figure 1.

[19

10

]

Working with Arrays Chapter 1

The nested loops that actually compute the matrix multiplication are as follows:

for (1=0;1<2;1i++)
{ for (§J=0; j<4; j++)
{ matR([1] [J]1=0;
for (k=0;k<3;k++)
{ matR[i] [J]=matR[i] [j]+matA[i] [k]*matB[k][]];
}

}

The variable i represents the row of the resultant matrix, j represents the column of
the resultant matrix, and k represents the common factor. The common factor here
means the column of the first matrix and the row of the second matrix.

Recall that the prerequisite for matrix multiplication is that the column of the first
matrix should have the same number of rows as the second matrix. Because the
respective elements have to be added after multiplication, the element has to be
initialized to 0 before addition.

The following statement initializes the elements of the resultant matrix:
matR([1][J]=0;

The for k loop inside the nested loops helps in selecting the elements in the rows of
the first matrix and multiplying them by elements of the column of the second matrix:

matR[i] [J]=matR[i] [j]+matA[i] [k]*matB[k][]];
Let's use GCC to compile the matrixmulti.c program as follows:

D:\CBook>gcc matrixmulti.c -o matrixmulti

Let's run the generated executable file, mat rixmulti.exe, to see the output of the
program:

D:\CBook\Chapters\1lArrays>./matrixmulti

Enter elements of the first matrix of order 2 x 3

UORrJoWw

[20]

Working with Arrays Chapter 1

4

Enter elements of the second matrix of order 3 x 4
6 281

9
3

o w
(SRS
w o

irst Matrix is

P WwH
UV H
[N |

Second Matrix is
6 2
39
53

Ll W o]
w ok

Matrix multiplication is
80 108 67 24
41 59 32 13

Voila! We've successfully multiplied two matrices.

There’s more...

One thing that you might notice while entering the elements of the matrix is that there
are two ways of doing it.

1. The first method is that you press Enter after inputting each element as
follows:

& U RPrPJdJoWw

The values will be automatically assigned to the matrix in row-major
order, in other words, 3 will be assigned tomatA[0] [0], 9 will be
assigned tomatA[0] [1], and so on.

[21]

Working with Arrays Chapter 1

2. The second method of entering elements in the matrix is as follows:

6 281
3940
5313

Here, 6 will be assigned tomatB[0] [0], 2 will be assigned to
matB[0][1], and so on.

Now, let's move on to the next recipe!

Finding the common elements in two
arrays

Finding the common elements in two arrays is akin to finding the intersection of two
sets. Let's learn how to do it.

How to do it...

1. Define two arrays of a certain size and assign elements of your choice to
both the arrays. Let's assume that we created two arrays called p and q,
both of size four elements:

1 |pl0] 2 a0l
2 |pll] 4 |al1l
3 | pl2] 5 |al2]
4 |pI3] 6 |al3l

Figure 1.11

2. Define one more array. Let's call it array r, to be used for storing the
elements that are common between the two arrays.

3. If an element in array p exists in the array q, it is added to array r. For
instance, if the element at the first location in array p, which is at p[0], does
not appear in array q, it is discarded, and the next element, at p[1], is
picked up for comparison.

[22]

Working with Arrays Chapter 1

4. And if the element at p[0] is found anywhere in array q, it is added to array
1, as follows:

pI0] is compared with
q[0]. q[1]. q[2] and q[3]
1 |p[0 0
< P 1 |alo]
2 |pl1l 4 |a[]
3 |ri2 1 |al2]
4 |p3] 2 |q[3]
1 | 0]
1]
rf2]
’
[

Figure 1.12

5. This procedure is repeated with other elements of array q. That is, p[1] is
compared with q[0], q[1], ql2], and q[3]. If p[1] is not found in array q, then
before inserting it straightaway into array r, it is compared with the
existing elements of array r to avoid repetitive elements.

6. Because the element at p[1] appears in array q and is not already present in
array r, it is added to array r as follows:

p[1] is compared with
q[0], q[1], q[2] and q[3]
1 |plo] 1]q[0]
2 |pl1] 4 |4al1]
3 |pl2] 1 |al2]
4 |pl3] 2 |al3]
1 | 0]
2 |1
2]
L
L

Figure 1.13

[23]

Working with Arrays Chapter 1

The commoninarray.c program for establishing common elements among the two
arrays is as follows:

#include<stdio.h>
#define max 100

int ifexists(int z[], int u, int v)

{

int i;
if (u==0) return 0;
for (i=0; i<=u;i++)
if (z[i]l==v) return (1);
return (0);
}
void main ()
{

int plmax], glmax], r[max];
int m,n;
int 1i,7,k;
k=0;
printf ("Enter the length of the first array:");
scanf ("%d", &m) ;
printf ("Enter %d elements of the first array\n",m);
for (i=0; i<m; i++)

scanf ("%d", &p[i]);
printf ("\nEnter the length of the second array:");
scanf ("%d", &n) ;
printf ("Enter %d elements of the second array\n",n);
for (i=0; i<n;i++)

scanf ("%d", &qlil);
k=0;
for (i=0;i<m;i++)
{

for (3=0;j<n;j++)

{

if (plil==ql3jl)

{
if (!ifexists(r,k,pl[i]))
{
rik]l=pli];
k++;
}
}
}
}
if (k>0)

{

printf ("\nThe common elements in the two arrays are:\n");

[24]

Working with Arrays Chapter 1

for(i = 0;i<k;1i++)
printf ("$d\n",r[i]);
}
else
printf ("There are no common elements in the two
arrays\n");

}

Now, let's go behind the scenes to understand the code better.

How it works...

A macro, max, is defined of size 100. A function, i fexists (), is defined that simply
returns true (1) or false (0).The function returns true if the supplied value
exists in the specified array, and false if it doesn't.

Two arrays are defined, called p and g, of size max (in other words, 100 elements).
You will be prompted to specify the length of the array, p, and then asked to enter the
elements in that array. After that, you will be asked to specify the length of array g,
followed by entering the elements in array q.

Thereafter, p[0], the first element in array p, is picked up, and by using the for
loop, p[0] is compared with all the elements of array q. If p[0] is found in array g,
then p[0] is added to the resulting array, r.

After a comparison of p [0], the second element in array p, p[1], is picked up and
compared with all the elements of array q. The procedure is repeated until all the
elements of array p are compared with all the elements of array q.

If any elements of array p are found in array g, then before adding that element to the
resulting array, r, it is run through the i fexists () function to ensure that the
element does not already exist in array r. This is because we don't want repetitive
elements in array r.

Finally, all the elements in array r, which are the common elements of the two arrays,
are displayed on the screen.

Let's use GCC to compile the commoninarray.c program as follows:

D:\CBook>gcc commoninarray.c —o commoninarray

[25]

Working with Arrays Chapter 1

Now, let's run the generated executable file, commoninarray.exe, to see the output
of the program:

D:\CBook>. /commoninarray
Enter the length of the first array:5
Enter 5 elements in the first array

O Wbk

Enter the length of the second array:4
Enter 4 elements in the second array
7

8
9
0
There are no common elements in the two arrays

Because there were no common elements between the two arrays entered previously,
we can't quite say that we've truly tested the program. Let's run the program again,
and this time, we will enter the array elements such that they have something in
common.

D:\CBook>./commoninarray

Enter the length of the first array:4
Enter 4 elements in the first array

1

2

3

4

Enter the length of the second array:4
Enter 4 elements in the second array

1

4

1

2

The common elements in the two arrays are:
1

2

4

Voila! We've successfully identified the common elements between two arrays.

[26]

Working with Arrays Chapter 1

Finding the difference between two sets
or arrays

When we talk about the difference between two sets or arrays, we are referring to all
the elements of the first array that don't appear in the second array. In essence, all the
elements in the first array that are not common to the second array are referred to as
the difference between the two sets. The difference in sets p and g, for example, will

be denoted by p - a.

If array p, for example, has the elements {1, 2, 3, 4}, and array g has the
elements {2, 4, 5, 6},then the difference between the two arrays, p - g, will be
{1, 3}. Let's find out how this is done.

How to do it...

1. Define two arrays, say p and g, of a certain size and assign elements of your
choice to both the arrays.

2. Define one more array, say r, to be used for storing the elements that
represent the difference between the two arrays.

3. Pick one element from array p and compare it with all the elements of the
array q.

4. If the element of array p exists in array g, discard that element and pick up
the next element of array p and repeat from step 3.

5. If the element of array p does not exist in array g, add that element in
array r. Before adding that element to array r, ensure that it does not
already exist in array r.

6. Repeat steps 3 to 5 until all the elements of array p are compared.

7. Display all the elements in array r, as these are the elements that represent
the difference between arrays p and q.

The differencearray.c program to establish the difference between two arrays is
as follows:

#include<stdio.h>
#define max 100

int ifexists(int z[], int u, int v)

{

[27]

Working with Arrays Chapter 1

int 1i;
if (u==0) return 0;
for (i=0; i<=u;i++)
if (z[i]==v) return (1);
return (0);

void main ()
{
int p[max], glmax], r[max];
int m,n;
int 1i,73,k;
printf ("Enter length of first array:");
scanf ("%d", &m) ;
printf ("Enter %d elements of first array\n",m);
for (i=0;i<m; i++)
scanf ("%d", &p[i]);
printf ("\nEnter length of second array:");
scanf ("%d", &n) ;
printf ("Enter %d elements of second array\n",n);
for (i=0;i<n; i++)
scanf ("sd", &qlil]);

k=0;
for (i=0;i<m;i++)
{
for (3=0;j<n; j++)
{
if (plil==qlJjl)
{
break;
}
}
if (J==n)
{
if(lifexists(r,k,pl[i]))
{
rlkl=p[i];
k++;
}
}

}

printf ("\nThe difference of the two array is:\n");
for (i = 0;i<k;i++)
printf ("$d\n",r[i]);
}

Now, let's go behind the scenes to understand the code better.

[28]

Working with Arrays Chapter 1

How it works...

We defined two arrays called p and q. We don't want to fix the length of these arrays,
so we should define a macro called max of value 100 and set the two arrays, p and q,
to the size of max.

Thereafter, you will be prompted to specify the size of the first array and enter the
elements in the first array, p. Similarly, you will be asked to specify the length of the
second array, q, followed by entering the elements in the second array.

Let's assume you have specified the length of both arrays as 4 and have entered the
following elements:

1 | pI0] 2 |aio]
2 |pl1] 4 |arl
3 |pl2] 5 |al2]
4 |pI3] 6 |al3]

Figure 1.14

We need to pick up one element at a time from the first array and compare it with all
the elements of the second array. If an element in array p does not appear in array q,
it will be assigned to the third array we created, array r.

Array r will be used for storing the elements that define the difference between two
arrays. As shown in Figure 1.15, the first element of array p, in other words, at p[0], is
compared with all the elements of array q, in other words, with q[0], q[1], q[2], and

ql3l.

Because the element at p[0], which is 1, does not appear in array q, it will be added to
the array r, indicating the first element representing the difference between the two

arrays:

[29]

Working with Arrays

Chapter 1

p[0] is compared with
q[0]. q[1]. q[2] and q[3]

< 1 p[Ui)
—

B11 \
pL2]

BaljwN

PI3]

Because p[0] does not
appear in the entire array, q, —>
it is copied at r[0]

2 |q[o]
4 |a[1]
5 |al2]
6 |al3]
1 | ri0]
(1]
rf2]
’
’

Figure 1.15

Because the element at p[1], which is 2, appears in array q, it is discarded, and the
next element in array p, in other words, pl2], is picked up and compared with all the

elements in array q.

As the element at p[2] does not appear in array q, it is added to array r at the next
available location, which is r[1] (see Figure 1.16 as follows):

p[2] is compared with
q[0], q[1], q[2] and q[3]

1 | pI0] 2
2 |pi1 / 2
3 Jpl2 5
P[3] 6
1
p[2] i.e. 3 is not found in array,
q, hence copied into array, r at 3
r[1] location
’
¢

q[ol
q[1]
q2]
as)

ro]
1]
ri2]

Figure 1.16

[30]

Working with Arrays Chapter 1

Continue the procedure until all the elements of array p are compared with all the
elements of array q. Finally, we will have array r, with the elements showing the
difference between our two arrays, p and q.

Let's use GCC to compile our program, differencearray.c, as follows:

D:\CBook>gcc differencearray.c -o differencearray

Now, let's run the generated executable file, differencearray, to see the output of
the program:

D:\CBook>./differencearray
Enter length of first array:4
Enter 4 elements of first array
1

2

3

4

Enter length of second array:4
Enter 4 elements of second array
2

4

5

6

The difference of the two array is:
1

3

Voila! We've successfully found the difference between two arrays. Now, let's move
on to the next recipe!

Finding the unique elements in an array

In this recipe, we will learn how to find the unique elements in an array, such that the
repetitive elements in the array will be displayed only once.

How to do it...

1. Define two arrays, p and q, of a certain size and assign elements only to
array p. We will leave array q blank.

2. These will be our source and target arrays, respectively. The target array
will contain the resulting unique elements of the source array.

[31]

Working with Arrays

3. After that, each of the elements in the source array will be compared with
the existing elements in the target array.

4. If the element in the source array exists in the target array, then that
element is discarded and the next element in the source array is picked up

for comparison.

5. If the source array element does not exist in the target array, it is copied

into the target array.

6. Let's assume that array p contains the following repetitive elements:

7. We will start by copying the first element of the source array, p, into the
target array, q, in other words, p[0] into array q[0], as follows:

p[0]
p[1]
pl2]
PI3]
P[4]

2 IN|JWIN]| =

Figure 1.17

PI3]
Pl4]

= IN|RIN]=

PIO] c—

pP[1] First element of

p[2] 2array,p is copied
into array, q

q[o]
qr1l
qf2]
a3l
a4

8. Next, the second array element of p, in other words, p[1], is compared with
all the existing elements of array q. That is, p[1] is compared with array
q to check whether it already exists in array q, as follows:

Figure 1.18

pPl1]
pl2]
PI3]
pl4]

=N |wiN =

M{

This element is
checked whether
it already exists in
array, q or not

q[o]
q[1l
a2
qa[3]
q[4]

Figure 1.19

[32]

Working with Arrays Chapter 1

9. Because p[1] does not exist in array q, it is copied at q[1], as shown in

Figure 1.20:
1 |plo] 1 | ql0]
Az b — —>[2 |am
3 |p[2] This elementis al2]
copied into
2 |PBl array,q q[3]
1 |pl4] q[4]

Figure 1.20

10. This procedure is repeated until all the elements of array p are compared
with array q. In the end, we will have array q, which will contain the
unique elements of array p.

Here is the uniqueelements. c program for finding the unique elements in the first
array:

#include<stdio.h>
#define max 100

int ifexists(int z[], int u, int v)
{
int i;
for (i=0; i<u;i++)
if (z[i]l==Vv) return (1);
return (0);

}

void main ()
{
int plmax], glmax];
int m;
int i,k;
k=0;
printf ("Enter length of the array:");
scanf ("%d", &m) ;
printf ("Enter %d elements of the array\n",m);
for (i=0; i<m; i++)
scanf ("%d", &p[i]);
ql0]=pl0];
k=1;
for (i=1;i<m;i++)

{

[33]

Working with Arrays Chapter 1

if(lifexists (g, k,pl[i]))
{
glkl=plil;
k++;
}
}

printf ("\nThe unique elements in the array are:\n");
for(i = 0;i<k;i++)
printf ("$d\n",q[i]);
}

Now, let's go behind the scenes to understand the code better.

How it works...

We will define a macro called max of size 100. Two arrays, p and g, are defined of size
max. Array p will contain the original elements, and array g will contain the unique
elements of array p. You will be prompted to enter the length of the array and,
thereafter, using the for loop, the elements of the array will be accepted and assigned
to array p.

The following statement will assign the first element of array p to the first index
location of our blank array, which we will name array q:

ql0]=p[0]

A for loop is again used to access the rest of the elements of array p, one by one.
First, the foremost element of array p, which is at p [0], is copied to array g at g[0].

Next, the second array p element, p[1], is compared with all the existing elements of
array q. Thatis, p[1] is checked against array g to confirm whether it is already
present there.

Because there is only a single element in array g, p[1] is compared with q[0].
Because p[1] does not exist in array g, it is copied at q[1].

This procedure is repeated for all elements in array p. Each of the accessed elements
of array p is run through the i fexists () function to check whether any of them
already exist in array q.

The function returns 1 if an element in array p already exists in array q. In that case,
the element in array p is discarded and the next array element is picked up for
comparison.

[34]

Working with Arrays Chapter 1

In case the i fexists () function returns 0, confirming that the element in array p
does not exist in array g, the array p element is added to array g at the next available
index/subscript location.

When all the elements of array p are checked and compared, array g will have only
the unique elements of array p.

Let's use GCC to compile the uniqueelements.c program as follows:

D:\CBook>gcc uniqueelements.c —-o uniqueelements

Now, let's run the generated executable file, uniqueelements.exe, to see the output
of the program:

D:\CBook>. /uniqueelements
Enter the length of the array:5
Enter 5 elements in the array

P NDNWDNPR

The unique elements in the array are:
1
2
3

Voila! We've successfully identified the unique elements in an array. Now, let's move
on to the next recipe!

Finding whether a matrix is sparse

A matrix is considered sparse when it has more zero values than non-zero values
(and dense when it has more non-zero values). In this recipe, we will learn how to
find out whether the specified matrix is sparse.

[35]

Working with Arrays Chapter 1

How to do it...

1. First, specify the order of the matrix. Then, you will be prompted to enter
the elements in the matrix. Let's assume that you specified the order of the
matrix as 4 x 4. After entering the elements in the matrix, it might appear
like this:

Nowo
cooc =
hwoo
cowo

Figure 1.21

2. Once the elements of the matrix are entered, count the number of zeros in
it. A counter for this purpose is initialized to 0. Using nested loops, each of
the matrix elements is scanned and, upon finding any zero elements, the
value of the counter is incremented by 1.

3. Thereafter, the following formula is used for establishing whether the
matrix is sparse.

If counter > [(the number of rows x the number of columns)/2] = Sparse Matrix

4. Depending on the result of the preceding formula, one of the following
messages will be displayed on the screen as follows:

The given matrix is a sparse matrix

or

The given matrix is not a sparse matrix

The sparsematrix.c program for establishing whether the matrix is sparse is as
follows:

#include <stdio.h>
#define max 100

/*A sparse matrix has more zero elements than nonzero elements */
void main ()
{

static int arr[max] [max];

int i,3,r,c;

[36]

Working with Arrays Chapter 1

}

int ctr=0;
printf ("How many rows and columns are in this matrix? ");
scanf ("%d %d", &r, &c);
printf ("Enter the elements in the matrix :\n");
for (1i=0;i<r;i++)
{
for (3=0; j<c; j++)
{

scanf ("$d",sarr[i][j]);
if (arr([i] []j]==0)
++ctr;
}
}
if (ctr>((r*c)/2))
printf ("The given matrix is a sparse matrix. \n");
else
printf ("The given matrix is not a sparse matrix.\n");
printf ("There are %d number of zeros in the matrix.\n",ctr);

Now, let's go behind the scenes to understand the code better.

How it works...

Because we don't want to fix the size of the matrix, we will define a macro called max
of value 100. A matrix, or a two-dimensional array called arr, is defined of the order
max X max. You will be prompted to enter the order of the matrix, for which you can
again enter any value up to 100.

Let's assume that you've specified the order of the matrix as 4 x 4. You will be
prompted to enter elements in the matrix. The values entered in the matrix will be in
row-major order. After entering the elements, the matrix arr should look like Figure
1.22, as follows:

0 1 2 3
0 0 1 0 0
arr[0][0] arr[0][1] arr[0][2] arr{0][3]
5 0] 9
1 arr[1][0] arr[1][1] arr[1][2] arr[1][3]
0 0 3 0
2 arr[2][0] arr[2][1] arr[2][2] arr[2][3]
2 0 4 0
3 arr[3][0] arrf3][1] arr[3][2] arr[3][3]

Figure 1.22

[37]

Working with Arrays Chapter 1

A counter called ctr is created and is initialized to 0. Using nested loops, each
element of matrix arr is checked and the value of ctr is incremented if any element
is found to be 0. Thereafter, using the i £ else statement, we will check whether the
count of zero values is more than non-zero values. If the count of zero values is more
than non-zero values, then the message will be displayed on the screen as follows:

The given matrix is a sparse matrix

However, failing that, the message will be displayed on the screen as follows:
The given matrix is not a sparse matrix

Let's use GCC to compile the sparsematrix.c program as follows:

D:\CBook>gcc sparsematrix.c —-o sparsematrix

Let's run the generated executable file, sparsematrix.exe, to see the output of the
program:

D:\CBook>. /sparsematrix
How many rows and columns are in this matrix? 4 4
Enter the elements in the matrix

0100
50009
0030
2040

The given matrix is a sparse matrix.
There are 10 zeros in the matrix.

Okay. Let's run the program again to see the output when the count of non-zero
values is higher:

D:\CBook>. /sparsematrix

How many rows and columns are in this matrix? 4 4
Enter the elements in the matrix:

1034

00209

8 651

070 4

The given matrix is not a sparse matrix.

There are 5 zeros in the matrix.

Voila! We've successfully identified a sparse and a non-sparse matrix.

[38]

Working with Arrays Chapter 1

There's more...

How about finding an identity matrix, in other words, finding out whether the matrix
entered by the user is an identity matrix or not. Let me tell you—a matrix is said to be
an identity matrix if it is a square matrix and all the elements of the principal diagonal
are ones and all other elements are zeros. An identity matrix of the order 3 x 3 may
appear as follows:

00 =
O =0
- 00

Ix3

Figure 1.23

In the preceding diagram, you can see that the principal diagonal elements of the
matrix are 1's and the rest of them are 0's. The index or subscript location of the
principal diagonal elements will be arr [0] [0], arr[1] [1],and arr[2] [2], so the
following procedure is followed to find out whether the matrix is an identity matrix
or not:

e Checks that if the index location of the row and column is the same, in
other words, if the row number is 0 and the column number, too, is 0, then
at that index location, [0][0], the matrix element must be 1. Similarly, if the
row number is 1 and the column number, too, is 1, that is, at the [1][1]
index location, the matrix element must be 1.

¢ Verify that the matrix element is 0 at all the other index locations.

If both the preceding conditions are met, then the matrix is an identity matrix, or else
it is not.

The identitymatrix.c program to establish whether the entered matrix is an
identity matrix or not is given as follows:

#include <stdio.h>
#define max 100
/* All the elements of the principal diagonal of the Identity matrix
are ones and rest all are zero elements */
void main ()
{
static int arr[max] [max];
int i,j,r,c, bool;
printf ("How many rows and columns are in this matrix ? ");
scanf ("%d %d", &r, &c);

[39]

Working with Arrays Chapter 1

if (r !=c)

{

printf ("An identity matrix is a square matrix\n");

printf ("Because this matrix is not a square matrix, so it is

not an
identity matrix\n");

t
else
{

printf ("Enter elements in the matrix :\n");
for (1i=0;i<r;i++)

{
for (§J=0; j<c; j++)
{
scanf ("$d",sarr[i][j]);
}
}

printf ("\nThe entered matrix is \n");
for (1i=0;i<r;i++)

{
for (3=0; j<c; j++)
{
printf ("$d\t",arr(1i]1[3]);
t
printf ("\n");
t
bool=1;
for (1i=0;i<r;i++)
{
for (3=0; j<c; j++)
{
if (i==3)
{
if(arr([i] [j] !=1)
{
bool=0;
break;
t
t
else
{
if(arr[1i][3j] !'=0)
{
bool=0;
break;
t
t
t

[40]

Working with Arrays Chapter 1

}
if (bool)

printf ("\nMatrix is an identity matrix\n");
else

printf ("\nMatrix is not an identity matrix\n");

}

Let's use GCC to compile the identitymatrix.c program as follows:

D:\CBook>gcc identitymatrix.c -o identitymatrix

No error is generated. This means the program is compiled perfectly and an
executable file is generated. Let's run the generated executable file. First, we will enter
a non-square matrix:

D:\CBook>./identitymatrix

How many rows and columns are in this matrix ? 3 4

An identity matrix is a square matrix

Because this matrix is not a square matrix, so it is not an identity
matrix

Now, let's run the program again; this time, we will enter a square matrix

D:\CBook>./identitymatrix

How many rows and columns are in this matrix ? 3 3
Enter elements in the matrix

101

110
001

The entered matrix is

1 0 1
1 1 0
0 0 1

Matrix is not an identity matrix

Because a non-diagonal element in the preceding matrix is 1, it is not an identity
matrix. Let's run the program again:

D:\CBook>./identitymatrix

How many rows and columns are in this matrix ? 3 3
Enter elements in the matrix

100

010

001

The entered matrix is

[41]

Working with Arrays Chapter 1

1 0 0
0 1 0
0 0 1

Matrix is an identity matrix

Now, let's move on to the next recipe!

Merging two sorted arrays into a single
array

In this recipe, we will learn to merge two sorted arrays into a single array so that the
resulting merged array is also in sorted form.

How to do it...

1. Let's assume there are two arrays, p and q, of a certain length. The length of
the two arrays can differ. Both have some sorted elements in them, as
shown in Figure 1.24:

4 |PpIO] 1 | q[0]
18 | pl1] 9 |q
56 | pl2] 80 | q[2]
99 | P[3] 200| q[3]

220] q[4]

Figure 1.24

2. The merged array that will be created from the sorted elements of the
preceding two arrays will be called array r. Three subscripts or index
locations will be used to point to the respective elements of the three
arrays.

3. Subscript i will be used to point to the index location of array p. Subscript
j will be used to point to the index location of array g and subscript k will
be used to point to the index location of array r. In the beginning, all three
subscripts will be initialized to 0.

[42]

Working with Arrays Chapter 1

4. The following three formulas will be applied to get the merged sorted
array:

1. The element at p [1] is compared with the element at g[5]. If
pli] islessthan q[j], then p[i] is assigned to array r, and the
indices of arrays p and r are incremented so that the following
element of array p is picked up for the next comparison as
follows:

rikl=pl[il;
i++;
k++

2. If g[j]l islessthanp[i], then q[7j] is assigned to array r, and
the indices of arrays g and r are incremented so that the
following element of array g is picked up for the next comparison

as follows:
r[kl=qlJl;
i++;
k++

3. If p[i] isequal to q[j], then both the elements are assigned to
array r. p[i] isadded to r [k]. The values of the i and k indices
are incremented. g[j] is also added to r [k], and the indices of
the g and r arrays are incremented. Refer to the following code
snippet:

rlkl=plil;
i++;

k++
rlk]l=qljl;
i++;

k++

5. The procedure will be repeated until either of the arrays gets over. If any of
the arrays is over, the remainder of the elements of the other array will be
simply appended to the array r.

The mergetwosortedarrays.c program for merging two sorted arrays is as follows:

#include<stdio.h>
#define max 100

void main ()

{

[43]

Working with Arrays Chapter 1

int p[max], glmax], r[max];
int m,n;
int i,3,k;
printf ("Enter length of first array:");
scanf ("%d", &m) ;
printf ("Enter %d elements of the first array in sorted order
\n",m);
for (1i=0;i<m; i++)
scanf ("%d", &p[i]);
printf ("\nEnter length of second array:");
scanf ("%d", &n) ;
printf ("Enter %d elements of the second array in sorted
order\n",n);
for (i=0;i<n; i++)
scanf ("%d", &ql[i]);

i=9=k=0;
while ((i<m) && (3 <n))
{
if(pli] < ql3jl)
{
r[kl=p[i];
i++;
k++;
}
else
{
if(qljl< plil)
{
rl[k]=qlJ];
k++;
Jt+i
}
else
{
r[kl=p[i];
k++;
i++;
r[kl=qlJl;
k++;
Jt+i
}
}
}
while (i<m)
{
r[kl=p[i];
k++;
i++;

[44]

Working with Arrays Chapter 1

t
while (j<n)
{
rlkl=ql[3];
k++;
J++;
t
printf ("\nThe combined sorted array is:\n");
for(i = 0;i<k;1i++)
printf ("$d\n",r[i]);
t

Now, let's go behind the scenes to understand the code better.

How it works...

A macro called max is defined of size 100. Three arrays, p, g, and r, are defined of
size max. You will first be asked to enter the size of the first array, p, followed by the
sorted elements for array p. The process is repeated for the second array q.

Three indices, i, j and k, are defined and initialized to 0. The three indices will point
to the elements of the three arrays, p, g, and r, respectively.

The first elements of arrays p and q, in other words, p[0] and q[0], are compared and
the smaller one is assigned to array r.

Because q[0] is smaller than p[0], q[0] is added to array r, and the indices of
arrays q and r are incremented for the next comparison as follows:

) plo]

[18 | Pl

E Pl2] compared
[99 | pI3]

Because qg[0] < p[0], q[0] is
assigned to r[0] element.
r[o]
1]
ri2]

Figure 1.25

[45]

Working with Arrays Chapter 1

Next, p[0] will be compared with q[1]. Because p[0] is smaller than q[1], the value
at p[0] will be assigned to array r at r[1]:

15 pI[0] 1 | q[o]
18 | PI 9) q[]
56 |P[2] compared 80 | ql2]
99 | PI3] 200| q[3]

220| q[4]

Because, p[0] < q[1],
p[0] is assigned to r[1]
index location

1| 0]
4 |1l
2]

Figure 1.26

Then, p[1] will be compared with q[1]. Because q[1] is smaller than p[1], q[1] will be
assigned to array r, and the indices of the q and r arrays will be incremented for the
next comparisons (refer to the following diagram):

[4 |pio) EREQ

(18 Jel1] [9)] ar1]
56 |P[2] compared 80 | q[2]
99 | P[3] 200| q[3]

220| q[4]

Because q[1] < p[1],
q[1] is assigned to
r[2] index location

rfo]
1]
2

e jo|h]|—

Figure 1.27

[46]

Working with Arrays Chapter 1

Let's use GCC to compile the mergetwosortedarrays.c program as follows:

D:\CBook>gcc mergetwosortedarrays.c —o mergetwosortedarrays

Now, let's run the generated executable file, nergetwosortedarrays.exe, in order
to see the output of the program:

D:\CBook>./mergetwosortedarrays

Enter length of first array:4

Enter 4 elements of the first array in sorted order
4

18

56

929

Enter length of second array:5

Enter 5 elements of the second array in sorted order
1

9

80

200

220

The combined sorted array is:
1

4

9

18

56

80

929

200

220

Voila! We've successfully merged two sorted arrays into one.

[47]

Managing Strings

Strings are nothing but arrays that store characters. Since strings are character arrays,
they utilize less memory and lead to efficient object code, making programs run
faster. Just like numerical arrays, strings are zero-based, that is, the first character is
stored at index location 0. In C, strings are terminated by a null character, \ 0.

The recipes in this chapter will enhance your understanding of strings and will
acquaint you with string manipulation. Strings play a major role in almost all
applications. You will learn how to search strings (which is a very common task),
replace a string with another string, search for a string that contains a specific pattern,
and more.

In this chapter, you will learn how to create the following recipes using strings:

Determining whether the string is a palindrome

Finding the occurrence of the first repetitive character in a string

Displaying the count of each character in a string

Counting the vowels and consonants in a string

Converting the vowels in a sentence to uppercase

Determining whether the string is a
palindrome

A palindrome is a string that reads the same regardless of whether it is in a forward
or backwards order. For example, the word radar is a palindrome because it reads the
same way forwards and backwards.

Managing Strings Chapter 2

How to do it...

1. Define two 80-character strings called str and rev(assuming your string
will not exceed 79 characters). Your string can be of any length, but
remember that the last position in the string is fixed for the null character
\0:

char str[80],rev[80];
2. Enter characters that will be assigned to the str string:

printf ("Enter a string: ");
scanf ("%s", str);

3. Compute the length of the string using the st rlen function and assign this
to the n variable:

n=strlen (str);

4. Execute a for loop in reverse order to access the characters in
the str string in reverse order, and then assign them to the rev string:

for (i=n-1;i >=0; 1i--)
{
rev[x]=str[i];
X++;

}

rev([(x]="\0";
5. Compare the two strings, str and rev, using st rcmp:
if (strcmp (str, rev)==0)

6. If str and rev are the same, then the string is a palindrome.

In C, the functionality of specific built-in functions is specified in the
respective libraries, also known as header files. So, while writing C
programs, whenever built-in functions are used, we need to use
their respective header files in the program at the top. The header
files usually have the extension .h. In the following program, I am
using a built-in function called st rlen, which finds out the length
of a string. Therefore, I need to use its library, string.h, in the
program.

[49]

Managing Strings Chapter 2

The palindrome.c program for finding out whether the specified string is a
palindrome is as follows:

#include<stdio.h>
#include<string.h>
void main ()
{
char str[80],rev[80];
int n, i, x;
printf ("Enter a string: ");
scanf ("%$s",str);
n=strlen(str);
x=0;
for (i=n-1;1 >=0; i--)
{
rev[x]=str[i];
X++;
}
rev[x]="\0";
if (strcmp (str, rev)==0)
printf ("The %s is palindrome", str);
else
printf ("The %s is not palindrome",str);

}

Now, let's go behind the scenes to understand the code better.

How it works...

To ensure that a string is a palindrome, we first need to ensure that the original string
and its reverse form are of the same length.

Let's suppose that the original string is sanjay and it is assigned to a string
variable, str. The string is a character array, where each character is stored
individually as an array element and the last element in the string array is a null
character. The null character is represented as \ 0 and is always the last element in a
string variable in C, as shown in the following diagram:

s a n i a y \0
str[0] str[1] str[2] str[3] str[4] str[5] str[6]

Figure 2.1

[50]

Managing Strings Chapter 2

As you can see, the string uses zero-based indexing, that is, the first character is
placed at index location str[0], followed by the second character at str[1], and so on. In
regards to the last element, the null character is at str[6].

Using the st rlen library function, we will compute the length of the entered string
and assign it to the n variable. By executing the for loop in reverse order, each of the
characters of the str string is accessed in reverse order, that is, from n-1 to 0, and
assigned to the rev string.

Finally, a null character, \0, is added to the rev string to make it a complete string.
Therefore, rev will contain the characters of the st r string, but in reverse order:

y a i n a s \0
rev[0] rev[1] rev[2] rev[3] rev[4] rev[5] rev[6]

Figure 2.2

Next, we will run the st recmp function. If the function returns 0, it means that the
content in the str and rev strings is exactly the same, which means that strisa
palindrome. If the st rcmp function returns a value other than 0, it means that the two
strings are not the same; hence, str is not a palindrome.

Let's use GCC to compile the palindrome.c program, as follows:

D:\CBook>gcc palindrome.c —o palindrome

Now, let's run the generated executable file, palindrome.exe, to see the output of
the program:

D:\CBook>. /palindrome
Enter a string: sanjay
The sanjay is not palindrome

Now, suppose that st r is assigned another character string, sanas. To ensure that
the word in str is a palindrome, we will again reverse the character order in the
string.

[51]

Managing Strings Chapter 2

So, once more, we will compute the length of str, execute a for loop in reverse
order, and access and assign each character in str to rev. The null character \ 0 will
be assigned to the last location in rev, as follows:

str[0] str[1] str[2] str[3] str[4] str[5]

s a n a s \0
rev[0] rev[1] rev[2] rev[3] rev[4] rev[5]

Figure 2.3

Finally, we will invoke the st rcmp function again and supply both strings.

After compiling, let's run the program again with the new string:

D:\CBook>palindrome
Enter a string: sanas
The sanas is palindrome

Voila! We have successfully identified whether our character strings are palindromes.
Now, let's move on to the next recipe!

Finding the occurrence of the first
repetitive character in a string

In this recipe, you will learn how to create a program that displays the first character
to be repeated in a string. For example, if you enter the string racecar, the program
should give the output as The first repetitive character in the string racecar is c. The
program should display No character is repeated in the string if a string with no
repetitive characters is entered.

[52]

Managing Strings Chapter 2

How to do it...

1. Define two strings called str1 and str2. Your strings can be of any length,
but the last position in the string is fixed for the null character \ 0:

char str1[80],str2[80];

2. Enter characters to be assigned to str1. The characters will be assigned to
the respective index locations of the string, beginning with str1[0]:

printf ("Enter a string: ");
scanf ("%$s",strl);

3. Compute the length of str1 using the st rlen library function. Here, the
first character of str1 is assigned to str2:

n=strlen(strl);
str2[0]=strl[0];

4. Use a for loop to access all of the characters of str1 one by one and pass
them to the i fexists function to check whether that character already
exists in str2. If the character is found in st r2, this means it is the first
repetitive character of the string, and so it is displayed on the screen:

for(i=1;i < n; i++)
{
if (ifexists(strl[i], str2, x))
{
printf ("The first repetitive character in %s 1is %c",
stril,
strl(i]);
break;

}

5. If the character of str1 does not exist in str2, then it is simply added to
str2:

else

{
str2[x]=stri[i];
X++;

[53]

Managing Strings Chapter 2

The repetitive.c program for finding the occurrence of the first repetitive
character in a string is as follows::

#include<stdio.h>
#include<string.h>
int ifexists(char u, char z[], int wv)

{
int i;
for (i=0; i<v;i++)
if (z[i]==u) return (1);
return (0);
}
void main ()
{
char str1[80],str2[80];
int n,i,x;
printf ("Enter a string: ");
scanf ("%s",strl);
n=strlen(strl);
str2[0]=strl1[0];
x=1;
for(i=1;i < n; i++)
{
if (ifexists(strl[i], str2, x))
{
printf ("The first repetitive character in %s is %c", strl,
stri[il]);
break;
}
else
{
str2[x]=strl[i];
xX++;
}
if (i==n)
printf ("There is no repetitive character in the string %s",
strl);
}

Now, let's go behind the scenes to understand the code better.

[54]

Managing Strings Chapter 2

How it works...

Let's assume that we have defined a string, strl, of some length, and have entered the
following characters—racecar.

Each of the characters of the string racecar will be assigned to the respective index
locations of strl, that is, r will be assigned to str1[0], a will be assigned to str1[1], and
so on. Because every string in C is terminated by a null character, \0, the last index
location of strl will have the null character \0, as follows:

r a c e c a r \0

str1[0] str1[1] str1[2] str1[3] str1[4] stri[5] str1[6] str1[7]

Figure 2.4

Using the library function st rlen, the length of strl is computed and a for loop is
used to access all of the characters of strl, one by one, except for the first character.
The first character is already assigned to str2, as shown in the following diagram:

r a c e c a r \0
str1[0] stri[1] stri[2] stri[3] stri[4] stri[5] stri[6] str1[7]

r

str2[0] str2[1] str2[2] str2[3]

Figure 2.5

Each character that is accessed from strl is passed through the i fexists function.
The ifexists function will check whether the supplied character already exists in
str2 and will return a Boolean value accordingly. The function returns 1, that is, true,
if the supplied character is found in str2. The function returns 0, that is, false, if the
supplied character is not found in str2.

[55]

Managing Strings Chapter 2

If i fexists returns 1, this means that the character is found in str2, and hence, the
first repetitive character of the string is displayed on the screen. If the i fexists
function returns 0, this means that the character does not exist in str2, so it is simply
added to str2 instead.

Since the first character is already assigned, the second character of strl is picked up
and checked to see if it already exists in str2. Because the second character of strl does
not exist in str2, it is added to the latter string, as follows:

r a c e c a r \0

str1[0] stri[1] str1[2] str1[3] str1[4] stri[5] stri[6] stri[7]

r a

str2[0] str2[1] str2[2] str2[3]

Figure 2.6

The procedure is repeated until all of the characters of strl are accessed. If all the
characters of strl are accessed and none of them are found to exist in str2, this means
that all of the characters in strl are unique and none of them are repeated.

The following diagram shows strings strl and str2 after accessing the first four
characters of strl. You can see that the four characters are added to str2, since none of
them already exist in str2:

r a c e c a r \0

stri[0] stri[1] str1[2] str1[3] stri[4] stri1[5] str1[6] stri[7]

r a c e

str2[0] str2[1] str2[2] str2[3] str2[4]

Figure 2.7

[56]

Managing Strings Chapter 2

The next character to be accessed from strl is c. Before adding it to str2, it is compared
with all the existing characters of str2 to determine if it already exists there. Because
the c character already exists in str2, it is not added to str2 and is declared as the first

repeating character in strl, as follows:

r a c e c) a r \0
str1[0] str1[1] str1[2] stri[stri[4] str1[5] str1[6] stri1[7]

character, 'c' exists
in str2 string

r a C e

str2[0] str2[1] str2[2] str2[3] str2[4]

Figure 2.8

Let's use GCC to compile the repetitive.c program, as follows:
D:\CBook>gcc repetitive.c -o repetitive

Let's run the generated executable file, repetitive.exe, to see the output of the
program:
D:\CBook>. /repetitive

Enter a string: education
There is no repetitive character in the string education

Let's run the program again:

D:\CBook>repetitive
Enter a string: racecar
The first repetitive character in racecar is c

Voila! We've successfully found the first repeating character in a string.

Now, let's move on to the next recipe!

Displaying the count of each character in
a string

In this recipe, you will learn how to create a program that displays the count of each
character in a string in a tabular form.

[57]

Managing Strings Chapter 2

How to do it...

1.

Create a string called str. The last element in the string will be a null
character, \ 0.

Define another string called chr of matching length, to store the characters
of str:

char str[80],chr[80];

Prompt the user to enter a string. The entered string will be assigned to the
str string:

printf ("Enter a string: ");
scanf ("%$s", str);

Compute the length of the string array, str, using strlen:
n=strlen (str);

Define an integer array called count to display the number of times the
characters have occurred in str:

int count[80];

Execute chr [0]=str [0] to assign the first character of str to chr at index
location chr[0].

The count of the character that's assigned in the chr [0] location is
represented by assigning 1 at the count [0] index location:

chr[0]=str[0];
count [0]=1;

. Run a for loop to access each character in str:

for(i=1;1i < nj; i++4)

[58]

Managing Strings Chapter 2

9. Run the ifexists function to find out whether the character of str exists
in the chr string or not. If the character does not exist in the chr string, it is
added to the chr string at the next index location and the respective index
location in the count array is set to 1:

if (!ifexists(str[i], chr, x, count))
{

X++;

chr[x]=str[i];

count [x]=1;

}

10. If the character exists in the chr string, the value in the respective index
location in the count array is incremented by 1 in the i fexists function.
The p and g arrays in the following snippet represent the chr and count
arrays, respectively, since the chr and count arrays are passed and
assigned to the p and g parameters in the i fexists function:

if (pli]==u)

qlil++;
return (1);

}

The countofeach. c program for counting each character in a string is as follows::

#include<stdio.h>
#include<string.h>
int ifexists(char u, char p[], int v, int g[])
{
int 1i;
for (i=0; i<=v;i++)

if(i>v) return (0);
t
void main ()
{
char str[80],chr[80];
int n,1i,x,count[80];
printf ("Enter a string: ");

Managing Strings Chapter 2

scanf ("%s",str);
n=strlen(str);
chr[0]=str[0];
count [0]=1;
x=0;
for(i=1;i < n; i++)
{
if(!ifexists(str[i], chr, x, count))
{
xX++;
chr[x]=str[i];
count [x]=1;
t
t
printf ("The count of each character in the string %s is \n", str);
for (i=0;i<=x;1i++)
printf ("$c\t%d\n",chr[i], count[i]);

}

Now, let's go behind the scenes to understand the code better.

How it works...

Let's assume that the two string variables you have defined, str and chr, are of the
size 80 (you can always increase the size of the strings if you wish).

We will assign the character string racecar to the str string. Each of the characters
will be assigned to the respective index locations of str, that is, r will be assigned
to index location str[0], a will be assigned to str[1], and so on. As always, the last
element in the string will be a null character, as shown in the following diagram:

r a c e c a r \0

str[0] str[1] str[2] str[3] str[4] str[5] str[6] str[7]

Figure 2.9

Using the strlen function, we will first compute the length of the string. Then, we
will use the string array chr for storing characters of the str array individually at each
index location. We will execute a for loop beginning from 1 until the end of the
string to access each character of the string.

[60]

Managing Strings Chapter 2

The integer array we defined earlier, that is, count, will represent the number of times
the characters from str have occurred, which is represented by the index locations in
the chr array. That is, if r is at index location chr[0], then count[0] will contain an
integer value (1, in this case) to represent the number of times the r character has
occurred in the str string so far:

r a c e c a r \0

str[0] str[1] str[2] str[3] str[4] str[5] str[6] str[7]

chr[0] r count[0] 1

chr[1] count[1]

Figure 2.10

One of the following actions will be applied to every character that's accessed from
the string:

o If the character exists in the chr array, the value in the respective index
location in the count array is incremented by 1. For example, if the
character of the string is found at the chr[2] index location, then the value
in the count[2] index location is incremented by 1.

e If the character does not exist in the chr array, it is added to the chr array at
the next index location, and the respective index location is found when the
count array is set to 1. For example, if the character a is not found in the chr
array, it is added to the chr array at the next available index location. If the
character a is added at the chr[1] location, then a value of 1 is assigned at
the count[1] index location to indicate that the character shown in chr[1]
has appeared once up until now.

[61]

Managing Strings Chapter 2

When the for loop completes, that is when all of the characters in the string are
accessed. The chr array will have individual characters of the string and the count
array will have the count, or the number of times the characters represented by

the chr array have occurred in the string. All of the elements in the chr and count
arrays are displayed on the screen.

Let's use GCC to compile the countofeach.c program, as follows:

D:\CBook>gcc countofeach.c -o countofeach

Let's run the generated executable file, countofeach. exe, to see the output of the
program:
D:\CBook>./countofeach

Enter a string: bintu
The count of each character in the string bintu is

b 1
i 1
n 1
t 1
u 1

Let's try another character string to test the results:
D:\CBook>./countofeach
Enter a string: racecar
The count of each character in the string racecar is
r 2
a 2
c 2
e 1
Voila! We've successfully displayed the count of each character in a string.

Now, let's move on to the next recipe!

[62]

Managing Strings Chapter 2

Counting vowels and consonants in a
sentence

In this recipe, you will learn how to count the number of vowels and consonants in an
entered sentence. The vowels are g, ¢, i, 0, and u, and the rest of the letters are
consonants. We will use ASCII values to identify the letters and their casing:

ASCIl ASCIl
A |65 a |97
B |66 b |98
C |67 c 199
[[]
[[]
) []
Z 90 z |122

Figure 2.11

The blank spaces, numbers, special characters, and symbols will simply be ignored.

How to do it...

1. Create a string array called str to input your sentence. As usual, the last
character will be a null character:

char str([255];
2. Define two variables, ctrv and ctrcC:
int ctrVv,ctrC;
3. Prompt the user to enter a sentence of your choice:
printf ("Enter a sentence: ");
4. Execute the gets function to accept the sentence with blank spaces
between the words:

gets (str);

[63]

Managing Strings Chapter 2

5. Initialize ctrv and ctrC to 0. The ct rv variable will count the number of
vowels in the sentence, while the ct rC variable will count the number of
consonants in the sentence:

ctrV=ctrC=0;

6. Execute a while loop to access each letter of the sentence one, by one
until the null character in the sentence is reached.

7. Execute an if block to check whether the letters are uppercase or
lowercase, using ASCII values. This also confirms that the accessed
character is not a white space, special character or symbol, or number.

8. Once that's done, execute a nested i f block to check whether the letter is a
lowercase or uppercase vowel, and wait for the while loop to terminate:

while (str[i]!="\0")
{

if((str[i] >=65 && str[1]1<=90) || (str[i] >=97 &&
str[il]l<=122))

{

if(str[i]=="'A' ||str[i]l=="E' ||str[i]=="1"
[lstr[i]=="0"
[Istr[i]=="U" ||str[i]=="a' ||str[i]=="e'
| |str[i]=="1"
| Istr[i]l=="o'"||str[i]=="u")
ctrV++;
else
ctrC++;
I
i++;

}

The countvowelsandcons.c program for counting vowels and consonants in a
string is as follows:

#include <stdio.h>
void main ()
{
char str[255];
int ctrVv,ctrC,i;

printf ("Enter a sentence: ");
gets (str);
ctrV=ctrC=1i=0;
while (str[i]!="\0")
{
if ((str[i] >=65 && str[i]<=90) || (str[i] >=97 &&

str[i]<=122))

[64]

Managing Strings Chapter 2

{

if(str[i]=="A"' ||str[i]=="E' ||str[i]=="I"' ||str[i]=="0"
| |str[i]=="U" | |str[i]l=="a' ||str[i]l=="e' ||str[i]l=="1i"
[|str[il=="o'"||str[i]l=="u")
ctrv++;
else
ctrC++;
}
i++;
}
printf ("Number of vowels are : $d\nNumber of consonants are :

%d\n", ctrv, ctrC);
}

Now, let's go behind the scenes to understand the code better.

How it works...

We are assuming that you will not enter a sentence longer than 255 characters, so we
have defined our string variable accordingly. When prompted, enter a sentence that
will be assigned to the st r variable. Because a sentence may have blank spaces
between the words, we will execute the gets function to accept the sentence.

The two variables that we've defined, that is, ct rv and ct rC, are initialized to 0.
Because the last character in a string is always a null character, \ 0, a while loop is
executed, which will access each character of the sentence one by one until the null
character in the sentence is reached.

Every accessed letter from the sentence is checked to confirm that it is either an
uppercase or lowercase character. That is, their ASCII values are compared, and if the
ASCII value of the accessed character is a lowercase or uppercase character, only then
it will execute the nested i f block. Otherwise, the next character from the sentence
will be accessed.

Once you have ensured that the accessed character is not a blank space, any special
character or symbol, or a numerical value, then an if block will be executed, which
checks whether the accessed character is a lowercase or uppercase vowel. If the
accessed character is a vowel, then the value of the ctrV variable is incremented by 1.
If the accessed character is not a vowel, then it is confirmed that it is a consonant, and
so the value of the ctrC variable is incremented by 1.

[65]

Managing Strings Chapter 2

Once all of the characters of the sentence have been accessed, that is, when the null
character of the sentence is reached, the while loop terminates and the number of
vowels and consonants stored in the ctrv and ctrC variables is displayed on the
screen.

Let's use GCC to compile the countvowelsandcons. c program, as follows:

D:\CBook>gcc countvowelsandcons.c —o countvowelsandcons

Let's run the generated executable file, countvowelsandcons.exe, to see the output
of the program:

D:\CBook>./countvowelsandcons

Enter a sentence: Today it might rain. Its a hot weather. I do like
rain

Number of vowels are : 18

Number of consonants are : 23

Voila! We've successfully counted all of the vowels and consonants in our sentence.

Now, let's move on to the next recipe!

Converting the vowels in a sentence to
uppercase

In this recipe, you will learn how to convert all of the lowercase vowels in a sentence
to uppercase. The remaining characters in the sentence, including consonants,
numbers, special symbols, and special characters, are simply ignored and will be left
as they are.

Converting the casing of any letter is done by simply changing the ASCII value of
that character, using the following formulas:

o Subtract 32 from the ASCII value of a lowercase character to convert it to
uppercase

e Add 32 to the ASCII value of an uppercase character to convert it to
lowercase

[66]

Managing Strings Chapter 2

The following diagram shows the ASCII values of the uppercase and lowercase
vowels:

AsCll ASCll
A |65 a |97
E |69 e [101
1 |73 i [105
O |79 o |11
U |85 u 117

Figure 2.12

The ASCII value of the uppercase letters is lower than that of lowercase letters, and
the difference between the values is 32.

How to do it...

1. Create a string called str to input your sentence. As usual, the last
character will be a null character:

char str[255];
2. Enter a sentence of your choice:
printf ("Enter a sentence: ");
3. Execute the gets function to accept the sentence with blank spaces

between the words, and initialize the i variable to 0, since each character of
the sentence will be accessed through i:

gets (str);
i=0

[67]

Managing Strings Chapter 2

4. Execute a while loop to access each letter of the sentence one by one,
until the null character in the sentence is reached:

while(str[i]!="\0")

5. Check each letter to verify whether it is a lowercase vowel. If the accessed
character is a lowercase vowel, then the value 32 is subtracted from the
ASCII value of that vowel to convert it to uppercase:

if(str[il=='a' ||str[i]l=='e' ||str[i]=="1"' ||str[i]=="o"
[Istr[i]=="u")

str[i]l=str[i]-32;

6. When all of the letters of the sentence have been accessed, then simply
display the entire sentence.

The convertvowels.c program for converting the lowercase vowels in a sentence to
uppercase is as follows:

#include <stdio.h>
void main ()

{
char str[255];

int i;
printf ("Enter a sentence: ");
gets (str);
1=0;
while (str[i]!="\0")
{
if (str[il=='a' ||str[il=='e' ||str[il=='i' ||str[i]l=='o"
| |str[i]=="u")
str [i] = str [i] -32;
i++;

}

printf ("The sentence after converting vowels into uppercase
is:\n");
puts (str);

}

Now, let's go behind the scenes to understand the code better.

[68]

Managing Strings Chapter 2

How it works...

Again, we will assume that you will not enter a sentence longer than 255 characters.
Therefore, we have defined our string array, str, to be of the size 255. When
prompted, enter a sentence to assign to the str array. Because a sentence may have
blank spaces between the words, instead of scanf, we will use the gets function to
accept the sentence.

To access each character of the sentence, we will execute a while loop that will run
until the null character is reached in the sentence. After each character of the sentence,
it is checked whether it is a lowercase vowel. If it is not a lowercase vowel, the
character is ignored and the next character in the sentence is picked up for
comparison.

If the character that's accessed is a lowercase vowel, then a value of 32 is subtracted
from the ASCII value of the character to convert it to uppercase. Remember that the
difference in the ASCII values of lowercase and uppercase letters is 32. That is, the
ASCII value of lowercase a is 97 and that of uppercase A is 65. So, if you subtract 32
from 97, which is the ASCII value of lowercase a, the new ASCII value will become
65, which is the ASCII value of uppercase A.

The procedure of converting a lowercase vowel to an uppercase vowel is to first find
the vowel in a sentence by using an if statement, and then subtract the value 32 from
its ASCII value to convert it to uppercase.

Once all of the characters of the string are accessed and all of the lowercase vowels of
the sentence are converted to uppercase, the entire sentence is displayed using
the puts function.

Let's use GCC to compile the convertvowels.c program, as follows:

D:\CBook>gcc convertvowels.c —-o convertvowels

Let's run the generated executable file, convertvowels.exe, to see the output of the
program:

D:\CBook>./convertvowels

Enter a sentence: It is very hot today. Appears as if it might rain. I
like rain

The sentence after converting vowels into uppercase is:

It Is vEry hOt tOdAy. AppEArs As If It mIght rAIn. I 1lIkE rAln

Voila! We've successfully converted the lowercase vowels in a sentence to uppercase.

[69]

Exploring Functions

Whenever you need to create a large application, it is a wise decision to divide it into
manageable chunks, called functions. Functions are small modules that represent
tasks that can be executed independently. The code written inside a function can be
invoked several times, which helps to avoid repetitive statements.

Functions help in the teamwork, debugging, and scaling of any application.
Whenever you want to add more features to an application, simply add a few
functions to it. When calling functions, the caller function may pass certain
arguments, called actual arguments; these are then assigned to the parameters of the
function. The parameters are also known as formal parameters.

The following recipes will help you understand how functions can be used to make
complex applications easier and more manageable. Normally, a function can return
only a single value. But in this chapter, we will learn a technique to return more than
one value from a function. We will also learn how to apply recursion in functions.

In this chapter, we will cover the following recipes on strings:

¢ Determining whether a number is an Armstrong number
¢ Returning the maximum and minimum values of an array

Finding GCD using recursion
¢ Converting a binary number into a hexadecimal number
¢ Determining whether a number is a palindrome

As I will be using a stack structure in the recipes in this chapter, let's have a quick
introduction to stack.

Exploring Functions Chapter 3

What is a stack?

A Stack is a structure that can be implemented with arrays as well as linked lists. It is
a sort of a bucket where the value you enter will be added at the bottom. The next
item that you add to a stack will be kept just above the item that was added
previously. The procedure of adding a value to the stack is called a push operation
and the procedure of getting a value out of the stack is called a pop operation. The
location where the value can be added or taken out of the stack is pointed at by a
pointer called top. The value of the top pointer is -1 when the stack is empty:

Stack
top= -1
when stack
is empty

stack[0]

Figure 3.1

When the push operation is executed, the value of top is incremented by 1, so that it
can point to the location in the stack where the value can be pushed:

Stack

top=0 => | value 1 | stack[0]

Figure 3.2

[71]

Exploring Functions Chapter 3

Now, the next value that will be pushed will be kept above value 1. More precisely,
the value of the top pointer will be incremented by 1, making its value 1, and the next
value will be pushed to the stack[1] location, as follows:

Stack

top=1 —> | value 2 | stack[1]
value 1 | stack[0]

Figure 3.3

So, you can see that the stack is a Last In First Out (LIFO) structure; that is, the last
value that was pushed sits at the top.

Now, when we execute a pop operation, the value at the top, that is, value 2, will be
popped out first, followed by the popping out of value 1. Basically, in the pop
operation, the value pointed at by the top pointer is taken out, and then the value of
top is decremented by 1 so that it can point at the next value to be popped out.

Now, that we've understood stacks, let's begin with the first recipe.

Finding whether a number is an
Armstrong number

An Armstrong number is a three-digit integer that is the sum of the cubes of its digits.
This simply means that if xyz = x™+’+z’, it is an Armstrong number. For example, 153
is an Armstrong number because 1°+5™+3’ = 153.

Similarly, a number that comprises four digits is an Armstrong number if the sum of
its digits raised to the power of four results in that number. For example, pgrs = p'+q
4 4, 4

tr +s.

[72]

Exploring Functions Chapter 3

How to do it...

1. Enter a number to assign to the n variable:

printf ("Enter a number ");
scanf ("%d", &n) ;

2. Invoke the findarmstrong function. The value assigned to n will get
passed to this function:

findarmstrong (n)

3. In the function, the passed argument, n, is assigned to the numb parameter.
Execute a while loop to separate out all the digits in the numb parameter:

while (numb >0)

4. In the while loop, apply the mod 10 ($10) operator on the number
assigned to the numb variable. The mod operator divides a number and
returns the remainder:

remainder=numb%$10;
5. Push the remainder to the stack:

push (remainder) ;

6. Remove the last digit of the number in the numb variable by dividing the
numb variable by 10:

numb=numb/10;

7. Repeat steps 4 to 6 until the number in the numb variable becomes 0. In
addition, create a count counter to count the number of digits in the
number. Initialize the counter to 0 and it will get incremented during the
while loop:

count++;

8. Pop all the digits from the stack and raise it to the given power. To pop all
the digits from the stack, execute a while loop that will execute until top is
greater than or equal to 0, that is, until the stack is empty:

while (top >=0)

[73]

Exploring Functions Chapter 3

9. Inside the while loop, pop off a digit from the stack and raise it to the
power of count, which is the count of the number of digits in the selected
number. Then, add all the digits to the value:

j=pop () ;
value=value+pow (j, count) ;

10. Compare the number in the value variable with the number in the numb
variable, and code it to return the value of 1 if both the compared numbers
match:

if (value==numb) return 1;

If the numbers in the numb and value variables are the same, returning the
Boolean value of 1, that means the number is an Armstrong number.

Here is the armstrong. c program for finding out whether the specified number is an
Armstrong number:

/* Finding whether the entered number is an Armstrong number */
include <stdio.h>
include <math.h>

#define max 10

int top=-1;
int stack[max];
void push (int) ;
int pop();
int findarmstrong (int);
void main ()
{
int n;
printf ("Enter a number ");
scanf ("%d", &n) ;
if (findarmstrong(n))
printf ("%d is an armstrong number",n);
else printf ("$d is not an armstrong number", n);
}
int findarmstrong (int numb)
{
int j, remainder, temp,count,value;
temp=numb;
count=0;
while (numb >0)
{

remainder=numb%$10;

[74]

Exploring Functions Chapter 3

push (remainder) ;
count++;
numb=numb/10;
}
numb=temp;
value=0;
while (top >=0)
{
j=pop () ;
value=value+pow (j, count) ;
}
if (value==numb)return 1;
else return 0;
t
void push (int m)
{
topt++;
stack[top]=m;
t
int pop ()
{
int 3j;
if (top==-1)return(top);
else
{
j=stack[top];
top——;
return (j);

}

Now, let's go behind the scenes.

How it works...

First, we will apply the mod 10 operator to separate our digits. Assuming the number
entered by us is 153, you can see that 153 is divided by 10 and the remaining 3 is
pushed to the stack:

[75]

Exploring Functions Chapter 3

Remainder

10 153
Pushed to Stack

15 3\

top —> 3 stack[0]

Figure 3.4

The value in the stack is pushed at the index location indicated by top. Initially, the
value of top is -1. It is so because before the push operation, the value of top is
incremented by 1, and the array is zero-based, that is, the first element in the array is
placed at the 0 index location. Consequently, the value of top has to be initialized to
-1. As mentioned, the value of top is incremented by 1 before pushing, that is, the
value of top will become 0, and the remainder of 3 is pushed to stack[0].

In the stack, the value of top is incremented by 1 to indicate the
location in the stack where the value will be pushed.

We will again apply the mod 10 operator to the 15 quotient. The remainder that we
will get is 5, which will be pushed to the stack. Again, before pushing to the stack, the
value of top, which was 0, is incremented to 1. At stack[1], the remainder is pushed:

Remainder
10 | 153
10 | 15 Pushed to Stack
1 5 top 5 stack[1]
stack[0]

Figure 3.5

[76]

Exploring Functions Chapter 3

To the 1 quotient, we will again apply the mod 10 operator. But because 1 is not
divisible by 10, 1 itself will be considered as the remainder and will be pushed to the
stack. The value of top will again be incremented by 1 and 1 will be

pushed to stack[2]:

10 | 153
10

15

1

Pushed to Stack 1 stack[2]
top 5 stack[1]
3

stack[0]

Figure 3.6

Once all the digits are separated and placed in the stack, we will pop them out one by
one. Then, we will raise each digit to the power equal to the count of the digits.
Because the number 153 consists of three digits, each digit is raised to the power of 3.

While popping values out of the stack, the value indicated by the top pointer is
popped out. The value of top is 2, hence the value at stack[2], that is, 1, is popped out
and raised to the power of 3, as follows:

top —> stack[2]
stack[1]
Popped 3 stack[0]

Figure 3.7

After the pop operation, the value of top will be decremented to 1 to indicate the next
location to be popped out. Next, the value at stack[1] will be popped out and raised to
the power of 3. We will then add this value to our previous popped-out one:

[77]

Exploring Functions Chapter 3

top—=3| (5) | stackl1]
3 stack[0]

Popped

Figure 3.8

After the popping-out operation, the value of top is decremented by 1, now making
its value 0. So, the value at stack[0] is popped out and raised to the power of 3. The
result is added to our earlier computation:

top—>] . 3 stack[0]
/ Popped
3 3
1+ 5 +3
1+125 + 27
153

Figure 3.9

The result after computing 1° + 5° + 3° is 153, which is the same as the original number.
This proves that 153 is an Armstrong number.

Let's use GCC to compile the armstrong. c program, as follows:

D:\CBook>gcc armstrong.c —-o armstrong

Let's check whether 127 is an Armstrong number:

D:\CBook>./armstrong
Enter a number 127
127 is not an armstrong number

[78]

Exploring Functions Chapter 3

Let's check whether 153 is an Armstrong number:
D:\CBook>./armstrong
Enter a number 153

153 is an armstrong number

Let's check whether 1634 is an Armstrong number:
D:\CBook>. /armstrong
Enter a number 1634

1634 is an armstrong number

Voila! We've successfully made a function to find whether a specified number is an
Armstrong number or not.

Now, let's move on to the next recipe!

Returning maximum and minimum values
in an array

C functions cannot return more than one value. But what if you want a function to
return more than one value? The solution is to store the values to be returned in an
array and make the function return the array instead.

In this recipe, we will make a function return two values, the maximum and
minimum values, and store them in another array. Thereafter, the array containing
the maximum and minimum values will be returned from the function.

How to do it...

1. The size of the array whose maximum and minimum values have to be
found out is not fixed, hence we will define a macro called max of size 100:

#define max 100
2. We will define an arr array of the max size, that is, 100 elements:

int arr[max];

[79]

Exploring Functions Chapter 3

3. You will be prompted to specify the number of elements in the array; the
length you enter will be assigned to the n variable:

printf ("How many values? ");
scanf ("%d", &n) ;

4. Execute a for loop for n number of times to accept n values for
the arr array:

for (i=0; i<n; i++)
scanf ("%d", &arr[i]);

5. Invoke the maxmin function to pass the arr array and its length, n, to it.
The array that will be returned by the maxmin function will be assigned to
the integer pointer, *p:

p=maxmin (arr,n) ;

6. When you look at the function definition, int *maxmin (int ar[], int
v){ }, the arr and n arguments passed to the maxmin function are
assigned to the ar and v parameters, respectively. In the maxmin function,
define an mm array of two elements:

static int mm[2];

7. To compare it with the rest of the elements, the first element of ar array is
stored atmm[0] and mm[1]. A loop is executed from the 1 value till the end
of the length of the array and within the loop, the following two formulas
are applied:

e We will usemm[0] to store the minimum value of the arr array. The value
inmm[0] is compared with the rest of the elements. If the value in mm[0] is
greater than any of the array elements, we will assign the smaller element
tomm([0]:

if (mm[0] > ar[i])
mm[O0]l=ar([i];

e We willusemm[1] to store the maximum value of the arr array. If the
value atmm[1] is found to be smaller than any of the rest of the array
element, we will assign the larger array element tomm[1]:

if(mm[1l]< ar[i])
mm[1l]= ar[i];

[80]

Exploring Functions Chapter 3

1

8. After the execution of the for loop, the mm array will have the minimum
and maximum values of the arr array atmm[0] and mm[1], respectively.
We will return this mm array to the main function where the *p pointer is
set to point at the returned array, mm:

return mm;

9. The *p pointer will first point to the memory address of the first index
location, that is, mm [0]. Then, the content of that memory address, that is,
the minimum value of the array, is displayed. After that, the value of
the *p pointer is incremented by 1 to make it point to the memory address
of the next element in the array, that is, the mm[1] location:

printf ("Minimum value is %d\n", *p++);

0. Themm[1] index location contains the maximum value of the array.
Finally, the maximum value pointed to by the *p pointer is displayed on
the screen:

printf ("Maximum value is %d\n", *p);

The returnarray.c program explains how an array can be returned from a
function. Basically, the program returns the minimum and maximum values of an

array:

/*
an
1
#de
int
voi

{

Find out the maximum and minimum values using a function returning
array */
nclude <stdio.h>

fine max 100

*maxmin (int ar[], int v);
d main ()

int arr[max];

int n,i, *p;

printf ("How many values? ");

scanf ("%d", &n) ;

printf ("Enter %d values\n", n);

for (1i=0;i<n; i++)

scanf ("%d", &arr([i]);

p=maxmin (arr,n);

printf ("Minimum value is %d\n", *p++);
printf ("Maximum value is %d\n", *p);
*maxmin (int ar[], int wv)

int 1i;

[81]

Exploring Functions Chapter 3

static int mm([2];
mm[0]=ar[0];
mm[l]=ar[0];
for (i=1;i<v;i++)

return mm;

}

Now, let's go behind the scenes.

How it works...

We will use two arrays in this recipe. The first array will contain the values from
which the maximum and minimum values have to be found. The second array will be
used to store the minimum and maximum values of the first array.

Let's call the first array arr and define it to contain five elements with the following
values:

30 | arr[0]
8 |arr[1]
77 | arr[2]
15 | arr[3]
9 |arr[4]
Figure 3.10

[82]

Exploring Functions Chapter 3

Let's call our second array mm. The first location, mm[0], of the mm array will be
used for storing the minimum value and the second location, mm[1], for storing the
maximum value of the arr array. To enable comparison of the elements of

the mm array with the elements of the arr array, copy the first element of the arr array
at arr[0] to both mm[0] and mm][1]:

30 | arr[0] For finding
arrf1 minimum value
s fartn — i) €
77 faril 30 |mm[1] g For finding
15 | arr[3] maximum value
9 | arr[4]

Figure 3.11

Now, we will compare the rest of the elements of the arr array with mm[0] and
mm[1]. To keep the minimum value at mm[0], any element smaller than the value at
mm|[0] will be assigned to mm[0]. Values larger than mm[0] are simply ignored. For
example, the value at arr[1] is smaller than that at mm[0], that is, 8 <30. So, the
smaller value will be assigned to mm][0]:

30 |arr[0] Because 8 < 30, 8
3 |arr[1] __Js copied here
77 | arr(2] > | 8 |mm[0]
15 | arr[3] 30 |mm[1]
g9 |arr[4]

Figure 3.12

We will apply reverse logic to the element at mm[1]. Because we want the maximum
value of the arr array at mm{[1], any element found larger than the value at
mm|[1] will be assigned to mm[1]. All smaller values will be simply ignored.

We will continue this process with the next element in the arr array, which is arr[2].
Because 77 > 8, it will be ignored when compared with mm[0]. But 77 > 30, so it will
be assigned to mm[1]:

[83]

Exploring Functions

Chapter 3

30 |arr[0]
8 |arr[1]
77 | arr[2]
15 | arr[3]
9 |arr[4]

Because 77 is > 30,
so it is copied here 8

TTT—— (7

mm[0]

mm[1]

Figure 3.13

We will repeat this procedure with the rest of the elements of the arr array. Once all
the elements of the arr array are compared with both the elements of the mm array,
we will have the minimum and maximum values at mm[0] and mm[1], respectively:

mm[0]

77

mm[1]

Accessed through
pointer p

Let's use GCC to compile the returnarray . c program, as follows:

Figure 3.14

D:\CBook>gcc returnarray.c —-o returnarray

Here is the output of the program:

D:\CBook>./returnarray
How many values? 5
Enter 5 values

30

8

77

15

9

Minimum value is 8
Maximum value is 77

Voila! We've successfully returned the maximum and minimum values in an array.

Now, let's move on to the next recipe!

[84]

Exploring Functions Chapter 3

Finding the greatest common divisor
using recursion

In this recipe, we will use recursive functions to find the greatest common divisor
(GCD), also known as the highest common factor) of two or more integers. The GCD
is the largest positive integer that divides each of the integers. For example, the GCD
of 8 and 12 is 4, and the GCD of 9 and 18 is 9.

How to do it...

The int gcd(int x, int y) recursive function finds the GCD of two integers, x
and y, using the following three rules:

e If y=0, the GCD of x and y is x.
e If xmod yis 0, the GCD of xand y is y.
¢ Otherwise, the GCD of x and y is gcd (y, (x mod y)).

Follow the given steps to find the GCD of two integers recursively:

1. You will be prompted to enter two integers. Assign the integers entered to
two variables, u and v:

printf ("Enter two numbers: ");
scanf ("%d %d", &x,&y);

2. Invoke the gcd function and pass the x and y values to it. The x and
y values will be assigned to the a and b parameters, respectively. Assign
the GCD value returned by the gcd function to the g variable:

g=gcd(x,Y);

3. In the gcd function, a % b is executed. The % (mod) operator divides the
number and returns the remainder:

m=a%b;

4. If the remainder is non-zero, call the gcd function again, but this time the
arguments will be gcd (b, a % b), thatis, gcd (b, m), where m stands for
the mod operation:

gcd (b, m);

[85]

Exploring Functions Chapter 3

5. If this again results in a non-zero remainder, that is, if b % mis non-zero,
repeat the gcd function with the new values obtained from the previous
execution:

gcd (b, m);

6. If theresult of b % mis zero, b is the GCD of the supplied arguments and is
returned back to the main function:

return (b) ;

7. The result, b, that is returned back to the main function is assigned to
the g variable, which is then displayed on the screen:

printf ("Greatest Common Divisor of %d and %d is %d",x,y,9g);

The gcd. c program explains how the greatest common divisor of two integers is
computed through the recursive function:

#include <stdio.h>
int gcd(int p, int qg);
void main ()
{
int x,vy,9;
printf ("Enter two numbers: ");
scanf ("%d %d", &x, &y);
g=gcd(x,Y);
printf ("Greatest Common Divisor of %d and %d is %d",x,vy,9);

int gcd(int a, int b)

int m;
m=a%b;
if (m==0)
return (b) ;
else
gcd (b, m) ;
}

Now, let's go behind the scenes.

[86]

Exploring Functions Chapter 3

How it works...

Let's assume we want to find the GCD of two integers, 18 and 24. To do so, we will
invoke the gcd (%, y) function, which in this case is gcd (18, 24) . Because 24, that is,
y, is not zero, Rule 1 is not applicable here. Next, we will use Rule 2 to check whether
18%24 (x % y)isequal to 0. Because 18 cannot be divided by 24, 18 will be the

°

remainder:

Remainder

24
18

18
0

Figure 3.15

Since the parameters of Rule 2 were also not met, we will use Rule 3. We will invoke
the gcd function with the gcd (b, m) argument, which is gcd (24, 18%24). Now,

m stands for the mod operation. At this stage, we will again apply Rule 2 and collect
the remainder:

Remainder

18| 24

Figure 3.16

Because the result of 24%18 is a non-zero value, we will invoke the gcd function
again with the gcd (b, m) argument, which is now gcd (18, 24%18), since we were
left with 18 and 6 from the previous execution. We will again apply Rule 2 to this
execution. When 18 is divided by 6, the remainder is 0:

Remainder
6 |18
3 0
Figure 3.17

[87]

Exploring Functions Chapter 3

At this stage, we have finally fulfilled the requirements of one of the rules, Rule 2. If
you recall, Rule 2 says that if x mod y is 0, the GCD is y. Because the result of 18 mod
6is 0, the GCD of 18 and 24 is 6.

Let's use GCC to compile the gcd. c program, as follows:
D:\CBook>gcc gecd.c —-o gcd

Here is the output of the program:
D:\CBook>./gcd
Enter two numbers: 18 24
Greatest Common Divisor of 18 and 24 is 6
D:\CBook>./gcd

Enter two numbers: 9 27
Greatest Common Divisor of 9 and 27 is 9

Voila! We've successfully found the GCD using recursion.

Now, let's move on to the next recipe!

Converting a binary number into a
hexadecimal number

In this recipe, we will learn how to convert a binary number into a hexadecimal
number. A binary number comprises two bits, 0 and 1. To convert a binary number
into a hexadecimal number, we first need to convert the binary number into a decimal
number and then convert the resulting decimal number to hexadecimal.

How to do it...

1. Enter a binary number and assign it to the b variable:

printf ("Enter a number in binary number ");
scanf ("%d", &b) ;

[88]

Exploring Functions Chapter 3

2.

Invoke the intodecimal function to convert the binary number into
a decimal number, and pass the b variable to it as an argument. Assign the
decimal number returned by the intodecimal function to the d variable:

d=intodecimal (b) ;

On looking at the intodecimal definition, int intodecimal (int bin)
{ }, we can see that the b argument is assigned to the bin parameter of the
intodecimal function.

Separate all the binary digits and multiply them by 2 raised to the power of
their position in the binary number. Sum the results to get the decimal
equivalent. To separate each binary digit, we need to execute a while loop
until the binary number is greater than 0:

while (bin >0)

Within the while loop, apply the mod 10 operator on the binary number
and push the remainder to the stack:

remainder=bin%10;
push (remainder) ;

Execute another while loop to get the decimal number of all the binary
digits from the stack. The while loop will execute until the stack becomes
empty (that is, until the value of top is greater than or equal to 0):

while (top >=0)

In the while loop, pop off all the binary digits from the stack and multiply
each one by 2 raised to the power of top. Sum the results to get the decimal
equivalent of the entered binary number:

j=pop () ;
deci=deci+j*pow (2, exp);

Invoke the intohexa function and pass the binary number and the decimal
number to it to get the hexadecimal number:

void intohexa (int bin, int deci)

[89]

Exploring Functions Chapter 3

9. Apply the mod 16 operator in the intohexa function on the decimal
number to get its hexadecimal. Push the remainder that you get to
the stack. Apply mod 16 to the quotient again and repeat the process until
the quotient becomes smaller than 16:

remainder=deci%$16;
push (remainder) ;

10. Pop off the remainders that are pushed to the stack to display the
hexadecimal number:

j=pop () ;

If the remainder that is popped off from the stack is less than 10, it is displayed as
such. Otherwise, it is converted to its equivalent letter, as mentioned in the following
table, and the resulting letter is displayed:

Decimal Hexadecimal

10 A

11

12

13

14

im0 |R

15

1if (j<10)printf ("sd", J);
else printf ("%c",prnhexa(j));

The binarytohexa.c program explains how a binary number can be converted into
a hexadecimal number:

//Converting binary to hex
include <stdio.h>
#include <math.h>
#define max 10
int top=-1;
int stack[max];
void push{();
int pop();
char prnhexa(int);
int intodecimal (int);
void intohexa (int, int);
void main ()
{

int b, d;

[90]

Exploring Functions Chapter 3

printf ("Enter a number in binary number ");

scanf ("%d", &b) ;

d=intodecimal (b) ;

printf ("The decimal of binary number %d is %d\n", b, d);
intohexa (b, d);

int intodecimal (int bin)

int deci, remainder,exp,j;
while (bin >0)

{
remainder=bin%10;
push (remainder) ;
bin=bin/10;

t

deci=0;

exp=top;

while (top >=0)

{
Jj=pop () ;
deci=decit+j*pow (2, exp);
exp-——;

t
return (deci);
t
void intohexa (int bin, int deci)
{
int remainder, j;
while (deci >0)
{
remainder=deci%16;
push (remainder) ;
deci=deci/16;
t
printf ("The hexa decimal format of binary number %d is ",bin);
while (top >=0)
{
j=pop () ;
if (§<10)printf ("sd", 3);
else printf ("%c",prnhexa(j));

}

void push (int m)

{
topt++;
stack[top]=m;
t
int pop()

[91]

Exploring Functions Chapter 3

{
int 3;
if (top==-1)return(top);
j=stack[top];
top——;
return (j);
t
char prnhexa (int v)
{
switch (v)
{

case 10: return ('A'");

break;

case 11: return ('B'");
break;

case 12: return ('C");
break;

case 13: return ('D'");
break;

case 14: return ('E");
break;

case 15: return ('F'");
break;

}

Now, let's go behind the scenes.

How it works...

The first step is to convert the binary number into a decimal number. To do so, we
will separate all the binary digits and multiply each by 2 raised to the power of their
position in the binary number. We will then apply the mod 10 operator in order to
separate the binary number into individual digits. Every time mod 10 is applied to
the binary number, its last digit is separated and then pushed to the stack.

Let's assume that the binary number that we need to convert into a hexadecimal
format is 110001. We will apply the mod 10 operator to this binary number. The mod
operator divides the number and returns the remainder. On application of the mod 10
operator, the last binary digit—in other words the rightmost digit will be returned as
the remainder (as is the case with all divisions by 10).

[92]

Exploring Functions Chapter 3

The operation is pushed in the stack at the location indicated by the top pointer. The
value of top is initially -1. Before pushing to the stack, the value of top is incremented
by 1. So, the value of top increments to 0 and the binary digit that appeared as the
remainder (in this case, 1) is pushed to stack[0] (see Figure 3.18), and 11000 is returned
as the quotient:

Remainder
10 | 110001
11000 1 Pushed
to stack
top —> 1 stack[0]
Figure 3.18

We will again apply the mod 10 operator to the quotient to separate the last digit of
the present binary number. This time, 0 will be returned as the remainder and 1100 as
the quotient on the application of the mod 10 operator. The remainder is again
pushed to the stack. As mentioned before, the value of top is incremented before
applying the push operation. As the value of top was 0, it is incremented to 1 and our
new remainder, 0, is pushed to stack[1]:

Remainder
10 | 110001
10 ﬂ 1 Pushed
1100 0 to stack
top —> 0 stack[1]
stack[0]
Figure 3.19

[93]

Exploring Functions

Chapter 3

We will repeat this procedure until all the digits of the binary number are separated
and pushed to the stack, as follows:

Remainder
10 | 110001 top = 1 stack[5]
10 | 11000 1 1 stack[4]
10 | 1100 0 0 stack[3]
10 T 0 0 stack[2]
10 11_ 0 0 stack[1]
y 1 1 stack[0]
Figure 3.20

Once that's done, the next step is to pop the digits out one by one and multiply every
digit by 2 raised to the power of top. For example, 2 raised to the power of top means
2 will be raised to the value of the index location from where the binary digit was
popped off. The value from the stack is popped out from the location indicated by

top.

The value of top is currently 5, hence the element at stack[5] will be popped out and
multiplied by 2 raised to the power 5, as follows:

Popped from
the stack

1x2

top

td B=d =2 Bl B B

stack[5]
stack[4]
stack[3]
stack[2]
stack[1]
stack[0]

Figure 3.21

[94]

Exploring Functions Chapter 3

After popping a value from the stack, the value of top is decremented by 1 to point at
the next element to be popped out. The procedure is repeated until every digit is
popped out and multiplied by 2 raised to the power of its top location value.

Figure 3.19 shows how all the binary digits are popped from the stack and multiplied
by 2 raised to the power of top:

stack[5]
stack[4]
stack[3]

stack[2]
stack[1]
top = . | stack[0]
Popped from
the stack
5 4 3 2 1 0
1x2+1x2 +0x2 +0x2 +0x2 +1x2
32 + 16 + 0 + 0 + 0 + 1
49

=l OO O|=]=

Figure 3.22

The resulting number we get is the decimal equivalent of the binary number that was
entered by the user.

Now, to convert a decimal number into a hexadecimal format, we will divide it by 16.
We need to keep dividing the number until the quotient becomes smaller than 16.
The remainders of the division are displayed in LIFO order. If the remainder is below
10, it is displayed as is; otherwise, its equivalent letter is displayed. You can use the
preceding table to find the equivalent letter if you get a remainder between 10 and 15.

In the following figure, you can see that the decimal number 49 is divided by 16. The
remainders are displayed in LIFO order to display the hexadecimal, hence 31 is the
hexadecimal of the binary number 110001. You don’t need to apply the preceding
table as both the remainders are less than 10:

Remainder

16 | 49

Figure 3.23

[95]

Exploring Functions Chapter 3

Let's use GCC to compile the binaryintohexa.c program, as follows:

D:\CBook>gcc binaryintohexa.c —-o binaryintohexa

Here is one output of the program:

D:\CBook>. /binaryintohexa

Enter a number in binary number 110001

The decimal of binary number 110001 is 49

The hexa decimal format of binary number 110001 is 31

Here is another output of the program:

D:\CBook>. /binaryintohexa

Enter a number in binary number 11100

The decimal of binary number 11100 is 28

The hexa decimal format of binary number 11100 is 1C

Voila! We've successfully converted a binary number into a hexadecimal number.

Now, let's move on to the next recipe!

Finding whether a number is a
palindrome

A palindrome number is one that appears the same when read forward and
backward. For example, 123 is not a palindrome but 737 is. To find out whether a
number is a palindrome, we need to split it into separate digits and convert the unit
of the original number to hundred and the hundred to unit.

For example, a pgr number will be called a palindrome number if pgr=rqgp.
And pgr will be equal to rgp only if the following is true:

px100+qx10+r=rx100+qx10+p
In other words, we will have to multiply the digit in the unit place by 10° to convert it

into the hundreds and convert the digit in the hundreds place to unit by multiplying
it by 1. If the result matches the original number, it is a palindrome.

[96]

Exploring Functions Chapter 3

How to do it...

1. Enter a number to assign to the n variable:

printf ("Enter a number ");
scanf ("%d", &n) ;

2. Invoke the findpalindrome function and pass the number in
the n variable to it as an argument:

findpalindrome (n)

3. The n argument is assigned to the numb parameter in the findpalindrome
function. We need to separate each digit of the number; to do so, we will
execute a while loop for the time the value in the numb variable is greater
than 0:

while (numb >0)

4. Within the while loop, we will apply mod 10 on the number. On
application of the mod 10 operator, we will get the remainder, which is
basically the last digit of the number:

remainder=numb%$10;

5. Push that remainder to the stack:

push (remainder) ;

6. Because the last digit of the number is separated, we need to remove the
last digit from the existing number. That is done by dividing the number by
10 and truncating the fraction. The while loop will terminate when the
number is individually divided into separate digits and all the digits are
pushed to the stack:

numb=numb/10;

[971]

Exploring Functions Chapter 3

7. The number at the top of the stack will be the hundred and the one at the
bottom of the stack will be the unit of the original number. Recall that we
need to convert the hundred of the original number to the unit and vice
versa. Pop all the digits out from the stack one by one and multiply each of
them by 10 raised to a power. The power will be 0 for the first digit that is
popped off. The power will be incremented with every value that is
popped off. After being multiplied by 10 raised to the respective power,
the digits are added into a separate variable, called value:

j=pop () ;
value=value+j*pow (10, count) ;
count++;

8. If the numbers in the numb and value variables match, that means the
number is a palindrome. If the number is a palindrome, the
findpalindrome function will return a value of 1, otherwise it will return
a value of 0:

if (numb==value) return (1);
else return (0);

The findpalindrome.c program determines whether the entered number is a
palindrome number:

//Find out whether the entered number is a palindrome or not
include <stdio.h>
#include <math.h>
#define max 10
int top=-1;
int stack[max];
void push{();
int pop();
int findpalindrome (int);
void main ()
{
int n;
printf ("Enter a number ");
scanf ("%d", &n) ;
if (findpalindrome (n))
printf("%d is a palindrome number",n);
else
printf ("%d is not a palindrome number", n);

int findpalindrome (int numb)

int j, value, remainder, temp,count;

[98]

Exploring Functions

Chapter 3

temp=numb;

while (numb >0)

{
remainder=numb%10;
push (remainder) ;
numb=numb/10;

t

numb=temp;

count=0;

value=0;

while (top >=0)

{
Jj=pop () ;

value=value+j*pow (10, count) ;

count++;

}

if (numb==value) return

else return (0);
t
void push (int m)
{
top+t+;
stack[top]l=m;
t
int pop ()
{

int 3j;

if (top==-1)return(top);

else

{
j=stack[top];
top——;
return (j);

}

Now, let's go behind the scenes.

[99]

Exploring Functions Chapter 3

How it works...

Let's assume that the number we entered is 737. Now, we want to know whether 737
is a palindrome. We will start by applying the mod 10 operator on 737. On
application, we will receive the remainder, 7, and the quotient, 73. The remainder, 7,
will be pushed to the stack. Before pushing to the stack, however, the value of the top
pointer is incremented by 1. The value of top is -1 initially; it is incremented to 0 and
the remainder of 7 is pushed to stack[0] (see Figure 3.21).

The mod 10 operator returns the last digit of the number as the remainder. The
quotient that we get on the application of the mod 10 operator is the original number
with its last digit removed. That is, the quotient that we will get on the application of
mod 10 operator on 737 is 73:

Remainder

10 | 737

73 7

Pushed to Stack

top —> 7 stack[0]

Figure 3.24

To the quotient, 73, we will apply the mod 10 operator again. The remainder will be
the last digit, which is 3, and the quotient will be 7. The value of top is incremented
by 1, making its value 1, and the remainder is pushed to stack[1]. To the quotient, 7,
we will again apply the mod 10 operator. Because 7 cannot be divided by 10, 7 itself is
returned and is pushed to the stack. Again, before the push operation, the value of
top is incremented by 1, making its value 2. The value of 7 will be pushed to stack|[2]:

10) 737
101 73 7 Pushed to Stack 7 stack[2]
7 - top 3 stack[1]
7 stack[0]

Figure 3.25

[100]

Exploring Functions Chapter 3

After separating the number into individual digits, we need to pop each digit from
the stack one by one and multiply each one by 10 raised to a power. The power will
be 0 for the topmost digit on the stack and will increment by 1 after every pop
operation. The digit that will be popped from the stack will be the one indicated to by
the top pointer. The value of top is 2, so the digit on stack[2] is popped out and is
multiplied by 10 raised to power of 0:

top —> stack[2]
3 stack[1]
popped 7 stack[0]
0
7x10
Figure 3.26

After every pop operation, the value of top is decremented by 1 and the value of the
power is incremented by 1. The next digit that will be popped out from the stack is
the one on stack[1]. That is, 3 will be popped out and multiplied by 10 raised to the
power of 1. Thereafter, the value of top will be decremented by 1, that is, the value of
top will become 0, and the value of the power will be incremented by 1, that is, the
value of the power that was 1 will be incremented to 2. The digit on stack[0] will be
popped out and multiplied by 10 raised to the power of 2:

7 stack[2]
3 stack[1]

=21 (7) | stackio]

top
popped
2 1 0

7x10 +3x10 + 7x10
Tx100+3x10+7x1

700 + 30 + 7
737

Figure 3.27

[101]

Exploring Functions Chapter 3

All the digits that are multiplied by 10 raised to the respective power are then
summed. Because the result of the computation matches the original number, 737 is a
palindrome.

Let's use GCC to compile the findpalindrome.c program, as shown in the
following statement:

D:\CBook>gcc findpalindrome.c -o findpalindrome
Let's check whether 123 is a palindrome number:
D:\CBook>./findpalindrome

Enter a number 123
123 is not a palindrome number

Let's check whether 737 is a palindrome number:

D:\CBook>./findpalindrome
Enter a number 737
737 is a palindrome number

Voila! We've successfully determined whether a number was a palindrome.

[102]

Preprocessing and
Compilation

There are several preprocessor statements that can help you determine which source
code needs to be compiled and which needs to be excluded from being compiled.
That is, a condition can be applied and the desired statements will be compiled only if
the specified condition is true. These directives can be nested for more precise
branching. There are numerous preprocessor statements, such as #if, #ifdef,
#ifndef, #else, #elif, and #endif, that can be used to collect statements into
blocks that we want to be compiled when the specified condition is true.

Some of the advantages of using macros are as follows:

¢ The execution speed of the program increases as the value or code of the
macro is substituted by the name of the macro. So, the time involved in
invoking or calling the functions by the compiler is saved.

e Macros reduce the length of the program.

The main disadvantage of using a macro is that the size of the program increases
prior to the compilation of the program, as all the macros are substituted by their
code. In this chapter, we will learn how to apply conditional compilation using
preprocessor directives.

We will also learn how to implement validation in the program by making use of
assertions. Assertions are a sort of validation check for different critical statements of
the program. If those assertions or expressions don't validate or return false, then an
error is displayed and the program is aborted. The main difference between this and
usual error handling is that assertions can be disabled at runtime.

If the #define NDEBUG macro is defined near the #include
<assert .h> directive, it will disable the assert function.

Preprocessing and Compilation Chapter 4

Besides the normal asserts, there are also asserts that are referred to as static or
compile-time asserts, which are used to catch errors at the time of compilation. Such
asserts can be used to do compile-time validations.

In addition to this, we will learn how to use stringize and token-pasting operators
using the example of a pizza parlor.

In this chapter, we will learn how to make the following recipes:

¢ Performing conditional compilation with directives
¢ Applying assertions for validation
¢ Using assertions to ensure a pointer is not pointing to NULL

Catching errors early with compile-time assertions
¢ Applying stringize and token-pasting operators

Let's start with the first recipe.

Performing conditional compilation with
directives

In this recipe, we will learn how to apply conditional compilation. We will define
certain macros, and then, by applying the #if, #ifdef, #ifndef, #else, #elif,
#endif, and #undef preprocessor directives, we will direct the compiler to compile
the desired code. Considering the example of a bookstore, let's assume that a user is
asked to enter the price of the book. The program will apply different discounts,
festival offers, a discount coupon, and Kindle options on the basis of the oty macro,
which represents the quantity or number of books purchased by the user. The
program also defines other macros that determine different offers that are applicable.

How to do it...

Follow these steps to perform conditional compilation with preprocessor directives:
1. Define a 0ty macro and assign it an initial value:

#define Qty 10

[104]

Preprocessing and Compilation Chapter 4

2. The user will be prompted to enter the price of a book:

printf ("Enter price of a book ");
scanf ("$f", &price);

3. The total number of books is computed using the ot y*price formula:
totalAmount=Qty*price;

4. On the basis of the 9ty macro, the #if, #elif, #else, and #endif
directives are used to determine the discount on the total number.

5. Once the discount percentage is determined, the amount after deducting
the discount is computed and is assigned to the afterDisc variable:

afterDisc=totalAmount - (totalAmount*discount)/100;

6. The festival discount is also computed on the basis of the Festivaloffer
macro. Thatis, the #ifdef, #else, and #endif directives are used to
confirm whether the FestivalOf fer macro is defined and, accordingly,
the amount that the customer has to pay after deducting the festival
discount is computed:

#ifdef FestivalOffer

afterFDisc=afterDisc- (totalAmount*FestivalOffer)/100;
felse

afterFDisc=afterDisc;

#endif

7. The #if defined directive is used to confirm whether the
DiscountCoupon macro is defined in the program or not. And,
accordingly, the user is informed whether they are eligible for the discount
coupon:

#if defined (DiscountCoupon)

printf ("You are also eligible for a discount coupon of $
%$d\n", DiscountCoupon) ;

#endif

[105]

Preprocessing and Compilation Chapter 4

8. The preprocessor directives, #ifndef and #endif, are used to determine
whether the Kindle macro is defined or not. If the Kindle macro is not yet
defined, it is defined and its value is set. Accordingly, the user is informed
of how many months they will be eligible for the Kindle version of the
book:

#ifndef Kindle

#define Kindle 1

fendif

printf ("You can use the Kindle version of the book for %d
month (s)\n", Kindle);

The program for performing conditional compilation with preprocessor directives is
shown in the following code snippet:

// condcompile.c
#include <stdio.h>
#define Qty 10

#define FestivalOffer 2
#define DiscountCoupon 5
#define Kindle 2

int main ()

{

int discount;
float price, totalAmount, afterDisc, afterFDisc;
printf ("Enter price of a book ");
scanf ("%$f", &price);
#if Qty >= 10
discount=15;
#elif Qty >=5
discount=10;
#else
discount=5;
#endif
totalAmount=Qty*price;
afterDisc=totalAmount - (totalAmount*discount)/100;
#ifdef FestivalOffer
afterFDisc=afterDisc- (totalAmount*FestivalOffer) /100;
#else
afterFDisc=afterDisc;

fendif

printf ("Quantity = %d, Price is $ %.2f, total amount for the
books is $ %.2f\n", Qty, price, totalAmount);

printf ("Discount is %d%% and the total amount after
discount is $ %.2f\n", discount, afterDisc);

#ifdef FestivalOffer

[106]

Preprocessing and Compilation Chapter 4

printf ("Festival discount is %d%%, the total amount
after festival discount is $ %.2f\n",
FestivalOffer, afterFDisc);
fendif
#if defined (DiscountCoupon)
printf ("You are also eligible for a discount
coupon of $ %d\n", DiscountCoupon);
fendif
#ifndef Kindle
#define Kindle 1
fendif
printf ("You can use the Kindle version of the book
for %d month(s)\n", Kindle);
return 0;

}

Now, let's go behind the scenes to understand the code better.

How it works...

Four macros, called Qty, FestivalOffer, DiscountCoupon, and Kindle, are
defined with the values of 10, 2, 5, and 2, respectively. The user is prompted to enter
the price of a book. The value entered by the user is assigned to the variable price.
The #if, #elif, #else, and #endif conditional directives are then used to
determine the amount of discount to be applied to the books depending on the value
of the 9ty macro. Because, the current value of the Qty macro is 10, the value of the
discount variable will be set to 15 through the preprocessor directives. The value of
the discount variable can be changed at any time simply by changing the value of
the oty macro. The total number of the books is computed by multiplying the values
of oty by the price, and the resultant value is assigned to the totalAmount variable.
Because the user is given some kind of discount on the basis of the oty value, the
amount that the user has to pay after deducting the discount is computed and the
resulting amount is assigned to the afterDisc variable.

Again, because the FestivalOffer macro is defined, the #ifdef, #else, and
#endif preprocessor directives are used to compute the amount that the customer
has to pay after deducting a festival discount of 2%. We can always comment out the
#define FestivalOffer statement to undefine the macro; in this case, no festival
discount will be given to the customer.

[107]

Preprocessing and Compilation Chapter 4

The total amount is displayed on the screen as well as the amount after deducting the
discount. And if the festival offer is applied, the amount after deducting the festival
offer is also displayed on the screen.

The #if defined directive is used to confirm whether the DiscountCoupon macro
is defined or not. Because currently in the program the DiscountCoupon macro is
defined and is assigned the value of 5, a message is displayed informing that they are
eligible for an additional discount coupon of $5 too. You can always comment out the
DiscountCoupon macro if you want to avoid giving any discount coupons. The
Kindle version of the book has to be given to the customer for at least a month.
Because the Kindle macro is defined in the program and is assigned the value of 2, a
message is displayed on the screen informing the user that they are allowed to use the
Kindle version of the book for 2 months. However, if you comment out the Kindle
macro, the #ifndef and #endif preprocessor directives are used to set the value of
the Kindle macro to 1 if the Kindle macro is not defined in the program. Therefore,
if the Kindle macro is not defined in the program, a message will be displayed
informing the user that they are allowed to use the Kindle version of the book for 1
month.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during compilation, this means that the condcompile.c program is
successfully compiled into a . exe file: condcompile.exe. On executing the file, the
user will be prompted to enter the price of the book and, according to the defined
macros, the total amount and the discounted amount will be displayed, as shown in
the following screenshot:

D:\CAdvBook>gcc condcompile.c -o condcompile

D: \CAdvBook>condcompile
Enter price of a book 40
Quantity = 18, Price is ¢ 4@.88, total amount for the books is § 4e@.ee

Discount is 15% and the total amount after discount is $ 34@.00

Festival discount is 2%, the total amount after festival discount is $ 332.60
You are also eligible for a discount coupan of $ 5

You can use the Kindle version of the book for 2 month(s)

Figure 4.1

[108]

Preprocessing and Compilation Chapter 4

Next, keeping the value of the 0ty macro to 10 and try commenting out the following
two macros:

fdefine FestivalOffer 2
#define Kindle 2

The preceding program will show the following output:

D:\CAdvBook>gcc condcompile.c -o condcompile

D:\CAdvBook>condcompile
Enter price of a book 4@

Quantity = 10, Price is $ 40.68, total amount for the books is $ 4©0.00
Discount is 15% and the total amount after discount is $ 348.00

You are also eligible for a discount coupan of $ 5

You can use the Kindle version of the book for 1 month(s)

Figure 4.2

You can see in the output that because the value of the 9ty macrois still 10, the
customer will continue to get a discount of 15% as shown in the preceding screenshot.
Additionally, the festival discount is not given to the customer at all. Because
DiscountCoupon macro is still defined, the customer will continue to get discount
coupon of $5 and the Kindle version is reduced to 1 month.

As we mentioned earlier, the #undef directive removes the current definition of the
macro. The following code snippet uses the defined macro and then undefines it after
using it:

#include <stdio.h>

#define gty 10

int main ()

{

#ifdef gty
amount =gty * rate;
#undef gty

#endif

return 0;

}

You can see that the gt y macro is used and then undefined after usage. Now, let's
move on to the next recipe!

[109]

Preprocessing and Compilation Chapter 4

Applying assertions for validation

In this recipe, we will learn how to implement validation using assertion. The
program will ask the user to enter the information of the passengers that are flying
from one place to another. Using assertions, we can ensure that the number of
passengers entered is a positive number. If the number of passengers entered is zero
or a negative value, the program will abort.

How to do it...

Follow these steps to create a validation check using assertion. The recipe will not
allow the program to run if the value of the number of passengers is zero or negative:

1. The user is prompted to enter how many passengers are flying:

printf ("How many passengers ? ");
scanf ("$d", &noOfPassengers) ;

2. An assert instance is defined to ensure that the value of the number of
passengers should not be 0 or negative. If the user enters a value of 0 or
negative for the number of passengers, an error message will be displayed
showing the line number, and the program will abort:

assert (noOfPassengers > 0 && "Number of passengers should
be a positive integer");

3. If the value for the number of passengers entered is a positive value, the
user is asked to supply other information such as where the flight is going
from, where the flight is going to, and the date of the journey:

printf ("Flight from: ");

while ((c= getchar()) != '\n' && c != EOF);
gets (fl_from);

printf ("Flight to: ");

gets (fl_to);

printf ("Date of journey ");

scanf ("%$s", dateofJourney);

4. The entered information of the passengers is then displayed on the screen:

printf ("Number of passengers %d\n", noOfPassengers);
printf ("Flight from: %$s\n", fl_from);
printf ("Flight to: %s\n", fl_to);

printf ("Date of journey: %$s\n", dateofJourney);

[110]

Preprocessing and Compilation

Chapter 4

The program for implementing a validation check using assertions is shown in the
following code snippet:

// assertdemoprog.c
#include <stdio.h>
#include <assert.h>

int main (void)

{

}

int ¢, noOfPassengers;

char fl_from[30], fl_to[30], dateofJourney[12];

printf ("How many passengers ? ");

scanf ("%d", &noOfPassengers) ;

assert (noOfPassengers > 0 && "Number of passengers should
be a positive integer");

printf ("Flight from: ");
while ((c= getchar()) != '\n' && c != EOF);
gets (fl_from);
printf ("Flight to: ");
gets (fl_to);
printf ("Date of journey ");

scanf ("%$s", dateofJourney);

printf ("The information entered is:\n");

printf ("Number of passengers %d\n", noOfPassengers);
printf ("Flight from: %$s\n", fl_from);

printf ("Flight to: %$s\n", fl_to);

printf ("Date of journey: %s\n", dateofJourney);
return 0;

Now, let's go behind the scenes to understand the code better.

How it works...

The program prompts the user to enter the information of the passengers that are
flying from one place to another on a specific date. In order to ensure that the value of
the number of passengers is not zero or negative, an assertion is used. The assert
expression validates the value assigned to the noOfPassengers variable. It checks
whether the value of the noOfPassengers variable is greater than 0 or not. If it is, the
program will continue to execute the rest of the statements; otherwise, the filename
and the line number are sent to the standard error and the program is aborted.

[111]

Preprocessing and Compilation Chapter 4

If the assert statement is validated, that is, if the value assigned to noOfPassengers
is more than 0, then the user is asked to enter the other details of the passengers such
as where the flight is going from, where the flight is going to, and the date of the
journey. The entered information is then displayed on the screen.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during compilation, this means the assertdemoprog.c program is
successfully compiled into a . exe file: assertdemoprog.exe. On executing the file,
the user is prompted to enter the number of passengers flying. If the number of
passengers entered is a positive value, the program will run perfectly, as shown in the
following screenshot:

D:\CAdvBook>gcc assertdemoprog.c -o assertdemoprog

D:\CAdvBook>assertdemoprog
How many passengers ? 1
Flight from: New Delhi
Flight to: Sydney

Date of journey 1©/12/201%
The information entered is:
Number of passengers 1
Flight from: New Delhi
Flight to: Sydney

Date of journey: 10/12/2019

Figure 4.3

While executing the program for the second time, if the value entered is negative or
zero for the noOfPassengers variable, an error will be displayed showing the
program name and line number, and the program is aborted. The specified error
message, "Number of passengers should be a positive integer", will be

displayed:

D:\CAdvBook>assertdemoprog
How many passengers ? @
assertion "noOfPassengers > @ && "Number of passengers should be a positive

integer"" failed: file "assertdemoprog.c", line 1@, function: main
© [main] assertdemoprog 1347 cygwin_exception: :open_stackdumpfile: Dumpin
g stack trace to assertdemoprog.exe.stackdump

Figure 4.4

Voila! We have successfully applied assertions to validate our data.

[112]

Preprocessing and Compilation Chapter 4

Using assertions to ensure a pointer is
not pointing to NULL

Let's perform one more recipe on assertions. Let's apply assertions to ensure that a
pointer is not pointing to NULL and is instead pointing to a memory address that is to
be accessed. Essentially, in this recipe, we will learn to compute the average of a few
numbers, where the numbers are stored in an array, and the array elements are
accessed through a pointer.

How to do it...

Follow these steps to ensure that the pointer is not NULL and is pointing to a memory
address by making use of assertions:

1. Define an array containing a number of integers whose average is to be
computed:

int arr[]1={3,9,1,6,2};
2. Set a pointer to point to the array:
ptr=arr;

3. Define a function for calculating the average of the array elements. A
pointer to an array and the count of the number of values in the array are
both passed to this function:

average=findaverage (ptr, count);

4. In the function, define an assert expression that ensures that the pointer is
not NULL. If the pointer is NULL, the program will display an error and will
be aborted:

assert (Ptr != NULL && "Pointer is not pointing to any array");

[113]

Preprocessing and Compilation Chapter 4

5. If the pointer is not NULL, the array elements will be accessed through the
pointer and their average will be computed and displayed on the screen:

for (1=0; i<Count; i++)
{
sum+=*Ptr;
Ptr++;
}

Average= (float) sum/Count;

The program for implementing a validation that ensures the pointer is not NULL and
is pointing to a memory address is shown as follows:

// assertprog.c
#include <stdio.h>
#include <assert.h>

float findaverage (int *Ptr, int Count);

int main ()
{
int arr[]1={3,9,1,6,2};
float average;
int *ptr=NULL, count;
ptr=arr;
count=5;
average=findaverage (ptr, count);
printf ("Average of values is %$f\n", average);
return (0) ;

float findaverage (int *Ptr, int Count)
{

int sum, i;

float Average;

assert (Ptr != NULL && "Pointer is not pointing to any array");
sum=0;

for (i=0; i<Count; i++)

{

sum+=*Ptr;

Ptr++;
}
Average= (float) sum/Count;
return (Average) ;

}

Now, let's go behind the scenes to understand the code better.

[114]

Preprocessing and Compilation Chapter 4

How it works...

In this program, the average of several integers is computed via an array. That is, a
number of integers whose average is supposed to be computed are assigned to an
array and an integer pointer is used to access the array elements. A function

named findaverage is defined, to which the integer pointer and the count of the
numbers are passed. In the function, an assert is used that ensures that the pointer is
not NULL. If the pointer is not NULL, the array elements are accessed through the
pointer and their addition is done. After the addition of the numbers, their average is
computed. The computed average is then returned to the main function where the
average is displayed on the screen. If the pointer is not pointing to the array and is
instead pointing to NULL, the program will display an error and will be aborted.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during compilation, this means the assertprog.c program is
successfully compiled into a . exe file: assertprog.exe. Because the pointer is
pointing to the array while executing the file, we get the average of the numerical
values specified in the array, as shown in the following screenshot:

D:\CAdvBook>gcc assertprog.c -o assertprog

D:\CAdvBook>assertprog
Average of values is 4.200000

Figure 4.5

Next, comment out the following line in which the pointer is pointing to the array:
ptr=arr;
The ptr pointer now is pointing to NULL. Hence, on running the program, it will
display an error, as shown in the following screenshot:
D:\CAdvBook>gcc assertprog.c -o assertprog

D:\CAdvBook>assertprog
assertion "Ptr |= NULL &8 "Pointer is not pointing to any array"" failed:

file "assertprog.c", line 22, function: findaverage
@ [main] assertprog 1335 cygwin_exception::open_stackdumpfile: Dump
ing stack trace to assertprog.exe.stackdump

Figure 4.6

[115]

Preprocessing and Compilation Chapter 4

Voila! We have successfully used assertions to ensure that our pointer is not pointing
to NULL.

Now, let's move on to the next recipe!

Catching errors early with compile-time
assertions

In this recipe, we will make use of assertions to detect errors at the time of
compilation. Essentially, we will create a structure and will make a compile-time
assertion that ensures the size of the structure is of some specific bytes. The program
will abort if the size of the structure is not equal to the specified value. This constraint
will help in determining the capacity of storage and also in the easy maintenance of
records, that is, for deletes and updates.

How to do it...

Follow these steps to create a compile-time assert expression that ensures that the
user-defined structure is a specified number of bytes:

1. Define a structure with a few members:

struct customers

{

int orderid;

char customer_name[20];
float amount;

Yi

2. Define a compile-time assert that puts a constraint on the size of the
structure. The program will compile only when the assert is validated, that
is, the size of the structure is exactly equal to the bytes mentioned in the
assert expression:

static_assert (sizeof (struct customers) == 28, "The structure
is consuming unexpected number of bytes");

[116]

Preprocessing and Compilation Chapter 4

3. In the main body of the program, you can write any executable code. This
code will compile and execute only when the assert expression is
validated:

static_assert (sizeof (struct customers) == 28, "The structure
is consuming unexpected number of bytes");

The program for implementing compile-time validation to ensure that the size of a
structure is exactly equal to a specific number of bytes is shown in the following code
snippet:

// compileassert.c
#include <stdio.h>
#include <assert.h>

struct customers

{
int orderid;
char customer_name[20];
float amount;

bi

static_assert (sizeof (struct customers) == 28, "The structure is
consuming unexpected number of bytes");

int main (void)

{

printf ("sizeof (int) %d\n",sizeof (int));

printf ("sizeof (float) %d\n",sizeof (float));

printf ("sizeof (char) %d\n",sizeof (char));

printf ("sizeof (struct customers) %d\n",sizeof (struct customers));

return 0;

}

Now, let's go behind the scenes to understand the code better.

[117]

Preprocessing and Compilation Chapter 4

How it works...

A structure is defined by the name customers, which consists of a few members. The
members of the structure are of different data types. A compile-time assert is defined
that places a constraint on the size of the customers structure to be of 28 bytes
exactly. That means the program will not be compiled if the size of the structure is
less than or greater than 28 bytes. The main function simply displays the size of
different data types such as int, float, and char. The program also displays the size
of the complete customers structure.

The program is compiled using GCC, as shown in the following screenshot. Because
the size of the customers structure is exactly the same as that specified in the
compile-time assert, the program compiles perfectly and the compileassert.c
program is successfully compiled into a . exe file: compileassert.exe. On
executing the file, we get the output showing the size of different data types and that
of the customers structure, as shown in the following screenshot:

D:\CAdvBook>gcc compileassert.c -o compileassert

D:\CAdvBook>compileassert
sizeof(int) 4

sizeof(float) 4
sizeof(char) 1
sizeof(struct customers) 28

Figure 4.7

After changing the value in the assert function, that is, if the size of the structure
does not match the value mentioned in the compile-time assert, we get a compilation
error as follows:

D:\CAdvBook>gcc compileassert.c -o compileassert
In file included from compileassert.c:2:0:
compileassert.c:11:1: static assertion failed: "The structure is

consuming unexpected number of bytes"
tatic_assert(sizeof(struct customers) == 24, "The structure is consumi
ng unexpected number of bytes");

Figure 4.8

[118]

Preprocessing and Compilation Chapter 4

Voila! We have successfully implemented compile-time assertions to be able to catch
errors early in the system. Now, let's move on to the next recipe!

Applying stringize and token-pasting
operators

The stringize or hash symbol (#) can be used in a macro definition to convert the
macro parameter into a string constant. You can imagine that the parameter is
enclosed in double quotes and returned. It is also known as a token-concatenation
operator.

The token-pasting operator (##) combines two parameters when used in a macro
definition. That is, the two parameters on either side of each ## operator are joined
into a single string. More precisely, it performs string concatenation on the two
parameters to form a new string.

In this recipe, we will learn how to apply stringize and token-pasting operators in
computing. The user is asked to specify a certain pizza size and their desired toppings
and, accordingly, the price of the pizza is displayed.

How to do it...

Following these steps to create a recipe that uses stringize and token-pasting
operators:

1. Define a macro with the name pizzaprice using a token-pasting operator:
#define pizzaprice(a, b) a##b

2. Define one more macro with the name convertIntoStr using a stringize
operator:

#define convertIntoStr(str) #str

3. Define a few variables such as smallnormal, mediumnormal,
largenormal, and smallextra that represent the price for a pizza of
different pizza sizes and toppings:

float smallnormal=5;
float mediumnormal=7;

[119]

Preprocessing and Compilation Chapter 4

float largenormal=10;
float smallextra=7;
float mediumextra=9;
float largeextra=12;
char pizzasize[30];
char topping[20];

4. The user is asked to enter the pizza size desired by the customer and the
size entered is assigned to the pizzasize variable:

printf ("What size pizza you want? small/medium/large: ");
scanf ("%s", pizzasize);

5. Then, the user is asked to specify whether the pizza is desired with normal
cheese or extra cheese, and the choice entered by the user is assigned to the
topping variable:

printf ("Normal or with extra cheese? normal/extra: ");
scanf ("%s", topping);

6. Next, branching is done on the basis of the value of the topping variable:

if (strcmp (topping, "normal")==0)

7. Additionally, the size entered in the pizzasize variable is compared to
check whether the pizza size is small, medium, or large and, accordingly,
the arguments are passed to the pizzaprice macro:

if (strcmp (pizzasize, "small")==0)
else
if (strcmp (pizzasize, "medium")==0)
else

8. The pizzaprice macro joins the pizzasize and topping arguments
together and expands them into a concatenated variable:

pizzaprice (small, extra));

[120]

Preprocessing and Compilation Chapter 4

Here, small can be replaced by medium or large depending on the size
chosen by the user. Additionally, extra can be replaced by normal if the
user wants a pizza with normal cheese.

9. The value of the concatenated variable is displayed as the price of the
specified pizza with the desired toppings:

printf ("The prize for %s size pizza with %s toppings is $%.2f
\n", pizzasize, topping, pizzaprice(small, extra));

The program for applying stringize and token-pasting operators is shown in the
following code:

// preconcat.c
#include <stdio.h>
#include <string.h>

#define pizzaprice(a, b) a##b
#define convertIntoStr(str) #str

int main ()

{
float smallnormal=5;
float mediumnormal=7;
float largenormal=10;
float smallextra=7;
float mediumextra=9;
float largeextra=12;
char pizzasize[30];
char topping[20];

printf ("What size pizza you want? small/medium/large: ");
scanf ("$s", pizzasize);
printf ("Normal or with extra cheese? normal/extra: ");
scanf ("$s", topping);
if (strcmp (topping, "normal")==0)
{

if (strcmp(pizzasize, "small")==0)

printf ("The prize for %s size pizza with %$s toppings is
$%.2f \n", pizzasize, topping,
pizzaprice(small, normal));
else
if (strcmp(pizzasize, "medium")==0)
printf ("The prize for %s size pizza with %s
toppings is $%.2f \n", pizzasize, topping,
pizzaprice (medium, normal));
else

[121]

Preprocessing and Compilation Chapter 4

printf ("The prize for %s size pizza with %s
toppings is $%.2f \n", pizzasize, topping,
pizzaprice(large, normal));

}
if (strcmp (topping, "extra")==0)
{
if(strcmp (pizzasize, "small")==0)
printf ("The prize for %s size pizza with %s toppings
is $%.2f \n", pizzasize, topping,
pizzaprice(small, extra));
else
if(strcmp (pizzasize, "medium")==0)
printf ("The prize for %s size pizza with %s toppings
is $%.2f \n", pizzasize, topping,
pizzaprice (medium, extra));
else
printf ("The prize for %s size pizza with %s toppings
is $%.2f \n", pizzasize, topping,
pizzaprice(large, extra));
}
printf (convertIntoStr (Thanks for visiting us));
return O;

}

Now, let's go behind the scenes to understand the code better.

How it works...

A token-pasting operator is used to define a macro with the name pizzaprice. This
macro concatenates the two a and b parameters into a single string. In addition to
this, a stringize operator is used to define a macro with the name convertIntostr,
which converts the st r parameter into a string. A number of variables are defined,
such as smallnormal, mediumnormal, largenormal, and smallextra. These
variables represent the price of a small-sized normal pizza, a medium-sized normal
pizza, a large-sized normal pizza, and a small-sized pizza with extra cheese,
respectively. The normal suffix declares that this is the price of a pizza with a regular
amount of cheese. The extra suffix indicates that this variable represents the price

of a pizza with extra cheese.

The user is prompted to enter what pizza size the customer is ordering. The size
entered is assigned to the pizzasize variable. After that, the user is asked whether
the pizza is desired with normal cheese or extra cheese and the choice that is entered
is assigned to the topping variable.

[122]

Preprocessing and Compilation Chapter 4

Next, branching is done on the basis of the value in the topping variable. If the
topping is normal, the string in pizzasize is compared to check whether the pizza
size is small, medium, or large and, accordingly, the arguments are passed to the
pizzaprice macro. For example, if the user has entered small as the pizza size and
the topping as extra, the pizzaprice macro is invoked with two parameters (small
and extra). The pizzaprice macro, being a token-pasting operator, will concatenate
the small and extra strings into smallextra, and hence the value of the smallextra
variable will be displayed as the price of the small-sized pizza with extra cheese as a

topping.

The pizzasize and topping variables are combined into a concatenated string, and
hence will access the value in the respective variable. Finally, the convertIntoStr
macro is invoked, which includes a stringize operator to display a Thanks for
visiting us string at the end of the bill.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during compilation, the preconcat . c program is successfully
compiled into a . exe file: preconcat . exe. On executing the file, the user will be
asked to enter the desired pizza size and toppings and, accordingly, the program will
display the price of the pizza, as shown in the following screenshot:

D:\CAdvBook>gcc preconcat.c -o preconcat

D:\CAdvBook>preconcat

What size pizza you want? small/medium/large: small

Normal or with extra cheeze? normal/extra: extra

The prize for small size pizza with extra toppings is $7.6e
Thanks for visiting us

D:\CAdvBook>preconcat

What size pizza you want? small/medium/large: large

Normal or with extra cheeze? normal/extra: normal

The prize for large size pizza with normal toppings is $16.ee
Thanks for visiting us

Figure 4.9

Voila! We have successfully applied the stringize and token-pasting operators and
created custom pizza orders.

[123]

Deep Dive into Pointers

Pointers have been the popular choice among programmers when it comes to using
memory in an optimized way. Pointers have made it possible to access the content of
any variable, array, or data type. You can use pointers for low-level access to any
content and improve the overall performance of an application.

In this chapter, we will look at the following recipes on pointers:

¢ Reversing a string using pointers

Finding the largest value in an array using pointers

Sorting a singly linked list

Finding the transpose of a matrix using pointers
e Accessing a structure using a pointer

Before we start with the recipes, I would like to discuss a few things related to how
pointers work.

What is a pointer?

A pointer is a variable that contains the memory address of another variable, array, or
string. When a pointer contains the address of something, it is said to be pointing at
that thing. When a pointer points at something, it receives the right to access the
content of that memory address. The question now is—why do we need pointers at
all?

Deep Dive into Pointers Chapter 5

We need them because they do the following:

e Facilitate the dynamic allocation of memory

e Provide an alternative way to access a data type (apart from variable
names, you can access the content of a variable through pointers)

e Make it possible to return more than one value from a function
For example, consider an i integer variable:
int 1i;

When you define an integer variable, two bytes will be allocated to it in memory. This
set of two bytes can be accessed by a memory address. The value assigned to the
variable is stored inside that memory location, as shown in the following diagram:

i
Memory address —}

Figure 5.1

In the preceding diagram, 1000 represents the memory address of the i variable.
Though, in reality, memory address is quite big and is in hex format, for the sake of
simplicity, I am taking a small integer number, 1000. The value of 10 is stored inside
the memory address, 1000.

Now, a j integer pointer can be defined as follows:
int *9;

This j integer pointer can point to the i integer through the following statement:
j=&i;

The & (ampersand) symbol represents the address, and the address of i will be
assigned to the j pointer, as shown in the following diagram. The 2000 address is
assumed to be the address of the j pointer and the address of the i pointer, that

is, 1000, is stored inside the memory location assigned to the j pointer, as shown in
the following diagram:

[125]

Deep Dive into Pointers Chapter 5

Memory address of i === 1000 l

Content of i —}

j

Memory address of j === 2000 l
Content of j ==p| 1000

Figure 5.2

The address of the i integer can be displayed by the following statements:

printf ("Address of i is %d\n", &i);
printf ("Address of i is %d\n", J);

To display the contents of i, we can use the following statements:

printf ("Value of i is %d\n", 1i);
printf ("Value of i is %d\n", *j);

In the case of pointers, &« (ampersand) represents the memory
address and * (asterisk) represents content in the memory address.

We can also define a pointer to an integer pointer by means of the following
statement:

int **k;

This pointer to a k integer pointer can point to a j integer pointer using the following
statement:

k=&7;

[126]

Deep Dive into Pointers Chapter 5

Through the previous statement, the address of the j pointer will be assigned to the
pointer to a k integer pointer, as shown in the following diagram. The value of 3000 is
assumed to be the memory address of k:

i
Memory address of i === 1000 l

Content of i —}

j

Memory address of j === 2000 l
Content of j =—=)| 1000

k

Memory address of k == 3000 l
Contentof k ==| 2000

Figure 5.3

Now, when you display the value of k, it will display the address of j:
printf ("Address of j =%d %d \n",&Jj,k);

To display the address of i through k, we need to use *k, because *k means that it
will display the contents of the memory address pointed at by k. Now, k is pointing
at j and the content in j is the address of i:

printf ("Address of 1 = %d %d %d\n",&i, j, *k);
Similarly, to display the value of i through k, **k has to be used as follows:

printf ("Value of i is %d %d %d %d \n",i,*(&i),*J,**k);

[127]

Deep Dive into Pointers Chapter 5

Using pointers enables us to access content precisely from desired memory locations.
But allocating memory through pointers and not releasing it when the job is done
may lead to a problem called memory leak. A memory leak is a sort of resource leak.
A memory leak can allow unauthorized access of the memory content to hackers and
may also block some content from being accessed even though it is present.

Now, let's begin with the first recipe of this chapter.

Reversing a string using pointers

In this recipe, we will learn to reverse a string using pointers. The best part is that we
will not reverse the string and copy it onto another string, but we will reverse the
original string itself.

How to do it...

1. Enter a string to assign to the st r string variable as follows:

printf ("Enter a string: ");
scanf ("%s", str);

2. Set a pointer to point at the string, as demonstrated in the following
code. The pointer will point at the memory address of the string's first
character:

ptrl=str;

3. Find the length of the string by initializing an n variable to 1. Set a while
loop to execute when the pointer reaches the null character of the string as
follows:

n=1;
while (*ptrl !='\0")
{

4. Inside the while loop, the following actions will be performed:

¢ The pointer is moved one character forward.
e The value of the n variable is incremented by 1:

ptrl++;
n++;

[128]

Deep Dive into Pointers Chapter 5

5

10.

. The pointer will be at the null character, so move the pointer one step back
to make it point at the last character of the string as follows:

ptrl-—;
Set another pointer to point at the beginning of the string as follows:
ptr2=str;

Exchange the characters equal to half the length of the string. To do that, set
a while loop to execute for n/2 times, as demonstrated in the following
code snippet:

m=1;
while (m<=n/2)

Within the while loop, the first exchange operations take place; that is, the
characters pointed at by our pointers are exchanged:

temp=*ptrl;
*ptrl=*ptr2;
*ptr2=temp;

After the character exchange, set the second pointer to move forward to
point at its next character, that is, at the second character of the string, and
move the first pointer backward to make it point at the second to last
character as follows:

ptrl-—;
ptr2++;

Repeat this procedure for n/2 times, where n is the length of the string.
When the while loop is finished, we will have the reverse form of the
original string displayed on the screen:

printf ("Reverse string is %s", str);

The reversestring.c program for reversing a string using pointers is as follows:

#inc
void

{

lude <stdio.h>
main ()

char str[255], *ptrl, *ptr2, temp ;
int n,m;

printf ("Enter a string: ");

scanf ("%s", str);

ptrl=str;

[129]

Deep Dive into Pointers Chapter 5

n=1;
while (*ptrl !='\0")
{
ptrl++;
n++;
t
ptrl-—;
ptr2=str;
m=1;
while (m<=n/2)
{
temp=*ptrl;
*ptri=*ptr2;
*ptr2=temp;

ptrl-—;
ptr2++;;
m++;

t
printf ("Reverse string is %s", str);

}

Now, let's go behind the scenes.

How it works...

We will be prompted to enter a string that will be assigned to the str variable. A
string is nothing but a character array. Assuming we enter the name manish, each
character of the name will be assigned to a location in the array one by one (see Figure
5.4). We can see that the first character of the string, the letter m, is assigned to

the str[0] location, followed by the second string character being assigned to

the str[1] location, and so on. The null character, as usual, is at the end of the string, as
shown in the following diagram:

m a n i s h \0

str[0] str[1] str[2] str[3] str[4] str[5] str[6]

Figure 5.4

[130]

Deep Dive into Pointers Chapter 5

To reverse the string, we will seek the help of two pointers: one will be set to point at
the first character of the string, and the other at the final character of the string. So, the
first ptrl pointer is set to point at the first character of the string as follows:

ptri

y

m a n i s h \0

str[0] str[1] str[2] str[3] str[4] str[5] str[6]

Figure 5.5

The exchanging of the characters has to be executed equal to half the length of the
string; therefore, the next step will be to find the length of the string. After finding the
string's length, the ptrl pointer will be set to move to the final character of the string.

In addition, another ptr2 pointer is set to point at m, the first character of the string, as
shown in the following diagram:

ptr2 ptr1
2 J
m a n i s h \0

stro] str[1] str[2] str[3] str[4] str[5] str[6]

Figure 5.6

[131]

Deep Dive into Pointers

Chapter 5

The next step is to interchange the first and last characters of the string that are being
pointed at by the ptrl and ptr2 pointers (see Figure 5.7 (a)). After interchanging the
characters pointed at by the ptrl and ptr2 pointers, the string will appear as shown in

Figure 5.7 (b):

ptr2 ptri
m a n i s h \0
str[0] str[1] str[2] str[3]1 str[d] str[5] str[6]
(a)
Interchange the elements pointed
to by pointers ptr2 and ptr1

ptr2 ptr1

h a n i s m \0
str[0] str[1] str[2] str[3] str[4] str[5] str[6]

(b)

Figure 5.7

After interchanging the first and last characters, we will interchange the second and
the second to last characters of the string. To do so, the ptr2 pointer will be moved
forward and set to point at the next character in line, and the ptrl pointer will be
moved backward and set to point at the second to last character.

[132]

Deep Dive into Pointers

Chapter 5

You can see in the following Figure 5.8 (a) that the ptr2 and ptrl pointers are set to
point at the a and s characters. Once this is done, another interchanging of the
characters pointed at by ptr2 and ptrl will take place. The string will appear

as follows (Figure 5.8 (b)) after the interchanging of the a and s characters:

ptr2

2

ptr1

J

[hfal]n

[s [m |

str[0]

str[1]

str[2]

str[3]
(a)

str[4]

to by pointers ptrZ and ptr1

ptr2

2

ptri

2

str[5]

Interchange the elements pointed

str[6]

[n]s |0

[m | o |

str[0]

str[1]

str[2]

str[3]
(b)

str[4]

str[5]

str[6]

Figure 5.8

The only task now left in reversing the string is to interchange the third and the third
to last character. So, we will repeat the relocation process of the ptr2 and

ptrl pointers. Upon interchanging the n and i characters of the string, the

original str string will have been reversed, as follows:

ptr2 ptri
h s i n a m \0
str[0] str[1] str[2] str[3] str[4] str[5] str[6]

Figure 5.9

After applying the preceding steps, if we print the str string, it will appear in reverse.

[133]

Deep Dive into Pointers Chapter 5

Let's use GCC to compile the reversestring. c program as follows:

D:\CBook>gcc reversestring.c —-o reversestring

If you get no errors or warnings, that means the reversestring.c program has
been compiled into an executable file, called reversestring.exe. Let's run this
executable file as follows:

D:\CBook>./reversestring
Enter a string: manish
Reverse string is hsinam

Voila! We've successfully reversed a string using pointers. Now, let's move on to the
next recipe!

Finding the largest value in an array
using pointers

In this recipe, all the elements of the array will be scanned using pointers.

How to do it...

1. Define a macro by the name max with a size of 100 as follows:

#define max 100

2. Define a p integer array of a max size, as demonstrated in the following
code:

int pl[max]
3. Specify the number of elements in the array as follows:

printf ("How many elements are there? ");
scanf ("%d", &n);

4. Enter the elements for the array as follows:

for (i=0;i<n; i++)
scanf ("%d", &pl[il);

[134]

Deep Dive into Pointers Chapter 5

5. Define two mx and ptr pointers to point at the first element of the array as

follows:

mx=p;
ptr=p;

6. The mx pointer will always point at the maximum value of the array,

whereas the pt r pointer will be used for comparing the remainder of the
values of the array. If the value pointed to by the mx pointer is smaller than
the value pointed at by the pt r pointer, the mx pointer is set to point at the
value pointed at by pt r. The ptr pointer will then move to point at the
next array element as follows:

if (*mx < *ptr)
mx=ptr;

. If the value pointed at by the mx pointer is larger than the value pointed to

by the pt r pointer, the mx pointer is undisturbed and is left to keep
pointing at the same value and the pt r pointer is moved further to point at
the next array element for the following comparison:

ptr++;

. This procedure is repeated until all the elements of the array (pointed to by

the ptr pointer) are compared with the element pointed to by the mx
pointer. Finally, the mx pointer will be left pointing at the maximum value
in the array. To display the maximum value of the array, simply display the
array element pointed to by the mx pointer as follows:

printf ("Largest value is %d\n", *mx);

The largestinarray.c program for finding out the largest value in an array using
pointers is as follows:

#include <stdio.h>
#define max 100
void main ()

{

int p[max], i, n, *ptr, *mx;

printf ("How many elements are there? ");
scanf ("%d", &n);

printf ("Enter %d elements \n", n);

for (i=0; i<n;i++)

scanf ("$d", &p[i]);

mx=p;

[135]

Deep Dive into Pointers Chapter 5

ptr=p;
for (i=1;1i<n;i++)
{

if (*mx < *ptr)

mx=ptr;

ptr++;
t
printf ("Largest value is %d\n", *mx);

}

Now, let's go behind the scenes.

How it works...

Define an array of a certain size and enter a few elements in it. These will be the
values among which we want to find the largest value. After entering a few elements,
the array might appear as follows:

15 | p[0]
3 | pl1]
70 |pl2]
32 |pI3]
20 |pl4]

Figure 5.10

We will use two pointers for finding the largest value in the array. Let's name the two
pointers mx and ptr, where the mx pointer will be used to point at the maximum
value of the array, and the ptr pointer will be used for comparing the rest of the array
elements with the value pointed at by the mx pointer. Initially, both the pointers are
set to point at the first element of the array, p[0], as shown in the following diagram:

mx —»
ptr—> 15 | pl0]
3 |pl]

70 |PI2]
32 |pI3]
20 |pl[4]

Figure 5.11

[136]

Deep Dive into Pointers Chapter 5

The ptr pointer is then moved to point at the next element of the array, p[1]. Then, the
values pointed at by the mx and ptr pointers are compared. This process continues
until all the elements of the array have been compared as follows:

mx
{15] b0

ptr—>| 3 p1] Element pointed to by mx
Pointer ptr will 70 |pI2] pointer is compared with
point to these the elements pointed to
elements one 32 |pI3] by pointer, ptr. Pointer mx
by one will be set to point at the

v 20 P[4] larger value found
Figure 5.12

Recall that we want the mx pointer to keep pointing at the larger value. Since 15 is
greater than 3 (see Figure 5.13), the position of the mx pointer will be left undisturbed,
and the ptr pointer will be moved to point at the next element, p[2], as follows:

mx—3T15] pro]
3 |el1]
ptr—>| 70 |pl2]
32 |pI3]
20 |p[4]

Figure 5.13

Again, the values pointed at by the mx and ptr pointers, which are the values 15 and
70 respectively, will be compared. Now, the value pointed at by the mx pointer is
smaller than the value pointed at by the ptr pointer. So, the mx pointer will be set to
point at the same array element as ptr as follows:

15 | p[0]

3 |pl]
r[?t)i':)) 70 |pl2]
32 |pI3]

20 |pl4]

Figure 5.14

[137]

Deep Dive into Pointers Chapter 5

The comparison of the array elements will continue. The idea is to keep the
mx pointer pointing at the largest element in the array, as shown in the following
diagram:

15 | p[0]

3 |pl1]
mx —>] 70 |pl2]
32 |pI3]
ptr% 20 P[4]

Figure 5.15

As shown in Figure 5.15, 70 is greater than 20, so the mx pointer will remain at p[2],
and the ptr pointer will move to the next element, p[4]. Now, the ptr pointer is
pointing at the last array element. So, the program will terminate, displaying the last
value pointed at by the mx pointer, which also happens to be the largest value in the
array.

Let's use GCC to compile the largestinarray.c program as the following
statement:

D:\CBook>gcc largestinarray.c -o largestinarray

If you get no errors or warnings, that means that the largestinarray.c program
has been compiled into an executable file, largestinarray.exe. Let's now run this
executable file as follows:

D:\CBook>./largestinarray

How many elements are there? 5

Enter 5 elements

15

3

70

35

20

Largest value is 70

You can see that the program displays the maximum value in the array

Voila! We've successfully found the largest value in an array using pointers. Now,
let's move on to the next recipe!

[138]

Deep Dive into Pointers Chapter 5

Sorting a singly linked list

In this recipe, we will learn how to create a singly linked list comprising integer
elements, and then we will learn how to sort this linked list in ascending order.

A singly linked list consists of several nodes that are connected through pointers. A
node of a singly linked list might appear as follows:

node

data next

Figure 5.16

As you can see, a node of a singly linked list is a structure composed of two parts:

¢ Data: This can be one or more variables (also called members) of integer,
float, string, or any data type. To keep the program simple, we will take
data as a single variable of the integer type.

¢ Pointer: This will point to the structure of the type node. Let's call this
pointer next in this program, though it can be under any name.

We will use bubble sort for sorting the linked list. Bubble sort is a sequential sorting
technique that sorts by comparing adjacent elements. It compares the first element
with the second element, the second element with the third element, and so on. The
elements are interchanged if they are not in the preferred order. For example, if you
are sorting elements into ascending order and the first element is larger than the
second element, their values will be interchanged. Similarly, if the second element is
larger than the third element, their values will be interchanged too.

This way, you will find that, by the end of the first iteration, the largest value will
bubble down towards the end of the list. After the second iteration, the second largest
value will be bubbled down to the end of the list. In all, n-1 iterations will be required
to sort the n elements using bubble sort algorithm.

Let's understand the steps in creating and sorting a singly linked list.

[139]

Deep Dive into Pointers Chapter 5

How to do it...

1.

Define a node comprising two members—data and next. The data
member is for storing integer values and the next member is a pointer to
link the nodes as follows:

struct node

{
int data;
struct node *next;

bi

Specify the number of elements in the linked list. The value entered will be
assigned to the n variable as follows:

printf ("How many elements are there in the linked list ?");
scanf ("%d", &n) ;

Execute a for loop for n number of times. Within the for loop, a node is
created by the name newNode. When asked, enter an integer value to be
assigned to the data member of newNode as follows:

newNode= (struct node *)malloc(sizeof (struct node));
scanf ("%d", &énewNode->data) ;

Two pointers, startList and temp1, are set to point at the first node. The
startList pointer will keep pointing at the first node of the linked list.
The temp1 pointer will be used to link the nodes as follows:

startList = newNode;
templ=startList;

To connect the newly created nodes, the following two tasks are
performed:

e The next member of temp1 is set to point at the newly created node.

e The temp1 pointer is shifted to point at the newly created node as
follows:

templ->next = newNode;
templ=newNode;

[140]

Deep Dive into Pointers Chapter 5

6.

10.

11.

When the for loop gets over, we will have a singly linked list with its first
node pointed at by startList, and the next pointer of the last node
pointing at NULL. This linked list is ready to undergo the sorting
procedure. Set a for loop to execute from 0 until n-2 that is equal to n-1
iterations as follows:

for (i=n-2;1>=0;i--)

Within the for loop, to compare values, use two pointers, temp1 and
temp2. Initially, temp1 and temp2 will be set to point at the first two nodes
of the linked list, as shown in the following code snippet:

templ=startList;
temp2=templ->next;

Compare the nodes pointed at by temp1 and temp?2 in the following code:

if (templ->data > temp2->data)

. After comparing the first two nodes, the temp1 and temp2 pointers will be

set to point at the second and third nodes, and so on:

templ=temp2;
temp2=temp2->next;

The linked list has to be arranged in ascending order, so the data member
of temp1 must be smaller than the data member of temp2. In case the data
member of temp1 is larger than the data member of temp2, the
interchanging of the values of the data members will be done with the help
of a temporary variable, k, as follows:

k=templ->data;
templ->data=temp2->data;
temp2->data=k;

After n-1 performing iterations of comparing and interchanging
consecutive values, if the first value in the pair is larger than the second, all
the nodes in the linked list will be arranged in ascending order. To traverse
the linked list and to display the values in ascending order, a

temporary t pointer is set to point at the node pointed at by startList,
that is, at the first node of the linked list, as follows:

t=startlList;

[141]

Deep Dive into Pointers Chapter 5

12. A while loop is executed until the t pointer reaches NULL. Recall that the
next pointer of the last node is set to NULL, so the while loop will execute
until all the nodes of the linked list are traversed as follows:

while (t!=NULL)
13. Within the while loop, the following two tasks will be performed:

¢ The data member of the node pointed to by the t pointer is displayed.
e The t pointer is moved further to point at its next node:

printf ("$d\t",t->data);
t=t->next;

The sortlinkedlist.c program for creating a singly linked list, followed by sorting
it in ascending order, is as follows:

/* Sort the linked list by bubble sort */
#include<stdio.h>
#include <stdlib.h>
struct node
{
int data;
struct node *next;
}i
void main ()
{
struct node *templ, *temp2, *t, *newNode, *startList;
int n,k,1i,3;
startList=NULL;
printf ("How many elements are there in the linked list ?2");
scanf ("%d", &n) ;
printf ("Enter elements in the linked list\n");
for (i=1;i<=n; i++)
{
if (startList==NULL)
{
newNode= (struct node *)malloc(sizeof (struct node));
scanf ("%d", &newNode->data) ;
newNode->next=NULL;
startList = newNode;
templ=startlList;
}
else
{
newNode= (struct node *)malloc(sizeof (struct node));
scanf ("%d", &newNode->data) ;

[142]

Deep Dive into Pointers

Chapter 5

newNode->next=NULL;
templ->next = newNode;
templ=newNode;

t
for (i=n-2;1i>=0;i--)
{
templ=startList;
temp2=templ->next;
for (3=0; j<=i; j++)
{
if (templ->data > temp2->data)
{
k=templ->data;
templ->data=temp2->data;
temp2->data=k;
t
templ=temp2;
temp2=temp2->next;

}

printf ("Sorted order is: \n");
t=startList;
while (t !=NULL)

{
printf ("$d\t",t->data) ;
t=t->next;

}

Now, let's go behind the scenes.

How it works...

This program is performed in two parts—the first part is the creation of a singly

linked list, and the second part is the sorting of the linked list.

Let's start with the first part.

[143]

Deep Dive into Pointers Chapter 5

Creating a singly linked list

We will start by creating a new node by the name of newNode. When prompted, we
will enter the value for its data member and then set the next newNode pointer to
NULL (as shown in Figure 5.17). This next pointer will be used for connecting with

other nodes (as we will see shortly):

newNode

E:I_" NULL

Figure 5.17

After the first node is created, we will make the following two pointers point at it as
follows:

o startList: To traverse the singly linked list, we will need a pointer that
points at the first node of the list. So, we will define a pointer called
startList and set it to point at the first node of the list.

e templ: In order to connect with the next node, we will need one more
pointer. We will call this pointer temp1, and set it to point at the newNode

(see Figure 5.18):

newNode startList
— temp1
IR
—» NULL
Figure 5.18

We will now create another node for the linked list and call that newNode as well.
The pointer can point to only one structure at a time. So, the moment we create a new
node, the newNode pointer that was pointing at the first node will now point at the
recently created node. We will be prompted to enter a value for the data member of
the new node, and its next pointer will be set to NULL.

[144]

Deep Dive into Pointers Chapter 5

You can see in the following diagram that the two pointers, startList and temp1, are
pointing at the first node and the newNode pointer is pointing at the newly created
node. As stated earlier, startList will be used for traversing the linked list

and temp1 will be used for connecting with the newly created node as follows:

startList temp1 newNode
vy y
I TR T
data next
Figure 5.19

To connect the first node with newNode, the next pointer of temp1 will be set to
point at newNode (see Figure 5.20 (a)). After connecting with newNode, the temp1
pointer will be moved further and set to point at newNode (see Figure 5.20 (b)) so that
it can be used again for connecting with any new nodes that may be added to the
linked list in future:

startList temp1 newNode
¢ * v
(3] |1 | NuLL
data next
(a)
startList temp1 newNode
+ ¥ ¥
(3] (1] J»nuL
data next
(b)
Figure 5.20

Steps three and four will be repeated for the rest of the nodes of the linked
list. Finally, the singly linked list will be ready and will look something like this:

[145]

Deep Dive into Pointers Chapter 5

startList temp1 newNode
L
:
(3] J»11] »l7] |la] 2] prnue
data next
Figure 5.21

Now that we have created the singly linked list, the next step is to sort the linked list
in ascending order.

Sorting the singly linked list

We will use the bubble sort algorithm for sorting the linked list. In the bubble sort
technique, the first value is compared with the second value, the second is compared
with the third value, and so on. If we want to sort our list in ascending order, then we
will need to keep the smaller values toward the top when comparing the values.

Therefore, while comparing the first and second values, if the first value is larger than
the second value, then their places will be interchanged. If the first value is smaller
than the second value, then no interchanging will happen, and the second and third
values will be picked up for comparison.

There will be n-1 iterations of such comparisons, meaning if there are five values, then
there will be four iterations of such comparisons; and after every iteration, the last
value will be left out—that is, it will not be compared as it reaches its destination. The
destination here means the location where the value must be kept when arranged in
ascending order.

The first iteration

To sort the linked list, we will employ the services of two pointers—temp1 and
temp?2. The temp1 pointer is set to point at the first node, and temp2 is set to point at
the next node as follows:

startList temp1 temp2

v
3] 1] {70 J>ls] |>l2] fJrron

data next

Figure 5.22

[146]

Deep Dive into Pointers Chapter 5

We will be sorting the linked list in ascending order, so we will keep the smaller
values toward the beginning of the list. The data members of temp1 and temp2 will
be compared. Because temp1->data is greater than temp2->data, that is, the data
member of templ1 is larger than the data member of temp2, their places will be
interchanged (see the following diagram). After interchanging the data members of
the nodes pointed at by temp1 and temp2, the linked list will appear as follows:

startList temp1 temp2

v +

[3] 0] 7] sl 2] Jonou

N

Because 3 > 1
Interchange them

startList temp1 temp2

v v

L] 3] 7] 2] 2] Jrnu

Figure 5.23

After this, the two pointers will shift further, that is, the temp1 pointer will be set to
point at temp2, and the temp2 pointer will be set to point at its next node. We can see
in Figure 5.24 (a) that the temp1 and temp2 pointers are pointing at the nodes with
the values 3 and 7, respectively. We can also see that temp1->data is less

than temp2->data, that is, 3 <7. Since the data member of temp1 is already smaller
than the data member of temp2, no interchanging of values will take place and the
two pointers will simply move one step further (see Figure 5.24 (b)).

Now, because 7 > 4, their places will be interchanged. The values of data members
pointed at by temp1 and temp2 will interchange as follows (Figure 5.24 (c)):

[147]

Deep Dive into Pointers Chapter 5

startList temp1 temp2
{ { ¥
(1] |-+l3 > 7 >4 | 2] Jrnu
(a)
startList temp1 temp2
h J JF
(1] s3] 17l |4 > 2 | J>nuL

(b) v

Because 7 >4
Interchange them

startList temp1 temp2
b 4 F
L1l sl Plel 7] 2] |
(c)
Figure 5.24

After that, the temp1 and temp2 pointer will be shifted one step further, that is,
temp1 will point at temp2, and temp2 will move onto its next node. We can see in the
following Figure 5.25 (a) that temp1 and temp2 are pointing at the nodes with the
values 7 and 2, respectively. Again, the data members of temp1 and temp2 will be
compared. Because templ->data is greater than temp2->data, their places will be
interchanged. Figure 5.25 (b) shows the linked list after interchanging values of the
data members:

startList temp1 temp2

+ + +
L sl el 7zl 2] e
N~~~

(a)

Because 7 > 2
Interchange them

startList temp1 temp2

}

Ll sl el prl2] J»{7] Jrnu
(b)

Figure 5.25

[148]

Deep Dive into Pointers Chapter 5

This was the first iteration, and you can notice that after this iteration, the largest
value, 7, has been set to our desired location—at the end of the linked list. This also
means that in the second iteration, we will not have to compare the last node.
Similarly, after the second iteration, the second highest value will reach or is set to its
actual location. The second highest value in the linked list is 4, so after the second
iteration, the four node will just reach the seven node. How? Let's look at the second
iteration of bubble sort.

The second iteration

We will begin the comparison by comparing first two nodes, so the temp1 and

temp2 pointers will be set to point at the first and second nodes of the linked list,
respectively (see Figure 5.26 (a)). The data members of temp1 and temp2 will be
compared. As is clear, templ->data is less than temp2->data (that is, 1 <7), so their
places will not be interchanged. Thereafter, the temp1 and temp2 pointers will shift
one step further. We can see in Figure 5.26 (b) that the temp1 and temp2 pointers are
set to point at nodes of the values 3 and 4, respectively:

startList temp1 temp2
+ 3 v
Ll] 2l 2] 7] Jonu
(a)
startList temp1 temp2
* v v
Ll sl e 2] 7] ponun
(b)

Figure 5.26

Once again, the data members of the temp1 and temp2 pointers will be compared.
Because templ->data is less than temp2->data, thatis, 3 <4, their places will again
not be interchanged and the temp1 and temp2 pointers will, again, shift one step
further. That is, the temp1 pointer will be set to point at temp2, and temp2 will be set
to point at its next node. You can see in Figure 5.27 (a) that the temp1 and

temp2 pointers are set to point at nodes with the values 4 and 2, respectively. Because
4> 2, their places will be interchanged. After interchanging the place of these values,
the linked list will appear as follows in Figure 5.27 (b):

[149]

Deep Dive into Pointers Chapter 5

startList temp1 temp2
v ¥
(1] |3] |4 —| 2 |- 7| oL

@ N7

Because 4 > 2
Interchange them

startList temp1 temp2
+ +
L]] 2] 4] 7] Jpao
(b)
Figure 5.27

This is the end of the second iteration, and we can see that the second largest value,
four, is set to our desired location as per ascending order. So, with every iteration, one
value is being set at the required location. Accordingly, the next iteration will require
one comparison less.

The third and fourth iterations

In the third iteration, we will only need to do the following comparisons:

1. Compeare the first and second nodes
2. Compare the second and third nodes

After the third iteration, the third largest value, that is, three, will be set at our desired
location, that is, just before node four.

In the fourth, and final, iteration, only the first and second nodes will be compared.
The linked list will be sorted in ascending order as follows after the fourth iteration:

startList temp1 temp2

t * ¥

Ll 2] >3] {2l 7] F>nuw

Figure 5.28

[150]

Deep Dive into Pointers Chapter 5

Let's use GCC to compile the sortlinkedlist.c program as follows:

D:\CBook>gcc sortlinkedlist.c -o sortlinkedlist

If you get no errors or warnings, that means that the sortlinkedlist.c program
has been compiled into an executable file, sort1inkedlist .exe. Let's run this
executable file as follows:

D:\CBook>./sortlinkedlist
How many elements are there in the linked list ?5
Enter elements in the linked 1list

orted order is:
2 3 4 7

PNNDN_IPFPW

Voila! We've successfully created and sorted a singly linked list. Now, let's move on
to the next recipe!

Finding the transpose of a matrix using
pointers

The best part of this recipe is that we will not only display the transpose of the matrix
using pointers, but we will also create the matrix itself using pointers.

The transpose of a matrix is a new matrix that has rows equal to the number of
columns of the original matrix and columns equal to the number of rows. The
following diagram shows you a matrix of order 2 x 3 and its transpose, of order 3 x 2:

[151]

Deep Dive into Pointers Chapter 5

1 2 3 Tranpose 1 4
4 5 6 2x3 => 2 5
Original matrix 3 6

of order2 x 3 3x2

Transpose matrix
of order 3 x 2

Figure 5.29

Basically, we can say that, upon converting the rows into columns and columns into
rows of a matrix, you get its transpose.

How to do it...

1. Define a matrix of 10 rows and 10 columns as follows (you can have a
bigger matrix if you wish):

int af10][10]
2. Enter the size of the rows and columns as follows:

printf ("Enter rows and columns of matrix: ");
scanf ("%d %d", &r, &c);

3. Allocate memory locations equal to r *c quantity for keeping the matrix
elements as follows:

ptr = (int *)malloc(r * ¢ * sizeof (int));

4. Enter elements of the matrix that will be assigned sequentially to each
allocated memory as follows:

for (i=0; i<r; ++1i)
{
for (3=0; j<c; ++3)
{
scanf ("%d", &m);
*(ptr+ i*c + j)=m;

[152]

Deep Dive into Pointers Chapter 5

5. In order to access this matrix via a pointer, set a pt r pointer to point at the
first memory location of the allocated memory block, as shown in Figure
5.30. The moment that the pt r pointer is set to point at the first memory
location, it will automatically get the address of the first memory location,
so 1000 will be assigned to the pt r pointer:

ptr
1 2 3 4 5 6
1000 1002 1004 1006 1008 1010

Figure 5.30

6. To access these memory locations and display their content, use the * (ptr
+i*c + j) formula within the nested loop, as shown in this code snippet:

for (1i=0; i<r; ++1)
{
for (3=0; Jj<c; ++3)
{
printf ("$d\t", * (ptr +i*c + J));
}
printf ("\n");
}

7. The value of the r row is assumed to be two, and that of column c is
assumed to be three. With values of i=0 and j=0, the formula will compute
as follows:

*(ptr +i*c + J);
*(1000+0*3+0)
*1000

It will display the content of the memory address, 1000.

When the value of i=0 and j=1, the formula will compute as follows:

ptr +i*c + J);
1000+0*3+1)
1000+1)

1002)

*(
*(
*(
*(

[153]

Deep Dive into Pointers Chapter 5

We will first get * (1000+1), because the ptr pointer is an integer pointer,
and it will jump two bytes every time we add the value 1 to it at every
memory location, from which we will get * (1002), and it will display the
content of the memory location 1002.

Similarly, the value of i=0 and j=2 will lead to * (1004); that is, the content
of the memory location 1004 will be displayed. Using this formula, the
value of i=1 and =0 will lead to * (1006) ; the value of i=1 and =1 will
lead to * (1008) ; and the value of i=1 and =2 will lead to * (1010). So,
when the aforementioned formula is applied within the nested loops, the
original matrix will be displayed as follows:

ptr
1 2 3
1000 1002 1004
4 5 6
1006 1008 1010

Figure 5.31

8. To display the transpose of a matrix, apply the following formula within
the nested loops:

*(ptr +j*c + 1))

Again, assuming the values of row (r=2) and column (c=3), the following content of
memory locations will be displayed:

i j Memory address
0 0 1000
0 1 1006
1 0 1002
1 1 1008
2 0 1004
2 1 1010

[154]

Deep Dive into Pointers Chapter 5

So, upon applying the preceding formula, the content of the following memory
address will be displayed as the following in Figure 5.32. And the content of these
memory addresses will comprise the transpose of the matrix:

ptr
1 4
1000 1006
2 5
1002 1008
3 6
1004 1010

Figure 5.32

Let's see how this formula is applied in a program.

The transposemat . c program for displaying the transpose of a matrix using
pointers is as follows:

#include <stdio.h>
#include <stdlib.h>
void main ()
{
int a(l10](10], =, ¢, i, J, *ptr,m;
printf ("Enter rows and columns of matrix: ");
scanf ("%d %d", &r, &c);
ptr = (int *)malloc(r * ¢ * sizeof (int));
printf ("\nEnter elements of matrix:\n");
for (i=0; i<r; ++1i)
{
for (3=0; Jj<c; ++3)
{
scanf ("%d", &m);
*(ptr+ i*c + J)=m;

}
printf ("\nMatrix using pointer is: \n");
for (i=0; i<r; ++1i)
{
for (3=0; Jj<c; ++3)

[155]

Deep Dive into Pointers Chapter 5

{
printf ("$d\t", * (ptr +i*c + J));
t
printf ("\n");
t
printf ("\nTranspose of Matrix:\n");
for (i=0; i<c; ++1i)
{
for (3=0; Jj<r; ++3j)
{
printf ("sd\t", * (ptr +i*c + i));
t
printf ("\n");

}

Now, let's go behind the scenes.

How it works...

Whenever an array is defined, the memory allocated to it internally is a sequential
memory. Now let's define a matrix of size 2 x 3, as shown in the following diagram. In
that case, the matrix will be assigned six consecutive memory locations of two bytes
each (see Figure 5.33). Why two bytes each? This is because an integer takes two bytes.
This also means that if we define a matrix of the float type that takes four bytes, each
allocated memory location would consist of four bytes:

1000 1002 1004 1006 1008 1010

Figure 5.33

In reality, the memory address is long and is in hex format; but for simplicity, we will
take the memory addresses of integer type and take easy-to-remember numbers, such
as 1000, as memory addresses. After memory address 1000, the next memory address
is 1002 (because an integer takes two bytes).

[156]

Deep Dive into Pointers Chapter 5

Now, to display the original matrix elements in row-major form using a pointer, we
will need to display the elements of memory locations, 1000, 1002, 1004, and so on:

1000 1002 1004

1006 1008 1010

Figure 5.34

Similarly, in order to display the transpose of the matrix using a pointer, we will need
to display the elements of memory locations; 1000, 1006, 1002, 1008, 1004, and 1010:

1000 1006
1002 1008
1004 1010

Figure 5.35

Let's use GCC to compile the t ransposemat . c program as follows:

D:\CBook>gcc transposemat.c —-o transposemat

If you get no errors or warnings, that means that the t ransposemat . c program has
been compiled into an executable file, t ransposemat . exe. Let's run this executable
file with the following code snippet:

D:\CBook>./transposemat
Enter rows and columns of matrix: 2 3

Enter elements of matrix:

ol WN PP

[157]

Deep Dive into Pointers Chapter 5

Matrix using pointer is:
1 2 3
4 5 6

Transpose of Matrix:

1 4
2 5
3 6

Voila! We've successfully found the transpose of a matrix using pointers. Now, let's
move on to the next recipe!

Accessing a structure using a pointer

In this recipe, we will make a structure that stores the information of an order placed
by a specific customer. A structure is a user-defined data type that can store several
members of different data types within it. The structure will have members for
storing the order number, email address, and password of the customer:

struct cart

{
int orderno;
char emailaddress[30];
char password[30];

bi

The preceding structure is named cart, and comprises three members — orderno of
the int type for storing the order number of the order placed by the customer,

and emailaddress and password of the string type for storing the email address
and password of the customer, respectively. Let's begin!

How to do it...

1. Define a cart structure by the name mycart. Also, define two pointers to
structure of the cart structure, ptrcart and ptrcust, as shown in the
following code snippet:

struct cart mycart;
struct cart *ptrcart, *ptrcust;

[158]

Deep Dive into Pointers Chapter 5

2. Enter the order number, email address, and password of the customer, and
these values will be accepted using the mycart structure variable. As
mentioned previously, the dot operator (.) will be used for accessing the
structure members, orderno, emailaddress, and password, through a
structure variable as follows:

printf ("Enter order number: ");
scanf ("%d", &mycart.orderno) ;
printf ("Enter email address: ");
scanf ("$s",mycart.emailaddress);
printf ("Enter password: ");
scanf ("$s",mycart.password) ;

3. Set the pointer to the pt rcart structure to point at the mycart structure
using the ptrcart=&mycart statement. Consequently, the pointer to
the ptrcart structure will be able to access the members of
the mycart structure by using the arrow (->) operator. By using
ptrcart->orderno, ptrcart->emailaddress, and
ptrcart->password, the values assigned to the orderno, emailaddress,
and password structure members are accessed and displayed:

printf ("\nDetails of the customer are as follows:\n");
printf ("Order number : %d\n", ptrcart->orderno);
printf ("Email address : %$s\n", ptrcart->emailaddress);
printf ("Password : %$s\n", ptrcart->password);

4. We will also modify the email address and password of the customer by
asking them to enter a new email address and password and accept the
new details via the pointer to the ptrcart structure as follows. Because
ptrcart is pointing to the mycart structure, the new email address and
password will overwrite the existing values that were assigned to the
structure members of mycart:

printf ("\nEnter new email address: ");

scanf ("$s",ptrcart->emailaddress);

printf ("Enter new password: ");

scanf ("$s",ptrcart->password) ;

/*The new modified values of orderno, emailaddress and
password members are displayed using structure variable,
mycart using dot operator (.).*/

printf ("\nModified customer's information is:\n");
printf ("Order number: %d\n", mycart.orderno);
printf ("Email address: %$s\n", mycart.emailaddress);
printf ("Password: %s\n", mycart.password) ;

[159]

Deep Dive into Pointers Chapter 5

5. Then, define a pointer to the *ptrcust structure. Using the following
malloc function, allocate memory for it. The sizeof function will find out
the number of bytes consumed by each of the structure members and
return the total number of bytes consumed by the structure as a whole:

ptrcust=(struct cart *)malloc(sizeof (struct cart));

. Enter the order number, email address, and password of the customer, and
all the values will be assigned to the respective structure members using
a pointer to a structure as follows. Obviously, the arrow operator (->) will
be used for accessing the structure members through a pointer to a
structure:

printf ("Enter order number: ");
scanf ("$d", &ptrcust—->orderno) ;
printf ("Enter email address: ");
scanf ("%s",ptrcust->emailaddress) ;
printf ("Enter password: ");

scanf ("$s",ptrcust—->password) ;

7. The values entered by the user are then displayed through the pointer to
the pt rcust structure again as follows:

printf ("\nDetails of the second customer are as follows:\n");
printf ("Order number : %d\n", ptrcust->orderno);

printf ("Email address : %$s\n", ptrcust->emailaddress);

printf ("Password : %s\n", ptrcust->password);

The following pointertostruct.c program explains how to access a structure by
using a pointer:

#include <stdio.h>
#include <stdlib.h>

struct cart

{

bi

int orderno;
char emailaddress[30];
char password[30];

void main ()

{

struct cart mycart;

struct cart *ptrcart, *ptrcust;
ptrcart = &mycart;

printf ("Enter order number: ");

[160]

Deep Dive into Pointers Chapter 5

scanf ("%d", &mycart.orderno) ;

printf ("Enter email address: ");
scanf ("%$s",mycart.emailaddress);
printf ("Enter password: ");

scanf ("%$s",mycart .password) ;

printf ("\nDetails of the customer are as follows:\n");
printf ("Order number : %d\n", ptrcart->orderno);
printf ("Email address : %$s\n", ptrcart->emailaddress);
printf ("Password : %s\n", ptrcart->password);

printf ("\nEnter new email address: ");

scanf ("%$s",ptrcart->emailaddress);

printf ("Enter new password: ");

scanf ("%$s",ptrcart->password) ;

printf ("\nModified customer's information is:\n");
printf ("Order number: %d\n", mycart.orderno);
printf ("Email address: %s\n", mycart.emailaddress);
printf ("Password: %s\n", mycart.password);

ptrcust=(struct cart *)malloc(sizeof (struct cart));
printf ("\nEnter information of another customer:\n");
printf ("Enter order number: ");

scanf ("%d", &ptrcust->orderno) ;

printf ("Enter email address: ");

scanf ("%$s",ptrcust->emailaddress) ;

printf ("Enter password: ");

scanf ("%s",ptrcust->password) ;

printf ("\nDetails of the second customer are as follows:\n");
printf ("Order number : %d\n", ptrcust->orderno);

printf ("Email address : %$s\n", ptrcust->emailaddress);

printf ("Password : %s\n", ptrcust->password);

}

Now, let's go behind the scenes.

How it works...

When you define a variable of the type structure, that variable can access members of
the structure in the following format:

structurevariable.structuremember

[161]

Deep Dive into Pointers Chapter 5

You can see a period (.) between the structure variable and the structure member.
This period (.) is also known as a dot operator, or member access operator. The
following example will make it clearer:

struct cart mycart;
mycart.orderno

In the preceding code, you can see that mycart is defined as a structure variable of
the cart structure. Now, the mycart structure variable can access the orderno
member by making the member access operator (.).

You can also define a pointer to a structure. The following statement defines ptrcart
as a pointer to the cart structure.

struct cart *ptrcart;

When the pointer to a structure points to a structure variable, it can access the
structure members of the structure variable. In the following statement, the pointer to
the ptrcart structure points at the address of the mycart structure variable:

ptrcart = &mycart;

Now, ptrcart can access the structure members, but instead of the dot operator (.),
the arrow operator (->) will be used. The following statement accesses the orderno
member of the structure using the pointer to a structure:

ptrcart->orderno

If you don’t want a pointer to a structure to point at the structure variable, then
memory needs to be allocated for a pointer to a structure to access structure members.
The following statement defines a pointer to a structure by allocating memory for it:

ptrcust=(struct cart *)malloc(sizeof (struct cart));

The preceding code allocates memory equal to the size of a cart structure, typecasts
that memory to be used by a pointer to a cart structure, and assigns that allocated
memory to ptrcust. In other words, ptrcust is defined as a pointer to a structure,
and it does not need to point to any structure variable, but can directly access the
structure members.

Let's use GCC to compile the pointertostruct.c program as follows:

D:\CBook>gcc pointertostruct.c —-o pointertostruct

[162]

Deep Dive into Pointers Chapter 5

If you get no errors or warnings, that means that the pointertostruct.c program
has been compiled into an executable file, pointertostruct.exe. Let's run this
executable file as follows:

D:\CBook>. /pointertostruct

Enter order number: 1001

Enter email address: bmharwani@yahoo.com
Enter password: gold

Details of the customer are as follows:
Order number : 1001

Email address : bmharwani@yahoo.com
Password : gold

Enter new email address: harwanibm@gmail.com
Enter new password: diamond

Modified customer's information is:
Order number: 1001
Email address: harwanibm@gmail.com
Password: diamond

Enter information of another customer:
Enter order number: 1002

Enter email address: bintu@yahoo.com
Enter password: platinum

Details of the second customer are as follows:
Order number : 1002

Email address : bintu@yahoo.com

Password : platinum

Voila! We've successfully accessed a structure using a pointer.

[163]

File Handling

Data storage is a mandatory feature in all applications. When we enter any data while
running a program, that data is stored as RAM, which means that it is temporary in
nature. We will not get that data back when running the program the next time. But
what if we want the data to stay there so we can refer to it again when we need it? In
this case, we have to store the data.

Basically, we want our data to be stored and to be accessible and available for reuse
whenever required. In C, data storage can be done through traditional file handling
techniques and through the database system. The following are the two types of file
handling available in C:

e Sequential file handling: Data is written in a simple text format and can be
read and written sequentially. To read the 1" line, we have to first read n-1
lines.

¢ Random file handling: Data is written as bytes and can be read or written
randomly. We can read or write any line randomly by positioning the file
pointer at the desired location.

In this chapter, we will go through the following recipes using file handling:

¢ Reading a text file and converting all characters after a period into
uppercase

Displaying the contents of a random file in reverse order

Counting the number of vowels in a file
¢ Replacing a word in a file with another word
¢ Encrypting a file

Before we start with the recipes, let's review some of the functions we will be using to
create our recipes.

File Handling Chapter 6

Functions used in file handling

I've divided this section into two parts. In the first part, we will look at the functions
specific to the sequential file handling method. In the second, we will look at the
functions used for random files.

Functions commonly used in sequential file
handling

The following are some of the functions that are used to open, close, read, and write
in a sequential file.

fopen()
The fopen () function is used for opening a file for reading, writing, and doing other
operations. Here is its syntax:

FILE *fopen (const char *file_name, const char *mode)

Here, file_name represents the file that we want to work on and mode states the
purpose for which we want to open the file. It can be any of the following:

e r: This opens the file in read mode and sets the file pointer at the first
character of the file.

e w: This opens the file in write mode. If the file exists, it will be overwritten.

¢ a: Opens the file in append mode. Newly entered data will be added at the
end of the file.

e r+: This opens the file in read and write mode. The file pointer is set to
point at the beginning of the file. The file content will not be deleted if it
already exists. It will not create a file if it does not already exist.

¢ w+: This also opens the file in read and write mode. The file pointer is set to
point at the beginning of the file. The file content will be deleted if it
already exists, but the file will be created if it does not already exist.

¢ a+: This opens a file for reading as well as for appending new content.

The fopen function returns a file descriptor that points to the file for performing
different operations.

[165]

File Handling Chapter 6

fclose()

The fclose () function is used for closing the file. Here is its syntax:
int fclose(FILE *file_pointer)
Here, file_pointer represents the file pointer that is pointing at the open file.

The function returns a 0 value if the file is successfully closed.

fgets()
The fgets () function is used for reading a string from the specified file. Here is its

syntax:

char *fgets(char *string, int length, FILE *file_pointer)
This function has the following features:

¢ string: This represents the character array to which the data that is read
from the file will be assigned.

¢ length: This represents the maximum number of characters that can be
read from the file. The length-1 number of characters will be read from the
file. The reading of data from the file will stop either at length-1 location or
at the new line character, \n, whichever comes first.

e file_pointer: This represents the file pointer that is pointing at the file.

fputs()

The fputs () function is used for writing into the file. Here is its syntax:

int fputs (const char *string, FILE *file_pointer)

Here, string represents the character array containing the data to be written into the
file. The file_pointer phrase represents the file pointer that is pointing at the file.

[166]

File Handling Chapter 6

Functions commonly used in random files

The following functions are used to set the file pointer at a specified location in the
random file, indicate the location where the file pointer is pointing currently, and
rewind the file pointer to the beginning of the random file.

fseek()

The f£seek () function is used for setting the file pointer at the specific position in the
file. Here is its syntax:

fseek (FILE *file_pointer, long int offset, int location);

This function has the following features:

e file_pointer: This represents the file pointer that points at the file.

e of fset: This represents the number of bytes that the file pointer needs to
be moved from the position specified by the location parameter. If the
value of offset is positive, the file pointer will move forward in the file,
and if it is negative, the file pointer will move backward from the given
position.

¢ location: This is the value that defines the position from which the file
pointer needs to be moved. That is, the file pointer will be moved equal to
the number of bytes specified by the offset parameter from the position
specified by the 1ocation parameter. Its value can be 0, 1, or 2, as shown
in the following table:

Value [Meaning

0 |The file pointer will be moved from the beginning of the file

1 The file pointer will be moved from the current position

2 |The file pointer will be moved from the end of the file

Let's look at the following example. Here, the file pointer will be moved 5 bytes
forward from the beginning of the file:

fseek (fp, 5L, 0)

In the following example, the file pointer will be moved 5 bytes backward from the
end of the file:

fseek (fp, -5L, 2)

[167]

File Handling Chapter 6

fell()

The ftell () function returns the byte location where file_pointer is currently
pointing at the file. Here is its syntax:

long int ftell(FILE *file_pointer)

Here, file_pointer is a file pointer pointing at the file.

rewind()

The rewind () function is used for moving the file pointer back to the beginning of
the specified file. Here is its syntax:

void rewind (FILE *file_pointer)
Here, file_pointer is a file pointer pointing at the file.

In this chapter, we will learn to use both types of file handling using recipes that
make real-time applications.

Reading a text file and converting all
characters after the period into
uppercase

Say we have a file that contains some text. We think that there is an anomaly in the
text—every first character after the period is in lowercase when it should be in
uppercase. In this recipe, we will read that text file and convert each character after
the period (.) that is, in lowercase into uppercase.

how to read a text file. If you don't know how to perform these

In this recipe, I assume that you know how to create a text file and
0 actions, you will find programs for both of them in Appendix A.

[168]

File Handling Chapter 6

How to do it...

1.

2.

Open the sequential file in read-only mode using the following code:

fp = fopen (argv [1],"r");

If the file does not exist or does not have enough permissions, an error
message will be displayed and the program will terminate. Set this up
using the following code:

if (fp == NULL) {
printf ("$s file does not exist\n", argv([1l]);
exit (1);

}

One line is read from the file, as shown in the following code:

fgets (buffer, BUFFSIZE, fp);

Each character of the line is accessed and checked for the presence of
periods, as shown in the following code:

for (i=0; i<n; i++)
if (bufferf[i]l=="'.")

If a period is found, the character following the period is checked to
confirm whether it is in uppercase, as shown in the following code:

if (buffer[i] >=97 && buffer[i] <=122)

If the character following the period is in lowercase, a value of 32 is
subtracted from the ASCII value of the lowercase character to convert it
into uppercase, as shown in the following code:

buffer[i]l=buffer[i]-32;

If the line is not yet over, then the sequence from step 4 onward is repeated
till step 6; otherwise, the updated line is displayed on the screen, as shown
in the following code:

puts (buffer);

Check whether the end of file has been reached using the following code. If
the file is not over, repeat the sequence from step 3:

while (!feof (fp))

[169]

File Handling

Chapter 6

The preceding steps are pictorially explained in the following diagram (Figure 6.1):

Open the file in
read only mode
No
——>/ Print "File does not exist" —

Does the file exist

and have
permissions ?

Read a line from the
file and observe
each of its characters

L

Is there any No
_(period) é
in the line
Is the next No
character after full —_

stop in lowercase?,

Subtract value 32 from
the ASCIl value of the
lower case letter to
convert it into uppercase

Y

s line over? No 3 Scani::r):;(;imiracter 3

Display the updated line
on the screen

¥

Figure 6.1

[170]

File Handling Chapter 6

The convertcase.c program for converting a lowercase character found after a
period in a file into uppercase is as follows:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#define BUFFSIZE 255

void main (int argc, char* argvl[])
{

FILE *fp;

char buffer [BUFFSIZE];

int i,n;

fp = fopen (argv [1],"r");

if (fp == NULL) {
printf ("%$s file does not exist\n", argv[1]);
exit (1);

}

while (!feof (fp))
{
fgets (buffer, BUFFSIZE, fp);
n=strlen (buffer);
for (i=0; i<n;i++)
{
if (bufferf[i]=="'.")
{
i++;
while (buffer[i]==" ")
{
i++;

if (buffer[i] >=97 && buffer[i] <=122)
{
buffer[i]l=buffer[i]-32;

}
puts (buffer);
}
fclose (fp);
}

Now, let's go behind the scenes.

[171]

File Handling Chapter 6

How it works...

The file whose name is supplied as a command-line argument is opened in read-only
mode and is pointed to by the file pointer, fp. This recipe is focused on reading a file
and changing its case, so if the file does not exist or does not have read permission, an
error will be displayed and the program will terminate.

A while loop will be set to execute until feof (the end of file) is reached. Within the
while loop, each line of the file will be read one by one and assigned to the string
named buffer. The fgets () function will be used to read one line at a time from the
file. A number of characters will be read from the file until the newline character, \n,
is reached, to a maximum of 254.

The following steps will be performed on each of the lines assigned to the string
buffer:

1. The length of the buffer string will be computed and a for loop will be
executed to access each of the characters in the string buffer.

2. The string buffer will be checked to see whether there are any periods in it.

3. If one is found, the character following it will be checked to see whether it
is into lowercase. ASCII values will be used to then convert the lowercase
characters into uppercase (refer to chapter 2, Managing Strings, for more
information on the ASCII values that correspond to the letters of the
alphabet). If the character following the period is in lowercase, a value of
32 will be deducted from the ASCII value of the lowercase character to
convert it into uppercase. Remember, the ASCII value of uppercase
characters is lower by a value of 32 than their corresponding lowercase
characters.

4. The updated string buf fer with the character following the period
converted into uppercase will be displayed on the screen.

When all the lines of the file are read and displayed, the file pointed to by the fp
pointer will be closed.

Let's use GCC to compile the convertcase.c program as follows:

D:\CBook>gcc convertcase.c —o convertcase

If you get no errors or warnings, this means that the convertcase.c program has
been compiled into an executable file, convertcase.exe.

[172]

File Handling Chapter 6

Let's say that I have created a file called textfile.txt with the following content:

D:\CBook>type textfile.txt

I am trying to create a sequential file. it is through C programming.
It is very hot today. I have a cat. do you like animals? It might
rain. Thank you. Bye

The preceding command is executed in Windows' Command
Prompt.

Let's run the executable file, convertcase.exe, and then pass the textfile.txt
file to it, as shown in the following code:

D:\CBook>./convertcase textfile.txt

I am trying to create a sequential file. It is through C programming.
It is very hot today. I have a cat. Do you like animals? It might
rain. Thank you. Bye

You can see in the preceding output that the characters that were in lowercase after
the period are now converted into uppercase.

Let's move on to the next recipe!

Displaying the contents of a random file
in reverse order

Let's say that we have a random file that contains some lines of text. Let's find out
how to reverse the contents of this file.

This program will not give the correct output if a random file does

not exist. Please read Appendix A to learn how to create a random
file.

[173]

File Handling Chapter 6

How to do it...

1. Open the random file in read-only mode using the following code:
fp = fopen (argv[1l], "rb");

2. If the file does not exist or does not have enough permissions, an error
message will be displayed and the program will terminate, as shown in the
following code:

if (fp == NULL) {
perror ("An error occurred in opening the file\n");
exit (1);
}

3. To read the random file in reverse order, execute a loop equal to the
number of lines in the file. Every iteration of the loop will read one line
beginning from the bottom of the file. The following formula will be used
to find out the number of lines in the file:

total number of bytes used in the file/size of one line in bytes

The code for doing this is as follows:
fseek (fp, 0L, SEEK_END);

n = ftell (fp);
nol=n/sizeof (struct data);

4. Because the file has to be read in reverse order, the file pointer will be
positioned at the bottom of the file, as shown in the following code:

fseek (fp, -sizeof (struct data)*i, SEEK_END);

5. Set a loop to execute that equals the number of lines in the file computed in
step 3, as shown in the following code:

for (i=1;i<=nol;i++)

[174]

File Handling

Chapter 6

6. Within the loop, the file pointer will be positioned as follows:

Random file
€ 0 x sizeof{line)
1stline .) . This formula is used
€ 1 x sizeof{line) when file pointer is at
2nd line the top of the file
€ 2 x sizeof{line)
3rd line
€ -2 x sizeof{line) This formula is used
Second last line when file pointer is at
€ -1 x sizeof{line) the bottom of the file
Last line
Figure 6.2

7. To read the last line, the file pointer will be positioned at the byte location
where the last line begins, at the -1 x sizeof(line) byte location. The last line
will be read and displayed on the screen, as shown in the following code:

fread(&line, sizeof (struct data),l1, fp);
puts (line.str);

8. Next, the file pointer will be positioned at the byte location from where the
second last line begins, at the -2 x sizeof(line) byte location. Again, the
second last line will be read and displayed on the screen.

9. The procedure will be repeated until all of the lines in the file have been
read and displayed on the screen.

[175]

File Handling

Chapter 6

The readrandominreverse. c program for reading the random file in reverse order
is as follows:

#include <string.h>
#include <stdio.h>
#include <stdlib.h>

struct data{
char str[255 1;

}i

void main (int argc, char* argvl[])

{

}

FILE *fp;
struct data line;
int n,nol, i;

fp
if

}

= fopen (argv[1l], "rb");

(fp == NULL) {

perror ("An error occurred in opening the file\n");
exit (1);

fseek (fp, 0L, SEEK_END);

n

= ftell (fp);

nol=n/sizeof (struct data);

printf ("The content of random file in reverse order is

for (i=1;i<=nol;i++)

{

}

fseek (fp, -sizeof (struct data)*i, SEEK_END) ;
fread(&line, sizeof (struct data), 1, fp);
puts(line.str);

fclose (fp);

Now, let's go behind the scenes.

How it works...

We will open the chosen file in read-only mode. If the file opens successfully, it will
be pointed at by the file pointer fp. Next, we will find out the total number of lines in
the file using the following formula:

total number of bytes used by the file/number of bytes used by one line

:\nll);

[176]

File Handling Chapter 6

To know the total number of bytes used by the file, the file pointer will be positioned
at the bottom of the file and we will invoke the ftell function. The ftell function
finds the current location of the file pointer. Because the file pointer is at the end of
the file, using this function will tell us the total number of bytes used by the file. To
find the number of bytes used by one line, we will use the sizeof function. We will
apply the preceding formula to compute the total number of lines in the file; this will
be assigned to the variable, nol.

We will set a for loop to execute for nol number of times. Within the for loop, the
file pointer will be positioned at the end of the last line so that all of the lines from the
file can be accessed in reverse order. So, the file pointer is first set at the (-1 * size
of one line) location at the bottom of the file. Once the file pointer is positioned at
this location, we will use the fread function to read the last line of the file and assign
it to the structure variable line. The string in line will then be displayed on the screen.

After displaying the last line on the screen, the file pointer will be set at the byte
position of the second last line at (-2 * size of one line).We will again use the
fread function to read the second last line and display it on the screen.

This procedure will be executed for the number of times that the for loop executes,
and the for loop will execute the same number of times as there are lines in the file.
Then the file will be closed.

Let's use GCC to compile the readrandominreverse.c program, as follows:
D:\CBook>gcc readrandominreverse.c -—-o readrandominreverse

If you get no errors or warnings, this means that the readrandominreverse.c
program has been compiled into an executable file, readrandominreverse.exe.

Let's assume that we have a random file, random. data, with the following text:

This is a random file. I am checking if the code is working
perfectly well. Random file helps in fast accessing of
desired data. Also you can access any content in any order.

[177]

File Handling Chapter 6

Let's run the executable file, readrandominreverse.exe, to display the random file,
random.data, in reverse order using the following code:

D:\CBook>. /readrandominreverse random.data

The content of random file in reverse order is :

desired data. Also you can access any content in any order.
perfectly well. Random file helps in fast accessing of

This is a random file. I am checking if the code is working

By comparing the original file with the preceding output, you can see that the file
content is displayed in reverse order.

Now, let's move on to the next recipe!

Counting the number of vowels in a file

In this recipe, we will open a sequential text file and count the number of vowels
(both uppercase and lowercase) that it contains.

In this recipe, I will assume that a sequential file already exists.
Please read Appendix A to learn how to create a sequential file.

How to do it...

1. Open the sequential file in read-only mode using the following code:
fp = fopen (argv [1],"r");

2. If the file does not exist or does not have enough permissions, an error
message will be displayed and the program will terminate, as shown in the
following code:

if (fp == NULL) {
printf ("$s file does not exist\n", argv([l]);
exit (1);

[178]

File Handling Chapter 6

3.

Initialize the counter that will count the number of vowels in the file to 0,
as shown in the following code:

count=0;

. One line is read from the file, as shown in the following code:

fgets (buffer, BUFFSIZE, fp);

Each character of the line is accessed and checked for any lowercase or
uppercase vowels, as shown in the following code:

if (buffer([i]=='a' || buffer[i]=='e' || buffer[i]l=='1i"' ||
buffer[i]=='o"' || buffer[i]=='u' || buffer[i]=="A"' ||
buffer[i]=='E' || buffer[i]=='I"' || buffer[i]=="'0" ||
buffer[i]=='U")

If any vowel is found, the value of the counter is incremented by 1, as
shown in the following code:

count++;

Step 5 will be repeated until the end of the line has been reached. Check
whether the end of the file has been reached. Repeat from step 4 until the
end of the file, as shown in the following code:

while (!feof (fp))

Display the count of the number of vowels in the file by printing the value
in the counter variable on the screen, as shown in the following code:

printf ("The number of vowels are %d\n",count);

The preceding steps are shown in the following diagram:

[179]

File Handling Chapter 6

Open the file in
read only mode

No '
yPrint "File does not exist'/)

Does the file exist
and have
permissions ?

count=0
3 | Yes
7Ny

Read a line from the
file and observe
each of its characters

ya
-
character No
LU
count = count +1
\l' ——
- No Scan next character
Isline o S— in the line >

er?
es

1\
Y

Yes

Print the count
of the vowels
¢ &
-

Figure 6.3

[180]

File Handling Chapter 6

The countvowels.c program to count the number of vowels in a sequential text file
is as follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BUFFSIZE 255

void main (int argc, char* argvl[])
{

FILE *fp;

char buffer [BUFFSIZE];

int n, i, count=0;

fp = fopen (argv [1],"r");

if (fp == NULL) {
printf ("%$s file does not exist\n", argv[1]);
exit (1);

}
printf ("The file content is :\n");
while (!feof (fp))
{
fgets (buffer, BUFFSIZE, fp);
puts (buffer);
n=strlen (buffer);
for (i=0; i<n;i++)

{

if (buffer[il=='a' || buffer([i]=='e' || buffer[il=="i' ||
buffer[i]=='o' || buffer[i]=='u' || buffer[i]=='A" ||
buffer[i]=="E' || buffer[i]=='I"' || buffer[i]=="0" ||
buffer[i]=="'U"') count++;

}
printf ("The number of vowels are %d\n",count);
fclose (fp);

}

Now, let's go behind the scenes.

How it works...

We will open the chosen sequential file in read-only mode. If the file opens
successfully, it will be pointed at by the file pointer, £p. To count the number of
vowels in the file, we will initialize a counter from 0.

[181]

File Handling Chapter 6

We will set a while loop to execute until the file pointer, £p, reaches the end of the
file. Within the while loop, each line in the file will be read using the fgets function.
The fgets function will read the BUFFSIZE number of characters from the file. The
value of the BUFFSIZE variable is 255, so fgets will read either 254 characters from
the file or will read characters until the newline character, \n, is reached, whichever
comes first.

The line read from the file is assigned to the buffer string. To display the file
contents along with the count of the vowels, the content in the buf fer string is
displayed on the screen. The length of the buffer string will be computed and a for
loop will be set to execute equaling the length of the string.

Each of the characters in the buffer string will be checked in the for loop. If any
lowercase or uppercase vowels appear in the line, the value of the counter variable
will be incremented by 1. When the while loop ends, the counter variable will have
the total count of the vowels present in the file. Finally, the value in the counter
variable will be displayed on the screen.

Let's use GCC to compile the countvowels.c program as follows:

D:\CBook>gcc countvowels.c —-o countvowels

If you get no errors or warnings, then this means that the countvowels.c program
has been compiled into an executable file called countvowels.exe.

Let's assume that we have a text file called text file.txt with some content. We
will run the executable file, countvowels.exe, and supply the textfile.txt file to
it to count the number of vowels in it, as shown in the following code:

D:\CBook>./countvowels textfile.txt

The file content is :

I am trying to create a sequential file. it is through C programming.
It is very hot today. I have a cat. do you like animals? It might
rain. Thank you. bye

The number of vowels are 49

You can see from the output of the program that the program not only displays the
count of the vowels, but also the complete content of the file.

Now, let's move on to the next recipe!

[182]

File Handling Chapter 6

Replacing a word in a file with another
word

Let's say that you want to replace all occurrences of the word is with the word was in
one of your files. Let's find out how to do this.

In this recipe, I will assume that a sequential file already exists.
Please read Appendix A to learn how to create a sequential file.

How to do it...
1. Open the file in read-only mode using the following code:
fp = fopen (argv [1],"r");

2. If the file does not exist or does not have enough permissions, an error
message will be displayed and the program will terminate, as shown in the

following code:

if (fp == NULL) {
printf ("$s file does not exist\n", argv([1]);

exit (1);
}

3. Enter the word to be replaced using the following code:

printf ("Enter a string to be replaced: ");
scanf ("%s", stril);

4. Enter the new word that will replace the old word using the following
code:

printf ("Enter the new string ");
scanf ("%$s", str2);

5. Read a line from the file using the following code:

fgets(line, 255, fp);

[183]

File Handling Chapter 6

6. Check whether the word to be replaced appears anywhere in the line using
the following code:

if (line[i]l==strl[w])
{
oldi=i;
while (w<lsl)
{
if(line[i] != strl[w])
break;
else

{
i++;
wt+;

}

7. If the word appears in the line, then simply replace it with the new word
using the following code:

if (w==1s1)
{
i=o0ldi;
for (k=0;k<1s2;k++)
{
nline[x]=str2[k];
xX++;
}
i=i4+1s1-1;
}

8. If the word does not appear anywhere in the line, then move on to the next
step. Print the line with the replaced word using the following code:

puts (nline);

9. Check whether the end of the file has been reached using the following
code:

while (!feof (fp))

10. If the end of the file has not yet been reached, go to step 4. Close the file
using the following code:

fclose (fp);

[184]

File Handling Chapter 6

The replaceword.c program replaces the specified word in a file with another word
and displays the modified content on the screen:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

void main (int argc, char* argvl[])

{

FILE *fp;
char 1ine[255], nline[300], str1[80], str2[80];
int i,11, 1s1,1s2, x,k, w, oldi;

fp = fopen (argv [1],"r");

if (fp == NULL) {
printf ("%$s file does not exist\n", argv[1]);
exit (1);

}

printf ("Enter a string to be replaced: ");

scanf ("%s", strl);

printf ("Enter the new string ");

scanf ("%$s", str2);
lsl=strlen(strl);
ls2=strlen(str2);
x=0;
while (!feof (fp))
{
fgets(line, 255, fp);
ll=strlen(line);
for (i=0;i<11;i++)

{
w=0;
if(line[i]l==strl[w])
{
oldi=i;
while (w<lsl)
{
if(line[i] != strl[w])
break;
else
{
i++;
wt++;
}
if (w==1s1)
{
i=oldi;

[185]

File Handling

Chapter 6

for (k=0;k<1s2;k++)
{
nline[x]=str2[k];
X++;
t
i=i+1s1-1;
t
else
{
i=01ldi;
nline[x]=1line[i];
X++;

t
else
{
nline[x]=1line[i];
X++;
t
t
nline[x]="'\0";
puts(nline);
}
fclose (fp);
t

Now, let's go behind the scenes.

How it works...

Open the chosen file in read-only mode. If the file opens successfully, then the file
pointer, £p, will be set to point at it. Enter the word to be replaced and assign it to the
string variable, str1. Similarly, enter the new string that will be assigned to another
string variable, st r2. The length of the two strings, str1 and str2, will be computed

and assigned to the variables, 1s1 and 1s2, respectively.

Set a while loop to execute until the file pointed at by fp pointer gets over. Within
the while loop, one line from the file will be read using the fgets function. The
fgets function reads the file until the maximum length that is specified or the new
line character, \n, is reached, whichever comes first. Because strings are terminated
with a mandatory null character, \ 0, a maximum of 254 characters will be read from

the file.

[186]

File Handling Chapter 6

The string that is read from the file will be assigned to the 1ine variable. The length
of the 1ine string will be computed and assigned to the 11 variable. Using a for
loop, each of the characters in the line variable will be accessed to check whether they
match with str1[0]—that is, with the first character of the string to be replaced. The
characters in the 1ine variable that don't match with the string to be replaced will be
assigned to another string, called n1ine. The nline string will contain the desired
content—that is, all of the characters of the 1ine variable and the new string. If it
exists in 1ine, then the string will be replaced with the new string and the entire
modified content will be assigned to the new string, nline.

If the first character of the string to be replaced matches with any of the characters in
line, then the while loop will be used to match all of the successive characters of the
string that is to be replaced with the successive characters in 1ine. If all of the
characters of the string that is to be replaced match with successive characters in
line, then all of the characters of the string to be replaced are replaced with the new
string and assigned to the new string, n1ine. That way, the while loop will read one
line of text at a time from the file, searching for occurrences of the string to be
replaced. If it is found, it replaces it with the new string and assigns the modified line
of text to another string, n1ine. The null character, \ 0, is added to the modified
string, n1ine, and is displayed on the screen. Finally, the file pointed to by the file
pointer, fp, is closed.

In this recipe, I am replacing the desired word and another string
and displaying the updated content on the screen. If you want the
updated content to be written into another file, then you can always
open another file in write mode and execute the fputs function to
write the updated content in it.

Let's use GCC to compile the replaceword.c program, as follows:

D:\CBook>gcc replaceword.c -o replaceword

If you get no errors or warnings, then this means that the replaceword.c program
has been compiled into an executable file, replaceword. exe. Let's run the
executable file, replaceword.exe, and supply a text file to it. We will assume that a
text file called textfile.txt exists and has the following content:

I am trying to create a sequential file. it is through C programming.
It is very hot today. I have a cat. do you like animals? It might
rain. Thank you. bye

[187]

File Handling Chapter 6

Now, let's use this file to replace one of its words with another word using the
following code:

D:\CBook>. /replaceword textfile.txt

Enter a string to be replaced: is

Enter the new string was

I am trying to create a sequential file. it was through C programming.
It was very hot today. I have a cat. do you like animals? It might
rain. Thank you. Bye

You can see that all occurrences of the word is are replaced by was in
textfile.txt, and the modified content is displayed on the screen. We've
successfully replaced the words of our choice.

Now, let's move on to the next recipe!

Encrypting a file

Encryption means converting content into a coded format so that unauthorized
persons will be unable to see or access the original content of the file. A text file can be
encrypted by applying a formula to the ASCII value of the content.

The formula or code can be of your choosing, and it can be as simple or complex as
you want. For example, let's say that you have chosen to replace the current ASCII
value of all letters by moving them forward 15 values. In this case, if the letter is a
lowercase a that has the ASCII value of 97, then the forward shift of the ASCII values
by 15 will make the encrypted letter a lowercase p, which has the ASCII value of 112
(97 +15=112).

In this recipe, I assume that a sequential file that you want to
encrypt already exists. Please read Appendix A to learn how to create
a sequential file. You can also refer to Appendix A if you want to
know how an encrypted file is decrypted.

How to do it...

1. Open the source file in read-only mode using the following code:

fp = fopen (argv [1],"r");

[188]

File Handling Chapter 6

2.

If the file does not exist or does not have enough permissions, an error
message will be displayed and the program will terminate, as shown in the
following code:

if (fp == NULL) {
printf ("$s file does not exist\n", argv([l]);
exit (1);

}

Open the destination file, the file where the encrypted text will be written,
in write-only mode using the following code:

fgq = fopen (argv[2], "w");

Read a line from the file and access each of its characters using the
following code:

fgets (buffer, BUFFSIZE, fp);

Using the following code, subtract a value of 45 from the ASCII value of
each of the characters in the line to encrypt that character:

for (i=0; i<n; i++)
buffer[i]=buffer[i]-45;

Repeat step 5 until the line is over. Once all of the characters in the line are
encrypted, write the encrypted line into the destination file using the
following code:

fputs (buffer, £q);

Check whether the end of the file has been reached using the following
code:

while (!feof (fp))
Close the two files using the following code:

fclose (fp)
fclose (fq)

’
’

The preceding steps are shown in the following diagram:

[189]

File Handling

Chapter 6

Open the source file
in read only mode

)

Does file exists
and have
permissions ?

No
yPrint "File does not exist'/)

Open the destination
file in write only
mode

Is file created
successfully?

created"

Print "File could not be

/o

Read a line from the
file and observe
each of its characters

J €

Encrypt the character by
subtracting value 45 from
its ASCIl value

¥

No

Is line over?

Scan next character
in the line

Write the encrypted line
into the destination file

¥

Is source

file over ?

v

Figure 6.4

[190]

File Handling Chapter 6

The encryptfile.c program to encrypt a file is as follows:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define BUFFSIZE 255
void main (int argc, char* argvl[])
{

FILE *fp, *fqg;

int i,n;

char buffer [BUFFSIZE];

/* Open the source file in read mode */
fp = fopen (argv [1],"r");

if (fp == NULL) {
printf ("$s file does not exist\n", argv[l]);
exit (1);
}
/* Create the destination file. */
fg = fopen (argv([2], "w");
if (fg == NULL) {
perror ("An error occurred in creating the file\n");
exit (1);

}

while (!feof (fp))

{
fgets (buffer, BUFFSIZE, fp);
n=strlen (buffer);
for (1=0;i<n; i++)

buffer[i]=buffer[i]-45;

fputs (buffer, £fq);

}

fclose (fp);

fclose (fq);

}

Now, let's go behind the scenes.

How it works...

The first file name that is passed through the command-line arguments is opened in
read-only mode. The second file name that is passed through the command-line
arguments is opened in write-only mode. If both files are opened correctly, then the
fp and fq pointers , respectively, will point at the read-only and write-only files.

[191]

File Handling Chapter 6

We will set a while loop to execute until it reaches the end of the source file. Within
the loop, one line from the source file will be read using the fgets function. The
fgets function reads the specified number of bytes from the file or until the new line
character, \n, is reached. If the new line character does not appear in the file, then the
BUFFSIZE constant limits the bytes to be read from the file to 254.

The line read from the file is assigned to the buffer string . The length of the string
buffer is computed and assigned to the variable, n. We will then set a for loop to
execute until it reaches the end of the length of the buffer string, and within the
loop, the ASCII value of each character will be changed.

To encrypt the file, we will subtract a value of 45 from the ASCII value of each of the
characters, although we can apply any formula we like. Just ensure that you
remember the formula, as we will need to reverse it in order to decrypt the file.

After applying the formula to all of the characters, the encrypted line will be written
into the target file. In addition, to display the encrypted version on the screen, the
encrypted line will be displayed on the screen.

When the while loop is finished, all of the lines from the source file will be written
into the target file after they are encrypted. Finally, the two files will be closed.

Let's use GCC to compile the encryptfile.c program, as follows:

D:\CBook>gcc encryptfile.c —o encryptfile

If you get no errors or warnings, this means that the encryptfile.c program has
been compiled into an executable file, encryptfile.exe. Let's run this executable
file.

Before running the executable file, though, let's take a look at the text file,
textfile.txt, which will be encrypted using this program. The contents of this text
file are as follows:

I am trying to create a sequential file. it is through C programming.
It is very hot today. I have a cat. do you like animals? It might
rain. Thank you. bye

Let's run the executable file, encryptfile.exe, on textfile.txt and put the
encrypted content into another file named encrypted. txt using the following code:

D:\CBook>./encryptfile textfile.txt encrypted.txt

[192]

File Handling Chapter 6

The normal content in textfile.txt is encrypted and the encrypted content is
written into another file named encrypted. txt. The encrypted content will appear

as follows:

D:\CBook>type encrypted.txt
<4Q<GEL<A:<GB<6E84G8<4<F8DH8AG<4?<9<?8<<G=S<F<G;EBH:; <<CEB:E4Q@<A:<<<G<<

F<I8EL<;BGSGB74L<; 4I8<4<64G<<7B<LBH<?<>8<4A<(@4?F<<<<G<@<:;GSE4<A';4A><L

BH<5LS8

The preceding command is executed in Windows' Command
Prompt.

Voila! We've successfully encrypted the file!

See also

To learn how to create and read content in sequential file, random file and decrypting a file visit
Appendix C found on this link: https://github.com/PacktPublishing/Practical-C—
Programming/blob/master/Appendix%20C.pdf.

[193]

https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20C.pdf

Implementing Concurrency

Multitasking is a key feature in almost all operating systems; it increases the
efficiency of the CPU and utilizes resources in a better manner. Threads are the best
way to implement multitasking. A process can contain more than one thread to
implement multitasking.

In this chapter, we will cover the following recipes involving threads:

e Performing a task with a single thread

Performing multiple tasks with multiple threads
e Using mutex to share data between two threads

Understanding how a deadlock is created
¢ Avoiding a deadlock

The terms process and thread can be confusing, so first, we'll make sure that you
understand them.

What are processes and threads?

Whenever we run a program, the moment that it is loaded from the hard disk (or any
other storage) into the memory, it becomes a process. A process is executed by a
processor, and for its execution, it requires a program counter (PC) to keep track of
the next instruction to be executed, the CPU registers, the signals, and so on.

A thread refers to a set of instructions within a program that can be executed
independently. A thread has its own PC and set of registers, among other things. In
that way, a process is comprised of several threads. Two or more threads can share
their code, data, and other resources, but special care must be taken when sharing
resources among threads, as it might lead to ambiguity and deadlock. An operating
system also manages a thread pool.

Implementing Concurrency Chapter 7

A thread pool contains a collection of threads that are waiting for tasks to be allocated
to them for concurrent execution. Using threads from the thread pool instead of
instantiating new threads helps to avoid the delay that is caused by creating and
destroying new threads; hence, it increases the overall performance of the application.

Basically, threads enhance the efficiency of an application through parallelism, that is,
by running two or more independent sets of code simultaneously. This is called
multithreading.

Multithreading is not supported by C, so to implement it, POSIX threads (Pthreads)
are used. GCC allows for the implementation of a pthread.

While using a pthread, a variable of the type pthread_t is defined to store the
thread identifier. A thread identifier is a unique integer, that is ,assigned to a thread
in the system.

You must be wondering which function is used for creating a thread. The
pthread_create function is invoked to create a thread. The following four
arguments are passed to the pthread_create function:

¢ A pointer to the thread identifier, which is set by this function

¢ The attributes of the thread; usually, NULL is provided for this argument to
use the default attributes

e The name of the function to execute for the creation of the thread

¢ The arguments to be passed to the thread, set to NULL if no arguments need
to be passed to the thread

When two or more threads operate on the same data, that is, when they share the
same resources, certain check measures must be applied so that only one thread is
allowed to manipulate the shared resource at a time; other threads' access must be
blocked. One of the methods that helps to avoid ambiguity when a resource is shared
among threads is mutual exclusion.

Mutual exclusion

To avoid ambiguity when two or more threads access the same resource, mutual
exclusion implements serializing access to the shared resources. When one thread is
using a resource, no other thread is allowed to access the same resource. All of the
other threads are blocked from accessing the same resource until the resource is free
again.

[195]

Implementing Concurrency Chapter 7

A mutex is basically a lock that is associated with the shared resource. To read or
modify the shared resource, a thread must first acquire the lock for that resource.
Once a thread acquires a lock (or mutex) for that resource, it can go ahead with
processing that resource. All of the other threads that wish to work on it will be
compelled to wait until the resource is unlocked. When the thread finishes its
processing on the shared resource, it unlocks the mutex, enabling the other waiting
threads to acquire a mutex for that resource. Aside from mutex, a semaphore is also
used in process synchronization.

A semaphore is a concept that is used to avoid two or more processes from accessing
a common resource in a concurrent system. It is basically a variable that is
manipulated to only allow one process to have access to a common resource and
implement process synchronization. A semaphore uses the signaling mechanism, that
is, it invokes wait and signal functions, respectively, to inform that the common
resource has been acquired or released. A mutex, on the other hand, uses the locking
mechanism—the process has to acquire the lock on the mutex object before working
on the common resource.

Although mutex helps to manage shared resources among threads, there is a
problem. An application of mutex in the wrong order may lead to a deadlock. A
deadlock occurs in a situation when a thread that has 1ock X tries to acquire lock Y
to complete its processing, while another thread that has 1ock Y tries to acquire lock
X to finish its execution. In such a situation, a deadlock will occur, as both of the
threads will keep waiting indefinitely for the other thread to release its lock. As no
thread will be able to finish its execution, no thread will be able to free up its locks,
either. One solution to avoid a deadlock is to let threads acquire locks in a specific
order.

The following functions are used to create and manage threads:

¢ pthread_join: This function makes the thread wait for the completion of
all its spawned threads. If it is not used, the thread will exit as soon as it
completes its task, ignoring the states of its spawned threads. In other
words, pthread_join blocks the calling thread until the thread specified
in this function terminates.

e pthread_mutex_init: This function initializes the mutex object with the
specified attributes. If NULL is used for the attributes, the default mutex
attributes are used for initializing the mut ex object. When the mutex is
initialized, it is in an unlocked state.

[196]

Implementing Concurrency Chapter 7

e pthread_mutex_lock: This function locks the specified mutex object. If
the mutex is already locked by some other thread, the calling thread will
get suspended, that is, it will be asked to wait until the mutex gets
unlocked. This function returns the mutex object in a locked state. The
thread that locks the mut ex becomes its owner and remains the owner until
it unlocks the mutex.

e pthread_mutex_unlock: This function releases the specified mutex
object. The thread that has invoked the pthread_mutex_lock function
and is waiting for the mutex to get unlocked will become unblocked and
acquire the mutex object, that is, the waiting thread will be able to access
and lock the mutex object. If there are no threads waiting for the mutex, the
mutex will remain in the unlocked state without any owner thread.

e pthread_mutex_destroy: This function destroys a mutex object and frees
up the resources allocated to it. The mut ex must be in an unlocked state
before invoking this method.

Depending on the operating system, a lock may be a spinlock. If any
thread tries to acquire a lock but the lock is not free, a spinlock will
make the thread wait in a loop until the lock becomes free. Such
locks keep the thread busy while it's waiting for the lock to free up.
They are efficient, as they avoid the consumption of time and
resources in process rescheduling or context switching.

That is enough theory. Now, let's start with some practical examples!

Performing a task with a single thread

In this recipe, we will be creating a thread to perform a task. In this task, we will
display the sequence numbers from 1 to 5. The focus of this recipe is to learn how a
thread is created and how the main thread is asked to wait until the thread finishes its
task.

[197]

Implementing Concurrency Chapter 7

How to do it...

1. Define a variable of the type pthread_t to store the thread identifier:
pthread_t tid;

2. Create a thread and pass the identifier that was created in the preceding
step to the pthread_create function. The thread is created with the
default attributes. Also, specify a function that needs to be executed to
create the thread:

pthread_create (&tid, NULL, runThread, NULL);

3. In the function, you will be displaying a text message to indicate that the
thread has been created and is running;:

printf ("Running Thread \n");

4. Invoke a for loop to display the sequence of numbers from 1 to 5 through
the running thread:

for (i=1;i<=5;1i++) printf ("%d\n",1i);

5. Invoke the pthread_join method in the main function to make the main
method wait until the thread completes its task:

pthread_join(tid, NULL);

The createthread.c program for creating a thread and making it perform a task is
as follows:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

void *runThread(void *argqg)
{
int 1i;
printf ("Running Thread \n");
for (i=1;1i<=5;i++) printf ("$d\n",1);
return NULL;

int main ()

pthread_t tid;

[198]

Implementing Concurrency Chapter 7

printf ("In main function\n");
pthread_create(&tid, NULL, runThread, NULL);
pthread_join(tid, NULL);

printf ("Thread over\n");

return 0;

}

Now, let's go behind the scenes.

How it works...

We will define a variable called tid of the type pthread_t to store the thread
identifier. A thread identifier is a unique integer, that is, assigned to a thread in the
system. Before creating a thread, the message In main function is displayed on the
screen. We will create a thread and pass the identifier tid to the pthread_create
function. The thread is created with the default attributes, and the runThread
function is set to execute to create the thread.

In the runThread function, we will display the text message Running Thread to
indicate that the thread was created and is running. We will invoke a for loop to
display the sequence of numbers from 1 to 5 through the running thread. By invoking
the pthread_join method, we will make the main method wait until the thread
completes its task. It is essential to invoke the pthread_join here; otherwise, the
main method will exit without waiting for the completion of the thread.

Let's use GCC to compile the createthread. c program, as follows:

D:\CBook>gcc createthread.c -o createthread

If you get no errors or warnings, that means the createthread. c program has been
compiled into an executable file, createthread.exe. Let's run this executable file:

D:\Chap5>createthread
In main function
Running Thread

1

Thread over

Figure 7.1

[199]

Implementing Concurrency Chapter 7

Voila! We've successfully completed a task with a single thread. Now, let's move on
to the next recipe!

Performing multiple tasks with multiple
threads

In this recipe, you will learn how to multitask by executing two threads in parallel.
Both of the threads will do their tasks independently. As the two threads will not be
sharing a resource, there will not be a situation of race condition or ambiguity. The
CPU will execute any thread randomly at a time, but finally, both of the threads will
finish the assigned task. The task that the two threads will perform is displaying the
sequence of numbers from 1 to 5.

How to do it...

1. Define two variables of the type pthread_t to store two thread identifiers:
pthread_t tidl, tid2;

2. Invoke the pthread_create function twice to create two threads, and
assign the identifiers that we created in the previous step. The two threads
are created with the default attributes. Specify two respective functions that
need to be executed for the two threads:

pthread_create (&tidl, NULL, runThreadl, NULL) ;
pthread_create (&tid2, NULL, runThread2, NULL) ;

3. In the function of the first thread, display a text message to indicate that the
first thread was created and is running;:

printf ("Running Thread 1\n");

4. To indicate the execution of the first thread, execute a for loop in the first
function to display the sequence of numbers from 1 to 5. To distinguish
from the second thread, the sequence of numbers that were generated by
the first thread are prefixed by Thread 1:

for (i=1;1i<=5;1i++)
printf ("Thread 1 - %d\n",1i);

[200]

Implementing Concurrency Chapter 7

5. Similarly, in the second thread, display a text message to inform that the
second thread has also been created and is running;:

printf ("Running Thread 2\n");

6. Again, in the second function, execute a for loop to display the sequence
of numbers from 1 to 5. To differentiate these numbers from the ones
generated by thread1, this sequence of numbers will be preceded by the
text Thread 2:

for (i=1;i<=5;1i++)
printf ("Thread 2 - %d\n",1i);

7. Invoke the pthread_join twice, and pass the thread identifiers we created
in step 1 to it. pthread_join will make the two threads, and the main
method will wait until both of the threads have completed their tasks:

pthread_join(tidl,NULL) ;
pthread_join(tid2,NULL) ;

8. When both of the threads are finished, a text message will be displayed to
confirm this:

printf ("Both threads are over\n");

The twothreads.c program for creating two threads and making them work on
independent resources is as follows:

#include<pthread.h>
#include<stdio.h>

void *runThreadl (void *arg) {
int i;
printf ("Running Thread 1\n");
for(i=1;i<=5;1i++)
printf ("Thread 1 - %d\n",1i);
}

void *runThread2 (void *arg) {
int i;
printf ("Running Thread 2\n");
for(i=1;i<=5;1i++)
printf ("Thread 2 - %d\n",1i);
}

int main () {
pthread_t tidl, tid2;

[201]

Implementing Concurrency Chapter 7

pthread_create (&tidl,NULL, runThreadl, NULL) ;
pthread_create (&tid2,NULL, runThread2, NULL) ;
pthread_join(tidl, NULL) ;
pthread_join(tid2, NULL) ;

printf ("Both threads are over\n");

return 0;

}

Now, let's go behind the scenes.

How it works...

We will define two variables of the type pthread_t, by the names tid1 and tid2, to
store two thread identifiers. These thread identifiers uniquely represent the threads in
the system. We will invoke the pthread_create function twice to create two threads
and assign their identifiers to the two variables tid1 and tid2, whose addresses are
passed to the pthread_create function.

The two threads are created with the default attributes. We will execute the function
runThreadl to create the first thread, and then the runThread2 function to create
the second thread.

In the runThread1 function, we will display the message Running Thread 1 to
indicate that the first thread was created and is running. In addition, we will invoke a
for loop to display the sequence of numbers from 1 to 5 through the running thread.
The sequence of numbers that are generated by the first thread will be prefixed by
Thread 1.

Similarly, in the runThread2 function, we will display the message Running
Thread 2 to inform that the second thread was also created and is running. Again,
we will invoke a for loop to display the sequence of numbers from 1 to 5. To
differentiate these numbers from the ones generated by thread1, these numbers are
preceded by the text Thread 2.

We will then invoke the pthread_join method twice and pass our two thread
identifiers, tid1 and tid2, to it. The pthread_join is invoked to make the two
threads, and the main method waits until both of the threads have completed their
respective tasks. When both of the threads are over, that is, when the functions
runThreadl and runThread?2 are over, a message saying that Both threads are
over will be displayed in the main function.

[202]

Implementing Concurrency Chapter 7

Let's use GCC to compile the twothreads. c program, as follows:

D:\CBook>gcc twothreads.c -o twothreads

If you get no errors or warnings, that means the twothreads.c program has been
compiled into an executable file, twothreads . exe. Let's run this executable file:

D:\Chap5>twothreads
Running Thread 1
Running Thread 2
Thread -1

Thread 1

Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread 2

Both threads are over

RPNRNRNRNER

Figure 7.2

You may not get exactly the same output, as it depends on the CPU, but it is certain
that both threads will exit simultaneously.

Voila! We've successfully completed multiple tasks with multiple threads. Now, let's
move on to the next recipe!

Using mutex to share data between two
threads

Running two or more threads independently, where each accesses its own resources,
is quite convenient. However, sometimes, we want the threads to share and process
the same resource simultaneously so that we can finish a task faster. Sharing a
common resource may lead to problems, as one thread might read the data before the
other thread writes the updated data, leading to an ambiguous situation. To avoid
such a situation, mutex is used. In this recipe, you will learn how to share common
resources between two threads.

[203]

Implementing Concurrency Chapter 7

How to do it...

1. Define two variables of the pthread_t type to store two thread identifiers.
Also, define a mutex object:

pthread_t tidl,tid2;
pthread_mutex_t lock;

2. Invoke the pthread_mutex_init method to initialize the mutex object
with the default mutex attributes:

pthread_mutex_init (&lock, NULL)

3. Invoke the pthread_create function twice to create two threads, and
assign the identifiers that we created in step 1. Execute a function for
creating the two threads:

pthread_create (&tidl, NULL, &runThread, NULL);
pthread_create (&tid2, NULL, &runThread, NULL);

4. In the function, the pthread_mutex_lock method is invoked and the
mutex object is passed to it to lock it:

pthread_mutex_lock (&lock) ;

5. Invoke the pthread_self method and assign the ID of the calling thread
to a variable of the pthread_t type. Invoke the pthread_equal method
and compare it with the variable to find out which thread is currently
executing. If the first thread is being executed, display the message First
thread is running on the screen:

pthread_t id = pthread_self();
if (pthread_equal (id,tid1l))

printf ("First thread is running\n");

6. To indicate that the thread is executing a common resource, display the text
message Processing the common resource on the screen:

printf ("Processing the common resource\n");
7. Invoke the s1eep method to make the first thread sleep for 5 seconds:

sleep(5);

[204]

Implementing Concurrency Chapter 7

8.

10.

11.

12.

13.

14.

15.

16.

After a duration of 5 seconds, display the message First thread is
over on the screen:

printf ("First thread is over\n\n");

. The pthread_mutex_unlock function will be invoked, and the mutex

object that we created in the first step will be passed to it to unlock it:

pthread_mutex_unlock (&lock);

The thread function will be invoked by the second thread. Lock the mutex
object again:

pthread_mutex_lock (&lock) ;

To indicate that the second thread is running at the moment, display the
message Second thread is running on the screen:

printf ("Second thread is running\n");

Again, to indicate that the common resource is being accessed by the
thread, display the message Processing the common resource on the
screen:

printf ("Processing the common resource\n");

Introduce a delay of 5 seconds. Then, display the message second thread
is over on the screen:

sleep(5);
printf ("Second thread is over\n\n");

Unlock the mutex object:
pthread_mutex_unlock (&lock);

Invoke the pthread_join method twice and pass the thread identifiers to
it:

pthread_join(tidl, NULL);
pthread_join(tid2, NULL);

Invoke the pthread_mutex_destroy method to destroy the mutex object:

pthread_mutex_destroy (&lock);

[205]

Implementing Concurrency

Chapter 7

The twothreadsmutex.c program for creating two threads that share common
resources is as follows:

#include<stdio.h>
#include<pthread.h>
#include<unistd.h>
pthread_t tidl,tid2;
pthread_mutex_t lock;

void* runThread(void *arqg)

{

int

}

pthread_mutex_lock (&lock);
pthread_t id = pthread_self();
if (pthread_equal (id, tidl))
printf ("First thread is running\n");
else
printf ("Second thread is running\n");

printf ("Processing the common resource\n");

sleep (5);
if (pthread_equal (id, tidl))

printf ("First thread is over\n\n");
else

printf ("Second thread is over\n\n");
pthread_mutex_unlock (&lock);
return NULL;

main (void)

if (pthread_mutex_init (&lock, NULL) != 0)
printf ("\n mutex init has failed\n");

pthread_create (&tidl, NULL, &runThread, NULL);
pthread_create (&tid2, NULL, &runThread, NULL);

pthread_join(tidl, NULL);
pthread_join(tid2, NULL);
pthread_mutex_destroy (&lock);
return 0;

Now, let's go behind the scenes.

[206]

Implementing Concurrency Chapter 7

How it works...

We will first define a mutex object by the name 1ock. Recall that a mutex is basically
a lock associated with a shared resource. To read or modify the shared resource, a
thread needs to first acquire the lock for that resource. We will define two variables of
the pthread_t type, with the names tid1 and tid2, to store two thread identifiers.

We will invoke the pthread_mutex_init method that initializes the 1ock object
with the default mutex attributes. When it's initialized, the 1ock object is in an
unlocked state. We then invoke the pthread_create function twice to create two
threads and assign their identifiers to the two variables tid1 and tid2, whose
addresses are passed to the pthread_create function. The two threads are created
with the default attributes.

Next, we will execute the runThread function to create the two threads. In the
runThread function, we will invoke the pthread_mutex_lock method and pass the
mutex object lock to it to lock it. Now, the rest of the threads (if any) will be asked to
wait until the mutex object 1ock is unlocked. We will invoke the pthread_self
method and assign the ID of the calling thread to the variable id of the pthread_t
type. We will then invoke the pthread_equal method to ensure that if the calling
thread is the one with the identifier assigned to the tid1 variable, then the message
First thread is running will display on the screen.

Next, the message Processing the common resource is displayed on the screen.
We will invoke the s1eep method to make the first thread sleep for 5 seconds. After a
duration of 5 seconds, the message First thread is over will be displayed on the
screen to indicate that the first thread is over. We will then invoke
pthread_mutex_unlock and pass the mutex object lock to it to unlock it. Unlocking
the mutex object is an indication to the other threads that the common resource can
be used by other threads, too.

The runThread method will be invoked by the second thread, with the identifier
tid2. Again, the mutex object lock is locked, and the id of the calling thread, that is,
the second thread, is assigned to the variable id. The message Second thread is
running is displayed on the screen, followed by the message Processing the

common resource.

[207]

Implementing Concurrency Chapter 7

We will introduce a delay of 5 seconds to indicate that the second thread is processing
the common resource. Then, the message second thread is over will be
displayed on the screen. The mutex object 1ock is now unlocked. We will invoke the
pthread_join method twice and pass the tid1 and tid2 thread identifiers to it.
pthread_join is invoked to make the two threads and the main method wait until
both of the threads have completed their tasks.

When both of the threads are over, we will invoke the pthread_mutex_destroy
method to destroy the mutex object Lock and free up the resources allocated to it.

Let's use GCC to compile the twothreadsmutex.c program, as follows:

D:\CBook>gcc twothreadsmutex.c -o twothreadsmutex

If you get no errors or warnings, that means the twothreadsmutex.c program has
been compiled into an executable file, twothreadsmutex.exe. Let's run this
executable file:

D:\Chap5>twothreadsmutex

First thread is running
Processing the common resource
First thread is over

Second thread is running
Processing the common resource
Second thread is over

Figure 7.3

Voila! We've successfully used mutex to share data between two threads. Now, let's
move on to the next recipe!

[208]

Implementing Concurrency Chapter 7

Understanding how a deadlock is created

Locking a resource helps in non-ambiguous results, but locking can also lead to a
deadlock. A deadlock is a situation wherein a thread has acquired the lock for one
resource and wants to acquire the lock for a second resource. However, at the same
time, another thread has acquired the lock for the second resource, but wants the lock
for the first resource. Because the first thread will keep waiting for the second
resource lock to be free and the second thread will keep waiting for the first resource
lock to be free, the threads will not be able to proceed further, and the application will
hang (as the following diagram illustrates):

Acquired Lock1 Want to acquire
Want to acquire Lock2 Acquired
Figure 7.4

In this recipe, we will use a stack. A stack requires two operations—push and pop. To
make only one thread execute a push or pop operation at a time, we will use two
mutex objects—pop_mutex and push_mutex. The thread needs to acquire locks on
both of the objects to operate on the stack. To create a situation of deadlock, we will
make a thread acquire one lock and ask it to acquire another lock, which was already
acquired by another thread.

How to do it...
1. Define a macro of the value 10, and define an array of an equal size:

#define max 10
int stack[max];

[209]

Implementing Concurrency Chapter 7

2.

Define two mutex objects; one will be used while popping from the stack
(pop_mutex), and the other will be used while pushing a value to the stack
(push_mutex):

pthread_mutex_t pop_mutex;
pthread_mutex_t push_mutex;

To use the stack, initialize the value of top to -1:
int top=-1;
Define two variables of the type pthread_t to store two thread identifiers:

pthread_t tidil,tid2;

. Invoke the pthread_create function to create the first thread; the thread

will be created with the default attributes. Execute the push function to
create this thread:

pthread_create (&tidl, NULL, &push, NULL) ;

Invoke the pthread_create function again to create the second thread;
this thread will also be created with the default attributes. Execute the pop
function to create this thread:

pthread_create (&tid2,NULL, &pop, NULL) ;

In the push function, invoke the pthread_mutex_lock method and pass
the mutex object for the push operation (push_mutex) to lock it:

pthread_mutex_lock (&push_mutex) ;

Then, the mutex object for the pop operation (pop_mutex) will be locked
by the first thread:

pthread_mutex_lock (&pop_mutex) ;
The user is asked to enter the value to be pushed to the stack:

printf ("Enter the value to push: ");
scanf ("%d", &n) ;

[210]

Implementing Concurrency Chapter 7

10. The value of top is incremented to 0. The value that was entered in the
previous step is pushed to the location stack [0]:

top++;
stack[top]l=n;

11. Invoke pthread_mutex_unlock and unlock the mutex objects meant for
the pop (pop_mutex) and push operations (push_mutex):

pthread_mutex_unlock (&pop_mutex) ;
pthread_mutex_unlock (&push_mutex) ;

12. At the bottom of the push function, display a text message indicating that
the value is pushed to the stack:

printf ("Value is pushed to stack \n");

13. In the pop function, invoke the pthread_mutex_1lock function to lock the
mutex object pop_mutex. It will lead to a deadlock:

pthread_mutex_lock (&pop_mutex) ;

14. Again, try to lock the push_mutex object, too (although it is not possible, as
it is always acquired by the first thread):

sleep(5);
pthread_mutex_lock (&push_mutex) ;

15. The value in the stack, that is, pointed to by the top pointer is popped:
k=stack[top];

16. Thereafter, the value of top is decremented by 1 to make it -1 again. The
value, that, is, popped from the stack is displayed on the screen:

top-—;
printf ("Value popped is %d \n",k);

17. Then, unlock the mutex object push_mutex and the pop_mutex object:

pthread_mutex_unlock (&push_mutex) ;
pthread_mutex_unlock (&pop_mutex) ;

[211]

Implementing Concurrency Chapter 7

18. In the main function, invoke the pthread_join method and pass the
thread identifiers that were created in step 1 to it:

pthread_join(tidl,NULL) ;
pthread_join(tid2,NULL) ;

The deadlockstate. c program for creating two threads and understanding how a
deadlock occurs while acquiring locks is as follows:

#include <stdio.h>

#include <pthread.h>
#include <unistd.h>
#include <stdlib.h>

#define max 10
pthread_mutex_t pop_mutex;
pthread_mutex_t push_mutex;
int stack[max];

int top=-1;

void * push(void *arg) {
int n;
pthread_mutex_lock (&push_mutex) ;
pthread_mutex_lock (&pop_mutex) ;
printf ("Enter the value to push: ");
scanf ("%d", &n) ;
topt++;
stack[top]l=n;
pthread_mutex_unlock (&pop_mutex) ;
pthread_mutex_unlock (&push_mutex) ;
printf ("Value is pushed to stack \n");
}
void * pop(void *arg) {
int k;
pthread_mutex_lock (&pop_mutex) ;
pthread_mutex_lock (&push_mutex) ;
k=stack[top];
top——;
printf ("Value popped is %d \n", k);
pthread_mutex_unlock (&push_mutex) ;
pthread_mutex_unlock (&pop_mutex) ;

int main() {
pthread_t tidil,tid2;
pthread_create (&tidl,NULL, &push,NULL) ;
pthread_create (&tid2,NULL, &pop, NULL) ;
printf ("Both threads are created\n");

[212]

Implementing Concurrency Chapter 7

pthread_join(tidl, NULL) ;
pthread_join(tid2, NULL) ;
return 0;

}

Now, let's go behind the scenes.

How it works...

We will first define a macro called max of the value 10, along with an array stack of
the size max. Then, we will define two mutex objects with the names pop_mutex and
push_mutex. To use the stack, we will initialize the value of top to —1. We will also
define two variables of the type pthread_t, with the names tid1 and tid2, to store
two thread identifiers.

We will invoke the pthread_create function to create the first thread, and we will
assign the identifier returned by the function to the variable t id1. The thread will be
created with the default attributes, and we will execute the push function to create
this thread.

We will invoke the pthread_create function again to create the second thread, and
we will assign the identifier returned by the function to the variable t id2. This thread
is also created with the default attributes, and we will execute the pop function to
create this thread. On the screen, we will display the message Both threads are
created.

In the push function, we will invoke the pthread_mutex_lock method and pass the
mutex object push_mutex to it to lock it. Now, if any other thread asks for the
push_mutex object, it will need to wait until the object is unlocked.

Then, the mutex object pop_mutex will be locked by the first thread. We will be
asked to enter the value to be pushed to the stack. The entered value will be assigned
to the variable n. The value of top will be incremented to 0. The value that we enter
will be pushed to the location stack [0].

Next, we will invoke the pthread_mutex_unlock and pass the mutex object
pop_mutex to it to unlock it. Also, the mutex object push_mutex will be unlocked. At
the bottom of the push function, we will display the message Value is pushed to
stack.

[213]

Implementing Concurrency Chapter 7

In the pop function, the mutex object pop_mutex will be locked, and then it will try to
lock the push_mutex object that is already locked by first thread. The value in the
stack, that is, pointed at by the pointer t op will be popped. Because the value of top
is 0, the value at the stack [0] location will be picked up and assigned to the variable
k. Thereafter, the value of top will decrement by 1 to make it -1 again. The value,
that is, popped from the stack will be displayed on the screen. Then, the mutex object
push_mutex will be unlocked, followed by unlocking the pop_mutex object.

In the main function, we will invoke the pthread_join method twice and pass the
tidl and tid2 thread identifiers to it. The reason that we invoke the pthread_join
method is to make the two threads and the main method wait until both of the
threads have completed their tasks.

In this program, a deadlock has occurred because in the push function, the first
thread locked the push_mutex object and tried to get the lock of the pop_mutex
object, which was already locked by the second thread in the pop function. In the pop
function, the thread locked the mutex object pop_mutex and tried to lock the
push_mutex object, which was already locked by the first thread. So, neither of the
threads will be able to finish, and they will keep waiting indefinitely for the other
thread to release its mutex object.

Let's use GCC to compile the deadlockstate. c program, as follows:

D:\CBook>gcc deadlockstate.c —-o deadlockstate

If you get no errors or warnings, that means the deadlockstate.c program is
compiled into an executable file, deadlockstate.exe. Let's run this executable file:

D:\Chap5>deadlockstate
Enter the value to push: Value popped is ©

Both threads are created

Figure 7.5

You've now seen how a deadlock can occur. Now, let's move on to the next recipe!

[214]

Implementing Concurrency Chapter 7

Avoiding a deadlock

A deadlock can be avoided if the threads are allowed to acquire the locks in a
sequence. Let's suppose that a thread acquires the lock for a resource and wants to
acquire the lock for a second resource. Any other thread that tries to acquire the first
lock will be asked to wait, as it was already acquired by the first thread. Therefore,
the second thread will not be able to acquire the lock for the second resource either,
since it can only acquire locks in a sequence. However, our first thread will be
allowed to acquire the lock to the second resource without waiting.

Applying a sequence to the locking of resources is the same as allowing only one
thread to acquire resources at a time. The other threads will only be able to acquire
the resources after the previous thread is over. This way, we will not have a deadlock
on our hands.

How to do it...

1. Define an array of 10 elements:

#define max 10
int stack[max];

2. Define two mutex objects—one to indicate the pop operation of the stack
(pop_mutex), and another to represent the push operation of the stack
(push_mutex):

pthread_mutex_t pop_mutex;
pthread_mutex_t push_mutex;

3. To use the stack, the value of top is initialized to -1:
int top=-1;

4. Define two variables of the type pthread_t, to store two thread identifiers:
pthread_t tidl,tid2;

5. Invoke the pthread_create function to create the first thread. The thread
is created with the default attributes, and the push function is executed to
create the thread:

pthread_create (&tidl, NULL, &push, NULL) ;

[215]

Implementing Concurrency Chapter 7

6.

10.

11.

12.

13.

Invoke the pthread_create function again to create the second thread.
The thread is created with the default attributes, and the pop function is
executed to create this thread:

pthread_create (&tid2, NULL, &pop, NULL) ;

To indicate that the two threads were created, display the message Both
threads are created:

printf ("Both threads are created\n");

In the push function, invoke the pthread_mutex_lock method and pass
the mutex object push_mutex, related to the push operation, to it, in order
to lock it:

pthread_mutex_lock (&push_mutex) ;

After a sleep of 2 seconds, the mutex object, that is, meant to invoke the
pop operation pop_mutex will be locked by the first thread:

sleep(2);
pthread_mutex_lock (&pop_mutex) ;

Enter the value to be pushed to the stack:

printf ("Enter the value to push: ");
scanf ("%d", &n) ;

The value of top is incremented to 0. To stack [0] location, the value, that
is, entered by the user is pushed:

top++;
stack[top]l=n;

Invoke pthread_mutex_unlock and pass the mutex object pop_mutex to
it to unlock it. Also, the mutex object push_mutex will be unlocked:

pthread_mutex_unlock (&pop_mutex) ;
pthread_mutex_unlock (&push_mutex) ;

At the bottom of the push function, display the message Value is
pushed to stack:

printf ("Value is pushed to stack \n");

[216]

Implementing Concurrency Chapter 7

14.

15.

16.

17.

18.

19.

In the pop function, the pthread_mutex_1lock function is invoked to lock
the mutex object push_mutex:

pthread_mutex_lock (&push_mutex) ;

After a sleep (or delay) of 5 seconds, the pop function will try to lock the
pop_mutex object, too. However, the pthread_mutex_lock function will
not be invoked, as the thread is kept waiting for the push_mutex object to
be unlocked:

sleep(5);
pthread_mutex_lock (&pop_mutex) ;

The value in the stack pointed to by the pointer top is popped. Because the
value of top is 0, the value at the location stack [0] is picked up:

k=stack[top];

Thereafter, the value of top will be decremented by 1 to make it -1 again.
The value, that is, popped from the stack will be displayed on the screen:

top——;
printf ("Value popped is %d \n",k);

Then, the mutex object pop_mutex will be unlocked, followed by the
push_mutex object:

pthread_mutex_unlock (&pop_mutex) ;
pthread_mutex_unlock (&push_mutex) ;

In the main function, invoke the pthread_join method twice and pass the
thread identifiers that were created in step 1 to it:

pthread_join(tidl,NULL);
pthread_join(tid2,NULL) ;

The avoiddeadlockst.c program for creating two threads and understanding how
a deadlock can be avoided while acquiring locks is as follows:

#include <stdio.h>
#include <pthread.h>
#include<unistd.h>
#include <stdlib.h>

#define max 10
pthread_mutex_t pop_mutex;

[217]

Implementing Concurrency

Chapter 7

pthread_mutex_t push_mutex;

int
int

stack [max];
top=-1;

void * push(void *arg) {

int n;

pthread_mutex_lock (&push_mutex) ;
sleep(2);

pthread_mutex_lock (&pop_mutex) ;
printf ("Enter the value to push: ");
scanf ("%d", &n) ;

top++;

stack[top]l=n;

pthread_mutex_unlock (&pop_mutex) ;
pthread_mutex_unlock (&push_mutex) ;
printf ("Value is pushed to stack \n");

void * pop(void *arg) {

int

}

int k;

pthread_mutex_lock (&push_mutex) ;

sleep (5);

pthread_mutex_lock (&pop_mutex) ;

k=stack[top];

top——;

printf ("Value popped from stack is %d \n",k);
pthread_mutex_unlock (&pop_mutex) ;
pthread_mutex_unlock (&push_mutex) ;

main () A

pthread_t tidl,tid2;

pthread_create (&tidl,NULL, &push, NULL) ;
pthread_create (&tid2,NULL, &pop, NULL) ;
printf ("Both threads are created\n");
pthread_join(tidl, NULL) ;
pthread_join(tid2, NULL) ;

return 0;

Now, let's go behind the scenes.

[218]

Implementing Concurrency Chapter 7

How it works...

We will start by defining a macro called max of the value 10. Then, we will define an
array stack of the size max. We will define two mutex objects with the names
pop_mutex and push_mutex.

To use the stack, the value of t op will be initialized to —-1. We will define two
variables of the type pthread_t, with the names tid1 and tid2, to store two thread
identifiers.

We will invoke the pthread_create function to create the first thread and assign the
identifier returned by the function to the variable t id1. The thread will be created
with the default attributes, and the push function will be executed to create this
thread.

We will invoke the pthread_create function a second time to create the second
thread, and we'll assign the identifier returned by the function to the variable tid2.
The thread will be created with the default attributes and the pop function will be
executed to create this thread. On the screen, we will display the message Both
threads are created.

In the push function, the pthread_mutex_lock method is invoked, and the mutex
object push_mutex is passed to it to lock it. Now, if any other thread asks for the
pop_mutex object, it will need to wait until the object is unlocked. After a sleep of 2
seconds, the mutex object pop_mutex is locked by the first thread.

We will be prompted to enter the value to be pushed to the stack. The entered value
will be assigned to the variable n. The value of t op will increment to 0. The value that
we enter will be pushed to the location stack [0]. Now, the
pthread_mutex_unlock will be invoked, and the mutex object pop_mutex will be
passed to it to unlock it. Also, the mutex object push_mutex will be unlocked. At the
bottom of the push function, the message Value is pushed to stack will be
displayed.

In the pop function, it will try to lock the mutex object push_mutex, but because it is
already locked by the first thread, this thread will be asked to wait. After a sleep or
delay of 5 seconds, it will also try to lock the pop_mutex object. The value in the
stack, that is, pointed at by the pointer t op will be popped. Because the value of top is
0, the value at stack [0] is picked up and assigned to the variable k.

[219]

Implementing Concurrency Chapter 7

Thereafter, the value of top will decrement by 1 to make it -1 again. The value, that
is, popped from the stack will be displayed on the screen. Then, the mutex object
pop_mutex will be unlocked, followed by the push_mutex object.

In the main function, the pthread_join method is invoked twice, and the tid1 and
tid2 thread identifiers are passed to it. The pthread_join is invoked to make the
two threads and the main method wait until both of the threads have completed their
tasks.

Here, we avoided a deadlock because the locking and unlocking of the mutex objects
was done in a sequence. In the push function, the first thread locked the push_mutex
object and tried to get a lock on the pop_mutex object. The pop_mutex was kept free
because the second thread in the pop function first tried to lock the push_mutex
object, followed by the pop_mutex object. Since the first thread had already locked
the push_mutex object, the second thread was asked to wait. Consequently, both of
the mutex objects, push_mutex and pop_mutex, were in an unlocked state, and the
first thread was able to easily lock both of the mutex objects and use the common
resource. After finishing its task, the first thread will unlock both of the mutex objects,
enabling the second thread to lock both of the mutex objects and access the common
resource thread.

Let's use GCC to compile the avoiddeadlockst . c program, as follows:
D:\CBook>gcc avoiddeadlockst.c —o avoiddeadlockst

If you get no errors or warnings, that means the avoiddeadlockst . c program has
been compiled into an executable file, avoiddeadlockst .exe. Let's run this
executable file:

D:\Chap5>avoiddeadlockst
Both threads are created
Enter the value to push: 5

Value is pushed to stack
Value popped from stack is 5

Figure 7.6

Voila! We've successfully avoided a deadlock.

[220]

Networking and Inter-Process
Communication

Processes run individually and work independently in their respective address
spaces. However, they sometimes need to communicate with each other to pass on
information. For processes to cooperate, they need to be able to communicate with
each other as well as synchronize their actions. Here are the types of communication
that take place between processes:

¢ Synchronous communication: Such communication doesn't allow the
process to continue with any other work until the communication is over

¢ Asynchronous communication: In this communication, the process can
continue doing other tasks, and so it supports multitasking and results in
better efficiency

¢ Remote Procedure Call (RPC): This is a protocol that uses client service
techniques for communication where the client cannot do anything, that is,
it is suspended until it gets a response from the server

These communications can be unidirectional or bidirectional. To enable any form of
communication between processes, the following popular interprocess
communication (IPC) mechanisms are used: pipes, FIFOs (named pipes), sockets,
message queues, and shared memory. Pipes and FIFO enable unidirectional
communication, whereas sockets, message queues, and shared memory enable
bidirectional communication.

Networking and Inter-Process Communication Chapter 8

In this chapter, we will learn how to make the following recipes so that we can
establish communication between processes:

e Communicating between processes using pipes

¢ Communicating between processes using FIFO

e Communicating between the client and server using socket programming
¢ Communicating between processes using a UDP socket

¢ Passing a message from one process to another using the message queue
e Communicating between processes using shared memory

Let's begin with the first recipe!

Communicating between processes
using pipes

In this recipe, we will learn how to write data into a pipe from its writing end and
then how to read that data from its reading end. This can happen in two ways:

¢ One process, both writing and reading from the pipe
¢ One process writing and another process reading from the pipe

Before we begin with the recipes, let's quickly review the functions, structures, and
terms that are used in successful interprocess communication.

Creating and to connecting processes

The most commonly used functions and terms for communication between processes
are pipe, mkfifo, write, read, perror, and fork.

pipe()

A pipe is used for connecting two processes. The output from one process can be sent
as an input to another process. The flow is unidirectional, that is, one process can
write to the pipe and another process can read from the pipe. Writing and reading are
done in an area of main memory, which is also known as a virtual file. Pipes have a
First in First out (FIFO) or a queue structure, that is, what is written first will be read
first.

[222]

Networking and Inter-Process Communication Chapter 8

A process should not try to read from the pipe before something is
written into it, otherwise it will suspend until something is written
into the pipe.

Here is its syntax:

int pipe(int arr(2]);

Here, arr [0] is the file descriptor for the read end of the pipe, and arr[1] is the file
descriptor for the write end of the pipe.

The function returns 0 on success and -1 on error.

mkfifo()

This function creates a new FIFO special file. Here is its syntax:

int mkfifo(const char *filename, mode_t permission);

Here, filename represents the filename, along with its complete path, and
permission represents the permission bits of the new FIFO file. The default

permissions are read and write permission for the owner, group, and others, that is,
(0666).

The function returns 0 on successful completion; otherwise, it returns 1.

write()

This function is used for writing into the specified file or pipe whose descriptor is
supplied. Here is its syntax:

write (int fp, const void *buf, size_t n);

It writes the n number of bytes into the file that's being pointed to by the file pointer,
fp, from the buffer, buf.

read()

This function reads from the specified file or pipe whose descriptor is supplied in the
method. Here is its syntax:

read (int fp, void *buf, size_t n);

[223]

Networking and Inter-Process Communication Chapter 8

It tries to read up to n number of bytes from a file that's being pointed to by a
descriptor, fp. The bytes that are read are then assigned to the buffer, buf.

perror()

This displays an error message indicating the error that might have occurred while
invoking a function or system call. The error message is displayed to stderr, that s,
the standard error output stream. This is basically the console.

Here is its syntax:

void perror (const char * str);

The error message that is displayed is optionally preceded by the message that's
represented by str.

fork()

This is used for creating a new process. The newly created process is called the child
process, and it runs concurrently with the parent process. After executing the fork
function, the execution of the program continues and the instruction following the
fork function is executed by the parent as well as the child process. If the system call
is successful, it will return a process ID of the child process and returns a 0 to the
newly created child process. The function returns a negative value if the child process
is not created.

Now, let's start with the first recipe for enabling communication between processes
using pipes.

One process, both writing and reading from
the pipe

Here, we will learn how writing and reading from the pipe are done by a single
process.

[224]

Networking and Inter-Process Communication Chapter 8

How to do it...

1. Define an array of size 2 and pass it as an argument to the pipe function.

2. Invoke the write function and write your chosen string into the pipe
through the write end of the array. Repeat the procedure for the second
message.

3. Invoke the read function to read the first message from the pipe. Invoke
the read function again to read the second message.

The readwritepipe.c program for writing into the pipe and reading from it
thereafter is as follows:

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

#define max 50
int main ()
{
char str[max];

int ppl[2];

if (pipe (pp) < 0)

exit (1);
printf ("Enter first message to write into pipe: ");
gets (str);
write(ppll], str, max);
printf ("Enter second message to write into pipe: ");
gets (str);

write(ppll], str, max);

printf ("Messages read from the pipe are as follows:\n");
read(pp[0], str, max);

printf ("$s\n", str);

read(pp[0], str, max);

printf ("$s\n", str);

return 0;

}

Let's go behind the scenes.

[225]

Networking and Inter-Process Communication Chapter 8

How it works...

We defined a macro, max, of size of 50, a string, str, of size max, and an array, pp,
with size 2 . We will invoke the pipe function to connect two processes and pass the
pp array to it. The index location, pp [0], will get the file descriptor for the reading
end of the pipe and pp [1] will get the file descriptor for the write end of the pipe.
The program will exit if the pipe function does not execute successfully.

You will be prompted to enter the first message to be written into the pipe. The text
that's entered by you will be assigned to the string variable, st r. Invoke the write
function and the string in st r will be written into the pipe, pp. Repeat the procedure
for the second message. The second text that's entered by you will also be written into
the pipe.

Obviously, the second text will be written behind the first text in the pipe. Now,
invoke the read function to read from the pipe. The text that was entered first in the
pipe will be read and assigned to the string variable, str, and is consequently
displayed on the screen. Again, invoke the read function and the second text
message in the pipe will be read from its read end and assigned to the string variable,
str, and then displayed on the screen.

Let's use GCC to compile the readwritepipe.c program, as follows:
$ gcc readwritepipe.c —-o readwritepipe

If you get no errors or warnings, this means that the readwritepipe.c program has
been compiled into an executable file, readwritepipe.exe. Let's run this executable
file:

$./readwritepipe

Enter the first message to write into pipe: This is the first message
for the pipe

Enter the second message to write into pipe: Second message for the
pipe

Messages read from the pipe are as follows:

This is the first message for the pipe

Second message for the pipe

In the preceding program, the main thread does the job of writing and reading from
the pipe. But what if we want one process to write into the pipe and another process
to read from the pipe? Let's find out how we can make that happen.

[226]

Networking and Inter-Process Communication Chapter 8

One process writing into the pipe and another
process reading from the pipe

In this recipe, we will use the fork system call to create a child process. Then, we will
write into the pipe using the child process and read from the pipe through the parent
process, thereby establishing communication between two processes.

How to do it...

1. Define an array of size 2.

2. Invoke the pipe function to connect the two processes and pass the array
we defined previously to it.

3. Invoke the fork function to create a new child process.

4. Enter the message that is going to be written into the pipe. Invoke the
write function using the newly created child process.

5. The parent process invokes the read function to read the text that's been
written into the pipe.

The pipedemo. c program for writing into the pipe through a child process and
reading from the pipe through the parent process is as follows:

#include <stdio.h>

#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#fdefine max 50

int main ()

{
char wstr[max]
char rstr[max]
int ppl2];
pid_t p;
if (pipe (pp) < 0)
{

’
’

perror ("pipe");

= fork();
if(p >= 0)

H- 0 -

—~—

if(p == 0)

[227]

Networking and Inter-Process Communication Chapter 8

{

printf ("Enter the string : ");
gets (wstr) ;
write (ppl[l] , wstr , strlen(wstr));
exit (0);
t
else
{
read (ppl[O] , rstr , sizeof(rstr));
printf ("Entered message : %s\n " , rstr);
exit (0);

}

else

{
perror ("fork");
exit (2);

t

return 0;

}

Let's go behind the scenes.

How it works...

Define a macro max, of size 50 and two string variables, wstr and rstr, of size max.
The wstr string will be used for writing into the pipe and rstr will be used for
reading from the pipe. Define an array, pp, of size 2, which will be used for storing
the file descriptors of the read and write ends of the pipe. Define a variable, p, of the
pid_t data type, which will be used for storing a process ID.

We will invoke the pipe function to connect the two processes and pass the pp array
to it. The index location pp [0] will get the file descriptor for the reading end of the
pipe, while pp [1] will get the file descriptor for the write end of the pipe. The
program will exit if the pipe function does not execute successfully.

Then, we will invoke the fork function to create a new child process. You will be
prompted to enter the message to be written into the pipe. The text you enter will be
assigned to the string variable wst r. When we invoke the write function using the
newly created child process, the string in the wstr variable will be written into the
pipe, pp. Thereafter, the parent process will invoke the read function to read the text
that's been written into the pipe. The text that's read from the pipe will be assigned to
the string variable rstr and will consequently be displayed on the screen.

[228]

Networking and Inter-Process Communication Chapter 8

Let's use GCC to compile the pipedemo. c program, as follows:
$ gcc pipedemo.c -o pipedemo

If you get no errors or warnings, this means that the pipedemo. ¢ program has been
compiled into an executable file, pipedemo . exe. Let's run this executable file:

$./pipedemo
Enter the string : This is a message from the pipe
Entered message : This is a message from the pipe

Voila! We've successfully communicated between processes using pipes. Now, let's
move on to the next recipe!

Communicating between processes
using FIFO

In this recipe, we will learn how two processes communicate using a named pipe,
also known as FIFO. This recipe is divided into the following two parts:

e Demonstrating how data is written into a FIFO
¢ Demonstrating how data is read from a FIFO

The functions and terms we learned in the previous recipe will also be applicable
here.

Writing data into a FIFO

As the name suggests, we will learn how data is written into a FIFO in this recipe.

How to do it...

1. Invoke the mkfifo function to create a new FIFO special file.

2. Open the FIFO special file in write-only mode by invoking the open
function.

3. Enter the text to be written into the FIFO special file.

4. Close the FIFO special file.

[229]

Networking and Inter-Process Communication Chapter 8

The writefifo.c program for writing into a FIFO is as follows:

#include <stdio.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main ()

{
int fw;
char str[255];
mkfifo ("FIFOPipe", 0666);
fw = open("FIFOPipe", O_WRONLY) ;
printf ("Enter text: ");
gets (str);
write (fw, str, sizeof (str));
close (fw);
return 0;

}

Let's go behind the scenes.

How it works...

Let's assume we have defined a string called st r of size 255. We will invoke the

mk fifo function to create a new FIFO special file. We will create the FIFO special file
with the name FIFOPipe with read and write permissions for owner, group, and
others.

We will open this FIFO special file in write-only mode by invoking the open function.
Then, we will assign the file descriptor of the opened FIFO special file to the fw
variable. You will be prompted to enter the text that is going to be written into the
file. The text you enter will be assigned to the st r variable, which in turn will be
written into the special FIFO file when you invoke the write function. Finally, close
the FIFO special file. Let's use GCC to compile the writefifo.c program, as follows:

$ gcc writefifo.c -o writefifo

If you get no errors or warnings, this means that the writefifo.c program has
compiled into an executable file, writefifo.exe. Let's run this executable file:

$./writefifo
Enter text: This is a named pipe demo example called FIFO

[230]

Networking and Inter-Process Communication Chapter 8

If your program does not prompts for the string that means it is waiting for the other
end of the FIFO to open. That is, you need to run the next recipe, Reading data from a
FIFO, on the second Terminal screen. Please press Alt+F2 on Cygwin to open the next
terminal screen.

Now, let's check out the other part of this recipe.

Reading data from a FIFO

In this recipe, we will see how we can read data from a FIFO.

How to do it...

1. Open the FIFO special file in read-only mode by invoking the open
function.
2. Read the text from the FIFO special file using the read function.

3. Close the FIFO special file.

The readfifo.c program for reading from the named pipe (FIFO) is as follows:

#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>

#define BUFFSIZE 255

int main ()
{
int fr;
char str[BUFFSIZE];
fr = open("FIFOPipe", O_RDONLY);
read(fr, str, BUFFSIZE);
printf ("Read from the FIFO Pipe: %$s\n", str);
close(fr);
return 0;

}

Let's go behind the scenes.

[231]

Networking and Inter-Process Communication Chapter 8

How it works...

We will start by defining a macro called BUFFSIZE of size 255 and a string called str
of size BUFFSIZE, that is, 255 characters. We will open the FIFO special file named
FIFOPipe in read-only mode by invoking the open function. The file descriptor of the
opened FIFO special file will be assigned to the fr variable.

Using the read function, the text from the FIFO special file will be read and assigned
to the str string variable. The text that's read from the FIFO special file will then be
displayed on the screen. Finally, the FIFO special file will be closed.

Now, press Alt + F2 to open a second Terminal window. In the second Terminal
window, let's use GCC to compile the readfifo.c program, as follows:

$ gcc readfifo.c -o readfifo

If you get no errors or warnings, this means that the readfifo.c program has
compiled into an executable file, readfifo.exe. Let's run this executable file:

$./readfifo
Read from the FIFO Pipe: This is a named pipe demo example called FIFO

The moment you run the readfifo.exe file, you will find, that on the previous
Terminal screen where writefifo.c program was run will prompt you to enter a
string. The moment you enter a string on that Terminal and press Enter key, you will
get the output from the readfifo.c program.

Voila! We've successfully communicated between processes using a FIFO. Now, let's
move on to the next recipe!

Communicating between the client and
server using socket programming

In this recipe, we will learn how data from the server process is sent to the client
process. This recipe is divided into the following parts:

¢ Sending data to the client
¢ Reading data that's been sent from the server

Before we begin with the recipes, let's quickly review the functions, structures, and
terms that are used in successful client-server communication.

[232]

Networking and Inter-Process Communication Chapter 8

Client-server model

Different models are used for IPC, but the most popular one is the client-server
model. In this model, whenever the client needs some information, it connects to
another process called the server. But before establishing the connection, the client
needs to know whether the server already exists, and it should know the address of
the server.

On the other hand, the server is meant to serve the needs of the client and does not
need to know the address of the client prior to the connection. To establish a
connection, a basic construct called a socket is required, and both the connecting
processes must establish their own sockets. The client and the server need to follow
certain procedures to establish their sockets.

To establish a socket on the client side, a socket is created with the socket function
system call. Thereafter, that socket is connected to the server's address using the
connect function system call, followed by sending and receiving data by invoking
the read function and write function system calls.

To establish a socket on the server side, again, a socket is created with the socket
function system call and then the socket is bonded to an address using the bind
function system call. Thereafter, the 1isten function system call is invoked to listen
for the connections. Finally, the connection is accepted by invoking the accept
function system call.

struct sockaddr_in structure

This structure references the socket's elements that are used for keeping addresses.
The following are the built-in members of this structure:

struct sockaddr_in {

short int sin_family;
unsigned short int sin_port;
struct in_addr sin_addr;
unsigned char sin_zero[8];

bi

[233]

Networking and Inter-Process Communication Chapter 8

Here, we have the following:

e sin_family: Represents an address family. The valid options are
AF_INET, AF_UNIX, AF_NS, and AF_IMPLINK. In most applications, the
address family that's used is AF_INET.

® sin_port: Represents the 16-bit service port number.
e sin_addr: Represents a 32-bit IP address.
e sin_zero: This is not used and is usually set to NULL.

struct in_addr comprise one member, as follows:

struct in_addr {
unsigned long s_addr;

bi

Here, s_addr is used to represent the address in network byte order.

socket()

This function creates an endpoint for communication. To establish communication,
every process needs a socket at the end of the communication line. Also, the two
communicating processes must have the same socket type and both should be in the
same domain. Here is the syntax for creating a socket:

int socket (int domain, int type, int protocol);

Here, domain represents the communication domain in which a socket is to be
created. Basically, the address family or protocol family is specified, which
will be used in the communication.

A few of the popular address family are listed as follows:

e AF LOCAL: This is used for local communication.
e AF_INET: This is used for IPv4 internet protocols.
e AF_INET6: This is used for IPv6 internet protocols.

e AF_1pPXx: This is used for protocols that use standard IPX (short for
Internetwork Packet Exchange) socket addressing.

e AF_PACKET: This is used for packet interface.

[234]

Networking and Inter-Process Communication Chapter 8

e type: Represents the type of socket to be created. The following are the
popular socket types:
® SOCK_STREAM: Stream sockets communicate as a continuous stream of
characters using a Transmission Control Protocol (TCP). TCP is a
reliable stream-oriented protocol. So, the SOCK_STREAM type provides
reliable, bidirectional, and connection-based byte streams.
e SOCK_DGRAM: Datagram sockets read the entire
messages at once using a User Datagram Protocol
(UDP). UDP is an unreliable, connectionless, and
message-oriented protocol. These messages are of a
fixed maximum length.

e SOCK_SEQPACKET: Provides reliable, bidirectional, and connection-
based transmission paths for datagrams.
® protocol: Represents the protocol to be used with the socket. A 0 value is
specified so that you can use the default protocol that's suitable for the
requested socket type.

You can replace the AF_ prefix in the preceding list with PF_ for
protocol family.

On successful execution, the socket function returns a file descriptor that can be
used to manage sockets.

memset()

This is used to fill a block of memory with the specified value. Here is its syntax:
void *memset (void *ptr, int v, size_t n);

Here, pt r points at the memory address to be filled, v is the value to be filled in the
memory block, and n is the number of bytes to be filled, starting at the location of the
pointer.

htons()

This is used to convert the unsigned short integer from host to network byte order.

[235]

Networking and Inter-Process Communication Chapter 8

bind()

A socket that is created with the socket function remains in the assigned address
family. To enable the socket to receive connections, an address needs to be assigned to
it. The bind function assigns the address to the specified socket. Here is its syntax:

int bind(int fdsock, const struct sockaddr *structaddr, socklen_t
lenaddr) ;

Here, fdsock represents the file descriptor of the socket, st ructaddr represents the
sockaddr structure that contains the address to be assigned to the socket, and
lenaddr represents the size of the address structure that's pointed to by
structaddr.

listen()
It listens for connections on a socket in order to accept incoming connection requests.

Here is its syntax:

int listen(int sockfd, int lenque);

Here, sockfd represents the file descriptor of the socket, and lenque represents the
maximum length of the queue of pending connections for the given socket. An error
will be generated if the queue is full.

If the function is successful it returns zero, otherwise it returns —1.

accept()

It accepts a new connection on the listening socket, that is, the first connection from
the queue of pending connections is picked up. Actually, a new socket is created with
the same socket type protocol and address family as the specified socket, and a new
file descriptor is allocated for that socket. Here is its syntax:

int accept (int socket, struct sockaddr *address, socklen_t *len);
Here, we need to address the following:

e socket: Represents the file descriptor of the socket waiting for the new
connection. This is the socket that is created when the socket function is
bound to an address with the bind function, and has invoked the 1isten
function successfully.

[236]

Networking and Inter-Process Communication Chapter 8

e address: The address of the connecting socket is returned through this
parameter. It is a pointer to a sockaddr structure, through which the
address of the connecting socket is returned.

¢ len: Represents the length of the supplied sockaddr structure. When
returned, this parameter contains the length of the address returned in
bytes.

send()

This is used for sending the specified message to another socket. The socket needs to
be in a connected state before you can invoke this function. Here is its syntax:

ssize_t send(int fdsock, const void *buf, size_t length, int
flags);

Here, fdsock represents the file descriptor of the socket through which a message is
to be sent, buf points to the buffer that contains the message to be sent, length
represents the length of the message to be sent in bytes, and flags specifies the type
of message to be sent. Usually, its value is kept at 0.

connect()

This initiates a connection on a socket. Here is its syntax:

int connect (int fdsock, const struct sockaddr *addr, socklen_t 1len);

Here, fdsock represents the file descriptor of the socket onto which the connection is
desired, addr represents the structure that contains the address of the socket, and 1en
represents the size of the structure addr that contains the address.

recv()

This is used to receive a message from the connected socket. The socket may be in
connection mode or connectionless mode. Here is its syntax:

ssize_t recv(int fdsock, void *buf, size_t len, int flags);

[237]

Networking and Inter-Process Communication

Chapter 8

Here, fdsock represents the file descriptor of the socket from which the message has
to be fetched, buf represents the buffer where the message that is received is stored,
len specifies the length in bytes of the buffer that's pointed to by the buf argument,
and flags specifies the type of message being received. Usually, its value is kept at 0.

We can now begin with the first part of this recipe — how to send data to the client.

Sending data to the client

In this part of the recipe, we will learn how a server sends desired data to the client.

How to do it...

1. Define a variable of type sockaddr_in.

2. Invoke the socket function to create a socket. The port number that's

specified for the socket is 2000.

Call the bind function to assign an IP address to it.
Invoke the 1isten function.

Invoke the accept function.

A

to the socket.
7. The socket at the client end will receive the message.

Invoke the send function to send the message that was entered by the user

The server program, serverprog. c, for sending a message to the client is as follows:

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <string.h>
#include <arpa/inet.h>

int main () {
int serverSocket, toSend;
char str[255];
struct sockaddr_in server_Address;
serverSocket = socket (AF_INET, SOCK_STREAM, O0);
server_Address.sin_family = AF_INET;
server_Address.sin_port = htons (2000);
server_Address.sin_addr.s_addr = inet_addr ("127.0.0.1");
memset (server_Address.sin_zero, '\0', sizeof
server_Address.sin_zero);

[238]

Networking and Inter-Process Communication Chapter 8

bind(serverSocket, (struct sockaddr *) &server_Address,
sizeof (server_Address));
if (listen (serverSocket, 5)==-1)

{
printf ("Not able to listen\n");
return -1;
t
printf ("Enter text to send to the client: ");
gets (str);
toSend = accept (serverSocket, (struct sockaddr *) NULL, NULL);
send (toSend, str, strlen(str),0);
return 0;

}

Let's go behind the scenes.

How it works...

We will start by defining a string of size 255, and a server_Address variable of type
sockaddr_in. This structure references the socket's elements. Then, we will invoke
the socket function to create a socket by the name of serverSocket. A socket is an
endpoint for communication. The address family that's supplied for the socket is
AF_INET, and the socket type selected is the stream socket type, since the
communication that we want is of a continuous stream of characters.

The address family that's specified for the socket is AF_INET, and is used for IPv4
internet protocols. The port number that's specified for the socket is 2000. Using the
htons function, the short integer 2000 is converted into the network byte order
before being applied as a port number. The fourth parameter, sin_zero, of the
server_Address structure is set to NULL by invoking the memset function.

To enable the created serverSocket to receive connections, call the bind function to
assign an address to it. Using the sin_addr member of the server_Address
structure, a 32-bit IP address will be applied to the socket. Because we are working on
the local machine, the localhost address 127.0.0. 1 will be assigned to the socket.
Now, the socket can receive the connections. We will invoke the 1isten function to
enable the serverSocket to accept incoming connection requests. The maximum
pending connections that the socket can have is 5.

[239]

Networking and Inter-Process Communication Chapter 8

You will be prompted to enter the text that is to be sent to the client. The text you
enter will be assigned to the str string variable. By invoking the accept function, we
will enable the serverSocket to accept a new connection.

The address of the connection socket will be returned through the structure of type
sockaddr_in. The socket that is returned and that is ready to accept a connection is
named toSend. We will invoke the send function to send the message that's entered
by you. The socket at the client end will receive the message.

Let's use GCC to compile the serverprog. c program, as follows:

$ gcc serverprog.c —o serverprog

If you get no errors or warnings, this means that the serverprog.c program has
compiled into an executable file, serverprog.exe. Let's run this executable file:

$./serverprog
Enter text to send to the client: thanks and good bye

Now, let's look at the other part of this recipe.

Reading data that's been sent from the server

In this part of the recipe, we will learn how data that's been sent from the server is
received and displayed on the screen.

How to do it...

1. Define a variable of type sockaddr_i.

2. Invoke the socket function to create a socket. The port number that's
specified for the socket is 2000.

3. Invoke the connect function to initiate a connection to the socket.

4. Because we are working on the local machine, the localhost address
127.0.0.1 is assigned to the socket.

5. Invoke the recv function to receive the message from the connected socket.
The message that's read from the socket is then displayed on the screen.

[240]

Networking and Inter-Process Communication

Chapter 8

The client program, clientprog.c, for reading a message that's sent from the server

is as follows:

<stdio.h>
<sys/socket.h>
<netinet/in.h>
<string.h>
<arpa/inet.h>

#include
#include
#include
#include
#include

int main () {
int clientSocket;
char str[255];
struct sockaddr_in client_Address;
socklen_t address_size;
clientSocket socket (AF_INET,
client _Address.sin_family AF_INET;
client _Address.sin_port htons (2000) ;
client _Address.sin_addr.s_addr
memset (client _Address.sin_zero,
client_Address.sin_zero);
address_size sizeof server_Address;
connect (clientSocket, (struct sockaddr
address_size);
recv (clientSocket, str, 255, 0);
printf ("Data received from server:
return 0;

l\O',

%s",
}

Let's go behind the scenes.

How it works...

SOCK_STREAM,

0);

inet_addr ("127.0.0.1");

sizeof
&client_Address,

*)

str);

So, we have defined a string of size 255 and a variable called client_Address of
type sockaddr_in. We will invoke the socket function to create a socket by the

name of clientSocket.

The address family that's supplied for the socket is AF_INET and is used for IPv4
internet protocols, and the socket type that's selected is stream socket type. The port
number that's specified for the socket is 2000. By using the ht ons function, the short
integer 2000 is converted into the network byte order before being applied as a port

number.

[241]

Networking and Inter-Process Communication Chapter 8

We will set the fourth parameter, sin_zero, of the client_Address structure to
NULL by invoking the memset function. We will initiate the connection to the
clientSocket by invoking the connect function. By using the sin_addr member of
the client_Address structure, a 32-bit IP address is applied to the socket. Because
we are working on the local machine, the localhost address 127.0.0.1 is assigned to
the socket. Finally, we will invoke the recv function to receive the message from the
connected clientSocket. The message that's read from the socket will be assigned
to the str string variable, which will then be displayed on the screen.

Now, press Alt + F2 to open a second Terminal window. Here, let's use GCC to
compile the clientprog.c program, as follows:

$ gcc clientprog.c -o clientprog

If you get no errors or warnings, this means that the clientprog.c program has
compiled into an executable file, clientprog.exe. Let's run this executable file:

$./clientprog
Data received from server: thanks and good bye

Voila! We've successfully communicated between the client and server using socket
programming. Now, let's move on to the next recipe!

Communicating between processes
using a UDP socket

In this recipe, we will learn how two-way communication is implemented between a
client and a server using a UDP socket. This recipe is divided into the following parts:

¢ Awaiting a message from the client and sending a reply using a UDP
socket

¢ Sending a message to the server and receiving the reply from the server
using the UDP socket

Before we begin with these recipes, let's quickly review the functions, structures, and
terms that are used in successful interprocess communication using a UDP socket.

[242]

Networking and Inter-Process Communication Chapter 8

Using a UDP socket for server-client
communication

In the case of communication with UDP, the client does not establish a connection
with the server but simply sends a datagram. The server does not have to accept a
connection; it simply waits for datagrams to be sent from the client. Every datagram
contains the address of the sender, enabling the server to identify the client on the
basis of where the datagram is sent from.

For communication, the UDP server first creates a UDP socket and binds it to the
server address. Then, the server waits until the datagram packet arrives from the
client. Once it has arrived, the server processes the datagram packet and sends a reply
to the client. This procedure keeps on repeating.

On the other hand, the UDP client, for communication, creates a UDP socket, sends a
message to the server, and waits for the server's response. The client will keep
repeating the procedure if they want to send more messages to the server, otherwise
the socket descriptor will close.

bzero()

This places n zero-valued bytes in the specified area. Here it its syntax:

void bzero(void *r, size_t n);

Here, r is the area that's pointed to by r and n is the n number of zero values bytes
that are placed in the area that was pointed to by r.

INADDR_ANY

This is an IP address that is used when we don't want to bind a socket to any specific
IP. Basically, while implementing communication, we need to bind our socket to an
IP address. When we don't know the IP address of our machine, we can use the
special IP address INADDR_ANY. It allows our server to receive packets that have been
targeted by any of the interfaces.

[243]

Networking and Inter-Process Communication Chapter 8

sendto()

This is used to send a message on the specified socket. The message can be sent in
connection mode as well as in connectionless mode. In the case of connectionless
mode, the message is sent to the specified address. Here it its syntax:

ssize_t sendto(int fdsock, const void *buff, size_t len, int flags,
const struct sockaddr *recv_addr, socklen_t recv_len);

Here, we need to address the following:

e fdsock: Specifies the file descriptor of the socket.

e buff: Points to a buffer that contains the message to be sent.

¢ len: Specifies the length of the message in bytes.

e flags: Specifies the type of the message that is being transmitted. Usually,
its value is kept as 0.

e recv_addr: Points to the sockaddr structure that contains the receiver's
address. The length and format of the address depends on the address
family that's been assigned to the socket.

e recv_len: Specifies the length of the sockaddr structure that's pointed to
by the recv_addr argument.

On successful execution, the function returns the number of bytes sent, otherwise it
returns -1.

recvfrom()
This is used to receive a message from a connection-mode or connectionless-mode

socket. Here it its syntax:

ssize_t recvfrom(int fdsock, void *buffer, size_t length, int flags,
struct sockaddr *address, socklen_t *address_len);

Here, we need to address the following:

e fdsock: Represents the file descriptor of the socket.

e buffer: Represents the buffer where the message is stored.

¢ length: Represents the number of bytes of the buffer that are pointed to by
the buf fer parameter.

[244]

Networking and Inter-Process Communication Chapter 8

e flags: Represents the type of message that's received.

® address: Represents the sockaddr structure in which the sending address
is stored. The length and format of the address depend on the address
family of the socket.

e address_len: Represents the length of the sockaddr structure that's
pointed to by the address parameter.

The function returns the length of the message that's written to the buffer, which is
pointed to by the buffer argument.

Now, we can begin with the first part of this recipe: preparing a server to wait for and
reply to a message from the client using a UDP socket.

Await a message from the client and sending
a reply using a UDP socket

In this part of the recipe, we will learn how a server waits for the message from the
client and how, on receiving a message from the client, it replies to the client.

How to do it...

1. Define two variables of type sockaddr_in. Invoke the bzero function to
initialize the structure.

2. Invoke the socket function to create a socket. The address family that's
supplied for the socket is AF_INET, and the socket type that's selected is
datagram type.

3. Initialize the members of the sockaddr_in structure to configure the
socket. The port number that's specified for the socket is 2000. Use
INADDR_ANY, a special IP address, to assign an IP address to the socket.

4. Call the bind function to assign the address to it.

5. Call the recvfrom function to receive the message from the UDP socket,
that is, from the client machine. A null character, \ 0, is added to the
message that's read from the client machine and is displayed on the screen.
Enter the reply that is to be sent to the client.

6. Invoke the sendto function to send the reply to the client.

[245]

Networking and Inter-Process Communication Chapter 8

The server program, udps . ¢, for waiting for a message from the client and sending a
reply to it using a UDP socket is as follows:

#include <stdio.h>
#include <strings.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <sys/socket.h>
finclude<netinet/in.h>
#include <stdlib.h>

int main ()
{
char msgReceived[255];
char msgforclient[255];
int UDPSocket, len;
struct sockaddr_in server_Address, client_Address;
bzero (&server_Address, sizeof (server_Address));
printf ("Waiting for the message from the client\n");
if ((UDPSocket = socket (AF_INET, SOCK_DGRAM, 0)) < 0) {
perror ("Socket could not be created");
exit (1);
}
server_Address.sin_addr.s_addr = htonl (INADDR_ANY) ;
server_Address.sin_port = htons (2000);
server_Address.sin_family = AF_INET;
if (bind (UDPSocket, (const struct sockaddr *)&server_Address,
sizeof (server_Address)) < 0)
{
perror ("Binding could not be done");
exit (1);
}
len = sizeof (client_Address);
int n = recvfrom(UDPSocket, msgReceived, sizeof (msgReceived), 0,
(struct sockaddr*)&client_Address, &len);
msgReceived[n] = '\0';
printf ("Message received from the client: ");
puts (msgReceived) ;
printf ("Enter the reply to be sent to the client: ");
gets (msgforclient);
sendto (UDPSocket, msgforclient, 255, 0, (struct
sockaddr*) &client_Address, sizeof (client_Address));
printf ("Reply to the client sent \n");
}

Let's go behind the scenes.

[246]

Networking and Inter-Process Communication Chapter 8

How it works...

We start by defining two strings by the names of msgReceived and msgforclient,
both of which are of size 255. These two strings will be used to receive the message
from and send a message to the client, respectively. Then, we will define two
variables, server_Address and client_Address, of type sockaddr_in. These
structures will reference the socket's elements and store the server's and client's
addresses, respectively. We will invoke the bzero function to initialize the
server_Address structure, that is, zeros will be filled in for all of the members of the
server_Address structure.

The server, as expected, waits for the datagram from the client. So, the following text
message is displayed on the screen: Waiting for the message from the
client. We invoke the socket function to create a socket by the name of
UDPSocket. The address family that's supplied for the socket is AF_INET, and the
socket type that's selected is datagram. The members of the server_Address
structure are initialized to configure the socket.

Using the sin_family member, the address family that's specified for the socket is
AF_INET, which is used for IPv4 internet protocols. The port number that's specified
for the socket is 2000. Using the htons function, the short integer 2000 is converted
into the network byte order before being applied as a port number. Then, we use a
special IP address, INADDR_ANY, to assign an IP address to the socket. Using the
htonl function, the INADDR_ANY will be converted into the network byte order before
being applied as the address to the socket.

To enable the created socket, UDPSocket, to receive connections, we will call the bind
function to assign the address to it. We will call the recvfrom function to receive the
message from the UDP socket, that is, from the client machine. The message that's
read from the client machine is assigned to the msgReceived string, which is
supplied in the recvfrom function. A null character, \0, is added to the
msgReceived string and is displayed on the screen. Thereafter, you will be prompted
to enter the reply to be sent to the client. The reply that's entered is assigned to
msgforclient. By invoking the sendto function, the reply is sent to the client. After
sending the message, the following message is displayed to the screen: Reply to

the client sent.

Now, let's look at the other part of this recipe.

[247]

Networking and Inter-Process Communication Chapter 8

Sending a message to the server and
receiving the reply from the server using the
UDP socket

As the name suggests, in this recipe we will show you how the client sends a message
to the server and then receives a reply from the server using the UDP socket.

How to do it...

1.

4.

Execute the first three steps from the previous part of this recipe. Assign
the localhost IP address, 127.0.0. 1, as the address to the socket.

Enter the message to be sent to the server. Invoke the sendto function to
send the message to the server.

Invoke the recvfrom function to get the message from the server. The
message that's received from the server is then displayed on the screen.
Close the descriptor of the socket.

The client program, udpc. ¢, to send a message to the server and to receive the reply
using a UDP socket is as follows:

#include <stdio.h>
#include <strings.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <sys/socket.h>
#include<netinet/in.h>
#include<unistd.h>
#include<stdlib.h>

int main ()

{

char msgReceived[255];

char msgforserver[255];

int UDPSocket, nj;

struct sockaddr_in client_Address;

printf ("Enter the message to send to the server: ");
gets (msgforserver) ;

bzero (&client_Address, sizeof (client_Address));
client_Address.sin_addr.s_addr = inet_addr ("127.0.0.1");
client_Address.sin_port = htons (2000);
client_Address.sin_family = AF_INET;

if ((UDPSocket = socket (AF_INET, SOCK_DGRAM, 0)) < 0) {

[248]

Networking and Inter-Process Communication Chapter 8

perror ("Socket could not be created");
exit (1);
t
if (connect (UDPSocket, (struct sockaddr *)&client_Address,
sizeof (client_Address)) < 0)
{
printf ("\n Error : Connect Failed \n");
exit (0);
t
sendto (UDPSocket, msgforserver, 255, 0, (struct sockaddr*)NULL,
sizeof (client_Address));
printf ("Message to the server sent. \n");

recvfrom (UDPSocket, msgReceived, sizeof (msgReceived), 0, (struct
sockaddr*)NULL, NULL);
printf ("Received from the server: ");

puts (msgReceived) ;
close (UDPSocket) ;
t

Now, let's go behind the scenes.

How it works...

In the first part of this recipe, we have already defined two strings by the names of
msgReceived and msgforclient, both of which are of size 255. We have also
defined two variables, server_Address and client_Address, of type
sockaddr_in.

Now, you will be prompted to enter a message that is to be sent to the server. The
message you enter will be assigned to the msgforserver string. Then, we will invoke
the bzero function to initialize the client_Address structure, that is, zeros will be
filled in for all the members of the client_ Address structure.

Next, we will initialize the members of the client_Address structure to configure
the socket. Using the sin_family member, the address family that's specified for the
socket is AF_INET, which is used for IPv4 internet protocols. The port number that's
specified for the socket is 2000. By using the htons function, the short integer, 2000,
is converted into the network byte order before being applied as a port number. Then,
we will assign the localhost IP address, 127.0.0. 1, as the address to the socket. We
will invoke the inet_addr function on the localhost address to convert the string
containing the address in standard IPv4 dotted decimal notation into an integer value
(suitable to be used as an internet address) before is it applied to the sin_addr
member of the client_Address structure.

[249]

Networking and Inter-Process Communication Chapter 8

We will invoke the socket function to create a socket by the name of UDPSocket.
The address family that's supplied for the socket is AF_INET, and the socket type
that's selected is datagram.

Next, we will invoke the sendto function to send the message that's been assigned to
the msgforserver string to the server. Similarly, we will invoke the recvfrom
function to get the message from the server. The message that's received from the
server is assigned to the msgReceived string, which is then displayed on the screen.
Finally, the descriptor of the socket is closed.

Let's use GCC to compile the udps . c program, as follows:
$ gcc udps.c -o udps

If you get no errors or warnings, this means that the udps . ¢ program has compiled
into an executable file, udps . exe. Let's run this executable file:

$./udps
Waiting for the message from the client

Now, press Alt + F2 to open a second Terminal window. Here, let's use GCC again to
compile the udpc . ¢ program, as follows:

$ gcc udpc.c -o udpc

If you get no errors or warnings, this means that the udpc. ¢ program has compiled
into an executable file, udpc . exe. Let's run this executable file:

$./udpc
Enter the message to send to the server: Will it rain today?
Message to the server sent.

The output on the server will give us the following output:

Message received from the client: Will it rain today?
Enter the reply to be sent to the client: It might
Reply to the client sent

Once the reply is sent from the server, on the client window, you will get the
following output:

Received from the server: It might

To run the recipes that demonstrate IPC using shared memory and message queue,
we need to run Cygserver. If you are running these programs on Linux, then you can
skip this section. Let's see how Cygserver is run.

[250]

Networking and Inter-Process Communication Chapter 8

Running Cygserver

Before executing the command to run the Cygwin server, we need to configure
Cygserver and install it as a service. To do so, you need to run the cygserver.conf
script on the Terminal. The following is the output you get by running the script:

$./bin/cygserver-config

Generating /etc/cygserver.conf file

Warning: The following function requires administrator privileges!
Do you want to install cygserver as service? yes

The service has been installed under LocalSystem account.
To start it, call "net start cygserver' or ‘“cygrunsrv -S cygserver'.

Further configuration options are available by editing the
configuration

file /etc/cygserver.conf. Please read the inline information in that
file carefully. The best option for the start is to just leave it
alone.

Basic Cygserver configuration finished. Have fun!

Now, Cygserver will have been configured and installed as a service. The next step is
to run the server. To run Cygserver, you need to use the following command:

$ net start cygserver

The CYGWIN cygserver service is starting.
The CYGWIN cygserver service was started successfully.

Now that Cygserver is running, we can make a recipe to demonstrate IPC using
shared memory and message queues.

Passing a message from one process to
another using the message queue

In this recipe, we will learn how communication between two processes is established
using the message queue. This recipe is divided into the following parts:

e Writing a message into the message queue
¢ Reading a message from the message queue

[251]

Networking and Inter-Process Communication Chapter 8

Before we begin with these recipes, let's quickly review the functions, structures, and
terms that are used in successful interprocess communication using shared memory
and message queues.

Functions used in IPC using shared memory
and message queues

The most commonly used functions and terms for IPC using shared memory and
nmssagequeuesareftok,shmget,shmat,shmdt,shmctl,msgget,msgrcv,and
msgsnd.

ftok()

This generates an IPC key on the basis of the supplied filename and ID. The filename
can be provided along with its complete path. The filename must refer to an existing
file. Here is the syntax:

key_t ftok(const char *filename, int id);
The ftok function will generate the same key value if the same filename (with same

path) and the same ID is supplied. Upon successful completion, ftok will return a
key, otherwise it will return -1.

shmget()

This allocates a shared memory segment and returns the shared memory identifier
that's associated with the key. Here is its syntax:

int shmget (key_t key, size_t size, int shmflg);
Here, we need to address the following:

e key: This is (usually) the value that is returned by invoking the ftok
function. You can also set the value of the key as IPC_PRIVATE if you don't
want the shared memory to be accessed by other processes.

¢ size: Represents the size of the desired shared memory segment.

[252]

Networking and Inter-Process Communication Chapter 8

e shmflg: This can be any of the following constants:

e IPC_CREAT: This creates a new segment if no shared
memory identifier exists for the specified key. If this flag is
not used, the function returns the shared memory segment
associated with the key.

e 1PC_EXCL: This makes the shmget function fail if the
segment already exists with the specified key.

On successful execution, the function returns the shared memory identifier in the
form of a non-negative integer, otherwise it returns -1.

shmat()

This is used to attach a shared memory segment to the given address space. That is,
the shared memory identifier that's received by invoking the shmgt function needs to
be associated with the address space of a process. Here is its syntax:

void *shmat (int shidtfr, const void *addr, int flag);
Here, we need to address the following:

e shidtfr: Represents the memory identifier of the shared memory
segment.

e addr: Represents the address space where the segment needs to be
attached. If shmaddr is a null pointer, the segment is attached at the first
available address or selected by the system.

e flag: This is attached as a read-only memory if the flag is SHM_RDONLY;
otherwise, it is readable and writable.

If successfully executed, the function attaches the shared memory segment and
returns the segment's start address, otherwise it returns 1.

shmdt()

This detaches the shared memory segment. Here is its syntax:

int shmdt (const void *addr);

Here, addr represents the address at which the shared memory segment is located.

[253]

Networking and Inter-Process Communication Chapter 8

shmctl()

This is used for performing certain control operations on the specified shared
memory segment. Here is its syntax:

int shmctl (int shidtr, int cmd, struct shmid_ds *buf);

Here, we have to address the following;:

e shidtr: Represents the identifier of the shared memory segment.
¢ cmd: This can have any of the following constants:

e IPC_STAT: This copies the content of the shmid_ds data
structure associated with the shared memory segment
represented by shidtr into the structure that's pointed to by
buf

e TPC_SET: This writes the content of the structure that's
pointed to by buf into the shmid_ds data structure, which is
associated with the memory segment that's represented by
shidtr

e I1pPC_RMID: This removes the shared memory identifier that's
specified by shidtr from the system and destroys the
shared memory segment and shmid_ds data structure
associated with it

e buf: Thisisa pointer to a shmid_ds structure.

If successfully executed, the function returns 0, otherwise it returns -1.

msgget()

This is used for creating a new message queue, and for accessing an existing queue
that is related to the specified key. If this is executed successfully, the function returns

the identifier of the message queue:

int msgget (key_t key, int flag);

[254]

Networking and Inter-Process Communication Chapter 8

Here, we have to address the following;:

e key: This is a unique key value that is retrieved by invoking the ftok
function.
e flag: This can be any of the following constants:

e IPC_CREAT: Creates the message queue if it doesn't already
exist and returns the message queue identifier for the newly
created message queue. If the message queue already exists
with the supplied key value, it returns its identifier.

e IPC_EXCL: If both IPC_CREAT and IPC_EXCL are specified
and the message queue does not exist, then it is created.
However, if it already exists, then the function will fail.

msgrcv()

This is used for reading a message from a specified message queue whose identifier is
supplied. Here is its syntax:

int msgrcv (int msqgid, void *msgstruc, int msgsize, long typemsg, int
flag);

Here, we have to address the following;:

¢ msqgid: Represents the message queue identifier of the queue from which
the message needs to be read.

e msgstruc: This is the user-defined structure into which the read message
is placed. The user-defined structure must contain two members. One is
usually named mt ype, which must be of type long int that specifies the
type of the message, and the second is usually called mesg, which should
be of char type to store the message.

e msgsize: Represents the size of text to be read from the message queue in
terms of bytes. If the message that is read is larger than msgsize, then it
will be truncated to msgsize bytes.

e typemsg: Specifies which message on the queue needs to be received:

e If typemsg is 0, the first message on the queue is received

e If typemsg is greater than 0, the first message whose mtype
field is equal to typemsg is received

e If typemsq is less than 0, a message whose mtype field is less
than or equal to typemsg is received

[255]

Networking and Inter-Process Communication Chapter 8

e flag: Determines the action to be taken if the desired message is not found

in the queue. It keeps its value of 0 if you don't want to specify the flag.
The flag can have any of the following values:
e IPC_NOWAIT: This makes the msgrcv function fail if there is

no desired message in the queue, that is, it will not make the
caller wait for the appropriate message on the queue. If f1ag
is not set to IPC_NOWAIT, it will make the caller wait for
an appropriate message on the queue instead of failing the
function.

MSG_NOERROR: This allows you to receive text that is larger
than the size that's specified in the msgsize argument. It
simply truncates the text and receives it. If this f1ag is not
set, on receiving the larger text, the function will not receive
it and will fail the function.

If the function is executed successfully, the function returns the number of bytes that
were actually placed into the text field of the structure that is pointed to by
msgstruc. On failure, the function returns a value of -1.

msgsnd()

This is used for sending or delivering a message to the queue. Here is its syntax:

int msgsnd
flag);

int msgid, struct msgbuf *msgstruc, int msgsize, int

Here, we have to address the following:

msqgid: Represents the queue identifier of the message that we want to
send. The queue identifier is usually retrieved by invoking the msgget

msgstruc: This is a pointer to the user-defined structure. It is the mesg
member that contains the message that we want to send to the queue.

[256]

Networking and Inter-Process Communication Chapter 8

e msgsize: Represents the size of the message in bytes.

e flag: Determines the action to be taken on the message. If the f1ag value

is set to IPC_NOWAIT and if the message queue is full, the message will not
be written to the queue, and the control is returned to the calling process.
But if f1ag is not set and the message queue is full, then the calling process
will suspend until a space becomes available in the queue. Usually, the
value of flagis set to 0.

If this is executed successfully, the function returns 0, otherwise it returns -1.

We will now begin with the first part of this recipe: writing a message into the queue.

Writing a message into the message queue

In this part of the recipe, we will learn how a server writes a desired message into the
message queue.

How to do it...

1.

Generate an IPC key by invoking the ftok function. A filename and ID are
supplied while creating the IPC key.

Invoke the msgget function to create a new message queue. The message
queue is associated with the IPC key that was created in step 1.

Define a structure with two members, mt ype and mesg. Set the value of the
mt ype member to 1.

. Enter the message that's going to be added to the message queue. The

string that's entered is assigned to the mesg member of the structure that
we defined in step 3.

Invoke the msgsnd function to send the entered message into the message
queue.

The messagegsend. c program for writing the message to the message queue is as

follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <string.h>
finclude <stdlib.h>

[257]

Networking and Inter-Process Communication Chapter 8

#define MSGSIZE 255

struct msgstruc {

long mtype;

char mesg[MSGSIZE];
bi

int main ()
{
int msgid, msglen;
key_t key;
struct msgstruc msgbuf;
system("touch messagefile");
if ((key = ftok("messagefile", 'a')) == -1) {
perror ("ftok");
exit (1);
t
if ((msgid = msgget (key, 0666 | IPC_CREAT)) == -1) {
perror ("msgget") ;
exit (1);
t
msgbuf.mtype = 1;

printf ("Enter a message to add to message queue : ");
scanf ("%s",msgbuf.mesqg) ;
msglen = strlen (msgbuf.mesqg);

if (msgsnd(msgid, &msgbuf, msglen, IPC_NOWAIT) < O0)
perror ("msgsnd") ;

printf ("The message sent is %s\n", msgbuf.mesqg);

return O;

}

Let's go behind the scenes.

How it works...

We will start by generating an IPC key by invoking the ftok function. The filename
and ID are supplied while creating the IPC key are messagefile and a, respectively.
The generated key is assigned to the key variable. Thereafter, we will invoke the
msgget function to create a new message queue. The message queue is associated
with the IPC key we just created using the ftok function.

[258]

Networking and Inter-Process Communication Chapter 8

Next, we will define a structure by the name of msgstruc with two members, mt ype
and mesg. The mt ype member helps in determining the sequence number of the
message that is going to be sent or received from the message queue. The mesg
member contains the message that is going to be read or written into the message
queue. We will define a variable called msgbuf of the msgstruc structure type. The
value of the mt ype member is set to 1.

You will be prompted to enter the message that is going to be added to the message
queue. The string you enter is assigned to the mesg member of the msgbuf structure.
The msgsnd function is invoked to send the message you entered into the message
queue. Once the message is written into the message queue, a text message is
displayed on the screen as confirmation.

Now, let's move on to the other part of this recipe.

Reading a message from the message queue

In this part of the recipe, we will learn how the message that was written into the
message queue is read and displayed on the screen.

How to do it...

1. Invoke the ftok function to generate an IPC key. The filename and ID are
supplied while creating the IPC key. These must be the same as what were
applied while generating the key for writing the message in the message
queue.

2. Invoke the msgget function to access the message queue that is associated
with the IPC key. The message queue that's associated with this key
already contains a message that we wrote through the previous program.

3. Define a structure with two members, mt ype and mesg.

4. Invoke the msgrcv function to read the message from the associated
message queue. The structure that was defined in Step 3 is passed to this
function.

5. The read message is then displayed on the screen.

[259]

Networking and Inter-Process Communication

Chapter 8

The messageqrecv. c program for reading a message from the message queue is as

follows:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <stdio.h>
#include <stdlib.h>
#define MSGSIZE 255

struct msgstruc {

long mtype;

char mesg[MSGSIZE];
}i

int main ()
int msqgid;

key_t key;
struct msgstruc rcvbuffer;

if ((key = ftok("messagefile", 'a'))
perror ("ftok");
exit (1);

if ((msgid = msgget (key, 0666)) < 0)
{

perror ("msgget") ;

exit (1);

if (msgrcv (msqgid, &rcvbuffer, MSGSIZE,

{

perror ("msgrcv") ;
exit (1);
}

printf ("The message received is %s\n",

return 0;

}

Let's go behind the scenes.

1, 0) < 0)

rcvbuffer.mesq) ;

[260]

Networking and Inter-Process Communication Chapter 8

How it works...

First, we will invoke the ftok function to generate an IPC key. The filename and ID
that are supplied while creating the IPC key are messagefile and a, respectively.
These filenames and ID must be the same as the ones that were applied while
generating the key for writing the message in the message queue. The generated key
is assigned to the key variable.

Thereafter, we will invoke the msgget function to access the message queue that is
associated with the IPC key. The identifier of the accessed message queue is assigned
to the msgid variable. The message queue that's associated with this key already
contains the message that we wrote in the previous program.

Then, we will define a structure by the name msgst ruc with two members, mt ype
and mesg. The mt ype member is for determining the sequence number of the
message to be read from the message queue. The mesg member will be used for
storing the message that is read from the message queue. We will then define a
variable called rcvbuffer of the msgstruc structure type. We will invoke the
msgrcv function to read the message from the associated message queue.

The message identifier, msqid, is passed to the function, along with the rcvbuffer —
the structure whose me sg member will store the read message. After successful
execution of the msgrcv function, the mesg member of the rcvbuf fer containing the
message from the message queue will be displayed on screen.

Let's use GCC to compile the messagegsend. c program, as follows:
$ gcc messagegsend.c —o messagegsend

If you get no errors or warnings, this means that the messagegsend. c program has
compiled into an executable file, messagegsend. exe. Let's run this executable file:
$./messagegsend
Enter a message to add to message queue : GoodBye

The message sent is GoodBye

Now, press Alt + F2 to open a second Terminal screen. On this screen, you can
compile and run the script for reading the message from the message queue.

Let's use GCC to compile the messageqrecv.c program, as follows:

$ gcc messagegrecv.c —o messageqrecv

[261]

Networking and Inter-Process Communication Chapter 8

If you get no errors or warnings, this means that the messageqrecv. c program has
compiled into an executable file, messageqrecv.exe. Let's run this executable file:

$./messagegrecv
The message received is GoodBye

Voila! We've successfully passed a message from one process to another using the
message queue. Let's move on to the next recipe!

Communicating between processes
using shared memory

In this recipe, we will learn how communication between two processes is established
using shared memory. This recipe is divided into the following parts:

e Writing a message into shared memory
¢ Reading a message from shared memory

We will start with the first one, that is, Writing a message into shared memory. The
functions we learned in the previous recipe will also be applicable here.

Writing a message into shared memory

In this part of this recipe, we will learn how a message is written into shared memory.

How to do it...

1. Invoke the ftok function to generate an IPC key by supplying a filename
and an ID.

2. Invoke the shmget function to allocate a shared memory segment that is
associated with the key that was generated in step 1.

3. The size that's specified for the desired memory segment is 1024. Create a
new memory segment with read and write permissions.

4. Attach the shared memory segment to the first available address in the
system.

5. Enter a string that is then assigned to the shared memory segment.
6. The attached memory segment will be detached from the address space.

[262]

Networking and Inter-Process Communication Chapter 8

The writememory.c program for writing data into the shared memory is as follows:

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

}

char *str;
int shmid;

key_t key = ftok("sharedmenm", 'a');
if ((shmid = shmget (key, 1024,0666|IPC_CREAT)) < 0) {
perror ("shmget") ;

exit (1);
}
if ((str = shmat (shmid, NULL, 0)) == (char *) -1) {
perror ("shmat");
exit (1);
}
printf ("Enter the string to be written in memory : ");
gets (str);

printf ("String written in memory: %s\n",str);
shmdt (str);
return 0;

Let's go behind the scenes.

How it works...

By invoking the ftok function, we generate an IPC key with the filename sharedmem
(you can change this) and an ID of a. The generated key is assigned to the key
variable. Thereafter, invoke the shmget function to allocate a shared memory
segment that is associated with the supplied key generated using the ftok function.

The size that's specified for the desired memory segment is 1024. Create a new
memory segment with read and write permissions and assign the shared memory
identifier to the shmid variable. Then, attach the shared memory segment to the first
available address in the system.

[263]

Networking and Inter-Process Communication Chapter 8

Once the memory segment is attached to the address space, the segment's start
address is assigned to the st r variable. You will be asked to enter a string. The string
you enter will be assigned to the shared memory segment through the st r variable.
Finally, the attached memory segment is detached from the address space.

Let's move on to the next part of this recipe, Reading a message from shared memory.

Reading a message from shared memory

In this part of the recipe, we will learn how the message that was written into shared
memory is read and displayed on screen.

How to do it...

1.

Invoke the ftok function to generate an IPC key. The filename and ID that
are supplied should be the same as those in the program for writing
content into shared memory.

Invoke the shmget function to allocate a shared memory segment. The size
that's specified for the allocated memory segment is 1024 and is associated
with the IPC key that was generated in step 1. Create the memory segment
with read and write permissions.

Attach the shared memory segment to the first available address in the
system.

The content from the shared memory segment is read and displayed on
screen.

The attached memory segment is detached from the address space.

The shared memory identifier is removed from the system, followed by
destroying the shared memory segment.

The readmemory . c program for reading data from shared memory is as follows:

#include <stdio.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <stdlib.h>

int main ()

{

int shmid;

[264]

Networking and Inter-Process Communication Chapter 8

char * str;

key_t key = ftok ("sharedmen", 'a');

if ((shmid = shmget (key, 1024,0666|IPC_CREAT)) < 0) {
perror ("shmget") ;

exit (1);

t

if ((str = shmat (shmid, NULL, 0)) == (char *) -1) {
perror ("shmat") ;
exit (1);

t

printf ("Data read from memory: %s\n",str);
shmdt (str);

shmctl (shmid, IPC_RMID, NULL) ;

return 0;

}

Let's go behind the scenes.

How it works...

We will invoke the ftok function to generate an IPC key. The filename and ID that
are supplied for generating the key are sharedmem (any name) and a, respectively.
The generated key is assigned to the key variable. Thereafter, we will invoke the
shmget function to allocate a shared memory segment. The size that's specified for
the allocated memory segment is 1024 and is associated with the IPC key that was
generated earlier.

We will create the new memory segment with read and write permissions and assign
the fetched shared memory identifier to the shmid variable. The shared memory
segment is then attached to the first available address in the system. This is done so
that we can access the text that was written in the shared memory segment through
the previous program.

So, after the memory segment is attached to the address space, the segment's start
address is assigned to the str variable. Now, we can read the content that's been
written in the shared memory through the previous program in the current program.
The content from the shared memory segment is read through the str string and
displayed on screen.

Thereafter, the attached memory segment is detached from the address space. Finally,
the shared memory identifier shmid is removed from the system and the shared
memory segment is destroyed.

[265]

Networking and Inter-Process Communication Chapter 8

Let's use GCC to compile the writememory.c program, as follows:

$ gcc writememory.c —o writememory

If you get no errors or warnings, this means that the writememory.c program has
compiled into an executable file, writememory.exe. Let's run this executable file:

$./writememory

Enter the string to be written in memory : Today it might rain
String written in memory: Today it might rain

Now, press Alt + F2 to open a second Terminal window. In this window, let's use
GCC to compile the readmemory . c program, as follows:

$ gcc readmemory.c —-o readmemory

If you get no errors or warnings, this means that the readmemory . c program has
compiled into an executable file, readmemory . exe. Let's run this executable file:

$./readmemory
Data read from memory: Today it might rain

Voila! We've successfully communicated between processes using shared memory.

[266]

Sorting and Searching

Searching, as the name suggests, is the process of locating a specific element in a
group of elements. Searching can be broadly classified as one of the following two

types:
e Linear searching: Where each element in the list is sequentially searched to
find the desired item.
¢ Binary search: Where the list is assumed to already be sorted, and the
middle value of the list is compared with the item to be searched to

determine which half of the list needs to be considered for searching the
item. The process of dividing the list continues until the item is found.

Sorting, on the other hand, is the procedure of arranging certain elements in a certain
order. The order can be ascending, descending, or in another specific order. Not only
can the individual numerals and strings be sorted, but even records can be sorted.
Records are sorted on the basis of some key that is unique to every record. These are

the two main categories of sorting:

e Internal sorting: Where all the elements that are being sorted are uploaded
together in the primary memory

¢ External sorting: Where some elements to be sorted are uploaded to the
primary memory, and the rest are kept in auxiliary memory, such as on a
hard disk or pen drive

To be able to conduct effective searches, we need to know how to sort data. Sorting is
essential because it makes the task of searching quite easy and fast.

In this chapter, you will learn the following recipes:

e Searching for an item using binary search
¢ Arranging numbers in ascending order using bubble sort

Sorting and Searching Chapter 9

e Arranging numbers in ascending order using insertion sort
¢ Arranging numbers in ascending order using quick sort
¢ Arranging numbers in descending order using heap sort

Let's begin with the first recipe!

Searching for an item using binary
search

Binary search uses the divide and conquer approach. The item to be searched for is
compared with the middle item in an array or file. This helps in determining which
half of the array or file might contain the item being searched for. After that, the
middle value of the half that was considered is compared with the item being
searched for to determine which quarter part of the array or file might contain the
item being searched for. The process continues until either the item being searched for
is found, or no more divisions of the array or file are possible, in which case, it is
understood that the item being searched for is not present in the file or array.

How to do it...

Consider an array is arr of size 1en elements. We want to search for a number, numb,
in this array, arr. Here are the steps to search for numb in the arr array using binary
search:

1. Initialize two variables, 1ower and upper.

2. Calculate the middle location of the array.

3. If the value to search, numb, is found at location arr [mid] then display
Value found and exit (that is, jump to step 8).

4. If your search value is larger than the array's middle value, confine the
search to the lower half of the array. So, set the lower limit of the array to
the array's middle value.

5. If your search value is smaller than the array's middle value, confine the
search to the upper half of the array. So, set the upper limit of the array to
the array's middle value.

6. Repeat steps 3 through 5 as long as upper>=lower.

[268]

Sorting and Searching Chapter 9

7. The execution will proceed with this step only if the value is not found.
Then display Value not found and exit.

8. Exit.

The program for searching for an element in a sorted array using the binary search
technique is as follows:

//binarysearch.c
#include <stdio.h>

#define max 20
int binary_search(int[], int, int);

int main() {
int len, found, numb, arr[max], 1i;
printf ("Enter the length of an array: ");

scanf ("%d", & len);
printf ("Enter %d values in sorted order \n", len);

for (i = 0; i < len; i++)
scanf ("%$d", & arr[i]);
printf ("Enter the value to search ");
scanf ("%d", & numb);
found = binary_search(arr, numb, len);
if (found == numb)
printf ("Value %d is found in the list\n", numb);
else

printf ("Value %d is not found in the list \n", numb);
return 0;

int binary_search(int arr[], int pnumb, int plen) {

int lindex = 0, mid, uindex = plen - 1, nfound;
while (uindex >= lindex) {
mid = (uindex + lindex) / 2;
if (pnumb == arr[mid]) {
nfound = arr[mid];
break;
} else {

if (pnumb > arr[mid])
lindex = mid + 1;
else
uindex = mid - 1;

}

return (nfound);

[269]

Sorting and Searching Chapter 9

Now, let's go behind the scenes to understand the code better.

How it works...

Let's define a macro called max of size 20 and an array, arr, of size max, that is, 20
elements (you can increase the value of the max macro to any larger value as desired).
Next, we will specify the length of the array. Let's say that the length you entered is 8,
which is then assigned to the 1en variable. When prompted, enter the specified
number of sorted elements. The sorted elements you enter will be assigned to the

arr array, as follows:

7 |arr[0]
15 |arr[1]
30 | arr[2]
34 | arr[3]
60 | arr[4]
8o | arr[5]
88 | arr[6]
97 | arr[7]

Figure 9.1

Then, you will be prompted to enter the number you want to search for in the sorted
array. Let's say you picked 45; this number will be assigned to the numb variable. We
will invoke the binary_search function and all three items — the arr array, the
numb variable containing the number to search for, and the length of the array

in len —are passed to the function. The arr, numb, and len arguments will be
assigned to the arr, pnumb, and plen parameters respectively.

In the binary_search function, we will initialize two variables: 1index to 0 and
uindex to 7, that is, equal to the length of the array; these two indexes represent the
lower and upper index locations of the array respectively. Because arrays are zero-
based, the eighth element of the array will be found at index location 7. We'll set a
while loop to execute for as long as the value of uindex is greater than or equal to
the value of 1index.

[270]

Sorting and Searching Chapter 9

To compare the search value with the middle value of the array, we will first compute
the middle value; sum the values of 1index and uindex, and divide the result by 2.
The output of (0+7)/2 is 3. Then, compare the value of the numb variable, that is, 45,
with the value at location arr [3], derived from your computation, that is, with 34
(see Figure 9.2):

7 |arr[0]

15 |arr[1]

30 | arr[2]

45 > 34 Darr[3]

60 | arr[4]

Ti_w. bina_ry se:arch 80 | arr[5]
will continue in upper

half of the array 88 _| arr[6]

97 | arr[7]

Figure 9.2

Because 45 is greater than 34, we will have to continue our search in the lower half of
the array. However, since our list is sorted in ascending order, we can now
concentrate our search in the lower half of the array.

Now, the value of 1index is set equal to mid+1, that is, 4. Again, execute the while
loop because uindex, that is, 7, is still greater than 1index. We will now compute the
middle value of the upper half of the array: (4+7)/2 = 5. The search value 45 will be
compared with arr [5], that is, with 80. Because 45 is smaller than 80, we will
continue our search in the lower half of the array, as follows:

7 [arr[0]
15 |arr[1]
30 |arr[2]
34 | arr[3]

This element will be considered for
arr[4 @
82 (4 continuing the binary search
45< {80 parr[s]

88 | arr[6]
97 | arr[7]

Figure 9.3

[271]

Sorting and Searching Chapter 9

Next, the value of uindex is set equal to mid-1, that is, equal to 4. And the value of
lindex from our previous computation is also 4. We will again execute the while
loop because 4=4. The middle value of the array will be computed as (4+4)/2, that is,
the search value 45 will be compared with arr[4], which is 60.

Because 45 < 60, the value of uindex will be set to mid-1, that is, equal to 3. The
while loop will exit because our uindex (3) is not greater than our 1index (4)
any more. The binary_search function will return the nfound variable to the main
function. The nfound variable contains some garbage value, which is then assigned to
the found variable in the main function. In the main function, the values in the found
and numb variables are compared. Because the garbage value is not equal to the value
in the numb variable, 45, a message, Value 45 is not found in the list willbe
displayed on the screen.

Suppose you want to search for the value 15 now. The values of 1index and uindex
will again be 0 and 7 initially. The while loop will execute and the middle value will
be computed as (0+7)/2, which will be 3. The value of 15 will be compared with the
corresponding location, arr [3], that is, with 34. The value of 15 is smaller than 34, so
the upper half of the array will be considered to continue the binary search, as shown
in the following figure:

The binary search 7 |arr[0]

will continue in lower 15 | arr[1]
half of the array

30 | arr[2]

15 < arr[3]

60 | arr[4]

80 | arr[3]

88 | arr[6]

97 | arr[7]

Figure 9.4

[272]

Sorting and Searching Chapter 9

The value of the uindex variable is set equal to mid-1, that is, 2. Because uindex is
still greater than 1index, thatis, 2 >=0, the while loop will execute again. Again, the
middle value is computed as (0+2)/2, which is 1. This means that 15 is compared with
the arr[1] element.

The value at the arr [1] location is 15 only; hence, the nfound variable is set to 15 in
the binary_search function and the nfound variable is returned to the main
function. In the main function, the value of the nfound variable will be assigned to
the found variable. Because the value in the found and numb variables are the same,
the message Value 15 is found in the list will be displayed onscreen.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears on compilation, that means the binarysearch.c program has
successfully been compiled into an EXE file, that is, to the binarysearch.exe file.
On executing the executable file, if we try searching for a value that is not found in
the list, we get the following output:

D:\CAdvBook>gcc binarysearch.c -o binarysearch

D:\CAdvBook>binarysearch

Enter the length of an array: 8
Enter 8 values in sorted order
7

15

3e

34

60

80

88

97

Enter the value to search 45
Value 45 is not found in the list

Figure 9.5

[273]

Sorting and Searching Chapter 9

If we run the executable file again and enter a number that exists in the array, we may
get the following output:

D:\CAdvBook>binarysearch

Enter the length of an array: 8
Enter 8 values in sorted order
7

15

30

34

517
80
88
97
Enter the value to search 15
Value 15 is found in the list

Figure 9.6

Voila! We've successfully used binary search to locate an item in a sorted array. Now
let's move on to the next recipe!

Arranging numbers in ascending order
using bubble sort

In this recipe, we will learn how to arrange some integers in ascending order using
the bubble sort technique. In this technique, the first element is compared with the
second, the second is compared with the third, the third with the fourth, and so on.

How to do it...

Consider an array, arr, of size 1en elements. We want to arrange elements of the arr
array in ascending order. Here are the steps to do so:

1. Initialize a variable, say i, to len -2.

2. Follow and repeat steps 3 through 5 aslong as i >=1. The value of i will
be decremented by 1 after every iteration, thatis, i=len-2, len-3, len-4,
1.

[274]

Sorting and Searching Chapter 9

3. Initialize another variable, 5, to 0.

4. Repeat step 5 to j<=1i. The value of j will increase after every iteration, that
is, j=1,2... 1i.

5. Ifarr([j] > arr[j+1], then interchange the two values.

6. Exit the search.

The program for sorting elements of an integer array using the bubble sort technique
is as follows:

//bubblesort.c

#include <stdio.h>

#define max 20
int main () {

}

int arr[max], temp, len, i, J;

printf ("How many values are there? ");
scanf ("%d", & len);

printf ("Enter %d values to sort\n", len);

for (i = 0; 1 < len; i++)
scanf ("%d", & arr[i]);
for (i = len - 2; i >= 1; i--) |
for (3 = 0; j <= 1i; Jj++) {
if (arr[j] > arr([j + 1]1) A
temp = arr([jl;
arr[j] = arr[]j + 1];
arr[j + 1] = temp;

printf ("The sorted array is:\n");
for (i = 0; 1 < len; i++)

printf ("$d\n", arr[i]);
return 0;

Now, let's go behind the scenes to understand the code better.

[275]

Sorting and Searching Chapter 9

How it works...

We will start by defining a macro, max, of value 20. You can always increase the value
of max as required. Then, we will define an array, arr, of size max, that is, of size 20.
You will be asked how many values you want to sort. Assuming that you want to sort
seven elements, the value you entered will be assigned to the 1en variable. You will
be prompted to enter the values to be sorted, which will then be assigned to

the arr array. The seven values to be sorted in the arr array might appear as follows:

25 | arr[0]
9 |arr[1]
70 | arr[2]
o | arr[3]
18 | arr[4]
10 | arr[5]
6 | arr[6]
Figure 9.7

Now, we will run two nested for loops: the outer for loop will execute from len-2,
that is, from value 5 to 1 in descending order, and the inner for loop will execute for
the value from 0 to i. That means, in the first iteration, the value of i will be 5, so the
inner for j loop will execute from 0 to 5. Within the inner for loop, the first value of
arr will be compared with the second, the second value with the third, and so on:

First value is compared C 25 | arr[0]
with second 9 an_["
Second value is compared C
with third 70 | arr[2]
[}
ol 0 Jarr3]
* |18 | arr[4]
* 10 | arr[5]
Sixth value is compared C
with seventh 6 | arr[6]

Figure 9.8

[276]

Sorting and Searching Chapter 9

The tendency is to keep the value at the lower index smaller than the value at the
higher index. If the first value is larger than the second, they will change places; and if
the first value is already smaller than the second value, then the next two values in
line, that is, the second and third values, are taken for consideration. Similarly, if the
second value is larger than the third, they too will swap places; if not, then the next
set of values, that is, the third and fourth values, will be compared. The process will
continue until the last pair, that is, the sixth and seventh values in our case, are
compared.

The entire first iteration of comparisons is illustrated as follows:

Because 25 is larger than
9, interchanging of their C 25 | arr(0] _ 9 |arr[0] 9 |arr[0]
values will take place g Jarr[1] 25 is smaller than 70, 25 | arr[1] 25 | arr[1]
2 so no interchanging 2
70 | arr(2] = 70 is larger than 0, 70 | arr[2] = 0 Jarr2]
o |arr[3] ;c;(intt?rchanin will o |arr[3] 70 is larger than 18, 70 | arr[3]
e place . . g
18 | arr{4] 18 |arrfd] poterenandnawiliuf 48 | arrfa]
10 | arr[5] 10 | arr[5] 10 | arr[5]
6 | arr[6] 6 | arr[6] g | arr[6]
(a) (b) ()
9 |arr[0] 9 |arr[0] 9 |arr[0]
25 | arr[1] 25 | arr[1] 25 |arr[1]
0 |arr[2 0 2
= [2] = 0 |arr[2] = arr[2]
18 | arr[3] 18 | arr[3] 18 | arr[3]
70is larger than 10, 70 | arr[4] 10 | arr[4] 10 | arr[4]
interch i ill
tsac;‘:an;:éeangmg " 10 | arr{35] 70 is larger than 6, 70 | arr[5] 6 |arr[5]
so interchanging will
6 | arr[6] take place 6 | arr[6] 70 | arr[6]
(d) (e))
Figure 9.9

[277]

Sorting and Searching Chapter 9

You can see that after the first iteration, the largest value has bubbled down to the
bottom of the list. Now, the value of the outer loop, that is, the value of i will be
decremented by 1, making it 4. Consequently, the value of j in the inner loop will
make the for loop run from value 0 to 4. It also means that now, the first value will
be compared with the second, the second with the third, and so on. Finally, the fifth
value (that is, the value at index location 4) will be compared with the sixth value
(that is, the value at index location 5). The last element at index location 6 will not be
compared as it is already at its correct destination:

Because 9 is smaller than
25, so no interchanging 9 _Jarri0] 9 |arr[0] 9 |arr[0]
25is larger than 0, 25 |arr[1] 0 |arr[1] 0 |arr[1]
:ac:én;;i:angmg will 0 Jarr[2] et 25 is larger than 18, 25 | arr[2] - 18 | arr[2]
18 | arr[3] tsaoklnt?rchanglng will 18 | arr[3] 25 is largor than 10 25 | arr[3]
e place ! a "
10 | arr[4] 10 | arr[4] tsaok Lng;cct;angmg wilts 407 arrp4]
6 |arrl5] 6 |arr[5] 6 |arr[5]
70 | arr[6] 70 | arr[6] 70 | arrf6]
(a) (b) (c)
arrf0] 9 |arr[0]
arr{1] 0 |arr1]
arr[2
= 18 farrl2] 18 | arr[2]
10_| arr[3] 10 | arr[3]
25 is larger than 6, 25 | arr[4] 6 |arr[4]
ke pince 0] 6_|arrS] 25 | arris]
70 | arr(6] 70 | arr[6]
(d) (e)
Figure 9.10

Again, after the second iteration, the value of the outer loop will be decremented by 1,
making it 3. As a result, the value of j in the inner loop will make the for loop run
from value 0 to 3. In the last, the fourth value, that is, the value at index location 3,
will be compared with the fifth value. The last two elements at index location 5 and 6
are not compared as both are at their correct destination:

[278]

Sorting and Searching Chapter 9

9is larger than 0,
so interchanging will 9 |arr[0] 0 |arrf0] 0 |arr[0]
take place 0 |arr[1] 9is sn'.latllertr:'lan 18, 9 |arr[1] 9 |arr[1]
so no interchanging
18 |arri2] =2» 18 is larger than 10, 18 arr[2] 10 | arr(2]
10_| arr[3] faok:'l:]el.-:;l;anging wils | 10 | arr[3] 18 is larger than 6, 18 | arr[3]
so interchanging will
6 |arr[4] 6 |arr[4] take place 6 |arr[4]
25 | arr[5] 25 | arr[5] 25 | arr[5]
70 | arr[6] 70 | arr[6] 70 | arr[6]
(a) (b) (c)
arr[0]
arr[1]
= 10 Jarr[2]
6 |arr[3]
18 |arr[4]
25 |arr[5]
70 | arr[6]
(d)
Figure 9.11

After the third iteration, the value of i will be decremented by 1, making it 2. Hence,
the value of j will make the for loop run from value 0 to 2. The last three elements at

index location 4, 5, and 6 are not compared as they already are at their correct
destination:

0 is smaller than 9, 0 |arr[0] 0 |arr[0]
so no interchanging
9 is smaller than 10, 9 |arr[1] 9 |arr[1]
so no interchanging 10 arr[2] 6 arr[2]
10 is larger than 6, =>
so interchanging will C 6 |arr[3] 10 | arr[3]
take place 18 an.[4] 18 an_[4]
25 | arr[5] 25 | arr[5]
70 | arr[6] 70 | arr[6]
(a) (b)
Figure 9.12

[279]

Sorting and Searching Chapter 9

After the fourth iteration, the value of i will be decremented again, making it 1. So,
the value of j in the inner loop will make the for loop run from value 0 to 1. The last
four elements are not compared as they already are at their final destination:

0is smaller than 9, 0 |arr[0] 0 |arr[0]
so no interchanging 1
9 is greater than 6, arr1] 6 |arrl1]
so interchanging will 6 |Jarr[2] = 9 |arr[2]
take pl
ake place 10 | arr[3] 10 | arr[3]
18 | arr[4] 118 | arr[4]
25 | arr[5] 25 | arr[5]
70 | arr[6] 70 | arr[6]
(a) (b)
Figure 9.13

So, after five iterations, we have successfully arranged the numbers in our array in
ascending order. The program is compiled using GCC with the following statement:

gcc bubblesort.c —-o bubblesort

Because no error appears on compilation, that means the bubblesort . c program has
successfully been compiled into the bubblesort . exe file. On executing this file, it
will ask us to specify how many numbers there are to be sorted. Then the program
will prompt us to enter the numbers to be sorted. After entering the numbers, they
will appear sorted in ascending order, as shown in the following screenshot:

D:\CAdvBook>gcc bubblesort.c -o bubblesort

D:\CAdvBook>bubblesort
How many values are there? 7
Enter 7 values to sort
25

=]

70

2]

18

18

6

The sorted array is:

Figure 9.14

[280]

Sorting and Searching Chapter 9

Voila! We've successfully used the bubble sort technique to arrange numbers in
ascending order.

Now let's move on to the next recipe!

Arranging numbers in ascending order
using insertion sort

In this sorting technique, a region of the array, which might be the lower or upper
part, is considered as sorted. An element outside the sorted region is picked up and
its appropriate place is searched for in the sorted region (so that even after the
insertion of this element, the region remains sorted) and the element is inserted there,
hence the name insertion sort.

How to do it...

We will create a function for insertion sort called InsertionSort, which we will
invoke as follows, where arr is the array to be sorted and consists of n number of
elements.

Here are the steps that are followed in the InsertionSort method:

1. Initialize a variable, say i, to 1.

2. Repeat steps 2 to 5 n-1 times, that is, while i >= n-1. The value of i is
incremented by 1 after every iteration, i=1,2,3 n-1.

3. Initialize a variable, 5, to the value of i.

4. Repeat the following step 5 for j=i to j >=0. The value of j is
decremented by 1 after every iteration, thatis, j=1, i-1, i-2,0.

5. Ifarr[j] <arr[j-1], then interchange the values.

[281]

Sorting and Searching Chapter 9

The program for sorting the elements of an integer array using the insertion sort
technique is as follows:

//insertionsort.c

#include <stdio.h>

#define max 20

int main () {

}

int arr[max], i, j, temp, len;

printf ("How many numbers are there ? ");
scanf ("%d", & len);

printf ("Enter %d values to sort\n", len);
for (i = 0; 1 < len; i++)

scanf ("%d", & arr[i]l);

for (i 1; 1 < len; i++) |
for (3 =1; J > 0; J-—) A
if (arr[j] < arr([j - 1]1) A
temp = arr[j];
arr[j] = arr[] - 11;
arr[j - 1] = temp;

printf ("\nThe ascending order of the values entered is:\n");
for (i = 0; 1 < len; i++)

printf ("$d\n", arr[i]);
return 0;

Now, let's go behind the scenes to understand the code better.

How it works...

Let's assume that the numbers that we need to sort are not greater than 20; so we will
define a macro of size 20. You can always assign any value to this macro. Next, we
will define an integer array, arr, of size max. You will be prompted to enter how
many numbers you wanted to sort. Let's say we want to sort eight values; so the
value 8 entered by us will be assigned to a variable, 1en. Thereafter, you will be
asked to enter the eight values that need to be sorted. So, let's say we entered the
following values, which were assigned to the arr array:

[282]

Sorting and Searching Chapter 9

15 |arr[0]
9 Jarr[1]
10 | arr[2]
arr[3]
arr[4]
18 | arr[5]
7 | arr[6]
4 | arr[7]
Figure 9.15

In this sorting method, we will take the help of a nested loop, where the outer loop, i,
runs from 1 to 7 and the inner loop, j, runs from the value beginning from i to its
value is more than 0. So, in the first iteration of the nested loop, the inner loop will
execute only once where the value of i will be 1. The value at the arr [1] index
location is compared with that at arr [0]. The tendency is to keep the lower value at
the top, so if the value at arr [1] is greater than that at arr [0], the place of the two
values will be interchanged. Because 15 is greater than 9 (on the left side of Figure

9.16), the values in the two index locations will be interchanged (on the right side of
Figure 9.16) as follows:

9 is smaller than 15, 15 | arr[0] 9 |Jarr[0]
so interchanging will
take place 9 |arr[1] 15 | arr[1]
10 | arr[2] 10 | arr[2]
arr[3] = arr[3]
arr[4] 2 |arr[4]
18 | arr[5] 18 | arr[5]
7 | arri6] 7 | arr[6]
arr[7] 4 | arr7]
Figure 9.16

After the first iteration, the value of i will be incremented to 2 and the inner loop, j,
will run from the value of 2 to 1, that is, the inner loop will execute twice: once with
the value of j equal to 2 and then when the value of j is decremented to 1. Within the
inner loop, the value at arr [2] will be compared with that at arr[1]. In addition,
the value at arr [1] will be compared with thatat arr[0].If arr[2] < arr[1],
then interchanging of the values will take place. Similarly, if arr [1] < arr[0],
interchanging of their values will take place.

[283]

Sorting and Searching Chapter 9

The value at arr [2] thatis 10 is less than the value at arr [1], that is, 15; so these
values will interchange places (see Figure 9.17). After interchanging the values, we
find that the value at arr [1] is greater than the value at arr [0]. So, no
interchanging will take place now. Figure 9.17 shows the procedure of the second
iteration:

9 |arr[0] 101s larger than 9, 9 |arr[0]
10is smaller than 15, #| 15_|art[1] sorneinerchanging s 19 arr1]
so interchanging will 10 | arr[2] 15 | arr[2]
take place

5 | arr[3] 5 | arr[3]

arr[4] 2 |arr[4]

18 | arr[35] 18 | arr[5]

7 | arr[6] 7 | arr[6]

4 | arrf7] 4 |arr[7]
Figure 9.17

After the second iteration, the value of i will be incremented to 3 and the value of -
will run from the values of 3 to 1. Hence, the interchanging of values will take place if
the following conditions are met:

e Ifarr[3] < arr(2]
e Ifarr[2] < arr[l]

e Ifarr[1l] < arr([0]

You can see in Figure 9.18(a) that arr [3], that is, 5, is smaller than arr [2], that s, 15,
so their values will be interchanged. Similarly, the values at arr[2] and arr[1], and
then arr[1] and arr [0], will also be interchanged (see Figure 9.18(b) and (c),
respectively). Figure 9.18(d) shows the array after all the interchanges have been
performed:

9 arr[l]] 9 arr[l]] 5is smaller than 9, 9 arr[[l] 5 arr[l]]
10 |arr[1] §is smaller than 10, 10 |arr[1] tsaoklenﬁ;ccl;anglnq will 5 |arr[1] 1 9 Jarr[1]
5 is smaller than 15, x| 15 | arr{2] tsac;(lntelrchanglng will 5 |arr2] 10 | arr[2] 10 | arr[2]
N . . e place
so interchanging will 5 |arr[3] P 15 | arr[3] 15 | arr[3] 15 | arr[3]
take place = =

2 |arr[4] 2 |arr[4] 2 | arr[4] 2 |arr[4]
18 | arr[5] 18 | arr[5] 18 | arr[5] 18 | arr[5]
7 | arr[6] 7 | arr[6] 7 | arr[6] 7 | arr[6]
4 | arr[7] 4 | arr[7] 4 |arr[7] 4 | arr[7]

(a) (b) (c) (d)

Figure 9.18

[284]

Sorting and Searching

Chapter 9

After the third iteration, the value of i will be incremented to 4 and the value of § will
run from the values of 4 to 1. So interchanging of values will take place if the
following conditions are met:

o Ifarr
o Ifarr
o Ifarr

o Ifarr

[4]
[3]
(2]
[1]

You can see in Figure 9.19 that the main tendency of all these comparisons is to bring
the lower values above the larger values in the array:

2 is smaller than 15,
so interchanging will
take place

2 is smaller than 5,
so interchanging will
take place

5 |arr[0]
9 |arr[1]
10 | arr[2]
15 | arr[3]
2 |arr[4] =
18 | arr[5]
7 | arr[6]
4 | arr[7]
(a)
5 |arr[0]
2 |arr[1]
arr[2]
10 | arr[3]
15 | arr[4]
18 | arr[5]
7 | arr[6]
4 | arr[7]
(d)

2 is smaller than 10,
so interchanging will

take place

10

15

18

(b)

10

15

18

(e)

arr[0]
arr[1]
arr[2]
arr[3]
arr[4]
arr[5]
arr[6]
arr[7]

arr[0]
arr[1]
arr[2]
arr[3]
arr[4]
arr[5]
arr[6]
arr[7]

2 is smaller than 9,
so interchanging will
take place

10

15

18

(c)

arr[0]
arr[1]
arr[2]
arr[3]
arr[4]
arr[5]
arr[6]
arr[7]

Figure 9.19

The same procedure will be followed for the rest of the elements in the array.

The program is compiled using GCC with the following statement:

gcce insertionsort.c -o insertionsort

[285]

Sorting and Searching Chapter 9

Because no error appears on compilation, that means the insertionsort.c
program has successfully been compiled into the insertionsort.exe file. On
execution, it will ask you to specify how many numbers have to be sorted. Following
this, the program will prompt us to enter the numbers to be sorted. After entering the

numbers, they will appear sorted in ascending order, as shown in the following
screenshot:

D:\CAdvBook>gcc insertionsort.c -o insertionsort

D:\CAdvBook>insertionsort

How many numbers are there ? 8
Enter 8 values to sort

15

9

Figure 9.20

Voila! We've successfully used insertion sort to arrange numbers in ascending order.

Now let's move on to the next recipe!

[286]

Sorting and Searching Chapter 9

Arranging numbers in ascending order
using quick sort

Quick sort is a divide-and-conquer algorithm. It divides an array on the basis of a
pivot, where the pivot is an element in the array, in order that all the elements smaller
than the pivot are placed before the pivot and all the larger ones are placed after it.

So, at the location of the pivot, the array is divided into two subarrays. The process of
finding the pivot is repeated on both the arrays. The two arrays are further
subdivided on the basis of the pivot.

Hence, quick sort is a recursive procedure and the procedure of dividing the arrays
into subarrays continues recursively until the subarray has only one element.

How to do it...

The quick sort process comprises the following important tasks:

¢ Finding the pivot
e Splitting the array at the location of the pivot

We will be using two methods: QuickSort and FindingPivot.

Quick sort

This method takes an array or subarray into consideration. It invokes the method to
find the pivot of the array or subarray and splits the array or subarray on the basis of
the pivot. Here is its syntax:

Quick Sort (arr,n)
Here, arr is the array consisting of n elements.
This is how we use this method:

1. Let 1=1 and u=n, where 1 and u represent the lower and upper index
location, respectively, of the array.

2. Push 1 into stackl.
3. Push u into stack?.

[287]

Sorting and Searching Chapter 9

10.

While stackl or stack?2 is not empty, repeat steps 5 through 10.

Pop the lower index location of the array from stack1 into variable s, that
is, s becomes the lower index location of the array to be sorted.

Pop the upper index location from stack?2 into the variable e, that is, the e
variable will get the upper index location of the array.

Find out the pivot by invoking the FindingPivot method as follows:

pivot=FindingPivot (arr, s, e)

Recall that a pivot point is an index location in the array where the elements
smaller than the pivot are before it and elements larger than the pivot are
after it. The array is split at the pivot point and the quick sort method is
recursively applied on the two halves individually.

Once the pivot is known, divide the array into two halves. One array will
have values from s (the lower index location) to pivot-1, and another
array with the elements ranges from pivot+1 to e (the upper index
location).

For the first half of the array, push s into stack1 and pivot-1 into
stack2.

For the second half of the array, push pivot+1 into stackl and e into
stack2.

FindingPivot

This method finds the pivot of the array or subarray. Here is its syntax:

FindingPivot (arr,start,end)

Here, arr represents the array of n elements, start represents the starting index
location of the array, and end represents the ending index location of the array.

This is how we use this method:

1.
2.
3.

Repeat steps 2 through 8 of the QuickSort method.
Store the value of the start variable in another variable, say, lower.

Start from the right index location and move to the left. Initially, the first
element is the pivot. The tendency is to keep the elements larger than the
pivot on the right-hand side of the pivot and the elements smaller than the
pivot on the left-hand side.

[288]

Sorting and Searching Chapter 9

4. If 1ower=end, that means, we found the pivot. The pivot is equal to the
value of lower. Return lower as the location of the pivot element.

5. If arr[lower] > arr[end], then interchange the values' places. Now,
move from left to right comparing each value with the pivot, and move up
until we get the value lower than the value of pivot.

6. While arr[start] <= arr[lower] and lower != start, repeat:

start=start+1

7. If lower=start then pivot is lower. Return lower as the location of the
pivot element.
8. If arr[start] > arr[lower], then interchange the values' places.

The program for sorting elements of an integer array using the quick sort technique is
as follows:

//quick sort.c

include<stdio.h>
define stacksize 10
#define arrsize 20
int topl = -1, top2 =
int stackl[stacksize];
int stack2[stacksize];

_l;

int arr[arrsize];

int quick(int, int);
void pushstkl (int);
void pushstk2 (int);
int popstkl();

int popstk2();

int main () {
int sindex, eindex, lindex, uindex, k, pivot, i, len;
printf ("How many numerical to sort? ");
scanf ("%d", & len);
printf ("Enter %d numerical:\n", len);

for (i = 0; 1 <= len - 1; i++)
scanf ("%d", & arr[i]l);

lindex = 0;

uindex = len - 1;

pushstkl (lindex) ;

pushstk?2 (uindex) ;

while (topl != -1) {
sindex = popstkl();
eindex = popstk2();

[289]

Sorting and Searching Chapter 9

pivot = quick(sindex, eindex);

if (sindex < pivot - 1) {
pushstkl (sindex) ;
pushstk2 (pivot - 1);

t

if (pivot + 1 < eindex) |
pushstkl (pivot + 1);
pushstk2 (eindex) ;

}
}
printf ("\nAscending order using Quick Sort is:\n");
for (i = 0; i <= len - 1; i++)

printf ("$d\n", arr[i]);
return 0;

int quick(int si, int ei) {
int 1i, temp;

11 = si;
while (1) |
while (arr[ei] >= arr[li] && 1li != ei)
ei——;
if (1li == ei) return (1li);
if (arr([li] > arrlei]) {
temp = arr[li];
arr[li] = arr[ei];
arr[ei] = temp;
11 = ei;
t
while (arr[si] <= arr[li] && 1i != si)
sit+;
if (1li == si) return (1li);
if (arr[si] > arr[li]) {
temp = arr([si];
arr[si] = arr[li];
arr[li] = temp;
11 = si;
t
t
return 0;
t
void pushstkl (int s) {
topl++;
stackl[topl] = s;
t
void pushstk2 (int e) {
top2++;
stack2[top2] = e;

[290]

Sorting and Searching Chapter 9

t
int popstkl () |
return (stackl[topl--1);

t
int popstk2 () {

return (stack2[top2--1);
t

Now, let's go behind the scenes to understand the code better.

How it works...

You will be asked to specify how many numbers you require to be sorted. Suppose
we want to sort 8 numbers; the value 8 entered by the user will be assigned to

the len variable. A for loop is executed enabling us to enter the number to be sorted.
The values we enter will be assigned to the arr array as shown in Figure 9.21.

Two variables, 1index and uindex, are initialized to represent the desired first and
last index of the array, that is 0 and 7, respectively. The 1index and uindex locations
are supposed to keep the smallest and largest values in the array. The values of
lindex and uindex, thatis, 0 and 7, will be pushed to the stack. In the pushstk1
function, the value of the top index, whose default value is -1, is incremented to 0 and
the value of 1index is assigned to the stack1 array at the [0] index location.
Similarly, in the pushstk2 function, the value of the top2 index is also incremented
to 0, and the value of uindex is assigned to the stack2 array at the [0] location.

A while loop is set to execute for as long as the value of top1 is not equal to 1. That
means, until stack1 is empty, the program will keep executing. Within the while
loop, the values pushed in stackl and stack2 are popped and assigned to the two
variables of sindex and eindex, respectively. These variables represent the starting
and ending index locations of the array or the part of the array that we want to sort
using quick sort.

stackl and stack2 contain the values of 0 and 7, respectively, which are popped
and assigned to sindex and eindex, respectively. The quick function is invoked and
the values in sindex and eindex are passed to an argument. In the quick functions,
the values of sindex and eindex arguments are assigned to the two parameters

of si and ei, respectively.

[291]

Sorting and Searching Chapter 9

Within the quick function, the value of si, that is 0, is assigned to another

variable, 1i. A while loop is executed in an infinite loop. Within the while loop,
another while loop is set to execute that will make ei move toward the left, that is, it
will make the value of ei decrement until the element at the arr [ei] location is
greater than the arr[11i] location:

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]
Lefs]ofofrfsfafal
A « 4

si ei index will move towards left while €I
arr[ei] >= arr[si]

Figure 9.21

Because arr[ei] < arr[si], interchanging of their values will take place (see
Figure 9.22(a)). After interchanging the values at arr [ei] and arr[si], the arr
array will appear as shown in Figure 9.22(b):

arr[0] arr[1] arrf2] arr[3] arr[4] arr[5] arr[6] arr[7]
lefs]ofofrfs]+]a]
? r
si ei

N A

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]
[¢efs]ofofz]s]+]s |
? ?

si ei

Interchange these values

Figure 9.22

After interchanging of values, the index location number of e1i, that is 7, will be
assigned to 1i. Another while loop is set to execute while arr [si] is smaller than
arr[1i], where 11 represents the ei index currently; and within the while loop, the
location of the si index pointer is incremented. That is, the si index pointer is
moved right to arr[si] < arr[lil:

[292]

Sorting and Searching Chapter 9

arr[0] arf[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

4 3 0 2 7 5 1 6
P > i\
si si will move towards right while ei
arr[si] <= arr[ei]

Figure 9.23

Now, the following things will happen:

e Because arr[si] < arr[ei] (thatis, 4<6), si will move right by one
location to arr[1]

e Because arr[si] < arr[ei] (thatis, now 3<6), si will again move right
by one location to arr [2]

e Because arr[si] < arrl[ei] (thatis, now 0<6), si will again move right
by one location to arr [3]

e Because arr([si] < arr[ei] (thatis, now 2<6), si will again move
right by one location to arr [4]

e Because arr[si] > arr[ei] (thatis, now 7> 6), interchanging of their
values will take place (see Figure 9.24):

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

4 3 0 2 7 5 1 6

! !
N

'interchange’

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

4 3 0 2 6 5 1 7

) 0

si ei

Figure 9.24

[293]

Sorting and Searching Chapter 9

After interchanging of values at arr [ei] and arr [si], the location number of
arr[si], thatis, 4, will be assigned to 1i. The process is repeated; that is, again a
while loop is set to execute while arr[ei] > arr[si]. Within the while loop, the
location of ei is decremented, or it moves to the left:

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

4 3] 2 6 5 1 7

T ei will mcr\.rnae T

Sl towards left while €!
arrfei] >= arr[si]

Figure 9.25

While comparing arr[ei] and arr[si], we will find that arr[ei] > arr([si] (7>
6), so ei will be decremented to value 6 (see Figure 9.26(a)). Again, because arr[ei]
< arr[si] (1<6), interchanging of values of these index locations will take place
(see Figure 9.26(b)). The location number of ei, 6 now, will be assigned to variable 11i.

Another while loop is set to execute while arr[si] < arr[ei] (remember the
location number of ei is assigned to li). The following things will happen in this while
loop:

e Because arr[si] < arr[ei] (thatis, 1<6), si will move right to arr[5]
e Becausestill arr[si] < arr[ei] (thatis, 5<6), si will move right to

arr[6]

¢ Because now the location of ei and si are the same, the quick function will
terminate returning the number 6 to the main function (see Figure 9.26(c)).
So, the number 6 will become the pivot of the arr array.

[294]

Sorting and Searching

Chapter 9

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arrf7]

4 3 0 2 6 5 1 7

(a)
T interchange T

si ei

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arrf7]

4 3 0 2 1 5 6 7

TR S

si ei
si will move
towards
right while
arr[si] <=arr[ei]

arr[0] arf[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]

4 3 0 2 1 5 7

T Y

si ei

Figure 9.26

Two if statements are executed and the array is split into two parts: the first part
ranges from arr [0] to arr [5] and the other part from arr [7] to arr[7], that s, of
a single element. The first and last index values of the two parts of the array are

pushed to the stack.

The first and last index locations of the second part of the array, that is, 7, will be
pushed to both stackl and stack2. The first and last index locations of the first part
of array, that is, 0 and 5, will also be pushed to stackl and stack2, respectively (see

Figure 9.27).

Stack 1 Stack 2
top1 ey 0 top2 ==
7
Figure 9.27

[295]

Sorting and Searching Chapter 9

The complete quick sort technique is applied on both halves of the array. Again, the
two halves will be partitioned into two more parts and again the quick sort technique
is applied on those two parts, and so on.

The outer while loop repeats and the popstk1 () and popstk2 () functions will be
invoked to pop off the values in the stack1 and stack2 arrays. The values of the
topl and top2 indices are 1, so the values at the stack1[1] and stack2[1] index
locations are picked up and assigned to the two variables, sindex and eindex,
respectively. Again, the quick () function is invoked and the two variables, sindex
and eindex, are passed to it. In the quick function, the values of the sindex and
eindex arguments are assigned to the si and ei parameters respectively

Within the quick () function, the value of the si variable, that is, 0, is assigned to
another variable, 1i. A while loop is executed in an infinite loop. Within the while
loop, another while loop is set to execute that will make the ei index location to move
toward the left, that is, it will make the value of the ei index variable decrement for
the time the element at the arr [ei] location is greater than the arr[si] location (see
Figure 9.28(a)). Because arr[ei] > arr([si], the value of the ei variable will be
decremented to 4 (see Figure 9.28(b)). Now, we find that arr [ei], thatis, 1 is less
than arr[si], thatis, 4, so interchanging of their values will take place. After
interchanging the values at that arr [ei] and arr [si] index locations, the arr

array will appear as shown in Figure 9.28(c).

After interchanging the values, the value of the ei variable is assigned to the 11
variable, that is, 4, is assigned to the 1i variable. Another while loop is set to execute
while the arr[si] element is smaller than arr[11i], where 1i represents the si
index currently; and within the while loop, the value of the si index pointer is
incremented. The following things will happen:

e Because arr[si], thatis, 1, isless than arr[ei], thatis, 4, si will be
incremented to a value of 1.

e Because arr[si], thatis, 3,is less than arr[ei], thatis, 4, si will be
incremented to a Value of 2.

e Because arr[si], thatis, 0, is less than arr[ei], thatis, 4, si will be
incremented to a value of 3.

e Because arr[si], thatis, 2, is less than arr[ei], thatis, 6, si will be
incremented to a value of 4.

[296]

Sorting and Searching

Chapter 9

Because the values of the ei and si variables have become the same, the quick ()
function will terminate, returning the value 4 to the main function (see Figure 9.28(d

)):

arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]
4 3 0 2 1 5 6 7
A @ €= AN
ei will move !
si towards left while €l
arr[ei] >= arr[si]
arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]
4 3 0 2 1 5 6 7
() oA
i interchange |
L] | el
arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]
1 3 0 2 4 5 6 7
(c)
>
si si will move towards right ei
while arr[si] <=arr[ei]
arr[0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6] arr[7]
1 3 0 2 5 6 7

4
(d) 1~

si ei

Figure 9.28

[297]

Sorting and Searching Chapter 9

On returning to the main function, two i f statements are executed and the array is
split into two parts: the first part ranges from the arr [0] to the arr [3] index
locations, and the other part will range from the arr [5] to the arr [5] index
locations, that is, of a single element. The starting and ending index values of the two
parts of the array are pushed to the stack. The starting and ending index locations of
the second part of the array (that is, 5 and 5) will be pushed to stack1 and stack2,
respectively. Similarly, the starting and ending index locations of the first part of the
array (that is, 0 and 3) are pushed to stackl and stack2, respectively (see Figure
9.29).

Stack 1 Stack 2
top1 == 0 top2 wm—w
5 5
7

Figure 9.29

The whole quick sort technique is applied on all the partitions of the array until the
stacks are empty. That is, the outer while loop repeats and the popstk1 () and
popstk2 () functions will be invoked to pop off the values in the stackl and stack2
arrays. Again, the quick () function is invoked and the two variables, sindex and
eindex, that are popped from the stack are passed to it. The procedure continues
until the whole array is sorted.

The program is compiled using GCC using the following statement:

gcc quick sort.c -o quick sort

Because no error appears on compilation, that means the quick sort.c program has
successfully been compiled into the quick sort.exe file. On executing the file, it
will ask you to specify how many numbers there are to be sorted. Following this, the
program will prompt you to enter the numbers to be sorted. After entering the
numbers, they will appear sorted in ascending order, as shown in the following
screenshot:

[298]

Sorting and Searching Chapter 9

D:\CAdvBook>gcc quicksort.c -o quicksort

D:\CAdvBook>quicksort

How many numerical to sort? 8
Enter 8 numericals:

6

Ascending order using Quick Sort is:

Figure 9.30

Voila! We have successfully arranged the numbers in our array using quick sort. Now
let's move on to the next recipe!

Arranging numbers in descending order
using heap sort

In this recipe, we will learn to arrange some integers in descending order using the
heap sort technique.

[299]

Sorting and Searching Chapter 9

How to do it...
The heap sort method is divided into the following two tasks:

1. Creating a max-heap
2. Deleting the max-heap

Let's start with creating a max-heap.

Creating a max-heap

The following steps are followed for creating a max-heap:

1. The user is asked to enter a number. The number is used to create a heap.
The number entered by the user is assigned to an array heap at index
location x, where x begins with a value of 0 and increments after every
insertion.

2. The newly inserted number is compared with the element of its parent
node. Because we are making use of a max-heap, we need to maintain a
rule: the value of the parent node should be always larger than its child
node. The location of the parent node is computed using the
formula parent= (x-1) /2, where x represents the index location where
the new node is inserted.

3. Check if the value of the new node is greater than the value of its parent.
Interchange the values of heap [parent] and heap [x] with the help of an
extra variable.

4. Recursively check the value of the parent of the parent node to see whether
the property of the max-heap is maintained or not.

Once the heap is made, the second task of deleting the max-heap will begin. Every
time a node is deleted from a max-heap, the deleted node is kept in another array, say
arr, that will contain the sorted elements. The task of deleting the max-heap is
repeated as many times as the number of elements present in the max-heap.

Deleting the max-heap

Three variables, leftchild, rightchild, and root, are initialized as follows:

leftchild=0
rightchild=0
root=1

[300]

Sorting and Searching Chapter 9

The following steps are performed to delete a max-heap:

1.
2.
3.

10.

The element at the root node is temporarily assigned to the n variable.
The last element of the heap is placed at the root node.

If the value of the last index location is 1 or 2, that is, if the heap has only 1
or 2 elements left, then return to the caller with the n variable.

. Since the last element is placed at the root node, reduce the size of the heap

by 1.

To maintain the max-heap property, repeat steps 6 through 9 while
rightchild <=last. Recall, the property of the max-heap is that the
value of the parent node should be always larger than its children node.
Calculate the 1eftchild and rightchild locations.

If heap[root] > heap[leftchild] && heap[root] >
heap[rightchild], return n and exit.

If the value of the left child is greater than the value of the right child, then
interchange the value of the root and that of the left child. The root will
come down at the left child to check whether the max-heap property is
maintained or not.

If the value of the right child is greater than the value of the left child, then
interchange the value of the root and that of the right child. The root will
come down at the right child to check whether the max-heap property is
maintained or not.

When all the elements of the max-heap are over, that means the arr array
will have all the sorted elements. So, the final step is to print the arr
array, which contains the sorted elements.

The program for sorting elements of an integer array using the heap sort technique is
as follows:

//heapsort.c

include <stdio.h>
#define max 20
int heap[max], len;

void insheap (int h);
int delsheap (int 7J);

int main() {
int arr[max], numb, i, 7Jj;
printf ("How many elements to sort? ");
scanf ("%d", & len);

[301]

Sorting and Searching

Chapter 9

printf ("Enter %d values \n", len);

for (i = 0; i < len; i++) {
scanf ("%d", & numb);
insheap (numb) ;

t

j = len - 1;

for (i = 0; i < len; i++) {
arr[i] = delsheap(j);
J=—;

t

printf ("\nThe Descending order is:

for (i = 0; i < len; i++)
printf ("$d\n", arr[i]);
return 0;

void insheap (int value) {
static int x;
int par, cur, temp;
if (x == 0) {
heap[x] = value;\
X++;
} else {
heap[x] = value;
par = (x - 1) / 2;
cur = x;
do {
if (heaplcur] > heaplpar]) {
temp = heap[cur];
heap[cur] = heaplpar];
heap[par] = temp;
cur = par;
par = (cur - 1) / 2;
} else break;
} while (cur !'= 0);
xX++;

int delsheap (int J)

\n");

int loc, n =0, pos, lc = 0, rc = 0, temp

loc = 3;

pos = 0;

n = heapl[pos];

heap[pos] = heapl[loc];

if (loc == |l loc == 1) return
loc——;

lc = 2 * pos + 1;

[302]

(n);

0;

Sorting and Searching Chapter 9

rc = 2 * pos + 2;
while (rc <= loc) {
if ((heapl[pos] > heapl[lc] && heap[pos] > heaplrc]))
return (n);
else {
if (heapllc] > heaplrc]) {
temp = heap[lc];

heap[lc] = heapl[pos];
heap[pos] = temp;

pos = 1lc;

} else {

temp = heapl[rc];
heap[rc] = heapl[pos];
heap[pos] = temp;

pos = rc;

lc = 2 * pos + 1;
rc = 2 * pos + 2;
t
t
if (lc == loc) {
if (heaplpos] < heapllc]) {
temp = heap[pos];

heap[pos] = heapl[lc];
heap[lc] = temp;
pos = 1lc;

}
}

return (n);

}

Now, let's go behind the scenes to understand the code better.

How it works...

A heap is a complete binary tree that can be either a max-heap or a min-heap. The
max-heap has the property that the key value of any node must be greater than or
equal to the key values of its children. In the min-heap, the key value of any node
must be lower than or equal to the values of its children.

In this recipe, we will learn to create a max-heap of the following list of integers:

|5 2 [o E 1 Ja 6

[303]

Sorting and Searching Chapter 9

In this heap sort method, the binary tree is constructed in the form of an array. In
heap sort, the values in the array are added one by one, keeping the max-heap
property true (that is, the key value of any node should be larger than or equal to its
children). While adding the elements of the array, we keep track of the key value of
the parent node with (x-1) /2, where x is the element whose parent is to be found. If
the element inserted in the heap is larger than the key value of its parent, then
interchanging takes place. For example, suppose the first key value entered is 5 (it is
considered as the root); it is stored as the first element of the array, that is, heap [0]:

heap[0] heap[1] heap[2] heap[3] heapl[4] heap[5] heapl6]
s ®©

Figure 9.31

Then 2 is added to it as a left child. The first child will always be added to the left.
When another value is entered, it is entered at the location of heap[1]. After
insertion, its parent node location is computed with (x-1) /2, where x is 1. So, the
parent comes out to be location 0. So, heap [1] is compared with its parent element,
heap [0]. If the key element of the parent element, heap [0], is larger than heap[1],
then we move further; else, we interchange their key values. In our example, the
second element is 2, so no interchanging is required:

heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heapl6]

5 2

Figure 9.32

Now, we move to enter the third element. The third element is 9, and it is added as a
right child of node 5 (see Figure 9.33 (a)). In the array, it is stored at the location of
heap [2]. Again, its parent element location is computed by (x-1) /2, which again
comes out to be 0. In keeping the property of max-heap (that the value of the parent
node should be larger than or equal to its children), we compare the key values of the
heap[0] and heap[2] elements. Because heap[0] is less than heap[2], itis
violating the max-heap property. Thus, the key values of heap[0] and heap [2] will
be interchanged, as shown in Figure 9.33(b):

[304]

Sorting and Searching Chapter 9

heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] ° \ Because 9 > 5,

interchange their

I 5 I 2 I 9 I I I I I /values
O ©

heapl[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] o

T T T T T T 1
ONO

Figure 9.33

Then 3 is added as a left child of node 2, as shown in Figure 9.34(a). In the array, the
new value is inserted at the index location of heap [3]. Again, its parent element
location is computed using the formula (x-1) /2, where x represents the index
location where new value is inserted, that is, 3. The parent element location is
computed as 1. In keeping with the property of max-heap, heap [1] must be larger
than or equal to heap [3]. But because heap[1] is less than heap [3], it is violating
the max-heap property. Thus, the key values of heap[1] and heap [3] will be
interchanged, as shown in Figure 9.34(b):

heap[0] heap[1] heap|[2] heap[3] heap[4] heap[5] heap[6] o

Lo 2 | s | s | | | |
(a)
z::::;:n:;: tﬁeir — o °
values \

heap[0] heap[1] heap[2] heap[3] heapl[4] heap[5] heap[6] o

o | 3 | 5 | 2 | | |
oXO

Figure 9.34

[305]

Sorting and Searching Chapter 9

Now, 1 is added as the right child of node 3. In the array, the new value is inserted at
the index location of heap [4]. Because the property of max-heap is still maintained,
no interchanging is required:

heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heap[6] o

Le 1o | s | 2 0 « [| I

Figure 9.35

The next value is 4, which is added as the left child of node 5. In the array, the new
value is inserted at the index location of heap [5]. Again, the property of max-heap is
maintained, so no interchanging is required:

heap[0] heap[1] heapi2] heap[3] heap[4] heapls] heap[6] o

e [s | s [2] + [4 | |

Figure 9.36

[306]

Sorting and Searching Chapter 9

Next, 6 is added as the right child of node 5 (see Figure 9.37 (a)). In the array, it is
inserted at the index location of heap [6]. Again, its parent element location is
computed using the formula (x-1) /2. The parent element location is computed as 2.
In keeping with the property of max-heap, heap [2] must be larger than or equal to
heap [6]. But because heap[2] is less than heap [6], it is violating the max-heap
property; so the key values of heap [2] and heap [6] will be interchanged, as shown
in Figure 9.37(b):

heapld] heapl] heapl2] heap[3] heap[4] heapls] heap[s] o

ol T T 1T T T]
(a)
OB O Sy

values
heap[0] heap[1] heap[2] heap[3] heap[4] heap[5] heapl6] o

Lo 13 | o f 2 f + J &] s |
(b)

Figure 9.37

Once the max-heap is made, we perform heap sort by repeating the following three
steps:

1. Removing its root element (and storing it in the sorted array)

2. Replacing the root element of the tree (array) by the last node value and
removing the last node (decrementing the size of the array)

3. Reshuffling the key values to maintain the heap property

[307]

Sorting and Searching Chapter 9

In the following Figure 9.38(a), you can see that the root element, that is, 9, is deleted
and is stored in another array called arr. The arr array will contain the sorted
elements. The root element is replaced by the last element of the tree. The last element
of the tree is 5, so it is removed from the heap[6] index location and is assigned to
the root, that is, at heap [0]. Now, the property of heap is no longer true. So, the
values of node elements 5 and 6 are interchanged (see Figure 9.38(b)):

copied on the root's

s 1 3= | e | 2 | 1+] &« | | node

arr[0] arr[1] arr[2] arr{3] arr[4] arr{5] arr[6] ° °
e | I I I

I —
[OROION®

heap[0] heapli] heap[2] heap[3] heap[4] heapis] heapl6] ° Value 5 will be

heap[0] heap[1] heap[2] heap[3] heapl[4] heap[5] heap[6] °

Le o | s [2] « J 4 | |
(b)

Figure 9.38

Now the process is repeated again, removing the key element of the root node and
replacing its value with the last node and reshuffling the heap. That is, the root node
element 6 is removed and is assigned to the sorted array, arr. And the root node is
replaced by the last element of the tree that is by 4 (see Figure 9.39(a)). By putting the
value 4 at the root, the property of heap is no longer true. So to maintain the property
of heap, the value 4 is brought down that is the values of node elements 4 and 5 are
interchanged, as shown in Figure 9.39(b)):

[308]

Sorting and Searching Chapter 9

heap[0] heap[1] heap|2] heap[3] heapl[4] heap[5] heapl6] _ .
4 is copied at
I 4 I 3 I 5 I 2 I 1 I I I the root's node

arr[0] arr[1] arr2] arr{3] arrf4] arr(s] arr{6] ° e
Lo [s 1| | I | I |
o)yolege

heap[0] heap[1] heap|[2] heap[3] heap[4] heap[5] heap[6] °

s 1 s | « [=2 | + | I |
(b)

Figure 9.39

The steps are repeated to get the array sorted in descending order, as follows:

arrf0] arr[1] arr[2] arr[3] arr[4] arr[5] arr[6]
o s |s |a]3]2]1]

Figure 9.40

The program is compiled using GCC using the following statement:

gcc heapsort.c -o heapsort

[309]

Sorting and Searching Chapter 9

Because no error appears on compilation, this means the heapsort . c program has
successfully been compiled into the heapsort . exe file. On executing the file, it will
ask us to specify how many numbers there are to be sorted. Following this, the
program will prompt us to enter the numbers to be sorted. After entering the
numbers, they will appear sorted in descending order, as shown in the following
screenshot:

D:\CAdvBook>gcc heapsort.c -o heapsort

D:\CAdvBook>heapsort

How many elements to sort? 7
Enter 7 values

5

The Descending order is:

Figure 9.41

Voila! We have successfully arranged numbers in descending order using heap sort.

See also

To learn more sorting methods like selection, merge, shell and radix sort visit
Appendix A found on this link: https://github.com/PacktPublishing/Practical-C-
Programming/blob/master/Appendix%$20A.pdf.

[310]

https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf
https://github.com/PacktPublishing/Practical-C-Programming/blob/master/Appendix%20A.pdf

10

Working with Graphs

Graphs show information in pictorial format. In graphs, certain information is plotted
and then those plotted points are connected through lines or bars. Each plotted point
is called a vertex (the plural of this is vertices), and the lines connecting them are
called edges. Graphs have the ability to display large volumes of data in an easy-to-
understand manner. Therefore, when comparing huge or enormous data, graphs are
generally preferred.

Graphs can be used in several applications that include displaying a certain route of
transmission or flow of data packets. Graphs can also be used to represent a kind of
connection between two cities or stations, where stations can be represented by
vertices and the route can be represented by edges. On social media, even friends can
be connected in the form of graphs where each person can be represented by vertices
and the edges between them ensure that they are friends. Similarly, graphs can be
used for representing different networks.

In this chapter, we will learn how to represent graphs using different data structures.
We will also learn to traverse the graphs and create a minimum spanning tree from
graphs. To be able to do so, we are going to look at the following recipes:

¢ Creating an adjacency matrix representation of a directed graph

¢ Creating an adjacency matrix representation of an undirected graph
¢ Creating an adjacency list representation of a directed graph

e Carrying out the breadth-first traversal of a graph

¢ Carrying out the depth-first traversal of a graph

¢ Creating minimum spanning trees using Prim's algorithm

¢ Creating minimum spanning trees using Kruskal's algorithm

Before we begin with the recipes, let's have a quick introduction to the two main
types of graphs.

Working with Graphs Chapter 10

Types of graphs

Based on directions, graphs can be of two types: directed and undirected. Let's review
both of them briefly.

Directed graphs

In a directed graph, the edges clearly show the direction from one vertex to another.
An edge in a directed graph is usually represented as (v1, v2), which means that the
edge is pointing from vertex v1 toward vertex v2. In other words, a (v1, v2) pair
indicates that v1 is the starting vertex and v2 is the ending vertex. A directed graph is
very useful in real-world applications and is used in the World Wide Web (WWW),
Google's PageRank algorithm, and more. Consider the following directed graph:

Figure 10.1

Here, you can see an edge between vertices a and b. Because the edge is pointing
from vertex a toward b, vertex a is considered to be the starting vertex and vertex b is
considered the ending vertex. This edge can be represented as (a,b). Similarly, there is
an edge from vertices a to ¢, which, in turn, can be represented as (a,c). Therefore, we
can say that the preceding graph has the following set of vertices:

(V) - { a,b,c,d,e}
Additionally, the graph has the following set of edges:

(E) - {(ayb), (a,c), (c,d), (c,e), (d,b), (d,e), (e,a), (e,b)}

[312]

Working with Graphs Chapter 10

Undirected graphs

An undirected graph is one in which the edges are present between vertices, but there
is no specific direction identified — that is, there are no arrows at the end of the edges.
Therefore, we cannot know which is the starting vertex and which one is the ending
vertex. Undirected graphs are widely used in real-world applications such as
Facebook and neural networks.

An edge between two vertices, a and b, in an undirected graph will mean that either
of them can be a starting or ending vertex. Such an edge can be written as (a,b), that
is, from a to b, as well as (b,a), that is, from b to a. The following diagram shows an

undirected graph:

Figure 10.2

So, for this undirected graph, the following is the set of vertices:
(V) - { a,b,c,d,e}

Additionally, the graph will have the following set of edges:

(c,a) (a,e), (e,a), (b,e), (e,b), (b,d),

(B) - {(a,b), (b,a), (a,c) ’
(e,c)}

(d,b), (c,d), (d,c), (c,e)

4
4

Now, let's begin with the recipes.

[313]

Working with Graphs Chapter 10

Creating an adjacency matrix
representation of a directed graph

An adjacency matrix is a square matrix that is used to represent a graph. The rows
and columns of the matrix are labeled as per the graph vertices. So, if the graph
vertices are 1,2,...5, then the rows and columns of the adjacency matrix will be labeled
as 1,2,...5. Initially, the matrix is filled with all zeros (0). Then, the 0 at the mat [1] []]
location (where i and j refer to the vertices) is replaced by 1 if there is an edge
between the vertices of i and j. For example, if there is an edge from vertex 2 to
vertex 3, then at the mat [2] [3] index location, the value of 0 will be replaced by 1. In
short, the elements of the adjacency matrix indicate whether pairs of vertices are
adjacent or not in the graph.

Consider the following directed graph:

Figure 10.3

Its adjacency matrix representation is as follows:

5,5 1 2 3 4
1 0 1 1 0
0
2 0 0 0 0
0
3 0 0 0 1
1

[314]

Working with Graphs Chapter 10

0 1 0 0

1 1 0 0

O U

The first row and the first column represent the vertices. If there is an edge between
two vertices, then there will be a 1 value at the intersection of their respective row
and column. The absence of an edge between them will be represented by 0. The
number of nonzero elements of an adjacency matrix indicates the number of edges in
a directed graph.

Here are two drawbacks of adjacency matrix representation:

o This representation requires n° elements to represent a graph having n
vertices. If a directed graph has e edges, then (1°-¢) elements in the matrix
would be zeros. Therefore, for graphs with a very low number of edges, the
matrix becomes very sparse.

e Parallel edges cannot be represented by an adjacency matrix.

In this recipe, we will learn how to make an adjacency matrix representation of a
directed graph.

How to do it...

Perform the following steps to create an adjacency matrix representation of a graph:

Ask the user for the number of vertices in the graph.
Define a square matrix that is equal to the number of vertices.
Initialize all the elements of the matrix to 0.

Ll e

Ask the user to enter the edges. For each edge (1,7j) entered by the user,
replace 0 at the mat [1] [j] index location.

5. Once all the edges are entered, display all of the elements of the adjacency
matrix.

[315]

Working with Graphs Chapter 10

The code for creating an adjacency matrix representation of a graph is as follows:

//adjmatdirect.c
#include <stdio.h>

#define max 10

int main () {
static int edg[max] [max], i, j, vl, v2, numb;
printf ("How many vertices are there? ");
scanf ("%d", & numb);
printf ("We assume that the vertices are numbered from : ");
for (1 = 1; 1 <= numb; i++) printf("sd ", 1i);

printf ("\nEnter the edges of the graph. Like 1 4 if there is an
\n");

printf ("edge between vertex 1 and 4. Enter 0 0 when over\n");

for (i = 1; i1 <= numb * (numb - 1); i++) {

/* The for loop will run for at most numb* (numb-1) times because,
the number of edges are at most numb* (numb-1) where numb is
the number of vertices */

scanf ("%d %d", & vil, & v2);

if (vl == 0 && v2 == 0) break;

edg([vl][v2] = 1;

t

printf ("\nThe adjacency matrix for the graph is \n");

for (i = 1; 1 <= numb; i++) printf ("\t%d", 1i);

printf ("\n-———————————————— \n") ;
for (i = 1; i <= numb; i++) {

printf ("sd |[\t", 1i);

for (j = 1; j <= numb; j++)

printf ("$d\t", edgl[il[j]);
t
printf ("\n");
t
return 0;

}

Now, let's go behind the scenes to understand the code better.

[316]

Working with Graphs Chapter 10

How it works...

Assuming that the directed graphs the user will specify in this program will not be of
more than 10 vertices, define a macro called max of value 10 and a two-dimensional
matrix called edg, consisting of max rows and max columns. However, you can
always increase the size of the macro if you think the user can specify a graph of more
than 10 vertices.

In order to initialize all of the elements of the edg matrix to 0, define it as a static
matrix. Thereafter, the user will be prompted to specify how many vertices there are
in the graph. Suppose the user enters 5 to indicate that there are 5 vertices in the
graph, then that value will be assigned to the numb variable.

To make the recipe easy to understand, we assume that the vertices are sequentially
numbered from 1 to 5. The user is prompted to specify the edges between the vertices.
This means that if there is an edge between vertices 1 and 3, then the user is supposed
to enter the edge as 1,3. The vertices entered representing these edges are then
assigned to the vertices of vl and v2. Because the user is asked to specify the edges of
the graph and to enter 0 0 when over, when the edge is assigned to the vertices of v1
and v2, we first ensure that the vertices are not 0 and 0. If they are, the program will
stop asking for more edges and will branch to the statement from where the display
of the adjacency matrix begins. If the vertices in the edge are not zero, then a value, 1,
is assigned in the two-dimensional edg matrix at the index location of [v1] [v2]. So,
if there is an edge between vertices 1 and 2, then value 1 will be assigned at

the edg[1] [2] index location, replacing the value 0 that was initially there.

When all the edges of the graph are entered, the user will enter the vertices as 0 0 to
indicate that all the edges have been entered. In that case, a nested for loop is
executed and all the elements of the edg matrix are displayed on screen.

[317]

Working with Graphs Chapter 10

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during the compilation, this means the adjmatdirect.c

program has successfully compiled into the adjmatdirect .exe file. On executing
the file, the user will be prompted to specify the number of vertices and its edges.
Once the vertices and edges are entered, the program will display the adjacency
matrix representation of the graph (take a look at the following screenshot):

D:\CAdvBook>gcc adjmatdirect.c -o adjmatdirect

D:\CAdvBook>adjmatdirect
How many vertices are there? 5
We assume that the vertices are numbered from : 1 b

Enter the edges of the graph. Like 1 4 if there is an
edge between vertex 1 and 4. Enter @ @ when over
12

13
34
35
4 2
45
51
52
ee

The adjacency matrix for the graph is

Figure 10.4

Now, let's explore how to do the same thing for an undirected graph.

Creating an adjacency matrix
representation of an undirected graph

By adding one more statement in this recipe's code, the same program can be used for
creating the adjacency matrix representation of an undirected graph as well.

[318]

Working with Graphs Chapter 10

How to do it...

We refer to the same graph that was in the previous recipe; however, this time, there
are no edges:

Q

Figure 10.5

Its adjacency matrix representation is as follows:

5,5 1 2 3 4
5
1 0 1 1 0
1
2 1 0 0 1
1
3 1 0 0 1
1
4 0 1 1 0
1
5 1 1 1 1
0

The only difference between the programs of the directed and undirected graphs is
that, in the latter, the edge is simply repeated. That is, if there is an edge between a
and b, then it is considered to be two edges: one from a to b and the other from b to a.

The program for creating an adjacency matrix representation of an undirected graph
is as follows:

//adjmatundirect.c

#include <stdio.h>

[319]

Working with Graphs

Chapter 10

#define max 10

int main () {
static int edg[max] [max], i, j, vl, v2, numb;
printf ("How many vertices are there? ");

scanf ("%d", & numb);
printf ("We assume that the vertices are numbered from

for (1 = 1; 1 <= numb; i++) printf("sd ", 1i);

printf ("\nEnter the edges of the graph. Like 1 4 if there is an
\n") ;

printf ("edge between vertex 1 and 4. Enter 0 0 when over\n");

for (i = 1; i <= numb * (numb - 1); i++) {

/* The for loop will run for at most numb* (numb-1) times because,
the
number of edges are at most numb* (numb-1) where numb is the

number

of vertices */
scanf ("%d %d", & vil, & v2);

if (vl == 0 && v2 == 0) break;
edg[vl][v2] = 1;
edg[v2] [vl] = 1;

t
printf ("\nThe adjacency matrix for the graph is \n");
for (i = 1; 1 <= numb; i++) printf ("\t%d", 1i);

printf ("\n--——"——"-"-"-"—-"+"-"—-""-"—""""""""""""""""""
\n");
for (i = 1; i <= numb; i++) {

printf("sd |\t", 1i);
for (j = 1; J <= numb; Jj++) {
printf ("$d\t", edgl[i][3]);
}
printf ("\n");
}

return 0;

How it works...

When you compare the preceding program with that of the directed graph, you will

notice that only one extra statement has been added (marked in bold):

edg[v2] [vl]=1;

That is, in the case of an edge from v1 to v2, an edge in reverse is also assumed, that

is, from v2 to v1.

[320]

Working with Graphs Chapter 10

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during the compilation, this means the adjmatundirect.c
program has successfully compiled into the ad jmatundirect .exe file. As expected,
on running the file, the user will be prompted to specify the number of vertices and
their edges. Once the number of vertices and edges are entered, the program will
display the adjacency matrix representation of the undirected graph, as shown in the
following screenshot:

D:\CAdvBook>gcec adjmatundirect.c -o adjmatundirect

D:\CAdvBook>adjmatundirect
How many vertices are there? 5
We assume that the vertices are numbered from : 1 2

Enter the edges of the graph. Like 1 4 if there is an
edge between vertex 1 and 4. Enter © @ when over
2

1
13
15
21
2 4
25
31
34
35
4 2
]
45
51
52
53
54
ee

The adjacency matrix for the graph is

Figure 10.6

Now, let's move on to the next recipe!

[321]

Working with Graphs Chapter 10

Creating an adjacency list representation
of a directed graph

In an adjacency list representation, linked lists are used to represent the adjacent
vertices of a vertex. That is, a separate linked list is made for the adjacent vertices of
each vertex, and, in the end, all the vertices of the graph are connected. Because
linked lists are used, this way of representing a graph uses memory in a more
optimized manner.

Consider the following directed graph:

Figure 10.7

Its adjacency list representation is as follows:

startList

NULL

Figure 10.8

[322]

Working with Graphs Chapter 10

You can see in the preceding diagram that the adjacent vertices of vertex 1 are
connected in the form of a linked list. Because there are no adjacent vertices for vertex
2, its pointer is pointing to NULL. Similarly, the adjacent vertices of vertex 3, that is,
vertices 4 and 5, are connected to vertex 3 in the form of a linked list. Once a linked
list of all the vertices of the entire graph is created, all the vertices become connected
through a link.

In this recipe, we will learn how to create the adjacency list representation of a
directed graph.

How to do it...

Follow these steps to create an adjacency list representation of a graph:

1.

Define a structure called node that contains three members. One member,
nme, is for storing the vertex of the graph; another member, vrt, is for
connecting vertices of the graph; and, finally, edg is for connecting the
adjacent vertices of the vertex.

The user is asked to specify the count of the vertices in the graph.

A linked list is created where the nme member of each node contains the
vertex of the graph.

All the nodes representing vertices of the graph are connected to each other
using the vrt pointer.

Once all the vertices are entered, the user is prompted to enter the edges of
the graph. The user can enter any number of edges and to indicate that all
the edges are entered, the user can enter 0 0 for the edge.

. When an edge is entered, for example, b, a temp1 pointer is used and is set

to point to vertex a.

A new node is created called newNode, and the vertex name b is assigned
to the nme member of newNode.

One more pointer is used, called temp2, and is set to point to the last node
that is connected to vertex a. Once temp?2 reaches the end of vertex a, the
edg member of the temp2 node is set to point to newNode, and hence
establishing an edge between a and b.

[323]

Working with Graphs

Chapter 10

The program for creating the adjacency list representation of a directed graph is as

follows:

//adjlistdirect.c

#include <stdlib.h>
#include <stdio.h>

struct node {
char nme;
struct node * vrt;
struct node * edg;
}i

int main () {
int numb, i, Jj, noe;
char v1, v2;
struct node * startlList, * newNode, * templ, * temp2;
printf ("How many vertices are there ? ");
scanf ("%d", & numb);
startList = NULL;
printf ("Enter all vertices names\n");
for (i = 1; i <= numb; i++) {
if (startList == NULL) {
newNode = malloc(sizeof (struct node));

scanf (" %$c", & newNode - > nme); /* There is a space before %c

*/
startList = newNode;
templ = newNode;
newNode - > vrt = NULL;
newNode - > edg NULL;
} else {
newNode = malloc(sizeof (struct node));
scanf (" %c", & newNode - > nme);
/* There is a space before %c */
newNode - > vrt = NULL;
newNode - > edg = NULL;
templ - > vrt = newNode;
templ = newNode;

}

printf ("Enter the edges between vertices. Enter vl v2,
an edge\n");

printf ("between v1 and v2. Enter 0 0 if over\n");

noe = numb * (numb - 1);
for (J = 1; J <= noe; Jj++) {
scanf (" %c %c", & vl, & v2);

/* There is a space before %c */

if there is

[324]

Working with Graphs

Chapter 10

if (vl ==

templ = st

while
templ =

if (templ
printf ("
break;

}

temp2 = te

(templ

'0' && V2 ==
artList;

!= NULL && templ - > nme
templ - > vrt;

== NULL) {

Sorry no vertex exist by this name\n");

'0') break;

= v1l)

mpl;

while (temp2 - > edg != NULL) temp2 = temp2 - > edg;
newNode = malloc (sizeof (struct node));

newNode - > nme = v2;

temp2 - > edg = newNode;

newNode - > edg = NULL;

newNode - > vrt = NULL;

}

printf ("\nAdjacency
= startList;

templ

while (templ

printf ("$c\t",

List representation of Graph is\n");

= NULL) A
templ - > nme);

temp2 = templ - > edg;

while (temp2 != NULL) {
printf ("$c\t", temp2 - > nme);
temp2 = temp2 - > edg;

}

printf ("\n");

templ =

}

templ - > vrt;

Now, let's go behind the scenes to understand the code better.

[325]

Working with Graphs Chapter 10

How it works...

Let's assume we are working with the following directed graph:

Figure 10.9

The adjacency list representation of this graph is as follows:

startList

oSlotloReN

N
g@»@
oSotlontt

NULL

Figure 10.10

We define a structure called "node" comprising the following three members:

¢ nme: This is for storing the vertex.

e vrt: A pointer to connect all the vertices of the graph.

[326]

Working with Graphs Chapter 10

¢ edg: A pointer that connects all the vertices that are connected to the
current vertex:

Node

nme

For connecting edges

wit =, .Edg

For connecting vertices

Figure 10.11

The user is prompted to specify the number of vertices. Assuming the user enters the
value of 5, the value of 5 will be assigned to the numb variable. A startList

pointer is defined as NULL. The whole adjacency list will be accessed through this
startList pointer and it will be set to point to the first vertex of the graph. The user
is first asked to enter the names of the vertices.

Initially, the startList pointer is NULL, so a new node called newNode is created and
the vertex name, say a, entered by the user is assigned to the nme member of
newNode. The startList pointer is set to point to newNode. To connect more
vertices with newNode, the temp1 pointer is set to point to newNode. Initially, both the
pointers, vrt and edg, are also set to NULL. Later, the vrt pointer will be set to point
to other vertices and the edg pointer will be set to point to the vertices in which this
current vertex is connected to. After the first iteration of the for loop, the node of the
graph will look as follows:

temp1 newNode startList

)

NULL

NULL

Figure 10.12

[327]

Working with Graphs Chapter 10

In the second iteration of the for loop, because the startList pointer is no longer
NULL, the else block will execute and, again, a new node is created, called newNode.
Next, the vertex name is assigned to the named member of the newNode. Again, the
vrt and edg pointers of newNode are set to NULL. To connect newNode to the earlier
vertex, we will take the help of the temp1 pointer. The vrt pointer of the node, which
is pointed to by the temp1 pointer, is set to point to newNode, as follows:

templ - oiartList
NULL
newNode
NULL
NULL
Figure 10.13

Then, the temp1 pointer is set to point to newNode, and the process is repeated for the
rest of the vertices. Essentially, the temp1 pointer is used for connecting more
vertices. At the end of the for loop, the nodes will appear connected as follows:

startList

NULL

NULL

NULL
temp1

990

NULL
newNode

eﬁg/

NULL

&

NULL

Figure 10.14

[328]

Working with Graphs Chapter 10

Once all the vertices of the graphs are entered, the user is asked to specify the edges
between the vertices. Additionally, the user is asked to enter 0 0 when all the edges
of the graph are entered. Suppose that the user enters a b to indicate there is an edge
from vertex a to vertex b. The vertices are assigned to the v1 and

v2 variables, respectively. We first ensure that the data in v1 and v2 is not 0. If yes,
that means all the edges of the graph are entered and the program will jump to the
statement from where the display of the adjacency list begins.

Then, to connect the a and b vertices, first, the temp1 pointer is set to point

to startList. The templ pointer is set to find the node whose nme member is equal
to the vertex entered in variable v1, that is, a. The temp1 pointer is already pointing
to vertex a. Thereafter, you need to find the last node that is connected to temp1. The
temp2 pointer is used for finding the last node connected to the node pointed to by
templ. Because this is the first edge being entered of vertex a, the edg member of the
node pointed to by temp2 is already NULL. So, a new node is created called newNode,
and the vertex name in variable v2, that is, b is assigned to the nme variable of
newNode. The edg and vrt members of newNode are set to NULL, as follows:

startList temp2 newNode

.

NULL ?—) NULL

NULL NULL

temp

NULL

NULL

NULL

0900k

Figure 10.15

[329]

Working with Graphs Chapter 10

The edg member of temp2 is set to point to newNode as follows:

startList temp2 pewNode

temgﬁﬁ

NULL

NULL

NULL

T
v
@_) NULL
?—)

NULL

Figure 10.16

The procedure is repeated for the rest of the edges entered by the user.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during the compilation, this means the adjlistdirect.c
program has successfully compiled into the adjlistdirect.exe file. On executing
the executable file, the user will be prompted to specify the number of vertices and
their edges. Once the vertices and edges are entered, the program will display the
adjacency list representation of the directed graph, as shown in the

following screenshot:

[330]

Working with Graphs Chapter 10

D:\CAdvBook>gcc adjlistdirect.c -o adjlistdirect

D:\CAdvBook>adjlistdirect
How many vertices are there ? 5
Enter all vertices names

Enter the edges between vertices. Enter vl v2, if there is an edge
between v1 and v2. Enter © @ if over
ab

ac
cd
ce
db
de
e a
eb
00

Adjacency List representation of Graph is
c

Figure 10.17

Now, let's move on to the next recipe!

Carrying out the breadth-first traversal of
a graph

The traversal of a graph refers to when you visit each of the vertices of a graph
exactly once in a well-defined order. To ensure that each vertex of the graph is visited
only once and to know which vertices have already been visited, the best way is to
mark them. We will also look at how vertices are marked in this recipe.

[331]

Working with Graphs Chapter 10

Breadth-first traversal tends to create very short and wide trees. It operates by
vertices in layers, that is, the vertices closest to the start are evaluated first, and the
most distant vertices are evaluated last. Hence, it is referred to as the level-by-level
traversal of the tree. The breadth-first traversal of a graph is very popularly used for
finding the shortest path between two locations (vertices), that is, the path with the
least number of edges. It is also used to find the linked pages of a web page,
broadcasting information, and more.

In this recipe, we will learn how to carry out the breadth-first traversal of a graph.

How to do it...

Follow these steps to carry out the breadth-first traversal of a graph:

1.

8.
9.

Add the first vertex of the graph into the queue. Any vertex can be chosen
as a starting vertex.

Then, repeat the following steps 3 to 8 until the queue is empty.
Take out the vertex from the queue and store it in a variable, say v.

Mark it as visited (the marking is done so that this vertex should not be
traversed again).

Display the marked vertex.

Find out the adjacency vertices of the vertex v, and then perform steps 7 to 8
on each of them.

If any of the adjacency vertices of v are not marked, mark it as visited.
Add the adjacency vertex to the queue.
Exit.

The program for the breadth-first traversal of a graph is as follows:

//breadthfirsttrav.c

#include <stdlib.h>
#include <stdio.h>

#define max 20

enum Setmarked {

Y,
N
}i

struct node {
char nme;

[332]

Working with Graphs Chapter 10

struct node * vrt;
struct node * edg;
enum Setmarked marked;

bi

struct node * que[max];

int rear = -1, front = -1;

void queue (struct node * paramNode) ;
struct node * dequeue();

int main() {
int numb, 1, j, noe;
char v1, v2;
struct node * startlList, * newNode, * templ, * temp2, * temp3;
printf ("How many vertices are there ?");
scanf ("%d", & numb);
startList = NULL;
printf ("Enter all vertices names\n");

for (i = 1; i <= numb; i++) {
if (startList == NULL) {
newNode = malloc (sizeof (struct node));
scanf (" %c", & newNode - > nme);
/* There is a space before %c */
startList = newNode;
templ = newNode;

newNode - > vrt = NULL;
newNode - > edg = NULL;

newNode - > marked = N;

} else {
newNode = malloc (sizeof (struct node));
scanf (" %c", & newNode - > nme);

/* There is a space before %c */
newNode - > vrt = NULL;
newNode - > edg = NULL;

newNode - > marked = N;
templ - > vrt = newNode;
templ = newNode;

}

printf ("Enter the edges between vertices. Enter vl v2, if there is
an edge\n");
printf ("between v1 and v2. Enter 0 0 if over\n");

noe = numb * (numb - 1);

for (3 = 1; j <= noe; Jj++) {
scanf (" %c %c", & vl, & v2);
/* There is a space before %c */
if (vl == '0"' && v2 == '0') break;

templ = startList;

[333]

Working with Graphs Chapter 10

while (templ != NULL && templ - > nme != vl)
templ = templ - > vrt;

if (templ == NULL) {
printf ("Sorry no vertex exist by this name\n");
break;

t
temp2 = templ;
while (temp2 - > edg != NULL) temp2 = temp2 - > edg;
newNode = malloc (sizeof (struct node));
newNode - > nme = v2;
temp2 - > edg = newNode;
newNode - > edg = NULL;
newNode - > vrt = NULL;
t

printf ("\nAdjacency List representation of Graph is\n");

templ startList;
while (templ !'= NULL) {
printf ("$c\t", templ - > nme);
temp2 = templ - > edg;
while (temp2 != NULL) {
printf ("$c\t", temp2 - > nme);

temp2 = temp2 - > edg;
t
printf ("\n");
templ = templ - > vrt;
t
printf ("\nBreadth First traversal of the graph is \n");
templ = startList;

if (templ == NULL)
printf ("Sorry no vertices in the graph\n");
else
queue (templ) ;
while (rear != -1) {
temp3 = dequeue();
templ = startList;
while (templ - > nme != temp3 - > nme) templ = templ - > vrt;
temp3 = templ;
if (temp3 - > marked == N) {

printf ("$c\t", temp3 - > nme);
temp3 - > marked = Y;
temp2 = temp3 - > edg;
while (temp2 != NULL) {
queue (temp2) ;
temp2 = temp2 - > edg;

return 0;

[334]

Working with Graphs Chapter 10

}

void queue (struct node * paramNode) {

rear++;
que [rear] = paramNode;
if (front == -1) front = 0;
}
struct node * dequeue () {
struct node * tempNode;
if (front == rear) {
tempNode = que[front];
front = -1;
rear = -1;
} else {
tempNode = que[front];
front++;

}

return (tempNode);

}

Now, let's go behind the scenes to understand the code better.

How it works...

We are using the adjacency list representation of the directed graph from the previous
recipe, Creating an adjacency list representation of a directed graph:

startList

oNoslone
oiom
oNoRoetH

NULL

Figure 10.18

[335]

Working with Graphs Chapter 10

The temp1l pointer is set to point to startList. Thatis, temp1 is pointing to the node
with vertex a. If temp1 is not NULL, the node pointed to by the temp1 pointer is
added to the queue. The rear variable, which is -1 at the moment, is incremented to 0
and the a node is added to the array of que nodes at index location 0. Because the
value of the front index location is -1 currently, the front is also set to 0, as follows:

que[0] que[1] que[2] que[3] que[d]

da

t1

rear front

Figure 10.19

Thereafter, the dequeue function is invoked to remove a node from the queue.
Unsurprisingly, the node at the que [0] index location, that is, a, is returned and,
because the values of front and rear are the same, the values of the front and rear
indices are set to -1, to indicate that the queue is empty again.

The node containing vertex a is returned from the queue and is assigned to the temp3
pointer. The temp1 pointer is set to point to the startList pointer. The marked
member of the temp3 node, that is, vertex a, is set to N initially. The vertex name
stored in the nme member of the node is displayed, that is, vertex a is displayed on
screen.

After displaying vertex a, its marked member is set to Y to indicate that the node is
visited and should not be traversed again. The next step is to find the adjacent
vertices of vertex a. To do so, the temp2 pointer is set to point to where the edg
pointer of temp3 is pointing. The edg pointer of temp3 is pointing at vertex b, so
temp?2 is set to point at vertex b. Again, the procedure is repeated. If temp2 is not
NULL, the b node is queued, that is, it is added to the que [0] index location. Because
all of the nodes that are connected to vertex a have to be queued, the temp2 pointer is
set to point to the location where its edg pointer is pointing. The edg pointer of node
b (in the adjacency list) is pointing to node ¢, so node c is also inserted into the queue
at the que [1] index location as follows:

[336]

Working with Graphs Chapter 10

que[0] que[1] que[2] que[3] que[4]
b c

lr

front rear

Figure 10.20

In the queue, nodes b and c are present. Now, again, the dequeue function is invoked;
node b is removed from the queue and the temp3 pointer is set to point to it. The
temp1l pointer is initially set to point to startList and, thereafter, by making use of
its vrt pointer, the temp1 pointer is set to point to vertex b. Because the marked
member of node b is N, its vertex name, b, is displayed on screen followed by setting
its marked member to Y. A temp2 pointer is set to point to where the edg member of
node b is pointing. The edg member of node b is pointing to NULL, so the next node in
the queue is accessed, that is, node c is removed from the queue and the temp3
pointer is set to point to it. Because the queue is again empty, the values of the front
and rear variables are set to -1.

Again, the temp1 pointer is set to point at vertex ¢, and the ¢ node is displayed on
screen, that is, it is traversed and its marked member is set to Y. So, up until now,
nodes a, b, and c are displayed on screen. And the node that is attached to the edg
member of c is added to the queue, that is, node d is added to the queue at

the que [0] index location. Additionally, the node pointed to by the edg pointer of
node d is accessed, that is, node e is also queued or, in other words, added at

the que [1] index location as follows:

que[0] que[1] que[2] que[3] que[4]

7

front rear

Figure 10.21

Node d is removed from the queue and displayed (traversed). The nodes pointed to
by their edg member are accessed and, if any of them is marked, then N is added to
the queue. The whole procedure is repeated until the queue becomes empty. The
sequence in which the vertices are displayed on screen forms the breadth-first
traversal of the graph.

[3371]

Working with Graphs Chapter 10

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during the compilation, this means the breadthfirsttrav.c
program has successfully compiled into the breadthfirsttrav.exe file. On
executing the file, the user will be prompted to specify the count of vertices in the
graph, followed by entering the vertices' names. Thereafter, the user is asked to enter
the edges of the graph and to enter 0 0 when completed. After the edges of the graph
have been entered, the adjacency list representation of the graph will be displayed,
followed by the breadth-first traversal of the graph, as shown in the

following screenshot:

D:\CAdvBook>gcc breadthfirsttrav.c -o breadthfirsttrav

D:\CAdvBook>breadthfirsttrav
How many vertices are there ?5
Enter all vertices names

Enter the edges between vertices. Enter vl v2, if there is an edge
between vl and v2. Enter @ @ if over
b

1]

ac
cd
ce
db
de
e a
eb
(<]

Adjacency List representation of Graph is
b c

d e
b e
a b

Breadth First traversal of the graph is
a b d e

Figure 10.22

Now, let's move on to the next recipe!

[338]

Working with Graphs Chapter 10

Carrying out the depth-first traversal of a
graph

In depth-first traversal (also called depth-first search), all nodes of a graph are visited
by taking a path and going as deep as possible down that path. On reaching the end,
you go back, pick up another path, and then repeat the process.

In this recipe, we will learn how to carry out the depth-first traversal of the graph.

How to do it...
Follow these steps for the depth-first traversal of a graph:

1.

8.

Push the first vertex of the graph into the stack. You can choose any vertex
of the graph as the starting vertex.

Then, repeat the following steps 3 to 7 until the stack is empty.

Pop the vertex from the stack and call it by any name, say, v.

Mark the popped vertex as visited. This marking is done so that this vertex
should not be traversed again.

Display the marked vertex.

Find out the adjacency vertices of the v vertex, and then perform step 7 on
each of them.

If any of the adjacency vertices of v are not marked, mark them as visited
and push them on to the stack.

Exit.

The program for the depth-first traversal of a graph is as follows:

//depthfirsttrav.c

#include <stdlib.h>
#include <stdio.h>
#define max 20

enum Setmarked {Y,N};
struct node {
char nme;
struct node * vrt;
struct node * edg;
enum Setmarked marked;

[339]

Working with Graphs Chapter 10

bi

struct node * stack[max];
int top = -1;

void push (struct node * h);
struct node * pop();

int main () {
int numb, 1, j, noe;
char v1, v2;
struct node * startlList, * newNode, * templ, * temp2, * temp3;
printf ("How many vertices are there ?");
scanf ("%d", & numb);
startList = NULL;
printf ("Enter all vertices names\n");
for (i = 1; i <= numb; i++) {
if (startList == NULL) {
newNode = malloc (sizeof (struct node));
scanf (" %c", & newNode - > nme);
/* There is a white space before %c */
startList = newNode;
templ = newNode;
newNode - > vrt = NULL;
newNode - > edg = NULL;

newNode - > marked = N;

} else {
newNode = malloc (sizeof (struct node));
scanf (" %c", & newNode - > nme);

/* There is a white space before %c */
newNode - > vrt = NULL;
newNode - > edg = NULL;

newNode - > marked = N;
templ - > vrt = newNode;
templ = newNode;

}

printf ("Enter the edges between vertices. Enter vl v2, if there is
an edge\n");
printf ("between v1 and v2. Enter 0 0 if over\n");
noe = numb * (numb - 1);
for (3 = 1; Jj <= noe; Jj++) {
scanf (" %c %c", & vl, & v2);
/* There is a white space before %c */
if (vl == '0"' && v2 == '0') break;
templ = startList;
while (templ != NULL && templ - > nme != vl)
templ = templ - > vrt;
if (templ == NULL) {

[340]

Working with Graphs Chapter 10

printf ("Sorry no vertex exist by this name\n");
break;

}
temp2 = templ;

while (temp2 - > edg != NULL) temp2 = temp2 - > edg;
newNode = malloc (sizeof (struct node));
newNode - > nme = v2;

temp2 - > edg = newNode;
newNode - > edg = NULL;
newNode - > vrt = NULL;
t
printf ("\nAdjacency List representation of Graph is\n");
templ = startList;
while (templ !'= NULL) {
printf ("$c\t", templ - > nme);
temp2 = templ - > edg;

while (temp2 != NULL) {
printf ("$c\t", temp2 - > nme);

temp2 = temp2 - > edg;

}

printf ("\n");

templ = templ - > vrt;
}
printf ("\nDepth First traversal of the graph is \n");
templ = startList;
if (templ == NULL)

printf ("Sorry no vertices in the graph\n");
else

push (templ) ;
while (top >= 0) {

temp3 = pop();

templ = startList;
while (templ - > nme != temp3 - > nme) templ = templ - > vrt;
temp3 = templ;
if (temp3 - > marked == N) {
printf ("$c\t", temp3 - > nme);

temp3 - > marked = Y;

temp2 = temp3 - > edg;
while (temp2 != NULL) {
push (temp?2) ;
temp2 = temp2 - > edg;

}

return 0;

void push (struct node * h) {

[341]

Working with Graphs Chapter 10

top++;
stack[top] = h;
}
struct node * pop() {

return (stack[top--1);

}

Now, let's go behind the scenes to understand the code better.

How it works...

We are using the adjacency list representation of the directed graph from the previous
recipe, Creating an adjacency list representation of a directed graph:

startList

oSoslonen

ogot
g@»@»
oNoRoctH

NULL

Figure 10.23

The temp1 pointer is set to point to startList, thatis, at node a, which we have
assumed as the starting vertex of the graph. We then ensure that if temp1 is not NULL,
then the node pointed to by the temp1 pointer is pushed to the stack. The value of

top, which is initially -1, is incremented to 0 and node a is added to the array of the
nodes stack at index location 0, as follows:

[342]

Working with Graphs Chapter 10

Stack

top e a stack[0]

Figure 10.24

Thereafter, the pop function is invoked to remove the node from the stack. The node
at the stack [0] index location is returned and the value of top is again decremented
to -1.

The node containing vertex a is returned to the temp3 pointer. The temp1 pointer is
set to point to the startList pointer. The marked member of the temp3 node, that
is, vertex a, is set to N initially. The vertex name stored in the nme member of the node
is displayed, that is, vertex a, is displayed on screen. After displaying vertex a, its
marked member is set to Y to indicate that the node is visited and should not be
traversed again. The temp2 pointer is set to point to where the edg pointer of temp3
is pointing. The edg pointer of temp3 is pointing to vertex b, so temp2 is set to point
to vertex b. Again, the procedure is repeated, that is, we check whether temp2 is not
NULL, and then node b is pushed to the stack at the stack [0] index location. Because
all of the nodes that are connected to vertex a have to be pushed to the stack, the
temp2 pointer is set to point to the location that its edg pointer is pointing to. The edg
pointer of node b (in the adjacency list) is pointing to node ¢, so node c is also pushed
to the stack at the stack [1] index location, as follows:

Stack

top é c stack[1]
b

stack[0]

Figure 10.25

[343]

Working with Graphs Chapter 10

In the stack, nodes b and c are present. Now, again, the pop function is invoked, and
the node, ¢, is popped from the stack and the temp3 pointer is set to point to it. The
templ pointer is initially set to point to startList and, thereafter, by making use of
its vrt pointer, the temp1l pointer is set to point to vertex c. Because the marked
member of node c is N, its vertex name, ¢, is displayed on screen and its marked
member is set to Y. So, up until now, nodes a and c are displayed on screen.

A temp2 pointer is set to point to where the edg member of node c is pointing. The
edg member of node c is pointing to node d, so the d node is pushed to the stack and
the next adjacent node of c is accessed. The next adjacent node of node c is node e,
which is also pushed to the stack as follows:

Stack

top + e stack[2]
d

stack[1]

b stack[0]

Figure 10.26

Again, the topmost node from the stack, node e, is popped, and the temp3 pointer is
set to point to it. Again, the temp1 pointer is set to point to vertex e, and node e is
displayed on screen, that is, it is traversed. Then, its marked member is set to Y, and
the node that is attached to the edg member of e is pushed to the stack, that is, node a
is pushed to the stack, followed by node b, as shown here:

Stack
top + b stack[3]
a stack[2]
d stack[1]
b stack[0]

Figure 10.27

[344]

Working with Graphs Chapter 10

Node b is popped and the temp3 pointer is set to point to it. The temp1 pointer is set
to point to node b. Because the marked member of node b is N, stating that it is not yet
traversed, vertex b is displayed on screen and its marked member is set to Y. Since
there is no adjacent member of vertex b, the next node, a, in the stack is popped.
Because vertex a has already been visited, the next node from the stack is popped:
node d. The procedure is repeated, and the sequence of vertices displayed is
considered as the depth-traversal of the graph.

The program is compiled using GCC, as shown in the following screenshot. Because
no error appears during the compilation, this means the depthfirsttrav.c
program has successfully compiled into the depthfirsttrav.exe file. On executing
the file, the user will be prompted to specify the count of vertices in the graph,
followed by entering the vertices' names. Thereafter, the user is asked to enter the
edges of the graph and enter 0 0 when completed. After the edges of the graph are
entered, the adjacency list representation of the graph will be displayed, followed by
the depth-first traversal of the graph, as shown in the following screenshot:

D:\CAdvBook>gcc depthfirsttrav.c -o depthfirsttrav

D:\CAdvBook>depthfirsttrav
How many vertices are there ?5
Enter all vertices names

Enter the edges between vertices. Enter vl v2, if there is an edge
between vl and v2. Enter @ @ if over
ab

ac
cd
ce
db
de
e a
eb
e e

Adjacency List representation of Graph is
b c

e
e
b

Depth First traversal of the graph is
a c e b d

Figure 10.28

[345]

Working with Graphs Chapter 10

Now, let's move on to the next recipe!

Creating minimum span<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>