Cand
Python

Applications

Embedding Python Code in C Programs,
SQL Methods, and Python Sockets

Philip Joyce

Apress:

C and Python
Applications

Embedding Python Code in
C Programs, SQL Methods,
and Python Sockets

Philip Joyce

Apress’

C and Python Applications: Embedding Python Code in C Programs, SQL Methods,
and Python Sockets

Philip Joyce
Crewe, UK

ISBN-13 (pbk): 978-1-4842-7773-7 ISBN-13 (electronic): 978-1-4842-7774-4
https://doi.org/10.1007/978-1-4842-7774-4

Copyright © 2022 by Philip Joyce

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar
Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is
Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint, paperback,
or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484277737. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-7774-4

Table of Contents

About the AUROKccicmmimmienmismmssssas s annas ix
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss Xi
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xiii
1L LT (1 XV
Chapter 1: Python Programmingccccccusremmsssssssssssnsssmsssssssssssssssssessssssssssssnsssesssssnns 1
Definition Of VAriADIEScccoveeerecerec et 1
Real (FIoat) NUMDEIS.........cccoieereereerresesee s s 5

L T [T 6
Reading iN DALA.........ccoeeereierinisrre s r e ne s 6
1 OSSO 8
INSErING INTO AN AITAYccovieiercserre e 9
Deleting (Removing) from @n ArTay........ccccceenernsesrnesessse s sessessssssessanes 10

B3 T= 2L 11140 OSSOSO 10
UPAtiNg @N ATAYccveueerresesisesesese s e se s sr s s e sn e se s e e 11
ApPENding 10 @N AMTAYvcceereerrrerrrese s sr s e e sr s sr s sr s sesse e sensnsrnssnnns 11
£ RS 12

R PR 14
Reading ENtries in @ LiSt........ccccvcerienninienesnsensere e sessessessessssessessesassesessesasssssessesasssssessessees 15
UPAAting @ LiSt......ccecveererrrienierese s s s s se s e sse s sss e s e ssesaeses e ssesaesasssssesaesaessssensesaens 16
Deleting an Element from LiSt........cocvcvvrinnininenn e sesse e ssssessessessessssessessessssessessees 16
ApPending 10 @ LiST......ccvcverrieriererrsirsere s s s e se e s s sae e s nnen 16

DT [0 T2 = 17
Creating @ DICIONAIYccvvvveviererirrere s sr e e s a e sa e e e saesaese e e naennens 17
Appending t0 @ DICTIONAIYcccvvrienerirrir e s 17
Amending @ DICHONAIYccoceriirrire e e s n 18

TABLE OF CONTENTS

Deleting from @ DiCHONArY......cccce i e e 19
Searching Through @ DiCHONAIYccccveeveiririererer s e s s saesassessesnens 19
TUPIES et e R R AR e e e e R RenE e e e e nne s 20
Creating @ TUPIE ... e e et et 21
Concatenating TWO TUPIESccvereveererierereeserseressesessersessessesssessessessssessessesssssssessessessssensessens 22
Creating NeSted TUPIES......cccvvrerererrerererresesere s e s e ssessesaese s e ssesrese s e ssesaesaesesnesaesaesassensesaens 22
Creating Repeated TUPIESccvvevererrerrererresererse s sessessessessesessessesaesessessesaesassessessesassssensenaens 22
Converting a List or @ String int0 @ TUPIE......cccvierererreriere e serrere e s se s e e e e sre e ssensesaens 23
Creating Single-Element TUPIEcovvererererieriere s serere e s s s e s e ssessesae e ssessesaesassensesaens 23
LT Lo L1310 [0 0] S 23
Searching Within @ TUPIEceceveererererere s se e sse e sessessesaesss e ssesaesasssssesaesaesssensesaens 23
LT 1C 1 T T T o] S 24
Using Tuple to Create VariabIEsc.ccvevererrrienenesserseresesessessessessssessessesssssssessessessssessessens 24
LT (= S 25
LoopS (FOr and WHIlE)ccoceveeirircresin s s r s e s s s 26
FOI LOOPS ...cetiiiccie ettt e e e b e R e e e R b e e e R e 26
WHILE LOOPSviricriesieircs et s s s s bbbt et e b e e e nnis 28
SWITCNES ... e R e e Rn e 29
Arithmetic Operations USing NUMPYcccovieniinnnnennse s sessesessesessnses 30
NUMPY CaAICUIALIONS.......crrieerrierese e s ne e nra s 34
Mathematical Graph FUNCHONSc.ccccviiienierncsre e 38
USEr-Written FUNCLIONSccoiiiiririssicse s 43
FIlB ACCESSecireceriee e bR bR e 45
REGIESSIONSc.eeeieiieiccirse st r e e e e e e e e e e e R R e e e e R nns 52
1] 4= OSSPSR 57
(] (o1 57

Chapter 2: C Programmingccccussseensssssssssssssssssnssssssssnsssssssssssssssssnssssssnnssssssssnssssss 39

iv

G Program FOIMAL........ccccvievninierieresssssnsessesssssssessessessssessessesssssssessessesassesssssesassassessesaesssnsnsesseses 59
Adding TWO NUMDEIS ...t ss s e s s r e e b nne s 60
Multiply and Divide TWO NUMDES.........cccvierererrererene s s 62
0 I 0 o LRSS 63

TABLE OF CONTENTS

DO WHIIE LOOPS ...erueriieereriersie st nessee s s e s et s s s sa e s s ae s st d e sn e s d e a e s s e e a e s ne s e nan s 65
SWILCH INSTFUCHION ...ttt 66
=0 67
= T TSP RPRPRO 68
D L I TS 70
T (0] 3 81
£ 86
B3] (6 (03P 88
SizZ€ OF VArIADIES.ceeeeeceeeeeec e Cl
L€y (o 011110 = T o TSRS 92
Common Mathematical and Logical SYmbOIS..........ccovcevrecrninncsrese s 93
FIlE ACCRSS ..v.uetruerrreerre st st e e e e e e e R e e A e e e R e R e E e e 94
StUAENt RECOIAS Filecovieiereeerieierine e 95
L1134 R 105
(] (01T T 106
Chapter 3: SAL iN C.....ooccurvmmmsanmssanmssnmsssnmssansssssssasssssssssnsssansssassssnsssansssassssnsssansssans 107
Review of SQL and SQLILE.........ccvoermreecrrereresere e 107
Creating the DAtahasec.ccccererernnesenneserese s 108
Creating @ Table ..o ———————— 110
INSEITING ROWSeeiuerieirsirere st sse s sae e e s s sae e s sa e e e s ae s nene s saesae e e e naennens 113
InSert @ Preset ROW ... s 113
Inserting a User-Entered ROW.........cccverinnniniene s sss e ssessssessesne s 114
SEIECHNG ROWS ..o ser s n s e s s s s sr e e e e s s ae e e e s e sae e e e e e saesa e e e e naenaes 117
SeleCting @ ROW PrESELccveveririeriere s serese e sesserse e ssesesse s saesas e ssessesassessesnesasssssensessens 117
SEIECHNG All ROWSeviiiererie st seserse e ssssessessesas e s e ssessessessssessesassassessessessssessessesasssssensessens 120
Selecting ROWS DY AQE ... s 122
AMENUING BOWS ...ttt sa e s s s s e s s n e e ae s e e e neene e e s 125
DEIEtiNg ROWS.....cccciecicir st r e e s n e e e e nne 128
£ 10T 7 S 130
(] (o1 S 130

TABLE OF CONTENTS

Chapter 4: SQL in Python........ccccccinemmmmmnssssnmmsssssnmmmsssssmmssssssmsssssssssssssssesssssnsns 131
REVIEW OF SAL.....vvecsceceeeesses s ssssss s e e e se s ns s s e nee s 131
Create @ TaDI ... s 133
Mechanism for InSerting @ ROW...........ccocviniininnnsnsne s s enes 134
L1010 LT T 5T 139
DEIBLE @ ROW ... s 148

Read @ TabDIE ... s 149

BT 1] 11012 OSSR 150
(] (o1 150
Chapter 5: Embedded Python..........cccccinemmminnnsmmnmmnsssmnmmsssssnmmsssssnmsssssssssssnn 151
BasiC MECHANISM..........cceriecerinesire s np s 151
1010 N X R 153
PIOt TWO 2D LINES.....coeieeericcrincsirese e s 155
Plot TrigONOMELHIC CUIVEScoviuevirieere st st et e e s 158
L1 I U B 0 160
2D Center 0f MaSS PIOT ... 170

L LY (0T = LSS 177
IMPOMtING @ PICTUIE «...oveerere e st st nae 179

£ 11134 R 181
(] (o1 T 181
Chapter 6: SOCKELScccmnsmmmmmimmsmmssmmsssssssssss s s s s s s s s snnas 183
A CloSEr LOOK @t SOCKELScccrveeerererereereee s se s sss e 183
BaSiC ClIENT=SEIVENceeeeereeeeree e 185
Server-Client Pair to Send-Receive @ File.......c...ccovevrenernnesnesn s 187
Threaded Programs ... s s s s s s s n e s s 191
Closing Down @ Thre@ded SEIVEL........cccvvereriererierieresesseressessssessessessessssessessessssessessesssssssessesses 194
{081 L €0 =T R 197
SUMIMANY ..ttt e e e e R e e e e R e b e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renrs 199
(] (o1 T 199

TABLE OF CONTENTS

Appendix A: Answers t0 EXamPpIesccuuusemmmmmmmmmmmsssssssssssnsnmsssssssssssssssssssssssssssnnnns 201
{1812 T 11 OO 201
CRAPIEE 2 ... e nn 206
CRAPTEE 3 .. ———————————————— 212
CRAPTEE 4 ... an 219
{081 0 (T RS 223
{081 0 (T RS 228

INA@X..ceiiiisnnnnnsssnnnnnssssnnnsnssssnnnnsssssnnnnsssssnnnssssssnnnsssssnnnnsnsssnnnnsssssnnnnsssssnnnnsssssnnnnnnss 231

vii

About the Author

Philip Joyce has 28 years of experience as a software engineer, working on control of
steel production, control of oil refineries, communications software (pre-Internet), office
products (server software), and computer control of airports. He programs in Assembler,
COBOL, Coral 66, C, and C++ with SQL. He served as a mentor to new graduates in the
Ferranti Company. He obtained an MSc in computational physics (including augmented
matrix techniques and Monte Carlo techniques using Fortran) from Salford University in
1996. He is also a chartered physicist and a member of the Institute of Physics (member
of the Higher Education Group).

ix

About the Technical Reviewer

Swathi Sutrave is a self-professed tech geek. She has been
a subject matter expert for several different programming
languages, including Python, C, and SQL, for corporations,
startups, and universities.

Acknowledgments

Thanks to my wife, Anne, for her support, my son Michael, and my daughter Katharine.
All three have mathematics degrees. Thanks to everyone on the Apress team who helped
me with the publication of this, my third book.

xiii

Introduction

The C and Python programming languages are important languages in many computer
applications. This book will demonstrate how to use the C and Python languages to write
applications in SQL. It will demonstrate how to embed a Python program within a C
program. Finally, the reader will learn how to create Python socket programs which can
communicate with each other on different computers (these are called “sockets”).

A basic familiarity with mathematics is assumed along with some experience of the
basics of computer programs. The first two chapters review the basics of C and Python.
The chapters following these are grouped into SQL techniques, embedded Python, and
sockets applications. There are exercises in each chapter with answers and suggested
code at the end of the book.

CHAPTER 1

Python Programming

This is the first of two chapters in which you’ll review both Python and C programming
languages. A basic understanding of computing and what programs are about is
assumed although no prior knowledge of either Python or C is needed.

In this chapter, we will start with the basics of Python. This will include how items
used in a program are stored in the computer, basic arithmetic formats, handling strings
of characters, reading in data that the user can enter on the command line, etc. Then
we will work up to file access on the computer, which will lead us up to industrial/
commercial-level computing by the end of the book.

If you don’t already have a Python development environment on your computer,
you can download it and the Development Kit, free of charge, from www. python.org/
downloads/. Another way you can access Python is by using Visual Studio. Again, a
version of this can be downloaded.

Definition of Variables

This section looks at the different types of store areas that are used in Python. We refer
to these store areas as “variables.” The different types can be numbers (integers or
decimals), characters, and different types of groups of these (strings, arrays, dictionaries,
lists, or tuples).

In these examples, you can go to the command line and enter “Python” which starts
up the Python environment and produces “>>>" as the prompt for you to enter Python
code.

© Philip Joyce 2022
P. Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4_1

https://doi.org/10.1007/978-1-4842-7774-4_1#DOI
http://www.python.org/downloads/
http://www.python.org/downloads/

CHAPTER 1 PYTHON PROGRAMMING

In Python, unlike C, you don’t define the variable as a specific type. The different
types are integer, floating point, character, string, etc. The type is assigned when you give
the variable a value. So try the following code:

>»> al = 51

>>> print(type(a1))
We get the output
<class 'int'>

>>>

Here we are defining a variable called “al” and we are assigning the integer value 51
to it.

We then call the function “print” with the parameter “type” and “al” and we get the
reply “class ‘int”. “type” means that we want to display whether the variable is an integer,
floating point, character, string, etc.

We can now exit the Python environment by typing “quit()"

We will now perform the same function from a program.

Create a file called “typla.py”

Then enter the following two lines of Python code:

al=51
print(type(a1))

Now on the command line, enter “python typla.py”
And you should get the output

<class 'int'>

which is the same as our first example.

This is just demonstrating the equivalence of the two methods.

Obviously, if you want to run a program with many lines of code and possibly run it
many times, then having the code in a file is more efficient.

We can demonstrate different data types being stored in the same variable using the
following code:

al=51
print(type(a1))
al=51.6
print(type(a1))
2

CHAPTER 1 PYTHON PROGRAMMING
al="51"
print(type(a1))
When we run this, we get

<class 'int'>
<class 'float'>
<class 'str'>

The 51 entered is an int. The 51.6 is a float (decimal) type, and ‘51’ is a string.
We can make the results a little clearer if we use print(“al is’) type(al)).
So our program now reads

al=51
print("a1 is",type(a1))

al=51.6
print("a1 is",type(al))

a1="51"
print("a1 is",type(a1))

and the output is

al is <class 'int'>
al is <class 'float'>
al is <class 'str'>

We can put a comment on our line of code by preceding it with the “#” character.

al='51" #assign string containing 51 to variable a1
print("al is",type(al)) # print the type assigned to a1

Some simple arithmetic operations are shown in the following.
The following code is held in the file “arith1.py”:

arithia.py

Initialize the variables v1, v2, v3, and v4 with integer values.

vi= 2
V2 = 4
V3 =7
v4 = 8

CHAPTER 1 PYTHON PROGRAMMING
Add v1 to v2 and store the result in v5.

V5 = vl + v2
print(vs)

The result is

You can combine the adding with the print as follows:
print(vi+v2)

Giving the same answer:

Now a subtraction:

ve = v4 - v3
print(ve)
giving
1
Now a multiplication:

v7 = v4 * v3

print(v7)
giving
56

Now a division:

v8 = v4 / vi

print(v8)

giving

4.0

vi0 = v3 % v2 # the % sign means show the remainder of the division
print(v10)

gives

3

4

CHAPTER 1 PYTHON PROGRAMMING

Raise by the power 2.

vll = v2 ** 2
print(vi11)
gives

16

Raise to the power held in variable v1.
Here v2 contains 4 and v1 contains 2.

vil = v2 ** v1
print(vi11)
gives

16

Show how Python obeys the rules of BODMAS (BIDMAS).
Here v2 contains 4, vl contains 2, v3 contains 7, and v4 contains 8.

vil = vl + v2 * v4 - v3 # show BODMAS
print(vi1)

gives

27

Show how Python obeys the normal algebra rules.

vil = (vl + v2) * (v4 - v3)
print(vi1)

gives

6

Real (Float) Numbers

This type of number contains a decimal point. So, for the following assignments

Vi =2

V2 = 3.5
V3 = 5.1
V4 = 6.75

CHAPTER 1 PYTHON PROGRAMMING
we get

print(type(V1))
<class 'int'>

print(type(V2))
<class 'float'>
print(type(V3))
<class 'float'>
print(type(V4))
<class 'float'>

Characters

In Python, you can also assign characters to locations, for example:

cl ="a
print(type(c1))
produces

<class 'str'>

which means that cl is classed as a string.
Now that we know what different types of variables we can have, we will look at how
we use them.

Reading in Data

Now that we can display a message to the person running our program, we can ask them
to type in a character, then read the character, and print it to the screen. This section
looks at how the user can enter data to be read by the program.

If we type in the command

vara = input()

the computer waits for the user to type in data.
So if you now enter r5, the computer stores 15 in the variable vara.
You can check this by printing the contents of vara by typing

print(vara)

6

CHAPTER 1 PYTHON PROGRAMMING
which prints
15
We can make this more explicit by using

print("data typed in is:-", vara)
giving
data typed in is:-r5

You can also make the entry command clearer to the user by entering
varb=input(“enter some data to be stored in varb”)
Then, again we can explicitly print out the contents

print("data typed in is:-", varb)
giving
data typed in is:-r5

You have to use int(input) to enter an integer.
Otherwise, it is a string (one or more characters), for example:

n = int(input('Enter a number: "))
you enter 4

>>> print(type(n))

<class 'int'>

Program to check input
type in Python

num = input ("Enter number :")

print(num)

#You could enter 5 here and it would store 5 as a string and not as a
number

>>> print(num)

5

>>> print ("type of number", type(num))

type of number <class 'str'>

>>>

CHAPTER 1 PYTHON PROGRAMMING

#tentering a float number (type 'float' before the 'input' command)
n = float(input('Enter a number: "))

Enter a number: 3.8

>>> print(type(n))

<class 'float'>

>>> print(n)

3.8

Now that we can enter data manually into the program, we will look at groups of data.

Arrays

An array is an area of store which contains a number of items. So from our previous
section on integers, we can have a number of integers defined together with the same
label. Python does not have a default type of array, although we have different types of
array.

So we can have an array of integers called “firstintarr” with the numbers 2, 3, 5, 7,
11, and 13 in it. Each of the entries is called an “element,” and the individual elements
of the array can be referenced using its position in the array. The position is called the
“index.” The elements in the array have to be of the same type. The type is shown at the
beginning of the array.

The array mechanism has to be imported into your program, as shown as follows:

from array import *
firstintarr = array('i', [2,3,5,7,11])

The ‘i’ in the definition of firstintarr means that the elements are integers.
And we can reference elements of the array using the index, for example:

vl = firstintarr[3]
print(vi)

This outputs

We can also define floating point variables in an array by replacing the “i” by “t” in
the definition of the array.

CHAPTER1 PYTHON PROGRAMMING
So we can define
firstfloatarr = array('f', [0.2,4.3,21.9,7.7])
And we can now write

varfloatl = firstfloatarr[1]
print(varfloat1)

This will store 4.3 into varfloatl.
The array mechanism has to be imported into your program.
So at the start of each program, you need to include the code

from array import *

Once we have our array, we can insert, delete, search, or update elements into the array.
Array is a container which can hold a fix number of items, and these items should
be of the same type. Most of the data structures make use of arrays to implement their
algorithms. The following are the important terms to understand the concept of array:

e Insert

¢ Delete (remove)

e Search
e Update
e Append

Let’s review them now.

Inserting into an Array

The following code is in the file array3.py:
from array import *
myarr = array('i', [2,3,5,7,11])

myarr.insert(1,13) # this inserts 13 into position 1 of the array (counting
from 0)

for x in myarr:
print(x)

CHAPTER 1 PYTHON PROGRAMMING

This outputs

13

11

Deleting (Removing) from an Array

The following code is in the source code file array4.py:
array4.py

from array import *
myarr = array('i', [2,3,5,7,11])
myarr.remove(2) # this removes the element containing 2 from the array

for x in myarr:
print(x)

This outputs

11

Searching

The following code is in the file array5.py:
from array import *

myarr = array('i', [2,3,5,7,11])

print (myarr.index(3))#this finds the index of the array which contains 3

10

CHAPTER 1

This outputs

Updating an Array

The following code is in the file array6.py:
array6.py

from array import *
myarr = array('i', [2,3,5,7,11])
myarr[2] = 17) #this updates element 2 with 17

for x in myarr:
print(x)

This outputs

17

11

Appending to an Array

The following code is in the file array9a.py:
array9a.py

from array import *
myarr = array('i', [2,3,5,7,11])

for x in myarr:
print(x)

new = int(input("Enter an integer: "))
myarr.append(new)
print(myarr)

PYTHON PROGRAMMING

11

CHAPTER 1 PYTHON PROGRAMMING

This outputs

2
3
5
7
11
Enter an integer: 19

array('i', [2, 3, 5, 7, 11, 19])

This section has shown the “array” use in Python.

Strings

Strings are similar to the character arrays we discussed in the previous section. They are
defined within quotation marks. These can be either single or double quotes. We can
specify parts of our defined string using the slice operator ([| and [:]). As with character
arrays, we can specify individual elements in the string using its position in the string
(index) where indexes start at 0.

“w . n

We can concatenate two strings using “+

wsgen

and repeat the string using “*”.
We cannot update elements of a string - they are immutable. This means that once
they are created, they cannot be amended.

The following code:
firststring = 'begin'
print(firststring)
gives
begin

The following code:
one = 1
two = 2
three = one + two
print(three)

#gives
3

12

CHAPTER 1 PYTHON PROGRAMMING
The following code:

first = " first "
second= "second"

concat = first + " " + second
print(concat)
#gives

first second

print("concat: %s" % concat)

gives

concat: first second

The following code is in the file tsti3a.py
secondstring = "second string"
print(secondstring.index("o")) #gives

3

print(secondstring.count("s")) # count the number of s characters in string
gives

2

print(secondstring[2:9]) # prints slice of string from 2 to 9 giving

cond st
print(secondstring[2:9:1]) # The general form is [start:stop:step] giving

cond st
print(secondstring[::-1]) # Reverses the string giving

gnirts dnoces

splitup = secondstring.split(" ")
print(splitup) #gives
['second', 'string']

Strings are immutable, so if we tried

second= "second"
second[0]="q"

13

CHAPTER 1 PYTHON PROGRAMMING
we get
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

indicating that we tried to update something (a string in this case) which is immutable.

Lists

Lists are similar to arrays and strings, in that you define a number of elements, which
can be specified individually using the index. With lists, however, the elements can be of
different types, for example, a character, an integer, and a float.

The following code is in the file alist7.py:

firstlist = ['k', 97 ,56.42, 64.08, 'bernard']

We specify the elements within square brackets.
We can then access individual elements in the list using the index (starting from 0),
for example:

print(firstlist[o])
gives

k
print(firstlist[1:3])
gives

[97, 56.42]

We can amend an element in a list.

firstlist[3] = 'plj’
print(firstlist)

giving

['k', 97, 56.42, 'plj', 'bernard']

14

We can delete an element from a list.

del firstlist[3]
print(firstlist)

giving

['k', 97, 56.42, 'bernard']

We can append an element to the list.

firstlist.append(453.769)
print(firstlist)

giving

['k", 97, 56.42, 'bernard', 453.769]

Reading Entries in a List

The following code is held in the file alistla.py:

alistla.py

lista = ['first', 'second', 'third']
list2 = [1, 2, 3, 4, 5]

print ("lista: ", list1)

print ("list1[o]: ", listi[o])

print ("list2: ", 1list2)

print ("list2[3]: ", list2[3])

print ("list2[:3]: ", list2[:3])

print ("list2[2:]: ", list2[2:])

print ("list2[1:3]: ", 1list2[1:3])
This outputs

lista: ['first', 'second', 'third']

lista[o]: Afirst

list2: [1, 2, 3, 4, 5]

list2[3]: 4

list2[:3]: [1, 2, 3]

list2[2:]: [3, 4, 5]

list2[1:3]: [2, 3]

CHAPTER 1

PYTHON PROGRAMMING

15

CHAPTER 1 PYTHON PROGRAMMING

Updating a List
The following code is held in the file alist2a.py:
alist2a.py
list1 = [1, 2, 3, 4, 5]
print ("lista: ", list1)
listi[1] = 26 #update the second item (counting from zero)
print ("updated list1i: ", list1)
This outputs

list1: [1, 2, 3, 4, 5]
updated list1i: [1, 26, 3, 4, 5]

Deleting an Element from List

The following code is held in the file alist3a.py:

alist3a.py

list1 = [1,2,3,4,5,6]

print (list1)

del list1[4]

print ("Updated list1 : ", list1)
This outputs

[1, 2, 3, 4, 5, 6]
Updated list1 : [1, 2, 3, 4, 6]

Appending to a List

The following code is held in the file alist4aa.py:

alist4aa.py
list2 = [10,11,12,13,14,15]
print (list2)

16

CHAPTER 1 PYTHON PROGRAMMING

new = int(input("Enter an integer: "))
list2.append(new)
print(1list2)

This outputs (if you enter 489)
[10, 11, 12, 13, 14, 15]
Enter an integer: 489
[10, 11, 12, 13, 14, 15, 489]

This has shown the use of lists.

Dictionaries

Dictionaries contain a list of items where one item acts as a key to the next. The list is
unordered and can be amended. The key-value relationships are unique. Dictionaries
are mutable.

Creating a Dictionary

In the first example, we create an empty dictionary. In the second, we have entries.
firstdict = {}

or

firstdict ={'1':'first', "two':"'second', 'my3':"'3rd"}

Appending to a Dictionary
The following code is held in the file adictla.py:

adictia.py
#icreate the dictionary
adict1 = {"1':'first', "two':'second', 'my3':'3rd"}

print (adict1)

17

CHAPTER 1 PYTHON PROGRAMMING
print (adicti['two']) # in the dictionary 'two' is the key to 'second'

adict1[4] = 'four' # we want to add another value called 'four' whose key
is 4

print (adict1)

print (len(adict1)) #this will print the number of key-value pairs

This outputs
{"1": "first', "two': 'second', 'my3': '3rd'}
second
{"1": "first', "two': 'second', 'my3': '3rd', 4: 'four'}
4

If we want to add value whose key is dinsdale, then we specify it as ‘dinsdale’
So

adict1['dinsdale'] = 'doug'
print (adict1)

outputs

{'1": '"first', 'two': 'second', 'my3': '3rd', 4: 'four', 'dinsdale': 'doug'}

Amending a Dictionary

The following code is held in the file adict2a.py.
This amends the value whose key is ‘two’ to be '2nd'.

adict2a.py
adict1 = {'1':'first', "two':'second', 'my3':'3rd"}

adicta['two'] = '2nd’
print(adict1)
This outputs

{"1": "first', "two': '2nd', 'my3': '3rd'}

18

CHAPTER 1 PYTHON PROGRAMMING

Deleting from a Dictionary

The following code is held in the file adict3a.py:

adict3a.py

adict1 = {'1':'first', "two':'second', 'my3':'3rd"}

print(adict1)

del adicti['two'] #this deletes the key-value pair whose key is 'two
print(adict1)

This outputs

{'1": '"first', "two': 'second',
{"1": "first', 'my3': '3rd'}

my3': '3rd'}

Searching Through a Dictionary

We want to search a dictionary to see if a specific key is contained in it. In this case, we
want to see if ‘@’ and ‘c’ are keys in the dictionary.
In Python

>>> my dict = {'a' : 'one', 'b" : "two'}

>>> 'a' in my dict
TRUE

>>> 'c¢' in my dict
FALSE

The following code is held in the file adict5aa.py:

adicts5aa.py

print("Enter key to be tested: ")
testkey = input()

my dict = {'a' : 'one', 'b' : "two'}
print (my dict.get(testkey, "none"))

This outputs (if you enter “a” when asked for a key)

Enter key to be tested:
a
one

19

CHAPTER 1 PYTHON PROGRAMMING

“u_n

or outputs (if you enter “x” when asked for a key)

Enter key to be tested:
X
none

We have seen what dictionaries can do. We now look at tuples.

Tuples

A tuple contains items which are immutable. The elements of a tuple can be separated
by commas within brackets or individual quoted elements separated by commas. They
are accessed in a similar way to arrays, whereby the elements are numbered from 0. In
this section, we will look at creating, concatenating, reading, deleting, and searching
through tuples.

For example, define two tuples called firsttup and secondttup:

firsttup = ('a', 'b', 'c', 1, 2, 3)
secondtup = “a”, “b”, 10, 25

The following code refers to the third element of firsttup:

firsttup[2]
gives
c

The following code refers to the third element of firsttup:

firsttup[3]

gives

1

secondtup = "a", "b", 10, 25

The following code refers to the second element of secondtup:

secondtup[1]
gives
b

20

CHAPTER 1 PYTHON PROGRAMMING
The following code refers to the third element of secondtup:

secondtup[2]
gives
10

We can also use negative indices to select from the end and work backward, for

example,
secondtup[-1]
which gives

25
secondtup[-2]

which gives
10

Tuples cannot be amended
So if we had

firsttup = ('a', 'b' 'c', 1, 2, 3)
firsttup[3] = 9

we would get
File "<stdin>", line 1, in <module>

TypeError: 'tuple' object does not support item assignment

Creating a Tuple

An empty tuple
empty tuple = ()
print (empty tuple)
0

Creating non-empty tuples

One way of creation
tup = 'first', 'second’

21

CHAPTER 1 PYTHON PROGRAMMING

print(tup)

('first', 'second')

Another for doing the same
tup = ('first', 'second")
print(tup)

('first', 'second')

Concatenating Two Tuples

Code for concatenating 2 tuples

tuple1 = (0, 1, 2, 3)
tuple2 = ('first', 'second")

Concatenating above two
print(tuple1l + tuple2)
(o, 1, 2, 3, 'first', 'second')

Creating Nested Tuples

Code for creating nested tuples

tuple1 = (0, 1, 2, 3)

tuple2 = ('first', 'second')

tuple3 = (tuplei, tuple2)
print(tuple3)

gives

((o, 1, 2, 3), ('first', 'second'))

Creating Repeated Tuples

Code to create a tuple with repetition

tuple3 = ('first',)*3
print(tuple3)

gives

('first', 'first', 'first')

22

CHAPTER 1

Converting a List or a String into a Tuple

Code for converting a list and a string into a tuple

list1 = [0, 1, 2]

print(tuple(list1))

(0, 1, 2)

print(tuple('first')) # string 'first’
(I-Fl) 'i" .IIJ 's" .t.)

Creating Single-Element Tuple

PYTHON PROGRAMMING

Creating tuple with single element (note that we still require the comma)

t=(1))
print(t)
gives

(1,)

Reading Tuple

Reading from start (index starts at zero)
tup1=(2,3,4,5,6,7)

tup(3]

gives

5

Reading from end (index starts at -1)
tup1[-1]

gives

7

Searching Within a Tuple

Search

tup1=(2,3,4,5,6,7)

print (6 in tup1) # this tests if 6 is contained in tup1
gives

23

CHAPTER 1 PYTHON PROGRAMMING

True
print (9 in tup1l)
gives
False

Deleting a Tuple

Deleting a complete Tuple
del tup1

print(tup1)

gives

NameError: name 'tupl' is not defined

Using Tuple to Create Variables

define our tuple as
aTuple = (10, 20, 30, 40)
Now we can assign each of its elements to separate variables
a, b, ¢, d = aTuple
print(a)

gives

10

print(b)

gives

20

print(c)

gives

30

print(d)

gives

40

We have covered definitions and uses of different types of variables in this section.
We will now look at the use of “if” statements.

24

CHAPTER 1 PYTHON PROGRAMMING

If Then Else

When a decision has to be made in your program to either do one operation or the other,
we use if statements.
These are fairly straightforward. Basically, we say

if (something is true)
Perform a task

This is the basic form of if.
We can extend this to say

if (a condition is true)
Perform a task

else if it does not satisfy the above condition
Perform a different task

Here is some Python code to demonstrate this:

number = 5
if number > 3:
print('greater than 3')

number = 5
if number > 3:

print('greater than 3")
else:

print('not greater than 3')

Type in this code into a program and run it. It should come as no surprise that the

output is
greater than 3

You could modify the program so that you input the number to be tested, but don’t
forget that for this code you need number = int(input (“Enter number :”)) to enter a
number.

This section has shown the importance of “if” statements in programming. Now we

will look at loops.

25

CHAPTER 1 PYTHON PROGRAMMING

Loops (For and While)

When we were doing many calculations in a program, it could be a bit of a chore to do
a similar thing with, say, ten numbers. We could have done it by repeating similar code
ten times. We can make this a bit simpler by writing one piece of code but then looping
round the same piece of code ten times. This is called a “for loop.” We will also look at
“while” loops.

For Loops

Here is an example of how a for loop can help us.
The statement is

‘for x in variable
Carry out some code'

So if we have a variable as the following
forloopvarl = [20, 13, 56, 9]
we can say

for x in forloopvari: # go through forloopl and place each element in x
print(x) #this is the only instruction within the loop

outputs

20
13
56
9

The “range” instruction in Python has the general format

range(start, stop, step)

where

“start” is the start value of the index. Default is 0.

“stop” is 1 less than the last index to be used.

“step” is by how much the index is incremented. Default is 1.

Here is an example using the “range” instruction.

The program goes round the for loop starting with variables number and total set to 1.

26

CHAPTER 1 PYTHON PROGRAMMING

Within the loop, it multiplies the current value of the number by the running total. Then
itadds 1 to the number. So it is working out 1*2*3*4*5*6*7*8*9*10 or “10 factorial” (10!).

number = 1
total = 1
for x in range(10):): #so here start is 0 (default), stop is 10-1, and
step is 1
total = total * number
number = number + 1
print(total)
This outputs
3628800

which you can check with your scientific calculator is 10 factorial.

for x in range(3, 6): # starts with 3 and ends with 6-1

print(x)
This outputs
3
4
5

We can also have a list of values instead of a range, as shown in the next program.
This goes through the values and finds the index position of the value 46. We can see
that 46 is in position 9 (counting from 0).

forloopvar1l = [20, 13, 56, 9, 32, 19, 87, 51, 70, 46, 56]
count = 0
for x in forloopvari:

if x == 46:
break
count = count + 1
print(count)
This outputs
9

27

CHAPTER 1 PYTHON PROGRAMMING

While Loops

The logic of “while” loops is similar to our for loops.
Here, we say

'while x is true
Carry out some code'

So we could have the following code which keeps adding 1 to count until count is no
longer less than 10. Within the loop, the user is asked to enter integers. These are added
to a total which is printed out at the end of the loop.

total = 0;

number = 0

while loop goes round 10 times
while number < 10 :

ask the user to enter the integer number
n = int(input('Enter a number: "))

total = total + n
number = number + 1
print('Total Sum is = ', total)

So if the user enters the number shown in the following, we get the total:

Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: 4
Enter a number: 5
Enter a number: 6
Enter a number: 7
Enter a number: 8
Enter a number: 9
Enter a number: 10

Total Sum is = 55

We have seen the importance of loops in this section. Our next section looks at
switches.

28

CHAPTER 1 PYTHON PROGRAMMING

Switches

In C programming, there is an instruction used widely called “switch.” However, because
there is no switch statement in Python, this section will demonstrate some code that can
be included into your programs to perform the same function.

A switch jumps to a piece of code depending on the value of the variable it receives.
For instance, if you had to perform different code for people in their 30s to that for
people in their 40s and different to people in their 50s, we could have the following code.
Here we have the value in “option” which determines which code we jump to.

The code for this function is in the file aswitch3.py:

aswitch3.py
def switch(option):
if option == 30:
print("Code for people in their 30s")
elif option == 40:
print("Code for people in their 40s")

elif option == 50:
print("Code for people in their 50s")

else:
print("Incorrect option")
#main code in the program where you enter 30,40 or 50 and the function
"switch' is called which uses the appropriate number as shown.
optionentered = int(input(“"enter your option (30, 40 or 50 :) "))
switch(optionentered)
running this program and entering '50' gives
enter your option : 50
Code for people in their 50s

This section has shown how to perform a switch in Python. We now move onto an
important library of functions in Python. This is called “numpy.”

29

CHAPTER 1 PYTHON PROGRAMMING

Arithmetic Operations Using Numpy

Numpy is a library of mathematical functions that can be included into your Python
program. It is useful in manipulating arrays, reading text files, and working with
mathematical formulas. Numpy can be installed in various ways. One way is using “pip”
from the command line as shown as follows:

pip install numpy

It is particularly useful in manipulating matrices (or arrays with extra dimensions).
The arrays we have looked at so far are one-dimensional arrays. In this section, we will
look at arrays with more dimensions. A one-dimensional array can also be called a “rank
1 array.”

onedarray = array('i', [10,20,30,40,50])

We import numpy into our program using “import numpy’, and we assign a link for
our program. Here we define the link as “np” so the full line of code is

import numpy as np

The numpy function “shape” returns the dimensions of the array. So if your array
was defined as

b = “P-arraY([[1,2,3],[4,5,6]])
then the array would be a 2x3 matrix (two rows and three columns) as shown as follows:

[[1 2 3]
[4 5 6]]

So if you now type
print(b.shape)
you would get
(2, 3)

as the shape.
The code for this function is in the file numpyl.py:

30

CHAPTER 1 PYTHON PROGRAMMING
import numpy as np

a = np.array([1, 2, 3]) # Create a rank 1 array

print(type(a)) # Prints "<class 'numpy.ndarray'>"
print(a.shape) # Prints "(3,)"

print(a[o], a[1], a[2]) # Prints "1 2 3"

a[o] =5 # Change an element of the array
print(a) # Prints "[5, 2, 3]"

b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array

#1 2 3

#45 6

reference elements counting from 0

so b[1, 2] is row 1 (2nd row) column 2 (3rd column)
#so if you print b[1, 2] you get 6

print("b[1, 2] follows")

print(b[1, 2])

print(b.shape) # Prints "(2, 3)" 2 rows 3 columns
print(b[o, 0], b[O, 1], b[0, 2]) # Prints "1 2 3"
print(b[1, 0], b[1, 1], b[1, 2]) # Prints "4 5 6"
print(b[0, 0], b[0, 1], b[1, 0]) # Prints "1 2 4"

The normal mathematical representation of a matrix is as shown as follows:

g
4 5 6
This is what we have defined in the preceding code using the following line of code:

b = np.array([[1,2,3],[4,5,6]]) # Create a rank 2 array

Matrix arithmetic can be understood by looking at real-life examples. The following
are tables of three people working for a computer company. The first table shows how
many laptops and how many printers each person sells in a month.

31

CHAPTER 1 PYTHON PROGRAMMING

In Store Sale

Person Laptops Printers
Joe 4 5
Mary 6 7
Jen 7 9

The next table shows how many laptops and printers each person has sold online.
Online Sale

Person Laptops Printers
Joe 6 22
Mary 21 24
Jen 41 17

These tables can be represented by matrices as shown in the following. We add each
term in the first matrix to the corresponding term in the second matrix to give the totals
shown in the third matrix.

4 5 6 22 10 27
6 7 |+|21 24|=127 31
7 9 41 17 48 26

The next table shows the total of laptops and printers sold by each person:
Total/Overall Sale

Person Laptops Printers
Joe 10 27
Mary 27 31
Jen 48 26

If each person doubles their total sales the following month, we can just multiply
their current sales total by 2 as shown as follows:

10: 27 20 54
2 X127 31]=1|54 62
48 26 96 52

32

CHAPTER 1 PYTHON PROGRAMMING

We now look at their totals for the first month and have another table containing the
cost of a laptop and the cost of a printer.

Total Sales
Person Laptops Printers Cost/Item list with cost
Joe 10 27 Laptop 200
Mary 27 31 Printer 25
Jen 48 26

We can work out how much money each person makes for the company my
multiplying their total number of sales of a laptop by its cost. Then we multiply their total
number of sales of printers by its cost and then add these two together. The table and the
corresponding matrix representations of this are shown as follows:

Sales Cost
Joe 10x200 + 27x25 = 2975
Mary 27x200 + 31x25 = 3875
Jen 48%x200 + 26x25 = 4775

There is a rule when multiplying matrices. The number of columns in the first matrix
has to be equal to the number of rows of the second matrix.

So if we say that a matrix is 2x3 (two rows and three columns), then it can multiply a
3x2 or a 3x3 or a 3.4, etc. matrix. It cannot multiply a 2x3 or 2x4 or 4x2 or 4x3, etc.

10 27\ o0 (10x200+27x25
27 31) x () = | 27x200 + 31x25
48 26 7 48x200 + 26x25

2975
3875
4775

In the multiplication in the preceding diagram, we see it is (3x2) x (2x1) producing a
(3x1) matrix.

33

CHAPTER 1 PYTHON PROGRAMMING

Numpy Calculations

Listings 1-1 through 1-5 are some programs to show basic numpy calculations with
matrices.
Add two 2x2 matrices.

Listing 1-1. numpmat.py

import numpy as np

a = np.array(([3,1],[6,4]))
b = np.array(([1,8],[4,2]))
c=a+b

print('matrix a is')
print(a)
print('matrix b is")
print(b)
print('matrix c is')
print(c)

This outputs

matrix a is
[[3 1]
[6 4]]

matrix b is
[[1 8]
[4 2]]

matrix c is

[[4 9]
[10 6]]

Add a 2x3 matrix to another 2x3 matrix.

34

CHAPTER 1 PYTHON PROGRAMMING
Listing 1-2. numpmat2.py

import numpy as np

a = np.array(([1,2,3],[4,5,6]))
b = np.array(([3,2,1],[6,5,4]))
d=a+bh

c = 2*a

print('matrix a is')
print(a)
print('matrix b is")
print(b)
print('matrix d is")
print(d)
print('matrix c is")
print(c)

This outputs

matrix a is
[[1 2 3]

[4 5 6]]
matrix b is
[[3 2 1]

[6 5 4]]
matrix d is
[[4 4 4]

[10 10 10]]
matrix c is
[[2 4 6]

[8 10 12]]

35

CHAPTER 1 PYTHON PROGRAMMING

Add a 2x2 matrix to a 2x2 matrix both floating point.

Listing 1-3. numpmat3.py

import numpy as np

a = np.array(([3.1,1.2],[6.3,4.5]))
b = np.array(([1.3,8.6],[4.9,2.8]))
c=a+b

print('matrix a is")
print(a)
print('matrix b is")
print(b)
print('matrix c is")
print(c)

This outputs

matrix a is
[[3.1 1.2]
[6.3 4.5]]
matrix b is
[[1.3 8.6]
[4.9 2.8]]
matrix c is

[[4.4 9.8]
[11.2 7.3]]

Multiply a 3x2 matrix by a 2x1 matrix.

Listing 1-4. numpmat4.py

import numpy as np

a = np.array(([l,z],[4,5],[6,8]))
b = np.array(([3],[6]))
c = np.matmul(a,b) #matmul is the numpy function for multiplying matrices

36

CHAPTER 1 PYTHON PROGRAMMING

print('matrix a is')
print(a)
print('matrix b is')
print(b)
print('matrix c is")
print(c)

This outputs

matrix a is
[[1 2]

[4 5]

[6 8]]

matrix b is
[[3]

[6]]
matrix c is
[[15]

[42]

[66]]

Multiply a 3x2 matrix by a 2x3 matrix.
If you did this manually with pen and paper, this is how you would do it:

1 2

7 8 9
3 4] X =
£ 6 (10 ik 12)
1x7 + 2x10 1x8 + 2x11 1x9 + 2x12 27 30 33
3x7 + 4x10 3x8 +4x11 3x9+4x12 | = | 61 68 75
5x7 + 6x10 5x8 + 6x11 5x9 + 6x12 95 106 117

Note the way you do the multiplication by hand, 1st row x 1st column, 1st row x 2nd
column, 1st row x 3rd column, then 2nd row, and then 3rd row. Of course, if you use
numpy’s matmul function, it is all done for you.

37

CHAPTER 1 PYTHON PROGRAMMING

Listing 1-5. numpmat5.py

import numpy as np

a = nP-arraY(([l:z]:[3:4]:[5:6]))
b = np.array(([7,8,9],[10,11,12]))
c = np.matmul(a,b)

print('matrix a is')
print(a)
print('matrix b is")
print(b)
print('matrix c is")
print(c)

This outputs

matrix a is
[[12]

[3 4]

[5 6]]

matrix b is
[([7 8 9]
[10 11 12]]

matrix c is

[[27 30 33]
[61 68 75]
[95 106 117]]

This section has explored the important numpy mathematical functions in Python.

Mathematical Graph Functions

In a similar way that we included the numpy library into our programs, we can include
graph plotting libraries called “matplotlib.pyplot” so we can access the graph functions
library with the code

import matplotlib.pyplot as plt
38

CHAPTER 1 PYTHON PROGRAMMING

In our program, this makes plt our pointer to matplotlib.pyplot.
You can install matplotlib using the “pip” instruction

pip install matplotlib

The program here is going to plot a graph of the marks that people got in an
examination.
The code for this function is in the file mpla.py:

mpla.py

import matplotlib.pyplot as plt

x values:

marks = list(range(0, 100, 10)) #marks (x values) divided into equal values
up to 100

print(marks) # write the values calculated by the previous instruction
This produces

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]

y values:

people = [4, 7, 9, 17, 22, 25, 28, 18, 6, 2]
label the axes

plt.xlabel('marks")

plt.ylabel('people"’)

plt.plot(marks, people)

plt.show()

and outputs

[0, 10, 20, 30, 40, 50, 60, 70, 80, 90]

39

CHAPTER 1 PYTHON PROGRAMMING

These plot the graph shown in Figure 1-1.

25 4

20 A1

people
=
wn

10 +

-

T T T T

0 20 40 60 80
marks

Figure 1-1. Example of plotting (x,y) points

We see from the graph that most people got marks between about 30 and 70, which is
what you would expect. A few got low marks and only a few got high marks.

The next program, mp2aa.py, plots two graphs on the same axes. Here we plot
examination marks gained by females and those gained by males. We plot females as one
color and males as another.

The code for this function is in the file mp2aa.py:

mp2aa.py
import matplotlib.pyplot as plt

x values:

marks = list(range(0,100,10)) #marks (x values) divided into equal values
up to 100

y values (number of students whose marks lie within each x range):

male = [4, 7, 9, 17, 22, 25, 28, 18, 6, 2]

female = [2, 5, 8, 13, 28, 25, 23, 20, 18, 12]

40

plt.xlabel('marks")
plt.ylabel('number of students')

CHAPTER 1

PYTHON PROGRAMMING

plt.title('Comparison of male / female examination scores"')

#plot the female graph

plt.plot(marks, female, label="female")
plt.plot(marks, female, "ob")

#plot the male graph

plt.plot(marks, male, label="male")
plt.plot(marks, male, "or"

plt.legend()
plt.show()

This produces the following graph shown in Figure 1-2.

Comparison of male / female examination scores

—— female
—— male
25 1
v 20
o
QL
o
2
w
= 15 A
|
[}
el
£
c 10 A
5 -
0 20 40 60 80
marks

Figure 1-2. Example of plotting two graphs

41

CHAPTER 1 PYTHON PROGRAMMING

The next program, mllpj.py, plots three graphs on the same axes. Here, we ploty =
sin(x), y = 2sin(x), and y = cos(x). We plot each one in a different color.

This demonstrates some of the mathematical functions available to matplotlib.

The code for this function is in the file ml1pj.py

mlipj.py
import matplotlib.pyplot as plt

import numpy as np
X = np.linspace(0, 2 * np.pi, 50, endpoint=True) # set x values as
multiples of pi

F1 = 2 * np.sin(X) # y = 2sin(x)
F2 = np.sin(X) #y = sin(x)
F3 = np.cos(X) #y = cos(x)

plt.plot(X, F1, color="blue", linewidth=2, linestyle="-")
plt.plot(X, F2, color="red", linewidth=2, linestyle="-")
plt.plot(X, F3, color="green", linewidth=2, linestyle="-")

plt.plot(X, F1, label="2sin(x)")
plt.plot(X, F2, label="sin(x)")
plt.plot(X, F3, label="cos(x)")

plt.legend()
plt.show()

This produces Figure 1-3.

42

CHAPTER 1 PYTHON PROGRAMMING

2.0 1 — 2sin(x)
— sin(x)

— cos(x)

Ao

1.0 A

0.5 A

0.0 A

—0.5 1

—1.0 -

-1.5

-2.0 1

0 1 2 3 4 5 6

Figure 1-3. Plotting three graphs

This section has shown the importance of matplotlib in Python.

User-Written Functions

As well as having functions defined for you (like in numpy or Matlab), you can define
functions for yourself.
A function is of the following format

def funcname(arguments)

where funcname is whatever you want to call your function and the parameters are
information you need to pass to your function. The actual contents of the parameters
will probably be different for different calls of the function.

If you want to return a value to the caller of the function, you can do this using the
return command.

43

CHAPTER 1 PYTHON PROGRAMMING
The code for this function is in the file tst16b.py:

Define our 3 functions

def funci():
#basic function to output a string
print("This is from funci")

def func2(name, pretax):
calculates a person's salary after tax is taken
aftertax = pretax * 0.85
print("%s This is from funci, Your salary after tax is
%f"%(name,aftertax))

def func3(first,second,third):
simple arithmetic calculation on the 3 numbers submitted
return 3.5%first + second/2 - third

call funcia
func1()

#call func2
func2("Bernard", 23.78)

#call func3
x = func3(1,2,3)
print(x)

This outputs

This is from funci
Bernard This is from funci, Your salary after tax is 20.213000
1.5

In reality, the functions you will define in your programs will be more complicated
than those earlier as it would be just as easy, in the preceding cases, to write the code
itself in the main body of your program as to call the function.

44

CHAPTER 1 PYTHON PROGRAMMING

File Access

In Python programs, we can create, read from, write to, update, and delete files.

We will use the graph plotting functions from matplotlib as described in the section
“Mathematical Graph Functions.” Again, to use matplotlib in a Python program, we need
the following line of code at the start of the program.

The following program, rel1pjc.py, reads the pijfiley.txt file, which contains the
following 11 lines of data:

#ipjfiley.txt

a#iThis is my L1inexxXXXXXXXXXXXX
b#second linexxxx

c#tthird linexx

d#fourth 1inexxXX
efffifth line

fi#sixth

ghseventh

h#eighth

i#tnineth

j#tenth

k#televenth

The program opens the file and stores a pointer to it in “fhand”. It then performs a for
loop which reads each line from the file and stores the current line in “line”. The object of
the program is to find the line with the character “k” at the start of the line. When it finds
this, it prints out the rest of the line. It uses the function “line.split” to split the line when
it comes across the “#” character. Then, the “k” is stored in “@’, and the rest of the line is
stored in “b".

#rellpjc.py
fhand = open('pjfiley.txt")
read each line from the file
for line in fhand:
if line[0]=="k': # is the first character of the current line 'k’
a,b = line.split('#') # split the line into two parts, separated by
the '#' in the line
print(b)

45

CHAPTER1 PYTHON PROGRAMMING
thand.close()

this prints
eleventh

As the line starting with k is k#eleventh, when we split this between either side of the #,
we store the “k” in the storage location “a” and “eleventh” in storage location “b”.
The following program reads the Peoplex.txt file, which contains the following:

#Peoplex
a-Jones-37-accountant

b-Smith-42-HR
c-Allen-28-Secretary
d-Bradley-26-Programmer
e-Edwards-41-Programmer
f-King-35-S/W engineer
g-Price-39-H/W engineer
h-Roberts-52-Manager
i-Foster-44-Analyst

j-Shannon-24-Programmer

k-Lewis-27-Receptionist

This is a data file containing information about workers in a company. Each line
is used for one worker. The first character in the line is a reference character which
uniquely identifies the worker. The other fields in the line identify their name, their age,
and their job title. Each field is separated by the “-” character, which we use to separate
the fields using the line.split() function.

The following program reads through the file to find the worker with ID specified by
the user. When the program finds it, it splits the line into separate fields. We can print out
this data by concatenating these fields.

46

CHAPTER 1 PYTHON PROGRAMMING

#irelipjd.py
thand = open('Peoplex.txt")

user is asked to enter the ID character of the line they wish to read.
n = input('Enter an ID: ")

for line in fhand:
if line[0]==n:
a,b,c,d = line.split('-") # specified line is found so split it into
4 components
print(b+' '+c+' '+d) # concatenate the 2", 3™ and 4t components

thand.close()
If we enter “d’, we get the output

Enter an ID: d
Bradley 26 Programmer
Amend a field in one of the lines

The file pijfilezi.bin contains the following data:

a-Jones-37-accountant
b-Smith-33-welder
c-Allen-28-Secretary
d-Bradley-26-Programmer

We want to amend the age and job description of one of the entries.

The following code does this. We want to use one method of performing updates to
a file. This method reads the file and writes each line to another file. When this has been
completed, it copies the new file into the original file.

#rel1pjdga.py

finphand = open('pjfilezi.bin','r") # input file

fouthand = open('pjfilezo.bin','w') # output file

#ask the user to enter the ID for the row to be amended.

n = input('Enter an ID: ")

#We want to update the age and job description to the following values.
age = input('Enter age: ')

desc = input('Enter job description: ')

47

CHAPTER 1 PYTHON PROGRAMMING

find the correct line from the ID entered
for line in finphand:
if line[0]==n:
we have found the correct line
a,b,c,d = line.split('-") # split the line into its 4 components.
print(a) #ID
print(b) #name
print(c) #age
print(d) #occupation
print(b+' '+c+' '+d) #concatenate and print the 2, 3 and 4th
update
c=age
d=desc
print(b+"' '+c+' '+d) # print the amended line
line=(a+'-"+b+'-"+c+'-"+d+'\n") # store the amended line
fouthand.write(line) # write the line to the output file

else:
not found the line to be amended so write this line to the output
file
fouthand.write(line)

fouthand.close()
finphand.close()

#iclose and reopen the files and copy the output file to the input file
filel = open("pjfilezo.bin", "r")
file2 = open("pjfilezi.bin", "w")
1 = filel.readline()
while 1:
file2.write(1)
1 = filel.readline()
filel.close()
file2.close()

48

CHAPTER 1

PYTHON PROGRAMMING

If we run the program and enter “c” as the ID and then change the age to 32 and job

description to welder, we get

Enter an ID: c

Enter age: 32

Enter job description: welder
C

Allen

28

Secretary

Allen 28 Secretary

Allen 32 welder

The following program reads data from a file and uses it to plot a graph using

matplotlib.

Various storage locations are printed at different stages of the program so that the

user can monitor what the program is doing. These are shown after the graph plot. The

following program reads the following from the output.txt file:

2.4%x+7.9
0, 20

The first line is the equation to be plotted (y = 2.4 *x + 7.9).

The second line is the range of x values to use in the plot.

readfilec2.py#it#HH#HHH#HHHH#IH
The program reads the two lines:

import matplotlib.pyplot as plt

import numpy as np

thand = open('output.txt','r")
lines = [" '," ']

count = 0

#store the two lines in lines[0] and lines[1]

49

CHAPTER 1 PYTHON PROGRAMMING

for line in fhand:
lines[count] = line
count = count + 1
print('lines[0] The first line read from output.txt')
print(lines[0])
print('lines[1] The second line read from output.txt')
print(lines[1])
#strip the newline character from each of the lines
11 = lines[o0].rstrip('\n")
12 = lines[1].rstrip('\n")
print('11 The first line read from output.txt with newline character
removed ')
print(11)
print('12 The second line read from output.txt with newline character
removed ')
print(12)

Import matplot lib is required only when we use this function, try to put the
above blocks of code in different modules and import all into another file and plot

def graph(formula, x range):
function to plot the graph
X = np.array(x_range)
y = eval(formula) # evaluate the formula to give the y-values
plt.xlabel('x values")
plt.ylabel('y values")
plt.title('Line Graph ")
plt.plot(x, y)
plt.show()
#iget the second line and store the two points on aint and bint
aint=int(12[3])
=0
bint=int(12[0])
call the graph-plotting function with the equation and range as
parameters
graph(11, range(bint, aint))

50

CHAPTER 1 PYTHON PROGRAMMING

The program produces the graph shown in Figure 1-4.

PJ line Graph

10.0 H

9.5 1
(7]
1]
=2
4]

> 9,04
>

8.5 1

8.0 A

0.0 0.2 0.4 0.6 0.8 1.0
X values

Figure 1-4. Plotofy=2.4x+7.9

This program outputs the following:

lines[0] The first line read from output.txt
2.4%x+7.9

lines[1] The second line read from output.txt
0, 20

11 The first line read from output.txt with newline character removed
2.4*x+7.9

12 The second line read from output.txt with newline character removed
0, 20

51

CHAPTER 1 PYTHON PROGRAMMING

Regressions

The next program plots a line of regression and the four points used in the regression
calculation.

Regression is the approximation of a series of points to a straight line. So here, the
points are (1,2), (2,5), (3,6), and (4,9). The regression line for these points has already
been calculated as y = 0 + 2.2x. This information has been stored into three files, which
are read by the program. The straight line and the four points are plotted onto a graph to
illustrate the regression.

The following program takes data from three files.

The first file contains the x and y coordinates of four points.

The second contains the line of regression of the points.

The third is the number of points.

Various storage locations are printed at different stages of the program so that the
user can monitor what the program is doing. These are shown after the graph plot.

Files read by the following program and their contents:

capm.bin

1.000000 2.000000
2.000000 5.000000
3.000000 6.000000

4.000000 9.000000

capm2.bin
0.000000+2.200000*x

capm2cnt.bin
4

The program uses two methods of accessing files:
fhand = open('capm2.bin','r")
and

z = np.loadtxt("capm2cnt.bin™)
#ireadfile7a2.py

import matplotlib.pyplot as plt
import numpy as np

52

CHAPTER 1 PYTHON PROGRAMMING

thand = open('capm2.bin','r") #file containing the calculated regression
equation

'capm.bin' is the file containing the coordinate points

'capm2cnt.bin' is the # file containing the number of coordinate points

z = np.loadtxt("capm2cnt.bin™) # read the number of points and store in z
print("Data read from capm2cnt.bin")

print("z follows")

print(z)

a = z # this is the number of coordinate points

zint = int(a) # convert the number to an int

print("zint follows")

print(zint)

count = 0

y = np.loadtxt("capm.bin") # read the 4 points and store iny
print("Data read from capm.bin")

print(y)

y now contains the x and y values of the 4 points

#[1. 2.]

N

[2. 5.]
[3. 6.]
[4. 9.]1]

#izeroise the two arrays using zint as the count of points
[0]*zint

[0]*zint

xvals

yvals

print("xvalsfirst")
print(xvals)
print("yvalsfirst")
print(yvals)
#separate the x and y values
for x in range(zint):

a,b = y[x]

xvals[x] = a

yvals[x]

53

CHAPTER 1 PYTHON PROGRAMMING

print("xvals")
print(xvals)
print("yvals")
print(yvals)

plt.plot(xvals, yvals, "ob")
read the calculated regression equation from 'capm2.bin' (pointed to by
thand)
count = 0
for line in fhand:
line = line.rstrip() #rstrip() strips space characters from end of
string
print(line) # the calculated regression equation

set the x values for the graph
x = np.linspace(-5,5,10)
print('x follows")

print(x)

print('line follows")
print(line)

#line is 0.000000+2.200000*x

a = y:
a + line # b is y = 0.000000+2.200000*x

print(b)

line contains the regression equation

The eval command carries out the function contained in 'line'. In this
case it is 'y = 0.0 + 2.2%x'

It takes the values of x from the x = np.linspace(-5,5,10) code above and
calculates y values.

y= eval(line) # use the regression equation to calculate the y-values from
the x-values above

print('y follows")

print(y)

plt.plot(x, y, '-r', label=b)
#Plot the regression line and the four points

54

CHAPTER 1 PYTHON PROGRAMMING

plt.title(b)

plt.xlabel('x", color="#1C2833")
plt.ylabel('y", color="#1C2833")
plt.legend(loc="upper left"')
plt.grid()

plt.show()

The program produces the graph shown in Figure 1-5.

y=0.000000+2.200000%*x

—— y=0.000000+2.200000%*x ‘

Figure 1-5. Plotofy=0.0+2.2x

You can see from the graph that all of the points are close to the line. Rather than
just say that the points are close to the line, fairly close to the line, or not very close to
the line, we can use a number which tells us how close to the line the points are. This
number has a name. It is called the “Product Moment Correlation Coefficient,” usually
abbreviated to PMCC. In the preceding case, if the points were on the line, the PMCC
would be 1. As they are close to the line, the PMCC would be something like 0.92145. We
will look at PMCC later in the book.

55

CHAPTER 1 PYTHON PROGRAMMING
The output from this program is as follows:
Data read from capm2cnt.bin

z follows
4.0

zint follows
4

Data read from capm.bin

[

N =
.

[1. 2.]
[2. 5.]
[3. 6.]

w
.

[4. 9.]]
xvalsfirst

[0, 0, 0, O]
yvalsfirst

[0, 0, 0, O]
xvals

[1.0, 2.0, 3.0, 4.0]
yvals

[2.0, 5.0, 6.0, 9.0]
0.000000+2.200000*x

x follows
[-5. -3.88888889 -2.77777778 -1.66666667 -0.55555556 0.55555556
1.66666667 2.77777778 3.88888889 5.]

line follows
0.000000+2.200000*x
y=0.000000+2. 200000*x

y follows
[-11. -8.55555556 -6.11111111 -3.66666667 -1.22222222
1.22222222 3.66666667 6.11111111 8.55555556 11.]

This section has explored file handling in Python.

56

CHAPTER 1 PYTHON PROGRAMMING

Summary

This chapter demonstrates the fundamentals of Python programming. It shows

the different data types, how they are defined and their properties, the numpy and

matplotlib links that perform mathematical and graphical functions, and file handling.
The next chapter will explore the fundamentals and uses of C code.

Exercises

1. Perform the same arithmetic operations we used for our int values
as in the example in section 1.1.1

using
Vi=2
V2=3.5
V3=5.1
V4=6.75

2. From section 1.1.3

Create a list of numbers starting from 1 to 7. Print this list, and
then append the next seven numbers that is 8 to 14 to the list using
a for loop (see section “For Loops”).

Create a dictionary with elements {‘a’ : \one\, ‘b’ :"'two’}. Ask the
user to enter a key to be tested. Test if the key is in your dictionary
using a for loop (see section “For Loops”). Output an appropriate
message to say whether you find it or not.

Create a tuple with elements even numbers from 2 to 14. Print out
the elements using a for loop (see section “For Loops”).

3. From section 1.1.10

Amend the file workers’ data file program to create a file which
also has their initial after their name and to add their salary at the
end of the line.

57

CHAPTER 2

C Programming

In this chapter, we'll review the C programming language. If you don’t already have a C

development environment on your computer, you can download it, free of charge, from
Microsoft. You can download their Microsoft Development Kit (SDK). Another way you
can access C is by using Visual Studio. Again, a version of this can be downloaded.

C Program Format

Listing 2-1 is a simple C program which asks the user to enter a character, reads the
character, and then prints it to the screen. We will use this to show the basic format of a C
program.

It is helpful, when you have written a lot of programs, to give each program a
relevant title. This program is called c1.2readprint.c, “c1.2,” because it is in the first part
of Chapter 2 and “readprint” because it reads and prints a character. The “c” at the end
of the program name is essential for any C program. C programs will not compile if they
do not have this. The compiler converts your program into machine code which the
hardware in the computer understands.

In the following program, int main() delimits your code between the { and the }
(although we will see later that you can write a separate piece of code outside of the
main() part and call it from the main() part. The #include<stdio.h> is a command to tell
the compiler to attach to your executable program the code which executes the getchar()
and putchar(). stdio refers to the standard input and output library.

Comments are written in this program that show/remind what is being done in the
program. They are written between /* and */. As shown here, they can be written after
the C code on the same line or on separate lines.

59
© Philip Joyce 2022

P. Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4_2

https://doi.org/10.1007/978-1-4842-7774-4_2#DOI

CHAPTER2 C PROGRAMMING

The “printf” in the code tells the computer to print whatever is between each of the
double quotes.
The getchar and putchar instructions read and print a character.

Listing 2-1. cl.2readprint.c

#include <stdio.h>
/* read and display a number */
int main () {

char c; /* store area where the character read in will be kept */

printf("Enter character: "); /* ask the user to enter a character */
c = getchar(); /* read the character in */

printf("Character entered: "); /* tell the user what character the
program has read */
putchar(c); /* write the character */

return(0);

The char ¢; instruction means that you are reserving a place in your program where
you will store the character which is read in. c can then be referred to as a “variable” in
your program. In the code c=getchar(), the = sign means “assign to.” So the instruction is
saying get the character and assign it to the variable c. Type in a character. Your program
should reply with the character you typed in. Now type your first name. What happens?
getchar() only reads one character, and it will only store the first character you typed into
the char c data store in your program. Note the comments in the program telling you
what is going on. I

Adding Two Numbers

In Listing 2-2, we ask the user to enter two integers. Then we add these and print the
answer. Then we ask the user to enter two float numbers, and we add these and display
the answer.

60

CHAPTER2 C PROGRAMMING

Listing 2-2. cl.2addtwodf.c

#tdefine _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

int main()

{

int int_number1, int_number2, itotal; /* storage areas for the int
numbers */

float float numberi, float number2, ftotal; /* storage areas for the
float numbers */

/* ask the user to enter two integers */

printf("Please enter an integer number:\n ");
scanf("%d", &int numberi); /* read integer number in */
printf("You entered %d\n", int number1);

printf("Please enter another integer number: \n");
scanf("%d", &int number2); /* read integer number in */
printf("You entered %d\n", int number2);

/* add the two numbers into ‘total’ and display the answer */

itotal = int_numberi + int_number2; /* add two numbers */
printf("total is %d\n", itotal);

/* ask the user to enter two floating point (decimal) numbers */

printf("Please enter a float number:\n ");
scanf("%f", &float numberi); /* read decimal number in */
printf("You entered %f\n", float numberi);

printf("Please enter another float number: \n");
scanf("%f", &float number2); /* read decimal number in */
printf("You entered %f\n", float number2);

/* add the two numbers into 'total' and display the answer */

61

CHAPTER2 C PROGRAMMING

ftotal = float numberl + float number2; /* add the numbers */
printf("total is %f\n", ftotal);

return O;

In this program, we are reading in integer and float numbers. We define the storage
for each of our integer numbers using int as shown at the start of the program and float
for the floating point numbers. We have also specified storage for where we want to store
the total when we have added our numbers. This is itotal for the integers and ftotal for
the float numbers. Notice that we can list all our storage names next to each other after
the int command, as long as they are all int types. “Types” are the way we differentiate
between our data, for example, whole numbers are “integer” or “int” and characters ,like
“A, “$’ and “?” are “char” types.

In this program, we use scanf to read the characters from the screen rather than
getchar(). This is because our numbers to be added can be more than one character.
The %d in scanf and printf specifies an integer to be read or written. The %f in scanf and
printf specifies an integer to be read or written. In printf here, the answer to be printed is
stored in itotal or ftotal.

Multiply and Divide Two Numbers

In Listing 2-3, we enter two floating point numbers. Firstly, we multiply them together
and print the answer; then we divide the first number by the second and display the

answer.

Listing 2-3. cl.2multdiv.c

#define CRT SECURE_NO WARNINGS
#include <stdio.h>

/* multiply two floating point numbers */

int main()

{

float this_is_a numberi, this_is a number2, total; /* storage areas
for the numbers */

62

CHAPTER2 C PROGRAMMING
/* ask the user to enter two floating point (decimal) numbers */

printf("Please enter a number:\n ");
scanf("%f", &this_is a number1); /* read number in */
printf("You entered %f\n", this is a number1);

printf("Please enter another number: \n");
scanf("%f", &this_is a number2); /* read number in */
printf("You entered %f\n", this_is a number2);

/* multiply the two numbers into 'total' and display the answer */

total = this_is_a number1l * this_is_a number2; /* multiply the
numbers */
printf("product is %f\n", total);

/* divide the two numbers into 'total' and display the answer */

total = this_is_a numberi / this_is a number2; /* divide the numbers */
printf("quotient is %f\n", total);

return 0;

This section was concerned with basic data and arithmetic manipulation. The next
section looks at the usefulness of using loops in programming.

For Loops

When we were doing our two numbers program, it would have been a bit of a chore to do
a similar thing with, say, ten numbers. We could have done it by repeating similar code
ten times. We can make this a bit simpler by writing one piece of code but then looping
round the same piece of code ten times. This is called a “for loop.”

Listing 2-4 is an example of how a for loop can help us.

63

CHAPTER2 C PROGRAMMING

Listing 2-4. cl.2for.c

#define CRT_SECURE_NO_WARNINGS
#include<stdio.h>
/* demonstrate a forloop */

main()

{
float this_is_a number, total; /* storage areas for the numbers */
int i;
total = 0;

/* forloop goes round 10 times */
for (i = 0;i < 10;i++)

{
/* ask the user to enter the floating point (decimal) number */
printf("Please enter a number:\n ");
scanf("%f", &this_is a number); /* read number in */
total = total + this_is a number;
}

printf("Total Sum is = %f\n", total);

The syntax of the for statement is

for(initial value; final value; increment)

The code to go round the loop is contained with the { after the for statement and the }
after the statements.

Within the for statement, the variable i is used as the variable to be incremented and
tested while going through the loop. Its initial value of i is 0 as shown in the first part of
the for statement; then each time the code is completed within the loop, 1 gets added to
i (this is what i++ does). After each loop, a test is made to see if the i value has reached 10
(this is the i<10 part). When it does, the loop stops. So in this case, the code in the loop is
executed ten times. Within the code, the user is asked to enter a number. This gets added
into total in each loop, and then the final value is printed out.

64

CHAPTER2 C PROGRAMMING

Do While Loops

There is another method of doing a similar thing to a for loop, but it is formatted slightly
differently. The loop says “do” - then within {}, again, contains a series of commands,
ending with “while ...” where the “..” is just a condition to be true. When the condition is
not true, it drops out of the loop. So using a “do” loop to do the same thing as our for loop
would be. The i++ instruction in the do loop just adds 1 to whatever i currently contains.

To subtract 1, it’s just i--.

#define CRT_SECURE_NO_WARNINGS

#include<stdio.h>
/* demonstrate a do loop */
main()
{
float this_is_a number, total; /* storage areas for the numbers */
int i;
total = 0;
i=o0;
/* do loop goes round until the value of i reaches 10 */
do {

printf("Please enter a number:\n ");
scanf("%f", &this_is a number);
total = total + this is a number;
it++;

}while(i < 10);
printf("Total Sum is = %f\n", total);

You should find that you get the same result as your for loop program.
Having seen how useful loops can be we will now look at switches.

65

CHAPTER2 C PROGRAMMING

Switch Instruction

Another instruction that is useful in C is switch. This takes a value and jumps to an
appropriate position in the code depending on the value. In Listing 2-5, the user can
enter any integer value between 1 and 5.

The switch instruction takes the value, and if it is 1, it jumps to case 1:;ifitis 2, it
jumps to case 2:; and so on. If the number entered is not an integer from 1 to 5, it drops
to the default: case where it outputs an error message.

Listing 2-5. cl.2swi.c

#define CRT_SECURE_NO WARNINGS
#include <stdio.h>

/* Example of a switch operation */
int main()

{

int this_is a number; /* storage areas for the numbers */
/* ask the user to enter integer number */

printf("Please enter an integer between 1 and 5:\n ");
scanf("%d", &this is a number);

/* Move to the appropriate case statement corresponding to the
entered number */

switch (this_is_a number)

{

case 1:
printf("Casel: Value is: %d", this is a number);
break;

case 2:
printf("Case2: Value is: %d", this is a number);
break;

case 3:
printf("Case3: Value is: %d", this is a number);
break;

66

CHAPTER2 C PROGRAMMING

case 4:
printf("Case4: Value is: %d", this is a number);
break;

case 5:
printf("Case5: Value is: %d", this is a number);
break;

default:

printf("Error Value is: %d", this _is a number); /* The number
entered was not between 1 and 5 so report the error*/

}

return 0;

You can do a similar thing but using specific characters rather than numbers. You
then jump to the appropriate place using the character as the case name, for example, if
you type in a, then you jump to case a:.

The last section showed how you can use a switch statement to jump to a specific
piece of code. The next section does a similar thing but uses “if” and “else” instead.

If Else

When a decision has to be made in your program to either do one operation or the other,
we use if statements.

These are fairly straightforward. Basically, we say (the following is not actual code)

if (something is true)
Perform a task

This is the basic form of if.
We can extend this to say

if (something is true)
Perform a task
else
Perform a different task

67

CHAPTER 2 C PROGRAMMING
Here is some C code to demonstrate this:

#include <stdio.h>

/* Example of an if operation */

int main()

{
int this is a number; /* storage area for the number*/
/* ask the user to enter a specific integer */

printf("Please enter an integer between 1 and 10:\n ");
scanf("%d", &this is a number);

if (this_is_a number <6)
printf("This number is less than 6;\n ");

/* ask the user to enter another specific integer */

printf("Please enter an integer between 10 and 20:\n ");
scanf("%d", &this is a number);

if (this_is_a number <16)

printf("This number is less than 16\n ");
else

printf("This number is greater than 15\n ");

return O;

Create and test your program. When you are testing, it is good practice to test to each
limit and to even enter incorrect data. Here there is no check to see if you really do enter
within the ranges specified. You could add a test yourself.

There is an extension of the “if then else” type of command. This is the “if then else
if” where you add an extra level of ifs. The following is an extension of your last program
to add this.

If Else If

Listing 2-6 does the same if as the previous one, but instead of just an else following it, it
does else if to test another option.

68

CHAPTER 2 C PROGRAMMING
Listing 2-6. c1.2if.c

#define CRT_SECURE_NO_WARNINGS

#include <stdio.h>

/* Example of an if then else if operation */
int main()

{

int this_is _a number; /* storage area for the number*/
/* ask the user to enter a specific integer */

printf("Please enter an integer between 1 and 10:\n ");
scanf("%d", &this is a number);

if (this_is_a number < 6)
printf("This number is less than 6;\n ");

/* ask the user to enter another specific integer */

printf("Please enter an integer between 10 and 20:\n ");
scanf("%d", &this_is a number);

if (this_is a number < 16)

{
printf("This number is less than 16\n ");
}
else if (this_is a number == 20)
{
printf("This number is 20\n ");
}
else
{
printf("This number is greater than 15\n ");
}
return 0;

69

CHAPTER2 C PROGRAMMING

So here, it tests if the number entered was less than 16. If it was, it prints “This number
is less than 16”; otherwise, it then tests if the number equals 20. If it is, it prints out “This
number is 20" Otherwise, it prints out “This number is greater than 15 but not 20",

Having seen the usefulness of “if” statements, we will now move to arrays.

Data Arrays

There is another way of storing data in our programs rather than in just individual
locations. These are called “arrays.” They can be defined as “int” where all the elements
of the array are integers. They can be “char” where all the elements are character. There
are also other types which we will see later. We define an integer array with the length of
the array which we insert in square brackets, for example, int arr[8] for an array of eight
elements. In this case, “arr” is the name of the array.

Listing 2-7 shows us how to read in eight integers and store them in an array.

Listing 2-7. cl.2arr.c

#define CRT_SECURE_NO_WARNINGS
#include<stdio.h>
/* program to show array use */

int main()

int arr1[8]; /* define an array of 8 integers */
int i;

/* ask the user to enter 8 integers */
printf("enter 8 integer numbers\n");

for (i = 0;i < 8;i++)
{

scanf("%d", &arri[i]); /* read the entered integers into
arri[i] */

}

/* print out the contents of the array */

70

CHAPTER2 C PROGRAMMING
printf("Your 8 numbers are \n");

for (i = 0;1 < 8;i++)
{
printf("%d ", arri[i]);

}
printf("\n");

Create this program and test it. It will read the eight characters you enter and store

them in the array “arrl”. It then reads arrl and prints out its contents.

To read and write characters into our array, we define it as “char” and notice that we

use %c in our scanf and printf because %c expects characters and %d expects integers.

#define CRT_SECURE_NO WARNINGS
#include<stdio.h>
/* program to show character array use */

int main()

{

char arr2[10]; /* define array of 10 characters */
int i;

/* ask the user to enter 10 characters */
printf("enter 10 characters \n");

for (i = 0;i < 10;i++)

{
scanf("%c", 8arr2[i]); /* read each character entered into the
array */

}

printf("Your 10 characters are \n");

/* print out the contents of the array */

71

CHAPTER2 C PROGRAMMING

for (i = 0;i < 10;i++)
{
printf("%c ", arr2[i]);

}
printf("\n");

Arrays are really useful when we are writing software to solve mathematics problems.
We can extend our ideas we have just learned. If we say that our int array we have just
used is in one dimension (i.e., numbers in a line), we can have a two-dimensional array
(like numbers in a matrix.)

The following is a program that allows you to enter data into an two-dimensional
array. It can have a maximum of eight integers in one part and seven in the other part.
This is defined here as int arr1[7][8]. You can picture it like this:

1 2 3 4 5 6 7

4 3 4 5 6 7 8

0 4 5 6 7 8 9 10
9 5 6 7 8 9 10 11
3 7 8 9 10 11 12 13
8 8 9 10 11 12 13 14
6 9

10 11 12 13 14 15

This array has seven rows and eight columns and can be referred to as a 7x8 array
(like a 7x8 matrix in mathematics). Listing 2-8 reads data into the array.

Listing 2-8. cl.2arr2D.c

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

/* example of a 2D array test*/
int main()

{
int arra[7][8]; /* 2D array */

int 1, j, k, 1;

/* ask the user to enter number of rows and columns to be used */
72

CHAPTER2 C PROGRAMMING

printf("enter number of rows and columns (max 7 rows max 8 columns) \n");
scanf("%d %d", &k, &1); /* store the number of rows and columns */

/* test if the user has exceeded the limits for rows or columns */

if (k>7 1] 1>8)

{
printf("error - max of 8 for rows or columns\n");
}
else
{
/* ask the user to enter the data for the arrays */
printf("enter array\n");
for (i = 0;i < k;i++)
{
for (j = 0;j < 1;j++)
{
scanf("%d", &arri[i][j]);
}
}
/* print out the 2D array */
printf("Your array is \n");
for (i = 0;i < k;i++)
{
for (j = 0;j < 1;j++)
{
printf("%d ", arri[i][j]);
}
printf("\n");
}
}

73

CHAPTER2 C PROGRAMMING

There are a few new ideas in this program. As well as having our two-dimensional
array, we also have examples of a nested for loop as seen earlier. We also see something
which is a really useful thing to use in your programs. This is called “data vetting.” If you
look at the definition of our arrayj, its first part has seven integers and its second has eight
integers. If the user tried to enter more than eight, it would cause the program to fail with
an error. We can prevent this by checking that the user does not enter more than the
maximum expected number of integers for each part. This is what the first “if” statement
does. The first part of the program stores the number of “rows” into k and the number
of columns into 1. The if statement says that if the number of rows is greater than seven
or the number of columns is greater than eight, then it outputs an error message and

Hll"

terminates the program. The symbol “||” means “or”

The 2D array stores row by row. So if you enter the data shown in the 7x8 matrix
shown above and print out the first row, then you should get 123 4 5 6 7 8. You can write
a quick test program to do this.

#tdefine _CRT_SECURE_NO_WARNINGS
#include<stdio.h>

/* example of a 2D array test with extras*/
int main()

{
int arri[7][8]; /* 2D array */

int 1, j, k, 1;
/* ask the user to enter number of rows and columns to be used */

printf("enter number of rows and columns (max 7 rows max 8 columns) \n");
scanf("%d %d", 8k, &l);

if (k>71]]1>38)

{

printf("error - max of 8 for rows or columns\n");

74

CHAPTER 2

else

printf("enter array\n");
for (i = 0;i < k;i++)

{
for (j = 0;3 < 1;3++)
{
scanf("%d", &arri[il[j]);
}
}

printf("Your array is \n");
for (i = 0;1 < k;i++)

{ for (j = 0;j < 1;3++)
{ printf("%d ", arri[i][j]);
;rintf("\n");

}

}

/* print out the first row of the 2D array */

printf("first row of array\n");
for (j = 0; < 1;j++)
{

printf("%d ", arri[o][j]);

}
printf("\n");

C PROGRAMMING

This is the same as your 2D array program, except that at the end, it does an extra bit.

for(j=0;j<k;j++)

{

printf("%d ",arr1[0][j]);

75

CHAPTER2 C PROGRAMMING

This just prints out arr[0][0], arr[0][1], arr[0][2], arr[0][3], arr[0][4], arr[0][5],
arr[0][6], and arr[0][7]. This is how the data is stored in a 2D array. If you wanted the
second row, you just need to change the printf(“%d’arr1[0][j]); in the last for loop to
printf(“%d’arr1[1][j]);.

Two-dimensional arrays are vital when you write programs to perform operations on
matrices.

1 2 2 3 3 5
3 4]+ (4 5)=(7 9
5 6 6 7 11 13

Here we are adding two 3x2 matrices to produce another 3x2 matrix. As you can see
from the preceding diagram, we just add the corresponding row and column to produce
a sum in the equivalent position in the third matrix.

Listing 2-9 demonstrates this. The first matrix is matarr1 and the second is matarr2.
You can see that these are predefined to have the same values as the preceding matrices.
The sum of the two is placed into matadd. A nested for loop first clears matadd to zeroes.
Another nested for loop performs the addition.

Listing 2-9. cl.2matadd.c

/* Matrix program */

/* add two matrices */

#define CRT_SECURE_NO_WARNINGS
#include<stdio.h>

int main()

{

int matarri[3][2] = {
{1, 2},

{3, 4},

{5, 6}

b

int matarr2[3][2] = {

{2, 3},
{4, 5},

76

CHAPTER2 C PROGRAMMING

{6, 7}
};

int matadd[3][2];/* matrix answer (rowxcolumn)*/

int 1i,3j,k;

int r1,c1,r2,c2;/* row and col for ist and 2nd matrices */
r1=3;

c1=2;

r2=3;

c2=2;

for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
matadd[i][j]=0;/* clear the matrix */
}
}

printf("Your first matrix is \n");
for(i=0;i<r1;i++)

{
for(j=0;j<cl;j++)
{
printf("%d ",matarr1[i][j]); /* first matrix in
matarri */
}
printf("\n");
}

printf("Your second matrix is \n");
for(i=0;i<r2;i++)
{
for(j=0;j<c2;j++)
{
printf("%d ",matarr2[i][j]); /* second matrix in
matarr2 */

77

CHAPTER2 C PROGRAMMING

}
printf("\n");

}

/* add corresponding elements of the matrices into matadd */
for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
for(k=0;k<r2;k++)
{
matadd[1][j] = matarra[i][j]
+ matarr2[i][j];
}
}
}

/* Write the solution */
printf("Your matrix multiplication is \n");
for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
printf("%d ",matadd[i][]]);
}
printf("\n");
}

The following diagram shows the mechanism for multiplying two matrices. For two
matrices, the number of columns of the first matrix must equal the number of rows of the
second. For the following matrices, the first matrix is 3x2 (three rows and two columns),
and the second matrix is 2x1 (two rows and one column), so these can be multiplied.
Looking at the third matrix in the diagram, you can see how the multiplication works.

78

CHAPTER2 C PROGRAMMING

10 27 10x200 + 27x25 2675
27 31| X (%3?) = | 27x200 + 31x25 | = | 6175
48 26 D 48x200 + 26x25 10250

Listing 2-10 performs the preceding multiplication with two preset matrices, matarrl
and matarr2. The result of the multiplication is held in the matrix matmult. This is
cleared to zeroes initially.

Listing 2-10. cl.2matmult4.c

/* Matrix program */

/* multiply two matrices */
#define CRT_SECURE_NO WARNINGS
#include<stdio.h>

int main()

{

int matarri[3][2] = {
{10, 27},

{27, 31},

{48, 26}

};

int matarr2[2][1] = {
{200},

{25}

};

int matmult[3][1]; /* matrix answer (rowxcolumn)*/

int 1i,3j,k;

int r1,c1,r2,c2; /* row and col for ist and 2nd matrices */
r1=3;

c1=2;

12=2;

c2=1;

79

CHAPTER2 C PROGRAMMING

for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
matmult[i][j]=0; /* clear the matrix */
}
}

printf("Your first matrix is \n");
for(i=0;i<r1;i++)

{
for(j=0;j<c1;j++)
{
printf("%d ",matarr1[i][j]); /* first matrix in
matarri */
}
printf("\n");
}

printf("Your second matrix is \n");
for(i=0;i<r2;i++)

{
for(j=0;j<c2;j++)
{
printf("%d ",matarr2[i][j]); /* second matrix in
matarr2 */
}
printf("\n");
}

/* multiply corresponding elements of the matrices into matmult */
for(i=0;i<r1;i++)
{
for(j=0;j<c2;j++)
{
for(k=0;k<r2;k++)

{

80

CHAPTER2 C PROGRAMMING

matmult[i][j] = matmult[i][]j] + matarri[i][k]
* matarr2[k][j];

}

/* Write the solution */
printf("Your matrix multiplication is \n");
for(i=0;i<r1;i++)

{
for(j=0;j<c2;j++)
{
printf("%d ",matmult[i][j]);
}
printf("\n");
}
}
You have seen the importance of being able to extend our data definitions to include
arrays.
Functions

Sometimes when you are writing your programs, you will find that you may end up writing
similar lines of code in different places in the program. You can make this easier to do and
easier for other people to follow what your code does if you put these similar lines of code in
a separate place and just call them when you need them. This separate set of code is called a
function. If the function has to do slightly different things each time it gets called, this is fine
as you can call the function with a different parameter each time you call it. The following
code will demonstrate this. It is a fairly trivial piece of code, but it illustrates the point.

#define CRT SECURE_NO WARNINGS
#include <stdio.h>

/* This code demonstrates what a function does */
/* The function here compares two numbers and says which is bigger */
/* The user enters three numbers and gets told which is bigger than
which !*/
81

CHAPTER2 C PROGRAMMING

void myfunction(int a,int b); /* declaration of your function and its
parameters */

int first , second, third;
main()

{

/* ask the user to enter the three numbers to be compared */

printf("Please enter first integer number: ");
scanf("%d", &first);
printf("Please enter second integer number: ");
scanf("%d", &second);
printf("Please enter third integer number: ");
scanf("%d", &third);

myfunction(first , second); /* compare the first with the second */
myfunction(first , third); /* compare the first with the third */
myfunction(second , third); /* compare the second with the third */
}
void myfunction(int a,int b)
/* the function is outside the main{} part of the program */
/* The function just compares the two parameters, a and b, and says which
is greater*/

{
if(a>b)
printf("%d is greater than %d\n", a,b);
else if (a<b)
printf("%d is greater than %d\n", b,a);
else
printf("%d and %d are equal\n", a,b);
}

The function here is called myfunction. Notice that it is defined outside of main{}.
Itis declared at the start of the program. The function is given two numbers, a and b. It
compares the two numbers and says which is bigger. In the main part of the program,
the user is prompted to enter three numbers. These are then entered into the calls to
myfunction in the main part of the code.

82

CHAPTER2 C PROGRAMMING

This is a fairly simple piece of code, but it shows how a function can be used.

Listing 2-11 also shows how functions are used. This code is based on the program
you wrote in the “Data Arrays” section of this chapter. It prints out specific rows of your
2D array. One call to the function asks the function to print out the second row of the
array, and the other call asks it to print out the first row.

Listing 2-11. cl.2func.c

#define CRT_SECURE_NO WARNINGS
#include<stdio.h>

/* example of a function*/
void printarow(int row, int cols, int arr[8][8]);
int main()

{
int arr1i[8][8];

int i, j, rows, cols;
/* ask the user to enter the rows and columns */

printf("enter number of rows and columns (max 8 rows max 8 columns)
\n");

scanf("%d %d", &rows, &cols);

if (rows > 8 || cols > 8)

{

printf("error - max of 8 for rows or columns\n");

else

printf("enter array\n");
for (i = 0;i < rows;i++)
{
for (j = 0;j < cols;j++)
{
scanf("%d", &arri[i][j]);

83

CHAPTER2 C PROGRAMMING

}
}

printf("Your array is \n");
for (i = 0;i < rows;i++)

{
for (j = 0;j < cols;j++)
{
printf("%d ", arri[i][j]);
}
printf("\n");
}

}

printarow(2, cols, arri); /* This calls to print out row 2
only(assumes that you have at least 2 rows) */
printf("\n");
printarow(1, cols, arri); /* This calls to print out row 1 only */
printf("\n");

}

void printarow(int row, int cols, int arr[8][8])

/* this is a function which can be called from anywhere in the program */
/* and can be called as often as you want to */

/* If you need to do the same type of thing many times it saves you */

/* having to write out the same code repeatedly. All you need to */

/* is call the function */

{
int j;
printf("row %d is ", row);
for (j = 0;j < cols;j++)
{
printf("%d ", arr[row - 1][j]);
}
}

84

CHAPTER2 C PROGRAMMING

Notice that the array name used in the function does not have to be the same as
that used in main{}. In the instruction if(rows>7 || cols>8), the || means OR. So here, we
are saying if the user has specified more than seven rows or more than eight columns,
then we print an error and stop the program. At the end of the chapter, the common
arithmetic and logical symbols used in C are listed.

Create and test this program. The code assumes you have at least two rows. You
could amend the code to call printarow as many times as you want to.

A function can return a value to the caller. The following code demonstrates this:

/* Function which returns an answer */
/* finds the pupil in one year of the school with the highest marks */

#include <stdio.h>
double getmarks(double pupils[]);

int main()
{
double pupil;
/* Array with marks for class is preset in the main part of the
program */
double marks[] = { 10.6, 23.7, 67.9, 93.0, 64.2, 33.8 ,57.5 ,82.2
,50.7 ,45.7 };

/* Call function getmarks. The function returns the max marks which
is then stored in pupil */

pupil = getmarks(marks);

printf("Max mark is = %f", pupil);

return 0;
}
double getmarks(double pupils[])
{

int i;

double highest;

highest = 0;

/* Go through all the pupils in turn and store the highest mark */
for (i = 0; i< 6; ++i)

85

CHAPTER2 C PROGRAMMING

{
if (highest < pupils[i])
highest = pupils[i];

}

return highest; /* returns the value in highest to where the function
was called */

The function is called getmarks. It returns a value to the point where it was called.
In real-life programs, the function will be called many times from different points in the
program. This technique is both efficient and makes the program easier to follow.

Strings

Strings in C are just like character arrays we have already looked at. The main difference
is that the string has a NULL character at the end. This is just to show where the string
ends as we have to do things like compare two strings or find the length of the string. To
find the length, we have a function written for us in the string.h library, and this needs
to NULL character at the end. As a result of this, if we are defining a preset string as a
character array of a certain length, we need to account for the NULL at the end. So if
our string had “tokens” in it, the word has six characters so our string array would have
to have seven characters in its definition to account for the NULL character at the end.
When we print a string using printf, we use %s to show it is a string (where we used %d to
print an integer or %f to print a floating point number).

Listing 2-12 is a program to check the length of strings (strlen), copy on to another
(strcpy), concatenate two strings (strcat), and compare the contents of two strings
(strcmp).

Concatenation of two strings is just tagging one string onto the end of the other.

Listing 2-12. cl.2string.c

#define CRT_SECURE_NO_WARNINGS

#include <stdio.h>

#include <string.h>

/* Program to demonstrate string operations strlen, strcpy, strcat,
strcmp */

86

CHAPTER2 C PROGRAMMING

int main() {
char borrow[7] =
char string1[32]
char string2[16]
char string3[16];
int len;
/* Print out the lengths of the strings */

{ Itl) lol’ lkl, Iel) lnl’ ISI)I\OI };
= "This is string1";
"This is string2";

len = strlen(string1);
printf("strlen(stringl) : %d\n", len);
len = strlen(string2);
printf("strlen(string2) : %d\n", len);
len = strlen(string3);
printf("strlen(string3) : %d\n", len);

/* copy stringl into string3 */

strcpy(string3, stringi);

printf("strcpy(string3, stringl) : %s\n", string3);

len = strlen(string3);

printf("strlen(string3) after copy of stringl into string3 : %d\n",
len);

/* Compare stringl and string3 (these should be the same)*/

if (strcmp(stringi, string3) == 0)
printf("strings are the same\n");

/* concatenates stringl and string2 */

strcat(stringl, string2);
printf("strcat(stringi, string2): %s\n", stringl);

/* total length of stringi after concatenation */

len = strlen(stringl);
printf("strlen(stringl) after cat of string2 onto stringi : %d\n",
len);

87

CHAPTER 2 C PROGRAMMING
printf("String as predefined quoted chars: %s\n", borrow);

return O;

In strlen, the function returns the length of the string.

In strcpy, the function copies the second string in the command to the first.

In strcmp, the function compares the contents of the two strings and returns 0 if
they are equal.

In strcat, the function tags the second string onto the end of the first string.

This section has demonstrated string use in C. An extension of this is the
definition of “structures” which is shown in the following.

Structures

The variables used up to now have just been singly named variables of a certain type.
Another type of variable is a structure. This is a variable that contains separate variables
within it. If you imagine a file containing details of a student at a college, the details of
each student might be their name, their student ID, and possibly their last examination
mark. So, in a paper file, these may be held like this:

id

Name

Percent

So there would be an entry like this in the file for each student.

Here is a program which declares such a structure. It then assigns variable names s1
and s2 to have that type of definition. Then it gives each structure values and then prints
them out.

/* Structure example program */
#define CRT_SECURE_NO WARNINGS
#include<stdio.h>
#include<string.h>

/* define the structure */
struct Student {
int id;

88

CHAPTER2 C PROGRAMMING

char name[16];
double percent;

b

int main() {
/* define two data locations of type “student” */

struct Student s1, s2;
/* Assign values to the si structure */

s1.id = 56;

strcpy(si.name, "Rob Smith");
sl.percent = 67.400000;

/* Print out structure si */

printf("\nid : %d", s1.id);
printf("\nName : %s", si.name);
printf("\nPercent : %1f", si.percent);

/* Assign values to the s2 structure */

s2.id = 73;
strcpy(s2.name, "Mary Gallagher");
s2.percent = 93.800000;

/* Print out structure si */

printf("\nid : %d", s2.id);
printf("\nName : %s", s2.name);
printf("\nPercent : %1f", s2.percent);

return (0);

This can be extended, so instead of defining individual entries (s1 and s2), we can
define a larger number in one definition. In the following example, we define five items
in the array year9. Then we refer to the first student entry as year9[0],the second student
entry as year9[1], etc. (Listing 2-13).

89

CHAPTER2 C PROGRAMMING
Listing 2-13. cl.2struct.c

/* Structure example program (extended structure)*/
#define CRT SECURE_NO_WARNINGS
#include<stdio.h>

/* define the structure */

struct Student {
int id;
char name[16];
double percent;
};
int main() {
int i;
/* define 5 data locations of type “student” */
struct Student year9[5];
for(i=0; i<5; i++)
{
/* Assign values to the structure */
printf("enter student ID\n");
scanf("%d",8year9[i].id);
printf("enter student name\n");
scanf("%s",year9[i].name);
printf("enter student percent\n");
scanf("%1f",8year9[i].percent);
}
for(i=0; i<5; i++)
{

/* Print out structure si */

printf("\nid : %d", year9[i].id);
printf("\nName : %s", year9[i].name);
printf("\nPercent : %1f", year9[i].percent);

}

return (0);

90

CHAPTER2 C PROGRAMMING

This type of structure definition is vital when you set up files and write them or read
them. You will see more of structures in the chapter dealing with file usage.
Structures are used widely in file handling.

Size of Variables

There is a useful function in C which tells you the size in bytes of variables on your
machine. Sometimes, different compilers or software development tools have different
sizes for different structures. The function is called sizeof. You supply it with the variable
type you want to know the size of, and it returns the answer as the number of bytes.

You can also supply a structure as the parameter if you don’t know its size
(Listing 2-14).

Listing 2-14. sizeof
/* Program to illustrate the use of the sizeof command */

#include <stdio.h >
#include < limits.h >
#include < math.h >

int main() {

int sizeofint;

unsigned int sizeofunsint;
float sizeoffloat;

double sizeofdouble;

char sizeofchar;

printf("storage size for int : %zd \n", sizeof(sizeofint));
printf("storage size for uns int : %zd \n", sizeof(sizeofunsint));
printf("storage size for float : %zd \n", sizeof(sizeoffloat));
printf("storage size for double float: %zd \n",
sizeof(sizeofdouble));

printf("storage size for char: %zd \n", sizeof(sizeofchar));

return(0);

91

CHAPTER2 C PROGRAMMING

This prints out the sizes of an int, an unsigned int, a floating point, and a double
floating point as follows:

storage size for int : 4

storage size for uns int : 4
storage size for float : 4
storage size for double float: 8
storage size for char: 1

Goto Command

Under some circumstances, you may want to jump out of your normal sequence of code,
for instance, if you discover an error in a sequence of code. In this case, you can define a
label and jump to the label from within your sequence of code.

Goto is not used frequently in programming but can be used if you want a quick exit
from your program (Listing 2-15).

Listing 2-15. cl.2goto.c

/* Demonstrate a goto statement */
/* a:, b:, c:,d:,e:, f:is a simulation of a program. We will simulate an
error by setting testvalue to 2*/

#define CRT_SECURE_NO WARNINGS
#include <stdio.h>
int main()

{

int i, testvalue;
int x1,x2,x3,x4,x5,x6;

printf("Please enter a number:\n ");
scanf("%d", &testvalue); /* read number in */

X1 = X2 = X3 = x4 = X5 =x6 =0,

a.
x1 = 1;

X2 = 1;
if(testvalue == 2)

92

CHAPTER2 C PROGRAMMING

goto f;

C:

X3 = 1;
d:

X4 = 1;
e:

X5 = 1;
f:

X6 = 1;

printf("x1 = %d, x2 = %d, x3 = %d, x4 = %d, x5 = %d, x6 = %d,
\n",x1,x2,x3,x4,X5,X6);

This outputs (if you enter 0, 3456, and 2)

Please enter a number:
0
X1 =1, x2 =1, x3 =1, x4 =
Please enter a number:

3456
X1 =1, x2 =1, x3 =1, x4 =
Please enter a number:

2
X1 =1, x2 =1, x3 =0, x4

|
=
-
X
vl
1}
=
-
x
(o))
U}
=
-

=0, x5 =0, x6 =1,

Common Mathematical and Logical Symbols

The following is a list of mathematical symbols used in C code and their meanings:

= assign

equals
not equal to
< less than

> greater than
<= less than or equal to
>= greater than or equal to

93

CHAPTER2 C PROGRAMMING

&&% logical AND
|| logical OR
' logical NOT

File Access

This section is about moving data to and from files. The basic commands of file access
are fopen (which opens a file), fclose (which closes it), fread (which reads data from a file
which has been opened), and fwrite (which writes data to a file which has been opened).
There are one or two other file commands which we shall meet later.

We will have a look at these techniques here.

We declare the pointer at the start of the program using the instruction FILE *fp. The
asterisk, *, signifies that the variable is a pointer, and whenever we access the file in our
program, we use fp. We set up the value of the pointer using the fopen command.

“w” means we want write access to the file. The possible values in fopen for this are
as follows:

u_n

r” = opens for reading

«u. ”

w” = creates a file for writing
“a” = append to a file
“r+” =read and write
“w+” = creates a file for reading and writing
“a+” = opens for reading and appending
The fopen command returns a pointer, and this is stored in fp. The code is shown in
the following.

In this program, we are using the command fwrite to write to the file.
fwrite(8s10, sizeof(s1), 1, fp);

We write the data in s10 to the file pointed to by fp. When we have written all of our
data to the file, we call

fclose(fp);

This closes the file pointed to by fp.

94

CHAPTER2 C PROGRAMMING

Student Records File

Our next program in this chapter shows how we can write a structure containing
different types of data to a file. The data contains student identifier, their name, and their
examination marks. The structure is shown as follows:

struct student {
int studentID;
char name[13];
int marks;

s

There is one of these structures for each student. The first program creates a file
containing this data. The structure data for each student is set at the beginning of the
program.

We start by opening the file. The instruction is

fp = fopen("students.bin", "w");

where students.bin is the filename and fp is the file pointer.

We wrrite to the file using several fwrite calls.

We close the file and then reopen it in order to check what we have written. In our
read, we have

numread=fread(&s2, sizeof(s2), 1, fp);

where numread is the number of structures read. We are expecting one structure to

have been read as shown by the third parameter in our fread. If it is 1, then we print the

record. If it is not 1, we check the error. By calling the command feof(fp), we can check if

we have had an unexpected end of file. If so, then we print out an appropriate message.
Finally, we close the file (Listing 2-16).

Listing 2-16. cl.2filewrite2.c
/* Create the file and write records to it */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>

/*define the structure for each student’s data */

95

CHAPTER2 C PROGRAMMING

struct student {
int studentID;
char name[13];

int marks;
};
int main()
{

int i, numread;
FILE *fp;

struct student si;
struct student s2;

/* Preset the data for each student */

struct student s10 = { 10,"Coster ",15 };
struct student s11 = { 11,"Harris ",20 };
struct student s12 = { 12,"Frazer ",25 };
struct student s13 = { 13,"Kirrane ",30 };
struct student s14 = { 14,"Marley ",35 };
struct student s15 = { 15,"OBrien ",40 };
struct student s16 = { 16,"Brown ",45 };
struct student s17 = { 17,"Tomlinson ",50 };
struct student s18 = { 18, "Mulcahy ",55 };
struct student s19 = { 19,"Coyle ",60 };
struct student s20 = { 20,"Baxter ",65 };
struct student s21 = { 21, "Weeks ",70 };
struct student s22 = { 22,"Owens ",75 };
struct student s23 = { 23,"Cannon ",80 };
struct student s24 = { 24,"Parker ",85 };

/* Open the students file */
fp = fopen("students.bin", "w");

/* Write details of each student to file*/
/* from the structures defined above */

96

fwrite(8&s10,
fwrite(&s11,
fwrite(&s12,
fwrite(8&s13,
fwrite(8&s14,
fwrite(&s15,
fwrite(8s16,
fwrite(&s17,
fwrite(&s18,
fwrite(8&s19,
fwrite(8&s20,
fwrite(8&s21,
fwrite(8s22,
furite(8s23,
fwrite(8&s24,

sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),
sizeof(s1),

/* Close the file */

fclose(fp);

/* Reopen the file (at the start of the file)*/

fopen("students.bin", "r

- - - - - -

-

- - - - - -

P PR R P P P PP PR R R R R
e

-

)5

p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);
p);

/* Read and print out all of the records on the file */

for (i = 0;i < 15;i++)

{

numread = fread(&s2, sizeof(s2), 1, fp);

structure s2 */

if (numread == 1)

{

/* read into

CHAPTER2 C PROGRAMMING

/* reference elements of structure by s2.studentID etc */

printf("\nstudentID :

printf("\nName : %s", s2.name);

printf("\nmarks

: %d", s2.marks);

%d", s2.studentID);

97

CHAPTER2 C PROGRAMMING

else {
/* If an error occurred on read then print out message */

if (feof(fp))

printf("Error reading students.bin : unexpected end
of file fp is %p\n", fp);

else if (ferror(fp))
{

perror("Error reading students.bin");

}
/* Close the file */

fclose(fp);

Listing 2-17 reads and displays the data from the file. Again, we open the file, this
time as read-only (“r” in the open call).

The following code shows this.

We specify in the fread that we want to read the data into the structure in our
program. Here the structure is s2, and at the top of the program, we have our structure
definition as for the filewrite program. In our definition of s2, we identify it as type
“structure student.” This defines the type in the same way as int defines the type for our
numread as in definitions at the top of the program.

Listing 2-17. cl.2fileread3.c

/* fileread */
/* reads from file */
/* reads and prints sequentially */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>

/*define the structure for each student’s data */

98

CHAPTER2 C PROGRAMMING

struct student {
int studentID;
char name[13];
int marks;

I

int main()

{
FILE *fp;

struct student s2;

int numread, i;
/* Open students file */

fp = fopen("students.bin", "1r");
printf("\nAll students\n");
for (i = 0;i < 15;i++)

{
/* Read each student data from file sequentially */

fread(8s2, sizeof(s2), 1, fp);
/* Print student ID, name and Marks for each student */

printf("\nstudentID : %d", s2.studentID);
printf("\n Name : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}
fclose(fp);

Listing 2-18 shows how to update a record in the file. Here we want to update the
student’s record whose ID is 23 and add 10 to their marks. We move through the file until
we find the correct ID. We then add 10 to their marks in their structure. At this point, the

99

CHAPTER2 C PROGRAMMING

file pointer is pointing to the next record, so we have to move it back one record, and
then our fwrite will overwrite the correct record. We move back by one record using the
command

fseek(fp,minusone*sizeof(s2),SEEK CUR);

The minusone*sizeof(s2) part of this instruction means go backward by the length of

one record.

Listing 2-18. cl.2fileupdate2.c

/* fileupdate */
/* reads and prints sequentially */
/* reads, updates and prints specific records */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>
/*define the structure for each student’s data */

struct student {
int studentID;
char name[13];

int marks;
};
int main()
{

FILE *fp;

long int minusone = -1;
struct student s2;

int numread, i;
/* Open students file */

fp = fopen("students.bin", "r");
printf("\nAll students\n");

for (i = 0;i < 15;i++)

{

/* Read each student data from file sequentially */

fread(8s2, sizeof(s2), 1, fp);
100

CHAPTER2 C PROGRAMMING

/* Print student ID, name and marks for each student */

printf("\nstudentID : %d", s2.studentID);
printf("\n Name : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}
fclose(fp);

/* Re-open the students file */

fp = fopen("students.bin", "r+"); /* r+ is for update */
printf("\nStudent ID=23\n");

for (i = 0;i < 15;i++)

{
/* Search the file for student with ID of 23 */

fread(8s2, sizeof(s2), 1, fp);
if (s2.studentID == 23)
{
/* Found the student. */
/* update their marks */
/* Print their updated details */

s2.marks = s2.marks + 10;
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);
fseek(fp,minusone*sizeof(s2),SEEK CUR);
fwrite(&s2,sizeof(s2),1,fp);

break;

}
/* Go back to the beginning of the file */

fseek(fp, sizeof(s2), SEEK END);
rewind(fp);
printf("\updated file\n");

101

CHAPTER2 C PROGRAMMING
/* read and display the updated file*/

for (i = 0;i < 15;i++)

{
fread(8s2, sizeof(s2), 1, fp);
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}

fclose(fp);

Listing 2-19 shows how we can select specific records or numbers of records from the
file. We open the file using fp = fopen(“students.bin’, “r”);. The “r” here means read-only.

We start by reading all of the files and printing out all of the data. We then close the
file and reopen it. We want to find the student whose ID is 23. When we find it, we print it
out.

Rather than closing our file and reopening it, we can call rewind which sets the file
back to the beginning. We use fseek(fp, sizeof(s2), SEEK_END); to get to the end of the
file and then rewind(fp); to move the file pointer back to the beginning.

On this pass of the file, we want to find all of the students whose marks are above
63. We, again, set up a for loop to look through each structure on the file. If the marks
are over 63, we print out the student’s name. This time we don’t break from the for loop
because there may be more than one student with marks over 63.

We then rewind to the start of the program and print out the first three students in
the file. This program shows some of the different select options we have.

Listing 2-19. cl.2fileselect.c

/* fileupdate */

/* reads from file */

/* reads and prints sequentially */

/* reads and prints specific records */

#define CRT SECURE_NO WARNINGS
#include<stdio.h>

102

CHAPTER2 C PROGRAMMING

/*define the structure for each student’s data */

struct student {
int studentID;
char name[13];

int marks;
};
int main()
{
FILE *fp;
long int minusone = -1;

struct student s2;
int numread, i;
/* Open students file */

fp = fopen("students.bin", "1r");
printf("\nAll students\n");
for (i = 0;i < 15;i++)

{

/* Read each student data from file sequentially */
fread(8s2, sizeof(s2), 1, fp);
/* Print student ID, name and marks for each student */

printf("\nstudentID : %d", s2.studentID);
printf("\n Name : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}
fclose(fp);
/* Re-open the students file */

fp = fopen("students.bin", "r");
printf("\nStudent ID=23\n");

103

CHAPTER2 C PROGRAMMING

for (i = 0;i < 15;i++)

{
/* Search the file for student with ID of 23 */
fread(8s2, sizeof(s2), 1, fp);
if (s2.studentID == 23)
{
/* Found the student. Print their name and marks */
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);
break;
}
}

/* Go back to the beginning of the file */

fseek(fp, sizeof(s2), SEEK END);
rewind(fp);
printf("\nStudents marks>63\n");

/* Find all students with marks are above 63 */

for (i = 0;i < 15;i++)

{

fread(&s2, sizeof(s2), 1, fp);
if (s2.marks > 63)
{

/* Print out name of each student with marks above 63 */
printf("\nName : %s", s2.name);

}
/* Go back to the beginning of the file */

rewind(fp);

/* Read and print out the first 3 students in the file */

104

CHAPTER2 C PROGRAMMING
printf("\nFirst 3 students \n");

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nstudentID : %d", s2.studentID);
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nstudentID : %d", s2.studentID);
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}

numread = fread(&s2, sizeof(s2), 1, fp);
if (numread == 1)

{
printf("\nstudentID : %d", s2.studentID);
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}

/* Close the file */

fclose(fp);

Summary

After reading this chapter and running the programs shown, you should have a good

understanding of how C can help you in your work. The following chapters implement

what has been shown in Chapter 1 and here.

105

CHAPTER 2

C PROGRAMMING

Exercises

106

For your for loop example, in your for loop program, read in an
integer number and use it in your for instruction as the limit for
the loop. Test your amendment by giving it the same number as
your original for loop program.

Write a program to extend the data array program so that you
enter and store two separate arrays. Then print out the first line of
the first array and the first line of the second array.

Write a program similar to the one where you return a value from
a function. In this case, the function is called to find the average
of a set of marks. Set up an array in the main part of the program
and initialize it with nine values. Call your function to calculate
the average of these numbers. Your function should return the
average, and this value is stored in the main part of the program
and then printed out.

Write a program to add another student to the file. Do not just
add it to the list in the c1.2filewrite2.c program, but write a new
program to append another student to the file.

CHAPTER 3

SQLinC

This chapter introduces the reader to the way the database language, Structured Query
Language (SQL), can be accessed and used from a C program. It will be demonstrated how
to create the database file. When this is done, the reader will be able to create database
tables. Then, it will be shown how to insert data into the table, how to amend data in the
table, how to delete data from the table, and how to print out data held in the table.

Review of SQL and SQLite

SQL (Structured Query Language) is used to access a database. The easiest way to
understand this is to look at an example of a database table. One such table is shown in
the following. This is the table we will use in this chapter.

A typical database table would contain information about a large number of people
working for the same company. The data for one person is contained in a “row.” This row
holds the person’s ID, their surname, their age, and their job title (occupation).

id surname age occupation
123 Jones 37 Accountant
125 Smith 42 HR
128 Allen 28 Secretary
131 Bradley 26 Programmer
132 Edwards 41 Programmer
133 King 35 S/W Engineer
134 Price 39 H/W Engineer
136 Roberts 52 Manager
(continued)
© Philip Joyce 2022 107

P. Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4_3

https://doi.org/10.1007/978-1-4842-7774-4_3#DOI

CHAPTER3 SQLINC

id surname age occupation
138 Foster 44 Analyst

139 Shannon 24 Programmer
141 Lewis 27 Receptionist

We will use sqlite3 which is a relational database management system. This is in
a Clibrary which acts as our interface to SQL. If sqlite3 is not on your computer, it is
downloadable free of charge.

Creating the Database

Create the database using the following code in a C program (creating and running a C
program are shown in Chapter 2):

dbcreate = sqlite3 open("test.db",8&db);

After this call, dbcreate will contain 0 if the database is opened successfully and non-
zero otherwise.

If the database file is created or it already exists, then this command returns its
pointer in “db”.

This creates the database file test.db in the current directory. We can use the same
name for the database file and one of its tables.

We use SQL to create the table. In the preceding case, we will call the table
“Personnel’; so the SQL command for this would be

CREATE TABLE Personnel (id INT PRIMARY KEY, surname TEXT, age INT,
occupation);

In this case, the ID is the “Primary Key” which uniquely identifies the person. So,
for example, if two people had the same surname, then as their primary keys would be
different, this would uniquely identify them.

We create the row for each person by having a separate “INSERT” statement for each
of them. The first person in our table could be defined by the following statement

INSERT INTO Personnel VALUES (123, 'Jones', 37, 'Accountant');

108

CHAPTER3 SQLINC

where 123 is the id, ‘Jones’ is the surname, 37 is the age, and ‘Accountant’ is the
occupation.

If we wanted to find the names of all of the programmers in the company, then we
would use a SELECT SQL statement which would say

SELECT surname FROM Personnel WHERE occupation = 'Programmer’;

We can select a specific group using the “HAVING” option. In the following case,

Usn

we want to select everybody whose age is greater than 25. Here, the “*” in the command

means “everybody.
SELECT * FROM Personnel GROUP BY age HAVING age > 25

We can amend a row using the “UPDATE” command. In the case shown in the
following, we want to update the person’s occupation to be ‘manager’:

UPDATE Personnel SET occupation = 'manager' WHERE id = 123;

Finally, we can delete a row by specifying the ID of the row to be deleted in the
“DELETE” command shown here:

DELETE FROM Personnel WHERE id = 136;

We will use the sqlite3 standard software.

The C programs in this chapter use the fundamental SQL interface routines supplied
when you download sqlite3.

The three main interface routines used are sqlite3_open, sqlite3_exec, and sqlite3_
close:

1) sqlite3_open(“test.db’; &db); connects to the test.db database file.
This returns a value to say if the connection was successful.

2) sqlite3_exec(db, sql, callback, 0, &err_msg); executes the SQL
command held in the “sql” parameter. The “callback” parameter
can be 0, or it can be the name of a function that is called when the
sqlite3_exec function returns. This function can then process the
rows that sqlite3_exec has retrieved. &err_msg returns any error

message.

109

CHAPTER3 SQLINC

3) sqlite3_close(db); closes the database connection.

When sqlite3_open returns a successful connection to the
database file, then we can create a new table in the file or access

an existing one.

4) sqlite3_errmsg(db) gives an error message.

#include <sqlite3.h>
#include <stdio.h>

These are the two include files we need for the programs used here.

In the programs, the char *sql is a command which sets up a pointer to where the
program stores the command (CREATE, SELECT, etc.).

After the exec statement is performed, the status of the command is held in rc. This is
then checked, and if there is an error, it can be reported to the user using err_msg.

SQLITE_OK is zero.

Programs return 1 if there has been an error or 0 otherwise.

Having seen these basic ideas, we can now proceed to write the programs.

Creating a Table

This program creates the “Personnel” table as described earlier.
The actual database is the file "test.db". Our database tables are added into this.
In Listing 3-1, the data for each of the eight rows to be inserted is coded into the
program. In later programs, we will allow the user to enter the data manually from the
command line.

Listing 3-1. csqlinsert_datax.c

#include <sqlite3.h>
#include <stdio.h>
int main(void)

{

sqlite3 *db;

char *err_msg = 0;

110

CHAPTER3 SQLINC
int rc = sqlite3_open("test.db", &db);/* open the database */
/* check the status of the database open request */

if (rc != SQLITE_OK)
{
/* database cannot be opened */
/* report the error */
fprintf(stderr, "Cannot open database: %s\n",
sqlite3_errmsg(db));
sqlite3 close(db);
return 1;

}

/* The database exists so we can create our table and add our 8 rows to
it */

/* The 'create table' and 8 'insert' commands can be */

/* copied into the *sql pointer together */

/* Each row contains ID, Name, Age and Occupation */

char *sql = "DROP TABLE IF EXISTS Personnel;"

"CREATE TABLE Personnel(Id INT PRIMARY KEY, Name TEXT, Age INT,
Occupation);"

"INSERT INTO Personnel VALUES(1, 'Brown', 42, "accountant');"
"INSERT INTO Personnel VALUES(2, 'Jones', 27, "programmer");"
"INSERT INTO Personnel VALUES(3, 'White', 30, "engineer');"
"INSERT INTO Personnel VALUES(4, 'Green', 29, 'electrician');"
"INSERT INTO Personnel VALUES(5, 'Smith', 35, 'manager");"
"INSERT INTO Personnel VALUES(6, 'Black', 21, "secretary');"
"INSERT INTO Personnel VALUES(7, 'Allen’, 41, "cleaner');"
"INSERT INTO Personnel VALUES(8, 'Stone', 21, 'receptionist');";

rc = sqlite3_exec(db, sql, 0, 0, &err_msg); /* perform the create table
and inserts and check if any errors */

if (rc != SQLITE OK)
{

/* an error has occurred - report it and close program */

111

CHAPTER3 SQLINC

fprintf(stderr, "SQL error: %s\n", err_msg);
sqlite3_free(err_msg);
sqlite3_close(db);

return 1;
}
sqlite3_close(db); /* close the database connection */
return 0;
}

You can print the whole table by using the program Csglselect_allx2b.c described in
the section “Selecting All Rows” in this chapter.
If we print out the table, it would look like this:

Id =1

Name = Brown

Age = 42

Occupation = accountant

Id = 2

Name = Jones

Age = 27

Occupation = programmer

Id = 3

Name = White

Age = 30

Occupation = engineer

Id = 4

Name = Green

Age = 29

Occupation = electrician

Id =5

Name = Smith

Age = 35

Occupation = manager

112

CHAPTER3 SQLINC

Id = 6
Name = Black
Age = 21

Occupation = secretary

Id =7

Name = Allen

Age = 41

Occupation = cleaner
Id =8

Name = Stone

Age = 21

Occupation = receptionist

We will see how to write code to print out the contents of the table in the section
“Selecting All Rows.”
Having created the table, we will now see how to insert, amend, and delete data.

Inserting Rows

Now that we have our database table with its rows, we may want to add another row (if,
say, the company has just recruited a new employee).

Insert a Preset Row

Listing 3-2 inserts a preset row. Again, the data for the new row is coded into the
program.

Listing 3-2. csqlinsert_onex.c

#include <sqlite3.h>
#include <stdio.h>
int main(void)
{
sqlite3 *db;
char *err_msg = 0;
int rc = sqlite3 open("test.db", &db););/* open the database */
113

CHAPTER3 SQLINC

/* check the status of the database open request */

if (rc != SQLITE_OK)

{
fprintf(stderr, "Cannot open database: %s\n",
sqlite3 errmsg(db));
sqlite3 close(db);
return 1;
}

/* Insert our new row with ID=9 name=Wells, age=49 and occupation = teacher
*/

char *sql = "INSERT INTO Personnel VALUES(9, 'Wells', 49, 'teacher');"; /*
set up the insert instruction */

rc = sqlite3 exec(db, sql, 0, 0, 8err msg); /* perform the insert */
if (rc != SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3 free(err msg);
sqlite3 close(db);
return 1;
}
sqlite3 close(db); /* close the database connection */
return 0;
}

Inserting a User-Entered Row

This next program, shown in Listing 3-3, inserts one user-entered row. The user is
prompted to enter the ID, name, age, and occupation. Assume that the user enters “12”
for ID, “Pickford” for name, “48” for age, and “Welder” for occupation. The INSERT INTO
Personnel VALUES(12, 'Pickford', 48, 'Welder'); statement is concatenated
together in the program using the four user-entered data items. The commas, brackets,
and quotes in the preceding INSERT statement are added individually.

114

CHAPTER 3
Listing 3-3. csqlinsert_onex2.c

#include <sqlite3.h>
#include <stdio.h>
int main(void)

{

sqlite3 *db;

char *err_msg = 0;

int idin,agein; /store areas for ID and age */

char namein[13]; /store area for name */
char occupin[15]; /store area for occupation */

int rc = sqlite3_open("test.db", &db);/* open the database */
if (rc != SQLITE OK)

{
fprintf(stderr, "Cannot open database: %s\n",
sqlite3_errmsg(db));
sqlite3 close(db);
return 1;
}

/* user is asked to enter the fields for this row */
printf("enter id \n"); /* ID */

scanf("%d", &idin);

printf("enter name id \n"); /* NAME */

scanf("%s", &namein);

printf("enter age \n"); /* AGE */

scanf("%d", &agein);

printf("enter occupation \n"); /* OCCUPATION */
scanf("%s", &occupin);

/* The INSERT command string is set up */

char stra[200] = "INSERT INTO Personnel VALUES(";
char str2[] ="); ";

char str3[2];

char str4[6];

SQLINC

115

CHAPTER3 SQLINC

char str5[] P
char str6[] = "'";

sprintf(str4, "%d", idin); /* ID value as a string */
sprintf(str3, "%d", agein); /* age value as a string */

/* stri will be the string containing the complete INSERT command */

strcat(stra,str4); /% ID */
strcat(stri,str5); /* comma */
strcat(stri,str6); /* quote */
strcat(stri,namein); /* name */
strcat(stri,str6); /* quote */
strcat(stri,str5); /* comma */
strcat(stri,str3); /* age */
strcat(stri,str5); /* comma */
strcat(stri,str6); /* quote */
strcat(stri,occupin); /* occupation */
strcat(stri,str6); /* quote */
strcat(stri,str2); /* close bracket and semi-colon */

printf(str1); /* completed string */
/* so, for ID=12, name=Pickford, age=48 and occupation = Welder */

/* our completed string will be :- */
/* INSERT INTO Personnel VALUES(12, 'Pickford', 48, 'Welder'); */

char *sql = stri; /* move the completed string to *sql */

rc = sqlite3 exec(db, sql, 0, 0, &err msg);/* execute the insert */
if (rc != SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3 free(err msg);
sqlite3 close(db);
return 1;
}

116

CHAPTER3 SQLINC

sqlite3 close(db); /* close the database connection */
return 0;

}

If you run the preceding program with the ID=12, name=Pickford, age=48 and
occupation = Welder as earlier and then run it again with an ID=12, name=Rowley,age=34
and occupation=Engineer, you should get “SQL error: UNIQUE constraint failed:
Personnel.Id” on the screen as you cannot have the same ID for two or more rows.

Selecting Rows

We now have a program, shown in Listing 3-4, which will display a single row whose ID is
specified by the user. Similarly to the user-entered INSERT from earlier, the SELECT string
is pieced together in the code. In this program, we use “SELECT name, age, occupation
FROM Personnel WHERE id = ”;. So we use the ID to determine the row we want to select.

Selecting a Row Preset

Listing 3-4. csqlselect_onex2b.c

#include <sqlite3.h>
#include <stdio.h>

int callback(void *, int, char **, char **);

int main(void)

{

sqlite3 *db;

char *err_msg = 0;

int rc = sqlite3 open("test.db", &db); /* open the database */

/* Test the result of the ‘open’ command */

if (rc != SQLITE_OK)

{
fprintf(stderr, "Cannot open database: %s\n",
sqlite3 errmsg(db));

117

CHAPTER3 SQLINC

sqlite3 close(db);
return 1;

}

int idin,idnew;

/* ask the user to enter the ID of the row to be selected */
printf("enter current ID \n");

scanf("%d", &idin);

/* begin the construction of the SELECT string */
char stri[] = "SELECT name, age, occupation FROM Personnel WHERE id = ";
char str4[10];

char strs[] = ";";

printf("idin = %d\n", idin);
sprintf(str4, "%d", idin); /* store the entered id in strg */

strcat(stri,str4); /* concatenate the ID into stri above */
strcat(stri,str5); /* semi-colon */

printf("select statement is \n"); /* output string to user */
printf(stri);
printf("\n");

/* so, for ID=12 */
/* our completed string in stri will be :- */

/* SELECT name, age, occupation FROM Personnel WHERE id = 12; */
char *sql = stri; /* move the completed string to *sql */

/* execute the SELECT */

rc = sqlite3 exec(db, sql, callback, 0, &err msg);

/* Test the result of the 'sqlite3_exec' command */

118

CHAPTER3 SQLINC

if (rc != SQLITE OK)

{

/* an error has occurred - report it and close program */
fprintf(stderr, "Failed to select data\n");
fprintf(stderr, "SQL error: %s\n", err_msg);
sqlite3 free(err msg);
sqlite3 close(db);
return 1;

}

sqlite3_close(db);

return 0; /* close the database connection */
}

/* This function is called from sqlite3_exec to print out the data */

int callback(void *NotUsed, int argc, char **argv,
char **azColName)

{
NotUsed = 0;

for (int i = 0; 1 < argc; i++)
{
printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

}
printf("\n");

return 0;

}

The output if you selected id of 1 would be

select statement is

SELECT name, age, occupation FROM Personnel WHERE id = 1;
Name = Brown

Age = 42

Occupation = accountant

119

CHAPTER3 SQLINC

Selecting All Rows

The following program, shown in Listing 3-5, selects all of the rows in the Personnel
table. This is specified by saying ‘SELECT *” in the command. The asterisk indicates that
all rows are to be selected.

Listing 3-5. csqlselect_allx2b.c

#include <sqlite3.h>

#include <stdio.h>

int callback(void *, int, char **, char **);

int main(void)

{

sqlite3 *db;

char *err_msg = 0;

int rc = sqlite3 open("test.db", &db);/* check the database */

if (rc != SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "Cannot open database: %s\n",
sqlite3_errmsg(db));
sqlite3 close(db);
return 1;

}

/* 'SELECT *'means select everything */

char *sql = "SELECT * FROM Personnel”;
rc = sqlite3 exec(db, sql, callback, 0, &err msg);/*execute the command */

if (rc != SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "Failed to select data\n");
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3_free(err_msg);

120

CHAPTER3 SQLINC

sqlite3 close(db);
return 1;

}

sqlite3 close(db); /* close the database connection */
return 0;

}

/* This function is called from sqlite3_exec to print out the data */
int callback(void *NotUsed, int argc, char **argv,
char **azColName)

{
NotUsed = 0;

for (int i = 0; 1 < argc; i++)
{
printf("%s = %s\n", azColName[i], argv[i] ? argv[i] : "NULL");

}
printf("\n");

return 0;

}

The output would be

Id =1

Name = Brown

Age = 42

Occupation = accountant

Id = 2

Name = Jones

Age = 27

Occupation = programmer

Id =3

Name = White

Age = 30

Occupation = engineer

121

CHAPTER3 SQLINC

Id = 4

Name = Green

Age = 29

Occupation = electrician

Id =5

Name = Smith

Age = 35

Occupation = manager

Id =6

Name = Black

Age = 21

Occupation = secretary

Id = 7

Name = Allen

Age = 41

Occupation = cleaner
Id = 8

Name = Stone

Age = 21

Occupation = receptionist

Id = 9
Name = Wells
Age = 50

Occupation = teacher

Selecting Rows by Age

The following program selects all of the rows in the Personnel table where the personnel
have ages greater than 25. Apart from an extension to the SELECT statement, it is the
same code as the previous program. This is shown in Listing 3-6.

122

CHAPTER3 SQLINC
Listing 3-6. csqlselect_allx2c.c

#include <sqlite3.h>

#include <stdio.h>

int callback(void *, int, char **, char **);

int main(void)

{

sqlite3 *db;

char *err msg = 0;

int rc = sqlite3 open("test.db", &db);/* check the database */

if (rc != SQLITE_OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "Cannot open database: %s\n",
sqlite3_errmsg(db));
sqlite3 close(db);
return 1;

}

/* The following SELECT statement uses "GROUP BY age HAVING" to restrict
our selection to people with an age greater than 25 */

char *sql = "SELECT * FROM Personnel GROUP BY age HAVING age > 25";
rc = sqlite3 exec(db, sql, callback, 0, &err msg);/*execute the command */

if (rc != SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "Failed to select data\n");
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3 free(err_msg);
sqlite3 close(db);
return 1;
}
sqlite3_close(db); /* close the database connection */
return 0;
}

123

CHAPTER3 SQLINC

/* This function is called from sqlite3_exec to print out the data */
int callback(void *NotUsed, int argc, char **argv,
char **azColName)

{
NotUsed = 0;

for (int i = 0; 1 < argc; i++)
{
printf("%s = %s\n", azColName[i], argv[i] ?
argv[i] : "NULL");
}
printf("\n");

return 0;

}

The output would be

Id = 2

Name = Jones

Age = 27

Occupation = programmer

Id = 4

Name = Green

Age = 29

Occupation = electrician

Id = 3

Name = White

Age = 30

Occupation = engineer

Id =5

Name = Smith

Age = 35

Occupation = manager

124

Id = 7

Name = Allen

Age = 41

Occupation = cleaner

Id =1

Name = Brown

Age = 42

Occupation = accountant
Id =9

Name = Wells

Age = 50

Occupation = teacher

Amending Rows

CHAPTER3 SQLINC

In the next program, the user can amend a specified row. The program asks the user

if they want to amend the age, name, or occupation. For each of the three options, a

separate set of code is written to set up the UPDATE command string. This is shown in

Listing 3-7.

Listing 3-7. csqlselect_updatell.c

#include <sqlite3.h>
#include <stdio.h>
int main(void)

{

int idin,agenew,optin;
char namenew[13];

char occupnew[15];

sqlite3 *db;
char *err_msg = 0;
sqlite3 stmt *res;

int rc = sqlite3_open("test.db", &db); /* check the database */

125

CHAPTER3 SQLINC

if (rc != SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "Cannot open database: %s\n",
sqlite3_errmsg(db));
sqlite3 close(db);
return 1;

}

/* begin to construct the string */

char str3[20];
char str1[80] = "UPDATE Personnel SET ";

char str9[2];
char stris[] = ";";

char stri6[] = ", ";
char stri7[] = ")";
char stri8[] = "\'";

printf("enter id \n");
scanf("%d", &idin);

/* The user can amend either age, name or occupation for the specified id
for the row. We ask them which they want to amend */

printf("Do you want to update age, name or occupation (1,2 or 3)\n");
scanf("%d", &optin);
if(optin == 1)
{
/* Amend the age */

printf("enter new age \n");
scanf("%d", &agenew);

strcat(str1," age = "); /* add age */
strcat(stri,stri8);

sprintf(str3, "%d", agenew); /* copy new age to str3*/
strcat(stri,str3); /* add new age */

126

CHAPTER 3

strcat(stri,stri8); /* add quote */

}

else if(optin == 2)

{
/* Amend the name */
printf("enter new name \n");
scanf("%s", namenew);
strcat(stra," name = ");
strcat(str1,stri8);
strcpy(str3, namenew); /* copy new name to strx3*/
strcat(stri,str3); /* add new name */
strcat(stri,str18); /* add quote */

}

else

{
/* Amend the occupation */
printf("enter new occupation \n");
scanf("%s", occupnew);
strcat(str1," Occupation = ");
strcpy(str3,occupnew); /* copy new occupation to str3*/
strcat(stri,str18); /* add quote */
strcat(stri,str3); /* add new occupation */
strcat(stri,stri8); /* add quote */

}

char str2[] = " WHERE id = ";

char stra[6];

strcat(str1,str2); /* copy 'WHERE id = ' string */
sprintf(str4, "%d", idin); /* copy id into stxg */
printf(str4);

strcat(str1,str4); /* copy id into final string */

printf(stri);

SQLINC

127

CHAPTER3 SQLINC

/* so, if we want to update the occupation for ID=12 */
/* our completed string will be :- */
/* UPDATE Pexsonnel SET Occupation = 'Programmexr' WHERE id = 12 */

char *sql = stri;
rc = sqlite3 exec(db, sql, 0, 0, 8err msg); /* perform the insert */
if (rc != SOLITE_ OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3_free(err_msg);
sqlite3 close(db);
return 1;

}

sqlite3_close(db); /* close the database connection */
return 0;

}

Deleting Rows

This program, shown in Listing 3-8, deletes a row for the ID specified by the user. You
could run the “Selecting All Rows” program, after running this one, to check that the
delete has worked.

Listing 3-8. csqlinsert_deletexx.c

#include <sqlite3.h>

#include <stdio.h>

int main(void)

{

sqlite3 *db;

char *err msg = 0;

sqlite3_stmt *res;

int rc = sqlite3 open("test.db", &db); /* check the database */

128

CHAPTER 3

if (rc != SQLITE_OK)

{
/* failure in opening the database file */
fprintf(stderr, "Cannot open database: %s\n",
sqlite3_errmsg(db));
sqlite3 close(db);
return 1;
}
int idin;

/* ask the user to enter the ID if the row to be deleted */

printf("enter id to be deleted\n");
scanf("%d", &idin);

/* construct the DELETE string */

char str1[200] = "DELETE FROM Personnel WHERE id = ";
char str2[] ="); ";

char str3[2];

char str4[6];

char strs5[] = ", ";

char str6[] = "'";

sprintf(stra, "%d", idin);

strcat(stri,str4); /* add the entered id to stri above */
printf(str1l); /* print completed string to user */
printf("\n");

/* so, if we want to delete the row for ID=12 */
/* our completed string will be :- */

/* DELETE FROM Pexrsonnel WHERE id = 12 */

char *sql = stri;

SQLINC

129

CHAPTER3 SQLINC

rc = sqlite3 exec(db, sql, 0, 0, 8err msg); /* perform the delete */
if (rc 1= SQLITE OK)

{
/* an error has occurred - report it and close program */
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3_free(err_msg);
sqlite3_close(db);
return 1;
}
sqlite3_close(db); /* close the database connection */
return O;
}
Summary

This chapter has shown how to insert rows, amend rows, and delete rows from the table.

The chapter shows how we can use the C programming language to implement SQL
applications. By doing this, the reader will be able to add SQL database access to their
existing C software or create new software which can perform the SQL functions of data
table creation and the updating, deleting, and displaying of data.

Exercises

1. Create a program which inserts a number of rows. Ask the user
how many rows they want to enter and then create a for loop using
this number. Within the for loop, ask the user to enter the data for
each row.

2. Using the read file mechanism from Chapter 2, write a program
toread in the People3.bin file. Then create a database table and
write each record in the file as a row in the table. Then print out
the table.

130

CHAPTER 4

SQL in Python

This chapter introduces the reader to the way the database language, “Structured Query
Language,” can be accessed and used from a Python program. It will be demonstrated how
to create the database file. When this is done, the reader will be able to create database
tables. Then, it will be shown how to insert data into the table, how to amend data in the
table, how to delete data from the table, and how to print out data held in the table.

Review of SQL

SQL (Structured Query Language) is used to access a database. The easiest way to
understand this is to look at an example of a database table. One such table is shown in
the following.

A typical database table would contain information about a large number of people
working for the same company. The data for one person is contained in a “row.” This row
holds the person’s ID, their surname, their age, and their job title (occupation).

id surname initial gender age occupation

123 Jones A M 37 Accountant

125 Smith R F 42 HR

128 Allen S M 28 Secretary

131 Bradley J F 26 Programmer

132 Edwards P M 41 Programmer

133 King B F 35 S/W Engineer

134 Price C M 39 H/W Engineer

136 Roberts M F 52 Manager
(continued)

© Philip Joyce 2022 131

P.Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4_4

https://doi.org/10.1007/978-1-4842-7774-4_4#DOI

CHAPTER 4 SQL IN PYTHON

id surname initial gender age occupation
138 Foster M F 44 Analyst

139 Shannon M F 24 Programmer
141 Lewis R M 27 Receptionist

We will use sqlite3 which is a relational database management system. Thisisin a C
library which acts as our interface to SQL.

Create the database from the command line using Python.

Type “Python”

>>> import sqlite3
>>> conn = sqlite3.connect('bernard3.db")

This creates the database file bernard3.db in the current directory. Its pointer is
returned in “conn”.

We can use the same name for the database file and one of its tables. So we can call
them “Personnel”.

We use SQL to create the table. We will call the table “Personnel” so the SQL
command for this would be

CREATE TABLE Personnel (id INT PRIMARY KEY, surname TEXT, initial TEXT,
gender TEXT, age INT, occupation)

In this case, the ID is the “Primary Key” which uniquely identifies the person. So,
for example, if two people had the same surname, initial, and gender, then as their ID
(primary keys) would be different, this would uniquely identify them.

We would create the row for each person by having a separate “INSERT” statement
for each of them. The first person in our table could be defined by the following statement

INSERT INTO Personnel VALUES (123, 'Jones', 'A', 'M', 37, 'Accountant')

where 123 is the id, ‘Jones’ is the surname, ‘A’ is the initial, ‘M’ is the gender, 37 is the age,
and ‘Accountant’ is the occupation.

If we wanted the names of all of the programmers in the company, then an SQL
statement would say

SELECT surname FROM Personnel WHERE occupation = 'Programmer’

132

CHAPTER 4 SQL IN PYTHON

We can select a specific group using the “HAVING” option, in this case people having

Usen

an age greater than 25. Here, the “*” in the command means “everybody.”

SELECT * FROM Personnel GROUP BY age HAVING age > 25

We can select a specific group using the “ORDER BY” option.
The following example selects all of the rows from the Personnel table and orders
them by age in descending order:

SELECT * FROM Personnel ORDER BY age DESC

We can amend a row using the “UPDATE” command. The person with id of 123 has
their occupation changed to ‘manager, as shown as follows:

UPDATE Personnel SET occupation = 'manager' WHERE id = 123
Finally, we can delete a row using the “DELETE” command shown here:
DELETE FROM Personnel WHERE id = 136;

We will use the sqlite3 standard software which is downloadable free of charge.

The Python programs use import sqlite3 which gives the programs access to the
sqlite3 library routines.

sqlite3.connect opens the database connection and returns the connection object.
So if we have conn = sqlite3.connect(‘Personnel.db’), we can use conn to access the
routines. Here, we then use cur = conn.cursor() to set up cur which will then access, for

instance, the execute command shown in the following:

cur.execute('CREATE TABLE Personnel (id INTEGER PRIMARY KEY, name TEXT,
initial TEXT, gender TEXT, age INTEGER, occup TEXT)')

conn.close() closes the database connection.
Having seen these basic ideas, we can now proceed to write the programs.

Create a Table

This program creates the “Personnel” table as described earlier.
The actual database is the file Personnel.db. Our database tables are added into this.

133

CHAPTER 4 SQL IN PYTHON

Listing 4-1 demonstrates this.

Listing 4-1. pycretab.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db

cur = conn.cursor() Hopen connection to 'cursor' which facilitates SQOL
print ("Opened database successfully")

cur.execute('DROP TABLE IF EXISTS Personnel') # delete the table if it
already exists

cur.execute('CREATE TABLE Personnel (id INTEGER PRIMARY KEY, name TEXT,
initial TEXT, gender TEXT, age INTEGER, occup TEXT)') #create the table,
specifying the items in each row

conn.close() # close the database connection
The output is

Opened database successfully

Mechanism for Inserting a Row

To insert a row (as described earlier), we set up the “INSERT INTO” command.

In the command “INSERT INTO’, when we are executing the command, we have (?,
?,?,?,?,?) after the VALUES part of the command. In the bracketed section after this, we
have the values which will be substituted into the positions of the question marks. So

"INSERT INTO Personnel (id, name, initial, gender, age, occup) VALUES (?,
2, 2, 2,2, 2"
2, 2,2, 2,0,

(1, "Jones', 'A', 'M', 23, 'Accountant'))
would produce

"INSERT INTO Personnel (id, name, initial, gender, age, occup) VALUES (1,
"Jones', 'A', 'M', 23, 'Accountant'))

134

CHAPTER 4 SQL IN PYTHON

This is a useful mechanism when the user is asked to enter data to be inserted,
updated, or deleted where the values in the bracket after VALUES will just be the values
entered by the user.

The preceding method “presets” the data into the INSERT command string. Later, we
will have programs which allow the user to insert the ID, name, initial, gender, age, and
occupation into the program while the program is running.

Create a Table and Insert Two Preset Rows

This program creates the table and inserts two preset rows. Then it selects all of the
rows from the table so that we can see the rows inserted. We use the command ‘DROP
TABLE IF EXISTS Personnel’ to make sure that if the table we are trying to create already
exists, then it will be deleted. Otherwise, our program would fail with the error “sqlite3.
OperationalError: table Personnel already exists” It is shown in Listing 4-2.

Listing 4-2. pycretabins2.py
import sqlite3

conn = sqlite3.connect('Personnel.db’') # open connection to database file
Personnel.db
cur = conn.cursor()#open connection to 'cursor' which facilitates SOL

print ("Opened database successfully")

cur.execute('DROP TABLE IF EXISTS Personnel') # delete the table if it
already exists

cur.execute('CREATE TABLE Personnel (id INTEGER PRIMARY KEY, name TEXT,
initial TEXT, gender TEXT, age INTEGER, occup TEXT)') #create the table,
specifying the items in each row

Now Insert two rows into the table

cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2,)",

(1, "Jones', 'A', 'M', 23, 'Accountant'))
cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',

(2, 'Smith', '3', 'M', 47, 'Salesman'))

135

CHAPTER 4 SQL IN PYTHON

print('Personnel:")
Select everything contained in the table
cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel')
for row in cur:
print(row) # print each row contained in the table

conn.commit() #commit these transaction so they can be seen by other
programs

conn.close() #close the database connection
The output is

Opened database successfully

Personnel:

(1, 'Jones', 'A', 'M', 23, 'Accountant')
(2, 'Smith', '3', 'M', 47, 'Salesman')

Insert Six Preset Rows

This program, shown in Listing 4-3, inserts six preset rows. If you run this program after
the preceding example, then the six rows should be added to the table. Note that we do
not create the table in the following program as this would delete the previous two rows
inserted. You just insert six separate cur.execute(‘INSERT INTO Personnel’) instructions
into the program.

Listing 4-3. pyins6.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db
cur = conn.cursor()#open connection to 'cursor' which facilitates SOL

print ("Opened database successfully")
Now Insert six rows into the table

cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',
(11, 'Jones', 'A', 'M', 23, 'Accountant'))

136

CHAPTER 4 SQL IN PYTHON

cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, 2, 2, 2, 2,)",

(12, 'Smith', '3', 'M', 47, 'Salesman'))
cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, 2, 2, 2, 2,)",

(13, 'Zeiss', 'H', 'F', 38, 'Architect'))
cur.execute("'INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, 2, 2, 2, 2, ?2)',

(14, 'Blaine', 'S', 'F', 28, 'SE'))
cur.execute("'INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, 2, 2, 2, 2, ?2)',

(15, 'Postlethwaite', 'D', 'M', 63, 'Advisor'))
cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, 2, 2, 2, 2, ?2)',

(16, 'Junkers', 'A', 'M', 59, 'Designer'))

print('Personnel:")
cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel')
Select everything contained in the table

for row in cur:
print(row) # print each row contained in the table

conn.commit()#commit these transaction so they can be seen by other
programs
conn.close() #close the database connection

The output is

Opened database successfully
People:
(1, 'Jones'y, 'A', 'M', 23, 'Accountant')
(2, 'Smith', '3', 'M', 47, 'Salesman')
(11, 'Jones’', 'A', 'M', 23, 'Accountant')
(12, 'Smith', '3', 'M', 47, 'Salesman')
(13, 'Zeiss'y, 'H', 'F', 38, 'Architect')
(14, 'Blaine’', 'S', 'F', 28, 'SE')
(15, 'Postlethwaite’', 'D', 'M', 63, 'Advisor')
(16, 'Junkers', 'A', 'M', 59, 'Designer')
137

CHAPTER 4 SQL IN PYTHON

Insert a Row Specified by the User

Now that we have our database table with its rows, we may want to add another row (if,
say, the company has just recruited a new employee).

We now have a program which will insert a single row whose ID and their other
fields are specified by the user. The program asks the user to insert each field in turn. It is
shown in Listing 4-4.

Listing 4-4. pyuserinsl.py
#!/usr/bin/python
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db

cur = conn.cursor()#open connection to 'cursor' which facilitates SOL
print ("Opened database successfully")

User is asked to enter the name, ID, initial, gender, age and occupation

while True:
namein = input('Enter an name, or quit: ') # age stored in namein

if(namein == 'quit'): break #exit the while loop

idin = input('Enter ID: ') # id stored in 'idin'

initial = input('Enter initial: ') # initial stored in 'initial’
gender = input('Enter gender: ') # gender stored in 'gender’

agein = input('Enter age: ') # age stored in 'agein'

occup = input('Enter occupation: ') # occupation stored in 'occup'

Now Insert row into the table using the values entered

cur.execute('INSERT INTO Personnel (id, name, initial, gender, age,
occup) VALUES (?, ?, ?, ?, ?, ?)',(idin, namein, initial, gender,
agein, occup))

break

print('Personnel:")
Select everything contained in the table

138

CHAPTER 4 SQL IN PYTHON

cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel')
for row in cur:
print(row) # print each row contained in the table

conn.commit()#commit these transaction so they can be seen by other
programs

conn.close()#close the database connection
If we type the following

Enter an name, or quit: Robinson
Enter ID: 21

Enter initial: C

Enter gender: F

Enter age: 31

Enter occupation: Engineer

we get

Personnel:

(1, 'Jones'y, 'A', 'M', 23, 'Accountant')

(2, 'Smith', '3, 'M', 47, 'Salesman')

(11, 'Jones'y, 'A', 'M', 23, 'Accountant’)

(12, 'Smith', '3', 'M', 47, 'Salesman')

(13, 'Zeiss', 'H', 'F', 38, 'Architect’)

(14, 'Blaine', 'S', 'F', 28, 'SE')

(15, 'Postlethwaite', 'D', 'M', 63, 'Advisor')
(16, 'Junkers', 'A', 'M', 59, 'Designer')

(21, 'Robinson’', 'C', 'F', 31, 'Engineer')

Update a Row
Update a Row, Preset

In this program, shown in Listing 4-5, we update a row in the table, for instance, if we
wanted to change their age or job title. The values to be updated are coded into the
program. We use the UPDATE command and say SET to say which item in the row we
wish to change. It is safest to use the ID to specify which row we wish to change. In the

139

CHAPTER 4 SQL IN PYTHON

example here, we have used the name to specify the row, but, as you may notice, because
there are two people in the table with the same name, it has updated both of the rows.
Listing 4-5. pyupl.py

import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db

cur = conn.cursor()#open connection to 'cursor' which facilitates SOL
Now update the row in the table
we want to set the age for the person named Smith to be 24

try:
cur.execute("UPDATE Personnel SET age = 24 WHERE name =
"Smith'")
except Error as e:
print(e)

Select everything contained in the table

cur.execute("SELECT * FROM Personnel™)
cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel')
for row in cur:

print(row)

conn.commit()#commit these transaction so they can be seen by other
programs
cur.close()

The output is

(1, 'Jones'y, 'A', 'M', 23, 'Accountant’)
(2, 'Smith', '3', 'M', 24, 'Salesman')
(11, 'Jones'y, 'A', 'M', 23, 'Accountant')
(12, 'Smith’', '3', 'M', 24, 'Salesman')
(13, 'Zeiss'y, 'H', 'F', 38, 'Architect’)
(14, 'Blaine', 'S', 'F', 28, 'SE')

140

CHAPTER 4 SQL IN PYTHON

(15, 'Postlethwaite', 'D', 'M', 63, 'Advisor’)
(16, 'Junkers', 'A', 'M', 59, 'Designer')
(21, 'Robinson’', 'C', 'F', 31, 'Engineer')

Notice that, here, we have two people named Smith, so the UPDATE has changed
both of the rows. This is the type of thing you need to beware of. Here, the safest way
would be to use the ID rather than the name.

Update a Row by User

In this program, shown in Listing 4-6, we update a row in the table. The values to be
updated are entered by the user to update the age.

The program uses the function conn.total_changes which returns total changes
to the table since connection. So, if there is only one change made (INSERT, UPDATE,
or DELETE) and the function conn.total_changes returns zero, then we know that the
attempted change must have failed.

Listing 4-6. pyuserupl.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db

cur = conn.cursor()#open connection to 'cursor' which facilitates SOL

we want to set the age for the person whose name is entered into 'namein’
to be the age which is entered into 'agein’

#the following is a while loop which can only be exited by the user
entering "quit".
while True:

namein = input('Enter an name, or quit: ')

if(namein == 'quit'): break

print(namein)

agein = input('Enter age: ')

Using a while loop
toto = 0
Now update the row in the table

141

CHAPTER 4 SQL IN PYTHON
try:

cur.execute("UPDATE Personnel SET age = ? WHERE name = ?",

(agein,namein,))

except:
print('Error in Update')

#conn.total_changes returns total changes since connection
by setting toto to 0 before this update then only this
update is checked
tot = conn.total changes
print(tot)
if tot == toto:
print('Table not updated')
else
Select everything contained in the table

cur.execute('SELECT id, name, initial, gender, age, occup FROM
Personnel")
for row in cur:

print(row)

conn.commit()#commit these transaction so they can be seen by other
programs

cur.close()#close the database connection
The output is (assuming we enter Junkers for the name and 38 for age)

(1, 'Jones'y, 'A', 'M', 23, 'Accountant’)

(2, 'Smith', '3', 'M', 24, 'Salesman')

(11, 'Jones'y, 'A', 'M', 23, 'Accountant')

(12, 'Smith’', '3', 'M', 24, 'Salesman')

(13, 'Zeiss'y, 'H', 'F', 38, 'Architect’)

(14, 'Blaine', 'S', 'F', 44, 'SE')

(15, 'Postlethwaite’', ‘D', 'M', 63, 'Advisor')
(16, 'Junkers’', 'A', 'M', 38, 'Designer')

(21, 'Robinson’', 'C', 'F', 31, 'Engineer')
Enter a name, or quit:

142

CHAPTER 4 SQL IN PYTHON

Insert and Update a Row

We can do an insert and an update in the same program. In this case, both the insert and
the update are preset in the code. This is shown in Listing 4-7.

Listing 4-7. pyinsup.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db

cur = conn.cursor()#open connection to 'cursor' which facilitates SOL
#insert the row, specifying the items in the row
cur.execute('INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, 2, 2, 2, 2,)",

(25, 'Van der Kirchoff', 'I', 'M', 34, 'plumber'))
#update a different row, specifying the changed item in the row

cur.execute("UPDATE Personnel SET age = 28 WHERE name = 'Smith'")
Select everything contained in the table

cur.execute("SELECT * FROM Personnel ")
print each row contained in the table

cur.execute('SELECT id, name, initial, gender, age, occup FROM
Personnel")

for row in cur:
print(row)

conn.commit()#commit these transaction so they can be seen by other
programs

cur.close()#close the database connection
The output is

(1, 'Jones'y, 'A', 'M', 23, 'Accountant')
(2, 'Smith', 'J', 'M', 28, 'Salesman')
(11, 'Jones'y, 'A', 'M', 23, 'Accountant’)
(12, 'Smith', '3', 'M', 28, 'Salesman')

143

CHAPTER 4 SQL IN PYTHON

(13, 'Zeiss'y, 'H', 'F', 38, 'Architect’)

(14, 'Blaine', 'S', 'F', 28, 'SE')

(15, 'Postlethwaite’', 'D', 'M', 63, 'Advisor')
(16, 'Junkers', 'A', 'M', 37, 'Designer')

(21, 'Robinson’', 'C', 'F', 31, 'Engineer')

(25, 'Van der Kirchoff', 'I', 'M', 34, 'plumber')

Select a Row

In this program, we select a row from the table. The values to be used in the selection are
coded into the program. We use the SELECT command and the WHERE instruction to
specify which row we are interested in. The command to select by age would be

SELECT * FROM Personnel WHERE age = 28

The program follows in Listing 4-8.

Listing 4-8. pysell.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db
cur = conn.cursor()#open connection to 'cursor' which facilitates SOL

Select one row contained in the table where the age is 28
If we did not have LIMIT 1 then every row which had an age of 28 would be
displayed

cur.execute("SELECT * FROM Personnel WHERE age = 28 LIMIT 1")
#print the row selected

for row in cur:
print(row)

conn.commit()#commit these transaction so they can be seen by other
programs

cur.close()#iclose the database connection

144

CHAPTER 4 SQL IN PYTHON
The output is

(2, 'Smith', '3', 'M', 28, 'Salesman')

Select a User-Entered Row

In this program, shown in Listing 4-9, we select a row from the table. The values to be
used in the selection are entered by the user. The user wants to find the age of the person
named. This is displayed when found.

Listing 4-9. pyusersell.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db
cur = conn.cursor()Hopen connection to 'cursor' which facilitates SOL

while True:
namein = input('Enter an name, or quit: ")
if(namein == 'quit'): break
print(namein)

cur.execute('SELECT age FROM Personnel WHERE name = ? LIMIT 1',
(namein,))

(age,) = cur.fetchone()

print(age)

break
conn.commit()#commit these transaction so they can be seen by other
programs

cur.close()#close the database connection
The output is (if we enter the name “Zeiss”)

Enter an name, or quit: Zeiss
Zeiss
38

145

CHAPTER 4 SQL IN PYTHON

Select by Age in Descending Order

Select all of the rows in the table by age and order in descending order of age. This is
done within the SQL select statement

SELECT * FROM Personnel ORDER BY age DESC

This will order the whole table in descending order of age. Listing 4-10 shows the
code.

Listing 4-10. pyselorder.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db
cur = conn.cursor()Hopen connection to 'cursor' which facilitates SOL

cur.execute("SELECT * FROM Personnel ORDER BY age DESC")
for row in cur:
print(row)

conn.commit()#commit these transaction so they can be seen by other
programs

cur.close()#close the database connection
The output is

(15, 'Postlethwaite', 'D', 'M', 63, 'Advisor')
(13, 'Zeiss', 'H', 'F', 38, 'Architect’)

(16, 'Junkers', 'A', 'M', 37, 'Designer')

(25, 'Van der Kirchoff', 'I', 'M', 34, 'plumber')
(21, 'Robinson’', 'C', 'F', 31, 'Engineer')

(14, 'Blaine', 'S', 'F', 28, 'SE')

(2, 'Smith', '3', 'M', 24, 'Salesman')

(12, 'Smith’', '3', 'M', 24, 'Salesman')

(1, 'Jones'y, 'A', 'M', 23, 'Accountant')

(11, 'Jones'y, 'A', 'M', 23, 'Accountant')

146

CHAPTER 4 SQL IN PYTHON

User-Entered Select by Age

This program, shown in Listing 4-11, selects people from the table whose ages are
greater than the value the user specifies. This is done using “HAVING” as in the SELECT
command

("SELECT * FROM Personnel GROUP BY age HAVING age > ?",(ageins,))

where “ageins” is the age specified by the user.

Listing 4-11. pyusersellhav.py (user inputs age)
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db
cur = conn.cursor()Hopen connection to 'cursor' which facilitates SOL

ageins = input('Enter age: ')
print(ageins)
while True:

Using a while loop

cur.execute("SELECT * FROM Personnel GROUP BY age HAVING age > ?",
(ageins,))

for row in cur:
print(row)
break

conn.commit()#commit these transaction so they can be seen by other
programs

cur.close()#iclose the database connection
If you enter 24, the output is

(14’ 'Blail‘lel, Isl’ 'F', 28’ lSE')
(21, 'Robinson’', 'C', 'F', 31, 'Engineer')
(25, 'Van der Kirchoff', 'I', 'M', 34, 'plumber')

147

CHAPTER 4 SQL IN PYTHON

(16, 'Junkers', 'A', 'M', 37, 'Designer')
(13, 'Zeiss', 'H', 'F', 38, 'Architect’)
(15, 'Postlethwaite’', 'D', 'M', 63, 'Advisor')

Delete a Row

This program, shown in Listing 4-12, deletes a row from the table. The user enters the
name of the person whose row is to be deleted. You could run the “Read a Table” program,
from the next section, after the “Delete a Row” program to check that it has worked.
Listing 4-12. pydell.py

import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database file
Personnel.db

cur = conn.cursor()#open connection to 'cursor' which facilitates SOL
print ("Opened database successfully")

namein = input('Enter an name, or quit: ')
cur.execute('DELETE FROM Personnel WHERE name = ?',(namein,))

print('Personnel:")
cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel')
for row in cur:

print(row)

conn.commit()#commit these transaction so they can be seen by other
programs

conn.close()#close the database connection
user enters Blaine
The output is

Personnel:

(1, 'Jones’', 'A', 'M', 23, 'Accountant’)
(2, 'Smith', '3', 'M', 24, 'Salesman')
(11, 'Jones'y, 'A', 'M', 23, 'Accountant')

148

CHAPTER 4 SQL IN PYTHON

(12, 'Smith', '3', 'M', 24, 'Salesman')

(13, 'Zeiss', 'H', 'F', 38, 'Architect’)

(15, 'Postlethwaite’', 'D', 'M', 63, 'Advisor')
(16, 'Junkers’', 'A', 'M', 38, 'Designer')

(21, 'Robinson’', 'C', 'F', 31, 'Engineer')

(25, 'Van der Kirchoff', 'I', 'M', 34, 'plumber')

Read a Table

This program, shown in Listing 4-13, reads and prints out all of the rows in the table. The
lines of code which do this could be used in any of the other programs in this chapter. So
if you have made any amendments or inserted or deleted any rows, the user can check if
the changes have worked.

Listing 4-13. pyreadtab.py
import sqlite3

conn = sqlite3.connect('Personnel.db') # open connection to database
file Personnel.db cur = conn.cursor()#open connection to 'cursor' which
facilitates SOL

print ("Opened database successfully")

cur = conn.cursor()#open connection to 'cursor' which facilitates SQL

print(' Personnel:")
cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel')
for row in cur:

print(row)

conn.commit()#commit these transaction so they can be seen by other
programs
conn.close()#close the database connection

The output is

Opened database successfully

People:

(1, 'Jones'y, 'A', 'M', 23, 'Accountant’)
(2, 'Smith', '3', 'M', 24, 'Salesman')

149

CHAPTER 4 SQL IN PYTHON

(11, 'Jones'y, 'A', 'M', 23, 'Accountant')

(12, 'Smith’', '3', 'M', 24, 'Salesman')

(13, 'Zeiss', 'H', 'F', 38, 'Architect’)

(15, 'Postlethwaite', 'D', 'M', 63, 'Advisor’)
(16, 'Junkers’', 'A', 'M', 37, 'Designer’)

(21, 'Robinson’', 'C', 'F', 31, 'Engineer')

(25, 'Van der Kirchoff', 'I', 'M', 34, 'plumber')
Summary

This chapter has demonstrated how to use the Python programming language to create
SQL database tables and then to insert, amend, and delete rows in the table. It has also
shown how to display the data in the table in different specific orders. This will enable

users to adapt their existing programs to include SQL access or to write new Python

programs for SQL applications.

Exercises

150

Create two tables whose SQL equivalent is as follows:

CREATE TABLE Personnel (id INTEGER, name TEXT, initial,
gender TEXT, age INTEGER, occup TEXT)

and

CREATE TABLE supply (id INTEGER, coname TEXT, address
TEXT, type TEXT)

Then insert six rows into the first table and four into the second
table. The second table is a list of companies. The name of the
company is supplied in “coname’, and the type of goods they

supply is in “type”
Amend the insert program, pyuserinsl.py, so that you can insert
as many rows into the table as you want.

CHAPTER 5

Embedded Python

The C programming language has been in operation since the early 1970s and has been
central to the development of computer software since then. The Python language is
newer and can perform some functions that C does not. So, it is useful to be able to write
a C program and have some Python code incorporated (embedded) into it. This is what
this chapter will illustrate.

We’ll look at the following two levels of Python code that can be incorporated into a
C program:

o Call a simple Python string.
e (Call a Python program.

To embed the two levels into our C program, we have to initialize the Python
interpreter. The main function call is Py_Initialize(). At the end of the Python sequence,
we call Py_Finalize();.

To call a simple string, we use PyRun_SimpleString.

To run a Python program, we use PyRun_SimpleFile.

Python has matplotlib and numpy which can be embedded into C programs. These
will be introduced in the sections where the program uses them.

The listings will be labeled as “Listing 5-1’, etc., and the associated embedded Python
program will be labeled with an extension of “b”. So here, its label would be “Listing 5-1b”.

Basic Mechanism

Listing 5-1 demonstrates the simple string option described earlier. The Python just
prints 'Embedded Python string'.

151
© Philip Joyce 2022

P. Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4_5

https://doi.org/10.1007/978-1-4842-7774-4_5#DOI

CHAPTER 5 EMBEDDED PYTHON
Listing 5-1. cpythl.c

#include <stdio.h>
#include "include/Python.h"
int main()
{
Py Initialize();
PyRun_SimpleString("print('Embedded Python string')");
Py Finalize();
return 0;

This program prints

Embedded Python string

Listing 5-2 demonstrates the second embedding option. Here, we call the Python
program pyemb7.py. We create a variable called char filename[] which will hold the
filename to be called. We define the variable fp which is the file pointer.

Listing 5-2. cpyth8.c

#define PY_SSIZE T CLEAN
#include <stdio.h>
#include <conio.h>
#include "include/Python.h"

int main()

{
char filename[] = "pyemb7.py"; /* store the python file name */

FILE* fp; /* file pointer */
Py Initialize();

fp = Py fopen(filename, "r"); /* store file pointer in fp */
PyRun_SimpleFile(fp, filename);/* call the python program */

Py Finalize(); /* end the python link */
return 0;

152

CHAPTER5 EMBEDDED PYTHON

The following Listing 5-2b is the simple Python program which is called.

Listing 5-2b. pyemb7.py

print('Embedded Python program here')
print('Hello to C program')

This program prints

Embedded Python program here
Hello to C program

We can now progress to a more realistic Python embedding.

Plot a 2D Line

The next C program is basically the same as the previous one, except that it calls a
different Python program. Listing 5-3 demonstrates this.

Listing 5-3. cpythl7a.c

#define PY SSIZE T CLEAN
#include <stdio.h>
#include <conio.h>
#include "include/Python.h"

int main()

{
char filename[] = "plot6a.py";

FILE* fp;

Py Initialize();

fp = Py fopen(filename, "r");
PyRun_SimpleFile(fp, filename);

Py Finalize();
return 0;

153

CHAPTER5 EMBEDDED PYTHON

This Python program (Listing 5-3b) demonstrates the use of numpy and matplotlib.
Numpy is a numerical set of procedures, and matplotlib is concerned with plotting
graphs. The Python program plots the straight line y = x + 3. We set our x values using the
numpy function np.arange(0,10). This creates x values between 0 and 10 evenly spaced.
We calculate the y value for each of these x values usingy = x + 3.

We then call the matplotlib function plt.plot(x,y) to plot the graph.

Listing 5-3b. plot6a.py

import numpy as np
from matplotlib import pyplot as plt

X

np.arange(0,10) #return evenly spaced values between 0 and 10

y = x + 3 # formula to calculate y values for the x values given in the
previous instruction

plt.title("Embedded ") #title of graph

plt.xlabel("x axis") #x axis label

plt.ylabel("y axis") #y axis label

plt.plot(x,y) #plot the graph

plt.show()

This produces the graph shown in Figure 5-1.

154

CHAPTER5 EMBEDDED PYTHON

Embedded

12 A

10 A

w 81
S
1+
>

6 -

4 -

0 2 4 6 8
X axis

Figure 5-1. Basic straight lineofy=x+ 3

We can now move to plotting two lines on a graph.

Plot Two 2D Lines

This combination of C and Python shows some of the flexibility of matplotlib in Python.
It plots two curves on the same graph. Listing 5-4 demonstrates this.

Listing 5-4. cpyth29.c

#define PY_SSIZE T CLEAN
#include <stdio.h>
#include <conio.h>
#include "include/Python.h"

155

CHAPTER5 EMBEDDED PYTHON

int main()

{
char filename[] = "mp2aa.py";
FILE* fp;

Py Initialize();

fp = Py fopen(filename, "r");
PyRun_SimpleFile(fp, filename);

Py Finalize();
return 0;

}

Listing 5-4b. mp2aa.py

This program (Listing 5-4b) plots two graphs. One graph shows the distribution
of examination marks (in percent values) for females, and the other graph shows the
distribution of examination marks for males.

We use the list(range(0,100,10)) function to create a set of x values (the marks) for
both graphs.

import matplotlib.pyplot as plt

x values:

marks = list(range(0,100,10)) #marks (x values) in range 0 to 100 in units
of 10

y values:

male = [4, 7, 9, 17, 22, 25, 28, 18, 6, 2] # number of males within each
range

female = [2, 5, 8, 13, 28, 25, 23, 20, 18, 12] # number of females within
each range

x axis label and y axis label
plt.xlabel('marks")
plt.ylabel('number of students')

#title of graph
plt.title('Comparison of male / female examination scores"')

156

CHAPTER5 EMBEDDED PYTHON

#iplot points and adjoining lines for both male and female

#ishow a key to which line is male and which is female

plt.plot(marks, female, label="female")

plt.plot(marks, female, "ob") # ob means plot a circle character which is
blue

plt.plot(marks, male, label="male")

plt.plot(marks, male, "or") # or means plot a circle character which is red

plt.legend()
plt.show()

This program plots the curves shown in Figure 5-2.

Comparison of male / female examination scores

—— female
— male
25 1
v 20 -
o
@
e}
=2
("]
.= 15 A
@
L
=
c 10 A
5 .
0 20 40 60 80

marks

Figure 5-2. Comparison of male-female examination marks

The two graphs show a similar distribution for both male and female students. This
general shape is called the “Normal Distribution.”
Matplotlib can also plot standard trigonometric curves as shown in the following.

157

CHAPTER5 EMBEDDED PYTHON

Plot Trigonometric Curves

This next combination in Listing 5-5 shows the standard matplotlib tan(x) function.

Listing 5-5. cpyth32.c

#define PY_SSIZE T CLEAN
#include <stdio.h>
#include <conio.h>
#include "include/Python.h"

int main()

{

char filename[] = "mp5ae.py";
FILE* fp;

Py Initialize();

fp = Py fopen(filename, "r");
PyRun_SimpleFile(fp, filename);

Py Finalize();
return 0;

}

Listing 5-5b. mp5ae.py
In this program (Listing 5-5b), we use np.arange(-2*np.pi, 2*np.pi, 0.1) to give us

a set of x values which are multiples of pi. Thus, we can plot a standard trigonometric
function.

import numpy as np
import matplotlib.pyplot as plt

Choose evenly spaced x intervals
X = np.arange(-2*np.pi, 2*np.pi, 0.1)

plot y = tan(x)
plt.plot(x, np.tan(x))
158

CHAPTER5 EMBEDDED PYTHON

Set the range of the axes
plt.axis([-2*np.pi, 2*np.pi, -2, 2])

Include a title
plt.title('y = tan(x)")

Optional grid-lines
plt.grid()
plt.xlabel('x values")
plt.ylabel('y values")
Show the graph
plt.show()

This program plots the curve shown in Figure 5-3.

y = tan(x)

T T LT

0.5
/
0.0 1+

=0.5 1+

y values

-1.0 4+

X values

Figure 5-3. Standard curve of y = tan(x)

159

CHAPTER5 EMBEDDED PYTHON

The grid plot is a matplotlib option. In the case of tan trigonometric curve, it is useful
to include the grid as it shows the asymptotic lines.

We can allow the user to enter data points to be plotted as shown in the next
example.

Enter Data to Plot

The next example has a more significant C program. The program calculates the
mathematical value Product Moment Correlation Coefficient. This is a measure of the
relationship between x and y values in a graph. The user enters the x and y values. The
C program calculates the PMCC for these values and writes this to the file pmccfcnt.bin
and the x and y values to the file pmccf.bin. The Python program reads these two files
and creates a graph showing the (x,y) points and the PMCC value. If the relationship
between the x and y values is a straight line with a positive gradient, then the PMCC
is +1. If we get a straight line with a negative gradient, then the PMCC is -1. If the points
are almost on a straight line of positive, then the PMCC would be something like 0.9568.
The further the points are from a straight line, the further will be the PMCC from 1, for
example, 0.7453.

We look at an example in the following where we are investigating how the value of
a car depreciates over 6 years. In Figure 5-4, x is the number of years and y is the car’s
value in $1000s.

160

CHAPTER5 EMBEDDED PYTHON

Data for car depreciation (8 points)

X

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0

y
11.5

10.6
9.2
7.8
6.1
4.7
3.9
1.8

Figure 5-4. x,y points for car depreciation

The graph of this is shown in Figure 5-5.

Value ($1000)

14
12

10

Figure 5-5. Car depreciation graph

4 5 6 7
Age (years)

161

CHAPTER5 EMBEDDED PYTHON

PMCC for car depreciation is 0.996961.
The formula for the PMCC, r, is

r:Sxy/(Sx* Sy) (1)
where S, = /S« (2)
and S, = /S, (3)

Su= 2x2-(2x)*/n (4)
Syy- 2y* - (Xy)*/n (5)
Sy-2xy-(2x2y)/n (6)
Y'x means sum all of the x values.
Yy means sum all of the y values.
Yx*>means square all of the x values and then sum them.
Y'y* means square all of the y values and then sum them.

Y'xy means multiply each x,y pair and then sum them.
Using these values in our six formulas, we get

Yx=25+3.0+3.5+4.0+4.5+5.0+55+6.0=34
Yy=115+10.6+9.2+7.8+6.1 +4.7+3.9+1.8=55.6
Y'xy =2.5*11.5 + 3.0*10.6 + 3.5*9.2 + 4.0%*7.8 + 4.5*6.1 + 5.0*4.7 + 5.5*3.9 + 6.0*1.8
=28.75+31.8+32.2 +31.2+27.45+23.5+21.45+10.8
=207.15
Yx*=2.5%+3.0>+ 3.5 + 4.0 + 4.5 + 5.0 + 5.5% + 6.0?
=6.25+9+12.25 + 16 + 20.25 + 25 + 30.25 + 36
=155
Y y?*=11.5+10.6°+9.2* + 7.8 + 6.1 + 4.7* + 3.9% + 1.8?
=132.25+112.36 + 84.64 + 60.84 + 37.21 + 22.09 + 15.21 + 3.24
=467.84

From our values of) x and)y, we get

X =)x/8=34/8=4.25
y=Yy/8=556/8=6.95

162

CHAPTER5 EMBEDDED PYTHON

From our values of Y'x?, }'y?, and) xy, we get

Su= 2x2-(Xx)*/n

=155-34*/8=10.5

Syy- 2y* - (Xy)*/n
=467.84 - 55.6° / 8 =81.42

Syy= 2xy - (2xXy) /n
=207.15 - 34*55.6 / 8 =-29.15

So we can now write

Sy= Sy 3.24037
Sy = /Syy- 9.0233

Using these values for PMCC

I'=Syy/Sx+ Sy
=-29.15/(3.24037 * 9.0233)
=-0.996961

So our value for the Product Moment Correlation Coefficient for the car depreciation

problem is -0.996961. This is very close to -1 which would be perfect negative

correlation.

If you are not familiar with the preceding terms,) is the Greek letter “sigma.” So

in the following program, we call) x “sigmax” and similarly for the other terms used

earlier.

In the program, we use sigmax, sigmay, sigmaxsquared, sigmaysquared, xbar, ybar,

sigmaxy;.

In the following program, shown in Listing 5-6, the user is asked to enter the data

points in x,y pairs. When you run this program, enter the following points:

X values

1.000000
2.000000
3.000000
4.000000
5.000000
6.000000

y values

2.000000
3.000000
5.000000
9.000000
10.000000
13.000000

163

CHAPTER 5 EMBEDDED PYTHON
Listing 5-6. pmccf3.c

/*product moment correlation coefficient */
#define _CRT_SECURE_NO WARNINGS

#define PY SSIZE T CLEAN

#include <stdio.h>

#include <math.h>

#include <conio.h>

#include "include/Python.h"

main()
{
double xpoints[10], ypoints[10];
double sigmax, sigmay, sigmaxsquared, sigmaysquared, xbar, ybar,
sigmaxy;
double sxy, sxx, syy, sx, sy, I;
int i, points;
double fltcnt;
char filename[] = "searchpj3b.py"; /* python program to be called */
FILE* fp2;

FILE *fp;
FILE *fp3;

fp=fopen("pmccf2.bin","w"); /* file to store (x,y) values */
fp3=fopen("pmccfcnt2.bin","w"); /* file to PMCC value */

/* User enters number of points in scatter graph */
/* with a maximum of 10 */

printf("enter number of points (max 10) \n");
scanf("%d", &points);
if (points > 10)

{
/* User set number of points to be greater than 10 */
/* Flag an error */
printf("error - max of 10 points\n");

}

164

CHAPTER5 EMBEDDED PYTHON

else

fprintf(fp3,"%d\n",points);

/* set store areas to zero */
sigmax = 0;

0;

sigmaxy = 0;

sigmaxsquared = 0;

0;

sigmay

sigmaysquared

/* User enters points for scatter graph */
for (i = 0;i < points;i++)
{
printf("enter point (x and y separated by space) \n");
scanf("%1f %1f", &xpoints[i], &ypoints[i]);
/* totals incremented by x and y points */
sigmax

sigmax + xpoints[i];

sigmay = sigmay + ypoints[i];

sigmaxy = sigmaxy + xpoints[i] * ypoints[i];
sigmaxsquared = sigmaxsquared + pow(xpoints[i], 2);
sigmaysquared = sigmaysquared + pow(ypoints[i], 2);

}

/*print points and write them to file */

printf("points are \n");
for (i = 0;i < points;i++)

{
printf(" \n");
printf("%1f %1f", xpoints[i], ypoints[i]);
fprintf(fp, "%1f\t%1lf\n",xpoints[i], ypoints[i]);
}

printf(" \n");
fltcnt = points;

165

CHAPTER5 EMBEDDED PYTHON

/* variables in PMCC formula calculated */

xbar = sigmax / fltcnt;
ybar = sigmay / fltcnt;

(1 / fltent)*sigmaysquared - ybar * ybar;

Syy

SXX

(1 / fltcnt)*sigmaxsquared - xbar * xbar;
sx = sqrt(sxx);

sy = sqrt(syy);
sxy = (1 / fltcnt)*sigmaxy - xbar * ybar;

/* PMCC value calculated */

T = sxy / (sx*sy);
printf("r is %1f", r);
fprintf(fp3,"%1f\n",1);

}
fclose(fp);

fclose(fp3);
/* Call python program to print the graph */
Py Initialize();

fp2 = Py fopen(filename, "1r");
PyRun _SimpleFile(fp2, filename);

Py Finalize();

The Python program (Listing 5-6b) reads the file of data and creates the graph.

Listing 5-6b. searchpj3b.py

import matplotlib.pyplot as plt
import numpy as np

#if

there are 8 entered coordinates then this will be the arrays

#xvals = [0,1,2,3,4,5,6,7]

166

CHAPTER 5

#yvals = [o0,1,2,3,4,5,6,7]
#xvals = [0]*8
#yvals = [0]*8

Read data from pmccf.bin file

y = np.loadtxt("pmccf.bin™)
print("Data read from pmccf.bin")

print("y = ",y)
Read data from pmccfcnt.bin file

z = np.loadtxt("pmccfcnt.bin™)

print("Data read from pmccfcnt.bin™)

print("z = ",z)

a,b = z # a is no. of coords entered, b is PMCC value

#zint is the number of coordinates entered
zint = int(a)
print("number of coordinates entered =

, zint)

print("PMCC = ", b)
float b = b;
string b = str(float b)

Set up the arrays for the graph

xvals

[0]*zint #length of array is num. of coords entered

yvals = [0]*zint #length of array is num. of coords entered

set up the x and y arrays from the values entered
for x in range(zint):

a)b = Y[X]

xvals[x] = a

yvals[x]

Print the x and y values to the user

",xvals)
",yvals)

print("xvals
print("yvals

EMBEDDED PYTHON

167

CHAPTER 5 EMBEDDED PYTHON
Display the graph

plt.xlabel('x values")
plt.ylabel('y values")
plt.title('PMCC Test Graph')
plt.text(1.0, 10, 'PMCC =')
plt.text(2.0, 10, string b)

plt.plot(xvals, yvals, "ob")
plt.show()

This outputs to the command lines

enter number of points (max 10)

6

enter point (x and y separated by space)
12

enter point (x and y separated by space)
23

enter point (x and y separated by space)
35

enter point (x and y separated by space)
49

enter point (x and y separated by space)
5 10

enter point (x and y separated by space)
6 13

points are

1.000000 2.000000
2.000000 3.000000
3.000000 5.000000
4.000000 9.000000
5.000000 10.000000
6.000000 13.000000

xr is 0.986227

Data read from pmccf.bin

168

CHAPTER5 EMBEDDED PYTHON
y= [[1. 2.]
[2. 3.]
[3. s.]
[4. 9.]
[5. 10.]
[6. 13.]]
Data read from pmccfcnt.bin
z = [6. 0.986227]
number of coordinates entered = 6
PMCC = 0.986227
Xvals = [100, 200, 300’ 4.0, 500, 600]
yvals = [2.0, 3.0, 5.0, 9.0, 10.0, 13.0]
This produces the graph shown in Figure 5-6.
PMCC Test Graph
[]
12 A
o]
w
g s
o
>
>
6 -
O
4 -
el
21 ®
1 2 3 4 5 6
x values

Figure 5-6. PMCC test graph

169

CHAPTER5 EMBEDDED PYTHON

In this case, the calculated PMCC is 0.986227 which is very close to +1 which would
be perfect positive correlation where all of the points would lie exactly on a straight line.
Next, we will look at a mechanism for finding the center of mass of an object.

2D Center of Mass Plot

Here, we want to find where the center of mass of the area enclosed by the 2D U-shaped
curve (y = x**2) and the line y = 4 lies. If you made a shape as in Figure 5-7 and you made
it a solid shape from wood or plaster of Paris and then held the shape flat, you should be
able to balance it on your finger by placing your finger below the center of mass point.

If you look at the following diagram, you can see that it is symmetrical about the line
x = 0 so that you would expect the center of mass to lie on that line. Also, looking at the
object, you can see that there is more matter in the top part of the shape so you would
expect the center of mass to be on the upper part of the line x = 0. We can find out exactly
where it is by using a random number generator mechanism.

The random number generator on computers can generate random numbers within
arange we specify. Here, we want our numbers to be above the curve y = x**2 and below
the line y = 4. We can generate numbers between x = -2 and x = +2 and y values between
y =0 and y = 4. This gives us numbers within the square which surrounds our curve.

This is the square between x = -2 and x = +2 and y =0 and y = 4. When we have generated
an x and y value for a point, we need to check that that point lies above the curve or,

in mathematical terms, that y > x**2. We keep doing this for 3500 points. If the x and y
values are within the curve, then we add the x values together and we add the y values
together. After doing this 3500 times, we divide the x total by 3500 and the y total by 3500.
The result is the coordinates of the center of mass. We write all of the 3500 points to an
output file and also the calculated center of mass.

We then pass control to the Python program which reads the two files and plots all of
the points generated on a graph. Each point is colored blue, and the center of mass point
is colored red. This is shown in Figure 5-7.

170

CHAPTER5 EMBEDDED PYTHON

4.0 A

3.5 7

3.0

251

2_0 -1 — y=x**2, 0 =< y <= 4
1.5 A1
1.0 A1

0.5 A

0.0 41—

-20 -15 -1.0 -05 0.0 0.5 1.0 15 2.0

Figure 5-7. Shape whose center of mass we want to find

The C program is cofm5a.c (Listing 5-7), and the embedded Python program is
searchpj4.py (listing 5-7b).

Listing 5-7. cofmba.c

r* cofm5a.c
Centre of Mass Calculation.
In this program “Centre of Mass” is abbreviated to cofm.
Calculates c of m for 2D shape y = x"*2 between y = 0 and y = 4 */
#idefine CRT_SECURE_NO_WARNINGS
#define PY SSIZE T CLEAN
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <time.h>

171

CHAPTER5 EMBEDDED PYTHON

#include <conio.h>
#include "include/Python.h"

double randfunc();

main()

{

172

int I,outcount;

float area,total,count;

FILE *fptr;

char filename[] = "searchpj4.py"; /* python program name */
FILE* fp2;

FILE *fp3;
time t t;

/* Local Arrays */
double x, y,xout[3500],yout[3500],xcofm,ycofm;

/* file cofm5a.bin contains all points inside the curve */
/* file cofm5acnt.bin contains total number of points inside
the curve and the x and y position of the centre of mass*/

fptr=fopen("cofm5a.bin","w");
fp3=fopen("cofmsacnt.bin","w");

/* Initializes random number generator */
srand((unsigned) time(&t));

/* clears arrays to zero */
for(I = 0; I<3500;I++)
{
xout[I]
yout[I]

0.0;
0.0;

CHAPTER5 EMBEDDED PYTHON

/* set x and y cofm accumulators to zero */
xcofm=0.0;
ycofm=0.0;

total
count

0.0;

0.0;
outcount = 0;

for(I = 1;I<= 3500;I++)

/* get x values between -2 and +2 */
/* get y values between 0 and +4 */
randfunc()*4.0-2.0;
randfunc()*4.0;

/* If the generated x and y values are above */
/* the curve y=x"2 then add 1 to count */
/* and update the x and y cofm values */

if(y>pow(x,2))

{
xcofm=xcofm+x;
ycofm=ycofm+y;

total = total+i;
outcount = outcount +1;
xout[outcount] = x;
yout[outcount] = y;

}

count = count+1;

area=(total/count)*16;/* area is part of the square which is
4x4 or 16 sq units */
printf("total is %f count is %f\n",total,count);

xcofm=xcofm/total;
ycofm=ycofm/total;

173

CHAPTER5 EMBEDDED PYTHON

printf("area is %1f\n",area);
printf("cofm is %1f,%1f",xcofm,ycofm);

/* Plot the data */

if(outcount >= 2700)
outcount = 2700;

fprintf(fp3, "%d\t%1f\t%1f\n",outcount,xcofm,ycofm);

for(I = 1; I<=outcount-1;I++)
fprintf(fptr,"%1f %1f\n",xout[I],yout[I]);
fclose(fptr);
fclose(fp3);

/* Call python program to read the file and produce the diagram showing the
position of the centre of mass */

Py Initialize();

fp2 = _Py_fopen(filename, "r");
PyRun_SimpleFile(fp2, filename);

Py Finalize();

}
double randfunc()
{
/* get a random number 0 to 1 */
double ans;
ans=rand()%1000;
ans=ans/1000;
return ans; /* return the random number to the caller */
}

174

CHAPTER5 EMBEDDED PYTHON
Listing 5-7b. searchpj4.py
#In this program "Centre of Mass" is abbreviated to cofm.

import matplotlib.pyplot as plt
import numpy as np
fhand = open('cofmsa.bin','r') #file of (x,y) values created by Cofm5a.c

count = 0
#if there are 8 entered coordinates then this will be the arrays

#xvals = [0,1,2,3,4,5,6,7]
#yvals = [0,1,2,3,4,5,6,7]
#xvals = [0]*8
#yvals = [0]*8

y = np.loadtxt("cofmsa.bin") # read x,y values
print("Data read from cofm5a.bin")

print(y)

z = np.loadtxt("cofmsacnt.bin") # read count of points, xcofm and ycofm
print("Data read from cofm5acnt.bin")

print(z)

a,p,j = z # split the 3 z values into separate variables

zint = int(a)

print("zint is " ,zint) # total number of points
string p = str(p)

print("string p is ",string p) # x value of c of m
string_j = str(j)

print("string j is ",string j) # y value of c of m

xvals

[0]*zint
[0]*zint
store the x and y coordinates into xvals[] and yvals[]
for x in range(zint-1):
a,b = y[x]
xvals[x] = a

yvals

yvals[x] = b

175

CHAPTER5 EMBEDDED PYTHON

plt.xlabel('x values")

plt.ylabel('y values")

plt.title(' CofM Graph (red spot is Centre of Mass)')
plt.plot(xvals, yvals, "ob")

plt.plot(p, j, "or"

plt.show()

This code produces the following output to the command line:

total is 2331.000000 count is 3500.000000
area is 10.656000
cofm is 0.006847,2.359818Data read from cofm5a.bin
[[-1.548 3.268]
[-0.872 2.716]
[-0.16 0.068]

[0.136 2.972]

[0.18 0.172]

[1.484 3.744]]
Data read from cofmSacnt.bin
[2.331000e+03 6.847000e-03 2.359818e+00]
zint is 2331
string p is 0.006847
string j is 2.359818

This code produces the following graph shown in Figure 5-8.

176

CHAPTER5 EMBEDDED PYTHON

P) CofM Graph (red spot is Centre of Mass)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
X values

Figure 5-8. Center of mass graph

The center of mass is shown by the red spot. You could guess that this is probably
correct as the shape of the object is symmetrical about the line x = 0 and the spot looks
to be on that line, and there are more blue dots in the top of the shape and the red spot is
toward the top of the shape.

This embedded Python program demonstrates the advantages of both C and Python
and so the usefulness of the embedding technique.

We will now look at histograms as they are useful in many areas of economics.

Histograms

A histogram is a graphical way of representing data distributions. They are similar to
bar charts in appearance, but they show frequency density as a distribution rather than
frequency.

The bars in the graphs are referred to as “bins.”

177

CHAPTER 5 EMBEDDED PYTHON
The following program shows a histogram displaying the distribution of numbers:
1,2,3,4,45,66,67,68,69,70,84.88,91,94

The program takes these values and groups them into ten bins. We specify in the
program that we want ten bins, and this value is used in the call to the function plt.hist
which plots the histogram. The reply from the call to this function tells you how many
items are in each bin. We can then print this out, and we see that the values are

4. 0. 0. 0. 1. 0. 1. 4. 0. 30

So there are four items in the first bin (1,2,3,4 from our list of values earlier), none in
the next three bins, one in the next, etc.
In Listing 5-8, we then plot the histogram which is shown in Figure 5-9.

test histogram

4.0 A

3.5 4

3.0 A

2.5 A

2.0 A

Number in each bin

1.5 A

1.0 4

0.5 A

0.0 - T
0 20 40 60 80

preset numbers between 1 and 100

Figure 5-9. Test histogram

178

CHAPTER 5
Listing 5-8. plot2b.py
import matplotlib.pyplot as plt

values = [1,2,3,4,45,66,67,68,69,70,84.88,91,94]
draw a histogram with 10 bins of the “values’ data

number of bins = 10

n = plt.hist(values, number of bins, facecolor='blue')
print(n[0]) # counts in each bin

plot the histogram

plt.title('test histogram")

plt.xlabel('preset numbers between 1 and 100")
plt.ylabel('Number in each bin')

plt.show()

This outputs

[4. 0. 0. 0. 1. 0. 1. 4. 0. 3.]

EMBEDDED PYTHON

This histogram mechanism is used in the exercise at the end of the chapter.

Our final example shows how we can import a picture into our program.

Importing a Picture

Python has “Image’, “ImageDraw’; and “ImageFont” which can be imported from “PIL’

and embedded into C programs. These can be used by a Python program to read a

photographic image in a file and print it. We can then overwrite some of the pictures

with text. Listing 5-9 demonstrates this.

Listing 5-9. cpythiml.c

#define PY SSIZE T CLEAN
#include <stdio.h>
#include <conio.h>
#include "include/Python.h"

179

CHAPTER5 EMBEDDED PYTHON

int main()

{
char filename[] = "embim9.py";
FILE* fp;

Py Initialize();

fp = Py fopen(filename, "r");
PyRun_SimpleFile(fp, filename);

Py Finalize();
return O;

The Python program (Listing 5-9b) reads a file containing a picture of Rome and
draws the image. It then writes a title “Rome 2016” at the top of the image. This is shown
in Figure 5-10.

Figure 5-10. Imported picture

180

CHAPTER5 EMBEDDED PYTHON

Listing 5-9b. embim9.py

from PIL import Image, ImageDraw, ImageFont
#Open image using Image module
im = Image.open("5Rome.jpg") #photograph of Rome

myFont = ImageFont.truetype(r'C:\Users\System-Pc\Desktop\arial.ttf', 80)
#The 'r' character before the path, in the code above, is necessary if the
path contains backslashes, #as the backslash could be interpreted as an
escape character.

d1 = ImageDraw.Draw(im)

Print text "Rome 2016" at the top of the picture

di.text((28, 36), "Rome 2016", font=myFont, fill=(255, 0, 0))

#Show final Image
im. show()

Summary

This chapter has demonstrated how you can embed Python code and complete Python
programs into C programs. We have shown how this can be invaluable if you need to
perform tasks which Python is more able to do than C.

Exercise

1. Write a C program to read in 20 user-entered marks achieved by
students in an examination (0 to 100). Write the 20 marks to a file.
Write a Python program to read the file, and from the 20 values,
create a histogram. Call the Python program from the C program.

181

CHAPTER 6

Sockets

The socket system allows two or more programs to communicate with each other over
the Internet. Messages can be sent between the programs in both directions, if required.
Files can be transmitted, and we can have one socket communicating with several others
at the same time (this is called “multithreading”).

A Closer Look at Sockets

The term for two sockets communicating using predefined sequences is called
“handshaking.” These predefined sequences are called “protocols.” Both server and
client have to adhere to the same protocols; otherwise, they would not work. This is a
bit like two people who spoke different languages and neither knew the other person’s
language. Their communication would break down fairly quickly.

One fairly well-used protocol is TCP/IP which is an abbreviation of “Transmission
Control Protocol/Internet Protocol.” This protocol is used over the Internet. Each device
which uses the Internet has its own “IP address.” This is a unique address. You can
find the IP address of the computer you use using the command-line tool “ipconfig”.

IP addresses have the same format. One address may be “123.456.7.89”. The addresses
always have the same pattern of four numbers separated by a full stop (period). This
type of IP address is called IPv4, and the address is 32 bit. There is a new version of IP
addressing called IPv6, where the address is 128 bit. Here we will use IPv4.

The socket system in Python is accessed using our familiar “import” instruction. In
this case, we use

import socket

Programs that use the socket system are classed as either “server” or “client.”
Generally speaking, the server is in charge of the communication, and the client asks
to be connected to it. Once the connection has been established, messages can be sent

from server to client and from client to server.

183
© Philip Joyce 2022

P.Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4_6

https://doi.org/10.1007/978-1-4842-7774-4_6#DOI

CHAPTER6 SOCKETS

Figure 6-1 shows the main code calls from a server and a client.

Server Client

socket

bind

listen socket

accept « » connect (A)
I—»recv < send«—— (B)
+— send »recv— (C)

recv < close (D)

v
close

Server sets itself up as a listening socket

(A) Connection between server and client
(B) Data sent from client to server

(C) Data sent from server to client

(D) Client closes connection

Figure 6-1. Server-client mechanism

184

CHAPTER6 SOCKETS

On each side, the program issues the “socket” command which initiates the socket
mechanism in the program.

On the server side, the next command is “bind”. This establishes the program that
issues the “bind” as a server. The IP address and port number are given in the bind
command.

The next command for the server is “listen” Here, the server waits for connect
commands from client programs.

On the client side, after the initial “socket” command, it issues a “connect”
command to make a connection with the server. It then calls “connect” to connect to the
specific server (identified by IP address and port number).

The server now issues an “accept” command to accept the connect command from
the client.

Now that the connection has been established, the server and client can send and
receive messages to and from each other.

When all business between the server and client is complete, the client sends a
“close” command to the server and the connection between them is ended.

Messages sent across the Internet normally use UTF-8.

UTF-8 is part of Unicode which is an international standard for giving every
character a unique number. It is similar to ASCII. It uses either 1, 2, 3, or 4 bytes to
encode (usually only 1 byte).

The data in the messages is normally in string format, and this is translated into UTF-
8 using the .encode() command. If the server program sends this to the client program,
then the client translates this back into string format using .decode().

We can now look at different types of socket.

Basic Client-Server

This is a basic one-way, server and client combination. There is a basic connection and
communication, as described in the preceding diagram. The server starts up and waits
for a connection from the client. The client starts up and connects to the server. The
server sends a message to the client. The client receives this message and prints it. Then
the connection terminates.

185

CHAPTER6 SOCKETS

Ifyour client and server are on the same machine, then you can use the command
“gethostname” to get its identifier and then use this with its port number for its full
address. If your server and client are on different machines, then you cannot use
“gethostame’; but you have to use their IP addresses.

Here, our server and client are on the same machine, so we can use
“gethostame”. If we want to find our IP address, we can use the command socket.
gethostbyname(hostname).

Listing 6-1 is the server.

Listing 6-1. socserl0cx.py

socket server

import socket # load socket module
skt = socket.socket() # Create a socket (refer to it as skt in this
program)

hostname = socket.gethostname() # Get local host machine name
print(hostname) #print the host machine name

port = 12357 # Reserve a port (same as client port)
skt.bind((hostname, port)) # Bind the host name and port (establish
server status)
skt.listen(5) # wait for a client to connect.
while True:
con, accaddr = skt.accept() # Accept connection with client.

'con' is the open connection between
the server and client, 'accaddr' is
the IP address and port number
print('con is ', con) #print values to the user
print('accaddr is ', accaddr) #print values to the user

print('Received connection from', accaddr) #print values to the user

message = "Got your connection”
con.send(message.encode()) #send message to client to confirm connect

con.close() # Close connection
break

186

CHAPTER 6 SOCKETS
The server outputs the following:

user-PC

con is <socket.socket fd=448, family=AddressFamily.AF_INET,
type=SocketKind.SOCK_STREAM, proto=0, laddr=('123.456.7.89, 12357),
raddr=(123.456.7.89', 63730)>

accaddr is ('123.456.7.89', 63730)

Received connection from ('123.456.7.89', 63730)

(where the "123.456.7.89" characters are the IP addresses).

The second program, Listing 6-2, is the client.

Listing 6-2. socclilObx.py

socket client

import socket # load socket module

skt = socket.socket() # Create a socket

hostname = socket.gethostname() # Get local machine name

port = 12357 # Reserve a port (must be same as server)

skt.connect((hostname, port)) # connect to the server
data = skt.recv(1024) # receive data from server
print('data is ',data.decode()) #print the line of data
received
skt.close() # Close connection

The client outputs the following:

data is Got your connection

This has shown a basic socket operation. We will now look at file transfer
between sockets.

Server-Client Pair to Send-Receive a File

The following server-client pair send/receive a file.
The server reads each line of the file “pjfilel.txt” and sends each one separately to
the client.

187

CHAPTER6 SOCKETS
“pjfilel.txt” contains

This is my line
second line
third line
fourth line
last line

The client reads each line received from the server, prints it out, and writes it to the
output file “pjrecfile”.
Listing 6-3 shows the server for a file send.

Listing 6-3. socserfile.py

send file to client

import socket # Import socket module

port = 3000 # Reserve a port for your service.
s = socket.socket() # Create a socket object

host = socket.gethostname() # Get local machine name
s.bind((host, port)) # Bind to the port

s.listen(5) # Now wait for client connection.

print ('Server running')

while True:
conn, addr = s.accept() # Establish connection with client.
print ('Got connection from', addr)
data = conn.recv(1024) #receive connection from client
print('Server received', bytes.decode(data)) #print out the data
received

filename="'pjfilel.txt' #the name of the file to be opened
file = open(filename,'rb') Hopen the file we wish to send
read each line in the file and send it to the client
line = file.read(1024)
while (line):
conn.send(line) #send the line to the client

188

CHAPTER6 SOCKETS

print('Server received ',bytes.decode(line)) #tell user the line
that has been received
by client
line = file.read(1024) #read the next line
file.close() #finished sending so close the file

print('Finished sending")

conn.send(str.encode('Thank you for connecting')) #send final message
to client

conn.close() #close the connection

break

After connecting, the server outputs

Server received Client connected
Sent This is my line

second line

thixd line

fourth line

last line

Finished sending

The next program, shown in Listing 6-4, is the associated client program which reads
and prints the file. It then creates an output file and writes the file read to it.

Listing 6-4. socclifile.py

Socket Client Program
receive file from server
and write it to a new file

import socket # Import socket module

s = socket.socket() # Create a socket object

host = socket.gethostname() # Get local machine name

port = 3000 # Set the port for your service.

s.connect((host, port)) # connect to server
s.send(str.encode("Client connected")) #send connect confirmation to user

189

CHAPTER6 SOCKETS

open the output file (pjrecfile)
with open('pjrecfile’, 'wb') as file:
print ('file opened")
while True:
print('receiving data from server')
data = s.recv(1024) # receive each line of data from server (at
most 1024 bytes)
print('data is ',bytes.decode(data)) #print the line of data
received
if not data:
break
write data to the file
file.write(data)

file.close() # close the output file
print('Received file from server')
print('Written to output file pjrecfile')
s.close() #close the connection
print('connection closed")

After connecting, the client outputs

file opened

receiving data from server
data is This is my line
second line

third line

fourth line

last line

receiving data from server

data is Thank you for connecting
receiving data from server

data is

Received file from server

Written to output file pjrecfile
connection closed

190

CHAPTER 6 SOCKETS
pjrecfile contains

This is my line

second line

third line

fourth line

last line

Thank you for connecting

This has shown a method of file transfer with sockets. Until now, we have only
looked at one server communicating with one client. We will now extend this.

Threaded Programs

A threaded system of sockets can have a few client programs connecting simultaneously
to one server. Clients can connect and disconnect as many times as they wish. The server
sits in a loop waiting for client connections. Listing 6-5 shows the code for the threaded
server.

Listing 6-5. socserthreadgx2.py

import socket # Import socket module
from thread import * # thread software
import os

mypid = os.getpid()# get Process ID (pid)for this program
print('Server My pid is', mypid) #print the pid in case the user wants to
"taskkill' this program

ServerSocket = socket.socket()

host = socket.gethostname() # Get local machine name
port = 1234
ThreadCount = 0 #count of how many clients have connected

ServerSocket.bind((host, port))

print('Waiting for Client connect")
ServerSocket.listen(5) #wait for a client connection

191

CHAPTER6 SOCKETS

Function for each connected client
def threadcli (cliconn):
cliconn.sendall(str.encode('Connect"))
while True:
data = cliconn.recv(2048) #receive message from client
reply = 'Server replies: ' + data.decode() #set up reply
if not data:
break
cliconn.sendall(str.encode(reply)) #send the reply to the client
cliconn.close()

wait for a connection from a new client
while True:
Cli, addr = ServerSocket.accept()
print('Connected to: ' + addr [0] + ':' + str(addr [1]))
print(Cli) # show server and client addresses
start new thread(threadcli, (Cli,)) #function imported from '_thread'
This calls local function 'threadcli'’
Each threaded client stays within its own
'threadcli' function
ThreadCount += 1 #add 1 to number of connected clients
print('Thread Number: ' + str(ThreadCount))
ServerSocket.close()

After connecting, the server outputs

Server My pid is 6296

Waiting for Client connection

Connected t0:ciiiiiiiiiiiiienninnnnnns (IP address and Port
number)

Thread Number: 1

The second program is the client. When the client wants to end the connection, the
user types in ‘windup’ and the connection is closed. Listing 6-6 shows the code for the
threaded client.

192

Listing 6-6. socclithreadgx2.py

import socket
import os

mypid = os.getpid() # get Process ID (pid)for this program
print('Client My pid is', mypid) #print the pid

ClientSocket = socket.socket()
host = socket.gethostname() # Get local machine name

port = 1234

print('Waiting for connection')
ClientSocket.connect((host, port)) #connect to Server

Response = ClientSocket.recv(1024)
print(ClientSocket) # show server and client addresses
while True:

CHAPTER6 SOCKETS

Input = input('Enter message: ') #ask user to enter their message
ClientSocket.send(str.encode(Input)) #send message to socket
Response = ClientSocket.recv(1024) #get response from server

if(Response.decode()) =='Server replies: windup':

if client wants to disconnect from server, the user types

'windup'
break
print(Response.decode())
ClientSocket.close() #close the client

After connecting, the client outputs

Client My pid is 2248

Waiting for connection

Enter message: hello from clienti
Server replies: hello from client1
Enter message: windup

193

CHAPTER6 SOCKETS

This has shown multiple clients connecting to a single server. As clients can connect,
disconnect, and then reconnect, this could cause a problem with redundant servers. We
will now look at this.

Closing Down a Threaded Server

Most socket clients and servers can be routinely shut down. However, in the case of
threaded sockets, the server may be left running indefinitely because many clients can
connect and disconnect over a period of time.

If we are sure that all of the clients have disconnected from the server and we want to
close the server, we can by using the command-line instructions “tasklist” and “taskkill”.
The “tasklist” command provides us with a list of the currently running tasks. An

example is shown as follows:

C:\Users\user\AppData\Local\Pxograms\Python\Python37»>tasklist

Image Name PID Session Name Session# Memory Usage

System Idle Process 0 Services 0 8 K
System 4 Services 0 36 K
Registry 100 Services 0 51,384 K
smss .exe 352 Services 0 648 K
csSrss.exe 516 Services 0 2,744 K
wininit.exe 628 Services 0 3,852 K
services.exe 700 Services 0 6,616 K
1sass.exe 708 Services 0 14,688 K
svchost.exe 904 Services 0 22,944 K
fontdrvhost.exe 932 Services 0 1,568 K
svchost.exe 68 Services 0 14,284 K
cmd.exe 12004 Console 3 5,044 K
conhost.exe 9936 Console 3 19,564 K
UserOOBEBroker.exe 11604 Console 3 9,040 K
notepad.exe 1448 Console 3 44,144 K
notepad.exe 10452 Console 3 41,768 K
python.exe 6576 Console 3 10,596 K
cmd.exe 7104 Console 3 5,048 K
conhost.exe 1332 Console 3 19,580 K

194

cmd.exe 10344 Console
conhost.exe 6120 Console
Microsoft.Photos.exe 772 Console
RuntimeBroker.exe 12072 Console

tasklist.exe 4944 Console

C:\Users\user\AppData\Local\Programs\Python\Python37>

W oW W w

3

CHAPTER6 SOCKETS

5,284
19,512
8,356
31,176
9,836

We see that our python.exe program is in this list. We can close this down using

“taskkill” as shown as follows:

C:\Users\user\AppData\Local\Programs\Python\Python37> taskkill /F /IM

python.exe

SUCCESS: The process "python.exe" with PID 6576 has been terminated.

C:\Users\user\AppData\Local\Programs\Python\Python37>

OR WE CAN USE THE PID TO TERMINATE IT'

If there is more than one python.exe running, we need to make sure that we are

terminating the correct one. Each running program has a unique Process ID or PID. We

can use the pid to make sure we terminate the correct one. Here, we show a task list with

two python.exe programs.

C:\Users\user\AppData\Local\Programs\Python\Python37s>tasklist

Sessionit

Memory Usage

Image Name PID Session Name
System Idle Process 0 Services
System 4 Services
Registry 100 Services
Smss.exe 352 Services
cSrss.exe 516 Services
wininit.exe 628 Services
services.exe 700 Services
1sass.exe 708 Services
svchost.exe 904 Services
fontdrvhost.exe 932 Services
svchost.exe 68 Services

36 K
52,328 K
648 K
2,752
3,852
6,600
14,768
22,944
1,568
14,268

195

CHAPTER6 SOCKETS

svchost.exe 1056 Services 0 19,188 K
svchost.exe 1084 Services 0 25,116 K
svchost.exe 1120 Services 0 23,404 K
svchost.exe 1288 Services 0 27,984 K
svchost.exe 1344 Services 0 66,208 K
notepad.exe 1448 Console 3 44,144 K
notepad.exe 10452 Console 3 41,800 K
cmd.exe 7104 Console 3 5,052 K
conhost.exe 1332 Console 3 19,620 K
cmd.exe 10344 Console 3 5,284 K
conhost.exe 6120 Console 3 19,956 K
Microsoft.Photos.exe 772 Console 3 8,356 K
RuntimeBroker.exe 12072 Console 3 31,196 K
svchost.exe 12704 Services 0 9,592 K
audiodg.exe 4716 Services 0 11,748 K
smartscreen.exe 12000 Console 3 22,928 K
python.exe 5492 Console 3 10,548 K
python.exe 16648 Console 6 11,100 K
tasklist.exe 2448 Console 3 9,824 K

If we know that it is the one with pid of 5492, we can type
C:\Users\user\AppData\Local\Pxograms\Python\Python37»>taskkill /F /PID 5492

and receive
SUCCESS: The process with PID 5492 has been terminated.
C:\Users\user\AppData\Local\Programs\Python\Python37>

If you had two or more python.exe programs running (each having a different pid),
you may not know which one to kill. What we can do, if we know that we may want to kill
our process from the command line, is for the program in question to print out its pid on
startup. It can find its pid using the getpid() Python instruction which is contained in the
os library.

So in our program, we would include

import os
mypid = os.getpid()
print('My pid is', mypid)

196

CHAPTER6 SOCKETS

So the instruction os.getpid() would return the programs pid in the variable
“mypid’, and then the program would print this out. The user can then use the “taskkill”
command as earlier using the relevant pid, for example:

C:\Users\user\AppData\Local\Programs\Python\Python37»>python Socclithreadg.py
My pid is 4120

Waiting for connection

¢<socket.socket fd=420, family=AddressFamily.AF_INET, type=SocketKind.SOCK_
STREAM, proto=0, laddr=('123.456.7.89'), raddr=('123.456.7.89')>

Enter message:

Then on a different window, we would use taskkill
C:\Users\user\AppData\Local\Programs\Python\Python37>taskkill /F /pid 4120 /T
and receive

SUCCESS: The process with PID 4120 (child process of PID 16520) has been
terminated.

C:\Users\user\AppData\Local\Programs\Python\Python37>

This section has shown how to close a server. This mechanism should only be used
when necessary. We will now look at “chat” programs.

Chat Programs

Chat socket programs have sends and receives in both directions. The server still
initiates the connection procedure, but the conversation is two-way (hence “chat”).
The first program, shown in Listing 6-7, is the server.

Listing 6-7. socsert2x.py

Server Side Script
Socket Server Program

import time, socket, sys
server_port = 1000
server socket = socket.socket()

197

CHAPTER6 SOCKETS

host_name = socket.gethostname()
server socket.bind((host name ,server port))

server socket.listen(1) #look for client connect
print ("Server is loaded")
connection socket, address = server socket.accept() # accept client connect
while True:
sentence = connection socket.recv(2048).decode() #receive incoming
message
print('>> ',sentence) # print the message to the user
message = input(">> ") #ask the user to input a reply
connection_socket.send(message.encode()) #send reply
if(message == 'windup'):
connection socket.close() # a 'windup' message means the user wants
to disconnect
break

Output from server (check the client output to see the two-way chat):

Sexrver is loaded

> hello from client
»> hello from server
»> windup

> windup

The second program, shown in Listing 6-8, is the client. When the client wants to end
the chat, the user types in ‘windup’ and the chat is closed.

Listing 6-8. socclit2x.py

Client Side Script
Socket Client Program

import time, socket, sys

server _name = socket.gethostname()

server_port = 1000

client socket = socket.socket()

198

CHAPTER6 SOCKETS
host_name = socket.gethostname()

client socket.connect((server name,server port)) #connect to the server
while True:
sentence = input(">> ") #input your message
client_socket.send(sentence.encode())#send your message
message = client socket.recv(2048) #receive reply
print (">> ", message.decode()) #print the reply
if(sentence == 'windup'):
client _socket.close() # a 'windup' command means the user wants to
disconnect
break

Output from client (check the server output to see the two-way chat):

»> hello from client
> hello from server
5> windup

> windup

This has demonstrated two-way send and receive sockets.
The chapter has shown the fundamentals of sockets and the variety of types of
communication we can use sockets for.

Summary

This chapter has illustrated how socket servers and clients interact and how they can be
used in different combinations.

Exercise

1. Write chat programs for a server and a client. Then write another
two where the only difference from the first two is the port
number. Run all four programs on different windows. Check that
the server-client pair with the same port number chat with each
other (i.e., the server with one port number should not chat with
the client with a different port number).

199

APPENDIX A

Answers to Examples

Chapter 1

1.
We get

print(type(V1))
<class 'int's

print(type(V2))
<class 'float's
print(type(V3))
<class 'float's
print(type(V4))
<class 'float's

Now we perform arithmetic processes as we did with our int assignments.

V5 = V1 + V2
print(Vs)

5.5
print(V1+V2)
5.5
print(type(Vs))
<class 'float's

V5 = V4 - V3
print(Vs)
1.6500000000000004

201
© Philip Joyce 2022

P.Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4

https://doi.org/10.1007/978-1-4842-7774-4#DOI

APPENDIXA ANSWERS TO EXAMPLES

V5 = V2 *V1

print(g)
7.0

V5 =V4 / V1
print(Vs)
3.375

V5 = V2 / V4
print(Vs)
0.5185185185185185

V5 = V3 % V2 #tshow remainder
print(k)
1.5999999999999996

V5 = V2 ** 2
print(V5)
12.25

V5 = V2 ** V1
print(Vs)
12.25

V5 = V1 + V2 * V3 - V4 # show BODMAS
print(Vs)
13.099999999999998

V5 = (Vi+ V2) * (V3 - V4)
print(V5)
-9.075000000000003

2.
2.1
lalist4a.py

list1 = [1,2,3,4,5,6,7]
print (list1)

for x in listi1:
print(x)

202

APPENDIXA ANSWERS TO EXAMPLES

for x in range(7):
new = int(input("Enter an integer: "))
list1.append(new)

print(list1)

This outputs

[1, 2, 3, 4, 5, 6, 7]
1
2
3
4
5
6
7

Enter an integer: 58
Enter an integer:
Enter an integer:
Enter an integer:
Enter an integer:
Enter an integer:
Enter an integer:
[1, 2, 3, 4, 5, 6, 7, 58, 2, 3, 4, 5, 6, 7]

N 6oV AW N

2.2

adicts4a.py

in adict4a.py program

my dict = {'a' : 'one', 'b' : "two'}
print("Enter key to be tested: ")
testkey = input()

found = 0

203

APPENDIXA ANSWERS TO EXAMPLES

for item in my dict:
if testkey in my dict:
print ("specified found")
found = 1
break
if found == 0:

print ("specified not found")
This outputs (if you enter “a” when asked for a key)

Enter key to be tested:
a
specified found

or outputs (if you enter “x” when asked for a key)

Enter key to be tested:
X
specified not found

2.3

Iterating over a tuple

tup1=(2,4,6,8,10,12,14)

for element in tupi:
print (element)

test5e.py
fileout = open("pjfileqi.bin", "w")

204

APPENDIX A

line1l = "a-Jones-D-37-accountant-45000\n"
fileout.write(line1)

line2 = "b-Smith-A-42-HR-55000 \n"
fileout.write(line2)

line3 = "c-Allen-R-28-Secretary-40000 \n"
fileout.write(line3)

line4 = "d-Bradley-S-26-Programmer-50000 \n"
fileout.write(line4)

fileout.close()
filein = open("pjfileqi.bin", "r")

a=filein.readline()
b=filein.readline()
c=filein.readline()
d=filein.readline()

print(a)
print(b)
print(c)
print(d)

filein.close()

When you run this program, its output is
a-Jones-D-37-accountant-45000
b-Smith-A-42-HR-55000
c-Allen-R-28-Secretary-40000
d-Bradley-S-26-Programmex-50000

a
a-Jones-D-37-accountant-45000

ANSWERS TO EXAMPLES

205

APPENDIXA ANSWERS TO EXAMPLES

Chapter 2

1. The code is as follows:

cl.2exl.c

#idefine CRT_SECURE_NO_WARNINGS

#include<stdio.h>

/* demonstrate a forloop (setting the forloop limit)*/
main()

{

float this is a number , total;

int i,forlimit;

total = 0;

printf("Please enter forloop limit:\n ");

scanf("%d", &forlimit);/* entered limit stored in forlimit */
for(i=0;i<forlimit;i++)

{
printf("Please enter a number:\n ");
scanf("%f", &this is a number);
total = total + this_is_a_number;

}

printf("Total Sum is = %f\n",total);

2. The program for this is as follows:
cl.2ex2.c
#include<stdio.h>

#define CRT_SECURE_NO WARNINGS
/* example of a 2D array test for 2 arrays*/

206

int main()

{

int arri[8][8];
int arr2[8][8];

int 1i,j,k,1;

APPENDIXA ANSWERS TO EXAMPLES

printf("enter number of rows and columns of first array(max 8 rows max

8 columns) \n");
scanf("%d %d", &k, 81);
if(k>8 || 1>8)

{

else

printf("error - max of 8 for rows or columns\n");

printf("enter array\n");
for(i=0;i<k;i++)

{
for(j=0;3j<1;j++)
{
scanf("%d",&arr1[i][j]);
}
}

printf("Your array is \n");
for(i=0;i<k;i++)

{ for(j=0;j<1;j++)

{ printf("%d ",arri[i][j]);
i)
}

207

APPENDIXA ANSWERS TO EXAMPLES

printf("first row of first array\n");
for(j=0;j<k;j++)
{
printf("%d ",arr1[0][j]);
}

printf("enter number of rows and columns of second array(max 8 rows
max 8 columns) \n");

scanf("%d %d", 8k, &l);

if(k>8 || 1>8)

{
printf("error - max of 8 for rows or columns\n");
}
else
{
printf("enter array\n");
for(i=0;i<k;i++)
{
for(j=0;3<1;j++)
{
scanf("%d",&arr2[i][j]);
}
}
printf("Your array is \n");
for(i=0;i<k;i++)
{
for(j=0;3j<1;j++)
{
printf("%d ",arr2[i][j]);
}
printf("\n");
}
}

printf("first row of second array\n");

208

APPENDIXA ANSWERS TO EXAMPLES

for(j=0;j<k; j++)
{
printf("%d ",arr2[0][j]);
}

printf("\n");

3. Aprogram to do this is as follows:

cl.2ex3.c

/* Function which returns an answer */
/* finds the pupil in one year of the school with the highest marks */

#include <stdio.h>
double getmarks(double pupils[]);

int main()
{
double pupil;
/* Array with marks for class is preset in the main part of the program */
double marks[] = {1.2,2.3,3.4,4.5,5.6,6.7,7.8,8.9,9.0};
/* Call function getmarks. The function returns the average marks
which is then stored in pupil */
pupil = getmarks(marks);
printf("Average mark is = %1f", pupil);

return 0;
}
double getmarks(double pupils[])
{

int i;

double average, total;
total = 0;
/* Go through all the pupils in turn and add their mark */

209

APPENDIXA ANSWERS TO EXAMPLES

for (i = 0; i < 9; ++i)
{
total = total + pupils[i];

}

average = total/9;
return average; /* returns the value in average to where the function
was called */

4. The code for this question is given in the following:

cl.2ex4.c

#define CRT SECURE_NO WARNINGS
#include<stdio.h>

/*appends a record to the file*/
/* then prints the whole file */

/*define the structure for each student’s data */

struct student {
int studentID;
char name[13];

int marks;
};
int main()
{

int i, numread;
FILE *fp;

struct student si1;
struct student s2;

/* Preset the data for the student */

struct student s25 = { 25,"Foster ",82 };

210

APPENDIX A

/* Open the students file */

fp = fopen("students.bin", "a");

/* Write details of the student to file*/
/* From the structure defined above */

fwrite(&s25, sizeof(s1), 1, fp);

/* Close the file */
fclose(fp);
/* Reopen the file */

fopen("students.bin", "r");

ANSWERS TO EXAMPLES

/* Read and print out all of the records on the file */

for (i = 0;i < 16;i++)

{

numread = fread(&s2, sizeof(s2), 1, fp);/* read into structure s2 */

if (numread == 1)

{

/* reference elements of structure by s2.studentID etc */

printf("\nstudentID : %d", s2.studentID);
printf("\nName : %s", s2.name);
printf("\nmarks : %d", s2.marks);

}

else {

/* If an error occurred on read then print out message */

if (feof(fp))

printf("Error reading students.bin :
file fp is %p\n", fp);

unexpected end of

211

APPENDIXA ANSWERS TO EXAMPLES

else if (ferror(fp))
{

perror("Error reading students.bin");

}
/* Close the file */

fclose(fp);

Chapter 3

1. The following program inserts a number of rows and asks the user
to enter the details of each row:

Csqlinsert_manyx.c

#include <sqlite3.h>
#include <stdio.h>
int main(void)
{
sqlite3 *db;
char *err msg = 0;

/* storage areas for user-inserted id, name, age and occupation */
int idin,agein,rowsin,i;

char namein[13];

char occupin[15];

int rc = sqlite3 open("test.db", &db); /* test the database is there */
if (rc !'= SQLITE_OK)
{

fprintf(stderr, "Cannot open database: %s\n",

sqlite3 errmsg(db));

sqlite3 close(db);

212

APPENDIXA ANSWERS TO EXAMPLES

return 1;

}

/* Ask the user to enter the number of rows */
/* they wish to insert */

printf("enter the number of rows you wish to insert (max 10) \n");
scanf("%d", &rowsin);

/* Use a forloop to enter each row during one loop of the forloop */

for(i=0; i<rowsin; i++)

{

/* Ask the user to enter the ID, Name, */
/* age and occupation for the current insert */

printf("enter id \n");
scanf("%d", &idin);
printf("enter name id \n");
scanf("%s", &namein);
printf("enter age \n");
scanf("%d", &agein);
printf("enter occupation \n");

"o,

scanf("%s", &occupin);
/* Create the INSERT string */

char stri[200] = "INSERT INTO Personnel VALUES(";
char str2[] ="); ";

char str3[2];

char str4[6];

char strs5[] =", ";

char str6[] = "'";

sprintf(str4, "%d", idin);
sprintf(str3, "%d", agein);

213

APPENDIXA ANSWERS TO EXAMPLES

strcat(stri,str4);
strcat(stri,strs5);
strcat(stri,str6);
strcat(stri,namein);
strcat(stri,str6);
strcat(stri,strs);
strcat(stri,str3);
strcat(stri,str5);
strcat(stri,str6);
strcat(str1,occupin);
strcat(stri,str6);
strcat(stri,str2);

printf(stri);
printf("\n");

char *sql = str1; /* store the string in *sql */

rc = sqlite3_exec(db, sql, 0, 0, &err msg);/*perform one insert */
if (rc != SQLITE OK)

{
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3_free(err_msg);
sqlite3 close(db);
return 1;
}
}
sqlite3 close(db);
return 0;

You can check if your inserts have worked by running the program Csqlselect_allx2c
which prints out all of the rows in the table.

2. Your code should be something like this:

214

APPENDIX A

/* csqlfilereadins2.c */

/* reads from file */

/* reads and prints sequentially */

/* reads and prints specific records */
#idefine CRT_SECURE_NO_WARNINGS

#include <sqlite3.h>
#include <stdio.h>
int main(void)

{
struct Employee
{
int ID;
char name[13];
int age;
char occup[15];
};
FILE *fp;
struct Employee s2;
int numread, i;
int count;

sqlite3 *db;

char *err msg = 0;
int idin,agein;
char namein[13];
char occupin[15];

ANSWERS TO EXAMPLES

int rc = sqlite3 open("test.db", &db);/* open the database */

if (rc != SQLITE OK)

{
fprintf(stderr, "Cannot open database: %s\n",
sqlite3 errmsg(db));
sqlite3 close(db);
return 1;
}

215

APPENDIXA ANSWERS TO EXAMPLES

char *sql = "DROP TABLE IF EXISTS Personnel;"
"CREATE TABLE Personnel(Id INT PRIMARY KEY, Name TEXT, Age INT,
Occupation);";

rc = sqlite3_exec(db, sql, 0, 0, &err_msg); /*creates the table */

if (rc != SQLITE OK)

{
fprintf(stderr, "SQL error: %s\n", err_msg);
sqlite3 free(err msg);
sqlite3 close(db);
return 1;
}
count = 0;

/* Open People3 file */

fp = fopen("People3.bin", "r");
for (i = 0;i < 11;i++)
{
/* Read each People3 data from file sequentially */

fread(&s2, sizeof(s2), 1, fp);
count++;

/* Insert each field read into the table */
idin = s2.1D;

strcpy(namein, s2.name);
agein = s2.age;
strcpy(occupin, s2.occup);

printf("id is %d:name is %s:age is %d:occupation is %s\n",idin,
namein, agein, occupin);

/* The INSERT command string is set up */

char stri[200] = "INSERT INTO Personnel VALUES(";
char str2[] ="); ";
char str3[2];

216

APPENDIXA ANSWERS TO EXAMPLES

char stra[6];
char str5[] =", ";
char str6[] = "'";

sprintf(str4, "%d", idin);
sprintf(str3, "%d", agein);

strcat(stri,stra); /7* ID */
strcat(stri,str5); /* comma */
strcat(stri,str6); /* quote */
strcat(stri,namein); /* name */
strcat(stri,str6); /* quote */
strcat(stri,str5); /* comma */
strcat(stri,str3); /7* age */
strcat(stri,str5); /* comma */
strcat(stri,str6); /* quote */
strcat(stri,occupin); /* occupation */
strcat(stri,str6); /* quote */
strcat(stri,str2); /* close bracket and semi-colon */

printf(str1l); /* completed string */

/* so, for ID=12, name=Pickford, age=48 and occupation = Welder */
/* our completed string will be :- */
/* INSERT INTO Personnel VALUES(12, 'Pickford', 48, 'Welder'); */

char *sql = stri;
printf("\n");

rc = sqlite3 exec(db, sql, 0, 0, &err msg);/* execute the insert */
if (rc != SQLITE OK)

{
fprintf(stderr, "SQL error: %s\n", err msg);
sqlite3 free(err msg);
sqlite3 close(db);
return 1;
}

217

APPENDIXA ANSWERS TO EXAMPLES

printf("count is %d\n",count);
sqlite3 _close(db); /* close the database connection */

fclose(fp);
return O;

The program should read 11 records from the People3 file and print out the following
(for each record, the first line is the record read from the file, and the next line is the
corresponding INSERT command to insert that data into the table):

id is 10:name is Brown :age is 50:occupation is accountant
INSERT INTO Personnel VALUES(10, 'Brown ', 50, 'accountant’);
id is 11:name is Jones :age is 51:occupation is programmer
INSERT INTO Personnel VALUES(11, 'Jones ', 51, 'programmer');
id is 12:name is White :age is 52:occupation is engineer
INSERT INTO Personnel VALUES(12, 'White ', 52, 'engineer');
id is 13:name is Green :age is 53:occupation is electrician
INSERT INTO Personnel VALUES(13, 'Green ', 53, 'electrician');
id is 14:name is Smith :age is 54:occupation is joiner

INSERT INTO Personnel VALUES(14, 'Smith ', 54, 'joiner');

id is 15:name is Black :age is 55:occupation is programmer
INSERT INTO Personnel VALUES(15, 'Black ', 55, 'programmer');
id is 16:name is Allen :age is 56:occupation is secretary
INSERT INTO Personnel VALUES(16, 'Allen ', 56, 'secretary');
id is 17:name is Stone :age is 57:occupation is manager

INSERT INTO Personnel VALUES(17, 'Stone ', 57, 'manager');

id is 18:name is Evans :age is 58:occupation is receptionist
INSERT INTO Personnel VALUES(18, 'Evans ', 58, 'receptionist’);
id is 19:name is Royle :age is 59:occupation is engineer
INSERT INTO Personnel VALUES(19, 'Royle ', 59, 'engineer');
id is 20:name is Stone :age is 60:occupation is cleaner

INSERT INTO Personnel VALUES(20, 'Stone ', 60, 'cleaner');
count is 11

You can check if your inserts have worked by running the program Csqlselect_allx2c
which prints out all of the rows in the table.

218

APPENDIXA ANSWERS TO EXAMPLES

Chapter 4

1. pysqlite70cretwo.py OK (multiple rows to two different tables)

import sqlite3

conn = sqlite3.connect('staff.db")
cur = conn.cursor()
print ("Opened database successfully")

cur.execute('DROP TABLE IF EXISTS staff')
cur.execute('CREATE TABLE staff (id INTEGER, name TEXT, initial, gender
TEXT, age INTEGER, occup TEXT)'")

cur.execute('INSERT INTO staff (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',

(1, "Jones', 'A', 'M', 23, 'Accountant'))
cur.execute('INSERT INTO staff (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2,)",

(2, "Smith', '3', 'M', 47, 'Salesman'))
cur.execute("'INSERT INTO staff (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',

(3, "Zeiss', 'H', 'F', 38, 'Architect'))
cur.execute('INSERT INTO staff (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',

(4, 'Blaine', 'S', 'F', 28, 'SE'))
cur.execute('INSERT INTO staff (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',

(5, 'Postlethwaite', 'D', 'M', 63, 'Advisor'))
cur.execute('INSERT INTO staff (id, name, initial, gender, age, occup)
VALUES (2, 2, 2, 2, 2, 2)',

(6, 'Junkers', 'A", 'M', 59, 'Designer'))

print('staff:")
cur.execute('SELECT id, name, initial, gender, age, occup FROM staff')
for row in cur:

print(row)

219

APPENDIXA ANSWERS TO EXAMPLES
conn.commit()

cur.execute('DROP TABLE IF EXISTS supply')
cur.execute('CREATE TABLE supply (id INTEGER, coname TEXT, address TEXT,
type TEXT)')

cur.execute('INSERT INTO supply (id, coname, address, type) VALUES (?, ?,
5,0,

(1, 'Lenox Co.', '95th Street', 'Concrete'))
cur.execute('INSERT INTO supply (id, coname, address, type) VALUES (?, ?,
0,

(2, 'City Builders', 'Avon Ave', 'Bricks'))
cur.execute('INSERT INTO supply (id, coname, address, type) VALUES (?, ?,
N,

(3, "Portway', 'New Strand', 'Windows'))
cur.execute('INSERT INTO supply (id, coname, address, type) VALUES (?, ?,
N,

(4, 'Huygens Inc', 'Corona Drive', 'Wood panelling'))

print('supply:")
cur.execute('SELECT id, coname, address, type FROM supply')
for row in cur:

print(row)

conn.commit()
conn.close()
The output from this program is

Opened database successfully

staff:

(1, 'Jones'y, 'A', 'M', 23, 'Accountant')

(2, 'Smith', '3', 'M', 47, 'Salesman')

(3, 'Zeiss', 'H', 'F', 38, 'Architect’)

(4, 'Blaine’', 'S', 'F', 28, 'SE')

(5, 'Postlethwaite', 'D', 'M', 63, 'Advisor')
(6, 'Junkers', 'A', 'M', 59, 'Designer')

220

APPENDIXA ANSWERS TO EXAMPLES

supply:

(1, 'Lenox Co.', '95th Street', 'Concrete’)

(2, 'City Builders', 'Avon Ave', 'Bricks')

(3, 'Portway', 'New Strand', 'Windows')

(4, 'Huygens Inc', 'Corona Drive', 'Wood panelling')

2. Thisis just a matter of commenting out the “break” from the while
loop so that you can insert as many rows as you want to, until you
enter ‘quit’ when asked for the next name.

pysqlite63cind.py
#!/usr/bin/python
import sqlite3

conn = sqlite3.connect('Personnel.db")
cur = conn.cursor()
print ("Opened database successfully")

while True:
acct = input('Enter an name, or quit: ")

if(acct == 'quit'): break

idin = input('Enter ID: ")

initial = input('Enter initial: ")
gender = input('Enter gender: ')
input('Enter age: ')
input('Enter occupation: ')

agein

occup

cur.execute("INSERT INTO Personnel (id, name, initial, gender, age, occup)
VALUES (?, ?, ?, 2, 2, ?)',(idin, acct, initial, gender, agein, occup))
#break THIS IS THE ONLY CHANGE TO THE PROGRAM. WHEN YOU ARE

ASKED to 'Enter an name, or quit: ' at the start of the while

loop then entering 'quit' exits from the loop, so you can enter

as many rows as you want.

221

APPENDIXA ANSWERS TO EXAMPLES

print('Personnel:")
cur.execute('SELECT id, name, initial, gender, age, occup FROM Personnel")
for row in cur:

print(row)

conn.commit()
conn.close()

If you run this program and enter data for three people to be added to the file with
IDs of 42, 43, and 44, you will get the following:

Opened database successfully

Enter an name, or quit: Price

Enter ID: 42

Enter initial: D

Enter gender: M

Enter age: 54

Enter occupation: Storeman

Enter an name, or quit: Short

Enter ID: 43

Enter initial: L

Enter gender: F

Enter age: 43

Enter occupation: Secretary

Enter an name, or quit: Newell

Enter ID: 44

Enter initial: S

Enter gender: F

Enter age: 36

Enter occupation: Engineer

Enter an name, or quit: quit

Personnel:

(1, 'Jones'y, 'A', 'M', 23, 'Accountant')
(2, 'Smith', 'J', 'M', 28, 'Salesman')
(11, 'Jones'y, 'A', 'M', 23, 'Accountant’)
(12, 'Smith', '3', 'M', 28, 'Salesman')

222

(13,
(15,
(16,
(21,
(25,
(a2,
(43,
(a4,

APPENDIX A

'Zeiss', 'H', 'F', 38, 'Architect')
'Postlethwaite’, 'D', 'M', 63, 'Advisor')
'Junkers', 'A', 'M', 38, 'Designer')
'Robinson’, 'C', 'F', 31, 'Engineer')

"Van der Kirchoff', 'I', 'M', 34, 'plumber')
'Price', 'D', 'M', 54, 'Storeman')

'Short', 'L', 'F', 43, 'Secretary')
'Newell', 's', 'F', 36, 'Engineer')

Chapter 5

1.

histex.c

/*Histogram Program*/

#define CRT_SECURE_NO_WARNINGS
#tdefine PY SSIZE T CLEAN
#include <stdio.h>

#include <math.h>

#include <conio.h>

#include "include/Python.h"

main()

{

int marks[20];
int i;

char filename[] = "pyex3a.py";
FILE* fp2;

FILE *fp;
FILE *fp3;

fp=fopen("histn.bin","w");

/* User enters 20 marks for a histogram*/
printf("enter 20 marks (\n");

ANSWERS TO EXAMPLES

223

APPENDIXA ANSWERS TO EXAMPLES

/* User enters marks*/

for (i = 0;i < 20;i++)

{
printf("marks");
scanf("%d", 8marks[i]);

}

/* Print the marks entered */
printf("marks are \n");
for (i = 0;i < 20;i++)

{
printf(" \n");
printf("%d ", marks[i]);
fprintf(fp,"%d\n",marks[i]);
}

printf(" \n");
fclose(fp);
Py Initialize();

fp2 = Py fopen(filename, "r");
PyRun_SimpleFile(fp2, filename);

Py Finalize();

pyex3a.py

import matplotlib.pyplot as plt
import numpy as np

Read data from histn.bin file

x = np.loadtxt("histn.bin")
print("Data read from histn.bin")
print("x = ",x)

224

APPENDIXA ANSWERS TO EXAMPLES
Set up the arrays for the graph
xvals = [0]*20 #length of array is num. of coords entered

zint = 20
set up the x array from the values entered
for b in range(zint):

a = x[b]

xvals[b] = a

Print the x and y values to the user

print("xvals = ",xvals)

number of bins = 10

n = plt.hist(xvals, number of bins, facecolor='blue')

print("Counts in each bin")
print(n[0]) # counts in each bin

Display the graph

plt.xlabel('marks (%)")
plt.ylabel('Number of Students"')
plt.title('Histogram Exam Marks")
plt.show()

If you run histex and enter the marks as shown, this will be the output

enter 20 marks (
marks51
marks23
marks18
marks59
marks6
marks71
marks48
marks69
maxrks60
marks39

225

APPENDIXA ANSWERS TO EXAMPLES

marks45
marks63
marks64
marks4s
marks36
marks97
marks18
marks49
marks50
marks90
marks are

51

23

18

59

6

71

48

69

60

39

45

63

64

45

36

97

18

49

50

90

Data read from histn.bin
y = [51. 23. 18. 59. 6. 71. 48. 69. 60. 39. 45. 63. 64. 45. 36. 97. 18.
49. 50. 90.]

226

APPENDIXA ANSWERS TO EXAMPLES

xvals = [51.0, 23.0, 18.0, 59.0, 6.0, 71.0, 48.0, 69.0, 60.0, 39.0, 45.0,
63.0, 64.0, 45.0, 36.0, 97.0, 18.0, 49.0, 50.0, 90.0]

[1. 3. 0. 2. 6. 2. 3. 1. 0. 2.]

[6. 15.1 24.2 33.3 42.4 51.5 60.6 69.7 78.8 87.9 97.]

<a list of 10 Patch objects>

with the following histogram:

Histogram Exam Marks

Number of Students

40 60 80 100
marks (%)

227

APPENDIXA ANSWERS TO EXAMPLES
Chapter 6

1. The first server and client pair are shown in the following. The
second server and client pair should be exactly the same as the first
two except that they have a different port to the first two. The first
server-client pair have port 1000, so give the second server-client
pair a port of 1001. If you run all four programs on separate windows,
you should be able to do a concurrent chat with each server-client
pair. The pair with the same ports should only communicate with
each other.

This program allows the server-client pairs to be created and run concurrently.
socsert2x.py is the server program and socclit2x.py is the client program. There should
be one server-client pair with port 1000 and one server-client pair with port 1001.

Socsert2x.py
Socket Server Program

import time, socket, sys
server_port = 1000

server socket = socket.socket()
host_name = socket.gethostname()
server socket.bind((host name ,server port))

server socket.listen(1)
print ("Server is loaded")
connection socket, address = server socket.accept()
while True:
sentence = connection socket.recv(2048).decode()
print('>> ',sentence)
message = input(">> ")
connection_socket.send(message.encode())

228

if(message == 'windup'):
connection socket.close()
break
Socclit2x.py

Socket Client Program
import time, socket, sys

server _name = socket.gethostname()
server_port = 1000

client socket = socket.socket()
host name = socket.gethostname()

client socket.connect((server name,server port))
while True:
sentence = input(">> ")
client socket.send(sentence.encode())
message = client socket.recv(2048)
print (">> ", message.decode())
if(sentence == ‘windup’):
client socket.close()
break

APPENDIXA ANSWERS TO EXAMPLES

229

Index

A

accept command, 185
Algebra rules, 5
Amend age, 125, 127
Arithmetic operations, 3
Array

append, 11

delete, 10

insert, 8, 9

search, 10

update, 11

bind command, 185

C

close command, 185
connect command, 185
conn.total_changes, 141
C programming language
adding two integers, 60, 62
data arrays, 70-72, 74, 75, 77-81, 106
do while loops, 65
file access, 94
functions, 81-86
Goto command, 92
if else, 67, 68
if else if, 68, 70
for loops, 63, 64
mathematical/logical symbols, 93

© Philip Joyce 2022

multiply/divide two numbers, 62
printf, 60

size of variables, 91

strings, 86

structures, 88, 89, 91

switch instructions, 66

D

Data types, 2
DELETE command, 133
Delete rows, 128, 130
Dictionaries, 17
amend, 18
append, 17
create, 17
delete, 19
search, 19

E

Embedded Python
enter data to plot, 160-169
histogram, 177, 178
importing picture, 179, 180
mechanisms, 151, 153
plot 2D line, 153-155
plot trigonometric curves, 158-160
plot two 2D lines, 155-157
Python code, 151
2D center, mass plot, 170-175, 177
encode() command, 185
execute command, 133

231

P.Joyce, C and Python Applications, https://doi.org/10.1007/978-1-4842-7774-4

https://doi.org/10.1007/978-1-4842-7774-4#DOI

INDEX

F

feof(fp), 95
File access, 45, 47, 49, 51
fclose, 94
fopen, 94
student records file
file update, 100-105
fread, 98, 99
numread, 95-97
structure, 95
fopen command, 94

G

getchar and putchar instructions, 60

gethostname, 186
getmarks, 86

H

Handshaking, 183

,J, K
if statements, 25
import instruction, 183
#include<stdio.h>, 59
INSERT INTO command, 134
Inserts row
presetrow, 113
user-entered row, 114, 116

L

line.split() function, 46
list(range(0,100,10)) function, 156
Lists, 14

append, 16

232

delete, 16
reading entries, 15
update, 16

for loop, 26, 27

Loops
for loop, 26, 27
while loop, 28

Mathematical functions, 42
matmul function, 37
matplotlib and numpy, 151
matplotlib.pyplot, 38
Matrix arithmetic, 31
Multiplying matrices, 33

N H O! P! Q
Numpy, 30
calculation, 34, 36, 37

R

Regression, 52, 54-56

S

SELECT command, 144, 147
Select row
age, 122, 124, 125
all, 120, 121
preset, 117, 119
Socket
chat programs, 197, 198
client-server, 185, 187
definition, 183
main code calls, 184
server-client mechanism, 184

INDEX

server-client pair send/receive T
file, 187, 189, 190

TCP/IP, 183

threaded server, closing down, 194-196

threaded system, 191-193

tasklist command, 194
Tuples, 20, 21
concatenating 2

treat. 88 tuples, 22
strca ’ 88 convert list/string, 23
strcmp,8 g create, 21
strf:p y’h lib 86 create nested
S rl'ng. ibrary, tuples, 22
Strings, 12, 14

create repeated
strlen, 88
Structured L SQL), 107 tuples, 22
ructured Query Language (SQL), create variable, 24
create database, 108-110
delete, 24
create table, 110,112,113, 133 .
definition, 131 reading, 23
! search, 23

delete row, 148
inserting row, mechanisms, 134
insert two preset rows, 135

single-element tuple, 23

six preset rows, 136, 137 U
user, 138 UPDATE command, 133, 139
read table, 149 User-written functions, 43, 44
SQLite, 107
sqlite3, 132
typical database table, 131 \'
update row Variables, 1
descending order, age, 146 characters, 6
insert/update, 143 reading data, 6-8
preset, 139, 140 real (Float) numbers, 5
select row, 144 types, 2

user, 141, 142

user-entered row, 145

user-entered select, age, 147 Ws X; Y, y4
Switch, 29 while loop, 28

233

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Python Programming
	Definition of Variables
	Real (Float) Numbers
	Characters

	Reading in Data
	Arrays
	Inserting into an Array
	Deleting (Removing) from an Array
	Searching
	Updating an Array
	Appending to an Array

	Strings
	Lists
	Reading Entries in a List
	Updating a List
	Deleting an Element from List
	Appending to a List

	Dictionaries
	Creating a Dictionary
	Appending to a Dictionary
	Amending a Dictionary
	Deleting from a Dictionary
	Searching Through a Dictionary

	Tuples
	Creating a Tuple
	Concatenating Two Tuples
	Creating Nested Tuples
	Creating Repeated Tuples
	Converting a List or a String into a Tuple
	Creating Single-Element Tuple
	Reading Tuple
	Searching Within a Tuple
	Deleting a Tuple
	Using Tuple to Create Variables

	If Then Else
	Loops (For and While)
	For Loops
	While Loops

	Switches
	Arithmetic Operations Using Numpy
	Numpy Calculations

	Mathematical Graph Functions
	User-Written Functions
	File Access
	Regressions
	Summary
	Exercises

	Chapter 2: C Programming
	C Program Format
	Adding Two Numbers
	Multiply and Divide Two Numbers
	For Loops
	Do While Loops
	Switch Instruction
	If Else
	If Else If
	Data Arrays
	Functions
	Strings
	Structures
	Size of Variables
	Goto Command
	Common Mathematical and Logical Symbols
	File Access
	Student Records File

	Summary
	Exercises

	Chapter 3: SQL in C
	Review of SQL and SQLite
	Creating the Database
	Creating a Table
	Inserting Rows
	Insert a Preset Row
	Inserting a User-Entered Row

	Selecting Rows
	Selecting a Row Preset
	Selecting All Rows
	Selecting Rows by Age

	Amending Rows
	Deleting Rows
	Summary
	Exercises

	Chapter 4: SQL in Python
	Review of SQL
	Create a Table
	Mechanism for Inserting a Row
	Create a Table and Insert Two Preset Rows
	Insert Six Preset Rows
	Insert a Row Specified by the User

	Update a Row
	Update a Row, Preset
	Update a Row by User
	Insert and Update a Row
	Select a Row
	Select a User-Entered Row
	Select by Age in Descending Order
	User-Entered Select by Age

	Delete a Row
	Read a Table

	Summary
	Exercises

	Chapter 5: Embedded Python
	Basic Mechanism
	Plot a 2D Line
	Plot Two 2D Lines
	Plot Trigonometric Curves
	Enter Data to Plot
	2D Center of Mass Plot
	Histograms
	Importing a Picture
	Summary
	Exercise

	Chapter 6: Sockets
	A Closer Look at Sockets
	Basic Client-Server
	Server-Client Pair to Send-Receive a File
	Threaded Programs
	Closing Down a Threaded Server
	Chat Programs
	Summary
	Exercise

	Appendix A: Answers to Examples
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6

	Index

