

C Programming

https://taylorandfrancis.com

C Programming
Learn to Code

Sisir Kumar Jena

First edition published 2022
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2022 Sisir Kumar Jena

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has not
been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without writ-
ten permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact
the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works
that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data
Names: Jena, Sisir Kumar, author.
Title: C programming : learn to code / Sisr Kumar Jena.
Description: First edition. | Boca Raton, FL : Chapman & Hall/CRC Press, [2022] | Includes bibliographical
references and index. | Summary: "The C programming language is a popular language in industries as well as
academics. Since its invention and standardized as ANSI C, several other standards known as C99, C11, and
C17 were published with new features in subsequent years. This book covers all the traits of ANSI C and
includes new features present in other standards. The content of this book helps a beginner to learn the
fundamental concept of the C language. The book contains a step-by-step explanation of every program that
allows a learner to understand the syntax and builds a foundation to write similar programs.Besides, exercises
and illustrations present in this book make it a complete textbook in all aspects"-- Provided by publisher.
Identifiers: LCCN 2021027981 (print) | LCCN 2021027982 (ebook) | ISBN 9781032036250 (hbk)
| ISBN 9781032036274 (pbk) | ISBN 9781003188254 (ebk)
Subjects: LCSH: C (Computer program language) | Computer programming.
Classification: LCC QA76.73.C15 J46 2022 (print) | LCC QA76.73.C15
(ebook) | DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2021027981
LC ebook record available at https://lccn.loc.gov/2021027982

ISBN: 978-1-032-03625-0 (hbk)
ISBN: 978-1-032-03627-4 (pbk)
ISBN: 978-1-003-18825-4 (ebk)

DOI: 10.1201/9781003188254

Typeset in Palatino
by SPi Technologies India Pvt Ltd (Straive)

https://lccn.loc.gov
https://lccn.loc.gov

In memory of my father, my guide, Baikuntha Nath Jena

https://taylorandfrancis.com

vii

Contents

Preface... xvii
Acknowledgments..xix
Organization of this Book..xxi
Author Biography.. xxiii

1.	 Introduction to the Computer...1
1.1	 Introduction..1
1.2	 Definition and Characteristics of a Computer System...1
1.3	 History of the Computer...2
1.4	 Basic Computer Organization..4

1.4.1	 Input Devices...5
1.4.2	 Memory..6
1.4.3	 Central Processing Unit...6
1.4.4	 Output Devices...7

1.5	 Computer Memory..7
1.5.1	 Registers...8
1.5.2	 Cache Memory..8
1.5.3	 Primary Memory...8
1.5.4	 Random Access Memory...10
1.5.5	 Read Only Memory..10
1.5.6	 Secondary Memory...10
1.5.7	 Hard Disk Drive..10
1.5.8	 Solid State Drive.. 11

1.6	 Introduction to the Operating System..12
1.6.1	 Hardware and Software...12
1.6.2	 Operating System...12
1.6.3	 Functions of an Operating System...13

1.7	 Review Questions..14
1.7.1	 Long Answers..14
1.7.2	 Short Answers...14
1.7.3	 Practical Exercises...15

References..16

2.	 Number Systems..17
2.1	 Introduction..17

2.1.1	 Non-positional Number System...17
2.1.2	 Positional Number System..17

2.2	 Positional Number Systems...18
2.2.1	 Decimal Number System...18
2.2.2	 Binary Number System..20
2.2.3	 Hexadecimal Number System..21
2.2.4	 Octal Number System..22

viii Contents

2.3	 Number Conversion..23
2.3.1	 Binary to Decimal...23

2.3.1.1	 Approach 1...24
2.3.1.2	 Approach 2...24

2.3.2	 Binary Fraction to Decimal Conversion..25
2.3.3	 Binary to Decimal Conversion..26
2.3.4	 Decimal Fraction to Binary Fraction..27
2.3.5	 Decimal to Octal Conversion..28
2.3.6	 Octal to Decimal Conversion..29
2.3.7	 Octal to Binary Conversion...29

2.3.7.1	 Procedure 1...29
2.3.7.2	 Procedure 2...30

2.3.8	 Binary to Octal Conversion...30
2.3.8.1	 Procedure 1...30
2.3.8.2	 Procedure 2...31

2.3.9	 Decimal to Hexadecimal Conversion..32
2.3.10	 Hexadecimal to Decimal Conversion..33
2.3.11	 Hexadecimal to Binary Conversion...33

2.3.11.1	 Procedure 1...33
2.3.11.2	 Procedure 2...34

2.3.12	 Binary to Hexadecimal Conversion...34
2.3.12.1	 Procedure 1...34
2.3.12.2	 Procedure 2...35

2.4	 Review Questions..36
2.4.1	 Conversion Questions..36

3.	 Problem Solving through Flowcharts and Algorithms..39
3.1	 Introduction..39
3.2	 Problem-solving Approach...40
3.3	 Algorithm Design..41

3.3.1	 Characteristics of an Algorithm..42
3.4	 Basics of an Algorithm..43

3.4.1	 Advantages of Using an Algorithm...44
3.4.2	 Example: Write an Algorithm to Add Two Numbers and

Produce the Sum...44
3.4.3	 Algorithm 3.1...45

3.5	 Flowcharts...45
3.5.1	 Advantages of Using a Flowchart..45
3.5.2	 Flowchart Symbols...46
3.5.3	 Flowchart Drawing Guidelines..46

3.6	 Example Problems...48
3.7	 Basics of a Programming Language..53

3.7.1	 Low-level Languages...53
3.7.1.1	 Machine-level Languages..54
3.7.1.2	 Assembly-level Languages..54

3.7.2	 High-level Languages..55
3.7.2.1	 Compiler vs. Interpreter...57
3.7.2.2	 Advantages..57

ixContents

3.8	 Review Questions..57
3.8.1	 Objective Type Questions..57
3.8.2	 Practice Problems..57
3.8.3	 Subjective Questions..58

Reference..59

4.	 Introduction to C Programming..61
4.1	 Introduction..61
4.2	 History of C...62
4.3	 Executing a C Program..64

4.3.1	 Editing..64
4.3.2	 Compiling..64
4.3.3	 Linking...65
4.3.4	 Executing..65

4.4	 Structure of a C Program..65
4.4.1	 Documentation..65
4.4.2	 Header Files...65
4.4.3	 Global Variables..66
4.4.4	 main() Function..66
4.4.5	 Subprograms...67
4.4.6	 Your First C Program..67

4.5	 Compilers and Editors for Executing C Programs..69
4.5.1	 Editors..69
4.5.2	 Compilers...69
4.5.3	 Executing Your First C Program...71

4.5.3.1	 Mac..71
4.5.3.2	 Windows...72
4.5.3.3	 Linux...72

4.6	 Review Questions..73
4.6.1	 Objective Questions..73
4.6.2	 Short Answer Questions..73
4.6.3	 Programming Questions..73
4.6.4	 Long Questions...75

References..75

5.	 Constants, Variables, and Data Types..77
5.1	 Introduction..77
5.2	 C Character Sets...77
5.3	 Keywords..78
5.4	 Variables and Identifiers...79
5.5	 Data Types...80

5.5.1	 Primary Data Types..81
5.5.2	 Integer Data Types..81
5.5.3	 Floating Point Types...82
5.5.4	 Character Data Types...83
5.5.5	 Void Types..83

5.6	 Declaration of Variables..84
5.7	 Constants...86

5.7.1	 Integer Constants..86

x Contents

5.7.2	 Real Constants...87
5.7.3	 Fractional Form...87
5.7.4	 Exponential Form...87
5.7.5	 Character Constants...87
5.7.6	 String Constants..87

5.8	 Learn to Code Examples...88
5.9	 Escape Sequences...91
5.10	 Review Questions..92

5.10.1	 Objective Questions..92
5.10.2	 Programming Questions..92
5.10.3	 Subjective Questions..94

6.	 Operators and Expressions..95
6.1	 Introduction..95
6.2	 Arithmetic Operators...96
6.3	 Relational Operators..97
6.4	 Assignment Operators..98
6.5	 Logical Operators...99
6.6	 Increment and Decrement Operators..100
6.7	 Conditional Operators...103

6.7.1	 Nested Conditional Operators..105
6.8	 Bitwise Operators...105

6.8.1	 Bitwise AND, OR, XOR..106
6.8.2	 One’s Complement (~) Operator..107
6.8.3	 Two’s Complement Representation...107
6.8.4	 Left Shift Operator (≪) and Right Shift Operator (≫)............................109

6.9	 Special Operators... 112
6.9.1	 The Comma Operator.. 112
6.9.2	 The sizeof Operator.. 113

6.10	 Expressions... 113
6.10.1	 Evaluation of Expressions... 114
6.10.2	 Rules for Evaluation of Expressions.. 114

6.11	 Type Conversion.. 115
6.11.1	 Implicit Type Casting... 115
6.11.2	 Explicit Type Conversion... 116

6.12	 Operator Precedence and Associativity.. 116
6.13	 Review Questions.. 118

6.13.1	 Objective Type Questions.. 118
6.13.2	 Programming Questions.. 119
6.13.3	 Subjective Type Questions...120

7.	 Basic Input/Output..123
7.1	 Introduction..123
7.2	 Unformatted Functions...124

7.2.1	 getchar() and putchar()...124
7.2.2	 gets() and puts()..125
7.2.3	 getch() and getche()...126
7.2.4	 putch()...127

xiContents

7.3	 Formatted Functions..128
7.3.1	 printf() Function..128
7.3.2	 Formatting with printf()..129
7.3.3	 scanf() Function..134
7.3.4	 Formatting with scanf..134

7.4	 Review Questions..137
7.4.1	 Short Answer Questions..137
7.4.2	 Programming Questions..138
7.4.3	 Subjective Questions..139

8.	 Control Structures..141
8.1	 Introduction..141
8.2	 Selection with if Statements..143

8.2.1	 Some Points to Remember...145
8.3	 if-else Statement...146

8.3.1	 Write a Program to Check Whether a Number Entered by
the User is Zero or Nonzero..148

8.3.2	 Write a Program to Calculate the Travel Fare of a Person......................149
8.4	 Nested if-else Statements..150

8.4.1	 Write a Program to Find the Biggest Among Three Numbers...............151
8.5	 if-else-if Ladders...151

8.5.1	 Write a Program to Perform as a Four-Function Calculator...................152
8.6	 Compound Statements..154
8.7	 Multiway Selection with Switch Statements..155

8.7.1	 Some Points to Remember...157
8.8	 goto Statement..159

8.8.1	 Notes on goto..159
8.9	 Introduction to Loops..160
8.10	 while Loops...161
8.11	 do-while Loops...164

8.11.1	 Difference Between while and do-while Loops.......................................166
8.12	 for Loops...167

8.12.1	 Some Solved Problems (Printing Patterns)...171
8.13	 Unconditional Branching: Break and Continue...173

8.13.1	 break Statements...173
8.13.2	 continue Statements...174

8.14	 Review Questions..176
8.14.1	 Short Questions...176
8.14.2	 Long Questions...176

9.	 Functions...179
9.1	 Introduction..179
9.2	 The Need for Functions...181
9.3	 Types of Function...182
9.4	 User-defined Functions...182
9.5	 Components and Working of a Function...186

9.5.1	 Calling Function..186
9.5.2	 Called Function...186
9.5.3	 Function Prototype...187

xii Contents

9.5.4	 Function Definition...187
9.5.5	 Function Call...188
9.5.6	 Actual Arguments...188
9.5.7	 Formal Arguments..188
9.5.8	 Return Type...188

9.6	 Categories of a Function...191
9.6.1	 A Function Without Arguments and Without Return Types..................191
9.6.2	 A Function Without Arguments and With Return Types.......................191
9.6.3	 A Function With Arguments and Without Return Types.......................193
9.6.4	 A Function With Arguments and With Return Types.............................193

9.7	 Recursion...195
9.7.1	 Example: Find the Value of xy...198
9.7.2	 Programming Examples..201

9.8	 Storage Classes...204
9.8.1	 Automatic Storage Class..205
9.8.2	 Register Storage Class..206
9.8.3	 Static Storage Class...206
9.8.4	 External Storage Class..207

9.9	 Review Question..209
9.9.1	 Objective Questions..209
9.9.2	 Subjective Questions..210
9.9.3	 Programming Questions..210

10.	 Arrays and Strings...213
10.1	 Introduction..213
10.2	 Need for Arrays..214
10.3	 Types of Arrays...214
10.4	 1D Arrays..215

10.4.1	 Declaration of 1D Arrays...215
10.4.2	 Initialization of Arrays...216
10.4.3	 Accessing Array Elements...217
10.4.4	 Characteristics of an Array..218
10.4.5	 Entering Data in an Array...219
10.4.6	 Displaying the Content of an Array...220
10.4.7	 Programming Examples..221

10.4.7.1	 Write a Program to Create an Array of N Elements and
Write the Code to Find the Biggest Number and
the Smallest Number Present in the Array................................221

10.4.7.2	 Write a Program to Search for an Element Present
in the Array, the Number of Times the Element is
Present, and Print the Element’s Positions................................222

10.4.7.3	 Write a Program to Print the Binary Equivalent of
a Decimal Number Using an Array..223

10.4.8	 Points to Note..224
10.5	 2D Arrays..225

10.5.1	 Introducing Matrices..225
10.5.2	 Declaration of a 2D Array..226
10.5.3	 Representation of a 2D Array in Memory...226

10.5.3.1	 Row Major Order..227

xiiiContents

10.5.3.2	 Column Major Order..227
10.5.4	 Initialization of 2D Array...228
10.5.5	 Accessing the Elements of a 2D Array...229
10.5.6	 Entering Data in a 2D Array..231
10.5.7	 Exploration of a 2D Matrix..234
10.5.8	 Programming Examples..235

10.5.8.1	 Write a Program to Add All the Elements Present
in the Main Diagonal of a 2D Matrix..235

10.5.8.2	 Write a Program to Add the Elements of
Each Column and Print it in the Following Format.................236

10.5.8.3	 Write a Program to Add Two Matrices......................................238
10.5.8.4	 Write a Program to Multiply Two Matrices...............................240

10.6	 Multidimensional Arrays..242
10.6.1	 Declaration and Representation of 3D Arrays..242

10.6.1.1	 Write a Program to Declare a 3D Array,
Input Some Numbers, and Display the 3D Array....................244

10.7	 Character Arrays: Strings..245
10.7.1	 Declaration of a String..245
10.7.2	 Initialization of a String...245
10.7.3	 Reading a String..246

10.7.3.1	 Disadvantages of the scanf() Function.................................246
10.7.3.2	 Reading Strings with the gets() Function............................247

10.7.4	 Displaying the String..247
10.7.5	 Programming Examples..249

10.7.5.1	 Find the Length of a String..249
10.7.5.2	 Count the Number of Words Present in a String......................249
10.7.5.3	 Reverse the String...250
10.7.5.4	 Check Whether the String is a Palindrome or Not...................251

10.8	 String Functions...252
10.8.1	 strcpy (Destination, Source)..253
10.8.2	 strcat (Destination, Source)..253
10.8.3	 strcmp (First, Second)...253
10.8.4	 Programming Examples Using String Functions.....................................254

10.9	 Review Questions..255
10.9.1	 Objective Questions..255
10.9.2	 Subjective Questions..255
10.9.3	 Programming Exercises...256

11.	 Pointers..259
11.1	 Introduction..259
11.2	 Basic Knowledge..260
11.3	 Pointer Variables..261

11.3.1	 Declaration of Pointer Variables...261
11.3.2	 Working with Pointers...261
11.3.3	 Workout..263

11.4	 Pointer to Pointer (Double Pointer)...265
11.5	 Void Pointers...266
11.6	 Null Pointers...268

11.6.1	 What is the Meaning of NULL?..268

xiv Contents

11.7	 Constant Pointers...268
11.7.1	 Pointers to Constants..272

11.8	 Pointer Arithmetic..272
11.9	 Pointers and Functions..276

11.9.1	 Pass by Value...276
11.9.2	 Pass by Reference or Address...277

11.9.2.1	 Problem: Write a Program to
Swap Two Numbers Using Functions..280

11.10	 Pointers and Arrays...282
11.11	 Passing Arrays to Functions...285

11.11.1	 Write a Program to Pass an Array to a Function and Find the
Largest and Smallest Numbers Present in that Array.............................290

11.12	 Pointers and 2D Arrays...291
11.13	 Pointers and Strings...293

11.13.1	Passing a String to a Function...294
11.13.2	Write a Program to Reverse a String Using a Function...........................294

11.14	 An Array of Pointers..295
11.15	 Pointers to Functions...297
11.16	 Review Questions..300

11.16.1	Objective Questions..300
11.16.2	Subjective Questions..302
11.16.3	Programming Exercises...302

12.	 Structures and Unions..305
12.1	 Introduction..305
12.2	 Declaring a Structure...307

12.2.1	 Tagged Structure Declaration..307
12.2.2	 Structure Declaration Using typedef...308
12.2.3	 Declaring Structure Variables..308

12.2.3.1	 Declaring Structure Variables Using the Structure Name.......308
12.2.3.2	 Declaring Structure Variables after the Closing Braces...........309

12.3	 Initializing a Structure... 311
12.4	 Accessing Structure Members..312

12.4.1	 Accessing Members Using the dot (.) Operator.......................................313
12.5	 Learn to Code Examples...315
12.6	 Arrays of Structures...316
12.7	 Structures within Structures (Nested Structures)..318

12.7.1	 Declaration of Nested Structures..318
12.7.1.1	 Declare the Structure with One Declaration.............................319
12.7.1.2	 Declare the Structure Separately...319

12.7.2	 Accessing the Members of a Nested Structure...319
12.7.3	 Nested Structure Initialization..320

12.8	 User-defined Data Type: typedef...321
12.8.1	 Uses of typedef..322

12.9	 Pointers and Structures...323
12.9.1	 Accessing Structure Members Using a Pointer..323
12.9.2	 A Pointer as a Member of a Structure..324
12.9.3	 Self-referential Structures..324

12.10	 Structures and Functions..328

xvContents

12.10.1	Passing Individual Members of a Structure..328
12.10.2	Passing the Whole Structure Using the Pass by Value Concept............330
12.10.3	Passing the Whole Structure Using the Pass by Address Concept........332

12.11	 Unions..333
12.11.1	Declaration of a Union...333
12.11.2	Member Accessing..336

12.12	 Structures vs. Unions...336
12.12.1	Size of Unions and Structures...337
12.12.2	Sharing Memory and Member Accessing...337

12.13	 Bitfields..338
12.13.1	Declaration of a Bitfield...340
12.13.2	Uses of Bitfields...342

12.14	 Enumeration...343
12.15	 Review Questions..346

12.15.1	Objective Questions..346
12.15.2	Subjective Questions..346
12.15.3	Programming Exercises...346

13.	 Dynamic Memory Allocation..349
13.1	 Introduction..349

13.1.1	 Process of Memory Allocation..350
13.1.1.1	 Text Segments..351
13.1.1.2	 Data Segments...351
13.1.1.3	 Stack Segments..351
13.1.1.4	 Heap Segments..351

13.2	 Types of Memory Allocation..351
13.2.1	 Static Memory Allocation..351
13.2.2	 Dynamic Memory Allocation..351

13.3	 Dynamic Memory Allocation Process...352
13.3.1	 The malloc() Function..353
13.3.2	 The calloc() Function..356
13.3.3	 The realloc() Function...356
13.3.4	 The free() Function..360

13.4	 Review Questions..361

14.	 File Handling..365
14.1	 Introduction..365

14.1.1	 Difference between Console I/O and File I/O...366
14.2	 Basics of File I/O..367

14.2.1	 What is a File?..367
14.2.2	 File Handling Process Flow...367

14.3	 Opening a File...368
14.4	 Closing a File..370
14.5	 File Functions with Examples..371

14.5.1	 The fprintf() and fscanf() Functions..371
14.5.1.1	 Writing and Reading an Integer Using fprintf()

and fscanf()...372
14.5.2	 The putw() and getw() Functions..374

xvi Contents

14.5.2.1	 Writing and Reading More than One Integer
Using the putw() and getw() Functions................................374

14.5.2.2	 Reading Numbers from a File and Checking
Them for Even or Odd..375

14.5.3	 The fputc() and fgetc() Functions...377
14.5.3.1	 Writing and Reading a Character Using fputc()

and fgetc()...378
14.5.3.2	 Writing and Reading Multiple Characters Using

fputc() and fgetc()...379
14.5.3.3	 Count Number of Characters, Lines, Tabs, and

Blank Spaces Present in a File..380
14.5.4	 The fputs() and fgets() Functions...381

14.5.4.1	 Writing and Reading a String Using fputs() and
fgets()...382

14.6	 Other Programming Examples..383
14.7	 Review Questions..386

15.	 The Preprocessor..389
15.1	 Introduction..389
15.2	 Preprocessor Directives...389
15.3	 Macro-substitutions...390

15.3.1	 Writing Macros with Arguments..392
15.3.2	 Removing a Macro..392

15.4	 The #include Preprocessor..392
15.5	 Conditional Preprocessors..395

15.5.1	 The #ifdef and #endif Preprocessor Directives...395
15.5.2	 The #ifndef and #endif Directives..396
15.5.3	 The #if and #endif Directives..396

15.6	 Other Preprocessor Directives..396
15.6.1	 #line Directives..397
15.6.2	 #error Directives..398
15.6.3	 #pragma Directives...400

15.7	 Review Questions..400

16.	 Command Line Arguments..403
16.1	 Introduction..403

16.1.1	 The Code::Block IDE...404
16.2	 Executing a Program Using a Command Prompt...405

16.2.1	 Installing the minGW Compiler...405
16.2.2	 Compiling and Executing a Program..407

16.3	 Fundamentals of the Command Line Argument..410
16.4	 Using Command Line Arguments.. 411
16.5	 Review Questions..413

Appendix A:  ASCII Character Table..415
Appendix B:  Integer Representation..417
Index..423

xvii

Preface

The C programming language is a general-purpose language of great importance to stu-
dents, researchers, and software professionals. The TIOBE programming community index
is an indicator of the popularity of programming languages. C was at the top of the list in
March 2021. Experts believe that the C language serves as a preparatory step for individu-
als who aspires to learn other high-level languages like Java and Python. Since its inven-
tion and standardization in 1989, it is most popular among embedded systems and
operating system developers. Several new standards of this language are currently in use
by developers and are known as C99 and C11. This book is written for those who have no
or only some basic prior knowledge about programming languages.

https://taylorandfrancis.com

xix

Acknowledgments

The idea of writing a book on C programming is quite an old thought of mine. I have been
writing the draft while teaching this subject. Having made some handouts for my stu-
dents, which they appreciated, I was motivated to write a book. I want to thank my stu-
dents for continuously suggesting that I write it. Some other people also motivated me and
supported me in completing it.

A heartful thanks to my wife, Priya Arundhati, and my son, Kritansh, for their encour-
agement, care, and love. Without them, my life would not be joyful. My parents and my
family members are my strength and excellent motivators for me, always.

A sincere thanks to Aastha Sharma, Senior Editor, CRC Press – Taylor & Francis Group,
for understanding my thoughts when writing this book and suggesting to me the neces-
sary additions for the final proposal. I am also grateful to Shikha Garg, Senior Editorial
Assistant, CRC Press – Taylor & Francis Group, who helped me produce the final manu-
script. I am also thankful to all editorial members who assisted me during the production
process of this book.

Finally, I would sincerely like to thank my friends and colleagues who directly or indi-
rectly support me in doing this work.

https://taylorandfrancis.com

xxi

Organization of this Book

To learn any programming language, we require a basic knowledge of computer funda-
mentals and number systems – covered in Chapters 1 and 2. Overall, the book contains 16
chapters organized so that an individual (beginner, intermediate programmer, or expert)
will gain maximum benefit if they follow it sequentially.

As mentioned, Chapter 1 provides a brief overview of a computer system's fundamental
components: input, output, memory, and processing devices. It also introduces the overall
functions of an operating system that a programmer should know. Chapter 2 describes
number systems, their types, and their conversion. Anyone knowing computer fundamen-
tals and number systems can skip these first two chapters. A programmer should know
how to find a solution to a given problem. Two primary components involved in solving a
problem are algorithms and flowcharts. A detailed description of these is provided in
Chapter 3. Chapter 4 introduces the C language, starting with its history and standards
(e.g., C89, C99, C11). A detailed description of a C program structure and how to execute it
in different environments is explained in this chapter.

Chapter 5 introduces language tokens such as constants, variables, and data types. The
C language has a rich set of operators which are described in Chapter 6. The chapter also
explains expressions and how to execute them according to the operator’s precedence and
associativity. Chapter 7 introduces input/output functions that a programmer uses to read
inputs from the user and produces output on the screen. Chapter 8 describes control state-
ments that include all decision-making and looping constructs. The concept of modular
programming through functions is introduced in Chapter 9. The power of a function allows
a programmer to divide a more significant problem into smaller subtasks and execute
them by calling them when necessary. In Chapter 10, arrays and strings are explored to
provide insight into storing and sequentially retrieving information. Chapter 11 explores
pointers. The pointer concept is a vital part of the language and provides a mechanism to
access memory content dynamically. It also enhances the language’s features to support
data structure. Chapter 12 discusses several concepts such as structure, union, bit fields,
and enumerations. All these concepts are unique to the C language and enhance its char-
acteristics. Chapter 13 addresses the dynamic memory allocation concept used to allocate
memory dynamically and optimize memory allocation. Permanently storing information
on a file and manipulating its content is a required feature for any programming language.
Hence, in Chapter 14, we explore the concept of file handling in C. Other miscellaneous
concepts such as the preprocessor and command-line arguments are described in Chapters
15 and 16.

This book includes more than 270 illustrations to explain the features of the C language.
Every chapter begins with a discussion of a real-life scenario to explain the importance of
that chapter, before describing the mechanisms supported by C to tackle that issue. All the
fundamental concepts of C are covered with pleasing and feature-rich examples.

Suggestions to improve the content are always welcome. We request all our readers to
send their findings, errors, comments, views, and feedback to make it a better book in this
field. Please send your suggestions to: sisiriitg@gmail.com.

https://taylorandfrancis.com

xxiii

Author Biography

Sisir Kumar Jena is presently working as an assistant professor in the Department of CSE,
DIT University, Dehradun. He was the HOD and an assistant professor in the Department
of CSE at Nalanda Institute of Technology, Bhubaneswar, India, during 2007–15. He has
more than ten years of teaching experience and five years of experience as a research
scholar at IIT Guwahati. He has been pursuing his Ph.D. in Computer Science and
Engineering at IIT, Guwahati, while writing this book. He has presented and published
many research papers and book chapters at refereed international conferences and in jour-
nals. His interest area includes digital VLSI design and testing, approximate computing,
IoT, and security in hardware.

https://taylorandfrancis.com

1DOI: 10.1201/9781003188254-1

 1
Introduction to the Computer

1.1 � Introduction

Perhaps the most powerful and resourceful tool ever created by humanity is the computer.
The term “computer” could mean a device that calculates. But nowadays a computer can
do a variety of jobs. If you take any field, be it engineering, healthcare, automotive devices,
gaming, or entertainment, everywhere a computer is used to do the task. This chapter
introduces how computers came into existence and describes the different components
associated with a computing device. After completion of this chapter, the reader will have
learnt the following:

	 1.	What a computer is, and how may we define it.
	 2.	A brief history of the computer and how it came into existence.
	 3.	What the different components of a computer system are, and how they are

organized.
	 4.	Be able to define a memory subsystem, its categories, and its organization.
	 5.	Understand the importance of an Operating System (OS) and its functionality.

This chapter’s content is purely elementary and not meant for those who know the basics
of computer systems. Those with a moderate knowledge of any computer language can
skip this chapter. We will start the chapter by introducing the definition of a computer
system and its characteristics.

1.2 � Definition and Characteristics of a Computer System

The development of a computer system has a long history, which includes the work done
by several great minds. In this modern era, we can consider a computer as a system that
processes data and produces useful information. Though there is no formal definition that
defines a computer, we will try to propose a definition:

A computer is an electronic device that receives input through an input device, stores
it in the storage device (memory), and manipulates or processes the data to produce
information (output) through an output device.

2 C Programming

Analyzing the definition, you may notice four crucial components of a computer sys-
tem: (1) input device, (2) output device, (3) storage device, and (4) the processing device.
The overall organization of all these components is discussed later in this chapter. The
above defines a computer system as a data processing machine. But it is not only a data
processing unit. Rather, it has several capabilities that need to be discussed here in the form
of its characteristics. We could not complete the definition without knowing the character-
istics of a computer system. Figure 1.1 shows the essential characteristics of a computer
system collected from [1].

	•	 Speed: A computer is a high-speed electronic device which takes a negligible amount
of time to perform any task compared to the speed of any human being.

	•	 Accuracy: Computers are very accurate in producing the correct output. A computer
produces the wrong result only when the user has made a mistake.

	•	 Automatic: Computers execute the task assigned to them without any intervention
until the job gets finished.

	•	 Diligence: Computers never tire. They can work continuously and produce correct
and consistent results every time.

	•	 Versatility: A computer is capable of doing different tasks. We all know that nowadays
computers are used everywhere.

	•	 Memory: A computer is potent at remembering things and never forgets them.
Whatever we store in computer memory will be there throughout its lifetime.

1.3 � History of the Computer

The computer has a long history of development. The objective of this book is something
different. So in this section, we only provide an overview of how the computer came into
existence by highlighting some inventions. The origin of the entire development is not

FIGURE 1.1
Characteristics of a computer.

Speed

Accuracy

Automa�c

Diligence

Versa�lity

Memory

3Introduction to the Computer

essential to us, but I would like to start with Charles Babbage’s (see Figure 1.2a) contribu-
tion. He is known as the father of the digital programmable computer.

The work of Babbage describing a “difference engine” was used by many researchers
as inspiration for further development [2], leading to several working models but with
the disadvantage that the programs were hardwired and challenging to change. A final
and major contribution was made during the 1940s by John von Neumann (see Figure
1.2b), known as the “stored program.” With a stored program, we can control a com-
puter system’s activity, and this program is usually stored inside the computer’s mem-
ory [2]. In today’s modern world, digital computers are all built based on this
stored-program concept. A brief contribution to computer development in chronologi-
cal order is [3]:

	•	 The German philosopher and mathematician, Gottfried Leibniz (1646–1716), built the
first calculator to perform multiplication and division. It was not reliable due to the
inaccuracy of its parts.

	•	 Charles Babbage (1792–1872) (Figure 1.1a) was a British inventor who designed his
difference engine in 1822 and, in 1842, came up with an “analytical engine” incorpo-
rating the ideas of a memory and card input/output for data and instructions. But he
was not able to build the system. Babbage is mostly remembered for and considered
as the father of digital computers.

	•	 Howard Aiken (1900–73), a Harvard professor with IBM’s backing, built the Harvard
Mark I computer (51 ft long) in 1944. It required three seconds to perform
multiplication.

	•	 John Vincent Atanasoff built a specialized computer in 1941 and was visited by
Willaim Mauchly before constructing the Electronic Numerical Integrator and
Calculator (ENIAC).

FIGURE 1.2
(a) Charles Babbage; (b) John von Neumann.

(a) (b)

4 C Programming

	•	 J. Presper Eckert and Mauchly designed and built the ENIAC in 1946 for military
computations. It used vacuum tubes (valves), which were totally electronic (and
operated in microseconds), instead of the electromechanical relay.

	•	 Von Neumann was a scientific genius and a consultant on the ENIAC project. In 1950,
he formulated plans with Mauchly and Eckert for a new computer, the Electronic
Discrete Variable Automatic Computer (EDVAC), which was to store programs as
well as data.

	•	 At the same time (1950), another computer named the Electronic Delay Storage
Automatic Calculator (EDSAC) was developed by Maurice Wilkes at Cambridge
University in England.

	•	 After the above inventions, every computer built followed the von Neumann archi-
tecture. Several generations of computers have been developed, but the overall archi-
tecture remains the same.

The reader of this book is encouraged to find out more on computer generations and pres-
ent computer system scenarios.

1.4 � Basic Computer Organization

Before we can understand basic computer organization, see Figure 1.3 of a desktop com-
puter system and its components. There are five components that we usually see: (1) the
keyboard; (2) the mouse (3); the monitor; (4) the cabinet; (5) the speaker. We also see some
other components, such as the Uninterrupted Power Supply (UPS) and the joystick. Every
component is not essential, but we connect them for ease of use.

Let us look inside the cabinet. Figure 1.4 shows what we can find inside, and we unveil
only those components that help us to explain the basic organization of a computer system:

	•	 A Central Processing Unit (CPU);
	•	 Two types of memory (primary and secondary);
	•	 A Switched-Mode Power Supply (SMPS);
	•	 A motherboard that provides ports for connecting all other components.

FIGURE 1.3
A desktop computer system.

Monitor
Cabinet

SpeakerSpeaker

Keyboard
Mouse

5Introduction to the Computer

Readers are encouraged to explore more about these components and write an essay that
will enhance their knowledge of a computer system.

According to [4], a simple digital computer should have five essential parts: (1) mem-
ory, (2) Arithmetic Logic Unit (ALU), (3) Control Unit (CU), (4) input devices, and (5)
output devices. Among these components, the ALU and CU belong to the CPU. The CU
of the CPU plays a significant role in executing the user’s task. The CU controls the overall
activity of the computer system and manages communication among the other compo-
nents. To understand the overall execution of a task, look at Figure 1.5, which shows the
basic organization of these components. The description of each component is given
below.

1.4.1 � Input Devices

This unit helps in supplying data and instruction to the computer system. For example, if
we wish to instruct the computer to play a song, then we search for a particular song and
click the play button using the mouse. In this scenario, the mouse acts as the input unit.

Similarly, if we wish to write a computer program, we use the keyboard as our input
device. There are several input devices connected to our computer through which we give
commands: mouse, keyboard, joysticks, and others.

An input device reads data or instructions from the user and sends it to the computer
system for further processing.

FIGURE 1.4
Major components inside the cabinet.

CPU

Memory Slots

Heat Sink

External Ports
and Connectors

PCI Slots

Jumpers

Ba�ery

AC 230V SMPS

Primary
Memory

M O T H E R B O A R D

Hard Disk
Drive

CPU Chip

6 C Programming

1.4.2 � Memory

Every computer has a memory unit primarily categorized into two types: primary memory
and secondary memory. We will further discuss the classification and description of these
memory units in Section 1.5. The primary job of this unit is to store everything, and that
includes the data or instructions read by the input unit, the intermediate result produced
by the processor, and the final result.

Memory is used to store input data or instructions, intermediate results yielded dur-
ing processing, and the final result produced by the processor.

1.4.3 � Central Processing Unit

The CPU is called the brain of the computer system. It has two main components: the ALU
and the CU. It reads the data from the storage unit, performs calculations as per the user
instructions, stores the final result in the storage device, and displays the result to the user.
The ALU is used to execute all the logical and arithmetic operations. The CU is used to
control the overall activity of the computer system and manage the interaction among the
different components.

FIGURE 1.5
Basic organization of a computer system.

ALU

Secondary
Memory

Primary
Memory

Control Unit

User

Input
Devices

Keyboard Mouse

Joys�ck

Touch Input

Output
Devices

Microphone

Display Device

PrinterSpeakers

User

CPU

Memory

7Introduction to the Computer

The CPU is called the brain of the computer system. It controls and coordinates the
interaction among different components and handles all the arithmetic and logical
operations.

1.4.4 � Output Devices

These help in displaying the results of a computation. For example, when we execute a
program, the output is shown on the monitor screen. So, in this case, the monitor acts as
the output device. Similarly, a speaker is also an output device.

An output device obtains the result produced by the CPU, converts it into a human-
readable form, and displays it to the user of the computer system.

A programmer needs to understand how the instructions are executed inside the CPU.
This requires a detailed exploration of the memory unit. The following section introduces
the idea of memory-processor integration and its communication technique.

1.5 � Computer Memory

A modern digital computer has several memory subsystems organized in a hierarchy,
starting from the smallest high-speed registers to a high-capacity hard disk drive. A com-
puter has the following main memory subsystems:

	 1.	Registers;
	 2.	Cache memory;
	 3.	Primary memory;
	 4.	Secondary memory.

Figure 1.6 shows how these memories are arranged with the CPU for easy communica-
tion and program execution. The main reason behind so many categories of memory
lies in the two requirements: speed and capacity. The CPU needs high-speed memory
because the execution speed of a CPU is relatively high compared to the data supplying
capability (reading the content from memory and submitting it to the CPU for process-
ing) of any memory. On the other hand, a user always needs a high-volume memory to
permanently keep all their data and programs. The capacity of the secondary memory
is relatively high compared to the main memory, cache, and registers. In contrast, fetch-
ing data from the register is faster compared to any other memory subsystem. It is evi-
dent that building high-speed memory incurs more cost as compared to low-speed
memory.

A programmer needs to understand memory organization to write efficient programs.
Let us describe a few points about each category of all memory types.

8 C Programming

1.5.1 � Registers

These are the smallest, high-speed, volatile memories available inside the CPU for easy
access while processing or executing a task. The total number of registers present inside a
CPU varies from architecture to architecture. The most common ones are general purpose
registers, program counters, and instruction registers. A general purpose register stores cur-
rent and intermediate data of an executed instruction. There may be several general pur-
pose registers available inside the CPU. A program counter keeps the information regarding
the instruction about to run next. It is like a counter and holds an address that keeps
increasing after the execution of the current instruction. The instruction register contains the
instruction that is currently executing. The CPU fetches the instruction from the primary
memory, places it inside the instruction register, decodes it, and finally executes it.

1.5.2 � Cache Memory

Cache memory is a volatile memory present in between the main memory and the CPU
register. The speed of this memory is higher than main memory and slower than the CPU
registers. Every time the CPU requests the next instruction, the control unit first searches
for it inside the cache. If it is not there, then the control brings a set of instructions (along
with the required one) from the main memory and keep it inside the cache. The benefits of
bringing the whole group lie in the principle of locality of reference: the CPU always fetches
the instructions that are adjacent to each other, location wise.

1.5.3 � Primary Memory

Primary memory, commonly referred to as the main memory, is a significant component of
any computing device. It is an intermediate memory between the secondary memory and
the CPU of the computer system. On request, the CPU needs to load an application in the
main memory for execution. When a programmer finishes writing a program, he or she
stores it in secondary memory. To execute that program, the CPU loads it from secondary
memory to the primary memory. The processor is now directly interacting with the main
memory and runs the program. At this point, it is necessary to understand the internal
architecture of the main memory subsystem.

FIGURE 1.6
Memory organization.

ALU

Control Unit

Central Processing Unit

General Purpose
Registers

R0R1R2

Rn

Primary Memory

Cache Memory

Secondary Memory
Program
Counter

Instruc�on
Register

9Introduction to the Computer

The main memory consists of several locations, and we can identify each location with
an address. A location holds data or an instruction in the form of binary bits. A bit is the
smallest unit of storage, refers to either 0 or 1, though it is not much use as a single unit. To
be useful, a collection of bits is required: a group of four bits forms a nibble, a group of eight
bits forms a byte; Table 1.1 shows the other units made from collections of bits.

Data stored in memory is in the form of a word, and the word size (word length) depends
on the computer architecture. A modern computer system can have 16-bit (2-byte word),
32-bit (4-byte word), or 64-bit (8-byte word) word sizes. An example of a simple main
memory is shown in Figure 1.7. The word length is 2 bytes, and there are 64 locations. Hence
to identify each location uniquely, we need 6 bits (26 = 64) starting from the address 000000
to 111111.

Two types of primary memory exist in a computer system: Random Access Memory
(RAM) and Read Only Memory (ROM). ROM has several variations: Programmable ROM
(PROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable

TABLE 1.1

Units of Storage in Computer

Serial No. Units Description

1 bit Refers to either 0 or 1

2 1 Nibble 4 bits

3 1 Byte 8 bits

4 1 Kilobyte (KB) 1024 Bytes (210 Bytes)

5 1 Megabyte (MB) 1024 Kilobyte (210 KB)

6 1 Gigabyte (GB) 1024 Megabyte (210 MB)

7 1 Terabyte (TB) 1024 Gigabyte (210 GB)

8 1 Petabyte (PB) 1024 Terabyte (210 TB)

9 1 Exabyte (EB) 1024 Petabyte (210 PB)

10 1 Zettabyte (ZB) 1024 Exabyte (210 EB)

FIGURE 1.7
An example of a main memory subsystem.

1st Word

64th Word

2nd Word

000000

000001

000010

000011

000100

111111

2-byte
Word Length

Address

10 C Programming

ROM (EEPROM), and so on; and the description of each type is not included in the scope
of this book. Similarly, RAM is also of two types: static RAM and dynamic RAM.

1.5.4 � Random Access Memory

RAM is also known as the main memory of a computer system. In RAM, we can retrieve
and store information randomly from any location:

	 1.	RAM is the read–write memory of the computer;
	 2.	RAM is volatile memory: the content of the RAM is erased when we switch off the

computer system;
	 3.	In RAM, it is possible to select any memory location randomly to store and retrieve

information.

1.5.5 � Read Only Memory

The information present in this memory is permanent, and we cannot modify the content.
Hence it is a read only memory:

	 1.	Information can be read only.
	 2.	It is a non-volatile memory: the data present in this memory are permanent.
	 3.	Such memories are also called permanent stores or dead stores.
	 4.	It is generally used to store bootable information.
	 5.	Generally, the computer manufacturer provides a ROM chip.

1.5.6 � Secondary Memory

Before executing a program, you should write it and store it somewhere inside your com-
puter memory. Primary memory will not store your program permanently; it can help
your CPU execute the program by providing memory space. When your program finishes
running, the allocated memory will be taken back – that’s why you need permanent stor-
age to store your programs. Secondary memory does that job for you.

There are two types of secondary memory in today’s computers: a Hard Disk Drive
(HDD) and a Solid-State Drive (SSD). SSDs are much faster compared to HDDs. SDDs have
no mechanical moving parts, but HDDs have built-in platters called magnetic disks and a
movable head that travels back and forth between the disks to access the data. On the other
hand, SSDs are quite expensive compared to HDDs and have limited storage capacity.

1.5.7 � Hard Disk Drive

Figure 1.8 shows the internal architecture of the currently available HDDs. As you can see,
an HDD has a mechanical moving read–write head that moves back and forth through the
platters. The figure shows the organization of the read–write head and its direction of
movement. The platters are coated with a thin magnetic material and are used to record
data. Each platter is divided into several tracks and sectors to store data, as shown in
Figure 1.8. While accessing the data recorded on each platter’s surface, read–write heads
move forward and backward, and, the platters rotate to bring the desired sector under the
read–write head.

11Introduction to the Computer

1.5.8 � Solid State Drive

Figure 1.9 shows a typical SSD and its block diagram [5–7]. An SSD uses solid-state memo-
ries to store data. The main component of an SSD is the NAND flash memory, a controller,
a RAM, and a host interface. Figure 19.9b shows the organization of these components and
their communication path. The NAND flash memory, sometimes called flash memory, is a
non-volatile semiconductor device used to store data. There are several so-called flash
blocks, consisting of 64 to 128 pages, to record user data. These pages are further subdi-
vided into subpages, which is equal to the typical size of a sector. Each subpage also has
two areas: a data area and a spare area. The data area stores the user’s data, and the spare
area stores management information, such as bad sectors and error correction codes. Flash
memories are arranged in the form of a package sharing an eight-bit-wide common input/
output (I/O) bus. The host interface provides the connection to the host through interfaces
such as a serial advanced technology attachment (SATA), a parallel advanced technology
attachment (PATA), or a universal serial bus (USB). The SSD controller handles the read/
write request coming from the user with the help of a RAM – as a temporary buffer. The
RAM buffers the data through a read/write request before actually reading/writing from/
to the flash memory.

FIGURE 1.8
Internal architecture of an HDD.

Direc�on of Movement

Spindle

Pla�er

Pla�er

Pla�er

Read–Write
Head

Track

Sector

Pla�ers

Spindle

Read–Write Head

(a) (b) (c)

FIGURE 1.9
(a) A typical SSD; (b) Block diagram of an SSD.

Cache

Controller

NAND flash Memories

Host
Interface

SSD
Controller

NAND
Flash

Memories

NAND
Flash

Memories

NAND
Flash

Memories

NAND
Flash

Memories
RAM

(a) (b)

12 C Programming

1.6 � Introduction to the Operating System

1.6.1 � Hardware and Software

Before I introduce what an operating system is, I would like to discuss the concept of soft-
ware (s/w) and hardware (h/w). The h/w is a physical device connected to your com-
puter. S/w is a collection of programs, and we install them on a computer system to instruct
the h/w to do something. That means, to interact with the h/w, we need the help of s/w.
Buying a computer from the market and connecting it to a power supply does not help you
interact with the computer. The only way you can instruct the computer to do anything is
to install s/w and give commands through it. Hence, the s/w will act as an interface
between the user and the computer system. Figure 1.10 shows the user and h/w interac-
tion through s/w. The figure shows a three-layer communication: the h/w layer, s/w layer,
and user layer. The user layer provides instruction to the s/w layer, which in turn instructs
the h/w to execute the instruction.

S/w is mainly of two types: application s/w and system s/w (Figure 1.10). Application
s/w is built for a specific task or specific application. For instance, Microsoft word, VLC
media player, or any browser s/w like Google chrome is application s/w. On the other
hand, the system s/w allows access to the h/w. It acts as the interface between the user and
the h/w as well as application s/w and h/w. The relationship can be seen in Figure 1.11.

1.6.2 � Operating System

An Operating System (OS) is system s/w that handles all the instructions coming from the
user or application s/w and instructs the h/w to perform accordingly (Figure 1.11). Several
OSs are available on the market, like Microsoft Windows 10, Ubuntu, Linux, Unix, and
iOS. After buying a new computer, the first task is to install an OS on it; only then will the
computer be usable. Later, we can install application s/w above the OS to do other specific
tasks. If we want to listen to music, we can install s/w like Windows Media Player or VLC
media player. Similarly, for word processing, we can install Microsoft Word or LibreOffice.
Figure 1.12 shows the position of an OS in a layering architecture.

FIGURE 1.10
Hardware interaction through software.

Monitor
Cabinet

SpeakerSpeaker

Keyboard Mouse

So�ware

1.
Applica�on

So�ware

2.
System

So�ware

So�ware Layer UserHardware Layer

13Introduction to the Computer

1.6.3 � Functions of an Operating System

An OS manages several resources and handles all the requests that are coming from users
and the application s/w. The broad classification of the OS functions includes:

	 1.	Resource management;
	 2.	Memory management;
	 3.	Process management;
	 4.	File management.

A detailed description of these functions is beyond the scope of this book. Readers are
encouraged to explore more about these functions in any standard OS book.

FIGURE 1.11
System software providing access to hardware.

Monitor
Cabinet

Speaker

Keyboard Mouse

Applica�on
So�ware

System
So�ware

FIGURE 1.12
Operating System layer.

COMPUTER
HARDWARE

Opera�ng System

Applica�on So�ware

User

Microso�
Window

A

Printer Modem

Monitor
Cabinet

SpeakerSpeaker

Keyboard Mouse

14 C Programming

1.7 � Review Questions

1.7.1 � Long Answers

1.	 What is a computer system, and what are its characteristics?
2.	 What are the basic components of a computer system? Explain its organization with a

proper diagram.
3.	 What is a central processing unit (CPU)? Explain all the components of a CPU with an

appropriate diagram.
4.	 What is computer memory? Explain the categories of several memory subsystems and

their organization found in a computer system.
5.	 What are CPU registers? Explain the standard registers found inside a CPU irrespec-

tive of any architecture.
6.	 What is cache memory? Explain the need for cache memory and how it works.
7.	 Elaborate the working principle of cache memory to reduce the speed mismatch

between the main memory and the CPU.
8.	 Explain the categories of the memory subsystem and state the difference between pri-

mary memory and secondary memory.
9.	 Draw the block diagram of the main memory subsystem and explain the detail of

address space and word size.
10.	 What is the difference between RAM and ROM?
11.	 Explain the internal architecture of a hard disk drive (HDD) with its working

principle.
12.	 Explain the internal architecture of a solid-state drive (SSD) with its working

principle.
13.	 What are hardware and software? Explain the difference between them.
14.	 How does a user access/instruct hardware to execute an instruction? Explain the

hardware–software communication required to accomplish a task.
15.	 What is the difference between application software and system software? Explain

using an appropriate example.
16.	 What is an operating system (OS)? Explain the layered architecture of a system show-

ing the OS layer.
17.	 Explain the various functions of an operating system.
18.	 Explore your computer and list all the application software and system software

installed in your system.
19.	 Explore 32-bit and 64-bit operating systems. Which OS is installed in your computer

system and why?
20.	 Explain the booting process of a computer system.

1.7.2 � Short Answers

1.	 Who is known as the father of computer systems and why?
2.	 Who introduced the concept of the “stored program”? Explain it.

15Introduction to the Computer

3.	 What is the full form of ENIAC, EDSAC, and EDVAC? Which one was developed
first?

4.	 What are SMPS and UPS? Why are they necessary?
5.	 What is a control unit, where is it present, and what does it do?
6.	 What is the role of an ALU, and what operations does it perform?
7.	 Give some examples of input devices and output devices.
8.	 What is the meaning of locality-of-reference?
9.	 Explain the memory hierarchy, with respect to size, cost, and speed, of several mem-

ory subsystems.
10.	 What is a bit? How many bits form one byte?
11.	 List out the different variations of read only memory (ROM).
12.	 What is the difference between volatile and non-volatile memory?
13.	 What is NAND-flash memory, and where is it used?
14.	 What is word size or word length?
15.	 What is a program counter?
16.	 What is an instruction register?
17.	 What is a general purpose register?
18.	 What is the full form of SATA and PATA? What is the difference between them?
19.	 What is a bootstrap loader program?
20.	 What is the typical rotational speed of a hard drive in a modern computer system?

1.7.3 � Practical Exercises

1.	 What should you know before purchasing a computer (whether a desktop or a laptop)
from the market?

2.	 Do you think a bigger RAM capacity increases the speed of your computer system?
Explore and explain.

3.	 What are x64 and x86 based operating systems? What is the difference between both
of them? Try to find out which type of operating system is installed on your
computer.

4.	 Explore your system and try to find out the following information about your
computer:

	 a.	 What is the RAM size?
	 b.	 Which OS are you using?
	 c.	 What is the size of your secondary memory?
	 d.	 Is the secondary memory connected to your computer an HDD or SSD?
	 e.	 How can you find out how many processes are running on your system at any

instant of time?
	 f.	 What is the speed of your processor?
	 g.	 How many cores does your processor have?
	 h.	 What is the size of your CPU register?

5.	 Study different operating systems, their types, and consider which one is best, and
why.

16 C Programming

6.	 Three major players in operating system design are Microsoft Windows, Linux, and
Apple ios. Prepare a report on these OSs and learn how they are different from each
other.

7.	 What is a pen drive? To which category of memory system, primary or secondary,
does it belong?

8.	 Explore several keyboard shortcuts for your computer, create a new file, save a file,
minimize the opened windows, toggle through windows, and other shortcuts that
ease your operating capability.

9.	 When you shut down your computer, three options are shown in a Windows machine:
shut down, restart, and sleep. What is the use of sleep?

10.	 Go to your computer settings and explore the detail of several components, such as
system, personalize, account, and network & Internet.

References

	 1.	 Sinha, Pradeep K., and Priti Sinha. Computer Fundamentals. BPB Publications, 2010.
	 2.	 Randell, Brian, ed. The Origins of Digital Computers: Selected Papers. Springer, 2013.
	 3.	 Forouzan, Behrouz A., and Firouz Mosharraf. Foundations of Computer Science. Thomson, 2008.
	 4.	 Van Der Poel, W.L. A Simple Electronic Digital Computer. Appl. Sci. Res. 2, 367–400 (1952).
	 5.	 Kim, J., S. Seo, D. Jung, J. Kim, and J. Huh, “Parameter-Aware I/O Management for Solid State

Disks (SSDs),” IEEE Trans. Comp., vol. 61, no. 5, pp. 636–649, May 2012, doi: 10.1109/TC.2011.76.
	 6.	 Chen, F., R. Lee, and X. Zhang, “Essential Roles of Exploiting Internal Parallelism of Flash

Memory Based Solid State Drives in High-speed Data Processing,” 2011 IEEE 17th International
Symposium on High Performance Computer Architecture, San Antonio, TX, 2011, pp. 266–277, doi:
10.1109/HPCA.2011.5749735.

	 7.	 Hu, Y., H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring and Exploiting the Multilevel
Parallelism Inside SSDs for Improved Performance and Endurance,” IEEE Trans. Comp., vol. 62,
no. 6, pp. 1141–1155, June 2013, doi: 10.1109/TC.2012.60.

http://dx.doi.org/10.1109/TC.2011.76
http://dx.doi.org/10.1109/HPCA.2011.5749735
http://dx.doi.org/10.1109/TC.2012.60

17DOI: 10.1201/9781003188254-2

2
Number Systems

2.1 ����������������������� Introduction

This chapter introduces several number systems used by computer systems. Readers can
skip this chapter if they already familiar with this topic. The content of this chapter will
help a programmer to understand several concepts that appear in future chapters. So if
you are a beginner and learning this subject for the first time, I recommend reading the
entire chapter thoroughly. After completing this chapter, the reader will know the
following:

	 1.	The various types of number systems that a computer uses to perform
computations;

	 2.	Conversion among number systems.

In our day-to-day life, we use different symbols, numbers, characters, letters, and so on.
Where a numbering system is concerned, we are familiar with the decimal number system,
which uses ten different digits (0, 1, 2, …, 9) to represent a number. But, a computer system
only understands two digits: either 0 or 1. When we make a number with these two digits
(0 or 1), we call it a binary number. Other number systems also exist, and we classify them
as shown in Figure 2.1. This chapter will introduce number systems and will show you
how to convert a number from one type to another.

2.1.1 ����������������������� Non-positional Number Systems

In former times, humans counted on their fingers. When ten fingers were not adequate,
stones, pebbles, and sticks were used to indicate the values. This type of counting is known
as a non-positional number system.

2.1.2 ����������������������� Positional Number Systems

In a positional number system, every digit holds a position inside the number. For exam-
ple, consider the decimal number 387, where 7 belongs to 0th place, 8 is in 1st place, and 3
is in 2nd place. Not only the position but also its type and base matter. In general, each
digit of a number is determined by three factors:

	 1.	The digit itself;
	 2.	The position of the digit in the number;
	 3.	The base of the number system.

18 C Programming

Figure 2.2 shows an example by taking a decimal number 45638, where the base is 10, and
the positions of each digit are assigned from right to left, starting from 0 (zero).

There are several benefits in representing a number in this form. In this chapter, you will
find a description and representation of all positional numbers and the position of each
digit. We will start with a description of the decimal number system because we use it in
everyday calculations.

2.2 ����������������������� Positional Number Systems

In this section, we will describe the detail of each positional number system, starting with
the decimal number system. The description of each number system follows a simple flow.
First, we will talk about the symbols (digits) used, and then we will determine the position
of each digit, and finally show how each number system is related to the decimal number
system.

2.2.1 ����������������������� Decimal Number System

Today, most people use decimal number representation for counting. In the decimal num-
ber system, there are ten digits:

	 0 1 2 3 4 5 6 7 8 9, , , , , , , , ,

(4 5 6 3 8) 10

4 3 2 1 0

Base

Position

A Decimal Number

Posi�ons are
assigned

from right to
le�, star�ng

from zero

FIGURE 2.2
A positional number.

Number System

Posi�onal Number
system

Non-posi�onal
Number System

Decimal Binary Hexadecimal Octal

FIGURE 2.1
Categories of number systems.

19Number Systems

These digits can represent any value, for example: 6842 (read as six thousand eight hun-
dred and forty-two). Figure 2.3 shows the place value of each digit in a decimal number.
We are concentrating on integer numbers now; later, we will show you how to deal with real
numbers.

We first multiply each digit with the base to the power of its position. After that, we add
the result of the above operation to get the value (see Figure 2.3). In a decimal number
system, the base is 10. In general, in any number system, each digit’s position is assigned
from the left starting from 0. In our example, we have four digits, 6, 8, 4, and 2, with posi-
tions 3, 2, 1, and 0, respectively. The digit 6 is multiplied by the base 10 to the power of its
position 3, and we get 6000. Similarly, the digits 8, 4, and 2 are multiplied by 10 to the
power of their corresponding positions (2, 1, and 0) to get 400, 40, and 2, respectively.
Finally, all the results are added to get the value.

NOTE

Any number to the power 0 is 1. Even 0 to the power of 0 is also 1.

	 10 10 =

	 5 10 =

	 0 10 =

Now consider a real number description where the number contains a fractional part.
The positions of the digits present before the decimal point follow a similar representation,
like an integer. But, the positions are slightly different for the digits present after the deci-
mal point. For the latter case, the positions are assigned from left to right, starting with −1.

Consider one example 68.732 (read as sixty-eight point seven three two). In this exam-
ple, 68 is considered as an integer and treated in a similar manner as discussed above. The
digits present after the decimal point (i.e., 732) are assigned in a sequence starting from −1.
Figure 2.4 shows this assignment and the calculation involved in generating the value.
Here, 1, 0, –1, –2, –3 are positions assigned to 6, 8, 7, 3, 2, respectively. The digits in the
given number are multiplied by the base to the power of its respective position and finally
added to get the value.

6 × 10
3

+ 8 × 10
2

+ 4 × 10
1

+ 2 ×10
0

= 6000 + 800 + 40 + 2 = 6842

Digit Posi�on

Base=10

FIGURE 2.3
Place value of each digit in a decimal integer number.

20 C Programming

2.2.2 ����������������������� Binary Number System

The binary number system is the one that is actually used in a computer system. A com-
puter is made up of electronic components and can have only two states: ON or OFF. We
can represent ON as 0 and OFF as 1. So, any number made up of 0 and 1 we call a binary
number. Computers use the binary number system to represent everything. The base in a
binary number system is 2. Each digit in a binary number system is called a bit; 8 bits form
a byte.

Like a decimal number system, a binary number also follows the same rule of assigning
a position to each digit. The difference is in their bases: in a decimal number, the base is 10,
and in binary, it is 2. Figure 2.5 shows our example binary number, its base, and the posi-
tion of each digit in the binary number. Let us see what happens when the digits in a given
binary number are multiplied by the base to the power of its respective position and finally
added. We take our example binary number to perform this operation. Figure 2.5 shows
this operation, and we notice that it produces 53 as a result, which is nothing but the deci-
mal equivalent of the given binary number.

Let’s think about the above explanation the other way. The equivalent decimal value of
the binary number (110101)2 is (53)10. How do we calculate this? We can find it by the sum
of each digit multiplied by the base to the power of its position (Figure 2.5).

Now, consider a binary number that contains a decimal point. We can treat the number
in the same way as the decimal real number. We assign position numbers to the digits

= 1 × 2
5
 + 1 × 2

4
 + 0 × 2

3
 + 1 × 2

2
 + 0 × 2

1
 + 1 × 2

0

= 32 + 16 + 0 + 4 + 0 +1

= 53

Base=2 Digit Position

Binary to
Decimal

(110101)2

= (?)10
(1 1 0 1 0 1)2

5 4 3 2 1 0Positions

Binary

Number
Base=2

(a)

(b)

(c)

FIGURE 2.5
Binary number system and its associated operations.

6 × 10 1 + 8 × 10 0 + 7 × 10 –1 + 3×10 –2 + 2 × 10 –3

= 60+ 8 + 0.7 + 0.03 + 0.002

= 68.732

Digit Posi�on

Base

FIGURE 2.4
Place value of each digit in a decimal real number.

21Number Systems

present after the decimal point from left to right, starting from –1. The digits present before
the decimal point do not require any special treatment. Figure 2.6 shows an example of a
binary number with a decimal point and its position assignment, and shows the calcula-
tion steps to find its equivalent decimal number.

2.2.3 ����������������������� Hexadecimal Number System

The hexadecimal number system uses 16 symbols (called hexadecimal digits) to represent a
number:

	 0 1 2 3 4 5 6 7 8 9, , , , , , , , , , , , , , ,A B C D E F

The hexadecimal digits A, B, C, D, E, F refer to numerical values 10, 11, 12, 13, 14, 15,
respectively. The base is 16 because it uses 16 hexadecimal digits. The benefit of using a
hexadecimal number system over a binary number system is its small length in represent-
ing a number. A four-bit binary number requires only one hexadecimal digit to represent
the same number, as we will see shortly.

We follow the same rule to assign positions to each digit of a hexadecimal number, start-
ing from 0, assigned from right to left. Figure 2.7 shows a hexadecimal number with its
assigned position numbers. We can calculate the decimal equivalent of that given hexa-
decimal number using the same principle followed in the other number systems discussed
above. We first multiply each digit by its base to the power of its corresponding position
and finally add it. The calculation procedure is shown in Figure 2.7. Hence, we can say the
hexadecimal number 24B4 is equivalent to decimal number 9396.

Hexadecimal numbers with a decimal point are not so common, but we can represent
and process it the same way as binary numbers with a decimal point. We will discuss the
conversion process later in this chapter.

= 1 × 2
3

+ 1 × 2
2
 + 0 × 2

1
 + 1 × 2

0
+ 1 × 2

–1
+ 0 × 2

–2
 + 1 × 2

–3

= 8 + 4 + 0 + 1 + 0.5 + 0 + 0.125

= 13.625

Base=2 Digit Position

(1 1 0 1 . 1 0 1)2

3 2 1 0Positions

Binary

Number Base=2

(a)

–1 –2 –3

(b)

FIGURE 2.6
Binary number with a decimal point and its conversion.

= 2 × 16 3 + 4 × 16 2 + B × 16 1 + 4 × 16 0

= 8192 + 1024 + 176 + 4

= 9396

Base=16 Digit Position

Hexadecimal
to Decimal

(24B4)16

= (?)10
(2 4 B 4)16

3 2 1 0Positions

Hexadecimal

Number Base=16

(a) (b) (c)

FIGURE 2.7
Hexadecimal number system and its associated operation.

22 C Programming

2.2.4 ����������������������� Octal Number System

The octal number system uses eight symbols (octal digits) to represent a number:

	 0 1 2 3 4 5 6 7, , , , , , ,

The base is 8 because it uses eight octal digits to represent a number in the octal number
system. The benefit of using an octal number system over a binary number system is its
small length in representing a number. A three-bit binary number requires only one octal
digit to represent the same number, as we will see shortly.

We follow the same rule to assign positions to each digit of an octal number, starting
from 0, assigned from right to left. Figure 2.8 shows an octal number with its assigned posi-
tion numbers. We can calculate the decimal equivalent of that given octal number using the
same principle followed in the other number systems discussed above. We first multiply
each digit by its base to the power of its corresponding position and finally add it. The
calculation procedure is shown in Figure 2.8. Hence, we can say the octal number 435 is
equivalent to decimal number 285.

Octal numbers with a decimal point are also not so common, but we can represent and
process it the same way as binary numbers with a decimal point. We will discuss the con-
version process later in this chapter.

From the above discussion, we can derive a generalized process of converting a number
with any base to its decimal equivalent (Figure 2.9). The following description refers to the

(dk dk–1 . . . d3 d2 d1)b (dm dm–1 . . . d3 d2 d1)10dk X bn–1
 + dk–1 X bn–2 + . . . + d3 X b2 + d2 X b1 + d1 X b0

Number with any Base

Number with
Base 10

Generalized
Procedure

Example of a
Hexadecimal Number

(3AD)16

Example of a
Binary Number

(10111)2

Example of an
Octal Number

(35)8

Other Number with
any Base

FIGURE 2.9
Generalized procedure to convert a number with any base to its decimal equivalent.

(4 3 5)8

2 1 0Positions

Octal

Number Base=8

(a) (b) (c)

= 4 × 8 2 + 3 × 8 1 + 5 × 8 0

= 256 + 24 + 5

= 285

Base=8 Digit Position

Octal to
Decimal

(435)8 =

(?)10

FIGURE 2.8
Octal number system and its associated operation.

23Number Systems

integer numbers only. To describe the process, we need to represent a given number (any
base) with the following notation:

	 d d d d dk k b� �� �1 3 2 1

where,
di represents a digit in the given number, and i ranges from 1 to k;
b represents the base of the given number.

The digits of the given number are assigned by its position number starting with 0 from
right to left. That means the position 0, 1, 2, …, n–1 is assigned to d1, d2, d3, …, dk, respec-
tively. To calculate the decimal equivalent, each digit (di) of the given number should be
multiplied by its base (b) to the power of its position:

	 d b d b d b d b d bk
n

k
n� � � ��� � � � � ��

�
�1

1
2

3
2

2
1

1
0

Performing the above operation, we can find its corresponding decimal equivalent:

	 d d d d dm m� �� �1 3 2 1 10

where,
di represents a digit in the given decimal number, and i ranges from 1 to m;
10 represents the base of the given number, b = 10.

Figure 2.9 shows the entire conversion process.

2.3 ����������������������� Number Conversion

It is essential to know the conversion of numbers from one base to another base. We know
that computers only understand binary numbers, and what we know are decimal num-
bers. Hexadecimal numbers are used to represent everything in a compact form so that it
is easy to express and is more readable. As programmers, we need to know the details of
conversion among these numbers. In this section we will follow the question–answer pat-
tern to show each conversion. A description is given where necessary.

2.3.1 ����������������������� Binary to Decimal

There are two approaches to converting binary to decimal. The first method has already
been discussed in Section 2.2.2. With this method, we will assign a position number to each
digit starting from 0, right to left. Then, we multiply the digit with the base to the power of
its position number. Finally, we add all the results obtained in the last step to get its deci-
mal equivalent. The second approach is a shortcut method to obtain the decimal equiva-
lent. We will discuss both these approaches using appropriate examples.

24 C Programming

2.3.1.1 ����������������������� Approach 1

Given number: (10011)2. The approach is shown in Figure 2.10. It is a three-step process:

	 1.	Assign a position number to each digit of the given binary number;
	 2.	Multiply the digit with the base to the power of its position number;
	 3.	Add the result to find its decimal equivalent.

2.3.1.2 ����������������������� Approach 2

To find the decimal equivalent with this approach, we need to remember a formula. The
formula is built by listing the powers of 2 starting from 0, i.e., 20, 21, 22, …, and so on. If we
write their values, they will be 1, 2, 4, 8, 16, …, etc.; the number is doubled whenever you
write the next term. The number of terms depends on the number of digits present in the
given binary number. For instance, if you want to find out the decimal equivalent of (1011)2,
then four terms are required, because there are four digits present in the given binary num-
ber, and the terms are 1, 2, 4, and 8. Similarly, if the given number is (1101101)2, then we
require seven terms and they will be 1, 2, 4, 8, 16, 32, 64. The term must be assigned from
the right to the left corresponding to each digit present in the given binary number.

The next step with this approach is quite simple. We need to add the terms corresponds
to digit 1 to get its decimal equivalent. The terms that are assigned to the digit 0 will be
ignored and do not take part in the decimal calculation. Figure 2.11 shows the steps of this
approach using an example. The given number is (10011)2.

1 0 0 1 1Given Number

4 3 2 1 0Assign Posi�on Number

1 Assigning posi�on number to each digit of the given number

1 0 0 1 1Given Number

4 3 2 1 0Posi�on Number

2 Mul�ply the digit with the base to the power of its posi�on number

1×24

16 0 0 2 1

Here Base=2

Obtained Result

3 Add the result

16 + 0 + 0 + 2 + 1Obtained Result

Decimal Equivalent 19

0×23 0×22 1×21 1×20

FIGURE 2.10
Binary to decimal conversion steps.

25Number Systems

SHORT-CUT METHOD FORMULA TO CONVERT BINARY TO DECIMAL

Assign the terms from right to left, starting from 1, double the term value as you
proceed towards the left.

Let us take another example. Suppose you want to find the decimal equivalent of
(110011011)2. The short cut is given below (see Figure 2.12).

2.3.2 ����������������������� Binary Fraction to Decimal Conversion

We can convert a given binary fraction to its equivalent decimal fraction. The approach is
straightforward and does not require any explanation. The process of conversion has
already been discussed in the last section. Learners are advised to go through the examples
and try to understand the procedure.

1 0 0 1 1Given Number

16 8 4 2 1Assigning Formula Terms

1 Assigning formula term from right to le�

3 Add the highlighted terms obtained from the above step

16 + 0 + 0 + 2 + 1Adding the Highlighted Terms

Decimal Equivalent 19

1 0 0 1 1Given Number

16 8 4 2 1Highlighting through Tick Mark

2 Highligh�ng the terms corresponds to digit 1

FIGURE 2.11
Binary to decimal conversion (short cut).

FIGURE 2.12
Another example showing the conversion from binary to decimal.

1 1 0 0 1 1 0 1 1

256 128 64 32 16 8 4 2 1

256 + 128 + 16 + 8 + 2 + 1 = 411

Given
Number

Formula

Addi�on

Result

26 C Programming

EXAMPLES

1.	 Convert (.111)2 to its decimal equivalent.

Solution

	 Given .111
2� �

	 � � � � � �� � �1 2 1 2 1 21 2 3

	 � � �
1
2

1
4

1
8

	 � � �0 5 0 25 0 125. . .

	 � � �0 875
10

.

2.	 Convert (1110.1001)2 to its decimal equivalent.

Solution

	 Given 1110 1001
2

.� �

	 � � � � � � � � � � � � � � � �� � � �1 2 1 2 1 2 0 2 1 2 0 2 0 2 1 23 2 1 0 1 2 3 4

	 � � � � � � � �8 4 2 0
1
2

0 0
1

16

	 � � � � � � � �8 4 2 0 0 5 0 0 0 0625. .

	 � � �14 5625
10

.

2.3.3 ����������������������� Binary to Decimal Conversion

When we want to convert a decimal number to its equivalent binary number, we need to
divide the decimal number by 2 until the quotient becomes 0 and no further division is
possible. During the division process, we must note down the remainders. Arranging the
remainders using the bottom-up approach gives us the binary equivalent. Let us take an
example to understand the process of conversion.

EXAMPLE

Convert the decimal number (156)10 to its binary equivalent. We can follow the steps
given below to convert any decimal number to its binary equivalent (refer to
Figure 2.13).

	Step 1:	 Write the decimal number as the dividend inside an upside-down “long
division” symbol. Write the base of the destination system (in our case, “2”
for binary) as the divisor outside the curve of the division symbol.

27Number Systems

2.3.4 ����������������������� Decimal Fraction to Binary Fraction

In a decimal fractional number, the number appears before the decimal point is converted
to binary following the techniques discussed in the previous section; the number which
appears after the decimal point will be converted by repeatedly multiplying by 2. During
the multiplication, the digit which appears before the decimal point is collected from top
to bottom. Let us take some examples to show the process of conversion.

EXAMPLES

	 1.	Convert (0.8125)10 to binary.
As the given number has no number that appears before the decimal point, the
process is straightforward. Multiply the given number by 2 and record the
numbers that appear before the decimal point. Collect them from top to bottom.
Figure 2.14 shows the entire process of conversion. Hence (0.8125)10 = (0.1101)2.

	 2.	Convert (8.8125)10 to its binary equivalent.
The given problem has two parts; the number that appears before the decimal
point will be solved as per the approaches discussed in the last section and
again as described in Figure 2.14. The number that appears after the decimal
point will follow the procedure discussed in the previous example shown in
Figure 2.14. Hence, (8.8128)10 = (1000.1101)2.

	Step 2:	 Write the integer answer (quotient) under the long division symbol and
write the remainder (0 or 1) to the right of the dividend.

	Step 3:	 Continue downwards, dividing each new quotient by 2 and writing the
remainders to the right of each dividend. Stop when the quotient is 0.

	Step 4:	 Starting with the bottom 1, read the sequence of 1’s and 0’s upwards to the
top. You should have 10011100. This is the binary equivalent of the decimal
number 156. Hence, (156)10 = (10011100)2.

1562 1562
78 0

156
78

2
2

392

192
92

42
22
12
0

0
0
1
1
1
0
0
1

(a) (b) (c)

FIGURE 2.13
Decimal number to binary number conversion process.

28 C Programming

2.3.5 ����������������������� Decimal to Octal Conversion

Conversion from a decimal number to an octal number is quite simple, like the decimal to
binary conversion discussed above. The only difference is, there you divide it by 2, but
here you divide the given decimal by 8. The following steps explain the process of
conversion.

	Step 1:	 Divide the decimal number by 8 and obtain the quotient and remainder;
	Step 2:	 Divide the quotient by 8 and obtained the new quotient and remainder;
	Step 3:	 Repeat step 2 until the quotient is equal to 0;
	Step 4:	 Take the remainder from bottom to top for the answer.

EXAMPLE

Convert (359)10 to its equivalent octal number.

Solution

The solution is shown in Figure 2.15 (a) and is self-explanatory.
Hence, 35910 = 5478.

It is also possible to convert a given decimal fractional number to its octal equivalent. The
process is quite similar to the previous approaches. The numbers are treated separately;
numbers that appear before the decimal place will be converted as the process discussed

359
44

8
8

58
0

7
4
5

0.21875
8

1 . 75000
8

6 . 00000

×

×

(a) (b)

FIGURE 2.15
Decimal to octal conversion.

0.8125
2

1 . 6250
2

1 . 2500
2

0 . 5000
2

1 . 0000

×

×

×

×

8
4

2
2

22
12
0

0
0
0
1

(a) (b)

FIGURE 2.14
Decimal fraction to binary fraction.

29Number Systems

above, and the number that appears after the decimal will be multiplied by 8. The digit that
appears before the decimal point will be collected from top to bottom.

EXAMPLE

Convert (0.21875)10 to its octal equivalent.

Solution

The solution is shown in Figure 2.15 (b) and is self-explanatory. Hence, (0.21875)10
= (0.16)8.

2.3.6 ����������������������� Octal to Decimal Conversion

We can find this by summing each digit multiplied by the base (8 here) to the power of its
position. This has already been discussed. This section will show you the conversion of the
octal fractional number to its equivalent decimal fractional number. The process is quite
simple; observe the following example to understand it.

EXAMPLE

Convert (0.34)8 to its equivalent decimal number.

Solution

Given number: (0.34)8

	 � � � �� �3 8 4 81 2

	
� � � �3

1
8

4
1

64

	 � �0 375 0 0625. .

	 � � �0 4375
10

.

2.3.7 ����������������������� Octal to Binary Conversion

To convert a number from octal to binary, we can follow two procedures.

2.3.7.1 ����������������������� Procedure 1

With procedure 1, we follow a two-step process and require two conversions.

	Step 1:	 Convert the octal number to its equivalent decimal number;
	Step 2:	 Convert the decimal number obtained above to binary.

The above procedure is quite lengthy. Hence, we follow Procedure 2 here.

30 C Programming

2.3.7.2 ����������������������� Procedure 2

This is a short-cut procedure. We need to represent each digit of an octal number as a three-
bit binary. Why? Because we know that an octal number can be formed using digits from 1
to 7, and if you convert any digit to its binary equivalent, it requires only three bits. Observe
Table 2.1 to see the binary equivalent of all these digits.

Let us take an example to explain the conversion procedure. We want to convert (7263)8
to its equivalent binary; we need the following steps:

	Step 1:	 Write the given octal number as shown in Figure 2.16.
	Step 2:	� Extract the binary equivalent of each digit of the given octal number from Table 2.1

and write it as shown in Figure 2.16.
	Step 3:	� Read the binary number from left to right to obtain the binary equivalent. Hence,

(7263)8 = (111010110011)2.

2.3.8 ����������������������� Binary to Octal Conversion

To convert a number from binary to octal, we can follow two procedures.

2.3.8.1 ����������������������� Procedure 1

With Procedure 1, we follow a two-step process and require two conversions:

	Step 1:	 Convert the binary number to its equivalent decimal number;
	Step 2:	 Convert the decimal number obtained above to octal.

The above procedure is quite lengthy. Hence, we follow Procedure 2 here.

TABLE 2.1

Binary Equivalent of Octal Digits

Octal Digit Binary Equivalent Octal Digit Binary Equivalent

0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111

7 2 6 3 7 2 6 3

111 010 110 011

(a) (b)

FIGURE 2.16
Short-cut method to convert octal to binary.

31Number Systems

2.3.8.2 ����������������������� Procedure 2

This procedure is quite simple and easy to follow. Let us take an example to understand
how this procedure works.

EXAMPLE

Convert (10110110100010)2 to its octal equivalent.

Solution

We need the following steps to find the octal equivalent:

	Step 1:	� Figure 2.17 shows the first step. Divide the binary number into groups of
three bits each (from right to left) by adding 0 bits for completing the groups
(if needed).

	Step 2:	� Figure 2.17 shows the next step and is the final one to obtain our octal equiv-
alent. Replace each group by its octal equivalent following Table 2.1. Hence,
(10110110100010)2 = (26642)8.

Now consider a fractional binary number. To convert it to octal, we use the following
steps:

	Step 1:	� Divide the binary number before the binary point into groups of three bits each
(from right to left) and after the binary point into groups of three bits each (from
left to right) by adding 0 bits for completing the groups (if needed);

	Step 2:	� Replace each group with its octal equivalent following Table 2.1.

EXAMPLE

Convert (101010011011.10100011)2 to its octal equivalent.

Solution

The solution procedure is shown in Figure 2.18, and is self-explanatory. Hence,
(101010011011.10100011)2 = (5233.506)2.

0 1 0 1 1 0 1 1 0 1 0 0 0 1 0

2 6 6 4 21 0 1 1 0 1 1 0 1 0 0 0 1 00

Extra 0 added to complete the group

(a) (b)

FIGURE 2.17
Short-cut method to convert binary to octal.

32 C Programming

2.3.9 ����������������������� Decimal to Hexadecimal Conversion

Conversion from a decimal number to a hexadecimal number is quite simple, like the deci-
mal to binary conversion discussed above. The only difference is, there you divide it by 2,
but here you divide the given decimal by 16. The following steps explain the process of
conversion.

	Step 1:	 Divide the decimal number by 16 and obtain the quotient and remainder;
	Step 2:	 Divide the quotient by 16 and obtained the new quotient and remainder;
	Step 3:	 Repeat step 2 until the quotient is equal to 0;
	Step 4:	 Take the remainder from the bottom to top for the answer.

EXAMPLE

Convert (58)10 to its equivalent hexadecimal number.

Solution

The solution is shown in Figure 2.19(a) and is self-explanatory.
Hence, 5810 = 3A16.

It is also possible to convert a given decimal fractional number to its hexadecimal equivalent.
The process is quite similar to the previous approaches. The numbers are treated sepa-
rately; numbers that appear before the decimal place will be converted as the process dis-
cussed above, and the number that appears after the decimal will be multiplied by 16. The
digit that appears before the decimal point will be collected from top to bottom.

.

Extra 0 added to complete the group

Le� to RightRight to Le�

5

1 0 1

2

0 1 0

3

0 1 1

3

0 1 1

5

1 0 1

0

0 0 0

6

1 1 0

FIGURE 2.18
Fractional binary number to octal conversion.

58
3

16
16

0
A
3

0.28125
16

4 . 50000
16

8 . 00000

×

×

(a) (b)

FIGURE 2.19
Decimal to hexadecimal conversion.

33Number Systems

EXAMPLE

Convert (0.28125)10 to its hexadecimal equivalent.

Solution

The solution is shown in Figure 2.19 and is self-explanatory. Hence, (0.28125)10
= (0.48)16.

2.3.10 ����������������������� Hexadecimal to Decimal Conversion

We can find this by summing each digit multiplied by the base (16 here) to the power of its
position. This has already been discussed in the previous section. In this section, we will
show you the conversion of the hexadecimal fractional number to its equivalent decimal
fractional number. The process is quite simple; observe the following example to under-
stand it.

EXAMPLE

Convert (0.48)16 to its decimal equivalent.

Solution

Given number: (0.48)16

	 � � � �� �4 16 8 161 2

	
� � � �4

1
16

8
1

256

	 � � � �4 0 0625 8 0 00390625. .

	 � � �0 28125000
10

.

2.3.11 ����������������������� Hexadecimal to Binary Conversion

To convert a number from hexadecimal to binary, we can follow two procedures.

2.3.11.1 ����������������������� Procedure 1

With Procedure 1, we follow a two-step process and require two conversions:

	Step 1:	 Convert the given hexadecimal number to its equivalent decimal number;
	Step 2:	 Convert the decimal number obtained above to binary.

The above procedure is quite lengthy. Hence, we follow Procedure 2 here.

34 C Programming

2.3.11.2 ����������������������� Procedure 2

This is a short-cut procedure. We need to represent each digit of a hexadecimal number as
a four-bit binary. Why? Because we know that a hexadecimal number can be formed using
digits from 1 to 9 and then A, B, C, D, E, and F. Where, A = 10, B = 11, C = 12, D = 13, E = 14,
F = 15. If you convert any digit to its binary equivalent, it requires only four bits. Observe
Table 2.2 to see the binary equivalent of all these digits.

Let us take an example to explain the conversion procedure. If we want to convert
(A3D8)16 to its equivalent binary; we need to follow these steps:

	Step 1:	 Write the given hexadecimal number as shown in Figure 2.20.
	Step 2:	� Extract the binary equivalent of each digit of the given hexadecimal number from

Table 2.2 and write it as shown in Figure 2.20.
	Step 3:	� Read the binary number from left to right to obtain the binary equivalent. Hence,

(A3D8)16 = (1010001111011000)2.

2.3.12 ����������������������� Binary to Hexadecimal Conversion

To convert a number from binary to hexadecimal, we can follow two procedures.

2.3.12.1 ����������������������� Procedure 1

With Procedure 1, we follow a two-step process and require two conversions:

	Step 1:	 Convert the binary number to its equivalent decimal number;
	Step 2:	 Convert the decimal number obtained above to hexadecimal.

TABLE 2.2

Binary Equivalents of Hexadecimal Numbers

Hexadecimal Number Binary Equivalent Hexadecimal Number Binary Equivalent

0 0000 8 1000

1 0001 9 1001

2 0010 A (10) 1010

3 0011 B (11) 1011

4 0100 C (12) 1100

5 0101 D (13) 1101

6 0110 E (14) 1110

7 0111 F (15) 1111

A 3 D 8

1010 0011 1101 1000

A 3 D 8

(a) (b)

FIGURE 2.20
Short-cut method to convert hexadecimal to binary.

35Number Systems

The above procedure is quite lengthy. Hence, we follow Procedure 2 here.

2.3.12.2 ����������������������� Procedure 2

This procedure is quite simple and easy to follow. Let us take an example to understand
how this procedure works.

EXAMPLE

Convert (10110110100010)2 to its hexadecimal equivalent.

Solution

We need the following steps to find the hexadecimal equivalent.

	Step 1:	 �Figure 2.21 shows the first step. Divide the binary number into groups of
four bits each (from right to left) by adding 0 bits for completing the groups
(if needed).

	Step 2:	 �Figure 2.21 shows the next step and is the final one to get our hexadecimal
equivalent. Replace each group by its hexadecimal equivalent following
Table 2.1. Hence, (10110110100010)2 = (2DA2)16.

Now consider a fractional binary number. To convert it to hexadecimal, use the follow-
ing steps:

	Step 1:	� Divide the binary number before the binary point into groups of four bits each
(from right to left) and after the binary point into groups of four bits each (from
left to right) by adding 0 bits for completing the groups (if needed);

	Step 2:	 Replace each group with its hexadecimal equivalent following Table 2.2.

EXAMPLE

Convert (101010011011.1010001)2 to its hexadecimal equivalent.

Solution

The solution procedure is shown in Figure 2.22 and is self-explanatory. Hence,
(101010011011.1010001)2 = (A9B.A2)2.

1 0 1 1 0 1 1 0 1 0 0 0 1 0

Extra 0's added to complete the group

0 0
0 0 1 00 0 1 0

2AD2

(a) (b)

1 1 0 1 1 0 1 0

FIGURE 2.21
Short-cut method to convert binary to hexadecimal.

36 C Programming

2.4 ����������������������� Review Questions

1.	���������������������� What is the difference between a positional number system and a non-positional num-
ber system?

2.	���������������������� Why does the computer need a binary number system to represent numbers?
3.	���������������������� If a computer uses a binary number system, what is the need for hexadecimal and

octal number systems?
4.	���������������������� Write short notes on:

	 a.	 The binary number system;
	 b.	 The octal number system;
	 c.	 The hexadecimal number system.

5.	���������������������� Describe the generalized procedure for converting a number with any base to its deci-
mal equivalent. Explain with an example.

6.	���������������������� Can you derive a generalized procedure to convert a decimal number to any other
number with a diverse base? If yes, then outline the procedure and explain it with an
example.

7.	���������������������� Can you design a number system with base 6? What are the different symbols required
to make this number system? How can you convert a number with base 6 to decimal
and vice versa?

2.4.1 ����������������������� Conversion Questions

1.	���������������������� Convert the following binary numbers to their equivalent decimal numbers.
	 a.	 100010012

	 b.	 101012

	 c.	 11012

	 d.	 110.1102

	 e.	 11.0012

	 f.	 1100.1012

2.	���������������������� Convert the following decimal numbers to their equivalent binary numbers.
	 a.	 7810

	 b.	 65310

	 c.	 879210

	 d.	 98.2310

	 e.	 987.3410

	 f.	 9832.35610

1 0 1 0 1 0 0 1 1 0 1 1 . 1 0 1 0 0 0 1 0

Extra 0 added to complete the group

2

Le� to RightRight to Le�

AB9A

FIGURE 2.22
Fractional binary number to hexadecimal conversion.

37Number Systems

3.	���������������������� Convert the following binary numbers to their equivalent octal numbers.
	 a.	 1101101101112

	 b.	 10101011100112

	 c.	 1010111002

	 d.	 10101.11001002

	 e.	 10101.1101102

	 f.	 1101010.1101011102

4.	���������������������� Convert the following octal numbers to their equivalent binary numbers.
	 a.	 13248

	 b.	 7658

	 c.	 527128

	 d.	 43.4568

	 e.	 32.7768

	 f.	 254.3668

5.	���������������������� Convert the following binary numbers to their equivalent hexadecimal numbers.
	 a.	 1100100101002

	 b.	 10101010012

	 c.	 110001001012

	 d.	 10001.101012

	 e.	 1111.0101012

	 f.	 1101001.1010101112

6.	���������������������� Convert the following hexadecimal numbers to their equivalent binary numbers.
	 a.	 A2B516

	 b.	 D9C3416

	 c.	 FF2A3B916

	 d.	 2FE.3416

	 e.	 7A3.AD216

	 f.	 786A.AA2E16

7.	���������������������� Convert the following decimal numbers to their equivalent octal numbers.
	 a.	 65710

	 b.	 757810

	 c.	 54354310

	 d.	 987.8510

	 e.	 5454.232310

	 f.	 4568.53410

8.	���������������������� Convert the following octal numbers to their equivalent decimal numbers.
	 a.	 32328

	 b.	 148

	 c.	 64538

	 d.	 443.75648

	 e.	 34243.758

	 f.	 33545.32328

9.	���������������������� Convert the following decimal numbers to their equivalent hexadecimal numbers.
	 a.	 3710

	 b.	 744810

	 c.	 9432310

	 d.	 977.8510

38 C Programming

	 e.	 5324.232310

	 f.	 4348.12410

10.	���������������������� Convert the following hexadecimal numbers to their equivalent decimal numbers.
	 a.	 A2316

	 b.	 FAB16

	 c.	 AB4316

	 d.	 AA.34B16

	 e.	 EA3.56F16

	 f.	 EA67.9E16

11.	���������������������� Convert the following octal numbers to their equivalent hexadecimal numbers.
	 a.	 3238

	 b.	 75448

	 c.	 72638

	 d.	 241.668

	 e.	 644.1328

	 f.	 22.75548

12.	���������������������� Convert the following hexadecimal numbers to their equivalent octal numbers.
	 a.	 F3A16

	 b.	 FEDAB16

	 c.	 F45BA16

	 d.	 FE3.45A16

	 e.	 BC.459A16

	 f.	 BBDA.45616

39DOI: 10.1201/9781003188254-3

3
Problem Solving through Flowcharts
and Algorithms

3.1 ���������������� Introduction

Now that we understand what a computer is, it’s time to solve problems using the com-
puter. We will begin by introducing the problem-solving techniques progressed through
algorithm writing and flowchart drawing. To learn how to code always starts with under-
standing the problem well, drafting it on paper through a step-by-step method called an
algorithm, and finally, drawing the flowchart to show how the input flows through the
solution steps and produces the output. Figure 3.1 shows the essential steps needed before
we write C programming code. Hence, we recommend the reader, before proceeding to
write programs, to follow these steps.

This chapter provides a detailed description of algorithm writing and flowchart draw-
ing. I have tried to include a sufficient number of examples that describe all the concepts
involved in writing algorithms. Once the reader knows how to write algorithms, flowchart
drawing is so much easier. After completing this chapter, the reader will be able to answer
the following:

	 1.	What is problem solving, and how to approach it?
	 2.	What is an algorithm, and how to write an algorithm to solve a given problem?
	 3.	What is a flowchart, and how do you draw one?
	 4.	What are the various symbols used in drawing a flowchart?
	 5.	What is the relationship between an algorithm and a flowchart?

We have a problem
to solve

Dra� the solu�on
through algorithm

design

Understand the
problem and

iden�fy the input
and output

Draw a flowchart to
analyze the data

flow

FIGURE 3.1
Essential steps before writing a C program.

40 C Programming

3.2 ���������������� Problem-solving Approach

A programming problem is always challenging to solve because the computer is a power-
ful yet feeble-minded machine. It can do effortless tasks, but with a proper accuracy and
faster than any human being. Suppose a problem is given to us to find out the factorial of
a number. Any normal human being will require a certain amount of time to provide you
with the answer, but if you solve the same task using a computer, it instantly yields the
answer. Interestingly a computer cannot do this on its own. So we need to describe with
proper steps how to find the factorial of a number. Because a computer does not know how
to find the factorial, but knows how to perform basic arithmetic operations like addition,
subtraction, multiplication, and division, it is the programmer’s job to write the step-by-
step instructions that need to be followed by the computer to find the required result (the
factorial of a number).

From the above discussion, we can see that we should adequately plan the solution for
a given problem using problem-solving techniques. A problem-solving method is consti-
tuted of five phases. Figure 3.2 shows the steps that include all these five phases, and we
should follow these to solve any given problem.

	 1.	Understanding the problem: Unambiguously describe the problem for easy
understanding.

	 2.	Identifying the problem requirement: Identifying the inputs to be given and what the
expected output is.

	 3.	Making a plan of the solution: To design an algorithm and flowchart.
	 4.	Implement the plan: Convert the algorithm into a program for implementation using

any programming language.
	 5.	Test and verify: Execute the program and inspect the output.

4. Implement
the plan

1. Understanding
the problem

3. Making a plan
for a solu�on

5. Test and verify

2. Iden�fying the
requirement

?

FIGURE 3.2
Problem-solving phases.

41Problem Solving through Flowcharts and Algorithms

In the next section, we are going to explain the detail of algorithm design followed by
drawing flowcharts. During the algorithm design, phases 1 and 2 automatically come into
the discussion. Section 3.5 will introduce the concept of programming and the different
components involved in executing them.

3.3 ���������������� Algorithm Design

Before we jump into the definition of an algorithm, let us look at the image shown in
Figure 3.3. We have taken this image from a cook book by Sanjeev Kapoor. The objective of
using this image is to introduce you to different features of an algorithm. We are not here
to learn cooking; instead, the picture will help you to understand how to write unambigu-
ous statements in making a recipe. The procedure written in the image has a high resem-
blance to algorithm design.

If you analyze the recipe, you can easily see that the steps are well written, and whoever
follows the steps will able to cook a tasty “crisp pohe”. No actions are ambiguous, and the
procedure mentions all the ingredients required to prepare the recipe. We can say that the
method specified in the image is a step-by-step method to make the food, and the ingredi-
ents are known as the input for processing. Finally, the “crisp pohe” will be the output of
this process.

Now we are ready to explain the algorithm. By following the similar analogy discussed
above, we can define an algorithm as follows:

Nylon Poha
Ghee
Coconut (scraped)
Green chillies (finely
chopped)
Cumin seeds (coarsely
powdered)
Coriander seeds (coarsely
powdered)
Sugar

4 cups
2 tbsp
1 cup
3

½ tsp

1 tsp

1 tbsp
Salt to taste

Ingredients

Crisp Pohe
(Kurkuri Pohe)

Method

• Heat ghee in a kadai and gently roast the nylon poha over low heat �ll they
 turn crisp.
• Mix together scraped coconut, chopped green chillies, powdered cumin and
 coriander seeds, sugar and salt well.
• Add this to the roasted poha and toss gently.
• Serve immediately as the poha becomes soggy if le� for long.

FIGURE 3.3
A cooking recipe.

42 C Programming

An algorithm is a sequence of unambiguous instructions for solving a problem in a
finite amount of time.

According to the programmer’s perspective, we write the algorithm to solve a given
programming task that can easily be converted into a program statement irrespective of
any programming language. For example, let the job be to add two numbers; then how
do we write an algorithm for that? Following the problem-solving technique, we need to
analyze and identify the input to our algorithm and what should be the output pro-
duced by it. In our case, the algorithm needs two numbers, and it will provide their
addition as the result. After that, we need to write the step-by-step procedure to perform
the addition operation. Every step must instruct the computer to do something, and
upon completion of all the steps, the machine should produce the required result. The
complete algorithm to solve the addition of two numbers will be discussed in the subse-
quent section.

3.3.1 ���������������� Characteristics of an Algorithm

According to [1], every algorithm must conform to the following characteristics:

	 1.	Algorithms are well-ordered: Every solution needs a specific order of execution, and so
the algorithm must preserve this order in its steps.

	 2.	Algorithms have unambiguous operations: Every step of an algorithm performs a distinct
operation and is unambiguous.

	 3.	Algorithms have effectively computable operations: Suppose we want to write steps for a
multiplication operation and assume that our computer doesn’t have a multiplier
unit, then we should not use multiplication symbols in our steps. We may use a repet-
itive addition operation to perform multiplication. That means every step in the algo-
rithm contains an action that is possible to do.

	 4.	Algorithms produce a result: This is evident because we are writing an algorithm that
processes inputs to produce an output.

	 5.	Algorithms stop after a finite amount of time: Every algorithm eventually stops execution
after it produces an output.

Every algorithm must satisfy the following criteria:

	 1.	Finiteness: This implies that the algorithm must have a finite number of steps.
	 2.	Definiteness: Each step must be clear and unambiguous.
	 3.	Input: An algorithm must receive some inputs for its operation.
	 4.	Output: At least one output must be produced from the algorithm.
	 5.	Effectiveness: This implies that all the operations involved in an algorithm must be

sufficiently basic in nature so as to be carried out manually in a finite interval of time.

43Problem Solving through Flowcharts and Algorithms

3.4 ���������������� Basics of an Algorithm

There is no strict rule followed during algorithm writing, and algorithms written by two
people may differ from each other, even if they both write it to solve the same problem. In
this book, we will use some basic symbols and control structures to make the writing style
uniform:

	 1.	Assignment symbol (←): This is used to assign a value to a variable. Sometimes the “=”
symbol is also used for this purpose.

	 2.	Relational symbols, arithmetic symbols, and comments: see Table 3.1.

For beginners, these symbols may be unusual, but they are used every day by C program-
mers. Most of the symbols are self-explanatory, but note:

	•	 For “double equal to”, suppose a = 5 and b = 5, then a == b evaluates to true. That
means the value of a and b are the same.

	•	 As we are about to convert our algorithms to C programs, we need to understand the
difference between the divide (/) and the remainder (%) symbol. Suppose a = 10 and
b = 3, then a/b evaluates to 3, and a%b evaluates to 1.

	•	 Sometimes we need a comment line for documentation, and we write our comment
following the // symbol.

	 3.	Control statements: While writing an algorithm, we need the following three necessary
control structures. Generally speaking, a control structure controls the flow of instruc-
tion execution depending on certain conditions. During the process of problem

EXAMPLE

	Step 1:	 START // Start of Algorithm
	Step 2:	 Set N ← N + 1 // Increase the value of N by 1

TABLE 3.1

Symbols Used in Algorithm Writing

Symbol Descriptions Symbol Descriptions

< Less than == Double equal to (similarity checking)

<= Less than or equal to + Plus

> Greater than − Minus

>= Greater than or equal to * Multiplication

≠OR != Not equal to / Division

// Comment line % Remainder

44 C Programming

solving and algorithm writing, we may come across situations where the execution of
a particular step relies on the satisfiability of other conditions. Then we need a control
structure:

	 •	Selection(if-then-else): used for executing a statement or a set of statements whenever
a particular statement is true. Figure 3.4 shows the syntax for writing if-then-else
control statements.

	 •	Looping(while-do, repeat-until, for): used for executing a statement or a set of state-
ments multiple times while a condition evaluates to true. Refer to Figure 3.4 for the
syntax of writing these..

3.4.1 ���������������� Advantages of Using an Algorithm

	 1.	It provides a step-by-step solution to a problem and is easy to understand.
	 2.	It provides a better way to approach the solution of a problem and makes it easy to

find an error in solution steps.
	 3.	It is independent of any programming language. After writing the algorithm, we can

easily convert it into program statements irrespective of any specific computer
language.

	 4.	It provides better documentation.

In summary, an algorithm is a collection of well-ordered computational steps that take an
input or a set of inputs and produces an output or a set of outputs. Let us take an example
problem and write an algorithm to solve it.

3.4.2 ���������������� Example: Write an Algorithm to Add Two Numbers and Produce the Sum

The first step is to analyze the problem and identify the inputs and the possible outputs.
Our algorithm requires two numbers as input. Naturally, after addition, it will produce
their sum. Thus, the output is also another number. Let a and b represent the input that
holds two numbers and r be another variable that stores the sum of a and b.

Input: a and b
Output: r

if (condi�on) then
Statement
. . .

else
Statement
. . .

end if

ini�aliza�on
while (condi�on) do

Statement
. . .
inc/dec

end while

repeat
Statement
. . .

un�l (condi�on)

for begin to end
Statement
. . .

end for

(a) (b) (c) (d)

FIGURE 3.4
Syntax of control statements.

45Problem Solving through Flowcharts and Algorithms

Hence the following algorithm shows the solution steps. As our book focuses on the C
programming language, we are trying to write the algorithm in such a manner that we can
replace each step of the algorithm with the corresponding C code.

����������������Algorithm 3.1

ADD-TWO-NUMBERS

1.	 Start

2.	 Read a, b // Read two numbers from the user and store it in a and b

3.	 Set r ← a+b // Add the value of a and b and store it in r

4.	 Print r // Show or print the result on screen

5.	 Stop

We will follow some conventions while writing the algorithm for easy reading. We
know that, later, we will use this algorithm to draw a flowchart and convert each step to its
corresponding C code. Hence, these conventions will help.

	 1.	Every algorithm begins with a “start” step and ends with a “stop” step.
	 2.	Before writing the algorithm, we must identify its input(s) and output(s), which are

later used by our C code.
	 3.	We should write the algorithm in such a manner that we can easily convert it into its

corresponding program statements.

3.5 ���������������� Flowcharts

A flowchart is a kind of diagram that represents the process flow or the sequence of opera-
tions needed to solve a given problem. It provides a more straightforward method to
understand how the data flows through the solution steps and produces an output. The
symbols used in the flowchart are simple and easy to learn. A programmer always prefers
to draw a flowchart before writing a computer program. There are several definitions that
describe a flowchart, but we will provide you with the programmer’s view.

A flowchart is a structured approach to represent the solution steps outlined in an
algorithm with the help of simple and easy-to-learn symbols that show how the
input(s) is/are processed through the system and produces the output(s).

3.5.1 ���������������� Advantages of Using a Flowchart

	 1.	Easier to understand the program logic: It provides a better way to understand the pro-
gram logic.

46 C Programming

	 2.	Provides better analysis and maintenance: A flowchart provides an effortless analysis of
the sequence of steps, so more effort can be put into considering the logic of the
whole process.

	 3.	Proper documentation: Like an algorithm, a flowchart also serves as an appropriate
paper document and helps in documenting the entire flow.

	 4.	Better coding: A flowchart acts as a guide or a blueprint during actual program
writing.

	 5.	Proper debugging: The flowchart helps in the debugging and error finding processes.

3.5.2 ���������������� Flowchart Symbols

Figure 3.5 shows the basic flowchart symbols used in drawing the flow of execution of any
algorithm. A description of all these symbols is presented below.

FLOW LINES: Show the direction of flow of data or control.
PROCESS: This is used to represent all the processing statements.
INPUT/OUTPUT: This symbol is used when anything is given as an input to the flow-

chart and anything that is produced as an output from the flowchart.
START/STOP: This symbol is used to specify the start and end of a flowchart. Only one

start and end symbol can be on the flowchart.
CONDITION: This symbol is used to specify the different conditions for decision

making.
ON-PAGE CONNECTOR: Used to connect remote flowchart portions on the same page.
OFF-PAGE CONNECTOR: Used to connect remote flowchart portions on different

pages.
SUBPROCESS/SUBROUTINES: This symbol identifies a separate flowchart segment

(module).

3.5.3 ���������������� Flowchart Drawing Guidelines

	 1.	In drawing a proper flowchart, all necessary requirements should be listed out in
logical order.

Flowlines

Start/Stop

Off-page
Connector

Process

Decision /
Condi�on

Input/Output

Subprocess/
Subrou�ne

On-page
Connector

FIGURE 3.5
Flowchart symbols.

47Problem Solving through Flowcharts and Algorithms

	 2.	The flowchart should be clear, neat, and easy to follow. There should not be any room
for ambiguity in understanding the flowchart.

	 3.	The usual direction of the flow of a procedure or system is from left to right or top to
bottom.

	 4.	Only one flow line (see Figure 3.6) is used in conjunction with the terminal symbol.
	 5.	If the flowchart becomes complex, it is better to use connector symbols to reduce the

number of flow lines. Avoid the intersection of flow lines if you want to make it a
more effective and better way of communication.

	 6.	Ensure that the flowchart has a logical start and finish.

It is useful to test the validity of the flowchart by passing simple test data through it.
Now that we understand the detailed procedure of how to produce a flowchart, let us

take one example problem and draw a flowchart for it. We will take the example problem
from Section 3.4.2: the addition of two numbers and production of the sum. The detailed
algorithm is known to us. Our objective is to sketch the steps using the symbols of the
flowchart. Before drawing, we need to identify which step corresponds to which symbol
(see Figure 3.7).

In the next section, we will take a set of potential problems and solve them using algo-
rithms and flowcharts to understand the other features of this problem-solving technique
(algorithms and flowcharts).

StopStart

FIGURE 3.6
Flowlines with terminal symbols.

Start

Read a, b

Set r a + b

Print r

Stop

ADD_TWO_NUMBERS

1. Start

2. Read a, b

3. Set r a + d

4. Print r

5. Stop

(a) (b)

FIGURE 3.7
Algorithm and flowchart for the addition of two numbers.

48 C Programming

3.6 ���������������� Example Problems

EXAMPLE 1

Write an algorithm to find out the area of a rectangle, display the result, and draw its
corresponding flowchart.

Solution

Algorithm 3.2

Input: Length (l) and breadth (b) of the rectangle
Output: Area (area) of the rectangle

AREA-RECTANGLE

 1. Start

 2. Read l, b

 3. Set area ← l * b

 4. Print area

 5. Stop

Figure 3.8 shows the corresponding flowchart.
You can see that the above example is very similar to the example discussed in Section

3.4.2.

EXAMPLE 2

Write an algorithm to find the largest number of two numbers and draw its
flowchart.

Solution

To solve this type of problem, we need a relational operator like “<“ or ”>” and a
decision-making statement of the type if-then-else.

Start

Read l, b

Set area l X b

Print area

Stop

FIGURE 3.8
Flowchart to find the area of a rectangle.

49Problem Solving through Flowcharts and Algorithms

Algorithm 3.3

Input: Two numbers a and b
Output: Display the bigger number, either a or b

BIGGER-AMONG-TWO

 1. Start

 2. Read a, b

 3. if a > b then

 4. Print “a is Big”

 5. else

 6. Print “b is Big”

 7. end if

 8. Stop

Steps 1 and 2 of the algorithm do not require any explanation. In step 3, we compare
the value of a and b with an if-else construct. If the statements evaluate to true, then
step 4 will be executed; otherwise, step 6 will be executed. In this algorithm, we use the
if-else decision control statement, and we have a flowchart symbol that exists for the
same, described in section 3.5.2. Figure 3.9 shows the corresponding flowchart.

EXAMPLE 3

Write an algorithm and draw a flowchart to print the book name five times.

Solution

To solve the problem, we can adopt one of two approaches. We can write five print
statements to print the book name in the first approach; Algorithm 3.4 shows the
solution steps for this.

Is a > b ?

Print “a is bigger”Print “b is bigger”

Read a, b

Start

Stop

FIGURE 3.9
Flowchart to find the largest number of two numbers.

50 C Programming

Algorithm 3.5

Input: No input required
Output: Display the book name five times

PRINT-BOOK-NAME

 1. Start

 2. Set i ← 1 //Initialize a variable i with value 1

 3. while i <= 5 do

 4. Print “C Programming Learn to Code”

 5. Set i ← i+1 //Increasing the value of i

 6. end while

 7. Stop

Algorithm 3.6

Input: No input required
Output: Display the book name five times

PRINT-BOOK-NAME

 1. Start

 2. Set i ← 1 //Initialize a variable i with value 1

 3. for i ← 1 to 5

 4. Print “C Programming Learn to Code”

 5. end for

 6. Stop

Algorithm 3.4

Input: No input required
Output: Display the book name five times

PRINT-BOOK-NAME

 1. Start

 2. Print “C Programming Learn to Code”

 3. Print “C Programming Learn to Code”

 4. Print “C Programming Learn to Code”

 5. Print “C Programming Learn to Code”

 6. Print “C Programming Learn to Code”

 7. Stop

Algorithm 3.4 is correct, and it produces the result as expected. But, what if you are asked
to print the book name 100 times? Then we need to write the same step (Print “C
Programming Learn to code) 100 times, which is cumbersome. Hence the alternative is to
use control statements like while-do or for. Algorithms 3.5 and 3.6 show the solution steps
that use a while-do and a for control statements, respectively. Figure 3.10 shows the corre-
sponding algorithm.

51Problem Solving through Flowcharts and Algorithms

EXAMPLE 4

Write an algorithm and draw a flowchart to find out the sum of the digits of a number.
(Hint: suppose the number given is 365, then the sum of the digits are 3 + 6 + 5 = 14.)

Solution

To solve the above problem, we need three different variables: N, R, and Sum. N is
used to store the number. We use R to store individual digits, and the variable Sum
will hold the result of the addition. Now the question is how to extract individual
digits from the given number. To do that, we will use the remainder operator (%) and
divide the given number by 10. That will provide us with the last digit.

Initially, we will divide the given number by 10 and store the remainder for fur-
ther calculation. We will use the quotient of the previous division as the input for the
next iteration. Continue in this way, and we will stop when the quotient becomes 0.
We will add the remainder collected from each iteration to get the answer. The entire
process is shown in Figure 3.11. Algorithm 3.7 shows the solution steps, and
Figure 3.12 shows its corresponding flowchart.

Algorithm 3.7

Input: A random number (N)
Output: Addition result (sum) of all the digits of the given number N

ADD-DIGIT

 1. Start

 2. Read N

 3. Set sum ← 0

 4. while N != 0 do

 5. Set R ← N % 10

 6. Set Sum ← Sum + R

 7. Set N ← N / 10

 8. end while

 9. Print sum

 10. Stop

The algorithm requires a number as input, which is N here (Algorithm 3.7,
step 2). The number may constitute one or more digits. This will produce the
sum of all the digits of N, which is the output of this algorithm (sum). We
initialize the sum to 0 in step 3 because, later, our algorithm extracts the digits
one-by-one (using the while loop iterations) from N and adds it to the sum. Steps
4 to 8 perform the operation described in Figure 3.11. Every iteration proceeds
through a condition checking “N != 0.” The execution of this algorithm stops
when the condition becomes false. Initially, step 5 extracts one digit from N and
assigns it to R (remainder). Step 6 adds the value obtained in step 4 to the vari-
able sum, which was previously 0. Finally, step 7 reduces N by one digit by
dividing the number N by 10. If you analyze these operations, you will notice

52 C Programming

that if N is a three-digit number, then there will be three iterations needed to add
all the digits. Similarly, a four-digit number requires four iterations, and an n-
digit number requires n iterations. After the condition in step 4 evaluates to false,
our algorithm will execute step 9 and produce the result, which is the addition of
all the digits of N. Figure 3.12 shows the flowchart.

Start

Set i 1

Is i <= 5 ?

Set i i + 1

Stop

Yes

No

Print “C Programming
Learn to Code”

Print “C Programming
Learn to Code”

Print “C Programming
Learn to Code”

Print “C Programming
Learn to Code”

Print “C Programming
Learn to Code”

Print “C Programming
Learn to Code”

Start

Stop

(a) (b)

FIGURE 3.10
Flowchart of algorithms 3.5 and 3.6.

365
360

10 36

5

36
30

10 3

6

3
0

10 0

3

Input for 2nd
Iteration

Input for 3rd
Iteration

Stop, because the
number is now 0

5 + 6 + 3 = 14

FIGURE 3.11
Analyzing the solution with an example.

53Problem Solving through Flowcharts and Algorithms

3.7 ���������������� Basics of a Programming Language

According to the phases of problem-solving (Section 3.2), after the development of the
algorithm and flowchart, the next stage is implementation using a programming language.
This section will discuss the different types of programming languages that can be consid-
ered for this purpose.

Let us first introduce what a program is. A program is a set of logically related instruc-
tions that are arranged in a sequence and guide the computer to solve a problem. The
process of writing a program is called programming.

A standard programming language is used to write a computer program. Programming
languages can be classified into two types:

	 1.	Low-level languages;
	 2.	High-level languages.

3.7.1 ���������������� Low-level Languages

A computer cannot understand instructions given in high-level language or the language
used by humans. The computer only understands the language of 0’s and 1’s, which is
nothing but a low-level language.

Start

Read N

Set Sum 0

Is N != 0 ?

Set R N % 10

Set Sum Sum + R

Set N N / 10

Print Sum

Stop

Yes

No

FIGURE 3.12
Flowchart showing the additions of the digits of a number.

54 C Programming

3.7.1.2 ���������������� Assembly-level Languages

In the case of assembly-level languages, instead of binary codes, some mnemonic codes are
used. A mnemonic code is nothing but a symbolic representation, or we can say it is a com-
bination of letters, digits, or special characters that are used instead of binary codes.

For example, instead of using code 1000 for addition, if we use the symbol “ADD,” it
will be more readable.

There are two types of low-level languages:

	 1.	Machine-level languages;
	 2.	Assembly-level languages.

3.7.1.1 ���������������� Machine-level Languages

This is a sequence of instructions written in the form of binary numbers consisting of 1’s
and 0’s to which a computer responds directly. Machine languages are the only languages
understood by computers.

An instruction in a machine-level language consists of two parts:

	 1.	OPCODE (operation code);
	 2.	OPERANDS (addresses or locations).

Operation code tells the computer what function must be performed, e.g., addition, sub-
traction. Operands are the memory locations where the values are stored upon which the
operation will be done.

EXAMPLE

		 0000	 0111		 Load A register with value 7

		 0010	 1010		 Load B register with value 10

		 1000	 0010		 A ← A + B

		 0111	 0110 		 Halt Processing

Advantages

The computer can execute programs written in machine language very fast because the
instructions are understood directly by the computer, and no translation is required.

Disadvantages

	 1.	Machine dependent: the user must know the internal design of the computer;
	 2.	Difficult to use;
	 3.	Error prone;
	 4.	Difficult to debug.

55Problem Solving through Flowcharts and Algorithms

3.7.2 ���������������� High-level Languages

According to the above discussion, assembly languages and machine-level languages
require in-depth knowledge of computer hardware, and both languages are machine-
dependent. But a high-level language enables the programmer to concentrate on program
logic rather than computer hardware.

EXAMPLE

LDA	 A, 7		 Load A register with value 7

LDA	 B, 10		 Load B register with value 10

ADD	 A, B		 A ← A + B

HLT	 Halt Processing

The machine cannot directly execute an assembly language program as it is not in binary
form. In some way, it should be transferred to binary form (i.e., machine language), which
is done by an assembler.

An assembler is a program that translates an assembly language program into a machine
language program. A program written in assembly language is called source code. The
assembler converts the source program into a machine-language program known as object
code (Figure 3.13).

Advantages

	 1.	Easy to use and easier to understand as compared to machine-level language;
	 2.	Easy to locate errors and correct them;
	 3.	Assembly language has the same execution efficiency as machine-level language

because it is a one-to-one translator between the assembly language program and its
corresponding machine language program.

Disadvantages

	 1.	One of the significant drawbacks is that assembly language is machine-dependent. A
program written for one computer might not run on other machines with different
hardware configurations.

	 2.	A conversion program is needed to convert the assembly language program to a
machine language program.

Assembly Language
Program

(Source Code)

Assembler Machine Language
Program

(Object Code)

Input Output

FIGURE 3.13
The operation of an assembler.

56 C Programming

A high-level language is simply an English-like language that uses some mathematical
symbols for program construction. This makes the program easier to read, understand,
and manipulate. High-level languages are also called problem-oriented languages because
the instructions are suitable for solving a problem. Like assembly-level language, high-
level language needs to be translated to machine-level language for understanding by the
computer. So, to convert a high-level language to machine-level language, we need a pro-
gram known as a compiler or an interpreter.

A compiler is a program that translates a high-level language program into a machine
language program. A program written in a high-level language is called source code. The
compiler converts the source program into a machine language program known as object
code (Figure 3.14).

We use several high-level languages today. Some examples are C, C++, JAVA, Python,
Cobol, and Fortran. For every language, there is a compiler that translates the high-level
code to machine code (Figure 3.15).

An interpreter is a program that also translates a high-level language program into a
machine language program, but translates it one line at a time. There are many interpreter
languages used today, e.g. VB, Perl, BASIC.

High Level Language
Program

(Source Code)

Compiler Machine Language
Program

(Object Code)

Input Output

FIGURE 3.14
Function of a compiler.

C Program C Compiler Machine Code for C
Program

Input Output

C++ Program C++ Compiler Machine Code for C++
Program

Input Output

FIGURE 3.15
Different compilers for different languages.

57Problem Solving through Flowcharts and Algorithms

3.7.2.1 ���������������� Compiler vs. Interpreter

	 1.	A compiler compiles the whole program at once, but an interpreter interprets one line
at a time;

	 2.	After compilation, the compiler produces a list of errors, but an interpreter stops after
the first error;

	 3.	Program execution is faster with the compiler, but with the interpreter, program exe-
cution is slower.

3.7.2.2 ���������������� Advantages

	 1.	Easier to learn and implement because it is based upon commonly used language like
English;

	 2.	Machine independent;
	 3.	Easy to find errors and modify.

3.8 ���������������� Review Questions

3.8.1 ���������������� Objective Type Questions

1.	��������������� An algorithm depends upon a programming language. True/false?
2.	��������������� ____________ is a sequence of unambiguous instructions for solving a problem in a

finite amount of time.
3.	��������������� ____________ is a graphical representation showing the flow of control among the

steps in a program, people in an organization, or pages of a presentation.
4.	��������������� __________ symbol is used to specify a condition in a flowchart.
5.	��������������� Algorithm development differs from person to person. True/false?
6.	��������������� A high-level language is a machine-independent language. True/false?
7.	��������������� A _____________ compiles the whole program at once but an ______________ inter-

prets one line at a time.
8.	��������������� An instruction in machine-level language consists of two parts: ____________ and

_________.
9.	��������������� A ____________ is a set of logically related instructions that are arranged in a sequence

and guide the computer to solve a problem.
10.	��������������� The process of writing a program is called __________________.

3.8.2 ���������������� Practice Problems

1.	��������������� Write an algorithm to find out the area of a circle and draw its corresponding
flowchart.

2.	��������������� Write an algorithm to calculate simple interest and draw its corresponding
flowchart.

58 C Programming

3.	��������������� Write an algorithm to find the average of three numbers and draw its flowchart.
4.	��������������� Write an algorithm to find the area of a right-angled triangle and draw its flowchart.
5.	��������������� Write an algorithm to swap the value of two variables and draw its flowchart.
6.	��������������� Write an algorithm to check whether a number is an even or odd number and draw its

flowchart. (Hint: the number must be divided by 2, and if the remainder is 0, then that
number is even, otherwise that number is odd.)

7.	��������������� Write an algorithm to find the biggest number among three numbers and draw its
flowchart.

8.	��������������� Write an algorithm to check whether a student is a pass or fail. Input marks of five
subjects out of 100. Find the average score. If the average score is greater than or equal
to 50%, then print “YOU ARE A PASS” or else print “YOU ARE A FAIL”. Draw the
corresponding flowchart.

9.	��������������� Write an algorithm and draw a flowchart to find out the biggest number among four
numbers.

10.	 Write an algorithm and draw a flowchart to swap the value of two different
numbers.

11.	��������������� Write an algorithm and draw a flowchart to calculate simple interest.
12.	��������������� Write an algorithm and draw a flowchart to check whether a number is a palindrome

or not.
13.	��������������� Write an algorithm and draw a flowchart to check whether a number is a prime num-

ber or not.
14.	��������������� Write an algorithm and draw a flowchart to check whether a number is a perfect num-

ber or not.
15.	��������������� Write an algorithm and draw a flowchart to reverse a number.
16.	��������������� Write an algorithm and draw a flowchart to check whether a number is an Armstrong

number or not.
17.	��������������� Write an algorithm and draw a flowchart to print all the even numbers present within

a range. The lower range and the higher range must be supplied to the algorithm.
18.	��������������� Write an algorithm and draw a flowchart to find out the factorial of a number.
19.	��������������� Write an algorithm to compute the sum of the squares of integers from 1 to 50 and also

draw the corresponding flowchart.
20.	��������������� Write an algorithm to read a number N from the user and print all its divisors.
21.	��������������� Write an algorithm and draw a flowchart to find out the summation of 1 + 2 + 3 + … + n.

3.8.3 ���������������� Subjective Questions

1.	��������������� What is an algorithm?
2.	��������������� What is a flowchart?
3.	��������������� What are the characteristics of an algorithm?
4.	��������������� Describe the different symbols used in a flowchart.
5.	��������������� What is the difference between a compiler and interpreter?
6.	��������������� What is the difference between a high-level language and a low-level language?

59Problem Solving through Flowcharts and Algorithms

7.	��������������� Define the following terms:
	 a.	 Program;
	 b.	 Assembler;
	 c.	 Compiler;
	 d.	 Interpreter.

Reference

	 1.	 Schneider, G. Michael, and Judith Gersting. Invitation to computer science. Cengage Learning,
2018.

https://taylorandfrancis.com

61DOI: 10.1201/9781003188254-4

4
Introduction to C Programming

4.1 ������ Introduction

This chapter introduces the overall features of the C programming language, why we
should use this language, what its characteristics are, and a short description of its history.
I will also explain what the structure of a C program is, and how to execute it in different
environments.

The Tiobe programming community index is a measure of the popularity of program-
ming languages. According to the index for August 2021, C programming (with a rating of
12.57%) is at the top of the list and is treated as the most popular language. I believe that
learning C programming acts as a building block for learning other high-level languages.
C will always stay ahead of other popular languages like Java and Python due to its com-
pleteness and low-level programming capability.

We can use C to solve every type of programming problem. It can facilitate the low-level
requirements of a programmer or high-level specifications. There are several discussions
on whether C is a high-level language or a low-level language. It has the capability to
access the system’s low-level functions as well as enabling us to code most of the high-level
specifications. Hence, many programmers assume that C is a middle-level language. But
you can find many books and much literature where C is mentioned as a high-level lan-
guage. We are not here to decide this issue; rather, we will focus on the different features of
this language and learn how to code with it.

	•	 Most high-level languages (e.g., FORTRAN) provide everything the programmer
might want to do already build into the language;

	•	 A low-level language provides nothing other than access to the machine’s basic
instruction set;

	•	 A middle-level language, such as C, probably doesn’t supply all the constructs found
in high-languages, but it provides you with all the building blocks that you will need
to produce the results you want.

The advantages of using C are:

	•	 C is a real-world language, widely available and popular with professionals;
	•	 C is a small, efficient, powerful, and flexible language;
	•	 C has been standardized, making it more portable than some other languages;
	•	 C is close to the computer hardware, revealing the underlying architecture;

62 C Programming

	•	 C provides enough low-level access to be suitable for embedded systems;
	•	 C is a high-level language allowing complex systems to be constructed with mini-

mum effort;
	•	 C’s modular approach suits large, multi-programmer projects;
	•	 C’s use of libraries makes it adaptable to many different application areas;
	•	 The Unix operating system was written in C and supports C;
	•	 C gave birth to C++, widely used for application programming, and, more recently,

Java, which is based upon C++;
	•	 Many other languages borrow from C’s syntax: for example, Java, JavaScript, and

Perl.

4.2 ������ History of C

C came into being in the years 1969–73, in parallel with the early development of the Unix
operating system; the most creative period occurred during 1972. The C programming
language often called the “white book” or “K&R” [1]. Finally, in the mid-1980s, the lan-
guage was officially standardized by the ANSI X3J11 committee, which made further
changes. Until the early 1980s, although compilers existed for a variety of machine archi-
tectures and operating systems, the language was almost exclusively associated with Unix;
more recently, its use has spread much more widely, and today it is among the languages
most commonly used throughout the computer industry [2, 3].

By 1960 a number of computer languages had come into existence, almost all for a spe-
cific purpose. For example, COBOL was being used for commercial applications, and
FORTRAN for engineering and scientific applications. At this point people started thinking
about developing a common language which could program for all possible applications.

Several languages preceded the development of C. In 1967, Martin Richards developed
a language called Basic Combined Programming Language (BCPL). In 1970 Ken Thompson
developed a similar language called B. Finally, in 1972 Dennis Ritchie (Figure 4.1)

FIGURE 4.1
Dennis Ritchie.

63Introduction to C Programming

developed C, which took many concepts from BCPL and B and added the concept of data
types.

BCPL, B, and C differ syntactically in many details, but broadly they are similar.
Programs consist of a sequence of global declarations and function (procedure) declara-
tions. Procedures can be nested in BCPL. B and C avoid this by imposing a more severe
restriction: there are no nested procedures at all.

A brief summary of this development is as follows.

1960: ALGOL
	•	 Developed by: international committee;
	•	 Remarks: too general, too abstract.

1963: CPL (Combined Programming Language)
	•	 Developed by: Cambridge University;
	•	 Remarks: hard to learn, difficult to implement.

1967: BCPL (Basic Combined Programming Language)
	•	 Developed by: Martin Richards at Cambridge University;
	•	 Remarks: too specific, could deal with only specific problems.

1970: B
	•	 Developed by: Ken Thompson at AT&T Bell Labs
	•	 Remarks: too specific, could deal with only specific problems.

1972: C
	•	 Developed by: Dennis Ritchie at AT&T Bell Labs
	•	 Remarks: combination of both BCPL and B.

In 1983, the American National Standards Institute (ANSI) established a committee to pro-
vide a modern, comprehensive C definition. The result, the ANSI standard, or “ANSI C,”
was completed in 1989. ANSI C is sometimes called the C89 standard. In 1990, the ISO
(International Organization for Standardization) adopted ANSI C as ISO/IEC 9899:1990,
which is sometimes called C90. Therefore, C89 and C90 refer to the same standard. The
development did not stop there; several standards were published with new features in
subsequent years. A list of C standards and the years they were standardized is shown in
Table 4.1 [4–6].

TABLE 4.1

C Standards and Their Year-wise Development

Year C Standards

1972 Birth of C language

1978 K&R C

1989/90 ANSI C (C89)/ISO C (C90)

1999 C99

2011 C11

2017 C17

64 C Programming

4.3 ������ Executing a C Program

When a task is assigned to a programmer, he or she needs to analyze it, prepare an algo-
rithm, and draw flow charts to solve the given task. The next step is to convert the algo-
rithm into a program and execute it to check the results. This section describes the execution
process of a program. Developing and executing a program in C requires at least four
steps, shown in Figure 4.2:

	 1.	Editing (or writing) the program;
	 2.	Compiling it;
	 3.	Linking it (with functions that are needed from the C library);
	 4.	And finally, executing it.

4.3.1 ������ Editing

You write a computer program with words and symbols that are understandable to human
beings. This is the editing part of the development cycle. You type the program directly into
a window on the screen and save the resulting text as a separate file. This is often referred
to as the source file. The C program is stored in a file with the extension “.c”.

4.3.2 ������ Compiling

You cannot directly execute the source file. To run on any computer system, the source file
must be translated into binary numbers understandable by the computer’s central

Compiler

Task Text Editor

Linker

Runner

#include <stdio.h>
int main ()
{

. . . ;
return 0;

}

000101 0010011 10
1101001 111001 10

. . .

Library

Enter two numbers: 7 8
Addi�on Result: 15

000101 0010011 10
1101001 111001 10

. . .

FIGURE 4.2
Executing a C Program.

65Introduction to C Programming

processing unit. This process produces an intermediate object file – with the extension
“.obj”, which stands for “object.”

4.3.3 ������ Linking

The first question that comes to most people’s minds is why is linking necessary? The main
reason is that many compiled languages come with library routines which can be added to
your program. These routines are written by the manufacturer of the compiler to perform
a variety of tasks, from input/output to complicated mathematical functions. In the case of
C the standard input and output functions are contained in a library (stdio.h), so even the
most basic program will require a library function. After linking, the file extension used is
“.exe” which stands for executable file.

4.3.4 ������ Executing

Thus the text editor produces “.c” source files, which go to the compiler, which produces
“.obj” object files, which go to the linker, which produces “.exe” executable files. You can
then run “.exe” files.

4.4 ������ Structure of a C Program

Every C program consists of one or more functions. A function is nothing but a group or
sequence of C statements that are executed together to perform a specific task. Each C pro-
gram function performs a specific task. The entire program will have the structure shown
in Figure 4.3.

4.4.1 ������ Documentation

The documentation section consists of a set of comment (remark) lines giving the name of
the program, the author, and other details which the programmer would like to use later.
Comments may appear anywhere within a program. Such comments are helpful in identi-
fying the program’s principal features or in explaining the underlying logic of various
program features. A single line or multi-line comment may be specified in C. For single-line
comments, we simply use a double forward slash (//) (e.g., //this is a comment). For
multi-line comments, we use delimiters starting with /* and ending with */ (e.g., /*this is
a comment*/). The C89 standard (ANSI C) only supports multi-line comments. Later on,
after the development of the C99 standard, the single line comment was also included.

4.4.2 ������ Header Files

This is also called a link section. These statements instruct the compiler to include C prepro-
cessors such as header files and symbolic constants before compiling the C program. Some
of the preprocessor statements are:

#include<stdio.h>

#include<conio.h>

66 C Programming

The lines that begin with # are preprocessed before the compilation starts. It tells the
computer to include the contents of all header files like stdio.h or conio.h to the cur-
rent program. Then the compilation begins.

4.4.3 ������ Global Variables

There are some variables that are used in more than one function. Such variables are called
global variables and are declared in the global declaration section that is outside of all the
functions.

4.4.4 ������ main() Function

Each and every C program should contain only one main() function. Execution starts
with this main() function. The function should be written in small case (lower case) let-
ters, and it should not be terminated by a semicolon. main() executes user-defined pro-
gram statements, library functions, and user-defined functions. All these statements should
be enclosed within left and right curly braces

The body of the main() contains two parts, the declaration part and executable part. The
declaration part declares all the variables used in the executable part. There is at least one
statement in the executable part. These two parts must appear between the opening and
closing curly braces ({and}). The program execution begins at the opening brace and
ends at the closing brace. The closing brace of the main function section is the logical end
of the program. All statements in the declaration and executable parts end with a semi-
colon (;).

Global Variables

Header Files

// Documenta�on

main() Func�on

Declara�on Part

Executable Part

Subprograms

. . .
function1()

. . .
function2()

FIGURE 4.3
Structure of a C program.

67Introduction to C Programming

4.4.5 ������ Subprograms

The subprogram section contains all the user-defined functions that are called in the
main() function. User-defined functions are generally placed immediately after the
main() function, although they may appear in any order.

4.4.6 ������ Your First C Program

We start with a simple C program that prints a line of statements on your computer screen.
The code is shown in Program 4.1, followed by the output; an explanation of each line of
code is given.

PROGRAM 4.1

 1. /* Write a program to print a

 2. single statement*/

 3. #include<stdio.h> //Header File

 4. void main()

 5. {

 6. printf ("C Programming Learn to Code");

 7. } //End of main function

Output

C Programming Learn to Code

Lines 1 and 2:

	•	 This line is known as the documentation line. It is also called the comment line.
	•	 Comments are a way of explaining what a program does. They are put between

/* and */.
	•	 Comments are ignored by the compiler and are used by the user and other

people to understand the code.
	•	 You should always put a comment at the top of a program that tells you what it

does because one day if you come back and look at it, you might not be able to
understand what it does, but the comment will tell you.

	•	 You can also use comments in between your code to explain a piece of code that
is very complex. For example, in line 3 we have used a single-line comment
starting with // to tell the user that it is the header file. Similarly, in line 7, we
are showing the end of the main function.

Line 3:

	•	 We know C programs are divided into modules and functions. The user writes
some functions, and many others are stored in the C library.

68 C Programming

	•	 Library functions are grouped together (category-wise) and stored in a differ-
ent file known as a header file.

	•	 If you want to access the header file’s functions, it is necessary to tell the com-
piler about the file to be accessed.

This is achieved by using preprocessor directive #include as follows:

#include<fileName>

The file name is the name of the library file that contains the required function
definition. For example, one header file stdio.h is used in this statement which lets
us use certain commands. stdio is short for standard input/output, which means it
has commands for input, such as reading from the keyboard, and output, such as
printing things on the screen.

Lines 4, 5, and 7:

	•	 main() is a special function that tells the computer where the program starts.
Every program must have exactly one main() function.

	•	 The empty parentheses () immediately following the main indicates that the
function main has no arguments.

	•	 The opening brace “{” (line 5) indicates the beginning of the function main, and
the closing brace “}” (line 7) in the last line indicates the end of the function.

	•	 All statements between these two braces { } form the function body.
	•	 The word “void” before main indicates the function main does not return

anything.
	•	 C permits several forms of the main function:

	o	 main()
	o	 int main()
	o	 void main()
	o	 main(void)
	o	 void main(void)
	o	 int main(void)

	•	 We may specify int before main to indicate the main function will return an
integer value. When int is specified, the last statement in the program must be
“return 0”.

	•	 The word “void” in between the parentheses will indicate the function main
does not take any argument.

Line 6:

	•	 This is the printf command, and it prints text on the screen.
	•	 The data that is to be printed is put inside brackets.

69Introduction to C Programming

4.5 ������ Compilers and Editors for Executing C Programs

Now that we understand how to write a simple program using C, let us see what is required
to execute our program. We need two kinds of software to write and run a program on a
computer. The first one is an editor by which we type our program in and the second one is
a compiler that checks our program for errors.

4.5.1 ������ Editors

An editor provides an Integrated Development Environment (IDE) containing several fea-
tures that help a programmer be more productive. If you don’t have an editor installed on
your computer, you can use default editors like Notepad (Windows users) or the vi/vim
editor (Linux users) to type in your code. You can install any full-featured editors like MS
Visual Studio Code, CodeBlocks, SublimeText, or DevC++ on your computer for conve-
nience. These editors provide you with specialized buttons for your program’s compila-
tion and execution so that you don’t have to type the command on a prompt every time
you execute your code.

Figure 4.4 shows the MS Visual Studio Code editor and its components that help a pro-
grammer write effective code. It is a source code editor available for Windows, macOS, and
Linux. You can find other features of this editor in [7].

4.5.2 ������ Compilers

Without a compiler, we cannot execute a program by an editor only. A compiler is software
that translates the source code into machine code. Several compilers have been developed
over the years by companies to support the different C standards (C89, C99, C11, C18)
proposed so far. A list of compilers and their supported standards are shown in Table 4.2.

If you are a beginner and reading the C programming language for the first time, your
first duty is to run Program 4.1 on your machine. You might be thinking about which com-
piler and editor you need to install on your computer. That depends on what machine you
have; is it a Windows, Linux, or Mac system? Depending on your machine, you need to
choose a compiler carefully because they are built differently for different machines, and
after compilation, they generate environment-specific machine code. Figure 4.5 shows this
concept.

	•	 Also, notice that the words are inside inverted commas because they are what
is called a string.

	•	 Each letter is called a character, and a series of characters that are grouped
together is called a string.

	•	 Strings must always be put between inverted commas.
	•	 You have to put a semicolon after every command to show that it is the end of

the command.

70 C Programming

If you are a Windows user, we recommend installing a MinGW compiler on your
machine and a Microsoft Visual Studio Code (VS Code) editor to write your program. The
installation procedure of the MinGW compiler on the Windows machine is described in
Chapter 16. A Linux user does not require any compiler because the GCC compiler is pre-
built on these machines. You may need to install VS Code as an editor if you don’t want to
use the vi editor (preinstalled on a Linux machine). If you are a Mac user, then you need to
install the command-line tools. To install it, you need to open a terminal window and type
the command “gcc”. If your computer has the command-line tool installed already, you
will see some text output. If not, you will get a dialog box to install it. Click on the install
button and it will take some time to complete the installation process. After the process

TABLE 4.2

Compilers and Their Supported Standards

Compiler Supported Standards

Amsterdam Compiler Kit C K&R and C89/90

Clang, using LLVM backend C89, C90, C99, and C11

GCC C89/90, C99, and C11

HP C/ANSI C compiler C89 and C99

Microsoft Visual C++ C89/90 and C99

Pelles C C99 and C11 (Windows only)

Vbcc C89/90 and C99

Tiny C Compiler C89/90 and some C99

Click to run your code Output areaWrite your code here

Cr
ea

te
 a

 n
ew

 fi
le

FIGURE 4.4
Microsoft visual studio code editor.

71Introduction to C Programming

completes it will have installed the compiler known as gcc (GNU Compiler Collection). To
check for successful installation, you need to type the command “gcc --version” in the ter-
minal window. If you have the version information, then the installation has been success-
ful. You can use any text editor to write your code or install VS Code to edit and execute
your program.

4.5.3 ������ Executing Your First C Program

In this section, we will explain how to execute your first C program on your machine. The
execution procedure is slightly different from computer to computer. We will consider
every machine starting with a Mac.

4.5.3.1 ������ Mac

The precondition is you have already installed a gcc compiler on your machine, as
explained in the previous section. You have created a program by typing it in using any
default editor and have saved it as prog41.c.

	Step 1:	� Open the terminal window and go to the current directory where your prog41.c
file is present.

	Step 2:	 Type the following command to compile your program:

gcc -o exec prog41.c

Here, “exec” specifies the executable file’s name generated after successfully
compiling the program prog41.c. Instead of using exec, you can also use any
name of your choice.

	Step 3:	 Type the following command to execute your code:

./exec

Now you can see the output on your screen.

Windows

Mac

Linux

/* Write a program to print a
single statement*/
#include<stdio.h>
void main()
{

prin�(" C Programming");
}

Compiler on
Windows

Compiler on
Mac

Compiler on
Linux

Windows specific Machine Code

Mac specific Machine Code

Linux specific Machine Code

Sample C Program

FIGURE 4.5
Environment-specific machine code generation by different compilers.

72 C Programming

4.5.3.2 ������ Windows

The precondition is you have already installed the MinGW compiler on your machine, as
explained in Chapter 16. You have created a program by typing it in using any default text
editor (Notepad) and saved it as prog41.c.

	Step 1:	� Open the command prompt and go to the current directory where your prog41.c
file is present.

	Step 2:	 Type the following command to compile your program:

gcc -o runfile prog41.c

Here, “runfile” specifies the executable file’s name generated after successfully
compiling the program prog41.c. Instead of using runfile, you can also use any
name of your choice.

	Step 3:	 Type the following command to execute your code:

runfile

Now you can see the output on your screen.

4.5.3.3 ������ Linux

The preconditions are the same; the gcc compiler is a default compiler in a Linux machine
and does not require installation. Create a C program file, type your code, and save it as
prog41.c.

	Step 1:	� Open the terminal window and go to the current directory where your prog41.c
file is present.

	Step 2:	 Type the following command to compile your program:

gcc -o exec prog41.c

Here, “exec” specifies the executable file’s name generated after successfully
compiling the program prog41.c. Instead of using exec, you can also use any
name of your choice.

	Step 3:	 Type the following command to execute your code:

./exec

Now you can see the output on your screen.
I recommend the reader to install MS Visual Studio Code as an editor so that you don’t

have to type the command every time you run your program. VS Code is freely available
for all environments, whether Windows, Linux, or Mac.

73Introduction to C Programming

4.6 ������ Review Questions

4.6.1 ������ Objective Questions

1.	����� The C programming language was developed in the year __________ and by
______________.

2.	����� C is basically a combination of two languages that are __________ and _________.
3.	����� The documentation section contains a set of __________ lines.
4.	����� C is a ________ level programming language.
5.	����� Every C program must have one main() function. True/false?
6.	����� A program can have how many main functions?
7.	����� The main() function doesn’t return any value. True/false?
8.	����� In which year was C standardized by ANSI?
9.	����� Name at least two editors for running a C program.

10.	����� Name at least two header files used in a C program.

4.6.2 ������ Short Answer Questions

1.	����� What is meant by object code?
2.	����� Why is linking needed?
3.	����� What is the preprocessor directive?
4.	����� What is the need for a header file in C?
5.	����� What is the use of a stdio.h header file?
6.	����� Is comment nesting possible in C? If no, why? If yes, how?
7.	����� What does the # symbol specify in the declaration of preprocessor statements?
8.	����� What is a global variable?
9.	����� How can you specify single line and multi-line comments in C?

10.	����� What is the difference between a compiler and an editor?
11.	����� Is it compulsory to include a header file while writing a C program?

4.6.3 ������ Programming Questions

1.	����� Write a C program to display your college name and address.
2.	����� Analyze the following programs and find the errors present in these programs.

(a) /* Write a program to print a single statement
 #include<stdio.h> //Header File
 void main()
 {
 printf ("C Programming Learn to Code");
 } //End of main function

74 C Programming

(b) /* Write a program to print a single statement */
 #include<stdio.h> //Header File
 void main()
 {
 printf ("C Programming Learn to Code")
 }

(c) /* Write a program to print a single statement*/
 #include<stdio.h> //Header File
 //void main()
 {
 printf ("C Programming Learn to Code");
 } //End of main function

(d) /* Write a program to print a single statement*/
 #include<stdio.h> //Header File
 void main()
 {
 //printf ("C Programming Learn to Code");
 } //End of main function

(e) /* Write a program to print a single statement*/
 #include<stdio.h> //Header File
 void main(void)
 {
 printf ("C Programming Learn to Code");
 } //End of main function

(f) /* Write a program to print a single statement*/
 #include<stdio.h> //Header File
 int main()
 {
 printf ("C Programming Learn to Code");
 return 0;
 } //End of main function

3.	����� What output is produced when the following program executes?

 /* Write a program to print a
 single statement*/
 #include<stdio.h> //Header File
 void main()
 {
 printf ("Incredible Country");
 printf(" Great Country");
 printf(" I love my Country");
 } //End of main function

4.	����� Execute the following two programs on your computer and analyze the output
difference.

 /* Write a program to print a single statement*/
 #include<stdio.h> //Header File
 void main()
 {
 printf ("Incredible Country");
 printf(" Great Country");
 printf(" I love my Country");
 } //End of main function

75Introduction to C Programming

 /* Write a program to print a single statement*/
 #include<stdio.h> //Header File
 void main()
 {
 printf ("Incredible Country Great Country I love my Country");
 } //End of main function

4.6.4 ������ Long Questions

1.	����� Describe the structure of a C Program.
2.	����� What are the advantages of using a C program?
3.	����� Write short notes on the history of the C programming language.
4.	����� How can you execute a C program? Explain each step with an appropriate diagram.
5.	����� What is the difference between a compiler and an editor? List out all the compilers

developed so far with their supported standards.
6.	����� Prepare documentation about the installation procedure of the compiler and an editor

on your machine. Explain each step with a proper figure starting from the installation
to executing the simple program shown in Program 4.1.

References

	 1.	 Ritchie, Dennis M., “The development of the C language,” ACM Sigplan Notices, vol. 28, no. 3,
pp. 201–208, 1993.

	 2.	 Ritchie, Dennis M., Brian W. Kernighan, and Michael E. Lesk, The C programming language.
Prentice Hall, 1988.

	 3.	 Stroustrup, Bjarne, “Sibling Rivalry: C and C++,” (2002).
	 4.	 ISO, LA0, “ISO/IEC 9899: 2018-information technology–programming languages–C,” (2018).
	 5.	 ISO, ISO, “ISO/IEC 9899: 2011 Information technology—Programming languages— C,” (2011).
	 6.	 Organisation, I. S., “ISO/IEC 9899: 1999 Programming Languages-C,” (1999).
	 7.	 https://code.visualstudio.com/learn

https://code.visualstudio.com

https://taylorandfrancis.com

77DOI: 10.1201/9781003188254-5

5
Constants, Variables, and Data Types

5.1 ���������������� Introduction

Before you learn any language, not explicitly a programming language, you need to learn
its character sets. You form words using those character sets, write sentences, and finally
write paragraphs, essays, and so on. Besides that, you need to learn about the grammar of
that language to form a sentence correctly. The grammar specifies the syntax, semantics,
and morphology of a language. Figure 5.1 shows the usual flow of learning any language.

In this chapter, we will learn the fundamental things required to write an error-free pro-
gram. The C programming language has its tokens for coding and developing efficient
programs. The smallest individual units of a C program are known as tokens. A C program
can be constructed by using all these tokens and their syntax rules. The whole chapter is
dedicated to explaining these C tokens.

After completing this chapter, the student will learn the necessary tokens needed to
write a C program, including character sets, keywords, variables, constants, and finally,
how to write simple programs using these tokens.

5.2 ���������������� C Character Sets

A character denotes any alphabet, digit, or special character used to form words, numbers,
and expressions:

Alphabets: A, B, C ………., Z and a, b, c, d, …, z
Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
Special characters: # % ^ & * () - + = | \ ? / . < > , “ : ; ‘ @ _ [] { } etc.

Words EssayCharacter Sets

A B C
a b c

Airplane
Alligator
Caterpillar

Grammar Sentence Paragraph

Show me
the code.

Before
wri�ng it,
show me
the code.

FIGURE 5.1
Learning a language.

78 C Programming

5.3 ���������������� Keywords

Keywords are words whose meaning has already been explained in relation to C compil-
ers. These keywords cannot be used as variable names because, if we do so, we will be
trying to assign a new meaning to the keyword, which is not allowed.

Keywords are words whose meaning is already known to the compiler.

According to the C89 standard (ANCI C) there are 32 keywords available in C. While we
are using keywords in our program writing we must write them in lowercase letters.
Table 5.1 lists all the keywords as per the C89 standard:

Besides these keywords, there are several introduced in other C standards. C99 intro-
duces five new keywords, and C11 introduces seven. Table 5.2 shows the list of keywords
introduced in C99 and C11.

TABLE 5.1

List of Keywords Supported by the C89 Standard

auto extern register static

break continue if else

while do for switch

goto default case int

char float double void

signed unsigned short long

const return struct union

typedef enum volatile sizeof

TABLE 5.2

List of Keywords Introduced in C99 and C11

C99 C11

_Bool _Alignas

_Complex _Alignof

_Imaginary _Atomic

inline _Generic

restrict _Noreturn

_Static_assert

_Thread_local

79Constants, Variables, and Data Types

5.4 ���������������� Variables and Identifiers

Variables in C are the named memory locations where we can store values, and these val-
ues vary or change during program execution. These memory locations (variables) can
store integers, characters, and real values. When we store some value in the variable, the
previous value (if present) will be deleted.

Variables are named memory locations where we store a value.

Rules for constructing a variable name:

	 1.	A variable name can be any combination of digits, characters, or underscores. The
first character in the variable name must be alphabetic.

	 2.	No commas or blank spaces are allowed within a variable name.
	 3.	A variable name should not be a keyword.
	 4.	We cannot use special symbols other than underscores (_) in a variable name.
	 5.	Upper case and lower case are significant, e.g., the variable Var is not the same as var

or VAR.

Table 5.3 shows some valid and invalid variable names.
What is a named memory location? As we know, every computer has a primary mem-

ory, and before executing a program, we must allocate space for every variable present in
our program. From the programmer’s view, a primary memory looks as shown in Figure 5.2.

TABLE 5.3

Valid and Invalid Variable Names

Valid Invalid

a Basic Salary Space is not allowed between variable names

Total 2age A variable name should not start with a number.

Basic_salary void This is a keyword.

age1 sal# No special characters allowed other than underscore.

sal default This is a keyword.

block

block

FIGURE 5.2
A memory segment (Programmer’s View).

80 C Programming

	•	 A programmer assumes that a primary memory is a collection of blocks, and each
block is one byte (eight bits) long.

	•	 Every block has an address.
	•	 To store anything, we might need one or more blocks in a contiguous fashion.
	•	 The shaded region in Figure 5.2 shows the allocated blocks.
	•	 Before we store any value, we need to name the block with some identifier so that we

can access that value using its name in the future. Hence, the variables are known by
their named memory locations.

Identifiers are names given to various program elements, such as variables, functions,
arrays, structures, and other user-defined objects. The rules applied for variable declara-
tion are also applicable for identifiers. All variables can be an identifier, but all identifiers
may not be a variable.

Identifiers are names given to various program elements, such as variables, func-
tions, arrays, structures, and other user-defined objects.

We will see more about identifiers in subsequent chapters.

5.5 ���������������� Data Types

In the real world, we use different types of data, such as integers, reals, and characters. To
store data or values, we need variables. In the previous section, we saw that a variable is a
named memory location. We have also seen that before assigning value to a variable, we
must allocate some memory blocks for it. Now, the question is, how many blocks do we
need to store a value? That depends on the type of data you are going to store in that vari-
able. Hence, we must declare a variable with a data type that instructs the compiler to
allocate the required number of blocks and give it a name.

C language data type is broadly classified into three groups, as shown in Figure 5.3.
In this chapter, we will discuss primary data type. Derived data type and user-defined

data type are discussed as and when needed.

Data Type

Primary Data Type

• Character
• Integer
• Float
• Double
• Void

• Array
• Typedef
• Structure
• Union
• Enumera�on

• Pointer
• Func�on

Derived Data Type User-Defined Data Type

FIGURE 5.3
Data types in C.

81Constants, Variables, and Data Types

5.5.1 ���������������� Primary Data Types

These are also known as basic data types, predefined, and previously known to the com-
piler. We use some keywords to represent these data types. Table 5.4 shows these data
types, and their corresponding keywords.

We use these keywords to declare variables when we want to store values. Each primary
data type conveys two crucial pieces of information:

	 1.	It defines the type of data the user wants to store in these variables;
	 2.	It also instructs the compiler to allocate the required amount of space needed to store

these values.

The amount of space allocated for each data type is different from others and depends on
the platform you are using. For instance, if you are using the keyword “char” to declare a
variable, then that variable consumes one byte (eight bits) of storage space in memory, and
we can store a single character in it. The C programming language has an operator known
as sizeof, and we can use it to know the exact amount of memory allocation in bytes. In
the following section, I will explain each primary data type in detail and use them to allo-
cate and assign values.

5.5.2 ���������������� Integer Data Types

Integers are whole numbers with a machine-dependent range of values. We use the integer
data type to declare variables that can store integers, either positive or negative, with no
fractional component. Table 5.5 shows some examples of integer numbers and numbers
which are not integers.

TABLE 5.4

Data Types and Keywords Representing Them

Serial No. Data Types Keywords

1 Integer int

2 Character char

3 Float float

4 Double double

5 Void void

TABLE 5.5

Examples of Integer Numbers and Non-integer Numbers

Integers Non-integers

+63
−95
9
89

8.75

5
23
4

34

82 C Programming

If you are using a Turbo C++ compiler, then an integer takes 2 bytes (16 bits) of memory,
and its range is from −32768 to +32767. Other compilers like gcc or minGW take 4 bytes
(32 bits), and the range is from –2147483648 to +2147483647. Some type modifiers alter the
basic characteristics of primary data types and give some flexibility to memory allocation.
Those type modifiers are listed in Table 5.6, along with their keywords and their
description.

We can associate these type modifiers with the basic data types to modify their size and
range. For instance, the basic data type int allocates four bytes of memory, but when we
associate the short keyword with int (short int), it allocates two bytes of memory. Table 5.7
shows the detail of these data types, memory allocation in bytes, and the range of numbers
represented in them.

5.5.3 ���������������� Floating Point Types

The floating point number represents a real number with six-digit precision. To represent
a floating point number, we require the keyword float to declare a float variable. When the
accuracy of the floating point number is insufficient, we can use the keyword double to

TABLE 5.6

Type Modifiers

Type Modifier Keyword Description

Signed signed This allows the user to store either positive or negative integers in the
allocated memory locations.

Unsigned unsigned Only positive integers are allowed.

Long long Reduces the amount of memory location to half (compiler dependent).

Short short Space allocation will be doubled (compiler dependent).

TABLE 5.7

Data Types, Memory Allocation Size, and the Range

Type Storage Size Min. Value Max. Value

int OR signed int 2 bytes (Turbo C++)
4-bytes (others)

−32768
−2,147,483,648

+32767
+2,147,483,647

unsigned int 2-bytes (Turbo C++)
4-bytes (others)

0
0

+65,535
+4,294,967,295

short int OR signed short int 2-bytes −32768 +32767

unsigned short int 2-bytes 0 +65,535

long int OR signed long int 4-bytes −2,147,483,648 +2,147,483,647

unsigned long int 4-bytes 0 +4,294,967,295

long long OR signed long long 8-bytes −9,223,372,036,
854,775,808

+9,223,372,036,
854,775,807

unsigned long long 8-bytes 0 +18,446,744,073,
709,551,615

83Constants, Variables, and Data Types

declare our variable. The double is the same as float but with longer precision. To extend the
precision further, we can use long double, which consumes 80 bits of memory space. Table 5.8
shows the detail of these data types, space allocation, and their ranges.

5.5.4 ���������������� Character Data Types

A character in C refers to an alphabet, number, or symbol enclosed within a single quote.
For example, ‘a’, ‘5’, ‘6’, and ‘&’ represents a character constant. To store these characters,
we require a variable declared with the char keyword. Characters are usually stored in
eight bits of internal storage. The type modifier signed or unsigned can be explicitly applied
to char. While unsigned characters have values between 0 and 255, signed characters have
values from –128 to 127. Table 5.9 shows the detail of these data types, size, and their
ranges.

A character is stored in memory as an ASCII value. ASCII stands for American Standard
Code for Information Interchange. ASCII is a character encoding standard that assigns a
numeric value to each character used in a computer. For example, the ASCII value of capi-
tal ‘A’ is 65, and the small ‘a’ is 97. The entire ASCII table is presented in Appendix A for
easy reference.

5.5.5 ���������������� Void Types

We use the data type void to specify an empty set of values. In general, data type void is
used to specify the return type of a function or to define a pointer that can hold the address
of any variable. This is not the right place to discuss further void data types.

Now that we understand the basic concept of variable and data types, it’s time to declare
a variable using C code syntax. In the next section, we will discuss how to declare a vari-
able, and we will see how memory allocation takes place for our variable, and how we can
assign some value to this variable.

TABLE 5.8

Floating Point Types with Defined Size and Range

Serial No. Types Size (in Bits) Range

1 float 32 (4 byte) 3.4e − 38 to 3.4e + 38

2 double 64 (8 byte) 1.7e − 308 to 1.7e + 308

3 long double 80 (10 byte) 3.4e − 4932 to 1.1e + 4932

TABLE 5.9

Character Data Types with Defined Size and Range

Serial No. Types Size (in Bits) Range

1 char or signed char 8 (1 byte) −128 to + 127

2 unsigned char 8 (1 byte) 0 to 255

84 C Programming

5.6 ���������������� Declaration of Variables

In C programming, we need to declare every variable before we use it inside our program
code. As we know, a variable denotes a memory location, and naming the variable is purely
user-specific. As we have discussed in the previous section, to declare a variable, we need
the help of a data type. The syntax is shown in Figure 5.4.

We need to declare every variable before we use it inside our program code.

We should name the variable in such a manner that it conveys the sense of what it con-
tains. For example, suppose we want to store the average of five numbers in a variable,
then we may choose a name like avg, avg5, avg_five, or average. But remember that it is
not a mandatory condition to choose a meaningful name; instead, it is a suggestion. Let us
take some examples of declaring a variable (see Figure 5.5).

Multiple variable declaration specifies the variables with a comma-separated list
(Figure 5.5b). A variable declaration conveys the following things:

	 1.	Name of the variable(s);
	 2.	Type of data the variable(s) holds;
	 3.	The size and the range of the variable(s).

Now let us discuss how the compiler deals with this declaration and what changes are
made by the compiler in memory allocation. The discussion is based on the single variable
declaration statement shown in Figure 5.5a.

	•	 When the declaration line is executed, the compiler allocates a memory block and
names it avg, as shown in Figure 5.6a.

	•	 The blocks with patterns specify some allocated blocks of memory.

DataType VariableName;

Syntax</>

FIGURE 5.4
Declaration of a variable.

int avg;

(a) (b)

Example (Single
variable declara
on)

</>

int a, b, avg, total;

Example (Mul
ple
variable declara
on)

</>

FIGURE 5.5
Examples of single and multiple variable declarations.

85Constants, Variables, and Data Types

	•	 Every block has an address starting with 0X. The addresses shown in the figure are
imaginary and different from the actual address.

	•	 As an integer takes two bytes (we are assuming each block stores one byte of infor-
mation), so two blocks get allocated for avg, and the addresses are 0X034, 0X035.

	•	 The question mark inside the allocated block indicates no value yet assigned to avg.
As no value is assigned, it is called an uninitialized variable.

Figure 5.6c shows what happens when we assign a value to avg. To assign a value, we need
an assignment operator (=), and the code is shown in Figure 5.6b. The line enclosed with
/* and */ is known as the comment line, and the compiler ignores these lines during execu-
tion. We use these lines for documentation purposes.

The variable declaration can take various forms. We can combine the declaration and
the assignment line to form a single line. We can also assign a whole expression to a vari-
able. Figure 5.7 shows all the different kinds of representation possible with variable dec-
laration and assignment.

avg

?
0X034 0X035

0X014 0X019. . .
Memory Addresses

Allocated Blocks

Memory alloca�on for
variable avg

avg

35
0X034 0X035

0X014 0X019. . .

int avg; /*Declaration*/
avg=35; /*Assignment*/

Example (single variable
declara�on and assignment)

</>

(b) (c)

(a)

FIGURE 5.6
Variable declaration, assignment, and memory allocation.

int avg=35;

Example (single
variable declara
on &

assignment)

</>

int avg;
avg=3+(8/2)*6;

Example (variable
declara
on & expression

assignment)

</>

int a=7, b=9, avg=12;

Example (mul
ple
variable declara
on &

assignment)

</>

FIGURE 5.7
Different types of variable declarations and assignments.

86 C Programming

5.7 ���������������� Constants

A constant represents a value that does not change. We can use a variable to store a con-
stant, or we can use the constant directly in our expression. Note that a variable is a name
given to the memory location.

For example, observe the following expression:

	 3 2 38x y� �

Here:

	•	 The values 3, 2, and 38 are constants, and x and y are variables;
	•	 If you consider the example shown in Figure 5.6, avg is a variable and the value 35 is

a constant assigned to avg.

There are several types of constants we can use, and in C programming, the constants are
classified as shown in Figure 5.8.

5.7.1 ���������������� Integer Constants

These represent integer values that contain a collection of digits. The following points
explain the more detailed representation of an integer constant:

	•	 An integer constant must have at least one digit;
	•	 It must not have a decimal point;
	•	 It could be either positive or negative;
	•	 If no sign precedes an integer constant, it is assumed to be positive;
	•	 No blank spaces are allowed within an integer constant.

Examples: 435, 76, +98, −43, 789.

Constants

Numeric Constant Character Constant

Integer Real Single Character String

FIGURE 5.8
Constants in C.

87Constants, Variables, and Data Types

5.7.2 ���������������� Real Constants

Real constants are also called floating-point constants. They represent values that contain
a decimal point. There are two ways to represent a real constant:

	 1.	Fractional form;
	 2.	Exponential form.

5.7.3 ���������������� Fractional Form

	•	 A real constant must have at least one digit.
	•	 It must have a decimal point.
	•	 It could be either positive or negative. The default sign is positive.
	•	 No commas or blank spaces are allowed within a real constant.

Examples: +324.56, −568.9, 32.4, 748.00.

5.7.4 ���������������� Exponential Form

In this case, the real constants are represented in two parts:

	•	 The part appearing before ‘e’ is called the mantissa. The part following ‘e’ is called
the exponent.

	•	 The mantissa part and the exponent part must be separated by the letter ‘e’ or ‘E’.
	•	 The mantissa part may have a positive or negative sign.
	•	 The default sign of the mantissa part is positive.
	•	 The exponent must have at least one digit, which must be a positive or a negative

integer.
	•	 The default sign is positive.

Examples: +3.2e-5, 4.1e5, −0.5e45.

5.7.5 ���������������� Character Constants

A character constant is either a single alphabet/digit/special symbol enclosed within a
pair of single quotes:

	•	 The maximum length of a character constant is 1;
	•	 Character constants have an integer value known as an ASCII value.

Examples: ‘a’, ‘5’, ‘&’.

5.7.6 ���������������� String Constants

A string constant is a sequence of characters enclosed in a double quote. The characters
may be letters, numbers, or special symbols.

Examples: “program”, “235”, “5+3”, “x”.

88 C Programming

5.8 ���������������� Learn to Code Examples

In this section, we will introduce some programming examples that will help us to under-
stand the writing style of C code.

EXAMPLE 1

In the first example, let us take a variable, assign a value, and display the value on the
screen. Figure 5.9 shows the code segment.

The explanation of the above program is as follows:

	•	 The line int code; declares the variable.
	•	 The line code=35; assigns 35 to the variable code.
	•	 The last line that displays the results needs a detailed explanation. We will discuss

the printf() statement in the following section.
	•	 Every statement must end with a semicolon.

The printf() is a function used to print the value contained in a variable. The general
form is as shown in Figure 5.10.

The format string or the format specifier starts with a % symbol followed by a character
such as d, c, or f. The purpose of writing a format string is to tell the compiler about the

/*Declare a variable, assign a
value, and display*/
#include<stdio.h>
void main()
{

int code;
code=35;
printf(“ Code = %d ”, code);

}

Example-1
</>

Format String

FIGURE 5.9
A simple C program to display the value of a variable.

printf("format string", variableName);

Syntax

FIGURE 5.10
Syntax of printf() function.

89Constants, Variables, and Data Types

type of data we are using. For each data type, there exists a separate format string. The
format string for all data types is shown in Table 5.10.

In the above program, we have assigned a number to the variable code. We can also ask
the user to input any number. We can do this by using the scanf() function (see
Figure 5.11a).

	•	 The format string contains the format of the data being received;
	•	 The ampersand (&) symbol before the variable name is an operator that specifies the

address of the variable.

Figure 5.11b shows an example. When this statement is encountered by the compiler, the
execution stops, and the compiler waits for an integer value to be typed in. The %d

TABLE 5.10

List of Format Strings for Different Data Types

Serial No. Data Type Format String

1 int %d or %i

2 char %c

3 float %f

4 double %lf

5 short int %hd

6 long int %ld or %li

7 signed int %hi or %hd

8 unsigned int %u

9 signed short int %hi

10 unsigned short int %hu

11 signed long int %ld or %li

12 unsigned long int %lu

13 long double %Lf

14 long %lld or %lli

15 unsigned long long %llu

16 Octal %o

17 Hexadecimal %x or %X

18 String %s

scanf("format string", &variableName);

Syntax

(a) (b)

scanf("%d", &code);

Example-scanf ()

FIGURE 5.11
Syntax of the scanf() function and an example.

90 C Programming

indicates that the value typed must be an integer. When we type a value, it will automati-
cally be assigned to the variable code.

Now let us rewrite the above code (Example 1) where the programmer has to declare a
variable of integer type, use the scanf() function to read the data from the user, and dis-
play it on the screen. Figure 5.12 shows the code.

EXAMPLE 2

Let us take another example that adds two numbers. The programmer has to declare
three variables: two variables to store two numbers and the third variable to store the
addition result. Our program must provide the facility to enter any number the user
wants and finally show the result on the screen. Figure 5.13 shows the C code.

/*Declare a variable, read a value,
and display*/
#include<stdio.h>
void main()
{

int code;
printf(“Enter an integer:”);
scanf(“%d”, &code);
printf(“ Code = %d ”, code);

}

Example-1 with scanf ()
</>

FIGURE 5.12
Rewriting Example 1 to take input from the user and display it.

/*Addition of two numbers*/
#include<stdio.h>
void main()
{

int n1, n2, Res;
printf(“Enter the first number:”);
scanf(“%d”, &n1);
printf(“Enter the second number:”);
scanf(“%d”, &n2);
Res=n1+n2;
printf(“ Addition Result = %d ”, Res);

}

Example-2
</>

printf(“Enter the two numbers:”);
scanf(“%d%d”, &n1, &n2);

We can combine these 4 lines
and write it with 2 lines

FIGURE 5.13
Example 2: Addition of two numbers.

91Constants, Variables, and Data Types

5.9 ���������������� Escape Sequences

Escape sequences are special characters used for formatting. They can be recognized in the
code by their special backslash followed by a character that does a specific task. These
specialized printing characters are used to make the output readable when printing char-
acters to the screen, file, or other devices.

Let us write one example to show you the importance of an escape sequence (see the
following code and its corresponding output in Figure 5.14). When we execute this code,
the output will appear like this. If you observe the output, everything is displayed in a
single line, with no space between the sentences.

If we want the information to be displayed in multiple lines, then we have an escape
sequence \n. By using this, we can display the contents over multiple lines. We will rewrite
the above code (Figure 5.14) as shown in Figure 5.15.

There are several escape sequences supported by the C compiler. A list of all these escape
sequences is shown in Table 5.11 along with their meanings. The reader is encouraged to
write at least one programming example to understand the working of these escape
sequences.

/*Escape Sequence Example*/
#include<stdio.h>
void main()
{

printf(“C Programming”);
printf(“Learn to Code”);
printf(“A book for beginners”);

}

Example (Escape
Sequence)

</>

C ProgrammingLearn to CodeA book for beginners

Output

FIGURE 5.14
Understanding the importance of escape sequences.

/*Escape Sequence Example*/
#include<stdio.h>
void main()
{

printf(“ \n C Programming”);
printf(“ \n Learn to Code”);
printf(“ \n A book for beginners”);

}

Example (Escape
Sequence)

</>

Output

C Programming
Learn to Code
A book for beginners

Escape
Sequence

FIGURE 5.15
Using an escape sequence to format output.

92 C Programming

5.10 ���������������� Review Questions

5.10.1 ���������������� Objective Questions

1.	��������������� There are ______________ keywords available in C as per the C89 standard.
2.	��������������� ________ in C are the named memory locations where we can store values, and these

values vary or change during program execution.
3.	��������������� The range of an integer variable is _________, and the range of a character variable

is ___________. (Assume that integers take 2 bytes and characters take 1 byte in
memory.)

4.	��������������� A __________ does not change its value during the entire execution of the program.
5.	��������������� _______ is used as a format string for double variables.
6.	��������������� All variables are identifiers, but all identifiers are not variables. True/false?

5.10.2 ���������������� Programming Questions

1.	��������������� Write a program to find out the average of three numbers.
2.	��������������� Write a program to find the area of a rectangle.
3.	��������������� Write a program to calculate simple interest.
4.	��������������� Write a program to find out the area of a right-angle triangle.
5.	��������������� Write a program to swap two numbers.
6.	��������������� Write a program to swap two numbers without using a third variable.
7.	��������������� Write a program to find the ASCII value of the character ‘g’.

TABLE 5.11

Escape Sequences and Their Meanings

Serial No. Escape Sequence Name Meaning

1 \a Alert Produce an audible or visible alert

2 \b Backspace Moves the cursor back one position (non-destructive)

3 \f Form Feed Moves the cursor to the first position of the next page

4 \n New Line Moves the cursor to the first position of the next line

5 \r Carriage Return Moves the cursor to the first position of the current line

6 \t Horizontal Tab Moves the cursor to the next horizontal tabular position

7 \v Vertical Tab Moves the cursor to the next vertical tabular position

8 \’ Produces a single quote

9 \” Produces a double quote

10 \? Produces a question mark

11 \\ Produces a single backslash

12 \0 Produces a null character

93Constants, Variables, and Data Types

8.	��������������� Write a program to multiply two floating-point numbers by using float and double
variables.

9.	��������������� Predict the output or find the error in the following program code:

#include<stdio.h>
void main()
{
 int goto=25;
 printf("%d", goto);
}

#include<stdio.h>
void main()
{
 int Float=25;
 printf("%d", Float);
}

#include<stdio.h>
void main()
{
 int basic;
 printf("\n%d", sizeof(basic));
 printf("\n%d", sizeof(int));
}

#include<stdio.h>
void main()
{
 unsigned int basic=-25;
 printf("%u", basic);
}

#include<stdio.h>
void main()
{
 char symbol='p';
 printf("%d", symbol);
}

#include<stdio.h>
void main()
{
 char symbol='p';
 printf("%c %c", symbol, symbol+5);
}

#include<stdio.h>
void main()
{
 int x;
 x=printf("Program");
 printf("%d", x);
}

#include<stdio.h>
void main()
{
 �printf("%d", printf("C

Programming"));
}

#include<stdio.h>
void main()
{
 int a;
 printf("%d",a);
}

#include<stdio.h>
void main()
{
 �printf("%d", printf("C

Programming")+5);
}

void main()
{
 int a;
 printf("%d",a+5);
}

#include<stdio.h>
void main()
{
 printf("Quote me the Risk\rLearn");
}

#include<stdio.h>
void main()
{
 int a=5;
 a=7;
 a=9;
 printf("%d",a);
}

#include<stdio.h>
void main()
{
 printf("Correct Me\b\bYourself");
}

94 C Programming

#include<stdio.h>
void main()
{
 int a=5;
 int a=7;
 int a=9;
 printf("%d",a);
}

#include<stdio.h>
void main()
{
 int a=3277;
 printf("%d",printf("%d",a));
}

5.10.3 ���������������� Subjective Questions

1.	��������������� What are variables, and what are the rules for constructing a variable name?
2.	��������������� What is the difference between variables and identifiers?
3.	��������������� What is a keyword?
4.	��������������� What is a constant? What are the different types of constants in C?
5.	��������������� C is a strongly typed language. Justify.
6.	��������������� Write the syntax of the printf() and scanf() functions.
7.	��������������� What is an escape sequence? Explain the need for escape sequences with an appropri-

ate programming example.
8.	��������������� What is the difference between declaration and initialization? Explain with an

example.
9.	��������������� Write short notes on (a) keywords, (b) format strings, (c) identifiers.

10.	��������������� What is a preprocessor directive? What is the use of the preprocessor directive?

95DOI: 10.1201/9781003188254-6

6
Operators and Expressions

6.1 ���������������������������������� Introduction

This chapter will discuss the two most essential parts of any programming language: oper-
ators and expressions. An operator is a symbol that tells the computer to perform specific
mathematical or logical operations. Operators are used in programs to manipulate data
and variables. C is very rich in built-in operators.

An operator is a symbol that tells the computer to perform specific mathematical or
logical operations.

Operators can be either binary or unary. Binary operators are the operators where one
operator will act upon two operands.

For example:

	 12 14+

In this example, the operator + is acted upon two operands 12 and 14. Hence + is a
binary operator here. Similarly, a unary operator has one operator and one operand.

For example:

	 −25

In this example, the operator – is acted upon one operand 25. Hence – is a unary opera-
tor here.

The following are the operators used in C. These operators may be used as binary or
unary operators.

	 1.	Arithmetic operators;
	 2.	Relational operators;
	 3.	Assignment operators;
	 4.	Logical operators;
	 5.	Increment or decrement operators;
	 6.	Conditional operators;

96 C Programming

	 7.	Bitwise operators;
	 8.	Special operators.

In the subsequent section, we will discuss the feature of all these operators, how to form
expressions, how they are executed, and in what order. Finally, we will introduce the pre-
cedence of operators.

On completion of this chapter, students will have learnt the working of different opera-
tors, the precedence of operators, and the way the C compiler executes an expression.
Some new operators like increment, decrement, ternary, and other special operators are
also a part of this chapter.

6.2 ���������������������������������� Arithmetic Operators

We all know what an arithmetic operator is, and the C language does support all these
operators with slight deviations with division and modulo operators. Table 6.1 shows the
complete set of arithmetic operators and their symbols.

We all know the result produced by these operators. For the sake of completeness,
Figure 6.1 shows the results obtained by these arithmetic operators. You can observe that
the division operation returns the quotient, and the modulus operator returns the
remainder.

TABLE 6.1

Arithmetic Operators

Serial No. Operator Name Symbol

1 Addition +

2 Subtraction –

3 Multiplication *

4 Division /

5 Modulus (remainder) %

Example:
Assume that x=12, y=7
and both are integers
x + y = 12 + 7 = 19
x – y = 12 – 7 = 5
x * y = 12 * 7 = 84
x / y = 12 / 7 = 1
x % y = 12 % 7 = 5

7 112
7
5Remainder

Quo�entDividend

Divisor

FIGURE 6.1
Arithmetic operations.

97Operators and Expressions

Let us write an example program that shows the result of the divide and modulo
operations. Figure 6.2 shows the C program code. You can see that when 6 divides 25, we
obtain 4 (quotient), and when we perform the modulo operation, we get the remainder,
which is 1.

6.3 ���������������������������������� Relational Operators

There are situations where we need to compare two values and make decisions. The C
language provides several comparison operators for this purpose. The work of these oper-
ators is to compare two items for their equality, inequality, or whether one is greater/
smaller than the other.

	•	 These are binary operators and work upon two operands;
	•	 The result of these operators is either “true” or “false”;
	•	 If the comparison result is true, then it returns 1, else it returns 0.

Table 6.2 shows the complete set of relational operators and their symbols for your refer-
ence. For beginners, the symbols may look uncommon but they do have a similar meaning
compared to mathematical operators.

The double equal to operator (==) checks the similarity of two operands. For example,
if a = 5 and b = 5, then a == b returns 1, which means both contain the same value. Similarly,
for the same value of a and b, a != b returns 0. Let us take some programming examples
(Figure 6.3) to understand the use and features of these relational operators.

/* A program to show the basic operations
of arithmetic operators*/

#include<stdio.h>
int main ()
{

int x, y, z;
x=25;
y=6;
z=x/y;
printf ("\n x/y=%d", z);
z=x%y;
printf ("\n x%y=%d", z);
return 0;

}

Example (Arithme�c Operator)
</>

Output:
x/y=4
x%y=1

FIGURE 6.2
C program showing operations of arithmetic operators.

98 C Programming

6.4 ���������������������������������� Assignment Operators

The symbol = is known as the assignment operator in C. The value (or expression) on the
right side of = is assigned to the left side variable. The general form of the assignment
operator is shown in Figure 6.4.

	•	 The assignment operator is used to assign a value or the result of an expression to a
variable;

	•	 Always the right-hand-side value (in C it is called rvalue) is assigned to the left-hand
(lvalue) variable;

TABLE 6.2

Relational Operators

Sl. No. Relational Operator Name Symbol Used in C Similar Mathematical Symbol

1 Less than < <

2 Greater than > >

3 Less than or equal to <= ≤

4 Greater than or equal to >= ≥

5 Not equal to != ≠

6 Double equal to (similar) ==

/* A program to show the basic operations
of relational operators*/

#include<stdio.h>
int main ()
{

int x=5, y=6, z=5, r;
r=x>y;
printf ("\n x>y=%d", r);
r=x==z;
printf ("\n x==z=%d", r);
r=x!=y;
printf ("\n x!=y=%d", r);
return 0;

}

Example (Rela�onal Operator)
</>

Output:
x>y=0
x==z=1
x!=y=1

FIGURE 6.3
Program showing operations of relational operators.

99Operators and Expressions

	•	 In the above example, X and Y are known as the lvalue, and 25 and Z+23 are known
as the rvalue.

C has a set of shorthand assignment operators. Table 6.3 shows statements with a simple
assignment operator and their equivalent shorthand assignment operator.

The advantage of using a shorthand assignment operator is:

	•	 What appears on the left-hand side need not be repeated;
	•	 The statement is more concise.

6.5 ���������������������������������� Logical Operators

We use logical operators to check the truth and falsity between two expressions or two
operands. The C language provides three logical operators, as shown in Table 6.4.

VariableName = Expression;

Syntax (assignment operator)
</>

X = 25;
Y = Z + 23;

Example
</>

FIGURE 6.4
Assignment operator.

TABLE 6.3

Shorthand Assignment Operators

Statement with Simple Assignment Operator Equivalent Shorthand Assignment Operator

A=A+1 A+=1

A=A-1 A–=1

A=A*(N–1) A*=(N–1)

A=A/(N–1) A/=(N–1)

A=A%B A%=B

TABLE 6.4

Logical Operators

Sl. No. Operators Meaning

1 && Logic AND

2 || Logic OR

3 ! Logic NOT

100 C Programming

	•	 The logical operator && and || act upon two operands, but the logical NOT operator
acts upon one operand;

	•	 The results of these operators are either true or false.

The truth table of the AND, OR, and NOT operators is shown in Table 6.5.

	•	 In logical AND, when both the inputs are 1, the output is 1, and 0 otherwise;
	•	 In logical OR, when both the inputs are 0, the output is 0, and 1 otherwise;
	•	 For the NOT operator, when the input is 1, the output is 0, and vice versa.

Let us take one programming example and analyze how the compiler executes the code.
Figure 6.5 shows an example program to understand the working of the && operator.

The output of the above program will be 0 (zero). Because, a < b it will yield 1 and b > c
will yield 0. Now a && b will be 0. Finally, 0 is assigned to d. Hence, we get the output d =
0. See Figure 6.6 for easy understanding. The numbers 1 through 4 represent the sequence
of execution.

6.6 ���������������������������������� Increment and Decrement Operators

The C language provides two special operators ++ and – –, called increment and decrement
operators. These are unary operators because they operate only on one operand. The oper-
and must be a variable and not a constant.

TABLE 6.5

Truth Table of the (a) AND, (b) OR, and
(c) NOT Operators

(a)

A B A && B

0 0 0

0 1 0

1 0 0

1 1 1

(b)

A B A || B

0 0 0

0 1 1

1 0 1

1 1 1

(c)

A !A

0 1

1 0

101Operators and Expressions

Example:

	 1.	x++ is valid but 5++ is not valid;
	 2.	– – y is valid but – –7 is not valid.

The ++ operator will increment the value of a variable by 1, and the – – operator will decre-
ment the value of a variable by 1. Let us take a simple example to understand how it works
(see Figure 6.7).

In the above example, the line x++ is executed as x = x + 1 and the line y– – is executed
as y = y – 1. So, the output is x = 6, y = 4. These operators can be used either before (prefix)
or after (postfix) their operands. So, we can have x++ (postfix) and ++x (prefix).

	•	 Prefix and postfix operators have the same effect if they are used in a separate C state-
ment: in Figure 6.8, x++ and ++x both execute as x = x + 1, and produce 6 as the
output.

	•	 Prefix and postfix operators have different effects when used in association with
some other variable. For instance, in Figure 6.9, y represents a variable that holds the
value of x++ in case 1, and ++x in case 2. The execution process is explained below.

/* A program to show the basic
operation of a logical AND*/

#include<stdio.h>
int main ()
{

int a = 5, b = 6, c = 7, d;
d = (a < b) && (b > c);
printf ("\n d=%d", d);
return 0;

}

Example (AND operator)
</>

Output:
d=0

FIGURE 6.5
Program showing the operation of Logical AND.

d = (a<b) && (b>c)

1 && 0

1 2

3

0

4

FIGURE 6.6
Execution steps of example program.

102 C Programming

/* Programming example for increment
and decrement operator*/

#include<stdio.h>
int main()
{

int x=5, y=5;
x++;
y--;
printf (“\n x=%d y=%d”, x, y);
return 0;

}

Example (Increment & Decrement)
</>

Output:
x=6 y=4

FIGURE 6.7
Program showing increment and decrement operators.

#include<stdio.h>
int main ()
{

int x=5;
x++; /*postfix*/
printf(“x=%d”, x);
return 0;

}

#include<stdio.h>
int main ()
{

int x=5;
++x; /*Prefix*/
printf(“x=%d”, x);
return 0;

}

Output
x=6

Output
x=6

FIGURE 6.8
Increment or decrement operator executed separately.

#include<stdio.h>
int main ()
{

int x=5, y;
y=x++; /*postfix*/
printf(“x=%d y=%d”, x, y);
return 0;

}

#include<stdio.h>
int main ()
{

int x=5, y;
y=++x; /*Prefix*/
printf(“x=%d y=%d”, x, y);
return 0;

}

Output
x=6 y=5

Output
x=6 y=6

Case
1

Case
2

FIGURE 6.9
Increment and decrement operator executed in association with variable y.

103Operators and Expressions

Case 1 (y=x++;): as it is postfix, first, the value of x is assigned to y, then x gets incre-
mented. Hence y = 5 and x = 6.

Case 2 (y=++x;): as it is prefix, first, the value of x is incremented and x becomes 6, then
the incremented value of x is assigned to y. Hence, y = 6 and x = 6.

The decremented operators are used in a similar way, except of course the values of x
and y are decremented.

Quiz: Analyze the programs shown in Figure 6.10 and find the outputs.

6.7 ���������������������������������� Conditional Operators

The conditional operator is also known as a ternary operator because it has two operators
and can take three operands. The general form of the conditional operator is shown in
Figure 6.11(a).

In the syntax above, “?” and “:” are two operators, and Expression1, Expression2, and
Expression3 are the operands. Generally, Expression1 is a condition. If the condition is
true, Expression2 gets executed, else Expression3 gets executed. Let us take some program-
ming examples to understand the working of conditional operators. Figure 6.12 shows the
first example: to find the bigger among two numbers.

#include<stdio.h>
int main ()
{

int x=5, y=5;
printf(“%d”, ++x);
printf(“%d”, y++);
return 0;

}

#include<stdio.h>
int main ()
{

int x=5, y=5;
printf(“%d %d”, ++x, x);
printf(“%d %d”, y++, y);
return 0;

}

#include<stdio.h>
int main ()
{

int x=5, y;
y=x++ + ++x + ++x + x++;
printf(“%d %d”, x, y);
return 0;

}

Quiz
1

Quiz
2

Quiz
3

FIGURE 6.10
Quiz questions.

Expression1 ? Expression2 : Expression3

Syntax (Condi�onal Operator) Expression1 ? Expression2 : Expression3

True

False

Usually, Expression 1 is a condi�on

(a) (b)

FIGURE 6.11
(a) Syntax of Conditional operator; (b) Working of Conditional operator

104 C Programming

In this example, a > b represents a condition, and it is false because 5 is not greater than
10. So, printf (“b is big”) gets executed. Hence, the output is: b is big.

Let us write the same program in a different way as shown in Figure 6.13. In this exam-
ple, first, the condition a > b is executed, and the compiler takes the decision. As a > b is
false, so the value of b is returned and is assigned to c. Hence, c has the value 10. In the next
line, the value of c gets printed, which is the bigger number. Figure 6.14 shows the working
steps.

/* A program to show the working of conditional
operators */
#include<stdio.h>
int main ()
{

int a=5, b=10;
a>b ? printf (“a is big”) : printf (“b is big”);
return 0;

}

Example (Condi�onal Operator)

Output:
b is big

FIGURE 6.12
Finding the bigger number among two numbers using conditional operators.

/* A program to show the working of conditional
operators */
#include<stdio.h>
int main ()
{

int a=5, b=10, c;
c=a>b ? a : b;
printf(“The bigger number is=%d”,c);
return 0;

}

Example (Condi�onal Operator)

Output:
The bigger number is=10

FIGURE 6.13
Finding the bigger number among two numbers using conditional operators (alternative way).

c = a>b ? a : b;

T

F

c = 5>10 ? 5 : 10;

T

F

c = 10

FIGURE 6.14
Execution procedure of the example shown in Figure 6.13.

105Operators and Expressions

6.7.1 ���������������������������������� Nested Conditional Operators

The conditional operator can be nested, that is, we can declare one conditional operator
statement within another conditional operator. We can easily see this with a programming
example. Figure 6.15 shows an example that uses the concept of a nested conditional oper-
ator. The execution and working of the program are shown in Figure 6.16.

According to the value of a and b, the statement a > b becomes false, so the false part of
the statement is executed as shown in Figure 6.16. Again b > c becomes true so 30 will be
returned and hence is assigned to the variable ans. So, the output will be 30.

6.8 ���������������������������������� Bitwise Operators

Each digit in a binary number system is called a bit, and is either 0 or 1. As the name sug-
gests, the computer uses a bitwise operator to operate on binary numbers. The C language
provides six bitwise operators; Table 6.6 shows their symbols and meanings.

/* A program to show the working of a conditional operator */
#include<stdio.h>
int main ()
{

int ans, a=12, b=15, c=6;
ans = (a > b ? (a > c ? 10 : 20) : (b > c ? 30 : 40));
printf(“Answer=%d”,ans);
return 0;

}

Example (Nested Condi�onal Operator)

Output:
Answer=30

FIGURE 6.15
Nested conditional operator example.

ans = (a > b ? (a > c ? 10 : 20) : (b > c ? 30 : 40));

T
F

T
F

FIGURE 6.16
Execution process of the example in Figure 6.15.

106 C Programming

6.8.1 ���������������������������������� Bitwise AND, OR, XOR

Like the logical AND operator, bitwise AND follows the same truth table and requires two
operands. But the working procedure of this operator is different. The former works on
any value and returns either 0 or 1, but the latter converts the value to its corresponding
binary number and performs the AND operation bit by bit.

Let us take an example (Figure 6.17) to show the differences between their working.

TABLE 6.6

Bitwise Operators

Sl. No. Operator Symbol Meaning

1 & Bitwise AND

2 | Bitwise OR

3 ^ Bitwise XOR

4 ~ One’s complement

5 << Left-shift

6 >> Right-shift

/* Example-Logical AND */
#include<stdio.h>
int main ()
{

int c;
c=12&&23;
printf("%d", c);
return 0;

}

/* Example-Bitwise AND */
#include<stdio.h>
int main ()
{

int c;
c=12&23;
printf("%d", c);
return 0;

}

Output:
1

Output:
4

WORKING
c=12&23
Step-1: Convert each operand to the corresponding
binary.
12 in binary: 1100
23 in binary: 10111

Step-2: Perform AND opera�on bit-by-bit
0 1 1 0 0
1 0 1 1 1

0 0 1 0 0

Spep-3: Convert result into its corresponding integer.
For this case the result is 4.

WORKING
c=12&&23
c=1 && 1
c=1
Here, 12 and 23 both represent a truth value. In fact
every nonzero value is treated as a truth value.

Suppose you are asked to find the value of c for the
following opera�on:
c=12&&0
This will be executed as follows:
c=1&&0
c=0
Here 12 is treated as true and 0 a false, Hence c=0

FIGURE 6.17
Example showing the difference between the logical AND and Bitwise AND operators.

107Operators and Expressions

Similarly, for the OR and XOR operators, the working procedure is the same. Students
are encouraged to modify the above program and check for the OR and XOR operators.
The XOR operator works as per the truth table shown in Table 6.7. When both the inputs
are the same, the output will be 0, and 1 otherwise.

Quiz: What is the output or error you will get when you execute the program code
shown in Figure 6.18?

6.8.2 ���������������������������������� One’s Complement (~) Operator

One’s complement converts the bit from 0 to 1 and vice versa. This is a unary operator and
works upon one operand. It first translates the operand to its corresponding binary and
flips the bits. Then we can display the result as per our requirement. Let us take some
examples and understand its working style (Figure 6.19).

To understand the working of this operator, we need to know how the computer stores
a negative number. There is a concept called two’s complement representation, which the
computer uses to store a negative number, as shown in the following section.

6.8.3 ���������������������������������� Two’s Complement Representation

With this technique the most significant bit (leftmost bit) acts as a sign bit. When the left-
most bit (sign bit) is “0”, the number is positive, and for “1”, the number is negative. The
remaining bit of the word is used to represent the actual number. Figure 6.20 shows the
representation style.

As shown in Figure 6.20a, a four-bit word is used to represent a number. The leftmost bit
(b3) is reserved for the sign bit and the remaining bits (i.e., from b0 to b2) are used to repre-
sent the number.

TABLE 6.7

XOR Truth Table

A B A^B

0 0 0

0 1 1

1 0 1

1 1 0

#include<stdio.h>
int main ()
{

float a=7.5, b=8.6, c;
c=a&&b;
printf(“%f”, c);
return 0;

}

#include<stdio.h>
int main ()
{

float a=7.5, b=8.6, c;
c=a&b;
printf(“%f”, c);
return 0;

}

#include<stdio.h>
int main ()
{

char a=’y’, b=’z’, c;
c=a&b;
printf(“%c”, c);
return 0;

}

Quiz
4

Quiz
5

Quiz
6

FIGURE 6.18
Quiz questions.

108 C Programming

	•	 To represent a positive number, we simply convert it to its equivalent binary
number;

	•	 To represent a negative number, we first convert the number to its binary form and
then apply two’s complement;

	•	 To find two’s complement, we add 1 to the one’s complement of that number.

Figure 6.20b shows the representation of –5. First, we find the binary equivalent of 5 which
is 0101 in four bits. Then we flip the bits (1 to 0 and 0 to 1) to get the one’s complement (i.e.,
1010). Finally, we add 1 to the one’s complement to get the resultant two’s complement
which is 1011. Hence, –5 is represented as 1011 in two’s complement representation.
Figure 6.20c shows the complete range of numbers that can be represented with four bits
using two’s complement representation. The complete range is –8 to +7 with a single

/* Example-One’s Complement */
#include<stdio.h>
int main ()
{

int c;
c = ~5;
printf("%d", c);
return 0;

}

/* Example-One’s Complement */
#include<stdio.h>
int main ()
{

char c='A', d;
d=~c;
printf("%d", d);
return 0;

}

Output:
–6

Output:
–66

Example
1

Example
2

FIGURE 6.19
One’s complement operator example.

Sign Bit

4-bit Word

b0b1b2b3

0101

(a)

(b)

0000

1000

0100

1100

0010

1010

0110

1110

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

0001

1001

0101

1101

0011

1011

0111

1111

= –8

= –7

= –6

= –5

= –4

= –3

= –2

= –1

(c)

1010 = + 5

= –5

1's Complement

1+

1101

FIGURE 6.20
Two’s complement representation.

109Operators and Expressions

representation of 0’s. In general, if an n-bit word is given, then the range will vary from −
(2n − 1) to +(2n − 1 − 1).

Now that we understand the concept of two’s complement representation, let us see the
working of the examples shown in Figure 6.19. Assume that our system uses 16 bits to
represent a number. In Example 1, the value of d is assigned with ~5. So, the compiler first
converts the number to its equivalent binary 16-bit number:

	•	 5 in 16-bit binary representation:

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

	•	 Then the compiler flips the bit to find its one’s complement which is:

1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0

By observing the sign bit, we can easily say that it is a negative number. If you analyze it
carefully, you will find that it is the two’s complement representation of –6. Hence the out-
put is –6.

Similarly, for Example 2, the character c is assigned with “A”, and A’s ASCII value is 65.
So, the compiler first converts 65 to its equivalent 16-bit binary number.

	•	 65 in 16-bit binary representation:

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

	•	 Then the compiler flips the bit to find its one’s complement which is:

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0

	•	 By observing the sign bit, we can easily say that it is a negative number. If you ana-
lyze it carefully, you will find that it is the two’s complement representation of −66.
Hence the output is −66.

NOTE

To easily find the output, add 1 to the operand’s value and change the sign. In
Figure 6.19 Example 1, the value of the operand is 5, so the output will be –(5 + 1) = 6.

6.8.4 ���������������������������������� Left Shift Operator (≪) and Right Shift Operator (≫)

This is a binary operator and acts upon two operands. The right operand specifies the
number of bits to be shifted left; the same number of 0’s will be added from the right. The
operation is quite simple. Let us take an example to understand it.

Suppose, x = 13 and we want to perform x << 2. Then every bit will be left shifted by two
bits, and two 0’s will be added from the right. Figure 6.21 demonstrates this shifting
operation.

110 C Programming

The two most significant bits (MSB) that come out will be discarded, and two 0’s will be
added from the right to the least significant bit (LSB). The result will be calculated by converting
the decimal equivalent of the 0th to 15th bits. Hence, the output in this case will be 52.

NOTE

After the left shift, the MSB will be dropped, and after the right shift, the LSB will be
dropped.

Users can also find out the result of left shift by just multiplying 2n and the num-
ber, where n is the number of bits to be shifted. In the above example, x is shifted by
two positions, equivalent to multiplying x by 22 (13 x 22=52), and the result will be 52.

To test the above concept, let us write a programming example and check whether the
result is correct or not. Students are encouraged to execute the following program
(Figure 6.22) and check the result.

Let us take another example for negative numbers (Figure 6.23). We know that negative
numbers are represented in memory by the two’s complement method.

To understand the output, we need to represent –13 using 16-bit representation:

	•	 +13 in 16-bit representation:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

	•	 One’s complement of the above representation:

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00

Two 0's Added

LSBMSB

Input=13

Output=52

Discarded

FIGURE 6.21
Two-bit left-shift operation.

/* Example-Left shift operator */
#include<stdio.h>
int main()
{

int a=13;
printf(Output="%d",a<<2);
return 0;

}

Output:
Output=52

FIGURE 6.22
Example program to test the left shift operator.

111Operators and Expressions

	•	 Add 1 to the above result to get its two’s complement:

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

Finally, the two’s complement of –13 is 1111111111110011 which is actually represented in
memory. We will apply a two-bit left shift to the above value to find the output (shown in
Figure 6.24).

Similarly, for the right shift operator the bits are shifted to the right. Two programming
examples and their output are shown in Figure 6.25, which are self-explanatory.

/* Example-Left shift operator */
#include<stdio.h>
int main ()
{

int a=-13;
printf("Output=%d",a<<2);
return 0;

}

Output:
Output=–52

FIGURE 6.23
Example program applying left shift to a negative number.

1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

11

Two 0's Added

LSBMSB

Input=–13

Output=–52

Discarded

FIGURE 6.24
Two-bit left-shift operation on –13.

/*Example-Right shift operator*/
#include<stdio.h>
int main()
{

int a=13;
printf("Output=%d",a>>2);
return 0;

}

Output:
Output=3

/*Example-Right shift operator*/
#include<stdio.h>
int main()
{

int a=–13;
printf("Output=%d",a>>2);
return 0;

}

Output:
Output=–4

FIGURE 6.25
Example programs showing the output of the right shift operator.

112 C Programming

6.9 ���������������������������������� Special Operators

Beside the operators described above, C supports some special operators that include the
following. These operators have several uses, and we will discuss them with some exam-
ples that describe the characteristics of these operators.

	 1.	Comma operator;
	 2.	sizeof() operator;
	 3.	& and *;
	 4.	−> (arrow) and (Dot).

In this section we will discuss the comma operator and the sizeof operator. Other operators
will be discussed whenever there is a need for them.

6.9.1 ���������������������������������� The Comma Operator

The comma operator permits two different expressions to appear in situations where only
one operation is ordinarily used. Comma separated operands can be chained together and
evaluated in a left-to-right sequence with the right-most value yielding the result of the
expression. Let us see this with an example (Figure 6.26).

As discussed above, the execution of a comma-separated operation will start from the
left; the rightmost value yields the result. In Example 1, when line number 2 is executed it
assigns 10 to a and 20 to b. Finally, the statement a+b is executed and the result, which is
30, is assigned to c. Similarly, in Example 2 when line number 2 is executed, the swapping
occurs by assigning a to c, b to a, and c to b. A glass analogy is shown in Figure 6.27 to
illustrate how swapping occurs.

A comma operator is used to separate the variable names during the declaration, and
also used in a for loop. We will discuss the for loop in Chapter 8.

/*Example-Comma Operator*/
#include <stdio.h>
int main ()
{

int a, b, c;
c = (a=10, b=20, a+b);
printf ("%d", c);
return 0;

}

Output
30

1
2
3

/*Example-Comma Operator*/
#include <stdio.h>
int main ()
{

int a=10, b=20, c;
c=a, a=b, b=c;
printf ("a=%d \n b=%d",a,b);
return 0;

}

Output
a=20
b=10

1
2
3

Addi�on of two numbers using
the comma operator

Swapping the content of two variables using
the comma operator

Example
1

Example
2

FIGURE 6.26
Example showing the use of a comma operator.

113Operators and Expressions

6.9.2 ���������������������������������� The sizeof Operator

The sizeof operator returns the number of bytes the operand occupies in memory. The
operands may be variables, constants, or data types. Figure 6.28 shows the way a program
uses a sizeof operator. Students are instructed to execute this program and analyze the
results on their own.

6.10 ���������������������������������� Expressions

An expression is a combination of variables, constants, and operators written according to
the syntax of the C language. In C every expression evaluates to a value (i.e., every expres-
sion results in some value of a certain type that can be assigned to a variable).

c = a a = b b = c

a b c

10 20

c

a
10

a

b
20

b

c
10

10

c a

20

a b

10

b c

Ini�al Condi�on

A�er c = a A�er a = b A�er b = c

a b c

20 10

Final Condi�on

FIGURE 6.27
Swapping two numbers using a glass analogy.

Example: sizeof operator
#include<stdio.h>
int main()
{

int s;
printf("\n%d", sizeof(float));
printf("\n%d", sizeof(s));
printf("\n%d", sizeof('A'));
return 0;

}

FIGURE 6.28
Using a sizeof operator.

114 C Programming

Some examples of C expression are shown in Table 6.8.

6.10.1 ���������������������������������� Evaluation of Expressions

Expressions are evaluated using an assignment statement of the form:

variable = expression

	 •	The variable is any valid C variable name;
	 •	When the statement is encountered, the expression is evaluated first and then replaces

the variable’s previous value on the left-hand side;
	 •	All variables used in the expression must be assigned values before evaluation is

attempted;
	 •	We can write only one variable on the left-hand side of = ; that is, the expression

x = k * i is legal, whereas k * i = x is illegal.

6.10.2 ���������������������������������� Rules for Evaluation of Expressions

	•	 First, parenthesized subexpressions are evaluated from left to right;
	•	 If parentheses are nested, the evaluation begins with the innermost subexpression;
	•	 The precedence rule is applied in determining the order of application of operators in

evaluating subexpressions;
	•	 The associability rule is applied when two or more operators of the same precedence

level appear in the subexpression;
	•	 Arithmetic expressions are evaluated from left to right using the rules of

precedence;
	•	 When parentheses are used, the expressions within the parentheses assume the high-

est priority.

TABLE 6.8

Examples of C Expressions

Algebraic Expression C Expression

a × b − c a ∗ b − c

(m + n)(x + y) (m + n) ∗ (x + y)

(ab/c) a ∗ b/c

3x2 + 2x + 1 3 ∗ x ∗ x + 2 ∗ x + 1

x
y

+c
�

�
��

�

�
��

x/y + c

115Operators and Expressions

6.11 ���������������������������������� Type Conversion

Sometimes we need to convert the value of an expression from one data type to another,
known as type conversion. Let us take an example (Figure 6.29) that shows the concept of
type conversion.

In this program an automatic type conversion is made by the compiler (i.e., from integer
to float conversion) and this is called type conversion or type casting.

Type casting in C is of two types: implicit and explicit.

6.11.1 ���������������������������������� Implicit Type Casting

C permits the mixing of constants and variables of different types in an expression. C auto-
matically converts any intermediate values to the proper type so that the expression can be
evaluated without losing any significance. This automatic type conversion is known as
implicit type conversion.

Figure 6.30 shows an example. In the program (Example 1), p is a float variable, and we
assign the value 2.56 to it. Here x is an integer. We assign the value of p to x, so the value of
p (i.e., 2.56) will automatically be converted into integer value 2. So, the output will be 2.

Example: Type Conversion
#include <stdio.h>
int main()
{

int x=3, y=6;
float z;
z=y-x;
printf("z= %f",z);
return 0;

}

Output
z=3.000000

Integer result
assigned to

float variable

FIGURE 6.29
Type conversion.

Example: Implicit Type Casting
#include<stdio.h>
int main()
{

float p=2.56;
int x;
x=p;
printf("x=%d", x);
return 0;

}

Output
x=2

Example: Implicit Type Casting
#include<stdio.h>
int main()
{

char ch ='A' ;
int x = ch ;
printf("x=%d", x) ;
return 0;

}

Output
x=65

Example
1

Example
2

FIGURE 6.30
Implicit type conversion example.

116 C Programming

Similarly, in Example 2, the character variable ch will be assigned with A. When we try to
assign the value of ch to an integer variable x, then implicitly the ASCII value of A, an inte-
ger, is assigned to x. So, the output will be 65.

6.11.2 ���������������������������������� Explicit Type Conversion

Often there may arise a situation where we want to force a type conversion in a way that is
different from automatic conversion. The syntax for doing this is shown in Figure 6.31.

Figure 6.32 shows the code for how to use the syntax to convert the type explicitly.
Students are advised to execute the program and see the result.

6.12 ���������������������������������� Operator Precedence and Associativity

Precedence helps us to decide which operation to perform first if our expression contains
several operations. For instance, in the following expression, several multiplications, divi-
sions, and other operations are present:

	 R � � � � � �3 5 8 2 6 7 9 3/ /

Hence, we require a precedence rule to follow. As in mathematics, we follow the
BODMAS rule that specifies the precedence of operators. There are several operators in the
C programming language; and we follow the precedence shown in Table 6.9.

VariableName = (TypeName) Expression;

Syntax

FIGURE 6.31
Syntax of explicit type conversion.

Example: Implicit Type Casting
#include<stdio.h>
int main()
{

float p=2.56;
int x;
x=(int)p;
printf("x=%d", x);
return 0;

}

Output
x=2

Example: Implicit Type Casting
#include<stdio.h>
int main()
{

char ch ='A';
int x = (int)ch;
printf("x=%d", x);
return 0;

}

Output
x=65

Example
1

Example
2

FIGURE 6.32
Example of explicit type conversion.

117Operators and Expressions

TABLE 6.9

Precedence and Associativity Table

Operators Type Associativity

()
[]
.
->
++
--

Parentheses (function call operator)
Array subscript
Member selection via object
Member selection via pointer
Post-increment
Post-decrement

Left to right

++
--
+
-
!
~
(type)
*
&
sizeof

Pre-increment
Pre-decrement
Unary plus
Unary minus
Unary logical negation
Unary bitwise complement
Cast
Dereference
Address
Determine size in bytes

Right to left

*
/
%

Multiplication
Division
Modulus

Left to right

+
-

Addition
Subtraction

Left to right

<<
>>

Bitwise left shift
Bitwise right shift

Left to right

<
<=
>
>=

Less than
Less than or equal to
Greater than
Greater than or equal to

Left to right

==
!=

Equal to
Not equal to

Left to right

& Bitwise AND Left to right

^ Bitwise exclusive OR Left to right

| Bitwise OR Left to right

&& Logical AND Left to right

|| Logical OR Left to right

?: Conditional operator Right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=

Assignment
Addition assignment
Subtraction assignment
Multiplication assignment
Division assignment
Modulus assignment
Bitwise AND assignment
Bitwise XOR assignment
Bitwise OR assignment
Bitwise left shift assignment
Bitwise right shift assignment

Right to left

, Comma Left to right

118 C Programming

Following the precedence is not enough to execute an expression. Consider the follow-
ing example:

	 R � �18 3 10 5/ /

There are several ways you can execute this expression if you follow the concept of pre-
cedence because * and / have the same precedence. Hence you get a different result for
different executions, as shown in Figure 6.33.

Figure 6.33 shows several possible ways a person can execute the above expression.
However, Figure 6.33a–d are not correct even though you get correct answers for some
executions; the correct one is shown in Figure 6.33(e), which follows an execution pattern,
from left to right. There are three operations to choose from: 18/3, 3*10, and 10/2. If you go
from left to right, the first operation encountered is 18/3, and you execute it. Now you
have two operations left to choose from, 6*10 or 10/2. You choose the first one to perform
because this is the first operation you encounter when you go from left to right. Finally, you
have only one operation to complete (i.e., 60/5), and you perform it to get your result. The
rule that you follow here (left to right execution rule) is known as the “rule of associativ-
ity.” This also plays an important role in executing expressions in C where the precedence
of operators is the same.

To elaborate further, let us take another example. Assume that we have three variables,
a, b, and c, with values 5, 6, and 7, respectively. Let us perform the following operation:

	 a b c= =

We cannot execute this expression from left to right, so we follow a right to left execu-
tion flow and end with a, b, and c having the values 7, 7, and 7, respectively.

From the above two examples, we find that not only the precedence of operators is
important; rather, associativity plays an essential role in executing expressions. Table 6.9
shows this precedence as well as its associativity.

6.13 ���������������������������������� Review Questions

6.13.1 ���������������������������������� Objective Type Questions

1.	��������������������������������� In the C programming language, the division operation returns __________, and the
modulus operator returns ____________.

2.	��������������������������������� The result of relational operators in C is either _____ or _____.
3.	��������������������������������� ____________ is the short from of the expression x=x*(y+z).

18 / 3 * 10 / 5
= 18 / 30 / 5
= 18 / 6
= 3

18 / 3 * 10 / 5
= 18 / 3 * 2
= 6 * 2
= 12

18 / 3 * 10 / 5
= 18 / 3 * 2
= 18 / 6
= 3

18 / 3 * 10 / 5
= 6 *10 / 5
= 6 * 2
= 12

18 / 3 * 10 / 5
= 6 *10 / 5
= 60 / 5
= 12

(a) (b) (c) (d) (e)

FIGURE 6.33
Execution of an expression in different orders.

119Operators and Expressions

4.	��������������������������������� In logical AND operation, when both inputs are 1, the output is _________.
5.	��������������������������������� In logical OR operation, when both inputs are 0, the output is ________.
6.	��������������������������������� Operators ++ and – – are unary operators. True/false?
7.	��������������������������������� The conditional operator requires two operators: ________ and ___________.
8.	��������������������������������� How many bitwise operators are there in C?
9.	��������������������������������� Two’s complement representation of –23 is _____________.

10.	��������������������������������� _____________ operator is used to find the size of any variable.
11.	��������������������������������� C language supports two kinds of type casting: ___________ and _____________.
12.	��������������������������������� __________ rule helps us to decide which operation to perform first if our expression

contains several operations.
13.	��������������������������������� __________ rule helps us to decide which operation to perform first if our expression

contains operators with the same precedence.

6.13.2 ���������������������������������� Programming Questions

1.	��������������������������������� Write a program to convert from centigrade to fahrenheit and vice versa.
2.	��������������������������������� Write a program to calculate the area of a triangle if three sides are given.

Hint: Use the sqrt() function and #include <math.h>
3.	��������������������������������� Write a program to calculate the area of a triangle where the base and height are given

as arguments.
4.	��������������������������������� Write a program to calculate the gross salary of a person if the user enters the basic

salary. Dearness Allowance (DA) should be 50 percent of basic salary, and House Rent
Allowance (HRA) is 10 percent of basic salary.

5.	��������������������������������� Write a program to check whether a number is even or odd using conditional
operators.

6.	��������������������������������� Write a program to find the biggest number among three numbers using conditional
operators.

7.	��������������������������������� Write a program to enter a four-digit number from the keyboard. Add the 1st and 4th
digit of the number entered, and print the result.

8.	��������������������������������� Write a program to convert radians to degrees and vice versa.
9.	��������������������������������� Write a program to check whether a year is a leap year or not. Use conditional

operators.
Hint: (year % 400 == 0 || (year % 100! = 0 && year % 4 == 0)) then the year is a leap
year.

10.	��������������������������������� Analyze the following programs to find the errors or outputs.

#include<stdio.h>
void main()
{
 int a=10,b=20,c;
 c=!(b%a);
 printf("%d",c);
}

#include<stdio.h>
void main()
{
 int a=5,b=6,c;
 c=(a>b)&&(b=99);
 printf("%d%d%d",a,b,c);
}

120 C Programming

#include<stdio.h>
void main()
{
 int a=5,b=6,c;
 c=(b>a)&&(b=99);
 printf("%d%d%d",a,b,c);
}

#include<stdio.h>
void main()
{
 int a=5,b=6,c;
 c=(b>a)||(b=99);
 printf("%d%d%d",a,b,c);
}

#include<stdio.h>
void main()
{
 int a=5,b=6,c;
 c=(a>b)||(b=99);
 printf("%d%d%d",a,b,c);
}

#include<stdio.h>
void main()
{
 int a=5,b;
 b=a++ + a++ + a++;
 printf("%d %d",a,b);
}

#include<stdio.h>
void main()
{
 int a=5,b;
 b=a++ + ++a + a++ + ++a;
 printf("%d %d",a,b);
}

#include<stdio.h>
void main()
{
 int a=5,b;
 b=++a + ++a + ++a + ++a;
 printf("%d %d",a,b);
}

#include<stdio.h>
void main()
{
 int a=5,b;
 b=++a + --a + ++a + a--;
 printf("%d %d",a,b);
}

#include<stdio.h>
void main()
{
 int a=-25,b;
 b=a<<3;
 printf("%d %d",a,b);
}

#include<stdio.h>
void main()
{
 int a=-25,b;
 b=a>>3;
 printf("%d %d",a,b);
}

#include<stdio.h>
void main()
{
 int a=6,b=7,c=8,d;
 d=a>b?a>c?a:b:c>a?a:c;
 printf("%d",d);
}

#include<stdio.h>
void main()
{
 int a=5;
 printf("%d %d %d",a++, a++, a++);
}

#include<stdio.h>
void main()
{
 int a=5;
 printf("%d %d %d",a++, ++a, a++);
}

6.13.3 ���������������������������������� Subjective Type Questions

1.	��������������������������������� What are operators and operands? Explain unary, binary, and ternary operators with
appropriate examples.

2.	��������������������������������� Explain the list of arithmetic operators supported by the C programming language.
Explain with an example to show their differences.

121Operators and Expressions

3.	��������������������������������� What are relational operators? List all relational operators found in the C language.
4.	��������������������������������� What is the difference between logical operators and bitwise operators? How do they

function? Explain with proper programming examples.
5.	��������������������������������� Write short notes on increment and decrement operators in C.
6.	��������������������������������� What is a conditional operator? Explain its syntax with an appropriate example.
7.	��������������������������������� Can a conditional operator be nested? If yes, explain with an appropriate example.
8.	��������������������������������� Explain two’s complement representation of negative numbers with an example.
9.	��������������������������������� List the special operators supported by C. Write at least two example uses of the

comma operator.
10.	��������������������������������� What is a sizeof operator? Write some programs to show how the sizeof operator

works.
11.	��������������������������������� Explain the rules for evaluating an expression in C.
12.	��������������������������������� What is type casting in C? Explain implicit and explicit type casting with examples.
13.	��������������������������������� What are precedence and associativity? Explain both these terms with appropriate

examples.
14.	��������������������������������� What are the benefits of using shorthand notations while writing expressions in C?

https://taylorandfrancis.com

123DOI: 10.1201/9781003188254-7

7
Basic Input/Output

7.1 � Introduction

Every program receives some input, processes it, and produces output. The C language
provides us with several predefined functions that help us supply input to the program
and generate output. Up until now, we have come across two such functions: scanf()
and printf(). To supply input to a program, we need a scanf() function; a program
produces output through a printf() function. The overall structure of a program may
take the form shown in Figure 7.1.

Besides the above functions, C provides other I/O (input/output) functions. These are
called predefined functions or library functions. The compiler knows how they work and
offers us a syntax to write them, such as the printf() and scanf() functions. This chap-
ter provides a detailed understanding of these functions, their syntax, and how to use
them in our programs.

There are numerous library functions available for I/O. They are classified into three
groups:

	 1.	Console I/O functions: These functions take input from a keyboard and produce output
through a display device like a monitor. Figure 7.2 shows an overall visualization of
this process.

	 2.	Disk or file I/O functions: We generally store files on our hard disk drive. We can write
information on a file and read data from a file too. To read or write data from a file,
we need some functions that are called file I/O functions. C language provides many
such functions, which we will discuss in Chapter 14.

	 3.	Port I/O functions: Several other functions are also available in C to perform I/O oper-
ations on ports, though those functions are out of the scope of this book.

This chapter concerns console I/O functions, divided into different categories, as shown in
Figure 7.3.

FIGURE 7.1
Three-step program structure.

scanf() c=a+b;
. . .

printf()

Input Func�on Output Func�onProcessing Code

124 C Programming

Most of a function’s definition is present in the <stdio.h> header file. But there are
some functions whose definition is not present there. Hence, I would like to introduce
another header file called “console input output” which is represented as <conio.h>.
This header file contains the definitions of all console I/O functions. Hence, when you use
any of these functions in your program, it is recommended to include this header file using
the following line above the main() function:

#include<conio.h>

7.2 � Unformatted Functions

Many functions come under this category, and we use them either to read a single charac-
ter through the keyboard or a string of characters. Similarly, we use some functions to
write a single character on the screen or a string of characters. Let us discuss the detail of
these functions.

7.2.1 � getchar() and putchar()

These two functions help in reading a character from the standard input unit (usually a
keyboard) and writing it to the standard output unit (usually a screen).

getchar(): Reads a character from the standard input device.
putchar(): Writes a character to the standard output device.

FIGURE 7.3
Classification of console I/O functions.

Console I/O
Func�on

Forma�ed
Func�ons

Unforma�ed
Func�ons

printf() scanf()

getchar()

putchar()
gets() puts()

getch()

getche()

putch()

FIGURE 7.2
Overall visualization of console I/O functions.

scanf() c=a+b;
. . . printf()

Input Func�on Output Func�onProcessing CodeKeyboard Monitor

125Basic Input/Output

	 1.	The getchar() function takes the form:

varName=getchat();

VarName is a character variable. When a user types a character in the keyboard, then
the getchar() function scans that character and assigns it to the VarName.

	 2.	The putchar() function takes the form:

putchar(varName);

Here VarName is a character variable that contains a character. The putchar() function
will send the value of the variable to the output unit for printing on the screen.

Let us take an example to explain the working of these two functions. Program 7.1
shows an example that declares a character variable ch, assigns a character using the
getchar() function, and displays the character using the putchar() function.

7.2.2 � gets() and puts()

These two functions help in reading a string from the standard input unit (usually a key-
board) and writing it to the standard output unit (usually a screen).

	 1.	gets() reads a string from the standard input device. It accepts the name of a string
as a parameter and fills the string with characters that are input from the keyboard.

PROGRAM 7.1 

1. #include <stdio.h>

2. #include <conio.h>

3. int main()

4. {

5. char ch;

6. printf("Type one Character: ");

7. ch=getchar();

8. printf("The typed character is: ");

9. putchar(ch);

10. return 0;

11. }

Output:
Type one Character: p
The typed character is: p

Explanation:
Line 5: Declare ch as a character.
Line 7: Read the typed character from the keyboard and assign it to ch.
Line 9: Display the character present in ch on the screen.

126 C Programming

	 2.	puts() writes a string to the standard output device. It accepts the name of a string
and displays the accepted string on the screen.

Program 7.2 shows an example of how to use the gets() and puts() functions for read-
ing and writing a string.

7.2.3 � getch() and getche()

These two functions will return the character that has been most recently typed. The “e” in
the getche() function means it echoes (displays) the character that you typed to the
screen. As against this getch() just returns the character that you typed without echoing

PROGRAM 7.2

1. #include <stdio.h>

2. #include <conio.h>

3. int main()

4. {

5. char str[50];

6. printf("Type a string[less than 50 characters]: ");

7. gets(str);

8. printf("\nThe string typed is: ");

9. puts(str);

10. return 0;

11. }

Output:
Type a string [less than 50 characters]: C programming Learn to Code
The string typed is: C programming Learn to Code

Explanation:
Line 5: �Creates a string str which will store 50 characters and allocate memory for

them. str[50] represents a character array. We will discuss the concept of char-
acter array in Chapter 10. For now, just assume that it is a long chain of 50
memory blocks and each block can store one character.

Line 6: �Prompt the user to enter a string of 50 characters, and this because we have
allocated space for 50 characters only.

Line 7: �Read the string from the keyboard when the user types it in and assign it to
the previously allocated block.

Line 8: �Will display “The string typed is:” for the user to see.
Line 9: �Will display the content of str which was previously assigned by the gets()

function. It reads the entire string from the memory and displays it on the
screen.

127Basic Input/Output

it. getch() simply halts program execution to wait for the user to press a key. In effect it
is a “pause” and waits for the user. Program 7.3 shows a simple program to illustrate the
difference between these functions.

7.2.4 � putch()

putch() will print a character on the screen. It is similar to the putchar() function
which also prints a character on the screen. Look at Program 7.4 and see how both have the
same function.

PROGRAM 7.3

1. #include<stdio.h>

2. #include<conio.h>

3. int main()

4. {

5. char ch;

6. printf("\nI am using the function getche() of C");

7. printf("\nPlease enter a character: ");

8. ch=getche();

9. printf("\nEntered character is %c",ch);

10. printf("\nI am using the function getch() of C");

11. printf("\nPlease enter a character: ");

12. ch=getch();

13. printf("\nEntered character is %c",ch);

14. getch();

15. return 0;

16. }

Output:

I am using the fun�on getche() of C

Please enter a character: r

Entered character is r

I am using the fun�on getch() of C

Please enter a character:

Entered character is u

In this case, we typed a character
‘r’, it is echoed on the screen and

displayed.

In this case, we typed a character
‘u’ but it is not echoed on the

screen and displayed.

Quiz: What is the difference between getchar(), getch(), and getche()? Write a pro-
gram and analyze the differences.

128 C Programming

7.3 � Formatted Functions

Formatted functions allow us to supply the input in a fixed format and obtain the output
in a specified form. There are two formatted functions available in C: printf() and
scanf(). In this section, we will discuss different formatting styles supported by these
two functions. We will use several examples to explain them in detail.

7.3.1 � printf() Function

As already discussed, the printf() function is one of the most used functions in C. The
syntax of this function is:

printf(“Format strings”, list of variables);

Program 7.5 will help you to learn more about the printf() function. This program adds
two numbers and shows the result.

PROGRAM 7.4

1. #include<stdio.h>

2. #include<conio.h>

3. void main()

4. {

5. 	 char ch = 'A';

6. 	 putchar(ch);

7. 	 putch(ch);

8. }

Output:
A A

PROGRAM 7.5

1. #include <stdio.h>

2. int main()

3. {

4. int a, b, c;

5. a = 5;

6. b = 7;

7. c = a + b;

8. printf(“%d + %d = %d\n”, a, b, c);

9. return 0;

10. }

129Basic Input/Output

7.3.2 � Formatting with printf()

The printf() function is known as a formatted function. So in this section we are going
to discuss some of the formatting principles of the printf() function. Formatting can be
applied to any data values and helps us to produce more readable output.

For integer formatting, we need to specify the syntax as follows:

%wd

Here,

	•	 w indicates the width of the field for output. However, if a number is greater than the
specified field width, it will be printed in full.

	•	 d specifies that the value to be printed is an integer.

For example, if you want to display an integer using a minimum of 8 spaces, you’d write
%8d in your printf statement.

Program 7.6 demonstrates this:

Output:
5+7=12

Explanation:
	•	 Line 4, int a, b, c, declares three integer variables named a, b, and c. The next

line 5 initializes the variable named a to the value 5.
	•	 Line 6 sets b to 7.
	•	 Line 7 adds a and b and “assigns” the result to c.
	•	 The printf statement then prints the line “5 + 7 = 12”. The %d placeholders in

the printf statement act as placeholders for values. There are three %d place-
holders, and at the end of the printf line there are three variable names: a, b,
and c. Printf matches up the first %d with a and substitutes 5. It matches the
second %d with b and substitutes 7. It matches the third %d with c and sub-
stitutes 12. Then it prints the completed line to the screen: 5 + 7 = 12. The +,
the =, and the spacing are a part of the format line and are embedded auto-
matically between the %d operators as specified by the programmer.

PROGRAM 7.6

1. #include<stdio.h>

2. int main()

3. {

4. 	 int x = 123;

5. 	 printf("Output- 1 123 displays %0d\n", x);

6. 	 printf("Output- 2 123 displays %1d\n", x);

7. 	 printf("Output- 3 123 displays %2d\n", x);

8. 	 printf("Output- 4 123 displays %3d\n", x);

130 C Programming

In the same way as for all the other output the compiler will create the space accordingly
and internally, as shown in Figure 7.6.

Note: If you write %09d, the program will display zeros before the number itself. In the
above example, printing 123 using %09d displays 000000123 (see Figure 7.7).

9. 	 printf("Output- 5 123 displays %4d\n", x);

10. 	printf("Output- 6 123 displays %5d\n", x);

11. 	printf("Output- 7 123 displays %6d\n", x);

12. 	printf("Output- 8 123 displays %7d\n", x);

13. 	printf("Output- 9 123 displays %8d\n", x);

14. 	printf("Output- 10 123 displays %9d\n", x);

15. 	return 0;

16. }

Output:

Output- 1 123 displays 123
Output- 2 123 displays 123
Output- 3 123 displays 123
Output- 4 123 displays 123
Output- 5 123 displays 123
Output- 6 123 displays 123
Output- 7 123 displays 123
Output- 8 123 displays 123
Output- 9 123 displays 123
Output- 10 123 displays 123

Notice that in the first four cases, 123 is displayed in the same way as when you normally use
%d. Why? Simple: the number of spaces on the screen that 123 can be displayed in is greater
than or equal to 3. In output 5 we are using %4d, so the compiler will create 4 spaces and
display the number by making a right alignment (see Figure 7.4).

In output 6 we are using %5d, so the compiler will create 5 spaces and display the num-
ber by making a right alignment (see Figure 7.5).

FIGURE 7.4
Analysis of output 5.

1 2 3

1 2 3 4

Output-5 123 displays

FIGURE 7.5
Analysis of output 6.

1 2

1 2 3 4

Output-6 123 displays 3

5

131Basic Input/Output

As discussed above all the alignments are right by default. To make it left align we have
to use a −(minus) sign. Program 7.7 demonstrates this.

PROGRAM 7.7

1. #include<stdio.h>

2. int main()

3. {

4. int x = 12;

5. int z = 12345;

6. printf("Output- 1 12 \t\t displays %9d\n", x);

7. printf("Output- 2 12 \t\t displays %09d\n", x);

8. printf("Output- 3 12 \t\t displays %-9d\n", x);

9. printf("Output- 4 12 \t\t displays %-09d\n", x);

10. printf("Output- 5 12345 \t displays %9d\n", z);

11. printf("Output- 6 12345 \t displays %09d\n", z);

12. printf("Output- 7 12345 \t displays %-9d\n", z);

13. printf("Output- 8 12345 \t displays %-09d\n", z);

14. return 0;

15. }

FIGURE 7.6
Analysis of the output produced by Program 7.6.

2 31Output –1 123 displays
2 3 41 5 6 7 8

2 31Output –2 123 displays

2 31Output –3 123 displays

2 31Output –4 123 displays

1 2 3Output –5 123 displays

1 2Output –6 123 displays 3

1Output –7 123 displays 2 3

Output –8 123 displays 1 2 3

Output –9 123 displays 1 2 3

Output –10 123 displays 1 2

9

3

FIGURE 7.7
Analysis of %09d.

0 0 0 0

1 2 3 4

123 displays 0

5

0 1 2 3

6 7 8 9

132 C Programming

For the real number formatting, we need to specify the syntax as follows:

%w.vf

Here,
w indicates the minimum number of positions that are to be used for the display of the

values.
v indicates the number of digits to be displayed after the decimal point.
f specifies that the value to be printed is a real number.
Now, let us take an example to show how will we use it (see Program 7.8).

Output:

PROGRAM 7.8

1. #include<stdio.h>

2. int main()

3. {

4. float x = 3.141592;

5. printf("Printing-1 3.141592 \t displays %f\n", x);

6. printf("Printing-2 3.141592 \t displays %1.1f\n", x);

7. printf("Printing-3 3.141592 \t displays %1.2f\n", x);

8. printf("Printing-4 3.141592 \t displays %3.3f\n", x);

9. printf("Printing-5 3.141592 \t displays %4.4f\n", x);

10. printf("Printing-6 3.141592 \t displays %4.5f\n", x);

11. printf("Printing-7 3.141592 \t displays %09.3f\n", x);

12. printf("Printing-8 3.141592 \t displays %-09.3f\n", x);

13. printf("Printing-9 3.141592 \t displays %9.3f\n", x);

14. printf("Printing-10 3.141592 \t displays %-9.3f\n", x);

15. return 0;

 }

133Basic Input/Output

Let’s apply this type of formatting on the string. Programs 7.9 and 7.10 shows two
examples.

Output:

PROGRAM 7.9

1. #include<stdio.h>

2. int main()

3. {

4. printf("%4.5s\n","C Programming Learn to Code");

5. printf("%10.7s\n","C Programming Learn to Code");

6. printf("%11.7s\n","C Programming Learn to Code");

7. printf("%12.7s\n","C Programming Learn to Code");

8. printf("%13.8s\n","C Programming Learn to Code");

9.

10. return 0;

11. }

Output:

134 C Programming

PROGRAM 7.10

1. #include<stdio.h>

2. int main()

3. {

4. printf("%31s\n","C Programming Learn to Code");

5. printf("%30s\n","C Programming Learn to Code");

6. printf("%29s\n","C Programming Learn to Code");

7. printf("%28s\n","C Programming Learn to Code");

8. printf("%27s\n","C Programming Learn to Code");

9. return 0;

10. }

Output:

The output of the above programs is self-explanatory. Students are encouraged to spend
more time on coding this type of program and analyze what happened to the output.

7.3.3 � scanf() Function

The scanf() function allows you to accept input from a standard input device, which for
us is generally the keyboard. The simplest form of scanf() looks like the following:

scanf(“format string”, &VariableName);

	•	 scanf takes at least two arguments.
	•	 The first one is a string that consists of format specifiers.
	•	 The rest of the arguments should be variable names preceded with the address of the

operator (&).

7.3.4 � Formatting with scanf

When we read an integer, the specification will be:

%wd

Let us see what happens when we use this in scanf(). Program 7.11 shows this.
In Program 7.12 we will extend this concept and see what happened to the value that

was discarded in Run-2.

135Basic Input/Output

PROGRAM 7.11

1. #include<stdio.h>

2. int main()

3. {

4. int x,y;

5. printf("Enter x and y:");

6. scanf("%4d%5d",&x,&y);

7. printf("x=%d,y=%d",x,y);

8. return 0;

9. }

Output:

Run-1:
Enter x and y: 5434 11232
x = 5434, y = 11232

Run-2:
Enter x and y: 23415 1223
x = 2341, y = 5

	•	 In the program, we take %4d and %5d and in Run-1 we provide a 4-digit num-
ber and a 5-digit number. So, the value is assigned to x and y, and displayed.

	•	 But in Run-2 we provide a 5-digit number and a 4-digit number so from the
number 23415 (5-digit number) only 2341 (because of %4d) is assigned to x and
the last number (i.e., 5) is assigned to y. The value 1223 (4 digit number) is not
assigned and left for the next scanf() call.

PROGRAM 7.12

1. #include<stdio.h>

2. int main()

3. {

4. int x,y,p,q;

5. printf("Enter x and y:");

6. scanf("%4d%5d",&x,&y);

7. printf("x=%d,y=%d",x,y);

8. printf("\nEnter p and q:");

9. scanf("%d%d",&p,&q);

10. printf("p=%d,q=%d",p,q);

11. return 0;

12. }

136 C Programming

Quiz: What will be the output of Program 7.12 if we write %1.4f in place of %4d and %2.5f
in place of %5d?

We can use the scanf() function to read a string too. The format for this can take the
following form. Program 7.13 shows an example which uses %ws; %wc is left for the stu-
dent. The output of the program is shown below and its explanation is shown in Figure 7.9.

%ws %wc

Students are encouraged to write C code and observe the output by changing the format
specifier and a different value for w.

Output:

Enter x and y: 23415 1223
x = 2341, y = 5
Enter p and q: 23 25
p = 1223, q = 23

Explanation:
Refer to Figure 7.8 to understand this explanation.

	 1.	 In Program 7.12, when the user enters two number 23415 and 1223, scanf only
reads 4 digits from the first number and assign them to x. This is because, %4d
means you can only read 4 or less than 4-digit numbers.

	 2.	The remaining number, that is 5, will be assigned to y.
	 3.	The next number 1223 is not assigned to y and will be available if the program

has any further scanf() functions (it will wait for the next scanf() call). As
our program contains another scanf() call the value 1223 will be assigned
to p.

	 4.	As the first variable p is assigned a value from the previous scanf() call, 23 is
assigned to q; 25 is also not assigned to any variable. This will wait for the next
scanf() call.

FIGURE 7.8
Execution steps of Program 7.12.

Enter x and y: 23415 1223

Enter p and q: 23 25

x=2341, y=5

p=1223, q=23

1

2

3

4

This is not assigned to y and
is le� for the next scanf call

Only 4 digits will be assigned
to x due to the %4d rule

137Basic Input/Output

7.4 � Review Questions

7.4.1 � Short Answer Questions

1.	 ___________ functions take input from the keyboard and produce output through a
display device such as a monitor.

2.	 ___________ function helps us to read and write on a file.
3.	 List the functions that you use to read a character from the input device.
4.	 List the functions that you use to write a character on the output device.
5.	 The getchar functions _______ a character from the standard input device and the

putchar function _______ a character to the standard output device.
6.	 Write down the syntax of the getchar and putchar functions.

PROGRAM 7.13

1. #include<stdio.h>

2. int main()

3. {

4. char str[20];

5. printf("Enter a string:");

6. scanf("%5s",str);

7. printf("String: %s",str);

8. return 0;

9. }

Output:

Enter a string: Incredible India
String: Incre

Explanation:

A user enters a string “Incredible India”, out of which the first five characters “Incre”
are assigned to the string.

FIGURE 7.9
Analysis of execution of Program 7.13.

Enter a String: Incredible India
String: Incre

Because of %5d

138 C Programming

7.	 List the functions that you use to read a string from the standard input unit.
8.	 List the functions that you use to write a string to the standard output unit.

7.4.2 � Programming Questions

1.	 Write a program to show the difference between the getchar, getch, and getche
functions.

2.	 Write a program to read a string from the user using the gets function and print it on
the screen. Rewrite the same program to read and display a string using the scanf
function. Is there any difference between the output of these two programs?

3.	 Analyze the program shown below and write down the output it produces.

 #include<stdio.h>

 int main()

 {

 printf("%-10.1s\n","Program");

 printf("%-10.2s\n","Program");

 printf("%-10.3s\n","Program");

 printf("%-10.5s\n","Program");

 printf("%-10.6s\n","Program");

 printf("%-10.7s\n","Program");

 return 0;

 }

4.	 Rewrite the program in Question 3 by removing the minus sign and write down the
output it produces. Analyze both the outputs and explain the differences.

5.	 Given three integers, 15, 150, and 1500, write a program that prints the integers on the
screen in hexadecimal format.

6.	 Write a program that uses getchar() and putchar() to read a character entered by the
user and write it to the screen.

7.	 What is the output of the following programs?

a.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(ch);
}

b.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 ch=ch+1;
 putchar(ch);
}

c.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 ch=ch++;
 putchar(ch);
 }

d.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(ch++);
 }

e.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(++ch);
 }

f.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(++ch);
 putchar(ch++);
 putchar(ch);
 putchar(ch--);
 putchar(ch);
 }

139Basic Input/Output

g.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(ch=97);
 }

h.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(ch=97+5);
 }

i.#include<stdio.h>
void main()
{
 int ch;
 ch='A';
 putchar(97+5);
 }

7.4.3 � Subjective Questions

1.	 What is the difference between getch() and getche()? Explain with an example.
2.	 What do the getchar() and putchar() functions do?
3.	 What is the difference between putc() and putchar()? Explain with an example.
4.	 What does the getchar() function return?
5.	 Within %10.3f, which part is the minimum field width specifier, and which one is the

precision specifier?
6.	 What is the difference between the scanf() and gets() functions?
7.	 Explain the syntax of the printf() and puts() functions. Which one is more con-

venient to use, and what is the difference between them?
8.	 List the functions whose definition is present in the <conio.h> header file. Explain

their syntax and their uses.
9.	 Write the syntax of all the console I/O functions with appropriate examples.

10.	 Every function returns something, such as the printf() function which returns the
number of characters it prints on the screen. The task is to list out all the functions you
have read so far and write what they return.

https://taylorandfrancis.com

141DOI: 10.1201/9781003188254-8

8
Control Structures

8.1 � Introduction

Whatever we have discussed till now, all problems have been relatively simple and did not
require any decision-making process. But in real life, we come across many problems
where we need to decide what to do and what not to do. Assume that we want to collect
some flowers from a tree, and the tree has many branches. So, we need to choose a branch
in such a manner that we can get the maximum number of flowers (Figure 8.1). Similarly,
we may have problems that need some work to be done repeatedly. So, to solve different
kinds of problems, we need the concept of control structure. Control structure determines
the flow of control in a program, that is, it indicates the order in which the various instruc-
tions in a program are executed inside the computer.

FIGURE 8.1
Decision-making problem example.

Which branch
should I choose so

that I can collect the
maximum number

of flowers?

142 C Programming

Control statements in C are divided into three categories (Figure 8.2):

	•	 Sequence Control Structure: This ensures that the instructions in the program are
executed in the same order in which they appear. As you can see in Figure 8.2a, there
are nine program statements, and the compiler starts execution from Statement 1 and
continues through to Statement 9 without skipping any of the intervening
statements.

	•	 Selection Control Structure: This is also known as decision control structure, and it
ensures the computer makes decisions about which statement is to be executed next.
Figure 8.2b shows the flow of execution. After executing Statement 2, the compiler
arrives at Statement 3 which is a condition, and if the condition is satisfied (is true)
then the compiler executes Statements 4, 5, and 6, otherwise it executes 7, 8, and 9.

	•	 Loop Control Structure: This helps the computer to execute group/single statements
repeatedly until a condition is satisfied. Figure 8.2c shows the flow of execution. The
compiler executes Statements 4 through 6 repeatedly until the condition becomes
true, and the moment it is false, it starts its execution from Statement 7 onwards.

All programs discussed so far come under the sequence control structure. In this chapter,
we will introduce several programs that will reflect the properties of the selection and loop
control structure. After completing this chapter, the student will know the following:

	•	 What different control structures are available in the C language.
	•	 The syntax of different control structures.
	•	 Be able to differentiate between sequence and selection control structure.
	•	 Write code for more realistic problems.
	•	 What a compound statement is.

The C language provides several keywords for control structure declaration. We classify all
those keywords according to our control structure category. Figure 8.3 shows a detailed

FIGURE 8.2
Categories of control statements.

Statement 1
Statement 2
Statement 3
Statement 4
Statement 5
Statement 6
Statement 7
Statement 8
Statement 9

Statement 1
Statement 2

Condi�on
Statement 4
Statement 5
Statement 6
Statement 7
Statement 8
Statement 9

Statement 1
Statement 2

Condi�on
Statement 4
Statement 5
Statement 6
Statement 7
Statement 8
Statement 9

Line of Code Line of Code Line of Code

TrueFalse

(b) Selec�on (c) Looping(a) Sequence

143Control Structures

classification of all control statements and introduces several new keywords. We divide the
selection control statements into two groups, because some selection statements do not
require conditions; we can break the flow of execution arbitrarily.

In the next section we will discuss all control statements, their syntaxes, flowcharts, and
some example programs that show their properties and execution procedure.

8.2 � Selection with if Statements

Suppose we are executing a set of instructions, and we want some instruction to execute
only when a specific condition is satisfied. With the help of an if selection control state-
ment, we can achieve this. The syntax of if, with and without a compound statement, is
shown in Figure 8.4.

Figure 8.4 shows the syntax where a single statement depends on the if condition. Hence,
we don’t require curly braces to enclose the statement. But when multiple statements
depend on a condition to execute them, we need to enclose them within curly braces. Even
if you enclose a single statement inside the curly braces, the compiler does not show an
error, but, for multiple statements, it is mandatory. In Figure 8.4 multiple statements

FIGURE 8.3
Classification of control structure.

144 C Programming

depend on the condition which is enclosed within the curly braces. When multiple state-
ments are enclosed inside curly braces, we call it a compound statement. Figure 8.5 shows the
flowchart of an if statement that describes the flow of execution.

The following example shows a program that uses an if statement to find out the biggest
among three numbers.

PROGRAM 8.1

1. #include <stdio.h>

2. int main()

3. {

4. int a, b, c, big;

5. printf("\nEnter three numbers:");

6. scanf("%d%d%d", &a, &b, &c);

7. big=a;

8. if(b > big)

9. big=b;

FIGURE 8.4
Syntax of the if selection control structure (a) without a compound statement (b) with a compound statement.

if (condition)
Statement;

Keyword
Test Expression

Single Statement Body
No Semicolon

if (condition)
{

Statement;
. . .
Statement;

}

Keyword Test Expression

Compound
Statement Body

No Semicolon

No Semicolon

(a) (b)

FIGURE 8.5
if statement flowchart.

Is
Condi�on

?

Statement (s)

Next statement if any

TrueFalse

145Control Structures

8.2.1 � Some Points to Remember

The reader is encouraged to remember the following points. These are common mistakes
made by a beginner. These points will help you understand the concept in greater detail
too.

	 1.	Putting a semicolon at the end of an if (condition) statement does not show an error.
But the statement following the if is executed directly even if the condition become
false:

10. if(c > big)

11. big=c;

12. printf("\nThe greater number = %d", big);

13. return 0;

14. }

Output:

Enter three numbers: 25 67 38
The greater number = 67

Explanation:

	•	 Line 4 declares four variables and allocates memory space for them.
	•	 Lines 5–6 prompt the user to input three numbers and store them in memory

locations designated a, b, c.
	•	 Line 7 assigns the value of a to big, assuming that initially a is big.
	•	 Lines 8–9 check whether b is bigger than big or not. If it is, then it assigns the

value of b to big, otherwise big will have its previous value intact.
	•	 Similarly, lines 9–10 do the same comparison with c.
	•	 Finally, line 11 displays the biggest number among a, b, and c.

PROGRAM 8.2

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.

#include <stdio.h>
int main()
{

int x=5, y=6;
if(x > y);
{

x=x+1;
y=y+1;

}
printf("\n x=%d", x);
printf("\n y=%d", y);
return 0;

}

Due to this semicolon,
line 7 and 8 gets
executed like normal
sequen�al execu�on.

146 C Programming

Quiz: What is the output of Program 8.2 if we remove the semicolon after the if
statement?

	 2.	If no curly braces are used in a compound statement then the statement immediately
following the if statement depends on the condition of the if statement. Any other
statement after the first statement does not depend on the if condition.

PROGRAM 8.3

1. #include <stdio.h>

2. int main()

3. {

4. int x=5, y=6;

5. if(x > y)

6. 	 x=x+1;

7. 	 y=y+1;

8. printf("\n x=%d", x);

9. printf("\n y=%d", y);

10. return 0;

11. }

Output:
x = 5
y = 7

Only line 6 depends on
the condition given in line
5. Line 7 executes sequen-
tially as if it is not a part of
the if condition.

8.3 � if-else Statement

If you analyze the concept of if-statements discussed in Section 8.2, you can quickly notice
that the if condition only shows what happens if the condition is true, but it does not show
what happens if the condition is false. The if-else construct will show what happens both
ways.

Output:

x=6

y=7

147Control Structures

We use an if-else statement to break the sequential flow of the execution of program
statements. We require a condition to do that. Some instructions depend on this condition
and others not. During the flow of execution, when the compiler encounters this condition,
it will decide which set of instructions will be executed next. Hence, there will be two
paths: one follows the truthfulness of the condition, and the other follows its falsity. The
remaining statement(s) will execute sequentially. The syntax of if-else, with and without
compound statements and flow of execution is shown in Figure 8.6.

In Figure 8.6, if the condition is satisfied, then the statement after the if is executed, else
the statement following the else is executed. Similarly, if the condition is satisfied, the
statements present inside the if block are executed, else the statement inside the else
block is executed. The figure shows the flow of execution. The flowchart shows that if the
test expression is evaluated to true, then all the statements present inside the body of the
if statement are executed, and if it (the test expression) is false, then the statement con-
tained in the body of the else part is executed.

Let us take some examples to show the flexibility of using an if-else control structure,
and how they help us in solving real-world problems. We will discuss two fundamental
programs. The first program is to check whether a number entered by the user is zero or
nonzero. The second program is to calculate the travel fare of a person. The person needs
to enter how many kilometers he or she has traveled.

FIGURE 8.6
(a) Syntax of if-else without compound statements; (b) Syntax of if-else with compound statements; (c) Flow chart
of if-else that shows the execution flow.

Keyword Test Expression

Single Statement Body
if(condition)

Statement;
else

Statement;

if(condition)
{

Statement;
. . .
Statement;

}
else
{

Statement;
. . .
Statement;

}

Keyword Test
Expression

Compound
Statements

Compound
Statements

Text
Expression

Body of else Body of if

Next statement if any

TRUEFALSE

(a)

(c) (b)

148 C Programming

8.3.1 � Write a Program to Check Whether a Number Entered by the User is Zero or
Nonzero

PROGRAM 8.4

1. #include <stdio.h>

2. int main()

3. {

4. int input;

5. printf("Enter an integer:");

6. scanf("%d", &input);

7. if(input)

8. printf("\nIt is Non-Zero");

9. else

10. printf("\nIt is Zero");

11. return 0;

12. }

Output:

Run-1
Enter an integer:0
It is Zero

Run-2
Enter an integer:65
It is Non-Zero

Explanation:
As we know the compiler will treat all nonzero values as true, and zero values as
false, so here the condition written in line 7 is as follows:

Line 7: if (input)

indicates that if the input is nonzero the compiler takes it as true and prints:

It is Non-Zero

But if the input is zero then the compiler takes it as false and hence the else statement
is executed which prints the output:

It is Zero

149Control Structures

8.3.2 � Write a Program to Calculate the Travel Fare of a Person

Write a program to calculate the travel fare of a person. If the person travels more than 20
km then he or she needs to pay Rs 7/km plus a minimum fare of Rs 100. If the person trav-
els less than or equal to 20 km, then he or she needs to pay Rs 10/km plus a minimum fare
of Rs 50. Find the total fare of the person if the traveled kilometers are entered into your
program.

To write a program for the above problem, we need to check one condition: whether the
person traveled more than 20 km or not. If true, then the total fare will be calculated as
follows:

	 Minimum Fare = 100

	 Fare Traveled km� �7

	 Total Fare Fare Minimum Fare � �

Otherwise, the total fare is calculated as follows:

	 Minimum Fare = 50

	 Fare Traveled km� �10

	 Total Fare Fare Minimum Fare � �

PROGRAM 8.5

1. #include <stdio.h>

2. int main()

3. {

4. int Tkm;

5. float Fare, mFare, tFare;

6. printf("\n How many kilometers have you traveled: ");

7. scanf("%d", &Tkm);

8. if(Tkm>20)

9. {

10. mFare=100;

11. Fare=Tkm*7;

12. tFare=Fare+mFare;

13. }

14. else

15. {

16. mFare=50;

17. Fare=Tkm*10;

150 C Programming

8.4 � Nested if-else Statements

It is possible to write an entire if-else construct within another if statement or an else state-
ment. This is called nesting of if-else, that is, the entire if-else construct is contained within
another if statement or else statement. The syntax of the nested if-else statement and its
flowchart are shown in Figure 8.7.

Let us write a program to show how to use nested if-else statements in solving prob-
lems. The first program we discuss here is to find the biggest among three numbers. There
are several ways to solve this problem, but we will try to write the program in such a man-
ner that it will reflect the syntax of the nested if-else.

18. tFare=Fare+mFare;

19. }

20. printf("Your total fare will be: %f", tFare);

21. return 0;

22. }

Output:

Run-1
How many kilometers have you traveled: 17
Your total fare will be: 220.000000

Run-2
How many kilometers have you traveled: 62
Your total fare will be: 534.000000

FIGURE 8.7
(a) Syntax of the nested if-else statement (b) Nested if-else flowchart.

Test Expression

Test Expression

StatementStatement

Body of else

Next statement(s) if any

TrueFalse

TrueFalse

(a) (b)

Keyword Test Expression

Single Statement Body or a set of
statements enclosed within curly braces.

if(condition)
{

if(condition)
Statement;

else
Statement;

}

151Control Structures

8.4.1 � Write a Program to Find the Biggest Among Three Numbers

PROGRAM 8.6

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

#include <stdio.h>
int main()
{

int A, B, C;
printf("\nEnter three numbers: ");
scanf("%d%d%d", &A, &B, &C);
if(A > B)
{

if(A > C)
printf("A= %d is greater", A);

else
printf("C= %d is greater", C);

}
else
{

if(B > C)
printf("B= %d is greater", B);

else
printf("C= %d is greater", C);

}
return 0;

}

Ne
st

ed
 B

lo
ck

s

Output:

Run-1
Enter three numbers: 23 56 78
C= 78 is greater

Run-2
Enter three numbers: 25 56 45
B= 56 is greater

8.5 � if-else-if Ladders

This is another form of if-else, where each else statement is associated with an immediate
if statement.

Syntax of an if-else-if ladder
 if (condition 1)
 statement 1;
 else if (condition 2)
 statement 2;
 else if (condition 3)
 statement 3;
 else if (condition n)
 statement n;
 else
 default statement;
 statement x;

152 C Programming

The conditions are evaluated from the top (of the ladder), downwards. As soon as a true
condition is found, the statement associated with it is executed and control is transferred
to statement x (skipping the rest of the ladder). The flowchart of the if-else-if ladder is
given in Figure 8.8.

There are many problems that need concepts like the if-else-if ladder. One such problem
is discussed in Section 8.5.1.

8.5.1 � Write a Program to Perform as a Four-Function Calculator

The objective of this program is to perform four arithmetic operations: addition, subtrac-
tion, multiplication, and division. The user needs to enter two numbers and an operation
symbol. For example, suppose the user enters 25 + 30, then our program must add the two
values and display the result as 55. Our program must read the operator and analyze what
to do with the operand.

PROGRAM 8.7

1. #include <stdio.h>

2. int main()

3. {

4. char op;

5. float number1, number2, result;

6. 	� printf("Enter two numbers and an operator in the following

format\n");

FIGURE 8.8
Flowchart of the if-else-if ladder.

Condi�on

Condi�on

Condi�on

Statement

Statement

Statement Statement

Next statement(s) if any

True

True

True

False

False

False

153Control Structures

7. 	 printf(" number1 operator number2\n");

8. 	 scanf("%f %c %f", &number1, &op, &number2);

9. 	 if(op == '*')

10. 	 result = number1 * number2;

11. 		 else if(op== '/')

12. 		 result = number1 / number2;

13. 			 else if(op=='+')

14. 			 result = number1 + number2;

15. 				 else if(op=='-')

16. 				 result = number1 - number2;

17. 					 else

18. 					� printf("Please enter a correct

operator");

19. 	 printf("%f %c %f = %f\n", number1, op, number2, result);

20. 	 return 0;

21. }

Output:

Run-1
Enter two numbers and an operator in the following format
number1 operator number2
3.6 + 7.8
3.600000 + 7.800000 = 11.400000

Run-2
Enter two numbers and an operator in the following format
number1 operator number2
25 * 35
25.000000 * 35.000000 = 875.000000

Run-3
Enter two numbers and an operator in the following format
number1 operator number2
45 − 5.7
45.000000 – 5.700000 = 39.299999

Explanation:
We declare three float variables, number1, number2, and result (see line 5). To read
the operator, we take a character variable op (line 4). Lines 6–8 read the operand and
operator and store them in appropriate variables. Lines 9–18 represent the if-else-if
ladder that performs the actual operation. For any input one condition will be satis-
fied. If the user enters any wrong input, then line 18 will execute and prompt the
user to correct his or her input. Finally, line 20 displays the result in a readable
format.

154 C Programming

8.6 � Compound Statements

A compound statement is a set of statements enclosed within a pair of curly braces, “{“ and
“}”.. It (also called a "block") typically appears as the body of another statement, such as an
if statement. Compound statements are not a simple sequence of executable statements,
but can also contain variable declarations at the beginning.

Program 8.8 shows the output that describes how the compiler treats a compound
statement.

PROGRAM 8.8

1. #include <stdio.h>

2. int main()

3. {

4. int i=10;

5. {

6. int i=20;

7. printf("\nInside compound statement i = %d", i);

8. }

9. printf("\nOutside compound statement i = %d", i);

10. return 0;

11. }

Output:
Inside compound statement i = 20
Outside compound statement i = 10

Explanation:
	•	 The value of i inside and outside of the compound statement does not

coincide.
	•	 The value of i inside the compound statement is local to that compound

statement block, so the output is 20. But the i that declares outside the com-
pound statement is local to the function main(), so the output is 10.

	•	 Generally, compound statements are used in control statements where a
group of statements is executed according to a particular condition. The
group of statements is enclosed within two curly braces “{“ and “}”..

155Control Structures

8.7 � Multiway Selection with Switch Statements

This is a selection control structure that helps in selecting some lines to execute from a
number of choices given. It causes a particular statement (or a group of statements) to be
chosen from several available groups.

	•	 Figure 8.9 shows the syntax of the switch case and its flowchart. First, the expression
(n) following the keyword switch is evaluated.

	•	 The value given by the expression (n) is then matched one by one against the constant
value that follows the case statement.

	•	 When a match is found, the program executes the statement following that case
(body of the case).

	•	 When a break statement is encountered in that case, flow exits the switch
statement.

	•	 If no match is found with any of the case statements, the statement following the
default (body of the default) is executed.

In the following, we show an example program to explain the concept of a switch case
statement. This program will read the numbers from 1 to 7 and display the corresponding
day name, where 1 corresponds to Sunday, 2 corresponds to Monday, and so on.

FIGURE 8.9
(a) Switch statement syntax; (b) Flowchart of switch statement.

switch(n)
{

case 1:
Statement;
. . .
Statement;
break;

case 2:
Statement;
. . .
Statement;
break;

. . .

. . .
default:

Statement;
}

Body of
case 1

Colon
a�er every

case

Keywords
switch
case
break
default

Integer or
Character
Constant

Switch
Variable Switch variable

equal to case 1

Switch variable
equal to case 2

Body of
case 1

End

TRUE

FALSE

FALSE

Body of
case 2

Body of
default

Body of
case 2

Body of
default

TRUE

(a) (b)

156 C Programming

PROGRAM 8.9

1. #include <stdio.h>

2. int main()

3. {

4. int x;

5. printf("Enter an integer between 1 and 7:");

6. scanf("%d",&x);

7. switch(x)

8. {

9. 		 case 1:

10. 			 printf("\n Sunday");

11. 			 break;

12. 		 case 2:

13. 			 printf("\nMonday");

14. 			 break;

15. 		 case 3:

16. 			 printf("\nTuesday");

17. 			 break;

18. 		 case 4:

19. 			 printf("\nWednesday");

20. 			 break;

21. 		 case 5:

22. 			 printf("\nThursday");

23. 			 break;

24. 		 case 6:

25. 			 printf("\nFriday");

26. 			 break;

27. 		 case 7:

28. 			 printf("\nSaturday");

29. 			 break;

30. 		 default:

31. 			 printf("\nMatch not found");

32. }

33. return 0;

34. }

157Control Structures

8.7.1 � Some Points to Remember

	 1.	A maximum 257 cases are possible within a switch statement.
	 2.	The cases inside a switch statement can be placed in any sequence.

Output:

Run-1
Enter an integer between 1 and 7:3
Tuesday

Run-2
Enter an integer between 1 and 7:9
Match not found

PROGRAM 8.10

1. #include<stdio.h>

2. void main()

3. {

4. int x=2;

5. switch(x)

6. {

7. 		 case 3:

8. 			 printf("\nI am in case 3");

9. 			 break;

10. 		 case 1:

11. 			 printf("\nI am in case 1");

12. 			 break;

13. 		 case 2:

14. 			 printf("\nI am in case 2");

15. 			 break;

16. 		 default:

17. 			 printf("\nI am in default");

18. 	}

19. }

Output:

I am in case 2

158 C Programming

	 3.	The default case is not compulsory. It can be placed anywhere inside the switch
statement.

PROGRAM 8.12

1. #include<stdio.h>
2. void main()
3. {
4. int x=2;
5. switch(x)
6. {
7. 	 case 1:
8. 		 printf("\nI am in case 1");
9. 	 case 2:
10. 		 printf("\nI am in case 2");
11. 	 default:
12. 		 printf("\nI am in default");
13. }
14. }

PROGRAM 8.11

1. #include<stdio.h>
2. void main()
3. {
4. int x=2;
5. switch(x)
6. {
7.	 case 3:
8.		 printf(“\nI am in case 3”);
9.		 break;
10.	 default:
11.		 printf(“\nI am in default”);
12.	 case 1:
13.		 printf(“\nI am in case 1”);
14.		 break;
15.	 case 2:
16.		 printf(“\nI am in case 2”);
17.		 break;
18. }
19. }

Output:
I am in case 2

	 4.	If no break statement is there then all the statements inside the switch will be exe-
cuted from the point where the case satisfies.

159Control Structures

8.8 � goto Statement

The goto statement is used to alter the normal sequence of program execution by uncondi-
tionally transferring control to some other part of the program.

goto label;
Syntax</>

	•	 The label is an identifier used to label the target statement to which control will be
transferred.

	•	 The target statement must be labeled, and it must be followed by a colon (:).

8.8.1 � Notes on goto

	•	 Avoid goto statements! They make a C programmer’s life miserable.
	•	 Their use is one of the reasons why programs become unreliable, unreadable, and

hard to debug.
	•	 goto statements take control wherever you want; however almost always there is a

more elegant way of writing the same program using if, for, while, and switch.

Consider the following program that prints the numbers from 1 to 10 using goto.

Output:

I am in case 2
I am in default

PROGRAM 8.13

1. #include<stdio.h>

2. void main()

3. {

4. 	 int i=0;

5. 	 loop:

6. 		 i=i+1;

7. 	 if(i<=10)

8. 	 {

9. 		 printf(" %d",i);

10. 		 goto loop;

11. 	 }

12. }

160 C Programming

Let us take another example. The following program finds the factorial of a number.

8.9 � Introduction to Loops

A loop is nothing but the execution of a statement or a series of statements repeatedly until
the work is done. To make sure that it ends, we must have a condition that controls the
loop. The loop control structure is generally divided into three sections and takes the form
as shown in Figure 8.10.

PROGRAM 8.14

1. #include<stdio.h>

2. void main()

3. {

4. 	 int x=0, N, fact=1;

5. 	 printf("Enter a number: ");

6. 	 scanf("%d", &N);

7. 	 inr:

8. 		 x=x+1;

9. 	 if(x<=N)

10. 	 {

11. 		 fact=fact*x;

12. 		 goto inr;

13. 	 }

14. 	 printf("Factorial= %d", fact);

15. }

Output:

Enter a number: 5
Factorial= 120

Output:

1 2 3 4 5 6 7 8 9 10

Explanation:

	•	 In the above program, i is initialized at 0. The increment portion of the i value
is stored inside the label;

	•	 Inside the if statement the value of i is printed and the goto statement takes
control to the label where i is incremented until the condition inside the if is
false.

161Control Structures

	 1.	Loop initialization: Initialization must be done before the first execution of the loop
body. The initialization statement of a loop is always executed once.

	 2.	Loop update: The stopping condition of a loop can only be achieved by loop updat-
ing. A loop update is a statement inside the loop body that updates in each iteration
and changes the stopping condition from true to false.

	 3.	Stopping condition: This is a condition that controls the loop for execution. The
whole body of the loop will be executed until the stopping condition becomes false.

8.10 � while Loops

A while loop is a control flow statement that allows code to be executed repeatedly based on
a given condition.

	•	 The while construct consists of a block of code and a condition.
	•	 The condition is first evaluated – if the condition is true the code within the block is

then executed.
	•	 This repeats until the condition becomes false (while loops check the condition before

the block is executed).
	•	 The while loop is often called a pre-test loop or entry-controlled loop.

The syntax of the while loop is shown in Figure 8.11.
Suppose you want to print your name ten times, then one way to solve this problem is

to use 10 printf() statements which will print your name. But this type of problem can
be solved easily by a while loop.

FIGURE 8.10
Sections of a loop.

Ini�aliza�on

Stopping
Condi�on

Body of the Loop

Loop Update

End

162 C Programming

PROGRAM 8.15

1. #include<stdio.h>

2. void main()

3. {

4. 	 int i=0;

5. 	 while (i < 10)

6. 	 {

7. 		 printf(“\nC Programming Learn to Code”);

8. 		 i = i + 1;

9. 	 }

10. }

Output:

C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code

Explanation:

	•	 Line 4 (i.e., int i=0) will initialize the value of i to 0.
	•	 Line 5 is our while loop which includes the condition i<10 that indicates the

statement in between the curly braces (lines 6 and 9) will execute until i<10
becomes false.

	•	 To make the condition false the i value should be incremented and this is
done in line 8 (i=i+1). If this line is not included, then the loop will execute
endlessly, which is an infinite loop.

	•	 Line 7 is our statement which is to be executed. As this statement is executed
ten times so “C Programming Learn to Code” will be printed ten times.

FIGURE 8.11
while loop syntax.

Initialization;
while (condition)
{

Statement 1;
Statement 2;
. . .
Statement n;
Increment/Decrement;

}

All statements are
executed un�l the
condi�on becomes
true.

Initialization and the
increment/decrement
statement are musts to
start and stop the execution.

Keyword

while

163Control Structures

Figure 8.12 shows the integration between the syntax and the program.
Let’s take another example that explains more about while loops. This program will

calculate the simple interest for three sets of p, n, and r. Here p stands for the principal
amount, n for the number of years, and r for the rate of interest.

PROGRAM 8.16

1. #include<stdio.h>

2. void main()

3. {

4. 	 int p, n, count;

5. 	 float r, si;

6. 	 count=1;

7. 	 while (count<=3)

8. 	 {

9. 		 printf("\nEnter value of p, n and r: ");

10. 		 scanf("%d %d %f", &p, &n, &r);

11. 		 si = p*n*r/100;

12. 		 printf("\nSimple Interest=Rs. %f ", si);

13. 		 count = count + 1;

14. 	 }

15. }

Output:

Enter value of p, n and r: 5000 3 10
Simple Interest=Rs. 1500.000000
Enter value of p, n and r: 7500 2 15
Simple Interest=Rs. 2250.000000
Enter value of p, n and r:15000 6 4
Simple Interest=Rs. 3600.000000

Explanation:

The body of the while loop will be executed three times for count 1, 2 and 3, because
our condition is count <= 3. Every time it enters the loop, it asks for the value of p, n,
r, and then calculates the simple interest and produces the result.

FIGURE 8.12
Integration between syntax and program.

initialization ;
while (condition)
{

Statement 1;
Statement 2;
. . .
Statement n;
increment/decrement;

}

#include<stdio.h>
void main()
{

int i=0;
while (i < 10)
{

printf(“\nC Programming Learn to Code”);
i = i + 1;

}
}

Condi�on

164 C Programming

Figure 8.13 shows the flowchart of the while loop. The increment/decrement statement
is a part of the loop body. The body executes only when the condition is satisfied, other-
wise control goes out of the loop.

8.11 � do-while Loops

As with the while loop a do-while loop is also a control flow statement that allows code to be
executed repeatedly based on a given condition.

	•	 The do-while construct consists of a block of code and a condition. First, the code
within the block is executed, and then the condition is evaluated. If the condition is
true, the code within the block is executed again. This repeats until the condition
becomes false.

The syntax of a while loop and do-while loop are similar to each other, except the condition
is written after the body of the loop. The syntax of the do-while loop is given in Figure 8.14
and the flowchart is given in Figure 8.15.

Program 8.17 shows the program code that checks whether a number is a palindrome or
not using a do-while loop. A palindrome number is a number that remains the same after
it is reversed. For example, 151 is a palindrome number because if reversed it is still 151.
But, if you consider 256, then the reverse is 652. Hence 256 is not a palindrome number.

FIGURE 8.14
do-while loop syntax.

initialization
do

;

{
Statement 1;
Statement 2;
. . .
Statement n;
increment/decrement;

}while (condition);

All the statement
gets executed until
the condition
becomes true.

Ini�aliza�on and the increment/
decrement statement must
start and stop the execu�on.

Semicolon compulsory

FIGURE 8.13
Flowchart of a while loop.

Condi�on Exit from
Loop

Ini�aliza�on

True

False

Body of the while Loop
Increment/Decrement

165Control Structures

PROGRAM 8.17

1. #include<stdio.h>

2. void main()

3. {

4. 	 int N,rev=0,digit,temp;

5. 	 printf("Input the number:");

6. 	 scanf("%d",&N);

7. 	 temp=N;

8. 	 do

9. 	 {

10. 		 digit=N%10;

11. 		 rev=rev*10+digit;

12. 		 N=N/10;

13. 	 }while(N!=0);

14

15. 	 if(temp==rev)

16. 		 printf("PALINDROME NUMBER\n");

17. 	 else

18. 		 printf("NOT PALINDROME\n");

19.

20. }

Output:

Run-1
Input the number:12345
NOT PALINDROME

Run-2
Input the number:12521
PALINDROME NUMBER

FIGURE 8.15
Flowchart of a do-while Loop.

Condi�on

Body of the do-while Loop

Exit from
Loop

Ini�aliza�on

True

False

Increment/Decrement

166 C Programming

In Figure 8.16, N=345 is the input to our do-while loop, and 543 is the output, which is
the reverse of 345. At each iteration, the number is divided by 10. After iteration 3, N
becomes 0 and the iteration stops. The reverse number is also calculated in each iteration;
in iteration 1, Rev=5, in iteration 2, Rev=54, and finally, at iteration 3, Rev=543. You can
read the figure from ➀ through ➅ to understand its execution procedure. After we get the
reverse number in Rev, we compare it with temp (temp contains the value of N; see line
number 7) and print out whether the number is a palindrome or not. Why do we keep the
value of N in temp? Because, after iteration 3, N becomes 0. But we need the value of N to
compare with Rev, that’s why we keep the value of N in temp.

8.11.1 � Difference Between while and do-while Loops

There is a minor difference between the working of while and do-while loops.

	•	 The while loop tests the condition before executing any of the statements within a
while loop, but the do-while loop tests the condition after executing the statements at
least once.

	•	 The do-while executes the statements at least once even if the condition is false, but the
while loop does not execute any statement if the condition is false.

	•	 The do-while loop is often called a post-test loop or exit-controlled loop. Similarly, the
while loop is called an entry-controlled loop or pre-test loop.

Figure 8.17 illustrates the concept.

Explanation:

To check whether a number is a palindrome, we must reverse it. Line numbers 8–13
do this work. The next step is easy; we need to compare the reversed number with
the original one for similarity, and if it is similar then the number is a palindrome.
Lines 15–18 do this work. The tricky part of this program is to find the reverse. To
understand this, see Figure 8.16.

FIGURE 8.16
Execution steps (Lines 8–13).

345
340

10 34

5

34
30

10 3

4

3
0

10 0

3

Rev=Rev * 10 + digit
Rev=0*10+5
Rev=5

Rev=Rev * 10 + digit
Rev=5*10+4
Rev=54

Rev=Rev * 10 + digit
Rev=54*10+3
Rev=543

N=345

Itera�on-1 Itera�on-2 Itera�on-3

Input

Output

N=0
1

2

3 5

4 6

167Control Structures

In Figure 8.17, a sample program is given that shows the execution of a while loop. You
can see that, as the condition becomes false at line 2, control directly jumps to line 7. Lines
3 to 6 do not get executed and are marked with a cross symbol (🗴). Hence, the output in this
case will be y = 5. The same program is also written with a do-while loop in Figure 8.17. We
know that the condition of the do-while loop executes after the execution of the body of the
loop. In this case also, the condition is false. So, it will not iterate and will instead exit from
the loop after executing line 6 and jump to line 7. But before exiting, it will have already
executed lines 1 to 5. You can see that all the lines are executed at least once. Hence the
output is x = 2 y = 5.

8.12 � for Loops

A for loop is a control statement which allows the code to execute repeatedly. It is the most
popular looping construct in C. The for loop combines all the sections of a looping control
structure into a single line, though the execution is the same as other looping techniques.

There is a slight difference between the syntax of a while loop and a for loop. Here the
initialization, condition, and update section are written in a single line. Figure 8.18 shows
the syntax of the for loop.

FIGURE 8.18
for loop syntax.

for(initialization;condition;increment/decrement)
{

Statement 1;
Statement 2;
.
.
.
Statement N;

}

Statements
execute, if

the condi�on
isa�sfied

Ini�aliza�on, condi�on, and increment/decrement in the
same line separated with a semicolon.

FIGURE 8.17
Difference between while loops and do-while loops.

void main()
{

int x=2, y=5;
while(x>y)
{

printf(“x=%d”, x);
x=x+1;

}
printf(“y=%d”, y);

}

void main()
{

int x=2, y=5;
do
{

printf(“x=%d”, x);
x=x+1;

}while(x>y);
printf(“y=%d”, y);

}

Output
y=5

Output
x=2 y=5

Condi�on
false here;
it will not
iterate.

Condi�on
false here;

control
jumps to

line 7

1
2
3

4
5
6

7

1
2
3

4
5
6

7

(a) (b)

168 C Programming

	•	 The statement inside the for loop is executed until the condition becomes false;
	•	 Control first initializes the variable, then checks the condition, and enters the loop for

executing the statements.
	•	 After executing the statements, it will increment the loop counter and again will

check the condition.

To understand the execution procedure, we need to observe the syntax in a different fash-
ion, as shown in Figure 8.19. Let us assign numbers from 1 to 4 to the different components
of a for loop. As you can see, the initialization statement is assigned with ➀, the condition
with ➁, the increment/decrement with ➂, and finally, statements inside the for-loop body
are assigned with ➃. ➀ executes only once, and ➁ to ➃ will iterate until the condition in ➁
is satisfied. The line designated as “true” indicates that when the condition in ➁ is satisfied,
control starts executing all the statements present in ➃. Then it executes the increment/
decrement statement in ➂ and again checks the condition in ➁. This way it will form an
execution circle. When the condition in ➁ becomes false, control exits from the loop.

The for loop can take different forms. The following programs show all the forms of the
for loop for printing the natural numbers from 1 to 10.

I. #include<stdio.h>
void main()
{
 int i=1;
 for(; i<=10 ; i++)
 printf(“%d”,i);
}

II. #include<stdio.h>
void main()
{
 int i;
 for(i=0; i<=10 ; i++)
 printf(“%d”,i);
}

III.#include<stdio.h>
void main()
{
 int i;
 for(i=1; i<=10 ;)
{
 printf(“%d”,i);
 i=i+1;
}
}

IV. #include<stdio.h>
void main()
{
 int i=1;
 for(; i<=10 ;)
{
 printf(“%d”,i);
 i=i+1;
}
}

FIGURE 8.19
Execution of the for loop.

for(initialization;condition;increment/decrement)
{

Statement 1;
Statement 2;
.
.
.
Statement N;

}

1 2 3

4

1

2

4 3Fa
lse

Exit from the
Loop

169Control Structures

V. #include<stdio.h>
void main()
{
 int i;
 for(i=0; i++<10 ;)
 printf(“%d”,i);
}

All these programs will produce the output:

1 2 3 4 5 6 7 8 9 10

Students are encouraged to write the above code using any C compiler and verify the out-
put and try to analyze the execution process of these code segments.

	•	 It is also possible to use two initialization statements, two increment/decrements,
and two conditions inside a for loop. But they should be separated by commas. In the
following Program 8.18, we display the numbers from 1 to10 and 10 to 1 simultane-
ously using a single for loop. The code follows a simple structure and is
self-explanatory.

PROGRAM 8.18

1. #include<stdio.h>

2. void main()

3. {

4. 	 int i, j;

5. 	 for(i=1,j=10;i<=10,j>=1;i++,j--)

6. 	 {

7. 		 printf(“\n%d\t”,i);

8. 		 printf(“%d”,j);

9. 	 }

10. }

Output:

	 1	 10
	 2	 9
	 3	 8
	 4	 7
	 5	 6
	 6	 5
	 7	 4
	 8	 3
	 9	 2
	 10	 1

170 C Programming

In the following section, we will write code for some sample programs that reflects the
property of the for loop and its strengths as compared to the other loop control structures
discussed above.

Now let’s write a program to find the factorial of a number (n), which is calculated by
the formula: factorial (n) = n × (n − 1) × (n − 2)… × 1

For example: factorial (4) = 4 × 3 × 2 × 1 = 24. The code is shown in Program 8.19 and the
execution of the program is shown in Figure 8.20. The figure shows the iterations for
num=4.

PROGRAM 8.19

1. #include<stdio.h>

2. void main()

3. {

4. 	 int num,i,fact=1;

5. 	 printf("Enter the number:");

6. 	 scanf("%d",&num);

7. 	 for(i=num;i>0;i--)

8. 	 {

9. 	 fact=fact*i;

10. 	 }

11. 	 printf("\nNumber= %d Factorial=%d",num,fact);

12. }

Output:

Enter the number:5
Number= 5 Factorial=120

The next program we consider is to check whether a number is a palindrome or not. We
already have written the code in Program 8.17. Let us rewrite it using a for loop.

FIGURE 8.20
Execution of Program 8.18.

i=4

4>0

fact=1*4
=4 4--

3>0

fact=4*3
=12 3--

2>0

fact=12*
2=24 2--

1>0

fact=24*
1=24 1--

0>0

fact=24*
1=24 0--

Exit

Fact
=1

Itera�on 5Itera�on 4Itera�on 3Itera�on 2Itera�on 1

171Control Structures

8.12.1 � Some Solved Problems (Printing Patterns)

#include<stdio.h>
void main()
{
	 int n,i,k,c=1;
	 printf("Enter the number of rows: ");
	 scanf("%d",&n);
	 for(i=1;i<=n;i++)
	 {
		 for(k=1;k<=i;k++)
		 {
			 printf(" %d ", c);
			 c++;
		 }
		 printf("\n");
	 }
}

Output
Enter the number of rows: 4
1
2 3
4 5 6
7 8 9 10

PROGRAM 8.20

1. #include<stdio.h>

2. void main()

3. {

4. int N,rev=0,digit,temp;

5. printf("Input the number:");

6. scanf("%d",&N);

7. temp=N;

8. for(; N!=0 ; N=N/10)

9. {

10. 	 digit=N%10;

11. 	 rev=rev*10+digit;

12. }

13. if(temp==rev)

14. 	 printf("\n PALINDROME NUMBER ");

15. else

16. 	 printf("\n NOT PALINDROME ");

17. }

Output:

Run-1
Input the number:12521
PALINDROME NUMBER

Run-2
Input the number:4532
NOT PALINDROME

172 C Programming

#include<stdio.h>
void main()
{
	 int n,i,k;
	 printf("Enter the number of rows: ");
	 scanf("%d",&n);
	 for(i=1;i<=n;i++)
	 {
		 for(k=1;k<=i;k++)
		 {
			 printf(" %d ", k);
		 }
		 printf("\n");
	 }
}

Output
Enter the number of rows: 4
1
1 2
1 2 3
1 2 3 4

#include<stdio.h>
void main()
{
	 int n,i,k;
	 printf("Enter the number of rows: ");
	 scanf("%d",&n);
	 for(i=1;i<=n;i++)
	 {
		 for(k=1;k<=i;k++)
		 {
			 printf(" %d ", i);
		 }
		 printf("\n");
	 }
}

Output
Enter the number of rows: 4
1
2 2
3 3 3
4 4 4 4

#include<stdio.h>
void main()
{
	 int n,i,j;
	 printf("Enter the number of rows: ");
	 scanf("%d",&n);
	 for(i=1;i<=n;i++)
	 {
		 for(j=n;j>=i;j--)
		 {
			 printf(" %d ", j);
		 }
		 printf("\n");
	 }
}

Output
Enter the number of rows: 4
4 3 2 1
4 3 2
4 3
4

173Control Structures

#include<stdio.h>
void main()
{
	 int n,i,j,k;
	 printf("Enter the number of rows: ");
	 scanf("%d",&n);
	 for(i=1;i<=n;i++)
	 {
		 for(j=1;j<=n-i;j++)
		 {
			 printf(" ");
		 }
		 for(k=1;k<=i;k++)
		 {
			 printf("%d", k);
		 }
		 printf("\n");
	 }
}

Output
Enter the number of rows: 5
 1
 12
 123
 1234
12345

#include<stdio.h>
void main()
{
	 int n,i,j,k;
	 printf("Enter the number of rows: ");
	 scanf("%d",&n);
	 for(i=1;i<=n;i++)
	 {
		 for(j=n;j>=i;j--)
		 {
			 printf(" ");
		 }
		 for(k=1;k<=i;k++)
		 {
			 printf(" ");
			 printf("%d", k);
		 }
		 printf("\n");
	 }
}

Output
Enter the number of rows: 5
 1
 1 2
 1 2 3

 1 2 3 4

1 	2 3 4 5

8.13 � Unconditional Branching: break and continue

C programmers use two different keywords that come under unconditional branching
statements known as break and continue. These two keywords are used either to come out
of the loop or to restart the loop. The details of both is discussed in the following section.

8.13.1 � break Statements

Sometimes we want to jump out of the loop immediately, without waiting to check the
conditional. This can be done using the break statement.

174 C Programming

	•	 When break is encountered inside any C loop, control automatically passes to the
first statement after the loop. Figure 8.21 shows the control move whenever a break
is encountered in different loop control structures.

Let us take a complete example program to show you how the break statement works.

PROGRAM 8.21

1. #include<stdio.h>

2. void main()

3. {

4. int i=1;

5. while(i<=100)

6. {

7. 		 printf("%d ",i);

8. 		 if(i==10)

9. 			 break;

10. 		 i=i+1;

11. }

12. printf("\nBreak Encounters");

13. }

Output:

1 2 3 4 5 6 7 8 9 10
Break Encounters

Explanation:

Even if the condition given is i<=100 (line 5), it will print 1 to 10 and terminate
because the moment i becomes 10, the break statement will be encountered which
takes control out of the while loop; the last printf statement (line 12) is printed.

8.13.2 � continue Statements

Sometimes we want to take control to the beginning of the loop, skipping the statements
inside the loop which have not yet been executed. This can be achieved by the continue
statement.

FIGURE 8.21
Execution of break in different kinds of loop.

while(condition)
{

Statement;
Statement;
break;
Statement;

}
Statement;

do
{

Statement;
Statement;
break;
Statement;

}while(condition);
Statement;

for(initialization;cond;inc/dec)
{

Statement;
Statement;
break;
Statement;

}
Statement;

175Control Structures

	•	 The continue statement is somewhat the opposite of the break statement. It forces the
next iteration of the loop to take place, skipping any code in between. Figure 8.22
shows how control moves from one place to another when continue statements are
executed.

Consider Program 8.22 which shows how the continue keyword is incorporated inside a
loop.

PROGRAM 8.22

1. #include<stdio.h>

2. void main()

3. {

4. int i=0;

5. while(++i<=20)

6. {

7. 		 if(i%3==0)

8. 			 continue;

9. 		 printf("%d ",i);

10. }

11. }

Output:

	 1	2 4 5 7 8 10 11 13 14 16 17 19 20

Explanation:

The program will display the numbers 1 to 20 except those which are divisible by 3,
because whenever i is divisible by 3 the if statement if(i%3==0) is evaluated to true,
which causes the execution of the continue statement, which in turn passes control
to the while loop without executing the printf statement.

FIGURE 8.22
Execution of continue in different types of loop.

while(condition)
{

Statement;
Statement;
continue;
Statement;

}
Statement;

do
{

Statement;
Statement;
continue;
Statement;

}while(condition);
Statement;

for(initialization;cond;inc/dec)
{

Statement;
Statement;
continue;
Statement;

}
Statement;

176 C Programming

8.14 � Review Questions

8.14.1 � Short Questions

1.	 What is the purpose of a continue statement?
2.	 What is the use of a break statement?
3.	 __________ is an arithmetic operator that gives the remainder of a division problem.
4.	 The switch statement and if statements are examples of____________ statements.
5.	 In a switch statement the ______________ branch is followed if none of the case expres-

sions match the given switch expression.
6.	 A block of code that repeats forever is called _______________.
7.	 In the conditional statement if(++number < 9), the comparison number < 9 is made

___________ and the number is incremented ___________ . (Choose “first” or “sec-
ond” for each blank.)

8.	 A loop within a loop is called a _____________.
9.	 In a nested loop the ____________ loop goes through all of its iterations for each itera-

tion of the ______________ loop. (Choose “inner” or “outer” for each blank.)
10.	 The _________ statement is used to skip the rest of the statements in a loop and start a

new iteration without terminating the loop.

8.14.2 � Long Questions

1.	 Write a program to check whether a number entered by the user is even or odd.
2.	 Write a program to find the greatest among three numbers by using an if statement.
3.	 Write a program to find the greatest among three numbers by using a nested if-else

statement.
4.	 Write a program to find the greatest among three numbers by using an if statement

and logical operators.
5.	 Write a program to find the greatest among four numbers.
6.	 While purchasing certain items, a discount of 10% is offered if the quantity purchased

is more than 1000. If the quantity and price per item are input through the keyboard,
write a program to calculate the total expenses.

7.	 Write a program to check whether the number inputted by the user is zero or
non-zero.

8.	 An electric distribution company charges its domestic consumers as follows:

Consumption in Units Rate of Charges

0–200 Rs 0.50 per unit

201 to 400 Rs 100 plus Rs 0.65 per unit in excess of 200

401 to 600 Rs 230 plus Rs 0.80 per unit in excess of 400

Above 600 Rs 425 plus Rs 1.25 per unit in excess of 600

Write a program to find out the total amount paid by a customer if the number of units
consumed by the customer is entered by him or her.

177Control Structures

9.	 A company has introduced a policy of recruiting employees based on their sex and
age. The policy is as follows:

	 •	 For a female category the eligibility criterion is that the age of a person should be
more than 24.

	 •	 For a male category the age of a person should be more than 28.
Write a program to find out whether a person can be employed if the age and sex of
the person is entered through the keyboard.

10.	 Calculate the commission for a sales representative as per the sales amount:
	 •	 if sales <= Rs 500, commission is 5%.
	 •	 if sales > 500 and <= 5000, commission is Rs 35 plus 10% above Rs 500.
	 •	 if sales > 2000 and < = 5000, commission is Rs 185 plus 12% above Rs 2000.
	 •	 if sales > 5000, commission is 12.5%.
11.	 A company insures its drivers in the following cases:
	 •	 if the driver is married;
	 •	 If the driver is unmarried, male, and above 30 years of age;
	 •	 If the driver is unmarried, female, and above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex, and age of the
driver are the inputs, write a program to determine whether the driver is to be insured
or not.

12.	 The marks obtained by a student in five different subjects are input through the key-
board. The student is awarded a division as per the following rules. Write a program
that takes five subject marks as input and produces the student’s division as output.

Percentage above or equal to 60 First Division

Percentage between 50 and 59 Second Division

Percentage between 40 and 49 Third Division

Percentage less than 40 Fail

13.	 In a company the employee’s gross salary is calculated according to the following
conditions:

	 •	 If basic salary < 1500 then House Rent Allowance (HRA)=10% of Basic and
Dearness Allowance (DA)= 25% of Basic;

	 •	 If basic salary >= 1500 then HRA=Rs 500 and DA= 50% of Basic;
	 •	 The employee salary is input through the keyboard.
14.	 Draw the flowchart to find the largest of any three numbers.
15.	 What are the two branch statements for making a decision in C? Give their syntax.
16.	 Using the two branch statements you have mentioned, write two C programs to solve

the following:
	 •	 Read a mark X between 0 <= X <= 100;
	 •	 Print “A” if 80 <= X;
	 •	 Print “B” if 60 <= X < 80;
	 •	 Print “C” if 40 <= X < 60;

178 C Programming

	 •	 Print “D” if 30 <= X < 40;
	 •	 Print “F” otherwise.
17.	 What is meant by “control statements” in C?
18.	 Write a short note on if-else statements and compare with conditional operators.
19.	 Write the algorithm and C program to find the sum of the digits of a number.
20.	 Write a flow chart and C program to reverse a given number N.
21.	 Write a program to print ten natural numbers.
22.	 Write a program to count the number of even numbers between 1 and 20.
23.	 Write a program to count the number of even numbers in a range provided by the

user.
24.	 Write a program to check whether a number entered by the user is a prime number or

not.
25.	 Write a program to print all the prime numbers in a range provided by the user.
26.	 Write a program to check whether a number is an Armstrong number or not.

(Armstrong number: the addition of the cube of the digit of a number = the number
itself. For example 153, 13 + 53 + 33 =153.)

27.	 Write a program to count the digits of a number.
28.	 Write a program to reverse a number.
29.	 Write a program to check whether a number is a palindrome or not.
30.	 Write a program to generate the Fibonacci series.
31.	 Write a program to find the factorial of a number.
32.	 Write a program to print the following pattern using a for loop:

1 1 2 3 4 5 * 1

1 2 1 2 3 4 * * 0 1

1 2 3 1 2 3 * * * 0 1 0

1 2 3 4 1 2 * * * * 1 0 1 0

1 2 3 4 5 1 * * * * * 1 0 1 0 1

33.	 Write a program to find the average of the numbers entered by the user. Note that a
user can enter as many numbers as they want. When the user enters 0, the loop stops
and prints the average of the previously inputed numbers.

34.	 Write a program to print the ASCII value and the corresponding character in tabular
format.

35.	 Write a program to generate the multiplication table up to 10 using a for loop.

179DOI: 10.1201/9781003188254-9

9
Functions

9.1 ��������������� Introduction

This chapter introduces the concept of a function which is the most fundamental element
of any programming language. A function is something that, when called, performs some
tasks. We can think of a function as a small machine that takes some input and provides
some output. . For example, a vending machine (Figure 9.1)

We all know how a vending machine works. In Figure 9.1, the machine offers three
items: candy at `10, a cupcake at `20, and a milk bottle at `50. The user who wishes to
obtain an item needs to insert the appropriate amount to the machine and press the desired
item button “Press Here”. Then the machine dispenses the item through the “Collect Item
Here” box, and the change (if any) through the “Collect Change Here” box. There is a can-
cel button that helps the user to cancel the transaction at any point in time.

VENDING MACHINE

Press
Here

Press
Here

Press
Here

Insert
Money

COLLECT ITEM HERE
COLLECT
CHANGE

HERE

CANCEL
INPUT
Money
Item Choice

OUTPUT
Candy OR
Cupcake OR
Bo�le of Milk

FIGURE 9.1
A vending machine example for understanding a function.

180 C Programming

Now, let us understand some points with respect to the vending machine that helps us
understand the function concept later in this chapter. We can think of a vending machine
as a black box because we do not know how it functions. There might be a person sat inside
the machine who collects your money, and dispenses the item and change; or the machine
may be programmed in such a way that it can read the user input and act accordingly.
Whatever it may be, the machine takes some input; in our case, it takes two inputs: money,
choice of item. It produces some output; in this case, it dispenses an item: candy or a cup-
cake or a milk bottle.

In a more general way, we can think of a vending machine as a function that takes two
inputs: money and choice, and produces one output: item. For easy understanding, ignore
the change dispensed by the vending machine; assume that the user can only insert the
exact amount of `10, `20, or `50. The analogy is shown in Figure 9.2.

Think like a programmer; Figure 9.2b is the programmatic representation of Figure 9.2a,
where the vending machine represents the name of the function, money and choice are
treated as the input to the function, and the item is the output produced by the function.
You can also observe that some statements are enclosed within two curly braces; these are
the steps followed by the vending machine to dispense the item. These steps are called the
body of the function, which specifies how to process the input to produce the desired
output. In our example, we might first check whether the inputted currency is a valid
currency or not, what choice has been selected by the user, and finally dispense the selected
item.

The above example is just an analogy to understand what a function is and how we are
going to write it in C code. But, the actual syntax may slightly differ as we will discuss in a
later section. After completing this chapter, readers will able to:

	•	 Write functions for any given problem and describe the need for using a function.
	•	 Define and differentiate the different categories of functions available in C.
	•	 Explain the components of a function and how they work.
	•	 Know what a recursive function is and how to write one.
	•	 Know all the different kinds of storage classes available in C.

VENDING MACHINE

Black Box

M
on

ey

Ch
oi

ce

Ite
m

Item Vending-Machine (Money, Choice)
{

Check for fake currency;
Read the choice;
Dispense the item;

}

InputOutput Func�on Name

What and
how to do

it?

(a) (b)

FIGURE 9.2
Vending machine analogy and overview of function declaration.

181Functions

9.2 ��������������� The Need for Functions

There are several uses of a function. We will take an example to show you why a function
is needed. Suppose you are a carpenter and you build different types of wooden furniture.
One day you receive an order to cut 10,000 pieces of wood in a zigzag manner, as shown in
Figure 9.3. Assume that no cutting machine has yet been developed to cut a piece of wood
in a zigzag pattern. As the order is significant, and you must finish it on time, you need a
cutter for this work. So, you decide to build a cutting machine. Your problem is solved, and
you have a machine that can be used in the future for the same type of work.

What do we learn from the above example? A machine was developed that performs a
specific task. It can be reused for the same type of work. It takes a piece of wood as input
and generates two pieces of wood in a zigzag pattern. Here, the machine is a function
designed to solve a specific problem, and it can be reused any number of times. Similarly,
during our program development, we can create some functions for solving a specific task,
and then use that function several times throughout our code.

We have already used several predefined functions like printf() and scanf() for con-
sole I/O purposes. We have used these functions in every program. In fact, whatever pro-
gram we have written till now contains at least one function, i.e., the main() function.
That means some functions were there already as predefined functions; some functions we
wrote for our purposes are called user-defined functions.

Let us think in another way. Suppose you have a large task to do. The usual procedure
is to divide the task into smaller tasks, solve each one separately, and combine them to
solve the bigger problem. This process is called modular programming, and modular pro-
gramming employs the concept of functions. After we divide the whole task into subprob-
lems, each subproblem can be implemented with a function. Combining the result of all
functions, we can solve a bigger problem. Consider the problem of designing a calculator.
A calculator performs many tasks like addition, subtraction, multiplication, and square
roots. We can write code for each task using a separate function and call them with the
main() function to solve a bigger task. Figure 9.4 shows the modular division of tasks for
a calculator design.

The advantage of using functions is:

	•	 Modular programming;
	•	 Reduction in the amount of work and development time;
	•	 Program and function debugging are easier;

FIGURE 9.3
Woodcutting in a zigzag pattern.

182 C Programming

	•	 Reduction in size of the program;
	•	 Reuse of code.

9.3 ��������������� Types of Function

The C programming language supports two types of functions:

	 1.	Library functions or predefined functions;
	 2.	User-defined functions.

We have come across many library functions like printf() and scanf() which were
used in our previous programs, and the definition of these functions are predefined. In the
following section, we are going to discuss user-defined functions.

The basic difference between these two types of function is that we do not write library
functions; we only use them, whereas we write user-defined functions for specific problems.

9.4 ��������������� User-defined Functions

A function can be defined as a group of statements enclosed within a block with a valid
identifier and can perform a specific task. Generally, a function will process information
that is passed to it from the calling portion of the program and return a single value.
Information is passed to the function via special identifiers called arguments (also called
parameters) and returned via the return statement. A user-defined function only executes
when it is called.

A function can be defined as a group of statements enclosed within a block with a
valid identifier and can perform a specific task.

Subtraction()

………………………
……………………...

SquareRoot()

………………………
……………………...

Addition()

………………………
……………………...

main()

………………………
……………………...

FIGURE 9.4
Modular design of the task and each task employed with a function.

183Functions

The general syntax of a user-defined function is shown in Figure 9.5.
So, to begin our discussion, let us write a simple function using the above syntax. In this

function, we include a single statement body. The work of this function is to print a line of
a statement.

void printLine()
{

printf(“\n C Programming Learn to Code”);
}

A simple one line
func�on

	•	 In the above function, it is clearly mentioned that the function does not return any-
thing, so the return type is void;

	•	 This function also does not take any parameters, so the parameter list is empty;
	•	 The name of the function is printLine, and when this function is called, it executes a

single line present in the body of the function.

As discussed earlier, a user-defined function cannot be executed of its own. It should be
called by the main() function whenever it is needed.

PROGRAM 9.1

1. #include<stdio.h>

2. void printLine()

3. {

4. 	 printf("\n C Programming Learn to Code");

5. }

ReturnType FunctionName (Parameter List)
{

Statement 1;
Statement 2;
. . .
Statement n;

}

Body of
the

Func�on

Specify the
type of data
the func�on

returns.
This is a

valid
iden�fier

This is a comma
separated list of
variable names
with their data

types. A func�on
without parameters

has an empty
parameter list.

FIGURE 9.5
Syntax of user-defined function.

184 C Programming

Now the question is why is the function necessary? The above printLine() function
is written for the sake of understanding the concept of a function. To explain the benefit of
the function, let us modify the printLine() function as Program 9.3:

6. void main()

7. {

8. 	 printLine();

9. 	 printLine();

10. 	 printLine();

11. }

Output:

C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code

Explanation:

The printLine() function is called three times, so it prints “C Programming Learn
to Code” three times. We can solve the above problem by writing three printf()
statements inside the function main() as shown in Program 9.2, and we get the same
output as from Program 9.1.

PROGRAM 9.2

1. #include<stdio.h>

2. void main()

3. {

4. 	 printf("\n C Programming Learn to Code");

5. 	 printf("\n C Programming Learn to Code");

6. 	 printf("\n C Programming Learn to Code");

7. }

Output:

C Programming Learn to Code
C Programming Learn to Code
C Programming Learn to Code

PROGRAM 9.3

1. #include<stdio.h>

2. void printLine()

3. {

185Functions

4. 	 printf(“\n ***************************”);

5. 	 printf(“\n C Programming Learn to Code”);

6 	 printf(“\n ***************************”);

7. }

8. void main()

9. {

10. 	 printLine();

11. 	 printLine();

12. 	 printLine();

13. }

The function contains three statements to execute. So, the output of the program is as:

C Programming Learn to Code

C Programming Learn to Code

C Programming Learn to Code

Now, if I want to write the above program without using a function, then I require nine
printf() statements to be written inside the function main(). So, this increases the pro-
gram size. If the program size grows, then debugging also takes more time. But by using a
function, we obtain benefits such as:

	•	 The concept of modular programming: that is, we can divide a bigger problem
into smaller problems, and all smaller problems can be developed individually
and used whenever necessary.

	•	 Reduction in the program size.
	•	 Debugging is easy.
	•	 Code reusability.

Let us take another example. Suppose I want to find out the cube of a number using a func-
tion. Now the function has to take a single parameter.

PROGRAM 9.4

1. #include<stdio.h>

2. void cube(int x)

3. {

4. 	 int c;

5. 	 c=x*x*x;

186 C Programming

9.5 ��������������� Components and Working of a Function

The cube() function in Program 9.4 is written before the main() function, and the return
type of the function is void (which means it does not return anything). But the function
can be written after the main() function, and a function can also return a value. Generally,
a function always returns a single value.

There are various terms associated with functions. A function can take various forms. So
before discussing the detail, let us first understand how a function can be written and how
it works. Figure 9.6 illustrates the different components of a function, and it computes the
maximum of two integer numbers.

9.5.1 ��������������� Calling Function

The function which calls other functions is known as the calling function. Here, the main()
function is the calling function because it calls the function max().

9.5.2 ��������������� Called Function

The function which is called by other functions is known as a called function. Here max()
function is the called function.

6. 	 printf(“\n CUBE OF THE NUMBER=%d”, c);

7. }

8. void main()

9. {

10. 	 int n;

11. 	 printf(“\n ENTER A NUMBER: “);

12. 	 scanf(“%d”, &n);

13. 	 cube(n);

14. }

Output:

ENTER A NUMBER: 4
CUBE OF THE NUMBER = 64

Explanation:

	•	 The execution of the above program starts from the main() function and
line 13 calls the cube function by passing n as an argument.

	•	 The value of n will be copied to x in the function cube(). x is a variable local
to the function cube() and n is a variable local to the function main(). But
both the variables contain the same value, because the n value is copied to x.

	•	 The cube() function will multiply the x value (indirectly it is n) three times
and store it in another variable c.

	•	 The printf() function inside the cube() function prints the cube of x
(indirectly it is the cube of n). So, we obtain our result.

187Functions

9.5.3 ��������������� Function Prototype

A function prototype is called the declaration of a function. We know that any variable or
identifier must be declared before it is used inside the program. As the function is also an
identifier, it should be declared before it is used. Hence, the declaration of the function is
known as a function prototype.

A function prototype provides the following information to the compiler:

	•	 The name of the function;
	•	 The type of the value returned by the function;
	•	 The number and the type of arguments that are passed in a call to the function.

The prototype declaration should be done before the function main(), and it should end
with a semicolon. The prototype declaration can be eliminated by defining the function
before calling it. In the above example (Figure 9.6), if we write the max() function above
the main() function then prototype declaration is not required.

NOTE

A function can be defined before or after the main() function. If the function defini-
tion is present before the main() function then a prototype is not required. In
Program 9.4 we have not used the prototype because the function cube() is defined
before the main() function.

9.5.4 ��������������� Function Definition

The function itself is referred to as a function definition. The first line of the function defini-
tion is known as the function declarator and is followed by the function body.

#include<stdio.h>
int max(int,int);
void main()
{

int a,b,big;
printf(“\nEnter two numbers: “);
scanf(“%d%d”, &a,&b);
big=max(a,b);

printf(“\nBigger number=%d”, big);
}

int max(int x, int y)
{

if(x>y)
return x;

else
return y;

}

Fu
nc

�o
n

Ca
ll

Func�on Prototype

Actual Argument
(Argument List)

Formal Argument
(Parameter List)

Func�on
Name

Return
Type

Calling Func�on Called Func�on

Func�on Body

FIGURE 9.6
Components of a function.

188 C Programming

9.5.5 ��������������� Function Call

A function is a dormant entity, which comes to life only when a call to the function is made.
A function call is specified by the function name followed by the arguments enclosed in
parentheses and terminated by semicolons.

In Figure 9.6, the line c= max (a, b); invokes the function max().

9.5.6 ��������������� Actual Arguments

The arguments which are specified in the function call are known as actual arguments. In
this example (Figure 9.6), a and b are the actual arguments.

9.5.7 ��������������� Formal Arguments

The parameters specified in the function definition are known as formal parameters. In this
example (Figure 9.6), x and y are the formal parameters.

9.5.8 ��������������� Return Type

The function may return integer, char, float, etc. When the function does not return any-
thing then we use the void keyword. In this example (Figure 9.6), the function returns an
integer. The calling function must be able to receive the value returned by the called func-
tion. In the program the variable c is used to receive the value returned by the function
max().

To understand more about functions, let us write a program with and without using a
function and analyze the differences. We will write a program to check whether a number
is prime, as well as whether it is a perfect number or not.

Prime number: This is a number greater than 1 and cannot be made by multiplying other
whole numbers. We can also define a prime number as a number that can only be divisible
by 1 and itself. For example, 5 is a prime number because it cannot be divided by 2, 3,
and 4.

Perfect number: This is a positive integer that is equal to the sum of its divisor. For exam-
ple, 6 is a perfect number because the perfect divisor of 6 is 1, 2, and 3; 1 + 2 + 3 = 6.

The above problem needs to solve two tasks:

	 1.	We should write the code to check whether the number is a prime number or not;
	 2.	And whether the number is a perfect number or not.

PROGRAM 9.5

1. #include<stdio.h>

2. void main()

3. {

4. 	 int N, i, sum=0, count=0;

5. 	 printf("\nEnter a number: ");

6. 	 scanf("%d", &N);

189Functions

7.

8. 	 /*Code to check whether the number is prime or not*/

9. 	 for(i=1;i<=N;i++)

10. 	 {

11. 		 if(N%i==0)

12. 		 count=count+1;

13. 	 }

14. 	 if(count==2)

15. 	 printf("\nTHE NUMBER IS A PRIME NUMBER");

16. 	 else

17. 	 printf("\nTHE NUMBER IS NOT A PRIME NUMBER");

18. 	� /*Code to check whether the number is a perfect number or

not*/

19.

20.	 for(i=1;i<=N/2;i++)

21. 	 {

22. 		 if(N%i==0)

23. 		 sum=sum+i;

24. 	 }

25. 	 if(sum==N)

26. 	 printf("\nTHE NUMBER IS A PERFECT NUMBER");

27. 	 else

28. 	 printf("\nTHE NUMBER IS NOT A PERFECT NUMBER");

29. }

Output:

Run-1
Enter a number: 28

THE NUMBER IS NOT A PRIME NUMBER
THE NUMBER IS A PERFECT NUMBER

Run-2
Enter a number: 43

THE NUMBER IS A PRIME NUMBER
THE NUMBER IS NOT A PERFECT NUMBER

By analyzing the above Program 9.5, we conclude that if we solve multiple works inside a
single function then the program size increases and is prone to errors. Debugging of the
above program is also difficult. To avoid this difficulty, we can use the concept of a func-
tion. We can separate the above functionality into three functions as shown in Figure 9.7.

190 C Programming

PROGRAM 9.6

1. #include<stdio.h>

2. void Prime(int);

3. void Perfect(int);

4. void main()

5. {

6. 		 int No;

7. 		 printf("\nEnter a number: ");

8. 		 scanf("%d", &No);

9. 		 Prime(No);

10. 		 Perfect(No);

11. }

12. void Prime(int N)

13. {

14. 		 int i,count=0;

15. 		 for(i=1;i<=N;i++)

16. 		 {

17. 			 if(N%i==0)

18. 			 count=count+1;

19. 		 }

20. 		 if(count==2)

21. 		 printf("\nTHE NUMBER IS A PRIME NUMBER");

22. 		 else

23. 		 printf("\nTHE NUMBER IS NOT A PRIME NUMBER");

24. }

25. void Perfect(int N)

26. {

27. 		 int i,sum=0;

main()

This func�on acts as
the calling func�on and is

used to accept the
number from the user.

perfect()
This func�on is used to

check whether the number
provided by the main()

func�on is a perfect
number or not.

This func�on is used to
check whether the number
provided by the main()

func�on is a prime
number or not.

prime()

FIGURE 9.7
Separating functionality using different functions.

191Functions

9.6 ��������������� Categories of a Function

A function can takes different forms. In this section we are going to discuss the different
ways a function can be written.

9.6.1 ��������������� A Function Without Arguments and Without Return Types

This format of the function has no return type, that is, the return type will be void; also
these functions do not take any arguments. The printLine() function discussed in
Program 9.1 is an example of this type of function. The syntax of these categories of func-
tions is given in Figure 9.8.

9.6.2 ��������������� A Function Without Arguments and With Return Types

Sometimes the function does not take any arguments, but it may return a value. The gen-
eral format for this type of function is shown in Figure 9.9.

A sample program of this kind is shown in Program 9.7.

28. 		 for(i=1;i<=N/2;i++)

29. 		 {

30. 			 if(N%i==0)

31. 			 sum=sum+i;

32. 		 }

33. 		 if(sum==N)

34. 		 printf("\nTHE NUMBER IS A PERFECT NUMBER");

35. 		 else

36. 		 printf("\nTHE NUMBER IS NOT A PERFECT NUMBER");

37. }

Output:

Run-1
Enter a number: 28

THE NUMBER IS NOT A PRIME NUMBER
THE NUMBER IS A PERFECT NUMBER

Run-2
Enter a number: 43

THE NUMBER IS A PRIME NUMBER
THE NUMBER IS NOT A PERFECT NUMBER

Analyzing the above program we can say that it is more readable, and error finding
in the program is easy because the tasks are individually developed by different
functions.

192 C Programming

PROGRAM 9.7

1. #include<stdio.h>

2. int test()

3. {

4. int x=7;

5. return x;

6. }

7. void main()

8. {

9. int y;

10. printf("Enter a number: ");

11. scanf("%d", &y);

12. y=y+test();

13. printf("Total= %d", y);

14. }

Output:

Enter a number: 15
Total= 22

void functionName(void)
{

Body of the Function;
}

without argument
without returntype

FIGURE 9.8
General structure of a function without arguments and without return types.

int functionName(void)
{

Body of the Function;
}

without argument
with return type

Func�on
returns

an
Integer

FIGURE 9.9
General structure of a function without arguments and with return types.

193Functions

9.6.3 ��������������� A Function With Arguments and Without Return Types

A function may take some value from the calling function as an argument but may not
return any value. These type of functions come under this category. cube() functions and
prime() functions, discussed above, come under this category. The general structure is
shown in Figure 9.10.

9.6.4 ��������������� A Function With Arguments and With Return Types

The most used format in the categories of function is "with arguments and with return
types." In this type, a function takes some argument from the calling function and returns
a value to the calling function. We have already discussed the max() function in this chap-
ter, which comes under this category. The general structure is shown in Figure 9.11.

In the following section, we have written four programs (Programs 9.8a–d) using func-
tions. All the functions do the same work (i.e., add two numbers). We have written the
programs in such a manner that they satisfy all the categories of functions. The objective is
to show you how a function can take different forms. Notice the differences among them.
In Program 9.8a, the function call line (line 13) requires a variable c to catch the value
returned from the function. In Program 9.8b, the function call line (line 13) does not require
any variable because the function returns nothing. We give a similar explanation for the
other two cases (Programs 9.8c and d). The function call line (line 13) in Programs 9.8a
and 9.8b passes two arguments a and b; hence the corresponding functions require two
variables x and y to catch that value. The other two cases do not need any argument because

void functionName(int x, int y, . . .)
{

Body of the Function;
}

with argument
without return type

Func�on
does not

return
anything

FIGURE 9.10
General structure of a function with arguments and without return types.

int functionName(int x, int y, . . .)
{

Body of the Function;
}

with argument with
return type

FIGURE 9.11
General structure of a function with arguments and with return types.

194 C Programming

the actual function does not require the value from the main() function. Readers are
encouraged to test every program and observe the output produced.

PROGRAM 9.8 (a) PROGRAM 9.8 (b)

1. #include<stdio.h>

2. int add(int x, int y)

3. {

4. 	 int z;

5. 	 z=x+y;

6. 	 return z;

7. }

8. void main()

9. {

10.	 int a,b,c;

11.	� printf("\nEnter two

numbers: ");

12.	 scanf("%d %d", &a,&b);

13.	 c=add(a,b);

14.	 printf("\nResult = %d", c);

15. }

1. #include<stdio.h>

2. void add(int x, int y)

3. {

4. 	 int z;

5. 	 z=x+y;

6.	 printf("\nResult= %d ", z);

7. }

8. void main()

9. {

10.	 int a,b;

11.	� printf("\nEnter two

numbers: ");

12.	 scanf("%d %d", &a,&b);

13.	 add(a,b);

14. }

15.

With argument with return type With argument without return type

PROGRAM 9.8 (c) PROGRAM 9.8 (d)

1. #include<stdio.h>

2. int add()

3. {

4. 	 int x,y,z;

5.	� printf("\nEnter two

numbers: ");

6.	 scanf("%d %d", &x,&y);

7.	 z=x+y;

8.	 return z;

9.

10. }

11. void main()

12. {

13. 	 int c;

14. 	 c=add();

15. 	 printf("\nResult = %d", c);

16. }

1. #include<stdio.h>

2. void add()

3. {

4. 	 int x,y,z;

5. 	� printf("\nEnter two

numbers: ");

6. 	 scanf("%d %d", &x,&y);

7. 	 z=x+y;

8.	 printf("\nResult = %d", z);

9.

10. }

12. void main()

13. {

14. 	 add();

 }

Without argument with return type Without argument without return type

195Functions

9.7 ��������������� Recursion

In general, we can solve a problem using two approaches. One approach uses loops, and
the other uses recursion. Recursion is a repetitive process in which a function calls itself.
Some older languages (like COBOL) do not support recursion. To explain both approaches,
let us first take a problem then solve it by each approach. The problem is the factorial of a
number.

Iterative definition: The factorial of a given number is a product of the integral values
from 1 to the number. The definition is as follows:

	
factorial n

if n

n n n Otherwise
� � �

�
� �� �� �� ��� �

�
�
�

��

1 0
1 2 2 1

,
,

According to this definition we can calculate the value of factorial (3) as follows:

	 Factorial 3 3 2 1 6� � � � � �

The solution of the problem generally involves a loop. We have already written a pro-
gram to find the factorial of a number in Program 8.19 Here we will solve it using a func-
tion as well as a recursive function. Program 9.9 shows the code to write using a function.

PROGRAM 9.9: FACTORIAL OF A NUMBER USING FUNCTION

1. #include<stdio.h>

2. int factorial(int n)

3. {

4. int f = 1, i;

5. for(i=1;i<=n;i++)

6. f = f * i;

7. return (f);

8. }

9. void main()

10. {

11. int a, fact;

12. printf ("\nEnter a number: ");

13. scanf ("%d",&a);

14. fact = factorial(a);

15. printf ("Factorial value = %d", fact);

16. }

Output:

Enter a number: 5
Factorial value = 120

196 C Programming

Recursive definition: A repetitive function defined recursively whenever the function
appears within the definition itself. The factorial function can be defined recursively as
shown in the following formula:

	
f x

if n

n factorial n Otherwise
� � �

�
� �� �

�
�
�

��

1 0
1

,
,

The decomposition of factorial (3), using the above formula, is shown in Figure 9.12.
Study the figure carefully and note that the recursive solution for a problem involves a
two-way journey: first we decompose the problem from top to bottom, and then we solve
it from bottom to top.

Designing recursive functions: All recursive functions have two elements: each call either
solves one part of the problem or it reduces the size of the problem. The recursive solution
to factorial is shown below. This program does not need a loop: the concept itself involves
repetition.

PROGRAM 9.10: FACTORIAL OF A NUMBER USING A RECURSIVE
FUNCTION

1. #include<stdio.h>

2. int factorial(int n)

3. {

4.	 if (n==0)

5.		 return 1;

6.	 else

7.		 return n*factorial(n-1);

8. }

9. void main()

Factorial(1) = 1 * 1 = 1

1

Decom
posi�on Re

as
se

m
bl

y

FIGURE 9.12
Decomposition and reassembly of a recursive solution.

197Functions

The statement that solves the problem is known as a base case that stops the decomposi-
tion of the problem. Every recursive function must have a base case. The rest of the func-
tion is known as the general case.

	•	 In our factorial example, the base case is factorial(0).
	•	 The general case is n*factorial(n-1). The general case contains the logic needed to

reduce the size of the problem.

In this problem, once the base case or stopping condition has been reached, the solution
begins. The program has found one part of the answer and can return that part to the next
general statement. Thus in the above problem, after the program has calculated that fac-
torial(0) is 1, it returns the value 1.

This leads to solving the next general case:

Factorial(1)=1*factorial(0)=1*1=1

The program now returns the value of factorial(1) to the more general case,
factorial(2):

Factorial(2)=2*factorial(1)=2*1=2

As the program solves each general case in turn, the program can solve the next higher
general case, until it finally solves the most general case, the original problem.

The designing of recursive functions has the following rules:

	•	 First, determine the base case;
	•	 Then, determine the general case;
	•	 Finally, combine the base case and the general case into a function.

10.{

11.	 int n,fact;

12.	 printf("Enter any number: ");

13.	 scanf("%d", &n);

14.	 fact=factorial(n);

15.	 printf("Factorial= %d", fact);

16. }

Output:

Enter any number 5
Factorial value = 120

Explanation:

In the above program if n==0 then it returns 1, which means it solves a small piece of
the problem factorial(0) as 1. On the other hand, the line return n*factorial(n-1)
reduces the size of the problem by recursively calling the factorial with n-1.

198 C Programming

Figure 9.13 shows each recursive call separately by passing the reduced value of n; it
also shows the return value from each recursive call.

9.7.1 ��������������� Example: Find the Value of xy

The solution to this problem can also be done in two ways: by an iterative method or recur-
sive method. The iterative method employs a loop where x is multiplied y times. The itera-
tive solution of this problem is shown in Program 9.11.

#include<stdio.h>
void main()
{

int f;
f=factorial(3);
printf(“Factorial=%d”, f);

}

int factorial(int n)
{

if(n==0)
return 1;
else
return n*factorial (2);

}

3

int factorial(int n)
{

if(n==0)
return 1;
else
return n*factorial (1);

}

int factorial(int n)
{

if(n==0)
return 1;
else
return n*factorial (0);

}

1

int factorial(int n)
{

if(n==0)
return 1;
else
return n*factorial(n-1);

}

int factorial(int n)
{

if(n==0)
return 1;
else
return 1*1;

}

1

n=3

n=1 n=1

int factorial(int n)
{

if(n==0)
return 1;
else
return 2*1;

}

1

int factorial(int n)
{

if(n==0)
return 1;
else
return 3*2;

}

n=3

#include<stdio.h>
void main()
{

int f;
f=factorial(3);
printf(“Factorial=%d”, f);

}

6Answer

FIGURE 9.13
Representing each recursive call with the return value.

199Functions

PROGRAM 9.11: FIND THE VALUE OF XY USING A FUNCTION

1. #include<stdio.h>

2. int power(int x, int y)

3. {

4. 	 int R=1, i=0;

5. 	 for(i=0;i<y;i++)

6. 	 {

7.	 R= R*x;

8.	 }

9.	 return R;

10. }

11. void main()

12. {

13. 	 int x,y,p;

14.	 printf("Enter x and y value: ");

15.	 scanf("%d%d",&x,&y);

16. 	 p=power(x,y);

17.	 printf("Result=%d ",p);

18. }

Output:

Enter x and y value: 3 4
Result= 81

To solve this problem using the recursive method we have to first determine the stopping
condition or the base case:

	•	 So here the base case is: if (y==0) then xy becomes 1.
	•	 The general case will be x*power(x, y-1) which reduces the problem into more gen-

eral cases.

The recursive definition of the above problem can be written as:

	
power x y

if y

x power x y Otherwise
,

,� � �
�

� �� �
�
�
�

��

1 0
1

,
,

Program 9.12 shows the complete C code for the above problem. The execution of the pro-
gram is described in Figure 9.14 for x=4 and y=3.

200 C Programming

#include<stdio.h>
void main()
{

int p;
p=power(4 , 3);
printf("Result=%d", p);

}

int power(int x, int y)
{

if(y==0)
return 1;

else
return x*power(4 , 2);

}

x=4 y=3

3

4

int power(int x, int y)
{

if(y==0)
return 1;

else
return x*power(4 , 1);

}

x=4

int power(int x, int y)
{

if(y==0)
return 1;

else
return x*power(4 , 0);

}

x=4 y=1

int power(int x, int y)
{

if(y==0)
return 1;

else
return x*power(4 , 1);

}

x=4

4

14

4

int power(int x, int y)
{

if(y==0)
return 1;

else
return 4*1;

}

int power(int x, int y)
{

if(y==0)
return 1;

else
return 4*4;

}

int power(int x, int y)
{

if(y==0)
return 1;

else
return 4*16;

}

#include<stdio.h>
void main()
{

int p;
p=power(4 , 3);
printf("Result=%d", p);

}

x=4 y=1

x=4

x=4 y=3

1

4

16

64 Answer

FIGURE 9.14
Execution of Program 9.12.

201Functions

9.7.2 ��������������� Programming Examples

In this section, we will show you some programming examples that use the concept of
recursion. The objective is not to explain each line of the code; rather, students can take it
as a practice program and execute it to see how the recursion works.

PROGRAM 9.13

Write a recursive function to add all the
digit of a number.

#include<stdio.h>

int add_digit(int n)

{

	 static int r,s;

	 if(n==0)

	 return 0;

	 else

	 {

	 r=n%10;

	 s=s+r;

PROGRAM 9.14

Write a recursive function to check a num-
ber is palindrome or not.

#include<stdio.h>

int add_digit(int n)

{

	 static int r,s;

	 if(n==0)

	 return 0;

	 else

	 {

	 r=n%10;

	 s=s*10+r;

PROGRAM 9.12: FIND THE VALUE OF XY USING A RECURSIVE FUNCTION

1. #include<stdio.h>

2. int power(int x, int y)

3. {

4. if(y==0)

5. return 1;

6. else

7. return x*power(x,y-1);

8. }

9. void main()

10. {

11. 	 int x,y,p;

12.	 printf(“Enter x and y value: “);

13.	 scanf(“%d%d”,&x,&y);

14.	 p=power(x,y);

15.	 printf(“Result=%d “,p);

16. }

Output:
Enter x and y value: 4 3
Result = 64

202 C Programming

	 add_digit(n/10);

	 }

	 return s;

}

void main()

{

	 int n,res;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 res=add_digit(n);

	 printf("Result=%d ",res);

}

	 add_digit(n/10);

	 }

	 return s;

}

void main()

{

	 int n,res;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 res=add_digit(n);

	 if(res==n)

	 printf("pallindrome");

	 else

	 printf("Not Pallindrome");

}

PROGRAM 9.15

Write a recursive function to reverse a
number.

#include<stdio.h>

int rev_digit(int n)

{

	 static int r,s;

	 if(n==0)

	 return 0;

	 else

	 {

	 r=n%10;

	 s=s*10+r;

	 rev_digit(n/10);

	 }

	 return s;

}

void main()

{

	 int n,res;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 res=add_digit(n);

	� printf("Reverse

number=%d",res);

}

PROGRAM 9.16

Write a recursive function to add the num-
ber from 1 to n.

#include<stdio.h>

int add(int n)

{

	 if(n==0)

	 return 0;

	 else

	 return n+add(n-1);

}

void main()

{

	 int n,res;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 res=add(n);

	 printf("Result=%d",res);

}

203Functions

PROGRAM 9.17

Write a recursive function to print the
number from 1 to n.

#include<stdio.h>

void print(int n)

{

	 static int i=1;

	 if(i>n)

	 return;

	 else

	 {

	 printf("%d ",i++);

	 print(n);

	 }

}

void main()

{

	 int n;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 print(n);

}

PROGRAM 9.18

Write a recursive function to print the
number from n to 1.

#include<stdio.h>

void rev_print(int n)

{

	 if(n==0)

	 return;

	 else

	 {

	 printf("%d ",n);

	 print(n-1);

	 }

}

void main()

{

	 int n;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 print(n);

}

PROGRAM 9.19

Write a recursive function to check a
number is prime number or not.

#include<stdio.h>

int prime(int n)

{

	 static int i=1,c=0;

	 if(i>n)

	 return 0;

	 else

	 {

	 if(n%i==0)

	 c=c+1;

	 i=i+1;

	 prime(n);

	 }

 return c;

}

PROGRAM 9.20

Write a recursive function to generate a
Fibonacci series.

#include<stdio.h>

void fibonacci(int a,int b,int n)

{

	 static int c;

	 if(c>n)

	 return;

	 else

	 {

	 c=a+b;

	 printf("%d ",c);

	 a=b;

	 b=c;

	 print(a,b,n);

	 }

}

204 C Programming

void main()

{

	 int n,count;

	 printf("Enter a number ");

	 scanf("%d",&n);

	 count=prime(n);

	 if(count==2)

	 printf("Prime Number");

	 else

	 printf("Not Prime Number");

}

void main()

{

	 int a=0,b=1;

	 printf("%d ",a);

	 printf("%d ",b);

	 fibonacci(a,b,10);

}

9.8 ��������������� Storage Classes

From the C compiler’s point of view, a variable name identifies some physical location
within the computer where the string of bits representing the variable’s value is stored.
There are basically two kinds of locations in a computer where such a value may be kept –
memory and CPU registers. Generally, the values which are stored in the CPU register can
be executed faster. The storage class determines in which of these two locations the value
is stored.

A variable’s storage class tells us:

	•	 Where the variable will be stored;
	•	 What will be the initial value of the variable, if the initial value is not specifically

assigned (i.e., the default initial value);
	•	 What the scope of the variable is (i.e., in which functions the value of the variable

would be available);
	•	 What the life of the variable is (i.e., how long the variable would exist).

There are four storage classes in C:

Sl. No. Name Keywords

1 Automatic Storage Class auto

2 Register Storage Class register

3 Static Storage Class static

4 External Storage Class extern

205Functions

All the above storage classes are classified and can be differentiated with the following
features:

Features of Classification Automatic (auto) Register (register) Static (static) External (extern)

Where is the variable
stored?

Memory CPU Register Memory Memory

What is the initial value? Garbage Garbage 0 (Zero) 0 (Zero)

What is the scope? Local to the block in
which the variable
is defined.

Local to the block in
which the variable
is defined.

Local to the block in
which the variable is
defined.

Global

What is the life time? Local to the block in
which the variable
is defined.

Local to the block in
which the variable
is defined.

Value of the variable
persists between
different function calls.

As long as the
program comes
to an end.

9.8.1 ��������������� Automatic Storage Class

Program 9.21 shows how an automatic storage class variable is declared, and the fact that
if the variable is not initialized it contains a garbage value.

PROGRAM 9.21

1. #include<stdio.h>

2. void main()

3. {

4. auto int x;

5. printf ("\n%d", x) ;

6.}

The output of Program 9.21 could be:
19152

where 19152 is a garbage value of x. When you run this program you may get different
values, since garbage values are unpredictable. So always make it a point to initialize the
automatic variables properly, otherwise you are likely to get unexpected results. Note that
the keyword for this storage class is auto, and not automatic.

The scope and life of an automatic variable is illustrated in Program 9.22.

206 C Programming

PROGRAM 9.22

1. #include<stdio.h>

2. void main()

3. {

4.	 auto int x=18;

5.	 {

6.		 auto int x=8;

7.		 printf("\nInner block x= %d",x);

8.	 }

9.	 printf("\nOuter block x= %d",x);

10. }

Output:

Inner block x = 8
Outer block x = 18

Note that the compiler treats the two x’s as totally different variables, since they are defined
in different blocks. Once control comes out of the innermost block the variable x with value
8 is lost, and hence the x in the second printf() refers to x with value 18.

9.8.2 ��������������� Register Storage Class

A value stored in a CPU register can always be accessed faster than the one that is stored
in memory. Therefore, if a variable is used at many places in a program it is better to
declare its storage class as a register.

Point to be remembered:

	•	 If we declare a variable as a register variable, we cannot say for sure that the value of
the variable would be stored in a CPU register, because the number of CPU registers
are limited, and they may be busy doing some other task. In such an event the vari-
able works as if its storage class is auto.

	•	 Declaring a variable as a register storage class is a request to the compiler but not a
command.

	•	 Every type of variable cannot be stored in a CPU register, because if the microproces-
sor has 16-bit registers then they cannot hold a float value or a double value, which
require 4 and 8 bytes respectively.

9.8.3 ��������������� Static Storage Class

Compare the Program 9.23a and 9.23b. Their output shows the difference between the
automatic and static storage classes.

207Functions

PROGRAM 9.23 (a) PROGRAM 9.23 (b)

1. #include<stdio.h>

2. void increment()

3. {

4. 	 auto int x=1;

5. 	 printf("%d ", x);

6. 	 x=x+1;

7. }

8. void main()

9. {

10. 	 increment();

11. 	 increment();

12. 	 increment();

13. }

1. #include<stdio.h>

2. void increment()

3. {

4. 	 static int x=1;

5. 	 printf("%d ", x);

6.	 x=x+1;

7. }

8. void main()

9. {

10.	 increment();

11.	 increment();

12.	 increment();

13. }

Output
1 1 1

Output
1 2 3

Like auto variables, static variables are also local to the block in which they are declared.
The difference between them is that static variables don’t disappear when the function is
no longer active. Their values persist. If control comes back to the same function again the
static variables have the same values they had last time around.

In the above example, when variable x is auto, each time increment() is called it is
reinitialized to 1 (one). When the function terminates, x vanishes and its new value of 2 is
lost. The result: no matter how many times we call increment(), x is initialized to 1
every time.

On the other hand, if x is static, it is initialized to 1 only once. It is never initialized again.
During the first call to increment(), x is incremented to 2. Because x is static, this value
persists. The next time increment() is called, x is not reinitialized to 1; on the contrary
its old value 2 is still available. This current value of x (i.e., 2) gets printed and then x = x +
1 adds 1 to x to get a value of 3. When increment() is called the third time, the current
value of x (i.e., 3) gets printed and once again x is incremented. In short, if the storage class
is static then the statement static int x = 1 is executed only once, irrespective of how many
times the same function is called.

9.8.4 ��������������� External Storage Class

External variables differ from those we have already discussed in that their scope is global,
not local. External variables are declared outside all functions. Any function can change
the value of the global variable and the updated value of the variable is accessed by other
functions. Analyze Program 9.24a and 9.24b to illustrate this fact.

208 C Programming

PROGRAM 9.24 (a) PROGRAM 9.24 (b)

1. #include<stdio.h>

2. int x=5;

3. void change()

4. {

5.	 x=x+7;

6.	 printf("%d ",x);

7. }

8. void main()

9. {

10.	 printf("%d ",x);

11.	 change();

12. }

1. #include<stdio.h>

2. int x=5;

3. void change()

4. {

5. 	 x=x+7;

6. 	 printf("%d ",x);

7. }

8. void main()

9. {

10.	 change();

11.	 printf("%d ",x);

12. }

Output
5 12

Output
12 12

In the first program, the main() function contains two statements. At first the printf()
function gets executed and searches for the value of x to print. As the main() function
does not have a local x, so it accesses the global x value for printing and prints 5. After
executing the first statement control executes the change() function. The change()
function also has no local x, so it accesses the global x value and increments it by 7. After
incrementing the global x, its value is 12. So, the output is 12.

The second program also contains two statement inside the main() function, but the
output differs. Because the change() function calls first, so the value of global x is changed
to 12. So, the output will be 12. After executing the change() function, control returns to
the main() function and then executes the printf() statement. As the value of x has
already been modified by the change() function, so the output of this statement
becomes 12.

Look at Program 9.25:

PROGRAM 9.25

1. #include<stdio.h>

2. int x = 21;

3. void main()

4. {

5. extern int y ;

6. printf ("\n%d %d", x, y) ;

7.}

8. int y = 31;

Output:
21 31

209Functions

Here, x and y both are global variables. Since both of them have been defined outside all
the functions, both enjoy an external storage class. Note the difference between the
following:

extern int y;
int y = 31;

Look at:

Here the first statement is a declaration, whereas the second is the definition. When we
declare a variable, no space is reserved for it, whereas when we define it, space gets
reserved for it in memory. We had to declare y since it is being used in printf() before
its definition is encountered. There was no need to declare x since its definition was made
before its usage.

9.9 ��������������� Review Questions

9.9.1 ��������������� Objective Questions

1.	�������������� We can divide a bigger problem into smaller problems, and all smaller problems can
be developed individually and used whenever necessary. This description refers to
_________ programming concept.

2.	�������������� The C programming language supports two types of function: ____________ and
_____________.

3.	�������������� ____________ can be defined as a group of statements enclosed within a block with a
valid identifier and can perform a specific task.

4.	�������������� A function can return multiple values simultaneously. True/false?
5.	�������������� If your function does not return anything, then the return type will be ___________.
6.	�������������� Blank parentheses after the function name specifies ___________.
7.	�������������� The function which calls other functions is known as ______________.
8.	�������������� The function which is called by other functions is known as ______________.
9.	�������������� ____________ is called the declaration of a function.

10.	�������������� The prototype declaration can be eliminated by _____________.
11.	�������������� The arguments which are specified in the function call are known as __________

arguments.
12.	�������������� The parameters specified in the function definition are known as ______________

parameters.
13.	�������������� If a variable is declared as static, what is its initial value?
14.	�������������� A variable declared as extern has initial value _________.
15.	�������������� If you want to allocate space for a variable inside the CPU register, what storage class

will you use to declare it?

210 C Programming

16.	�������������� With __________, __________, and ___________ storage classes, the scope of a variable
is local to the block in which it is defined.

17.	�������������� With __________ storage class, the scope of a variable is global in nature.
18.	�������������� With __________ storage class, the lifetime of a variable persists between different

function calls.
19.	�������������� With __________ storage class, the lifetime of a variable exists until the program comes

to an end.

9.9.2 ��������������� Subjective Questions

1.	�������������� Define a function. What is the syntax of the user-defined function, and explain all its
components?

2.	�������������� Why do we need functions? State at least three advantages of using functions.
3.	�������������� Write short notes on (1) predefined functions and (2) user-defined functions.
4.	�������������� What is the purpose of the return statement?
5.	�������������� What is the difference and relationship between formal arguments and actual

arguments?
6.	�������������� Can the names of the formal arguments within a function coincide with the names of

other variables defined outside of the function? Explain.
7.	�������������� What is the purpose of the keyword void? Where is this keyword used?
8.	�������������� What are function prototypes? What is their purpose? Where within a program are

function prototypes normally placed?
9.	�������������� How do functions help in reducing the size of a program? Explain with an example.

10.	�������������� What is recursion? What advantage is there in its use?
11.	�������������� What is a storage class? List all the storage classes used in the C programming

language.
12.	�������������� Explain how the storage classes are differentiated from each other in terms of storage,

initial value, scope, and lifetime.

9.9.3 ��������������� Programming Questions

1.	�������������� Write a function to calculate xy using an iterative method and a recursive method.
2.	�������������� Any year is entered through the keyboard. Write a function to determine whether the

year is a leap year or not.
3.	�������������� Write a user-defined function that receives a float and an int from the main() func-

tion. Your user defined function should calculate their product and return it to the
main() function. Finally, the main() functions receive the result and print it.

4.	�������������� Write a function that receives five integers and returns the average of these numbers.
Call this function from main() and print the results in main().

5.	�������������� Write a function to find out the largest of three numbers.
6.	�������������� Write a function to add the digits of a number.
7.	�������������� Write a C program to obtain the greatest common divisor (GCD) of two integers using

iterative and recursive methods.

211Functions

8.	�������������� Write a function to generate the Fibonacci series.
9.	�������������� Find the output of the following programs:

#include<stdio.h>
void main()
{
 int x=5;
 {
 int x=7;
 printf("%d",x);
 }
 printf("%d",x);
}

#include<stdio.h>
void main()
{
 int x=5;
 {
 printf("%d",x);
 }
 printf("%d",x);
}

#include<stdio.h>
int x=7;
void main()
{
 {
 int x=5;
 printf("%d",x);
 }
 printf("%d",x);
}

#include<stdio.h>
void test(int x)
{
 x=x+1;
 printf("%d",x);
}
void main()
{
 int x=5;
 test(x);
 printf("%d",x);
}

#include<stdio.h>
int x=25;
void test(int x)
{
 x=x+1;
 printf("%d",x);
}
void main()
{
 test(x);
 printf("%d",x);
}

#include<stdio.h>
void test(int x)
{
 printf("%d",x);
}
void main()
{
 int x=5;
 test(x++);
 printf("%d",x);
}

#include<stdio.h>
void test(int x)
{
 printf("%d",x);
}
void main()
{
 int x=5;
 test(++x);
 printf("%d",x);
}

#include<stdio.h>
int test(int x)
{
 return x++;
}
void main()
{
 int x=5,y;
 y=test(x);
 printf("%d",y);
}

212 C Programming

#include<stdio.h>
int test(int x)
{
 return ++x;
}
void main()
{
 int x=5,y;
 y=test(x);
 printf("%d",y);
}

#include<stdio.h>
int test(int x)
{
 return ++x + ++x;
}
void main()
{
 int x=5,y;
 y=test(x);
 printf("%d",y);
}

213DOI: 10.1201/9781003188254-10

10
Arrays and Strings

10.1 � Introduction

Many times, we come across a situation where we use a set of data rather than a single
datum. For example, assume that you are an instructor and you teach C programming. You
want to store the marks of your students and later perform different types of operations on
them, such as finding the top performer or knowing how many students secure less than
50 marks. In that case usage of a single variable is not enough: you need multiple variables
to store the data of your students. Again, if you use many variables in your program then
remembering those variable names will become difficult. So, the solution is the array – a
concept provided by C that handles large numbers of items simultaneously.

In our day-to-day life we also came across situations where we need to group items and
keep them in a sequential manner for easy access. For example, Figure 10.1 shows a toy
train built to store painting items such as watercolors, sketch pens, brushes, pencils, and oil
pastels. We name this train the Painter’s Train. We number the boxes from 1 to 5 and store
many items in them. The concept of arranging similar data and calling them using a com-
mon name is sometimes known as an array of items.

An array is a series of elements of the same type, placed in contiguous memory loca-
tions that can be individually referenced by adding an index number to each location.

Other definitions are:

	•	 An array is a single programming variable with multiple "compartments." Each com-
partment can hold a value.

	•	 A collection of data items, all of the same type, in which the position of each item is
uniquely designated by a discrete type.

FIGURE 10.1
Introducing the concept of an array.

Oil Pastels Pencils Sketch Pens Watercolors Brushes

Painter's Train

1 2 3 4 5

214 C Programming

This chapter is dedicated to a discussion of arrays. After completion of this chapter, readers
will have learnt the following:

	•	 How to define an array and its type;
	•	 How to write code to declare different types of arrays, like 1D arrays and 2D arrays,

and use them for solving problems;
	•	 Declaration, processing, and manipulation of strings (also known as character arrays).

10.2 � Need for Arrays

A variable can hold one value at a time. There are situations in which we want to store
more than one value at a time. Suppose we want to store the age of 100 persons and arrange
them in a sorted manner. This type of problem can be solved by taking 100 variables, where
each variable contains the age of a single person. But this is an inconvenient way to solve
this problem. A more elegant way is to use an array. So, before we solve different types of
problems, we should know the basic concept of an array.

10.3 � Types of Arrays

According to the definition, an array is a collection of compartments. Further, we can say
the elements of an array can be stored in a row of compartments, or can be stored in the
form of a table. Depending upon the representation style and the type of data it contains,
the array can be classified as shown in Figure 10.2.

A character array (string) is of the type 1D array (i.e., the array which contains only
character data).

FIGURE 10.2
Classification of arrays.

Array

One-dimensional Array

Two-dimensional
Array

Mul�-dimensional
Array

Character Array
(String)

Array with more than
two dimensions

Integer or Real
Number Array

215Arrays and Strings

10.4 � 1D Arrays

A 1D array is a collection of items having common data types stored in a contiguous mem-
ory location, identified by a single name with its index number. More generally, suppose
we have stored five different integers in a continuous memory location with a common
name. We can access each integer with the help of the name of the array and index number
– then the whole scenario is called an integer array.

A one-dimensional array is a collection of items having common data types stored in
a contiguous memory location, identified by a single name with its index number.

10.4.1 � Declaration of 1D Arrays

As we know, before using any variable, we must declare it. Similarly, we must declare the
array before we use it in our program code. Let us recall how a variable is declared because
there is a little difference between the declaration of a variable and the declaration of an
array (see Figure 10.3).

In this example, x represents the name of the variable, and int represents the type of data
that x can store and the size (in bytes) of x (see Figure 10.4).

In the same manner, we can declare an array. Figure 10.5 shows the syntax.

	•	 The data type indicates the type of data we can store inside an array;
	•	 Array names can be valid identifiers;

FIGURE 10.3
Variable declaration with example.

DataType VariableName;

Variable Declara�on</>

int x;

Example</>

FIGURE 10.4
Describing int x.

int x ; Variable NameVariable x can store
integer type data

FIGURE 10.5
Array declaration with example.

DataType ArrayName[Size];

Array Declara�on</>

int age[5];

Example</>

216 C Programming

	•	 Size (also known as the dimension) indicates the number of the same type of data we
can store inside the array;

	•	 The size must be an integer and specified within two square brackets.
	•	 See Figure 10.6 for an illustration of the declaration process.This indicates the array

named age will contain five integer values;
	•	 This declaration will immediately reserve 20 bytes of memory because each of these

five integers will be four bytes long (we assume the integer takes four bytes for our
illustration).

NOTE

The dimension of the array must be a constant. We cannot use a variable name for
representing the dimension of the array. This is possible, but for the time being, we
will not concentrate on this aspect, as it will be discussed later whenever there is a
need.

10.4.2 � Initialization of Arrays

Once we declare an array, we can initialize it with some value. The initialization is the same
as that for a general variable. As the array contains more than one element, each one is
initialized in a specific order, between the curly braces and separated by commas
(Figure 10.7).

Conceptually the array can be viewed as shown in Figure 10.8.

FIGURE 10.6
Illustration of the example shown in Figure 10.5.

int age[5];Array age can store
integer data.

Compiler allocates 20 bytes in
memory to store 5 integers.Array Name

FIGURE 10.7
Array initialization.

int age[5]={4,7,34,50,25};

Example (Array Ini�aliza�on)</>

FIGURE 10.8
Conceptual representation of an array.

4
0

7
1

34
2

50
3

25
4

age

Array Name
Index
Values stored in the Array

217Arrays and Strings

	•	 The initialization can also take the form shown in Figure 10.9.
	•	 The size (represented in the empty bracket) can be assumed to be equal to the number

of elements in the array (five in this case).

The array can be represented in memory as shown in Figure 10.10. The figure shows some
of the memory locations where five blocks with addresses 0x034 through 0x050 are allo-
cated for storing the elements. The shaded regions represent previously allocated blocks.
The blocks with bold lines represent the newly allocated block for our declaration. All the
newly allocated blocks are referred to by a single name age.

	•	 Each element in the array can be referred to by using an index or subscript (the num-
ber in the bracket following the array name) and the array name. For example age[0]
represents the first element, age[1] represents the second element, and so on.

	•	 All elements in the array are numbered starting with 0. So, for example, age[2] repre-
sents the third element in the array.

	•	 If the starting address of the array is 0x034 then the next element will start from 0x038
because the integer element takes four bytes.

10.4.3 � Accessing Array Elements

To access a particular element in an array, specify the array name, followed by square
braces enclosing an integer, which is called the index or subscript. An array is also called a
subscripted variable because to access each element, we need a subscript or index number.

	•	 The index will vary from 0 to size-1. Size indicates the total number of elements pres-
ent in an array. For the above array declaration, if we write the following C code
statement, it will print 50.

FIGURE 10.9
Another way to initialize an array.

int age[]={4,7,34,50,25};

Example (Array Ini�aliza�on)</>

Mark the blank space

FIGURE 10.10
Representation of an array in memory.

4 7 34

address

0x034

50

0x038 0x042 0x046 0x050

25age

age[2]age[1]age[0] age[3] age[4]

Index or Subscript

Array Name

Elements

218 C Programming

printf(“%d”, age[3]);

	•	 We can initialize the elements at index 0 and 3 of the array age using the following C
code statements.

age[0]=4;
age[3]=50;

10.4.4 � Characteristics of an Array

	 1.	An array is a collection of similar types of elements, which can be int, float, or char.
	 2.	The first element in the array is numbered 0, so the last element is 1 less than the size

of the array.
	 3.	An array is also known as subscripted variables.
	 4.	Before using an array, its type and dimension must be declared.
	 5.	However big an array, its elements are always stored in contiguous memory

locations.
	 6.	If array variables are not assigned with any value, then they will contain garbage

values.
	 7.	Usually, an array of characters is called a “string.”
	 8.	The array name represents the address of an array if it is not associated with any

subscripts. Thus the array name age is equivalent to &age[0].

PROGRAM 10.1

1. #include<stdio.h>

2. void main()

3. {

4. int age[3]={4,5,6};

5. printf("%u",&age[0]);

6. printf("\n%u", age);

7. }

Output:

The program will print two addresses as follows:

235383876
235383876

219Arrays and Strings

10.4.5 � Entering Data in an Array

Let us first discuss how to enter data for a single element. For entering data to a single vari-
able, we can write the code as shown in Program 10.2.

PROGRAM 10.2

1. #include<stdio.h>

2. void main()

3. {

4. int x;

5. printf(“Enter the value:”);

6. scanf(“%d”,&x);

7. }

Output:

Enter the value: 25

For entering data in an array, we can perform the same operation. But here we have to use
scanf() for each element because the array does not contain a single element. That indi-
cates that the number of scanf() functions used is equivalent to the number of elements
present in the array. Program 10.3 shows the code for this purpose.

As the number of elements increases in an array, the above code will be increase with
scanf() statements. Hence, instead of writing a scanf() function for every element, we
can use a for loop to write it as shown in Program 10.4. The for loop in this code helps in
executing the scanf() function repeatedly for each input element.

PROGRAM 10.3

1. #include<stdio.h>

2. void main()

3. {

4. int age[5];

5. printf("Enter the element for the array:");

6. scanf("%d",&age[0]);

7. scanf("%d",&age[1]);

8. scanf("%d",&age[2]);

9. scanf("%d",&age[3]);

10. scanf("%d",&age[4]);

11. }

Output:

Enter the element for the array:

220 C Programming

10.4.6 � Displaying the Content of an Array

For displaying all the elements of an array either we can use the printf() function for
each element, or we can use a for loop that repeats a printf() function for each output-
ted element. The C code snippet that uses a for loop is shown below:

printf("The elements in the array are:");
for(i=0 ; i<5 ; i++)
printf("%d" ,age[i]);

As shown in the code, the printf() function will execute five times and print the ele-
ment present in the array age[5].

Now, let us write a complete program that will declare an array of five elements, ask the
user to enter five elements into it, and finally display the elements present. Program 10.5
shows the complete program.

PROGRAM 10.4

1. #include<stdio.h>

2. void main()

3. {

4. int age[5] , i ;

5. printf("Enter the element for the array:");

6. for(i=0 ; i<5 ; i++)

7. scanf("%d",&age[i]);

8. }

PROGRAM 10.5

1. #include<stdio.h>

2. void main()

3. {

4.	 int age[5] , i ;

5.	 printf("Enter the element for the array:");

6.	 for(i=0 ; i<5 ; i++)

7.	 scanf("%d",&age[i]);

8.	 printf("The elements in the array are:");

9.	 for(i=0 ; i<5 ; i++)

10.	 printf("%d " ,age[i]);

11. }

Output:

Enter the element for the array: 24 34 65 21 15
The elements in the array are: 24 34 65 21 15

221Arrays and Strings

The user may not know the size of the array. So, when you are using the concept of an
array it is recommended that you should take an array with a maximum size and use some
programming techniques to get input from the user for a specific problem. To employ this
concept, the Program 10.5 needs to be modified as follows:

PROGRAM 10.6

1. #include<stdio.h>

2. void main()

3. {

4. 	 int age[50] , i, n;

5.	 printf("Enter how many number you want: ");

6.	 scanf("%d", &n);

7.

8.	 printf("Enter %d elements for the array: ", n);

9.	 for(i=0 ; i<n ; i++)

10.	 scanf("%d",&age[i]);

11.

12.	 printf("The elements in the array are:");

13.	 for(i=0 ; i<n ; i++)

14.	 printf("%d " ,age[i]);

15. }

Output:

Enter how many elements you want: 5
Enter 5 elements for the array: 23 56 32 65 78
The elements in the array are: 23 56 32 65 78

10.4.7 � Programming Examples

10.4.7.1 � Write a Program to Create an Array of N Elements and Write the Code to Find
the Biggest Number and the Smallest Number Present in the Array

PROGRAM 10.7

1. #include<stdio.h>

2. void main()

3. {

4.	 int arr[100];

5.	 int large,small,i,N;

6.	 printf("Enter the number of elements: ");

7.	 scanf("%d",&N);

8.	 printf("Enter elements of the array\n");

222 C Programming

10.4.7.2 � Write a Program to Search for an Element Present in the Array, the Number of
Times the Element is Present, and Print the Element’s Positions

9.	 for(i=0;i<N;i++)

10.	 {

11.		 scanf("%d",&arr[i]);

12.	 }

13.	 large=arr[0];

14.	 small=arr[0];

15.

16.	 for(i=0;i<N;i++)

17.	 {

18.		 if(arr[i]>large)

19.		 large=arr[i];

20.	 }

21.	 for(i=0;i<N;i++)

22.	 {

23.		 if(arr[i]<small)

24.		 small=arr[i];

25.	 }

26.	 printf("The largest number=%d", large);

27.	 printf("\nThe smallest number=%d", small);

28. }

Output:

Enter the number of elements: 5
Enter elements of the array
25 87 45 32 98
The largest number = 98
The smallest number = 25

PROGRAM 10.8

1. #include<stdio.h>

2. void main()

3. {

4.	 int a[100],i,n;

5.	 int ele,count=0;

6.	 printf("Enter how many elements you want: ");

7.	 scanf("%d",&n);

8.	 printf("Enter the array elements\n");

9.	 for (i=0; i<n; i++)

223Arrays and Strings

10.4.7.3 � Write a Program to Print the Binary Equivalent of a Decimal Number Using
an Array

PROGRAM 10.9

1. #include<stdio.h>

2. void main()

3. {

4. 	 int binary[20], i , m, n, r;

10.	 scanf("%d",&a[i]);

11.

12.	 printf("Enter the element to be search: ");

13.	 scanf("%d",&ele);

14.	 for (i=0; i<n; i++)

15.	 {

16.		 if(a[i]==ele)

17.		 {

18.		 printf("Element %d found in position=%d\n",ele,i+1);

19.		 count=count+1;

20.		 }

21.	 }

22.	 if (count==0)

23.		 printf("\nElement not found\n");

24.	 else

25.		 printf("\nThe element is found %d times", count);

26. }

Output:

Run 1
Enter how many elements you want: 5
Enter the array elements
12 23 12 34 23
Enter the element to be search: 23
Element 23 found in position=2
Element 23 found in position=5
The element is found 2 times

Run 2
Enter how many elements you want: 5
Enter the array elements
23 76 98 66 44
Enter the element to be search: 12
Element not found

224 C Programming

10.4.8 � Points to Note

	•	 We can use a subscripted variable anywhere as a normal variable for writing C state-
ments. For example:

age[1]=age[0]+3;
age[4]=age[1]*2;

The above statements are perfectly valid and do not show any errors.

	•	 For incrementing the ith element of a given array the following statement can also be
used:

age[i]++;
age[i]+=1;
age[i]=age[i]+1;

	•	 An array element can be assigned to a general variable as follows:

int x=age[3];

5. 	 printf("Enter the number.....");

6. 	 scanf("%d",&n);

7. 	 m=n;

8. 	 for(i=0 ; n>0 ; i++)

9. 	 {

10.	 	 r=n%2;

11.	 	 binary[i]=r;

12.		 n=n/2;

13. 	 }

14. 	 printf("Binary equivalent of %d is : ", m);

15. 	 i=i-1;

16. 	 for(; i>=0 ; i--)

17. 	 printf("%d ", binary[i]);

18. }

Output:
Run 1
Enter the number.....5
Binary equivalent of 5 is : 1 0 1
Run 2
Enter the number.....45
Binary equivalent of 45 is : 1 0 1 1 0 1

225Arrays and Strings

	•	 An array has no bound checking capability, i.e., if we declare an array of size 3 and
try to print the 4th element (age[4]), then the latter does not show any error and prints
a garbage value. Program 10.10 shows the C code for clarity. The output of the pro-
gram will print a garbage.

	•	 We must mention the dimension of the array during its declaration. It is impossible
to declare an array using a variable. So, the following code does not work:

int size;
printf(“enter the size:”);
scanf(“%d”, &size);
int age[size];

10.5 � 2D Arrays

In the previous section, we discussed the concept of 1D arrays. We can write int x[5] ;
where 5 is the dimension. But in real life, we may come across a situation where we need
to represent the data in a tabular format (with rows and columns). In mathematics, we use
the concept of a matrix, where we represent the elements in rows and columns. So here we
need a 2D array (e.g., int X[3][4], where 3 and 4 indicate the dimension) to represent a
matrix. An array may take three dimensions or more. We can also say that when an array
takes more than a one-dimensional form, it is called a multidimensional array. In this section,
we will discuss the 2D array.

In the 2D array, we require two subscripts to indicate one element. One subscript denotes
the row number and the other subscript denotes the column number. Like 1D arrays, the
subscript value starts from 0 (zero). Figure 10.11 shows an example to denote an element
in a 2D array.

10.5.1 � Introducing Matrices

A matrix mat[m][n] is an m by n table having m rows and n columns containing m × n ele-
ments (refer to Figure 10.12). Each element of the matrix is represented by mat[i][j].

where,
i represents the row number and varies from i = 0, 1, 2, …, m − 1
j represents the column number and varies from j = 0, 1, 2, …, n − 1

PROGRAM 10.10

1. #include<stdio.h>

2. void main()

3. {

4. 	 int x[]={1,3,5};

5. 	 printf("%d",x[4]);

6. }

226 C Programming

10.5.2 � Declaration of a 2D Array

We use a general form shown in (Figure 10.13a) to declare a 2D array.
The example code (Figure 10.13b) will create an array of integers named Mat and can

store 4 x 3 = 12 elements of integer type. The element of the array can be accessed by Mat[0]
[0], Mat[0][1]. Mat[2][3] and so on. According to its characteristics, all the elements of
the matrix will be stored in contiguous memory locations.

10.5.3 � Representation of a 2D Array in Memory

Since we know that array elements will be stored in contiguous memory locations, the 2D
array is also stored in contiguous memory locations. In memory, whether a 1D or a 2D
array, the array elements are stored in one continuous chain.

There are two ways of representing a 2D array inside memory:

	 1.	Row major order;
	 2.	Column major order.

FIGURE 10.11
An element of a 2D array with two subscripts.

Row Number Column Number

x[2][3]

Array Name

FIGURE 10.12
A matrix.

Mat[0][0] Mat[0][1] Mat[0][2] Mat[0][3]

Mat[1][0] Mat[1][1] Mat[1][2] Mat[1][3]

Mat[2][0] Mat[2][1] Mat[2][2] Mat[2][3]

0

1

2

0 1 2 3
n columns

m
 row

s

n=4

m=3
Mat[i][j]

Where i=1 and j=2

FIGURE 10.13
Syntax of a 2D array declaration and example.

DataType ArrayName[RowSize][ColSize]; int Mat[3][4];

Syntax Example

(a) (b)

227Arrays and Strings

10.5.3.1 � Row Major Order

In row major order the first row occupies the first set of memory locations, the second
occupies the next set, and so on (see Figure 10.14).

The address of an element in the above 2D array can be calculated by the following
formula:

	 Address A i j Base W C i j� ��� ��� � � � � �� �

where,
W = the size of each element;
Base = the base address of the array;
C = the number of columns present in the array.

Quiz: Assume that a 3 × 3 2D array is represented in row major order and stores integers.
Let the integers take four bytes in memory. The base address is 2000. Find the address of
A[1][2].

Answer:

	 Address A i j Base W C i j� ��� ��� � � � � �� �

	 Address A(1 2 2000 4 3 1 2� �� � � � � �� �

	 Address A(1 2 2000 20 2020� �� � � � �

10.5.3.2 � Column Major Order

Here the first column of the array occupies the first set of memory locations, the second
occupies the second set, and so on (see Figure 10.15).

The address of an element in the above 2D array can be calculated by the following
formula:

	 Address A i j Base W R j i� ��� ��� � � � � �� �

where,

FIGURE 10.14
Row major order representation of a 2D array in memory.

Mat[0][0] Mat[0][1] Mat[0][2]

Mat[1][0] Mat[1][1] Mat[1][2]

Mat[2][0] Mat[2][1] Mat[2][2]

0

1

2

0 1 2

Mat[1][0] Mat[1][1] Mat[1][2] Mat[2][0] Mat[2][1] Mat[2][2]Mat[0][0] Mat[0][1] Mat[0][2]

Mat[0] Mat[1] Mat[2]

2000 2004 2008 2012 2016 2020 2024 2028 2032

228 C Programming

W = the size of each element;
Base = the base address of the array;
R = the number of rows present in the array.

Quiz: Assume that a 3 × 3 2D array is represented in column major order and stores inte-
gers. The base address is 2000. Find the address of A[1][2].

Answer:

	 Address A i j Base W C i j� ��� ��� � � � � �� �

	 Address A(1 2 2000 4 3 2 1� �� � � � � �� �

	 Address A(1 2 2000 28 2028� �� � � � �

10.5.4 � Initialization of a 2D Array

Initialization of a 2D array during declaration is done by specifying the elements in row
major order. (The element of the first row is entered in a sequence, followed by the second
row, the third row, and so on.) Figure 10.16a specifies an example. We may not specify the
first dimension, but the second dimension is compulsory. One such example is shown in
Figure 10.16b, where the compiler automatically reads four elements, treats them as row 1,
then the second set of four elements, treats them as row 2, and so on.

FIGURE 10.15
Column major order representation of a 2D array in memory.

Mat[0][0] Mat[0][1] Mat[0][2]

Mat[1][0] Mat[1][1] Mat[1][2]

Mat[2][0] Mat[2][1] Mat[2][2]

0

1

2

0 1 2

Mat[0][1] Mat[1][1] Mat[2][1] Mat[0][2] Mat[1][2] Mat[2][2]Mat[0][0] Mat[1][0] Mat[2][0]

2000 2004 2008 2012 2016 2020 2024 2028 2032

FIGURE 10.16
Example of 2D array initialization.

int Mat[3][4]={
{2,5,7,6},
{3,9,5,2},
{6,1,3,7}

};

Example

int Mat[][4]={
{2,5,7,6},
{3,9,5,2},
{6,1,3,7}

};

Example

First Dimension
le� blank

(a) (b)

229Arrays and Strings

If we want to initialize a 2D array using the rule followed in Figure 10.16b, then we can
use a simpler way to write it. We can omit the inner bracket and provide the element in a
continuous sequence (Figure 10.17 shows one such example).

10.5.5 � Accessing the Elements of a 2D Array

The elements of a 2D array can be accessed in the same manner as we access a matrix, that
is, we can access each element by providing the array name, the row position, and the col-
umn position, as follows:

Mat[i][j]

where i refers to the row number and j refers to the column number.
Now that we understand the declaration and initialization of a 2D array, let us write a

simple program that declares a 2D array, initializes it, and displays the array in a matrix
format.

PROGRAM 10.11

1. #include<stdio.h>

2. void main()

3. {

4.	 int i,j;

5.	 int Mat[3][4]=	 {

6.					 {2, 5, 7, 6},

7.					 {3, 9, 5, 2},

8.					 {6, 1, 3, 7}

9.				 };

10.	 printf("%d ",Mat[0][0]);

11.	 printf("%d ",Mat[0][1]);

12.	 printf("%d ",Mat[0][2]);

13.	 printf("%d ",Mat[0][3]);

FIGURE 10.17
Example of 2D array initialization without dividing elements into groups.

int Mat[][4]={2,5,7,6,3,9,5,2,6,1,3,7};

Example

First Dimension
le� blank

230 C Programming

In Program 10.11, for displaying 12 elements, we have used 12 printf() statements; but
it can be reduced by using a for loop. We also have used two extra printf() statements
at lines 14 and 19 that will help the array to be displayed like a matrix. If we remove these
two printf() statements, then the elements will be printed in a row. Program 10.12
shows how to write the same program using a for loop.

14.	 printf("\n");

15.	 printf("%d ",Mat[1][0]);

16.	 printf("%d ",Mat[1][1]);

17.	 printf("%d ",Mat[1][2]);

18.	 printf("%d ",Mat[1][3]);

19.	 printf("\n");

20.	 printf("%d ",Mat[2][0]);

21.	 printf("%d ",Mat[2][1]);

22.	 printf("%d ",Mat[2][2]);

23.	 printf("%d ",Mat[2][3]);

24. }

Output:

2 5 7 6
3 9 5 2
6 1 3 7

PROGRAM 10.12

1. #include<stdio.h>

2. void main()

3. {

4.	 int i,j;

5.	 int Mat[3][4]=	 {

6.					 {2, 5, 7, 6},

7.					 {3, 9, 5, 2},

8.					 {6, 1, 3, 7}

9.				 };

10.	 printf("The matrix is:\n");

11.	 for(i=0;i<3;i++)

12.	 {

13.		 for(j=0;j<4;j++)

14.		 {

15.			 printf("%d", Mat[i][j]);

16.		 }

231Arrays and Strings

10.5.6 � Entering Data in a 2D Array

We can initialize the 2D array, or we can enter the value at run time. For entering the value
at run time, we may use scanf() for each element, or we may use a for loop. Both formats
are given below.

Using scanf() for each input will increase
the program size and it is not convenient.

Using the for loop we can reduce the code
drastically; So, this is recommended.

1. int Mat[3][4];

2. printf("Enter the 0,0 element");

3. scanf("%d", &Mat[0][0]);

4. printf("Enter the 0,1 element");

 scanf("%d", &Mat[0][1]);

5. .

6. .

7. .

8. printf("Enter the 2,3 element");

9. scanf("%d", &Mat[0][1]);

1. int i,j;

2. int Mat[3][4];

3. printf("Enter the element");

4. for(i=0;i<3;i++)

5. {

6.	 for(j=0;j<4;j++)

7.	 {

8.	 scanf("%d",&Mat[i][j]);

9.	 }

10. }

Explanation:
Refer to the recommended code for this explanation. We use the concept of the nested for
loop to read the input from the user. The scanf() function (line 8) reads the input and
stores it in the corresponding row and column number, specified by the values of i and j.
The inner for loop (line 6) executes the scanf() four times because our matrix contain
four elements in each row. The outer for loop (line 4) will execute the inner for loop three
times, because we have three rows in our matrix.

Let us write a complete program (Program 10.13) to enter some elements in a 2D array
and print it in matrix format.

17.		 printf("\n");

18.	 }

19. }

Output:

The matrix is:

2 5 7 6
3 9 5 2
6 1 3 7

Explanation:
The inner for loop (lines 13 to 16) helps to print four elements in a row; line 17 will
send the cursor to the next line. The outer for loop (line 11) helps the inner for loop to
execute three times, because the matrix has three rows.

232 C Programming

PROGRAM 10.13

1. #include<stdio.h>

2. void main()

3. {

4.	 int i,j;

5.	 int Mat[3][4];

6.	 printf("Enter the element: ");

7.	 for(i=0;i<3;i++)

8.	 {

9.		 for(j=0;j<4;j++)

10.		 {

11.			 scanf("%d",&Mat[i][j]);

12.		 }

13.	 }

14.

15.	 printf("The matrix is:\n");

16.	 for(i=0;i<3;i++)

17.	 {

18.		 for(j=0;j<4;j++)

19.		 {

20.			 printf("%d ",Mat[i][j]);

21.		 }

22.		 printf("\n");

23.	 }

24. }

Output:

Enter the element: 1 2 3 4 5 6 7 8 9 1 2 3
The matrix is:

1 2 3 4
5 6 7 8
9 1 2 3

The user may not always know how much row and column size is required for each run
of the program. Till now, whatever program we have written, the matrix size was 3 x 4. But
sometimes the user may need more than this size or less. So it is better to declare the matrix
size with a bigger number and use a programming technique to get the number of the row
and column size from the user at run time. Consider Program 10.14.

233Arrays and Strings

PROGRAM 10.14

1. #include<stdio.h>

2. void main()

3. {

4.	 int i,j, r, c;

5.	 int Mat[100][100];

6.	 printf("Enter the row and column size: ");

7.	 scanf("%d %d", &r,&c);

8.	 printf("Enter %d element: ",r*c);

9.	 for(i=0;i<r;i++)

10.	 {

11.		 for(j=0;j<c;j++)

12.		 {

13.			 scanf("%d",&Mat[i][j]);

14.		 }

15.	 }

16.

17.	 printf("The matrix is:\n");

18.	 for(i=0;i<r;i++)

19.	 {

20.		 for(j=0;j<c;j++)

21.		 {

22.			 printf("%d ",Mat[i][j]);

23.		 }

24.		 printf("\n");

25.	 }

26. }

Output:

Enter the row and column size: 4 5
Enter 20 element: 12 13 14 15 16 23 33 43 56 23 56 78 98 32 23 12 23 45 23 76
The matrix is:

12 13 14 15 16
23 33 43 56 23
56 78 98 32 23
12 23 45 23 76

Explanation:
We have declared a large-sized matrix of 100 × 100 (line 5). Using lines 6 and 7 we
read the row size and column size from the user. After that we asked the user to enter
the rowSize × columnSize number of elements using line 8. Lines 9 to 15 help in reding
the elements from the user’s input and storing it in the allocated memory space.
Finally, lines 17 to 25 print the content of the 2D array in matrix format as shown in
the output.

234 C Programming

10.5.7 � Exploration of a 2D Matrix

From the previous concept, we see that a 2D array is nothing but a table of data. We can
also say that each row of this table is a 1D array (see Figure 10.18). We can give a name to
each 1D array. The name can be the array name and the row number (for example we can
say Mat[0] indicates the name of the first row, which is a 1D array, Mat[1] can be the name
of the second 1D array, and so on).

To prove the above concept, we are going to use the concept of the 1D array: that the
array name indicates the address of the first element of the array. That means if I print the
value of Mat [0] or Mat [1], then it should give an address. Consider the following
program.

PROGRAM 10.15

1. #include<stdio.h>

2. void main()

3. {

4. 	 int Mat[3][4]={

5.					 {2, 5, 7, 6},

6. 					 {3, 9, 5, 2},

9.					 {6, 1, 3, 7}

10.			 };

11. 	 printf("\nThe address of 1st row= %u", Mat[0]);

12. 	 printf("\nThe address of 2nd row= %u", Mat[1]);

13. 	 printf("\nThe address of 3rd row= %u", Mat[2]);

14.	 }

Output:

The address of 1st row= 3738969104
The address of 2nd row= 3738969120
The address of 3rd row= 3738969136

FIGURE 10.18
Representing a 2D array in the form of 1D arrays.

Mat[0][0] Mat[0][1] Mat[0][2]

Mat[1][0] Mat[1][1] Mat[1][2]

Mat[2][0] Mat[2][1] Mat[2][2]

0

1

2

0 1 2
Mat[0][0] Mat[0][1] Mat[0][2]

0 1 2

Mat[1][0] Mat[1][1] Mat[1][2]

0 1 2

Mat[2][0] Mat[2][1] Mat[2][2]

0 1 2

Mat[0]

Mat[1]

Mat[2]

Name of 1D array

Index number of each 1D array

235Arrays and Strings

10.5.8 � Programming Examples

10.5.8.1 � Write a Program to Add All the Elements Present in the Main Diagonal of a 2D
Matrix

PROGRAM 10.16

1. #include<stdio.h>

2. void main()

3. {

4.	 int a[10][10],i,j,sum=0,r,c;

5.	 printf("\nEnter the number of rows: ");

6.	 scanf("%d",&r);

7.	 printf("\nEnter the number of columns: ");

8.	 scanf("%d",&c);

9.	 if(r==c)

10.	 {

11.		 printf("\nEnter the elements of matrix: ");

12.		 for(i=0;i<r;i++)

13.			 for(j=0;j<c;j++)

14.				 scanf("%d",&a[i][j]);

15.

16.		 printf("\nThe matrix is\n");

17.		 for(i=0;i<r;i++)

18.		 {

19.			 for(j=0;j<c;j++)

20.			 {

21.				 printf("%d\t",a[i][j]);

22.			 }

23.			 printf("\n");

24.		 }

Explanation:
We are able to print the addresses of each row using the matrix name with its first
dimension. So, it is proved that a 2D array is a collection of 1D arrays. The format
specifier %u indicates the format string for an unsigned integer. We know that an
address never takes a negative value, so we take %u here. If you analyze the output,
you can easily observe that the difference between the address of the first row and
the second row is 16. Similarly, the second row and the third have the same differ-
ence. The matrix in Program 10.15 has 12 elements and each row contains 4 integer
elements. Here the compiler takes four bytes to represent each integer element.
Hence, the address of each row differs by 16. It also proves that the array elements
are stored in a contiguous location in memory.

236 C Programming

10.5.8.2 � Write a Program to Add the Elements of Each Column and Print it in the
Following Format

Matrix Output

3 2 4 3 2 4 | 9

7 1 3 7 1 3 | 11

6 8 7 6 8 7 | 21

25.		 for(i=0;i<r;i++)

26.		 {

27.			 for(j=0;j<c;j++)

28.			 {

29.				 if(i==j)

30.				 sum=sum+a[i][j];

31.			 }

32.		 }

33.		� printf("\n\nSum of the diagonal elements of a matrix

is: %d",sum);

34.	 }

35.	 else

36.	 {

37.		 printf("Column and row size must be the same”;

38.	 }

39. }

Output:

Run 1
Enter the number of rows: 3
Enter the number of columns: 3
Enter the elements of matrix: 1 2 3 4 5 6 7 8 9
The matrix is

1 2 3

4 5 6

7 8 9

Sum of the diagonal elements of a matrix is: 15

Run 2
Enter the number of rows: 3
Enter the number of columns: 5
Column and row size must be the same

237Arrays and Strings

PROGRAM 10.17

1. #include<stdio.h>

2. void main()

3. {

4.	 int a[10][10],i,j,sum=0,r,c;

5.	 printf("\nEnter the number of rows: ");

6.	 scanf("%d",&r);

7.	 printf("\nEnter the number of columns: ");

8.	 scanf("%d",&c);

9.	 printf("\nEnter the elements of matrix: ");

10.	 for(i=0;i<r;i++)

11.		 for(j=0;j<c;j++)

12.		 scanf("%d",&a[i][j]);

13.

14.	 printf("\nThe matrix is\n");

15.	 for(i=0;i<r;i++)

16.	 {

17.		 for(j=0;j<c;j++)

18.		 {

19.			 printf("%d\t",a[i][j]);

20.		 }

21.		 printf("\n");

22.	 }

23.	 printf("\nTHE OUTPUT IS:\n");

24.	 for(i=0;i<r;i++)

25.	 {

26.		 sum=0;

27.		 for(j=0;j<c;j++)

28.		 {

29.			 printf("%d\t",a[i][j]);

30.			 sum=sum+a[i][j];

31.		 }

32.		 printf("| %d",sum);

33.		 printf("\n");

34.	 }

35. }

Output:

Enter the number of rows: 4
Enter the number of columns: 3
Enter the elements of matrix: 12 34 56 78 21 32 43 54 65 76 87 98

238 C Programming

10.5.8.3 � Write a Program to Add Two Matrices

PROGRAM 10.18

 1. #include<stdio.h>

 2. void main()

 3. {

 4.	 int a[10][10],b[10][10],c[10][10],i,j,r1,c1,r2,c2;

 5.	� printf("\nEnter the number of rows and columns of 1st

matrix: ");

 6.	 scanf("%d %d",&r1,&c1);

 7.	� printf("\nEnter the number of rows and columns of 2nd

matrix: ");

 8.	 scanf("%d %d",&r2,&c2);

 9.	 if((r1==r2)&&(c1==c2))

 10.	 {

 11.		 printf("\nEnter the elements of 1st matrix: ");

 12.		 for(i=0;i<r1;i++)

 13.			 for(j=0;j<c1;j++)

 14.			 scanf("%d",&a[i][j]);

 15.		 printf("\nEnter the elements of 2nd matrix: ");

 16.		 for(i=0;i<r2;i++)

 17.			 for(j=0;j<c2;j++)

 18.			 scanf("%d",&b[i][j]);

 19.

 20.		 printf("\nThe 1st matrix is\n");

 21.		 for(i=0;i<r1;i++)

 22.		 {

 23.			 for(j=0;j<c1;j++)

The matrix is

12 34 56

78 21 32

76 87 98

THE OUTPUT IS:
12 34 56 | 102

78 21 32 | 131

43 54 65 | 162

76 87 98 | 261

239Arrays and Strings

 24.			 {

 25.				 printf("%d\t",a[i][j]);

 26.			 }

 27.			 printf("\n");

 28.		 }

 29.

 30.		 printf("\nThe 2nd matrix is\n");

 31.		 for(i=0;i<r2;i++)

 32.		 {

 33.			 for(j=0;j<c2;j++)

 34.			 {

 35.				 printf("%d\t",b[i][j]);

 36.			 }

 37.			 printf("\n");

 38.		 }

 39.		 /* Addition of the two matrices*/

 40.		 for(i=0;i<r1;i++)

 41.			 for(j=0;j<c1;j++)

 42.			 c[i][j]=a[i][j]+b[i][j];

 43.

 44.		� printf("\nThe addition of the two matrices

is\n");

 45.		 for(i=0;i<r1;i++)

 46.		 {

 47.			 printf("\n");

 48.			 for(j=0;j<c1;j++)

 49.			 printf("%d\t",c[i][j]);

 50.		 }

 51.	 }

 52.	 else

 53.	 printf("ADDITION NOT POSSIBLE");

 54. }

 55.

 56.

Output:

Enter the number of rows and columns of 1st matrix: 3 3
Enter the number of rows and columns of 2nd matrix: 3 3
Enter the elements of 1st matrix: 23 43 45 43 21 67 98 33 44
Enter the elements of 2nd matrix: 22 88 44 12 14 16 47 73 93

240 C Programming

10.5.8.4 � Write a Program to Multiply Two Matrices

The 1st matrix is
23 43 45

43 21 67

98 33 44

The 2nd matrix is
22 88 44

12 14 16

47 73 93

The addition of the two matrices is
45 131 89

55 35 83

145 106 137

PROGRAM 10.19

1. #include<stdio.h>

2. void main()

3. {

4.	 int a[10][10],b[10][10],c[10][10],i,j,k,r1,c1,r2,c2;

5. 	� printf("\nEnter the number of rows and columns of 1st matrix:

");

6.	 scanf("%d %d",&r1,&c1);

7.	� printf("\nEnter the number of rows and columns of 2nd matrix:

");

8. 	 scanf("%d %d",&r2,&c2);

9.	 if(c1==r2)

10.	 {

11.		 printf("\nEnter the elements of 1st matrix: ");

12.		 for(i=0;i<r1;i++)

13.			 for(j=0;j<c1;j++)

14.			 scanf("%d",&a[i][j]);

15.		 printf("\nEnter the elements of 2nd matrix: ");

16.		 for(i=0;i<r2;i++)

17.			 for(j=0;j<c2;j++)

18.			 scanf("%d",&b[i][j]);

19.

20.		 printf("\nThe 1st matrix is\n");

241Arrays and Strings

21.		 for(i=0;i<r1;i++)

22.		 {

23.			 for(j=0;j<c1;j++)

24.			 {

25.				 printf("%d\t",a[i][j]);

26.			 }

27.			 printf("\n");

28.		 }

29.

30.		 printf("\nThe 2nd matrix is\n");

31.		 for(i=0;i<r2;i++)

32.		 {

33.			 for(j=0;j<c2;j++)

34.			 {

35.				 printf("%d\t",b[i][j]);

36.			 }

37.			 printf("\n");

38.		 }

39.		 /* Code for matrix multiplication*/

40.		 for(i=0;i<r1;i++)

41.		 {

42.			 for(j=0;j<c2;j++)

43.			 {

44.				 c[i][j]=0;

45.				 for(k=0;k<c1;k++)

46.				 {

47.					 c[i][j]=c[i][j]+a[i][k]*b[k][j];

48.				 }

49.			 }

50.		 }

51.		� printf("\nThe multiplication of the two matrices

is\n");

52.		 for(i=0;i<r1;i++)

53.		 {

54.			 printf("\n");

55.			 for(j=0;j<c2;j++)

56.			 {

57.				 printf("%d\t",c[i][j]);

58.			 }

59.		 }

60.	 }

61.	 else

242 C Programming

10.6 � Multidimensional Arrays

As we have already discussed, any array which takes more than one dimension is known
as a multidimensional array. In Section 10.5 we discussed the concept of 2D arrays. In this
section, we introduce the concept of 3D arrays. In practice, 3D arrays are rarely used.

10.6.1 � Declaration and Representation of 3D Arrays

Declaration of a 3D array is similar to other arrays; the only difference is it takes another
dimension. The syntax is shown in Figure 10.19.

Where size represents the number of 2D arrays, RowSize and ColSize represent the num-
ber of rows and columns of each 2D array. The conceptual representation of a 3D array A[4]

62.	 printf("MULTIPLICATION NOT POSSIBLE");

63. }

64.

65.

66.

Output:

Enter the number of rows and columns of 1st matrix: 3 3
Enter the number of rows and columns of 2nd matrix: 3 3
Enter the elements of 1st matrix: 23 45 22 33 55 77 31 94 76
Enter the elements of 2nd matrix: 33 66 11 23 45 67 98 32 21

The 1st matrix is
23 45 22

33 55 77

31 94 76

The 2nd matrix is
33 66 11

23 45 67

98 32 21

The multiplication of the two matrices is
3950 4247 3730

9900 7117 5665

10633 8708 8235

243Arrays and Strings

[3][3] is shown in Figure 10.20. A[4][3][3] represents four 3 × 3 2D arrays placed back to
back.

As discussed, a 3D array is a collection of 2D arrays and the elements are stored in a
contiguous memory location. In the declaration, the first index represents the number of
2D arrays. Let us take an example to explain it properly.

int A[2][3][4];

Example

where,

2 indicates the number of 2D arrays;
3 represents the number of rows in each 2D array;
4 represents the number of columns in each 2D array.

According to the above declaration, array A can store 24 elements; 12 elements in each
2D array.

FIGURE 10.19
3D array declaration syntax.

DataType ArrayName[size][RowSize][ColSize];

Syntax

FIGURE 10.20
Conceptual representation of a 3D array.

4 6 8
1 3 2
5 6 99 3 8

1 3 6

5 7 42 5 9
6 4 8
5 4 31 4 6

8 2 5
4 3 7

A[0]

A[1]

A[2]

A[3]

A[2][1][2]

A[0][1][1]

0

1

2

0 1 2

Index Number

0th2D Array

A[3][2][2]1st2D Array

2nd2D Array

3rd2D Array

244 C Programming

10.6.1.1 � Write a Program to Declare a 3D Array, Input Some Numbers, and Display the
3D Array

PROGRAM 10.20

1. #include<stdio.h>

2. void main()

3. {

4. 	 int A[2][3][4];

5. 	 int i,j,k;

6.	 printf(" Enter 24 elements: ");

7.	 for(i=0;i<2;i++)

8.	 {

9.		 for(j=0;j<3;j++)

10.		 {

11.			 for(k=0;k<4;k++)

12.			 scanf("%d", &A[i][j][k]);

13.		 }

14.	 }

15.	 printf("The multidimensional array contains:\n");

16.	 for(i=0;i<2;i++)

17.	 {

18.		 for(j=0;j<3;j++)

19.		 {

20.			 for(k=0;k<4;k++)

21.			 printf(" %d ", A[i][j][k]);

22.			 printf("\n");

23.		 }

24.		 printf("\n");

25.	 }

26. };

27.

Output:

Enter 24 elements: 12 34 56 78 90 12 23 34 45 56 67 89 90 78 76 54 43 32 21 31 41 44 55
77

The multidimensional array contains:

12 34 56 78
90 12 23 34
45 56 67 89

90 78 76 54
43 32 21 31
41 44 55 77

245Arrays and Strings

10.7 � Character Arrays: Strings

Whenever we store several integer elements in an array, we call it an integer array. In the
same manner, the collection of a character array is known as a string. We use strings to
manipulate or process different words and sentences. Generally, a string is treated as vari-
able-length data. For example, consider the name of a person. By nature, the names of
persons vary from each other in their length. A string is a 1D array of characters that is
terminated by an escape sequence known as a NULL (“\0”) character (i.e., to mark the end
of the string, C uses the “\0” character).

A string is a 1D array of characters that is terminated by an escape sequence known
as a NULL (“\0”) character.

	

•	 Strings in C are enclosed within double quotes. Example: “C Programming
Language”.

	•	 The string is stored in memory as ASCII codes of the characters that make up the
string, appended with 0 (ASCII value of “\0”).

	•	 Normally each character of the string takes one byte in memory.
	•	 Figure 10.21 shows you the difference between the character stored in memory and

the one-character string stored in memory. The character requires only one memory
location, but the one-character string requires two memory locations.

10.7.1 � Declaration of a String

A string can be declared like a 1D array. The syntax of declaring a string and an example is
shown in Figure 10.22.

10.7.2 � Initialization of a String

We can initialize a string in two ways. One way is to use the traditional initialization pro-
cess as for a 1D array with an extra character “\0” appended at the end. One such example

FIGURE 10.21
Representation of a character and a string in memory.

A \0A

Character ‘A’ String “A”

FIGURE 10.22
String declaration syntax with an example.

char StringName[size];

Syntax

char Name[50];

Example

246 C Programming

is shown in Figure 10.23. In this declaration, the string week is initialized to MONDAY. You
notice that a “\0” character is appended at the end to indicate the end of the string.

The C language provides another most uncomplicated way to initialize an array that
does not require appending the “\0” character at the end. Figure 10.24 shows this
initialization.

With this initialization process, the C compiler automatically adds a NULL character
(“\0”) at the end of the string. This is the most convenient way to initialize a string. A
string is stored in memory as ASCII codes of the character. The compiler takes care of stor-
ing the ASCII codes of the characters of the string in memory and also stores the null ter-
minator at the end. Figure 10.25 shows a conceptual representation of the memory
allocation.

10.7.3 � Reading a String

To read anything from the user requires a scanf() function. For reading a string, we can
also use the same function. But there is a problem since the scanf() function can be used
to take input from the user, but a white space character delimits it. That means whenever
input is done, scanf() recognizes a sequence of characters, and whenever space is
encountered, it will stop.

10.7.3.1 � Disadvantages of the scanf() Function

As discussed above, a scanf() function only reads characters in a sequence until and
unless whitespace is encountered. But, in general, most strings have whitespaces in them.
For example, if we consider a name, we see it is a collection of words, and to separate the
words we need whitespaces. So the disadvantage of using scanf() is it will read only the
first word of your name and ignore the remaining word(s).

FIGURE 10.23
Initializing string example.

char week[]={'M','O','N','D','A','Y','\0'};

Example

FIGURE 10.25
Conceptual representation of a string in memory.

M O N D A A '\0'

2000 2001 2002 2003 2004 2005 2006

0 1 2 3 4 5 6Index Number

Memory Address

FIGURE 10.24
Initializing a string without using the “\0” character.

char week[]="MONDAY";

Example

247Arrays and Strings

Consider Program 10.21 that will explain the problems associated with the scanf()
function. In this example, we are trying to read a string from the user. Observe the output,
and you will notice that we are not able to fulfill our objective of reading a complete string
with the scanf() function. In the first run, the function gives us the output as desired, but
in the second run, it only reads the first word and ignores the second. That’s why the
printf() function displays only the first word.

PROGRAM 10.21

1. #include<stdio.h>

2. void main()

3. {

4.	 char str[20];

5.	 printf("Enter the string : ");

6.	 scanf("%s",str);

7.	 printf("The string entered by you : %s",str);

8. }

Output:

Run 1
Enter the string: Programming
The string entered by you: Programming

Run 2
Enter the string: Programming Language
The string entered by you: Programming

Explanation:
In the above example, whenever the user enters Programming (Run 1) then the
whole string will be printed, but at Run 2, whenever the user enters Programming
Language, it will print only Programming, because, when space is encountered,
scanf() will stop reading the data.

The C language provides an alternative function called gets() to avoid this problem.
In the following section, we will discuss the gets() function.

10.7.3.2 � Reading Strings with the gets() Function

The best approach to string input is to use the library function called gets(). The gets()
function will read the complete input line, including spaces, and store it in the memory
area as a null-terminated string.

10.7.4 � Displaying the String

We use the printf() function to print something on the screen. Here also we can use the
same function to print a string. Another function provided by the C language that does the
same thing is known as the gets() function. Overall, we have two different functions
available to print the content on the screen. For displaying the string, we can use:

248 C Programming

	•	 the printf() function;
	•	 the puts() function.

Generally, printf() is convenient because we are acquainted with its format. All the programs
in this chapter use the printf() function for output. Consider Program 10.22 that uses
printf() to print the string. Program 10.23 shows the same program using the puts()
function.

PROGRAM 10.22

1. #include<stdio.h>

2. void main()

3. {

4. char str[20];

5. printf("Enter the string : ");

6. gets(str);

7. printf("The string entered by you : %s", str);

8. }

Output:

Run 1
Enter the string: Programming
The string entered by you: Programming

Run 2
Enter the string: Programming Language
The string entered by you: Programming Language

Explanation:
For both cases (Run 1 and Run 2) the complete output will come without terminating
the string after a space.

PROGRAM 10.23

1. #include<stdio.h>

2. void main()

3. {

4.	 char str[20];

5.	 printf("Enter the string : ");

6.	 gets(str);

7.	 printf("The string entered by you : ");

8.	 puts(str);

9. }

Output:

Enter the string: Programming Language
The string entered by you: Programming Language

249Arrays and Strings

10.7.5 � Programming Examples

10.7.5.1 � Find the Length of a String

We know that every string is ended with a NULL character (“\0”). We can easily find out
the length of the string by counting the characters up to “\0” using a loop. The program is
as follows:

PROGRAM 10.24

1. #include<stdio.h>

2. #include<conio.h>

3. void main()

4.{

5.	 char name[30];

6.	 int len=0,i=0;

7.	 printf("Enter your name: ");

8.	 gets(name);

9.	 while(name[i]!=NULL)

10.	 {

11.			 len=len+1;

12.			 i=i+1;

13.	 }

14.	 printf("Length of the string: %d",len);

15. }

Output:

Enter your name: C Programming Learn to code
Length of the String: 27

10.7.5.2 � Count the Number of Words Present in a String

A string is a collection of words, and generally the words are separated by a space. For
counting the number of words in a string, we need to search for the blank space present
after each word:

	•	 For counting the word, we have to find the blank space between the words;
	•	 When we have one blank space, then the counter will be incremented to 1;
	•	 If we find n blank spaces, then there must be n + 1 words.

Consider the following program.

250 C Programming

PROGRAM 10.25

1. #include<conio.h>

2. #include<stdio.h>

3. void main()

4. {

5. 	 char str[30];

6.	 int word=0,i=0;

7.	 printf("Enter the string : ");

8.	 gets(str);

9.	 while(str[i]!='\0')

10.	 {

11.		 if(str[i]==' ')

12.		 {

13.		 word=word+1;

14.		 }

15.		 i=i+1;

16.	 }

17.	 printf("There are %d words present", word+1);

18. }

Output:

Enter the string: C programming learn to code
There are 5 words present

Explanation:
Lines 11–14 increment the value of the variable word when a blank space is found.
The word variable is initialized to 0 in line 6. The while loop in line 9 scans each char-
acter until the end of the string. As shown in the output, there are four blank spaces;
hence the number of words will be 5.

10.7.5.3 � Reverse the String

There are several ways to do this. In our example, we take two strings. The first string will
store the original string, and the other one will store its reverse. The process is simple:

	•	 First, find the length of the given string. The length is required because we want to
access the characters of the given string in the reverse manner. The length will be
used as the last index of the given string.

	•	 Use a loop that will start from the character in the last index, and move towards the
beginning of the string. During this process, copy the characters to the second string.

	•	 Finally, print the second string that will contain the reverse of the given string.

Consider the following program.

251Arrays and Strings

PROGRAM 10.26

1. #include<stdio.h>

2. #include<conio.h>

3. void main()

4. {

5.	 char str[30],copy[30];

6.	 int len=0,i,j;

7.	 printf("Enter a string: ");

8.	 gets(str);

9.	 i=0;

10.	 while(str[i]!=NULL)

11.	 {

12.		 len=len+1;

13.		 i=i+1;

14.	 }

15.	 for(i=0,j=len-1;i<len;i++,j--)

16.	 {

17.		 copy[i]=str[j];

18.	 }

19.	 copy[i]=NULL;

20.	 printf("\nThe original string is: %s ",str);

21.	 printf("\nThe reverse of the string is: %s",copy);

22.	 }

Output:

Enter a string: C Programming Learn to Code
The original string is: C Programming Learn to Code
The reverse of the string is: edoC ot nraeL gnimmargorP C

Explanation:
Lines 9–14 are used to find the length of the string. Lines 15–18 will read the character
from the last index (len-1) of the original string str and copy it to the second string
copy. After copying all the characters, line 19 appends a NULL character (“\0”) at the
end to mark the end of the string. Finally, lines 20 and 21 print the original and
reverse strings, respectively.

10.7.5.4 � Check Whether the String is a Palindrome or Not

This is the process of checking the similarity between a given string and its reverse string.
For example, "MADAM" is a string, and if you find its reverse, it remains the same, so the
string "MADAM" is a palindrome. Consider the following program.

252 C Programming

PROGRAM 10.27

1. #include<stdio.h>

2. #include<conio.h>

3. void main()

4. {

5.	 char str[30];

6.	 int len=0,i,j;

7.	 printf("Enter your name: ");

8.	 gets(str);

9.	 i=0;

10.	 while(str[i]!=NULL)

11.	 {

12.		 len=len+1;

13.		 i=i+1;

14.

15.	 }

16.	 for(i=0,j=len-1;i<j;i++,j--)

17.	 {

18.		 if(str[i]!=str[j])

19.		 break;

20.	 }

21.	 if(i==j || i==j+1)

22.		 printf("STRING PALLINDROME");

23.	 else

24.		 printf("NOT PALLINDROME");

25. }

Output:

Run 1
Enter your name: MADAM
STRING PALLINDROME

Run 2
Enter your name: Programming
NOT PALLINDROME

10.8 � String Functions

For easy manipulation of the string, the C compiler provides a set of functions which is
defined inside the header file string.h. To use these functions, the header file <string.h>
must be included in the program. In the following section, we discuss some of the com-
monly used string functions.

253Arrays and Strings

10.8.1 � strcpy (Destination, Source)

You can’t just use string1=string2 in C. You have to use the strcpy() function to copy one
string to another.

Example:

S1 = “abc”;

S2 = “xyz”;

strcpy(S1, S2); /*S1=“xyz”*/

10.8.2 � strcat (Destination, Source)

This joins the destination and source strings and puts the joined string into the destination
string.

Example:

S1 = “abc”;

S2 = “xyz”;

strcat (S1, S2); /*S1=“abcxyz”*/

10.8.3 � strcmp (First, Second)

Compare the first and second strings:

	•	 If the first string is greater than the second string, then a number greater than 0 is
returned;

	•	 If the first string is less than the second, then a number less than 0 is returned;
	•	 If the strings are equal, then 0 is returned.

Beside the above functions many other functions are also defined inside <string.h> that are
shown in Table 10.1.

TABLE 10.1

List of String Functions

Sl. No. Functions Descriptions

1 strlen(s1) Returns the length of the string s1

2 strlwr(s1) Converts string to lowercase.

3 strupr(s1) Converts the string to uppercase.

4 strncat(s1, s2, n) Appends n characters of string s2 to s1

5 strncpy(s1, s2, n) Copies n characters of string s2 to s1

6 strrev(s1) Converts string to reverse

7 strncmp(s1, s2, n) Compares first n characters of string s1 and s2

254 C Programming

10.8.4 � Programming Examples Using String Functions

PROGRAM 10.28: STRING COMPARE

1. #include <stdio.h>

2. #include <string.h>

3. void main()

4. {

5.	 char s1[100],s2[100];

6.	 printf("Enter string 1: "); gets(s1);

7.	 printf("Enter string 2: "); gets(s2);

8.	 if(strcmp(s1,s2)==0)

9.	 printf("1 and 2 are equal\n");

10.		 else if (strcmp(s1,s2)<0)

11.		 printf("1 less than 2\n");

12.			 else

13.			 printf("1 greater than 2\n");

14. }

Output:

Run 1
Enter string 1: Program
Enter string 2: Language
1 greater than 2

Run 2
Enter string 1: Program
Enter string 2: Program
1 and 2 are equal

Run 3
Enter string 1: Language
Enter string 2: Program
1 less than 2

PROGRAM 10.29: STRING LENGTH

1. #include<stdio.h>

2. #include<string.h>

3. void main()

4. {

5.	 char name[100];

6.	 int length;

7.	 printf("Enter the string: ");

8.	 gets(name);

255Arrays and Strings

10.9 � Review Questions

10.9.1 � Objective Questions

1.	 _______________ is a series of elements of the same type placed in contiguous mem-
ory locations that can be individually referenced by adding an index number to each
location.

2.	 A character array is also known as ____________.
3.	 ___________ is known as a subscripted variable.
4.	 The starting index of an array begins with the number zero (0). True/false?
5.	 The elements present in an array are stored in a contiguous memory location. True/

false?
6.	 To access an array element, we need to specify the ____________ followed by the ele-

ment’s ___________ within a square bracket.
7.	 In which representation of a 2D array does the first row occupy the first set of the

memory location, the second occupy the next set, and so on?
8.	 In which representation of a 2D array does the first column occupy the first set of the

memory location, the second occupy the next set, and so on?
9.	 A ___________ is a 1D array of characters that is terminated by an escape sequence

known as a NULL character.
10.	 Which predefined function is used to copy the content of one string to another?
11.	 Which function is used to find the length of a string?

10.9.2 � Subjective Questions

1.	 What is an array? Classify arrays regarding the type and memory representation of its
elements.

2.	 Why is an array called a subscripted variable? What are the characteristics of an array?
3.	 What are the advantages and disadvantages of an array?
4.	 Explain the initialization procedure of a 1D string and a 2D array with examples.
5.	 What is a 2D array? How are the elements of a 2D array represented in memory?

9.	 length=strlen(name);

10.	 printf("\n Length of the string is= %d", length);

11. }

Output:

Enter the string: C Programming Learn to Code
Number of characters in the string is= 27

256 C Programming

6.	 Explain the row major and column major order of 2D array element representation.
Explain their formulas to find the address of any given element with an appropriate
example.

7.	 Prove that a 2D array is a collection of many 1D arrays with appropriate programming
examples.

8.	 Assume that a 3 x 5 2D array named A is represented in row major order, and that it
stores real numbers. Let the real number take four bytes. The base address is 2000.
Find the address of A[3][4].

9.	 Assume that a 3 x 5 2D array named A is represented in column major order, and that
it stores real numbers. Let the real number take four bytes. The base address is 2000.
Find the address of A[3][4].

10.	 What is a string? How is a string constant different from a character constant?
11.	 What is the difference between the gets() function and the scanf() function?

Explain with an example.

10.9.3 � Programming Exercises

1.	 Write a program to search for an element in an array.
2.	 Write a program to add all the elements in an array.
3.	 Write a program to find out the average of the elements present in an array.
4.	 Write a program to find the largest and smallest elements in an array.
5.	 Write a program to insert an element into an array.
6.	 Write a program to delete an element in an array.
7.	 Write a program to sort the elements in an array.
8.	 Write a program to copy one array to another array.
9.	 Write a program to swap two arrays.

10.	 Write a program to find out all the even and odd numbers present in an array.
11.	 Write a program to merge two arrays.
12.	 Write a program to delete all the duplicate elements present in an array and print the

final array.
13.	 Write a program to reverse an array.
14.	 Write a program to print the numbers that are greater than the average.
15.	 Write a program to print all those numbers which are not divisible by 2 in an array of

n integers.
16.	 Write a program to print all the array elements excluding the elements divisible by 2.
17.	 Write a program to print all the prime numbers present in an array.
18.	 Write a program to generate the Fibonacci series using an array.
19.	 Write a program to arrange the numbers in an array in such a way that the array will

have the odd numbers followed by the even numbers.
20.	 Write a program to rearrange an array in reverse order without using a second array.
21.	 Write a program to swap the kth and (k+1)th elements in an integer array. k is given

by the user.

257Arrays and Strings

22.	 Write a program to find the intersection of two sets of numbers.
23.	 Write a program to print the word associated with a corresponding number. For exam-

ple, If 234 is entered through the keyboard then your program must print “two three
four”.

24.	 Write a program to add two matrices.
25.	 Write a program to multiply two matrices.
26.	 Write a program to find the transpose of a matrix.
27.	 Write a program to add all the elements of a matrix.
28.	 Write a program to add the diagonal elements of a square matrix.
29.	 Write a program to add the elements of each row of a matrix and print them in the

following format.

2

4

2

3

6

8

4

7

9

2

4

2

3

6

8

4

7

9

Input Matrix Output

9

17

19

30.	 Write a program to add the elements of each column of a matrix and print them in the
following format.

2

4

2

3

6

8

4

7

9

2

4

2

3

6

8

4

7

9

8 17 20

Input Matrix Output

31.	 Write a program to add the elements above the main diagonal.
32.	 Write a program to add the elements below the main diagonal.
33.	 Write a program to print the elements above the main diagonal.
34.	 Write a program to print the elements below the main diagonal.
35.	 Write a program to print the elements above the main diagonal including the diagonal

elements.
36.	 Write a program to print the elements below the main diagonal including the diagonal

elements.
37.	 Write a program to convert a string to upper case assuming that the string is entered

in lower case explicitly.
38.	 Write a program to concatenate two strings without using a string function.
39.	 Write a program to count the number of vowels, consonants, and spaces in a line.
40.	 Write a program to alternate the case of every character in the input string. For exam-

ple if the user enters aBCdeF GhiJK then the output will become AbcDEf gHIjk.

258 C Programming

41.	 Write a program to accept a word from the user and print it in the following way.

For example if the word is PROGRAM, the program will print,

 P

 P R

 P R O

 P R O G

 P R O G R

 P R O G R A

 P R O G R A M

42.	 Write a program to read a text and count all the occurrences of a particular letter given
by the user.

43.	 Write a program to find the longest word in a string.
44.	 Write a program to copy a string to another string.
45.	 Write a program to read a word and rewrite it in alphabetical order.
46.	 Write a program to delete a word from a string.
47.	 Write a program to convert each character of a string into the next alphabetic letter and

print the string.

259DOI: 10.1201/9781003188254-11

11
Pointers

11.1 �������������������������� Introduction

A pointer is something that indicates or points. From the layman’s point of view a pointer
is a long-tapered stick for indicating objects, as on a chart or a blackboard (Figure 11.1).
Sometimes we use a laser pointer to point or show an object displayed on a screen
(Figure 11.1). So, we can say a pointer is indirectly pointing to a device of our concerns.

To understand the way in which pointers operate, it is first necessary to understand the
concept of indirection. You are familiar with this concept from your everyday life. For
example, suppose you need to buy a new computer for your department. In the company
that you work for, all purchases are handled by the purchasing department. So, you call
Mr. X in purchasing and ask him to order the new computer for you. Mr. X, in turn, calls
the local supply store to order the computer. This approach to obtain your new computer
is actually an indirect one because you are not ordering the computer directly from the
supply store yourself.

This same notion of indirection applies to the way pointers work in C. A pointer provides
an indirect means of accessing the value of a particular data item. In C programming, a
pointer is a variable that represents the location (rather than the value) of a data item, such
as a variable or an array element. Pointers play an important role in the development pro-
cess. A pointer has a number of useful applications. For example, pointers can be used to pass
information back and forth between a function and its reference point. In particular, pointers
provide a way to return multiple data items from a function via function arguments.

Pointers in C

Introduc�on
Declara�on
Using Pointers
…………….

Pointers in C
Introduction
Declaration
Using Pointers

in
d
ra
P

n C
ducdudu tion
ratatationioniono
Pointenteteteersrsrsrsrs

Poin�ng
Device

Poin�ng
Device

(a) (b)

FIGURE 11.1
Pointing device.

260 C Programming

11.2 �������������������������� Basic Knowledge

Within the computer’s memory, every stored data item occupies one or more contiguous
memory cells (i.e., adjacent words or bytes). The number of memory cells required to store
a data item depends on the type of data item. For example, a single character will typically
be stored in one byte (eight bits) of memory; an integer usually requires four contiguous
bytes; a floating-point number requires four contiguous bytes; and a double-precision
quantity requires eight contiguous bytes.

Suppose, a sample is a variable that represents some particular data item. The compiler
will automatically assign memory cells for this data item. For example, if we declare a vari-
able sample as follows:

int sample=25;

Then, in computer memory, this variable sample takes a place and has an address as
shown in Figure 11.2.

Now, we can access the value of the variable by using the variable name and we can
access the address of the variable by using the address of (&) operator.

To explain, analyze Program 11.1.

PROGRAM 11.1

#include<stdio.h>

void main()

{

	 int sample=25;

	 printf ("\n Value of the variable=%d", sample);

	 printf ("\n Address of the variable=%u", &sample);

}

Output:

Value of the variable=25
Address of the variable=2000

In the above example, we use %u for an unsigned integer, because an address cannot
be negative. We may summarize this as:

	•	 Every variable has an address;
	•	 We can know the address of the variable using the address of the operator

(&);
	•	 The address cannot be negative;
	•	 For accessing the value of the variable, we need the name of the variable.

261Pointers

11.3 �������������������������� Pointer Variables

A pointer:

	•	 Is a special type of variable;
	•	 It stores the address of another variable rather than the value;
	•	 The data type of the pointer variable is the same as the data type of the variable to

which it points.

11.3.1 �������������������������� Declaration of Pointer Variables

When a pointer variable is declared, the user must know the type of the variable to which
the pointer is going to point. Declaration of the pointer is the same as variable declaration,
the only difference is the variable name must be followed by an asterisk (*). The asterisk
indicates that the variable is a pointer variable. Figure 11.3 shows the syntax of declaring a
pointer and its component.

Examples:

int *ptr; /* ptr is a pointer to an integer, which means it can only store the address of an integer*/

float *fptr; /* fptr is a pointer to a float, which means it can only store the address of a float*/

char *cptr; /* cptr is a pointer to a character, which means it can only store the address of a character*/

11.3.2 �������������������������� Working with Pointers

In Section 11.2, we saw the address of (&) operator for getting the variable’s address. Now
we know that a pointer is a special type of variable that can store another variable’s address.
So, by using the address of (&) operator, we can easily store another variable’s address in a
pointer variable. Program 11.2 shows the process of doing it:

A MEMORY SEGMENT

sample

25
2000 2001

1900 1905. . .

Value of the
Variable

Address of the
Variable

Name of the
Variable

2002 2003

FIGURE 11.2
Memory allocation for the variable sample.

262 C Programming

PROGRAM 11.2

void main()

{

	 int sample = 25;

	 int *ptr;

	 ptr = &sample;

	 printf ("\n Address of the variable = %u", &sample);

	 printf ("\n Address of the variable = %u", ptr);

}

Output:

Address of the variable = 2000
Address of the variable = 2000

So, from the above output we understood that both outputs are the same and logically
the whole relationship can be visualized as shown in Figure 11.4.

In Program 11.2, the variable sample and the pointer variable ptr both are of integer
type. Whenever a pointer points to any variable, the data type of both variables (i.e., pointer
variable and the variable to which it points) must be the same.

We can access the value of the variable by using a special type of pointer operator avail-
able in C which is “*”, called the “value at address” operator. This gives the value stored
at a particular address. The “value at address” operator is also called an “indirection”
operator.

Analyze Program 11.3 carefully.

DataType *VariableName;

Syntax

Data Type can be int, char,
float, double, or any user-

defined structure

Asterisk indicates it is a
pointer variable

Variable name is a user
defined iden�fier

FIGURE 11.3
Syntax of pointer declaration.

252000
20001800

sampleptr

FIGURE 11.4
Illustration of pointer variable.

263Pointers

PROGRAM 11.3

#include<stdio.h>

void main()

{

 int sample = 25;

 printf ("\nAddress of sample = %u", &sample);

 printf ("\nValue of sample = %d", sample);

 printf ("\nValue of sample = %d", *(&sample));

}

Output:

Address of sample = 2000
Value of sample = 25
Value of sample = 25

Note that printing the value of *(&sample) is the same as printing the value of the sample.
The expression &sample gives the address of the variable sample and the * operator gives
the value present at that address. If we combine the concepts shown in Programs 11.2 and
11.3, then we can access the value of the variable through a pointer:

11.3.3 �������������������������� Workout

In this section we will see some more examples that will help in strengthening the concept of
the pointer. Program 11.4 shows different ways to access the variables value through a pointer.

PROGRAM 11.4

#include<stdio.h>

void main()

{

	 int sample = 25;

	 int *ptr;

	 ptr = &sample;

	 printf ("\n Address of the variable = %u", &sample);

	 printf ("\n Address of the variable = %u", ptr);

 	 printf ("\n Value of sample = %d", sample);

 	 printf ("\n Value of sample = %d", *(&sample));

 	 printf (“\n Value of sample = %d”, *ptr);

}

Output:

Address of the variable = 2000
Address of the variable = 2000
Value of sample = 25
Value of sample = 25
Value of sample = 25

264 C Programming

PROGRAM 11.5

1. #include<stdio.h>

2. void main()

3. {

4.	 int x = 25;

5.	 int y = 30;

6.	 int *p;

7.	 int *q;

8.	 p = &x;

9.	 q = &y;

10.	 printf ("Value of x = %d", *p);

11.	 printf ("Value of y = %d", *q);

12.	 *p = y + x;

13.	 *q = *p + y;

14.	 printf ("Value of x = %d", x);

15.	 printf ("Value of y = %d", y);

16.}

To find the output of Program 11.5, let us represent the variables and pointers in graphi-
cal form:

	•	 According to lines 4, 5, 6, 7, 8, and 9 the following logical structure (Figure 11.5) is
created in memory. That means the pointer p points to variable x and the pointer q
points to the variable y as shown in Figure 11.5.

	•	 So the output of lines 10 and 11 will be:
Value of x = 25
Value of y = 30

	•	 Line 12 can be calculated as shown in Figure 11.6. After execution x becomes 55.
	•	 Similarly, line 13 can be calculated as shown in Figure 11.7. After execution y becomes 80.
	•	 So the output of lines 14 and 15 will be:

Value of x = 55
Value of y = 80

25 30

2000 3000

2000

x y

p

4000

3000

q

5000

Pointer P points to
variable x

Pointer q points to
variable y

FIGURE 11.5
Logical representation of variables and pointers in memory.

265Pointers

11.4 �������������������������� Pointer to Pointer (Double Pointer)

In the previous section we saw the pointers which point to another variable. In this section
we will see how a pointer can point to another pointer. To implement this concept, we need
a double pointer or pointer to pointer.

The syntax for declaring a double pointer is shown below:

DataType **VariableName;

Syntax

To further explain the working of a double pointer, let us take an example program
(Program 11.6):

25 30

2000 3000

2000

x y

p

4000

3000

q

5000

55 30

2000 3000

2000

x y

p

4000

3000

q

5000

*p

x

x

=

=

=

y

30

55

+

+

x

25

A�er Execu�on

1

2
3

4

FIGURE 11.6
Execution of line 12.

55 30

2000 3000

2000

x y

p

4000

3000

q

5000

55 80

2000 3000

2000

x y

p

4000

3000

q

5000

*q

y

y

=

=

=

*p

x

80

+

+

y

25

A�er Execu�on

1

4

2

3

FIGURE 11.7
Execution of line 13.

266 C Programming

The output of the above program will be:
x=25
x=25
x=25

11.5 �������������������������� Void Pointers

We know that pointers are used for pointing to different data types. A float pointer points
to a float variable, an int pointer points to an integer variable, and so on. But sometimes we
need a general-purpose pointer which can store the address of any type of variable, and
that pointer is known as a void pointer or a generic pointer.

A void pointer can be declared as follows:

void *VariableName;

Syntax

PROGRAM 11.6

1.#include<stdio.h>

2.void main()

3.{

4.	 int x=25;

5.	 int *p;

6.	 int **pp;

7.	 p=&x;

8.	 pp=&p;

9.	 printf("\nx=%d", x);

10.	 printf("\nx=%d", *p);

11.	 printf("\nx=%d", **pp);

12.}

Line 6 declares a double pointer pp. In line 8 pp is assigned by the address of p,
where p is a pointer and points to x, as given in line 7. So, the whole relationship can
graphically be represented as shown in Figure 11.8.

25

2000

2000

x

p

3000

3000

pp

4000

Indirec�on

FIGURE 11.8
Double pointer.

267Pointers

Pointers to void cannot be directly dereferenced like other pointer variables by using *.
This pointer must be properly typecast before they are going to be used. Let us take an
example.

PROGRAM 11.7

1. #include<stdio.h>

2. void main()

3. {

4.	 int x=25;

5.	 void *p;

6.	 p=&x;

7.	 printf("\nx=%d", *p);

8.}

Line 6 is a valid assignment, because a void pointer can store the address of any vari-
able. This program will show an error in line 7. Before we use the pointer p, we must
typecast it with an appropriate data type. Let us rewrite Program 11.7.

PROGRAM 11.8

#include<stdio.h>

void main()

{

	 int x=25;

	 void *p;

	 p=&x;

	 printf("\nx=%d", *((int*)p));

}

Now the output of the program will be:

x=25

The expression *((int*)p) is explained below (Figure 11.9).

A void pointer must be correctly typecast before it is used. In Figure 11.9, int* converts
the pointer p into an integer pointer. After that, we use the dereferencing operator to get
the value of x, which is pointed to by p.

((int)p)

Void
Pointer

Type
Cas�ng

Dereferencing
Operator

FIGURE 11.9
Explanation of void pointer.

268 C Programming

11.6 �������������������������� Null Pointers

The literal meaning of a null pointer is a pointer that points to nothing. A null pointer is
declared as follows:

int *p=NULL;

Here p is pointing to an integer whose initial value is 0. Further we can say that p is a
pointer which points to nothing.

11.6.1 �������������������������� What is the Meaning of NULL?

NULL is a macro-constant, and the definition is found in the header file stdio.h, alloc.h,
mem.h, stddef.h, and stdlib.h as:

#define NULL 0

Quiz: What will be the output of the following C program?

PROGRAM 11.9

#include <stdio.h>

void main()

{

 if(!NULL)

 printf("I know preprocessor");

 else

 printf("I don’t know preprocessor");

}

Output:
I know preprocessor

Explanation:
!NULL = !0 = 1
In an if condition, any non-zero number means true.

11.7 �������������������������� Constant Pointers

The fundamental concept of a constant pointer is similar to a constant variable. We know
that a constant variable is a variable whose value cannot be changed during the program
execution, and a constant variable must be assigned a value when it is declared.

269Pointers

The declaration of a constant variable can take the following form:

DataType const VariableName=ConstantValue;

Syntax

Keyword Valid
Iden�fier

Let us take an example for this purpose shown in Program 11.10 (a-c).

#include<stdio.h>
void main()

{

int const x=5;

printf("%d", x);

}

Program 11.10 (a)

#include<stdio.h>
void main()

{
int const x;
x=5;
printf("%d", x);

}

Program 11.10 (b)

#include<stdio.h>
void main()

{
int const x=5;
x=5+5;
printf("%d", x);

}

Program 11.10 (c)

This Program
will not show
any error and
the output is:

5

Error:
Constant

Variable x must
be ini�alized

Error:
Cannot modify

a constant
object

Similar to the above concept, a constant pointer also follows the same rule:

	•	 A constant pointer must be initialized when it is declared.
	•	 The value of a constant pointer cannot be changed during program execution. That

means if a constant pointer is pointing to a variable, let us say x, then throughout the
program the constant pointer must point to x.

NOTE

Constant pointers are those which cannot change the address they are pointing to.

270 C Programming

The declaration of a constant pointer takes the following form:

DataType *const PointerName=&VariableName;

Syntax

Keyword Valid
Iden�fier

Name of the
variable to
whom the

pointer
points

Let us explain the above concept using some sample programs:

#include<stdio.h>
void main()

{
int x=5;
int *const p=&x;
printf("%d", *p);

}

Program 11.11 (a)

#include<stdio.h>
void main()
{
int x=5;
int *const p;
p=&x;
printf("%d", *p);

}

Program 11.11 (b)

#include<stdio.h>
void main()
{
int x=5, y=6;
int *const p=&x;
p=&y;
printf("%d", *p);

}

Program 11.11 (c)

This Program
will not show
any error and
the output is:

5

Error:
Constant

Variable p
must be

ini�alized

Error:
Cannot modify

a constant
object

NOTE

An array name is a constant pointer. The detail of this is discussed in Section 11.10.

Let us take a small example to explain the above note. In Program 11.12(a), we would
like to print the value of array A using the indirection operator with the array name. *A
indicates the value at address A. The actual memory representation of array A is shown in
Figure 11.10. According to the memory representation, A is a pointer that stores the address
of the first element. When we write printf(“%d”, *A), which means the value at address A,
it prints 4. Similarly, printf(“%d”, *(A+1)) will print the next element, which is 7, and so on.

271Pointers

#include<stdio.h>
void main()
{

int A[3]={4,7,2};

printf("%d", *A);

printf("%d", *(A+1));

printf("%d", *(A+2));

}

Program 11.12 (a)

This Program
will not show
any error and
the output is:

4 7 2

Error:
Lvalue

Required

#include<stdio.h>
void main()
{

int A[3]={4,7,2};
printf("%d", *A);
A=A+1;
printf("%d", *A);
A=A+1;
printf("%d", *A);

}

Program 11.12 (b)

This Program
will not show
any error and
the output is:

4 7 2

#include<stdio.h>
void main()
{ int A[3]={4,7,2};
int *p;
p=A;
printf("%d", *p);
p=p+1;
printf("%d", *p);
p=p+1;
printf("%d", *p);

}

Program 11.12 (c)

Now consider Program 11.12(b). This program will show you an error “Lvalue
Required”. This is because, in the line A=A+1, we are trying to assign a new address to A.
Assigning a new value to A is not possible because A is a constant pointer and we cannot
change the content of A throughout its lifetime.

However, if we take a normal integer pointer for this case, then the program will not
show any error. Program 11.12(c) shows the code for it. What we do here is, we first assign
the value (here it is an address) of A to an integer pointer p. Later, we increment the value
of p using the line p=p+1, and continue printing the value at address p. As p is a normal
integer pointer (not a constant pointer), we can assign a new address to it. Hence, it is
proved that the array name is a constant pointer. We cannot assign a new address to this
pointer.

4 7 2

A[0] A[1] A[2]

2000 2004 2008

2000
A

A is a pointer
having the

address of the
first element
of the array.

*A *A+1 *A+2

Addresses

Two ways to access
array elements

FIGURE 11.10
Representation of array in memory.

272 C Programming

11.7.1 �������������������������� Pointers to Constants

When a pointer is not able to change the value of a variable to which it points, it is known
as a pointer to a constant. Suppose a pointer p points to an integer variable x, but p cannot
change the value of x, then p is called a pointer to a constant.

The declaration of pointers to constants takes the following form:

const DataType *PointerVariableName;

Syntax

Keyword Valid
Iden�fier

Let us take an example:

#include<stdio.h>
void main()

{
int x=5;
const int *p;
p=&x;
printf("%d", *p);
x=x+1;
printf("%d", *p);

}

Program 11.13 (a)
This Program
will not show
any error and
the output is:

5 6

Error:
Can not modify

a constant
object

#include<stdio.h>
void main()

{
int x=5;
const int *p;
p=&x;
printf("%d", *p);
*p=*p+1;
printf("%d", *p);

}

Program 11.13 (b)

Program 11.13 (a) will not show any error. The first printf() statement will print 5,
because we are printing the value at address p (*p), and p contains the address of x. The
second printf() statement will print 6, because the previous line x=x+1 will increment
the value of x. However, Program 11.13 (b) will show you an error. This is because, in line
*p=*p+1 we are trying to modify the content of x through p, which is not allowed.

11.8 �������������������������� Pointer Arithmetic

Pointer arithmetic refers to the different arithmetic operations that can be applied on point-
ers. A limited number of arithmetic operations can be performed upon pointers. The num-
ber of bytes a pointer can access in memory depends upon the type of variable it points to.
For example, a pointer to an integer accesses four bytes of memory, a pointer to a character
accesses one byte of memory, and so on. Some of the operations that are applied to pointer
variables are:

	•	 Increment and decrement;
	•	 Addition and subtraction;

273Pointers

	•	 Comparison;
	•	 Assignment.

The increment (++) operator increases the value of a pointer by the size of the data object
the pointer points to. For example, if the pointer refers to the first element in an array, the
++ makes the pointer refer to the second element in the array. That means if the array is an
integer array then the pointer is increased by four bytes and if the array is a float array then
the pointer is increased by four bytes. This is shown in Figure 11.11.

PROGRAM 11.14

#include<stdio.h>

void main()

{

	 int A[5]={10, 50, 20, 30, 90};

	 int *p;

	 p=&A[0];

	 printf("%d ", *p);

	 p++;

	 printf("%d ", *p);
}

Output:
10 50

Explanation:
This was shown in Figure 11.11. Similarly, the decrement (--) operator decreases the
value of a pointer by the size of the data object the pointer refers to. For example, if
the pointer refers to the second element in an array, the -- makes the pointer refer to
the first element in the array.

You can add an integer to a pointer, but you cannot add a pointer to a pointer. If the
pointer p points to the first element in an array, the following expression causes the pointer
to point to the third element in the same array:

p=p+2;

Similarly, if a pointer p points to the fourth element of an array, the following expression
causes the pointer to point to the first element in the same array:

p=p-3;

This concept is shown in Figure 11.12.

274 C Programming

If you have two pointers that point to the same array, you can subtract one pointer from
the other. This operation yields the number of elements in the array that separate the two
addresses that the pointers refer to. Program 11.15 explains this.

PROGRAM 11.15

#include<stdio.h>

void main()

{

	 float A[5]={1.4, 5.8, 2.3, 6.4, 9.1};

	 float *p, *q;

	 int size;

10 50 20 30 90

0 1 2 3 4

200 204 208 212 216

200

A

Representa�on of Array in MemoryA is a Constant
Pointer

1

int A[5]={10, 50, 20, 30, 90};

10 50 20 30 90

0 1 2 3 4

200 204 208 212 216
200

A

In Memory

A is a Constant
Pointer

2

int *p;
p=&A[0];

200

p

10 50 20 30 90

0 1 2 3 4

200 204 208 212 216

200

A

p incremented by 4
bytes and point to 204

A is a Constant
Pointer

3

p=p+1; OR p++;

204p

Applying Pointer
Arithme�c (increment)

FIGURE 11.11
Applying increment operation on pointer variables.

275Pointers

You can compare two pointers with the following operators: ==, !=, <, >, <=, and >=.
Pointer comparisons are defined only when the pointers point to elements of the same
array. Pointer comparisons using the == and != operators can be performed even when the
pointers point to elements of different arrays.Some operations should not be applied to
pointers like:

	 p=&A[2];

	 q=&A[4];

	 size=q-p;

	 printf("%d", size);

}

Output:
2

PROGRAM 11.16

#include<stdio.h>

void main()

{

	 float A[5]={1.4, 5.8, 2.3, 6.4, 9.1};

	 float *p, *q;

	 int size;

	 p=&A[2];

	 q=&A[2];

	 size=p==q;

	 printf("%d ", size);

}

Output:
1

Explanation:
In this program, as both pointers point to the same location so the comparison opera-
tor (==) returns 1 and the output will be 1.

10 50 20 30 90

0 1 2 3 4

200 204 208 212 216

200 A 208 p

10 50 20 30 90

0 1 2 3 4

200 204 208 212 216

200 A 216 pp=p+2

10 50 20 30 90

0 1 2 3 4

200 204 208 212 216

200 A 200 p p=p-2
Ini�al

Condi�on

FIGURE 11.12
Applying pointer arithmetic (addition and subtraction).

276 C Programming

Some operations should not be applied to pointers like:

	•	 Non-integer values should not be added to any pointer;
	•	 Assignment of one pointer to another should be avoided, if the data type of the point-

ers mismatch;
	•	 Addition, multiplication, and division of two pointers is not possible.

11.9 �������������������������� Pointers and Functions

By now, we are well familiar with how to call functions. Whenever we call a function and
pass something to it, we have always passed the “values” of variables to the called func-
tion. Instead of passing the value of a variable, can we pass the location number (also
called an address) of the variable to a function? The answer is yes.

So finally, we can say, the passing of arguments to a function can be done in two ways:

	•	 Pass by value;
	•	 Pass by address.

11.9.1 �������������������������� Pass by Value

In this method the “value” of each of the actual arguments in the calling function is copied
into corresponding formal arguments of the called function. With this method the changes

PROGRAM 11.17

#include<stdio.h>

void main()

{

	 int A[5]={4, 8, 3, 64, 91};

	 int B[7]={99, 66, 33, 64, 22, 66, 55};

	 int *p, *q;

	 int size;

	 p=&A[2];

	 q=&B[2];

	 size=p==q;

	 printf("%d ", size);

}

Output:
0

Explanation:
In this program, both the pointers point to the third element. But the output is 0
because the pointers are pointing to two different arrays.

277Pointers

made to the formal arguments in the called function have no effect on the values of actual
arguments in the calling function. The following program illustrates “pass by value.”

PROGRAM 11.18

#include<stdio.h>

void display(int p)

{

	 p=p+10;

	 printf("\nInside Function: %d",p);

}

void main()

{

	 int x=25;

	 display(x);

	 printf("\nInside Main: %d",x);

}

In this program, I have passed the value of x to the function display(), which
receives that value through a variable p. Inside the display function the value of p is
increased by 10 which does not affect the value of x in the function main, because
both variables have a different scope. The whole process of control flow is shown in
Figure 11.13, and the output of this program is:

Inside Function: 35
Inside Main: 25

Now by examining the pass by value concept we may conclude that both variables (p
and x) have different scopes so any changes made to one variable do not affect the other
variable. Now let us see in the case of pass by reference what will happen.

11.9.2 �������������������������� Pass by Reference or Address

In this method, the “address” of the actual arguments (in the calling function) is copied
into the corresponding formal arguments (the parameters in the called function). Hence,
the changes made to the formal arguments in the called function affect the values of the
actual arguments in the calling function.

PROGRAM 11.19

#include<stdio.h>

void display(int *p)

{

	 *p=*p+10;

	 printf("\nInside Function: %d",*p);

}

278 C Programming

This means that using these addresses we would have access to the actual arguments
and hence we would be able to manipulate them. The following program illustrates this
fact.

Referring to Figure 11.14 and Program 11.19, execution starts from main(). The first
line int x=25 allocates memory for variable x and stores 25 in it. ➊ The second line
display(&x) calls the function by passing the address of x, which in turn assigns the
address to p. ➋ Now, p points to x. ➍ On executing the first line (*p=*p+10) of the function
display(), the value of x is updated to 35 because p points to x. ➏ Then the next line
(printf("\nInside Function: %d",*p);) prints the value of *p which is nothing but the
value of x, i.e., 35. ➐ Now, control returns to the main() function and ➑ starts executing
the last printf() function, which prints the value of x, i.e., 35. So, in the pass by reference
method the output of the program will be:

Inside function: 35
Inside Main: 35

If we compare both outputs (Program 11.18 and 11.19), they are seen to differ by the
value of x inside the function main(). To get the same output we have to rewrite the pass
by value function as follows:

void main()

{

	 int x=25;

	 display(&x);

	 printf("\nInside Main: %d",x);

}

display(x);
printf("\nInside main: %d", x);

main() Function

p=p+10;

display(p) Function

25

35

printf("\nInside Function:%d", p);

p

3

4

5

25
x

1
2

7

Output:
Inside

Func�on=
35

Output:
Inside

main=25

8

6

p

Returning

Calling

Calling
Func�on

Called
Func�on

FIGURE 11.13
Pass by value.

279Pointers

PROGRAM 11.20

#include<stdio.h>

int display(int p)

{

	 p=p+10;

	 printf("\nInside Function: %d",p);

	 return p;

}

void main()

{

	 int x=25;

	 x=display(x);

	 printf("\nInside Main: %d",x);
}

The display() function should return the value of p to the main function, so that
x will be assigned by the updated value of p. In this case the output becomes:

Inside function: 35
Inside Main: 35

Now, the question is, if we are able to get the same output in both cases, then what is the
necessity for using the pass by reference method? To answer this question, we need to
solve the following simple problem.

main() Function

*p=*p+10;

display(*p) Function

2000
p

3

25
x

Output:
Inside

Func�on:35

Output:
Inside

main:35

2000 1
2

display(&x);

printf("\nInside main: %d", x);

35
x

2000

printf("\nInside Function:%d", *p);

*p=*p+10;

2000

p

5
4

6
7

8

p points to x

p points to x

Returning

Calling

Calling
Func�on

Called
Func�on

FIGURE 11.14
Pass by reference.

280 C Programming

11.9.2.1 �������������������������� Problem: Write a Program to Swap Two Numbers Using Functions

Let us first solve the problem using the pass by value method as shown in Program 11.21.

PROGRAM 11.21

#include<stdio.h>

void swap(int x, int y)

{

	 int t;

	 t = x;

	 x = y;

	 y = t;

	 printf("\nx= %d y= %d", x, y);

}

void main()

{

	 int a=10, b=20;

	 swap(a,b);

	 printf("\na= %d b= %d",a,b);

}

The output of the above program will be:

x=20 y=10
a=10 b=20

Note that the values of a and b remain unchanged even after exchanging the val-
ues of x and y. The whole process is shown in Figure 11.15, where panel (a) represents
the initial state of each variable. In panel (b), the value of x is assigned to the tempo-
rary variable t, and in panel (c), the value of y is assigned to x. In the last step in panel
(d), the value of t is assigned to y. That means the swapping is done on formal argu-
ments (x and y) rather than on actual arguments (a and b).

But our problem demands the swapping of a and b rather than x and y. Again, we
know that a function cannot return two values at the same time. Finally, we can say
that by using the pass by value method this problem cannot be solved. So, we need
the pass by reference method to solve this problem.

PROGRAM 11.22

#include<stdio.h>

void swap(int *x, int *y)

{

	 int t;

	 t = *x;

Let us solve the problem using the pass by reference method as shown in Program 11.22.

281Pointers

In this program, rather than passing the values of a and b, we have passed the addresses
of both variables. To catch this address in the function, we have declared two pointers *x
and *y in the called function. Now, as the pointer points to a and b, so any changes made
on x and y will affect the actual values that are a and b. So, after executing the statements
the value of the actual arguments (a and b) are swapped. Figure 11.16 shows the execution
process.

	 *x = *y;

	 *y = t;

}

void main()

{

	 int a = 10, b = 20;

	 swap(&a, &b);

	 printf ("\na = %d b = %d", a, b) ;
}

main()
function

swap()
function

a

20

10

b
2000

3000

x
10

4000
y

20
5000

t

6000

main()
function

swap()
function

a

20

10

b
2000

3000

x
10

4000
y

20
5000

t
10

6000

a

20

10

b
2000

3000

x
20

4000
y

20
5000

t
10

6000

a

20

10

b
2000

3000

x
20

4000
y

10
5000

t
10

6000

(a) Ini�al Condi�on (b) t=x

(c) x=y (d) y=t

main()
function

swap()
function

main()
function

swap()
function

FIGURE 11.15
Pass by value for swapping two numbers.

282 C Programming

11.10 �������������������������� Pointers and Arrays

In this section, I would like to show you how the array and pointer are related to each
other. We know that the array name is itself a constant pointer. That means when we print
the first element’s address, or we want to print the array name, both will give same output.
Let us consider Program 11.23 for this purpose.

PROGRAM 11.23

#include<stdio.h>

void main()

{

	 int A[3]={3,6,9};

	 printf(“\n Address of A=%u”, &A[0]);

	 printf("\n Address of A=%u", A);

}

main()
function

swap()
function

a

20

10

b

2000

3000

x
2000
4000

y
3000
5000

t

6000

(a) Ini�al Condi�on (b) t=*x

(c) *x=*y (d) *y=t

a

20

10

b

2000

3000

x
10

4000
y

20
5000

t
10

6000

a

20

20

b

2000

3000

x
10

4000
y

20
5000

t
10

6000

a

10

20

b

2000

3000

x
10

4000
y

20
5000

t
10

6000

*x

*y

*x

*y

*x

*y

*x

*y

main()
function

swap()
function

main()
function

swap()
function

main()
function

swap()
function

FIGURE 11.16
Pass by reference for swapping two numbers.

283Pointers

According to the output, it is shown that the array name is the first address of the array.
That means if we write the following statement in the above program:

printf("\n Value=%d", *A);

then the output will be 3, because the * operator is the value at address operator and shows
the value at address A, which is 3. So, to access the other elements of the array we use A. The
concept can be visualized as shown in Figure 11.17.

According to Figure 11.17, A is a pointer which points to the first address of the array.
Now let us consider Program 11.24 to print all the elements of the array using this pointer.

The output of the above program will be:

Address of A = 868
Address of A = 868

PROGRAM 11.24

#include<stdio.h>

void main()

{

	 int A[3]={3,6,9};

	 int i;

	 printf(" The elements are: ");

	 for(i=0;i<3;i++)

	 printf("%d ", *(A+i));

}

Output:

The elements are: 3 6 9

3 6 9

0 1 2

868 872 876

868

A

Address

Index
NumberConstant

Pointer

FIGURE 11.17
Array representation.

284 C Programming

There are many exciting points associated with this concept; let us discuss some of them.
From the above, we have found that the array name is a constant pointer, and we can
assign the value of this pointer to any other pointer.

For example:

int *P;
P=A;/*Assume that A is an Integer Array*/

From the above assignment, Figure 11.18 can be constructed.
Now, as P points to the same array, we can print the array elements using P also. The

program for this concept is shown in Program 11.25.

Line 10 of Program 11.25 can take different forms as shown below; the output remains
same.

PROGRAM 11.25

1. #include<stdio.h>

2. void main()

3. {

4. 	 int A[3]={3,6,9};

5.	 int i;

6.	 int *p;

7.	 p=A;

8.	 printf(" The elements are: ");

9.	 for(i=0;i<3;i++)

10.	 printf("%d ", *(P+i));

11.}

Output:
The elements are: 3 6 9

3 6 9

0 1 2

868 872 876

868

A

Address

Index
Number

Constant
Pointer

868

P
As P=A, P also
points to the
same array

FIGURE 11.18
Pointer P pointing to the array A.

285Pointers

11.11 �������������������������� Passing Arrays to Functions

An array is passed to a function in a similar way like passing a variable. But the problem
here is the array does not contain a single value. To pass an entire array to a function we
need the help of a pointer. We can also pass each element of an array to a function individu-
ally. But to pass each element individually takes more overhead and control transforma-
tion. Let us first take an example to pass each element of an array individually (without
using a pointer) to a function and analyze the consequences. Program 11.27 shows the
code.

The program illustrates the addition of all the elements present in the array using a
function. The approach is quite simple. We take a for loop and, in each iteration, we pass
one element to the function. The function uses a variable sum which is initialized to 0.
When the function receives an element, it adds it to sum value. Finally, we return the sum.

printf(“%d”, *(i+p)); printf(“%d”, p[i]); printf(“%d”, i[p]);

OROR

The question is, how is it that i[p] and p[i] are the same? Actually, the compiler converts
p[i] to *(p+i) and accordingly the output is displayed. When we supply i[p], the compiler
automatically converts that statement to *(i+p) which is the same as *(p+i). Let us rewrite
the above program and see the output.

PROGRAM 11.26

#include<stdio.h>

void main()

{

	 int A[3]={3,6,9};

	 int i;

	 int *p;

	 p=A;

	 printf("\nThe elements are: ");

	 for(i=0;i<3;i++)

	 printf("%d ", p[i]);

	 printf("\nThe elements are: ");

	 for(i=0;i<3;i++)

	 printf("%d ", i[p]);

}

Output:

The elements are: 3 6 9
The elements are: 3 6 9

286 C Programming

I would like to present you with an analogy related to this program, shown in Figure 11.19.
Let there be two persons. The second person has a calculator and the first person dictates
numbers one by one and the second person adds them using the calculator and speaks it
out loudly. Finally, the second person returns the result to the first person.

In Figure 11.19, the first person asks the second person to add 34. The second person
adds 34 to 0 and speaks out the answer, 34. Then the first person speaks out the second
number (128). The second person adds it to the previous value (34) and replies with the
answer 162. Finally, the second person adds the previous value 162 with 325 (the new num-
ber) and replies with the answer 487. One important point to note here is that the second
person needs to remember the last result. In programming terms this can be done using a
static keyword. Program 11.27 shows the complete code.

According to the execution of the Program 11.27, control will transfer from the main()
function to the subfunction Single() repeatedly. Control transformation depends on the
number of elements present in the array. According to the example the array contains three
elements and so control must transfer three times; the execution step is shown in
Figure 11.20. At i=0, the first function call takes place, passing the first element 34 to the
function Single(), which returns 34 (0+34). At i=1, the second function call occurs,

Person
1

Person
2

Add 34

Adding it using
a calculator

0+34=34

Answer
341

3

2

Add 128

Adding it using
a calculator
34+128=162

Answer
1621

3

2

Add 325

Adding it using
a calculator

162+325=487

Answer
4871

3

2

(a) (b) (c)

FIGURE 11.19
Analogy that describes pass by value.

287Pointers

passing 128 to the function Single(), which returns 162 (34+128). At i=2, the third func-
tion call occurs, passing 325 to the function Single(), which returns 487 (162+325).

The other way to do the same thing is to pass the array using a reference; or we can
say pass the address of the first element. This way of passing an address is called the
passing by reference method. In this method the entire array is passed to the

. . .

. . .
for(i=0;i<3;i++)
{

R=Single(A[i]);
}

printf(“Sum of array elements:%d”, R);

int Single(int x)
{

static int sum=0;
sum=sum+x;

return sum;
}

34 128 325

A[0] A[1] A[2]

A Single(A[0]) Single(34)

sum=0+34=34

34

1

return 34 2

3

. . .

. . .
for(i=0;i<3;i++)
{

R=Single(A[i]);
}

printf(“Sum of array elements:%d”, R);

int Single(int x)
{

static int sum=0;
sum=sum+x;

return sum;
}

34 128 325

A[0] A[1] A[2]

A Single(A[1]) Single(128)

sum=34+128=162

128

4

return 162 5

6

. . .

. . .
for(i=0;i<3;i++)
{

R=Single(A[i]);
}

printf(“Sum of array elements:%d”, R);

int Single(int x)
{

static int sum=0;
sum=sum+x;

return sum;
}

34 128 325

A[0] A[1] A[2]

A Single(A[2]) Single(325)

sum=162+325=487

325

7

return 487 8

9

i=0
0<3

i=1
1<3

i=2
2<3

i=0

i=1

i=2

In the next iteration
(i=3) leads to
Condition False“ ”

Output:
Sum of array elements: 487

FIGURE 11.20
Execution step for Program 11.27.

288 C Programming

subfunction. If we explain this using our analogy in Figure 11.19, instead of dictating the
numbers, the first person may give a list of numbers to the second person and ask him to
add it and speak out the result. The seconds person reads the list of numbers, adds them,
and finally replies with the result. Let us write the complete code to implement the use
of pass by reference. Program 11.28 shows this implementation.

PROGRAM 11.27

#include<stdio.h>

int Single(int x)

{

	 static int sum=0;

	 sum=sum+x;

	 return sum;

}

void main()

{

	 int A[100], R, n, i;

	 printf("Enter how many elements you want: ");

	 scanf("%d", &n);

	 printf("Enter %d elements: ", n);

	 for(i=0;i<n;i++)

	 scanf("%d", &A[i]);

	 for(i=0;i<n;i++)

	 {

		 R=Single(A[i]);

	 }

	 printf("Sum of array elements: %d", R);

}

The explanation of the above program is shown in Figure 11.20 and the output is
shown below. The explanation will be easily understood if you relate the execution
with respect to the analogy described in Figure 11.19.

Output:

Enter how many elements you want: 3
Enter three elements: 34 128 325
Sum of array elements: 487

289Pointers

PROGRAM 11.28

1. #include<stdio.h>

2. int Single(int *x, int N)

3. {

4.	 static int sum=0, i;

5.	 for(i=0;i<N;i++)

6. 	 {

7.		 sum=sum+x[i];

8.	 }

9.	 return sum;

10. }

11. void main()

12. {

13.	 int A[100], R, n, i;

14.	 printf("Enter how many elements you want: ");

15.	 scanf("%d", &n);

16.	 printf("Enter %d elements: ", n);

17.	 for(i=0;i<n;i++)

18.	 scanf("%d", &A[i]);

19.	 R=Single(A, n);

20.	 printf("Sum of array elements: %d", R);

21. }

Output:

Enter how many elements you want: 3
Enter three elements: 34 128 325
Sum of array elements: 487

Explanation:
Line 19 calls the function Single by passing A and n as the arguments. We know that
A contains the first address of the array elements. We can also write the same line as:
R=Single(&A[0], n);. Here &A[0] also represents the first address. Line 2 declares a
pointer x to receive the address. We can also declare this as: int x[]. After storing the
first address, the pointer variable x can now point to the actual array and easily access
its content by sequentially traversing through the array.

This type of problem-solving approach requires less overhead and is more flexible.
Therefore, to pass an array we should always follow the concept of the pass by reference
method. For greater understanding let us write another program.

290 C Programming

11.11.1 �������������������������� Write a Program to Pass an Array to a Function and Find the Largest and Smallest
Numbers Present in that Array

PROGRAM 11.29

#include<stdio.h>

void bigSmall(int A[], int n)

{

 int large=A[0], small=A[0], i;

	 for(i=0;i<n;i++)

	 {

		 if(A[i]>large)

		 large=A[i];

	 }

	 for(i=0;i<n;i++)

	 {

		 if(A[i]<small)

		 small=A[i];

	 }

	 printf("The largest number=%d", large);

	 printf("\nThe smallest number=%d", small);

}

void main()

{

	 int arr[100],i,N;

	 printf("Enter the number of elements: ");

	 scanf("%d",&N);

	 printf("Enter elements of the array\n");

	 for(i=0;i<N;i++)

	 {

		 scanf("%d",&arr[i]);

	 }

	 bigSmall(arr, N);

}

Output:

Enter the number of elements: 10
Enter elements of the array
13 46 82 945 654 234 7867 21 89 23
The largest number=7867
The smallest number=13

291Pointers

11.12 �������������������������� Pointers and 2D Arrays

The concept of the 2D array was discussed in Chapter 10. In this section, we will discuss
how a 2D array is accessed through pointers. We know that a 2D array can either be repre-
sented in row major order or column major order. The C language supports row major
order representation. We also know that an array is stored by contiguous memory location.
Hence, if we get the first address of the 2D array, then we can easily access the remaining
elements of the array through the pointer. To understand this let us write the code for
accessing the array element using a pointer. If you remember, a 2D array is a collection of
1D arrays.

We are going to write two programs for accessing the elements. Program 11.30 shows
how to access the elements row-wise because each row is a 1D array. Program 11.31 shows
how to access the element from the beginning to the end.

PROGRAM 11.30

1. #include<stdio.h>

2. void main()

3. {

4.	 int i,j, *p;

5.	 int Mat[3][4];

6.	 printf("Enter 12 elements: ");

7.	 for(i=0;i<3;i++)

8.	 {

9.		 for(j=0;j<4;j++)

10.		 {

11.			 scanf("%d",&Mat[i][j]);

12.		 }

13.	 }

14.	 for(p=Mat[0];p<=&Mat[0][3];p++)

15.	 {

16.	 printf("%d ", *p);

17.	 }

18.	 printf("\n");

19.	 for(p=Mat[1];p<=&Mat[1][3];p++)

20.	 {

21.	 printf("%d ", *p);

22.	 }

23.	 printf("\n");

24.	 for(p=Mat[2];p<=&Mat[2][3];p++)

25.	 {

26.	 printf("%d ", *p);

27.	 }

28. }

292 C Programming

Now consider a second program that will not print the array row-wise. We use a single
for loop to print the entire contents of the 2D array directly.

Output:

Enter 12 elements: 12 23 34 45 56 67 78 89 90 98 87 76
12 23 34 45
56 67 78 89
90 98 87 76

Explanation:
In this program we take a 3 × 4 matrix. Lines 4 to 13 create the 2D array and read 12
elements from the user and stores them in allocated memory. To print the contents of
the array we use a pointer. Consider lines 14 to 17. Here Mat[0] is assigned to pointer
p. If you recall, Mat[0] is the name of the first 1D array (see Section 10.5.7 and Program
10.15). Similarly, Mat[1] and Mat[2] are the names of the second and third 1D arrays,
respectively. Again, an array name is a constant pointer. In line 14, p=Mat[0] means
the address of the first element of the first row is assigned to p. We can also write
p=&Mat[0][0] in place of p=Mat[0]. The for loop (line 14) will continue up to the last
element of the first 1D array, which last element is Mat[0][3], mentioned by the condi-
tion p <= Mat[0][3] inside the for loop. The pointer traverses through all elements of
the first 1D array and prints the items present in the array using line 16. After finish-
ing printing the first row, line 18 sends the cursor to the next line. A similar process
continues for the remaining two rows of the 2D matrix.

PROGRAM 11.31

1. #include<stdio.h>

2. void main()

3. {

4.	 int i,j, *p;

5.	 int Mat[3][4];

6.	 printf("Enter 12 elements: ");

7.	 for(i=0;i<3;i++)

8.	 {

9.		 for(j=0;j<4;j++)

10.		 {

11.			 scanf("%d",&Mat[i][j]);

12.		 }

13.	 }

14.	 for(p=&Mat[0][0];p<=&Mat[2][3];p++)

15.	 {

16.	 printf("%d ", *p);

17.	 }

18. }

293Pointers

You can observe one issue with the output. The entire content is printed in a single line.
But according to the concept of a 2D array, it should be printed in matrix format. I leave this
for the student to solve.

Quiz: Rewrite Program 11.31, so that the output is printed in matrix form.

11.13 �������������������������� Pointers and Strings

A string is a character array. So, every rule we have discussed for a 1D array is also applicable
to a character array. For the sake of completeness, I would like to introduce some programs
related to strings and pointers in this section.

PROGRAM 11.32

#include<stdio.h>

void main()

{

	 char Str[5]="C Programming Learb to code";

	 printf("\n Address of Str=%u", &Str[0]);

	 printf("\n Address of Str=%u",Str);

}

The output of the above program will be:
Address of Str=1148753859
Address of Str=1148753859

Both outputs are the same, which means the name of the string is a pointer to the char-
acter array. If we write the following statement in the above program:

printf(“\n First character=%c”, *Str);

then the output will be C, because the * operator is the value at address operator and shows
the value at address Str, which is C. So, to access other elements of the array we can use Str.

Output:

Enter 12 elements: 12 23 34 45 56 67 78 90 89 123 234 345
12 23 34 45 56 67 78 90 89 123 234 345

Explanation:
Lines 14–17 print the contents of the 2D array. The pointer p is assigned to the first
address of the 2D array (line 14) and traverses through the entire array using the
condition p<=Mat[2][3], where Mat[2][3] is the last element of the 2D array. The
printf() function (line 16) prints the contents one by one.

294 C Programming

11.13.1 �������������������������� Passing a String to a Function

We can pass a string similarly to the way we pass a 1D array by using the pass by reference
method. For example, if your string name is Str, then we either pass Str directly, or we can
pass &Str[0], which indicates the address of the first character of the string. Inside the func-
tion, we use a character pointer to catch the address. After receiving the address, the char-
acter pointer can traverse through the string to process or manipulate it.

Program 11.33 writes a function to reverse a string. We have already shown the process
of reversing a string in Program 10.26. Here, we will show the string passing method.

11.13.2 �������������������������� Write a Program to Reverse a String Using a Function

PROGRAM 11.33

1. #include<stdio.h>

2. #include<conio.h>

3. void stringReverse(char *p)

4. {

5. int i, j, len=0;

6. char rev[50];

7. i=0;

8. while(p[i]!=NULL)

9. {

10. len=len+1;

11. i=i+1;

12. }

13. for(i=0,j=len-1;i<len;i++,j--)

14. {

15. rev[i]=p[j];

16. }

17. rev[i]=NULL;

18. printf("\nThe original string is: %s ",p);

19. printf("\nThe reverse of the string is: %s",rev);

20. }

21. void main()

22. {

23. char str[30];

24. printf("Enter a string: ");

25. gets(str);

26. stringReverse(str);

27. }

295Pointers

11.14 �������������������������� An Array of Pointers

So far, we know about character arrays, integer arrays, and float arrays. In this section, we
will introduce a new array that can hold many pointers; we call it an array of pointers. The
declaration takes the form shown in Figure 11.21a.

Before declaring an array of pointers, we should know how many pointers there are and
their data type. One example is shown in Figure 11.21b, which declares five pointers of
type float. Each pointer will hold the address of a variable of float type. Let us write a pro-
gram to show how to use an array of pointers (Program 11.34).

Output:

Enter a string: C Programming Learn to Code
The original string is: C Programming Learn to Code
The reverse of the string is: edoC ot nraeL gnimmargorP C

Explanation:
Execution starts from main(). Line 26 calls the function stringReverse(str) by pass-
ing str as the argument. str is a constant pointer because it is the name of the charac-
ter array. We can also pass &str[0] as an argument in place of str, because &str[0] also
indicates the address of the first element of the string. The function declaration starts
from line 3. We have used a pointer p to receive the address passed by the main()
function and obviously p must be a character pointer. Now, after p points to the
string str we can access each character of the string by traversing through it. Lines 8
to 12 are used to find the length of the string. Lines 13 to 17 are used to read the char-
acters from the string and copy them to rev[50] in reverse order. Finally, lines 18 and
19 print the string.

DataType* pointerVariableName[size];

Syntax

Valid
Iden�fier

Total
number

of pointers
you need

float* aof[5];

Syntax

(a) (b)

FIGURE 11.21
Syntax and example of an array of pointers.

296 C Programming

PROGRAM 11.34

1. #include<stdio.h>

2. void main()

3. {

4. float F[]={2.4, 6.9, 34.5, 56.23, 1.7};

5. float* aofp[5];

6. int i;

7. /* Assigning address to aofp*/

8. for(i=0;i<5;i++)

9. {

10. aofp[i]=&F[i];

11. }

12. /*Printing the array F through aofp*/

13. printf("Float array contains: ");

14. for(i=0;i<5;i++)

15. {

16. printf("%f ", *aofp[i]);

17. }

18. }

Output:
Float array contains: 2.400000 6.900000 34.500000 56.230000 1.700000

Explanation:
Line 4 declares a float array of five elements. The compiler allocates memory blocks for it
as shown in Figure 11.22. Line 5 declares an array of pointers that can store five addresses,
which must point to float variables (Figure 11.22b).

Lines 8 to 11 assign the addresses of float array F to an array of pointers aofp in a
sequence. Similarly, aofp[0] is assigned to &F[0], aofp[1] is assigned to &F[1], and so on.
After assignment each pointer in aofp will point to individual elements in F, as shown in
Figure 11.22c. Finally, we print the elements of F through aofp pointers using lines 14 to 17.

2.4 6.9 34.5 56.23 1.7

2000 2004 2008 2012 2016

0 1 2 3 4

2000

F

3000

aofp 0 1 2 3 4

2.4 6.9 34.5 56.23 1.7

2000 2004 2008 2012 2016

0 1 2 3 4

2000

F

2000 2004 2008 2012 20163000
aofp

0 1 2 3 4

(a)

(b) (c)
3000 - - - -

FIGURE 11.22
Illustration of Program 11.34.

297Pointers

We can extend this concept and assign the addresses of multiple arrays to arrays of
pointers. Say you have five arrays and each array contains ten elements. We can declare an
array of pointers of size 5 and assign the address of each array to these pointers. Later on,
we can access these arrays through this array of pointers. The overall assignment is as
shown in Figure 11.23.

Students are encouraged to implement the above concept using C code. An array of
pointers can also be created for strings. Assume that there are several strings, and each is
accessed through the array of pointers. In this case, the array of pointers must be declared
as character type: char* aopc[size];. There are several other uses of this technique too. The
scope of this book does not allow us to explain all the details. Students are encouraged to
explore more on this topic.

11.15 �������������������������� Pointers to Functions

We have seen pointers that store the addresses of integers; let us name them: a pointer to
an integer. Similarly, the pointer which points to a float or character, we name: a pointer to
a float or a pointer to a character, respectively. The essential rule in pointer declaration is:
the data type of the pointer and the variable to which it points must be the same.

22 8 3 34 25

3000 3004 3008 3012 3016

0 1 2 3 4

3000 B

69

3036

9

. . .

7 56 3 34 25

4000 4004 4008 4012 4016

0 1 2 3 4

4000 C

67

4036

9

. . .

21 8 34 67 25

5000 5004 5008 5012 5016

0 1 2 3 4

5000 D

33

5036

9

. . .

7 8 78 34 89

6000 6004 6008 6012 6016

0 1 2 3 4

6000 E

8

6036

9

. . .

7 8 5 34 56

2000 2004 2008 2012 2016

0 1 2 3 4

2000 A

23

2036

9

. . .

2000

3000

4000

5000

6000

aopi

Array of
Pointers

0

1

2

3

4

int* aopi[5];

FIGURE 11.23
Array of pointers to different arrays.

298 C Programming

In this section, we will introduce another pointer that points to a function and which is
called a pointer to a function. Now, how is the rule discussed above applicable to the dec-
laration of a pointer to a function? Every function has a signature. The signature of a func-
tion specifies three things: (1) the name of the function, (2) the type and the number of
arguments, and (3) the return type of the function. Hence, a pointer to function declaration
requires knowledge of the signature of the function. The general syntax for declaring a
pointer to a function is shown in Figure 11.24.

The syntax purely depends on the signature of the function. As shown, the return type
and the argument list will be borrowed from the function to which the pointer is going to
point. Let us take an example to explain this in detail. Suppose we have a function that
finds the largest number among three numbers as shown in Figure 11.25.

ReturnType (*PointerVariableName) (Argument List);

Syntax

It specifies the
return type of the
func�on to which
this pointer will

point Valid
Iden�fier

Data type of
the arguments

used in the
func�on.

FIGURE 11.24
Syntax for declaring a pointer to a function.

int
{

if(x>y)
{

if (x>z)
return x;

else
return z;

}
else
{

if(y>z)
return y;

else
return z;

}
}

Func�on

FIGURE 11.25
A function to find the largest number among three numbers.

299Pointers

As discussed above, the function signature of the above function is shown as:

int bigThree(int, int, int);

Func�on Signature

Now, we can easily declare a pointer to this function.

int (*bt)(int, int, int);

Pointer to Func�on

Name
of the

pointer

Here, bt is a user-defined pointer name and is declared to point to a function which
takes three integer arguments and returns one integer value. That means it points to not
only the bigThree() function declared above, but also any function that has the same
signature. Suppose we have another function that adds three numbers and returns the
result. The function code is shown below. We can also use the above pointer to point to
addThree() function too because it has the same signature.

int addThree(int x, int y, int z)
{

int r;
r=x+y+z;
return r;

}

Func�on

Program 11.35 shows the way we use the pointer to function concept.

PROGRAM 11.35

1.#include<stdio.h>

2.int bigThree(int x, int y, int z)

3.{

4. if(x>y)

5. {

6. if (x>z)

7. 	 return x;

8. else

9. 	 return z;

10. }

300 C Programming

Program 11.36 will show you that bt can assign the addresses of both functions declared
above: bigThree() and addThree(). The program is self-explanatory.

11.16 �������������������������� Review Questions

11.16.1 �������������������������� Objective Questions

	 1.	������������������������� A ____________ is a special variable that stores the address of another variable.
	 2.	������������������������� The ___________ operator is used to declare a pointer, and the ____________ operator

is used to find a variable’s address.
	 3.	������������������������� If p is a pointer which points to a variable x, then *p represents the value of x. True/

false?

11. else

12. {

13. if(y>z)

14. 	 return y;

15. else

16. 	 return z;

16. }

18.}

19.void main()

20.{

21. int a, b, c, big;

22. int (*bt)(int, int, int);

23. printf("Enter three numbers: ");

24. scanf("%d%d%d", &a, &b, &c);

25. bt=&bigThree;

26. big=bt(a,b,c);

27. printf("The biggest number is: %d", big);

28.}

Output:
Enter three numbers: 25 46 34
The biggest number is: 46

Explanation:
Execution starts from main(). Line 22 declares the pointer to function variable bt.
Line 25 assigns the address of the function to bt and finally we call the function
through bt in line 26 by passing three arguments a, b, c. After the function executes,
the result is returned to the main() function which is received in the variable big.
Finally, line 27 prints the value of big which is the largest number among three
numbers.

301Pointers

PROGRAM 11.36

#include<stdio.h>

int bigThree (int x, int y, int z)

{

 if (x > y)

 {

 if (x > z)

	 return x;

 else

	 return z;

 }

 else

 {

 if (y > z)

	 return y;

 else

	 return z;

 }

}

int addThree(int x, int y, int z)

{

 int r;

 r=x+y+z;

 return r;

}

void main()

{

 int a, b, c, big, sum;

 int (*bt) (int, int, int);

 printf ("Enter three numbers: ");

 scanf ("%d%d%d", &a, &b, &c);

 bt = &bigThree;

 big = bt (a, b, c);

 printf (" \nThe biggest number is: %d", big);

 bt = &addThree;

 sum = bt (a, b, c);

 printf ("\nThe addition result is: %d", sum);

}

Output:

Enter three numbers: 56 78 32
The biggest number is: 78
The addition result is: 166

302 C Programming

	 4.	������������������������� If p is a pointer which points to a variable x, then *p and *(&x) refer to the value of x.
True/false?

	 5.	������������������������� If p is a pointer which points to a variable x, then printing the value of p and &x pro-
duces the same output. True/false?

	 6.	������������������������� If a pointer p points to another pointer q, and pointer q points to a variable x, then
which one is a double pointer?

	 7.	������������������������� If a pointer p points to another pointer q, and pointer q points to a variable x, what
does *(&p) refer to?

	 8.	������������������������� Let A be an array containing three elements: 6, 9, and 25. If we print the value of *A,
what is the output?

	 9.	������������������������� Write the syntax for declaring an array of pointers.
	10.	������������������������� Write the syntax for declaring a pointer to a function.

11.16.2 �������������������������� Subjective Questions

	 1.	������������������������� What is a null pointer? Explain the uses of a null pointer.
	 2.	������������������������� What is a void pointer? How is it different from other pointers? How do we use a void

pointer?
	 3.	������������������������� How do we declare a triple pointer? Write a program to show how to use a triple

pointer.
	 4.	������������������������� Differentiate between a constant pointer and a pointer to a constant.
	 5.	������������������������� Describe pointer arithmetic.
	 6.	������������������������� Describe the need for pass by reference with a suitable example. Write a program to

show the difference between pass by value and pass by reference.
	 7.	������������������������� How do we pass an array to a function? Compare pass by value and pass by reference

with respect to array passing.
	 8.	������������������������� How do we pass a 2D array to a function. Write a program to add two matrices by

passing both matrices to the function.
	 9.	������������������������� What is an array of pointers? Assume that you have ten strings, write a program to

create an array of pointers that points to these ten strings and print the strings.
	10.	������������������������� What is a pointer to a function? How do we declare a pointer to a function? Write a

suitable programming example to explain how it works.

11.16.3 �������������������������� Programming Exercises

	 1	������������������������� Find the error or output for the following C code.
a.#include<stdio.h>

void main()

{

 int A[3]={3,6,9};

 int i;

 int *p;

 p=A;

303Pointers

 for(i=0;i<3;i++)

 printf("%d %d %d %d ", p[i], *(p+i), i[p]);
}

b.#include<stdio.h>

void main()

{

 int A[3]={3,6,9};

 int i;

 int *p;

 p=A;

 printf("%d", *p);

 p=p+1;

 printf("%d", *p);

 p=p+1;

 printf("%d", *p);
}

c.#include<stdio.h>

void main()

{

 int A[3]={3,6,9};

 int i;

 int *p;

 p=A;

 printf("\n%d", *p+2);

 printf("\n%d", *(p+2));
}

d.#include<stdio.h>

void main()

{

 int A[3]={3,6,9};

 int i;

 printf("\n%d", *A+2);

 printf("\n%d", *(A+2));
}

e.#include<stdio.h>

void main()

{

 int A[3]={3,6,9};

 int i;

 printf("%d", *A);

304 C Programming

 A=A+1;

 printf("%d", *A);

 A=A+1;

 printf("%d", *A);
}

f.#include<stdio.h>

void main()

{

 int const x=25;

 int *p;

 p=&x;

 printf("%d", *p);
}

g.#include<stdio.h>

void main()

{

 float A[5]={1.4, 5.8, 2.3, 6.4, 9.1};

 float *p, *q;

 int size;

 p=&A[2];

 q=&A[2];

 size=p>=q;

 printf("%d ", size);
}

h.#include<stdio.h>

void main()

{

 int A[5]={4, 8, 3, 64, 91};

 int B[7]={99, 66, 33, 64, 22, 66, 55};

 int *p, *q;

 int size;

 p=&A[2];

 q=&B[2];

 q=p+1;

 printf("%d ", *q);

}

	 2.	 Write a program to sort an array in descending order by passing the array to a
function.

	 3.	������������������������� Write a program to compare two strings by passing them to a function. The function
will return 1 if both the strings are same, else it returns 0.

305DOI: 10.1201/9781003188254-12

12
Structures and Unions

12.1 � Introduction

Before we start this chapter, let us pick up some real-life problems and think about whether
we can solve these problems using the programming technique learned till now.

Problem 1: Write a program to add together two times. We represent time with three
parameters: hour, minute, and second. For example, time T1 = 2:35:40, time T2 = 5:10:35.
Find time T3 such that T3 = T1 + T2 (see Figure 12.1).

Problem 2: Write a program to add the height of two persons, given in feet and inches.
For example, height H1 = 5′10″, height H2 = 5′8″. Find the height H3 such that H3 = H1 + H2
(see Figure 12.2).

Thinking about Problem 1, do we have any data type available to represent the time as
a single entity? I mean, can we write int t1 to store the hour, minute, and second simultane-
ously? The answer is no. Similarly, Problem 2 cannot be solved using the existing data type
that we have been using. Hence, we need a different data type for this, and yes the C lan-
guage provides us with the features to define the new data type for these specific prob-
lems. A structure is one such technique that helps us in solving the problem discussed
above.

FIGURE 12.1
Problem 1 visualization.

5 : 10 : 35
HOUR MIN SEC

2 : 35 : 40
HOUR MIN SEC

? : ? : ?
HOUR MIN SEC+ =

FIGURE 12.2
Problem 2 visualization.

5' 8'’ 5' 10'’+ = 11' 6'’

306 C Programming

Let us think in another way. We have already used an array in Chapter 9, which repre-
sented a group of data items having the same data type. But, if you have data with differ-
ent data types, where do you store it? For example, you want to store the information of an
employee (Case 1 of Figure 12.3). Employee information consists of a name, age, and sal-
ary. The name of the employee is a string, age is an integer, and the salary is of float type.
Hence, we cannot use an array to store these pieces of information. We can store it using
three different types of variables: char Name [50] to store the name, int age to store the age,
and float salary to store the salary. But, assume that there are many employees whose infor-
mation you want to store (Case 2 of Figure 12.3). Then for each employee, you need to
declare separate variables, and managing them is quite tricky. The visualization of this
situation is shown in Figure 12.3.

From the discussion, we conclude that the basic data types cannot solve these problems.
We need something special. C provides a better solution for the above problems, what is
known as a structure. A structure is a user-defined data type and can group one or more variables
of different data types under a single name. Similarly, another user-defined data type is union.
This is also used for the same purpose; it is like a structure but with a little difference as
discussed in Section 12.12. This entire chapter is dedicated to a discussion of these user-
defined data types.

After completing this chapter, the student will be:

	•	 Able to define a structure, a union, and the difference between them;
	•	 Able to declare and use structure and union variables for information storing and

processing;

FIGURE 12.3
Visualization of information storage problem.

Name:_________
Age:___________
Salary:_________Employee

It is a string

Integer

Float

Name:_________
Age:___________
Salary:_________

Name:_________
Age:___________
Salary:_________

Employee

Name:_________
Age:___________
Salary:_________

eeyolpmE

Name:_________
Age:___________
Salary:_________

Name:_________
Age:___________
Salary:_________

Name:_________
Age:___________
Salary:_________

eeyolpmE

Name:_________
Age:___________
Salary:_________

Name:_________
Age:___________
Salary:_________

Name:_________
Age:___________
Salary:_________

eeyolpmE

What about this
?

We may solve it
using different
variables for

different
informa�on

Want to store the informa�on of a single employee

Case-1 Case-2

Store informa�on of many employees

Employee

Employee

Employee

Employee

Employee

307Structures and Unions

	•	 Able to describe an array of structures, nested structures, and other user-defined
types like typedef;

	•	 Able to understand the way a pointer is used to access the members of a structure;
	•	 Able to define pointers inside a structure as a member;
	•	 Able to define bitfields and enumerations.

12.2 � Declaring a Structure

A structure can be defined as a collection of one or more variables of the same or different
data types, grouped together under a single name. Like other data types, a structure must
be declared before it is used inside a program. C provides two different ways to declare a
structure: tagged structure and structure declaration using typedef.

A structure can be defined as a collection of one or more variables of the same or dif-
ferent data types, grouped together under a single name.

12.2.1 � Tagged Structure Declaration

To declare a structure using this method, we use the keyword struct. In this declaration, the
struct keyword is followed by a structure name (tag) and the general syntax for declaring
the structure is shown in Figure 12.4.

FIGURE 12.4
Structure declaration syntax.

struct StructureName
{

DataType VariableName1;
DataType VariableName2;
.
.
.
DataType VariableNamen;

};

Declara�on
of

Structure
Members

Keyword
User-

defined
Iden�fier

Semicolon
Required

Syntax

308 C Programming

NOTE

Structure members should not be initialized inside the structure declaration.

Figure 12.5 shows an example of a structure declaration. Here, Employee is a structure
with three data members. After this declaration, Employee acts as a user-defined data type,
and we can declare any number of variables using this data type. The following section
will discuss how to declare variables using this new data type.

12.2.2 � Structure Declaration Using typedef

To declare a structure using this method, we use the keyword typedef. In this declaration,
the typedef keyword is followed by a struct keyword and the name of the structure is
declared after the closing braces of structure declaration and before the semicolon. The
general syntax for declaring the structure is shown in Figure 12.6.

Figure 12.7 shows an example that uses the syntax described in Figure 12.6.

Points to remember:

	•	 All member names within a particular structure must be different;
	•	 The individual members of a structure may be any of the common data types such as

int, float, pointers, array, or even other structures;
	•	 No memory space is allocated when the structure is declared.

12.2.3 � Declaring Structure Variables

Structure variables can be declared in two ways: either using the name of the structure, or
after the closing braces of the structure declaration and before the semicolon.

12.2.3.1 � Declaring Structure Variables Using the Structure Name

In this method, a structure variable can be declared using the structure name. First the
structure is declared and then the variables for the structure are declared as follows:

FIGURE 12.5
Structure declaration example.

Keyword

Name of
the

Structure
Example

struct Employee
{

char name[30];
int age;
float salary;

};

Declara�on
of

Structure
Members

309Structures and Unions

Example

struct Employee
{

char name[30];
int age;
float salary;

};
struct Employee e1, e2, e3;

12.2.3.2 � Declaring Structure Variables after the Closing Braces

In this method, all the structure variables can be specified after the closing braces of the
structure and before the semicolon as shown below:

Example

struct Employee
{

char name[30];
int age;
float salary;

} e1, e2, e3 ;

Once the declaration is over, we get three different variables and each variable consists
of three data members, i.e., name, age, and salary. Now we can say that e1, e2, and e3 are
variables of Employee type.

FIGURE 12.6
Structure declaration using typedef.

typedef struct
{

DataType VariableName1;
DataType VariableName2;
.
.
.
DataType VariableNamen;

}StructureName;

Declara�on
of

Structure
Members

Keyword Keyword

Semicolon
Required

Syntax

User-
defined

Iden�fier

310 C Programming

Points to remember:

	•	 Memory spaces are allocated for each variable of the structure after it is declared. For
example, separate memory spaces are allocated for the Employee variables e1, e2,
and e3.

	•	 Generally, the structure declaration is made before the main function, and the struc-
ture variables for the structure are declared inside the main function.

	•	 The size of each structure variable is the addition of the size of each member variable.
See Figure 12.8.

Consider the following programming example to see the size of the structure variable.

PROGRAM 12.1

#include<stdio.h>

struct Employee

{

	 char name[30];

	 int age;

	 float salary;

} ;

void main()

{

	 struct Employee e1;

	 printf("Size of e1 = %d ", sizeof(e1));

}

Output:
Size of e1 = 38

Explanation:
In the above program, we have declared the structure above the main function and
inside the latter we have declared the structure variable (e1) inside the main function.
The same program can be written in many ways. Program 12.2 shows the declaration
of a structure inside the main() function.

FIGURE 12.7
Example of Structure using the keyword typedef.

Keyword

KeywordExample

typedef struct
{

char name[30];
int age;
float salary;

}Employee;

Declara�on
of

Structure
Members

Name of
the

Structure

311Structures and Unions

12.3 � Initializing a Structure

A structure is a collection of structure members, and each member may be of different data
types. So for initializing a structure, we need to specify values for each member. The initial-
ization of a structure is similar to array initialization.

Let us consider the following structure:

Example

struct Employee
{

char name[30];
int age;
float salary;

};

The variable of this structure can be initialized during its declaration as:

Ini�aliza�on

struct Employee e1={ “Aakash”, 32, 45345.67 };
struct Employee e3={ “Ramesh”, 35, 47348.77 };
struct Employee e3={ “Nilesh”, 25, 23374.82 };

According to the above initialization each structure variable (e1, e2, or e3) is initialized
with three data members, because each structure variable (e1, e2, e3) contains three mem-
ber variables (name, age, salary).

FIGURE 12.8
Memory representation of e1.

30 bytes 4 bytes 4 bytes
e1.name e1.age e1.salary

2000 2030 2034

e1

38 bytes (Total Size of e1)

Name of
the

Structure
Variable

Address

312 C Programming

12.4 � Accessing Structure Members

C provides two different operators to access the member of a structure independently: the
dot (.) operator and the arrow (->) operator. These are some of the special operators pro-
vided by C. In the following section, we discuss the dot (.) operator for accessing the data
member. The arrow (->) operator is discussed in Section 12.9.

PROGRAM 12.2

#include<stdio.h>

void main()

{

	 struct Employee

	 {

		 char name[30];

		 int age;

		 float salary;

	 } ;

	 struct Employee e1;

	 printf(“Size of e1 = %d “, sizeof(e1));

}

Output:
Size of e1 = 38

Another way of writing the same program may take the forms shown in Program
12.3a and Program 12.3b. The purpose of writing the same program in different
forms is to show that you can code your program in any of the forms and that the
compiler does not show any errors.

#include<stdio.h>
struct Employee
{

char name[30];
int age;
float salary;

}e1;
void main()
{

printf("Size of e1=%d",sizeof(e1));
}

Program 12.3 (a)

#include<stdio.h>
void main()
{

struct Employee
{

char name[30];
int age;
float salary;

}e1;
printf("Size of e1=%d",sizeof(e1));
}

Program 12.3 (b)

The outputs of the above Programs 12.3a and b are also the same as Programs
12.1 and 12.2. We are familiar with the declaration of structures and structure vari-
ables. Another way of declaring a structure is available: using the typedef keyword.
In Section 12.8, we will discuss the use of the typedef keyword in structure
declaration.

313Structures and Unions

12.4.1 � Accessing Members Using the dot (.) Operator

To access the members of a structure using the dot (.) operator takes the following form:

General Form

StructureName.MemberName

Let us consider the example shown in Figure 12.9. To access each individual member of
this structure we need a dot (.) operator along with the structure variable name.

The above statements involve the conceptual representation of a structure variable S as
shown in Figure 12.10.

Now we are at the stage of writing a complete program using the concept of structure.
Program 12.4 declares a structure notepad with two data members: page and price. The
program will read the values for these data members and print the detail of this notepad.

NOTE

The name of the structure (notepad) is not a variable name. It is just a user defined
data type with which we can declare many variables. So, the following statement
shows an error:

notepad. page = 75; /*ERROR*/

FIGURE 12.9
Member accessing example using a dot operator.

Example

struct Notepad
{

int page;
float price;

}S;

Example

S.page=75;
S.price=25.50;

(a) (b)

FIGURE 12.10
Conceptual representation of structure variable S.

75 25.56
S.page S.price

4 byte 4 byte

S

8 Byte

Name of
the

Structure
Variable

Accessing each
individual

member of the
structure

314 C Programming

If we want to read the value for each individual member then we can also use the
scanf() function for this purpose. The following program illustrates this concept.

PROGRAM 12.4

#include<stdio.h>

struct notepad

{

	 int page;

	 float price;

}S;

void main()

{

	 S.page=75;

	 S.price=25.56;

	 printf("Number of pages: %d", S.page);

	 printf("\nPrice: %f", S.price);

}

Output:
Number of pages: 75
Price: 25.56

PROGRAM 12.5

#include<stdio.h>

struct notepad

{

	 int page;

	 float price;

};

void main()

{

	 struct notepad S; /* Declaration of Structure Variable*/

	 /Reading the values for structure members/

	 printf("Enter the number of pages: ");

	 scanf("%d", &S.page);

	 printf("Enter the price: ");

	 scanf("%f", &S.price);

	 /* Printing the values stored in each structure member*/

	 printf("Number of pages: %d", S.page);

	 printf("\nPrice: %f", S.price);

}

315Structures and Unions

12.5 � Learn to Code Examples

In this section, we discuss some of the problems that can only be solved by using the con-
cept of a structure. Let us begin with Problem 2 that was discussed in Section 12.1: the
addition of the heights of two people.

Write a program to declare a structure named HEIGHT with two data members: feet
and inches. Write the code to add both heights.

PROGRAM 12.6

#include<stdio.h>

#include<conio.h>

struct height

{

	 int feet;

	 int inches;

};

void main()

{

	 struct height h1, h2, h3;

	 printf("Enter the height in feet and inches for height1: ");

	 scanf("%d%d", &h1.feet, &h1.inches);

	 printf("Enter the height in feet and inches for height2: ");

	 scanf("%d%d", &h2.feet, &h2.inches);

	 /* Addition of the height*/

	 h3.feet = h1.feet + h2.feet;

	 h3.inches = h1.inches + h2.inches;

	 if(h3.inches >=12)

	 {

		 h3.feet=h3.feet+1;

		 h3.inches =h3.inches-12;

	 }

	� printf("Addition of the Height is: %d feet %d inches",

h3.feet, h3.inches);
}

Output:
Enter the number of pages: 35
Enter the price: 20.35
Number of pages: 35
Price: 20.35

316 C Programming

Write a program to declare a structure named POINT with two data members: x-coor-
dinate and y-coordinate. Write the code to find the distance between the points.

12.6 � Arrays of Structures

Like an array of integers or an array of floats, an array of structures can also be declared.
The need for an array of structures arises when we need to consider storing multiple enti-
ties. Suppose we want to store information about ten employees, then we need an array of
structures.

Output:
Enter the height in feet and inches for height1: 7 9
Enter the height in feet and inches for height2: 6 8
Addition of the Height is: 14 feet 5 inches

PROGRAM 12.7

#include<stdio.h>

#include<math.h>

struct point

{

	 int xco;

	 int yco;

};

void main()

{

	 struct point p, q;

	 int x, y, dist;

	 printf(“Enter x and y co-ordinate value for first point: “);

	 scanf(“%d%d”, &p.xco, &p.yco);

	 printf(“Enter x and y co-ordinate value for second point: “);

	 scanf(“%d%d”, &q.xco, &q.yco);

	 x=q.xco-p.xco;

	 y=q.yco-p.yco;

	 dist= sqrt(x*x+y*y);

	 printf(“\nDistance between the points: %d”, dist);

}

Output:
Enter x and y co-ordinate value for first point: 4 6
Enter x and y co-ordinate value for second point: 2 8
Distance between the points: 2

317Structures and Unions

In C, you can declare an array of structures by preceding the array name with the struc-
ture name. For instance, given a structure with the tag name of Employee, the following
statement declares an array, called E, of struct Employee. The array has ten elements, each
element being a single instance of struct Employee.

Code Statement

struct Employee E[10];

Let us take an example:
Write a program to declare a structure emp_info with the following data members:

Emp_id, Name. Write the code for storing and displaying the details of N employees.

PROGRAM 12.8

#include <stdio.h>

#include <conio.h>

struct emp_info

{

	 int emp_id;

	 char nm[50];

};

void main()

{

	 struct emp_info emp[10];

	 int i,n;

	 printf("Enter no of employee info to store: ");

	 scanf("%d", &n);

	 for(i=0;i<n;i++)

	 {

		 printf("\n\t Enter Employee ID : ");

		 scanf("%d",&emp[i].emp_id);

		 printf("\n\t Enter Employee Name : ");

		 scanf("%s",emp[i].nm);

	 }

	 printf(“\nDetail of employee”);

	 printf(“\n-------------------“);

	 for(i=0;i<n;i++)

	 {

		 printf("\n\t Employee ID : %d",emp[i].emp_id);

		 printf("\n\t Employee Name : %s",emp[i].nm);

	 }

}

318 C Programming

12.7 � Structures within Structures (Nested Structures)

When one structure is a member of another structure, we say it is a nesting of structures or a
structure within a structure. Let us take an example. Suppose we have a structure named
Employee with the following data members: ID, Salary, and Date of Join (DOJ). Here DOJ
is itself a structure with data members: Day, Month, and Year. This structure design is
shown in Figure 12.11

12.7.1 � Declaration of Nested Structures

Declaration of nested structures can take different forms. Either we can declare the nested
structures with all their data members inside the main structure, or we can declare each
structure separately and then group them inside the main structure.

Output:
Enter no of employee infor to store: 3
Enter Employee ID: 100
Enter Employee Name: Raman
Enter Employee ID: 101
Enter Employee Name: Swagat
Enter Employee ID: 102
Enter Employee Name: Aakash
Detail of employee

Employee ID: 100
Employee Name: Raman
Employee ID: 101
Employee Name: Swagat
Employee ID: 102
Employee Name: Aakash

FIGURE 12.11
Nested structures.

ID Salary DOJ

Month Day Year

Employee

Employee.ID Employee.Salary

Employee.DOJ.Month Employee.DOJ.Day Employee.DOJ.Year

319Structures and Unions

NOTE

When we declare the structures separately, the innermost structure must be declared
first, then the next level, and finally the main structure.

Let us take the Employee example and declare the structure in all possible ways.

12.7.1.1 � Declare the Structure with One Declaration

struct Employee

{

	 int ID;

	 float Salary;

	 struct DOJ

	 {

		 int Day;

		 int Month;

		 int Year;

	 }D;

}E;

12.7.1.2 � Declare the Structure Separately

struct DOJ

{

	 int Day;

	 int Month;

	 int Year;

};

struct Employee

{

	 int ID;

	 float Salary;

	 struct DOJ D;

}E;

12.7.2 � Accessing the Members of a Nested Structure

A member of a nested structure can be accessed through a structure variable and a dot (.)
operator. To obtain a particular member, we can use the highest-level structure variable
followed by a dot operator, then the next level structure variable and a dot operator, and
finally the member’s variable name. The complete set of references for the structure
Employee is shown in Figure 12.12.

320 C Programming

12.7.3 � Nested Structure Initialization

The initialization of a nested structure is the same as the initialization of a simple structure.
Each structure must be initialized entirely before proceeding to the next member. Each
structure is enclosed in a set of braces.

The following example shows the initialization of the Employee structure:

Code Statement

struct Employee E = {101, 25356, {6, 10, 2012}};

Program 12.9 shows a complete program for the Employee structure.

PROGRAM 12.9

#include<stdio.h>

struct DOJ

{

	 int Day;

	 int Month;

	 int Year;

};

struct Employee

{

	 int ID;

	 float Salary;

	 struct DOJ D;

};

void main()

FIGURE 12.12
Referring to individual structure members.

ID Salary D

Month Day Year

E

E.ID E.Salary

E.D.Month E.D.Day E.D.Year

321Structures and Unions

12.8 � User-defined Data Type: typedef

A type definition (typedef) is used to give a new name to an existing data type, which can
again be used as a new type. We have already used this keyword to declare structures. In
this section, we discuss some of the additional facilities provided by typedef.

We can use the type definition with any type. For example, we can redefine int to
NUMBER. The general syntax is shown in Figure 12.13.

{

	 struct Employee E;

	 printf("Enter the ID, Salary and date of join: ");

	� scanf("%d%f%d%d%d", &E.ID, &E.Salary, &E.D.Day, &E.D.Month,

&E.D.Year);

	 printf("\nDetail of Employee");

	 printf("\n------------------");

	 printf("\n Employee ID: %d", E.ID);

	 printf("\n Salary: %d", E.Salary);

	� printf("\n Date of Join: %d-%d-%d", E.D.Day, E.D.Month,

E.D.Year);
}

Output:
Enter the ID, Salary and Date of join: 101 35565 10 6 2012
Detail of Employee

Employee ID: 101
Salary: 35565.000000
Date of Join: 10-6-2012

FIGURE 12.13
General syntax for using typedef.

Syntax

typedef ExistingDataType NewType;

Keyword

Any
Standard

or Derived
Data Type

Any User-
defined

Type

322 C Programming

Example:

Example

typedef int NUMBER;

As shown in the example, NUMBER is a new data type (a synonym for int), and the user
can use this data type to declare any number of integer variables. Program 12.10 illustrates
this concept.

PROGRAM 12.10

#include<stdio.h>

void main()

{

	 typedef int NUMBER; /*Declaring new data type NUMBER*/

	� NUMBER a, b; /* Declaring new variables using NUMBER data

type*/

	 printf("Enter two numbers: ");

	 scanf("%d%d", &a,&b);

	 if(a>b)

		 printf("A is greater than %d", a);

	 else

		 printf("B is greater than %d", b);

}

Output:
Enter two numbers: 20 45
B is greater than 45

NOTE

The typedef identifier is traditionally coded in uppercase. This alerts the reader that
there is something unusual about the type.

12.8.1 � Uses of typedef

	•	 It simplifies the declaration and thus is more readable for the programmer.
	•	 It is used for defining new data types like structure. This has already been discussed

in Section 12.2.

323Structures and Unions

12.9 � Pointers and Structures

A pointer is associated with a structure in many ways. A pointer can be a member of a
structure; a pointer may point to a structure; or we can declare a structure pointer to access
the members of a structure. In this section, we discuss some of these associations.

12.9.1 � Accessing Structure Members Using a Pointer

We know that a pointer only points to those variables whose data type matches the data
type of the pointer. So, to access a member of a structure, we need to declare a pointer vari-
able of the same structure type. Again, we have to use the arrow operator (->) along with
this pointer to access the member of a structure.

The whole scenario will look as follows. Suppose we have a structure notepad with the
members page and price.

Example

struct Notepad
{

int page;
float price;

};

As shown in the example, to access each member of Notepad, we need to declare a
pointer variable of this Notepad type, and we must use the arrow operator (->) to access
each of the members (Program 12.11).

PROGRAM 12.11

#include<stdio.h>

struct notepad

{

	 int page;

	 float price;

};

void main()

{

	 struct notepad S; /* Declaration of Structure Variable*/

	 struct notepad *p; /*Declaration of Structure Pointer*/

	 p=&S; /*Assigning the address of S to p*/

	 printf("Enter the number of pages: ");

	 scanf("%d", &p->page);

	 printf("Enter the price: ");

324 C Programming

Graphically the above concept can be represented as shown in Figure 12.14.

12.9.2 � A Pointer as a Member of a Structure

A pointer can also be a member of a structure. These members can also be accessed like a
general member. These pointer members can point to any other variable depending upon
its data type. Let us consider the Program 12.12.

Conceptually the memory representation of the above structure is shown in Figure 12.16.
There may be situations where an external pointer points to a specific member of a

structure and a pointer member (a pointer which is a member of the structure) of a structure
can point to another member of that structure. The scenario can be visualized as shown in
Figures 12.17 and 12.18. The corresponding programs are shown in Programs 12.13 and
12.14.

12.9.3 � Self-referential Structures

In computer science, one of the concepts that is used throughout is known as a list. A list is
a collection of related data. Sometimes this list is called a linked list. We can define a linked
list as a collection of nodes linked together, and each node has two parts: the first part stores
the data, and the second part stores an address to the next node. The relationship is shown
in Figure 12.19.

	 scanf("%f", &p->price);

	 printf("Number of pages: %d", p->page);

	 printf("\nPrice: %f", p->price);

}

Output:
Enter the number of pages: 75
Enter the price: 25.56
Number of pages: 75
Price: 25.56

FIGURE 12.14
Accessing structure members using a structure pointer.

75 25.56
2000 2004

S

Name of
the

Structure
Variable

P

Pointer
Variable

2000
Page

P->Page

Price

P->Price

325Structures and Unions

As we can see, a node is a collection of two different parts: the first part is data that is of
any data type (int, float, etc.), and the second part is an address pointing to another node.
So here, we can say the data type of the second part (link) must be the same as the data type
of the node. Now we have to consider: what will be the data type of the node?

PROGRAM 12.12

1. #include<stdio.h>

2. struct notepad

3. {

4. 	 int page;

5. 	 float MRP;

6. 	 float *p;

7. };

8. void main()

9. {

10. 	 struct notepad S;

11. 	 float Selling_Price;

12. 	 printf("Enter the number of pages: ");

13. 	 scanf("%d", &S.page);

14. 	 printf("Enter the MRP: ");

15. 	 scanf("%f", &S.MRP);

16. 	 printf("Enter the Selling Price: ");

17. 	 scanf("%f", &Selling_Price);

18. 	 S.p=&Selling_Price;

19. 	 printf("Number of pages: %d", S.page);

20. 	 printf("\nMaximum Retail Price: %f", S.MRP);

21. 	 printf("\nSelling Price: %f", *S.p);

22. }

Output:
Enter the number of pages: 75
Enter the MRP: 25.56
Enter the Selling Price: 23.50
Number of pages: 75
Maximum Retail Price: 25.560000
Selling Price: 23.500000

Explanation:
Here, p is a pointer which can be accessed by the structure S and a dot (.) operator. As
p is a float pointer, it can point to a variable whose data type is float. To show how
this works, we have taken a variable (Selling_Price at line number 11) which is not a
member of this structure S. In line 18, we have assigned the address of this external
variable to p. At line 21 we have printed this association and the evaluation is given
in Figure 12.15.

326 C Programming

A node can be implemented with the help of a structure because a node consists of two
different types of data. According to the concept under discussion, the structure declara-
tion of a node can be as follows:

FIGURE 12.15
Execution of line 21 (Program 12.12).

*S.p *2000 23.501 2

The value
at address

2000 is
23.50

Dot (.) operator has higher precedence than indirec�on
(*) operator. So, S.p evaluates to address 2000

FIGURE 12.16
Pointers as members of a structure.

75 25.56 2000
S.Page S.MRP S.p

S Name of
the

Structure
Variable

External
Variable

2000
23.50

SellingPrice

Pointer as a Member of
the Structure

FIGURE 12.17
An external pointer pointing to a structure member.

75 25.56
S.Page S.MRP

2000 2004

S

Name of
the

Structure
Variable

2004External Pointer
Variable

P

327Structures and Unions

struct NODE

{

	 int Data;

	 struct NODE *Link;

};

This type of node in a linked list is called a self-referential structure. In a self-referential
structure, each variable contains at least one pointer which can point to another variable of
the same structural type. Let us take an example as shown in Program 12.15.

PROGRAM 12.13

#include<stdio.h>

struct notepad

{

	 int page;

	 float MRP;

};

void main()

{

	 struct notepad S;

	 float *p;

	 printf("Enter the number of pages: ");

	 scanf("%d", &S.page);

	 printf("Enter the MRP: ");

	 scanf("%f", &S.MRP);

	 p=&S.MRP;

	 printf("Number of pages: %d", S.page);

	 printf("\nMaximum Retail Price: %f", *p);

}

Output:
Enter the number of pages: 75
Enter the MRP: 25.50
Number of pages: 75
Maximum Retail Price: 25.500000

FIGURE 12.18
Pointer member pointing to a structure member.

75 25.56 2004
S.Page S.MRP S.p

S Name of
the

Structure
Variable

2000 2004 2008

Pointer as a Member
of the Structure

328 C Programming

12.10 � Structures and Functions

Like a general variable, a structure can also be passed to a function. The objective of doing
this is to give all the functionality to a user-defined data type. We can say a structure can
be fully useful if we are able to pass the structure as an argument to a function. There are
different ways to pass a structure to a function:

	•	 Passing individual members of a structure;
	•	 Passing the whole structure using the pass by value concept;
	•	 Passing the whole structure using the pass by address concept.

The following section explains how a structure is actually passed to a function based on the
above three categories.

12.10.1 � Passing Individual Members of a Structure

Passing individual members of a structure is equivalent to passing an individual variable
to a function. To do this, we have to take parameters equal to the number of members

PROGRAM 12.14

#include<stdio.h>

struct notepad

{

	 int page;

	 float MRP;

	 float *p;

};

void main()

{

	 struct notepad S;

	 printf("Enter the number of pages: ");

	 scanf("%d", &S.page);

	 printf("Enter the MRP: ");

	 scanf("%f", &S.MRP);

	 S.p=&S.MRP;

	 printf("Number of pages: %d", S.page);

	 printf("\nMaximum Retail Price: %f", *S.p);

}

Output:
Enter the number of pages: 75
Enter the MRP: 25.50
Number of pages: 75
Maximum Retail Price: 25.500000

329Structures and Unions

PROGRAM 12.15

1. #include<stdio.h>

2. struct NODE

3. {

4. 	 int data;

5. 	 struct NODE *Link;

6. };

7. void main()

8. {

9. 	 struct NODE node1, node2;

10. 	 node1.data=58;

11. 	� node1.Link=&node2; /*Address of node2 is assigned to link part

of node1*/

12. 	 node2.data=76;

13. 	 node2.Link=NULL; /* Link part of node2 assigned to NULL */

14. 	 printf("\n|%d|%u|", node1.data, node1.Link);

15. 	 printf(" -> |%d|%u|", node2.data, node2.Link);

16. }

Output:
|58|8680| -> |76|0|
The step-by-step execution of lines 9 to 13 is shown in Figure 12.20.

FIGURE 12.19
Representation of a list.

Data Link

Node 1

Data Link

Node 2

Data Link

Node 3

Data Link

Node 4

Link

58 3000

Data Link

2000

76 4000

Data Link

3000

35 5000

Data Link

4000

95

Data Link

5000

2000

Link

Address to the Next Node

Address

MORE
GENERALLY

330 C Programming

present in the structure. The value of each individual member is assigned to a specific
parameter. For example, if our structure contains three members, then our function should
also include three parameters to store the value of individual members. But remember, the
data type of the parameter should match with the data type of the structure members.

Let us take an example to show how to pass individual members of a structure to a func-
tion (Program 12.16).

12.10.2 � Passing the Whole Structure Using the Pass by Value Concept

In this case, the whole structure can be passed to a function. To understand how this con-
cept works, let us first discuss some of the related issues associated with structure
assignment.

FIGURE 12.20
Execution of Program 12.15 (lines 9 to 13).

9. struct NODE node1, node2;
/*Creation of Two Nodes*/

1

Data Link

4000

Data Link

5000

Node1 Node2

Address

11. node1.Link=&node2;
/*Assigning address of Node2
to Link part of Node1*/

3

10. node1.Data=58;
/*Assigning 58 to the data
part of the node1*/

2

58

Data Link

4000

Data Link

5000

Node1 Node2

Address

58 5000

Data Link

4000

Data Link

5000

Node1 Node2

Address

11. node2.Data=76;
/*Assigning 76 to the data
part of the Node2*/

4

58 5000

Data Link

4000

76

Data Link

5000

Node1 Node2

Address

11. node2.Link=NULL;
/*Assigning NULL to the Link
part of the Node2*/

5

58 5000

Data Link

4000

76 0

Data Link

5000

Node1 Node2

Address

331Structures and Unions

A structure variable can be assigned to another structure variable if and only if both are
the variable of the same structure.

Consider the following structure:

Example

struct Notepad
{

int page;
float price;

};

Suppose we declare two variables of the above structure type:

Example

struct Notepad N1, N2;

PROGRAM 12.16

#include<stdio.h>

struct notepad

{

	 int page;

	 float price;

};

void display(int, float); /* Function Prototype*/

void main()

{

	 struct notepad N;

	 printf("Enter page and price of notepad: ");

	 scanf("%d %f", &N.page, &N.price);

	� display(N.page, N.price); /* Function Calling by passing

individual members*/

}

void display(int x, float y)

{

	 printf("\nNumber of pages: %d", x);

	 printf("\nPrice: %f", y);

}

Output:
Enter page and price of notepad: 75 35.50
Number of pages: 75
Price: 35.500000

332 C Programming

Now, let us assign some value to structure N1 using the following lines:

Example

N1.page=75;
N1.price=35.50;

After the above assignment, the basic structure is shown in Figure 12.21.
According to the above description, N1 and N2 are variables of notepad type. So, we can

assign the value of N1 to N2 directly using the following line and automatically 75 will be
assigned to page of N2 and 35.50 is assigned to the price of N2:

Example

N2=N1;

The representation after the assignment is shown in Figure 12.22.
By using the above concept, we can pass a whole structure to a function by using the

pass by value concept. Program 12.17 shows a complete program for this purpose.

12.10.3 � Passing the Whole Structure Using the Pass by Address Concept

This is similar to the pass by value method, but the only difference is here we are passing
the address of the structure variable. However, the function parameter should be a pointer
of the same structure type. Let us rewrite Program 12.18 to show how this concept works:

FIGURE 12.22
Representation of N1 and N2 after assignment.

75 35.50

Page Price

4000

Page Price

5000

N1 N2

Address

75 35.50

FIGURE 12.21
Representation of N1 and N2.

75 35.50

Page Price

4000

Page Price

5000

N1 N2

Address

333Structures and Unions

12.11 � Unions

A union can be defined as a collection of one or more variables of the same or different data
types grouped together under a single name. As per the definition, a union is the same as
a structure with slight differences. The difference between structures and unions will be
discussed in Section 12.12. The major difference is: a union provides a way by which the
memory space can be shared by its members.

12.11.1 � Declaration of a Union

A union follows the same syntax as the declaration of a structure. In fact, a union uses a
keyword union for declaration rather than the struct keyword. The syntax and an example
are shown in Figure 12.23.

PROGRAM 12.17

#include<stdio.h>

struct notepad

{

	 int page;

	 float price;

};

void display(struct notepad);

void main()

{

	 struct notepad N;

	 printf("Enter page and price of notepad: ");

	 scanf("%d %f", &N.page, &N.price);

	 display(N); /* Passing the whole structure to the function*/

}

void display(struct notepad x) /*x is notepad type, so N can be

assigned to x*/

{

	 printf("\nNumber of pages: %d", x.page);

	 printf("\nPrice: %f", x.price);

}

Output:
Enter page and price of notepad: 75 35.50
Number of pages: 75
Price: 35.500000

Recall Problem 1 discussed in Section 12.1. Let us solve the problem using the
concept of passing a structure to a function. Declare a structure TIME with data
members: hour, minute, and second. Write a function that adds two different times
using the pass by value method.

334 C Programming

PROGRAM 12.18

#include<stdio.h>

struct Time

{

	 int hour;

	 int min;

	 int sec;

};

void addTime(struct Time T3, struct Time T4)

{

	 struct Time T5;

	 T5.hour=T3.hour+T4.hour;

	 T5.min=T3.min+T4.min;

	 T5.sec=T3.sec+T4.sec;

	 if(T5.sec>60)

	 {

		 T5.min=T5.min+1;

		 T5.sec=T5.sec-60;

	 }

	 if(T5.min>60)

	 {

		 T5.hour=T5.hour+1;

		 T5.min=T5.min-60;

	 }

	� printf("Addition of the two times=%d:%d:%d",T5.hour,T5.min,T5.

sec);

}

void main()

{

	 struct Time T1, T2;

	 printf("Enter the time1(hour min sec): ");

	 scanf("%d %d %d", &T1.hour, &T1.min, &T1.sec);

	 printf("Enter the time2(hour min sec): ");

	 scanf("%d %d %d", &T2.hour, &T2.min, &T2.sec);

	 addTime(T1, T2);

}

Output:
Enter the time1 (hour min sec): 4 30 40
Enter the time2 (hour min sec): 5 40 35
Addition of the two times = 10 : 11 : 15

335Structures and Unions

PROGRAM 12.19

#include<stdio.h>

struct Time

{

	 int hour;

	 int min;

	 int sec;

};

void addTime(struct Time *T3, struct Time *T4)

{

	 struct Time T5;

	 T5.hour=T3->hour+T4->hour;

	 T5.min=T3->min+T4->min;

	 T5.sec=T3->sec+T4->sec;

	 if(T5.sec>60)

	 {

		 T5.min=T5.min+1;

		 T5.sec=T5.sec-60;

	 }

	 if(T5.min>60)

	 {

		 T5.hour=T5.hour+1;

		 T5.min=T5.min-60;

	 }

	� printf("Addition of the two times = %d:%d:%d",T5.hour,T5.

min,T5.sec);

}

void main()

{

	 struct Time T1, T2;

	 printf("Enter the time1(hour min sec): ");

	 scanf("%d %d %d", &T1.hour, &T1.min, &T1.sec);

	 printf("Enter the time2(hour min sec): ");

	 scanf("%d %d %d", &T2.hour, &T2.min, &T2.sec);

	 addTime(&T1, &T2);

}

Output:
Enter the time1 (hour min sec): 4 30 40
Enter the time2 (hour min sec): 5 40 35
Addition of the two times = 10 : 11 : 15

336 C Programming

12.11.2 � Member Accessing

Union members can also be accessed similarly to a structure. To access each member, we
can use the dot (.) operator or the arrow (->) operator. For the example shown in Figure
12.23, if we declare a union variable as follows:

Example

union Notepad N;

then, each member of this union can be accessed by the following valid statement:

Example

N.page
N.price

NOTE

Most of the concepts that we have discussed previously for structures are also appli-
cable to unions.

12.12 � Structures vs. Unions

There are many aspects where a union is different from a structure. In this section, we con-
centrate on some similarities and differences between structures and unions.

FIGURE 12.23
Declaration and example of a union.

union UnionName
{

DataType VariableName1;
DataType VariableName2;
.
.
.
DataType VariableNamen;

};

Declara�on
of Union
Members

Keyword
User-

defined
Iden�fier

Semicolon
Required

Syntax

Name of
the

Union
Example

union Notepad
{

int page;
float price;

};

Declara�on
of Union
Members

337Structures and Unions

12.12.1 � Size of Unions and Structures

As we know, the size of a structure is the sum of the size of all the members present in the
structure. But the size of a union is equivalent to the largest member of the union.
Figure 12.24 shows the size difference between a union and a structure.

12.12.2 � Sharing Memory and Member Accessing

With a union, at one instance of time, we can access only one member because the union
allocates memory space for the largest member only. Other members can only share it from
time to time. That means at one instance of time, only one member is available in the
memory. For example, let’s say there are three members in a family, but they have only one
chair. So at any instance, only one member can sit on it. The analogy is shown in Figure 12.25.

With a structure, memory is allocated for all the members. Hence, at any instance of
time, any member can be accessed. For example, let’s say there are three members in a fam-
ily, and they all have their chairs. See Figure 12.25.

Let us take a programming example to show you the effect of accessing members at the
same time for both unions and structures. Figure 12.26 shows these programs.

In the case of structures, memory is allocated for both feet and inches (Figure 12.27). So
when we access its content through printf(), it gets displayed. But in the case of unions,
one space is allocated for both members: feet and inches. When we write h.feet=5, 5 is
assigned to that location and, later on, when h.inch=7 gets executed, the previous value (5)
is replaced with 7. Finally, when we print the content of that location, 7 is printed for both
cases: h.feet, h.inch. For easy understanding see Figure 12.27 that shows the execution
steps for union memory allocation.

FIGURE 12.24
Size of a structure and a union.

#include<stdio.h>
struct Notepad
{

int page;
double price;

} ;
void main()
{

struct Notepad N;
printf("Size=%d ", sizeof(N));

}

Size of the Structure

#include<stdio.h>
union Notepad
{

int page;
double price;

} ;
void main()
{

union Notepad N;
printf("Size=%d ", sizeof(N));

}

Size of the Union

Output
Size=12

Output
Size=8

338 C Programming

12.13 � Bitfields

Before we begin the discussion on bitfields, we must know the compiler and the system
configuration on which we are running our programs because the size of the data types is
different from system to system. Until now, we have taken integer to be four bytes, but this
is not always true for every system. When we run our programs using a 32-bit computer,
then integer takes two bytes but, when you run the same program on a 64-bit computer, it
takes four bytes. It is important to know the system you are using. For our discussion on
bitfields, we use a 64-bit computer that takes four bytes for integer allocation.

Consider Program 12.20 to clarify your doubts regarding the size of different data types.
We will run this program on a 64-bit computer with a c99 compiler. We recommend that

FIGURE 12.26
Difference between structures and unions with respect to memory access.

#include <stdio.h>
struct height
{

int feet;
int inch;

};
int main()
{

struct height h;
h.feet=5;
h.inch=7;
printf("Feet=%d and Inch=%d", h.feet, h.inch);
return 0;

}

#include <stdio.h>
union height
{

int feet;
int inch;

};
int main()
{

union height h;
h.feet=5;
h.inch=7;
printf("Feet=%d and Inch=%d", h.feet, h.inch);
return 0;

}

Accessing Memory Accessing Memory

Structure Union

Output:
Feet=5 and

Inch=7

Output:
Feet=7 and

Inch=7

FIGURE 12.25
Analogy of memory access in a union and a structure.

3 Persons 3 Chairs3 Persons 1 Chair

Concept of Union Concept of Structure

(a) (b)

339Structures and Unions

before you proceed, you run this program on your computer and see what your system
shows you.

NOTE

For our discussion on bitfields, we use a 64-bit computer that takes four bytes for
integer allocation.

The compiler allocates memory for all the members present inside a structure. For
example, let a structure have two members: an integer and a float member, then a total of
eight bytes is allocated: four bytes for integers, and four bytes for floats. Assume that we
want to allocate as many bits as we want. For instance, we want to allocate three bits for
some members, five bits for some other members, and so on. Can we do this? Is it possible?
Yes, it is possible. Mark the bits here, we are not talking about bytes. It is possible to allo-
cate memory at the bit level for the members of a structure. The concept of bitfields pro-
vides this facility. We use a bitfield to allocate a distinct number of bits for the members of
a structure irrespective of their data types.

FIGURE 12.27
Execution steps of the memory access program.

Single memory block is
allocated for both feet

and inch

1

h.feet=5;
Assigns 5 to the
allocated space

h.feet h.inch

5

h.feet h.inch

2

h.inch=7;
The previous content is

deleted and 7 is allocated

7

h.feet h.inch

3

printf("Feet=%d and
Inch=%d", h.feet,

h.inch);

4

Output:
Feet=7 and

Inch=7

Separate memory block
is allocated for feet and

inch

1

h.feet=5;
Assigns 5 to the
allocated space

5

h.feet h.inch

2

h.inch=7;
Assigns 7 to the
allocated space

5

h.feet h.inch

3

printf("Feet=%d and
Inch=%d", h.feet,

h.inch);

4

Output:
Feet=5 and

Inch=7

h.feet h.inch

7

(b)

(a)

340 C Programming

We use bitfield to allocate a distinct number of bits for the members of a structure
irrespective of their data types.

12.13.1 � Declaration of a Bitfield

Bitfield declaration takes the form, shown in Figure 12.28 with an example.
Consider the programs shown in Figure 12.29a. Here, the compiler adds the size of each

member of the structure, and finally prints the size as 12; the size of each member is four
bytes. Refer to Program 12.20 to see the size of the different data types. In Figure 12.29b, we
use the concept of the bitfield and allocate five bits for member 1 and three bits for member
2. The float member takes four bytes. You may assume that the compiler will allocate four
bytes and eight bits (five bits for member 1 + three bits for member 2) for the entire struc-
ture. But it is not true, the compiler allocates four bytes for floats (as per the rule), and
another four bytes for the remaining members. Out of these 4 bytes (32 bits), only 8 bits are
used by members 1 and 2. The remaining 24 bits will be padded.

To provide more clarity, let us consider the programs shown in Figure 12.30. For the first
case (Program 12.30a), we allocate a 16-bit memory for member1 and a 16-bit memory for
member2. In total, 32 bits (4 bytes) for both members. Member3 takes 4 bytes. Hence, the
structure size is 8 bytes, as shown in the output. In Figure 12.30b, we allocate 16 bits for
member1, 17 bits for member2, and member3 takes 4 bytes, which is obvious. The size of

PROGRAM 12.20

#include <stdio.h>

int main()

{

 printf("\nSize of int= %d", sizeof(int));

 printf("\nSize of short int= %d", sizeof(short int));

 printf("\nSize of long int= %d", sizeof(long int));

 printf("\nSize of char= %d", sizeof(char));

 printf("\nSize of float= %d", sizeof(float));

 printf("\nSize of double= %d", sizeof(double));

 printf("\nSize of long double= %d", sizeof(long double));

 return 0;
}

Output:
Size of int= 4
Size of short int= 2
Size of long int= 8
Size of char= 1
Size of float= 4
Size of double= 8
Size of long double= 16

341Structures and Unions

the structure has now become 12 bytes, as shown in the output. From the output, we can
conclude that the compiler allocates another 4 bytes to accommodate 1 bit, which is an
extra bit associated with member2.

Quiz: The reader should use the following structure declaration and find its size to
know more about how the compiler allocates memory for structure members.

FIGURE 12.28
Syntax of a bitfield declaration and an example.

struct StructureName
{

DataType MemberName: SizeinBit;
DataType MemberName: SizeinBit;
.
.
.
DataType MemberName: SizeinBit;

};

Syntax

Specify the
number of

bits
required.

struct Sample
{

int Member1: 5;
int Member2: 3;
float Member3;

};

Example

(a) (b)

FIGURE 12.29
Comparing bitfield and structure members.

#include <stdio.h>
struct Sample
{

int Member1: 5;
int Member2: 3;
float Member3;

};

int main()
{

struct Sample s;
printf("Bitfield
size= %d",sizeof(s));
return 0;

}

Example

Output:
Bi�ield size=

8

#include <stdio.h>
struct Sample
{

int Member1;
int Member2;
float Member3;

};

int main()
{

struct Sample s;
printf("Structure
size= %d",sizeof(s));
return 0;

}

Example

Output:
Structure size=

12

(b)(a)

342 C Programming

12.13.2 � Uses of Bitfields

We can conclude that we use bitfields to allocate memory space as much as we want, irre-
spective of the data type. Suppose you want to store your birth date in date, month, and
year format. You may declare three integer variables for this inside a structure, as shown in
Figure 12.31a.

The size of this structure is 12 bytes. We know that there is a maximum of 31 days in a
month and 12 months in a year. To represent 31, we need 6 bits, and 4 bits to represent 12.
That’s why we can modify the above structure declaration using the concept of a bitfield,
as shown in Figure 12.31b. The size of this structure will be eight bytes.

FIGURE 12.30
Bitfield memory allocation.

struct Sample
{

int Member1: 6;
int Member2: 8;
double Member3;

};

Structure
struct Sample
{

float Member1;
int Member2: 6;
int Member3: 8;
double Member4;

};

Structure
struct Sample
{

float Member1;
double Member2;
int Member3: 6;
int Member4: 8;

};

Structure
struct Sample
{

double Member1;
float Member2;
int Member3: 6;
int Member4: 8;

};

Structure

struct Sample
{

int Member1:32;
int Member2:32;
double Member3;

};

Structure
struct Sample
{

float Member1;
int Member2:33;
int Member3:32;
double Member4;

};

Structure
struct Sample
{

float Member1;
double Member2;
int Member3;
int Member4;

};

Structure
struct Sample
{

double Member1;
float Member2;
int Member3;
int Member4;

};

Structure

#include <stdio.h>
struct Sample
{

int Member1: 16;
int Member2: 17;
float Member3;

};

int main()
{

struct Sample s;
printf("Bitfield
size= %d",sizeof(s));
return 0;

}

Example

Output:
Bi�ield size=

12

(b)(a)

#include <stdio.h>
struct Sample
{

int Member1: 16;
int Member2: 16;
float Member3;

};

int main()
{

struct Sample s;
printf("Bitfield
size= %d",sizeof(s));
return 0;

}

Example

Output:
Bi�ield size=

8

1 extra bit
added as

compared with
the previous

example

iiii #iiiii

343Structures and Unions

12.14 � Enumeration

In this section, we will discuss another user-defined data type known as enumeration. We
use this to assign numbers to a string literal. Numbers can be assigned to departments in
your college, days of a week, months of a year, or the currency of different countries. For
instance, we can assign 0 to the yen, 1 to the dollar, 2 to the rupee, and so on. By doing this,
we can easily process information, and the programs look more readable. To declare an
enumeration, we use a new keyword known as enum.

Enumeration is declared like a structure. The only difference is each member of a struc-
ture is declared using a data type, but the members of an enumeration do not require any
data type. The members are string literals, and the compiler assigns integers (starting from
0) to each member. The declaration syntax is shown in Figure 12.32.

Here enumVariable list and enumName are optional. We can use either to declare an
enum. Program 12.21 shows how enum is declared and what value it gives when printed.

PROGRAM 12.21

#include<stdio.h>

enum currency{yen, dollar, rupee, pound, siling, dinar};

int main()

FIGURE 12.32
Enumeration syntax.

enum enumName{enumeration list} enumVariable List;

Syntax

Keyword

User-
defined

iden�fier

Op�onal

FIGURE 12.31
Uses of bitfields.

struct dob
{

int dd;
int mm;
int yy;

};

Structure

struct dob
{

int dd: 6;
int mm: 4;
int yy;

};

Structure

(a) (b)

344 C Programming

We can assign any number to the enum members. In Figure 12.33, we write two programs
to show you how to assign user-defined numbers to the enum members. The output is easy
and self-explanatory.

{

 printf("\nYen= %d", yen);

 printf("\nDollar= %d", dollar);

 printf("\nRupee= %d", rupee);

 printf("\nPound= %d", pound);

 printf("\nSiling= %d", siling);

 printf("\nDinar= %d", dinar);

}
Output:

Yen= 0
Dollar= 1
Rupee= 2
Pound= 3
Siling= 4
Dinar= 5

FIGURE 12.33
Examples of using the enum keyword.

#include<stdio.h>
enum currency{yen=28, dollar, rupee,
pound=45, siling, dinar};
int main()
{

printf("\nYen= %d", yen);
printf("\nDollar= %d", dollar);
printf("\nRupee= %d", rupee);
printf("\nPound= %d", pound);
printf("\nSiling= %d", siling);
printf("\nDinar= %d", dinar);
return 0;

}

Example

Output:
Yen= 28
Dollar= 29
Rupee= 30
Pound= 45
Siling= 46
Dinar= 47

#include<stdio.h>
enum currency{yen=25, dollar, rupee,
pound, siling, dinar};
int main()
{

printf("\nYen= %d", yen);
printf("\nDollar= %d", dollar);
printf("\nRupee= %d", rupee);
printf("\nPound= %d", pound);
printf("\nSiling= %d", siling);
printf("\nDinar= %d", dinar);
return 0;

}

Example

Output:
Yen= 25
Dollar= 26
Rupee= 27
Pound= 28
Siling= 29
Dinar= 30

345Structures and Unions

We can declare more members of the enum type other than the primary declaration.
One such example is given in Figure 12.34. You can observe that the new member is
assigned with 0 (zero).

We can also compare or assign values among members and make decisions. Observe the
following program shown in Figure 12.35.

FIGURE 12.34
Declaring enum members outside enum declaration.

#include<stdio.h>
enum currency{yen=28, dollar, rupee,
pound=45, siling, dinar};
int main()
{

enum currency euro, rial;
printf("\nYen= %d", yen);
printf("\nDollar= %d", dollar);
printf("\nRupee= %d", rupee);
printf("\nPound= %d", pound);
printf("\nSiling= %d", siling);
printf("\nDinar= %d", dinar);
printf("\nEuro= %d", euro);
printf("\nRial= %d", rial);
return 0;

}

Example

Output:
Yen= 28
Dollar= 29
Rupee= 30
Pound= 45
Siling= 46
Dinar= 47
Euro= 0
Rial = 0

FIGURE 12.35
Compare and assign values among members of enumeration.

#include<stdio.h>
enum currency{yen, dollar, rupee, pound,
siling, dinar};
int main()
{

enum currency euro, rial;
if (euro==dinar)
printf("Euro and Dollar are same");
else
printf("Euro and Dollar is not same");

rial=rupee;
printf("\nRial=%d", rial);
printf("\nRupee=%d", rupee);
return 0;

}

Example

Output
Euro and Dollar is not same
Rial=2
Rupee=2

346 C Programming

12.15 � Review Questions

12.15.1 � Objective Questions

1.	 A __________ can be defined as a collection of one or more variables of the same or
different data types grouped together under a single name.

2.	 _______ and _______ are the two keywords used in the declaration of a structure.
3.	 On the declaration of a structure, no memory space is allocated for the structure mem-

bers. True/false?
4.	 The size of a structure variable is equal to the sum of each member’s length present in

that structure. True/false?
5.	 __________ and ___________ operator is used to access the members of a structure.
6.	 Which keyword is used to give a new name to an existing data type?
7.	 In a _______________, each variable contains at least one pointer which can point to

another variable of the same structural type.
8.	 We use ___________ to allocate a distinct number of bits for the members of a structure

irrespective of their data types.

12.15.2 Subjective Questions

1.	 Define a structure and explain how to declare one using the keywords struct and
typedef.

2.	 How can you initialize a structure variable? Explain with an appropriate example.
3.	 There are two member access operators to access a structure member. Explain both

with appropriate examples.
4.	 What do we mean by an array of structures? Explain its syntax.
5.	 Write short notes on enumeration and bitfields.
6.	 What is the difference between structures and unions. Explain with examples.
7.	 How can we pass a structure to a function? Explain with an appropriate example.
8.	 Can we pass one member of a structure variable to a function? If yes, explain how.

12.15.3 Programming Exercises

1.	 What is the output of the following program?
#include<stdio.h>

int main()

{

 union demo

 {

 int x;

 int y;

 };

347Structures and Unions

 union demo a = 100;

 printf("%d %d",a.x,a.y);

 }

2.	 What is the output of the following program?
�int main()

{

 struct CBook

	 {

	 char *name;

	 int year;

	 };

	 struct CBook c1 = {"Learn to Code", 2020};

	 struct Cbook c2 = l1;

	 printf("%s %d", c2.name, c1.year);

}

3.	 What is the output of the following program?
 #include<stdio.h>

 int main()

 {

 	 struct employee

 	 {

 		 int empid[5];

 		 int salary;

 		 employee *s;

 	 }emp;

 printf("%d %d", sizeof(employee), sizeof(emp.empid));

 return 0;

 }

4.	 Create a structure “Cricket” with the following fields: Player_Name, Team_Name,
Average. Use appropriate data types. Read five players’ records and display them in a
formatted manner.

5.	 Write a program to store and print the roll no., name, age, and marks of a student
using structures.

6.	 Write a program to add, subtract, and multiply two complex numbers using struc-
tures to a function.

7.	 Enter the marks of five students in Computing, Biology, and Physics (each out of 100)
using a structure named Marks and having member variables roll no., name, comp_
marks, biol_marks, and phy_marks and then display the percentage of each student.

8.	 Write a program to compare two dates entered by the user. Make a structure named
Date to store the day, month, and year. If the dates are equal, display “Dates are equal”;
otherwise display “Dates are not equal”.

9.	 Create a structure named Calendar having day, month, and year as its member vari-
ables. Store the current date in the structure. Now add 50 days to the current date and
display the new date.

348 C Programming

10.	 Create a structure containing book details like accession number, name of author,
book title, and flag to know whether book is issued or not. Create a menu for a library
where if we issue a book, then its number gets decreased by 1 and if we add a book,
its number gets increased by 1. Write a function to implement the following
operations:
•	 Display book information;
•	 Add a new book;
•	 Display all the books in the library of a particular author;
•	 Display the number of books of a particular title;
•	 Display the total number of books in the library;
•	 Issue a book.

349DOI: 10.1201/9781003188254-13

13
Dynamic Memory Allocation

13.1 ������������ Introduction

We will begin this chapter by analyzing the following code segment shown in Figure 13.1.
The code is written to allocate memory space for an array. Generally, we take a consider-
ably larger value (in our code, we take 100 as the size; line number 4) for declaring the size
of an array.

Here the size of the array is 100. Automatically, the memory will be allocated for 100
integers, but generally we don’t use all the spaces. As you can see in line 5, we are asking
about the number of elements we want to use from the allocated memory. Suppose some-
one enters 10; then the rest of the memory (allocated memory of 90 integers) will be of no
use, and so unnecessarily we are blocking these sets of memory. Further, if we found that
a 100 memory is not enough, then we need to change the code in the appropriate places.
This happens because we are using the static memory allocation concept in the program
code.

In the static memory allocation concept, we anticipate that x amount of memory may be
required for my program, but in reality, either less or more than the x amount is used. In
the former case, we are wasting the allocation by blocking some memory locations without
using it, and in the latter case, we need to modify our program.

Not only in the case of an array, but in most situations, we are not able to know the
amount of memory required until run time. If we can allocate memory at run time, then we
can avoid the problem of memory wastage. It is possible to allocate a fixed amount of

#include<stdio.h>
void main()
{

int A[100], n, i;
printf("Enter How many elements:");
scanf("%d", &n);
printf("Enter %d element",n);
for (i=0;i<n;i++)
scanf("%d", &A[i]);
.
.
.

1.
2.
3.
4.
5.
6.
7.
8.
9.
.
.
.

Code Segment

FIGURE 13.1
A code segment.

350 C Programming

memory as and when required. This process of allocating memory at run time is called
dynamic memory allocation.

This chapter introduces the concept of dynamic memory allocation in C. Until now, we
have written programs, all of which used static allocation. C provides different functions
that help us in allocating memory dynamically. After finishing this chapter, the student
will have learnt the following:

	•	 Be able to define dynamic memory allocation and differentiate it from static
allocations;

	•	 Be able to explain different functions provided by C for dynamic memory allocation,
like malloc(), calloc(), realloc(), and free().

13.1.1 ������������ Process of Memory Allocation

Before we can understand dynamic memory allocation, we need to know how the memory
allocation process is carried out in the C language. The memory as a whole is divided into
four segments:

	•	 Text;
	•	 Data;
	•	 Stack;
	•	 Heap.

The organizations of these segments are conceptually shown in Figure 13.2.

HEAP

DATA

TEXT

STACK

Grows Downward

Grows Upward

Stack grows
downward to

store local
variables of

current
func�ons

Heap grows
upward to

allocate
memory

dynamically

Store Compiled Code
of the Program

Storing global and
sta�c variables

FIGURE 13.2
Organization of memory.

351Dynamic Memory Allocation

13.1.1.1 ������������ Text Segments

The compiled code of a program resides in the text segment. Text segments are also called
code segments.

13.1.1.2 ������������ Data Segments

The global variables and local static variables are stored in this section. Generally, static
variables and global variables can be accessed by any function.

13.1.1.3 ������������ Stack Segments

A stack follows the concept of LIFO (Last In First Out) to store and remove data. Inserting
an element into a stack is called a PUSH operation and removing of an element is called a
POP operation. When a function locally declares a new variable, it is pushed into the stack,
and when the execution of the function completes, the allocated space is released.

13.1.1.4 ������������ Heap Segments

A heap is a free memory pool that can be used for dynamic memory allocation. The size of
the heap is always larger than a stack. The C compiler provides some predefined functions
which can be used to allocate memory in the heap area. Once the memory is allocated, it is
the responsibility of the programmer to release that memory. The process of releasing
memory is always performed after execution finishes. The C language provides several
predefined functions to release the memory. If, for any reason, we are not able to release the
allocated memory, then a memory leak occurs, which degrades the performance of the com-
puter. Reading from a heap and writing to a heap takes slightly more time because the
pointer is required to access the memory present in the heap.

13.2 ������������ Types of Memory Allocation

Memory allocation is categorized into two types: static memory allocation and dynamic
memory allocation. Until now, in whatever programs we have written, all the allocation
has been done using static allocation. Generally, static allocation is made inside a stack,
and dynamic allocation is made inside a heap.

13.2.1 ������������ Static Memory Allocation

Static memory allocation refers to the allocation of memory at compile time. After the allo-
cation is done, we cannot modify its size. All allocation, in this case, is made inside the
stack.

13.2.2 ������������ Dynamic Memory Allocation

Dynamic memory allocation refers to the allocation of memory at run time. We can easily
request the exact amount of memory required by the user and allocate it during execution.
All allocation, in this case, is made inside a heap.

352 C Programming

Let’s use an analogy to explain the static and dynamic allocation concepts. Observe
Figure 13.3, where two chefs are waiting for their customers.

	•	 In the first case (Figure 13.3a), the chef has prepared a meal for six people and has
arranged plates on the dining table with a board "READY TO EAT MEAL". This case
can be considered as static, and three situations may arise. First, he gets exactly six
customers, and if this happens, all the food prepared by the chef will be finished with
no wastage of food. Second, he gets less than six customers, which means a wastage
of food. Third, there will be more than six customers, which means he will not be able
to serve them all.

	•	 In the second case (Figure 13.3b), the chef is ready to prepare the meal when an order
is placed. This case is analogous to dynamic allocation. The food will be prepared
only when the chef gets an order to prepare it. Here, no food will be wasted.

13.3 ������������ Dynamic Memory Allocation Process

There are four built-in functions available in C that help us to allocate memory
dynamically:

	a.	 malloc()
	b.	calloc()
	c.	 realloc()
	d.	free()

These four functions are defined inside the header file <stdlib.h> and <alloc.h>. Figure 13.4
provides an overall description of these four functions, which have their own syntax for

READY TO
EAT MEAL

FOOD
AVAILABLE
ON ORDER

(a) (b)

FIGURE 13.3
Static and dynamic allocation analogy.

353Dynamic Memory Allocation

declaration. Memory allocation and accessing the data present in the heap can only be
implemented by using a pointer.

13.3.1 ������������ The malloc() Function

This function allocates a block of memory (specified in bytes) in the heap. This function
allows a user to allocate memory as and when required. The syntax for malloc() is shown
in Figure 13.5.

The syntax for malloc() allocates the required amount of memory specified by the
attribute size and returns the first address of the allocated memory. If the allocation of
memory fails due to lack of available space, then it returns a NULL pointer. The code seg-
ment for successful allocation can be written as shown in Figure 13.6.

After allocating the required amount of memory space, malloc() returns a void pointer.
We know that a void pointer needs to be properly cast before it is used inside our program
(refer to Section 11.5 to know more about void pointers and why casting is needed). Hence,

Memory
Management

malloc()

calloc()

realloc()

free()

This func�on is used to
modify the previously

allocated memory

Used to free the memory
allocated previously using
malloc(),calloc(),or

realloc()

Used to allocate a block of
memory dynamically

Used to allocate a block of
memory dynamically

FIGURE 13.4
Memory management functions.

ptrVarName=(DataType*) malloc (size);

Syntax

Used for
Cas�ng

No. of
Bytes to
Allocate

User-
defined
Iden�fier

FIGURE 13.5
Syntax for the malloc() function.

354 C Programming

(int*) before malloc is written in line 2 in Figure 13.6, which helps in casting the void pointer
as an integer pointer. Note that we cast it as an integer pointer because p is an integer
pointer. The following memory allocation statements give more clarity to the malloc dec-
laration. You can observe that the casting portion of the code depends on the type of pointer
to which the return address is assigned.

Memory alloca�on for float

1. float *p;
2. p=(float*)malloc(20);

Memory alloca�on for char

1. char *p;
2. p=(char*)malloc(20);

Memory alloca�on for double

1. double *p;
2. p=(double*)malloc(20);

Consider Program 13.1 and its execution procedure to see how exactly memory gets
allocated dynamically. Suppose you want to allocate memory for n integers. Assume that
an integer takes 2 bytes; this means you need n × 2 bytes to be allocated in memory. If you
don’t know the size of an integer then you can write n × sizeof(int). The sizeof() operator
will return the size of the integer and we can then read the value of n from the user.

PROGRAM 13.1

#include <stdio.h>

int main()

{

 int n, *p;

 printf("\n How many integer allocations: ");

 scanf ("%d", &n);

 p=(int*)malloc(n*sizeof(int));

 if(p!=NULL)

 printf("Allocation Successful");

 else

 printf("! Allocation Unsuccessful");

 return 0;

}

Code Segment

1. int *p;
2. p=(int*)malloc(10);
3. if(p==NULL)
4. printf("Not enough memory");
5. else
6. printf("Allocation successful");

FIGURE 13.6
Code segment showing the allocation of memory using the malloc() function.

355Dynamic Memory Allocation

Let us understand how the following line gets executed. Assume that n = 3 and an integer
takes 2 bytes.

p=(int*)malloc(3*2);

When the above statement gets executed, the malloc function searches for 6 bytes of free
memory space to allocate. When the compiler finds the required number of free spaces in
memory, it marks it and returns the address of the first block. The return address is assigned
to the pointer p, and p starts pointing to the desired allocated space. The illustration of the
above description is shown in Figure 13.7.

After we allocate memory space, we can store values in it. For the above example, we
can store three integers in the allocated space. Let us write a complete program to allocate
memory space for some integers, store some number in it, access them, and display them.
Program 13.2 shows the entire code. Line 7 allocates the memory dynamically depending
upon the size of n. Lines 12–14 are used to read the number from the user and assign it to
the allocated space, like an array. Similarly, lines 16–18 display the content of the memory.

Output:
Run 1
How many integer allocations: 353646345234
! Allocation Unsuccessful
Run 2
How many integer allocations: 10
Allocation Successful

Explanation:
From the output, you can see that the allocation was unsuccessful in Run 1 because
we specified a large number. In Run 2, we allocated for ten integers, and the alloca-
tion was successful.

MEMORY SEGMENT
(Before Alloca�on)

malloc()func�on searching for
memory blocks for alloca�on

MEMORY SEGMENT
(A�er Alloca�on)

3000

P

3000 3001 3002 3003 3004 3005
Allocate 6 blocks and return the first

address to P

P

FIGURE 13.7
Illustration of memory allocation by malloc().

356 C Programming

13.3.2 ������������ The calloc() Function

Like malloc(), calloc() also allocates a block of memory as and when required by the
user. The syntax for the calloc() function is shown in Figure 13.8.

If you compare the syntax for calloc() with that for malloc(), you can see one dif-
ference: malloc() takes one argument, and calloc() takes two arguments. The func-
tionality of both these functions is the same. The calloc() function allocates (n × size)
number of bytes and returns the first address of the allocated block. The return address is
a void pointer; casting is needed to assign the address to the appropriate pointer.

Let us rewrite Program 13.2 using the calloc() function. Program 13.3 shows the
changes made to the program and its output.

13.3.3 ������������ The realloc() Function

This function is used to resize the memory allocated previously by malloc(), calloc(),
or realloc(). It does not affect the content of the previously allocated memory blocks.
This function tries to expand the space by allocating new blocks. But, if enough space is not
available for continuous allocation, it can relocate the allocation along with the previously
allocated block to a new place in memory. If the allocation is successful, the function returns
the address of the newly allocated block. If it fails to allocate the new allocation (maybe
due to limited size), it returns NULL. The syntax for the realloc() function is shown in
Figure 13.9.

ptrVarName=(DataType*) calloc (n, Size);

Syntax

Used for
Cas�ng

Size of
each

Element

User-
defined
Iden�fier

Number
of

Elements

FIGURE 13.8
Syntax for the calloc() function.

ptrVarName=(DataType*) realloc (PtrVarName, NewSize);

Syntax
Size of Total
Alloca�on
(Old+New)

Name of the pointer variable that points
to the previously allocated block

Used for
Cas�ng

FIGURE 13.9
Syntax for the realloc() function.

357Dynamic Memory Allocation

To understand how the new allocation takes place, let us begin with the following allo-
cation with malloc().

int *p;
p=(int*) malloc (5*sizeof(int));

Example

PROGRAM 13.2

1. #include <stdio.h>

2. int main()

3. {

4. int n, i, *p;

5. printf("\n How many integer allocations: ");

6. scanf ("%d", &n);

7. p=(int*)malloc(n*sizeof(int));

8. if(p!=NULL)

9. {

10. printf("Allocation Successful");

11. �/*Code for reading integers & storing them in the

allocated space*/

12. printf("\nEnter %d elements: ", n);

13. for(i=0;i<n;i++)

14. scanf("%d", &p[i]);

15. �/*Code for displaying the numbers present in the

allocated space*/

16. printf("\nThe numbers are: ");

17. for(i=0;i<n;i++)

18. printf("%d ", p[i]);

19. }

20. else

21. printf("! Allocation Unsuccessful");22. return 0;

23. }

Output:
Run 1
How many integer allocations: 5
Allocation Successful
Enter 5 elements: 25 43 71 83 44
The numbers are: 25 43 71 83 44
Run 2
How many integer allocations: 3536346346463
! Allocation Unsuccessful

358 C Programming

The malloc() function allocates ten bytes of memory (assuming that an integer takes
two bytes) and returns the first address to p. The use of the realloc() function is required
only when we want to increase the size of the above-allocated memory blocks. Suppose we
want to allocate memory blocks for ten integers. The following line of code will do that
using the realloc() function:

PROGRAM 13.3

1. #include <stdio.h>

2. int main()

3. {

4. int n, i, *p;

5. printf("\n How many integer allocations: ");

6. scanf ("%d", &n);

7. p=(int*)calloc(n, sizeof(int)); �/* Changes made on this line

only*/

8. if(p!=NULL)

9. {

10. printf("Allocation Successful");

11. �/*Code for reading integers & storing them in the

allocated space*/

12. printf("\nEnter %d elements: ", n);

13. for(i=0;i<n;i++)

14. scanf("%d", &p[i]);

15. �/*Code for displaying the numbers present in the

allocated space*/

16. printf("\nThe numbers are: ");

17. for(i=0;i<n;i++)

18. printf("%d ", p[i]);

19. }

20. else

21. printf("! Allocation Unsuccessful");

22. return 0;

23. }

Output:
Run 1
How many integer allocations: 5
Allocation Successful
Enter 5 elements: 25 43 71 83 44
The numbers are: 25 43 71 83 44
Run 2
How many integer allocations: 3536346346463
! Allocation Unsuccessful

359Dynamic Memory Allocation

p=(int*) realloc (p, 10*sizeof(int));

Example

The above line of code will allocate 20 bytes without affecting the previous content and
returns the first address to p. Consider Program 13.4.

PROGRAM 13.4

#include <stdio.h>

int main()

{

 int n, m, i, *p;

 int option;

 printf("\n How many integer allocations: ");

 scanf ("%d", &n);

 p=(int*)malloc(n*sizeof(int)); �/* Changes made on this line

only*/

 if(p!=NULL)

 {

 printf("Allocation Successful");

 �/*Code for reading integers & storing them in the allocated

space*/

 printf("\nEnter %d elements: ", n);

 for(i=0;i<n;i++)

 scanf("%d", &p[i]);

 printf("\nDo you want to enter more numbers?");

 printf("\nPress 1 for YES and 0 for No: ");

 scanf("%d", &option);

 if(option==1)//(option=='y' || option=='Y')

 {

 printf("\nHow many integer allocations: ");

 scanf ("%d", &m);

 p=(int*)realloc(p, (n+m)*sizeof(int));

 if(p!=NULL)

 {

 printf("Allocation Successful");

 /*Read numbers and store them in reallocated space*/

 printf("\nEnter %d elements: ", m);

 for(i=n;i<n+m;i++)

 scanf("%d", &p[i]);

 }

360 C Programming

13.3.4 ������������ The free() Function

In the previous section, we covered the memory allocation process using three functions.
In this section, we will look at how to deallocate them after the execution process is over.
Deallocation of memory is necessary to optimize memory usage. The C language provides
the free() function to deallocate the memory space allocated by malloc(), calloc(),
and realloc(). The general structure of the free() function is shown in Figure 13.10.

Consider the program shown in Figure 13.11. The program allocates two bytes using the
malloc() function and returns the address to the pointer p (line 5). It reads an integer from

 else

 {

 printf("Reallocation Unsuccessful");

 }

 }

 �/*Code for displaying the numbers present in the allocated

space*/

 printf("\nThe numbers are: ");

 for(i=0;i<n+m;i++)

 printf("%d ", p[i]);

 }

 else

 printf("! Allocation Unsuccessful");

 return 0;

}

Output:
How many integer allocations: 5
Allocation Successful
Enter 5 elements: 12 34 87 35 62
Do you want to enter more numbers?
Press 1 for YES and 0 for No: 1
How many integer allocations: 5
Allocation Successful
Enter 5 elements: 11 33 44 22 66
The numbers are: 12 34 87 35 62 11 33 44 22 66

free(PtrVarName);

Syntax

Name of the pointer variable that points
to the allocated block

FIGURE 13.10
Syntax for free() function.

361Dynamic Memory Allocation

the user and assigns it to the allocated location (lines 6 and 7). We assume the size of an inte-
ger is two bytes. Line 8 displays the content of the allocated memory, and the output is shown
in the output block of Figure 13.11. After it produces the output, it is the programmer’s
responsibility to deallocate the memory. That’s why the programmer included line 9, which
uses the free() function to free up the memory allocated by the malloc() function.

13.4 ������������ Review Questions

	 1.	����������� Consider the following code.
 int* A = malloc(4*n);

 int *B = A;

 free(B);

 Does this free the original memory?

	 2.	������������ Write down the output of the following code.
 int main()

 {

 clrscr();

 int n=50;

 int *p;

 p=&n;

 printf(“Address of n variable is %x \n”,&n);

 printf(“Address of p variable is %x \n”,p);

 printf(“Value of p variable is %d \n”,*p);

 getch();

 }

Code Segment

1.#include<stdio.h>
2.int main()
3.{
4. int *p;
5. p=(int*)malloc(2);
6. printf("Enter a number: ");
7. scanf("%d", p);
8. printf("The memory contains:%d", *p);
9. free(p);
10. return 0;
11.}

Output
Enter a number: 45
The memory contains:45

Deallocate
the memory

pointed to by
pointer p

FIGURE 13.11
Example showing the uses of the free() function to deallocate memory.

362 C Programming

	 3.	����������� Write down the output of the following code.
 int main()

 {

 int s = 4;

 char *string1 = (char *)malloc(sizeof(char)*s);

 *(string1+0) = ‘G’;

 *(string1+1) = ‘f’;

 *(string1+2) = ‘G’;

 *(string1+3) = ‘\0’;

 *(string1+1) = ‘n’;

 getchar();

 return 0;

 }

	 4.	����������� What is the need for dynamic memory allocation?
	 5.	����������� What is the difference between a stack and a heap?
	 6.	����������� Explain the different types of memory allocation possible in the C language.
	 7.	����������� What are the different memory management functions available in C?
	 8.	����������� Write down the syntax for the malloc() and calloc() functions.
	 9.	����������� What is the difference between the malloc() and calloc() functions? Which one

is better?
	10.	����������� What is memory leak and how can we avoid it?
	11.	����������� Why is casting needed during dynamic memory allocation using malloc, calloc, and

realloc?
	12.	����������� What is the free() function and why is it used?
	13.	����������� Explain the process of memory allocation using the malloc() function.
	14.	����������� Which header file should be included in dynamic memory allocation?
	15.	����������� What is the difference between static and dynamic memory allocations?
	16.	����������� What functions are used to allocate memory dynamically in C programs?
	17.	����������� What is the disadvantage of dynamic memory allocation in C?
	18.	����������� Write a C program to create memory for int, char, and float variables at run time.
	19.	����������� What is memory leak in C?
	20.	����������� Explain the statement: ptr = (int*) malloc(100 * sizeof(int));
	21.	����������� Write C code to inform the user when space is insufficient, allocation fails, and returns

a NULL pointer.
	22.	����������� Which method in C is used to dynamically deallocate memory?
	23.	����������� Write a program to read and print an integer array. The program should input the total

number of elements (limit) and the elements for the array from the user. Use dynamic
memory allocation to allocate and deallocate array memory.

	24.	����������� How can you determine the size of an allocated portion of memory?
	25.	����������� What is the purpose of realloc()? Write a C program to extend the size of memory

block A to double its size.

363Dynamic Memory Allocation

	26.	����������� What is dynamic memory allocation? Write down and explain the different dynamic
memory allocation functions in C.

	27.	����������� Write a C program to read a 1D array and print the multiplication of all the elements
along with the inputted array elements using dynamic memory allocation.

	28.	����������� Write a C program to read and print patient details using structure and the malloc()
function in order to dynamically allocate memory.

	29.	����������� Write C code for creating a dynamic string.
	30.	����������� Write C code to read one character at a time (using getc(stdin)) and grow the string

(realloc) as you go.
	31.	����������� Write a C program to read and print the details of person N using structure and the

calloc() function to dynamically allocate memory.
	32.	����������� Write a C program to find the largest number using dynamic memory allocation.

https://taylorandfrancis.com

365DOI: 10.1201/9781003188254-14

14
File Handling

14.1 ��������� Introduction

I believe most of the readers of this book know of at least one kind of word-processing
software. Every mobile phone today has a word processor installed in it. Consider also a
notepad where we type (write) something and store it in our local drive. In the future, we
can then access its content anytime. We add (write) new content, remove (delete) the exist-
ing content, copy the content from one to another, or we can read the content from it. A
notepad is a piece of software that gives us the facility to create a file and allow us to per-
form the several kinds of operations mentioned above. C programming also provides us
with some predefined functions that will enable us to create a file or read an existing file
and perform several operations in it. In Chapter 7, Section 7.1 we classified the I/O func-
tion into three groups: (i) console I/O (ii), file I/O, and (iii) port I/O. The file I/O functions
provided by C enable us to perform several operations on files. Generally, files reside on
our hard disk drive. In this chapter, we will learn how to access these files, read the existing
content from it, write new content in it, and so on, by writing C code. The overall process
flow of the file handing process is shown in Figure 14.1.

Files reside in our local drive and are available on demand. The output functions extract
the content of the file and send it for processing. After the processing is completed, the
updated content is either written to the file or displayed on the screen using the input func-
tion. Here input functions are used for inputting (writing) the content to a file. The output
functions are used for extracting (reading) the content of the file.

This entire chapter is about writing code that performs several operations on a file. We
categorize these operations into three groups as shown in Figure 14.2. The first group
describes the output functions that help us in reading (extracting) the content from a file
and displaying it on a screen using a console output function like printf(). The second
group explains the functions available for writing new content to a file by reading it from
the console input. The third group describes the program code for how to perform read/
write operations on a file using I/O functions, as explained by the two groups above.

After finishing this chapter, the student will be able to:

	•	 Define and differentiate between file I/O and console I/O;
	•	 Open a file in different modes, such as read mode, write mode, and append mode;
	•	 Use several file input and output functions along with their syntax and the way they

are used inside our programs;
	•	 Copy the content of one file to another file;
	•	 Know about file streams and types of files.

366 C Programming

Before a discussion on file handling, let us understand the difference between console I/O
and file I/O. This is just an extension of the content of Chapter 7.

14.1.1 ��������� Difference between Console I/O and File I/O

	•	 A console (keyboard and monitor) always exists but a file may or may not exist.
	•	 Console inputs are taken from a keyboard and displayed on a screen. But input and

output may be done on the same file.

Processing
Code

A File Output
Func�on

Input
Func�on

A File

FIGURE 14.1
Process flow of file handling.

(a)

#include<stdio.h>
void main()
{

/*…………*/
. . . .
. . . .
. . . .

}

PROGRAM
CODE

(b)

#include<stdio.h>
void main()
{

/*…………*/
. . . .
. . . .
. . . .

}

PROGRAM
CODE

(c)

#include<stdio.h>
void main()
{

/*…………*/
. . . .
. . . .
. . . .

}

PROGRAM
CODE

Reading from
the File

Wri�ng to
the File

Reading from
the File

Wri�ng to
the File

FIGURE 14.2
Overall operations on a file.

367File Handling

As we know, “console” means the input and output devices connected to our computer.
When we write code to read content through an input device and display it on the output
device, we call it console I/O. When we do the same with files, we call it file I/O.

14.2 ��������� Basics of File I/O

This section introduces the file system and the steps we follow to process files. We begin
with what a file is and gradually show you how to process files using the I/O functions
available to us.

14.2.1 ��������� What is a File?

In C, a file refers to a disk file that stores some information in textual form and which is
sometimes referred to as a data file. We can create a data file, write some information to it,
store it in an appropriate place, and in the future access it to read/write or update the
information present in it.

In C, a file refers to a disk file that stores some information in textual form and which
is sometimes referred to as a data file.

A data file is of two types: (1) stream-oriented data files and (2) system-oriented data
files. System-oriented data files are system files or low-level files and which are difficult to
manage. In this chapter, we will concentrate on stream-oriented files. Stream-oriented data
files are again divided into two types: (1) text files and (2) unformatted data files. Text files
store the information either as characters or numbers. The C language provides several
library functions to read/write the information, character by character, from these files.
The other option is to read/write string-wise. Unformatted data files store the information in
the form of continuous blocks. Specialized data structures and functions are required to
store and retrieve information from this type of file. Data structures, like arrays and arrays
of structures, will be used to store data inside this type (see Figure 14.3).

14.2.2 ��������� File Handling Process Flow

Before performing any operation on a file, the file must be loaded into the memory first.
Loading the file from the hard disk to the memory is known as opening the file. There are
several ways to open a file. After opening, we perform various operations on it as per our
requirements; finally we close the file. Closing means reloading the file onto the disk where
it came from. So, the process flow comprises three tasks:

	 1.	Opening a file;
	 2.	Perform operations like read/write;
	 3.	Close the file.

368 C Programming

Figure 14.4 shows an analogy that illustrates the file handling process flow. A file rack is
shown in the figure that contains all the files of a department. One officer works upon this
file. Every day, he brings the file from the rack to his working area, processes it, and at the
end of the day, he put it back on the rack. To understand the process flow, we can assume
that the file rack is the hard disk that contains our files. Bringing the file to the working area
is the same as opening the file. The working area is the memory where we process the file.
Finally, putting it back to the file rack is the same as closing the file.

In the following section, we will discuss every step in detail. To execute the process flow,
the C language provides us with a set of library functions. The definition of these functions
is available in the header file <stdio.h>. Table 14.1 describes all the functions.

14.3 ��������� Opening a File

Before we read (or write) information from (to) a file on a disk, we must open the file. To
open the file, we have a function known as fopen(), which returns the file pointer to the
opened file. In fact, fopen() performs three important tasks when you open the file:

	•	 First, it searches on the disk for the requested file;

File or Data File
Stream-Oriented Data Files

System-Oriented Data Files

Text Files

Unforma�ed Data Files

FIGURE 14.3
Classification of file types.

Bringing the
File to the

Working Area
Processing the

Files

Reloading the
File

File
Rack

Hard Disk that
Contains the File

Working
Area

Memory

Opening the
File

Closing the
File

FIGURE 14.4
Analogy illustrating the file handling process flow.

369File Handling

	•	 Then it loads the file from the disk into a place in memory called the buffer;
	•	 It sets up a pointer that points to the first character of the buffer.

We need to establish a buffer area where the information will be stored temporarily. From
this area, the content will be transferred to the data file. The buffer area will be created by
declaring a pointer variable of FILE type. FILE (note the capital letter) is a predefined struc-
ture that helps us to create a buffer. The syntax for and example of creating a buffer are
shown in Figure 14.5.

After creating the buffer, the next step is to open the file using fopen(). This will be
done using the syntax given in Figure 14.6.

Here the filename specifies the name of the file that exists on the disk, or is to be created.
The file will be opened if a file exists with that name. If not, a new file with the same name
will be created. But, the creation of a file depends on the "mode" specified in your code.

TABLE 14.1

List of File Processing Functions

Serial No. Function Name Description

1 fopen() Create a new file or open an existing file

2 fclose() Close a file

3 fprintf() Write a set of formatted data values to a file

4 fscanf() Read a set of formatted data values from a file

5 fputc() Write a character to a file

6 fgetc() Read a character from a file

7 fputs() Write a string to a file

8 fgets() Read a string from a file

9 putw() Write an integer to a file

10 getw() Read an integer from a file

11 fseek() Set the position to desired point in the file

12 ftell() Determine current position in a file (in terms of bytes from the start)

FILE *FilePtrVarName;

Syntax

FILE *fp;

Example

FIGURE 14.5
Creating a buffer.

FILE *fp;
fp=fopen("File Name", "Mode");

Syntax

FIGURE 14.6
Syntax for fopen().

370 C Programming

Mode points to another string that specifies the way (read mode, write mode, etc.) to open
the file. The fopen() function returns a pointer of type FILE. If an error occurs during the
procedure to open, the fopen() function returns a NULL pointer.

Table 14.2 shows all the modes of opening a file and their description
An example of file open can be viewed as follows:

FILE *fp;
fp=fopen("Stock.txt", "r");

Example

Example
file name

Read
mode

14.4 ��������� Closing a File

We need to close a file after we finish all the operations on it. By doing this, we will deal-
locate the resources allocated to that file. The required content will be updated on the file,

TABLE 14.2

Various Modes of Opening a File and Their Meaning

Mode Meaning

r Open file in read mode
	•	 If file exists, the pointer is positioned at beginning
	•	 If the file doesn’t exist, error returned

w Open file in write mode
	•	 If file exists, it is erased
	•	 If the file doesn’t exist, it is created

a Open file in append mode
	•	 If file exists, the pointer is positioned at end
	•	 If the file doesn’t exist, it is created

r+ Open file in update (both read and write) mode
	•	 If file exists, the pointer is positioned at beginning
	•	 If the file doesn’t exist, error returned

w+ Open file in update (both read and write) mode
	•	 If file exists, it is erased
	•	 If the file doesn’t exist, it is created

a+ Open file in update (both read and write) mode
	•	 If file exists, the pointer positioned at end
	•	 If the file doesn’t exist, it is created

371File Handling

and it will be ready for reopening in another mode. The buffer is flushed out, and the
pointer to that location will be broken. Closing the file is also necessary for unauthorized
access. To close the file, we use the fclose() function.

The syntax for and an example of writing the fclose() function is shown in Figure 14.7.
Sometimes when we open or close a file, it shows errors, for many reasons. One of the

most common errors occurs when the external file name does not match a name on the
disk.

	•	 Always check to make sure that a stream has opened successfully. If it succeeds, then
we have a valid address in the file pointer. But if it fails for any reason, the stream
pointer variable contains NULL.

	•	 Similarly, we can test the return value from fclose() to make sure it has closed suc-
cessfully. The fclose() function returns an integer that is zero if the close succeeds
and EOF if there is an error. EOF stands for end of file.

To check the open or closing error, we need an if statement. The following program seg-
ment shows the general structure of writing any file programs (Figure 14.8).

From the next section onwards, we will write code for processing a file, which means
reading from or writing to a file. During the code writing, we will introduce several file
functions and explain their syntaxes.

14.5 ��������� File Functions with Examples

This section will describe different file functions available in C to perform reading or writ-
ing operations. Every function will be explained by using several appropriate examples.
Let us begin with the fprintf() and fscanf() functions.

14.5.1 ��������� The fprintf() and fscanf() Functions

The first set of functions we discuss here is fprintf() and fscanf(). The names are
analogous to the console I/O functions printf() and scanf() but with an extra f. The
syntax of both the functions is very similar to the console I/O functions, but takes an extra
argument: the name of the file pointer. The fscanf() function extracts the content of the
file, and the fprintf() function writes the given information to the file. The syntax of
these two functions is given below.

fclose(FilePtrVarName);

Syntax

fclose(fp);

Example

FIGURE 14.7
Syntax and example of fclose().

372 C Programming

fscanf(FilePtr, "Format String", &VarNames);

Syntax

fprintf(FilePtr, "Format String", VarNames);

Syntax

(a) fprin�() syntax

(b) fscanf() syntax

14.5.1.1 ��������� Writing and Reading an Integer Using fprintf() and fscanf()

Write a program to create file. Write an integer to it. Read the integer and display it on the
screen.

#include<stdio.h>
void main()
{

.

.
FILE *fp;

fp=fopen("Sample.txt","w");
if(fp==NULL)
{

printf(“Error in opening file”);
exit(0);

}

.

.

.

if(fclose(fp)==EOF)
{

printf(“Error in file closing”);
exit(1);

}

}

Opening a File
with Error

Checking Code

Closing a File
with Error

Checking Code

This part indicates the
opera�ons (read, write, etc.)
to be performed on the file

General Structure

FIGURE 14.8
General structure of a file program with error checking code.

373File Handling

PROGRAM 14.1

1. #include<stdio.h>

2. #include<stdlib.h>

3. void main()

4. {

5. int x;

6. FILE *fp; /* Declaration of File Pointer*/

7. fp=fopen("Sample.txt","w");

8. if(fp==NULL)

9. {

10. printf("Error in opening file");

11. exit(0);

12. }

13.

14. printf("Enter a number ");

15. scanf("%d",&x);

16. fprintf(fp,"%d",x); /* Writing the value of x to file*/

17. if(fclose(fp)==EOF)

18. {

19. printf("Error in file closing");

20. exit(1);

21. }

22.

23. fp=fopen("Sample.txt","r");

24. �fscanf(fp,"%d",&x); /*Reading the content of file and assign

it to x*/

25. printf("File contains=%d",x);

26. if(fclose(fp)==EOF)

27. {

28. printf("Error in file closing");

29. exit(1);

30. }

31. }

Output:
Enter a number 25
File contains=25

Explanation:
Lines 7–12: Open a file in write mode.
Lines 14–15: Read an integer from the user using console and store it in x. Here x

is an integer variable.

374 C Programming

14.5.2 ��������� The putw() and getw() Functions

Here we discuss another two functions: putw() and get(). We use the putw() function
to write a series of integers to a file, and the getw() function retrieves the integers from
the file. The general syntax of these two functions is given below.

putw(VarNames, FilePtrName);

Syntax

(a) putw() syntax

getw(FilePtrName);

Syntax

(a) getw() syntax

14.5.2.1 ��������� Writing and Reading More than One Integer Using the putw() and getw()
Functions

Write a program to create a file, store some integers, and display the content.

Line 16: Write the value of x to the file using fprintf() function.
Lines 17–21: Close the file.
Line 23: Open the same file in read mode
Line 24: Read the content of the file using fscanf() function and assign it to the

variable x.
Line 25: Print the value of x on the screen which is the content of the file.
Lines 26–30: Close the file.

PROGRAM 14.2

1. #include<stdio.h>

2. void main()

3. {

4. int x,i,n;

5. FILE *fp;

6. fp=fopen("Sample.txt","w");

7. printf("How many numbers do you want? ");

8. scanf("%d", &n);

9. for(i=0;i<n;i++)

10. {

11. printf("Enter numbers:");

375File Handling

In the next example, we will read the numbers present in a file and check for odd or
even numbers. We copy all the odd numbers to a file named “odd.txt”. Copy the even
numbers to a file named “even.txt”. Finally, we display the content of both files. In this
example, we need to open three files simultaneously. The first file contains all the numbers,
and we should open it in read mode. The other two files must be opened in write mode
because we read the numbers from the first file and check it for even or odd, and finally,
write it to the appropriate file. Finally, we should close all the files.

14.5.2.2 ��������� Reading Numbers from a File and Checking Them for Even or Odd

Write a program to read an integer file, copy all even numbers to a file named “even”, and
copy all odd numbers to another file named “odd”. Display the content of all the files.

12. scanf("%d",&x);

13. putw(x,fp);

14. }

15. fclose(fp);

16.

17. fp=fopen("Sample.txt","r");

18. while((x=getw(fp))!=EOF)

19. {

20. printf("\nFile contains=%d",x);

21. }

22. fclose(fp);

23.}

Output:
How many numbers do you want? 3
Enter numbers:25
Enter numbers:49
Enter numbers:43
File contains=25
File contains=49
File contains=43

Explanation:
Line 6: Open the file in write mode.
Lines 7–8: Ask the user to enter how many integers are to be stored in the file.
Lines 9–14: Read the numbers from the user through the console, store it in a vari-

able x. “x” is an integer here. Write the value of x to the file using the putw()
function.

Line 15: Close the file.
Line 17: Open the file in read mode.
Line 18–21: Read the numbers present in the file until EOF (end of the file) using

getw() function and display the numbers on the screen using printf() function.
Line 22: Close the file.

376 C Programming

PROGRAM 14.3

1. #include<stdio.h>

2. void main()

3. {

4. int x,i,n;

5. FILE *fp,*fe,*fo;

6. fp=fopen("Sample.txt","w");

7. printf("How many numbers do you want? ");

8. scanf("%d", &n);

9. for(i=0;i<n;i++)

10. {

11. printf("Enter numbers:");

12. scanf("%d",&x);

13. putw(x,fp);

14. }

15. fclose(fp);

16.

17. fp=fopen("Sample.txt","r");

18. fe=fopen("even.txt","w");

19. fo=fopen("odd.txt","w");

20.

21. while((x=getw(fp))!=EOF)

22. {

23. if(x%2==0)

24. putw(x,fe);

25. else

26. putw(x,fo);

27. }

28. fclose(fe);

29. fclose(fo);

30.

31. fe=fopen("even.txt","r");

32. fo=fopen("odd.txt","r");

33. printf("\nThe odd file contains:");

34. while((x=getw(fo))!=EOF)

35. printf("%d\t",x);

36.

37. printf("\nThe even file contains:");

38. while((x=getw(fe))!=EOF)

377File Handling

14.5.3 ��������� The fputc() and fgetc() Functions

Until now, we have seen how to read and write numbers in a file. In this section, we will
introduce you to another two functions for reading and writing characters in a file:
fgetc() and fputc(). fgetc() reads one character from a file, and fputc() writes
one character into a file. The syntax of these two functions is shown below.

39. printf("%d\t",x);

40. fclose(fp);

41. fclose(fe);

42. fclose(fo);

43.}

Output:
How many numbers do you want? 10
Enter numbers:12
Enter numbers:34
Enter numbers:56
Enter numbers:78
Enter numbers:43
Enter numbers:23
Enter numbers:45
Enter numbers:88
Enter numbers:21
Enter numbers:22
The odd file contains:

43 23 45 215

The even file contains:

12 34 56 78 88 22

Explanation:
Line 5: Declare three FILE pointers because we need to open three files simultane-
ously as discussed above.

Lines 6–15: Open a file Sample.txt, store some integers in it by reading the num-
bers from the console as in Program 14.2, and finally close the file in line 15.

Lines 17–19: Open three files: Sample.txt opened in read mode, but even.txt and
odd.txt opened in write mode.

Lines 21–27: Read the number from Sample.txt using the function getw() until
EOF, check for even or odd, copy the even numbers to the file even.txt, and copy the
odd numbers to the file odd.txt using putw() function.

Lines 28–29: Close both files even.txt and odd.txt.
Lines 31–39: Open the files in read mode. Read the content of odd.txt and even.txt

and display it on the screen.

378 C Programming

fputc(CharVarNames, FilePtrName);

Syntax

(a) fputc() syntax

fgetc(FilePtrName);

Syntax

(a) fgetc() syntax

14.5.3.1 ��������� Writing and Reading a Character Using fputc() and fgetc()

Write a program to create a file, input a character, and display the character.

PROGRAM 14.4

1.#include<stdio.h>

2.void main()

3.{

4. char ch;

5. FILE *fp;

6. fp=fopen("Charfile.txt","w");

7. printf("Enter a character: ");

8. ch=getchar();

9. fputc(ch,fp);

10. fclose(fp);

11.

12. fp=fopen("charfile.txt","r");

13. ch=fgetc(fp);

14. printf("The file contain=%c",ch);

15. fclose(fp);

16.}

Output:
Enter a character: s
The file contain=s

Explanation:
Line 5: Declare a file pointer.
Line 6: Open a file named Charfile.txt in read mode.
Lines 7–8: Read a character through console using getchar() function and store

it in a character variable ch.
Line 9: Write the character to the file using fputc() function.
Line 10: Close the file.
Line 12: Read the same file in read mode.
Line 13: Read the character from the file using fgetc() function, and assign it to the

variable ch.
Line 14: Print the value of ch onto the screen using printf() function.
Line 15: Close the file.

379File Handling

14.5.3.2 ��������� Writing and Reading Multiple Characters Using fputc() and fgetc()

The next program will show you how to write and read multiple characters in a file using
the fputc() and fgetc() functions. As these two functions can only read one character
at a time, so we need a looping construct to read multiple characters.

Write a program to create a file, input some characters, and display the contents of the
file on the screen.

PROGRAM 14.5

1.#include<stdio.h>

2.void main()

3.{

4. char ch;

5. FILE *fp;

6. fp=fopen("Charfile.txt","w");

7. printf("Enter characters and press ctrl+z to stop");

8. while(1) /* 1 represents condition is always true*/

9. {

10. ch=getchar();

11. if(ch==EOF)

12. break;

13. fputc(ch,fp);

14. }

15. fclose(fp);

16.

17. fp=fopen("Charfile.txt","r");

18. printf("\nYour file contains:\n");

19. while (1) /* 1 represents condition is always true*/

20. {

21. ch = fgetc (fp) ;

22. if (ch == EOF) /* HasIs ch reacheds EOF?*/

23. break ;

24. printf ("%c", ch) ;

25. }

26. fclose(fp);

27.}

Output:
Enter characters and press ctrl+z to stop
C Programming Learn to Code
File Handling
Nonstop Writing
Continue typing
Let us see the output^z
Your file contains:

380 C Programming

14.5.3.3 ��������� Count Number of Characters, Lines, Tabs, and Blank Spaces Present in a File

Using the getc() function, we can read the content of a file character by character, and if
we do so, then we can compare each character for blank spaces, next line, tabs, and so on.
Program 14.6 shows the complete code and is self-explanatory.

Write a program to create a file, input some lines of characters, and count the number of
characters, number of lines, number of tabs, and blank spaces present in the file.

C Programming Learn to Code
File Handling
Nonstop Writing
Continue typing
Let us see the output

Explanation:
Lines 7–14: Read the character through the console and write it to file (line 13). The

loop will stop only when the user presses ctrl+z.
Lines 18–25: Read the characters from the file using fgetc() (line 21) until EOF

and write to the screen using printf() function (line 24).

PROGRAM 14.6

1. #include<stdio.h>

2. void main()

3. {

4. char ch;

5. int noc=0,nol=0,not=0,nob=0;

6. FILE *fp;

7. fp=fopen("Charfile.txt","w");

8. printf("Enter a characters and press ctrl+z to stop");

9. while(1)

10. {

11. ch=getchar();

12. if(ch==EOF)

13. break;

14. fputc(ch,fp);

15. }

16. fclose(fp);

17.

18. fp=fopen("Charfile.txt","r");

19. while (1)

20. {

21. ch = fgetc (fp) ;

22. if (ch == EOF)

23. break ;

381File Handling

14.5.4 ��������� The fputs() and fgets() Functions

In the previous section, we learnt how to read/write the numbers and characters in a file. In
this section, we will see how to read/write the strings in a file. C provides two built-in func-
tions for this purpose: fputs() and fgets(). Here also the names are analogous to the
console I/O functions puts() and gets() with an extra f. The syntax of both functions is
very similar to the console I/O function, but takes an extra argument: the name of the file
pointer. The fgets() function extracts the content of the file, and the fputs() function
writes the given information to the file. The syntax of these two functions is given below.

fputc(StringVarNames, FilePtrName);

Syntax

(a) fputs() syntax

fgets(StringVarName, No.ofChar, FilePtrName);

Syntax

(a) fgets() syntax

24. noc++ ;

25. if (ch == ' ')

26. nob++ ;

27. if (ch == '\n')

28. nol++ ;

29. if (ch == '\t')

30. not++ ;

31. }

32. fclose (fp) ;

33. printf ("\nNumber of characters = %d", noc) ;

34. printf ("\nNumber of blanks = %d", nob) ;

35. printf ("\nNumber of tabs = %d", not) ;

36. printf ("\nNumber of lines = %d", nol) ;

37.}

Output:
Enter a character and press ctrl+z to stop
C Programming Language
LEarn to Code
Coding	 is	 fun	 it is ok
Learning id 12345
Learn^z
Number of characters = 84
Number of blanks = 8
Number of tabs = 3
Number of lines = 5

382 C Programming

14.5.4.1 ��������� Writing and Reading a String Using fputs() and fgets()

Write a program to write a string to a file, then read the contents of the file and display it
on the screen.

PROGRAM 14.7 (A)

1.#include<stdio.h>

2.void main()

3.{

4. char str[30];

5. FILE *fp;

6. fp=fopen("Sample.txt","w");

7. printf("Enter a string: ");

8. gets(str);

9. fputs(str,fp);

10. fclose(fp);

11.

12. fp=fopen("Sample.txt","r");

13. printf("The file contains\n");

14. fgets(str,30,fp);

15. puts(str);

16. fclose(fp);

17.}

OR

PROGRAM 14.7 (B)

1.#include<stdio.h>

2.void main()

3.{

4. char str[30];

5. FILE *fp;

6. fp=fopen("Sample.txt","w");

7. fputs("Learn to Code Series C Programming",fp);

8. fclose(fp);

9.

10. fp=fopen("Sample.txt","r");

11. printf("The file contains\n");

12. fgets(str,12,fp);

13. puts(str);

14. fclose(fp);

15.}

383File Handling

We have seen different types of programs for reading/writing numbers, characters, and
strings in a file. In the following section, we will write some programs using file opera-
tions, which are self-explanatory. We encourage students to write this code and run it to see
the output.

14.6 ��������� Other Programming Examples

Write a program to create a file “Source.txt”, input some character to it, copy the content to
another file named “Destination.txt”, and print the content of “Destination .txt”.

Output Program 14.7(a):
Enter a string: C Programming Learn to Code
The file contains
C Programming Learn to Code

Output Program 14.7(b):
The file contains
Learn to Co

Explanation Program 14.7(a):
Line 8: Read a string from the console using gets() function.
Line 9: Write the string stored in str to the file using fputs() function.
Line 14: Read 30 characters from the file using fgets() function and store it in str.
Line 15: Display the content of str using puts() function.
Program 14.7(b) is self-explanatory.

PROGRAM 14.8

#include<stdio.h>

void main()

{

 char ch;

 FILE *fs,*fd;

 fs=fopen("Source.txt","w");

 printf("Enter a characters and press ctrl+z to stop");

 while(1)

 {

 ch=getchar();

 if(ch==EOF)

 break;

 fputc(ch,fs);

 }

 fclose(fs);

 fs=fopen("Source.txt","r");

 fd=fopen("Destination.txt","w");

384 C Programming

Write a program to input a name, roll number, and mark of a student into a file then
display the content of the file.

 while (1)

 {

 ch = fgetc (fs) ;

 if (ch == EOF)

 break ;

 fputc(ch,fd);

 }

 fclose(fs);

 fclose(fd);

 fd=fopen("Destination.txt","r");

 printf("\nYour new file contains:\n");

 while (1)

 {

 ch = fgetc (fd) ;

 if (ch == EOF)

 break ;

 printf("%c",ch);

 }

 fclose(fd);

}

PROGRAM 14.9

#include<stdio.h>

void main()

{

 FILE *fp;

 int roll;

 char name[30];

 float marks;

 fp=fopen("Student.txt","w");

 printf("Enter the nName, rRoll number, and mark of the

student");

 scanf("%s%d%f",name, &roll, &marks);

 fprintf(fp,"%s %d %f",name,roll,marks);

 fclose(fp);

 fp=fopen("Student.txt","r");

 printf("\nthe file contain\n");

385File Handling

Write a program to pass a file to another function and display the content of the file
using a function.

PROGRAM 14.10

#include<stdio.h>

void filefun(FILE *cp)

{

 char ch;

 cp=fopen("Charfile.txt","r");

 printf("\nYour file contains\n");

 while(1)

 {

 ch=fgetc(cp);

 if(ch==EOF)

 break;

 printf("%c",ch);

 }

 fclose(cp);

}

void main()

{

 char ch;

 FILE *fp;

 fp=fopen("Charfile.txt","w");

 printf("Enter a characters and press ctrl+z to stop");

 while(1)

 {

 ch=getchar();

 if(ch==EOF)

 break;

 fputc(ch,fp);

 }

 fclose(fp);

 filefun(fp);

}

 fscanf(fp,"%s%d%f",name, &roll, &marks);

 printf("%s %d %f",name,roll,marks);

 fclose(fp);

}

386 C Programming

14.7 ��������� Review Questions

	 1.	�������� What will be the output of this C program?
 #include<stdio.h>

 int main()

 {

 int EOF = 0;

 printf("%d", EOF);

 return 0;

 }

	 2.	�������� What will be the output of this C program?
 #include<stdio.h>

 int main()

 {

 printf("%d", EOF);

 return 0;

 }

	 3.	�������� What will be the output of this C program?
 #include<stdio.h>

 int main()

 {

 EOF++;

 printf("%d", EOF);

 return 0;

 }

	 4.	�������� What will be the output of this C program?
 int main()

 {

 unsigned char chr;

 FILE *fp;

 fp = fopen("data1.txt", "r");

 while ((chr = fgetc(fp)) != EOF)

 {

 	 printf("%c", ch);

 }

 printf(" C Code");

 fclose(fp);

 return 0;

 }

	 5.	�������� What will be the output of this C program?
 #include<stdio.h>

 int main()

387File Handling

 {

 char ch;

 FILE *fptr1, *fptr2;

 fp = fopen("data1.txt", "w");

 fp = fopen("data2.txt", "w");

 printf("File Handling Practice");

 fclose(*fptr1, *fptr2);

 return 0;

 }

	 6.	�������� Define a file and its uses in C?
	 7.	�������� Write a program in C to read the names and marks of N number of grocery items and

store them in a file.
	 8.	�������� Write a program in C to read an existing file.
	 9.	�������� Write a program in C to write multiple lines in a text file.
	10.	�������� Write a program in C to create and store information in a text file.
	11.	�������� Write a program in C to read a file and store the lines into an array.
	12.	�������� Write C code to keep records and perform analysis for a class of 20 students. The infor-

mation on each student contains a roll number, name, sex, test scores (two tests per
semester), mid-term score, final score, and total score. The program will prompt the
user to choose an operation on the records from a menu as shown below:
(a)	 Add student records;
(b)	 Display all student records;
(c)	 Display an average of a selected student’s scores;
(d)	 Display the highest and lowest scores;
(e)	 Search students’ records by roll number.

	13.	�������� Write a program in C to find the number of lines in a text file.
	14.	�������� Write a program in C to delete a specific line from a file.
	15.	�������� Write a program in C to replace a specific line with other text in a file.
	16.	�������� Write a program in C to count the number of words and characters in a file.
	17.	�������� Write a program in C to append multiple lines at the end of a text file.
	18.	�������� Write C code to read the name and marks of N number of students from the user and

store them in a file. If the file exists, add the information to the file or create it.
	19.	�������� Write a C program to write all the members of an array of structures to a file using

fwrite().
	20.	�������� Read an array from a file and display it on the screen.

https://taylorandfrancis.com

389DOI: 10.1201/9781003188254-15

15
The Preprocessor

15.1 ���������������� Introduction

As the name suggests, this is something that needs to be processed before the actual pro-
cessing is carried out. In the C language, preprocessing is nothing other than executing
some special statements before actual compilation. These special statements are included
inside a directive called a preprocessor directive. I want to show you where exactly the
preprocessor directives lie if the general structure of a C program is taken into consider-
ation (see Figure 15.1). Before the actual compilation process, the preprocessor does its
work. There are several commands available to control the activity of a preprocessor.
Preprocessors generally remove the comment lines from the program and replace the
macro-definitions wherever necessary. After writing the code, the preprocessor does the
preprocessing, and the file name with a .i extension will be generated before the actual
compilation process.

The C language provides several preprocessor directives. In this chapter, we will discuss
the frequently used preprocessor directives. After completing this chapter, the student
will:

	•	 Be able to know what a preprocessor is and why it is required;
	•	 Be able to declare, define, and learn to code using preprocessor directives;
	•	 Learn about the macro and the way it is used inside a program.

15.2 ���������������� Preprocessor Directives

Everything that starts with a # symbol is known as a preprocessor directive, such as
#include. Several other preprocessor directives are also present in C, and the objective of
this chapter is to introduce those.

Here is a list of preprocessor directives:

#include #define #line #endif

#ifdef

#elif #error #pragma

#else

#if

#undef #ifndef

390 C Programming

The preprocessor statements do not end with a semicolon; rather, they extend over a
whole line. That means you cannot write two preprocessors in a single line. The following
statement shows an error:

#include<stdio.h> #include<conio.h>X Error

Like other variables and functions, the preprocessor directive must appear before it is
used inside the program. Generally, preprocessor directives are written at the beginning of
the program, but it is not mandatory. Most of the preprocessor directives mentioned in the
list are not used frequently. We will discuss the frequently used directives only. We catego-
rize the above directives into four groups:

	 1.	Macro: This is used to assign a symbolic name to a constant. It can also be used for
defining macro-definitions. We use a #define preprocessor to write a macro.

	 2.	Include file: We use a #include preprocessor to do this task, which includes the content
of a file following the preprocessor directive. We have already used this in all our
programs when using the statement #include<stdio.h>.

	 3.	Conditional preprocessors: Several conditional preprocessor directives are available,
such as #if, #else, #endif, #elif, #ifndef, and #ifdef. They are used for assigning condi-
tions, whether to execute a line of code or not.

	 4.	Other directives: This includes preprocessors like #line, #pragma, and #error. The over-
all definition of these directives is shown in Table 15.1.

15.3 ���������������� Macro-substitutions

As per the discussion in Section 15.2, we use the #define preprocessor directive to define a
macro. First, let us understand what a macro is? A macro, as the name suggests, is one line
of code used for substituting a macro-name with a macro-body. In other words, we can say
it is a process of assigning a symbolic name to a program constant.

Wri�ng C
code using
any editor

Name.c

A source
file with .c
extension

Preprocessor
Direc�ve Compiler

Name.i

A source
file with .i
extension

FIGURE 15.1
The position of a preprocessor directive.

391The Preprocessor

A macro, as the name suggests, is one line of code used for substituting a macro-
name with a macro-body.

Assume that you are using a constant value at several places in a big program. Later,
due to a change in the problem statement, your solution demands a change to the constant
value. Now, it isn’t very easy to change that value that appears in several places. We need
time and effort to update the change. This kind of problem is quite easy to solve using a
macro. Let us take a program to explain it in more detail. Before proceeding to the pro-
gram, let us learn how to write a macro. The syntax for writing a macro takes the following
form (Figure 15.2).

TABLE 15.1

List of Preprocessor Directives and Their Actions

Serial No. Name Action

1 #define Defines a macro-substitution

2 #undef Undefines a macro-substitution

3 #include Includes the source code of a file

4 #if Used to test a constant expression

5 #else Alternative source text when #if fails

6 #endif Ends conditional statement

7 #elif Alternative source text when #if fails

8 #ifndef Checks for the existence of a macro-definition

9 #ifdef If a macro is defined, then includes the source text

10 #line Numbers the source text

11 #pragma An implementation-oriented directive which provides various
instructions

12 #error Produces an error during debugging

#define macroName macroBody

Syntax
No

Semicolon
Here

!

Preprocessor
Direc�ve

macroName will
appear inside the

program code

macroBody replaces the
macroName before

compila�on

FIGURE 15.2
Syntax for writing a macro.

392 C Programming

Consider the program shown in Figure 15.3. We declare a macro, #define size 5, where
size represents the macroName, and 5 represents the macroBody. The program is quite
simple; it declares an array, stores some numbers in it by reading the numbers from the
console, and finally display those numbers. If you observe the program, the variable size is
declared at four locations in the program. Due to the concept of macro-substitution dis-
cussed above, all these four locations will be replaced by the value 5. Here you can see
another important fact: that we have declared an array with a variable size (int A[size];),
which is generally not allowed. As per the discussion in Chapter 9, we must provide an
integer to represent the array size, though here we are using a variable, and the compiler
does not complain because the variable size will be replaced with 5 before compilation.
That is the beauty of macro-substitution.

15.3.1 ���������������� Writing Macros with Arguments

It is possible to write a macro-substitution by providing arguments. The syntax is slightly
different from the previous one. We need to provide the arguments within a bracket fol-
lowed by the macroName. Wherever the macroName with an argument list appears inside
the program, it is replaced with the macroBody. Figure 15.4 shows the syntax of declaring
a macro-substitution with arguments.

Consider the following program shown in Figure 15.5. Here, we show the simplest
macro to find the square of a number. Here Square(a) represents the macroName, and a*a
represents the macroBody. As per the rule of macro-substitution, macroBody will be
replaced with macroName throughout the program. In the program, macroName appears
once and is replaced with x*x. The corresponding output is shown.

Let us consider some more programs using macros. The first program swaps two num-
bers (Figure 15.6) and the second program finds the bigger of two numbers (Figure 15.7).

15.3.2 ���������������� Removing a Macro

To remove a macro, we use the #undef preprocessor. The process is simple; we need to
specify the macro name following the #undef preprocessor. The general syntax and an
example are shown in Figure 15.8.

15.4 ���������������� The #include Preprocessor

If you want to include a file that contains several functions and macros in your program,
then you can do it with #include preprocessor directives. There are two ways to specify the
file name that you want to include in your program. The general form of these two kinds
is shown in Figure 15.9. The file name can either be specified within angle brackets or
within double quotes, as shown in Figure 15.9a and 15.9b, respectively. After specifying the
file name, the preprocessor inserts the code present inside the file into the current
program.

We have already used this preprocessor directive concept in all our programs by writing
#include<stdio.h> as the first line of every program, where stdio.h is the file name; it con-
tains the definition of several library functions used in our programs.

393The Preprocessor

Following this, we can create our own header file with several user-defined functions.
To use the header file in our program, we can use the #include preprocessor. We must save
the newly created header file (user-define header file) in the current directory where the
program will be stored.

The angle bracket tells the preprocessor to search for the header file somewhere other
than in the current directory. The double quotes tells the preprocessor to search in the cur-
rent directory. In general, the header files are stored inside a subdirectory called include.

#include <stdio.h>
#define size 5
int main()
{

int A[size], i;
printf("Enter %d numbers:\n ", size);
for(i=0;i<size;i++)
{

scanf("%d", &A[i]);
}
printf("\nThe array contains:\n");
for(i=0;i<size;i++)
{

printf("%d ", A[i]);
}
return 0;

}

Size represents macroName
and 5 represents macroBody

#include <stdio.h>
#define size 5
int main()
{

int A[5], i;
printf("Enter %d numbers:\n ", 5);
for(i=0;i<5;i++)
{

scanf("%d", &A[i]);
}
printf("\nThe array contains:\n");
for(i=0;i<5;i++)
{

printf("%d ", A[i]);
}
return 0;

}

Size represents macroName
and 5 represents macroBody

Before Compila�on

Output:
Enter 5 numbers:
12 32 22 66 21
The array contains:
12 32 22 66 21

Size is declared in four places
in this program. Due to the

macro-substitution, all instances
of size will be replaced with
value 5 before the program

compiles.

macroBody replaces the
macroName before

compila�on

FIGURE 15.3
Program showing the concept of macro-substitution.

394 C Programming

#define macroName(Argument List) macroBody

Syntax

No
Semicolon

Here

!

Preprocessor
Direc�ve

macroName with
arguments will

appear inside the
program code

macroBody replaces the
macroName before

compila�on

No Space
Here

!

FIGURE 15.4
Syntax of a macro-substitution with arguments.

#include <stdio.h>

#define Square(a) a*a;

int main()
{

int x, z;
printf("Enter a number: ");
scanf("%d", &x);

z = Square(x);

printf("Square=%d", z);
return 0;

}

Program

Output:
Enter a number: 13
Square=169

macroName

macroBody

Replaced with
x*x

FIGURE 15.5
Program showing a macro with arguments.

#include <stdio.h>
#define Swap(a,b) a=a+b; b=a-b; a=a-b;
int main()
{

int a, b;
printf("Enter two numbers: ");
scanf("%d%d", &a, &b);
printf("\nBefore Swapping\n");
printf("a=%d b=%d", a, b);
Swap(a,b);
printf("\nAfter Swapping\n");
printf("a=%d b=%d", a, b);
return 0;

}

Enter two numbers: 25 46
Before Swapping
a=25 b=46
A�er Swapping
a=46 b=25

Program

FIGURE 15.6
Macro for swapping two numbers.

395The Preprocessor

15.5 ���������������� Conditional Preprocessors

We use conditional preprocessors to compile a certain portion of the entire program which
is referred to as conditional compilation. This is useful when we want to test some portion
of the program. We can tell the compiler to skip some parts when certain conditions are
met.

15.5.1 ���������������� The #ifdef and #endif Preprocessor Directives

These two preprocessor directives help us to write some program statements, and the exe-
cution of those program statements depends on the presence of certain macro-definitions.
The general syntax is shown in Figure 15.10.

Consider the program shown in Figure 15.11. We focus on line 6 (Figure 15.11a), and
whether to include it or not. That’s why we put that statement inside #ifdef and #endif. The
macro-name Sample has already been defined above the main() function. Hence, line 6
gets executed, and the output is shown in the figure.

Now, consider Figure 15.11b, where we define the macro Sample in a comment line.
Hence, the program does not show any output.

#include <stdio.h>
#define Big(a,b) a>b?a:b;
int main()
{

int a, b, c;
printf("Enter two numbers: ");
scanf("%d%d", &a, &b);
c=Big(a,b);
printf("\nBigger Number= %d", c);
return 0;

}

Output
Enter two numbers: 25 87
Bigger Number= 87

Program

FIGURE 15.7
Macro to find the bigger of two numbers.

#undef macroName #undef Square(a)

Syntax Example

(a) (b)

FIGURE 15.8
Syntax and example of the undef preprocessor.

396 C Programming

15.5.2 ���������������� The #ifndef and #endif Directives

#ifndef means "if not defined" and it works in the opposite way to #ifdef. In this case, if the
macro-name is not defined, then the statement is included in the program, otherwise it is
not included. The syntax is exactly the same; only replace #ifdef with #ifndef. The syntax
and one example is shown in Figure 15.12 and is self-explanatory.

15.5.3 ���������������� The #if and #endif Directives

The statements included between these two directives will be included in the program
only if an expression is evaluated as true. The general syntax of using these directives is
shown in Figure 15.13.

If we want to choose some alternative statement when #if fails, then we can use the #else
directive. The modified general form is shown in Figure 15.14.

An alternative to this form exists that includes the #elif directive. The general form is
shown in Figure 15.15.

15.6 ���������������� Other Preprocessor Directives

The other preprocessor directives include the following:

	 1.	#line
	 2.	#error
	 3.	#pragma

#include<filename> #include "filename"

Syntax Syntax

(a) (b)

OR

FIGURE 15.9
Syntax of the #include preprocessor.

#ifdef macroName
Statement1;
Statement2;
.
.
.
StatementN;

#endif

Syntax

If the macroName is
defined previously then

only the statements from 1
to N are included in the

program else it is skipped.

FIGURE 15.10
Syntax of #ifdef and #endif.

397The Preprocessor

15.6.1 ���������������� #line Directives

The #line directive is used to change or update the content of the predefined macro _LINE_.
LINE contains the line number of the currently compiled line. The general form of this
directive is as shown below:

#line LineNumber[“File”]

Syntax

Posi�ve
Number

Op�onal
File

Name

1. #include<stdio.h>
2. #define Sample 1
3. int main()
4. {
5. #ifdef Sample
6. printf("C Programming Learn to Code");
7. #endif
8. return 0;
9. }

Program

macroName

The macro has a
defini�on

1

2 Hence the line
number 6 will be
included in the

program
3

Output
C Programming Learn to
Code

1. #include<stdio.h>
2. /*#define Sample 1*/
3. int main()
4. {
5. #ifdef Sample
6. printf("C Programming Learn to Code");
7. #endif
8. return 0;
9. }

Program

macroName

We make it a
comment line that

means it is not
defined

1

2 Hence the line
number 6 will not be

included in the
program

3

No Output
(Blank Screen)

(b)

(a)

FIGURE 15.11
Programming Example showing the use of #ifdef and #endif.

398 C Programming

15.6.2 ���������������� #error Directives

This forces the compiler to stop compilation and is used for debugging. The general syntax
of declaring the #error directive is shown below:

#error ErrorMessage

Syntax

#ifndef macroName
Statement1;
Statement2;
.
.
.
StatementN;

#endif

Syntax

If the macroName is NOT
defined previously then

only the statements from 1
to N are included in the

program else it is skipped.

1. #include<stdio.h>
2. #define Sample 1
3. int main()
4. {
5. #ifndef Sample
6. printf("C Programming Learn to Code");
7. #endif
8. return 0;
9. }

Program

macroName

The macro has a
defini�on

1

2 Hence the line
number 6 will NOT be

included in the
program

3

1. #include<stdio.h>
2. /*#define Sample 1*/
3. int main()
4. {
5. #ifdef Sample
6. printf("C Programming Learn to Code");
7. #endif
8. return 0;
9. }

Program

macroName

We make it a
comment line that

means it is not
defined

1

2 Hence the line
number 6 will be
included in the

program
3

Output
C Programming Learn to
Code

(c)

(b)

No Output
(Blank Screen)

(a)

FIGURE 15.12
Syntax and example of #ifndef directive.

399The Preprocessor

When the compiler encounters the #error statement, it stops compilation and displays
an error of the following form:

Fatal: File Name Line Error Directive: ErrorMessage
The ErrorMessage is the message specified in the syntax.

#if expression
Statement1;
Statement2;
.
.
.
StatementN;

#endif

Syntax

If the expression
evaluates to true then only
the statements from 1 to N
are included in the program

else it is skipped.

FIGURE 15.13
Syntax of the #if directive.

#if expression
Statement1;
Statement2;
. . .
StatementN;

#else
Statement1;
Statement2;
. . .
StatementN;

#endif

Syntax

T

F

True

False
If the expression is evaluated
to FALSE, these statements
get included in the program

If the expression is evaluated
to TRUE, these statements
get included in the program

FIGURE 15.14
Syntax of #if including the #else directive.

#if expression1
Statement1;
#elif expression2

Statement2;
#elif expression3

Statement3
. . .

#endif

Syntax

FIGURE 15.15
Syntax of #if including the #elif directive.

400 C Programming

15.6.3 ���������������� #pragma Directives

As mentioned earlier, #pragma is an implementation-dependent directive. Its usage varies
from compiler to compiler. Here we are talking about a Turbo C compiler. We use #pragma
to pass special messages to the Turbo C compiler. It takes the following general form:

#pragma <directiveName>

Syntax

We can pass a predefined directive supported by Turbo C as a message. If we pass any-
thing other than the supported directive name, the compiler does not show any error, but
it ignores it. There are two types of header files supported: inline and warn. The details of
how they are used are left to the reader to discover.

15.7 ���������������� Review Questions

	 1.	��������������� What is the output of the following programs.
(a)	#include<stdio.h>

#define set(a) a+a

int main()

{

int b;

b=set(4)*set(5);

printf("%d", b);

return 0;

}

(b)	#include<stdio.h>

#define set(a) a+a*a

int main()

{

int b;

b=set(4)*set(5);

printf("%d", b);

return 0;

}

(c)	#include<stdio.h>

#define set(a) a++

int main()

{

int b=6;

b=set(b)+set(b);

401The Preprocessor

printf("%d", b);

return 0;

}

(d)	#include<stdio.h>

int main()

{

#if 1

printf("C Programming");

#else

printf("Learn to Code");

#endif

return 0;

}

(e)	#include<stdio.h>

int main()

{

#if 0

printf("C Programming");

#else

printf("Learn to Code");

#endif

return 0;

}

(f)	#include<stdio.h>

#define a 0

int main()

{

#if a+a

printf("C Programming");

#else

printf("Learn to Code");

#endif

return 0;

}

(g)	#include<stdio.h>

#define sum(a,b) a=a+b; b=a+b; b=a+b;

int main()

{

int c=5, d=6;

sum(c,d);

printf("%d\n%d", c, d);

return 0;

}

402 C Programming

(h)	#include<stdio.h>

#define sum(a,b) a++; b++;

int main()

{

int c=5, d=6;

sum(c,d);

printf("%d\n%d", c, d);

return 0;

}

(i)	#include<stdio.h>

#define sum(a,b) a++ + b--;

int main()

{

int c=5, d=6;

sum(c,d);

printf("%d\n%d", c, d);

return 0;

}

	 2.	��������������� What is the difference between the compiler and the preprocessor and how are they
related to each other?

	 3.	��������������� What are preprocessor directives and why do we require a preprocessor directive?
	 4.	��������������� How can we remove a macro-name from the program?
	 5.	��������������� Describe the process of writing macro-substitutions with an appropriate example.
	 6.	��������������� What is the difference between a macro and a function?
	 7.	��������������� What are the advantages and disadvantages of using a macro in our program code?
	 8.	��������������� What is the difference between #ifdef and #ifndef preprocessor directives. Explain

with examples.
	 9.	��������������� Describe the syntaxes of the #if, #elif, #else, and #endif preprocessor directives.
	10.	��������������� What is the use of the #include preprocessor directive and how can we use it in our

program code?
	11.	��������������� Can we skip some lines of code and leave them unexecuted? If yes, then how?
	12.	��������������� Write a macro-substitution to find the biggest among three numbers.
	13.	��������������� Write macro-substitutions for addition, subtraction, multiplication, and division. Read

two numbers and an operator (+, –, *, or /) from the user. Perform the operation
depending upon the operator provided by the user.

	14.	��������������� Write a macro-substitution to find the cube of a number.
	15	��������������� Write the syntax of the #line, #error, and #pragma preprocessor directives and explain

why they are used.

403DOI: 10.1201/9781003188254-16

16
Command Line Arguments

16.1 ��������� Introduction

As the name suggests, the command line argument means passing arguments (inputs)
through the command line. Should we wonder what a command line is? It is the command
prompt window we are talking about. The Windows user can find the command prompt
window by pressing the +R button. A popup window will appear; type “cmd” and press
the Enter key. You will see a black window on your screen which is called the command
prompt. Figure 16.1 shows how to open a command prompt on the Windows operating
system.

Now, why are we talking about this? Because we want to show you how to run a pro-
gram using command prompts. In general, we are using a GUI (Graphical User Interface)
editor to write, compile, and execute our C code. There are several GUI editors available
for it. For instance, CodeBlocks, Turbo C++ Editor, Dev C++ Editor, Visual C++ Editor, and
many more. What do these editors do? They provide us with an IDE (Integrated
Development Environment), where we type our code; specialized buttons are given to
compile and run our code with a mouse click only. We all use it because the process is easy
to follow, and it fulfills our objectives. It also has another benefit: rather than thinking
about how to run our code, we can concentrate more on program logic. But, as you are a
programmer, you should know how exactly the editors compile and run your code. So, let
us begin.

We need two different things to execute a C program code: a compiler and an editor. We
know that a compiler is software that compiles our program and converts it into a form
that is easy to understand by the machine. The machine executes the code and returns the
output. But, where to write the code? We need an editor like notepad. Unfortunately, the

+ R

Type the name of a program, folder, document, or
Internet resource, and Windows will open it for you.

Open:

OK Cancel Browse

Run

Press

Type
“cmd” and
press OK
bu�on

cmd

Microsoft Windows [Version10.0.17763.973]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Sisir>

C:\Windows\system32\cmd.exeC:_

Command Prompt

FIGURE 16.1
How to open the command prompt in Windows.

404 C Programming

notepad does not provide the facility to run your program. That’s why the IDE developers
produced several IDEs that combine the features of the editor and the compiler. We have
mentioned several IDEs of this kind above. Let us discuss how the execution of a program
is carried out using such IDEs.

16.1.1 ��������� The Code::Block IDE

Figure 16.2 shows a screenshot of the code block 17.12 IDE. You can see there are special-
ized buttons given for compile and run, and it also has an area for writing code, an error
display area, and so on. The steps of writing and execution of the code are simple. First, we
write the code in the code writing area and press the compile button using the mouse. The
errors (if any) will be shown in the error showing area. If the program does not show any
error, then the compilation process is successful. Now you can click on the run button to
run your code. After you run your code, a separate output window (shown in Figure 16.2)
will appear where you can provide the input (if your program demands it) and view the
output.

Three files get created during the entire process of execution. The first file contains our
code with a .c extension that we save after writing the code. The second file will be created
after we compile the code, which is saved with a .obj (object file) extension. The third file is
the .exe file that we can directly execute. You can view the files by going to the location
where you saved your .c file.

It is quite easy to use an IDE, but when you install it you need to include two things
simultaneously: the editor and the compiler. In general, the package you download from
the internet contains both. Sometimes we can install them separately and link them after.

This chapter does not demand any discussion of IDEs, but for the sake of completeness,
we mention it here. Our main concern is how to execute our program through the com-
mand prompt. To do this we don’t require any specialized editor; a notepad will do. We
only need a compiler that compiles the code. To pass the argument using the command

Compile Run

Compile and
Run at one click

Code wri�ng area

An example
Code

Error showing
area

Output
Window

FIGURE 16.2
Code block IDE.

405Command Line Arguments

line, it is mandatory to understand this process of program execution. After finishing this
chapter, the student will know the following:

	•	 How to execute programs without using any specialized GUI editors.
	•	 What a command line argument is, and how to use them.
	•	 How to pass parameters through the command line.
	•	 Learn about argc and argv.

16.2 ��������� Execute a Program Using a Command Prompt

We will proceed step by step. First, we install a compiler, write a program using any editor,
for instance, notepad, and finally execute the program using a command prompt. There
are several compilers available to compile C code. Listed below are the most popular ones:

	 1.	Turbo C Compiler: The most widely used compiler runs on the Windows operating
system.

	 2.	The gcc compiler: This is also one of the most popular compilers and runs on Linux/
Unix systems. The Windows version of this compiler is also available with the name
minGW and Cygwin.

For our purpose, we will show you the steps to install the minGW compiler on the Windows
operating system.

16.2.1 ��������� Installing the minGW Compiler

The first step is to download the minGW setup file from the internet. The screenshots of
each step of the installation procedure is shown in Figure 16.3. Follow the below steps to
install it on your computer.

	 1.	After downloading, double click on the mingw setup file and the ➀ first window will
appear.

	 2.	Click on the install button of ➀ the first window.
	 3.	Choose your installation directory and the other options available to you in the next

window marked as ➁. Click on continue.
	 4.	The ➂ next window will appear that downloads the required files from the internet.

An active internet connection is required during this process.
	 5.	After the download completes, click on continue.
	 6.	The next ➃ window will appear: the minGW installation manager. On that window,

mark the installation by choosing the appropriate compiler shown in the list.
	 7.	For our case, we choose minGW-gcc-g++-bin. Click on the installation menu shown

in the window ➃ and click on the update catalog.
	 8.	Finally, the installer will install the required package to your selected directory.

406 C Programming

	 9.	After finishing the installation, click Alt+f4 to quit the installation manager. Now
your system is installed with the mnGW compiler.

After the installation process is over, we need to set the Environment Variable, by specify-
ing the path of the minGW installation folder. Setting the Environment variable is quite
simple. Follow the steps given below to set it. Refer to Figure 16.4 for the following
description.

1

2

3

44

FIGURE 16.3
minGW installation steps.

407Command Line Arguments

	 1.	Right-click on This PC and click on Properties; a popup window will appear as shown
in Figure 16.4 ➀.

	 2.	Click on Advanced system settings ⇨ A new popup window will appear named as ➁
System properties window ⇨ Click on Environment Variable.

	 3.	The ➂ Environment Variable popup will appear. In the System Variables section, select
path and click on the edit button.

	 4.	Another pop-up window will appear named as Edit environment variable. Paste the
path “C:\MinGW\bin” and click on the OK button.

16.2.2 ��������� Compiling and Executing a Program

The process of executing a program is as follows:

	 1.	Write a program using any editor. For our case, we use notepad. Save the program at
any location of your choice. For example, I wrote a program with the name testing.c
and saved it in a folder named CProgram inside the D drive. My complete file path
will look like: D:\Program\testing.c. Let us write a program to print a line of text as
shown below.

Paste the path here
and press OK

1

2
3

4

FIGURE 16.4
Setting environment variables.

408 C Programming

	 2.	Open the command prompt, as shown in Figure 16.1. Go to the directory where your
.c file is saved. Now the question is: how to go to that directive? We need to know
some simple commands to do that.

		 Example:
		 Let the complete path of your program be D:\CProgram\testing.c
		 When you open the command prompt, you may see the following line (it will be dif-

ferent for different users):
C:\Users\Sisir>

		 But our program is present in D drive, and currently, we are in C drive. To change to
D drive, just type D: and press enter (↲), and you will reach the D drive.
C:\Users\Sisir>D: ↲
D:\>

		 Now you need the cd command to change through directories. cd stands for change
directory. To reach your current folder (where your program is stored), you need to
type cd foldername. In our example, our program is stored in CProgram folder. So,
we will type the following and press enter (↲).
D:\>cd CProgram ↲
D:\CProgram>

		 That’s all! Now you are in your directory where your testing.c file is stored. See the
following command window for the complete line of command.

Microsoft Windows [Version10.0.17763.973]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Sisir>D:
D:\>cd CProgram
D:\CProgram>

C:\Windows\system32\cmd.exeC:_

409Command Line Arguments

	 3.	The next step is to compile the code. To do that we need to type the following
command:
g++ filename.c ↲

		 where filename.c indicates the C program file that you want to compile.
		 Example:

D:\CProgram>g++ testing.c ↲

		 After we compile it, the output file is generated with a default name a.exe. But, if you
want to specify a name for your output file, then you can use the -o command. The
complete example to write the command is shown below:
D:\CProgram>g++ testing.c -o output.exe ↲

	 4.	If your program does not contain any errors, then the .exe file will be generated; oth-
erwise, the above command will show you the errors present in your program.

Microsoft Windows [Version10.0.17763.973]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Sisir>D:
D:\>cd CProgram
D:\CProgram>
D:\CProgram>g++ testing.c -o output.exe
D:\CProgram>

C:\Windows\system32\cmd.exe

	 5.	Finally, to execute the file, we type the output file name and press enter as the follow-
ing. See the command prompt window shown below.
D:\CProgram>output ↲
C Programming Learn to Code

Microsoft Windows [Version10.0.17763.973]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Sisir>D:
D:\>cd CProgram
D:\CProgram>
D:\CProgram>g++ testing.c -o output.exe
D:\CProgram>output
C Programming Learn to Code
D:\CProgram>

C:\Windows\system32\cmd.exeC:_

410 C Programming

16.3 ��������� Fundamentals of the Command Line Argument

In Section 16.1.1, we saw the process of executing a program using an IDE: Code Block. As
we need to click on different buttons (such as compile or run) to execute our program, we
can say the process is quite user-friendly and straightforward. But using this technique of
executing the program does not allow us to provide arguments through the command line.
But the second method that we discussed in Section 16.2 allows us to give arguments
through the command prompt. Why? Because we use commands to execute the program
and hence while writing the command on a command prompt, we can supply the argu-
ment too.

Now the question is, where exactly is the argument given? Figure 16.5 shows the place
where the arguments are supplied. As can be seen, when we want to execute the output file
(output.exe), we can give the argument after typing the output file name (shown as the
dashed line in the figure). The next thing we need to know is what should we supply as an
argument, and after providing it, who will receive it, and finally, what will it do with it?

The argument is actually supplied to the main() function of our program. Until now,
whatever program we have discussed, we have never supplied any argument inside the
main() function. But, the main() function can take arguments. When we supply the
argument at the command prompt, the main() function receives it and starts the process-
ing. In the next section, we will discuss how the main function receives the argument.
Figure 16.6 shows a step-by-step description of how to supply command line arguments to
the main() function.

Microsoft Windows [Version10.0.17763.973]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Sisir>D:
D:\>cd CProgram
D:\CProgram>
D:\CProgram>g++ testing.c -o output.exe

C Programming Learn to Code
D:\CProgram>

C:\Windows\system32\cmd.exeC:_

In this line, we are
compiling tes
ng.c file

and producing the
output file

In this line, we will supply the
argument (represented as a dashed

line)

D:\CProgram>output

FIGURE 16.5
Supplying arguments.

411Command Line Arguments

16.4 ��������� Using Command Line Arguments

Assume that we were supplying some parameters through the command prompt, as dis-
cussed in the previous section. To receive these parameters, the main function must have
some arguments, like other functions. According to the concept of the command line argu-
ment, the main function can take two arguments: (1) argc and (2) argv.

argc: This counts the total number of parameters passed through the command prompt.
Each parameter is treated as a string.

argv: This is a pointer to an array of strings, and it points to the parameters passed in the
command prompt.

Example:
In the command prompt, let’s say you write:
Output 45 68 79 ↲
where, Output is the Output.exe file that helps us in executing the program.
After receiving this parameter, the value of argc is set to 4, because there are four param-

eters passed in the command prompt, i.e., Output, 45, 68, and 79. All these parameters are
treated as strings.

main(argument)

Program Code

tes�ng.c

Command prompt

Code to execute the
program

1
This is our
Program

code

This is our
command

prompt where
we write

commands to
execute the

code.

main(argc, argv)

Program Code

tes�ng.c

Command prompt

Code to execute the
program

Output 45 68 79

2

The arguments
are received by
main using two

special variables,
argc and argv

We will supply
the arguments
along with the

execu�on
command shown

as dashed line

Receives the Argument

main(argc, argv)

Program Code

tes�ng.c

Command prompt

Code to execute the
program

Output 45 68 79

3

Program code
processes the

value according
to the

requirement.

We will supply
the arguments
along with the

execu�on
command shown

as dashed line

Receives the Argument

FIGURE 16.6
Command line argument supply process.

412 C Programming

As mentioned above argv is an array of pointers to strings, and points to the parameters,
as shown in Figure 16.7.

Now, we will not use blank parentheses after declaring the main() function. The
main() function takes the following form.

int main (int argc, char *argv[])
{
. . .
Body of the Program
. . .
}

General Form

No. of
parameter
passed in
command

prompt

Pointer to
each

parameter

Let us write the body of the main() function that receives the value supplied in the
command prompt and print those values.

Figure 16.8 shows a program that reads the argument supplied through the command
prompt and prints the values. The argc argument receives the number of parameters sup-
plied through the command prompt. The argument argv will point to all these parameters
as shown in Figure 16.7.

Let us understand the for loop in our program. The for loop will execute 4 times here
because argc has a value 4. Hence, the printf() statement will execute four times which
prints the parameter to which argv points. The output of the above program will be:

output
45
68
79

Output

2000

3000

4000

5000

argv[0]

argv[1]

argv[2]

argv[3]

Output

45

68

79

2000

3000

4000

5000

argv Strings

FIGURE 16.7
Showing argv as an array of pointers to strings.

413Command Line Arguments

16.5 ��������� Review Questions

	 1.	�������� What will be the output of the program if it is executed from the command line?
 cmd> Myprog Learn to Code

a.	 int main(int argc, char *argv[])

{

printf("%d %s", argc, argv[1]);

return 0;

}

b.	 int main(int argc, char **argv)

{

printf("%c\n", **++argv);

return 0;

}

c.	 int main(int argc, char **argv)

{

printf("%d\n", argc);

return(0);

}

d.	 int main (int argc, char*argv[])

{

 	 printf("%c", *++argv[1]);

}

#include<stdio.h>

int main(int argc, char *argv[])

{

int i;

for(i=0;i<argc;i++)

printf("\n%s",argv[i]);

return 0;

}

Program
This is our
program

code

Microsoft Windows [Version10.0.17763.973]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\Sisir>D:
D:\>cd CProgram
D:\CProgram>
D:\CProgram>g++ testing.c -o output.exe
D:\CProgram>output 45 68 79
C Programming Learn to Code
D:\CProgram>

C:\Windows\system32\cmd.exeC:_

Supplying
the

parameter
here

Total
Number of
parameter

is 4 here

1

2

3

FIGURE 16.8
Execution of a simple command line argument program.

414 C Programming

	 2.	�������� If the following program (Helloprog) is run from the command line as CProg 11 12 13,
what would be the output?
a.	 Int main (int argc, char*argv[])

{

int i;

i = argv[1] + argv [2] + argv [3];

printf("%d", i);

}

b.	 void main (int argc, char*argv[]){int i,j=0;for (i=0; i < argc;

i++)j = j + atoi (argv[i]);printf ("%d",j);}

c.	 #include<stdio.h>

#include<stdlib.h>

int main(int argc, char *argv[])

{

int num1 = atoi(argv[1]);

printf("Number of arguments: %d\n", argc);

printf("The entered number is %d", num1);

}

	 3.	�������� What is the command line used for? What does argv mean in a command line
argument?

	 4.	�������� Write the correct form to declare main with command line arguments.
	 5.	�������� What is the maximum number of arguments that can be given in a command line in

C?
	 6.	�������� What data type is argc?
	 7.	�������� What value does argc take when the program gets invoked?
	 8.	�������� What data type is argv?
	 9.	�������� What data type is argv[0]?
	10.	�������� What gets stored in argv[0]?
	11.	�������� Write C code with the input value 25 to check whether the value is even or odd.
	12.	�������� Write C code to add two numbers by using a command line argument.
	13.	�������� Write C Code to print all the arguments passed during program execution using the

command line.
	14.	�������� Write C Code to find the largest integers among three using a command line

argument.
	15.	�������� Write C code to compute the first n Fibonacci numbers using command line

arguments.
	16.	�������� Write C code to reverse a string entered from command line arguments.
	17.	�������� Write C code to check whether a string is a palindrome using command line

arguments.
	18.	�������� Write C code for swapping numbers using command line arguments.

415

For a programmer, it is quite important to remember some ASCII character code as it helps
in solving several programming problems. Here I present the ASCII character table for
your reference.

ASCII Value Character ASCII Value Character ASCII Value Character ASCII Value Character

0 NUL 32 (blank) 64 @ 96 .

1 SOH 33 ! 65 A 97 a

2 STX 34 “ 66 B 98 b

3 ETX 35 # 67 C 99 c

4 EOT 36 $ 68 D 100 d

5 ENQ 37 % 69 E 101 e

6 ACK 38 & 70 F 102 f

7 BEL 39 ` 71 G 103 g

8 BS 40 (72 H 104 h

9 HT 41) 73 I 104 i

10 LF 42 * 74 J 106 j

11 VT 43 + 75 K 107 k

12 EF 44 , 76 L 108 l

13 CR 45 - 77 M 109 m

14 SO 46 . 78 N 110 n

15 SI 47 / 79 O 111 o

16 DLE 48 0 80 P 112 p

17 DC1 49 1 81 Q 113 q

18 DC2 50 2 82 R 114 r

19 DC3 51 3 83 S 115 s

20 DC4 52 4 84 T 116 t

21 NAK 53 5 84 U 117 u

22 SYN 54 6 86 V 118 v

23 ETB 55 7 87 W 119 w

24 CAN 56 8 88 X 120 x

25 EM 57 9 89 Y 121 y

26 SUB 58 : 90 Z 122 z

Appendix A: ASCII Character Table

416 Appendix A

ASCII Value Character ASCII Value Character ASCII Value Character ASCII Value Character

27 ESC 59 ; 91 [123 {

28 FS 60 < 92 \ 124 |

29 GS 61 = 93] 125 }

30 RS 62 > 94 ^ 126 ~

31 US 63 ? 95 _ 127 DEL

417

B.1 ������ Introduction

This appendix introduces you to how to represent an integer (positive and negative) in a
computer. After reading this appendix the student will able to understand negative num-
ber representation as well as the addition and substation of numbers in two’s complement
representation.

If we want to store nonnegative integers only, then the representation is straightfor-
ward. Say I want to store +5 to +7 in an eight-bit word. We can simply convert it into its
equivalent binary as shown below:

5 → 00000101

6 → 00000110

7 → 00000111

But, when it comes to negative number representation, we cannot convert it directly. We
need some special technique to represent a negative number in a computer.

B.2 ������ Representation Type

There are three ways to represent an integer:

	 1.	Sign-magnitude representation;
	 2.	One’s complement representation;
	 3.	Two’s complement representation.

B.2.1 ������ Sign-magnitude Representation

With this technique, the most significant bit (leftmost bit) acts as a sign bit. When the left-
most bit (sign bit) is “0”, the number is positive, and for “1”, the number is negative. The
remaining bit of the word acts as the magnitude. Figure B.1 shows the representation style.

Figure B.1a shows a four-bit word to represent a number. The leftmost bit b3 is reserved
for the sign bit and the remaining bits i.e., from b0 to b2, is used to represent the number.
With three bits (b0 to b2) we can represent 23 = 8 different numbers from 000 (0 in decimal)
through 111 (7 in decimal). Figure B.1b shows how –5 is represented with this format.

Appendix B: Integer Representation

418 Appendix B

Figure B.1c shows the complete range of numbers that can be represented with four bits
using sign-magnitude representation. The complete range is –7 to +7 with two representa-
tions of 0’s. In general, if an n-bit word is given, then the range will be from −(2n − 1 − 1) to
+(2n − 1 − 1).

Q&A

1.	����� With 16 bits, find the range of numbers that can be represented using sign-magnitude
representation.

Solution

With n bits the range will be: −(2n − 1 − 1) to +(2n − 1 − 1).
With 16 bits the range will be: −(216 − 1 − 1) to +(216 − 1 − 1) = −32767 to + 32767.

2.	����� Represent the +75 in sign-magnitude representation using 16 bits.

Solution

The binary equivalent of 75 is 1001011.
With 16 bits, the representation will look like 0000000001001011 (adding nine 0’s on the

left side).
As it is a positive number, the 16th bit will be 0.
Hence with 16 bits the result will be 0000000001001011.

3.	����� Represent –39 in sign-magnitude representation using 16 bits.

Solution

With 15 bits, the representation will look like 000000000100111 (adding nine 0’s on the left
side).

As it is a negative number, the 16th bit will be 1.
Hence with 16 bits the result will be 1000000000100111.

Sign

Bit

4-bit Word

Magnitude

b0b1b2b3

–

4-bit Word

1011

(a)

(b)

5

0000

1000

0100

1100

0010

1010

0110

1110

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

0001

1001

0101

1101

0011

1011

0111

1111

= –0

= –1

= –2

= –3

= –4

= –5

= –6

= –7

(c)

FIGURE B.1
Sign-magnitude representation.

419Appendix B

B.2.1.1 ������ Demerits of Sign-magnitude Representation

In sign-magnitude form, 0 has two representations:

 +0 = 0000

 −0 = 1000

which is not acceptable. Due to this, sign-magnitude representation is not used in a
computer.

B.2.2 ������ One’s Complement Representation

With this technique also, the most significant bit (leftmost bit) acts as a sign bit. When the
leftmost bit (sign bit) is “0”, the number is positive, and for “1”, the number is negative.
The remaining bit of the word is used to represent the actual number. Figure B.2 shows the
representation style.

Figure B.2a shows a four-bit word to represent a number. The leftmost bit b3 is reserved
for sign bit and the remaining bits i.e., from b0 to b2 are used to represent the number.

	•	 To represent a positive number, we convert it to its equivalent binary number.
	•	 To represent a negative number, we first convert the number to its binary form and

then apply one’s complement (flipping the bits from 1 to 0 and 0 to 1).

Figure B.2b shows the representation of –5. First, we find the binary equivalent of 5, which
is 0101 in four bits. Then we flip the bits (1 to 0 and 0 to 1) to get the resultant bit for –5.
Similarly, Figure B.2c shows the complete range of numbers that can be represented with
four bits using one’s complement representation. The complete range is –7 to +7 with two
representations of 0’s. In general, if an n-bit word is given, then the range will vary from
−(2n − 1 − 1) to +(2n − 1 − 1).

Sign

Bit

4-bit Word

b0b1b2b3

–

0101

(a)

(b)

5

0000

1000

0100

1100

0010

1010

0110

1110

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

0001

1001

0101

1101

0011

1011

0111

1111

= –7

= –6

= –5

= –4

= –3

= –2

= –1

= –0

(c)

1010 = + 5

= –5

1's Complement

FIGURE B.2
One’s complement representation.

420 Appendix B

Q&A

1.	����� With 16 bits, find the range of numbers that can be represented using one’s complement
representation.

Solution

With n bits the range will be: −(2n − 1 − 1) to +(2n − 1 − 1).
With 16 bits the range will be: −(216 − 1 − 1) to +(216 − 1 − 1) = −32767 to + 32767.

2.	����� Represent +75 in one’s complement representation using 16 bits.

Solution

The binary equivalent of 75 is 1001011.
With 16 bits, the representation will look like 0000000001001011 (adding nine 0’s on the

left side).
As it is a positive number, the 16th bit will be 0.
Hence with 16 bits the result will be 0000000001001011.

3.	����� Represent –39 in one’s complement representation using 16 bits.

Solution

The binary equivalent of 39 is 100111.
With 16 bits, the representation will look like 0000000000100111 (adding ten 0’s on the

left side).
As it is a negative number, we will find its one’s complement by flipping the bits. Refer

to Figure B.3.
Hence with 16 bits the result will be 1111111111011000.

B.2.2.1 ������ Demerits of One’s Complement Representation

In one’s complement form, 0 has two representations:

 +0 = 0000

 −0 = 1000

which is not acceptable. Due to this, one’s complement representation is also not used in a
computer.

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 = 39

1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 = –39

1's complement

FIGURE B.3
One’s complement of 39.

421Appendix B

B.2.3 ������ Two’s Complement Representation

With this technique the most significant bit (leftmost bit) acts as a sign bit. When the left-
most bit (sign bit) is “0”, the number is positive, and for “1”, the number is negative. The
remaining bit of the word is used to represent the actual number. Figure B.4 shows the
representation style.

Figure B.4a shows a four-bit word to represent a number. The leftmost bit (b3) is reserved
for the sign bit and the remaining bits i.e., from b0 to b2 are used to represent the number.

	•	 To represent a positive number, we simply convert it to its equivalent binary
number.

	•	 To represent a negative number, we first convert the number to its binary form and
then apply two’s complement.

	•	 To find two’s complement; we add 1 to the one’s complement of that number.

Figure B.4b shows the representation of −5. First, we find the binary equivalent of 5 which
is 0101 in four bits. Then we flip the bits (1 to 0 and 0 to 1) to get the one’s complement, i.e.,
1010. Finally, we add 1 to the one’s complement to get the resultant two’s complement
which is 1011. Hence, −5 is represented as 1011 in two’s complement representation.
Figure B.4c shows the complete range of numbers that can be represented with four bits
using two’s complement representation. The complete range is –8 to +7 with a single rep-
resentation of 0’s. In general, if an n-bit word is given, the range will vary from −(2n − 1) to
+(2n − 1 − 1).

Q&A

1.	����� With 16 bits, find the range of numbers that can be represented using two’s comple-
ment representation.

Sign Bit

4-bit Word

b0b1b2b3

0101

(a)

(b)

0000

1000

0100

1100

0010

1010

0110

1110

= 0

= 1

= 2

= 3

= 4

= 5

= 6

= 7

0001

1001

0101

1101

0011

1011

0111

1111

= –8

= –7

= –6

= –5

= –4

= –3

= –2

= –1

(c)

1010 = + 5

= –5

1's Complement

1+

1101

FIGURE B.4
Two’s complement representation.

422 Appendix B

Solution

With n bits the range will be: −(2n − 1) to +(2n − 1 − 1).
With 16 bits the range will be: −(216 − 1) to +(216 − 1 − 1) = −32768 to + 32767.

2.	����� Represent +75 in two’s complement representation using 16 bits.

Solution

The binary equivalent of 75 is 1001011.
With 16 bits, the representation will look like 0000000001001011 (adding nine 0’s on the

left side).
As it is a positive number, the 16th bit will be 0.
Hence with 16 bits the result will be 0000000001001011.

3.	����� Represent –39 in one’s complement representation using 16 bits.

Solution:

The binary equivalent of 39 is 100111.
With 16 bits, the representation will look like 0000000000100111 (adding ten 0’s on the

left side).
As it is a negative number, we need to find its two’s complement. To find two’s comple-

ment refer to the following steps:

	Step 1:	 Find the ones complement of 0000000000100111.
	Step 2:	 Add 1 to the result obtained from step 1.

Refer to Figure B.5 which shows the above steps graphically.
Hence with 16 bits the result will be 1111111111011001.

0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 = 39

1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0

= –39

1's complement

1

1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1

Add 1

S
te

p
-1

S
te

p
-2 +

FIGURE B.5
Two’s complement of 39.

423

A

\a alert escape sequence, 92
actual argument, 187–188, 276–282
+= addition assignment, 99
addition of two numbers, 47, 90
& address of operator, 89, 134, 260–265, 277–280,

293–294
advantages of C Language, 61
algorithm, 39–45

advantages, 44
basics, 43
characteristics, 42
examples, 44–45

ALU, 5–6
ampersand, 89
AND operator, 99–101
ANSI, 62–63, 65, 70
argc, 411–412
arguments, 182, 187–188, 191–194
argv, 411–413
-arithmetic minus operator, 96
* arithmetic multiplication operator, 96
arithmetic operator, 96

division operator, 96–97
remainder operator, 96–97

+ arithmetic plus operator, 96
array, 117, 126, 213

accessing elements, 217
bound checking, 225
character array, 126, 214, 245
declaration, 215
initialization, 216
memory representation, 217
passing to function, 285
subscript, 217
three dimensional, 242–244
two dimensional, 225

array of pointers, 295, 412
array of structures, 316
-> arrow operator, 112, 312, 323, 336
assembly language, 54
= assignment operator, 43, 85, 98–99, 117
auto, 78, 204–206
automatic variable, 204–206

B

base, 17–18
\b backspace escape sequence, 92
BCPL, 62–63
Bell Lab, 63
binary operator, 95, 97, 109
binary to decimal conversion, 20, 23–26
binary to hexadecimal conversion, 34–35
binary to octal conversion, 30–31
bit, 9, 20–22
bit-fields, 338–339, 342–343
& bit-wise AND, 106
~ bit-wise complement operator, 107
bitwise operator, 96, 105–111

bit-wise AND, 106
bit-wise OR, 106
bit-wise XOR, 106
complement, 107
left shift, 109
right shift, 109

| bit-wise OR, 106
^ bit-wise XOR, 106
B language, 63
block diagram of a computer system, 4–5
bound checking, 225
branching, 141, 143, 173
break, 78, 155–158, 173
byte, 9, 80–82

C

c99, 63, 65, 69–70, 78, 338
called function, 186, 188, 276–277
calling function, 186, 188, 193, 276–277
calloc(), 350, 352–353, 356
case, 78, 155, 157
character constant, 83, 86–87, 155
character sets, 77
command line arguments, 403, 410–411

argc, 411–412
argv, 411–413

comma operator, 112, 117, 169
comment, 43, 65, 67

multi line comment, 65

Index

424 Index

single line comment, 65, 67
compiler, 56–57, 64, 67, 69–73, 78
compound statements, 143–144, 146–147, 154
computer, 1, 4–7

basic organization, 4
central processing unit (CPU), 6
control unit (CU), 6
input device, 5
output device, 7
storage device, 6

?: conditional operator, 95, 103–105
conio.h, 66, 124
console I/O, 123–124, 181, 365–366
const, 78, 269–270
constants, 86–89
continue, 78, 173–174
control statements, 43–44, 142–143

loop, 44, 142, 160–170
selection, 44, 142–158
sequence, 142

control unit, 5–7
conversion, 23–35
CPU, 4–8

D

data segment, 351
data types, 80–83

character, 83
double, 78, 80–81, 83, 89
float, 78, 80–83
integer, 80–82
long long, 82, 89

decimal numbers, 17–20
decision-making, 46, 141
declaration, 84

array, 215, 226, 242, 245
bitfield, 340
enumeration, 343
function prototype, 187
pointer, 261, 272, 295, 298
structure, 307–308
union, 333
of variable, 84

decrement operator, 95, 100–103, 117
default, 78–79, 155
Dennis Ritchie, 62–63
%d format specifier for int, 89
/= divide assignment, 99
/ division operator, 96
dot operator, 112, 312, 319, 336
double, 78, 80–81, 83, 89

do-while loop, 164–167
dynamic memory allocation, 349–361

calloc, 352, 356
free, 352, 360
malloc, 352–353
realloc, 352, 356

E

editor, 64–65, 69–72, 403–404
else, 44, 78, 146–153
enum, 78, 343–345
enumeration, 80, 343–345
EOF, 371
== equality operator, 98
escape sequences, 91–92
executable file, 65, 71–72
executing a C program, 64

compiling, 64
executable file, 65
linking, 65
object file, 65

expressions, 86, 113
extern, 78, 204–205, 207
external variable, 207

F

factorial, 160, 170, 195–197
\f form feed, 92
fibonacci series, 203–204
file handling functions, 369

fgetc(), 377–379
fgets(), 381–382
fprintf(), 371–373
fputc(), 377–379
fputs(), 381–382
fscanf(), 371–373
getw(), 374
putw(), 374

FILE pointer, 369
float, 78, 80–83
flowchart, 45–53

advantages, 45
symbols, 46

for loop, 167–169
formal argument, 187–188
format specifier, 88–89, 134
formatted functions, 128–136

printf(), 128
scanf(), 134

free, 352, 360

425Index

function declaration, 180, 295
function prototype, 187
functions, 179

arguments, 188
called function, 186
calling function, 186
library functions, 182
parameters, 188
prototype, 187
user-defined function, 182–183

G

gcc, 70–72, 82, 405
getch(), 124, 126–127
getchar(), 124
getche(), 124, 126–127
gets(), 124–125
getw(), 374
gigabyte, 9
global variable, 66, 207
goto, 78, 159
> greater than, 98
>= greater than equal to, 98
GUI, 403

H

hardware, 12
hash symbol (#), 389
header file, 65
heap, 350–351
hexadecimal number system, 21
hexadecimal to binary conversion, 33
hexadecimal to decimal conversion, 33
high-level language, 53, 55

I

IDE, 69, 403
identifier, 79
if, 143
if-else, 146
if-else-if ladder, 151
implicit type conversion, 115
include, 65, 392
increment operator, 100
index (subscript), 217
* indirection operator, 262, 270
infinite loop, 162
input device, 5
input/output functions

getch(), 124, 126–127
getchar(), 124
getche(), 124, 126–127
printf(), 128
scanf(), 134

int, 78, 81–82
integer constant, 86
interpreter, 56–57
ISO, 63
iterations, 51–52, 161, 166, 170

K

keywords, 78
kilobyte, 9

L

<< left-shift operator, 106, 109
< less than, 98
<= less than equal to, 98
linked list, 324
linker, 64–65
local variables, 350
&& logical AND, 99–100
! logical NOT, 99–100
logical operator, 95, 99

logical AND, 100–101
logical NOT, 100
logical OR, 100

|| logical OR, 99–100
long, 78, 82, 89
long double, 83, 89, 340
long int, 82, 89, 340
long long, 82, 89
looping, 44, 142, 160–170
low-level language, 53
lvalue, 98–99, 271

M

machine-level language, 54
macro, 268, 390–395

arguments, 392
#define, 391, 393
functions, 394, 395
substitution, 391

magnitude, 417
main, 66
malloc(), 352–353
mantissa, 87
math.h, 316

426 Index

megabyte, 9
memory, 1–2, 4, 6–7

primary, 7–8
secondary, 7, 10

minGW, 70, 72, 82, 405
modular programming, 181, 185
modules operator, 96, 117
multidimensional array, 214
/*…*/ multiline comment, 65
*= multiply assignment, 99

N

nested conditional operator, 105
nested for loop, 231
nested if-else, 150
new line character (\n), 91–92
\n new line, 92
!= not equal to, 98
NOT operator, 100
NULL, 245–246, 249, 251, 268
null pointer, 268
number systems, 17

binary, 20
decimal, 18
hexadecimal, 21
octal, 22

O

%o, 89
object code, 55–56
octal number system, 22
octal to binary conversion, 29
octal to decimal conversion, 29
one-dimensional array, 214–225

characteristics, 218
declaration, 215
examples, 221
initialization, 216

one’s complement, 106–107, 417, 419
open a file, 367–368, 370
operand, 54, 95
operating system, 12
operator, 95–113

arithmetic, 96
assignment, 98
bit-wise, 105
conditional, 103
increment and decrement, 100
logical, 99
precedence, 117
relational, 97

special, 112
ternary, 103

++ operator, 100–101
--operator, 100–101
OR operator, 100
output unit, 7

P

palindrome, 164–165, 171, 251
parameters, 182–183, 188
pass by reference, 277, 294
pass by value, 276, 280
passing argument to a function, 188, 191–194
passing array to function, 285
pointer, 259

arithmetic, 272
constant pointer, 268
declaration, 261
definition, 261
null pointer, 268
pass by reference, 277
pointer and array, 282
void pointer, 266

pointer and array, 282
pointer to function, 297
pointer to pointer, 265
postfix, 101–103
pre-defined function, 182
prefix operator, 101
preprocessor, 65, 68, 389

directive, 389
primary memory, 7–8
prime number, 188–190
printf(), 128
problem-solving, 39–40
\’ produce a single quote, 92
\” produce a double quote, 92
\0 produce a null character, 92
\? produce a question mark, 92
\\ produce a single backslash, 92
program, 3, 53
programming, 53

language, 53
putchar(), 124–125
puts(), 125
putw(), 374

R

RAM, 9–10
\r carriage return, 92
reading from file, 372, 374–375

427Index

real constant, 87
realloc(), 352, 356
recursion, 195
registers, 7–8
register variables, 206
relational operator, 97
%= remainder assignment, 99
% remainder operator, 51, 96
return type, 83, 183, 187–188, 191–194
>> right-shift operator, 106, 109
ROM, 9–10
rvalue, 98–99

S

scanf(), 134
scientific notation (exponential form), 87
search an element in an array, 222
secondary memory, 7, 10
self-referential structure, 324
semicolon, 66, 69, 88
signed magnitude, 417
// single line comment, 65
sizeof(), 78, 112–113, 117, 310, 337
software, 12
special character, 77
stack segment, 351
static memory allocation, 351
static variable, 207, 351
storage class, 204

automatic, 205
extern, 207
register, 206
static, 206

storage devices, 2, 10
HDD, 10
SSD, 11

string, 245–255
compare, 254
concatenation, 253
copy, 253
declaration, 245
display, 247
functions, 252
initialization, 245
length, 249
palindrome, 251
reading, 246–247
reverse, 250
strcat(), 253
strcmp(), 253
strlen(), 249
strlwr(), 253

strncmp(), 253
strncpy(), 253
strrev(), 250, 253

structure, 305
subscript, 217
subscripted variable, 217, 224
-=subtract assignment, 99
switch, 155
system software, 13

T

terabyte, 9
ternary operator, 103
text file, 367
text segments, 351
\t horizontal tab, 92
tokens, 77
two-dimensional array, 225–242

declaration, 226
initialization, 228
matrix addition, 238
matrix multiplication, 240
memory representation, 226
passing 2D array to function, 291

two’s complement, 107, 421
type casting, 115–116

explicit, 116
implicit, 115

typedef, 308, 321–322
type modifiers, 82–83, 89

long, 82, 89
short, 82, 89
signed, 82, 89
unsigned, 82, 89

U

unary operator, 95, 100, 107
underscore, 79
unformatted functions, 124–128

getch(), 124, 126–127
getchar(), 124
getche(), 124, 126–127
gets(), 124–125
putch(), 124, 127
putchar(), 124
puts(), 124–125

union, 78, 80, 333
unsigned keyword, 78, 82–83, 89
user-defined function, 67, 182

428 Index

V

value at address operator, 262, 270–272, 283
variables, 79, 84
void keyword, 68, 78, 80–81, 83
void pointer, 266
volatile memory, 8, 10
\v vertical tab, 92

W

while loop, 161
writing to a file, 371

X

%X, 89
xor operator (^), 106, 117

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Table of Contents
	Preface
	Acknowledgments
	Organization of this Book
	Author Biography
	Chapter 1: Introduction to the Computer
	1.1 Introduction
	1.2 Definition and Characteristics of a Computer System
	1.3 History of the Computer
	1.4 Basic Computer Organization
	1.4.1 Input Devices
	1.4.2 Memory
	1.4.3 Central Processing Unit
	1.4.4 Output Devices

	1.5 Computer Memory
	1.5.1 Registers
	1.5.2 Cache Memory
	1.5.3 Primary Memory
	1.5.4 Random Access Memory
	1.5.5 Read Only Memory
	1.5.6 Secondary Memory
	1.5.7 Hard Disk Drive
	1.5.8 Solid State Drive

	1.6 Introduction to the Operating System
	1.6.1 Hardware and Software
	1.6.2 Operating System
	1.6.3 Functions of an Operating System

	1.7 Review Questions
	1.7.1 Long Answers
	1.7.2 Short Answers
	1.7.3 Practical Exercises

	References

	Chapter 2: Number Systems
	2.1 Introduction
	2.1.1 Non-positional Number Systems
	2.1.2 Positional Number Systems

	2.2 Positional Number Systems
	2.2.1 Decimal Number System
	2.2.2 Binary Number System
	2.2.3 Hexadecimal Number System
	2.2.4 Octal Number System

	2.3 Number Conversion
	2.3.1 Binary to Decimal
	2.3.1.1 Approach 1
	2.3.1.2 Approach 2

	2.3.2 Binary Fraction to Decimal Conversion
	2.3.3 Binary to Decimal Conversion
	2.3.4 Decimal Fraction to Binary Fraction
	2.3.5 Decimal to Octal Conversion
	2.3.6 Octal to Decimal Conversion
	2.3.7 Octal to Binary Conversion
	2.3.7.1 Procedure 1
	2.3.7.2 Procedure 2

	2.3.8 Binary to Octal Conversion
	2.3.8.1 Procedure 1
	2.3.8.2 Procedure 2

	2.3.9 Decimal to Hexadecimal Conversion
	2.3.10 Hexadecimal to Decimal Conversion
	2.3.11 Hexadecimal to Binary Conversion
	2.3.11.1 Procedure 1
	2.3.11.2 Procedure 2

	2.3.12 Binary to Hexadecimal Conversion
	2.3.12.1 Procedure 1
	2.3.12.2 Procedure 2

	2.4 Review Questions
	2.4.1 Conversion Questions

	Chapter 3: Problem Solving through Flowcharts and Algorithms
	3.1 Introduction
	3.2 Problem-solving Approach
	3.3 Algorithm Design
	3.3.1 Characteristics of an Algorithm

	3.4 Basics of an Algorithm
	3.4.1 Advantages of Using an Algorithm
	3.4.2 Example: Write an Algorithm to Add Two Numbers and Produce the Sum

	3.5 Flowcharts
	3.5.1 Advantages of Using a Flowchart
	3.5.2 Flowchart Symbols
	3.5.3 Flowchart Drawing Guidelines

	3.6 Example Problems
	3.7 Basics of a Programming Language
	3.7.1 Low-level Languages
	3.7.1.1 Machine-level Languages
	3.7.1.2 Assembly-level Languages

	3.7.2 High-level Languages
	3.7.2.1 Compiler vs. Interpreter
	3.7.2.2 Advantages

	3.8 Review Questions
	3.8.1 Objective Type Questions
	3.8.2 Practice Problems
	3.8.3 Subjective Questions

	Reference

	Chapter 4: Introduction to C Programming
	4.1 Introduction
	4.2 History of C
	4.3 Executing a C Program
	4.3.1 Editing
	4.3.2 Compiling
	4.3.3 Linking
	4.3.4 Executing

	4.4 Structure of a C Program
	4.4.1 Documentation
	4.4.2 Header Files
	4.4.3 Global Variables
	4.4.4 main() Function
	4.4.5 Subprograms
	4.4.6 Your First C Program

	4.5 Compilers and Editors for Executing C Programs
	4.5.1 Editors
	4.5.2 Compilers
	4.5.3 Executing Your First C Program
	4.5.3.1 Mac
	4.5.3.2 Windows
	4.5.3.3 Linux

	4.6 Review Questions
	4.6.1 Objective Questions
	4.6.2 Short Answer Questions
	4.6.3 Programming Questions
	4.6.4 Long Questions

	References

	Chapter 5: Constants, Variables, and Data Types
	5.1 Introduction
	5.2 C Character Sets
	5.3 Keywords
	5.4 Variables and Identifiers
	5.5 Data Types
	5.5.1 Primary Data Types
	5.5.2 Integer Data Types
	5.5.3 Floating Point Types
	5.5.4 Character Data Types
	5.5.5 Void Types

	5.6 Declaration of Variables
	5.7 Constants
	5.7.1 Integer Constants
	5.7.2 Real Constants
	5.7.3 Fractional Form
	5.7.4 Exponential Form
	5.7.5 Character Constants
	5.7.6 String Constants

	5.8 Learn to Code Examples
	5.9 Escape Sequences
	5.10 Review Questions
	5.10.1 Objective Questions
	5.10.2 Programming Questions
	5.10.3 Subjective Questions

	Chapter 6: Operators and Expressions
	6.1 Introduction
	6.2 Arithmetic Operators
	6.3 Relational Operators
	6.4 Assignment Operators
	6.5 Logical Operators
	6.6 Increment and Decrement Operators
	6.7 Conditional Operators
	6.7.1 Nested Conditional Operators

	6.8 Bitwise Operators
	6.8.1 Bitwise AND, OR, XOR
	6.8.2 One’s Complement (~) Operator
	6.8.3 Two’s Complement Representation
	6.8.4 Left Shift Operator (≪) and Right Shift Operator (≫)

	6.9 Special Operators
	6.9.1 The Comma Operator
	6.9.2 The sizeof Operator

	6.10 Expressions
	6.10.1 Evaluation of Expressions
	6.10.2 Rules for Evaluation of Expressions

	6.11 Type Conversion
	6.11.1 Implicit Type Casting
	6.11.2 Explicit Type Conversion

	6.12 Operator Precedence and Associativity
	6.13 Review Questions
	6.13.1 Objective Type Questions
	6.13.2 Programming Questions
	6.13.3 Subjective Type Questions

	Chapter 7: Basic Input/Output
	7.1 Introduction
	7.2 Unformatted Functions
	7.2.1 getchar() and putchar()
	7.2.2 gets() and puts()
	7.2.3 getch() and getche()
	7.2.4 putch()

	7.3 Formatted Functions
	7.3.1 printf() Function
	7.3.2 Formatting with printf()
	7.3.3 scanf() Function
	7.3.4 Formatting with scanf

	7.4 Review Questions
	7.4.1 Short Answer Questions
	7.4.2 Programming Questions
	7.4.3 Subjective Questions

	Chapter 8: Control Structures
	8.1 Introduction
	8.2 Selection with if Statements
	8.2.1 Some Points to Remember

	8.3 if-else Statement
	8.3.1 Write a Program to Check Whether a Number Entered by the User is Zero or Nonzero
	8.3.2 Write a Program to Calculate the Travel Fare of a Person

	8.4 Nested if-else Statements
	8.4.1 Write a Program to Find the Biggest Among Three Numbers

	8.5 if-else-if Ladders
	8.5.1 Write a Program to Perform as a Four-Function Calculator

	8.6 Compound Statements
	8.7 Multiway Selection with Switch Statements
	8.7.1 Some Points to Remember

	8.8 goto Statement
	8.8.1 Notes on goto

	8.9 Introduction to Loops
	8.10 while Loops
	8.11 do-while Loops
	8.11.1 Difference Between while and do-while Loops

	8.12 for Loops
	8.12.1 Some Solved Problems (Printing Patterns)

	8.13 Unconditional Branching: break and continue
	8.13.1 break Statements
	8.13.2 continue Statements

	8.14 Review Questions
	8.14.1 Short Questions
	8.14.2 Long Questions

	Chapter 9: Functions
	9.1 Introduction
	9.2 The Need for Functions
	9.3 Types of Function
	9.4 User-defined Functions
	9.5 Components and Working of a Function
	9.5.1 Calling Function
	9.5.2 Called Function
	9.5.3 Function Prototype
	9.5.4 Function Definition
	9.5.5 Function Call
	9.5.6 Actual Arguments
	9.5.7 Formal Arguments
	9.5.8 Return Type

	9.6 Categories of a Function
	9.6.1 A Function Without Arguments and Without Return Types
	9.6.2 A Function Without Arguments and With Return Types
	9.6.3 A Function With Arguments and Without Return Types
	9.6.4 A Function With Arguments and With Return Types

	9.7 Recursion
	9.7.1 Example: Find the Value of x y
	9.7.2 Programming Examples

	9.8 Storage Classes
	9.8.1 Automatic Storage Class
	9.8.2 Register Storage Class
	9.8.3 Static Storage Class
	9.8.4 External Storage Class

	9.9 Review Questions
	9.9.1 Objective Questions
	9.9.2 Subjective Questions
	9.9.3 Programming Questions

	Chapter 10: Arrays and Strings
	10.1 Introduction
	10.2 Need for Arrays
	10.3 Types of Arrays
	10.4 1D Arrays
	10.4.1 Declaration of 1D Arrays
	10.4.2 Initialization of Arrays
	10.4.3 Accessing Array Elements
	10.4.4 Characteristics of an Array
	10.4.5 Entering Data in an Array
	10.4.6 Displaying the Content of an Array
	10.4.7 Programming Examples
	10.4.7.1 Write a Program to Create an Array of N Elements and Write the Code to Find the Biggest Number and the Smallest Number Present in the Array
	10.4.7.2 Write a Program to Search for an Element Present in the Array, the Number of Times the Element is Present, and Print the Element’s Positions
	10.4.7.3 Write a Program to Print the Binary Equivalent of a Decimal Number Using an Array

	10.4.8 Points to Note

	10.5 2D Arrays
	10.5.1 Introducing Matrices
	10.5.2 Declaration of a 2D Array
	10.5.3 Representation of a 2D Array in Memory
	10.5.3.1 Row Major Order
	10.5.3.2 Column Major Order

	10.5.4 Initialization of a 2D Array
	10.5.5 Accessing the Elements of a 2D Array
	10.5.6 Entering Data in a 2D Array
	10.5.7 Exploration of a 2D Matrix
	10.5.8 Programming Examples
	10.5.8.1 Write a Program to Add All the Elements Present in the Main Diagonal of a 2D Matrix
	10.5.8.2 Write a Program to Add the Elements of Each Column and Print it in the Following Format
	10.5.8.3 Write a Program to Add Two Matrices
	10.5.8.4 Write a Program to Multiply Two Matrices

	10.6 Multidimensional Arrays
	10.6.1 Declaration and Representation of 3D Arrays
	10.6.1.1 Write a Program to Declare a 3D Array, Input Some Numbers, and Display the 3D Array

	10.7 Character Arrays: Strings
	10.7.1 Declaration of a String
	10.7.2 Initialization of a String
	10.7.3 Reading a String
	10.7.3.1 Disadvantages of the scanf() Function
	10.7.3.2 Reading Strings with the gets() Function

	10.7.4 Displaying the String
	10.7.5 Programming Examples
	10.7.5.1 Find the Length of a String
	10.7.5.2 Count the Number of Words Present in a String
	10.7.5.3 Reverse the String
	10.7.5.4 Check Whether the String is a Palindrome or Not

	10.8 String Functions
	10.8.1 strcpy (Destination, Source)
	10.8.2 strcat (Destination, Source)
	10.8.3 strcmp (First, Second)
	10.8.4 Programming Examples Using String Functions

	10.9 Review Questions
	10.9.1 Objective Questions
	10.9.2 Subjective Questions
	10.9.3 Programming Exercises

	Chapter 11: Pointers
	11.1 Introduction
	11.2 Basic Knowledge
	11.3 Pointer Variables
	11.3.1 Declaration of Pointer Variables
	11.3.2 Working with Pointers
	11.3.3 Workout

	11.4 Pointer to Pointer (Double Pointer)
	11.5 Void Pointers
	11.6 Null Pointers
	11.6.1 What is the Meaning of NULL?

	11.7 Constant Pointers
	11.7.1 Pointers to Constants

	11.8 Pointer Arithmetic
	11.9 Pointers and Functions
	11.9.1 Pass by Value
	11.9.2 Pass by Reference or Address
	11.9.2.1 Problem: Write a Program to Swap Two Numbers Using Functions

	11.10 Pointers and Arrays
	11.11 Passing Arrays to Functions
	11.11.1 Write a Program to Pass an Array to a Function and Find the Largest and Smallest Numbers Present in that Array

	11.12 Pointers and 2D Arrays
	11.13 Pointers and Strings
	11.13.1 Passing a String to a Function
	11.13.2 Write a Program to Reverse a String Using a Function

	11.14 An Array of Pointers
	11.15 Pointers to Functions
	11.16 Review Questions
	11.16.1 Objective Questions
	11.16.2 Subjective Questions
	11.16.3 Programming Exercises

	Chapter 12: Structures and Unions
	12.1 Introduction
	12.2 Declaring a Structure
	12.2.1 Tagged Structure Declaration
	12.2.2 Structure Declaration Using typedef
	12.2.3 Declaring Structure Variables
	12.2.3.1 Declaring Structure Variables Using the Structure Name
	12.2.3.2 Declaring Structure Variables after the Closing Braces

	12.3 Initializing a Structure
	12.4 Accessing Structure Members
	12.4.1 Accessing Members Using the dot (.) Operator

	12.5 Learn to Code Examples
	12.6 Arrays of Structures
	12.7 Structures within Structures (Nested Structures)
	12.7.1 Declaration of Nested Structures
	12.7.1.1 Declare the Structure with One Declaration
	12.7.1.2 Declare the Structure Separately

	12.7.2 Accessing the Members of a Nested Structure
	12.7.3 Nested Structure Initialization

	12.8 User-defined Data Type: typedef
	12.8.1 Uses of typedef

	12.9 Pointers and Structures
	12.9.1 Accessing Structure Members Using a Pointer
	12.9.2 A Pointer as a Member of a Structure
	12.9.3 Self-referential Structures

	12.10 Structures and Functions
	12.10.1 Passing Individual Members of a Structure
	12.10.2 Passing the Whole Structure Using the Pass by Value Concept
	12.10.3 Passing the Whole Structure Using the Pass by Address Concept

	12.11 Unions
	12.11.1 Declaration of a Union
	12.11.2 Member Accessing

	12.12 Structures vs. Unions
	12.12.1 Size of Unions and Structures
	12.12.2 Sharing Memory and Member Accessing

	12.13 Bitfields
	12.13.1 Declaration of a Bitfield
	12.13.2 Uses of Bitfields

	12.14 Enumeration
	12.15 Review Questions
	12.15.1 Objective Questions
	12.15.2 Subjective Questions
	12.15.3 Programming Exercises

	Chapter 13: Dynamic Memory Allocation
	13.1 Introduction
	13.1.1 Process of Memory Allocation
	13.1.1.1 Text Segments
	13.1.1.2 Data Segments
	13.1.1.3 Stack Segments
	13.1.1.4 Heap Segments

	13.2 Types of Memory Allocation
	13.2.1 Static Memory Allocation
	13.2.2 Dynamic Memory Allocation

	13.3 Dynamic Memory Allocation Process
	13.3.1 The malloc() Function
	13.3.2 The calloc() Function
	13.3.3 The realloc() Function
	13.3.4 The free() Function

	13.4 Review Questions

	Chapter 14: File Handling
	14.1 Introduction
	14.1.1 Difference between Console I/O and File I/O

	14.2 Basics of File I/O
	14.2.1 What is a File?
	14.2.2 File Handling Process Flow

	14.3 Opening a File
	14.4 Closing a File
	14.5 File Functions with Examples
	14.5.1 The fprintf() and fscanf() Functions
	14.5.1.1 Writing and Reading an Integer Using fprintf() and fscanf()

	14.5.2 The putw() and getw() Functions
	14.5.2.1 Writing and Reading More than One Integer Using the putw() and getw() Functions
	14.5.2.2 Reading Numbers from a File and Checking Them for Even or Odd

	14.5.3 The fputc() and fgetc() Functions
	14.5.3.1 Writing and Reading a Character Using fputc() and fgetc()
	14.5.3.2 Writing and Reading Multiple Characters Using fputc() and fgetc()
	14.5.3.3 Count Number of Characters, Lines, Tabs, and Blank Spaces Present in a File

	14.5.4 The fputs() and fgets() Functions
	14.5.4.1 Writing and Reading a String Using fputs() and fgets()

	14.6 Other Programming Examples
	14.7 Review Questions

	Chapter 15: The Preprocessor
	15.1 Introduction
	15.2 Preprocessor Directives
	15.3 Macro-substitutions
	15.3.1 Writing Macros with Arguments
	15.3.2 Removing a Macro

	15.4 The #include Preprocessor
	15.5 Conditional Preprocessors
	15.5.1 The #ifdef and #endif Preprocessor Directives
	15.5.2 The #ifndef and #endif Directives
	15.5.3 The #if and #endif Directives

	15.6 Other Preprocessor Directives
	15.6.1 #line Directives
	15.6.2 #error Directives
	15.6.3 #pragma Directives

	15.7 Review Questions

	Chapter 16: Command Line Arguments
	16.1 Introduction
	16.1.1 The Code::Block IDE

	16.2 Execute a Program Using a Command Prompt
	16.2.1 Installing the minGW Compiler
	16.2.2 Compiling and Executing a Program

	16.3 Fundamentals of the Command Line Argument
	16.4 Using Command Line Arguments
	16.5 Review Questions

	Appendix A: ASCII Character Table:
	Appendix B: Integer Representation:
	B.1 Introduction
	B.2 Representation Type
	B.2.1 Sign-magnitude Representation
	B.2.1.1 Demerits of Sign-magnitude Representation

	B.2.2 One’s Complement Representation
	B.2.2.1 Demerits of One’s Complement Representation

	B.2.3 Two’s Complement Representation

	Index

